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Abstract

In this thesis we present the construction of a homotopy theory for smooth manifolds in a way
which mimics Morel and Voevodsky’s construction of the A1-homotopy theory for schemes. This is
based on the works of Dugger, Isaksen, Jardine, Morel, Quillen, Voevodsky and many others.
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Chapter I

Introduction

Compared to topological spaces smooth manifolds are rather rigid objects. This makes homotopical
constructions in the category of smooth manifolds, denoted Man∞, much more difficult or even
impossible. Thus, the task of creating a homotopy theory for smooth manifolds becomes quite
challenging. Our goal for this thesis is to present the construction of an abstract homotopy theory
for smooth manifolds. We will use the theory of model categories, simplicial sets, Grothendieck
topologies and descent, amongst other things, to achieve this.

We now give a quick overview of the construction. We want the abstract homotopy theory
to mimic the homotopy theory of topological spaces. However, given the vast difference in the
structures of topological spaces and smooth manifolds, in terms of their defining properties, we
cannot simply start constructing and expect to get something remotely close to the homotopy
theory of topological spaces. We have to somehow alter the category of smooth manifolds in a way
which sufficiently resembles the category of topological spaces. The problem with smooth manifolds
is that we cannot make any and all constructions and still expect to get a smooth manifold. To
be specific, the category Man∞ is not both complete and cocomplete. The way we fix is this is
by embedding Man∞ into the category of presheaves on Man∞, Pre(Man∞), which we know is
complete and cocomplete.
The problem we now face is that presheaves ”forget” geometry, as in certain colimits and limits
which already exist in Man∞ are altered when going to Pre(Man∞). An example of this is
taking the disjoint union of two n-dimensional manifolds, M1

∐
M2. We can show that the Yoneda

embeddings

r(M1

∐
M2) := HomMan∞(−,M1

∐
M2)

and
rM1

∐
rM2 := HomMan∞(−,M1)

∐
HomMan∞(−,M2)

behave wildly different by considering maps from rS0 := HomMan∞(−, S0) into each object. We
have

HomPre(Man∞)(rS
0, r(M1

∐
M2)) ∼= r(M1

∐
M2)(S

0)

by the Yoneda lemma, and this corresponds exactly to picking out two points in the disjoint union.
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On the other hand,

HomPre(Man∞)(rS
0, rM1

∐
rM2) ∼= (rM1

∐
rM2)(S

0)

corresponds to picking out four points.
We try to fix this by taking into account local data. To do this we give Man∞ a Grothendieck
topology and consider sheaves onMan∞. There is again another problem with this. Model category
theory tells us that in certain cases we can induce a model structure on functor categories when
our target category is a nice enough model category. The category of sheaves on Man∞ is a
functor category that lands in Set, but there are very few interesting model structures on Set.
Furthermore, they don’t really have a strong connection to the model structures of Top, something
we want in our final model structure. It turns out that the correct notion to consider is that of
simplicial presheaves on Man∞, denoted sPre(Man∞), which is the category of contravariant
functors Man∞ → sSet. We will see that this is a step in the right direction, but still not enough
as the object which corresponds to R in sPre(Man∞) is not contractible. To try and fix this, we
recall our Grothendieck topology on Man∞ and bring Čech descent into the picture, which we will
think of as a generalization of the sheaf condition.
This is still not enough, but has at least brought the geometry of Man∞ back into the picture. All
that is left to do is to contract R. Our abstract homotopy theory is then ready once we have done
this.

Overview

This thesis consists of three chapters:

Ch. 2 introduces the basics of model categories. We define model categories, left and right homo-
topies and the homotopy category Ho(C) of a model category C. Furthermore, we explain
that this category is equivalent to the localization of C at the class of weak equivalences and
prove Whiteheads theorem for model categories. Lastly, we define Quillen adjunctions and
equivalences, along with derived functors.

Ch. 3 introduces the basics of simplicial sets. This chapter start with the basic definitions and
aims to build up our intuition via examples and properties. We then start working our way
towards the Kan-Quillen model structure, while taking a quick informal detour into simplicial
homotopy groups. We end the chapter with simplicial model categories.

Ch. 4 is the chapter where everything falls in place. Here we expand on what was said in the
introduction using the theory from chapters 2 and 3, while introducing and explaining the
remaining theory. At every step of the way we aim to explain the problem we face and how
we aim to solve it.

The reader will notice that chapters 2 and 3 have their own motivation section. This is done because
we feel that the topics discussed in the respective chapters are interesting enough to be studied on
their own. We therefore try to motivate them without mention of the homotopy theory of smooth
manifolds.

Lastly, this thesis assumes familiarity with basic category theory, homological algebra and basic
algebraic topology. It is also a benefit to know the definition of a smooth manifold, but this is not
a must.

5



Regarding the Difficulty of the Theory

As the theory used in this thesis becomes increasingly more difficult to understand, I have had no
choice other than to not include the proofs of many propositions and lemmas. Instead I have opted
to tell a ”story” with the focus being geometric intuition. This is especially evident in chapter 4,
section 2, where the entirety of Bousfield localization had to be ”blackboxed”. This is not to say
that there are no proofs provided. Many of the proofs in chapter 2 are my own, some of which I
spent countless hours on (for example parts of theorem II.3.10). This is mostly due to my main
source on model categories ([Bal21]) being a reference book for those already familiar with model
categories, something I found out a little too late. I have however gone through other sources, such
as [Hov99] and [Hir03], and checked that my proofs on model categories are correct. Furthermore,
the proof of theorem III.4.1 is my own attempt to fill in missing details of the proof found in [GJ09],
and the proof of proposition IV.1.2 is my own.
I also admit that there is still a lot of theory which I don’t completely understand, but I am
nonetheless proud of this thesis and the progress that I have made in a single semester. I have also
learned a lot of new and interesting mathematics, which is maybe more important than the thesis
itself.
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Chapter II

Model Categories

II.1 Motivation

One of the categories studied in homological algebra is the derived category D(A) of some abelian
category A. This category is often constructed using equivalence classes of roofs between chain
complexes and it is possible to show that this construction inverts quasi-isomorphisms. In fact,
this is one of the main reasons we care about the derived category: We would like to study chain
complexes up to homology and forcing quasi-isomorphisms to become isomorphisms is one way of
doing this.

Another example of a similar idea is studying topological spaces up to some algebraic invari-
ant. Common algebraic invariants include (co)homology (with various coefficients) and homotopy
groups. It is well known that none of these algebraic invariants can differentiate between weakly
equivalent spaces, i.e. spaces X,Y ∈ Top such that there exists a map f : X → Y that induces
isomorphisms on all homotopy groups. One could thus argue that we are actually studying the
category of topological spaces up to weak equivalence.
More generally, let’s say that we are working in some category C and we are given a class of mor-
phisms W which we would like to invert. We could form the localization of C with respect to all
morphisms in W , which (if exists) is a new category C[W−1] along with a functor γ : C → C[W−1]
which satisfies certain universal properties1. In this new category, all morphisms in W are sent
to isomorphisms in C[W−1] and one way of constructing this category is seen in definition 1.2.1
in [Hov99]2. However we see that for an arbitrary category, the resulting morphisms (often called
zig-zags) may be too long and as such our Hom-sets may not actually be sets. This means that
C[W−1] may in some cases not even be a category. Another problem is that the zig-zags are notori-
ously difficult to describe. There are of course nice and simple cases, such as the derived category,
but even there one must first assume that the collection of equivalence classes of roofs between any
two chain complexes is a set. How do we work our way around this? One way could be to impose
restrictions on our class W : We can for example set rules for how morphisms in W should interact
with other classes of morphisms. This is exactly what is done when defining model categories, and
we will see that the properties of model categories lead to a lot of interesting and powerful theory.

1Depending on the author, the universal properties might be taken as definition or simply as consequences from
a different definition. See f.ex. [Hov99] definition 1.2.1 and lemma 1.2.2.

2This is more or less the same process as when constructing the derived category.
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In addition, we will see that model categories gives a nice framework for abstracting homotopy
theory to categories which at first seem unsuitable for such notions.

II.2 Definitions and Basic Properties

We start our journey through model category theory with some basic definitions.

Definition II.2.1 (Retracts). A morphism f : A → B in a category C is a retract if and only if
there exists a commutative diagram

A C A

B D B

f

idA

idB

fg (II.1)

One sees that such retracts of morphisms aim to mimic topological retracts. For those that
know about the arrow category, retracts of morphisms in C are retracts in the arrow category of C.

Definition II.2.2 (Model Category). A model category is a category C with three distinguished
classes of morphisms:

• Weak Equivalences - WC

• Fibrations - FibC

• Cofibrations - CofC

which are all closed under composition. A morphism which is both a weak equivalence and a
fibration (resp. cofibration) is called an acyclic fibration (resp. acyclic cofibration). The three
classes and the category C must satisfy the following axioms:

MC1: C has all small limits and colimits. Thus, C has both an initial and terminal object, denoted
∅ and ∗ respectively.

MC2: If f, g are two composable morphisms and if two of f, g, gf are weak equivalences, then so is
the third. This is known as the 2-of-3 property.

MC3: WC , FibC and CofC are closed under retracts.

MC4: Given the solid part of a commutative diagram of the form

A X

B Y

pi h (II.2)

a lift, i.e. the dotted arrow h making everything commute, exists either when i is a cofibration
and p is an acyclic fibration or i is an acyclic cofibration and p is a fibration.
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MC5: Each morphism f ∈ C can be factored as f = pi where either

1. i is a cofibration and p is an acyclic fibration
or

2. i is an acyclic cofibration and p is a fibration

Remark II.2.3. We also assume that model categories admit functorial factorizations, i.e. that the
factorization in MC5 is functorial. See definition 1.1.1 in [Hov99]. Also, some authors prefer trivial
instead of acyclic. Lastly, a model structure on a category C is the data of weak equivalences,
cofibrations and fibrations satisfying all model category axioms except for possibly MC1.

