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Abstract

In this thesis, we attempt to predict Eliteserien using multiple linear regression
and generalized linear models. We begin by finding two easily interpretable models
that can be understood and used by a normal football supporter. Next, we use
Poisson regression to find a model that predicts as well as possible. In the end,
we predict the final table for Eliteserien 2023.





Sammendrag

I denne avhandlingen forsøker vi å forutsi Eliteserien ved hjelp av flere lineære re-
gresjonsmodeller og generaliserte lineære modeller. Vi starter med å finne to lett
forståelige modeller som kan brukes av en vanlig fotballsupporter. Deretter bruker
vi Poisson-regresjon for å finne en modell som gir best mulig prediksjonsevne. Til
slutt predikerer vi sluttresultatet for Eliteserien 2023.

Oversatt av ChatGPT 3.5
Vi tar ikke ansvar for eventuelle

grammatikkfeil som kan forekomme.
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Introduction

When I started this project, I knew that I would either become rich or write a
bachelor thesis. And here we are.

1.1 Background

Growing up with my dad and brother being devoted to football, I just followed
along playing for my local team Spjelkavik IL. With me being most interested
in having fun and not so much in training to become the best, I in my later years
became more known for my yellow cards, and scoring only once. However, football
is a team sport, and only one red card, a broken glass, and a handful of yellow
cards later, I became a regional champion twice. At the same time, I also fell in
love with lower-division Norwegian football, especially Spjelkavik. Because of this,
I spent much of my time as a speaker at their games, starting to look into football
data. At some point, I found a way to gain access to hidden information on
fotball.no [1], but because of my ethical principles, I did not sell this information.
Moving away from Spjelkavik to Trondheim for my studies, I stopped my data
collection.

Two years later, this project began as an argument between my dad and my
brother. They argued about which of their football achievements were the best.
This ended in me collecting a bunch of Norwegian football data to settle the argu-
ment, ultimately letting my dad down. Having procrastinated the data collection
for multiple hours, I had to turn it into a bachelor’s thesis.

There was an urban myth on the institute (IMF) about a guy called Øyvind
Salvesen, who had made a career out of predicting different sports results. Being
eager to learn with a bright mind, took a long shot and phoned him up expecting
him to not have time. To my shock, he actually found it really interesting and
wanted to join as a mentor.

To build a solid team, I contacted one of the most acknowledged professors
at NTNU John Tyssedal. With him onboard, everything was settled. Having
created a diversified team of two professors who could have been my dad and
my granddad, I felt confident in our abilities. Suddenly had no excuse for not
producing a solid thesis.

1



2 CHAPTER 1. INTRODUCTION

1.2 Football and Eliteserien

Football is an easy sport, whoever scores the most goals after 90 minutes, wins the
game and takes home 3 points. In the case of a tie, they received one point each.
In a way, points are a function of scored and conceded goals. Teams compete in
different formats. One way is through a cup, where teams play through knock-
out stages, eliminating each other until one team is left as champion. However,
the most common and recognized format is the league system. One such league
is Eliteserien, which is the top Norwegian football league. The league consists
of 16 teams playing each other twice for a total of 30 games each. At the end
of the season, the team with the most points becomes the champion, while 2 or
sometimes 3 teams are relegated to the lower division. This also means that 2-3
teams are promoted to Eliteserien each year.

1.3 The Data

To the best of our knowledge, there is no fully existing dataset on Eliteserien
teams. When starting the thesis, the Norwegian Football Association was asked
politely for the data. However, they were not too happy about giving the data
away. In a desperate attempt to save time, we contacted the Rec Sport Soccer
Statistics Foundation (RSSSF)[2]. This is an international organization dedicated
to collecting statistics about football. However (again), they had no way of ex-
tracting the data into a simple file format, which the author found quite hilarious,
with them dedicating their time to collecting non-usable data. But as we say in
Norway: "he who laughs last laughs best" [3], and the author eventually had to
sacrifice multiple nights of sleep to collect the data manually. This part of the
thesis should be worth a bachelor’s degree in monkey work.

The dataset contained data from teams in Eliteserien. The data spans from
2000 to 2019 containing a total of 301 observations of teams, where each team
has 20 variables connected to their performance in the current season and the
two previous seasons. The dataset was self-collected through different sources and
structured using Python and SQL.

The results from the league and cup were gathered through the home page
of NFF [1] but were also cross-referenced with RSSSF. This action was taken to
reduce the chance of big errors in the data.

To find the results from the European competitions, the official website of
UEFA (the Union of European Football Associations) [4] was used as a source.
With the history of the competition being well documented, the data here is
believed to be accurate.

The coach changes are based on a self-collected dataset containing all coaches
for the Eliteserien teams from 1990 until today. These data were collected mainly
through the website of Transfermarkt [5], with them having most of the data.
"Only" the missing periods had to be filled out. Unfortunately, for the sleep
schedule, it turned out that pre-Internet information on coaches is not the easiest
to find. For every missing period of a club, different sources of old papers had
to be manually researched. In addition, questions were asked on different forums.
This could lead to errors in the data, but it can be argued that the football geeks
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on these forums know what they talk about and that double-checking the data
would make them trusted.

1.4 Outline

Our mission is to find a few models to predict Eliteserien. Chapter 2 introduces
the Poisson distribution, multiple linear regression, and generalized linear models.
Chapter 3 provides an overview of the data and analyzes and interprets some of the
data. Chapter 4 justifies the model choices while providing a detailed explanation
of how to proceed with the analysis. The fun begins in Chapter 5, where the results
are presented and analyzed, and lastly, Eliteserien 2023 is predicted. Finally, in
Chapter 6, we conclude our findings while leaving some concluding remarks.
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Theory

When choosing my bachelor project, I wanted a project with minimal theory. I
chose to analyze football results using regression thinking: " There cannot be much
theory to write about this topic". ....... I was wrong.

2.1 The Poisson Distribution

The Poisson Distribution is a discrete probability distribution, which gives the
probability of an event occurring k times in a given time interval. The probability
mass function (PMF) is given by

f(k;λ) = Pr(X=k) =
λke−λ

k!
, λ > 0, k ∈ {0, 1, 2 . . . } (2.1)

where X is the number of events in the time interval and λ is the expected number
of events in the given interval.
The distribution has multiple interesting properties, with the most central being

λ = E(X) = V ar(X) (2.2)

It is also only defined for positive values of k and is best suited for situations
in which events do not occur frequently. In the case of a large λ, the Poisson
distribution converges towards a normal distribution. This follows from the central
limit theorem.

2.1.1 The Distribution of Goals

When trying to predict the number of goals, the most fundamental goal is to
determine the distribution that they follow. With many researchers conducting
research on different sports that involve scoring, there is a common conception
that the number of goals will follow a Poisson distribution. This is supported by
the Ph.D. thesis of Øyvind Salvesen [6]. A study of the English football league also
supports that this is the case for football [7]. With this in mind, it’s reasonable
to assume that the number of goals Xi scored in game i by a team is Poisson
distributed with

Xi ∼ pois(λi)

where λi is the expected number of goals scored by the team in game i.
Assuming independence between games, the total number of goals during a season

5
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will also follow a Poisson distribution. Since the number of goals X scored in a
season with n games is given by

X =
n∑

i=1

Xi, we have X ∼ pois(
n∑

i=1

λi)

which follows from the additive property of the Poisson distribution

X ∼ pois(λx) and Y ∼ pois(λy) =⇒ X + Y ∼ pois(λx + λy).

2.2 Multiple Linear Regression

If you are still following, we assume that you have a decent understanding of Mul-
tiple Linear Regression (MLR). If not, hey Mom and Dad.

In short, MLR is an extension of the simple one-variable regression model

y = ax+ b+ ϵ.

In this case, we allow for one input value x, called a predictor. To allow for p
predictors, we introduce the form

y = β0 + β1x1 + · · ·+ βpxp + ϵ. (2.3)

Adding the error term ϵ often called residuals, which is assumed to be normally
distributed with mean 0 and variance σ2. [8]

Given a set of n observed predictors and response values

X =


1 x11 x12 · · · x1p

1 x21
. . . ...

...
... . . . ...

