
Department of Computer Science

IDATT 2900 - Bacheloroppgave

Hyperfetch: Addressing
Reproducibility and Environmental
Impact in Reinforcement Learning

Author:
Karoline Sund Wahl

May 22nd, 2023

Abstract

In recent years, the field of deep reinforcement learning (DRL) has witnessed remark-
able advancements. However, the reproducibility of results in this domain is very
advanced and challenging. Henderson et al. [1] shed light on these challenges, high-
lighting issues related to hyperparameters, random seeds, and the choice of algorithm
implementations. These factors can greatly influence the outcome of experiments and
hinder the ability to replicate and validate findings if reported wrongly or not in full.

The primary objective of this thesis is to develop an installable tool called Hyperfetch,
which is able to train hyperparameters, as well as extract trained hyperparameters
for RL projects. Hyperfetch operates in conjunction with a website that visualizes the
extracted hyperparameters, alongside their emissions and other relevant metadata.
By bridging existing knowledge gaps in emission profiling and contributing factors
specific to RL projects, Hyperfetch aims to facilitate reproducibility while providing
insights into emission profiles.

Throughout the project, significant emphasis has been placed on creating a functional
and dependable optimization module, as well as designing an intuitive interface us-
ing user-centered design principles. The development process involved an extensive
planning stage, where the website’s structure was modeled, and the logic behind op-
timization and emission tracking was mapped out. Subsequently, a prototype was
developed and tested through interviews and user testing. After improvements were
made, all components, including the module, database, API, and website, were de-
ployed.

Using the online Hyperfetch system, the impact of different factors were tested when
tuning and training RL models. These factors were countries, regions within the United
States, cloud providers, and algorithm selection. The test-results were compared and
analyzed.

The study revealed variations in emissions among different countries, with European
countries generally demonstrating lower emissions compared to other recorded coun-
tries. Similarly, emissions varied across different regions within the United States,
with Vermont exhibiting the lowest emissions per hour and Kentucky producing emis-
sions approximately 30.8 times higher. Comparisons of different cloud providers con-
sistently positioned Google Cloud as the provider with the lowest emissions per hour,
while Azure exhibited the highest emissions. Moreover, the analysis of emissions gen-
erated by different reinforcement learning algorithms show that algorithm choice does
have an impact on emissions. Specifically, Soft Actor-Critic (SAC) consistently gener-
ated higher emissions compared to Proximal Policy Optimization (PPO) and Advantage
Actor-Critic (A2C), particularly in regions such as Norway and Germany, where SAC
emitted approximately twice as much CO2eq per hour.

These findings underscore the significance of considering factors such as country loc-
ation, regional location, cloud provider, and algorithm choice when evaluating CO2
emissions during model training. By planning an optimization with these factors in
mind, it is possible to reduce the environmental impact associated with model devel-
opment and contribute to sustainability efforts. This means that by integrating sus-
tainability considerations into the development of RL models, we can work towards
minimizing the environmental footprint of these technologies.

i

Sammendrag

De siste årene har feltet for Deep Reinforcement Learning (DRL) opplevd store frem-
skritt. Imidlertid utgjør reproduksjon av resultater i dette domenet betydelige ut-
fordringer. Henderson et al. [1] setter lys på disse utfordringene og fremhever prob-
lemer knyttet til hyperparametere, Random Seeds, og valg av implementasjon av
algoritmer. Disse faktorene kan ha stor innvirkning på resultatene av eksperimenter
og gjøør det vanskeligere å gjenskape og validere andres funn.

Hovedmålet med denne rapporten er å utvikle et installerbart verktøy kalt Hyperfetch,
som skal kunne trene og utvinne hyperparametere for RL-prosjekter. Hyperfetch
fungerer sammen med en nettside som visualiserer de innhentede hyperparamet-
erne, utslippene som ble skapt da modellen ble trent, og annen relevant metadata.
Ved å tette eksisterende kunnskapshull innenfor utslippsprofilering, har Hyperfetch
som mål å legge til rette for reproduksjon samtidig som programmet gir verdifulle
innsikter i utslippsprofiler.

Gjennom hele prosjektet har det blitt lagt betydelig vekt på å skape en funksjonell og
pålitelig optimaliseringsmodul, samt å designe et intuitivt brukergrensesnitt ved hjelp
av prinsipper for brukersentrert design. Utviklingsprosessen innebar en omfattende
planleggingsfase, der nettsidens struktur ble modellert og logikken bak optimalisering
og utslippssporing ble nøye kartlagt. Deretter ble en prototype utviklet og testet
gjennom intervjuer og brukertesting. Etter forbedringer basert på tilbakemeldingen,
ble alle komponenter, inkludert modulen, databasen, API og nettsiden deployert.

Ved hjelp av Hyperfetch-systemet ble virkningen på utslipp gitt av ulike faktorer testet.
Dette skjedde under hyperparameter-optimalisering og trening av RL-modeller. Disse
faktorene inkluderte land, regioner innenfor USA, skytjenesteleverandører og valg av
algoritme. Testresultatene ble sammenlignet og analysert.

Studien avdekket variasjoner i utslipp mellom ulike land, der europeiske land generelt
viste til lavere utslipp sammenlignet med andre land i testen. På samme måte var-
ierte utslippene mellom ulike regioner innenfor USA, der Vermont hadde de laveste
utslippene per time, mens Kentucky produserte utslipp omtrent 30,8 ganger høyere.
Sammenligninger av ulike skytjenesteleverandører plasserte konsekvent Google Cloud
som leverandøren med lavest utslipp per time, mens Azure hadde høyest utslipp.
Videre understreket analysen at valg av Deep Reinforcement Learning algoritme hadde
en betydningen for utslippet som ble produsert. Spesifikt genererte Soft Actor-Critic
(SAC) jevnt over høyere utslipp sammenlignet med Proximal Policy Optimization (PPO)
og Advantage Actor-Critic (A2C). Dette var spesielt sant i regioner som Norge og Tysk-
land, der SAC slapp ut omtrent dobbelt så mye CO2-ekvivalenter per time som de
andre algoritmene.

Disse funnene understreker betydningen av å ta hensyn til faktorer som lokasjon,
skytjenesteleverandør og valg av algoritme ved evaluering av CO2-utslipp under mod-
elltreningsprosessen. Ved å planlegge optimalisering med dette i bakhodet, er det mu-
lig å redusere miljøpåvirkningen knyttet til modellutvikling og bidra til bærekraftige
tiltak.

Dette betyr at ved å integrere bærekraftvurderinger i utviklingen av RL-modeller, kan
vi jobbe for å minimere miljøavtrykket av disse teknologiene.

ii

Preface

In recent years, the field of Reinforcement Learning (RL) has experienced exponential
growth and emerged as a leading sub-field within machine learning. Its potential
to tackle complex problems and achieve results in advanced learning problems has
garnered significant attention and interest.

My introduction to RL occurred in 2022 during the elective course IDATT 2502 - Ma-
chine Learning with Project. Collaborating with Maiken Louise Brechan, we created
on a project that focused on ”Reinforcement Learning using Bio-inspired methods.”
Our project aimed to develop an evolutionary algorithm for training Neural Networks.
Throughout this experience, I gained a newfound interest for Reinforcement Learning,
and its many implications.

As I have learned more about RL, I have recognized its complexity and the challenges
associated with tuning hyperparameters, which are important for building models that
perform well. Moreover, I have observed a lack of accessible resources and config-
urations necessary for successful research validation within this field. This realization
ignited my motivation to make a meaningful contribution to the RL community by cre-
ating a solution that hopefully increases this availability. It is within this context that
the problem description explored in this thesis took shape, focusing not only on the
reproduction of hyperparameters but also on addressing emissions-related concerns.

I would like to express my gratitude to the following individuals who have supported
and guided me throughout this thesis:

• Jonathan Jørgensen for guiding me through the thesis and giving me excellent
advice.

• Trond Are Øritsland for giving me feedback on the interface design of the webpage.

• Torkil Marsdal Hanssen for giving me feedback on the user-centered design of
the webpage.

• Vibeke Hvidegaard Petersen for teaching me how to use Latex.

• Maiken Louise Brechan for conducting and finishing last years project with me.

• Nora, for staying up late with me and supporting me through this entire process.

May 21st, Trondheim
Karoline Sund Wahl

iii

Problem Description

Reproducibility and understanding of environmental impact are crucial aspects in the
field of reinforcement learning (RL). Challenges within the field lead to gaps in know-
ledge and limits the advancement and wider adoption of responsible and sustainable
practices. The first challenge revolves around reproducibility. Reproducing and com-
paring research findings in RL is stamped by the lack of published hyperparameters
alongside research publications. The omission of detailed hyperparameter inform-
ation is a hurdle that makes it hard for researchers and practitioners to replicate
experiments, assess result validity, and understand the impact of specific hyperpara-
meters on performance. Furthermore, the lack of transparent reporting and difficulty
in building upon previous research slows down the field’s development and hinders
knowledge transfer.

The second challenge concerns the environmental impact of reinforcement learning
projects. Despite their promising potential, the understanding of emission profiles and
their contributing factors remains limited. The absence of comprehensive emission
reporting and analysis makes it hard to utilize informed decision-making when training
RL models. The field lacks a clear understanding of the factors that significantly con-
tribute to emissions, which hinders the development of strategies to slow down their
environmental impact and design environmentally responsible reinforcement learning
systems.

To address these critical issues, a system called Hyperfetch will be created. This sys-
tem will consist of a website, and an optimization module. The websites functionality
will be to extract optimized hyperparameters, as well as to compare the environmental
impact of different sets of tuned hyperparameters. The optimization module will be
used for tuning reinforcement learning models, and persisting their hyperparamet-
ers and environmental data. The hyperparameters and environmental data will be
available on the Hyperfetch website. This research aims to develop an intuitive and
comprehensive tool that efficiently extracts hyperparameters, enabling transparent
reporting and reproducibility. In addition, it is thought that insights into contributing
factors for CO2 emissions created by RL projects tuning and training can be found by
leveraging Hyperfetch. By bridging the gaps in both reproducibility and understand-
ing the environmental impact, we can foster a more robust scientific community and
facilitate responsible advancements in RL.

iv

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Research Questions and Thesis Aim . 1

2 Theory 2

2.1 Artificial Intelligence . 2

2.2 Reinforcement Learning . 3

2.2.1 Action space . 3

2.2.2 The Agent . 3

2.2.3 Deep Reinforcement Learning . 4

2.3 Hyperparameters . 5

2.3.1 Hyperparameter optimization . 5

2.3.2 Search methods . 5

2.3.3 Sampling . 6

2.3.4 Pruning . 7

2.4 Emissions . 7

2.4.1 Emissions within Machine Learning 8

2.4.2 Reducing emissions within Machine Learning 9

2.5 Design theory . 10

2.5.1 Gestalt principles . 11

2.6 Deployment . 11

2.7 Security . 12

3 Method 14

3.1 Literature Review . 14

3.1.1 Optimization . 15

3.1.2 Calculating emissions . 16

3.2 Developmental Methodology . 16

3.3 Planning stage . 17

3.3.1 User-centered design . 17

3.3.2 Database structure . 19

v

3.3.3 Resulting Stack . 20

3.4 Prototype . 21

3.4.1 Database . 21

3.4.2 Optimization module . 22

3.4.3 Developing the REST API . 27

3.4.4 Developing the website . 28

3.5 Testing . 30

3.5.1 Interview 1 . 31

3.5.2 Interview 2 . 32

3.5.3 Improvements . 32

3.5.4 User tests . 33

3.6 Final Product . 33

3.6.1 Publishing the optimization-module 34

3.6.2 Deploying the database . 34

3.6.3 Deploying the REST API . 35

3.6.4 Deploying the Website . 35

3.6.5 Domain name . 36

3.6.6 Security . 36

3.6.7 Bug Handling . 37

3.7 Emission profiling . 37

4 Results 39

4.1 Findings from Product testing . 39

4.2 Final Product . 42

4.2.1 Website . 42

4.2.2 Architecture . 44

4.2.3 Layers . 46

4.3 Emission Profiling . 47

4.3.1 Emissions by country . 48

4.3.2 Emissions by Region . 48

4.3.3 Emissions by Cloud-provider . 49

4.3.4 Emissions by RL model . 49

4.3.5 Findings . 50

vi

4.4 Administrative results . 51

5 Discussion 52

5.1 Product testing . 52

5.2 Emission Profiling . 54

5.2.1 Location of Server . 55

5.2.2 Cloud Provider . 56

5.2.3 Algorithm selection . 57

5.2.4 Summary . 57

5.3 Final product . 58

5.3.1 Functional Features . 59

5.3.2 Effect goals . 59

5.3.3 Security . 60

5.3.4 Document Driven Development . 62

5.3.5 Alterations . 62

6 Conclusion and Future Work 64

6.1 Research question 1 . 64

6.2 Research question 2 . 65

6.3 Limitations . 65

6.4 Future Work . 66

7 Societal Impact 67

Bibliography 68

vii

List of Figures

1 Overview AI . 2

2 Agent-Environment interaction . 4

3 Regional emissions . 8

4 Emissions based on geographical location 9

5 Research process model . 15

6 Gantt may . 16

7 Prototypes 1 . 18

8 Prototypes 2 . 18

9 Prototypes 3 . 19

10 Entity-relationship (ER) diagram . 19

11 NoSQL database . 20

12 Pip module project structure . 22

13 NoSQL structure 2 . 25

14 NoSQL structure 3 . 26

15 Home page Prototype . 29

16 Finished Prototype 1 . 29

17 Finished Prototype 2 . 30

18 Finished Prototype 3 . 30

19 Prototype Navigation Bar . 31

20 Suggested About page . 32

21 Finished Navigation Bar . 33

22 Footer . 33

23 CNAME record . 36

24 Opinion on recreation . 39

25 Download rate . 40

26 Pie chart opinions about information . 40

27 Pie chart opinions about information 2 . 41

28 Links readability . 41

29 Website design rating . 41

30 Website understanding . 42

viii

31 Finished Home and Selection . 43

32 Finished run selection . 43

33 Finished Run . 43

34 Finished Get Started . 44

35 Finished About . 44

36 Finished Configuration Documentation . 45

37 Hyperfetch user flow . 46

38 Layers of the REST API and frontend . 47

39 Emissions by country . 48

40 Emissions by region . 48

41 Emissions by cloud provider . 49

42 Model-emissions by country . 50

43 Regional emissions . 55

44 Emissions Australia . 55

45 Gantt Evolution . 63

ix

Glossary

Function Approximators An evaluation environment is a controlled setting or frame-
work where the performance and behavior of a trained model is measured. . 5

Model The algorithm drives the learning process, while the model is the outcome or
result of that process. . 6

Parzen estimator The Parzen estimator is a method for estimating the shape of a
probability distribution based on a set of observed data points. . 6

SCI Software Carbon Intencity. 9

TOML Toms Obvious Minimal Language. 34

x

1 Introduction

The field of Artificial Intelligence (AI) has gained tremendous popularity in recent
years. AI research has seen a significant surge, with numerous papers being submit-
ted to conferences and conferences focusing on AI advancements [2]. Reinforcement
Learning (RL) agents aim to learn the optimal mapping of situations to actions through
trial-and-error search, setting RL apart from other areas of Machine Learning (ML) and
pushing the boundaries of knowledge [3]. AI has become a forefront solution in vari-
ous complex domains such as computer vision and natural language processing. It
is projected that AI will generate over 15 trillion USD for the world economy and
contribute to a 26% boost in GDP by 2030 [4].

Reproducing results in deep reinforcement learning poses challenges. Hyperpara-
meter optimization methods require extensive resources and may not be feasible to
use for many researchers and practitioners. Reproducibility issues in deep reinforce-
ment learning include problems with hyperparameters, random seeds, and different
baseline algorithm implementations [1]. Obtaining code published by others has also
proven challenging, with a low success rate in obtaining code with and without com-
munication with the authors [5].

With the increasing accessibility of powerful GPUs, machine learning practitioners now
have greater resources at their disposal. However, contemporary models often re-
quire training on more GPUs, utilizing larger neural networks and data sets, and ex-
tended training durations. As machine learning models become more computationally
intensive [6], understanding their impact on climate change is important. However,
estimating the climate change impacts of machine learning research and applications
is challenging due to limited reporting and accounting practices.

1.1 Research Questions and Thesis Aim

The primary objective of this thesis is to address these challenges by introducing
Hyperfetch [7], a system designed to facilitate result reproducibility in reinforcement
learning and simplify research processes. Hyperfetch provides a time-saving website
for research and education, where hyperparameters are available for fetching such
that users can focus on learning and development. By reducing the need for frequent
hyperparameter retraining, the platform contributes to the collective effort of reducing
carbon emissions associated with power usage. Additionally, the Hyperfetch system
provides an installable module that tracks information regarding produced emissions
during hyperparameter tuning [8]. An accurate understanding of this information
is crucial in tackling climate change caused by fields such as RL, as emphasized in
[9]. Therefore, the thesis will also provide a concrete analysis on server-location and
emissions when training reinforcement learning models. The optimization module will
be used for this. The thesis aims to answer the following research questions:

1. How can an intuitive and comprehensive tool be designed to efficiently extract
hyperparameters?

2. How can the Hyperfetch application be leveraged to gain valuable insights into
the emission profile of a reinforcement learning project?

1

2 Theory

This chapter contains theory essential to solving the research question. The chapter
includes theory related to Artificial Intelligence, Reinforcement Learning, Hyperpara-
meters, emissions and design. In addition, deployment and security is quickly briefed.

2.1 Artificial Intelligence

Artificial Intelligence consists of many categories. However, the one relevant to this
project is machine learning. More specifically, Reinforcement Learning.

Figure 1: A visualization of the main branches within artificial intelligence with focus
on Reinforcement Learning.

Source: [10]

Supervised learning is a type of machine learning where the algorithm learns from
labeled training data. The goal of supervised learning is to make accurate predic-
tions or classify new, unseen data. Unsupervised learning involves training machine
learning models on unlabeled data, where the input data doesn’t have corresponding
output labels. The goal of unsupervised learning is to discover underlying patterns,
structures, or relationships within the data. Reinforcement learning (RL) is a type
of machine learning where an Agent learns to make decisions by interacting with an
environment. Deep learning is a subfield of machine learning that focuses on training
artificial neural networks with multiple layers, also known as deep neural networks.
Deep learning algorithms are inspired by the structure and function of the human
brain’s neural networks. By using multiple layers, deep learning models can auto-
matically learn hierarchical representations of data, extracting increasingly complex
features at each layer. Deep learning can be applied as a technique within the broader
frameworks of supervised learning, unsupervised learning, and reinforcement learn-
ing.

2

2.2 Reinforcement Learning

The Agent in RL is the ”decision-maker” within a reinforcement learning framework.
The agent’s objective is to learn from its interactions with the environment.

2.2.1 Action space

There are two types of action space for a Reinforcement Learning environment. In
a discrete action space, the set of possible actions that the agent can take is finite
and countable. Examples of discrete action spaces include selecting from a fixed set
of options such as moving up, down, left, or right in a grid world. In a continuous
action space, the set of possible actions is uncountable and typically represented by a
continuous range of values. Examples of continuous action spaces include controlling
the joint angles of a robot arm or adjusting the steering angle and throttle of a self-
driving car.