It is important to get comfortable with the idea of lifts in diagrams of the form II.2, as they
will play a major role in the theory going forwards. In fact, many model category structures are
given by defining a class of morphisms (often acyclic cofibrations/fibrations) and then generating
the other class using lifting properties, see example II.2.12. We will also encounter this idea in the
next chapter.

Definition II.2.4. Given the solid part of a commutative diagram of the form II.2, we say i has
the left lifting property (LLP) with respect to p if a lift exists. Similarly, p has the right lifting
property (RLP) with respect to i if a lift exists.

Definition II.2.5. Let C be a model category and X ∈ C. Then X is:

• fibrant if the map X → ∗ is a fibration

• cofibrant if the map ∅ → X is a cofibration

• bifibrant if it is both fibrant and cofibrant

Using the factorization provided by MC5 we can factor the map X → ∗ as X → Y → ∗ where
we can choose Y → ∗ to be a fibration, making Y a fibrant object and forcing X → Y to be an
acyclic cofibration. Similarly for ∅ → X. Functorial factorization gives us a canonical choice of Y
and maps X → Y, Y → ∗. This leads us to define the following:

Definition II.2.6. Let C be a model category and X ∈ C.

• A fibrant replacement of X is a fibrant object RX with an acyclic cofibration X → RX

• A cofibrant replacement of X is a cofibrant object QX with an acyclic fibration QX → X

Note that many such replacements may exist, but by the above discussion we more or less
always choose it to be the objects and maps provided by the functorial factorization. The topo-
logically minded reader might want to compare cofibrant replacement with the concept of CW-
approximation.

Proposition II.2.7. The fibrant replacement of a cofibrant replacement RQX is still cofibrant.
Dually for the cofibrant replacement of a fibrant replacement QRX. We thus have bifibrant replace-
ments and there is a weak equivalence RQX → QRX

9



Proof. We first show that RQX is cofibrant (that is ⇐⇒ ∅ → RQX is a cofibration). We have by
definition an acyclic cofibration QX → RQX and QX is cofibrant so the unique map ∅ → QX is
also a cofibration. Composing these two results in the unique map ∅ → RQX and since all three
classes of morphisms in C are closed under composition, ∅ → RQX is a cofibration. Thus, the
fibrant replacement of a cofibrant replacement is still cofibrant. Similarly for QRX.

The proof of there existing a weak equivalence RQX → QRX is not too difficult, however it
requires one to really think of fibrant/cofibrant replacements as functors (we can do this by func-
torial factorization). Thus we have natural transformations Q⇒

ε
idC and idC ⇒

η
R. This gives us a

diagram of the form

QX QRX

X

RQX RX

Q(ηX)

εRXηQX

R(εX)

εX

ηX

By naturality of η (resp. ε), the lower (resp. the upper) triangle commutes. So the entire
diagram commutes. This implies that the diagram below commutes and since ηQX ∈ WC ∩ CofC
and εRX ∈ WC ∩ FibC we have a lift h : RQX → QRX by MC4. Note that εRX and ηQX are
precisely the maps from an object to its (co)fibrant replacement as in definition II.2.6, so they really
are weak equivalences.

QX QRX

RQX RX

εRXηQX
h

By commutativity, εRXQ(ηX) = ηXεX and both ηRX , ηXεX ∈ WC so by 2-of-3 (MC2) Q(ηX)
is also a weak equivalence. Then again by 2-of-3, h : RQX → QRX is also a weak equivalence for
ηQX ∈WC . ■

The next step is to try and understand how these three classes of morphisms interact with each
other. To do this we need a lemma.

Lemma II.2.8 (Retract Argument). Suppose we have a factorization f = pi in a category C and
that f has the LLP with respect to p. Then f is a retract of i. Dually, we have that if f has the
RLP with respect to i them f is a retract of p

The proof of the retract argument is found on page 5 in [Hov99]. Now we state an important
connection between the different classes of morphisms.

Proposition II.2.9. In a model category C, a map is a cofibration (acyclic cofibration) if and only
if it has the LLP with respect to all acyclic fibrations (fibrations). The dual statement holds for
fibrations (acyclic fibrations) and acyclic cofibrations (cofibrations).

10



Proof. We prove that a map f is a cofibration if and only if it has the LLP to all acyclic fibrations.
The other cases are similar.
⇒: By MC4 (i.e. the lifting axiom) a lift exist for any acyclic fibration p.
⇐: Suppose f has the LLP with respect to all acyclic fibrations. Factor f = pi such that i is a
cofibration and p is an acyclic fibration. Thus f has the LLP with respect to p and by the retract
argument (Lemma II.2.8) we have that f is a retract of i. Since i is a cofibration, we have by MC3
(closed under retracts) that f is also a cofibration. ■

As immediate corollaries we get

Corollary II.2.10. The class of (acyclic) fibrations (resp. (acyclic) cofibrations) is closed under
pullbacks (resp. pushouts).

Corollary II.2.11. A map f : X → Y is an isomorphism ⇐⇒ f ∈ WC ∩ FibC ∩ CofC, i.e. f is
in all three classes of morphisms.

The proof of the first corollary follows from the universal property of pullbacks together with
proposition II.2.9, while the second follows from choosing the correct square to find a lift in, together
with proposition II.2.9. We end this section with an example:

Example II.2.12. An example of a model structure on a (hopefully) well known category would be
the Quillen model structure on Top. In this model structure we define WTop to be the class of
(topological) weak equivalences, FibTop to be the class of Serre fibrations and CofTop to be the
class of all maps that have the LLP with respect to all acyclic fibrations. We denote this model
category as TopQuillen.

For an extensive collection of model structures on various categories, we refer the reader to
[Bal21]. With these basic definitions and properties in hand, we move on towards our main goal of
constructing C[W−1].

II.3 The Homotopy Category

The general construction of C[W−1], as seen in [Hov99], involves forming the free category F (C,W−1)
and then quotienting out by some relations on the the morphisms. This construction is not the
prettiest and as mentioned before, it might not even result in an actual category. So our plan
will be to cook up a different category Ho(C) where weak equivalences become isomorphisms, and
then show that this is equivalent to C[W−1]. Along the way we will see that Ho(C) is indeed an
actual category and the equivalence between C[W−1] and Ho(C) gives an explicit description of the
zig-zags in C[W−1]. As the name suggests, we will first have to establish the idea of homotopy in
a model category.

Definition II.3.1 (Cylinder Object). Let C be a model category and X ∈ C. A cylinder object
Cyl(X) for X is a factorization of the codiagonal map ∇X : X

∐
X → X as

∇X : X
∐

X →
(i0,i1)

Cyl(X)→
p
X

where the map (i0, i1) : X
∐

X →
(i0,i1)

Cyl(X) is a cofibration and p : Cyl(X) → X is a weak

equivalence. Such factorizations always exist by MC5, where p is chosen to be an acyclic fibration.

11



Remark II.3.2. Some sources differentiate between cylinder objects and good cylinder objects. The
difference here is that such sources don’t require that (i0, i1) is a cofibration for cylinder objects
and define good cylinder ojects to be cylinder objects where (i0, i1) is a cofibration. We will always
assume (i0, i1) is a cofibration.

Definition II.3.3 (Left Homotopy). Let f, g : X → Y be morphisms in a model category C. A
left homotopy is a morphism η : Cyl(X)→ Y such that the following diagram commutes:

X Cyl(X) X

Y

i0

η

i1

gf
(II.3)

We often write η : f ∼L g.

Intuitively Cyl(X) is a generalization of the topological cylinder X × [0, 1]. For any topolog-
ical space X ∈ Top we have a continuous map X

∐
X → X × [0, 1] given by the two inclusions

X ↪→ X × {0} and X ↪→ X × {1}. Furthermore we have the projection X × [0, 1] → X and
these two maps compose to the codiagonal map in Top. We also have that X and X × [0, 1]
are homotopy equivalent spaces. A homotopy H : X × [0, 1]→ Y between two continuous maps f
and g by definition satisfies H(−, 0) = f,H(−, 1) = g, which is precisely what diagram II.3 encodes.

Definition II.3.4 (Path Object). Let C be a model category and X ∈ C. A path object Path(X)
for X is a factorization of the diagonal map ∆X : X → X

∏
X as

∆X : X →
s
Path(X) →

(d0,d1)
X

∏
X

where s ∈ WC and (d0, d1) a fibration. By MC5, such factorizations always exist by letting s be
an acyclic cofibration.

Remark II.3.5. Just as for cylinder objects, some authors differentiate between good path objects
and path objects, the difference being whether or not (d0, d1) is a fibration. We will stick to the
above definition, so (d0, d1) is a fibration.

Definition II.3.6 (Right Homotopy). Let f, g : X → Y be morphisms in a model category C. A
right homotopy is a morphism ε : X → Path(Y ) such that the following diagram commutes:

X

Y Path(Y ) Y

ε

d0 d1

gf (II.4)

We often write ε : f ∼R g.

Just as for Cyl(X), Path(Y ) aims to generalize path spaces in Top. For a topological space Y we
define Path(Y ) = {γ : [0, 1] → Y |γ is continuous}. Given a homotopy H between two continuous
maps f, g, we can fix an x ∈ X and consider the path given by ε(x) = H(x,−) : [0, 1]→ Y . So if we
define di(γ) = γ(i), i = 0, 1 we get that for all x ∈ X, (d0 ◦ ε)(x) = d0(H(x,−)) = H(x, 0) = f(x)

12



and similarly for (d1 ◦ ε)(x) = d1(H(x,−)) = H(x, 1) = g(x). This is what diagram II.4 encodes.