1 xn1 · · · · · · xnp

 and y =


y1
y2
...
yn


with each row xi ∈ X corresponding to the response value yi, we want to estimate
the values β0, β1 . . . βp such that the model in equation 2.3 fits the data as best as
possible.

2.2.1 Least-squares Estimation

One way of estimating our βi’s is through least-squares estimation. We define the
best fit as the one that minimizes the residuals. Note that for each xi and yi we
have

yi = β0 + β1x1i + · · ·+ βpx1p + ϵi. (2.4)

We can therefore write
y = Xβ + ϵ,
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where ϵ = (ϵ1, . . . , ϵn)
′ and all ϵi are assumed to be independent. One way of

minimizing the residuals is trough minimizing the squares of the residuals

ϵ′ϵ = (y −Xβ)′(y −Xβ).

This is minimized with
β̂ = (X′X)−1X′y. (2.5)

(see Appendix C.1). This implies that the coefficient estimates can be found using
a linear system.

2.2.2 Model Evaluation

We also needed to evaluate the fitted model. This involves checking different
assumptions and measures to determine whether our model sufficiently fits our
data.

Significance of the Regression Coefficients Given the estimated coefficients
β̂, we need a method to determine whether each βi is non-zero. Even though our
estimated β̂i’s are non-zero, there is a chance that this is due to randomness.
Therefore, we must find a way to determine if the estimates are nonzero. Given
our estimate β̂i, we can set up the hypothesis test

H0 : βi = 0, H1 : βi ̸= 0.

This can be checked with the test statistic

T =
β̂i

se(β̂i)

where se(β̂i) is the standard deviation of β̂i which can be found on the diagonal of
the matrix σ̂2(X′X)−1. Using a Student’s t-distribution, the p-value can be com-
puted and compared to a given significance level [9, p. 482]. These computations
are automatically performed in the lm() function in R.

Coefficient of determination The most common way of measuring the good-
ness of fit for an MLR is through the coefficient of determination

R2 =
RSS

TSS
= 1− SSE

TSS
= 1−

∑n
i=1 ϵ

2
i∑n

i=1(yi − ȳ)2

[10, pp. 419–427]. R2 provides the proportion of the variation explained by the
model, ranging from 0 to 1, with 1 indicating a perfect fit.

Residual Plot In MLR, we assume that the residuals ϵi are normally dis-
tributed. This assumption can be checked with the help of a residual plot, which
plots the estimated values ŷi against

ϵi = yi − ŷi. (2.6)
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If these assumptions hold, the points should be equally distributed around
y = 0.

Quantile–Quantile Plot Quantile–Quantile Plot is another way of checking
the residuals. The quantiles of the two distributions are plotted against each
other. If the distributions are similar, the points lie on the line y = x [11, p. 37].
To evaluate whether our residuals follow a normal distribution, we standardize the
residuals and plot them against the standard normal distribution N (0, 1). If the
points form a line close to y = x, then it is reasonable to assume that the residuals
are normally distributed.

2.3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method of estimating a set of unknown
parameters θ for an assumed PMF. To see how this works, we start with a random
sample X1, X2, . . . Xn, with each Xi having a PMF f(ki;θ). Using the fact that
the Xi’s are independent, the joint PMF also called the likelihood function L(θ)
becomes

L(θ) = P (X1 = k1, X2 = k2 . . . Xn = kn)

= f(k1;θ) · f(k2;θ) . . . f(kn;θ) =
n∏

i=1

f(ki;θ)

Then, we find the θ̂ that maximizes L by using derivatives.

2.3.1 MLE for Poisson Distribution

The maximum likelihood estimator of the Poisson distribution comes up a handful
of times in different metrics and regressions. Therefore, it is useful to understand
this technique. Recalling the PMF from 2.1, we get

L(λ) =
n∏

i=1

f(ki;λ) =
n∏

i=1

λkie−λ

ki!
(2.7)

The λ̂ that maximizes L, is the same as the one that maximizes ln(L). Thus we
can find the maximum likelihood estimator by solving

ln(L(λ)) = 0.

We have

ln(L(λ)) = ln(
n∏

i=1

λkie−λ

ki!
)

=
n∑

i=1

ln(λki) +
n∑

i=1

ln(e−λ)−
n∑

i=1

ln(ki!) = ln(λ)
n∑

i=1

ki − nλ−
n∑

i=1

ln(ki!)
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giving
∂

∂λ
ln(L(λ)) =

1

λ

n∑
i=1

ki − n = 0 =⇒ λ̂ =
1

n

n∑
i=1

ki = k̄.

Thus the maximum likelihood estimator is just the sample average. This should
give the reader a basic understanding of how the maximum likelihood can be used
to estimate parameters, and later how we extend it to generalized linear models.

2.4 Generalized Linear Models

In Section 2.2, we assume that the response is linear in the coefficients. However,
this is insufficient in many cases. Therefore, the concept of generalized linear mod-
els (GLM) is introduced to provide more flexibility in building a model. With the
GLM, we can capture nonlinear relationships between the response and the predic-
tors with the help of a link function. Where MLR assumes that the residuals follow
a normal distribution, GLM allows the residuals to take other distributions in the
exponential family. To understand this concept, we introduce Poisson regression.

2.4.1 Poisson Regression

Poisson Regression is a GLM model used for count data. It assumes that the
response follows a Poisson distribution. Having already discussed that the number
of goals follows a Poisson distribution, Poisson regression is a good candidate for
predicting goals.

2.4.2 Link Functions

GLM captures a nonlinear relationship using link functions. Formally a link func-
tion g relates the distribution mean µ to a linear predictor Xβ , such that for
each µi ∈ µ we can write

g(µi) = xi
′β

The most trivial link function is the identity link function g(µi) = µi, which
indicates that a linear relationship already exists with µ = Xβ. For Poisson
regression, we often use the log-link function g(µi) = log(µi). Saying that µi’s
can be related with µi = ex

′
iβ. With the Poisson distribution allowing only non-

negative values, the log-link function is often used to guarantee that only positive
values are passed.

2.4.3 MLE in Poisson Regression

Earlier MLE was used to fit a Poisson distribution to an independent random
sample. By extending this concept, a GLM model can be fitted. Using the theory
from [12], we start with a modified version of equation 2.7

L(y;β) =
n∏

i=1

µyi
i e

−µi

yi!
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with µi being connected with the log-link function. Using this we get

ln(L(y;β)) = ln(
n∏

i=1

µyi
i e

−µi

yi!
) =

n∑
i=1

(−exi
′β + yixi

′β − ln(yi!)).

Recalling how to do multi-dimensional derivatives

∂

∂β
ln(L(y;β)) =

n∑
i=1

(yixi − exi
′βxi).

Lastly setting the derivative to zero, we obtain

n∑
i=1

(yi − exi
′β)xi = 0.

This is clearly not a linear system when solving for β. Fortunately, we can exploit
the fact that −L(y;β) is a convex function and solve it with a convex optimization
technique such as gradient descent [13]. It is worth noting that solving such a
system is more complex than solving a linear system in MLR. These techniques
are implemented in different statistical software, and we will not go deeper into
them.

2.4.4 Model Evaluation of Poisson Regression

As in Section 2.2.2, we also need a way to evaluate whether different assumptions
and measures for the GLM to sufficiently fit our data. For simplicity, the focus is
on how to do this for Poisson regression.

Significance of the Regression Coefficients As with MLR, GLM also needs
a way of determining whether each βi is non-zero. This becomes harder for GLM
due to the method of solving for the β̂i’s. However, there are advanced methods
for computing the variance. Using this and the fact that the βi’s follow a normal
distribution, the significance is obtained with the test statistic

Z =
β̂i

se(β̂i)
.

This is automatically computed in the glm() function in R.

Pearson Residual Plot For MLR, we plotted the residuals to determine whether
the residuals were normally distributed. In the case of Poisson regression, we ex-
pect the residuals to increase as the estimated µ̂i increases. This follows from the
variance being equal to the expected value (Equation 2.2). To fix this and get
residuals that do not depend on µ̂i, we introduce the Pearson residuals

ri =
yi − µ̂i√

µ̂i
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simply by dividing by the standard deviation of the estimated ŷi to cope with the
variance increase [14, p. 37]. We can then plot the Pearson residuals as with the
residual plot in MLR using the obtained ri’s.