2.2.2 The Agent

The agent is the instance that:

• Interacts with an environment (see figure 2), which can be a simulated or real-
world scenario. The environment provides feedback to the agent based on its
actions and current state.

• Perceives the environment through observations. All observations in an envir-
onment is an observation-space. This observation-space can consist of discrete
or continuous values.

• Selects actions to perform based on the observations it makes. The sum of all
actions that are available to the agent are called action space.

• The agent follows a policy, which is a strategy or rule that guides its decision-
making process. The policies that work best depend on what type of observation
space the environment has.

• After taking an action, the agent receives feedback from the environment in the
form of a reward or penalty.

• Uses reinforcement learning algorithms like Deep Q-Network or Proximal Policy
Optimization to update its policy based on observed rewards and improve its
decision-making.

• Has a goal of maximizing cumulative rewards, reaching a specific state, or ac-
complishing a task specified by the environment.

The illustration in Figure 2 represents the interaction between the agent and the en-
vironment, following the principles of a Markov Decision Process (MDP).

3

Figure 2: A visualization of interaction between the Agent and the Environment.

Source: [11]

MDP popular due to its ability to model decision-making processes, which uses the
Markov property. The Markov Property is a property that says that future states are
solely dependent on the current state and encapsulate all relevant information for
decision-making. In an MDP:

• The number of possible states is finite, although it can also handle infinite pro-
cesses with minor adjustments. For time-dependent processes, we assume a
finite time period, such as t=0,1,2...,T.

• Each outcome only depends on the outcome of the previous stage, satisfying the
Markov property.

• Transition probabilities remain constant over time.

• The system is stationary, implied by the previous property.

While the Markov property generally holds, it’s important to consider scenarios where
historical information may be relevant, such as a trading agent analyzing past trends.

2.2.3 Deep Reinforcement Learning

In regular, or traditional Reinforcement Learning, function approximators used to es-
timate action values or policies are often simple; such as lookup tables or linear mod-
els. A function approximator is a model that approximates the relationship between
input data (observations) and output values (actions or probabilities). These function
approximators can handle problems with lower-dimensional state and action spaces.
Traditional RL methods are capable of handling relatively simpler problems with smal-
ler state and action spaces. As the complexity of the environment increases, the
effectiveness of simpler function approximators might not be very good.

When Deep Learning techniques are applied to Reinforcement Learning (RL), it is to
tackle complex sequential decision-making problems. Deep reinforcement learning
therefore involves training entire Deep Neural Networks (DNNs) as function approx-
imators to estimate action values or policies in reinforcement learning algorithms. The
DNNs look different based on which RL algorithm that is used. An example is the DNN
function approximators for Deep Q-Networks (DQNs), which take the state and action
as inputs and output the corresponding Q-values. Another example is the Proximal
Policy Optimization (PPO) algorithm, which has a different aim than DQNs, namely
to directly approximate the policy, which maps states to actions. Therefore, PPOs
function approximator DNN has to take the state as input, and output the probability
distribution over possible actions.

4

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) differ in the
type of function approximators used and their capabilities. RL relies on simpler func-
tion approximators and is suitable for problems with lower-dimensional spaces, while
DRL utilizes deep neural networks to handle complex problems with high-dimensional
spaces, allowing for automatic feature extraction and generalization. DRL is par-
ticularly advantageous when dealing with raw sensory input, large state and action
spaces, and complex environments. Given that the focus of this thesis will be on
Deep Reinforcement Learning (DRL), it is DRL specifically that will be referred to as
the intended technique in the subsequent chapters when discussing RL.

2.3 Hyperparameters

Hyperparameters are the parameters that configures a learning algorithm or model,
and are not being learned from the data itself. They influence the behavior and
performance of the algorithm but are not directly estimated from the training data.
Hyperparameters are set by the practitioner before the training process begins and
are usually tuned and optimized through experimentation and trial-and-error. Hyper-
parameters can include values such as learning rate, batch size, number of hidden
layers, number of units in each layer, regularization strength, dropout rate, maximum
tree depth, number of clusters, and many others. The specific hyperparameters de-
pend on the chosen learning algorithm or model. The choice of hyperparameters can
significantly impact the performance, convergence, and of a machine learning model.
Different hyperparameter configurations can lead to different outcomes, and selecting
appropriate values is crucial for achieving the desired results.

2.3.1 Hyperparameter optimization

Tuning hyperparameters involves the process of searching for the optimal combina-
tion of hyperparameter values that yield the best performance for a reinforcement
learning algorithm on a given problem. This process often involves experimentation,
training multiple models with different hyperparameter settings, and evaluating their
performance on validation data or by using an Function Approximators.

2.3.2 Search methods

Hyperparameter optimization involves searching through the space of possible hy-
perparameter values to find the best combination. This space is called the search
space. Several search methods can be employed, including grid search, random
search, Bayesian optimization, evolutionary algorithms and more. These methods
explore different hyperparameter configurations and evaluate their performance on a
validation set. The performance of each hyperparameter configuration is evaluated on
this validation set, and the configuration with the best performance is selected. Hy-
perparameter optimization in RL can be computationally expensive, especially when
large number of training episodes are required. Techniques such as early stopping or
parallelization can be used to improve efficiency and reduce the computational burden
of hyperparameter optimization.

5

Grid Search Systematically explores all possible combinations of hyperparameter
values by creating a grid-like search space. Grid search evaluates the performance
of the model using each combination and selects the one with the best performance.
This method is very computationally expensive, and in cases with a large enough
search space, impossible.

Random Search Randomly selects different combinations of hyperparameter values
within the algorithms search space and evaluates the Model’s performance using these
configurations. It is computationally efficient and has been shown to be effective in
many cases [12].

Bayesian Optimization Is a sequential model-based optimization technique that
uses a probabilistic model to guide the search process. Bayesian optimization iter-
atively explores the search space, with a focus on promising regions, and adapts
the search based on the model’s predictions. It is especially useful when evaluating
configurations is computationally expensive [13].

Evolutionary Algorithms Are population-based search methods inspired by natural
evolution. This means that they maintain a population of candidate solutions (actually
hyperparameter configurations) and iteratively apply mechanisms such as selection,
mutation, and crossover to evolve the population over generations. Each candidate
solution’s performance is evaluated, and selection methods determine which solutions
will contribute to the next generation. These algorithms are suitable for complex
search spaces, but require more computational resources compared to other methods.

2.3.3 Sampling

Sampling refers to selecting a subset of possible hyperparameter values or generating
random or systematic samples to evaluate their performance and determine the op-
timal configuration. The method chosen for performing this selection plays a crucial
role in hyperparameter optimization, as it defines which hyperparameter configura-
tions are explored and evaluated during the optimization -and pruning process. This
section describes a few commonly used sampling techniques, and builds on the search
methods from the previous section.

Random Sampler: The random sampler is a basic sampling method where hy-
perparameter configurations are randomly selected from the search space (random
search). This sampler does not consider any prior information or knowledge about
the performance of different configurations.

TPE (Tree-structured Parzen Estimator): TPE is a Bayesian optimization sampler
that models the performance landscape of hyperparameter configurations using a
tree-structured Parzen estimator. It maintains separate probability distributions to
model good and bad configurations. This method has been shown to be effective in
efficiently searching the hyperparameter space, especially in cases where the search
space is complex or contains many discrete variables [14].

CMA-ES (CovarianceMatrix Adaptation Evolution Strategy): CMA-ES is an evol-
utionary algorithm-based sampler that employs an evolutionary strategy to optimize
hyperparameters. This method is particularly effective in continuous and multimodal
optimization problems and has shown good performance in various applications [15].

6

NSGA-II (Non-dominated Sorting Genetic Algorithm II): NSGA-II is an evolutionary
algorithm sampler. NSGA-II applies genetic operators such as selection, crossover,
and mutation to iteratively evolve a population of hyperparameter configurations.

2.3.4 Pruning

In the context of hyperparameter optimization, pruning refers to the process of re-
ducing the search space by eliminating or discarding unpromising hyperparameter
combinations. Pruning techniques aim to narrow down the set of hyperparameters
to explore, making the optimization process more efficient and focused. Pruning as
applied to a search method (2.3.2). These are some relevant pruning methods:

Successive Halving Pruner: The Successive Halving Pruner is a pruning technique
used in hyperparameter optimization that iteratively eliminates poorly performing
configurations. For each round of evaluation, a subset of hyperparameter config-
urations is sampled (using a sampler) and evaluated. Then, only a fraction of the
best-performing configurations from each stage is selected to move to the next stage.
This process continues until a single configuration remains.

Median Pruner: The Median Pruner is another pruning technique commonly used in
hyperparameter optimization. The Median Pruner prunes configurations that consist-
ently perform worse than the median performance. By discarding under-performing
configurations based on the median, it helps focus the search on more promising
configurations.

Hyperband Pruner: The Hyperband Pruner is a pruning technique that combines
the concepts of the Successive Halving Pruner and Random Sampler (2.3.3. This
pruner first samples a set of hyperparameter configurations using a sampler. The
pruner then allocates a predefined budget (processing power) to each configuration.
It then prunes using Successive Halving Pruner on each set. Configurations with the
best performance are promoted, and the budget is increased for those configurations.
Underperforming configurations are eliminated.

2.4 Emissions

This section will explain how one can measure energy use, as well as how emis-
sions can be reduced within Reinforcement Learning (RL). Energy accounting is fairly
straightforward. The consumption og energy for a system can be measured in Watt-
hours (Wh) or Joules (J). For this thesis, kilowatt hour (kWh), which is a measure of
how much energy is used per hour, will be utilized. In order to measure, or quantify,
carbon emissions,CO2-equivalents (CO2eq) are used, which is a standardized meas-
ure that expresses the global-warming potential of various greenhouse gases as the
amount of CO2 which would have had the equivalent global warming impact.

Global climate change is a well-recognized phenomenon within the scientific com-
munity that seems to be accelerated due to increasing greenhouse gas (GHG) emis-
sions such as carbon dioxide or equivalent, CO2eq [16]. The impacts of global climate
change have and safety impacts and are projected to fall disproportionately on the
poor and vulnerable. Production of energy is a large factor in GHG emissions, which
contributes to about 25% of GHG emissions in 2010 [17]. Because the demands for

7

computing power require increasingly larger energy demands, many modern machine
learning (ML) methods have the potential to significantly contribute to carbon emis-
sions due to their long training times. From an environmental standpoint, there are
some important aspects of training a neural network that have a big impact on the
quantity of carbon that is emitted. These factors include the location of the server
used for training, the energy grid that is used at the server location, the length of the
training procedure, and even the make and model of hardware on which the training
takes place. This is because the efficiency of the hardware varies with the amount
of processing power that is utilized. For the most part, the most efficient use of en-
ergy is when the computing power is near maximum utilization [18]. This knowledge
is an important factor in optimization, particularly when using large cloud compute
systems.

2.4.1 Emissions within Machine Learning

There is a great degree of variability in CO2eq emitted depending on the geographical
region of a given server, as can be seen in figure 3. Even within a single region, large
amount of variation can be found. For example, servers located in North America can
emit anywhere between 20g CO2eq/kWh in Quebec, Canada to 736.6g CO2eq/kWh
in Iowa, USA [19]. This difference is a factor of 37, caused by the Quebec location
using renewable energy sources, whilst the Iowa location relies on fossil fuels.

Figure 3: The distribution and variation in carbon emissions depending on geograph-
ical region.

Source: [20]

Although the location of the server running the training of a machine learning model is
the greatest factor in regards to carbon emissions, other important - although smaller
- factors exist. A factor like that is the computing infrastructure used and training time
utilized to train a model. Deep learning models such as Deep Reinforcement Learn-
ing models, can be computationally intensive and require significant computational
resources. With the neural networks residing within these models becoming deeper
(more layers added to the network) and thus more complex, recent state-of-the-art
models are often trained using multiples GPUs. This training can last for several weeks
(or months) to beat benchmark performance, and requires more and more energy.

8

2.4.2 Reducing emissions within Machine Learning

This section will explain how emissions can be reduced within Machine Learning (ML).
This can also be adopted to Reinforcement Learning. To reduce collective emissions
within Machine Learning, there are some guidelines that should be followed [20].

Selecting Data Center Location: Although several cloud providers claim carbon
neutrality, the carbon intensity of their data centers can vary based on the local power
grid they rely on. Some data centers may still heavily rely on carbon-intensive en-
ergy sources, while others are powered entirely by renewable energy. Consequently,
the choice of data center location for training an algorithm significantly influences its
carbon emissions. State-of-the-art models like BERT [21], which is used in natural
language processing (NLP), and VGG [22], primarily used in computer vision, require
extensive training on multiple GPUs for several weeks. By choosing to train models
like these on a server powered by hydroelectricity instead of fossil fuels, it is possible
to avoid emitting several hundreds of kilograms of CO2eq.

Figure 4: Choosing the appropriate geographic region plays the largest role; selecting
it can reduce the Software Carbon Intencity (SCI) by almost 75%.

Source: [23]

Reduce Wasted Ressources: Grid search is still often used in practice, in spite
of its low efficience both in terms of model performance and environmental impact.
However, it has been shown that random search and other search algorithms are more
efficient and provide better optimizations, consequently reducing carbon emissions
[24, 25, 26].

When deciding on a training procedure for machine learning architectures, it is im-
portant to consider whether training a model from scratch is necessary or if reusing
existing models and hyperparameters would suffice for the task. Recent research has
demonstrated that fine-tuning pre-trained models specifically for the task at hand
achieves comparable performance to training from scratch. This approach has proven
effective in image recognition tasks [27] and natural language processing tasks [28].
Fine-tuning involves retaining the weights of the initial layers (the ”base” or ”feature”
layers) from the pre-trained model, while updating or replacing the later layers - often
known as the ”classification” layers - to suit the target task.

9

2.5 Design theory

According to the Association for Computing Machinery (ACM), human-computer in-
teraction is the field that encompasses the design, evaluation, and implementation of
interactive computing systems for human use. It also involves studying the signific-
ant phenomena associated with these systems [29]. When designing a user interface,
several important design principles should be considered.

Early focus: This principle emphasizes understanding the users and their tasks. It
involves identifying the user demographics, determining the tasks users will perform,
and defining the frequency of task execution.

Empirical measurement: This principle involves testing the interface with real users
who interact with it regularly. The results obtained from these tests may vary de-
pending on the users’ skill levels, and they may not always represent the typical
human-computer interaction scenarios.

Iterative design is a process that follows the determination of users, tasks, and em-
pirical measurements mentioned above. This approach involves breaking down the
development process into multiple iterations, each encompassing activities such as
designing, prototyping, testing, and refining the product incrementally. The main fo-
cus of iterative design is to gather feedback from users at an early stage and through-
out the development process. This way, iterative design can be seen as the manifest-
ation of the design principles mentioned before this one. By incorporating the user
feedback and refining the design, iterative design ensures that the final product aligns
closely with user needs and expectations.

An iteration might look like this:

1. Design the user interface

2. Test

3. Analyze results

4. Repeat

According to DeLone and McLean [30], user satisfaction is a key measure of com-
puter system success, if not synonymous with it. The user experience, which involves
various aspects such as presentation, functionality, system performance, interaction
behavior, and assistive capabilities [31], directly contributes to user satisfaction.

The User-Centred Design is based on the usability of the application, and revolves
around finding and catering to the user’s needs [32]. This approach involves several
points.

• The project should be based on the understanding of users.

• Users should be involved throughout the development process project. User
engagement is a valuable source of knowledge about the context of use and
should be used to explore solutions.

• The project should be conducted and refined through assessments focusing on
the user, which minimizes the risk of the system do not reach requirements that
meet the users needs and desires.

10

• The design process should be iterative. The iterative design process is repeated
until a sensible, user-friendly interface is created.

• The design should address the entire user experience.

2.5.1 Gestalt principles

The Gestalt principles, commonly referred to as the laws of perceptual organization,
are a set of principles that describe how humans naturally perceive and make sense
of visual information [33]. These principles serve as valuable guidelines for creating
visually appealing designs that facilitate easy processing and comprehension by the
human brain. Among the numerous Gestalt principles are the following:

Proximity: Elements that are close together are perceived as a group or a single
unit.

Similarity: Elements that are similar in shape, color, or texture are perceived as a
group or a single unit.

Closure: When an object is incomplete or has missing parts, our brains fill in the
gaps to create a complete shape.

Continuity: Our brains prefer to perceive continuous and smooth lines or curves,
rather than abrupt changes in direction or shape.

Symmetry: Our brains perceive objects that are symmetrical as more visually ap-
pealing and balanced.

Figure-ground: Our brains perceive objects as either a figure (the object of focus)
or a background (the surrounding area).

Common fate: Elements that move or change in the same direction or at the same
time are perceived as a group.

These principles are important to consider when designing interfaces with the aim of
being easily understood by the viewer, and work well alongside user-centered design.

2.6 Deployment

Deployment refers to the process of making an application available and operational
for end-users or clients to access and use. It involves taking the developed application
code and associated resources and setting them up in a production environment where
the application can run smoothly and reliably. Some methods for deployment are
on-premises hosting, shared hosting, cloud-based deployment. On-premises hosting
involves hosting an application on ones own servers or hardware. This option requires
self-managed and self-maintained infrastructure, which can be expensive and time-
consuming. Shared hosting involves sharing server resources with other websites
hosted by the same provider. Shared hosting can be a cost-effective option for small
websites with low traffic, but may not provide the same level of performance and
customization as other options. Cloud-based deployment involves using Cloud Service
Providers such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud

11

Platform (GCP) to host and manage the application. Cloud providers offer various
services, including:

• Infrastructure-as-a-Service (IaaS): The cloud provider takes care of the physical
infrastructure, such as servers, storage, and networking.

• Platform-as-a-Service (PaaS): The cloud provider Abstracts away the manage-
ment of infrastructure and provide developers with a platform to deploy and run
their applications.

• Software-as-a-Service (SaaS): The cloud provider manages everything from in-
frastructure to application deployment and maintenance.

2.7 Security

Both websites with user input and those without can be vulnerable to a variety of
security risks. However, websites that accept user input are generally considered
to be at higher risk because user input can be used to exploit vulnerabilities in the
website’s code or infrastructure.

For example, websites with user input may be vulnerable to attacks such as cross-
site scripting (XSS), SQL injection, and other types of injection attacks. These attacks
can be used to steal sensitive data, compromise user accounts, or take control of the
website or underlying infrastructure. However, these attacks can also happen for
websites that do not utilize user input. In those scenarios, the URL holds the risk
as messages to the API must happen through the use of query string-parameters.
Regardless of whether a website accepts user input or not, it is important to take
a comprehensive approach to security and to regularly review and update security
measures to protect against both known and emerging threats.

Cross-Site Scripting This occurs when an attacker injects malicious code into a
website, which can then be executed by users who visit the site. CSS attacks can
allow attackers to steal sensitive information, such as login credentials or credit card
numbers. This vulnerability occurs when an application does not properly sanitize
or validate user input and then displays that input on a web page without proper
encoding.