One important thing to note is that a cylinder object for an A ∈ C is the same as a path object
for the same object in the dual category. Similarly, left homotopies correspond to right homotopies
in the dual category. Thus it suffices to prove statements for cylinder objects and left homotopies
and the dual statement will then hold for path objects and right homotopies.
We now define the notion of homotopy and homotopy equivalence in a model category. As one
would expect, these definitions borrow heavily from the topological notion of homotopy.

Definition II.3.7. A pair of morphisms f, g : X → Y in a model category are homotopic if they
are both left and right homotopic. Denote this as f ∼ g.
A morphism f : X → Y in a model category is a homotopy equivalence if there exists a morphism
h : Y → X such that fh ∼ idY and hf ∼ idX . We then say that f has a homotopy inverse h.

The obvious question to ask oneself is ”Does homotopy determine an equivalence relation on
HomC(A,B) for all objects A,B ∈ C?”. The (perhaps not too surprising) answer to this, is that
it depends on the model structure on C. More specifically, it depends on the cofibrant and fibrant
objects.

Lemma II.3.8. Let C be a model category and X,Y ∈ C. Then being left (resp. right) homotopic
is an equivalence relation on HomC(X,Y ) for X cofibrant and Y fibrant. Moreover, the two notions
coincide in such cases.

Proof of lemma II.3.8 follows from proposition 1.2.5 in [Hov99]3. The important takeaway from
lemma II.3.8 is that for bifibrant objects, being homotopic is an equivalence relation on the Hom-
sets. This will become important later when we define Ho(C).

The next important theorem we are going to state and prove, will be a generalization of White-
head’s theorem to an arbitrary model category. We will see that this theorem plays an important
role when forming the homotopy category and in some sense, this theorem is exactly what is needed
to show that C[W−1] and Ho(C) are equivalent categories. We begin with an important lemma.

Lemma II.3.9. Both i0, i1 : A→ Cyl(A) are acyclic cofibrations when A is cofibrant.

Proof. Recall that A
ij→ Cyl(A) → A, j = 0, 1 composes to idA, and since idA is an isomorphism,

it is in all three classes (see corollary II.2.11). By definition, Cyl(A) → A is a weak equivalence.
Then by the 2-of-3 axiom (MC2) we have that ij ∈WC . We must show that ij is a cofibration.
The diagram below is a pushout diagram, and A being cofibrant implies that inj is also a cofibration
(corollary II.2.10).

∅ A

A A
∐

A

in0

in1

We know that ij factors as A −→
inj

A
∐

A −→
(i0,i1)

Cyl(A), which is the composition of two cofibrations.

Thus i0 and i1 are acyclic cofibrations. ■

3In fact, lemma II.3.8 is almost identical to corollary 1.2.6 in [Hov99], which is why we don’t bother with proving
it here.
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We are now ready for Whitehead’s generalization for model categories.

Theorem II.3.10 (Whitehead for Model Categories). Let C be a model category and denote by Ccf
the full subcategory of bifibrant objects. Then a morphism in Ccf is a weak equivalence ⇐⇒ It is
a homotopy equivalence.

Proof. By lemma II.3.8, in Ccf left and right homotopies coincide. So we need only consider left or
right homotopies.

⇒: Let f : A → B be a weak equivalence in Ccf . Factor f : A
i→ C

p→ B with i being an acyclic
cofibration and p being a fibration. By 2-of-3 axiom we have that p is also a weak equivalence. A
being bifibrant implies that A→ ∗ is a fibration and so the diagram below admits a lift r : C → A
by MC4.

A A

C ∗

idA

i
r

By commutativity, ri = idA and so ri ∼ idA. For ir, consider diagram II.5 below.
Here we have s : C → Path(C), thus by definition (d0, d1) ◦ s = (idC , idC) so (d0, d1) ◦ si = (i, i).
We also have that (ir, idC) ◦ i = (iri, i) = (i, i) so diagram II.5 commutes. Again, by definition
(d0, d1) is a fibration and we have assumed that i is an acyclic cofibration. Then by MC4 we have
a lift h : C → Path(C).

A Path(C)

C C
∏

C

si

(d0,d1)i

(ir,idC)

h
(II.5)

Unwrapping diagram II.5 we get that the diagram below commutes, which shows that h is a right
homotopy between ir and idC .

C

C Path(C) C

h

d0 d1

idCir

By the discussion at the start of the proof, we have that ir and idC are homotopic and so we have
shown that i : A → C is a homotopy equivalence. Similarly, we can show that p : C → B is
also a homotopy equivalence. Since homotopy is an equivalence relation on HomCcf

(X,Y ) for all
X,Y ∈ Ccf , we get that f is also a homotopy equivalence.
⇐: Suppose f : A → B is a homotopy equivalence. Then there exists an f ′ : B → A such
that ff ′ ∼ idB and f ′f ∼ idA. Let H be the homotopy between ff ′ and idB . Factor f as

f : A
g→ C

p→ B, with g being an acyclic cofibration and p a fibration. It follows that C ∈ Ccf
and so by above, g is also a homotopy equivalence (for it is a weak equivalence between bifibrant
objects). The solid part of the diagram below commutes and by lemma II.3.9, i0 is an acyclic
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cofibration and so there exists a lift h : Cyl(B)→ C by MC4.

B C

Cyl(B) B

gf ′

pi0

H

h

Define q := hi1 : B → Cyl(B) → C. Then pq = phi1 = Hi1 = idB and the diagram below
commutes, which shows that gf ′ ∼ q.

B Cyl(B) B

C

i0 i1

h
gf ′ q

Recall that g was also a homotopy equivalence, which implies there exists a homotopy inverse g′.
Then p ∼ pgg′ ∼ fg′ =⇒ qp ∼ (gf ′)(fg′) ∼ g(f ′f)g′ ∼ gg′ ∼ idC . We have essentially shown that
p is a homotopy equivalence with q as the homotopy inverse. Let K : Cyl(C)→ C be the homotopy
between idC and qp. Ki0 = idC a weak equivalence and since i0 is also a weak equivalence (lemma
II.3.9), we have by 2-of-3 axiom that K is also a weak equivalence. Thus, Ki1 = qp is also a weak
equivalence. The diagram below shows that p is a retract of qp and thus p is also a weak equivalence.

C C C

B C B

qpp

q

idC

p

pq=idB

idC

idC

p

Since f = gp and both g, p are weak equivalences, we have that f is also a weak equivalence. ■

With Whitehead’s theorem in place, we can finally define the homotopy category Ho(C) of a
model category C. It is of course possible to define Ho(C) before Whitehead’s theorem is established,
but defining it after makes it very clear why we would care about it. Namely, Whitehead’s theorem
shows that when restricting to the subcategory of bifibrant objects Ccf and then quotienting out
the homotopy equivalence relation, we are in fact giving the weak equivalences inverses. So in a
way Ho(C) is exactly the category we are after and we got to it without the mess that is C[W−1].
We make this more precise below.

Definition II.3.11 (The Homotopy Category). Let C be a model category. Then its homotopy
category, up to equivalence of categories, is the the category Ho(C) whose

• Objects are the objects of Ccf , i.e. bifibrant objects.

• Morphisms are homotopy classes of C.

This is very similar to the construction of the topological homotopy category hTop, where
we leave the objects be but define HomhTop(X,Y ) = HomTop(X,Y )/(f ∼ g) where ∼ denotes
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topological homotopy. Indeed, HomHo(C)(A,B) = HomC(A,B)/(f ∼ g) for all A,B ∈ Ccf . Since Ccf
is a full subcategory, it doesn’t matter if we write HomC(A,B)/(f ∼ g) or HomCcf

(A,B)/(f ∼ g).
Recall that our goal was to find a nice and simple description of C[W−1]. So far we have Ho(C)

and Whitehead’s theorem, which by the above discussion gives some connection to C[W−1]. The
next theorem is maybe the most crucial theorem in the basics of model categories4 and finally
gives us our sought after description of C[W−1]. More importantly, it says that C[W−1] is in fact
a category if C is a model category. We state the theorem without proof, however it is not too
complicated. It requires only some lemmas regarding subcategories of C[W−1] and the canonical
functors γ : C → C[W−1] and δ : C → Ho(C).

Theorem II.3.12. Let C be a model category and γ : C → C[W−1] the canonical functor. The
following hold:

• The inclusion Ccf ↪→ C induces an equivalence of categories between Ho(C) and C[W−1].

More specifically, it is given by Ho(C) ∼→ Ccf [W−1] → C[W−1] where the first arrow is an
isomorphism of categories.

• Let Q,R be the cofibrant and fibrant replacement functors. Then there are natural isomor-
phisms HomC(QRX,QRY )/(f ∼ g) ∼= HomC[W−1](γX, γY ) ∼= HomC(RQX,RQY )/(f ∼ g),
where f ∼ g denotes homotopy.

• γ : C → C[W−1] identifies left or right homotopic morphisms.

• f : X → Y a morphism in C such that γ(f) an isomorphism, then f is a weak equivalence.

Remark II.3.13. Point 2 of theorem II.3.12 tells us that zig-zags of maximum length 3 are needed
in C[W−1]. More specifically, the zig-zags are of the form X ← QX → RY ← Y .
Another thing to note is that for model categories, C[W−1] always exists and is unique up to
equivalence of categories.

