
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Kristian Lynghjem Vegsund
Modestas Sukarevicius

Intergalactic Machine Vision

Detecting dark matter through gravitational
lensing with machine learning

Bachelor’s thesis in Automation and Robotics
Supervisor: Hans Georg Schaathun
Co-supervisor: Ben David Normann
May 2023

Kristian Lynghjem Vegsund
Modestas Sukarevicius

Intergalactic Machine Vision

Detecting dark matter through gravitational lensing
with machine learning

Bachelor’s thesis in Automation and Robotics
Supervisor: Hans Georg Schaathun
Co-supervisor: Ben David Normann
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Intergalactic Machine Vision
Detecting dark matter through gravitational lensing

with machine learning

Bachelor Thesis
Faculty of Information Technology and Electrical Engineering

Department of ICT and Natural Sciences

Kristian Lynghjem Vegsund; Modestas Sukarevicius

22nd May 2023

Foreword

Kristian Lynghjem Vegsund

Student at NTNU in Ålesund,
B.Sc. Automation and Robotics
Ålesund, 22.05.23

Modestas Sukarevicius

Student at NTNU in Ålesund,
B.Sc. Automation and Robotics
Ålesund, 22.05.23

This bachelor thesis is written by two students from NTNUs Electrical Engineering -
Automation and Robotics programme. The project is part of a broader scientific project
by NTNU, building on what other students did last year. The motivation for us choosing
this task was twofold. We both have an interest in the cosmos, and find machine learning
to be a very interesting field. This project gave us a unique chance to combine the two,
and help a bigger project along the way. The project was open, and we were given
lenient autonomy to choose what we wanted to contribute with.

We express our gratitude to our supervisors, Hans Georg Schaathun and Ben David
Normann. Their insight and help has been crucial to not only this project, but to our
learning as well. Without their help and motivation this project would have no doubt
proved too challenging.

Terminology

Bias A term added to the weighted sum of previous layer before feeding into next neuron.

Ground truth Correct result that is hidden until a prediction has been made

High Performance Computing Cluster A cluster of computers specialised at data-
intensive tasks

Hyperparameter Parameters that directly controls the learning process

Idun A computer cluster (High Performance Computing Group) owned by NTNU

Loss Indication of performance of the neural network, where less loss is preferable

RGB A colour model that displays colours by mixing red, green, and blue

Weight Multiplies the activation from one neuron before feeding into next neuron.

Notation

RE Einstein radius indicating lens strength

χL Distance from the observer to the lens plane

χS Distance from the observer to the source plane

χ χL/χS, a ratio between the two distances

(x′, y′) Cartesian coordinates in source plane

(r, ϕ) Polar coordinates in lens plane

(σ1, σ2) Major and minor standard deviation along axis

θ Rotation of the source

2

Abbreviations

CNN Convolutional neural network

CPU Central Processing Unit

GL Gravitational lensing

GPU Graphics Processing Unit

HPCC High Performance Computing Cluster

ML Machine learning

NN Neural network

SIS Singular Isothermal Sphere

ViT Vision Transformer

3

Summary

Gravitational lensing gives us an indirect probe on dark matter, thus allowing us to map
out its distribution in the Universe. In this project, we further the development of an
open-source project aiming at mapping dark matter through the aid of machine learning.
Building on previous work, we employ the newly developed framework of the roulette
formalism, which is notable in combining both weak and strong lensing. Within this
paradigm, we successfully demonstrate that undistorted images can be recovered from
distorted ones, and by such making a first preparatory step towards the implementation
of this formalism with real data. We set out to find the best machine learning network
possible to detect the parameters of these lenses. Using this, it should be further possible
to map dark matter automatically on real images. Out of all the networks tested,
Inception-v3 and VGG-19 BN are found to be particularly well suited, and are able to
predict lens parameters with very high accuracy.

Furthermore, we discover a surprising result when comparing the point mass lens formula
and the images produced, and argue that this is due to an error in previous work that
needs to be further investigated. Finally, we recommend multiple steps for the continued
development of the project.

4

Contents

Foreword . 1
Terminology . 2
Notation . 2
Abbreviations . 3
Summary . 4
List of Figures . 10
List of Tables . 11

1. Introduction 12
1.1. Background . 12
1.2. Problem . 12
1.3. Scope of the project . 13
1.4. Report structure . 13

2. Theory 15
2.1. Cosmology . 15
2.2. Machine learning . 18

3. Development 23
3.1. Testing of previous work . 23
3.2. AlexNet estimating same output for different inputs 29
3.3. Creating a reference network . 36
3.4. Hyperparameter optimisation . 38

Choosing the optimiser . 38
Loss function choice . 38
Choosing which parameters to predict . 40
Creating a data set . 41

3.5. Achieving the best results . 44

4. Results 48
4.1. Results deemed interesting . 48
4.2. The best performing network . 58
4.3. How to run the system . 61

5. Discussion 62
5.1. Blunders to learn from . 62

5

Contents

5.2. AlexNet predicting same output for different inputs 63
5.3. Achieving the best results . 63
5.4. Discussing best network results . 65
5.5. Interesting tidbits . 67
5.6. Suggestion for future work . 68

6. Retrospective 70
6.1. Project management . 70
6.2. Prerequisite knowledge . 70
6.3. Learning outcomes . 71

7. Conclusion 73

A. Appendix Cosmo-ML code A1

B. Appendix CosmoSim code B1

C. Other results C1

D. Pre-project report D1

E. Supervisor meeting notes E1

F. Time lists F1

G. Code tutorial G1

H. Code for comparing images H1

6

List of Figures

2.1. Different types of lensing visualised. 16
2.2. Figures showing LeNet-5(2.2a), AlexNet with default amount of layers

(2.2b) and with extra added regression layers (2.2c) (Anwar 2022). 19

3.1. Total loss per epoch of initial code from last year. 24
3.2. Standard deviation along major (blue) and minor (green) axis of elliptical

source, shown in simulator software. 26
3.3. Subfigures showing the difference between two images with an absolute

difference of 1.003. 27
3.4. Figures showing the supposed same image, but with figure 3.4b having

three barely visible dots not supposed to be there. 30
3.5. Figures showing total loss with different hyperparameters. 33
3.6. Figures showing total loss with different learning rates. 34
3.7. Histogram showing deviation from ground truth in different settings. . . 37
3.8. Total loss over 50 epochs using Adam and RMSprop. 39
3.9. Images showing the lack of visual disparity between large numerical dis-

parity. 40
3.10. Simulator showing how difference in radius can impact visual artifacts. . 42
3.11. Histogram showing the deviation from ground truth with Inception-v3

architecture with different modifications. 46
3.12. Graphs showing the total MAE loss per epoch on test and training data

set. 47

4.1. Figures showing total loss (logarithmic) with different network architec-
tures. Subfigures only show the best result achieved with that network
model. The blue line represent training data set and yellow line represents
testing data set. 49

4.2. Histograms from all the best performances for each network when limited
to 100 epochs. 50

4.3. Histograms showing the lowest deviations from ground truth using VGG-
19 BN and Inception-v3. 51

4.4. Histograms showing different configurations of Inception-v3 and VGG-
19 BN run for either 100 epochs or 200 epochs. 52

4.5. Histograms showing the best results from Inception-v3 and VGG-19 BN
zoomed in to +/-5. 53

7

List of Figures

4.6. Histograms showing the best results from Inception-v3 and VGG-19 BN
zoomed in to +/-5. 54

4.7. Histograms showing the performance of different vision transformers. . . 55
4.8. Histograms showing the deviations from ground truth on different Inception-

v3 configurations. 56
4.9. Histograms showing the deviations from ground truth on different VGG-

19 BN. 57
4.10. Histogram showing the deviation from ground truth on all estimated pa-

rameters. 59
4.11. Comparing best result to reference network. 60

5.1. Histograms separating the results from coordinates and the other param-
eters estimated by AlexNet reference network. 64

C.1. AlexNet total loss performance with logarithmic graph C2
C.2. ConvNeXt total loss performance with logarithmic graph C3
C.3. DenseNet total loss performance with logarithmic graph C4
C.4. EfficientNet-B7 total loss performance with logarithmic graph C5
C.5. EfficientNet-v2 1 total loss performance with logarithmic graph C6
C.6. Inception-v3 total loss performance with logarithmic graph C7
C.7. MnasNet total loss performance with logarithmic graph C8
C.8. ResNet-152 total loss performance with logarithmic graph C9
C.9. SqueezeNet-v1.1 total loss performance with logarithmic graph C10
C.10.Swin-v2-b total loss performance with logarithmic graph C11
C.11.VGG-19 bn total loss performance with logarithmic graph C12
C.12.ViT-16-b total loss performance with logarithmic graph C13
C.13.AlexNet total loss performance with linear graph C14
C.14.ConvNeXt total loss performance with linear graph C15
C.15.DenseNet-201 total loss performance with linear graph C16
C.16.EfficientNet-B7 total loss performance with linear graph C17
C.17.EfficientNet-v2 1 total loss performance with linear graph C18
C.18.Inception-V3 total loss performance with linear graph C19
C.19.MnasNet-6.0 total loss performance with linear graph C20
C.20.ResNet-152 total loss performance with linear graph C21
C.21.SqueezeNet-V1.1 total loss performance with linear graph C22
C.22.Swin-v2-b total loss performance with linear graph C23
C.23.VGG-19 bn total loss performance with linear graph C24
C.24.ViT-16-b total loss performance with linear graph C25
C.25.AlexNet histogram pre-trained with 0.0001 learning rate C26
C.26.ConvNeXt histogram with 0.0001 learning rate C27
C.27.DenseNet histogram with 0.0001 learning rate C28
C.28.EfficientNet histogram with 0.0001 learning rate C29
C.29.EfficientNet-v2 1 histogram with 0.0001 learning rate C30
C.30.Inception-v3 histogram pre-trained with 0.0001 learning rate C31

8

List of Figures

C.31.MnasNet histogram with 0.0001 learning rate C32
C.32.ResNet histogram with 0.0001 learning rate C33
C.33.SqueezeNet histogram with 0.0001 learning rate and extra layers C34
C.34.Swin-v2 b histogram with 0.0001 learning rate C35
C.35.VGG-19 BN histogram with 0.0001 learning rate C36
C.36.ViT histogram with 0.0001 learning rate C37
C.37.AlexNet histogram with 0.001 learning rate C38
C.38.AlexNet histogram with 0.0001 learning rate C39
C.39.AlexNet histogram with 0.001 learning rate and extra layers C40
C.40.AlexNet histogram with 0.0001 learning rate and extra layers C41
C.41.EfficientNet-B7 histogram with 0.0001 learning rate C42
C.42.EfficientNet-v2 1 histogram with 0.0001 learning rate C43
C.43.EfficientNet histogram with 0.0001 learning rate C44
C.44.Inception-v3 histogram with 0.001 learning rate C45
C.45.Inception-v3 histogram with 0.0001 learning rate. C46
C.46.Inception-v3 histogram pre-trained with 0.001 learning rate. C47
C.47.Inception-v3 histogram with 0.001 learning rate and extra layers. C48
C.48.Inception-v3 histogram pre-trained with 0.0001 learning rate. C49
C.49.Inception-v3 histogram with 0.0001 learning rate and extra layers. C50
C.50.Inception-v3 histogram pre-trained with 0.00001 learning rate. C51
C.51.Inception-v3 histogram pre-trained with 0.0001 learning rate attempt 2. . C52
C.52.Inception-v3 histogram pre-trained with 0.001 learning rate and extra layers.C53
C.53.Inception-v3 histogram pre-trained with 0.0001 learning rate and extra

layers. C54
C.54.Inception-v3 histogram pre-trained with 0.0001 learning rate for 100 epochs,

and 0.00001 learning rate for next 100 epochs. C55
C.55.Inception-v3 histogram with 0.0001 learning rate for 100 epochs, and

0.00001 learning rate for next 100 epochs, all with extra layers. C56
C.56.SqueezeNet histogram with 0.0001 learning rate. C57
C.57.SqueezeNet histogram pre-trained with 0.0001 learning rate. C58
C.58.SqueezeNet histogram with 0.0001 learning rate and extra layers. C59
C.59.SqueezeNet histogram pre-trained with 0.0001 learning rate and extra

layers. C60
C.60.VGG-19 BN histogram with 0.0001 learning rate. C61
C.61.VGG-19 BN histogram with 0.0001 learning rate for 100 epochs, and

0.00001 learning rate for next 100 epoch. C62
C.62.AlexNet histogram pre-trained with 0.0001 learning rate. C63
C.63.ConvNeXt histogram with 0.0001 learning rate. C64
C.64.DenseNet histogram with 0.0001 learning rate. C65
C.65.EfficientNet-B7 histogram with 0.0001 learning rate. C66
C.66.EfficientNet-v2 1 histogram with 0.0001 learning rate. C67
C.67.Iception-v3 histogram pre-trained with 0.0001 learning rate. C68
C.68.MnasNet histogram with 0.0001 learning rate. C69
C.69.ResNet-152 histogram with 0.0001 learning rate. C70

9

List of Figures

C.70.SqueezeNet histogram with 0.0001 learning rate and extra layers. C71
C.71.Swin histogram with 0.0001 learning rate. C72
C.72.VGG-19 BN histogram with 0.0001 learning rate. C73
C.73.ViT histogram with 0.0001 learning rate. C74

10

List of Tables

3.1. Table showing number of networks performing worse than guessing averages. 32
3.2. Hyperparameters chosen for reference network. 36

4.1. Table showing best performing networks on separated parameters with
MSE and MAE loss. 53

4.2. Table comparing results in ImageNet competition and results achieved in
this project. 58

4.3. Hyperparameters chosen for best performing neural network. 58

11

1. Introduction

1.1. Background

Out of the incredible amount of energy in the universe, only around 5% of it is directly
observable to us with modern technology (Aghanim et al. 2020). The rest is divided
into dark energy (68%) and dark matter (27%). While dark energy remains a complete
mystery, dark matter has a few clues despite not being directly observable. The key
component to mapping dark matter is that it has mass, and as such exerts gravity. This
allows us to see its gravitational effect on visible celestial objects. Through a process
called gravitational lensing (GL) we can see light from distant galaxies distorted around
dark matter. This creates a distorted image of the galaxy. This lensing is grouped
into two different arrangements, being either weak or strong gravitational lensing. In
2016 a mathematical framework was developed (Clarkson 2016) to remove the previous
unnatural gap between these. With this, it is now possible to solve strong lensing with
geodesic deviation equations instead of ray-tracing/time delay. The Roulette formalism
makes it possible to consider both weak and strong lensing together, which is perceived
as advantageous in scenarios where both effects appear, such as cluster lens-mass recon-
struction. This paved the way for machine learning to help in the field, by making the
problem a simple mathematical one for computers. While time-consuming for humans,
the calculations for these gravitational lenses can be done by machines in a fraction of
a second.

1.2. Problem

Manually detecting lensed galaxies and trying to reconstruct the original image is very
time consuming. Only a few thousand strongly lensed galaxies have been discovered
and documented (Huang et al. 2021). The number of weakly lensed galaxies however, is
much higher, albeit much harder to detect due to their weak nature. If roulette formalism
could be used to detect the lensing effects from lens clusters, machine learning could do
the rest of the work finding lens parameters. Mapping all of these lenses would directly
help to map the dark matter of the universe.

12

1. Introduction

Through machine learning it should theoretically be possible to detect such lensing,
and reconstruct an undistorted source image of the galaxy. This project aims to find
a stronger neural network driven machine learning network to determine parameters of
the lensing effect. This will aid in the continued mission to automatically reconstruct
the lens of an image of a real galaxy. Previous research on this topic is sparse, and this
project aims to be part of the first fully open source project using roulette formalism to
map dark matter, by using machine learning to detect the lens parameters.

1.3. Scope of the project

This project is part of a larger set of multidisciplinary projects, and will aim to com-
plete the machine learning part. Our contributions will consist of creating a solid ma-
chine learning foundation that can be taken further if necessary. As an interdisciplinary
project, our contributions in machine learning and programming will be crucial to the
outcome. The goal is to produce a base that can be used for the rest of the project
and can be used by everyone from the other disciplines. One of the other goals of this
project is being an open source project. This means the code and documentation has to
be understandable and clear.

1.4. Report structure

The report does not follow the normal structure blueprint given by the university. The
typical blueprint report includes chapters for materials and method. Because of the
nature of our task it makes more sense to replace these with a solid chapter called
Development. This chapter will guide the reader through the processes that took place
in a semi-chronological manner. Doing this will make rational behind decisions more
apparent, and jumping between sections less necessary. The report also separates the
typical Discussion chapter into Discussion and Retrospective. This is done to separate
the discussion into two parts, the academical discussion around the development and
results in Discussion, and the discussions related to the groups management, learning
outcome and prerequisites in Retrospective.

The rest of the report is structured in the following way:

Chapter 2 - Theory: Contains an introductory explanation to the concepts relevant to
the task. Separated into the cosmological concepts (physics) and the machine learning
concepts.

13

1. Introduction

Chapter 3 - Development: Contains the experiments done, and some of the results
necessary for further experimentation to avoid having to jump between chapters.

Chapter 4 - Results: Contains most of the raw results that was not needed to be
expanded upon in chapter 3 for further work.

Chapter 5 - Discussion: Contains a summary of the results, and the groups opinions
on the results and what it means. Also contains suggestions for further work.

Chapter 6 - Retrospective: Contains meta-evaluation of the group’s structure, pre-
requisites, and learning outcomes.

Chapter 7 - Conclusion: Contains a conclusion/summary of the entire project.

Appendix: Contains additional material not necessary to read the report, such as
source code and other things used for thesis assessment.

14

2. Theory

This sections will describe the theory behind the two main parts, cosmology and machine
learning. It builds on the same mathematical and theoretical framework as the previous
project (Ingebritsen et al. 2022). The cosmology theory section brings no new theory
from last year, but the machine learning part does.

2.1. Cosmology

The following sections on cosmological theory serves as a beginners introduction to the
terms and phenomena relevant to this project. The section is only meant for the reader
to understand the content of the report, and thus does not go into great detail. If the
reader wants a deeper understanding, it is recommended to read up on these topics.

Gravitational lensing

Gravitational lensing is a phenomena where light traveling past massive objects gets
bent around said massive objects. This is due to photons being affected by gravity.
When this happens, a distorted image is created for the observer. The object is also
observed at a false position due to this(Congdon and Keeton 2018, p. 5). Figure 2.1
below shows different types of lensings.

Gravitational lensing is split into three main classes. We are only concerned with strong
lensing and weak lensing in this project. These classes are artificial in nature, due to
them being human constructs to make it easier to calculate and categorise, and not
natural barriers.

Strong lensing

Strong lensing is where there is a clear lensing effect present. Examples include a visible
Einstein ring or multiple images of the object. The lensing can show a magnifying effect,

15

2. Theory

Figure 2.1.: Different types of lensing visualised.

shearing (stretching), and flexion (bending)(Congdon and Keeton 2018, p. 5).

Weak lensing

Weak lensing is a lot weaker than strong lensing. This means that it’s hardly detectable.
Like strong lensing it can produce a magnifying and shearing effect, but does not produce
any flexion(Congdon and Keeton 2018, p. 8). It is instead usually found by analysing
multiple sources in a statistical manner.

Roulette formalism

In 2016, a mathematical framework was developed to simulate strong lensing using a
weak-lensing approach (Clarkson 2016). This allows weakly lensed objects to appear as
strongly lensed, leading to more features being distinguishable. While normally strongly

16

2. Theory

lensed objects are found using ray-tracing and time delay, this new method can simulate
this using the geodesic deviation equations of weak lensing.

Einstein radius

An Einstein ring is the result when the observer, lens, and source light all align. This
creates a gravitational lensing around the entire lens, forming a visible halo around it
(Congdon and Keeton 2018, p. 31). Note that the ring doesn’t have to be a full circle,
and can be one or more arcs around the lens.

Cosmological redshift

Redshift is a process where photons gradually shift towards longer wave lengths. This
can happen for a few reasons. When the wavelength increases, the light moves toward the
upper end of the visible light spectrum, therefore becoming more red. This is a known
phenomena and can be used to measure distances at cosmological scales (Congdon and
Keeton 2018, p. 59).

Lenses

A lens in cosmology is anything with great enough mass to noticeably bend light. While
stars and planets have a mass and therefore bends light, its effect is too tiny for us to
reliably notice. More often light will be bent noticeably by galaxy clusters. It can also
be caused by dark matter. There are different models for gravitational lenses.

The simplest model is point mass. In this model, all the mass of the lens is situated in
an infinitely small point, called a singularity. Such singularities are not believed to be
possible outside of black holes, so they are merely models for convenience sake (Congdon
and Keeton 2018, p. 20).

Another model is the Singular Isothermal Sphere (SIS). In this model, all the mass is
evenly distributed all over the lens. Like black holes, the SIS has a fixed mass-to-radius
ratio (Remmen 2021), making the mathematics very simple. Below are the formulas
for point mass and SIS provided by our supervisor, showing their simplistic nature.
Equation 2.1 shows the mass distribution ΣPM of a point mass. Equation 2.2 shows
the mass distribution ΣSIS of a SIS. Note that these equations are for two dimensions,
as that is essentially the angle we are viewing them from since the celestial sphere is
2-dimensional.

17

2. Theory

ΣPM ∼ REδ(x=0)
1 (2.1)

ΣSIS ∼ RE

R
(2.2)

2.2. Machine learning

This section will explain some of the theoretical terms behind the machine learning part
relevant to the project.

Neural networks

A neural network is a subset of machine learning crucial to deep learning. It has a
visible input and output layer witch are connected by multiple hidden layers. Each node
in the system is connected to another node, and each node has a threshold and weight
(Goodfellow, Bengio, and Courville 2016, p. 13).

Convolutional neural networks

A neural network can have many different qualities used for different purposes. The
convolutional neural network excels in dealing with inputs from the real world, be it
images or audio signals like speech. While our problem is one of regression, these neural
networks deal with classification problems. Our solution to this problem is to attempt
training a classification model to deal with the regression problem. This is due to
dealing with images with hidden parameters, and classification convolutional networks
are specialised to work on images. Some recent attempts at image regression have been
made (Ranganathan et al. 2020).

As an example AlexNet is one of multiple CNNs used in this project. The network
architecture is similar to LeNet-5 figure 2.2a. LeNet was one of the first convolutional
neural networks (Lecun et al. 1998), and AlexNet is an evolution of LeNet. The main
difference is that AlexNet is larger and deeper. It consist of eight layers, including five
convolutional layers, with three followed by max-pooling layers, three fully connected
layers, and a softmax output layer figure 2.2b (Krizhevsky, Sutskever, and Hinton 2012).
Figure 2.2c shows network with two extra fully connected layers made for this project.

1This (δ) is the Dirac-Delta function

18

2. Theory

(a) LeNet-5 layers

(b) AlexNet layers

(c) AlexNet with added layers

Figure 2.2.: Figures showing LeNet-5(2.2a), AlexNet with default amount of layers (2.2b)
and with extra added regression layers (2.2c) (Anwar 2022).

19

2. Theory

Neural architecture search

Regrettably, the absence of comprehensive guidelines or tutorials for selecting an appro-
priate network architecture tailored to a specific task poses a significant challenge. In
response to this, neural architecture search (NAS) techniques have emerged. This tech-
nique automates the process of choosing or designing network architecture by searching
for the most optimal architecture that yields the best performance for a given task (Rus-
sell and Norvig 2022, p. 821). In this project only one NAS network called MnasNet was
tested. It’s designed for mobile devices to be efficient, use as little resources as possible
and to be easily scalable (Tan et al. 2019). For testing it was scaled up to 6 times it’s
base size.

Neural networks using transformers

Transformer architecture were originally designed for natural language processing. In-
stead of using convolutional layers, networks using transformers divide an input image
into fixed-size patches and linearly project them into sequence embeddings. These em-
beddings are then processed by transformer layers, enabling interactions between patches
and capturing long-range dependencies (Russell and Norvig 2022, p. 920).

Hyperparameter

In machine learning, a hyperparameter is one of the parameters that directly affects the
learning process. While normal parameters are derived by training, hyperparameters are
set beforehand and play an important role in how well the machine learning performs.
There are different branches of hyperparameters as well, such as model hyperparameters
and algorithm hyperparameters. For the purposes of this report, all hyperparameters
are grouped together as one group (Goodfellow, Bengio, and Courville 2016, p. 120).

The hyperparameters used in this project are model network (including topology and
size), batch size, learning rate, epochs, optimiser, and loss function. These will all impact
the training results in various ways, and is the main way to tune the machine learning.