SQL injection This occurs when an attacker injects malicious SQL code into a web-
site’s database, which can then be executed by the database server. An attacker
does this by identifying an applications input field that is used directly in constructing
SQL queries. This could be a user input field, URL parameter, or form submission.
SQL injection attacks can allow attackers to extract sensitive information from the
database, or even take control of the server. SQL injections can be avoided by using
prepared statements, proper input validation and sanitation, following the Least Priv-
ilege Principle, and by avoiding Dynamic SQL. The Least Privilege Principle means to
grant the database user account or application access only to the necessary database
resources and restrict unnecessary privileges. Dynamic SQL is where SQL statements
are constructed dynamically based on user input or other run-time values, which is
the opposite of using a preparared statement.

HTTP Host Header attacks HTTP Host header attacks, also known as Host header
injection attacks, are web security vulnerabilities that exploit the Host header of an

12

HTTP requests. By manipulating the Host header, an attacker may attempt to hijack
a session, gain unauthorized access to sensitive data, or perform other malicious
activities. This can be prevented by ensuring that the requested host name matches
the expected host name. A way to do this is to hold a predefined list of allowed host
names.

Man In The Middle attacks This occurs when an attacker intercepts and potentially
alters communications between two parties who believe they are directly communic-
ating with each other. The attacker positions themselves between the communicating
parties, allowing them to eavesdrop on the conversation, manipulate data, or even
impersonate one or both parties. This occurs when a website does not properly en-
crypt its communications. Attackers can intercept this data that is not encrypted and
use it for malicious purposes. To avoid this attack, a website should use the Hypertext
Transfer Protocol Secure (HTTPS), instead of regular HTTP. This protocols encrypt the
data being transmitted, making it difficult for attackers to intercept and manipulate
it.

13

3 Method

In order to address the research questions presented in the introduction, this chapter
outlines the methodology required to achieve the following research goals:

1. How can an intuitive and comprehensive tool be designed to efficiently extract
hyperparameters?

2. How can the Hyperfetch application be leveraged to gain valuable insights into
the emission profile of a reinforcement learning project?

The first research goal is addressed in the methodology sections that focus on the
planning stage, prototype development, user testing, and the deployment of the final
product.

Once the Hyperfetch application is functional, the second research goal takes preced-
ence. Exploring this topic involves utilizing the deployed optimization module using
different server locations and RL models for hyperparameter tuning. This will be done
by conducting a series of tests.

By doing these evaluations, the study aimed to gain insights into the environmental
implications of server placement and algorithm selection during the tuning and training
of machine learning models. By undertaking these comparative tests, the study seeks
to gather insights into the relationship server placement and algorithm selection has
with carbon emissions. Gathering this information would contribute to the broader
goal of reducing the environmental footprint of machine learning processes.

3.1 Literature Review

Throughout the research and developmental stage, literature review was systemat-
ically done. A comprehensive review of existing literature, research papers, articles,
and relevant sources were processes in order to gain a deep understanding of the
topic, prior work done within the topic, and determine the path forward. This helped
in identifying existing solutions, best practices, and in developing the research ques-
tions pertaining to the problem statement. This continuous review was especially
helpful as the product was made in a non-group setting and thus had a very limited
period of pure research at the beginning.

In the context of software development, research methodology refers to the system-
atic approach used to conduct research and gather evidence in order to solve a specific
problem. Due to the width of the application, this approach has been comprehensive.
For this project, literature review has been a part of the ongoing process, but espe-
cially leading up to the research question. Due to the research question revolving
around the creation of a platform and a separate module, the strategy of design and
creation followed. To explore the development of the application, data needed to
be gather throughout and after the development and deployment of the project. To
gather this data, the methods interviews with professionals andquestionnaires with
end-users were utilized. The interviews gave the developmental process important
feedback and adjustments. The questioneers (user-testing), provided great feedback

14

on the deployed result. In addition, evaluation was utilized as a method. This mater-
ialized itself as a grand testing of the application, which involved gathering data on
emissions based on regions of energy-grids. Combined, the 3 methods for gathering
data resulted in a combination of quantitative and qualitative feedback. Qualitative
data is non-numerical, descriptive and subjective in nature. This type of data aims to
capture rich, in-depth insights, opinions, experiences, and interpretations from parti-
cipants. Quantitative data is numerical data and based on measurable variables. This
data focuses on gathering objective information and statistical patterns, allowing for
statistical analysis and generalization.

Figure 5: Illustration of the research methods used throughout development and
deployment. The marked boxes are - to a varying extent - present in this thesis.

Source: [34]

3.1.1 Optimization

The pre-project plan aimed at using an evolutionary optimization algorithm for training
and tuning hyperparameters, but the research conducted phased out that option due
to the discovery of Optuna, which is a framework for hyperparameter optimization.
An optimization framework uses various search algorithms and pruners to explore
and evaluate hyperparameter combinations, aiming to find the best-performing con-
figuration for a given machine learning model. Using Optuna in favor of a singular
evolutionary optimization algorithm was preferable, as it would allow the optimization-
module to consist of many mainstream, effective optimization algorithms for the users
to choose from. It seemed reasonable that this would increasing the chance that an
algorithm might fit with a users specific needs for optimization. Optuna supports
optimization algorithms such as Random Search, Tree-structured Parzen Estimator,
Covariance Matrix Adaptation Evolution Strategy, and evolutionary algorithms, such
as NSGA-II. All these are described in Section 2.3. Additionally, the research high-
lighted the necessity of reliable algorithm implementations, leading to the discovery
of Stable-Baselines3. Stable-Baselines3 is a popular Python library that provides a
collection of state-of-the-art reinforcement learning algorithms, and are known for
their algorithm implementations being reliable and well-established. Furthermore,
the research identified the requirement for suitable training environments to gener-
ate models using the chosen algorithms. In this regard, OpenAI’s Gym was found to
be a a good option, due to its popularity and reputation within the field, as well as its
standardized interface. Gym is Python library that provides a collection of environ-
ments for developing and testing reinforcement learning (RL) algorithms

15

3.1.2 Calculating emissions

The focus of the vision document on CO2-tracking is a direct reflection of the problem
statements focus on CO2 emissions within machine learning. Specifically, the prob-
lem statement specifies the need to create an environmental profile for reinforcement
learning projects based on their environmental impact. Therefore, parts of the initial
literature review was spent searching for an applicable solution. In the end, CodeCar-
bon seemed a feature-rich option that would provide the application with the tools
required to track and measure the carbon emissions associated with the optimization
process.

3.2 Developmental Methodology

While the traditional Agile methodologies are often associated with teams, the prin-
ciples of iteration, collaboration, and adaptability can still be applied by individuals
working independently. The process did not strictly align with a specific Agile meth-
odology like Scrum or Kanban, but it did exhibit key characteristics of iterative de-
velopment and continuous improvement. The developmental process consisted of
iterative design where feedback was incorporated through interviews and user tests,
and where necessary adjustments were made based on the insights gained. The pro-
cess was administrated through a Gantt chart, which was used as a visual tool for the
project. Gantt is used in traditional project management to plan and schedule tasks
by providing a timeline view of the project. The timeline shows the start and end dates
of each task. Gantt charts are useful for visualizing the overall project schedule and
tracking progress but are not associated with agile methodologies. Therefore, the de-
velopment methodology was a mix between agile and traditional development, which
is perhaps not unexpected when development was conducted by a singular person.
As the process went along, new details were added in order to divide the process into
smaller, more managable tasks. When the project had been developed and deployed,
the chart had been successfully completed. However, the tasks were often not done
or started at the time that had been expected.

Figure 6: The Gantt-chart at the very end of the project.

Overall, the approach can be classified as an individual, iterative development process
that valued feedback, adaptation, and incremental improvement.

16

3.3 Planning stage

During the planning stage, the application’s individual components were modeled,
sketched, and documented. These components are the optimization module, data-
base, REST API, and the frontend. This process used insights from the literature
review and previous knowledge. The goal was to establish a clear understanding of
the system’s structure and logic, such that this could be used for supporting the sub-
sequent development phase. This stage a solid foundation for the overall application.

3.3.1 User-centered design

The first stage of designing revolved around creating prototypes, which were designed
in the form of wireframes. The design process utilized the iterative design approach
specified in Section 2.5. This section can be considered the planning stage for the
iterative design. The Requirement documentation was created as a first step in this
process, with user-stories being central to the document. The user stories and vision-
document build on each other, with both explicitly stating what users might need the
application for. The wireframes resembled the expected outlook of the web page, and
were created with user-centered-design in mind. This means that the wireframes were
created with the user-stories and vision document in mind, with the goal of meeting
the users needs and desires. In addition, Gestalt principles were utilized when placing
the components on the pages. Examples of principles used were:

• Proximity: The about-page’s wireframe features 3 text-boxes; each with their
own image in close proximity.

• Symmetry: The page displaying algorithms and runs was made in a way such
that the two boxes would be symmetrically aligned over the central y-axis of the
page. In addition, the ”environment”-button of the home-page was set in the
very center.

• Similarity: The background and navigation-bar is the same on every page. An-
other example is that the runs displayed on the algorithm -and runs page are
made with no grid. However, due to their similar horizontal structure, each row
is intended to be seen as an individual component due to the similarity in row-
structure.

Following is the entire application as it was modelled before development had started.

For the homepage shown in Figure 7a, the button ”Environments” is thought to func-
tion as a drop-down menu. This drop-down menu displays the environments that
have optimized runs in the database. After selecting an environment from the drop-
down menu, the user is routed away from the homepage and onto the selection-page
shown in figure 7b. On this page, the user has to select one of the algorithms in the
left-hand box. Upon selection, the right-hand box appears. This box displays all the
runs available for the environment x algorithm combination.

After the user has selected one of the right-hand ”runs” from Figure 7b on the last
page, the user is directed onto a page that displays all the information for the se-
lected run. This information is modelled in figure 8a. This includes environmental

17

(a) The Home page. (b) The Selection page.

Figure 7: Figma prototypes displaying the Home -and Algorithm Selection page as
they were modelled in the planning stage.

parameters, such as CO2-emissions and consumed energy throughout the optimiz-
ation process, as well as the best hyperparameter configurations for the run. This
page is the final destination for the user-flow associated with the fetching of hyper-
parameters. The About Page shown in figure 8b was designed to provide users with a
clear understanding of the motivation behind developing the Hyperfetch application.
It aims to highlight the key benefits and features of the application, focusing on three
main aspects:

Collective Emissions Reduction: This section explains how the Hyperfetch applic-
ation contributes to reducing collective emissions by optimizing hyperparameters for
reinforcement learning models.

Enhanced Reproducibility: This section explains how the application supports re-
searchers in achieving greater reproducibility of their work.

Ease of Use for Beginners: This section emphasizes that Hyperfetch is designed to
simplify the process of utilizing reinforcement learning. It highlights how the applic-
ation offers beginners a user-friendly interface and readily available pre-configured
hyperparameters.

(a) The Run page. (b) The About page.

Figure 8: Figma prototypes displaying the Run -and About page as they were modelled
in the planning stage.

The Get Started Page shown in Figure 9a serves as a guide for users who are new
to the Hyperfetch application. Its primary objective is to assist users in download-
ing and utilizing the optimization module correctly. The page provides step-by-step
instructions on how to set up the module, configure the necessary parameters, and
initiate the hyperparameter optimization process. In addition, the page explains to

18

the user how to use the website to fetch hyperparameters, such that the user can get
started properly with all the functionalities of the system. The Config Page shown in
figure 9b plays an important role in empowering users to make the most of the Hy-
perfetch application. This page serves as a central hub for all configurable parameters
available in the optimization module. It provides explanations and guidelines for each
parameter, which enables users to make informed choices based on their own specific
requirements.

(a) The Get Started page (b) The Config page

Figure 9: Figma prototypes displaying the Get Started -and Config page as they were
modelled in the planning stage.

3.3.2 Database structure

This section describes the modelling of the database. Initially, the database was
modelled as a relational database.

Figure 10: The intial plan was to create a relational database with the entity ”Run” as
the central entity.

However, the plan was shortly ruled out in favor for a non-relational (NoSQL) solu-
tion. NoSQL databases allow for fast development due to their smaller demand for
upfront planning. They are alos optimized for write-heavy workloads and handling
large volumes of data. However, that is not why NoSQL ended up being chosen.
As the structure of the relational database was being modelling, the need arose for

19

a different solution due to problems in modeling the hyperparameters. The Hyper-
parameters vary for each reinforcement learning algorithm, both in attributes and
numbers. This causes a problem due to how relational databases demand struc-
ture, because storing key-value pairs is difficult when the keys are not generalizable.
NoSQL databases, however, are designed to handle flexible data structures, and can
store dictionaries (also known as maps or key-value pairs) as an attribute. These
non-relational databases also support dynamic schemas, which means that fields can
easily be added or removed from the database without needing to update the entire
database schema. These features seemed befitting for the project, especially since it
was likely that the database would receive new attributes at later stages due to the
project not being easy to define at that level for this stage of development. Thus, the
new non-relational database model became much more simple as the entire logic fit
within a single document.

Figure 11: When switching the relational database out for a NoSQL database, the
entirety of the entities could be persisted as a single document.

3.3.3 Resulting Stack

As the application as a whole will consist of a database, a module for optimization, a
REST API, and a frontend, the project can be considered full stack. This section will
cover the technologies used for each part of the application.

The Database The choice of a suitable database management system was an im-
portant decision in the project’s development. After careful consideration, MongoDB,
a popular NoSQL database, was selected to meet the project’s requirements. The
selection of MongoDB was motivated by its suitability for fast development, reduced
upfront planning, and its flexibility in storing dictionaries. In addition, it supports
dynamic schemas, which aligned well with the project.

Optimization module As the optimization module will take advantage of Optuna,
Stable-Baselines3, CodeCarbon and OpenAI environments, which are all pip-installable
Python packages; it was logical to write the module in Python. As Python is a multi-
paradigm programming language, meaning it supports several programming styles,
it makes for a good choice when aiming to produce Object oriented code. In general,
Python is a preferred language for machine learning and artificial intelligence. This
is because the finished package can be distributed to Python Package Index (PYPI)
when finished.

20

REST API framework There were many options for selecting the Rest API frame-
work. The requirements were that it had to be fast to provide the best user ex-
perience, reasonably efficient to implement and easy to containerize with Docker for
deployment. A framework that checked of all the boxes was FastAPI. FastAPI supports
type annotations to reduce boilerplate code, automatically generates interactive API
documentation and is easy to deploy using Docker. The choice of FastAPI as the REST
API framework was driven by its support for asynchronous programming. Synchron-
ous APIs process requests sequentially, leading to longer response times and limiting
the number of concurrent requests that can be handled. However, an asynchronous
REST API, as implemented in FastAPI, allows multiple requests to be processed con-
currently without waiting for each response before handling the next request. This
asynchronous architecture can handle a larger number of requests simultaneously.

Frontend framework It would be of little value to have a REST API optimized for
speed accompanied by a slow frontend. Therefore, the choice of frontend framework
highly relied on speed and performance. The choice eventually fell on Vue.js. Vue is a
lightweight framework that requires minimal setup and has a small footprint, making
it ideal for building small to medium-sized applications, such as this one. In addition,
Vue is designed with performance in mind. This is evident in its virtual Document
Object Model (DOM) implementation, which makes rendering updates faster and more
efficient than traditional DOM manipulation. Lastly, Vue has the option of creating
reusable components, which will make the code cleaner and more concise.

3.4 Prototype

Developing the prototype consisted of creating a database, creating an optimization
module, a REST API with all its logic, and then creating the frontend to display the
website. The project was built from the bottom up, starting at the database, and
ending at the website.

3.4.1 Database

The creation of the MongoDB database was not very complicated. Firstly, the Mon-
goDB Community Server was downloaded from the official MongoDB website and in-
stalled on the computer. This installation included essential features such as the
MongoDB server (mongod) and the MongoDB Compass. Next, a designated data dir-
ectory was created to store MongoDB’s data files. The MongoDB shell was launched by
executing the ”mongo” command in the terminal. The admin database was entered,
and an admin user was set up. This also involved assigning relevant privileges, and
used the following command:

db.createUser({ user: "admin_username", pwd: "admin_password",
roles: [{ role: "userAdminAnyDatabase", db: "admin" }] })

21

3.4.2 Optimization module

The Optimization Module holds many features. Firstly, it enables the user to provide
input, granting the user the ability to select an environment and an algorithm to be
trained within the specified environment. Additionally, users can specify parameters
related to how they want the algorithm’s hyperparameters to be tuned. Secondly, the
module performs input validation to ensure that the provided user input is accurate
and appropriate. Next, the module optimizes the hyperparameters for the configur-
ations selected by the user. Furthermore, the module generates data pertaining to
CO2 emissions and energy usage. This data helps quantify the environmental impact
associated with the optimization process, and is essential for the problem statement.
Finally, the module persists the tuned or optimized hyperparameters along with other
relevant data for future reference and analysis.

To ensure proper code organization and facilitate the user input, validation, optimiz-
ation, and persistence processes, an Object-Oriented Programming (OOP) paradigm
was adopted for the module. In this paradigm, a Manager-instance was introduced as
the central ”controller” or ”facade” class. The Manager-instance plays a pivotal role in
coordinating the behavior of other objects within the system. It achieves this by call-
ing methods on other objects, facilitating data transfer between them, and controlling
the overall program flow.

Figure 12: The project structure for the code that optimizes hyperparameters for
Reinforcement Learning algorithms.

Designing a user input solution that accommodates users with varying levels of pro-
gramming knowledge requires careful consideration. In this application, a configura-
tion file was chosen as the medium for user input. Another medium that could have
been chosen would have been input through command-line arguments. The decision
to use a configuration file instead was driven by the desire to maintain flexibility.
This also excludes the limitations that arise when handling numerous command-line
arguments, especially as the application scales with additional parameters. Among
the various types of configuration files available, YAML (YAML Ain’t Markup Language)
emerged as the most suitable choice. YAML, being a text-based format, offers read-
ability and ease of writing. By utilizing a configuration file, users are enabled to more
easily identify and rectify errors before running the application. In addition, YAML’s
support for a wide range of data types enhances the flexibility stated earlier.

The development of the validation -and optimization processes occurred in parallel, as
determining the appropriate configurations to include in the validation process relied

22

on understanding which configurations were involved in the optimization. Initially,
only a few parameters were configurable in the configuration file, but as the develop-
ment process progressed, additional parameters were incrementally introduced based
on evolving needs.

Validation Ensuring that users understand the functionality of the parameters they
configure in the file is crucial, as these parameter values can significantly impact
performance. The validation procedure serves the following purposes:

1. Detecting missing required parameters: If a required parameter is omitted, the
validation process returns an error message and halts the execution.

2. Handling invalid parameter values: If an invalid value is assigned to a parameter,
the Manager assigns a default, valid value instead. An informational message is
returned, providing details on valid values and the default value assigned. The
execution is allowed to continue.

3. Resolving conflicting parameter values: In cases where a value assigned to a
parameter contradicts other values, the Manager assigns default values to the
least critical parameters. For example, if the NSGAII-sampler is selected, no
pruner can be chosen. In such cases, the Manager sets the Pruner parameter to
”None” if the user had assigned it a different value. An informational message
is provided to communicate the changes made.