Pearson χ2 goodness-of-fit test Because GLM uses MLE instead of least
squares, we have to get a bit more creative when measuring the goodness-of-fit of
our model. Overall, there are no good or standard ways of doing this, but there
are ways to get an idea of the fit, which can be done through the Pearson χ2

goodness-of-fit test. This is obtained by rewriting the original way of doing the
goodness-of-fit test

χ2 =
n∑

i=1

r2i =
n∑

i=1

ϵ2i
µ̂i

∼ χ2
n−p (2.8)

[14][15]. If we reject H0, then there is evidence that the model does not fit.
Similarly, if H0 is not rejected, there is no evidence to claim that the model does
not fit our data. A test alone will not give a solid decision basis for the model fit.

Quantile-Quantile Plot For the residual plot, we must also adjust the residuals
for our Q-Q plot. One way would be to standardize the Pearson residuals and plot
them in the same way as the Q-Q plots in MLR. However, the built-in plot()
function in R employs a similar approach. Instead of Pearson residuals, deviance
residuals were used. The deviance residuals adjust the residuals to avoid bias
toward higher estimates ŷi, similar to the Pearson residuals. More information
about deviance residuals can be found in [14, p. 39].

2.5 Performance Measures

We can choose from a few performance measures when evaluating the performance
of a model. One common way of measuring total error is the root squared mean
error, but some might prefer the use of mean absolute error because it is easier to
interpret.

Mean Absolute Error is a method for measuring the total mean difference
between predicted and actual values.

MAE =
1

n

n∑
i=1

|ŷi − yi|

Root Mean Squared Error is another method of measuring the total differ-
ence between the predicted and the actual values.

RMSE =
1

n

√√√√ n∑
i=1

(ŷi − yi)2

RMSE will be more affected by large residuals than MAE.
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AIC and BIC Even though our previous measures provide a good estimation
of the fit of the data, they will be biased towards adding more variables to the
model, potentially over-fitting the model. Therefore, we introduce AIC and BIC
to penalize the addition of variables and provide a less biased method of selecting
variables. The Akaike information criteria and Bayesian information criteria are
both ways of estimating the optimal model, given by

AIC = 2p− 2ln(L̂) , BIC = p · ln(n)− 2ln(L̂)

where L̂ is the maximized value of the likelihood function [16] [17] and p is the
number of predictors used in the model. Both criteria find their most suited model
by being minimized, and BIC will be stricter on adding more predictors.

Mallows Cp is defined for the purpose of doing performance tests on MLR.

Cp =
SSE

σ̂2
− n+ 2p

where σ̂2 is the variance estimator [9, p. 500]. In MLR, Cp and AIC are propor-
tional, allowing Cp to replace AIC in the error plots.

2.5.1 Cross Validation

With measures such as AIC and BIC, we have solid information on which and how
many predictors to include in a model, but it does not provide a concrete measure
of how the model actually performs on the data. We would like to use the RMSE
or MAE to evaluate the model without worrying about bias toward the addition
of predictors. The most basic way to do this is to leave a randomly sampled test
set out of the model training data and then use the test set to evaluate the model.
Unfortunately, this approach requires a greater amount of data to obtain accurate
and stable test results.

To get more precise test data, we can use cross-validation. Different variations
of cross-validations exist, with the main variation being k-fold cross-validation.
Starting by dividing the data into k subgroups, the model is trained on all but
one subgroup. With the model never having seen these test data, we avoid the
possibility of overfitting. By repeating this process for each subgroup as the test
group and averaging the error, we obtained a representative test measure.

2.5.2 Model Selection

With many methods for measuring the performance of a model, model selection
may sound trivial. The model with the most optimal test results is selected. This
would be true if we could check all possible models, but the number of possible
models grows ridiculously fast toward high numbers. If you do not have infinite
time or computing power, different strategies may be required for model selection.
In our analysis, only the brute force approach is needed.

Best subset selection is the idea that we just introduced. With k different
predictors, for each possible model of size i, we check all the

(
k
i

)
possible ways of
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making a model and choose the model with the best measure. After performing
this for all possible model sizes i, we compare them using different measures to
obtain the best model size. To give an idea of how fast this becomes impossible,
the number of models we have to check for k predictors is(

k

0

)
+

(
k

1

)
+ · · ·+

(
k

k

)
=

k∑
i=0

(
k

i

)
= 2k.

This implies that we have an exponentially increasing computation time. If the
reader still does not understand how big that is, say, we have 20 predictors, we
would have to check 220 = 1.048.576 different models.

This brute-force search method is formally called exhaustive search and can
be computed for linear models and GLMs with the R packages leaps [18] and
bestglm [19] respectively.
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The Data

My supervisor said that I was allowed to start all chapters with some out-of-context
paragraph as long as it was in an italic font. With it being well over a year since
starting this data collection, I am excited to finally see some visual plots.

3.1 Data Formatting

With all raw data collected from the different datasets, the next task was format-
ting. After connecting every dataset into a SQL database [20], formatting became
a matter of connecting specific queries to obtain the correct data for each observa-
tion. For each team participating in an Eliteserien season, we checked the previous
year’s results, both domestic and European cup results, and also the coach time-
line of the team. The relevant information for the team season was stored as one
observation in the final dataset. As an example, we can consider the Aalesund FK
2010 season.

Table 3.1.1: Aalesunds FK 2010.

year tos toc plc poi eur eur_1lag cup_1lag cc cc_1lag
2010 46 37 4 47 1 0 1 0 0

tos_1lag toc_1lag plc_1lag poi_1lag div_1lag
34 43 13 36 0

tos_2lag toc_2lag plc_2lag poi_2lag div_2lag
33 48 13 29 0

A full explanation of the variables can be found in Appendix A. From the
Table, it can be observed that Aalesund scored 46 and conceded 37 goals, placing
4th. They also are playing qualification for a European tournament, came through
to the quarter-final in the domestic cup the year before, and had no coach changes.
Looking at earlier years league information would not show great achievements.

3.1.1 Response and Predictors

It is important to clarify the variables that can be used as predictors. By predicting
the results at the start of the current season, we will not have access to most of the
current season data. The total scored goals, total conceded goals, placement, and
points cannot be accessed because the season has not ended from our perspective.

15
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All the other predictors can be classified by how many years they go back. It is
worth noting that both year and whether a team is playing European qualifiers is
known at the start of the season, and can therefore be used as a predictor. We
classified the variables into four groups.

Table 3.1.2: Variable grouping

Response Predictors Predictors
(_1lag)

Predictors
(_2lag)

Number of
variables

4 3 8 5

Variables tos, toc, plc,
poi

year, eur, cc tos, toc, plc,
poi, div, cup,

eur, cc

tos, toc, plc,
poi, div

Some might question why there are fewer predictors going two years back; this
has to do with the fact that the _2lag predictors were added at a later stage of
the project. Therefore, using the time to collect more predictors from two years
back was not prioritized. One could also argue that they are not important based
on the importance of their _1lag counterparts.

3.1.2 Data Modification

Adjusting for less games Thirty games were played in the current format of
the top two divisions. This removes any worries about adjusting for games played
for the current divisions but does not account for different formats in the earlier
years of the divisions. Therefore, the data needed to be adjusted according to
the number of games played. This is solved by scaling all relevant variables to
correspond to 30 games. For simplicity and to use Poisson regression, the new
values were rounded to the nearest integer.

For example, Rosenborg’s 71 goals scored over 26 games in 2001 (Appendix
B), which corresponds to 82 goals today, with

71 · 30
26

= 81.923... ≈ 82.

The Removal of Fredrikstad 2005 season When looking at the results going
two years back, there is a theoretical possibility that a team achieves promotion
twice from the 3rd to the 2nd tier, and straight to the 1st tier. The dataset
containing only data from the top two tiers could lead to the problem of not
having data on such a team. To solve this problem, the naive approach was taken
assuming that this could not occur.