Batch size defines the number of processed samples in a single update or iteration dur-
ing update. It is an important hyperparameter that affects both the computational
efficiency and the performance of the trained model(Goodfellow, Bengio, and Courville
2016, p. 278).

Learning rate represents the step size or the rate at which the model parameters are
updated during the learning process. It’s essential for achieving optimal convergence

20

2. Theory

and preventing instabilities in the training process (Goodfellow, Bengio, and Courville
2016, p. 82).

Epoch refers to a single pass or iteration through the entire training data set during the
training phase of a model. By completing one epoch, the model has seen and learned from
all the available training samples. The number of epochs determines the total number
of times the learning algorithm will work through the entire data set. An appropriate
number of epochs is crucial to ensure the model has sufficient exposure to the data for
learning without overfitting or underfitting (Goodfellow, Bengio, and Courville 2016,
p. 244).

Optimizer is a component of training process that aims to minimize the objective func-
tion or loss by adjusting the model’s parameters. It determines how the model’s param-
eters are updated during the iterative optimization process (Goodfellow, Bengio, and
Courville 2016, p. 82).

Loss or cost function quantifies the discrepancy between the predicted output of a model
and the true output. It represents the measure of how well the model is performing on a
given task (Goodfellow, Bengio, and Courville 2016, p. 82). For regression task two loss
functions are most popular. Mean square error (equation 2.4), and mean absolute error
(equation 2.3), where l is loss for one image, n is number of parameters, x is ground
truth and y is estimate value by network. To get total loss all image losses are summed
together.

lMAE =
1

n

n∑
i=1

|xi − yi| (2.3)

lMSE =
1

n

n∑
i=1

(xi − yi)
2 (2.4)

Transfer learning

Transfer learning is a method where network parameters(weights and biases) that were
saved after training on one task are used as a starting point for training on another task.
It is an idea that trained parameters of the network on one task will translate to better
learning performance on another task.(Russell and Norvig 2022, p. 832)

21

2. Theory

Previous work with machine learning on gravitational lensing

In the combined field of machine learning and gravitational lensing, there has been a
multitude of recent studies and articles. There seem to be great leaps forward, especially
when it comes to using CNNs to detect strong lensing. Multiple projects have created
their own CNNs to detect strong lensing (Rezaei et al. 2022)(Wilde et al. 2022), while
others have attempted to use machine learning to detect quasars (Khramtsov, Vladislav
et al. 2019). Magro et al. 2021 has also compiled a list and comparison for similar
projects. (Morgan et al. 2021) has created a similar open source simulation software
package for strong gravitational lensing.

22

3. Development

This chapter will contain most of the work done in this project. It will contain most
events done in chronological order. This will allow the reader to understand the reasoning
and intentions behind what work was done. Each subsection will build on the experiences
learned and talked about in previous subsections.

3.1. Testing of previous work

Since this project is a continuation of a bachelor project from last year, code and tools
already existed. A working simulator to visualise gravitational lensing, as well as image
generation software for generating images of lensing was already in place. Before any
further work on the preexisting code was done, a test was performed. This test would
not modify anything, and was only to see how well the current code performed. This
could then later serve as a point of comparison, to determine the effectiveness of fu-
ture networks. This section also includes problems found during testing, as well as the
solutions to the problems.

Generating images and training

Generating images could be done by a preexisting program, and only required changing
some variables to fit our needs. The group had access to the Idun HPC cluster, but a
check was made to determine if this was necessary for either image creation or training.
With a Ryzen 7 5800H GPU, generating 1000 images with elliptical sources and SIS
lenses took around 3 minutes. Changing it to point mass lenses and spherical sources
made this only take 13 seconds. Since spherical and elliptical took roughly the same
time, this showed that making images with point mass was much faster, and would be
the base of testing for now. With these parameters, 100 000 images could be generated
in 28 minutes, making it viable to generate images without the help of Idun.

The old code was using a slightly modified Inception-v3 architecture. The network had
modified input layer channels and output layers. The input layer was changed from 3 to

23

3. Development

Figure 3.1.: Total loss per epoch of initial code from last year.

1 due to the images not needing RGB colours. The output layers were changed based on
how many parameters were being estimated, in this case to 4. Using a desktop computer,
a test run on the old machine learning code was run on 10 000 images for 50 epochs with
a batch size of 32 and learning rate of 0.001. From the existing codes hyperparameters,
only the amount of epochs were changed from 12 to 50. The parameters guessed were r,
ϕ, RE and σ1. This took around 2 hours of training. Afterwards, the test was repeated
9 more times to check for inconsistencies and patterns. Figure 3.1 shows the result of
all 10 tests. The y-axis shows total loss for each entire epoch. This result was saved for
later, to make it was possible to compare the performance at the start and the end of
the project. After the test it was decided that using Idun was not necessary for now, as
personal desktop computers were fast enough.

Problems with the old image generation

The existing code for image generation had a couple of pitfalls necessary to avoid. These
were problems that if not taken into account, a good machine learning model could not

24

3. Development

be generated. These were all found either through what made sense theoretically, or
accidentally through normal use. They were then checked manually, to see if the problem
occurred, documented, and then fixed.

Different parameters generating same images

The generator creates images with different parameters. If some of the parameters are
certain values, the images can appear to look exactly the same as an image created with
a different set of parameters. For example, if the angle is 0 or 360 degrees, the images
should look exactly the same. If χ and RE have the same ratio, the images should also
look exactly the same, given all other parameters are identical. If an ellipsoid source is
rotated 90 degrees one way and source size and secondary size have opposite values, this
can also generate seemingly identical images. A script to randomly flip around half the
images were made. The script made 55 with normal parameters, and 45 images with
theta 90 degrees more and σ1 and σ2 flipped. Out of these 100 images, 41 were identical,
while all the rest were the smallest error possible (up to one pixel shifted to the side).
This was considered good enough to show the images were the same. The error was not
visible with the naked eye.

Ellipsoid sources have sizes measured with standard deviation along major and minor
axis (”Source size” and ”Secondary size” in the simulator). Figure 3.2 visualises these
standard deviations. In the figure, the standard deviation for x-axis is 60, and 30 for
y-axis. This equates to the source being twice as wide as tall from our perspective. Since
the major and minor standard deviation of an ellipsoid in essence are its magnitude in x
and y direction, it stands to reason that by interchanging the parameters, the image has
visually rotated 90 degrees to one side. By applying a 90 degree counterclockwise rotation
to the source (φ), the ellipsoid will appear to have returned to its original position. It
could also have rotated by 180 degrees if φ is 90 degrees clockwise. However, this would
run the risk of looking identical as well if the radius is small.

To prove that this is the case, a python script that analyses differences between images
was created. Two test sets of images were created. One test set contained images where
χ and RE was the same ratio in all of them (χ was randomized, then RE was set with
a ratio based on χ). For both the sets, the rest of the parameters were set to the same
values every time. To account for rounding errors, RE was set to be double of χ.

The python script showed they were not exact replicas. Another function showed the
difference between the images to be 0.03 absolute value pixel-by-pixel difference. Image
difference analysis showed some images appeared to be shifted to the side despite all
parameters except χ and RE being the same. This was unexpected. Comparing a set of
100 images with these parameters showed only 14 were identical, with the others having
a small difference up to 2.12 absolute value.

25

3. Development

Figure 3.2.: Standard deviation along major (blue) and minor (green) axis of elliptical
source, shown in simulator software.

26

3. Development

(a) Image showing differences between two im-
ages (b) Same image with increase saturation

Figure 3.3.: Subfigures showing the difference between two images with an absolute dif-
ference of 1.003.

When tested on 100 images created with all parameters being the same, the images
were all deemed identical by the same program. This lead us to believe that the images
created by the simulator are inaccurate. Seeing manually how small the difference was,
the error was deemed as irrelevant to the machine learning, as it was at most 2 pixels
to the side (+/-1 pixel from center).For reference, two images where one is shifted one
pixel to the side produced an absolute difference of 1.0003. The python script can be
found in Appendix H.

Figure 3.3 above shows the difference in the images when absolute difference is 1.0003.
Figure 3.3a shows the difference as it is. Figure 3.3b is the same but with exposure set
to 200%. This shows that it is difficult for humans to see the difference. No pattern was
found in the set of different images. The difference seemed random and independent of
parameters. The difference would not be the same every time. Given the small absolute
value difference, along with the even smaller visual difference, this issue was deemed not
problematic enough to spend more time on.

27

3. Development

Verifying if a fixed ratio between χ and RE produce the same images

Equation 3.1 shows the light distribution provided by our cosmology supervisor. It is a
mapping from the source-plane coordinates (x′, y′) to the lens-plane coordinates (r, ϕ),
and shows how a light point from the source plane is distorted in the lens plane. From
the formula, it is evident that different values of χ and RE should not give the same
results, even if the ratio remains the same. As clearly visible in the equation, RE

χ
· RE

and r
χ
does not remain the same if both values are changed even if the ratio remains.

(
x′

y′

)
=

r

χ

(
cosϕ
sinϕ

)
+

RE

χ
·RE

(r⃗ + R⃗)2

(
r
R
cosϕ

−sinϕ

)
(3.1)

Another experiment was set up. The hypothesis was that when χ approaches 0 or 100,
these difference would show themselves. Since all image generation previously had χ
limited between 30 and 70 (with it being a fixed number most of the time), perhaps the
difference was not noticeable for these values. Three different tests would be performed to
check this hypothesis. All the tests would randomise all values for every other parameter
once, then use those values for all images. χ and RE would remain the same fixed ratio,
but the numeric values would chance between images. The difference this time was that
the experiment was divided into three groups. One where χ is between 6 and 30, another
where χ is between 30 and 70 (like the original test), and a last test where χ is between
70 and 96. This would test both extremes more thoroughly. Should the values of χ come
too close to the source or observer plane (too close to 0 or 100), the lensing effect would
become too weak.

These tests were all performed with the same software as the test earlier, which checks
for absolute value pixel-by-pixel image disparity (Root mean square (RMS) difference).
After creating 100 images for each test, they were all checked against all other images.
For 100 images this means a total of 4950 comparisons.

The test results show the identical pairings our of the 4950 pairings. It also shows the
largest RMS difference achieved between the images. The following amount of pairings
were completely identical:

• χ from 6 to 30: 683 out of 4950 (13.8%) (largest RMS difference: 0.04)

• χ from 30 to 70: 548 out of 4950 (11.1%) (largest RMS difference: 0.03)

• χ from 70 to 96: 92 out of 4950 (1.9%) (largest RMS difference: 1.12)

From this it is clear that when χ approaches high values, images are less likely to be
identical. Whether or not the higher difference causes a realistic problem to the machine

28

3. Development

learning is still up for debate, but with the largest absolute difference being 1.12 it seems
unlikely for now.

Another set of tests were set up to further confirm this hypothesis, as the implications
from such a discovery could have further consequences along the way. These tests would
further limit the scope of χ to between 92 and 98 and between 1 and 5. Even though the
previous test showed little difference when χ was between 6 and 30, the last test limited
this further to between 1 and 5. This is to further prove that when χ approaches its
limits, the images show a noticeable difference. Testing other limits were made difficult
due to χ and RE always needing to be whole numbers. This makes it impossible to test
ranges like 97 to 99, since there is no ratio that gives RE different whole numbers. This
was fixed when χ was between 1 and 5 by multiplying to find RE instead of dividing.

After the new test, results showed that out of 4950 pairings, the following amount of
pairings were completely identical:

• χ from 1 to 5: 877 out of 4950 (17.7%) (largest difference: 0.83)

• χ from 92 to 98: 1201 out of 4950 (24.3%) (largest difference: 0.02)

Intrigued by these results, a closer look on the images was done manually. This revealed
a critical fault in the image generation. Figure 3.4b shows artifacts in the one of created
images where χ was between 1 and 5. The image is supposed to look exactly like figure
3.4a since they have all the same parameters, but has three barely visible white dots.
This is present in around half the images in different magnitudes. What is interesting
is that in every single image with these artifacts, all artifacts are located in the exact
same three spots in the image that figure 3.4b shows. These artifacts can also vary from
all three spots having artifacts to none being present, even when all the parameters are
exact replicas.

It was decided that as long as image generation could be done in such a way that it could
practically eliminate the chances of such artifacts, the problem would not be pursued
any further. The question of whether or not χ and RE are directly linked in the way
we thought previously is still open. For now we believe the reason the images are not
identical to be because of the artifacts when generating images.

3.2. AlexNet estimating same output for different inputs

A problem occurred when training on the default AlexNet network. The network topol-
ogy was unmodified and the problem was found manually during an exploratory test of
AlexNet. The network would predict the same result for every instance for an entire

29

3. Development

(a) Figure showing no signs of artifacts (b) Figure showing signs of artifacts (three
white dots) that are not supposed to be
present

Figure 3.4.: Figures showing the supposed same image, but with figure 3.4b having three
barely visible dots not supposed to be there.

epoch. This number might change for the next epoch, but the pattern of predicting
one number for the entire epoch continued. The numbers were converging towards the
average ground truth values of training data set for each parameter. A hypothesis was
created that this had to do with batch sizes and small data sets. To investigate this fur-
ther an experiment was set up to find out the cause and a solution. 5 different solutions
were tested to see what would help, all consisting of changing hyperparameters.

Testing different hyperparameters

A baseline was created by running AlexNet 100 times for 50 epochs with batch sizes of
10 and 100. This would show the unmodified networks result, and could be compared to
when assessing a new solution. Adam was chosen as the optimizer with a learning rate
of 0.001, and MSE loss function. This test-training was done on 2000 images. As shown
in figure 3.5a, it’s clear that the problem occurs more often with higher batch size. The
problem is clearly evident in both cases.

The next part of the experiment consisted of tweaking different hyperparameters. All
further experiments where run for 10 epochs. This was done to cut on run time, since
most of the changes between experiments can be extrapolated from the first 10 epochs,
and the problem would always occur within 10 epochs. The attempted hyperparameter

30

3. Development

changes were:

• Having a bigger data set (10 000 images)

• Changing optimiser from Adam to RMSprop

• Adding more layers to the network

• Changing the loss function from MSE to MAE

• Changing learning rate (both increase and decrease)

• Running every attempt with a batch size of 10 and 100

Figures in 3.5 and 3.6 below show total loss per epoch of each run. Dotted black line
represents the total loss achieved by guessing averages of training data as networks
output. The red plotted lines represent batch size of 100 and blue line represent batch
size of 10. There are in total 100 test done per batch size for every different setting, for a
total of 200 lines per graph. Running 100 times each would show if batch size affects the
result on a broad scale. Table 3.1 shows the amount of tests over the dotted line at the
end of training. One could also check how many tests were within a certain percentage
threshold from the dotted line, but the tests done were enough. This was due to the
fact that if any line was above guessing the average it would be considered a problem.
Since any test performing worse than guessing the average after 10 epochs is considered
a problem, any solution will have to completely remove all such cases.

All subfigures in figure 3.5 and figure 3.6 show a clear distinction between batch sizes.
Lower batch size is training faster and have a lower chance of hanging up on a local
minimum. However it is important to mention that it’s not immune to getting stuck. In
the first figure 3.5a after 10 epoch 20% and 72% of 100 models with batch size 10 and
100 respectively are over the dotted line. This goes down to 19% for both batch sizes
after 50 epochs. Although even when the same amount of models are over the dotted
line for both batch sizes, it seems clear that batch size of 10 is faster at getting out of
local minimum. Moving forward it was decided from this to use a low batch size of 10.

Focusing on figure 3.5 four different changes were tried with no satisfactory results.
Increasing the amount of images for training by factor of 5 in figure 3.5b increased loss
scale 5 times. This was exactly as expected, and meant no improvement. After 10
epochs, 17% and 23% of models were left over the total loss limit with batch sizes of 10
and 100 respectively. This affected models with batch size of 100 the most, decreasing
number of models over the limit from 72% to 23%. Models with batch size of 10 saw a
small change from 20% to 17%.

Figure 3.5c gave optimal results using the RMSprop optimiser. Just two out of all

31

3. Development

Changes Batch size
neural networks performing
worse than guessing average

Default (10 epochs)
10 20
100 72

Default (50 epochs)
10 19
100 19

Bigger data set
10 17
100 23

Learning rate 0.005
10 30
100 51

RMSprop
10 0
100 2

Extra layers
10 15
100 69

MAE
10 36
100 49

Learning rate 0.0001
10 0
100 0

Learning rate 0.00001
10 0
100 0

Learning rate 0.000001
10 0
100 0

Table 3.1.: Table showing number of networks performing worse than guessing averages.

32

3. Development

(a) Default parameters with 50 epochs (b) Bigger data set (10000 images)

(c) RMSprop optimizer (d) Network with extra layers

(e) Loss function of MAE

Figure 3.5.: Figures showing total loss with different hyperparameters.

33

3. Development

(a) Learning rate of 0.005 (b) Learning rate of 0.0001

(c) Learning rate of 0.00001 (d) Learning rate of 0.000001

Figure 3.6.: Figures showing total loss with different learning rates.

34

3. Development

networks had total loss over dotted line after 10 epochs. But there is still some visible
pattern of network getting stuck on local minimum. Although this showed promising
results, network is not close to following a satisfactory learning curve.

Addition of extra layers to the network was also attempted. An additional two fully
connected layers were added at the end of the sequence, as shown in figure 2.2c. Figure
3.5d shows this did not result in any meaningful improvements either. The performance
is close to a network without any additional layers.

Changing loss function in figure 3.5e makes calculated total loss around 10 times smaller.
The effect on networks were mixed. Batch size of 100 were affected positively while batch
size of 10 were affected negatively. Like all the other tests until now this was not good
enough as a solution.

Lastly figure 3.6 shows testing of different learning rates. First test consisted increasing
the learning rate to see if that produces a different result. Increasing learning rate by 5
times to 0.005 in figure 3.6a made the network loss unstable, jumping up and down from
one epoch to another. This might help for a network to jump out of local minimum, but
results do not reflect that consensus.

Since increasing learning rate led to worse results, it was decided to try lowering it.
Figure 3.6b shows the effect of lowering learning rate 10 times to 10−4. The result were
very positive, and none of the networks got stuck on local minimums. The problem with
network estimating the same values for every input disappeared completely. This was
unexpected since expectations where that lower learning rate have tendency to getting
stuck on local minimum.

After seeing positive results, learning rate was further lowered 10 times more to 10−5.
This change in learning rate made networks more consistent as shown in figure 3.6c.
After the first epoch total loss for all networks no mater the batch size did not exceed
total loss line for guessing averages. Batch size of 10 converge after 3 epochs at the
same loss. And as before bigger batch sizes perform worse but seem to start catching
up towards the end.

Lastly lowering learning rate to 10−6 gave worse results, shown in figure 3.6d. Networks
with batch size of 100 are not able to learn anything after first epoch, and the idea of
using a learning rate lower than 10−5 was scrapped.

A total of 8 different tests were performed. Out of those, 3 were made after the discovery
that lower learning rate had a great impact. After this the unmistakable value of a proper
learning rate was learned. The test showed that optimal learning rate should probably
be somewhere between 5 ∗ 10−4 and 10−5 as a good rule to follow. It was decided that
going forward, the learning rate default should be changed to 10−4. This was due to that
learning rate having a decently optimal learning curve, as well as never getting stuck in

35

3. Development

any local minimum. If needed, different learning rates around this new reference could
be tested.

3.3. Creating a reference network

It was decided to create a reference network as a way to determine the performance of new
networks. This reference would be a constant to measure the new networks against, to
objectively determine which yielded the greatest improvements. As a reference network
AlexNet was chosen. Today image classification is a popular field in machine learning.
A lot of research has been done on different neural networks just for this task. Our
hypothesis is that the better neural networks get at classification the worse it get at
performing other tasks like regression. The reasoning behind choosing AlexNet because
it’s quite a simple network that used to be arguably the best convolutional neural network
in 2012, among other things winning ImageNet challenge that same year (Krizhevsky,
Sutskever, and Hinton 2012). It was also the network model we had spent some time
debugging in section 3.2, so we possessed some knowledge already. Table 3.2 shows the
properties and parameters for the reference network.

Network model Optimiser Learning rate Loss function Batch size Epochs
AlexNet Adam 0.001 MSE 10 50

Table 3.2.: Hyperparameters chosen for reference network.

Training was done on data set with 100 000 images with a few different parameters.
Trying RMSprop and Adam optimizers, MSE and MAE loss functions and changing es-
timated coordinate parameters. In total this creates eight experiments. All experiments
where run for 50 epochs with a batch size of 10 and learning rate of 0.001. The astute
reader will notice this learning rate is not the more optimal one found in chapter 3.2.
This was due to simultaneous work the tasks and the solution not having been found
at this time. Due to there being around a 20% chance of getting stuck, every test was
manually vetted for this. Only one of the eight tests got stuck. That test was promptly
restarted and completed without problems.

In figure 3.7 eight histogram plots show distribution of parameter errors made by network
estimating test data set of 10 000 images. Top 4 figures are of networks with polar
coordinates (ϕ is measured in angles). Bottom figures are with cartesian coordinates.
First two columns used MSE loss and last two columns use MAE loss. The first and
third columns use Adam as optimiser, while second and forth columns use RMSprop.

These results show that MAE create a overall more precise network while not sacrificing
performance on outliers. Overall networks trained with MAE perform better, when
measured with MSE or MAE loss. Networks estimating cartesian coordinates generally

36

3. Development

Figure 3.7.: Histogram showing deviation from ground truth in different settings.

37

3. Development

perform better, having lower overall MAE and MSE. Trying different optimizer did not
show a meaningful differences between there performance.

3.4. Hyperparameter optimisation

In this section work was started on optimising the hyperparameters for the machine
learning. Using the hyperparameters network model, optimiser, learning rate, loss func-
tion, batch size, and epochs, work was started to create the best possible machine
learning program. How good the networks performed are judged against the reference
network and whichever has the lowest loss.

Choosing the optimizer

There are a lot of different optimizers for machine learning. But as found in this paper
(Li et al. 2022, p 7008) all of them tend to converge at the end of training. The paper
notes that although requiring more computation, Adam performed the best. Adam was
chosen as the optimizer due to this and being simple to implement. It also boasts a
small memory requirement and being computationally efficient (Kingma and Ba 2017).
The main strengths of Adam lies in it’s ability to converge quickly on data with sparse
features. Since this project generates images with very sparse features, Adam should
perform well. Adams weakness according to Li et al. is likeliness to converge to a sharp
minimum. This problem was already solved in chapter 3.2 by adjusting learning rate.
When this was accounted for, Adam performed better across all tests, as shown in figure
3.8 below. Adam was then tested against RMSprop to make sure the hypothesis was
correct. Both networks were ran with the same weight and biases on polar and cartesian
coordinates. Adam did not require any noticeable increase in computation time. These
results were enough to decide that Adam was the best optimiser moving forward.

Loss function choice

There are two main loss functions for regression to choose from. These are MAE(Mean
Absolute Error) and MSE(Mean Square Error). Data set and outliers in it is the biggest
factor in deciding what loss function should be used. By calculating absolute error MAE
is more robust to outliers in training data set, while MSE put importance on outliers.
On the other hand, MSE produces a differentiable result that enables control over the
update rate. In contrast, the result obtained from MAE is non-differentiable, making it
impossible to determine the update speed during optimization (Li et al. 2022). For our

38

3. Development

Figure 3.8.: Total loss over 50 epochs using Adam and RMSprop.

39

3. Development

(a) Images showing 0 degrees rotation (b) Images showing 359 degrees rotation

Figure 3.9.: Images showing the lack of visual disparity between large numerical dispar-
ity.

synthetic data set where outliers are few, MAE looks more attractive. And as mentioned
previously in chapter 3.3, MAE performed better in figure 3.7.

Choosing which parameters to predict

A choice had to be made between predicting cartesian or polar coordinates. Originally
it was planned to run the test on polar coordinates, but this caused suboptimal results
due to ϕ having a periodic behaviour. This can cause the loss function algorithm to have
problems distinguishing between very low and very high values of ϕ. It also creates false
negatives when around these periodic checkpoints. For example, if the ground truth
is 0 degrees and the network guesses 359 degrees. The network would see this as an
error of 359 degrees, while in reality it was only 1 degree. Figure 3.9 shows how similar
these two rotations look while being as far apart as possible numerically. Cartesian
coordinates avoids this problem but might perform worse. Comparison between the two
are difficult to directly measure as they have different ranges which leads to different loss
magnitudes. A decision to run two experiments, one with polar and one with cartesian
coordinates was done. This was to see if the difference between the coordinate systems
caused any noticeable problems.