The validation process operates efficiently by reading the configuration file as a dic-
tionary and validating the presence of each possible parameter using a switch-like
function (multiple if-statements). If a non-mandatory parameter is absent, the Man-
ager adds this parameter to the YAML file, and informs the user of the change by
logging it in the terminal. This informs the user that the parameter is needed to run
the optimization, and that a default value was assigned to it. By adding it to the YAML
file for the user, the user will be able to visualize the parameters that were used by the
application in the previous run, and alter them later on if they want to. In addition,
the application will not log that the parameter is missing, as it is already there the
next time the user runs the YAML file.

For validation, the switch-like approach is chosen due to its favorable algorithmic
time-complexity compared to other options.

Option 1 (Chosen): The validation function follows these steps with their respective
time complexities:

1. O(n): Reading the n parameters from the configuration file into a dictionary.

2. n if-statements: Each if-statement checks for the existence of a specific para-
meter in the dictionary.

• O(1): If a required parameter is missing, an error message is returned.

• O(1) + O(1): If a non-required parameter is missing, it is inserted into the
configuration file with a default value.

Total complexity: O(n) + O(1) + O(1) = O(n)

23

Option 2: (Not chosen) The validation function follows these steps with their re-
spective time complexities:

1. O(n) Reading the n parameters from the configuration file into a dictionary (a).

2. Creating a list (b) containing all the implemented parameters.

3. O(n) A for loop that iterates over the list b

4. Each iteration includes an if-statement that checks if the current value exists as
a key in the dictionary b (O(1)).

• O(1): If the current value is a required parameter, an error message is
returned.

• O(1): If a non-required parameter is missing, it is added to the configuration
file with a default value.

Total complexity: O(n) + O(n) + O(1) + O(1) + O(1) = O(2n)

Based on the time complexities, Option 1 is chosen as it offers a more efficient solution
with a complexity of O(n), compared to Option 2 with a complexity of O(2n).

Optimization After validating user input, the Manager proceeds to create the en-
vironment using the values from the configuration file. This involves tasks such as
stacking frames for vectorized environments, running environments in parallel, and
setting a random seed for the Random Number Generator (RAG). Random number
generators (RNGs) are algorithms or programs that produce a sequence of seemingly
random numbers. A random seed is a starting point or an initial value used in an
RNG. An RNG is used to introduce randomness and variability into the environment’s
behavior, whilst a random seed is used to ensure that the same sequence of random
numbers is used across different training runs in the environment. To ensure reusab-
ility, a function was developed specifically for environment creation. The environment
is what the Agent will interact with, as specified in section 2.2.2. As specified in the lit-
erature review, environment will created using Gym for this project. Gym is a toolkit
for developing and comparing reinforcement learning algorithms. It provides a di-
verse suite of environments that range from easy-to-use, simulated games, to more
complex, real-world scenarios. Gym is developed by OpenAI, which is a research
company that focuses on advancing artificial intelligence in a safe and beneficial way.

Since hyperparameters - as mentioned earlier - are algorithm-specific, a separate file
was dedicated to holding dictionaries of hyperparameters. The Manager retrieves the
relevant hyperparameters based on the chosen algorithm specified by the user in the
configuration file.

To facilitate optimization with Optuna, the environment creation and hyperparameter
retrieval were integrated into an objective function. An objective function defines
the optimization problem, taking a set of hyperparameters as input and returning a
score representing the quality of the solution. In this project, any rewards deemed
unworthy by the configured pruner are not returned.

To tie everything together, the Manager implements a method called ”run” that or-
chestrates the optimization process. The run method handles the creation of the Op-
tuna study, which takes the objective function, the number of parallel jobs, and the
number of trials as parameters. The study is the entity optimized by Optuna, and the

24

objective function is executed for each trial. If the objective function does not yield a
reward that is good enough, the trial is pruned. Additionally, the run method incorpor-
ates functionality for early stopping, allowing optimization to end once a user-defined
reward threshold is reached. Custom callbacks imported from a separate script are
utilized for evaluating trials and stopping the optimization process accordingly. The
reward threshold, like other user-defined values, resides in the configuration file.

Persistence After optimization, the tuned hyperparameters had to persisted. Con-
sidering the preferences of machine learning practitioners who often prefer managing
dependencies within their own projects, it was decided to incorporate the persistence
functionality within the module itself. This approach allows practitioners to easily
download the package into their project and configure it in a single file, rather than
navigating external websites and dealing with multiple parameter text fields. As a res-
ult, an additional function was added to the Manager. This function is responsible for
delivering a JSON object containing the best-performing hyperparameters, along with
the average reward achieved by those hyperparameters, to the MongoDB instance.
Other relevant parameters from the configuration file are also included in the JSON
file.

During the implementation of this method, it was discovered that there was no existing
mechanism in the database structure to connect a persisted run with the correspond-
ing project. Connecting hyperparameters to specific projects is an important feature
for increasing the reproducibility of results. In response to this discovery, modifica-
tions were made to the configuration file and the validation method, such that users
could enter their project name and link within the YAML file. At this stage, persisting
a run would result in a database document structured as shown in Figure 13

Figure 13: The structure for documents being persisted to the database after having
made alterations to accommodate for connecting the run to existing projects.

Emissions and energy usage A key aspect of this project is to quantify the CO2
emissions associated with the process of optimizing hyperparameters. The design of
the database includes fields to store CO2 emissions and energy usage values. To track
these features, the CodeCarbon emission-tracker was integrated into the module.

CodeCarbon collects data on computer energy consumption, and converts energy con-
sumption into carbon emissions. This is accomplished by gathering information about

25

the energy consumption of the CPU and GPU, as well as the location of the computer
or server. Different CPUs and GPUs have varying energy consumption rates, and the
location is considered as it is assumed that energy is sourced from the nearest en-
ergy grid from the computer or server running the optimization. The data CodeCarbon
generates is entered into a Comma-Separated Values (CSV) file. This data consists
of the values for the previously mentioned factors (GPU, CPU, location), as well as
relevant cloud provider data is used. Incorporating this CSV data into the persistence
method enhances the comparative analysis of runs that can be found on future web-
site, thereby improving the accuracy of result reproduction. Given the non-relational
nature of the database, integrating these features into the persistence process proves
to be a time-efficient approach. As a result, the revised document structure, as seen
in Figure 14 contains more parameters.

Figure 14: The structure for documents being persisted to the database after having
made alterations to accommodate for more environmental parameters.

Testing The module underwent incremental testing throughout its development, al-
lowing for real-time identification of issues. With the addition of new features, such
as new configurable parameters in the YAML file, the module was repeatedly executed
for short optimization runs to target and address any arising errors.

To ensure comprehensive testing of the modules validation of user input, a final test
was conducted. This test involved performing optimizations using all possible combin-
ations of environment types, algorithms, samplers, and tuners, while keeping other
configuration parameters set to their default values. Despite the extensive nature
of this testing method, it was feasable, as there were relatively small numbers of
options available for each parameter-type. The practical implementation of this test
involved a nested 4-fold for-loop iterating over environments, algorithms, samplers,
and tuners. This nested for-loop was executed twice; once for discrete environments
and corresponding algorithms, and once for continuous environments. This exhaust-
ive testing process, with a time complexity of O(2n4), required a total of 34 hours to
complete.

26

3.4.3 Developing the REST API

The REST API was developed directly after the optimization module. Documentation-
Driven Development (DDD) was utilized as a method to drive the process. This method
involves starting the development process by creating thorough API documentation,
before following that up with Test-Driven Development (TDD) and then starting to
code. This process was incremental, meaning that the API documentation was used
for guiding the test-writing, and that the coding was guided by the test-writing. As new
features and demands were revealed, the documentation and tests were improved,
followed by the code. While this might seem like an unnecessary step, it helped
keep the progress on track and avoided lengthy detours into unplanned terrain. In
summary, the DDD approach helped ensure that the API was well-documented from
the start, and that the development process was focused on meeting the documented
requirements. For further details on the content of the API documentation, see the
system documentation’s Section 6 in the appendix.

The process of using DDD and TDD was as follows. To start with, A DDD file was cre-
ated, defining endpoints for fetching environments, algorithms, top-performing runs,
selected runs, creating runs, and deleting runs. Following the principle of Test-Driven
Development (TDD), a test was written for each endpoint. These tests were initially
designed to fail and later passed as the code became functional. Once the tests were
in place, the endpoints themselves were implemented. As the server for the REST
API, Uvicorn was used. Uvicorn is a lightweight and fast ASGI server that serves as
a runtime for web applications written in Python. It provides high-performance asyn-
chronous request handling, which makes it well-suited for serving APIs. A FastAPI
router was also instantiated for routing between the endpoints. Finally, a database
connection was established to facilitate testing. The connection proved to be func-
tional, and after further code modifications, the tests were passing at this stage.

Although the application was functional at this point, further enhancements were
needed to incorporate proper exception handling and achieve a more modular ar-
chitecture. Improvements were made to enhance the robustness and modularity of
the application. First, the Domain-Driven Design (DDD) was updated to incorporate
error-handling. Logical error names were added to the tests to provide clear and
descriptive error messages. To handle these errors effectively, a file containing cus-
tom exceptions was created. These exceptions were imported and integrated into
the router endpoints, ensuring proper and readable error-handling. Once the tests
were passing, the focus shifted towards the creation of the Data Access Layer (DAL).
The DAL served as an intermediary layer between the persistence logic and the upper
layer, which was the FastAPI Router. This architectural decision was made to adhere
to object-oriented principles such as encapsulation and modularity.

The app at this point was functional, but not secure. The next phase of development
focused on enhancing the security aspects of the application. To achieve this, Py-
dantic models were introduced into the tests. These models were also designed using
object-oriented principles. The Pydantic models played an important role in defin-
ing, validating, and serializing/deserializing data within the application. By validating
incoming request data and automatically parsing and serializing data, these models
minimize the risk of data validation and sanitization attacks, such as Cross-site script-
ing (XSS) and SQL injection attacks. In addition to the implementation of Pydantic
models, endpoints related to creating and deleting a run were removed from the ap-

27

plication. Although these endpoints had been initially included, they were found to
be unnecessary for the webpage and increased the attack surface of the application.
Even if the endpoints were not actively utilized, their accessibility posed a potential
safety risk. Therefore, to minimize potential vulnerabilities, these endpoints were
eliminated. Once the tests were successfully passing, Cross-Origin Resource Sharing
(CORS) middleware was integrated into the application. This middleware IS respons-
ible for facilitating communication between the future and the API. As the frontend was
not up at this point, CORS could not be properly configuring CORS yet, but it would
not prove hard to add the remaining frontend address to the middleware’s empty list
of allowed URLs.

3.4.4 Developing the website

The website was developed last, directly after the FastAPI backend. As a base for
prototype-development, the Wireframes presented in Section 3.3.1 were used. This
is the second stage of the iterative design that the website has gone through. After
this stage, the prototype will be functional and ready for the third stage, which is
testing.

During the development of the web server, the website was created following a sys-
tematic order of operations. To establish a connection with the backend, the Service
layer was implemented first. This layer consisted of JavaScript functions that utilized
Axios to make HTTP requests to the API endpoints. It served as the bridge between
the frontend and the backend. Next, the Store was developed using Vuex. This
involved defining methods and attributes for storing state, actions, mutations, and
getters. The Store interacted with the Service layer to fetch data from the API, hand-
ling the response by modifying its state or returning appropriate error messages. The
basic views were then created to serve as containers for the various components. In
Vue.js, a view refers to a component that represents a specific page or section of a
web application. Although initially empty, these views provided a structural found-
ation for further development. To enable navigation between different views, the
Vue Router was implemented. This routing mechanism facilitated seamless switching
between different sections of the website. To enhance the visual aesthetics of the
website, a logo and smaller images such as symbols and algorithmic abbreviations
with background coloring were created. To ensure proper placement and timing of
images within grids, renderers were developed. A renderer is a mechanism or com-
ponent that is responsible for taking data and rendering it into the appropriate format
for display on a web page. The goal in doing this was to maintain maintained code
cohesion by separating the image rendering logic from the main component code.

The landing page, designed as the homepage, was the first fully developed view. It
played an important role as the starting point from which component logic branched
out.

28

Figure 15: Home page for the prototype

Creating the landing page first proved beneficial, as it allowed for easy validation
and testing of other components and their functionality when navigating to them
from the homepage. Subsequently, the individual components were designed and
implemented. These included displays for algorithms and their associated runs, a
view for displaying detailed information about a selected run, and a navigation pane.
After selecting an environment, the page shifts onto the algorithms, as shown in Figure
16a. An example-set of algorithms is shown in Figure 16a. Renderers were used to
render each algorithm’s abbreviations as images in the left column. After selecting
an algorithm, the optimization runs conducted using the selected algorithm appears
as shown in Figure 16b.

(a) Algorithms available (b) Runs for a selected algorithm

Figure 16: Upon selecting an environment from the Landing page, the user is presen-
ted with algorithms to choose from. The user selects PPO, and the runs conducted
using the selected environment and PPO are revealed.

Upon selecting a run, the run is loaded onto the page. Renderers were used to dis-
play the icons here as well. The page is designed to be compartmentalized into three
different components. The first component is the reward and emission-profile for the
run. These parameters are presented first, as they are the factors that the users are
thought to use when selecting hyperparameters. After that, the second box highlights
other parameters relevant to the tuning of the hyperparameters, such as server loca-
tion, hardware, software, pruner and sampler. Lastly, the users that are content with
the results and configurations used may scroll down to reveal the hyperparameters,
as seen in Figure 17b.

Lastly, the supporting views were created. These views are not part of the user-flow
related to fetching and comparing tuned hyperparameters, but are there to support
the user. The development of these supporting views involved careful consideration
of the target audience and their specific needs. User-centric design principles, such
as the gestalt principles described in the planning stage in section 3.3.1, were applied
to create intuitive pages and to convey the information to the users.

While the supporting views differ in function from the rest of the application, a con-
scious decision was made to maintain visual cohesion with the other views. This was

29

(a) The selected run - upper page (b) The selected run - lower page

Figure 17: Upon selecting a run, the user is presented with the data for the selected
run. This involves average reward, CO2 emitted, hyperparameters and more.

achieved by utilizing the same color palette and overall box-style layout as the main
user-flow views related to fetching hyperparameters. In particular, the supporting
views share the same background color as the other views that are part of the regular
user-flow. The primary color chosen for the application was blue. Blue was selected
based on its associations with trust, reliability, and professionalism [35], which align
well with the goals for the project.

(a) Config page (b) About page (c) Get started page

Figure 18: The supporting views of the application. These views are created to sup-
port the user experience of the application by granting the users the resources to
understand how to use the website and the optimization module.

By following this systematic approach, the website was progressively built, resulting
in a functional website-prototype that was ready for testing.

3.5 Testing

After the previous step, the full stack application functioned as a Minimum Viable
Product (MVP). As the third stage of the iterative design of this website, testing had
to be conducted. To get feedback, suggestions, and recommendations for improving
the prototype, interviews with professionals and end-users were conducted. Because
professionals in the field can provide advice and insights based on their knowledge
and experience, their input can bring a broader perspective, and provide guidance
based on industry standards and best practices. By involving users in the testing pro-
cess, insights can be gained into their needs, preferences, and usability challenges.
Gaining these insights into usability, user experience, and the real-world perception
of the website was important when design with a user-centered approach. By com-
bining professional interviews and user testing, design choices were tested and great
feedback was received. This helped in making improvements, such that the proto-
type could be ensured to be on the right track before moving forward with further
development and eventual deployment.

Interviews were conducted in person, and provided a valuable methodology for ex-

30

ploring the topics of interface design and user-centered design in detail with the pro-
fessionals. The personalized nature of interviews allowed for clarification of complex
topics such as gestalt principles, as well as users needs.

User testing was conducted through questionnaires, which is a methodology for ob-
taining feedback from end-users. This methodology was used in order to assess the
usability, effectiveness, and overall user experience of the website and optimization
module. The use of these questionnaires were to ensure consistency in data collection,
such that the data could be analyzed easier.

The following parts will describe the process pertaining to interviews and user-testing.

3.5.1 Interview 1

During the interview with an expert in the field of interaction design, feedback was
obtained regarding the web interface. The expert highlighted specific gestalt prin-
ciples that were lacking in the design. Continuity, which refers to the smooth flow
and absence of abrupt changes, was identified as an area for improvement. Addition-
ally, the principle of common-fate, where elements that belong together should move
together, was emphasized. Other suggestions for enhancement were also provided,
including the need to center the home-page button in the middle of the yellow stream
to achieve symmetry. Symmetry is a Gestalt Principle, that had been implemented
from the start, but one that had not been achieved according to the experts standard.
The expert also recommended making the logo the pathway to the home page instead
of having a separate home button as had been the case with the navigation bar from
the prototype.

Figure 19: The navigation bar that was created as part of the Prototype.

Reordering the navigation bar’s items to create a more logical user-flow was suggested
as well. The expert explained that the eyes follow an F-pattern, where they start
looking at the upper left (the logo) and move towards the right. After that, the eyes
move back to start, move down, and repeat the movement until the bottom of the
page is reached. Therefore, the ”Get Started” tab was recommended to be moved to
the left of the other tabs, as it was beneficial and logical for the viewer’s eyes to see
that tab first. Furthermore, the expert identified the importance of applying gestalt
principles to ensure appropriate spacing between elements on the Config page and
the Get Started page. It was also noted that the absence of a footer might lead users
to believe that the page has not fully loaded. Regarding the About page, several
pointers were given. It was recommended to maintain a controlled mess by placing
boxes on the same side and in the same color, while ensuring images are of the same
size. A Wireframe describing his intent with this suggestion can be seen in Figure 20.

31

Figure 20: The revised About-page as suggested by an expert in interaction design.

Additionally, centering everything was discouraged, and the suggestion was made to
remove the three horizontal boxes and present the text directly on the background
for simplicity. The interview provided valuable qualitative feedback, contributing to
the iterative improvement of the web interface.

3.5.2 Interview 2

The second interview was conducted directly after the first interview. This time, to
provide a different perspective, the interviewee was a communication advisor. The
communications advisor could provide insights into the expected user experience and
response. Regarding the Config page, it was recommended to remove the beige
title-boxes and instead include the title-box content into the boxes containing the
configurations. This change aimed to improve user comprehension by emphasizing
cohesive parts and aligning with natural reading patterns. Additionally, the need to
enhance contrast for better readability on links presenting page content was high-
lighted. For the About page, specific suggestions were provided. Firstly, the small
segment showcasing the stack, titled ”fast,” should either be positioned last among
the initial segments or moved to the bottom of the page. This adjustment aimed to
prevent users from being directed away from the main content. Secondly, it was sug-
gested that the links within the ”fast” segment open in a new tab to indicate that the
webpage remains the center of attention. Currently, external links open in the same
tab as the webpage. Another recommended improvement was to have the scroll-up
button persistently visible as users scroll up and down the page. Currently, the button
only appears when the user reaches the very bottom of the page. The interview with
the communication advisor also provided qualitative feedback.