Later, it was found that this was exactly what happened to Fredrikstad. Pro-
moting from tier 3 in 2003, promoting immediately from tier 2 in 2004, and ending
in Eliteserien (tier 1) in 2005. With this in mind, possible changes in the dataset
were discussed, but with Fredrikstad being the only team coming from tier 3,
their observation was deemed unnecessary because it had a minimal impact on
the model. The Fredrikstad 2005 season was therefore dropped from the dataset.
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3.2 Data Overview

To obtain an overview of the dataset, the correlation matrix is plotted

Figure 3.2.1: Correlation plot of all variables.

Considering each year’s goals, points, and placements, it is not surprising that
they are highly correlated. It is also observed that their lags correlate with our
possible responses, providing hope for future predictions. For the European tour-
nament predictors, we find a decent correlation with league results. With most
European tournament spots being a result of league placement, this is also ex-
pected. For the domestic cup and coach changes, there is minimal to no correla-
tion with the other variables. Again, with the author having spent many hours
collecting the coach dataset, as of writing, it was quite annoying.
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Figure 3.2.2: Pairs plot of previous years scored goals, conceded goals, points
(promoted teams in red).

Figure 3.2.3: Pairs plot of the scored goals, conceded goals, and points at the
end of the season (promoted teams in red).
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3.2.1 Promoted Teams

On the previous page, there are two pairs plots of the most central quantitative
predictors. Also included were the categorical predictors separating the newly
promoted teams from the teams that played in Eliteserien last year. These plots
underline the big difference between such teams, both their differences coming into
the season and their performance in the current season.

Promoted team’s performance in the previous season When a team pro-
motes to Eliteserien, they have delivered a season with many goals, points, etc.
in the lower division. Looking at Figure 3.2.2, on average, the promoted teams
perform better with a much lower variance. This suggests that we must have some
way to separate them; otherwise, we would assume that the newly promoted teams
were going to archive the same results as the top Eliteserien teams.

Promoted team’s performance in the current season It is not radical to
say that promoted teams, on average, perform worse than the other teams. Figure
3.2.3 shows that they generally score fewer goals. However, their conceded goals
vary considerably, suggesting that limiting the number of conceded goals might
be crucial to avoiding relegation.

3.2.2 Levels of Categorical Variables

To obtain an overview of the categorical variables in the dataset, we plot the
percentages of their 0/1 levels in Figure 3.2.4.

Figure 3.2.4: Bar plot showing the distribution of the categorical variables.

Looking at this plot, the categorical variables are mostly 0. For the European
parameters, the distribution is as expected. With around four teams (25%) playing
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qualifiers to Europe, around two teams (12.5%) actually qualify. The cup parame-
ter could also be justified with eight quarter-final slots for the (now) 16 teams; the
theoretical maximum should be 50%. Assuming that there are some early round
clash-ups and "cupbomber" in the earlier rounds, 40% seems reasonable.

Looking at the coach changes, these numbers are quite interesting, as 16% of
the teams changed their coaches during the last season. This equates to 2.5 clubs
having a coach change during each Eliteserien season. With some seasons feeling
like a kamikaze of coach sackings, this might feel like a low number, but this varies
significantly from season to season. Looking at the 2018 season in Table 3.2.1, five
clubs changed their coach during that season.

Table 3.2.1: Changes of coaches during Eliteserien 2018 [21]. (*) Temporary

Club Outgoing Head
Coach

Reason for
Departure

Date of
Departure

Sandefjord Magnus Powell Lack of results 25. April
Start Mark Dempsey Lack of results 18. May

Sandefjord Geir Ludvig
Fevang*

End of temporary
period

31. May

Start Mick Priest* End of temporary
period

1. June

Strømsgodset Tor Ole Skullerud Resigned 6. June
Stabæk Toni Ordinas Lack of results 27. June

Lillestrøm Arne Erlandsen Lack of results 29. June
Stabæk Jan Peder

Jalland*
End of temporary

period
4. July

Lillestrøm Arild Sundgot* End of temporary
period

13. July

Comparing this to the 2022 season where no coaches were sacked, the numbers
start to make sense. The feeling of many changes could also come from many
clubs hiring temporary coaches, often for a short period, but in some cases, they
are permanently hired. When a potential new coach is hired, the club has gone
through two coach changes, but it is only registered as one club doing a coach
change. By the minute of writing this paragraph, it was announced that the
temporary coach of Aalesunds FK Marius Bøe got an extension until the summer.
This underlines the unknown future of these temporary coaches. As you read, he
may be a permanent coach, assistant, or sacked. Who knows.

Changes during the off-season Approximately one in four clubs (24%) changed
their coaches during the off-season. It might seem a bit high when formulated like
that, but with this being the same as saying that a club changes its coach every
4th off-season, it might seem more reasonable.



Methods

After all the formalities, we finally get to predict the results of Eliteserien.

Our method has two main objectives. First, we attempt to find two models
that are easy for a normal football fan to interpret while still performing at a
respectable level. For the third model, we attempt to find a model that predicts
the results as accurately as possible, ignoring the interpretability of the model.

4.1 Performance Measures

Having already discussed AIC, BIC, RMSE, and MAE, it should not come as a
surprise for the reader that we are going to use them as performance measures in
our model selection. For each model selection, we plot all four measures to obtain
an overview of the performance of different model sizes. How we obtain the best
models of each size, and ultimately how we select the final model, will vary based
on different approaches.

1 year-fold validation A variant of k-fold cross-validation was used to calculate
the RMSE and MAE. Using our model, cross-validation is used, leaving one year
out at that time. For the remaining years, the model is trained and the errors are
computed using the left-out year. This step is repeated for all years. In the end,
the errors are averaged like in the normal k-fold cross-validation. With our model
trying to predict a year given other years, this is believed to be a solid way to
validate the error.

4.2 The Simple Approach

4.2.1 Response and Regression model

For the simple model, we have to ask the question, "Which variables does the
normal football fan find most intuitive?". The answer to this question is easy;
they mostly care about placement and points. To prove this concept, the author
asked his die-hard football friend to state the placement and points of his favorite
team. A question that he could answer on the spot. However, when asked about
the goals scored and conceded, he could not give a precise answer. Combining
this with the fact that placement is a function of points, we chose points as the
response variable.

21
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The next step is to choose the type of regression model to use. We would like
to specify that there is no evidence that the points follow a Poisson distribution.
From Figure 3.2.3 and the central limit theorem, it is reasonable to assume that
the points follow an approximately normal distribution. Therefore, it seems logical
to use an MLR model. Since it is one of the easiest models to interpret.

4.2.2 Model Selection

Having chosen to use an MLR with points as a response, a best subset selection
using exhaustive search be performed. With our four performance measures, mod-
els that are easy to interpret and have respectable performance can be chosen. As
a rule of thumb, we should look for a model that can easily be calculated in our
heads, given the predictors, and another model that would require pen and paper.
Because we are dealing with MLR, the AIC and Cp are proportional. It is easier
to use Cp over the AIC, with lm() using it as its default.

4.2.3 Model Evaluation

To evaluate the model, R2 provides a good clue on how well the model fits our
data. By combining this with MAE and RMSE, we obtain an idea of the model
performance. To check if the assumption about the residuals being normally dis-
tributed, we can use both the residual and Q-Q plots.

4.3 The Goal Approach

4.3.1 Response and Regression Model

Time to keep the tongue straight in the mouth. For the next approach, three
regression models will be combined to hopefully obtain a better result than the
simple models. First, the total number of scored goals is predicted, followed by
the total number of conceded goals. Finally, the predicted values of these two
models are used to predict the total number of points through MLR.

Scored and conceded goals As discussed in the theory, there is solid reason
to expect goals to follow a Poisson distribution. Furthermore, for larger λ’s, the
distribution can be estimated using a normal distribution. Therefore, it can be
argued that the linear model is sufficient. However, by choosing Poisson regression,
the models should theoretically perform better. It is worth noting that, because
it has a log-link function, it is difficult to interpret. However, when passing these
predicted values into another model, the interpretability would be lost regardless.