Figure 3.7 earlier showed that there was not a noticeable decrease in quality using either
cartesian or polar coordinates. The MAE losses are roughly the same between the
coordinate methods, while the MSE losses varies more. While cartesian coordinates
do better in all but 1 of the 16 results, it is not a huge difference. Since a reference
network needed to choose one of the two options, the choice was made to use cartesian
coordinates in tests going forward. When looking at MSE loss function results of polar
coordinates, the resulting loss was as much as 67% higher (369 vs 221) than cartesian.
Cartesian coordinates offers additional versatility by being able to perform well with

40

3. Development

both MAE and MSE.

Another problem was predicting RE and χ. When these have the same ratio between
them, they are indistinguishable from one another. Instead, an attempt was made to
guess the ratio between the two interconnected parameters. This proved more useful
when comparing total loss and was therefore deemed better. Later this was changed to
guessing RE while χ was a constant value. This is essentially the same, but makes it
more intuitive and makes data generation easier. It should be possible to estimate RE

after finding the distance to the lens and source. Finding this distance is not possible
on our synthetic data. It is possible to do with real sources manually, and as such could
prove useful later.

Other parameters relevant to estimate were σ1, σ2, and θ, all properties of the source.
The source model chosen was set to elliptical. Elliptical sources are not necessarily more
realistic or common, but were thought to be more interesting than spherical ones. This
was merely a matter of preference, and as such we went for the recommended source
model.

In the end the parameters were grouped into two sets for testing and training. One
test tried to predict polar coordinates (r, ϕ) and the other cartesian (x, y). The other
parameters predicted for both groups were RE, σ1, σ2, θ.

Another thing to consider was whether or not to limit the outputs. This way the
neural network would be limited in the range of outputs, allowing only results the image
generation could make. This would speed up the start phase of the machine learning
where the network is guessing multiple orders of magnitude off. While it would have its
uses, it was decided against on the basis of scalability. Fitting a range to our synthetic
data would require more work later when changing to real data. Since the end goal of
this interdisciplinary project is to use the machine learning on real data we don’t know
enough about yet, this idea was scrapped.

Creating a data set

At the start of this project testing and training was done with a data set of elliptical
sources and pointmass lens. This was because elliptical source are more interesting than
spherical source which are more researched. Although pointmass lens model is precise
mathematically, it is an idealisation that does not occur in nature. As a starting point
however it looked good enough. Python code below shows the original settings used to
create the images.

def getline(idx ,chi=0,nterms=16):

if 0 == chi:

41

3. Development

(a) Artifacts showing around object (b) Increased radius removing artifact in 3.10a

Figure 3.10.: Simulator showing how difference in radius can impact visual artifacts.

chi = randint(30 ,70)

Source

sigma = randint(1,60)

sigma2 = randint(1,40)

theta = randint(0,179)

Lens

einsteinR = randint(10,50)

Polar Source Co-ordinates

phi = randint(0,359)

R = randint(einsteinR ,100)

Cartesian Co-ordinates

x = R*np.cos(np.pi*phi/180)

y = R*np.sin(np.pi*phi/180)

After a while data sets were pivoted towards using SIS roulette as lenses. This was
done because SIS, despite not being possible, is more realistic to nature. There is much
less work done with SIS compared to point mass. However because the model uses
roulette formalism it is limited by what it can produce. The center of the roulette is
precise, but the further out from center the less precise the model becomes. This creates
artifacts around the model. Figure 3.10 shows how allowing certain combinations of
parameters can cause visual artifacts. This was dealt with by fine tuning parameters of
data generation. Below is a code snippet showing the modified code to generate images
without these artifacts.

maxR = int(imgsize/5)

minER = 5

def getline(idx ,chi=50 ,nterms=50):

if 0 == chi:

42

3. Development

chi = randint(30 ,70)

Lens

einsteinR = randint(minER , 50)

Polar Source Co-ordinates

phi = randint(0,359)

R = randint(26, maxR)

si = int(0.4 - einsteinR*0.05 + R*0.282)

if si < minER:

einsteinR = randint(minER , 50)

R = randint(28, maxR)

si = int(0.4 - einsteinR*0.05 + R*0.282)

Source

sigma = randint(minER , si)

sigma2 = randint(minER , si)

theta = randint(0, 179)

Cartesian Co-ordinates

x = R*np.cos(np.pi*phi/180)

y = R*np.sin(np.pi*phi/180)

Equation 3.4 was found by experimenting in the simulator. Having RE as 50 constantly
while changing distance from mass to source, maximum σi (”si” in python code) was
found that wouldn’t stretch out into artifacts. After collecting data points, equation 3.3
was calculated that would cover the data. The same method was used to find equation
3.2 for RE with a constant distance finding the biggest σi. This helped, but made a new
problem of sources being possibly too small. Since increasing source size would lead to
artifacts, increasing the maximum distance from center of mass to source was the only
option. For this to be possible bigger images had to be made. The images were increased
to a resolution of 1000x1000. Afterwards images are centered on the light distribution
center, and then cropped into 400x400 resolution images. This was the same resolution
the data generation made previously. The C++ code had to be edited for all of this to
be achieved, see Appendix B. Luckily, the groups limited C++ knowledge was enough.
In the end the biggest possible sources could barely fit into the final centered image,
which was the goal. This meant that for all the edge cases tested, the data generation
held up.

f1 = 2.5−RE ∗ 0.05 (3.2)

f2 = −2.1 +R ∗ 0.282 (3.3)

σi = f1 + f2 = 0.4− ER ∗ 0.05 + r ∗ 0.282 (3.4)

Another criteria is that the galaxy can not be too small either. This is because we need

43

3. Development

enough details after cropping to make out distinguishing details. Setting a minimum
size of the source allows for enough details, making sure the machine learning algorithm
has a realistic chance. This was done by checking if σi was lower than the lowest possible
RE. If it was, the data would be remade with new parameters that could not generate
such a small source.

After deciding all the above, one data set for training and one for testing was created,
with 100 000 and 10 000 images respectively. These images are the base for all further
testing and results. Running the original test of the old code on this image set gener-
ated almost identical loss per sample, proving it was not any worse than the old data
generation while generating more complex and unique images.

3.5. Achieving the best results

At this point in the project work shifted toward achieving the best possible result. In this
case that means minimising loss. Using all the knowledge accumulated so far, tests would
be performed on multiple neural networks with different settings and modifications.
Since previous research on this topic is very sparse, excessive testing of different networks
architectures had to be done. The best results would be decided on which had the lowest
MAE and MSE loss.

Hyperparameters

First the hyperparameters had to be decided upon. After finding the importance of
learning rate, a new experiment was set up. To be sure that our finding transfer to
other network architectures, a test with three different learning rates were done on the
Inception-v3 architecture as well. Figure 3.11a shows a histogram of the deviations from
ground truth with MSE and MAE loss with different learning rates. Results show the
best performance is achieved with learning rate of 10−4. This learning rate has the
smallest amount of spread on all estimated parameters in the histograms and the least
loss. This fits what was found earlier when encountering the estimation problem with
AlexNet in chapter 3.2. However the perfect learning rate may lie somewhere between
10−4 and 10−5. For consistency between tests and due to not having enough time to test
different learning rates for all the networks, a decision to use 10−4 was made.

Since this chapter is to achieve the best result, the different networks should standardise
some things. Henceforth, all tests ran will use the same default hyperparameters unless
stated otherwise. All networks will be tested on the same data sets of 100 000 training
images and 10 000 test images. Batch size will be set to 10, learning rate to 0.0001, epochs

44

3. Development

to 100, and the network model will be unmodified and if it’s possible the pretrained
weights will be used. When some hyperparameters are changed, the ones not mentioned
can be assumed to be the default. All of the networks have randomised weigths and
biases, with the exception of the pre-trained ones.

Network settings and modifications

The last tests will try transfer learning and changing the last layer with two new fully
connected layers. The new layers reduce the size from 1024x1024x1 to 512x512x1, then
again to 256x256x1, similar to the added layers to AlexNet in figure 2.2c. Figure 3.11b
shows the results of these tests. The testing suggest that networks with pretrained
weights or added layers perform better than randomly initiated weights on default net-
work. Adding both changes to the network however made it perform worse than a
network with only transfer learning. It still performed better than not being pretrained
and with no extra layers. It can be difficult to visually see the difference in the his-
tograms, but the MSE and MAE loss on top of the figures shows there is a difference.

When the search for the best network began, the need for more computing power arose.
The group was given access to NTNUs HPC cluster ”Idun”. This is a HPC cluster that
consists of 80 high end GPUs and hundreds of cores. This allowed us to not only run
networks with higher requirements, but also to run multiple instances at the same time.
Idun runs slurm scripts that had to be learned. This took a couple of days to completely
learn, but was not problematic as the time was quickly saved. Idun allowed us to run
multiple jobs at once. At most 8 jobs were run simultaneously, allowing massive time
saves.

In the end it was decided to take the best performing networks and trained them for 100
epoch more with lower learning rate of 10−5. Lower learning rate was chosen because
network is already close to it’s best performance and lower learning rate might give
it a chance to improve closer to local optimum. Since inception-v3 and VGG-19 BN
where very close to each other in performance both where additionally trained. Figures
3.12a and 3.12c show that both networks performed identically, with VGG being more
stable. Extra training of these networks in figures 3.12b and 3.12d gave marginally
better results. At the beginning of training the total loss spikes up. This is because of
Adam optimisers moving averages witch needs a few epochs to settle down. After this
spike the total loss for training data set improved throughout the whole training period.
Total loss on test set settles down in the firs half of the graph.

45

3. Development

(a) Testing different learning rates

(b) Testing transfer learning and adding extra layers

Figure 3.11.: Histogram showing the deviation from ground truth with Inception-v3 ar-
chitecture with different modifications.

46

3. Development

(a) Inception-v3 100 epochs (b) Inception-v3- 100+100 epochs

(c) VGG-19-bn 100 epochs (d) VGG-19-bn 100+100 epochs

Figure 3.12.: Graphs showing the total MAE loss per epoch on test and training data
set.

47

4. Results

In this chapter the results from chapter 3.5 will be presented alongside comparisons
between them, and comparison to the reference network. Results here are considered
the final results of the project. Figure 4.1 shows all the best total loss results from each
network in one figure. Figure 4.2 shows these same networks as histograms, showing
their deviation from the correct values. Due to the large amount of results and data,
this chapter will only contain any result that will be discussed further in chapter 5. All
results gathered from all tests can be found in Appendix C.

4.1. Results deemed interesting

This section includes results from individual network models that will be discussed in
chapter 5. It will group together results based on what is being discussed.

Figure 4.3 shows the best results for both VGG-19 BN and Inception-v3 when limited
to 100 epochs.

Figure 4.4 shows the results from different configurations of Inception-v3 and VGG-19.
The lowest MSE and MAE loss for both were achieved with transfer learning (pretrained)
and no added layers. VGG-19 BN achieved better MSE loss (10.8 vs 12.6), but the two
achieved the same MAE loss (0.82).

Figure 4.5 shows the best results from VGG-19 BN and Inception-v3 from figure 4.3. In
this figure, the x-axis is limited to +/-5.

Figure 4.6 shows the total loss per epoch and histogram performance of MnasNet. This
network never escaped local minimum.

Figure 4.7 shows the best results achieved by the vision transformer networks.

Table 4.1 shows the MSE and MAE loss for each parameter for each of the 4 networks
with lowest loss overall. θ has the highest loss for all networks, while σ1 and σ2 performs
the best.

48

4. Results

(a) AlexNet (b) Inception-v3 (c) VGG-19 BN

(d) ResNet-152 (e) DenseNet-201 (f) SqueezeNet-v1.1

(g) MnasNet-6 (h) EfficientNet-B7 (i) EfficientNet-v2-l

(j) Vision Transformer-16-b (k) Swin Transformer-v2-b (l) ConvNeXt-base

Figure 4.1.: Figures showing total loss (logarithmic) with different network architectures.
Subfigures only show the best result achieved with that network model. The
blue line represent training data set and yellow line represents testing data
set.

49

4. Results

Figure 4.2.: Histograms from all the best performances for each network when limited
to 100 epochs.

50

4. Results

(a) Inception using 10−4 learning rate (b) Inception-v3 using transfer learning
and 10−4 learning rate

(c) VGG-19 BN using 10−4 learning rate

Figure 4.3.: Histograms showing the lowest deviations from ground truth using VGG-
19 BN and Inception-v3.

51

4. Results

Figure 4.4.: Histograms showing different configurations of Inception-v3 and VGG-
19 BN run for either 100 epochs or 200 epochs.

52

4. Results

(a) VGG-19 BN pretrained for 200 epochs (b) Inception-v3 pretrained for 200 epochs

Figure 4.5.: Histograms showing the best results from Inception-v3 and VGG-19 BN
zoomed in to +/-5.

Network Inception-v3 VGG-19 BN
Epochs 100 epochs 100+100 epochs 100 epochs 100+100 epochs

Parameter MSE MAE MSE MAE MSE MAE MSE MAE
x 10.4 1.50 5.80 1.15 9.01 1.62 6.05 1.89
y 9.66 1.53 9.77 1.18 9.21 1.64 6.14 1.20
RE 1.05 0.69 0.58 0.49 1.04 0.71 0.57 0.49
σ1 0.28 0.16 0.33 0.12 0.42 0.20 0.35 0.14
σ2 0.29 0.17 0.33 0.12 0.41 0.19 0.35 0.14
θ 60.5 2.13 58.9 1.82 56.0 2.10 51.4 1.79

Table 4.1.: Table showing best performing networks on separated parameters with MSE
and MAE loss.

53

4. Results

(a) MnasNet total loss per epoch

(b) Histogram of MnasNet prediction de-
viations

Figure 4.6.: Histograms showing the best results from Inception-v3 and VGG-19 BN
zoomed in to +/-5.

54

4. Results

(a) Vision Transformer (ViT-16) with
0.0001 learning rate.

(b) Swin with 0.0001 learning rate.

(c) ConvNeXt with 0.0001 learning rate.

Figure 4.7.: Histograms showing the performance of different vision transformers.

55

4. Results

(a) Inception-v3 0.0001 learning rate (b) Inception-v3 0.001 learning rate

(c) Inception-v3 pre-training 0.001 learning
rate

(d) Inception-v3 pre-trained 0.0001 learning
rate

Figure 4.8.: Histograms showing the deviations from ground truth on different Inception-
v3 configurations.

56

4. Results

(a) VGG-19 BN 0.0001 + 0.00001 learning
rate

(b) VGG-19 BN 0.0001 learning rate

Figure 4.9.: Histograms showing the deviations from ground truth on different VGG-
19 BN.

57

4. Results

Network Top 1% accuracy on ImageNet Lowest achieved MAE
Swin Transformer-v2-b 87.1% 2.93

ConvNeXt-b 85.8% 1.76
EfficientNet-v2-l 85.7% 1.91

Vision Transformer-b/16 85.22% 9.8
EfficientNet-b7 84.4% 1.39
ResNet-152 82.4% 1.42
MnasNet-6 76.7%(MnasNet-A3) 32.48

DenseNet-201 77.42% 2.02
Inception-v3 77.12% 0.82
VGG-19 BN 74.4%(VGG-16) 0.82
AlexNet 63.3% 2.91

SqueezeNet-v1.1 58.19% 3.16

Table 4.2.: Table comparing results in ImageNet competition and results achieved in this
project.

Network model Optimiser Learning rate Loss function Batch size Epochs
VGG-19 BN Adam 0.0001 MSE 10 100+100

Table 4.3.: Hyperparameters chosen for best performing neural network.

Figure 4.10 shows histogram of the best four results. The figure has each parameter
separated.

Table 4.2 compares the results from ImageNet challenge for top 1% of accuracy to the
the results achieved in this project.

4.2. The best performing network

Table 4.3 shows the hyperparameters for the lowest MAE and MSE loss achieved. This
was achieved by VGG-19 BN, using transfer learning and two different learning rates.
The network was first trained 100 epochs using 10−4 learning rate. Afterwards the
network was trained for another 100 epochs with 10−5 learning rate. This achieved a
MAE loss of 0.82 and MSE loss of 10.8.

58

4. Results

Figure 4.10.: Histogram showing the deviation from ground truth on all estimated pa-
rameters.

59

4. Results

(a) AlexNet(Reference Network) pretrained
+ trained for 100 epochs with 0.001 learn-
ing rate

(b) VGG architecture pretrained + trained
100 epochs with 0.001 learning rate + 100
epochs with 0.0001 learning rate

Figure 4.11.: Comparing best result to reference network.

60

4. Results

4.3. How to run the system

A guide showing a possible way to run the systems can be found in Appendix G. All
code can be found in Appendix A and B.

61

5. Discussion

This chapter aims to discuss the results and discoveries presented in chapter 3 and
chapter 4. It will be contained to the parts relevant to the project itself. Anything
about the project management, learning outcomes, or prerequisite knowledge can be
found later in chapter 6.

5.1. Blunders to learn from

Use of Idun should have been done right from the start. We abstained from using it
because of our believe that it might take a long time to setup and get it running. This
was not as complicated as it seemed, and it only took a few hours to set up and one day
to troubleshoot. The performance and the capacity for network training is much greater
than what we used for most of the project. The reason for using Idun is that some of
the models require more GPU memory than what we had.

Idun had significantly better hardware than otherwise obtainable with personal comput-
ers. Idun can run the code on an A100 GPU, which has significantly more tensor cores
than currently possible on a normal personal desktop computer. Idun also allowed us
to run multiple instances at once. This saved a good amount of time in the end, as one
test of one network could take upwards of 50 hours, even on the better hardware. The
time saved by Idun was crucial to being able to test this many network architectures,
and without it many networks would have gone untested. Some tests took up to 5 days
to run through Idun. The estimated effectiveness of Idun is around 10-12 times faster
than what we could do beforehand on bigger models. This combined with being able to
run up to 8 of them simultaneously allowed us to run around 80-100 times quicker than
previously. While this sounds like a lot, at the start of the project work was spread on
different task unrelated to training networks. As such the need for Idun was lower than
it may appear, although work with Idun still should have been prioritised earlier.

Polar coordinates in 3.7 showed that estimating ϕ was more difficult and prone to devi-
ations if using MSE loss function. If we found this out earlier we could have saved some
time by not running as many tests with polar coordinates, and focusing on cartesian
coordinates the entire project. Figure 5.1 shows a histogram of the results from the

62

5. Discussion

reference network with coordinates separated. This highlights that there is little to no
difference in any of the other parameters guessed by the network. Only 5.1a shows a dif-
ference, and it seems like cartesian coordinates maintains a slimmer histogram and lower
MAE/MSE loss. This shows that selecting cartesian coordinates was the correct choice.
While the MAE loss can swing either way when trained with MAE loss function, the
MSE loss is not close. Cartesian always performs better, sometimes even significantly
better. This signals there are many outliers in the polar coordinates data not visible in
the histograms.

5.2. AlexNet predicting same output for different inputs

The problem of AlexNet getting stuck guessing average values was unexpected to us.
The group had never encountered such a problem, and it was difficult to understand
why it was happening.

Contrary to our expectations increasing learning rate did not improve performance. We
had expected it to be a problem of not having high enough learning rate, therefore not
being incentivized to change. Contrary to this expectation, lowering learning rate by 10,
or even 100 times prevented the network from getting stuck at the local minima. This
lower learning rate even made it perform better.

This problem was one we did not fully understand the reason behind on a deeper level.
The group understands roughly why lowering learning rate is useful when facing this
problem, but because the underlying reasons for this problem is not understood. It is
hard for us to understand what lowering learning rate is doing to fix it specifically.

5.3. Achieving the best results

Searching for best performing network, showed us that bigger data sets don’t lead to
higher accuracy. This was not very surprising, as we had an idea already that 100
000 images was more than enough. While classification networks usually want as many
images as possible to classify, the nature of using them for regression makes this different.
The images we created were also decently limited in nature, with not much changing
between them. This means a lower amount of images in the training data set is required
for the network to properly learn. While 100 000 images seemed to be more than
necessary, it is unknown what the lower limit necessary for good learning is.

Overall a few conclusions can be draw from these experiments. The most important

63

5. Discussion

(a) AlexNet(Reference Network) result for only coordinates

(b) Histogram showing all other parameters

Figure 5.1.: Histograms separating the results from coordinates and the other parameters
estimated by AlexNet reference network.

64

5. Discussion

parameters in machine learning are learning rate, batch size and epoch number, with
learning rate seeming like the most important. To the contrary of our expectations,
bigger batch size did not lead to better performance of the network. Instead it made
performance worse with added tendency to get stuck on local minimum. Our results fall
in line with the findings of Master and Luschi (Masters and Luschi 2018). Bigger epoch
number gives more time for network to learn and potentially jump out of locally found
minimum.

Training for more than 100 epoch

It’s clear that training for more epochs with lower learning rate gives better performance.
It is a marginal increase, but the increase in performance is still ever-present. Figure
4.1 show that most networks converge by the end of 100 epochs. Especially looking at
the test data set total loss. Figure 3.12 show that networks are capable of getting lower
loss on training data set with more training, but that does not convert to better loss
results on test data. With this it can be assumed that the performance gained from
the following 100 epochs are too small. The networks are likely to be near their global
minimum, where they can not get much better. Any decrease in total loss seen after
that point will only be the network getting more known with the training data set. This
means that it will get better at solving those specific images with no regards to if the
network is actually improving. Overall we are happy with this being the case, as it shows
the networks got close to the limits after 100 epochs.

5.4. Discussing best network results

Inception-v3 and VGG-19 BN performed the best compared to all other networks in this
project, with VGG-19 BN being the better one. It delivered slightly worse MAE loss but
have cosiderably better MSE loss on test data set. Both networks managed to get a MAE
loss close to 1 after 100 epochs and then lowered it under 1 with an extra 100 epochs
of training. This was achieved by tuning learning rate to 0.0001, batch size to 10, using
transfer learning, MAE loss function and Adam optimizer. All the hyperparameters for
both the networks are shown in table 4.3. In the end the best overall performance was
from VGG-19 BN network architecture.

Figure 4.4 shows different configurations of Inception-v3 and VGG-19 BN architectures.
This shows that Inception-v3 can compete with VGG-19 BN for the best network. Inter-
estingly, Inception-v3 performs worse with added layers. The cause for this is unknown,
but added layers proved to go either way in this project so it was not unexpected. Both
network model managed to reach the same MAE loss of 0.82, a really solid result. At

65

5. Discussion

MSE loss VGG-19 BN edged out Inception-v3 with only 10.8 loss against 12.6. These
networks were very close in all results.

Figure 4.5 shows the best results from Inception-v3 and VGG-19 BN, with x-axis limited
to +/- 5. Zooming in this way allows us to see what both networks excels at, and to see
if one network does something better than the other. When looking at the histograms
closer, it appears that there are differences in how well they predict each parameter.
Figure 4.5b shows that Inception-v3 struggles to very accurately predict y and θ. While
VGG-19-b in figure 4.5a performs overall well, it also struggles with estimating θ. The
reasons for having difficulty predicting y is unclear. A hypothesis for the difficulty shown
predicting this is that it is related to θ. Since both can affect where the object has shifted
in vertical direction, it could be very difficult to predict them both accurately. All other
parameters estimated follow a really good curve.

As shown by figure 4.10, the networks are really good at estimating σ1 and σ2. RE is
worse, but not as bad as the other three. The networks all struggle at roughly the same
variables, x, y, and θ. This builds on what was just discussed, and shows that neither
of the networks can overcome this. It makes intuitive sense to us that the networks
are better at estimating σ1 and σ2. The impact of these two parameters are clearly
visible in the images. Higher values of these parameters leads to more white pixels in
the image. On the other hand, x, y, and θ are sort of intertwined. It can be difficult
to know if the object is moved along and x and y axes, or if the object is rotated.
Circumnavigating this issue can prove to be difficult without further limiting the image
generation parameters. These findings are supported by table 4.1 showing the losses for
each parameter in numerical values. This table shows that while the histogram might
attribute the three parameters equal blame, θ has by far the largest deviation, being
around 6 times larger than x and y.

Determining if the results achieved are satisfactory is difficult. On one hand, we achieved
a really low MAE and MSE loss, especially when compared to the work that was already
done. Even after increasing the prediction difficulty by increasing image size, and by
extension the parameter ranges. We also researched and found which network architec-
tures are well fit for these problems, and how modifying them can benefit us. On the
other hand, it is impossible to say if these results are good, since there is no real image
reference. We believe the results are really good, and with more advanced methods of
calculating the parameters discussed later in subsection 5.6 the results could become so
good as to be considered exceptional.