Theorem II.3.12 essentially wraps up our story about C[W−1]. Along the way we introduced
homotopy theoretic notions and saw that these concepts were crucial in forming C[W−1]. Using
these notions one can define a homotopy theory for various categories and study said categories from
a homotopic viewpoint. The next step in our journey will be to compare the homotopy categories
of model categories and in turn compare the resulting homotopy theories.

II.4 Quillen Adjunctions and Equivalences

The point of this section will be to introduce functors between two model categories such that we
can compare their resulting homotopy categories in a meaningful way. We will not go too deep in
to the theory of this section, but for those interested [Hov99] and [Hir03] are good texts that cover
this in depth. Additionally, [Bal21] is a good general reference text for model categories.

Definition II.4.1. Suppose C,D are model categories. A pair of adjoint functors F : C ⇄ D : U
(F being the left adjoint) is a Quillen adjunction if the following equivalent conditions hold:

• F preserves cofibrations and acyclic cofibrations.

4Some authors go as far as to call this the fundamental theorem of model categories, f.ex. [Bal21] and [Hov99]
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• U preserves fibrations and acyclic fibrations.

• F preserves cofibrations and U preserves fibrations.

• F preserves acyclic cofibrations and U preserves acyclic fibrations.

We then say F is a left Quillen functor and U is a right Quillen functor.

A proof of these 4 conditions being equivalent can be found in [Hir03] proposition 8.5.3. Also,
the name Quillen comes from Daniel Quillen, the mathematician who is credited with developing
and introducing model category theory during the 1960’s.

Definition II.4.2. Let F : C ⇄ D : U be a Quillen adjunction between model categories.

• The (total) left derived functor of F is the composition F : Ho(C) Ho(Q)→ Ho(C) Ho(F )→ Ho(D),
where Q is the cofibrant replacement functor.

• The (total) right derived functor of U is the composition U : Ho(D) Ho(R)→ Ho(D) Ho(U)→ Ho(C),
where R is the fibrant replacement functor.

Of course, Ho(R),Ho(F ), ... are the induced functors on the homotopy categories.

Remark II.4.3. Notice how the left and right derived functors depend partly on the replacement
functors Q and R. Without assuming functorial factorization, we would have to make a choice of
functorial (co)fibrant replacement and so the derived functors would not only depend on the model
structure, but also on the replacement functor. To make our lives easier we just assume we have a
functorial factorization, which in turn gives us a canonical choice for replacement functors.
Also, the reason we call them total right/left derived functors is because there is a different notion
of derived functors, denoted LF and RU . These are defined by cofibrant (resp. fibrant) replacement
followed by F (resp. U).

Example II.4.4. It is possible to regard taking limits and colimits over a diagram D in a category C
as functors. More specifically, limits (resp. colimits) are right (left) adjoint to the constant functor
D → Fun(D, C). We will later see that in certain cases the category Fun(D, C) inherits a nice model
structure when C is a model category, and so we may define derived functors of limit and colimit.
Of these there are two we care about: The homotopy limit and the homotopy colimit. These are
respectively the right derived functor of limit, R lim, and the left derived of colimit, L colim. We
denote these holim and hocolim.

Definition II.4.5 (Quillen Equivalence). Let C,D be model categories with Quillen adjunctions
F : C ⇄ D : U . Then we say C and D are Quillen equivalent, written C ∼Q D, if the derived
functors F : Ho(C) ⇄ Ho(D) : U are equivalences of categories.

Intuitively, Quillen equivalent categories encode the same homotopy theories but we can think
of them as coming from different viewpoints.
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Chapter III

Simplicial Sets

III.1 Motivation

Combinatorial objects are often prefered objects to study, as their combinatorial structure make
them especially easy to describe and nice to work with. Furthermore, some combinatorial objects
provide good enough approximations of regular objects to justify the extensive study of them. This
is especially evident in algebraic topology, where CW-complexes are examples of such objects. We
know by the cellular approximation theorem that they provide excellent approximations of regular
spaces and are generally much easier to work with.
Recall that CW-complexes are built by gluing disks together along their boundaries. We can
loosen this gluing, by gluing together topological simplices along their faces. Furthermore, we can
also allow for the collapsing of simplices to lower dimensions. In fact, we can detach ourselves
from topological spaces completely and just consider the combinatorial interactions between the
different dimensional simplices. We do this by defining sets of n-simplices, n ∈ N, and defining
maps from this set to the next and previous dimension. Of course, these maps have to satisfy
certain properties that mimic that of boundary maps of topological simplices. So in a way, these
sets and maps between them describe topological spaces without having to work in the category of
topological spaces.
What we have described above is the underlying idea behind simplicial sets and can be used to
study topological spaces without having to work in Top. Simplicial sets are often described very
categorically and this allows one to transfer the idea of topological space to other categories. It
turns out that our informal introduction above is not completely fallacious, as there is a very nice
model structure on the category of simplicial sets which shows that there is a close relation between
topological spaces and simplicial sets. This relation will be our main goal in this chapter, but we
will along the way introduce other interesting ideas and concepts.
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III.2 Definitions and Basic Properties

We start of by defining the elementary objects and categories we will be working with in this section.
Denote by ∆ the simplex category, i.e. the category whose objects are finite totally ordered sets
[n] = {0, 1, ..., n} and morphisms being order preserving maps. Of the morphisms in ∆, there are
two in particular which are of interest:

• Coface maps di : [n− 1]→ [n] for n > 0, 0 ≤ i ≤ n, that is the injection whose image leaves
out i ∈ [n].

• Codegeneracy maps si : [n + 1] → [n] for n > 0, 0 ≤ i ≤ n, that is the surjection such that
σi(i) = σi(i+ 1) = i.

These maps satisfy the cosimplicial identities:

djdi = didj−1, i < j

sjdi = disj−1, i < j

sjdj = 1 = sjdj+1

sjdi = di−1sj , i > j + 1

sjsi = sisj+1, i ≤ j

and it can be shown that they generate the morphisms in ∆.

Definition III.2.1. A simplicial set is a functor X : ∆op → Set. Collect these into a category
whose objects are simplicial sets and morphisms are natural transformations between them, denoted
sSet.

Clearly the category sSet is nothing more than the category of presheaves on ∆, Pre(∆).
Knowing this already gives us a lot a of information about sSet. For example, every presheaf
category is both complete and cocomplete. Furthermore, a morphism in a preasheaf category is an
epimorphism (resp. monomorphism) exactly when it is an object-wise surjection (resp. injection).
Both of these facts will come in handy later.
We often writeXn instead ofX([n]) for a simplicial setX. The elements ofXn are called n-simplices
and Xn is thus called the set of n-simplices. As such, we can form simplicial sets completely
combinatorially. This is done exactly how one suspects, namely determine what each set of n-
simplices Xn should be and then specify the appropriate face maps di : Xn → Xn−1 and degeneracy
maps si : Xn → Xn+1. These maps should of course satisfy the simplicial identities, which are dual
to the cosimplicial identities. Simplicial sets are often drawn pictorially as follows:

...→→
→
X2 ⇒ X1 → X0

Here the rightwards arrows denote the face maps and degeneracies are usually not drawn, to avoid
making a mess.

One important simplicial set is the standard (simplicial) n-simplex ∆n = Hom∆(−, [n]). By the
(contravariant) Yoneda lemma, we have that for any X ∈ sSet,

HomsSet(∆
n, X) = Nat(Hom∆(−, [n]), X) ∼= Xn
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where Nat denotes the collection of all natural transformations between two functors. In this case it
is the Hom-set in sSet. The standard simplicial n-simplices will play a major role in the homotopy
theory of simplicial sets, just as topological n-simplices do in the homotopy theory of topological
spaces. There is in fact a very close relation between simplicial and topological n-simplices.
Let ∆n denote the standard topological n-simplex. There is a covariant functor ∆ → Top by
[n] 7→ ∆n and for a morphism ϕ : [n]→ [m] we get ϕ∗(x0, ..., xn) = (

∑
j∈ϕ−1(0) xj , ...,

∑
j∈ϕ−1(m) xj).

We use this to construct geometric objects from our simplicial sets, which at first glance seemed
highly categorical.

Definition III.2.2 (Geometric Realization). For X ∈ sSet, the geometric realization of X is
defined as the space

|X| =
∐
n

(Xn ×∆n)/ ∼

where if (x, u) ∈ Xm × ∆n then (ϕ∗(x), u) ∼ (x, ϕ∗(u)) for ϕ : [n] → [m]. Here ϕ∗ is the map
induced by X and ϕ∗ is the map described above. Here Xn is given the discrete topology.

Indeed, associating a simplicial set to its geometric realization extends to a functor
| − | : sSet → Top. We call this the geometric realization functor. Intuitively one could think of
geometric realization as having one topological n-simplex ∆n for each simplicial n-simplex x ∈ Xn

and then using the face and degeneracy maps to glue these simplices together. Often, the degener-
acy maps collapse higher dimensional simplices and the face maps glue them together.

Remark III.2.3. There is a more categorical construction of | − |. First we define it on only the
standard simplicial n-simplices, so ∆n 7→ ∆n. Then using the co-Yoneda lemma1, we know that
every simplicial set X is a colimit of standard simplicial n-simplices: X ∼= colim

∆n→Xin∆↓X
∆n. Here

∆ ↓ X is the simplex category of X. Then we define geometric realization as follows:

|X| = colim
∆n→Xin∆↓X

|∆n|

For a more thorough explanation, see page 7 of [GJ09].