Points from goals Next, we must find a way to predict points from our already
predicted scored and conceded goals. In Figure 3.2.3 it is seen that there is some
linearity between goals and points. Thus, a simple MLR

ŷpoi = β̂tosxtos + β̂tocxtoc

should capture the observed linearity.
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4.3.2 Model Selection

When doing model selection for MLR, subset selection with exhaustive search
was used. In many cases, this is impossible with the GLM because the fitting
of these models is more complex. Therefore, the bestglm() function only allows
p = 14 predictors when performing subset selection with exhaustive search. Un-
fortunately, that is one less than our 15 predictors. To get around this, a predictor
is removed. Having already fitted a linear model earlier, one of the predictors that
did not appear as important in that model can be removed. With the subset se-
lection in place, the 4 performance measures can be used to select the best-suited
model.

4.3.3 Model Evaluation

For the two GLMs fitted in the approach, the MAE and RMSE can be used to
obtain an idea of how the model performs. Even though GLM does not have good
measures for evaluating the fit, such as R2, we can use the Pearson χ2 goodness-of-
fit test to obtain some idea of the fit. To evaluate our residuals, we use a Pearson
residual plot and a Q-Q plot against the deviance residuals. For the last MLR
used to determine the points, we evaluated the model as in Section 4.2.3.
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Analysis and Results

Time to face the brutal reality of the predictions.

5.1 The Simple Approach

5.1.1 Model Selection

With the two easily interpretable models in mind, a variable inclusion plot from
the regsubsets() method in the leaps package may be useful. Again refereeing
to Appendix A for the variable explanation.

Figure 5.1.1: Variable inclusion plot. Each row represents the variables included
in the best model of each model size.

25
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Figure 5.1.2: Error plots for the points model.

A Simple model Looking at the plotted errors in Figure 5.1.2, all measures
except BIC suggest that we choose a model with 7-8 predictors. If this was a
hunt for the best predicting model, it is easy to argue that a model involving 7
predictors would be sufficient. Keeping in mind that this should be an easy-to-
interpret model, it should not have more than five variables. Setting a cap of 5
predictors, both our test metrics and BIC suggests that 4 predictors are the most
optimal. Reading the row with 4 predictors in the variable inclusion plot in Figure
5.1.1, we obtain the following model.

ŷpoi = β̂intecept + β̂poi_1lagxpoi_1lag + β̂div_1lagxdiv_1lag

+β̂poi_2lagxpoi_2lag + β̂div_2lagxdiv_2lag.
(5.1)

It looks quite hard to compute with pen and paper, but with both division
lags being categorical predictors, they are a constant in our model. Therefore,
we only have two multiplications. This becomes clearer when we fit the model.
Overall it is not too complicated to compute by hand, and we do not loose too
much prediction accuracy.

A Simpler model Having found a model that can be executed on pen and
paper, we still want to find a model that can be computed in our head. Looking
back at our plots, we can look at the model with 3 predictors

ŷpoi = β̂intecept + β̂tos_1lagxtos_1lag + β̂toc_1lagxtoc_1lag + β̂div_1lagxdiv_1lag.

As stated earlier, a normal football fan does not remember the scored and
conceded goals. Combining this with the model would be a bit difficult to compute
in our heads, and it is not a great candidate for our simpler model. However, it
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is interesting to see that with these few parameters accessible, the goals are more
important than points and placement.

Decreasing the number of predictors down to 2, we get the model

ŷpoi = β̂intecept + β̂poi_1lagxpoi_1lag + β̂div_1lagxdiv_1lag. (5.2)

In short, this model states that a team takes a percentage of its points from the
previous year and obtains a constant number of points added depending on which
division they played in the previous year. With this involving one multiplication
and the addition of a constant, we can finally argue that this model is easy to
compute in our head.

For our observant readers, you might have seen that our first model was just a
two-year extension of the last model. Thus our simple models can be divided into
a 1-year model and a 2-year model.

Table 5.1.1: Simple models

Model Predictors
Simple 1 year model poi_1lag, div_1lag
Simple 2 year model poi_1lag, div_1lag,

poi_2lag, div_2lag

5.1.2 Model Interpretation and Evaluation

We begin by fitting our selected models in R using the lm() function.

Figure 5.1.3: Summary of lm()
Simple 1-year model.
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Figure 5.1.4: Summary of lm()
Simple 2-year model.

Starting with the simple 1 year model in Figure 5.1.3, the model states that
each team receives about 53% of their points last season, plus 19 points if you
played in Eliteserien the previous year, or 2 points if you just promoted. Inserting
our estimated coefficients into the model in Equation 5.2, we get the estimate
model

ŷpoi = 19 + 0.53 · xpoi_1lag − 17.50 · xdiv_1lag. (5.3)

All the coefficients are significant. R2 = 0.26, which is far from a good model
fit. From the model selection, we obtain MAE = 7.78 and RMSE = 2.50. Read-
ing from the MAE, it missed an average of 7.78 points when predicting the points
of each team. This is a long way away from being able to predict anything with
great confidence.

Moving to the 2-year model in Figure 5.1.4, it is time to keep our tongues straight
in our mouths. This model states that a team receives about 40% of their last
year’s points, plus 25% of their points two years ago. You also got 13 points
added if you played in Eliteserien in the last two seasons, with a deduction of 10
and 7 points if you played a level down 1 or 2 years back, respectively. Inserting
our fitted coefficients into the model in Equation 5.1 and flooring some values for
simplicity, we get the estimated model

ŷpoi = 13 + 0.40 · xpoi_1lag + 10 · xdiv_1lag

+0.25 · xpoi_2lag − 7 · xdiv_2lag.
(5.4)

Again, we have significant coefficients and an increase of R2 = 0.29. Despite
this increase, R2 is far from being good. With our MAE = 7.72 and RMSE =
2.49, we have some decrease, but it is a long way from being something to cheer
about.
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Residuals Finally, we checked our residuals to determine whether our model
assumptions were met. As discussed earlier, this can be achieved through a residual
and Q-Q plot. We obtain the plots through the plot() function in R.

Figure 5.1.5: Residual and Q-Q plot for both models.

Looking at the residual plots in Figure 5.1.5, there is no reason to claim a severe
lack of fit. Our Q-Q plots also support the models, with most points falling on the
line y = x, indicating that the residuals are approximately normally distributed.
Appendix refnotableprovides a full list of outliers found during our analysis is
found in Appendix B.
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5.2 The Poisson Approach

Section 4.3.1 argues that there is a reason to believe that goals follow a Poisson
distribution. Thus a Poisson regression for both models involving scoring seems
reasonable.

5.2.1 Model Selection

Total Scored Model We start with our model for total scored goals and use
the bestglm() with family = poisson(link="log") in the bestglm package.

Figure 5.2.1: Error plots for the total scored goals.

Looking at the plotted errors in Figure 5.2.1 and ignoring any attempt to
interpret the model, we claim that we should choose the model with 5 predictors.
Both RMSE and MAE support this, and are also supported by the conservative
BIC.
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Total Conceded Model For conceded goals, the same process was repeated.

Figure 5.2.2: Error plots for the total conceded goals.

Looking at the plots in Figure 5.2.2, the different measures do not seem to agree
with the number of predictors to be included. Looking at the MAE and RMSE,
one suggests 3 and the other 8 predictors. Therefore, we are left with a decision on
which option to prioritize. Do we want a model which on average predicts slightly
better values, or do we want a model which heavier penalizes many predictions
where we miss by a greater margin? With us ultimately wanting to predict the
final table of a season, we argue that a model where we do not miss by bigger
margins is more optimal. Further evaluation of the RMSE and the AIC, show
that we could reduce the number of predictors down to 6 without losing much test
error. With BIC also supporting 6 predictors, we ultimately argue to select the
model with 6 predictors.
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5.2.2 Model Interpretation and Evaluation

Total scored and conceded goals We fit our selected GLM models in R using
the GLM() function.

Figure 5.2.3: Summary for GLM for goals scored.

Figure 5.2.4: Summary for GLM for goals conceded.
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Looking at the total-scored model in Figure 5.2.3, all our coefficients are sig-
nificant. The Pearson χ2 to can be used to evaluate the goodness-of-fit. With the
help of equation 2.8

χ2 =
n∑

i=1

r2i = 532.9 ≥ χ2
0.95,296 = 337.1.

Therefore, we reject H0, indicating that the model does not sufficiently fit the
data.

Not giving up on our analysis, we repeat the process for the conceded goals.
Looking at Figure 5.2.4, we again find that our coefficients are significant. Check-
ing the fit, we again brutally reject H0 with

χ2 =
n∑

i=1

r2i = 477.9 ≥ χ2
0.95,295 = 336.1.