66

5. Discussion

5.5. Interesting tidbits

Vision Transformer (ViT), Swin Transformer, and ConvNeXt are all vision transform-
ers. ViT and Swin performed significantly worse than any other type of deep learning
networks with the exception of MnasNet-6 as seen in figures 4.1j, 4.1k and 4.1l. While
visions transformers undoubtedly are one of the blooming fields in machine vision, it
was outperformed by general convolutional networks here. The reason is expected to be
because vision transformers are much harder to optimise. It is possible that with proper
hyperparameter optimisation and models they can outperform the other convolutional
networks. We did not have enough time to tune these networks, as they were among the
last networks we tested.

One of the most interesting findings with vision transformers were that ViT and Swin
performed practically equally well on the training and testing data sets. Figure 4.1 shows
that when compared to all the other networks no other network comes close to this low
of a deviation. This can indicate that they do not only get better at prediction the
training data, but generally gets better at the task. This is wanted behaviour and good
to see, although some discrepancy is expected between the two. Despite this wanted
behaviour, the vision transformers did not perform as well as the others.

SqueezeNet also had an interesting quirk where the network would predict 0 for some
parameters seemingly randomly. The network would predict normal/good values around
half the time, and the other half it would guess 0 no matter what the ground truth was.
This only happened with the same two parameters, x and y. Adding more layers to the
end of the network seemed to completely fix this behaviour. After some researching as
to why this could be the case, nothing was found. It only happened with SqueezeNet,
and was fixed after adding more layers, so it was not a problem we concerned ourselves
with due to prioritisation.

Figure 4.6 shows that MnasNet got stuck in local minimum. Fixing this could probably
have been done by altering learning rate. As time to run experiments was running out
at this point, work on this was halted. The short time left was spent on running more
experiments on the network that had performed well already.

Another interesting thing found was that pre-training the networks with transfer learning
could have a positive impact. These pretrained models are pretrained to be specifically
better at classification. Therefore, it was interesting that certain networks could perform
significantly better using these methods. For some networks the effect was negligible and
for some it was negative, but for most it seemed to have a positive effect. This could
indicate that better classification networks do better at regression tasks if the regression
task only has visual inputs. This gives hope for further work with classification networks
if wanted.

67

5. Discussion

One of our initial theories was that general classification networks would perform bet-
ter for regression than specialised ones. When comparing the results on both ends in
table 4.2, it seems like there is a correlation to some degree. Both VGG-19 BN and
Inception-v3 scores significantly lower than the best classification networks in the Im-
ageNet challenge. After this however, it is hard to find any conclusive links between
the two results, so the hypothesis is not considered to be true. The vision transformers
should most likely have performed better than they did, which would further disprove
this hypothesis as well.

5.6. Suggestion for future work

Our supervisors expressed interest towards the end of the project in having the machine
learning algorithm predict amplitudes instead. This is essential to develop roulette
formalism further. This would not be a massively difficult process. Changing the pa-
rameters guessed would be very simple. It is unsure if the results would be as clear and
as good. A way to extract the amplitudes when generating the images were created for
us as well in case we had time. However, running all the tests again to find the best
network would be too time consuming. The work already done should at least make it
easy to change to predicting amplitude.

Another interesting thing the project could look into would be automatic learning rate
adjustment, such as AutoLR with Lion optimiser. It’s a method to change the learning
rate throughout the training process. Our method consisted of finding the best learning
rate manually, but this new method suggests there can be benefits to changing the
learning rate over time. Implementing and testing this would be time consuming, and
it is not clear to us how much of an improvement it would get.

The end goal of the project consists of running the code on real images. Our project was
too early into the process to have a good reason to do this. Obtaining the images and
their ground truth before having a good baseline machine learning implementation did
not make sense. With the work we have done, changing over to real images in the future
should be a lot easier, and hopefully the real data is similar enough to the synthetic
data that the implementation requires minimal changes.

Another thing that needs to be looked into is the image generation code. As found
in chapter 3.1, images with the same χ

RE
should not generate the same images. Our

supervisors have found these findings to be very interesting as it proves there is something
wrong somewhere. Either the code is wrong or the mathematical framework is wrong.
A look into the C++ code used to generate images is needed to look into this and the
image artifacts.

68

5. Discussion

In the future, there might be regression models that can rival classification networks
using images as inputs. Since regression based models are not currently good enough, it is
not recommended to use the currently very simple regression models possible. If the field
of regression models catches up, using one of these could prove to increase performance.
If this was implemented, inputs could even change from images to statistical data.

Networks struggled with estimating source angle (θ) the most. This is because of some
sources being generated spherically, that makes it impossible to estimate rotation. In
some close cases this is near impossible. If the program could somehow first determine
how spherical or elliptical a source is, it might be possible to improve this. For instance
if the program detects a perfect sphere, rotation prediction might be turned off as it’s
not needed. Otherwise, weights could be used, so that the more spherical the source is,
the less impacts the θ prediction has.

Another possible implementation could be redshift analysis. This could be used to figure
out the distance to the observed object. With a known distance, it should be possible
to figure out χ, which in turn means it should be possible to determine RE. This would
eliminate one of the bigger weaknesses of this model, which is the problem with fixed
χ
RE

ratio making the same images.

69

6. Retrospective

This chapter discusses thoughts about the project from a meta-perspective. Project
management, learning outcomes and prerequisite knowledge will be briefly touched upon.

6.1. Project management

The group had decided to run a method of development where each person worked
on their own. Combined with frequent communication through working together, this
yielded a good amount of knowledge gained and shared. Since there was no work that
relied on two people working on it at once through the entire project, this worked
well. Sometimes when stuck, the group would switch jobs to get new perspectives on
the problems. The few times both were stuck, the group had excellent help from the
supervisors.

In hindsight the only thing lacking was a better to-do list curated more often. This
would circumvent the problems of spending time not working on the most important
tasks. Having a formal meeting once per week in addition to the informal conversations
every day would help achieve this. In return this would ensure that work was always
being focused on what was important.

6.2. Prerequisite knowledge

This section will have a list of the prerequisites for doing this task. Without these, the
group would struggle to gather enough knowledge to complete the task in time.
List of prerequisite knowledge:

• Python programming

– Python packages (matplotlib, pandas)

– Intermediate programming knowledge

70

6. Retrospective

• Basic knowledge of machine learning (theoretical)

• Knowledge of coordinate systems

• Basic physics knowledge

6.3. Learning outcomes

This subsection will include points the group learned about while doing the project.
Some of the things were built on knowledge already obtained, while other things had
to be learned from scratch. List of relevant things we learned this project (bold/italic
items are considered important and will be expanded upon below):

• Project management

– Using GitHub

• Machine learning

– Machine learning networks

– Learning optimizers

– Programming neural networks

– Python programming

∗ Using PyTorch

∗ Good coding practice

– More things

• Programming

– Shell scripts

– Basic C++ understanding

We learned a lot about the structures of machine learning networks, and how to program
them. Throughout the project, we learned more and more useful pieces of knowledge

71

6. Retrospective

in a practical manner. Learning to implement and modify so many networks taught us
what they have in common, and by extension what makes each unique. This can allow
us to effectively use machine learning in the future.

When it comes to machine learning, we were able to put into practice what we had
learned previously in the programme. The little machine learning theory we had learned
already proved a good starting point, and we were happy to be able to apply it in a real
scenario.

72

7. Conclusion

The purpose of this thesis was to attempt to assist in the development of NTNUs research
effort on mapping dark matter. Since the given problem was very open ended, we had to
set our own goals and expectations. Through machine learning, we found the most likely
convolutional neural network candidates for such a task. Due to little previous research
on the topic, and none of it being open-source, a lot of testing and prototyping had to
be done. In the end, the results achieved were satisfactory. We also found theoretical
flaws in previous work. Alongside these, we proposed multiple different improvements
the project can implement going forward that we did not have time for. We hope our
contributions are helpful in making this project a success.

73

Bibliography

Aghanim, N. et al. (Sept. 2020). ≪Planck 2018 results≫. In: Astronomy & Astrophysics
641, A6. issn: 1432-0746. doi: 10.1051/0004-6361/201833910. url: http://dx.
doi.org/10.1051/0004-6361/201833910.

Anwar, Aqeel (Jan. 2022). Difference between alexnet, vggnet, ResNet and inception.
url: https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-
and-inception-7baaaecccc96.

Clarkson, Chris (Nov. 2016). ≪Roulettes: a weak lensing formalism for strong lensing: II.
Derivation and analysis*≫. In: Classical and Quantum Gravity 33.24, p. 245003. doi:
10.1088/0264-9381/33/24/245003. url: https://dx.doi.org/10.1088/0264-
9381/33/24/245003.

Congdon, A.B. and C.R. Keeton (2018). Principles of Gravitational Lensing: Light De-
flection as a Probe of Astrophysics and Cosmology. Springer Praxis Books. Springer
International Publishing. isbn: 9783030021221.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
Huang, X. et al. (Mar. 2021). ≪Discovering New Strong Gravitational Lenses in the

DESI Legacy Imaging Surveys≫. In: The Astrophysical Journal 909.1, p. 27. doi:
10.3847/1538- 4357/abd62b. url: https://doi.org/10.3847%5C%2F1538-
4357%5C%2Fabd62b.

Ingebritsen, Simon et al. (2022). ≪CosmoAI: A study of gravitational lensing through
simulation and machine learning≫. Bachelor’s Thesis. NTNU, pp. 10–17.

Khramtsov, Vladislav et al. (2019). ≪KiDS-SQuaD - II. Machine learning selection of
bright extragalactic objects to search for new gravitationally lensed quasars≫. In:
A&A 632, A56. doi: 10.1051/0004-6361/201936006. url: https://doi.org/10.
1051/0004-6361/201936006.

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimiza-
tion. arXiv: 1412.6980 [cs.LG].

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). ≪ImageNet Classifica-
tion with Deep Convolutional Neural Networks≫. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., pp. 1097–
1105. url: http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

Lecun, Y. et al. (1998). ≪Gradient-based learning applied to document recognition≫. In:
Proceedings of the IEEE 86.11, pp. 2278–2324. doi: 10.1109/5.726791.

74

https://doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1051/0004-6361/201833910
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
https://doi.org/10.1088/0264-9381/33/24/245003
https://dx.doi.org/10.1088/0264-9381/33/24/245003
https://dx.doi.org/10.1088/0264-9381/33/24/245003
https://doi.org/10.3847/1538-4357/abd62b
https://doi.org/10.3847%5C%2F1538-4357%5C%2Fabd62b
https://doi.org/10.3847%5C%2F1538-4357%5C%2Fabd62b
https://doi.org/10.1051/0004-6361/201936006
https://doi.org/10.1051/0004-6361/201936006
https://doi.org/10.1051/0004-6361/201936006
https://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/5.726791

Bibliography

Li, Zewen et al. (2022). ≪A Survey of Convolutional Neural Networks: Analysis, Appli-
cations, and Prospects≫. In: IEEE Transactions on Neural Networks and Learning
Systems 33.12, pp. 6999–7019. doi: 10.1109/TNNLS.2021.3084827.

Magro, Daniel et al. (June 2021). ≪A comparative study of convolutional neural networks
for the detection of strong gravitational lensing≫. In: Monthly Notices of the Royal
Astronomical Society 505.4, pp. 6155–6165. issn: 0035-8711. doi: 10.1093/mnras/
stab1635. url: https://doi.org/10.1093/mnras/stab1635.

Masters, Dominic and Carlo Luschi (2018). Revisiting Small Batch Training for Deep
Neural Networks. arXiv: 1804.07612 [cs.LG].

Morgan, Robert et al. (2021). ≪deeplenstronomy: A dataset simulation package for strong
gravitational lensing≫. In: Journal of Open Source Software 6.58, p. 2854. doi: 10.
21105/joss.02854. url: https://doi.org/10.21105/joss.02854.

Ranganathan, Hiranmayi et al. (2020). ≪Deep Active Learning for Image Regression≫.
In: Deep Learning Applications. Ed. by M. Arif Wani, Mehmed Kantardzic, and
Moamar Sayed-Mouchaweh. Singapore: Springer Singapore, pp. 113–135. isbn: 978-
981-15-1816-4. doi: 10.1007/978-981-15-1816-4_7. url: https://doi.org/10.
1007/978-981-15-1816-4_7.

Remmen, Grant N. (Nov. 2021). ≪Exploration of a singular fluid spacetime≫. In: General
Relativity and Gravitation 53.11. doi: 10.1007/s10714-021-02873-5. url: https:
//doi.org/10.1007%5C%2Fs10714-021-02873-5.

Rezaei, S et al. (July 2022). ≪A machine learning based approach to gravitational lens
identification with the International LOFAR Telescope≫. In: Monthly Notices of
the Royal Astronomical Society 517.1, pp. 1156–1170. issn: 0035-8711. doi: 10.
1093/mnras/stac2078. eprint: https://academic.oup.com/mnras/article-
pdf/517/1/1156/46441535/stac2078.pdf. url: https://doi.org/10.1093/
mnras/stac2078.

Russell, Stuart J. and Peter Norvig (2022). Artificial Intelligence: a modern approach.
4th ed. Pearson.

Tan, Mingxing et al. (2019). MnasNet: Platform-Aware Neural Architecture Search for
Mobile. arXiv: 1807.11626 [cs.CV].

Wilde, Joshua et al. (Feb. 2022). ≪Detecting gravitational lenses using machine learning:
exploring interpretability and sensitivity to rare lensing configurations≫. In: Monthly
Notices of the Royal Astronomical Society 512.3, pp. 3464–3479. issn: 0035-8711.
doi: 10.1093/mnras/stac562. eprint: https://academic.oup.com/mnras/
article-pdf/512/3/3464/43249501/stac562.pdf. url: https://doi.org/10.
1093/mnras/stac562.

75

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1093/mnras/stab1635
https://doi.org/10.1093/mnras/stab1635
https://doi.org/10.1093/mnras/stab1635
https://arxiv.org/abs/1804.07612
https://doi.org/10.21105/joss.02854
https://doi.org/10.21105/joss.02854
https://doi.org/10.21105/joss.02854
https://doi.org/10.1007/978-981-15-1816-4_7
https://doi.org/10.1007/978-981-15-1816-4_7
https://doi.org/10.1007/978-981-15-1816-4_7
https://doi.org/10.1007/s10714-021-02873-5
https://doi.org/10.1007%5C%2Fs10714-021-02873-5
https://doi.org/10.1007%5C%2Fs10714-021-02873-5
https://doi.org/10.1093/mnras/stac2078
https://doi.org/10.1093/mnras/stac2078
https://academic.oup.com/mnras/article-pdf/517/1/1156/46441535/stac2078.pdf
https://academic.oup.com/mnras/article-pdf/517/1/1156/46441535/stac2078.pdf
https://doi.org/10.1093/mnras/stac2078
https://doi.org/10.1093/mnras/stac2078
https://arxiv.org/abs/1807.11626
https://doi.org/10.1093/mnras/stac562
https://academic.oup.com/mnras/article-pdf/512/3/3464/43249501/stac562.pdf
https://academic.oup.com/mnras/article-pdf/512/3/3464/43249501/stac562.pdf
https://doi.org/10.1093/mnras/stac562
https://doi.org/10.1093/mnras/stac562

A. Appendix Cosmo-ML code

The code is in a open source Github repo: https://github.com/ModeS7/Cosmo-ML
Most of the changes made in code files for networks are delete code because of our
images having one channel non of transfer learning worked and that created allot of
errors, so all of it was removed.

The code below originally is created by our supervisor Hans Georg Schaathun and then
edited and used by us. The highlighted lines in the code is what we have contributed.

The following code below is from CudaModel.py:

#! /usrbin/env python3

"""

The MLSystem class provides defaults for all the components of

a machine learning system. The default implementation uses the CPU.

Subclasses should override key functions for more advanced systems.

"""

import torch

import torch.nn as nn

from torch.utils.data import DataLoader

from MLSystem import MLSystem, getArgs

from Dataset import *

import cudaaux

class CudaModel(MLSystem):

def __init__(self,model=None,criterion=None,optimizer=None,nepoch=2,

learning_rate=0.0001):

super().__init__(model,criterion,optimizer,nepoch, learning_rate)

if not torch.cuda.is_available():

raise Exception("CUDA is not available")

self.device = torch.device("cuda")

A1

A. Appendix Cosmo-ML code

self.model = self.model.to(self.device)

if args.weights:

self.model.load_state_dict(torch.load(args.weights))

if __name__ == "__main__":

args = getArgs()

print("CudaModel (CosmoML) test script.")

cudaaux.cudaDiagnostic()

print("Configuring ... ")

ml = CudaModel(model= 'vgg_pretrained')

ml.systemTest(args)

A2

A. Appendix Cosmo-ML code

The following code below is from MLSystem.py:

#! /usrbin/env python3

"""

The MLSystem class provides defaults for all the components of

a machine learning system. The default implementation uses the CPU.

Subclasses should override key functions for more advanced systems.

"""

import torch

import torch.nn as nn

from torch.utils.data import DataLoader

from torch.utils.data import Subset

import time

from tqdm import tqdm

from Dataset import *

from EvalObject import EvalObject, PredObject

from Networks.Inception3 import Inception3

from Networks.AlexNet import AlexNet

from Networks.ResNet import resnet18, resnet34, resnet50, \

resnet101, resnet152, resnext50_32x4d, resnext101_32x8d, \

resnext101_64x4d, wide_resnet50_2, wide_resnet101_2

from Networks.VGG import vgg11, vgg13, vgg16, \

vgg19, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn

from Networks.DenseNet import densenet121, \

densenet161, densenet169, densenet201

from Networks.EfficientNet import efficientnet_b0, \

efficientnet_b2, efficientnet_b3, \

efficientnet_b4, efficientnet_b5, efficientnet_b6, \

efficientnet_b7, efficientnet_v2_l, efficientnet_v2_m, \

efficientnet_v2_s, efficientnet_b3_5, efficientnet_b4_5

from Networks.ConvNeXt import convnext_tiny, \

convnext_small, convnext_base, convnext_large

#from Networks.NASNet import NASNetAMobile , NASNetALarge

from Networks.MnasNet import mnasnet1_0, mnasnet3_8, mnasnet6_0

from Networks.SqueezeNet import squeezenet1_0, squeezenet1_1

from Networks.Vision_Transformer import vit_b_16, vit_b_32, \

vit_l_16, vit_l_32, vit_h_14

from Networks.Swin_Transformer import swin_t, swin_s, swin_b, swin_v2_b, \

swin_v2_t, swin_v2_s

A3

A. Appendix Cosmo-ML code

from torchvision.models.inception import BasicConv2d

import torchvision.models as models

import argparse

class MLSystem:

def __init__(self, model=None, criterion=None, optimizer=None, nepoch=2, learning_rate=0.01):

"""Construct a Machine Learning system for CosmoSim data.

:param model: a pyTorch model instance; default `Inception3()`

:param criterion: a pyTorch loss function; default `MSELoss()`

:param optimizer: a pyTorch optimiser; default `Adam()`

"""

self.num_epochs = nepoch

self.batch_size = 10

self.learning_rate = learning_rate

self.device = None

self.nparams = len(CosmoDataset1._columns)

self.epochstrained = 0

self.incep = False

Initialize your network, loss function, and optimizer

if model == None: # For quick testing

self.model = AlexNet(num_outputs=self.nparams, extra_layers=False)

self.model = squeezenet1_1(num_outputs=self.nparams, extra_layers=True)

self.model = Inception3(num_outputs=self.nparams, extra_layers=True)

self.model = resnet152(num_outputs=self.nparams, extra_layers=True) # 101_32x8d, 101_64x4d wide_101_2 does not run on less than 8gb vram

self.model = vgg19(num_outputs=self.nparams) # 19_bn does not run on less than 8gb vram

self.model = efficientnet_b3_5(num_outputs=self.nparams, extra_layers=True) # b4 and v2_m does not run on less than 8gb vram

self.model = densenet201(num_outputs=self.nparams, extra_layers=True) # all run on 8gb vram, potentialy can enable memory saving with checkpointing

self.model = convnext_tiny(num_outputs=self.nparams)

self.model = mnasnet3_8(num_outputs=self.nparams, extra_layers=True)

self.model = NASNetAMobile(num_outputs=self.nparams) # does not work, I have a dream that one day it will

self.model = vit_b_16(num_outputs=self.nparams)

self.model = swin_v2_s(num_outputs=self.nparams)

if model == 'alexnet_pretrained':

alexnet = models.alexnet(pretrained=True)

alexnet.features[0] = nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2)

alexnet.classifier[6] = nn.Linear(4096, self.nparams)

self.model = alexnet

if model == 'squeezenet_pretrained':

squeezenet = models.squeezenet1_1(pretrained=True)

squeezenet.features[0] = nn.Conv2d(1, 64, kernel_size=3, stride=2)

A4

A. Appendix Cosmo-ML code

final_conv = nn.Conv2d(512, 256, kernel_size=3, padding=1)

squeezenet.final_conv = nn.Conv2d(512, 256, kernel_size=3, padding=1)

squeezenet.classifier = nn.Sequential(

nn.Dropout(p=0.5),

final_conv,

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=2),

nn.Flatten(),

nn.Linear(1024 * 6 * 6, 1024),

nn.ReLU(inplace=True),

nn.Linear(1024, 512),

nn.ReLU(inplace=True),

nn.Linear(512, self.nparams)

)

self.model = squeezenet

if model == 'inception_pretrained':

inception = models.inception_v3(pretrained=True, transform_input=False)

inception.Conv2d_1a_3x3 = BasicConv2d(1, 32, kernel_size=3, stride=2)

inception.fc = nn.Sequential(

nn.Linear(2048, 1024),

nn.ReLU(inplace=True),

nn.Linear(1024, 512),

nn.ReLU(inplace=True),

nn.Linear(512, self.nparams))

self.model = inception

self.incep = True

if model == 'inception_pretrained_vanila':

inception = models.inception_v3(pretrained=True, transform_input=False)

inception.Conv2d_1a_3x3 = BasicConv2d(1, 32, kernel_size=3, stride=2)

inception.fc = nn.Linear(2048, self.nparams)

self.model = inception

self.incep = True

if model == 'resnet_pretrained':

resnet = models.resnet152(pretrained=True)

resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)

resnet.fc = nn.Sequential(

nn.Linear(resnet.fc.in_features, self.nparams))

self.model = resnet

if model == 'densenet_pretrained':

densenet = models.densenet201(pretrained=True)

densenet.features.conv0 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)

densenet.classifier = nn.Sequential(

nn.Linear(densenet.classifier.in_features, self.nparams),)

self.model = densenet

A5

A. Appendix Cosmo-ML code

if model == 'vgg_pretrained':

vgg = models.vgg16(pretrained=True)

vgg.features[0] = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1)

num_features = vgg.classifier[-1].in_features

vgg.classifier[-1] = torch.nn.Linear(num_features, self.nparams)

self.model = vgg

if model == 'alexnet':

self.model = AlexNet(num_outputs=self.nparams, extra_layers=False)

if model == 'squeezenet':

self.model = squeezenet1_1(num_outputs=self.nparams, extra_layers=True)

if model == 'inception':

self.model = Inception3(num_outputs=self.nparams, extra_layers=True)

if model == 'inception_vanila':

self.model = Inception3(num_outputs=self.nparams, extra_layers=False)

if model == 'resnet':

self.model = resnet152(num_outputs=self.nparams, extra_layers=True)

if model == 'vgg':

self.model = vgg19(num_outputs=self.nparams)

if model == 'efficientnet':

self.model = efficientnet_b3_5(num_outputs=self.nparams, extra_layers=True)

if model == 'efficientnet_vanilla':

self.model = efficientnet_b7(num_outputs=self.nparams, extra_layers=False)

if model == 'efficientnet_v2':

self.model = efficientnet_v2_l(num_outputs=self.nparams, extra_layers=True)

if model == 'densenet':

self.model = densenet201(num_outputs=self.nparams, extra_layers=True)

if model == 'convnext':

self.model = convnext_tiny(num_outputs=self.nparams)

if model == 'mnasnet':

self.model = mnasnet3_8(num_outputs=self.nparams, extra_layers=True)

if model == 'vit':

self.model = vit_b_16(num_outputs=self.nparams)

if model == 'swin':

self.model = swin_v2_s(num_outputs=self.nparams)

if criterion == None:

The default criterion is Mean Squared Error

#self.criterion = nn.MSELoss()

self.criterion = nn.L1Loss()

criterations for evaluation

self.criterionMSE = nn.MSELoss()

A6

A. Appendix Cosmo-ML code

self.criterionMAE = nn.L1Loss()

if optimizer == None:

self.optimizer = torch.optim.SGD(self.model.parameters(),

lr=self.learning_rate, momentum=0.9)

self.optimizer = torch.optim.Adam(self.model.parameters(),

lr=self.learning_rate)

self.optimizer = torch.optim.RMSprop(self.model.parameters(),

lr=self.learning_rate)

def loadtrainingdata(self, fn="train.csv", dataset=None,

dataFraction=0.1, dataFractionTest=0.1):

"""Load the dataset for training.