3.5.3 Improvements

Following the feedback received from the professionals during interviews, specific
areas for improvement in the prototype were identified. Due to limited resources and
a focus on developing and deploying a functional application, it was not possible to
implement all suggested improvements within the given time frame. However, ef-
forts were made to prioritize the feedback from the initial interviewee, while leaving
the feedback from the second interviewee for future work. The insights and recom-
mendations provided by the expert in interaction design were prioritized as the ex-
perts profession aligned more directly with the specific goals and requirements of the

32

application. However, feedback from both interviews were highly relevant. As the
development team consists of a single person, resource allocation played a significant
role in deciding to not improve on all the feedback.

One notable improvement was the reordering of elements in the About page as sug-
gested by the expert. Another improvement is the implementation of the gestalt
principle of ”common fate.” This principle was applied by assigning appropriate trans-
itions to components that belonged together as a cohesive group. By doing so, the
visual coherence and intuitiveness of the interface were enhanced. In addition, the
navigation bar was edited, as recommended by the expert.

Figure 21: The improved navigation bar -created using feedback from an expert in
interaction design.

A final example of improvement is the footer seen in Figure 22 that was added upon
feedback that the page did not appear to have loaded fully without the presence of a
footer. This is an example of the brain functioning in the way specified in the gestalt
principle called closure. This principle states that when an object is incomplete or has
missing parts, our brains fill in the gaps to create a complete shape.

Figure 22: The footer created after receiving feedback from an expert in interaction
design about needing one.

These improvements, along with others, have contributed to the development of the
final web interface.

3.5.4 User tests

Once the necessary improvements had been made based on the professional feed-
back, user tests were conducted. The goal of the user test was to provide additional
insights on website improvements from actual end-users. User tests were conducted
using a questionnaire. The spreadsheet showing questions asked and responses re-
ceived can be found as an appendix. The feedback obtained through user tests were
used to identify areas for improvement, validate the platform’s functionality, and guide
future enhancements to ensure that Hyperfetch meets the needs and expectations of
its users. Due to time constraints, this valuable feedback has been implemented in
a sense, but not to its full extent. Results from the user tests can be found in in the
Result Chapter.

3.6 Final Product

After incorporating feedback from both professionals and users, the process of deploy-
ing the application could commence. The developmental phase consisted of deploying
the database to a MongoDB Atlas Shared cluster, the backend and frontend to Azure,

33

and the optimization module to PYPI. Azure is provided by Microsoft and offers a wide
range of tools and services for building, deploying, and managing applications. Thus,
an Azure account was created before deploying both instances. Using the account,
an Azure resource group was created to hold the front -and backend as their own
individual resources.

3.6.1 Publishing the optimization-module

A natural way to distribute a python package is by uploading it to the Python Package
Index (PYPI). This makes it available for use by a wider audience. While the project
could have been cloned and installed by each user, distributing the project ensures a
simpler process regarding installation and dependency management for the user. To
install a distributed Python module, the user simply has to type ”pip install <package-
name>”. The setup.py and pyproject.toml files are alternative configuration files for
Python packaging, and they are designed to work with the newer Setuptools and pip
toolchains. The benefit of using pyproject.toml is that it allows for defining all depend-
encies, build system, metadata, and other options in a single file. When deploying
the Hyperfetch pip module, Toms Obvious Minimal Language (TOML) was used.

To distribute the Hyperfetch package, a systematic approach was followed to ensure a
smooth and reliable dissemination process. First, a .TOML configuration file was cre-
ated, containing essential metadata, required dependencies, and scripts necessary
for importing and utilizing the package. The scripts are the functions that the users of
the module call on to use it, after having installed it. The hyperfetch module contains
scripts for running the module through the command line or inside a Python script.
To provide users with detailed instructions and guidance, a thorough README file was
crafted. This README document explained the intricacies of using the Hyperfetch
package by providing examples of usage. To conduct the distribution, the Twine -and
Build packages were used. Twine is a tool for publishing Python packages, and Build
is a tool that, as the name suggests, builds the package. To ensure the integrity of
the distribution files, a verification process was implemented. The command ”twine
check dist/*” was executed to validate the format of the distribution files, confirm
the inclusion of all required files, and ensure the accuracy of the package metadata.
Finally, the package was distributed using the command ”twine upload dist/*”. This
step involved entering PYPI login and password credentials to securely upload and
publish the package to the designated repository. By following this comprehensive
approach, the Hyperfetch package was effectively distributed, making it readily avail-
able to users [8].

3.6.2 Deploying the database

To deploy the local MongoDB instance to the shared Atlas cluster, the following steps
were taken. First, a MongoDB Atlas account was created, and a new project and
cluster were set up. An admin user with appropriate permissions was then configured
for security. The cluster’s IP access was adjusted to allow all IPs. Finally, the con-
nection was established through MongoDB Compass using the cluster’s URL, enabling
visualization and data management. This deployment ensured a reliable and access-
ible database environment for the Hyperfetch application.

34

3.6.3 Deploying the REST API

The deployment process for the REST API involved a series of steps to ensure its
successful deployment. First, a Dockerfile was created, specifying the required de-
pendencies, defining the exposed port, setting the working directory, and configuring
the server startup. Using the Dockerfile, a Docker image was built. A Docker image
is an executable software package that includes everything needed to run a piece
of software, including the code, runtime environment, system libraries, and depend-
encies. The Docker image containing the REST API was then pushed to DockerHub,
which is a container registry for Docker images. Within the Azure Portal, the Deploy-
ment Center was accessed to retrieve the Docker image from DockerHub and deploy
its contents as a Linux Web App.

During this deployment process, a security breach was identified as the application’s
Git repository had inadvertently exposed the URL for the database. This vulnerability
falls under the category of an Insecure Direct Object Reference (IDOR), posing a risk of
unauthorized access to the database and potential manipulation of sensitive data. To
address this issue, the database was thoroughly reviewed to ensure data integrity, the
administrator’s password was changed, and a new URL was generated. The exposed
URL was removed from the code. To prevent further exposure, the repository’s privacy
settings were adjusted to make it private while these measures were taken. To solve
the issue, the URL was added to Azure Portal’s configuration section for the deployed
API, such that the environment variable could be read in to the deployed Docker
image. This incident was a valuable lesson in reinforcing the importance of keeping
sensitive information safe when developing, as well as deploying.

3.6.4 Deploying the Website

This section contains the process for deploying the website as a static web app. The
choice to deploy the frontend as a static web app instead of as a regular web app,
is that static web apps support modern front-end frameworks like Vue.js out of the
box, which makes it easy to deploy and host the Vue app without the need for ad-
ditional configuration. Alongside the deployment of the Azure Static Web Application
a continuous integration and deployment pipeline (CI/CD) was utilized. To do this,
a GitHub Actions workflow file has been incorporated into the project, enabling the
automatic building and deployment of the Static Web App upon each push to the Git-
Hub repository [36]. By automating the deployment process, the likelihood of manual
errors during deployment is reduced, ensuring a more secure and efficient deployment
workflow.

To deploy the Vue app as an Azure Static Web App, the Azure Portal was used. Since
the Vue project utilized Vite, a build tool and development server, a Vite configuration
file had to be appropriately set up to serve the application. Next, the frontend project
was compiled into a deployment package which included all essential files, such as
HTML, CSS, JavaScript, and image files. Compilation was achieved through the ”npm
install” command, resulting in the packaging of files within a ”dist” folder. Within the
web app settings, Vue.js was chosen as the build preset to ensure proper handling of
the project. The previously created ”dist” folder, generated during the build step, was
specified as the ”static content directory” for the web app, ensuring the appropriate
files were served. Other configurations not worth mentioning were also configured.

35

Upon completing the configurations, the application was deployed. Finally, a URL for
the Static Web App was provided by Azure, confirming the deployment.

3.6.5 Domain name

To improve the accessibility and reflect the content of the webpage, a new domain
name was acquired for the Azure-hosted website. Considering cost-effectiveness, a
domain name with the ”.online” top-level domain (TLD) was chosen. Once the domain
was purchased, DNS settings needed to be configured both with the domain provider
and within the Azure portal.

Within the created account with the domain provider, a new DNS record of the type
Canonical Record (CNAME) was added. CNAME records associate one domain name
with another, eliminating the need to use IP addresses directly. For the CNAME record,
”www” was set as the host name, the Azure Static Web App URL as the value, and a
suitable time to live (TTL) value was set.

Figure 23: Configuring a CNAME record to point to the Azure-generated URL provided
by an Azure Static Web App.

Within the Azure portal, the same configuration had to be done. Another CNAME
record was added, specifying ”www” as the hostname, and the purchased domain
(”hyperfetch.online”) as the value. After verification, the custom domain was added
[7].

Following these configurations, the website became accessible through the new user-
friendly domain name, enhancing the overall user experience.

3.6.6 Security

The deployed REST API and wbsite utilizes Hypertext Transfer Protocol Secure (HT-
TPS), which is an essential security measure for protecting the communication between
the client (website) and server (REST API). HTTPS provides encryption and authentica-
tion, ensuring confidentiality and safeguarding against eavesdropping, packet sniffing,
and session hijacking, which are commonly exploited in Man-In-the-Middle (MITM) At-
tacks. In contrast, regular HTTP does not protect against MITM attacks. Compliance
with regulations such as the General Data Protection Regulation (GDPR) further man-
dates the use of HTTPS to protect sensitive user data. Therefore, ensuring the security
of the web page is of paramount importance, especially when considering potential
future user bases.

In addition to HTTPS and the Pydantic models, additional security measures have been
implemented. This includes the use of custom middleware, which restricts access
to endpoints exclusively for the website. This is achieved by validating the ’Origin’
header. Middleware has also been implemented to verify the ’host’ header, providing
protection against HTTP Host Header attacks.

36

3.6.7 Bug Handling

After deploying the website, a bug was encountered during the interaction between
the frontend and backend components. While both the frontend and backend were
successfully deployed with assigned SSL/TLS certificates, an issue arose when the
frontend made requests to the backend’s API. The problem can be explained through
the following flow:

1. The frontend sent a request to the backend over HTTPS using a URL like ”ht-
tps://backend/api” (simplified).

2. The backend’s router received the request and responded with a 307 Temporary
Redirect status code. This code indicates a temporary move of the requested
resource to the URL specified in the Location header. However, the Location
header contained an HTTP URL like ”http://backend/api”.

3. The frontend followed the specified location, requesting the same URL but over
HTTP instead of HTTPS.

4. The backend received the request, fetched data from the database, and sent it
back to the frontend over HTTP.

5. As a result, the browser issued a ”Blocked loading mixed active content” mes-
sage, preventing the frontend from receiving the data.

This issue was challenging to debug, as it involved the concept of mixed active content.
Mixed active content is content that has access to all or parts of the Document Object
Model (DOM) of the HTTPS page[37]. In this case, the mixed content was caused
by the response being received through HTTP instead of HTTPS, which is considered
insecure. The ”Blocked loading mixed active content” message is triggered to protect
against potential MITM attacks and such.

The reason for the unexpected redirect was eventually traced back to a bug in the built-
in router of the FastAPI framework. It was discovered that the router had difficulties
handling URLs with trailing slashes (”/”). The solution to this issue was to create a
custom router that inherited the FastAPI router, make the required corrections to it,
and use the custom router in the API instead. After deploying a new Docker image
addressing this issue, the bug was successfully resolved.

3.7 Emission profiling

In the final stage of this chapter, the distributed optimization module underwent a
comprehensive series of comparative tests to analyze the CO2 emissions generated
during the optimization of hyperparameters. The tests aimed to assess the impact
of different factors such as geographical location, algorithm selection, and cloud pro-
viders on the emissions. These tests were important in gaining insights into the
environmental implications of the optimization process. To ensure the reliability and
consistency of the results, all tests were executed twice, validating the accuracy of
the outcomes. Additionally, the tests employed the same hardware configuration
for fairness and comparability. To ensure comprehensive data and experimentation,
each optimization test consisted of 1000 optuna trials. Ideally, virtual machines (VMs)

37

should have been used for these tests. However, due to their cost, I opted to use CO2
constants associated with each provider’s regions [38]. All constants used are prop-
erly cited and credible. Nonetheless, to demonstrate the preferred method in case of
funding, I created a VM using the existing Azure profile from the previous deployment
in Section 3.6. Upon creation, this profile was granted some starting credits for free.
These credits were used in creating the VM, which was then accessed via SSH (Se-
cure Shell). Within the VM, I installed Python and the necessary prerequisites for the
optimization module [8]. Following this, I installed Hyperfetch, created the required
configuration file for optimization, and initiated the optimization process.

Furthermore, I moved the VM from one region to another in order to show the ease of
this approach if funding had been available. The complete process is explained in the
VM Creation appendix. The appendix illustrates this process using screenshots and
some explanation. Additionally, the same process of VM creation and server-location
migration is outlined for Google Cloud Platform (GCP) and Azure in the same file.

Following are the comparisons that were executed:

Country Comparison: This test compared the CO2 emissions generated by optim-
izing the hyperparameters in five different countries. These countries were from the
continents of Europe, North America, Asia, and Oceania. Specifically, two countries
from Europe were selected to investigate intra-continental differences.

Regional Comparison within the United States: To examine the impact on CO2
emissions between regional differences, the United States was selected. the optimiz-
ation module performed optimizations within four different regions.

Cloud Provider Comparison: The emissions produced by the three biggest cloud
providers, namely Google Cloud Platform (GCP), Azure, and Amazon Web Services
(AWS), were compared. The optimization runs were conducted in the same geo-
graphical regions whenever possible, enabling a comprehensive evaluation of the en-
vironmental performance of each provider.

Algorithm Comparison: Alongside the already mentioned tests, emissions gener-
ated by three different algorithms were also compared. These algorithms were Prox-
imal Policy Optimization (PPO), Advantage Actor-Critic (A2C), and Soft Actor-Critic
(SAC). The objective was to investigate the potential impact of algorithm choice on
resulting emissions.

38

4 Results

This chapter will present the results of the project. Results tied to the product, its
features and the process will be given. The system documentation can be used as a
supplementary resource.

4.1 Findings from Product testing

User tests were conducted as a last step before deploying the application. The full
report can be found in the user testing spreadsheet. The proposed system, Hyper-
fetch, consists of two core components: a web page and an optimization module. The
optimization module is designed for tuning and persisting hyperparameters, while the
web page provides users with access to their previously optimized configurations.

The user testing conducted for Hyperfetch yielded several important findings. Par-
ticipants expressed a favorable view of the separation between the application and
the module, as Python is commonly used in machine learning applications. The users
stated that this division allowed for efficient client-side processing of complex tasks.
As seen in Figure 24, users also believed that the module would aid in recreating
previous projects within reinforcement learning.

Figure 24: Pie chart visualizing the percentages of users who thought the module
would aid in recreations of previous projects within reinforcement learning.

Only 5 out of the 9 testers tried to download the optimization module, as shown in
25. This is likely because they were given the choice to test one or both as the testing
took some time. However, for those that did install it, some challenges were identified
during the installation. Users on Windows and macOS encountered difficulties due
to dependencies, specifically Swig and Box-2D. These issues have been addressed,
and the module is now downloadable on macOS and Linux, although further testing
on Windows is needed. In addition, users expressed the need for a way to fetch
hyperparameters through the pip-module. They suggested having a lite-version of
the web application’s results available in the terminal, providing a more streamlined
and convenient experience.

39

Figure 25: Pie chart visualizing the percentages of users who tried to install the op-
timization module during the user tests.

Feedback regarding the web page was generally positive, with users finding it clear
and easy to navigate. However, some users experienced slow response times on the
endpoint that fetches environments, which was subsequently resolved by enhancing
the cloud computing power of the distributed REST API and optimizing the middleware.

When asked if the website lacked any information, 3/8 testers mentioned that it could
benefit from additional content. They suggested improving the beginner guides by
reducing repetition and including links to the source code (GitHub). They also sug-
gested including links to the TOML file containing the specific dependencies for the
Optimization module. The reasoning was for help with versioning and transparency
in installing. This comment was likely in relation to the issues with Swig and Box-2D.
Concerns were also raised about the website’s compatibility with the optimization-
library. Efforts have been made to update and align the documentation for both
parts accordingly. Users also suggested including more information on the front page,
drawing from the ”About” page content, to provide a clearer overview of Hyperfetch’s
purpose.

Figure 26: Pie chart visualizing the percentages of users who stated that the website
held too little information.

Similarly, some users felt that the website had an excessive amount of information.
They suggested making components like samplers and pruners collapsible, or even
collapsed by default, to improve the overall user experience. This would allow users
to focus on specific aspects without feeling overwhelmed.

40

Figure 27: Pie chart visualizing the percentages of users who stated that the website
held too much information.

Feedback also highlighted the readability of page-navigation links, with some users
finding them difficult to read. The feedback provided pointed out that the orange text
on a pinkish background should be changed to ensure compliance with accessibility
guidelines. This feedback is a reiteration of what the second expert stated in the
second interview from Section 3.5.2.

Figure 28: Bar chart visualizing if the users thought the links that displayed page-
content were hard to read (10 being very hard to read).

When asked to provide an overall design rating on a scale of 1-10, the ratings presen-
ted in Figure 29 reflected a functional website. Participants appreciated the simplistic
and neat design of the webpage, which aided their understanding of the system. They
found the text to be well-written and easy to comprehend, and thought the design
was seemed to target an audience already familiar with machine learning concepts. A
user pointed this out, and stated that that is allowed for focused and concise inform-
ation tailored to their needs. Another user with less experience within the field found
the webpage initially confusing and intimidating for newcomers. After exploring the
site and reading the ”About” page, the user wrote that they thought it became more
logical and understandable.

Figure 29: Bar chart visualizing the users’ overall thoughts on the design of the web
page.

41

However, other design-related feedback highlighted issues with color combinations
and the speed of animations. To enhance accessibility, participants recommended
improving the color contrast, and increasing the speed of the animations. Recom-
mendations were also made to optimize box sizing on larger monitors, and ensure
accessibility compliance through tools like Firefox Developer Edition. Additional re-
commendations included enabling result sorting for parameters to facilitate accessing
the ”top 10 configs” and addressing design issues such as providing a favicon and a
more explanatory website title for better user recognition. Currently, the basic ”Vue
+ Vite” is the website title. These recommendations highlight areas for improvement
within the website. It is apparent that the website currently faces challenges in effect-
ively conveying its purpose and functionality to a diverse audience. This observation
is supported by the findings presented in Figure 30, where users were asked about
their level of understanding when using the website. Looking at this chart, some users
did not grasp the concept of the web page.

Figure 30: Bar chart visualizing the users’ opinions on whether or not they understood
how to use the website. A score of 10 reveals a very good understanding.

4.2 Final Product

In this section, the final product will be discussed. All parts of the stack pertaining
to the website, as well as the module are deployed and distributed. The Hyperfetch
system provides a way for users to fetch hyperparameters online [7], as well as for
users to post their own hyperarameters [8] using the module. The website displays
hyperparameters, along with other parameters such as CO2-emissions, energy usage,
time utilized, hardware, cloud-region and provider (if utilized), operating system, and
python version. A user can download the pip module and run it, either to optimize
hyperparameters and/or to post them to the website.

4.2.1 Website

After gathering feedback on the web interface from both expert advice and end user
testing, improvements were implemented, and the website was deployed1. The res-
ulting website is presented in this section.