Continuing with the residuals using the plot() function in R.

Figure 5.2.5: Residual and Q-Q plot for both scored and conceded goal GLM.

Looking at both the Pearson residual plot and the Q-Q plot with standardized
deviance residuals, there is no reason to claim a severe lack of fit. Some might
argue that the large theoretical quantiles fall slightly short of the line y = x, but
not dramatically much.
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Points from goals Continuing with the MLR to convert scored and conceded
goals into points. Once again, we use the plot() function.

Figure 5.2.6: Summary for goals to points model.

For the first time, we have a model with solid R2 = 0.88. We also found signif-
icant coefficients. Looking at the MAE = 3.2 and RMSE = 1.03, the MAE tells
us that if we have a perfect prediction for teams scored and conceded goals, we on
average still will miss by 3.2 points in our prediction.

The residual and Q-Q plots for our MLR are shown in Figure 5.2.7. Again there
is no reason to claim a lack of fit.

Figure 5.2.7: Residual and Q-Q plot for goals to points model.
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Putting the model together To get an overview, we put the model together

ln(µ̂tos) = β̂intecept + β̂tos_1lagxtos_1lag + β̂poi_1lagxpoi_1lag

+β̂div_1lagxdiv_1lag + β̂tos_2lagxtos_2lag + β̂eur_1lagxeur_1lag.

ln(µ̂toc) = β̂intecept + β̂tos_1lagxtos_1lag + β̂plc_1lagxplc_1lag

+β̂div_1lagxdiv_1lag + β̂toc_2lagxtoc_2lag + β̂div_2lagxdiv_2lag.

ŷpoi = β̂tosµ̂tos + β̂tocµ̂toc.

The first two models can be used to predict the total scored goals µ̂tos and conceded
goals µ̂toc. The final points prediction ŷpoi is obtained by passing these into the
last model. Errors are obtained with cross-validation, ending up with MAE = 7.60
and RMSE = 2.45.

5.3 Models Overview

From Table 5.3.1, two points become clear. The predictions are far from good, and
we do not gain much model precision for the more complex models. Looking at
the difference in MAE, we reduce the average error by 0.12, which in the context
of points is nothing. However, it is clear that our Poisson model performs better
than the linear models, indicating that the Poisson model is theoretically better
for our problem.

Table 5.3.1: Error of all models

Model MAE RMSE
Simple 1 year model 7.78 2.50
Simple 2 year model 7.72 2.49

Poisson model 7.60 2.45

5.4 Eliteserien 2023 Predictions

To complete this thesis, we are going to do something doomed to go wrong. The
ridiculous task of trying to predict Eliteserien. With the odds being stacked against
us, we are setting this up for people in the near future to make fun of us.

Although our models have a marginal difference in error, this does not mean
that they will predict the same final standing. To illustrate this, we can predict
the 2023 Eliteserien using all 3 models and compare their differences. We predict
the final standing by simply predicting the points of all teams and sorting them
in descending order. Ending up with the predictions on the next page.
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Figure 5.4.1: Eliteserien 2023 predicted by the simple 1-year model, the simple
2-year model, and the Poisson model respectively.

The first thing worth noting is the fact that all models seem to agree on the
top 5 and the relegated teams With Molde, Bodø/Glimt, and Rosenborg taking
home the medals, and Stabæk and Sandefjord being relegated. With the odds of a
team either overperforming or underperforming, at least one of these predictions
or going to be laughed at the end of the season. For the mid-table teams, the
models can not quite agree. For teams, such as Viking and Tromsø, we see that
their predictions vary in some places.

For the simple models, this may be related to their varying performance over
the last two seasons; hence, when looking one year back, they do not get credit for
their season two years back. Having talked about the simple models, the Poisson
model is believed to predict the best table. If we had to predict one table for our
readers, we would choose the Poisson model as our guess. Having realized how
difficult it is to predict the final table at the start of the season, we would like to
lock our answer and see where this is going.

Retrospective With the thesis being written in May 2023 and having already
seen a third of Eliteserien 2023, there is already some clear evidence that our pre-
dictions will be horribly wrong. With both Rosenborg and Molde having opened
their season as if they were going for relegation, their way to the top 3 is go-
ing to be long. At the other end of the table, Aalesund managed to set a new
record of games played without scoring, setting up for the greatest comeback of
the century.



Conclusions and Remarks

Having done all this, the conclusion is quite clear. The models do not perform
on a level where it is worth betting away your student scholarship. With the best
model missing an average of 7.6 points for each team, there is a margin of 15.2
points that a team can place while still being in the predicted range. With this
in some cases being the difference between battling relegation to battling for a
medal, it is fair to say that the model’s prediction error is too big.

If one wants to use the models to predict future results, the recommendation
would be to use the simple 1-year model. With it only missing by 0.18 points
more than the Poisson model, while only having two parameters. This model is
relatively good and easy to use.

Why do we not see better results? There are many factors that affect the
results of this prediction. One can argue that a larger dataset with more predictors
is required. Things such as players sold, players bought, and team budget are
predictors that could have improved the results of the analysis. We could also
argue that we should have tried using other methods; however, this is speculative.

We could also claim that predicting Eliteserien is even more complicated than
that of larger leagues because teams are more unstable. As in most leagues, there
are the risks of players and coaches leaving if a team delivers a relatively bad
season. However, in Eliteserien, there is also the risk of the opposite affecting a
team in the same way. If a team delivers a solid season, there is a risk of both
players and coaches leaving for bigger clubs, hence affecting the teams in the same
way as if they played badly.

Lastly, football is and will always be unpredictable, with too many uncontrol-
lable factors. This is the reason why the author and all the football experts will
be bullied for their table predictions at the end of each season.

Coaches As stated multiple times throughout the thesis, the dataset on coaches
was the most tedious. With our analysis not finding these changes important,
the author wasted much of his time, and there is no reason to believe that coach
changes affect a team. More research into this should be conducted, and it is left
as an exercise for the reader.
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Appendix

A Variable Explanation

• year: the year of the season the data comes from.

• tos: the total amount of goals scored that season.

• toc: the total amount of goals conceded that season.

• plc: the placement that season.

• poi: the total amount of points taken that season.

• tos_1lag: the total amount of goals scored the previous season.

• toc_1lag: the total amount of goals conceded the previous season.

• plc_1lag: the placement the previous season.

• poi_1lag: the total amount of points taken the previous season.

• div_1lag: If the team played in the lower division last season 1, else 0.

• tos_2lag: the total amount of goals scored the second to last season.

• toc_2lag: the total amount of goals conceded second to last season ago.

• plc_2lag: the placement the two seasons ago.

• poi_2lag: the total amount of points taken the second to last season.

• div_2lag: If the team played in the lower division second to last season 1,
else 0.

• cup_1lag : If the team is at least came through to the quarter-final in the
domestic last season 1, else 0.

• eur_1lag: If the team qualified for the group stage in a European compe-
tition 1, else 0.

• eur: If a team is playing qualification for a European competition during
the season 1, else 0.

• cc: If a team got a new coach in pre-season 1, else 0.

• cc_1lag: If a team changed coach during the last season 1, else 0
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B Noteable Obersvations

• 5: Stabæk 2000 (5.)

• 15: Rosenborg 2001 (1.)

• 16: Lillestrøm 2001 (2.)

• 27: Strømsgodset 2001(13.)

• 28: Tromsø 2001 (14.)

• 42: Start 2002 (14.)

• 78: Odd 2005 (9.)

• 85: Brann 2006 (2.)

• 88: Stabæk 2006 (5.)

• 125: HamKam 2008 (14.)

• 126: Rosenborg 2009 (1.)

• 143: Vålerenga 2010 (2.)

• 157: Sandefjord 2010 (16.)

• 206: Molde 2014 (1.)

C Proofs

It is rather intriguing to devote an entire section to the elucidation of a singular,
albeit significant, proof.

C.1 Proof Least-squares Estimation

Proof. Starting we have

ϵ′ϵ = (y−Xβ)′(y−Xβ) = y′y−β′X′y−y′Xβ+β′X′Xβ = y′y−2β′X′y+β′X′Xβ.