The parameter may be either a filename `fn` which would

be loaded into a `CosmoDataset`, or `dataset` which

should be a pre-defined `CosmoDataset` object (of any subclass).

dataFraction decided the fraction of total images to be

used in training.

dataFractionTest decides the fraction of total images to

be used in testing of training data.

"""

if dataset:

self.train_dataset = dataset

else:

self.train_dataset = CosmoDataset1(fn)

self.ntrain = len(self.train_dataset)

self.train_datasetTest = Subset(self.train_dataset,

range(int(self.ntrain * dataFractionTest)))

self.trainloaderTest = DataLoader(dataset=self.train_datasetTest,

batch_size=self.batch_size, shuffle=True)

self.ntrainTest = len(self.train_datasetTest)

self.train_dataset = Subset(self.train_dataset,

range(int(self.ntrain * dataFraction)))

self.ntrain = len(self.train_dataset)

self.trainloader = DataLoader(dataset=self.train_dataset,

batch_size=self.batch_size, shuffle=True)

self.img_size = self.train_dataset[0][0].shape

def loadtestdata(self, fn="test.csv", dataset=None):

"""Load the dataset for testing.

The parameter may be either a filename `fn` which would

be loaded into a `CosmoDataset1`, or a pre-defined

A7

A. Appendix Cosmo-ML code

`CosmoDataset` object (of any subclass).

dataFraction decided the fraction of total

images to be used in training.

"""

if dataset:

self.test_dataset = dataset

else:

self.test_dataset = CosmoDataset1(fn)

self.testloader = DataLoader(dataset=self.test_dataset,

batch_size=self.batch_size)

self.ntest = len(self.test_dataset)

def printparam(self):

"""Print statistics of the training scenario to stdout.

This includes epoch number, dataset sizes, and image size."""

print(f'num_epochs: {self.num_epochs}, '

+ f'batch size: {self.batch_size}, lr: {self.learning_rate}')

print(f'image size: {self.img_size}')

print(f'train samples: {self.ntrain}({self.ntrainTest}) '

f'test samples: {self.ntest}\n')

def trainOne(self, verbose=True):

"""Train the network for one epoch.

Return the total loss.

If `verbose` is `True` the training loss is printed on stdout

for each minibatch.

"""

tloss = 0.0

epoch = self.epochstrained

for i, (images, params, index) in enumerate(self.trainloader):

if self.device:

images = images.to(self.device)

params = params.to(self.device)

self.optimizer.zero_grad()

Forward + Backward + Optimiser

output = self.model(images)

if epoch == 0 and self.incep:

output = output[0]

loss = self.criterion(output, params)

loss.backward()

self.optimizer.step()

A8

A. Appendix Cosmo-ML code

tloss += loss.item() * len(images)

if verbose:

print(f"Batch no. {epoch + 1}-{i + 1}: loss = {loss.item()}; "

f"tloss = {tloss}")

self.epochstrained += 1

return tloss

def train(self, nepoch=None, test=False, verbose=True):

"""Train the network.

The return value is a list of training losses per epoch if

`test` is `False`. If `test` is `True`, the return value

is an `EvalObject` containing comprehensive perfomance

statistics.

:param nepoct: Number of epochs; if None the object default is used.

:param test: If True, the model is tested after each epoch

:param verbose: If True, training loss is written for each epoch

"""

timer = time.time()

lossAcrossEpochs = []

if nepoch == None:

nepoch = self.num_epochs

else:

nepoch += self.epochstrained

startidx = self.epochstrained

try:

This is based on Listing 3-4.

self.model.train()

for epoch in range(startidx, nepoch):

tloss = self.trainOne(verbose=verbose)

if verbose:

print(f"Epoch {epoch + 1}: Loss = {tloss}")

if test:

ob = {"loss": tloss,

"training": self.getLoss(trainingset=True),

"test": self.getLoss()

}

if verbose: print(ob)

lossAcrossEpochs.append(ob)

else:

lossAcrossEpochs.append(tloss)

A9

A. Appendix Cosmo-ML code

except KeyboardInterrupt:

print("Training aborted by keyboard interrupt.")

if test:

lossAcrossEpochs = EvalObject(lossAcrossEpochs)

lossAcrossEpochs.setHeaders(self.test_dataset.getSlice())

return lossAcrossEpochs

def getLoss(self, printDetails=True, trainingset=False):

"""

Test the model and report various performance heuristics.

:param printDetails: if True, heuristics are printed on stdout

:param trainingset: if True, the test is made on the traininset

:returns: A `dict` with various heuristics

"""

total_loss, total_MSE_loss, total_MAE_loss = 0, 0, 0

self.model.eval()

errors = []

if trainingset:

dataloader = self.trainloaderTest

else:

dataloader = self.testloader

with torch.no_grad():

for (images, params, index) in dataloader:

if self.device:

images = images.to(self.device)

params = params.to(self.device)

output = self.model(images)

loss = self.criterion(output, params)

MSE_loss = self.criterionMSE(output, params)

MAE_loss = self.criterionMAE(output, params)

total_loss += loss * len(images)

total_MSE_loss += MSE_loss * len(images)

total_MAE_loss += MAE_loss * len(images)

for i, param in enumerate(params):

error = output[i] - param

mse = error ** 2

mse = mse.sum().item() / self.nparams

errors.append(error)

if printDetails:

niceoutput = [round(n, 3) for n in output[i].tolist()]

niceparam = [round(n, 3) for n in param.tolist()]

A10

A. Appendix Cosmo-ML code

if i < 1: # Print only the first image in the batch

print(f"{f'{round(mse, 4)} Correct: {niceparam}' : <40}"

f"{f'Output: {niceoutput}' : ^40}")

The average is wrong if the last batch has fewer images

errorMat = torch.stack(errors)

errorAbs = errorMat.abs()

mean = errorAbs.mean(axis=0)

stdev = errorAbs.std(axis=0, unbiased=True)

mean2 = errorMat.mean(axis=0)

stdev2 = errorMat.std(axis=0, unbiased=True)

if printDetails:

print("Mean absolute error", mean)

print("Standard deviation", stdev)

print("Mean signed error", mean2)

print("Standard deviation", stdev2)

print("Total MSE loss", total_MSE_loss)

print("Total MAE loss", total_MAE_loss)

print(f"Loss/sample = {total_loss / self.ntest}")

return {"TotalMSE": total_MSE_loss,

"TotalMAE": total_MAE_loss,

"ErrorMean": mean2,

"ErrorStDev": stdev2,

"AbsMean": mean,

"AbsStDev": stdev

}

def getPred(self, trainingset=False):

"""

Test the model and return the prediction results.

:param trainingset: if True, the test is made on the traininset

:returns: A tensor containing index, ground truth, and prediction.

"""

self.model.eval()

tl = []

if trainingset:

dataloader = self.trainloader

else:

dataloader = self.testloader

i = 0

with torch.no_grad():

for (images, params, index) in dataloader:

if self.device:

images = images.to(self.device)

A11

A. Appendix Cosmo-ML code

params = params.to(self.device)

output = self.model(images)

idxtensor = index.reshape((len(index), 1))

print("batch number:",i)

i += 1

tl.append(torch.cat([

idxtensor, params.cpu(), output.cpu()], axis=1))

return torch.cat(tl)

def savemodel(self, fn="save-model"):

"""

Save the pyTorch model to file.

Note that the `MLSystem` object is not stored; only the

actual trained model.

"""

torch.save(self.model.state_dict(), fn)

def systemTest(self, args):

"""Test the entire system with training and testing.

The input is an object returned by getArgs(), and thus

representing CLI arguments.

"""

if args.imagedir:

imgdir = args.imagedir

else:

imgdir = "./"

if args.imagedirtest:

imgdirtest = args.imagedirtest

else:

imgdirtest = "./"

if args.amp6:

ob = CosmoDataset2(csvfile=args.train, imgdir=imgdir)

self.loadtrainingdata(dataset=ob)

ob = CosmoDataset2(csvfile=args.test, imgdirtest=imgdirtest)

self.loadtestdata(dataset=ob)

else:

ob = CosmoDataset1(csvfile=args.train, imgdir=imgdir)

self.loadtrainingdata(dataset=ob)

ob = CosmoDataset1(csvfile=args.test, imgdirtest=imgdirtest)

self.loadtestdata(dataset=ob)

A12

A. Appendix Cosmo-ML code

self.printparam()

print("Training ...")

if args.epochs:

nepochs = int(args.epochs)

else:

nepochs = None

if args.evalfile:

res = self.train(nepoch=nepochs, test=True)

res.writecsv(args.evalfile)

else:

self.train(nepoch=nepochs, test=False)

if args.msavefile:

self.savemodel(args.msavefile)

else:

self.savemodel("model.pt")

if args.evalfile == False:

print("Post-training test ...")

loss = self.getLoss()

print('Loss Results:', loss)

if args.predictionfile:

pred = self.getPred()

ob = PredObject(pred)

ob.setHeaders(self.test_dataset._columns)

ob.writecsv(args.predictionfile)

def getArgs():

parser = argparse.ArgumentParser(

prog='CosmoML test script (cuda version)',

description='Train and test a regression model',

epilog='')

parser.add_argument('-t', '--train',

help="Training data set")

parser.add_argument('-T', '--test',

help="Testing data set")

parser.add_argument('-i', '--imagedir',

help="Image directory")

parser.add_argument('-I', '--imagedirtest',

help='Test image directory')

parser.add_argument('-o', '--evalfile',

A13

A. Appendix Cosmo-ML code

help="Filename for evaluation output")

parser.add_argument('-p', '--predictionfile',

help="Filename for prediction output")

parser.add_argument('-e', '--epochs',

help="Testing data set")

parser.add_argument('-W', '--weights',

help="File with pre trained weights")

parser.add_argument('-s', '--msavefile',

help="File for trained weights, end in .pt")

parser.add_argument('-a', '--amp6', action='store_true',

help="Estimate amplitude with 6 parameters")

return parser.parse_args()

if __name__ == "__main__":

print("MLSystem test script.\nConfiguring ... ")

args = getArgs()

ml = MLSystem()

ml.systemTest(args)

A14

A. Appendix Cosmo-ML code

The following code below is from cudaaux.py:

import torch

def cudaDiagnostic():

print(f"CUDA Availability: {torch.cuda.is_available()}")

print(f"CUDA version: {torch.version.cuda}")

cuda_id = torch.cuda.current_device()

print(f"ID of current CUDA device: {cuda_id}")

print(f"Name of current CUDA device: {torch.cuda.get_device_name(cuda_id)}")

A15

A. Appendix Cosmo-ML code

The following code below is from Dataset.py

"""

The Dataset class manages loading and access to a dataset

in the CosmoAI model.

"""

import torch

import os

import numpy as np

from skimage import io

from torch.utils.data import Dataset

import pandas as pd

class CosmoDataset(Dataset):

"""CosmoAI dataset."""

_columns = ["x", "y", "einsteinR", "sigma", "sigma2", "theta"]

def getSlice(self):

return self._columns

def getDim(self):

return len(self.getSlice())

def __init__(self, csvfile, imgdir=".", imgdirtest='.', columns=None):

"""

Args:

csvfile (string): Path to the csv file with annotations.

imgdir (string): Directory with all the images.

"""

self.frame = pd.read_csv(csvfile)

self.imgdir = imgdir

self.imgdirtest = imgdirtest

if columns != None:

self._columns = columns

def __len__(self):

return len(self.frame)

def __getitem__(self, idx):

if torch.is_tensor(idx):

idx = idx.tolist()

A16

A. Appendix Cosmo-ML code

fn = os.path.join(self.imgdir, self.imgdirtest,

self.frame.iloc[idx, 1])

image = io.imread(fn)[np.newaxis, :, :].astype(np.float32) / 255

image = torch.from_numpy(image)

targets = self.frame.loc[idx, self.getSlice()]

targets = np.array(targets).astype(np.float32)

targets = torch.from_numpy(targets)

index = int(self.frame.loc[idx, "index"])

return (image, targets, index)

class CosmoDataset1(CosmoDataset):

#_columns = ["R", "phi", "einsteinR", "sigma"]

#_columns = ["R", "phi", "einsteinR", "sigma", "sigma2", "theta"]

_columns = ["x", "y", "einsteinR", "sigma", "sigma2", "theta"]

class CosmoDataset2(CosmoDataset):

_columns = ["alpha[1][0]","alpha[1][2]","beta[1][2]","alpha[2][1]","beta[2][1]","alpha[2][3]"]

A17

A. Appendix Cosmo-ML code

The following code below is from EvalObject.py:

#! /usr/bin/env python

import pandas as pd

from skimage import io

import torch

import numpy as np

class EvalObject:

def __init__(self,ev):

"""The `EvalObject` is instantiated with a list of dict objects,

where each dict object is the output from `MLSystem.trainOne()`."""

tr = [x["training"] for x in ev]

tt = [x["test"] for x in ev]

self.loss = torch.tensor([x["loss"] for x in ev])

self.loss.reshape((len(self.loss), 1))

self.testMSELoss = torch.stack([x["TotalMSE"] for x in tt])

self.testMAELoss = torch.stack([x["TotalMAE"] for x in tt])

self.testErrorMean = torch.stack([x["ErrorMean"] for x in tt])

self.testErrorStDev = torch.stack([x["ErrorStDev"] for x in tt])

self.testAbsMean = torch.stack([x["AbsMean"] for x in tt])

self.testAbsStDev = torch.stack([x["AbsStDev"] for x in tt])

self.trainingMSELoss = torch.stack([x["TotalMSE"] for x in tr])

self.trainingMAELoss = torch.stack([x["TotalMAE"] for x in tr])

self.trainingErrorMean = torch.stack([x["ErrorMean"] for x in tr])

self.trainingErrorStDev = torch.stack([x["ErrorStDev"] for x in tr])

self.trainingAbsMean = torch.stack([x["AbsMean"] for x in tr])

self.trainingAbsStDev = torch.stack([x["AbsStDev"] for x in tr])

self._mat = None

self._headers = ["Loss"]

def getMatrix(self):

"Return the evaluation statistics as a numpy `array`."

if self._mat == None:

loss = self.loss.numpy()

s = loss.shape

if len(s) == 1:

loss = loss.reshape((s[0], 1))

trainingMSELoss = self.trainingMSELoss.cpu().numpy().reshape((s[0], 1))

trainingMAELoss = self.trainingMAELoss.cpu().numpy().reshape((s[0], 1))

testMSELoss = self.testMSELoss.cpu().numpy().reshape((s[0], 1))

testMAELoss = self.testMAELoss.cpu().numpy().reshape((s[0], 1))

ls = [loss]

A18

A. Appendix Cosmo-ML code

ls.append(trainingMSELoss)

ls.append(trainingMAELoss)

ls.append(testMSELoss)

ls.append(testMAELoss)

ls.append(self.testErrorMean.cpu().numpy())

ls.append(self.testErrorStDev.cpu().numpy())

ls.append(self.testAbsMean.cpu().numpy())

ls.append(self.testAbsStDev.cpu().numpy())

ls.append(self.trainingErrorMean.cpu().numpy())

ls.append(self.trainingErrorStDev.cpu().numpy())

ls.append(self.trainingAbsMean.cpu().numpy())

ls.append(self.trainingAbsStDev.cpu().numpy())

self._mat = np.hstack(ls)

return self._mat

def setHeaders(self,h):

"""Set the headers for CSV output.

The input should be the same list of labels that are

used by `CosmoDataset` to define the columns."""

ls = (["tLoss"] +

["tMSELoss (Training Set)"] +

["tMAELoss (Training Set)"] +

["tMSELoss (Test Set)"] +

["tMAELoss (Test Set)"] +

[x + " (Error Mean - Test Set)" for x in h] +

[x + " (Error StDev - Test Set)" for x in h] +

[x + " (AbsError Mean - Test Set)" for x in h] +

[x + " (AbsError StDev - Test Set)" for x in h] +

[x + " (Error Mean - Training Set)" for x in h] +

[x + " (Error StDev - Training Set)" for x in h] +

[x + " (AbsError Mean - Training Set)" for x in h] +

[x + " (AbsError StDev - Training Set)" for x in h])

self._headers = dict(enumerate(ls))

def writecsv(self,fn="eval.csv"):

"Write the evaluation results to the given CSV file."

m = self.getMatrix()

csv = pd.DataFrame(m)

csv.rename(columns=self._headers, inplace=True)

csv.to_csv(fn)

class PredObject:

def __init__(self,pred):

"""The `PredObject` is instantiated with the output from

`MLSystem.getPred()`."""

A19

A. Appendix Cosmo-ML code

self._mat = pred.cpu().numpy()

self._headers = {0: "Index"}

def getMatrix(self):

"Return the evaluation statistics as a numpy `array`."

return self._mat

def setHeaders(self,h):

"""Set the headers for CSV output.

The input should be the same list of labels that are

used by `CosmoDataset` to define the columns."""

ls = (["Index"] +

[x + " (Ground Truth)" for x in h] +

[x + " (Predicted)" for x in h])

self._headers = dict(enumerate(ls))

def writecsv(self,fn="pred.csv"):

"Write the evaluation results to the given CSV file."

m = self.getMatrix()

csv = pd.DataFrame(m)

csv.rename(columns=self._headers, inplace=True)

csv.to_csv(fn)

A20

A. Appendix Cosmo-ML code

The code below is for running code on IDUN. The following code below is from the
VGG exampel.py file.

import torch

from MLSystem import MLSystem, getArgs

import cudaaux

class CudaModel(MLSystem):

def __init__(self,model='vgg',criterion=None,optimizer=None,nepoch=1,learning_rate=0.0001):

super().__init__(model,criterion,optimizer,nepoch,learning_rate)

if not torch.cuda.is_available():

raise Exception("CUDA is not available")

self.device = torch.device("cuda")

self.model = self.model.to(self.device)

if args.weights:

self.model.load_state_dict(torch.load(args.weights))

if __name__ == "__main__":

args = getArgs()

print("CudaModel (CosmoML) test script.")

cudaaux.cudaDiagnostic()

print("Configuring ... ")

ml = CudaModel()

ml.systemTest(args)

A21

A. Appendix Cosmo-ML code

The code below is for running code on IDUN. The following code below is from the
VGG.slurm file.

#!/bin/sh

#SBATCH --partition=GPUQ # Use a GPU

#SBATCH --account=ie-idi

#SBATCH --time=63:00:00 # Max wait time

#SBATCH --nodes=1

#SBATCH -c4 # Number of cores

#SBATCH --gres=gpu:1 # Require 1 GPU

#SBATCH --mem-per-gpu=15G # Require certain amount of GPU memory

#SBATCH --constraint="A100" # Don't have to use A100

#SBATCH --job-name="CosmoML_VGG"

#SBATCH --output=VGG.out

#SBATCH --mail-user=modestas@stud.ntnu.no

#SBATCH --mail-type=ALL

WORKDIR=${SLURM_SUBMIT_DIR}

cd ${WORKDIR}

echo "Job Name: $SLURM_JOB_NAME"

echo "Working directory: $SLURM_SUBMIT_DIR"

echo "Job ID: $SLURM_JOB_ID"

echo "Nodes used: $SLURM_JOB_NODELIST"

echo "Number of nodes: $SLURM_JOB_NUM_NODES"

echo "Cores (per node): $SLURM_CPUS_ON_NODE"

echo "Total cores: $SLURM_NTASKS"

module load torchvision/0.8.2-fosscuda-2020b-PyTorch-1.7.1

module load PyTorch/1.8.1-fosscuda-2020b

module swap NCCL/2.8.3-CUDA-11.1.1 NCCL/2.8.3-GCCcore-10.2.0-CUDA-11.1.1

module swap PyTorch/1.7.1-fosscuda-2020b PyTorch/1.8.1-fosscuda-2020b

module load scikit-learn/0.23.2-fosscuda-2020b

module purge

module load SciPy-bundle/2021.10-foss-2021b

module list

source /cluster/work/modestas/CosmoML/venv/bin/activate

PH=/cluster/work/modestas/CosmoML/src/

export PYTHONPATH=$PH:$PYTHONPATH

time python3 $PH/VGG_example.py -t "/cluster/work/modestas/train100k/train.csv" -i "/cluster/work/modestas/train100k" -T "/cluster/work/modestas/test10k/test.csv" -I "/cluster/work/modestas/test10k" -s "VGG_0001.pt" -p "VGG_0001_pre.csv" -o "VGG_0001.csv"

A22

A. Appendix Cosmo-ML code

The code below is for all networks used in this project. The highlighted lines in the code is
what we have contributed. They’re taken from https://github.com/pytorch/vision/blob/main/torchvision/models.
The following code below is from the AlexNet.py file.

import torch

import torch.nn as nn

class AlexNet(nn.Module):

def __init__(self, num_outputs: int = 1000, dropout: float = 0.5, extra_layers: bool = False) -> None:

super().__init__()

#_log_api_usage_once(self)

self.features = nn.Sequential(

nn.Conv2d(1, 64, kernel_size=11, stride=4, padding=2),

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2),

nn.Conv2d(64, 192, kernel_size=5, padding=2),

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2),

nn.Conv2d(192, 384, kernel_size=3, padding=1),

nn.ReLU(inplace=True),

nn.Conv2d(384, 256, kernel_size=3, padding=1),

nn.ReLU(inplace=True),

nn.Conv2d(256, 256, kernel_size=3, padding=1),

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2),

)

self.avgpool = nn.AdaptiveAvgPool2d((6, 6))

if extra_layers:

self.classifier = nn.Sequential(

nn.Dropout(p=dropout),

nn.Linear(256 * 6 * 6, 4096),

nn.ReLU(inplace=True),

nn.Dropout(p=dropout),

nn.Linear(4096, 4096),

nn.ReLU(inplace=True),

nn.Linear(4096, 1024), # Adding two additional fully connected

nn.ReLU(inplace=True), # layers.

nn.Linear(1024, 512), #

nn.ReLU(inplace=True),

nn.Linear(512, num_outputs),)

else:

self.classifier = nn.Sequential(

A23

A. Appendix Cosmo-ML code

nn.Dropout(p=dropout),

nn.Linear(256 * 6 * 6, 4096),

nn.ReLU(inplace=True),

nn.Dropout(p=dropout),

nn.Linear(4096, 4096),

nn.ReLU(inplace=True),

nn.Linear(4096, num_outputs),)

def forward(self, x: torch.Tensor) -> torch.Tensor:

x = self.features(x)

x = self.avgpool(x)

x = torch.flatten(x, 1)

x = self.classifier(x)

return x

A24

A. Appendix Cosmo-ML code

The following code below is from the Inception3.py file.

import os

import shutil

import warnings

from typing import Optional, List, Callable, Tuple

import torch

from torch import Tensor

import torch.nn as nn

from torchvision import models

from torchvision.models import InceptionOutputs

from torchvision.models.inception import BasicConv2d, InceptionB, InceptionD, \

InceptionAux, InceptionA, InceptionC, InceptionE

class Inception3(nn.Module):

def __init__(

self,

num_outputs: int = 4,

aux_logits: bool = True,

transform_input: bool = False,

inception_blocks: Optional[List[Callable[..., nn.Module]]] = None,

init_weights: Optional[bool] = True,

dropout: float = 0.5,

extra_layers: bool = False,

) -> None:

super().__init__()

#_log_api_usage_once(self)

if inception_blocks is None:

inception_blocks = [BasicConv2d, InceptionA, InceptionB,

InceptionC, InceptionD, InceptionE, InceptionAux]

if len(inception_blocks) != 7:

raise ValueError(f"length of inception_blocks should be 7 instead of {len(inception_blocks)}")

conv_block = inception_blocks[0]

inception_a = inception_blocks[1]

inception_b = inception_blocks[2]

inception_c = inception_blocks[3]

inception_d = inception_blocks[4]

inception_e = inception_blocks[5]