Example III.2.4. Let k ≥ 0. Then ∆0
k = Hom∆([k], [0]) has one element, namely the constant

map. ∆1
k = Hom∆([k], [1]) has k + 2 maps: The two constant maps and then the other maps are

determined by which i ∈ [k], i ̸= 0 is the first to be sent to 1. Of the latter there are obviously
k such maps. The two maps [0] → [1] induce injections ∆0

k → ∆1
k for all k by c 7→ ci, i = 0, 1,

where ci denotes the constant map from [k] to i ∈ [1], and c is the unique constant map in ∆0
k.

These injections combine to form two morphisms ∆0 → ∆1, denoted δ0 and δ1. The image of δi is
the constant map at i, i = 0, 1 and the union of these form the functor we denote as ∂∆1. More
specifically, ∂∆1([k]) = {c0, c1} ⊆ Hom∆([k], [1]) = ∆1

k. Define the simplicial circle, also denoted

S1, as the functor ∆1/∂∆1. The quotient here is taken objectwise, i.e. S1([k]) = Hom∆([k],[1])
{c0,c1} . It

is possible to show that the geometric realization of the simplicial circle is in fact homeomorphic
to the topological circle, however this computation is quite long. The computation of this does
show how face and degeneracy maps play together: All simplices of dimension ≥ 2 are collapsed to
either 0- or 1-simplices, whereas the face maps on the 1-simplices are responsible for gluing their
boundaries together.

1See theorem 7.1 in [Lan10].
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Example III.2.5. Unsurprisingly, |∆n| ∼= ∆n. We will later define the functors ∂∆n and Λn
k properly,

and again we have (unsurpisingly) that |∂∆n| ∼= ∂∆n and |Λn
k | is homeomorphic to the topological

n-horn, also denoted Λn
k .

Definition III.2.6 (Singular Complex). For Y ∈ Top, define Sing(−) : Top → sSet by setting
Sing(Y )([n]) = HomTop(∆n, Y ).

Sing(Y ) really is a simplicial set, as for all [n] ∈ ∆ we get a set Sing(Y )n = HomTop(∆n, Y )
and for a map f : [n] → [m] we get the induced map f∗ : HomTop(∆m, Y ) → HomTop(∆n, Y ) by
precomposing g ∈ HomTop(∆m, Y ) with the induced map f∗ : ∆n → ∆m. Functoriality of Sing(Y )
follows easily. We also see that Sing(−) itself is a functor and has some nice properties.

Proposition III.2.7. The realization functor | − | is left adjoint to the singular functor Sing(−).

Proof. See proof of lemma 2.2.9 in [Dun+07]. ■

One important consequence of this adjunction is that we now know that | − | preserves all
colimits and we already know that sSet is cocomplete.

Definition III.2.8. Define the boundary of ∆n as the sub-simplicial set ∂∆n ⊆ ∆n generated by
the faces of ∆n, i.e. generated by di(id[n]) for i = 0, 1, ..., n.
Similarly, define the kth horn of ∆n as the sub-simplicial set Λn ⊆ ∆n generated by all faces of ∆n

except the kth, i.e. generated by di(id[n]) for i ̸= k.

Example III.2.9. We give an explicit calculation of the boundary of the simplicial 2-simplex ∂∆2.
By definition this is generated by the maps di(id[2]). Recall that di is the induced map
∆n

k → ∆n
k−1 and is given by pre-composition by di. So di(id[2]) = di : [1] → [2]. Define the maps

δik : Hom∆([k], [1])→ Hom∆([k], [2]) by f 7→ dif . Then ∂∆2
k = ∪2i=0Imδik.

For the horn Λ2
1 we take the union of all images of δik except the image of δ1k. Of course, this

degreewise union can be done because sSet is a presheaf category and in such categories unions are
taken objectwise. The figure below gives a pictorial representation of this.

2 2

∂∆2 Λ2
1

0 1 0 1

For ∆2, imagine ∂∆2 as above but filled in. Here we can identify δi with the line/face that does
not include i. So δ0 would be the line from 1 to 2, etc.

III.3 Towards a Model Structure on sSet

This section aims to introduce the different classes of morphisms in sSet which will together form a
model structure on simplicial sets, known as the Kan-Quillen model structure. The model structure
is also sometimes referred to as the classical model structure on sSet. We start this journey with
the fibrations.
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Definition III.3.1 (Kan Fibration). A map p : X → Y of simplicial sets is a (Kan) fibration if
for every commutative diagram

Λn
k X

∆n Y

p

there exists a lift making everything commute.

Recall that sSet is both complete and cocomplete, so there exists a terminal object. This
terminal object, denoted ∗, is ∆0 = Hom∆(−, [0]).

Definition III.3.2 (Kan Complex). A simplicial set X ∈ sSet is a Kan Complex if the unique
morphism X → ∗ is a Kan fibration.

Thus, Kan complexes are precisely the fibrant objects in the Kan-Quillen model structure. It
possible to show that for all topological spaces A ∈ Top, the simplicial set Sing(A) is a Kan
complex. The proof relies on |Λn

k | being a (strong deformation) retract of ∆n.
For a Kan complex Y we have the following diagram below, which admits a lift (dotted line).

Λn
k Y

∆n ∗

It is common practice to drop the ∗, resulting in the diagram below. Intuitively this diagram tells
us that Kan complexes are nice enough objects that given a map Λn

k → Y , they admit a ”filler”
∆n → Y that agrees on the subcomplex Λn

k .

Λn
k Y

∆n

We move on to the weak equivalences in sSet. There are two classical ways of describing these, one
harder than the other. We will stick to the easier one.

Definition III.3.3 (Weak Equivalences). A morphism f : X → Y in sSet is a weak equivalence if
|f | : |X| → |Y | is a topological weak equivalence. That is, πn(|f |) : πn(|X|, x0) → πn(|Y |, |f |(x0))
is an isomorphism for all n.

It is possible to define weak equivalences in sSet without going through Top, but this requires
a lot more theory. We will however give a quick informal rundown on the steps to take to define
weak equivalences without Top2.

First step is to define simplicial homotopy. This is very similar to the way we define left
homotopy in model categories, see definition II.3.3, but we also need to define homotopy relative to

2I admit that I don’t know enough about this construction, but found it interesting enough to include it in this
thesis.
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a subspace. Essentially if L ⊆ K is a sub-simplicial set of K ∈ sSet and if two maps f, g : K → Y
agree on L, i.e. α := f |L = g|L then the compositions

L×∆1 i×1−→ K ×∆1 h−→ Y

and
L×∆1 prL−→ L

α−→ Y

should be equal. Here prL is the projection onto L, i is the inclusion L ↪→ K and h : K ×∆1 → Y
is the simplicial homotopy. Of course, K × ∆1 acts as a cylinder object here. If indeed the two
compositions above agree, then we say that f and g are homotopic (rel. L). With this in hand, we
can move on and show when exactly this determines an equivalence relation on the Hom-sets. The
specifics of this are not too important, just remember that it is an equivalence relation when we
need it to be (in this case at least).
Now we define simplicial homotopy groups. Intuitively, these are exactly like topological homotopy
groups but we define them only for Kan complexes. The reason why will be apparent later.

Definition III.3.4 (Simplicial Homotopy Groups). Let X ∈ sSet be a Kan complex and v ∈ X0

a vertex of X. Define πn(X, v) to be the set of homotopy classes of maps α : ∆n → X that fit into
the commutative diagram below

∆n X

∂∆n ∆0 = ∗

α

v (III.1)

Here we have identified the vertex v ∈ X0 with the unique map ∆0 → X which corresponds to v
by the Yoneda lemma.

It turns out that the simplicial homotopy groups really are groups. Even better, for n ≥ 2
they are abelian groups. The obvious question to ask now is ”What is the group operation?”. The
group operation in simplicial homotopy groups are a bit more complicated than those in topological
homotopy groups and is the main reason we define homotopy groups for Kan complexes. It turns
out that the lifting/filling property of Kan complexes allows one to define a multiplication of maps
which fit into diagram III.1 and is independent of representatives of homotopy classes. We will
not write this down, as it requires alternative descriptions of HomsSet(Λ

n
k , Y ) in terms of tuples of

simplices of Y , something we won’t be needing at all in this text.
Once all of this is in place, we define weak equivalences to be maps f : X → Y of Kan complexes
that induce isomorphisms on all simplicial homotopy groups πn(X, v)→ πn(Y, f(v)). On n = 0 we
only require a bijection. How do we extend this notion to all simplicial sets? The obvious answer
would be to find a fibrant replacement functor, which is exactly what Kan’s Ex∞ functor does3.
Unfortunately this is far beyond the scope of this text. It turns out however, that for Kan com-
plexes X there is an isomorphism of groups πn(X, v) ∼= πn(|X|, v) and so a map of Kan complexes
f is a weak equivalence if and only if its geometric realization |f | is a topological weak equivalence.
This is our refined motivation for definition III.3.3. For a more thorough explanation of simplicial
homotopy groups, see [GJ09] chapters I.6 and I.7.

3This is the extent of my knowledge on the Ex∞ functor.
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Lastly we cover the class of maps which will become our cofibrations. As mentioned in example
II.2.12, most model structures are given by specifying the weak equivalences, either the fibrations
or the cofibrations and then generating the last class by the correct lifting property. Unsurprisingly
this often results in difficult and unsatisfactory descriptions of the class. This is not exactly the case
here. We start by characterizing acyclic Kan fibrations, i.e. maps which are both weak equivalences
and Kan fibrations.

Proposition III.3.5. A morphism of simplicial sets f : X → Y is both a weak equivalence and a
Kan fibrations ⇐⇒ f has the RLP with respect to all inclusions ∂∆n ⊆ ∆n, n ≥ 0.