The last step follows from

y′Xβ = (β′X′y)′ = β′X′y

since β′X′y is a scalar. ϵ′ϵ is minimized where

∂

∂β
ϵ′ϵ = −2X′y + 2X′Xβ = 0.

Thus
β̂ = (X′X)−1X′y.
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D R code

©Martin Valderhaug Larsen

D.1 Data Frame Setup

library(bestglm)
col <- c("dodgerblue3","firebrick2")
# set colors, the most important thing
source("methods.R") #import helper methods
df = setup_data("res.json") #load data
#define dataframes with different responses
df_no_pred = subset(df,select=-c(poi,tos,toc,plc))
poi = df$poi
df_poi = cbind(df_no_pred,poi)
tos = df$tos
df_tos = cbind(df_no_pred,tos)
toc = df$toc
df_toc = cbind(df_no_pred,toc)

iii



D.2 R Code for Section 5.1

par(mfrow=c(1,1))
regsubsets_poi = regsubsets(poi ~ . ,data=df_poi,nvmax = 20)
plot(regsubsets_poi)
summary_regsubsets_poi = summary(regsubsets_poi)
bic_poi = summary_regsubsets_poi$bic
cp_poi = summary_regsubsets_poi$cp
cross_rmse = cross_validation(regsubsets_poi,"RMSE")
cross_mae = cross_validation(regsubsets_poi,"MAE")
par(mfrow=c(2,2),mar = c(5,5,0,0), oma = c(0,0,1,1))
error_plot(bic_poi,"Number of predictors","BIC")
error_plot(cp_poi,"Number of predictors","Cp")
error_plot(cross_rmse$error,"Number of predictors","RMSE")
error_plot(cross_mae$error,"Number of predictors","MAE")
easy_poi1 = 2
easy_poi2 = 4
easy_model_poi1 = cross_mae$model(easy_poi1)
easy_model_poi2 = cross_mae$model(easy_poi2)
summary(easy_model_poi1)
summary(easy_model_poi2)
pred_string1 = paste(filter_variables(
names(easy_model_poi1$coefficients)), collapse = " + ")
pred_string2 <- paste(filter_variables(
names(easy_model_poi2$coefficients)), collapse = " + ")
par(mfrow=c(2,2),mar = c(4,5,4,0), oma = c(0,0,0,1))
plot(easy_model_poi1, which = c(1),cex.lab=1.5,cex.axis=1.25,main
=paste("poi~",pred_string1),lwd=2,pch=19,col=c(col[1]))
plot(easy_model_poi2, which = c(1),cex.lab=1.5,cex.axis=1.25,main
=paste("poi~",pred_string2),lwd=2,pch=19,col=col[1])
plot(easy_model_poi1, which = c(2),cex.lab=1.5,cex.axis=1.25
,main=paste("poi ~",pred_string1),pch=19,col=col[1])
plot(easy_model_poi2, which = c(2),cex.lab=1.5,cex.axis=1.25
,main=paste("poi ~",pred_string2),pch=19,col=col[1])
par(mfrow=c(1,1))
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D.3 R Code for Section 5.2

#Model selection tos
df_tos_cut = subset(df_tos, select=-c(eur))
bestglm_tos = bestglm(df_tos_cut,family=poisson)
measure_tos = measure_glm(bestglm_tos,df_tos_cut)
par(mfrow=c(2,2),mar = c(5,5,0,0), oma = c(0,0,1,1))
error_plot(measure_tos$BIC(),"Number of predictors","BIC")
error_plot(measure_tos$AIC(),"Number of predictors","AIC")
error_plot(measure_tos$error_rmse,"Number of predictors","RMSE")
error_plot(measure_tos$error_mae,"Number of predictors","MAE")
par(mfrow=c(1,1))
best_tos = measure_tos$model(5)
summary(best_tos)

#Pearson residual chi test
p = length(best_tos$coefficients) -1
residuals <- residuals(best_tos, type = "pearson")
pearson_chisq <- sum(residuals^2)
pearson_chisq
deg_fre <- length(residuals) - p
deg_fre
cut_off = qchisq(0.95,deg_fre)
cut_off

#model selection toc
df_toc_cut = subset(df_toc, select=-c(eur))
bestglm_toc = bestglm(df_toc_cut,family=poisson)
measure_toc = measure_glm(bestglm_toc,df_toc_cut)
par(mfrow=c(2,2),mar = c(5,5,0,0), oma = c(0,0,1,1))
error_plot(measure_toc$BIC(),"Number of predictors","BIC")
error_plot(measure_toc$AIC(),"Number of predictors","AIC")
error_plot(measure_toc$error_rmse,"Number of predictors","RMSE")
error_plot(measure_toc$error_mae,"Number of predictors","MAE")
par(mfrow=c(1,1))
best_toc = measure_toc$model(6)
summary(best_toc)

#Pearson residual chi test
p = length(best_toc$coefficients) -1
residuals <- residuals(best_toc, type = "pearson")
pearson_chisq <- sum(residuals^2)
pearson_chisq
deg_fre <- length(residuals) - p
deg_fre
cut_off = qchisq(0.95,deg_fre)
cut_off
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#Pearson residual plt and Q-Q
par(mfrow=c(2,2),mar = c(4,5,4,0), oma = c(0,0,0,1))
plot(best_tos, which = c(1),cex.lab=1.5,cex.axis=1.25,main
=paste("ln(tos) ~",pred_string1),lwd=2,pch=19,col=c(col[1]))
plot(best_toc, which = c(1),cex.lab=1.5,cex.axis=1.25,cex.main=1,main
=paste("ln(toc) ~",pred_string2),lwd=2,pch=19,col=col[1])
plot(best_tos, which = c(2),cex.lab=1.5,cex.axis=1.25,main
=paste("ln(tos) ~",pred_string1),pch=19,col=col[1])
plot(best_toc, which = c(2),cex.lab=1.5,cex.axis=1.25,cex.main=1,main=
paste("ln(toc) ~",pred_string2),pch=19,col=col[1])
par(mfrow=c(1,1))

#zen #voi #biojentene #sponsetinnlegg

#Testing fit of lm and cross validation the full poisson model
pred_tos = exp(predict(best_tos,df_poi))
pred_toc = exp(predict(best_toc,df_poi))
lm_poi_goal= lm(poi ~ tos + toc,data = df)
summary(lm_poi_goal)
par(mfrow=c(2,1))
plot(lm_poi_goal, which = c(1),cex.lab=1.5,cex.axis=1.25,main=
paste("poi ~ tos + toc"),lwd=2,pch=19,col=c(col[1]))
plot(lm_poi_goal, which = c(2),cex.lab=1.5,cex.axis=1.25,main=
paste("poi ~ tos + toc"),lwd=2,pch=19,col=c(col[1]))
par(mfrow=c(1,1))
pred_poi = predict(lm_poi_goal,data.frame(tos = pred_tos, toc = pred_toc))
mae = mean(abs(pred_poi-df$poi))
rmse = sqrt(sum((pred_poi - df$poi)^2))/length(pred_poi)
error_lm = simple_lm_cross_validation(as.formula("poi ~ tos + toc"),df)
error_lm$mae
error_lm$rmse
error_full_mod = multiple_cross_validation(df,as.formula("poi ~ tos + toc"),
as.formula("tos ~ tos_1lag + poi_1lag + div_1lag + tos_2lag + eur_1lag"),
as.formula("toc ~ toc_1lag + plc_1lag + div_1lag + toc_2lag + div_2lag"))
error_full_mod$mae
error_full_mod$rmse

####Predict the data for 2023 season
df_new = setup_data("data22.json")
pred1 = predict(easy_model_poi1,df_new)
indices1 <- order(unlist(pred1),decreasing = TRUE)
prde2 = predict(easy_model_poi2,df_new)
indices2 <- order(unlist(pred2),decreasing = TRUE)
df_new
pred31 = exp(predict(best_tos,df_new))
pred32 = exp(predict(best_toc,df_new))
pred3 = predict(lm_poi_goal,data.frame(tos = pred31, toc = pred32))
indices3 <- order(unlist(pred3),decreasing = TRUE)
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teams = c("Molde","Bodo Glimt","Rosenborg",
"Lillestrom","Odd","Vaalerenga",
"Tromso","Sarpsborg 08","Aalesund",
"Haugesund","Viking","Stromsgodset",
"HamKam","Sandefjord","Brann","Stabaek")