When the user enters the web page, they arrive at the landing page. The landing
page holds a dropdown menu that appears when the user hovers the mouse over the
button. In the example shown in figure 31, the user clicks on the ”Pendulum-v1”
environment, which is based on the classic pendulum problem in control theory. This
redirects the user to the algorithm selection, which displays the available algorithms

1https://www.hyperfetch.online/

42

https://www.hyperfetch.online/

(a) Home page (b) Algorithm selection

Figure 31: The finished Home -and Algorithm selection page.

for the Pendulum-v1 environment. As is highlighted, the user hovers their mouse
over Proximal Policy Optimization (PPO) as their selected algorithm.

(a) Run selection activated
(b) The mouse hovers over the best
run

Figure 32: Runs are activated upon algorithm click, and a run is selected

Upon selecting PPO as the algorithm, the runs that are conducted using Pendulum-v1
and PPO appear on the screen. These runs are ranged from best to worst. Pagination
is applied, such that only ten runs are displayed. However, there is no option to see
any runs other the ten first at this time. As seen in Figure 32, the runs appear, and
the mouse hovers over the best performing run.

(a) The Selected run (top of the page) (b) The selected run (bottom).

Figure 33: The selected run is displayed. The page contains three separate boxes in
their own distinct colors. The last box contain the optimized hyperparameters.

Upon selecting the run that the mouse hovers over in Figure 32b, the user is redirec-
ted onto a page that displays hyperparameters, environmental parameters, hardware
configurations, and software used for the tuning process. As can be seen in figure
33, the page is divided into the same three components as within the prototype. This
remained due to receiving positive feedback on this page and the way it was sectioned.

For users that have not used the Hyperfetch web page, or optimization module before,
the Get Started page provides a natural starting point. As get started is the natural

43

(a) Get Started page (at the top) (b) Get Started page (step-by-step)

Figure 34: The Get Started page displays instructions for the user on how to use the
web page and optimization module.

first step, the navigation- tab for the page is displayed furthest to the left on the
navigation bar, as specified by the expert interview in section 3.5.1. The Get Started
page, as displayed in Figure 34b, provides step-by-step instructions on how the user
can utilize the website and the installable module.

(a) The top of the About page (b) Format of About page content

Figure 35: The about page explains the motivation and ulterior motive for the applic-
ation as a whole.

The About page, as visualized in Figure 35, has been improved according to the feed-
back from the first interview. All sections of the page follow the same text -and image
combination pattern as is shown in Figure 35b. In addition, the gestalt principle of
closure has been applied by sectioning the three paragraphs shown in Figure 35a and
removing the boxes that were originally there. Lastly, the Config page as visual-
ized in figure 36, displays the available configurations for use within the configuration
YAML-file that users have to provide before using the pip-module. This page received
criticism from the expert about being to cluttered originally, and was sectioned fur-
ther to avoid being messy. Due to the vast amount of configurable parameters, the
headers were colored green to make the sectioning within the page more visible, and
to avoid making the headers look like parameters.

4.2.2 Architecture

The resulting architecture when excluding the module, consists of two separate ap-
plications and a database. The optimization module is excluded from this section as it
is a free-standing project. The website provides the GUI for users that want to fetch
hyperparameters for their models.

In Figure 37, a user requests to enter https://hyperfetch.online. When a user types in
a domain name in their web browser, their computer sends a Domain Name System

44

(a) Top of the Config page (b) Some configurations

Figure 36: The Config page explains to the user which parameters are available for
use within the configuration file that has to be supplied to the optimization module
when using it.

(DNS) query to a DNS server in order to find the IP address associated with that
domain name. The DNS system is organized in a hierarchical manner, the root DNS
servers are at the top of the hierarchy, followed by top-level domain (TLD) servers
(.com, .org, .net, etc.), and then authoritative DNS servers that hold the specific
domain names. When a specific domain name like ”hyperfetch.online” is typed into
the web browser, the browser needs to know the corresponding IP address to establish
a connection with the web server hosting that website. DNS helps in this process by
translating the domain name to its associated IP address, which is actually the one
associated with the messy Azure-provided website URL. This process is illustrated
through the dotted line. DNS returns the IP address, such that the user can make
the request to the actual web page. The user then interacts with the web page such
that the endpoint requests are made. This is illustrated through the bold line. Data
is returned to the frontend and displayed for the user.

45

Figure 37: Illustration of the process that is activated when the user enters the web
page.

4.2.3 Layers

Figure 38 displays the layered design of the web application, the server, and the
database. The user interacts with the interface, causing the VueX store to reach out
to the service and tell it to send a request over the correct endpoint. This call is sent to
the REST APIs client. The client’s middleware validates the request, before the client
forwards the validated request to the router, which forwards it to the Data Access
Layer (DAL). The DAL interact with the database through the use of input-sanitized
Pydantic models. The database sends the correct information back to the DAL. The
response is forwarded recursively back to the Vue-store, which handles and mutates
the data, before returning it to the component that called on the store in the first
place.

46

Figure 38: The layers of the frontend and server, as well as their communications
between each other and the database.

4.3 Emission Profiling

To present the test results and their implications, I delve into the findings obtained
from the series of comparative tests. These tests were introduced and explained the
background for in Section 3.7. There, it is specified that VMs could not be used due
to the expenses, although a free trial was used to create a single VM. To visualize
and read more about that process, read the VM Creation appendix. As a last remark
on the VMs, the CodeCarbon Offline Emission Tracker, alongside the verified carbon
constants were used as a substitute for the VM. This allowed for database persistance
with cloud providers and varying countries.

The tests were conducted to evaluate the impact of different factors when evaluating
CO2 emissions during the tuning and training of machine learning models using the
optimization module. The different factors tested were countries, regions within the
United States, cloud providers, and algorithm selection. All test results provide Co2
emissions per hour as a means of normalizing results, due to the variation in training
time. It is important to mention that the CO2 emitted per hour is actually not only
CO2, but CO2 equivalents (CO2eq). To ensure data accuracy, two separate runs were
conducted for each country and region. This approach enabled more reliable and

47

precise emission measurements for each specific region.

4.3.1 Emissions by country

In figure 39, I present the calculated hourly rate of emissions from five different
countries worldwide. Notably, the emissions per hour of training appear to be lower
in the European countries, with the worst performing country being Australia, which
emits 2.5 times as much CO2eq as Spain.

Figure 39: CO2 emissions when training the model in different countries.

4.3.2 Emissions by Region

Figure 40 displays the calculated emissions for four distinct regions within the United
States. In the state of Vermont, an average of 0.0013 kg C02eq are emitted per hour
of model training, whilst 0.04kg CO2eq are emitted per hour in Kentucky. The differ-
ence is a factor of 30.8. These numbers are fetched from the spreadsheet containing
the data fetched from the database. This spreadsheet is called ”co2 emissions” and
can be found as an appendix.

Figure 40: CO2 emissions when training the model in different regions within the
United States.

48

4.3.3 Emissions by Cloud-provider

The graph depicted in Figure 41 provides a comparative analysis of CO2 emissions
among the three leading cloud providers: GCP, AWS, and Azure. To acquire emissions
data, two runs were conducted for each provider across multiple countries. This was
done using the Offline Emission Tracker as an alternative to the preferred VM solution.
The graph showcases the average emissions from these runs for each combination of
cloud provider and country. It should be noted that if a particular cloud provider did
not provide data for a specific region, it was excluded from that particular comparison,
resulting in limited entries for certain testing regions, as indicated in the figure.

Figure 41: CO2 emissions when training the model in different countries with different
cloud providers.

The obtained results reveal significant variations in emissions across different regions,
particularly in the United States. Similar patterns are observed in the United Kingdom
and Germany. In contrast, countries like China and Australia exhibit relatively stable
emission rates, attributed to their heavy reliance on fossil fuels [39, 40]. However,
both nations have outlined plans to increase their utilization of renewable energy
sources in the future. Notably, it is interesting to observe that the rate of emissions,
from least to most, consistently places Google Cloud as the provider with the lowest
emissions and Azure as the provider with the highest emissions.

4.3.4 Emissions by RL model

Even more interestingly, the module can be used to compare the emissions produced
by different reinforcement learning algorithms. In this analysis, emissions per hour
for optimization runs using PPO, A2C, and SAC were compared in 5 different countries.

49

Figure 42: CO2 emissions when training models in different countries using
.

As observed in the other results, the choice of server location plays a significant role.
The countries included in this test are the same as those in the country-comparison,
with the addition of Norway. It remains consistent that European countries generally
exhibit lower emissions compared to other recorded countries, except for Germany
in this test. When comparing emissions produced by individual algorithms, SAC con-
sistently demonstrates higher emissions. In regions like Norway and Germany, SAC
generates approximately twice as much CO2eq as the other algorithms per hour. In
the other regions, SAC emits more, but by a smaller factor.

4.3.5 Findings

The series of comparative tests conducted in this study aimed to evaluate the impact
of various factors on CO2 emissions during the tuning and training of machine learning
models using the optimization module.

The test results reveal significant variations in emissions across different countries,
with European countries generally exhibiting lower emissions compared to other re-
corded countries. For example, Spain has significantly lower emissions per hour of
training compared to Australia, which emits 2.5 times as much CO2eq. This indicates
that the choice of country for model training has a notable influence on emissions.
Within the United States, emissions also vary across different regions. Vermont has
the lowest emissions per hour, while Kentucky has emissions that are approximately
30.8 times higher. Comparing different cloud providers, the results consistently pos-
ition Google Cloud as the provider with the lowest emissions per hour, and Azure as
the provider with the highest emissions. Furthermore, the analysis of emissions pro-
duced by different reinforcement learning algorithms demonstrates that the choice of
algorithm also impacts emissions. SAC consistently generates higher emissions com-
pared to PPO and A2C, particularly in regions like Norway and Germany, where SAC
emits approximately twice as much CO2eq per hour.

50

4.4 Administrative results

The administrative results for this thesis consisted of a comprehensive timetable show-
casing the hours dedicated to various project activities, a Gantt chart and completion
in regards to functional features. The timetable is organized on a weekly basis and is
accompanied by corresponding status reports. Throughout the course of this project,
a total of 600 hours were invested in research, design, development, testing, writing,
and troubleshooting. The complete timetable, including detailed breakdowns, can be
found in the appendix. The same goes for the Gantt-chart. The system’s functional
features, are presented accordance with the plans outlined in the vision document.
Each functional feature is described below, along with its corresponding status of
completion. Additionally, the progress plan, featured in the appendix, illustrates the
originally planned completion dates alongside the actual dates of completion. It is
important to note that the progress plan was created alongside the pre-project plan,
prior to the completion - and mostly also the start - of the literature review. Con-
sequently, not all tasks outlined in the progress plan align with the current problem
description.

Feature Description Status
Algorithm selection Ability to choose between several algorithms

when optimizing and/or posting (pip module),
or when fetching (website)

Completed

Environment selection Ability to choose between several environ-
ments when optimizing and/or posting (pip
module), or when fetching (website)

Completed

Visualize hyperparameters Ability to visualised hyperparameters for a
chosen environment -and algorithm combin-
ation using the website

Completed

Interface Interface that can retrieve hyperparameters Completed
Sustainability The interface has information regarding sus-

tainability (CO2 savings)
Completed

Algorithm A population based evolutionary algorithm
that is able to optimize all the algorithms
available for selection during an optimization

Completed

Emissions function A function that converts time spent for each
run to CO2 usage

Completed

Endpoints Endpoints for GET, UPDATE and more. Completed

51

5 Discussion

This Chapter will interpret and analyze the results provided in section 4. The research
questions for this thesis, as presented in the introduction, were:

1. How can an intuitive and comprehensive tool be designed to efficiently extract
hyperparameters?

2. How can the Hyperfetch application be leveraged to gain valuable insights into
the emission profile of a reinforcement learning project?

The most important findings in relation to the research questions were the results
from the user testing, as well the results from the emission profiling tests that were
conducted.

The findings from product testing can be used to reflect on the first research question
to some extent. However, it does not provide much meat to the bone for the second
question. This is because the first research question to a great extent demands qual-
itative answers, as it revolves around designing an intuitive and comprehensive tool
to efficiently extract hyperparameters. This question requires qualitative feedback to
respond to, as it is hard to answer using numbers. The user tests supply such qual-
itative answers. The second research question however, which pertains to gaining
insights into the emission profile of reinforcement learning projects, demands quant-
itative data in order to reflect on it. Therefore, the first research question will be
debated in section 5.1, which debates the product testing, whilst the second research
question will be debated in section 5.2, which debates the results from the emission
profiling tests. Elements pertaining to the developmental process will be discussed in
section 5.3. A reflect on the process of conducting can be found as an appendix.

5.1 Product testing

With the goal being to design an intuitive and comprehensive tool to efficiently extract
hyperparameters, it is important to analyze whether the user testing adequately re-
flects this objective. Overall, the product was usable and of an acceptable standard,
but did not comply on all aspects.

The user testing revealed both positive feedback and areas for improvement. Par-
ticipants expressed appreciation for the separation between the application and the
module, as it facilitated efficient client-side processing of complex tasks and aided in
recreating previous projects within reinforcement learning. However, challenges were
identified during the installation of the pip-module on Windows and macOS, highlight-
ing the need for further testing. Feedback on the web-page was generally positive,
with users finding it clear and easy to navigate. However, some users experienced
slow response times on certain endpoints, which was addressed by increasing the
cloud computing power and optimizing the middleware. Although, it is worth men-
tioning that the cloud computing power had to be turned back to its original (free)
state after some time, as the Azure account ran out of free credits. Therefore, slow
endpoints can be expected again at this time.

Suggestions were provided for improving beginner guides and reducing information
overload on the website, such as implementing collapsible sections and clearer links

52

to external resources. Additionally, a user provided feedback on the necessity of
the module providing a lite-version of the web application’s results in the terminal.
Design-related feedback highlighted issues with color combinations, link readability,
and animation speed, leading to recommendations to adopt a cohesive color scheme,
improve readability, optimize box sizing, and ensure accessibility compliance. While
the issue with dependencies was resolved to some extent by editing the dependencies
such that macOS users could download the module, Windows-use is still not fully
implemented.

In addition, with only 8 user testers, and only 5 attempting to install the module, it
is evident that the module was not tested enough by the users in comparison to the
website. In addition, most of the test-questions pertained to the websites function-
ality and design, which does not cover enough ground to fully answer the research
question. This is because the website is only one half of the application.

The 8 testers consisted of 3 professionals, whereas 2 were from within the fields of
machine learning, data analysis and environmental RL, whilst one did not work with
machine learning. The testers also consisted of a PhD student within optimization,
and 4 students between 3rd and 5th grade. These students and professionals all had
experience with UX/UI, machine learning, or both. The 15 questions asked revolved
around the topics of:

Experience and background, which helps assess the suitability of the tool for dif-
ferent user backgrounds.

Usage of Pip-Module and Website, which gathered feedback on the effectiveness
and convenience of the approach (dividing the two instances). This information helps
evaluate the tool’s efficiency in extracting hyperparameters.

Focus on CO2-Emissions and Project Recreation, which addressed the tool’s
comprehensiveness and alignment with the research question. Their elaborations
provided insights into the effectiveness of the tool in achieving these objectives.

Ease of Installation and Usage, which assessed the tool’s accessibility and user-
friendliness. The Participants responses provided insights into challenges or improve-
ments needed in the installation process, especially considering dependencies and
different operating systems.

Understanding of Website and Features, which assessed the clarity and intuitive-
ness of the tool’s interface.

Overall Design and Feedback, which provided participants with the opportunity to
provide general feedback and suggestions.

Regarding sample size, meaning the number of testers, there are many opinions re-
garding how many users are appropriate for a test to be considered extensive enough
to be valid. It is widely assumed that 5 participants suffice for usability testing [41,
42]. However, in a study from 2003 [43], the risks of using only 5 participants are
demonstrated, and the benefits of using more are shown. 60 users were tested, and
random sets of 5 or more users were sampled from the whole. Some of the randomly
selected sets of 5 participants found 99% of the problems, while other sets found
only 55%. With 10 users being tested in a sample, the lowest percentage of prob-
lems revealed by any sample set was increased to 80%. With 20 users, the lowest
percentage of problems revealed were 95%.

53

With this application being tested by 2 experts and 8 users, the problems detected
could be 80% or more, if counting the interviews as tests. However, this statement
might not hold, as the questions could have been formulated better. While parti-
cipants were asked about their experience with machine learning and UX/UI, it would
likely have been beneficial to gather more detailed information about their level of
expertise in these areas, especially for the students. Understanding the participants’
depth of knowledge to a wider extent could have helped better assess the tool’s suit-
ability for different user profiles. In addition, the questionnaire primarily focuses on
the usability and user experience aspects of the tool. However, it would have also
been beneficial to gather feedback specifically related to the tool’s effectiveness in
extracting hyperparameters. For example, participants could have been asked if they
found the tool to be efficient in delivering accurate and reliable hyperparameters, or if
they encountered any limitations in its functionality. Another example question could
have been to ask the participants if they thought the hyperparameters were displayed
in a good manner, or if they thought they should have been displayed differently. If
such a question had been asked, there would likely be more feedback on the page
displaying hyperparameters and environmental parameters for an optimized model.
This would have been benefitital, as the page is the one that directly relates the most
to the research questions focus on hyperparameter extraction. To add on that, it
would have been helpful to have asked the participants about their experience with
features such as parameter selection, optimization settings, or data retrieval. This
would have made it easier to detect if the sample set of users accurately represents
the end-users. Lastly, to gain a deeper understanding of the tool’s efficiency and intu-
itiveness, it would have been beneficial to include questions that allow for comparative
analysis. As an example, the participants could have been asked if they have used
other hyperparameter extraction tools before and how this tool compares in terms of
ease of use, functionality, and overall user experience.

As a final remark on the user sample, answers were anonymous, meaning that an-
swers are not connected to a single persons identity. The users were told to be honest
and that their answers would be anonymous. However, all participants were asked in
person or through mail about testing the application, and are not anonymous in that
sense. Although some test subjects were unknown and contacted through mail, oth-
ers are more familiar with the developer. This could have added bias to the results,
as the subjects could have felt obliged to give better ratings than what they felt the
application deserved.

5.2 Emission Profiling

This section contains an analysis of the findings from the emission profiling in section
4.3. The emission profiling tests were conducted in order to research the contributing
factors to the emission profile of a reinforcement learning project. This is needed,
because the absence of comprehensive emission reporting and analysis makes it hard
to conduct informed decision-making when deciding which location and algorithm to
train a reinforcement learning model in/with. The tests aimed to evaluate the impact
of server location, cloud provider and algorithm selection.

54

5.2.1 Location of Server

The results show a variability in CO2eq emissions when comparing locations and re-
gions. This data is consistent, as it is shown in both test runs for each factor. Calcu-
lated emissions from different countries during model training is illustrated in Figure
39. From the model, it can be observed that the European countries show lower
emissions per hour of training, suggesting potential differences in energy sources or
efficiency measures compared to the other countries. Emissions calculated for train-
ing models in various regions within the United States is showcased in Figure 40. The
graph reveals significant variations in emissions across the regions of the country.
With a factor of 30.8 separating the best and worst performing state, it is logical to
assume that the energy source differs greatly in green quality between these regions
as well. As mentioned briefly in the theory-chapter Lacoste et. al. [20], performed
a study in 2019 where the distributions and variations in emissions were outlined
between the continents. The results is shown in Figure 43.