Proof of the above proposition is identical to the proof of theorem I.11.2 in [GJ09].
An important takeaway is that the class of maps which have the LLP with respect to acyclic Kan
fibrations contain the inclusions ∂∆n ↪→ ∆n, n ≥ 0. Thus we define cofibrations in sSet to be
inclusions of simplicial sets, A ↪→ B. Note that this definition of cofibrations implies that every
simplicial set is cofibrant, as ∅ ↪→ X is always an inclusion in sSet.

III.4 The Kan-Quillen Model Structure

We now move on to the main theorem of this chapter. Once this theorem is established, all our
powerful machinery from the previous chapter comes into play.

Theorem III.4.1. There is a model structure on sSet, called the Kan-Quillen model structure,
where the three classes of morphisms are given as follows:

• WsSet is the class of simplicial weak equivalences.

• FibsSet is the class of Kan fibrations

• CofsSet is the class of monomorphisms, i.e. degreewise injections.

It is common to denote sSet with the Kan-Quillen model structure as sSetQuillen. We will not
bother with this.
The entire proof of the above theorem will not be shown here, as MC5 is particularly difficult to
show. More specifically, it requires a small object argument4 and certain lemmas and propositions
which we will not cover here. We will however prove MC1-MC3 and refer the reader to page 62
and 63 in [GJ09] for a proof of the remaining two axioms.

Proof. Clearly all three classes of morphisms are closed under composition.
MC1: In section III.2 we said that sSet is nothing more than Pre(∆), the presheaf category over
the simplex category. Thus we know that sSet is both complete and cocomplete, for every presheaf
category is.
MC2: This follows immediately from the fact that topological weak equivalences satisfy the 2-of-3
property.

4The small object argument is a somewhat set-theory heavy construction which may be applied in a category
after certain conditions are met. The argument is used to construct the factorization seen in MC5. See chapter 2.4
in [Bal21] and chapters 2.1. to 2.1.2 in [Hov99].
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MC3: Let g : X → Y be a retract of f : A→ B. Assume first that f is a weak equivalence. Then
applying | − | followed by πn(−) to diagram II.1 gives us the following (basepoints omitted):

πn(|X|) πn(|A|) πn(|X|)

πn(|Y |) πn(|B|) πn(|Y |)

r∗ t∗
g∗g∗

i∗ j∗

f∗

idπn(|X|)

idπn(|Y |)

A subscript ∗ denotes the induced map from πn(| − |). One can check that the composition
h = t∗f

−1
∗ i∗ is an inverse for g∗, implying that g is a simplicial weak equivalence.

Now assume f is a Kan fibration and assume the left box of the diagram below commutes. Since
g is a retraction of f we then have that the entire diagram commutes.

Λn
k X A X

∆n Y B Y

gfg

1

1

Since the diagram commutes and f is a Kan fibration, we have a lift h : ∆n → A. Composing this
with the map A→ X we get our required lift k : ∆n → X . Commutativity of the diagram follows
from the definition k.

Lastly, assume f is a cofibration. Then f is a degreewise injection in Set and we get the
following commutative diagram in Set:

Xn An Xn

Yn Bn Yn

rn tn

gn

in jn

fngn

1

1

Since 1 = tnrn is an injection, rn must also be an injection. Then fnrn = ingn is an injection and
so gn is also an injection. Thus g is a cofibration. ■

Since every simplicial set is cofibrant we immediately know what the bifibrant objects are:
namely Kan complexes. Thus the objects of Ho(sSet) are Kan complexes, while morphisms are
homotopy classes of morphism.

Remark III.4.2. It is worth noting that sSetQuillen is a cofibrantly generated model category, mean-
ing that we can specify a set of generating cofibrations and acyclic cofibrations that in turn generate
the rest of the cofibrations and acyclic cofibrations. In this case, the set of boundary inclusions
∂∆n ↪→ ∆n is our set of generating cofibrations (see proposition III.3.5) while the set of horn
inclusions Λn

k ↪→ ∆n is our set of generating acyclic cofibrations (see definition III.3.1).
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Recall that | − | and Sing(−) were an adjoint pair of functors. It is possible to show that this
is a Quillen adjunction and that the geometric realization of a Kan fibration is a Serre fibration.
Furthermore, this adjoint pair sets up a Quillen equivalence between sSetQuillen and TopQuillen

(recall the latter model structure from example II.2.12).

III.5 Simplicial Model Categories

Recall that for topological spaces X,Y ∈ Top, we can give HomTop(X,Y ) the compact-open topol-
ogy, making each Hom-set in Top a topological space. We would like a similar notion in sSet.

Definition III.5.1 (Simplicial Mapping Space). Let X,Y ∈ sSet. The simplicial mapping space
Map(X,Y ) is the simplicial set given by Map(X,Y )n = HomsSet(X ×∆n, Y ).
For a map θ : [m]→ [n] define θ∗ : Map(X,Y )n → Map(X,Y )m by

(f : X ×∆n → Y ) 7→ (X ×∆m 1×θ→ X ×∆n f→ Y )

The simplicial mapping space is also known as the (simplicial) function complex in some books,
for example [GJ09]. We will see that the simplicial mapping space will play an important role in
the theory going forwards (although most of its uses will be in the background), so we will state
some basic facts about it.
Firstly, there is an evaluation map ev : X ×Map(X,Y )→ Y by (x, f : X ×∆n → Y ) 7→ f(x, id[n]).
It is possible to show that ev is natural in both X and Y 5. The next proposition hints at Map(X,−)
being a right adjoint functor.

Proposition III.5.2 (Exponential Law). ev∗ : HomsSet(K,Map(X,Y )) → HomsSet(X × K,Y )

defined by sending g : K → Map(X,Y ) to the composite X × K
1×g→ X ×Map(X,Y )

ev→ Y is a
bijection which is natural in K,X and Y

Proof. The inverse of ev∗ is given by (g : X×K → Y ) 7→ (g∗ : K → Map(X,Y )) where for x ∈ Kn,
g∗(x) is the composite

X ×∆n 1×ix→ X ×K
g→ Y

where we have identified ix with x by the Yoneda lemma. ■

The following proposition turns out to be quite important but unfortunately we will have to
skip the proof of this, as it is a bit too difficult for the author to completely understand and also
requires theory which we have not covered.

Proposition III.5.3. Suppose i : K ↪→ L is an inclusion of simplicial sets and p : X → Y is a

Kan fibration. Then the map Map(L,X)
(i∗,p∗)→ Map(K,X)×Map(K,Y )Map(L, Y ), induced from the

diagram below, is a fibration.

Map(L,X) Map(L, Y )

Map(K,X) Map(K,Y )

i∗i∗

p∗

p∗

5See page 20 of [GJ09].
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Of course, Map(K,X)×Map(K,Y ) Map(L, Y ) denotes the pullback along Map(K,Y ). The proof
of proposition III.5.3 can be found on page 21 of [GJ09].
So why exactly did we define Map(X,Y ) and dump two seemingly random facts about it (i.e.
proposition III.5.2 and III.5.3) onto the readers lap? It is because the simplicial mapping space
allows us to give model categories even more structure, namely by ”enriching” a model category C
by sSet!

Definition III.5.4 (Simplicial Category). A category C is a simplicial category if there is a mapping
space functor MapC(−,−) : C × Cop → sSet such that for A,B ∈ C:

1) MapC(A,B)0 = HomC(A,B)

2) MapC(A,−) : C → sSet has a left adjoin A⊗− : sSet→ C that is associative, as in

A⊗ (K × L) ∼= (A⊗K)⊗ L

3) MapC(−, B) : Cop → sSet has left adjoint HomC(−, B) : sSet→ Cop

Beware that ⊗ in the definition above is not necessarily the normal tensor product of modules.
This is just notation which has lingered around since Quillen’s time.

Definition III.5.5 (Simplicial Model Category). Say C is both a model category and a simplicial
category. Then we say C is a simplicial model category if the following holds:

SMC: Suppose i : A→ B is a cofibration and p : X → Y is a fibration.

Then MapC(B,X)
(i∗,p∗)→ MapC(A,X) ×MapC(A,Y ) MapC(B, Y ) is a Kan fibration, which is

acyclic if i or p is.

So propositions III.5.2 and III.5.3 essentially prove the following:

Theorem III.5.6. sSet is a simplicial model category.

Of course, there are many simplicial model categories different from sSet. In fact, the next
couple of important model categories we will encounter are also simplicial model categories. Because
of this we will differentiate between the various mapping spaces by a subscript, denoting which
category this belongs to. For example, the simplicial mapping space will be denoted MapsSet.
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Chapter IV

Towards the Local Model
Structure on sPre(Man∞)

IV.1 Simplicial Presheaves and their Model Structure

Say C is a model category, D a small category and consider the functor category Fun(D, C). Can
this new category be given model structure from C? Yes, there are two obvious candidates: The
projective and injective model structures. We will mainly be focusing on the projective model
structure, as the fibrant objects (which will be important later) have a much nicer description in
this model structure. However it can be shown that in the case we care about, the projective and
injective structures are Quillen equivalent (See theorem 3.2.1 c) in [Dug98]).
First off, some notation and terminology. For a category C, Mor(C) denotes the class of all mor-
phisms in C. Also, we say that a functor (or natural transformation) F has an objectwise property
P if for all objects A, F (A) has property P .

Definition IV.1.1 (Projective Model Structure). Let C be a model category and define the fol-
lowing model structure on Fun(D, C):

• WFun(D,C) = {f ∈ Mor(Fun(D, C))|f is an objectwise weak equivalence in C}

• FibFun(D,C) = {f ∈ Mor(Fun(D, C))|f is an objectwise fibration in C}

• CofFun(D,C) = {f ∈ Mor(Fun(D, C))|f has the LLP with respect to acyclic fibrations in Fun(D, C)}

This is known as the projective model structure1, denoted Fun(D, C)proj.