A25

A. Appendix Cosmo-ML code

inception_aux = inception_blocks[6]

self.extra_layers = extra_layers

self.aux_logits = aux_logits

self.transform_input = transform_input

self.Conv2d_1a_3x3 = conv_block(1, 32, kernel_size=3, stride=2)

self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)

self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)

self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2)

self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)

self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)

self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2)

self.Mixed_5b = inception_a(192, pool_features=32)

self.Mixed_5c = inception_a(256, pool_features=64)

self.Mixed_5d = inception_a(288, pool_features=64)

self.Mixed_6a = inception_b(288)

self.Mixed_6b = inception_c(768, channels_7x7=128)

self.Mixed_6c = inception_c(768, channels_7x7=160)

self.Mixed_6d = inception_c(768, channels_7x7=160)

self.Mixed_6e = inception_c(768, channels_7x7=192)

self.AuxLogits: Optional[nn.Module] = None

if aux_logits:

self.AuxLogits = inception_aux(768, num_outputs)

self.Mixed_7a = inception_d(768)

self.Mixed_7b = inception_e(1280)

self.Mixed_7c = inception_e(2048)

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

self.dropout = nn.Dropout(p=dropout)

if extra_layers:

self.fc = nn.Sequential(

nn.Linear(2048, 1024),

nn.ReLU(inplace=True),

nn.Linear(1024, 512),

nn.ReLU(inplace=True),

nn.Linear(512, num_outputs))

else:

self.fc = nn.Linear(2048, num_outputs)

if init_weights:

for m in self.modules():

if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):

stddev = float(m.stddev) if hasattr(m, "stddev") else 0.1 # type: ignore

torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=stddev, a=-2, b=2)

elif isinstance(m, nn.BatchNorm2d):

nn.init.constant_(m.weight, 1)

A26

A. Appendix Cosmo-ML code

nn.init.constant_(m.bias, 0)

def _transform_input(self, x: Tensor) -> Tensor:

if self.transform_input:

x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5

x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5

x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5

x = torch.cat((x_ch0, x_ch1, x_ch2), 1)

return x

def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor]]:

N x 3 x 299 x 299

x = self.Conv2d_1a_3x3(x)

N x 32 x 149 x 149

x = self.Conv2d_2a_3x3(x)

N x 32 x 147 x 147

x = self.Conv2d_2b_3x3(x)

N x 64 x 147 x 147

x = self.maxpool1(x)

N x 64 x 73 x 73

x = self.Conv2d_3b_1x1(x)

N x 80 x 73 x 73

x = self.Conv2d_4a_3x3(x)

N x 192 x 71 x 71

x = self.maxpool2(x)

N x 192 x 35 x 35

x = self.Mixed_5b(x)

N x 256 x 35 x 35

x = self.Mixed_5c(x)

N x 288 x 35 x 35

x = self.Mixed_5d(x)

N x 288 x 35 x 35

x = self.Mixed_6a(x)

N x 768 x 17 x 17

x = self.Mixed_6b(x)

N x 768 x 17 x 17

x = self.Mixed_6c(x)

N x 768 x 17 x 17

x = self.Mixed_6d(x)

N x 768 x 17 x 17

x = self.Mixed_6e(x)

N x 768 x 17 x 17

aux: Optional[Tensor] = None

if self.AuxLogits is not None:

A27

A. Appendix Cosmo-ML code

if self.training:

aux = self.AuxLogits(x)

N x 768 x 17 x 17

x = self.Mixed_7a(x)

N x 1280 x 8 x 8

x = self.Mixed_7b(x)

N x 2048 x 8 x 8

x = self.Mixed_7c(x)

N x 2048 x 8 x 8

Adaptive average pooling

x = self.avgpool(x)

N x 2048 x 1 x 1

x = self.dropout(x)

N x 2048 x 1 x 1

x = torch.flatten(x, 1)

N x 2048

x = self.fc(x)

N x 1000 (num_outputs)

return x, aux

@torch.jit.unused

def eager_outputs(self, x: Tensor, aux: Optional[Tensor]) -> InceptionOutputs:

if self.training and self.aux_logits:

return InceptionOutputs(x, aux)

else:

return x # type: ignore[return-value]

def forward(self, x: Tensor) -> InceptionOutputs:

#x = self._transform_input(x)

x, aux = self._forward(x)

return x

#aux_defined = self.training and self.aux_logits

#if torch.jit.is_scripting():

if not aux_defined:

warnings.warn("Scripted Inception3 always returns Inception3 Tuple")

return InceptionOutputs(x, aux)

#else:

return self.eager_outputs(x, aux)

A28

A. Appendix Cosmo-ML code

The following code below is from the SqueezeNet.py file.

from functools import partial

from typing import Any, Optional

import torch

import torch.nn as nn

import torch.nn.init as init

from torchvision.models.squeezenet import Fire

class SqueezeNet(nn.Module):

def __init__(

self,

version: str = "1_0",

num_outputs: int = 6,

dropout: float = 0.5,

extra_layers: bool = False

) -> None:

super().__init__()

self.num_outputs = num_outputs

self.extra_layers = extra_layers

if version == "1_0":

self.features = nn.Sequential(

nn.Conv2d(1, 96, kernel_size=7, stride=2),

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(96, 16, 64, 64),

Fire(128, 16, 64, 64),

Fire(128, 32, 128, 128),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(256, 32, 128, 128),

Fire(256, 48, 192, 192),

Fire(384, 48, 192, 192),

Fire(384, 64, 256, 256),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(512, 64, 256, 256),

)

elif version == "1_1":

self.features = nn.Sequential(

nn.Conv2d(1, 64, kernel_size=3, stride=2),

A29

A. Appendix Cosmo-ML code

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(64, 16, 64, 64),

Fire(128, 16, 64, 64),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(128, 32, 128, 128),

Fire(256, 32, 128, 128),

nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),

Fire(256, 48, 192, 192),

Fire(384, 48, 192, 192),

Fire(384, 64, 256, 256),

Fire(512, 64, 256, 256),

)

else:

raise ValueError(f"Unsupported SqueezeNet version {version}: 1_0 or 1_1 expected")

Final convolution is initialized differently from the rest

if extra_layers:

final_conv = nn.Conv2d(512, 256, kernel_size=3, padding=1)

self.classifier = nn.Sequential(

nn.Dropout(p=dropout),

final_conv,

nn.ReLU(inplace=True),

nn.MaxPool2d(kernel_size=2),

nn.Flatten(),

nn.Linear(1024 * 6 * 6, 1024),

nn.ReLU(inplace=True),

nn.Linear(1024, 512),

nn.ReLU(inplace=True),

nn.Linear(512, self.num_outputs)

)

else:

final_conv = nn.Conv2d(512, self.num_outputs, kernel_size=1)

self.classifier = nn.Sequential(

nn.Dropout(p=dropout),

final_conv,

nn.ReLU(inplace=True),

nn.AdaptiveAvgPool2d((1, 1))

)

for m in self.modules():

if isinstance(m, nn.Conv2d):

if m is final_conv:

init.normal_(m.weight, mean=0.0, std=0.01)

A30

A. Appendix Cosmo-ML code

else:

init.kaiming_uniform_(m.weight)

if m.bias is not None:

init.constant_(m.bias, 0)

def forward(self, x: torch.Tensor) -> torch.Tensor:

x = self.features(x)

x = self.classifier(x)

if self.extra_layers==False:

x = torch.flatten(x, 1)

return x

def _squeezenet(version: str, **kwargs: Any) -> SqueezeNet:

model = SqueezeNet(version, **kwargs)

return model

def squeezenet1_0(

*, progress: bool = True, **kwargs: Any

) -> SqueezeNet:

"""SqueezeNet model architecture from the `SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters and <0.5MB model size

<https://arxiv.org/abs/1602.07360>`_ paper.

Args:

**kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_

for more details about this class.

"""

return _squeezenet("1_0", **kwargs)

def squeezenet1_1(

*, progress: bool = True, **kwargs: Any

) -> SqueezeNet:

"""SqueezeNet 1.1 model from the `official SqueezeNet repo

<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.

SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters

than SqueezeNet 1.0, without sacrificing accuracy.

Args:

**kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_

for more details about this class.

"""

A31

A. Appendix Cosmo-ML code

return _squeezenet("1_1", **kwargs)

A32

A. Appendix Cosmo-ML code

The following code below is from the ResNet.py file.

from functools import partial

from typing import Any, Callable, List, Optional, Type, Union

import torch

import torch.nn as nn

from torch import Tensor

from torchvision.models.resnet import BasicBlock, Bottleneck, conv1x1

from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface

class ResNet(nn.Module):

def __init__(

self,

block: Type[Union[BasicBlock, Bottleneck]],

layers: List[int],

num_outputs: int = 4,

zero_init_residual: bool = False,

groups: int = 1,

width_per_group: int = 64,

replace_stride_with_dilation: Optional[List[bool]] = None,

norm_layer: Optional[Callable[..., nn.Module]] = None,

extra_layers: bool = False,

) -> None:

super().__init__()

#_log_api_usage_once(self)

if norm_layer is None:

norm_layer = nn.BatchNorm2d

self._norm_layer = norm_layer

self.extra_layers = extra_layers

self.inplanes = 64

self.dilation = 1

if replace_stride_with_dilation is None:

each element in the tuple indicates if we should replace

the 2x2 stride with a dilated convolution instead

replace_stride_with_dilation = [False, False, False]

if len(replace_stride_with_dilation) != 3:

raise ValueError(

"replace_stride_with_dilation should be None "

f"or a 3-element tuple, got {replace_stride_with_dilation}"

A33

A. Appendix Cosmo-ML code

)

self.groups = groups

self.base_width = width_per_group

self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)

self.bn1 = norm_layer(self.inplanes)

self.relu = nn.ReLU(inplace=True)

self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

self.layer1 = self._make_layer(block, 64, layers[0])

self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])

self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])

self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])

self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

if self.extra_layers:

self.fc = nn.Sequential(

nn.Linear(512 * block.expansion, 256),

nn.ReLU(inplace=True),

nn.Linear(256, 128),

nn.ReLU(inplace=True),

nn.Linear(128, num_outputs)

)

else:

self.fc = nn.Linear(512 * block.expansion, num_outputs)

for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")

elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):

nn.init.constant_(m.weight, 1)

nn.init.constant_(m.bias, 0)

Zero-initialize the last BN in each residual branch,

so that the residual branch starts with zeros, and each residual block behaves like an identity.

This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677

if zero_init_residual:

for m in self.modules():

if isinstance(m, Bottleneck) and m.bn3.weight is not None:

nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]

elif isinstance(m, BasicBlock) and m.bn2.weight is not None:

nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]

def _make_layer(

self,

block: Type[Union[BasicBlock, Bottleneck]],

planes: int,

A34

A. Appendix Cosmo-ML code

blocks: int,

stride: int = 1,

dilate: bool = False,

) -> nn.Sequential:

norm_layer = self._norm_layer

downsample = None

previous_dilation = self.dilation

if dilate:

self.dilation *= stride

stride = 1

if stride != 1 or self.inplanes != planes * block.expansion:

downsample = nn.Sequential(

conv1x1(self.inplanes, planes * block.expansion, stride),

norm_layer(planes * block.expansion),

)

layers = []

layers.append(

block(

self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer

)

)

self.inplanes = planes * block.expansion

for _ in range(1, blocks):

layers.append(

block(

self.inplanes,

planes,

groups=self.groups,

base_width=self.base_width,

dilation=self.dilation,

norm_layer=norm_layer,

)

)

return nn.Sequential(*layers)

def _forward_impl(self, x: Tensor) -> Tensor:

See note [TorchScript super()]

x = self.conv1(x)

x = self.bn1(x)

x = self.relu(x)

x = self.maxpool(x)

A35

A. Appendix Cosmo-ML code

x = self.layer1(x)

x = self.layer2(x)

x = self.layer3(x)

x = self.layer4(x)

x = self.avgpool(x)

x = torch.flatten(x, 1)

x = self.fc(x)

return x

def forward(self, x: Tensor) -> Tensor:

return self._forward_impl(x)

def _resnet(

block: Type[Union[BasicBlock, Bottleneck]],

layers: List[int],

**kwargs: Any,

) -> ResNet:

model = ResNet(block, layers, **kwargs)

return model

@handle_legacy_interface()

def resnet18(*, progress: bool = False, **kwargs: Any) -> ResNet:

"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.

Args:

progress (bool, optional): If True, displays a progress bar of the

download to stderr. Default is True.

**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_

for more details about this class.

.. autoclass:: torchvision.models.ResNet18_Weights

:members:

"""

return _resnet(BasicBlock, [2, 2, 2, 2], **kwargs)

def resnet34(*, progress: bool = True, **kwargs: Any) -> ResNet:

"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.

.. note::

The bottleneck of TorchVision places the stride for downsampling to the second 3x3

A36

A. Appendix Cosmo-ML code

convolution while the original paper places it to the first 1x1 convolution.

This variant improves the accuracy and is known as `ResNet V1.5

<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

Args:

progress (bool, optional): If True, displays a progress bar of the

download to stderr. Default is True.

**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_

for more details about this class.

.. autoclass:: torchvision.models.ResNet34_Weights

:members:

"""

return _resnet(BasicBlock, [3, 4, 6, 3], **kwargs)

def resnet50(*, progress: bool = True, **kwargs: Any) -> ResNet:

return _resnet(Bottleneck, [3, 4, 6, 3], **kwargs)

def resnet101(*, progress: bool = True, **kwargs: Any) -> ResNet:

return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)

def resnet152(*, progress: bool = True, **kwargs: Any) -> ResNet:

return _resnet(Bottleneck, [3, 8, 36, 3], **kwargs)

def resnext50_32x4d(*, progress: bool = True, **kwargs: Any) -> ResNet:

"""ResNeXt-50 32x4d model from

`Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.

"""

_ovewrite_named_param(kwargs, "groups", 32)

_ovewrite_named_param(kwargs, "width_per_group", 4)

return _resnet(Bottleneck, [3, 4, 6, 3], **kwargs)

def resnext101_32x8d(*, progress: bool = True, **kwargs: Any) -> ResNet:

_ovewrite_named_param(kwargs, "groups", 32)

_ovewrite_named_param(kwargs, "width_per_group", 8)

return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)

def resnext101_64x4d(*, progress: bool = True, **kwargs: Any) -> ResNet:

_ovewrite_named_param(kwargs, "groups", 64)

_ovewrite_named_param(kwargs, "width_per_group", 4)

return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)

A37

A. Appendix Cosmo-ML code

def wide_resnet50_2(*, progress: bool = True, **kwargs: Any) -> ResNet:

"""Wide ResNet-50-2 model from

`Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.

The model is the same as ResNet except for the bottleneck number of channels

which is twice larger in every block. The number of channels in outer 1x1

convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048

channels, and in Wide ResNet-50-2 has 2048-1024-2048.

"""

_ovewrite_named_param(kwargs, "width_per_group", 64 * 2)

return _resnet(Bottleneck, [3, 4, 6, 3], **kwargs)

def wide_resnet101_2(*, progress: bool = True, **kwargs: Any) -> ResNet:

_ovewrite_named_param(kwargs, "width_per_group", 64 * 2)

return _resnet(Bottleneck, [3, 4, 23, 3], **kwargs)

A38

A. Appendix Cosmo-ML code

The following code below is from the DenseNet.py file.

import re

from collections import OrderedDict

from functools import partial

from typing import Any, List, Optional, Tuple

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.utils.checkpoint as cp

from torch import Tensor

from torchvision.models._utils import handle_legacy_interface

from torchvision.models.densenet import _DenseLayer, _DenseBlock, _Transition

class DenseNet(nn.Module):

r"""Densenet-BC model class, based on

`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_.

Args:

growth_rate (int) - how many filters to add each layer (`k` in paper)

block_config (list of 4 ints) - how many layers in each pooling block

num_init_features (int) - the number of filters to learn in the first convolution layer

bn_size (int) - multiplicative factor for number of bottle neck layers

(i.e. bn_size * k features in the bottleneck layer)

drop_rate (float) - dropout rate after each dense layer

num_classes (int) - number of classification classes

memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,

but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.

"""

def __init__(

self,

growth_rate: int = 32,

block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),

num_init_features: int = 64,

bn_size: int = 4,

drop_rate: float = 0,

num_outputs: int = 4,

memory_efficient: bool = False,

extra_layers: bool = False,

) -> None:

A39

A. Appendix Cosmo-ML code

super().__init__()

#_log_api_usage_once(self)

First convolution

self.features = nn.Sequential(

OrderedDict(

[

("conv0", nn.Conv2d(1, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),

("norm0", nn.BatchNorm2d(num_init_features)),

("relu0", nn.ReLU(inplace=True)),

("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),

]

)

)

Each denseblock

num_features = num_init_features

for i, num_layers in enumerate(block_config):

block = _DenseBlock(

num_layers=num_layers,

num_input_features=num_features,

bn_size=bn_size,

growth_rate=growth_rate,

drop_rate=drop_rate,

memory_efficient=memory_efficient,

)

self.features.add_module("denseblock%d" % (i + 1), block)

num_features = num_features + num_layers * growth_rate

if i != len(block_config) - 1:

trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)

self.features.add_module("transition%d" % (i + 1), trans)

num_features = num_features // 2

Final batch norm

self.features.add_module("norm5", nn.BatchNorm2d(num_features))

Linear layer

if extra_layers:

self.classifier = nn.Sequential(

nn.Linear(num_features, 512),

nn.ReLU(inplace=True),

nn.Linear(512, 256),

nn.ReLU(inplace=True),

A40

A. Appendix Cosmo-ML code

nn.Linear(256, num_outputs),

)

else:

self.classifier = nn.Linear(num_features, num_outputs)

Official init from torch repo.

for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight)

elif isinstance(m, nn.BatchNorm2d):

nn.init.constant_(m.weight, 1)

nn.init.constant_(m.bias, 0)

elif isinstance(m, nn.Linear):

nn.init.constant_(m.bias, 0)

def forward(self, x: Tensor) -> Tensor:

features = self.features(x)

out = F.relu(features, inplace=True)

out = F.adaptive_avg_pool2d(out, (1, 1))

out = torch.flatten(out, 1)

out = self.classifier(out)

return out

def _densenet(

growth_rate: int,

block_config: Tuple[int, int, int, int],

num_init_features: int,

**kwargs: Any,

) -> DenseNet:

model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)

return model

@handle_legacy_interface()

def densenet121(*, progress: bool = True, **kwargs: Any) -> DenseNet:

r"""Densenet-121 model from

`Densely Connected Convolutional Networks <https://arxiv.org/abs/1608.06993>`_.

Args:

progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True.

**kwargs: parameters passed to the ``torchvision.models.densenet.DenseNet``

base class. Please refer to the `source code

A41

A. Appendix Cosmo-ML code

<https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_

for more details about this class.

.. autoclass:: torchvision.models.DenseNet121_Weights

:members:

"""

return _densenet(32, (6, 12, 24, 16), 64, **kwargs)

@handle_legacy_interface()

def densenet161(*, progress: bool = True, **kwargs: Any) -> DenseNet:

return _densenet(48, (6, 12, 36, 24), 96, **kwargs)

@handle_legacy_interface()

def densenet169(*, progress: bool = True, **kwargs: Any) -> DenseNet:

return _densenet(32, (6, 12, 32, 32), 64, **kwargs)

@handle_legacy_interface()

def densenet201(*, progress: bool = True, **kwargs: Any) -> DenseNet:

return _densenet(32, (6, 12, 48, 32), 64, **kwargs)

A42

A. Appendix Cosmo-ML code

The following code below is from the EfficientNet.py file.

import copy

import math

from dataclasses import dataclass

from functools import partial

from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union

import torch

from torch import nn, Tensor

from torchvision.ops.misc import Conv2dNormActivation

from torchvision.models._utils import handle_legacy_interface

from torchvision.models.efficientnet import MBConvConfig, FusedMBConvConfig, _MBConvConfig

class EfficientNet(nn.Module):

def __init__(

self,

inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],

dropout: float,

stochastic_depth_prob: float = 0.2,

num_outputs: int = 4,

norm_layer: Optional[Callable[..., nn.Module]] = None,

last_channel: Optional[int] = None,

extra_layers: bool = False,

) -> None:

"""

EfficientNet V1 and V2 main class

Args:

inverted_residual_setting (Sequence[Union[MBConvConfig, FusedMBConvConfig]]): Network structure

dropout (float): The droupout probability

stochastic_depth_prob (float): The stochastic depth probability

num_classes (int): Number of classes

norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use

last_channel (int): The number of channels on the penultimate layer

"""

super().__init__()

if not inverted_residual_setting:

raise ValueError("The inverted_residual_setting should not be empty")

elif not (

isinstance(inverted_residual_setting, Sequence)

A43

A. Appendix Cosmo-ML code

and all([isinstance(s, _MBConvConfig) for s in inverted_residual_setting])

):

raise TypeError("The inverted_residual_setting should be List[MBConvConfig]")

if norm_layer is None:

norm_layer = nn.BatchNorm2d

layers: List[nn.Module] = []

building first layer

firstconv_output_channels = inverted_residual_setting[0].input_channels

layers.append(

Conv2dNormActivation(

1, firstconv_output_channels, kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.SiLU

)

)

building inverted residual blocks

total_stage_blocks = sum(cnf.num_layers for cnf in inverted_residual_setting)

stage_block_id = 0

for cnf in inverted_residual_setting:

stage: List[nn.Module] = []

for _ in range(cnf.num_layers):

copy to avoid modifications. shallow copy is enough

block_cnf = copy.copy(cnf)

overwrite info if not the first conv in the stage

if stage:

block_cnf.input_channels = block_cnf.out_channels

block_cnf.stride = 1

adjust stochastic depth probability based on the depth of the stage block

sd_prob = stochastic_depth_prob * float(stage_block_id) / total_stage_blocks

stage.append(block_cnf.block(block_cnf, sd_prob, norm_layer))

stage_block_id += 1

layers.append(nn.Sequential(*stage))

building last several layers

lastconv_input_channels = inverted_residual_setting[-1].out_channels

lastconv_output_channels = last_channel if last_channel is not None else 4 * lastconv_input_channels

layers.append(

Conv2dNormActivation(

A44

A. Appendix Cosmo-ML code

lastconv_input_channels,

lastconv_output_channels,

kernel_size=1,

norm_layer=norm_layer,

activation_layer=nn.SiLU,

)

)

self.features = nn.Sequential(*layers)

self.avgpool = nn.AdaptiveAvgPool2d(1)

if extra_layers:

self.classifier = nn.Sequential(

nn.Dropout(p=dropout, inplace=True),

nn.Linear(lastconv_output_channels, 512),

nn.ReLU(inplace=True),

nn.Linear(512, 256),

nn.ReLU(inplace=True),

nn.Linear(256, num_outputs),)

else:

self.classifier = nn.Sequential(

nn.Dropout(p=dropout, inplace=True),

nn.Linear(lastconv_output_channels, num_outputs),

)

for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode="fan_out")

if m.bias is not None:

nn.init.zeros_(m.bias)

elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):

nn.init.ones_(m.weight)

nn.init.zeros_(m.bias)

elif isinstance(m, nn.Linear):

init_range = 1.0 / math.sqrt(m.out_features)

nn.init.uniform_(m.weight, -init_range, init_range)

nn.init.zeros_(m.bias)

def _forward_impl(self, x: Tensor) -> Tensor:

x = self.features(x)

x = self.avgpool(x)

x = torch.flatten(x, 1)

x = self.classifier(x)

A45

A. Appendix Cosmo-ML code

return x

def forward(self, x: Tensor) -> Tensor:

return self._forward_impl(x)

def _efficientnet(

inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]],

dropout: float,

last_channel: Optional[int],

**kwargs: Any,

) -> EfficientNet:

model = EfficientNet(inverted_residual_setting, dropout, last_channel=last_channel, **kwargs)

return model

def _efficientnet_conf(

arch: str,

**kwargs: Any,

) -> Tuple[Sequence[Union[MBConvConfig, FusedMBConvConfig]], Optional[int]]:

inverted_residual_setting: Sequence[Union[MBConvConfig, FusedMBConvConfig]]

if arch.startswith("efficientnet_b"):

bneck_conf = partial(MBConvConfig, width_mult=kwargs.pop("width_mult"), depth_mult=kwargs.pop("depth_mult"))

inverted_residual_setting = [

bneck_conf(1, 3, 1, 32, 16, 1),

bneck_conf(6, 3, 2, 16, 24, 2),

bneck_conf(6, 5, 2, 24, 40, 2),

bneck_conf(6, 3, 2, 40, 80, 3),

bneck_conf(6, 5, 1, 80, 112, 3),

bneck_conf(6, 5, 2, 112, 192, 4),

bneck_conf(6, 3, 1, 192, 320, 1),

]

last_channel = None

elif arch.startswith("efficientnet_v2_s"):

inverted_residual_setting = [

FusedMBConvConfig(1, 3, 1, 24, 24, 2),

FusedMBConvConfig(4, 3, 2, 24, 48, 4),

FusedMBConvConfig(4, 3, 2, 48, 64, 4),

MBConvConfig(4, 3, 2, 64, 128, 6),

MBConvConfig(6, 3, 1, 128, 160, 9),

MBConvConfig(6, 3, 2, 160, 256, 15),

]

last_channel = 1280

A46

A. Appendix Cosmo-ML code

elif arch.startswith("efficientnet_v2_m"):

inverted_residual_setting = [

FusedMBConvConfig(1, 3, 1, 24, 24, 3),

FusedMBConvConfig(4, 3, 2, 24, 48, 5),

FusedMBConvConfig(4, 3, 2, 48, 80, 5),

MBConvConfig(4, 3, 2, 80, 160, 7),

MBConvConfig(6, 3, 1, 160, 176, 14),

MBConvConfig(6, 3, 2, 176, 304, 18),

MBConvConfig(6, 3, 1, 304, 512, 5),

]

last_channel = 1280

elif arch.startswith("efficientnet_v2_l"):

inverted_residual_setting = [

FusedMBConvConfig(1, 3, 1, 32, 32, 4),

FusedMBConvConfig(4, 3, 2, 32, 64, 7),

FusedMBConvConfig(4, 3, 2, 64, 96, 7),

MBConvConfig(4, 3, 2, 96, 192, 10),

MBConvConfig(6, 3, 1, 192, 224, 19),

MBConvConfig(6, 3, 2, 224, 384, 25),

MBConvConfig(6, 3, 1, 384, 640, 7),

]

last_channel = 1280

else:

raise ValueError(f"Unsupported model type {arch}")

return inverted_residual_setting, last_channel

def efficientnet_b0(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

"""EfficientNet B0 model architecture from the `EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks <https://arxiv.org/abs/1905.11946>`_ paper.