#Some crazy shit.
cbind(1:16,teams[indices1])
cbind(1:16,teams[indices2])
cbind(1:16,teams[indices3])
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D.4 Helper Methods

library("rjson")
library("ggplot2")
library(leaps)
library(dplyr)
col <- c("dodgerblue3","firebrick2")
#set colors, the most important thing

setup_data = function(file_stirng) {
#sets up the data frame from json file
data <- fromJSON(file= file_stirng)
df = data.frame(data)

df$div_1lag = as.factor(df$div_1lag)
df$div_2lag = as.factor(df$div_2lag)
df$cup_1lag = as.factor(df$cup_1lag)
df$eur_1lag = as.factor(df$eur_1lag)
df$eur= as.factor(df$eur)
df$cc = as.factor(df$cc)
df$cc_1lag = as.factor(df$cc_1lag)
return(df)

}

setup_data_num = function(file_stirng {
#sets up the data frame from json file
data <- fromJSON(file_string)
df = data.frame(data)
return(df)

}

error_plot = function(list,xlab,ylab) {
#helper function for pretty error plot
plot(list,xlab=xlab,ylab=ylab,

cex.lab=1.5,cex.axis=1.25,pch=19,col=col[1])
lines(list,lty=2,col=col[1])
points(which.min(list),min(list),pch=19,col=col[2])
abline(min(list),0,lty=2,col=col[2])

}

filter_variables = function(var_list) {
#to filter variable nummy numbers
no_intercept = var_list[-1]
pred = gsub(’^(.*?)(\\d+)?$’, ’\\1’, no_intercept)
return(pred)

}

cross_validation = function(reg_model,meassure) {
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#cross validation for regsubsets
response = all.vars(reg_model$call)[1]
summary = summary(reg_model)
nvmax = reg_model$nvmax - 1 #remove intecept
df_string = all.vars(reg_model$call)[length(all.vars(reg_model$call))]
df = get(df_string)
cv_error = matrix(NA, 18, nvmax, dimnames = list(NULL, paste(1:nvmax)))
for (j in 1:18) {

y = 1999 + j
data.train = dplyr::filter(df, y != year)
data.test = dplyr::filter(df, y == year)
for (i in 1:nvmax) {

best_model_names = names(coef(reg_model,i))[-1]
best_model_names = gsub(’^(.*?)(\\d+)?$’, ’\\1’, best_model_names)
best_model_names = gsub("0", "", best_model_names)
predictors <- paste(best_model_names, collapse = " + ")
formula_string <- paste("poi ~", predictors)
lm = lm(formula_string,data = data.train)
pred = predict(lm,data.test)
if(meassure == "RMSE") {

error = sqrt(sum((pred - data.test[response])^2))/length(pred)
} else if (meassure == "MAE") {

error = sum(abs(pred - data.test[response]))/length(pred)
}
cv_error[j,i] = error

}
}
temp = c()
temp$error = colMeans(cv_error)
temp$error_matrix = cv_error
temp$best = which.min(temp$error)
temp$model = function(index) {

best_model_names = names(coef(reg_model,index))[-1]
best_model_names = gsub(’^(.*?)(\\d+)?$’, ’\\1’, best_model_names)
best_model_names = gsub("0", "", best_model_names)
predictors <- paste(best_model_names, collapse = " + ")
formula_string <- paste("poi ~", predictors)
lm = lm(formula_string,data = df)
return(lm)

}
return(temp)

}

measure_glm = function(reg_model,df) {
#get all measures for glm (bestglm) (MAE,RMSE,AIC,BIC)
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response = names(df)[length(df)]
nvmax = ncol(df) - 1 #remove intecept
cv_error_rmse = matrix(NA, 18, nvmax, dimnames
= list(NULL, paste(1:nvmax)))
cv_error_mae = matrix(NA, 18, nvmax, dimnames
= list(NULL, paste(1:nvmax)))
for (j in 1:18) {

y = 1999 + j
data.train = filter(df, y != year)
data.test = filter(df, y == year)
for (i in 1:nvmax) {

row = reg_model$Subsets[i+1,]
best_model_names = names(row)[row == TRUE][-1]
best_model_names = gsub(’^(.*?)(\\d+)?$’, ’\\1’

, best_model_names)
best_model_names = gsub("0", "", best_model_names)
predictors <- paste(best_model_names, collapse = " + ")
formula_string <- paste(response," ~", predictors)
glm = glm(formula_string,data = data.train,family="poisson")
pred = exp(predict(glm,data.test))
error_rmse =
sqrt(sum((pred - data.test[response])^2))/length(pred)
error_mae =
sum(abs(pred - data.test[response]))/length(pred)
cv_error_rmse[j,i] = error_rmse
cv_error_mae[j,i] = error_mae

}
#Kristian Gartz

}
temp = c()
temp$error_rmse = colMeans(cv_error_rmse)
temp$error_mae = colMeans(cv_error_mae)
temp$error_matrix_rmse = cv_error_rmse
temp$error_matrix_mae = cv_error_mae
temp$best = which.min(temp$error)
temp$model = function(index) {

row = reg_model$Subsets[index+1,]
best_model_names = names(row)[row == TRUE][-1]
best_model_names = gsub(’^(.*?)(\\d+)?$’, ’\\1’

, best_model_names)
best_model_names = gsub("0", "", best_model_names)
predictors <- paste(best_model_names, collapse = " + ")
formula_string <- paste(response," ~", predictors)
glm = glm(formula_string,data = df,family="poisson")
return(glm)

}
temp$AIC = function() {

aic = c()

x



for(i in 1:nvmax) {
glm = temp$model(i)
aic = c(aic,AIC(glm))
#CLARA
#ARILD
#MARTIN
#-----> CAM -----> Saurus

}
return(aic)

}
temp$BIC = function() {

bic = c()
for(i in 1:nvmax) {

glm = temp$model(i)
bic = c(bic,BIC(glm))

}
return(bic)

}
return(temp)

}
#zen #voi #biojentene #sponsetinnlegg
simple_lm_cross_validation = function(lm_formula,df) {

#crossvalidation for lm()
error_list_rmse = c()
error_list_mae = c()
response = all.vars(lm_formula)[1]
for (j in 1:18) {

y = 1999 + j
data.train = filter(df, y != year)
data.test = filter(df, y == year)
lm_mod = lm(lm_formula,data = data.train)
pred = predict(lm_mod,data.test)
error_rmse = sqrt(sum((pred - data.test[response])^2))/length(pred)
error_mae = sum(abs(pred - data.test[response]))/length(pred)
error_list_mae = c(error_list_mae, error_mae)
error_list_rmse = c(error_list_rmse, error_rmse)

}
return(list(mae = mean(error_list_mae), rmse = mean(error_list_rmse)))

}
multiple_cross_validation =
function(df,lm_formula,tos_formula,toc_formula) {

#cross validation for the Poisson approach
error_list_rmse = c()
error_list_mae = c()
response = all.vars(lm_formula)[1]
for (j in 1:18) {

y = 1999 + j
data.train = filter(df, y != year)
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data.test = filter(df, y == year)
glm_mod_tos = glm(tos_formula,family = poisson(),data=data.train)
glm_mod_toc = glm(toc_formula,family = poisson(),data=data.train)
lm_mod_poi = lm(lm_formula,data = data.train)
pred_tos = exp(predict(glm_mod_tos,data.test))
pred_toc = exp(predict(glm_mod_toc,data.test))
pred_poi
= predict(lm_mod_poi,data.frame(tos = pred_tos, toc = pred_toc))
error_rmse
= sqrt(sum((pred_poi - data.test[response])^2))/length(pred_poi)
error_mae
= sum(abs(pred_poi - data.test[response]))/length(pred_poi)
error_list_mae = c(error_list_mae, error_mae)
error_list_rmse = c(error_list_rmse, error_rmse)

}
return(list(mae = mean(error_list_mae), rmse = mean(error_list_rmse)))

}
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