Of course, we have to show that the above classes determine a valid model structure. One of the
cases where we are guaranteed the existence of this structure is when C is a cofibrantly generated
model category (See remark III.4.2).

Proposition IV.1.2. Let C be a cofibrantly generated model category. Then the projective model
structure on Fun(D, C) makes it a model category.

1The only difference between injective and projective is that in the injective model we choose objectwise cofibra-
tions instead.
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Proof. Just as we did with theorem III.4.1, we will only show MC1 to MC3. Clearly all three
classes are closed under composition.
MC1: As C is a model category, it is both complete and cocomplete. It follows that Fun(D, C) is
also, by calculating (co)limits objectwise.
MC2: Let f : X → Y and g : Y → Z.

• If f, g ∈WFun(D,C) then gf ∈WFun(D,C) by closure in C.

• Let f, gf ∈WFun(D,C). For all A ∈ D, fA : X(A)→ Y (A) and gfA : X(A)→ Z(A) are weak
equivalences. Then certainly gA : Y (A)→ Z(A) is a weak equivalence by 2-of-3 in C, so g is
a weak equivalence in Fun(D, C).

• The case g, gf ∈WFun(D,C) is similar to the previous case.

MC3: Let A ∈ D, g : Z → W be a retract of f : X → Y . Then one can check that if f is a weak
equivalence (resp. fibration) then g is also a weak equivalence (fibration) by drawing the retract
diagram II.1 for A and noticing that we are now just staring at a retract in C.
The case for f a cofibration is a little bit more tedious. Let h : U → v be an acyclic fibration in
Fun(D, C). Say the square below commutes

Z U

W V

hg

Then the diagram below commutes and the necessary lift is the composite W → Y
h̃→ U .

Z X Z U

W Y W V

hg g

idZ

idW

f h̃

Thus g is also a cofibration. ■

We will now turn our attention to the case Fun(Cop, sSet), where Cop is a small category. This
category is called the category of simplicial presheaves on C and is important enough to be denoted
sPre(C). Recall that sSet is cofibrantly generated and so by the above proposition, sPre(C) admits
the projective model structure. We gather some facts about sPre(C)2:

a) sPre(C) is a simplicial model category with MapsPre(C)(X,Y )n = HomsPre(C)(X × ∆n, Y ),
where ∆n is the functor sending maps f : A→ B to id∆n . This is found as proposition 2.22
in [Jar16].

b) Any presheaf F ∈ Pre(C) lets us construct a simplicially constant presheaf sF . This is the
object in sPre(C) that has F at every dimension and with face/degeneracy maps being the
identity. Importantly, this gives us an embedding of C into sPre(C):

2See see remark 3.2.4 in [Dug98]
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First embed C into Pre(C) via the Yoneda embedding, i.e. A ∈ C is sent to rA := HomC(−, A)
in Pre(C). Then s(rA) is the following simplicial set:

...→→
→
HomC(−, A) ⇒ HomC(−, A)→ HomC(−, A)

where every arrow is the identity. Often for simplicity’s sake, we just write sA instead of
s(rA).

c) Homotopy limits and colimits (recall these from example II.4.4) are computed objectwise.
Given a diagram D : I → sPre(C), then hocolimD is weakly equivalent to the functor
X 7→ hocolimα Dα(X), α ∈ I and X ∈ C, where hocolimα Dα(X) is taken in sSet. This
follows in part from sPre(C) being a simplicial model category.

d) In the projective model structure of sPre(C), representables (for example rX for X ∈ C) are
cofibrant objects and fibrant objects are those that are objectwise fibrant in sSet.

And now we finally restrict ourselves to the category we actually care about. Letting Cop =
(Man∞)op we get the category of simplicial presheaves on smooth manifolds sPre(Man∞). This
category has all the nice properties that we discussed above. For example, it is complete and
cocomplete (something which Man∞ is not), and it has a nice model structure which in some sense
is related to the Quillen model structure on topological spaces. There is however a slight issue
concerning a certain contractible manifold.
Recall that our goal was to construct a homotopy theory for smooth manifolds. As such it would
make sense for us to want the smooth manifold R to be contractible, or at least weakly equivalent
to a point. It turns out that presheaves, even simplicial presheaves, forget the underlying geometry
of Man∞. We illustrate this with an example.

Example IV.1.3. We will show that R in sPre(Man∞) is not contractible. The way we will go
about this is by showing that the embeddings of R, ∗ ∈ Man∞, denoted sR and s∗ respectively,
are not weakly equivalent in the projective model structure of sPre(Man∞).
We first recall how the objects sR and s∗ look like:

sR = [...→→
→
HomMan∞(−,R) ⇒ HomMan∞(−,R)→ HomMan∞(−,R)]

s∗ = [...→→
→
HomMan∞(−, ∗) ⇒ HomMan∞(−, ∗)→ HomMan∞(−, ∗)]

A weak equivalence in sPre(Man∞)proj is a morphism f that is objectwise a weak equivalence, i.e.
for all M ∈Man∞, f(M) should be a weak equivalence in sSet. This happens exactly when the
geometric realization |f(M)| is a topological weak equivalence. Thus we calculate the geometric
realizations of s ∗ (M) and sR(M) where M ∈ Man∞. We use the formula given by definition
III.2.2.
Since ∗ is terminal in Man∞ we have that for all M ∈ Man∞, s ∗ (M) = [...→→

→∗ ⇒ ∗ → ∗]. All
face and degeneracy maps are the identity here. Let u ∈ ∆n and Φ : [n] → [m] for m < n. Then
(∗,Φ∗(u)) ∼ (Φ∗(∗), u) ∼ (id∗(∗), u) = (∗, u) which implies that all higher dimensional topological
simplices ∆n are collapsed to lower dimensional simplices ∆m. This shows that for all M ∈Man∞,
|s ∗ (M)| = ∗ ∈ Top.
We also have that sR(M) = [...→→

→
HomMan∞(M,R) ⇒ HomMan∞(M,R) → HomMan∞(M,R)].

By the same calculation as for s ∗ (M) we get that |sR(M)| ∼= HomMan∞(M,R). Importantly,
HomMan∞(M,R) has the discrete topology. It follows that if M has more than 1 element (which
it does if M = ∗) then the only continuous paths γ : [0, 1]→ HomMan∞(M,R) are constant paths.
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If not, then taking preimages of {γ(0)} and Im(γ) \ γ(0) gives us two open and disjoint sets which
cover [0, 1], which is impossible as [0, 1] is connected.
Thus there exists an M such that the cardinality of π0(|sR(M)|) is greater than 1, but for all
M ∈ Man∞ the cardinality of π0(|s ∗ (M)|) is 1. Thus s∗ and sR cannot be weakly equivalent
(even by a zig-zag of weak equivalences) in sPre(Man∞)proj.

IV.2 Grothendieck Topologies and Čech Descent

Why would we expect presheaves to remember geometry and local conditions? All we have done
is collected functors (Man∞)op → sSet and given them a model structure. Nowhere have we
specified how these functors should act on local data. It turns out that the correct notion we are
looking for are closer to sheaves. More specifically, we want to introduce the idea of descent to our
category.
To do this we have to first discuss Grothendieck topologies. The idea here is to give each object
U ∈ C a covering by other objects Uα in a way which mimics topological coverings.

Definition IV.2.1 (Grothendieck Topology). A Grothendieck topology on a category C consists of
families of covers {Φα : Uα → U}, U ∈ C such that:

1) If {Φα : Uα → U} is a cover and Ψ : V → U is a morphism in C, then {V ×U Uα → V } is a
cover for V .

2) {Φα : Uα → U} is a cover and {γα,β : Wα,β → Uα}β is a cover for all Uα, then
{γα,β : Wα,β → U}α,β is a cover for U .

3) {id : U → U} is a cover.

A category with a Grothendieck topology is called a site.

Remark IV.2.2. What we have defined above is what is commonly known as a Grothendieck pre-
topology. For our purposes it is enough to only consider pretopologies, but for the curious readers
a discussion of Grothendieck topologies can be found in section 3.1 of [Jar16].

Example IV.2.3. Let X be a topological space and consider the poset category of open sets in X,
O(X) = {U ⊂ X|U is open in X}. Then O(X) with covers given by open covers is a site:
Clearly axioms 2 and 3 are satisfied. Any morphism V → X in O(X) is by definition the inclusion,
so the pullback is nothing more than the intersection of open sets. Thus axiom 1 is satisfied.

The reason we care about Grothendieck topologies is because it gives us a nice framework to
define descent on. This is especially obvious when dealing with topological categories such as
Top,Man and Man∞, where we can make each into a site by letting the covers be given by open
coverings of open subspaces/submanifolds. See example b) on page 113 of [LM92] for an in depth
explanation.
The idea of descent will be very similar to the sheaf condition (see page 67 of [LM92]) and in some
sense can be seen as a generalization of sheaves. We will be defining descent, more specifically
Čech descent, only for the cases we care about but a more general definition can be found in the
appendix of [DHI04].
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To begin with, let U = {Uα → X} be a cover of X ∈Man∞ and let Uα0,...,αn = ∩ni=0Uαi . Then
given a simplicial presheaf F we can form the diagram∏

α0

F (Uα0
) ⇒

∏
α0,α1

F (Uα0,α1
)→→
→
... (IV.1)

and the inclusions Uα0,...αn
↪→ X gives us maps F (X)→

∏
α0,...,αn

F (Uα0,...αn
). We can collect these

maps into one giant commutative diagram:

F0(U) F1(U) F2(U) ...