Args:

progress (bool, optional): If True, displays a progress bar of the

download to stderr. Default is True.

**kwargs: parameters passed to the ``torchvision.models.efficientnet.EfficientNet``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/efficientnet.py>`_

for more details about this class.

.. autoclass:: torchvision.models.EfficientNet_B0_Weights

:members:

"""

inverted_residual_setting, last_channel = _efficientnet_conf(

A47

A. Appendix Cosmo-ML code

"efficientnet_b0", width_mult=1.0, depth_mult=1.0)

return _efficientnet(inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, **kwargs)

def efficientnet_b1(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b1", width_mult=1.0, depth_mult=1.1)

return _efficientnet(inverted_residual_setting, kwargs.pop("dropout", 0.2), last_channel, **kwargs)

def efficientnet_b2(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b2", width_mult=1.1, depth_mult=1.2)

return _efficientnet(inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, **kwargs)

def efficientnet_b3(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b3", width_mult=1.2, depth_mult=1.4)

return _efficientnet(inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, **kwargs,)

def efficientnet_b3_5(*, progress: bool = True, **kwargs: Any) -> EfficientNet: # my own model

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b3_5", width_mult=1.2, depth_mult=1.6)

return _efficientnet(inverted_residual_setting, kwargs.pop("dropout", 0.3), last_channel, **kwargs,)

def efficientnet_b4(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b4", width_mult=1.4, depth_mult=1.8)

return _efficientnet(inverted_residual_setting, kwargs.pop("dropout", 0.4), last_channel, **kwargs,)

def efficientnet_b4_5(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b4_5", width_mult=1.8, depth_mult=2.0)

return _efficientnet(

inverted_residual_setting,

kwargs.pop("dropout", 0.4),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),

**kwargs,)

def efficientnet_b5(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf(

"efficientnet_b5", width_mult=1.6, depth_mult=2.2)

return _efficientnet(

inverted_residual_setting,

A48

A. Appendix Cosmo-ML code

kwargs.pop("dropout", 0.4),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),

**kwargs,

)

def efficientnet_b6(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b6", width_mult=1.8, depth_mult=2.6)

return _efficientnet(

inverted_residual_setting,

kwargs.pop("dropout", 0.5),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),

**kwargs,

)

def efficientnet_b7(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_b7", width_mult=2.0, depth_mult=3.1)

return _efficientnet(

inverted_residual_setting,

kwargs.pop("dropout", 0.5),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=0.001, momentum=0.01),

**kwargs,

)

def efficientnet_v2_s(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_s")

return _efficientnet(

inverted_residual_setting,

kwargs.pop("dropout", 0.2),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=1e-03),

**kwargs,

)

def efficientnet_v2_m(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_m")

return _efficientnet(

inverted_residual_setting,

kwargs.pop("dropout", 0.3),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=1e-03),

**kwargs,

A49

A. Appendix Cosmo-ML code

)

def efficientnet_v2_l(*, progress: bool = True, **kwargs: Any) -> EfficientNet:

inverted_residual_setting, last_channel = _efficientnet_conf("efficientnet_v2_l")

return _efficientnet(

inverted_residual_setting,

kwargs.pop("dropout", 0.4),

last_channel,

norm_layer=partial(nn.BatchNorm2d, eps=1e-03),

**kwargs,

)

A50

A. Appendix Cosmo-ML code

The following code below is from the MnasNet.py file.

import warnings

from functools import partial

from typing import Any, Dict, List, Optional

import torch

import torch.nn as nn

from torch import Tensor

from torchvision.models._api import register_model

from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface

from torchvision.models.mnasnet import _stack, _round_to_multiple_of, _get_depths, _InvertedResidual

Paper suggests 0.9997 momentum, for TensorFlow. Equivalent PyTorch momentum is

1.0 - tensorflow.

_BN_MOMENTUM = 1 - 0.9997

class MNASNet(torch.nn.Module):

"""MNASNet, as described in https://arxiv.org/pdf/1807.11626.pdf. This

implements the B1 variant of the model.

>>> model = MNASNet(1.0, num_outputs=1000)

>>> x = torch.rand(1, 3, 224, 224)

>>> y = model(x)

>>> y.dim()

2

>>> y.nelement()

1000

"""

Version 2 adds depth scaling in the initial stages of the network.

_version = 2

def __init__(

self,

alpha: float,

num_outputs: int = 6,

dropout: float = 0.2,

extra_layers: bool = False,

) -> None:

super().__init__()

if alpha <= 0.0:

A51

A. Appendix Cosmo-ML code

raise ValueError(f"alpha should be greater than 0.0 instead of {alpha}")

self.alpha = alpha

self.num_outputs = num_outputs

depths = _get_depths(alpha)

layers = [

First layer: regular conv.

nn.Conv2d(1, depths[0], 3, padding=1, stride=2, bias=False),

nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),

nn.ReLU(inplace=True),

Depthwise separable, no skip.

nn.Conv2d(depths[0], depths[0], 3, padding=1, stride=1, groups=depths[0], bias=False),

nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),

nn.ReLU(inplace=True),

nn.Conv2d(depths[0], depths[1], 1, padding=0, stride=1, bias=False),

nn.BatchNorm2d(depths[1], momentum=_BN_MOMENTUM),

MNASNet blocks: stacks of inverted residuals.

_stack(depths[1], depths[2], 3, 2, 3, 3, _BN_MOMENTUM),

_stack(depths[2], depths[3], 5, 2, 3, 3, _BN_MOMENTUM),

_stack(depths[3], depths[4], 5, 2, 6, 3, _BN_MOMENTUM),

_stack(depths[4], depths[5], 3, 1, 6, 2, _BN_MOMENTUM),

_stack(depths[5], depths[6], 5, 2, 6, 4, _BN_MOMENTUM),

_stack(depths[6], depths[7], 3, 1, 6, 1, _BN_MOMENTUM),

Final mapping to classifier input.

nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False),

nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM),

nn.ReLU(inplace=True),

]

self.layers = nn.Sequential(*layers)

if extra_layers:

self.classifier = nn.Sequential(

nn.Dropout(p=dropout, inplace=True),

nn.Linear(1280, 1024),

nn.ReLU(inplace=True),

nn.Linear(1024, 512),

nn.ReLU(inplace=True),

nn.Linear(512, num_outputs))

else:

self.classifier = nn.Sequential(

nn.Dropout(p=dropout, inplace=True),

nn.Linear(1280, num_outputs))

for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")

A52

A. Appendix Cosmo-ML code

if m.bias is not None:

nn.init.zeros_(m.bias)

elif isinstance(m, nn.BatchNorm2d):

nn.init.ones_(m.weight)

nn.init.zeros_(m.bias)

elif isinstance(m, nn.Linear):

nn.init.kaiming_uniform_(m.weight, mode="fan_out", nonlinearity="sigmoid")

nn.init.zeros_(m.bias)

def forward(self, x: Tensor) -> Tensor:

x = self.layers(x)

Equivalent to global avgpool and removing H and W dimensions.

x = x.mean([2, 3])

return self.classifier(x)

def _load_from_state_dict(

self,

state_dict: Dict,

prefix: str,

local_metadata: Dict,

strict: bool,

missing_keys: List[str],

unexpected_keys: List[str],

error_msgs: List[str],

) -> None:

version = local_metadata.get("version", None)

if version not in [1, 2]:

raise ValueError(f"version shluld be set to 1 or 2 instead of {version}")

if version == 1 and not self.alpha == 1.0:

In the initial version of the model (v1), stem was fixed-size.

All other layer configurations were the same. This will patch

the model so that it's identical to v1. Model with alpha 1.0 is

unaffected.

depths = _get_depths(self.alpha)

v1_stem = [

nn.Conv2d(3, 32, 3, padding=1, stride=2, bias=False),

nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),

nn.ReLU(inplace=True),

nn.Conv2d(32, 32, 3, padding=1, stride=1, groups=32, bias=False),

nn.BatchNorm2d(32, momentum=_BN_MOMENTUM),

nn.ReLU(inplace=True),

nn.Conv2d(32, 16, 1, padding=0, stride=1, bias=False),

nn.BatchNorm2d(16, momentum=_BN_MOMENTUM),

A53

A. Appendix Cosmo-ML code

_stack(16, depths[2], 3, 2, 3, 3, _BN_MOMENTUM),

]

for idx, layer in enumerate(v1_stem):

self.layers[idx] = layer

The model is now identical to v1, and must be saved as such.

self._version = 1

warnings.warn(

"A new version of MNASNet model has been implemented. "

"Your checkpoint was saved using the previous version. "

"This checkpoint will load and work as before, but "

"you may want to upgrade by training a newer model or "

"transfer learning from an updated ImageNet checkpoint.",

UserWarning,

)

super()._load_from_state_dict(

state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs

)

def _mnasnet(alpha: float, **kwargs: Any) -> MNASNet:

model = MNASNet(alpha, **kwargs)

return model

def mnasnet1_0(*, progress: bool = True, **kwargs: Any) -> MNASNet:

"""MNASNet with depth multiplier of 0.5 from

`MnasNet: Platform-Aware Neural Architecture Search for Mobile

<https://arxiv.org/pdf/1807.11626.pdf>`_ paper.

Args:

**kwargs: parameters passed to the ``torchvision.models.mnasnet.MNASNet``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py>`_

for more details about this class.

.. autoclass:: torchvision.models.MNASNet0_5_Weights

:members:

"""

return _mnasnet(1.0, **kwargs)

def mnasnet3_8(*, progress: bool = True, **kwargs: Any) -> MNASNet:

return _mnasnet(3.8, **kwargs)

def mnasnet6_0(*, progress: bool = True, **kwargs: Any) -> MNASNet:

return _mnasnet(6, **kwargs)

A54

A. Appendix Cosmo-ML code

The following code below is from the VGG.py file.

from functools import partial

from typing import Any, cast, Dict, List, Optional, Union

import torch

import torch.nn as nn

from torchvision.models._utils import handle_legacy_interface

class VGG(nn.Module):

def __init__(

self, features: nn.Module, num_outputs: int = 6, init_weights: bool = True, dropout: float = 0.5

) -> None:

super().__init__()

#_log_api_usage_once(self)

self.features = features

self.avgpool = nn.AdaptiveAvgPool2d((7, 7))

self.classifier = nn.Sequential(

nn.Linear(512 * 7 * 7, 4096),

nn.ReLU(True),

nn.Dropout(p=dropout),

nn.Linear(4096, 4096),

nn.ReLU(True),

nn.Dropout(p=dropout),

nn.Linear(4096, num_outputs),

)

if init_weights:

for m in self.modules():

if isinstance(m, nn.Conv2d):

nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")

if m.bias is not None:

nn.init.constant_(m.bias, 0)

elif isinstance(m, nn.BatchNorm2d):

nn.init.constant_(m.weight, 1)

nn.init.constant_(m.bias, 0)

elif isinstance(m, nn.Linear):

nn.init.normal_(m.weight, 0, 0.01)

nn.init.constant_(m.bias, 0)

def forward(self, x: torch.Tensor) -> torch.Tensor:

x = self.features(x)

A55

A. Appendix Cosmo-ML code

x = self.avgpool(x)

x = torch.flatten(x, 1)

x = self.classifier(x)

return x

def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential:

layers: List[nn.Module] = []

in_channels = 1

for v in cfg:

if v == "M":

layers += [nn.MaxPool2d(kernel_size=2, stride=2)]

else:

v = cast(int, v)

conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)

if batch_norm:

layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]

else:

layers += [conv2d, nn.ReLU(inplace=True)]

in_channels = v

return nn.Sequential(*layers)

cfgs: Dict[str, List[Union[str, int]]] = {

"A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],

"B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"],

"D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"],

"E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M"],

}

def _vgg(cfg: str, batch_norm: bool, **kwargs: Any) -> VGG:

model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)

return model

@handle_legacy_interface()

def vgg11(*, progress: bool = True, **kwargs: Any) -> VGG:

"""VGG-11 from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__.

Args:

progress (bool, optional): If True, displays a progress bar of the

download to stderr. Default is True.

**kwargs: parameters passed to the ``torchvision.models.vgg.VGG``

base class. Please refer to the `source code

A56

A. Appendix Cosmo-ML code

<https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_

for more details about this class.

.. autoclass:: torchvision.models.VGG11_Weights

:members:

"""

return _vgg("A", False, **kwargs)

@handle_legacy_interface()

def vgg11_bn(*, progress: bool = True, **kwargs: Any) -> VGG:

"""VGG-11-BN from `Very Deep Convolutional Networks for Large-Scale Image Recognition <https://arxiv.org/abs/1409.1556>`__.

Args:

progress (bool, optional): If True, displays a progress bar of the

download to stderr. Default is True.

**kwargs: parameters passed to the ``torchvision.models.vgg.VGG``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/vgg.py>`_

for more details about this class.

.. autoclass:: torchvision.models.VGG11_BN_Weights

:members:

"""

return _vgg("A", True, **kwargs)

@handle_legacy_interface()

def vgg13(*, progress: bool = True, **kwargs: Any) -> VGG:

return _vgg("B", False, **kwargs)

@handle_legacy_interface()

def vgg13_bn(*, progress: bool = True, **kwargs: Any) -> VGG:

return _vgg("B", True, **kwargs)

@handle_legacy_interface()

def vgg16(*, progress: bool = True, **kwargs: Any) -> VGG:

return _vgg("D", False, **kwargs)

@handle_legacy_interface()

def vgg16_bn(*, progress: bool = True, **kwargs: Any) -> VGG:

return _vgg("D", True, **kwargs)

@handle_legacy_interface()

def vgg19(*, progress: bool = True, **kwargs: Any) -> VGG:

return _vgg("E", False, **kwargs)

A57

A. Appendix Cosmo-ML code

@handle_legacy_interface()

def vgg19_bn(*, progress: bool = True, **kwargs: Any) -> VGG:

return _vgg("E", True, **kwargs)

A58

A. Appendix Cosmo-ML code

The following code below is from the Vision Transformer.py file.

import math

from collections import OrderedDict

from functools import partial

from typing import Any, Callable, Dict, List, NamedTuple, Optional

import torch

import torch.nn as nn

from torchvision.ops.misc import Conv2dNormActivation, MLP

from torchvision.models.vision_transformer import ConvStemConfig, \

MLPBlock, EncoderBlock, Encoder, interpolate_embeddings

class VisionTransformer(nn.Module):

"""Vision Transformer as per https://arxiv.org/abs/2010.11929."""

def __init__(

self,

image_size: int,

patch_size: int,

num_layers: int,

num_heads: int,

hidden_dim: int,

mlp_dim: int,

dropout: float = 0.0,

attention_dropout: float = 0.0,

num_outputs: int = 1000,

norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),

conv_stem_configs: Optional[List[ConvStemConfig]] = None,

extra_layers: bool = False,

):

super().__init__()

torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!")

self.image_size = image_size

self.patch_size = patch_size

self.hidden_dim = hidden_dim

self.mlp_dim = mlp_dim

self.attention_dropout = attention_dropout

self.dropout = dropout

self.num_outputs = num_outputs

self.norm_layer = norm_layer

A59

A. Appendix Cosmo-ML code

if conv_stem_configs is not None:

As per https://arxiv.org/abs/2106.14881

seq_proj = nn.Sequential()

prev_channels = 3

for i, conv_stem_layer_config in enumerate(conv_stem_configs):

seq_proj.add_module(

f"conv_bn_relu_{i}",

Conv2dNormActivation(

in_channels=prev_channels,

out_channels=conv_stem_layer_config.out_channels,

kernel_size=conv_stem_layer_config.kernel_size,

stride=conv_stem_layer_config.stride,

norm_layer=conv_stem_layer_config.norm_layer,

activation_layer=conv_stem_layer_config.activation_layer,

),

)

prev_channels = conv_stem_layer_config.out_channels

seq_proj.add_module(

"conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1)

)

self.conv_proj: nn.Module = seq_proj

else:

self.conv_proj = nn.Conv2d(

in_channels=1, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size

)

seq_length = (image_size // patch_size) ** 2

Add a class token

self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim))

seq_length += 1

self.encoder = Encoder(

seq_length,

num_layers,

num_heads,

hidden_dim,

mlp_dim,

dropout,

attention_dropout,

norm_layer,

)

self.seq_length = seq_length

A60

A. Appendix Cosmo-ML code

heads_layers: OrderedDict[str, nn.Module] = OrderedDict()

if extra_layers:

heads_layers["pre_logits1"] = nn.Linear(hidden_dim, 512)

heads_layers["ac1"] = nn.ReLU()

heads_layers["pre_logits2"] = nn.Linear(512, 256)

heads_layers["act2"] = nn.ReLU()

heads_layers["head"] = nn.Linear(256, num_outputs)

self.heads = nn.Sequential(heads_layers)

else:

heads_layers["head"] = nn.Linear(hidden_dim, num_outputs)

self.heads = nn.Sequential(heads_layers)

if isinstance(self.conv_proj, nn.Conv2d):

Init the patchify stem

fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1]

nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in))

if self.conv_proj.bias is not None:

nn.init.zeros_(self.conv_proj.bias)

elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d):

Init the last 1x1 conv of the conv stem

nn.init.normal_(

self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels)

)

if self.conv_proj.conv_last.bias is not None:

nn.init.zeros_(self.conv_proj.conv_last.bias)

if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear):

fan_in = self.heads.pre_logits.in_features

nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in))

nn.init.zeros_(self.heads.pre_logits.bias)

if isinstance(self.heads.head, nn.Linear):

nn.init.zeros_(self.heads.head.weight)

nn.init.zeros_(self.heads.head.bias)

def _process_input(self, x: torch.Tensor) -> torch.Tensor:

n, c, h, w = x.shape

p = self.patch_size

torch._assert(h == self.image_size, f"Wrong image height! Expected {self.image_size} but got {h}!")

torch._assert(w == self.image_size, f"Wrong image width! Expected {self.image_size} but got {w}!")

n_h = h // p

n_w = w // p

A61

A. Appendix Cosmo-ML code

(n, c, h, w) -> (n, hidden_dim, n_h, n_w)

x = self.conv_proj(x)

(n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w))

x = x.reshape(n, self.hidden_dim, n_h * n_w)

(n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim)

The self attention layer expects inputs in the format (N, S, E)

where S is the source sequence length, N is the batch size, E is the

embedding dimension

x = x.permute(0, 2, 1)

return x

def forward(self, x: torch.Tensor):

Reshape and permute the input tensor

x = self._process_input(x)

n = x.shape[0]

Expand the class token to the full batch

batch_class_token = self.class_token.expand(n, -1, -1)

x = torch.cat([batch_class_token, x], dim=1)

x = self.encoder(x)

Classifier "token" as used by standard language architectures

x = x[:, 0]

x = self.heads(x)

return x

def _vision_transformer(

patch_size: int,

num_layers: int,

num_heads: int,

hidden_dim: int,

mlp_dim: int,

**kwargs: Any,

) -> VisionTransformer:

image_size = kwargs.pop("image_size", 400)

model = VisionTransformer(

image_size=image_size,

A62

A. Appendix Cosmo-ML code

patch_size=patch_size,

num_layers=num_layers,

num_heads=num_heads,

hidden_dim=hidden_dim,

mlp_dim=mlp_dim,

**kwargs,

)

return model

def vit_b_16(*, progress: bool = True, **kwargs: Any) -> VisionTransformer:

"""

Constructs a vit_b_16 architecture from

`An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.

Args:

**kwargs: parameters passed to the ``torchvision.models.vision_transformer.VisionTransformer``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py>`_

for more details about this class.

.. autoclass:: torchvision.models.ViT_B_16_Weights

:members:

"""

return _vision_transformer(

patch_size=16,

num_layers=12,

num_heads=12,

hidden_dim=768,

mlp_dim=3072,

**kwargs,

)

def vit_b_32(*, progress: bool = True, **kwargs: Any) -> VisionTransformer:

return _vision_transformer(

patch_size=32,

num_layers=12,

num_heads=12,

hidden_dim=768,

mlp_dim=3072,

**kwargs,

)

def vit_l_16(*, progress: bool = True, **kwargs: Any) -> VisionTransformer:

A63

A. Appendix Cosmo-ML code

return _vision_transformer(

patch_size=16,

num_layers=24,

num_heads=16,

hidden_dim=1024,

mlp_dim=4096,

**kwargs,

)

def vit_l_32(*, progress: bool = True, **kwargs: Any) -> VisionTransformer:

return _vision_transformer(

patch_size=32,

num_layers=24,

num_heads=16,

hidden_dim=1024,

mlp_dim=4096,

**kwargs,

)

def vit_h_14(*, progress: bool = True, **kwargs: Any) -> VisionTransformer:

return _vision_transformer(

patch_size=14,

num_layers=32,

num_heads=16,

hidden_dim=1280,

mlp_dim=5120,

**kwargs,

)

A64

A. Appendix Cosmo-ML code

The following code below is from the Swin Transformer.py file.

import math

from functools import partial

from typing import Any, Callable, List, Optional

import torch

import torch.nn.functional as F

from torch import nn, Tensor

from torchvision.ops.misc import MLP, Permute

from torchvision.models.swin_transformer import _get_relative_position_bias,\

_patch_merging_pad,PatchMerging, PatchMergingV2, shifted_window_attention, \

ShiftedWindowAttention, ShiftedWindowAttentionV2, SwinTransformerBlock, \

SwinTransformerBlockV2

class SwinTransformer(nn.Module):

"""

Implements Swin Transformer from the `"Swin Transformer: Hierarchical Vision Transformer using

Shifted Windows" <https://arxiv.org/pdf/2103.14030>`_ paper.

Args:

patch_size (List[int]): Patch size.

embed_dim (int): Patch embedding dimension.

depths (List(int)): Depth of each Swin Transformer layer.

num_heads (List(int)): Number of attention heads in different layers.

window_size (List[int]): Window size.

mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.

dropout (float): Dropout rate. Default: 0.0.

attention_dropout (float): Attention dropout rate. Default: 0.0.

stochastic_depth_prob (float): Stochastic depth rate. Default: 0.1.

num_outputs (int): Number of outputs for classification head. Default: 1000.

block (nn.Module, optional): SwinTransformer Block. Default: None.

norm_layer (nn.Module, optional): Normalization layer. Default: None.

downsample_layer (nn.Module): Downsample layer (patch merging). Default: PatchMerging.