Figure 43: The distribution and variation in carbon emissions depending on geograph-
ical region.

Source: [20]

When looking at Australias numbers in the figure, they are higher than the other
countries. To compare the data from the figure with the data from these tests, it is
interesting to compare the emissions per kWh. This does requires some math, as the
optimization module only reports total kWh spent. The numbers presented on the
website are emissions per run. Using the Hyperfetch website [7] to find the run, as
shown in Figure 44, the numbers can be compared.

Figure 44: The emissions produced by training a model in Australia using Hyperfetch
and a VM.

Source: [7]

55

The training process for the model spent 0.2436 kWh. This produced 0.1211 kg
CO2eq. Per kWh, the energy used would have to be multiplied by 4.1050. If it
assumed that energy used and emissions produced form a linear graph, then the
emissions would be

0.1211kg CO2eq× 4.1050 = 0.497kg CO2eq

This number is not totally comparable to graph in the Figure, as Australia in the
graph would be set to emit almost double the amount recorded through Hyperfetch.
This could be due to factors such as different hardware being used, different amount
of computing power being utilized, or even due to a decrease in use of fossil fuels
between 2019 and now (2023). The latter could be the case, as Australia had begun
installing renewable energy (solar and wind) 4-5 times faster per capita than the EU,
USA, Japan and China in 2019 [44]. In addition, the numbers presented in the re-
gional emission comparison within the United States closely lines up with the study
performed by Brander et. al. in 2011 [19], where similar tests were conducted. This
study was also mentioned briefly in the Theory Chapter (Section 2.4.1). In the study
it is stated that servers located in North America can emit anywhere between 20g
CO2eq/kWh in Quebec, Canada to 736.6g CO2eq/kWh in Iowa, USA. This difference
is a factor of 37, caused by the the Quebec location using renewable energy sources,
whilst the Iowa location relies on fossil fuels. The line can be drawn from these vari-
ations, and onto the variations between locations in this thesis, where the difference
between Vermont and Kentucky had been a factor of 30.8.

5.2.2 Cloud Provider

The results revealed interesting findings, demonstrating significant variations in emis-
sions between the providers. Notably, Google Cloud consistently exhibited the lowest
emissions, while Azure displayed the highest emissions. Although specific informa-
tion regarding energy sources based on regions for the providers was no where to
be found, the observed patterns in this comparison seem to align with results from
several articles.

According to the 2017 Clicking Clean report by Greenpeace, Google Cloud Platform
(GCP) ranked as the most environmentally friendly cloud infrastructure, surpassing
Amazon Web Services (AWS) and Microsoft Azure [45]. This finding is further sup-
ported by articles published in 2020 and 2023, which trained models using these
three providers and yielded similar results [46, 47]. However, the situation is not
as straightforward as it may seem. A heatmap from 2022 displaying the carbon in-
tensity of data centers by region reveals that GCP does not always outperform its
competitors [48]. For example, in Canada, AWS’s server emits 0.308 g CO2eq/h,
while GCP emits 0.497 g CO2eq/h. Similarly, in England, AWS’s server emits 0.539
g CO2eq/h, Azure’s server emits 0.578 g CO2eq/h, and GCP’s server emits 0.893 g
CO2eq/h. These numbers from the heatmap challenge the notion that GCP consist-
ently outshines other providers. It appears that various regional nuances play a role
in the quantity of emissions.

Nevertheless, the findings from the testing results and the mentioned articles support
the overall pattern where GCP appears to be the leading cloud platform in terms of
emissions. However, it is important to acknowledge that more comprehensive data is

56

needed to draw definitive conclusions. The heatmap also highlighted the observation
that GCP tended to be positioned in colder regions of the heatmap compared to the
other providers, particularly Azure.

In summary, the comparison of CO2 emissions among cloud providers reveals vari-
ations, where GCP generally demonstrates lower emissions. These emissions seem
to be backed by a multitude of articles. However, regional differences and the limited
availability of data indicate the need for further investigation as it was hard to find
research papers within the topic.

5.2.3 Algorithm selection

In the algorithm-comparison results, variations in emissions were observed among the
tested algorithms. Soft Actor-Critic (SAC) consistently created a higher rate of emis-
sions compared to the other algorithms. Specifically, SAC produced approximately
twice the amount of emissions as Proximal Policy Optimization (PPO) and Advantage
Actor Critic (A2C) in Norway and Germany. In Australia, Spain, India, and the United
States, SAC only marginally emitted more than the other models. Although a pattern
is evident, its interpretation is not entirely clear.

The influence of location on the emission rate between the models seems illogical,
given that all runs utilized the same hardware and all algorithms within a specified
region were trained using the same carbon constants. It would seem more logical for
each country to display the same pattern for their algorithm-tests. However, there
is one logical factor to consider. SAC is known to have a significantly slower training
process, resulting in time constraints for this study. Consequently, only the initial
two runs (Norway and Germany) were trained for 1000 trials, while the remaining
four runs were trained for only 70 trials, which still provided a few hours of training.
It could be coincidental that the the runs in Norway and Germany, with 1000 SAC
trials, displayed a pattern between each other, whilst the runs with 70 SAC trials also
displayed a pattern between each other (at a different scale). If SAC had been tested
to have a linear energy consumption per hour for an extended amount of time, then
the graphs would likely be accurate. However, that has not been tested in this thesis,
leaving no proof.

Therefore, it is possible that the data for SAC in the four countries where it was trained
with fewer trials may be inaccurate. Conversely, PPO and A2C consistently exhibited
similar results as they were trained for 1000 trials in all countries. It is noteworthy
that the graph depicts emissions per hour, indicating that SAC consumed more energy
per hour. However, due to the absence of proper scientific methodology in the testing
process, it is difficult to definitively conclude whether SAC indeed produces twice the
emissions of PPO and A2C. Nevertheless, it is apparent that SAC emits more CO2eq
in comparison to the others.

5.2.4 Summary

The emission profiling analysis in this study discusses the findings from the Results.
Variability in emissions was observed when comparing different countries and regions,
with European countries generally showing lower emissions per hour of training. This
suggests potential differences in energy sources or efficiency measures in these re-

57

gions. The results align with previous studies that have demonstrated variations in
emissions based on geographical location. Additionally, the comparison of emissions
among different cloud providers revealed significant variations, with Google Cloud
Platform (GCP) consistently exhibiting the lowest emissions and Azure displaying the
highest emissions. These findings are consistent with previous reports ranking GCP
as the most environmentally friendly cloud infrastructure. However, it is important
to note that further investigation is needed. Lastly, variations in emissions were ob-
served among the tested reinforcement learning algorithms, with Soft Actor-Critic
(SAC) consistently producing higher emissions compared to Proximal Policy Optimiz-
ation (PPO) and Advantage Actor Critic (A2C). However, the interpretation of these
results is limited due to potential biases and the need for further testing.

Overall the analysis of the results emphasizes the importance of factors such as coun-
try, region, cloud provider, and algorithm choice when evaluating CO2 emissions dur-
ing machine learning model training. By planning an optimization with these factors
in mind, it is possible to reduce the environmental impact associated with model de-
velopment and contribute to sustainability efforts.

5.3 Final product

One notable drawback of the development process and the final product is the in-
adequate test coverage. Particularly, this concerns the frontend and the standalone
optimization module. Although end-to-end tests were implemented for the RestAPI,
the other two remain untested, leading to insufficient coverage overall. Initially, there
was a plan to adopt a more comprehensive testing approach to ensure the correctness
of all application components. However, due to the limitations of developing without
a team and the constraints of time, it was challenging to achieve the desired level
of test coverage. Consequently, the focus predominantly centered on the RestAPI,
overlooking the frontend and the standalone optimization module, which are essen-
tial elements of the application’s functionality and would have been thoroughly tested
with more available resources.

The absence of tests for the frontend introduces an increased risk of undetected bugs,
usability issues, and unexpected behaviors. However, it is worth noting that user
testing provided valuable insights and served as a compensatory means of evaluating
the frontend, albeit not as systematically or as dedicated as automated tests would
have been.

Similarly, the lack of testing for the standalone optimization module poses a potential
risk to its accuracy, which is critical in achieving optimal results and fulfilling the ap-
plication’s primary objective. Inadequate testing in this area leaves room for potential
errors, inconsistencies, or sub-optimal performance that may undermine the reliab-
ility of the application’s optimization capabilities. Nevertheless, real-world testing
conducted during emission profiling tests and the comprehensive example optimiza-
tion runs described in Section 3.4.2 served as valuable sources of validation and error
detection, even if it was through use of a nontraditional approach.

However, the introduction of the Data Access Layer (DAL) in the project brought sev-
eral benefits to the codebase. By containing the database-interaction functions within
the DAL, the code became more modular. This abstraction improved code cohesion
and reduced coupling, making it easier to modify specific components without im-

58

pacting others. The separation of concerns achieved through the DAL also makes it
easier to conduct future integration -and unit tests, because the increased modularity
offered by the DAL would enable easier testing of individual components.

5.3.1 Functional Features

The functional features and their state of completion were presented in the results. All
functional features were successfully implemented within the application. However,
in retrospect, it would have been beneficial to break down these features into smaller
components. Additionally, it is important to acknowledge that the list of features
could have been longer. There are several features that contribute to the application’s
functionality and value that are not mentioned. These include the ability to

• Select different samplers and pruners for optimization

• Enabling parallel processing (’jobs’ and ’frame stack’ in the configuration file) for
improved efficiency

• Distributing the optimization module as a downloadable pip package

• Implementing error handling and logging mechanisms for validation

• Connecting a run to a project on GitHub for version control

• Persisting trained reinforcement learning models to the database, such that it
can be viewed on the Hyperfetch website.

Most of the functional features that were mentioned align with and contribute to ad-
dressing the research questions posed in the beginning of the chapter. Below is a
description of the two most important features and how they contribute to making
the application able to answer the research questions.

Providing an interface to retrieve hyperparameters: This feature plays an im-
portant role in addressing both research questions. By offering an interface to retrieve
hyperparameters, the application enables users to access and utilize the extracted hy-
perparameters efficiently. This functionality promotes the analysis of hyperparameter
configurations and their implications, which fosters informed decision-making.

Displaying sustainability information: This feature directly aligns with the second
research question. By incorporating sustainability information, such as CO2 emissions
calculated for the optimization process, the application provides information about the
emission profile of a reinforcement learning project. This allows users to evaluate the
environmental impact of their algorithms and make informed choices to reduce their
carbon footprint.

5.3.2 Effect goals

In addition, the project contribution towards reaching the effect goals outlined in the
pre-project document is explained in detail. Because the pre-project plan was written
before the literature review had been conducted, the effect-goals do not entirely reflect
the problem statement, nor the research questions. Following are the effect goals and
a description of the degree to which they are met in the final product.

59

Effect goal 1: Create a platform that solves the problem regarding reprodu-
cing of earlier projects/results within reinforcement learning.

The core aim of Hyperfetch, as stated in the problem description, is to create a com-
prehensive platform for displaying hyperparameters belonging to a Reinforcement
Learning project (RL), as well as gain insight into the emissions profile of said RL
project. While complete resolution of this challenge may require ongoing develop-
ment and refinement, Hyperfetch lays the foundation for advancing reproducibility
and offers a promising lead towards achieving this effect goal.

Effect goal 2: Make it easier to do research within reinforcement learning.

Hyperfetch is designed to make research within reinforcement learning more access-
ible and efficient. By offering a user-friendly interface and many readily available hy-
perparameters2, the Hyperfetch website empowers researchers and students to delve
into the depths of the field with greater ease. While the full realization of this effect
goal may require more work, Hyperfetch provides a valuable tool set that encourages
analysis and exploration of reinforcement learning projects.

Effect goal 3: Make tuning hyperparameters for a given problem (algorithm x
environment) easier. This will allow for improvement in models if Hyperfetch
can find a better combination of hyperparameters than what was already
present.

This effect goal is successfully addressed by Hyperfetch. By enabling users to optimize
hyperparameters for specific problem instances through a YAML configuration file,
Hyperfetch offers the users a solution to this goal.

Effect goal 4: Create an environment for researchers and students to save
time by fetching optimized hyperparameters (or tuning effectively) such that
RL can be more effective.

Ultimately, the creation of Hyperfetch establishes an environment where researchers
and students can save valuable time and resources by fetching pre-tuned hyperpara-
meters, as well as aid in combating the ongoing replicatin-crisis by being able to
publish ones own hyperparameters and access others’ projects through their linked
information alongside their runs.

5.3.3 Security

In terms of the security section related to deploying the REST API, it is essential to
acknowledge that while precautions have been taken to prevent attacks, no specific
security testing has been conducted. As a result, it is important to recognize that
the application’s security cannot be definitively proven. Although steps have been
taken to implement security measures, the absence of security testing means that
there may still be unidentified security risks or vulnerabilities. Therefore, conducting
thorough security testing is crucial to ensure a more robust and secure deployment
of the REST API.

Security breach While the website only utilizing GET requests decrease the attack
surface-area as there are no input fields, there are still some vulnerabilities. For ex-

2https://www.hyperfetch.online/

60

https://www.hyperfetch.online/

ample, the website is vulnerable to SQL injection attacks and Cross-Site Scripting
(XSS). This is due to the reliance on query string parameters in the URL for passing
user input. However, it is important to discuss the potential impact of these vulnerab-
ilities. XSS attacks can lead to unauthorized access to sensitive data, manipulation of
website content, and the potential compromise of future user accounts. However, the
application does not hold user accounts at the current stage. SQL injection attacks
can result in the unauthorized retrieval, modification, or deletion of data stored in the
database. These vulnerabilities can have bad consequences, including data breaches
and privacy violations, undermining the trust and integrity of the application. For the
time being, the database holds no private data, meaning that this is purely hypothet-
ical and intended as a debt ate regarding safe implementation of new features with
the application being in its present state.

Looking ahead, it is important to consider security testing. Exploring the possibility
of integrating automated security testing tools or engaging security professionals can
provide an extra layer of assurance in maintaining the application’s security. While the
application currently lacks security testing, it is worth acknowledging the importance
of proactively addressing potential security risks. Incorporating Pydantic models as
a data validation measure was a proactive step to strengthen the codebase’s secur-
ity. However, the current measures do not make the application robust and secure
enough. Validating and sanitizing all user input, including query string parameters,
can significantly reduce the risk of XSS and SQL injection attacks.

61

Following is an example to illustrate the potential risk of an SQL injection attack. In
this scenario, the application fetches run details from a MongoDB collection based on
the run ID passed as a parameter from the FastAPI REST API.

run_id = request.query_params.get("run_id")
runs = db.runs.find({"id": run_id})

If an attacker were to pass in a run ID parameter like this:

run_id = '1"; db.runs.deleteMany({}); db.runs.find({"name": "admin"}) //'

The resulting MongoDB query that would be executed would be:

db.runs.find({"id": "1"; db.runs.deleteMany({}); db.runs.find({"name": "admin"})
})

This query first fetches the run with ID 1, but then it injects a second command that
deletes all documents from the runs collection and finds the user with name ”admin”.
This can be a very dangerous attack that results in a data breach and potential loss
of data.

5.3.4 Document Driven Development

In the context of Document Driven Development (DDD), the primary goal is to es-
tablish a shared understanding of the problem domain by employing detailed doc-
umentation and engaging in collaboration with domain experts. While the prosess
did involve extensive documentation and collaboration with experts from the domain,
the creation of domain models was not pursued. Furthermore, it should be noted
that while DDD aims to influence the entire development process, including analysis,
design, and implementation, in this project, its application was limited to the devel-
opment of the REST API. As a result, the extent to which DDD influenced the overall
development process was only partial.

To summarize, there were certain deviations from the complete implementation of
DDD principles in this project. Examples are the absence of domain models, as well
as the limited application of DDD beyond the REST API. Nevertheless, the project did
benefit from detailed documentation and valuable collaboration with domain experts,
contributing to the finished application.

5.3.5 Alterations

The development process of the prototype underwent some alterations, leading to
variations in the project’s Gantt plan. These alterations included tasks being com-
pleted earlier or later than initially planned, with durations deviating from the expec-
ted values.

The discrepancies suggest that the initial estimates for task durations were not ac-
curate. This was due to insufficient information, unexpected challenges, and changes

62

in requirements. As there was no previous knowledge present from the developer
regarding technologies present in the system, it proved hard to correctly estimate
time use. In addition, the Gantt-chart was likely not accurate enough, which is likely
because the tasks were too big to accurately measure beforehand. This highlights the
importance of continuously refining and updating task estimates as more insights are
gained throughout the project. This was done once, as can be seen when comparing
the Gantt diagrams in figure 45, but should have been done more often as the tasks
were too large to accurately measure. In addition, the change from using a single
evolutionary algorithm to using a whole optimization framework was not reflected in
either Gantt charts. The Gantt chart should have been edited and divided further to
account for the additional complexity and validation requirements.

(a) Gantt january (b) Gantt march

Figure 45: The Gantt diagram’s evolution between januray and march.

In addition, it was evident from the Gantt charts that the ordering of tasks to be
completed was in need of improvement. The interdependencies between tasks and
resource availability can affect their durations. Because the planning of the data-
base took longer than initially planned - due to switching from a relational to a non-
relational database - all database-dependent tasks were affected. This led to tasks
taking longer or finishing earlier than anticipated, which indicates that the sequencing
of work needed some improvement.

As mentioned earlier in this section, Optuna was adopted as a replacement for a single
evolutionary optimization algorithm. This change significantly enhanced the capabil-
ities of the application, offering a broad array of features that offered a wider range of
tuning options and increased overall flexibility. The incorporation of Optuna brought
forth a comprehensive framework dedicated to hyperparameter optimization and re-
inforcement learning algorithms. By using Optuna, the application benefited from
advanced algorithms for pruning and sampling that enabled more effective explora-
tion and exploitation of the hyperparameter search space. This resulted in improved
performance and the ability to identify optimal configurations for reinforcement learn-
ing models in more ways than just one.

However, it is important to note that the integration of Optuna also introduced addi-
tional complexity to the application. This complexity had an unintended consequence
of making the website appear more cluttered than initially intended. Despite this
visual trade-off, the inclusion of Optuna outweighed the clutter concerns due to the
substantial benefits it brought in terms of optimization capabilities.

63

6 Conclusion and Future Work

This section will describe the projects contribution to the field by answering the re-
search questions.

These are the research questions:

1. How can an intuitive and comprehensive tool be designed to efficiently extract
hyperparameters?

2. How can the Hyperfetch application be leveraged to gain valuable insights into
the emission profile of a reinforcement learning project?

6.1 Research question 1

This thesis aimed to address the first research question by designing an intuitive
and comprehensive tool for efficient hyperparameter extraction. The findings and
discussions based on user testing demonstrate that the application exhibits efficiency
in extracting hyperparameters. However, user feedback revealed areas that require
improvement to enhance the application’s intuitiveness and user-friendliness.