F (X)

(IV.2)

where Fn(U) =
∏

α0,...,αn

F (Uα0,...αn
). This entire diagram is in sSet. We can take the homotopy

limit of diagram IV.1 by using first the fibrant replacement, denoted R, and then taking the formal
limit. Taking the fibrant replacement of F (X) gives another diagram like IV.2, where every object
is replaced by fibrant objects. By the universal property of limits, there is a unique map RF (X)→
holim

n
Fn(U) and by definition of R there is a weak equivalence F (X)→ RF (X). So there is a map

F (X)→ holim
n

Fn(U).

Definition IV.2.4 (Čech Descent). A simplicial presheaf F ∈ sPre(Man∞) is said to satisfy
Čech descent if the map F (X)→ holim

n
Fn(U) given above is a weak equivalence for all open covers

U = {Uα → X}.

So what is the idea behind Čech descent? Let us momentarily take a step away from all the
rigor. To each cover U = {Uα → X} we can associate a simplicial set known as the Čech complex
ČU given by

[n] 7→
∐

α0,...αn

Uα0,...,αn

with face maps given by inclusions Uij ↪→ Ui and degeneracies given by Ui → Uii. We also know
that colimits in topology can often be regarded as types of gluing, for example the pushout in Top,
and as such we might speculate that colim

n
ČUn is a space approximating X to some degree. Maybe

we can think of this approximation as gluing the open sets together along their intersections, looking
at higher and higher intersections to ”refine” our gluing. Thus the idea here is to try and recover
information of a space X by patching together a bunch of local data. We have already established
that we want to work in simplicial presheaves, so we essentially push this idea into sPre(Man∞)
as above. Thus, F ∈ sPre(Man∞) satisfying descent is similar to the condition that F allows us
to reconstruct X by stitching together small patches of X. Furthermore this should hold for all
open covers U . This can be thought of as a generalization of sheaves, for those that are familiar
with them.

Why do we choose homotopy limit instead of limit? One way of motivating this is by looking
at the topological pushout versus the homotopy pushout. Let us try to construct S2 by gluing the
boundary of D2 together. Categorically, this is given by the pushout of ∗ ← S1 ↪→ D2. Up to
homotopy D2 is just a point, so replacing D2 with ∗ gives a pushout of ∗ ← S1 → ∗, which is the
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same as collapsing S1 to a single point. The problem here is that S2 is not contractible, which
shows that regular pushouts and homotopy are not on speaking terms. We mend their relationship

by introducing the homotopy pushout, which for a diagram of the form Y
f← X

g→ Z is the space
given by gluing Y to the top of the cylinder X × I via f and Z to the bottom via g. Here X is
identified by the middle slice. Pictorially we have the following:

Essentially, what we want is a notion of limit and colimit which play well with homotopy. It turns
out (unsurprisingly) that holim and hocolim accomplish this.

IV.3 The Local Model Structure

The next step will be to incorporate Čech descent into sPre(Man∞) in a way which takes into
account the topology on Man∞. The way we will be doing this is, via a powerful piece of machinery
known as Bousfield localization. We will unfortunately have to blackbox Bousfield localization, but
the curious reader might want to consider taking a look at [Hir03] and [Bal21] for more information.
We will however explain the idea behind it.

The name Bousfield localization might seem a bit misleading, as it is slightly different from the
idea of localization we introduced in section I. Say we are given a model category C with a class of
weak equivalences WC . We might run into scenarios (such as now) where we are not satisfied with
the class WC and want to add more morphisms. Obviously, just adding new morphisms to WC is not
the wisest decision as it will probably mess up our current model structure. This is where Bousfield
localization comes in. Given that certain technical assumptions are met, Bousfield localization will
expand the class of weak equivalences and keep the class of cofibrations unchanged. Of course,
this comes at the expense of our fibrations (see proposition II.2.9). Thus, in the Bousfield localized
model structure we have:

• More weak equivalences

• Unchanged cofibrations

• Fewer fibrations
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We will refer to the new classes of morphisms as local morphisms. So the new weak equivalences are
called local weak equivalences. Similarly for fibrations and cofibrations. Furthermore, the non-local
classes will be refered to as global.
One important (perhaps obvious) thing to note is that every global weak equivalence is also a local
weak equivalence. The same goes for cofibrations, as these are unchanged by localization. The local
fibrations however are the morphisms that satisfy RLP with respect to all local acyclic cofibrations.
As ”acyclic” is the only part of acyclic cofibration which is changed, we have that local fibrations
are global fibrations which satisfy some extra condition.

Let X ∈ Man∞ and U = {Uα → X} be an open covering of X. Recall that r(−) was the
Yoneda embedding of Man∞ into Pre(Man∞) and that s(−) was our embedding of Pre(Man∞)
into sPre(Man∞), by constructing a simplicial presheaf which has r(−) in every dimension. We
can then construct a simplicial presheaf from U , denoted Ǔ, by taking the coproduct of r(Uα0,...αn)
over all α0, ...αn and using the inclusions to create the face/degeneracy maps. More specifically,
Ǔn =

∐
α0,...αn

r(Uα0,...,αn
). The inclusions Uα0,...,αn

↪→ X give maps r(Uα0,...,αn
)→ r(X), which in

turn gives a map Ǔ→ s(X) in sPre(Man∞).

Definition IV.3.1 (Local Model Structure). The local model structure on sPre(Man∞) is the
model structure obtained by localizing sPre(Man∞)proj at the set of all maps Ǔ→ s(X) described
above. The localization is done via Bousfield localization and the model structure is denoted
sPre(Man∞)loc.

This model structure is commonly known as the projective Čech model structure, but is some-
times also called the projective local or Bousfield-Kan Čech model structure.
Intuitively we can think of this category as a homotopy theory of Man∞ where the Čech complex
of an open cover U approximates X up to weak equivalence, which was more or less exactly what
was said when we discussed the idea behind Čech descent in the previous section3.

The next proposition, which we unfortunately are unable to prove in this thesis, gives us a total
characterization of the fibrant objects in sPre(Man∞)loc. Importantly, it shows that our somewhat
lengthy discussion of Čech descent was justified.

Proposition IV.3.2. The local fibrant objects F ∈ sPre(Man∞) are the objectwise fibrant objects
which satisfy Čech descent.

Recall that when forming the homotopy category of a model category C, we restrict to the
bifibrant objects and quotient out by the homotopy relation (which is indeed an equivalence relation
for bifibrant objects by lemma II.3.8). This means that every object in Ho(sPre(Man∞)loc) satisfies
descent. Furthermore we know that every object in a model category is weakly equivalent to a
bifibrant object. Geometrically we can interpret these two facts together as the property that
every space X can be approximated (up to weak equivalence) by an object X̃ that in turn can be
recovered by patching together local data. This property is quite satisfactory, as far as geometry is
concerned.
We end this section by an alternative characterization of the fibrant objects in the local model
structure. This characterization is not really needed going forwards, but it is nonetheless interesting
and might give some much need intuition.

3This intuition is more or less stolen from [Dug98] page 24.
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Definition IV.3.3. The stalk in dimension n of a simplicial presheaf F ∈ sPre(Man∞) is the
following:

pn = colim
k→∞

F (Bn
k )

where Bn
k ⊂ R is the n-dimensional ball of dimension 1

k .
A map of simplicial presheaves F → G is a stalkwise weak equivalence if pn(F )→ pn(G) are weak
equivalences for all n ∈ N.

Stalks at first glance seem to reflect the topology of Man∞ much better than Čech descent
does, as stalks are more or less considering behaviour at a point. So why didn’t we consider stalks
instead of descent? It turns out that we could have gone either route and still ended up at the same
place.

Proposition IV.3.4. The class of local weak equivalences is equal to the class of stalkwise weak
equivalences.

The proof of this is way outside the scope of this text, but it is a nice fact to know. We refer
the interested reader to page 31 and 32 in [Dug98] for a lengthier discussion about stalks.

IV.4 The R-Local Model Structure

It seems that Bousfield localization, Grothendieck topologies and Čech descent have fixed our prob-
lem of presheaves forgetting the underlying geometry. This is at least partly true. Unfortunately we
still have that R is not contractible in sPre(Man∞)loc, something which is proven in exercise 3.3.4
in [Dug98]4. So how do we fix this? We again turn to our trusted friend, Bousfield localization.

Definition IV.4.1. The R-local model structure on sPre(Man∞), denoted sPre(Man∞)R, is the
model structure obtained by localizing sPre(Man∞)loc at the set of maps

{s(X × R)→ sX}X∈Man∞

where the maps are induced by the projection X × R→ X.

This definition essentially wraps up our construction of the homotopy theory of smooth mani-
folds. We end this thesis with a somewhat surprising proposition.

Proposition IV.4.2. The model categories sPre(Man)R and TopQuillen are Quillen equivalent.

The proof of the proposition requires theory that goes beyond the scope of this thesis. We refer
the reader to section 3.4 of [Dug98] for a more in depth discussion of the R-local model structure
on Man.

Remark IV.4.3. The above proposition, as stated, concerns topological manifolds and not smooth
manifolds. This is not really a problem, as we could simply replace Man∞ with Man at every
step of our construction and instead build a homotopy theory for topological manifolds. The only
reason we chose smooth manifolds is because the author thinks they are more interesting than just
topological manifolds.

4I tried multiple times to find an alternative proof of this fact, but was unable too. Also, note that this exercise
requires a lot more theory than I have bothered to include in this thesis. Lastly, I was not able to complete the
exercise.
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