Specifically, users encountered difficulties in understanding certain elements of the
application, indicating the need for simplification, clearer instructions, and overall
design refinement. By incorporating these improvements and considering the valuable
feedback received, the application has the potential to become a more accessible and
comprehensive tool for hyperparameter extraction.

Several areas for improvement have been identified, including the installation de-
pendencies, website design, and responsiveness. Users also provided suggestions
for additional features, such as the inclusion of a lite-version of the web application’s
results in the terminal for the module. By incorporating these improvements and
conducting further testing, the potential exists for the deployed application [7, 8] to
become a more comprehensive and intuitive tool for efficiently extracting hyperpara-
meters.

However, it is important to note that the answer to the research question remains non-
conclusive at this stage. The suggested improvements and modifications need to be
implemented and tested in a new iteration of the application. This will provide a clearer
understanding of whether the changes successfully lead to a more comprehensive
and intuitive solution for hyperparameter extraction. Therefore, further testing and
evaluation will be necessary to validate the effectiveness of the implemented changes
and their impact on the application’s overall usability.

By continually incorporating user feedback, refining the design, and enhancing the
application’s features, it is anticipated that the final product will offer an improved user
experience and effectively address the research question regarding the development
of an intuitive and comprehensive tool for efficient hyperparameter extraction.

64

6.2 Research question 2

The second research question aimed to leverage the Hyperfetch application to gain
valuable insights into the emission profile of a reinforcement learning project.

In this study, I conducted an emission profiling analysis to examine the factors con-
tributing to CO2 emissions during model training for Reinforcement Learning (RL) pro-
jects. The analysis of the results underscores the importance of considering factors
such as country, region, cloud provider, and algorithm choice when evaluating CO2
emissions during optimization and training. By strategically planning and optimizing
these factors, it is possible to reduce the environmental impact associated with model
development and contribute to sustainability efforts.

Overall, this research contributes to the understanding of emissions in the context of
reinforcement learning and highlights the significance of considering environmental
factors in decision-making processes. In addition, two methods have been shown to
leverage Hyperfetch such as to gain insights into the factors that play a role in creating
the emission profile for an RL project. The first is through use of a Virtual Machine,
which is explained and visualized throughout the thesis and in the ”VM Creation”
appendix. The second method is through the use of the Offline Emission Tracker
provided by CodeCarbon.

The results show that by integrating sustainability considerations into the develop-
ment of RL models, we can work towards minimizing the environmental footprint of
these technologies. Further research and collaboration are needed to enhance our
understanding and develop more comprehensive frameworks for sustainable machine
learning practices.

6.3 Limitations

Time constraints during the development process limited the scope and thorough-
ness of testing. As a solo developer, the available resources were limited, resulting
in non-optimal test coverage. Time limitations also impacted the implementation of
user feedback, requiring a selection of which feedback to prioritize. Furthermore, ad-
herence to the Web Content Accessibility Guidelines (WCAG) was not fully achieved,
except for elements such as ALT text. In addition, the sample size for user testing
was small, with only 8 potential end-users and 2 experts interviewed. A larger sample
size would have increased the probability of identifying potential issues and provided
more comprehensive feedback. Given more time, incorporating the valuable feedback
received could have led to further development and improvement of the website and
module. Unfortunately, time constraints prevented additional testing and implement-
ation of the suggested enhancements.

Limitations were also encountered in regards to funding. The researchs inability to
utilize a virtual machine (VM) for conducting the tests related to the second research
question: ”How can the Hyperfetch application be leveraged to gain valuable insights
into the emission profile of a reinforcement learning project?” was primarily driven
by financial constraints, as using a VM typically incurs additional costs. By not using
a VM, I might have missed out on the opportunity to explore the emission profile in
a more controlled and isolated environment, which would have likely provided more
accurate insights. Despite this limitation, the study still provides meaningful insights

65

into the emission profile of reinforcement learning projects.

6.4 Future Work

To further enhance the Hyperfetch application, several key areas of development have
been identified.

Firstly, the behavior of the scroll-up button should be improved to provide a more
seamless user experience, ensuring it follows along as users scroll up and down the
page. Additionally, a user-base feature can be implemented, granting users their own
personalized dashboards with comprehensive data on their individual runs. This could
include interactive charts showcasing CO2 emissions and average rewards per trial,
as well as the ability to track the progression of rewards over time. Another design
detail is the rounding of numbers. The current rounding of numbers in the runs and
run section is very messy, due to inconsistent amount of decimal numbers. To address
this issue and improve readability, the numbers in the runs and run sections should
be rounded using scientific notation and a set amount of decimal numbers. Regarding
hyperparameters, it would increase the accessibility and ability to recreate projects if
the hyperparameters for a run were downloadable through the push of a button. This
feature could, for example, have consisted of downloading the hyperparameters and
other configurations in a YAML file format ready for use.

For configuration and validation within the optimization module, verbosity (the level
of detail) should be added to the logger. This would be especially useful for when
values are not present in the configuration file, and the module prints out continuous
messages specifying which default settings were applied, as well as which configur-
ations were changed if applicable. Thus, the verbosity would be an option to disable
logging of default values for non-mandatory parameters. In addition, comprehensive
testing should be prioritized in the future, especially in the frontend and optimiza-
tion module. Implementing dedicated tests, such as unit tests and integration tests,
would increase the application’s stability, correctness, and reliability. Additionally,
the incorporated security measures, such as HTTP, middleware, and Pydantic models,
should be accompanied by thorough security testing.

Looking ahead, there is also a possibility to extend the Hyperfetch platform beyond
reinforcement learning, including other machine learning paradigms as well. This
expansion would offer a comprehensive overview of emissions associated with various
machine learning approaches. Furthermore, the application’s logo should be aligned
with the page and pip-modules, by adopting the name ”Hyperfetch” as a single word,
instead of the current logo name, which is ”Hyper-Fetch”.

66

7 Societal Impact

The study focuses on evaluating and understanding the CO2 emissions associated
with model training in the field of Deep Reinforcement Learning (DRL). By identifying
the factors that contribute to emissions, such as country location, regional location,
cloud provider, and algorithm choice, the research highlights the importance of con-
sidering sustainability and environmental impact in the development of RL models.
This awareness can lead to more informed decisions and practices that aim to reduce
the carbon footprint of these technologies. In addition, the project emphasizes the
need to integrate sustainability considerations into the development of RL models. By
raising awareness about the environmental impact of model training and providing
insights into emission profiles, the research encourages the adoption of sustainable
machine learning practices. This hope is that the research will motivate practitioners
to optimize algorithms and hyperparameters with the goal of minimizing emissions,
selecting eco-friendly cloud providers, and consider the geographical context of train-
ing.

Overall, the societal impact of this project lies in promoting environmentally conscious
practices, improving reproducibility, and fostering collaboration within the field of re-
inforcement learning. By considering the environmental impact of model training and
providing tools for reproducibility and knowledge sharing, the research contributes to
sustainable machine learning practices and the advancement of the field, benefiting
both the scientific community and the broader society.

67

Bibliography

[1] Peter Henderson et al. ‘Deep reinforcement learning that matters’. In: Proceed-
ings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[2] Odd Erik Gundersen. ‘The Reproducibility Crisis Is Real’. In: AI Magazine 41.3
(2020), pp. 103–106. doi: 10 . 1609 / aimag . v41i3 . 5318. url: https : / / ojs . aaai . org /
aimagazine/index.php/aimagazine/article/view/5318.

[3] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[4] Anand S. Rao and Gerard Verweij. PwC’s Global Artificial Intelligence Study:
Exploiting the AI Revolution. 2017. url: https://www.pwc.com/gx/en/issues/analytics/
assets/pwc-ai-analysis-sizing-the-prize-report.pdf.

[5] Christian Collberg and Todd A Proebsting. ‘Repeatability in computer systems
research’. In: Communications of the ACM 59.3 (2016), pp. 62–69.

[6] Dario Amodei and Danny Hernandez. AI and compute. 2018. url: https://openai.
com/research/ai-and-compute.

[7] Karoline S. Wahl. Hyperfetch. May 2023. url: https://www.hyperfetch.online/.
[8] Karoline S. Wahl. Hyperfetch. Version 1.0.14. May 2023. url: https://pypi.org/

project/hyperfetch/.
[9] David Patterson et al. The Carbon Footprint of Machine Learning Training Will

Plateau, Then Shrink. 2022. arXiv: 2204.05149 [cs.LG].

[10] Yuxi Li. ‘Deep Reinforcement Learning’. In: ArXiv abs/1810.06339 (2018).

[11] Changxi You et al. ‘Advanced Planning for Autonomous Vehicles Using Rein-
forcement Learning and Deep Inverse Reinforcement Learning’. In: Robotics
and Autonomous Systems 114 (Jan. 2019). doi: 10.1016/j.robot.2019.01.003.

[12] Horia Mania, Aurelia Guy and Benjamin Recht. ‘Simple random search provides
a competitive approach to reinforcement learning’. In: ArXiv abs/1803.07055
(2018).

[13] Jasper Snoek et al. ‘Scalable Bayesian Optimization Using Deep Neural Net-
works’. In: International Conference on Machine Learning. 2015.

[14] Yoshihiko Ozaki et al. ‘Multiobjective tree-structured parzen estimator for com-
putationally expensive optimization problems’. In: Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference (2020).

[15] Xiaoyu He and Yuren Zhou. ‘Enhancing the Performance of Differential Evolution
with Covariance Matrix Self-adaptation’. In: Applied Soft Computing 64 (Dec.
2017). doi: 10.1016/j.asoc.2017.11.050.

[16] Thomas J. Crowley. ‘Causes of Climate Change Over the Past 1000 Years’. In:
Science 289.5477 (2000), pp. 270–277. doi: 10.1126/science.289.5477.270. url:
https://www.science.org/doi/abs/10.1126/science.289.5477.270.

[17] IPCC. Global Warming of 1.5 ºC —. url: https://www.ipcc.ch/sr15/.
[18] Luiz André Barroso, Urs Hölzle and Parthasarathy Ranganathan. ‘The Datacen-

ter as a Computer: Designing Warehouse-Scale Machines, Third Edition’. In:
Synthesis Lectures on Computer Architecture (2018).

[19] Matthew Brander et al. ‘Technical Paper| Electricity-specific emission factors for
grid electricity’. In: Ecometrica, Emissionfactors. com (2011).

68

https://doi.org/10.1609/aimag.v41i3.5318
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/5318
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/5318
https://www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf
https://www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf
https://openai.com/research/ai-and-compute
https://openai.com/research/ai-and-compute
https://www.hyperfetch.online/
https://pypi.org/project/hyperfetch/
https://pypi.org/project/hyperfetch/
https://arxiv.org/abs/2204.05149
https://doi.org/10.1016/j.robot.2019.01.003
https://doi.org/10.1016/j.asoc.2017.11.050
https://doi.org/10.1126/science.289.5477.270
https://www.science.org/doi/abs/10.1126/science.289.5477.270
https://www.ipcc.ch/sr15/

[20] Alexandre Lacoste et al. ‘Quantifying the Carbon Emissions of Machine Learn-
ing’. In: ArXiv abs/1910.09700 (2019).

[21] Jacob Devlin et al. ‘Bert: Pre-training of deep bidirectional transformers for
language understanding’. In: arXiv preprint arXiv:1810.04805 (2018).

[22] Karen Simonyan and Andrew Zisserman. ‘Very Deep Convolutional Networks
for Large-Scale Image Recognition’. In: CoRR abs/1409.1556 (2014).

[23] Will Buchanan and Jesse Dodge. Measuring and Mitigating AI Carbon Intens-
ity. 2022. url: https ://blog.allenai .org/measuring- and- mitigating- ai - carbon- intensity-
8624bc805c1a.

[24] Lisha Li et al. ‘Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization’. In: J. Mach. Learn. Res. 18 (2016), 185:1–185:52.

[25] Liam Li et al. ‘Massively Parallel Hyperparameter Tuning’. In: ArXiv abs/1810.05934
(2018).

[26] Stefan Falkner, Aaron Klein and Frank Hutter. ‘BOHB: Robust and Efficient Hy-
perparameter Optimization at Scale’. In: International Conference on Machine
Learning. 2018.

[27] Nima Tajbakhsh et al. ‘Convolutional Neural Networks for Medical Image Ana-
lysis: Full Training or Fine Tuning?’ In: IEEE Transactions on Medical Imaging
35 (2016), pp. 1299–1312.

[28] Jeremy Howard and Sebastian Ruder. ‘Universal Language Model Fine-tuning
for Text Classification’. In: Annual Meeting of the Association for Computational
Linguistics. 2018.

[29] Thomas T. Hewett et al. ACM SIGCHI Curricula for Human-Computer Interac-
tion. Tech. rep. New York, NY, USA, 1992.

[30] W.H. DeLone and E.R. McLean. ‘Information systems success revisited’. In: Pro-
ceedings of the 35th Annual Hawaii International Conference on System Sci-
ences. 2002, pp. 2966–2976. doi: 10.1109/HICSS.2002.994345.

[31] ISO. ISO 9241-210:2010 Ergonomics of human-system interaction — Part 210:
Human-centred design for interactive systems. 2010. url: https://www.iso.org/
standard/77520.html.

[32] Adriana Chammas, Manuela Quaresma and Claudia Mont’Alvão. ‘A Closer Look
on the User Centred Design’. In: Procedia Manufacturing 3 (Dec. 2015), pp. 5397–
5404. doi: 10.1016/j.promfg.2015.07.656.

[33] Dejan Todorovic. ‘Gestalt principles’. In: Scholarpedia 3.12 (2008), p. 5345.

[34] Briony J. Oates. Researching Information Systems and Computing. Sage Pub-
lications, 2006.

[35] Lixu su, Annie Cui and Michael Walsh. ‘Trustworthy Blue or Untrustworthy Red:
The Influence of Colors on Trust’. In: Journal of Marketing Theory and Practice
27 (July 2019), pp. 269–281. doi: 10.1080/10696679.2019.1616560.

[36] Karoline S. Wahl. 2023. url: https://github.com/karolisw/hyperfetch/actions.
[37] Mozilla Firefox. ‘Mixed content - Web security | MDN’. In: (2023). url: https :

//developer.mozilla.org/en-US/docs/Web/Security/Mixed_content#mixed_active_content.
[38] Jupyter Notebook. 2023. url: https ://github.com/mlco2/codecarbon/blob/master/

codecarbon/data/cloud/impact.csv.

69

https://blog.allenai.org/measuring-and-mitigating-ai-carbon-intensity-8624bc805c1a
https://blog.allenai.org/measuring-and-mitigating-ai-carbon-intensity-8624bc805c1a
https://doi.org/10.1109/HICSS.2002.994345
https://www.iso.org/standard/77520.html
https://www.iso.org/standard/77520.html
https://doi.org/10.1016/j.promfg.2015.07.656
https://doi.org/10.1080/10696679.2019.1616560
https://github.com/karolisw/hyperfetch/actions
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content#mixed_active_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content#mixed_active_content
https://github.com/mlco2/codecarbon/blob/master/codecarbon/data/cloud/impact.csv
https://github.com/mlco2/codecarbon/blob/master/codecarbon/data/cloud/impact.csv

[39] Salihu D Musa et al. ‘China’s energy status: A critical look at fossils and re-
newable options’. In: Renewable & Sustainable Energy Reviews 81 (2018),
pp. 2281–2290.

[40] Hong Xian Li et al. ‘A review on renewable energy transition in Australia: An
updated depiction’. In: Journal of Cleaner Production 242 (2020), p. 118475.

[41] Robert A. Virzi. ‘Refining the Test Phase of Usability Evaluation: How Many Sub-
jects Is Enough?’ In: Human Factors 34.4 (1992), pp. 457–468. doi: 10.1177/
001872089203400407. url: https://doi.org/10.1177/001872089203400407.

[42] Jakob Nielsen and Thomas K. Landauer. ‘A Mathematical Model of the Find-
ing of Usability Problems’. In: Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems. CHI ’93. Association for
Computing Machinery, 1993, pp. 206–213. isbn: 0897915755. doi: 10 . 1145/
169059.169166. url: https://doi.org/10.1145/169059.169166.

[43] L. Faulkner. ‘Beyond the five-user assumption: Benefits of increased sample
sizes in usability testing’. In: Behavior Research Methods, Instruments, & Com-
puters 35 (2003), pp. 379–383.

[44] Andrew Blakers, Matthew Stocks and Bin Lu. ‘Australia: the renewable energy
superstar’. In: 2019.

[45] Gary Cook. ‘CLICKING CLEAN: WHO IS WINNING THE RACE TO BUILD A GREEN
INTERNET’. en. In: Greenpeace ().

[46] Alex Poulin.Which Cloud Computing Service Is the Most Environmentally Friendly?
en. 2020. url: https://medium.com/sustainable-finance/which-cloud-computing-service-is-
the-most-environmentally-friendly-a163d5b7ddc7.

[47] 2023. url: https://www.xomnia.com/post/ai-carbon-footprint/.
[48] Maryam Arbabzadeh. Clouding the issue. url: https://www.climatiq.io/blog/cloud-

computing-amazon-google-microsoft-helping-companies-go-green.

70

https://doi.org/10.1177/001872089203400407
https://doi.org/10.1177/001872089203400407
https://doi.org/10.1177/001872089203400407
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/169059.169166
https://medium.com/sustainable-finance/which-cloud-computing-service-is-the-most-environmentally-friendly-a163d5b7ddc7
https://medium.com/sustainable-finance/which-cloud-computing-service-is-the-most-environmentally-friendly-a163d5b7ddc7
https://www.xomnia.com/post/ai-carbon-footprint/
https://www.climatiq.io/blog/cloud-computing-amazon-google-microsoft-helping-companies-go-green
https://www.climatiq.io/blog/cloud-computing-amazon-google-microsoft-helping-companies-go-green

	List of Figures
	Introduction
	Research Questions and Thesis Aim

	Theory
	Artificial Intelligence
	Reinforcement Learning
	Action space
	The Agent
	Deep Reinforcement Learning

	Hyperparameters
	Hyperparameter optimization
	Search methods
	Sampling
	Pruning

	Emissions
	Emissions within Machine Learning
	Reducing emissions within Machine Learning

	Design theory
	Gestalt principles

	Deployment
	Security

	Method
	Literature Review
	Optimization
	Calculating emissions

	Developmental Methodology
	Planning stage
	User-centered design
	Database structure
	Resulting Stack

	Prototype
	Database
	Optimization module
	Developing the REST API
	Developing the website

	Testing
	Interview 1
	Interview 2
	Improvements
	User tests

	Final Product
	Publishing the optimization-module
	Deploying the database
	Deploying the REST API
	Deploying the Website
	Domain name
	Security
	Bug Handling

	Emission profiling

	Results
	Findings from Product testing
	Final Product
	Website
	Architecture
	Layers

	Emission Profiling
	Emissions by country
	Emissions by Region
	Emissions by Cloud-provider
	Emissions by RL model
	Findings

	Administrative results

	Discussion
	Product testing
	Emission Profiling
	Location of Server
	Cloud Provider
	Algorithm selection
	Summary

	Final product
	Functional Features
	Effect goals
	Security
	Document Driven Development
	Alterations

	Conclusion and Future Work
	Research question 1
	Research question 2
	Limitations
	Future Work

	Societal Impact
	Bibliography