"""

def __init__(

self,

patch_size: List[int],

embed_dim: int,

depths: List[int],

A65

A. Appendix Cosmo-ML code

num_heads: List[int],

window_size: List[int],

mlp_ratio: float = 4.0,

dropout: float = 0.0,

attention_dropout: float = 0.0,

stochastic_depth_prob: float = 0.1,

num_outputs: int = 1000,

norm_layer: Optional[Callable[..., nn.Module]] = None,

block: Optional[Callable[..., nn.Module]] = None,

downsample_layer: Callable[..., nn.Module] = PatchMerging,

extra_layers: bool = False,

):

super().__init__()

self.num_outputs = num_outputs

if block is None:

block = SwinTransformerBlock

if norm_layer is None:

norm_layer = partial(nn.LayerNorm, eps=1e-5)

layers: List[nn.Module] = []

split image into non-overlapping patches

layers.append(

nn.Sequential(

nn.Conv2d(

1, embed_dim, kernel_size=(patch_size[0], patch_size[1]), stride=(patch_size[0], patch_size[1])

),

Permute([0, 2, 3, 1]),

norm_layer(embed_dim),

)

)

total_stage_blocks = sum(depths)

stage_block_id = 0

build SwinTransformer blocks

for i_stage in range(len(depths)):

stage: List[nn.Module] = []

dim = embed_dim * 2**i_stage

for i_layer in range(depths[i_stage]):

adjust stochastic depth probability based on the depth of the stage block

sd_prob = stochastic_depth_prob * float(stage_block_id) / (total_stage_blocks - 1)

stage.append(

block(

dim,

A66

A. Appendix Cosmo-ML code

num_heads[i_stage],

window_size=window_size,

shift_size=[0 if i_layer % 2 == 0 else w // 2 for w in window_size],

mlp_ratio=mlp_ratio,

dropout=dropout,

attention_dropout=attention_dropout,

stochastic_depth_prob=sd_prob,

norm_layer=norm_layer,

)

)

stage_block_id += 1

layers.append(nn.Sequential(*stage))

add patch merging layer

if i_stage < (len(depths) - 1):

layers.append(downsample_layer(dim, norm_layer))

self.features = nn.Sequential(*layers)

num_features = embed_dim * 2 ** (len(depths) - 1)

self.norm = norm_layer(num_features)

self.permute = Permute([0, 3, 1, 2]) # B H W C -> B C H W

self.avgpool = nn.AdaptiveAvgPool2d(1)

self.flatten = nn.Flatten(1)

if extra_layers:

self.head = nn.Sequential(

nn.Linear(num_features, num_features/2),

nn.ReLU(inplace=True),

nn.Linear(num_features/2, num_features/4),

nn.ReLU(inplace=True),

nn.Linear(num_features/4, num_outputs),

)

else:

self.head = nn.Linear(num_features, num_outputs)

for m in self.modules():

if isinstance(m, nn.Linear):

nn.init.trunc_normal_(m.weight, std=0.02)

if m.bias is not None:

nn.init.zeros_(m.bias)

def forward(self, x):

x = self.features(x)

x = self.norm(x)

x = self.permute(x)

x = self.avgpool(x)

A67

A. Appendix Cosmo-ML code

x = self.flatten(x)

x = self.head(x)

return x

def _swin_transformer(

patch_size: List[int],

embed_dim: int,

depths: List[int],

num_heads: List[int],

window_size: List[int],

stochastic_depth_prob: float,

**kwargs: Any,

) -> SwinTransformer:

model = SwinTransformer(

patch_size=patch_size,

embed_dim=embed_dim,

depths=depths,

num_heads=num_heads,

window_size=window_size,

stochastic_depth_prob=stochastic_depth_prob,

**kwargs,

)

return model

def swin_t(*, progress: bool = True, **kwargs: Any) -> SwinTransformer:

"""

Constructs a swin_tiny architecture from

`Swin Transformer: Hierarchical Vision Transformer using Shifted Windows <https://arxiv.org/pdf/2103.14030>`_.

Args:

**kwargs: parameters passed to the ``torchvision.models.swin_transformer.SwinTransformer``

base class. Please refer to the `source code

<https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py>`_

for more details about this class.

.. autoclass:: torchvision.models.Swin_T_Weights

:members:

"""

return _swin_transformer(

patch_size=[4, 4],

embed_dim=96,

depths=[2, 2, 6, 2],

num_heads=[3, 6, 12, 24],

window_size=[7, 7],

stochastic_depth_prob=0.2,

A68

A. Appendix Cosmo-ML code

**kwargs,

)

def swin_s(*, progress: bool = True, **kwargs: Any) -> SwinTransformer:

return _swin_transformer(

patch_size=[4, 4],

embed_dim=96,

depths=[2, 2, 18, 2],

num_heads=[3, 6, 12, 24],

window_size=[7, 7],

stochastic_depth_prob=0.3,

**kwargs,

)

def swin_b(*, progress: bool = True, **kwargs: Any) -> SwinTransformer:

return _swin_transformer(

patch_size=[4, 4],

embed_dim=128,

depths=[2, 2, 18, 2],

num_heads=[4, 8, 16, 32],

window_size=[7, 7],

stochastic_depth_prob=0.5,

**kwargs,

)

def swin_v2_t(*, progress: bool = True, **kwargs: Any) -> SwinTransformer:

return _swin_transformer(

patch_size=[4, 4],

embed_dim=96,

depths=[2, 2, 6, 2],

num_heads=[3, 6, 12, 24],

window_size=[8, 8],

stochastic_depth_prob=0.2,

block=SwinTransformerBlockV2,

downsample_layer=PatchMergingV2,

**kwargs,

)

def swin_v2_s(*, progress: bool = True, **kwargs: Any) -> SwinTransformer:

return _swin_transformer(

A69

A. Appendix Cosmo-ML code

patch_size=[4, 4],

embed_dim=96,

depths=[2, 2, 18, 2],

num_heads=[3, 6, 12, 24],

window_size=[8, 8],

stochastic_depth_prob=0.3,

block=SwinTransformerBlockV2,

downsample_layer=PatchMergingV2,

**kwargs,

)

def swin_v2_b(*, progress: bool = True, **kwargs: Any) -> SwinTransformer:

return _swin_transformer(

patch_size=[4, 4],

embed_dim=128,

depths=[2, 2, 18, 2],

num_heads=[4, 8, 16, 32],

window_size=[8, 8],

stochastic_depth_prob=0.5,

block=SwinTransformerBlockV2,

downsample_layer=PatchMergingV2,

**kwargs,

)

A70

B. Appendix CosmoSim code

To add cropping of data set pictures below changes have to be made. Add these code
lines to Image.py file:

def cropImage(im):

m,n = im.shape

if m > 400 and n > 400:

x = (m - 400) / 2

y = (n - 400) / 2

im = im[int(x):int(x+400),int(y):int(y+400)]

return im

Add two last lines below after the firs two line of code in datagen.py file.

if args.reflines: # This is in datagen.py

drawAxes(im) # This is in datagen.py

if args.crop:

im = cropImage(im)

Add two lines below after all other parse argumets in datagen.py file.

parser.add_argument('-q', '--crop',action='store_true',

help="Croping of the image to 400x400")

B1

C. Other results

This appendix consists of all the rest of the results gathered in this project. None of it
was deemed interesting enough to put in the main report for one reason or another. It
is gathered here for documentation purposes, or in case the all results are needed later.

For all the graphs showing total loss (MAE or MSE), orange lines always indicate test
data set performance, and blue lines always indicate training set performance.

C1

C. Other results

Figure C.1.: AlexNet total loss performance with logarithmic graph

C2

C. Other results

Figure C.2.: ConvNeXt total loss performance with logarithmic graph

C3

C. Other results

Figure C.3.: DenseNet total loss performance with logarithmic graph

C4

C. Other results

Figure C.4.: EfficientNet-B7 total loss performance with logarithmic graph

C5

C. Other results

Figure C.5.: EfficientNet-v2 1 total loss performance with logarithmic graph

C6

C. Other results

Figure C.6.: Inception-v3 total loss performance with logarithmic graph

C7

C. Other results

Figure C.7.: MnasNet total loss performance with logarithmic graph

C8

C. Other results

Figure C.8.: ResNet-152 total loss performance with logarithmic graph

C9

C. Other results

Figure C.9.: SqueezeNet-v1.1 total loss performance with logarithmic graph

C10

C. Other results

Figure C.10.: Swin-v2-b total loss performance with logarithmic graph

C11

C. Other results

Figure C.11.: VGG-19 bn total loss performance with logarithmic graph

C12

C. Other results

Figure C.12.: ViT-16-b total loss performance with logarithmic graph

C13

C. Other results

Figure C.13.: AlexNet total loss performance with linear graph

C14

C. Other results

Figure C.14.: ConvNeXt total loss performance with linear graph

C15

C. Other results

Figure C.15.: DenseNet-201 total loss performance with linear graph

C16

C. Other results

Figure C.16.: EfficientNet-B7 total loss performance with linear graph

C17

C. Other results

Figure C.17.: EfficientNet-v2 1 total loss performance with linear graph

C18

C. Other results

Figure C.18.: Inception-V3 total loss performance with linear graph

C19

C. Other results

Figure C.19.: MnasNet-6.0 total loss performance with linear graph

C20

C. Other results

Figure C.20.: ResNet-152 total loss performance with linear graph

C21

C. Other results

Figure C.21.: SqueezeNet-V1.1 total loss performance with linear graph

C22

C. Other results

Figure C.22.: Swin-v2-b total loss performance with linear graph

C23

C. Other results

Figure C.23.: VGG-19 bn total loss performance with linear graph

C24

C. Other results

Figure C.24.: ViT-16-b total loss performance with linear graph

C25

C. Other results

Figure C.25.: AlexNet histogram pre-trained with 0.0001 learning rate

C26

C. Other results

Figure C.26.: ConvNeXt histogram with 0.0001 learning rate

C27

C. Other results

Figure C.27.: DenseNet histogram with 0.0001 learning rate

C28

C. Other results

Figure C.28.: EfficientNet histogram with 0.0001 learning rate

C29

C. Other results

Figure C.29.: EfficientNet-v2 1 histogram with 0.0001 learning rate

C30

C. Other results

Figure C.30.: Inception-v3 histogram pre-trained with 0.0001 learning rate

C31

C. Other results

Figure C.31.: MnasNet histogram with 0.0001 learning rate

C32

C. Other results

Figure C.32.: ResNet histogram with 0.0001 learning rate

C33

C. Other results

Figure C.33.: SqueezeNet histogram with 0.0001 learning rate and extra layers

C34

C. Other results

Figure C.34.: Swin-v2 b histogram with 0.0001 learning rate

C35

C. Other results

Figure C.35.: VGG-19 BN histogram with 0.0001 learning rate

C36

C. Other results

Figure C.36.: ViT histogram with 0.0001 learning rate

C37

C. Other results

Figure C.37.: AlexNet histogram with 0.001 learning rate

C38

C. Other results

Figure C.38.: AlexNet histogram with 0.0001 learning rate

C39

C. Other results

Figure C.39.: AlexNet histogram with 0.001 learning rate and extra layers

C40

C. Other results

Figure C.40.: AlexNet histogram with 0.0001 learning rate and extra layers

C41

C. Other results

Figure C.41.: EfficientNet-B7 histogram with 0.0001 learning rate

C42

C. Other results

Figure C.42.: EfficientNet-v2 1 histogram with 0.0001 learning rate

C43

C. Other results

Figure C.43.: EfficientNet histogram with 0.0001 learning rate

C44

C. Other results

Figure C.44.: Inception-v3 histogram with 0.001 learning rate

C45

C. Other results

Figure C.45.: Inception-v3 histogram with 0.0001 learning rate.

C46

C. Other results

Figure C.46.: Inception-v3 histogram pre-trained with 0.001 learning rate.

C47

C. Other results

Figure C.47.: Inception-v3 histogram with 0.001 learning rate and extra layers.

C48

C. Other results

Figure C.48.: Inception-v3 histogram pre-trained with 0.0001 learning rate.

C49

C. Other results

Figure C.49.: Inception-v3 histogram with 0.0001 learning rate and extra layers.

C50

C. Other results

Figure C.50.: Inception-v3 histogram pre-trained with 0.00001 learning rate.

C51

C. Other results

Figure C.51.: Inception-v3 histogram pre-trained with 0.0001 learning rate attempt 2.

C52

C. Other results

Figure C.52.: Inception-v3 histogram pre-trained with 0.001 learning rate and extra lay-
ers.

C53

C. Other results

Figure C.53.: Inception-v3 histogram pre-trained with 0.0001 learning rate and extra
layers.

C54

C. Other results

Figure C.54.: Inception-v3 histogram pre-trained with 0.0001 learning rate for 100
epochs, and 0.00001 learning rate for next 100 epochs.

C55

C. Other results

Figure C.55.: Inception-v3 histogram with 0.0001 learning rate for 100 epochs, and
0.00001 learning rate for next 100 epochs, all with extra layers.

C56

C. Other results

Figure C.56.: SqueezeNet histogram with 0.0001 learning rate.

C57

C. Other results

Figure C.57.: SqueezeNet histogram pre-trained with 0.0001 learning rate.

C58

C. Other results

Figure C.58.: SqueezeNet histogram with 0.0001 learning rate and extra layers.

C59

C. Other results

Figure C.59.: SqueezeNet histogram pre-trained with 0.0001 learning rate and extra lay-
ers.

C60

C. Other results

Figure C.60.: VGG-19 BN histogram with 0.0001 learning rate.

C61

C. Other results

Figure C.61.: VGG-19 BN histogram with 0.0001 learning rate for 100 epochs, and
0.00001 learning rate for next 100 epoch.

C62

C. Other results

Figure C.62.: AlexNet histogram pre-trained with 0.0001 learning rate.

C63

C. Other results

Figure C.63.: ConvNeXt histogram with 0.0001 learning rate.

C64

C. Other results

Figure C.64.: DenseNet histogram with 0.0001 learning rate.

C65

C. Other results

Figure C.65.: EfficientNet-B7 histogram with 0.0001 learning rate.

C66

C. Other results

Figure C.66.: EfficientNet-v2 1 histogram with 0.0001 learning rate.

C67

C. Other results

Figure C.67.: Iception-v3 histogram pre-trained with 0.0001 learning rate.

C68

C. Other results

Figure C.68.: MnasNet histogram with 0.0001 learning rate.

C69

C. Other results

Figure C.69.: ResNet-152 histogram with 0.0001 learning rate.

C70

C. Other results

Figure C.70.: SqueezeNet histogram with 0.0001 learning rate and extra layers.

C71

C. Other results

Figure C.71.: Swin histogram with 0.0001 learning rate.

C72

C. Other results

Figure C.72.: VGG-19 BN histogram with 0.0001 learning rate.

C73

C. Other results

Figure C.73.: ViT histogram with 0.0001 learning rate.

C74

D. Pre-project report

This appendix contains the obligatory pre-project report.

D1

PRE-PROJECT REPORT
FOR BACHELOR THESIS

Postadresse Besøksadresse Telefon Telefax Bankkonto

Høgskolen i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636

N-6025 Ålesund Internett Epostadresse Foretaksregisteret

Norway www.hials.no postmottak@hials.no NO 971 572 140

TITLE:

Intergalactic Machine Vision

CANDIDATE NUMBER(S):

KRISTIAN
MODESTAS

DATE: COURSE CODE: SUBJECT: DOCUMENT ACCESS:

12.01.2023 IELEA2920 Bachelor thesis - Open -

FIELD OF STUDY: PAGES/

ATTACHMENTS:

BIBL. NR:

AUTOMATION AND ROBOTICS / - Not applicable -

CLIENT(S)/SUPERVISOR(S):

Hans Georg Schaathun

Ben David Normann

TASK/SUMMARY:

This is a pre-project report for a planned bachelor thesis. The goal of the thesis is to continue

the work on dark matter research using machine learning. Dark matter affects light through

gravity, and this bending of the light can be detected.

NTNU I ÅLESUND SIDE 2
PRE-PROJECT REPORT – BACHELOR THESIS

INNHOLD

1 INNLEDNING ... 3

2 BEGREPER ... 3

3 PROSJEKTORGANISASJON .. 3

3.1 PROSJEKTGRUPPE .. 3
3.2 STYRINGSGRUPPE (VEILEDER OG KONTAKTPERSON OPPDRAGSGIVER) ... 4

4 AVTALER ... 4

4.1 AVTALE MED OPPDRAGSGIVER ... 4
4.2 ARBEIDSSTED OG RESSURSER.. 4
4.3 GRUPPENORMER – SAMARBEIDSREGLER – HOLDNINGER .. 4

5 PROSJEKTBESKRIVELSE.. 4

5.1 PROBLEMSTILLING - MÅLSETTING - HENSIKT .. 4
5.2 KRAV TIL LØSNING ELLER PROSJEKTRESULTAT – SPESIFIKASJON ... 4
5.3 PLANLAGT FRAMGANGSMÅTE(R) FOR UTVIKLINGSARBEIDET – METODE(R) ... 4
5.4 INFORMASJONSINNSAMLING – UTFØRT OG PLANLAGT .. 5
5.5 VURDERING – ANALYSE AV RISIKO ... 5
5.6 HOVEDAKTIVITETER I VIDERE ARBEID .. 5
5.7 FRAMDRIFTSPLAN – STYRING AV PROSJEKTET .. 5
5.8 BESLUTNINGER – BESLUTNINGSPROSESS .. 6

6 DOKUMENTASJON .. 6

6.1 RAPPORTER OG TEKNISKE DOKUMENTER .. 6

7 PLANLAGTE MØTER OG RAPPORTER ... 6

7.1 MØTER .. 6
7.2 PERIODISKE RAPPORTER .. 6

8 PLANLAGT AVVIKSBEHANDLING ... 6

9 UTSTYRSBEHOV/FORUTSETNINGER FOR GJENNOMFØRING .. 7

10 REFERANSER .. 7

 VEDLEGG ... 7

NTNU ÅLESUND SIDE 3
PRE-PROJECT REPORT – BACHELOR THESIS

1 INTRODUCTION

The universe at large is filled with dark matter. This impossible-to-see matter is only possible to observe
based on its influence of gravity. When light passes by a sufficiently dense mass, gravity causes the light to
bend, altering its direction. This is called gravitational lensing. By using images of gravitationally lensed
galaxies, it should be possible to un-distort the image, finding the properties of the gravitational lens. This
in return allows us to map where the dark matter must be located, allowing us to create a map of the dark
matter in the universe.

2 TERMS

- Dark matter

Matter that is invisible to us and does not emit radiation. The only solid proof of its existence is that
its gravitational effect affects visible normal matter.

- Gravitational lensing

Gravitational lensing is a phenomenon where the light from a distant object, such as a galaxy, is
bent by the gravity of a massive object, such as a dark matter cluster, which is closer to us. This
distortion of light can be used to study dark matter.

- Machine learning

Machine learning is a type of artificial intelligence that allows computers to learn and improve
from experience without being explicitly programmed. It involves feeding a computer enormous
amounts of data and using algorithms to identify patterns and make predictions.

3 PROJECT ORGANISATION

 Project group

Student number(s)

ID #######
ID ########

3.1.1 Tasks for the project group - organising.
Project leader 1 – Kristian Lynghjem Vegsund
Project leader 2 - Modestas Kursevicius

3.1.2 Tasks for Project leader 1

- Area of responsibility:
o Project organizing
o Meetings

- Work assignments-:

NTNU ÅLESUND SIDE 4
PRE-PROJECT REPORT – BACHELOR THESIS

o Supervisors dialogue
o Write meeting reports

3.1.3 Tasks for Project leader 2

- Area of responsibility:
o Project plan
o Machine learning

- Work assignment:
o Complete documentation
o Specialize in machine learning

3.1.4 Shared responsibilities

4 AGREEMENTS

 Agreements with client
Planned meetings with clients/supervisors every 14 days, starting from 11.01.2023. Supervisors also positive to

help at any time outside these meetings.

 Work location and resources
 - Work location:

NTNU Ålesund

 - Resources:

Supervisors:
Hans Georg Schaathun
Ben David Normann

Idun High Performance Computing Group

 - Confidentiality:

None, open-source project

 Group norms – rules

All group members agree that they will:

• Show up at agreed meeting times or contact each other if it is not possible.

• Update each other on their progress.

• Log personal hours and work.

• Be objective and withhold their subjective views.

5 PROJECT DESCRIPTION

 Problem - goals - purpose
This bachelor thesis has a goal of continuing research on machine learning as a mean to detect dark
matter. Dark matter is not visible to us in any way and is only detected through its gravitational effect.
When light particles travel next to dark matter, its gravity can alter the lights trajectory, akin to bending
the light.

NTNU ÅLESUND SIDE 5
PRE-PROJECT REPORT – BACHELOR THESIS

The goal of the thesis is to implement machine learning to detect gravitationally lensed galaxies and
determine the properties of the dark matter. The algorithm can then be used to undistort the image,
outputting an un-distorted image of how the galaxy looks. The goal is to be able to use real images of
galaxies as input, to help map dark matter in the universe.

 Requirements results – specification
- Machine learning:

o Be able to train on generated images.
o Be able to recognize and mark gravitational lensing in a picture.
o Be able to input a distorted image and return an undistorted one.

 Planned course of action – methods
The plan is to implement agile software methodology. Everything planned is put in a backlog. Short
sprints are then done (usually 1-3 weeks long) to finish certain decided problems. After the sprints, new

tasks are chosen, and a new sprint period begins.

 Information collection
The group has already a good collection of literature on the topics:

o Roulette formalism

o Gravitational lensing

o Machine learning

Additional resources will be collected if and when needed.

 Risk assessment analysis

Consequence/
Probability Low Medium High Severe

Very unlikely

Unlikely

Likely

Very likely
Figure 5.1 – Risk matrix

5.5.1 Lockdown

Probability: Unlikely

Consequence: High – Would force remote work

Yellow (Medium risk)

Measures: Save everything in cloud-based storage. Make everything accessible to all members
regardless of physical location. Members are aware meetings and work could be moved to fully digital.

NTNU ÅLESUND SIDE 6
PRE-PROJECT REPORT – BACHELOR THESIS

5.5.2 Sickness (one or both members)

Probability: Very likely

Consequence: Medium – Would force remote work, but for a limited time

Yellow (Medium risk)

Measures: Save everything in cloud-based storage. Make everything accessible to all members
regardless of physical location. Members are aware meetings and work could be moved to fully digital.

5.5.3 Hardware problems

Probability: Very unlikely

Consequence: Medium – Would lose access to laptop or Idun cluster. Would lose all local files.

Green (Low risk)

Measures: Idun cluster going down is likely to be temporary. Laptop problems can be circumnavigated
by using another computer and be sure everything important is always in cloud storage.

 Main activities going forward

Nr. Main Activity Responsibility Cost Time/scope

A1 Pre-project report KV/MS -- 5 days

A11 Distributing responsibilities KV/MS -- 1 hour

A12 Work agreement KV/MS -- 1 hour

A13 Writing pre-project report KV/MS -- 3 days

A14 Plan meetings KV/MS -- 1 hour

A15 Supervisor meetings KV/MS -- 3 hours

B1 Machine learning MS/KV -- 3 months

B11 Research of machine learning libraries for
python

MS/KV -- 1 month

B12 Research of new machine learning structures MS/KV -- 1 month

B13 Making a neural network capable of classifying
gravitational lenses in a photo

MS/KV -- 1 month

C1 Simulator MS/KV -- 2 months

C11 Creating a representative database to real data MS/KV -- 1 month

C12 Try to make simulator with colours MS/KV -- 1 month

D1 Report 1/2 Finish by 22nd May
2023

NTNU ÅLESUND SIDE 7
PRE-PROJECT REPORT – BACHELOR THESIS

 Progress plan – planning

5.7.1 Main plan
Since this project is open ended it is hard to have any certainty on our project. First, we will make simulator
work on our computers. Then do research in what parameters gravitational lenses are found out in real world.
Next try different machine learning structures to fit our purpose better.

Group plans on planning only 1 to 3 weeks ahead. No more since the task is loosely defined. Therefore, the list

in 5.6 is only to be taken as a temporary draft.

Milestones:

• Settle on realistic parameter ranges for simulator.

• Find machine learning structure that is more efficient.

• Make a machine learning model that can find gravitational lenses in a picture.

• Add colours to the simulator and simulate redshift.

5.7.2 Management aids

- Report from last year’s work.

- Confluence

- Pre-project report

- GitHub

- Library

5.7.3 Development aids

- Physical:

- Personal computers

- IDUN high performance computing for training of neural networks

- Programs:

- GitHub for version control

- PyCharm for Python programming

- CLion for C++ programming

- Qt Creator for GUI programming

5.7.4 Intern control – evaluation
Project will be work on collaborative, working at the same location with supervisor meeting every 2
weeks.

 Decisions – decision making process
Since it is a two-person group working side by side, discussions will be used to make decisions until
both parties are satisfied.

6 DOCUMENTATION

 Reports and technical documents
- Pre-project report

- Meeting notes

- Bachelors tesis

NTNU ÅLESUND SIDE 8
PRE-PROJECT REPORT – BACHELOR THESIS

7 PLANNED MEETINGS AND REPORTS

 Meetings

7.1.1 Meetings with supervisors

- Every 14 days since 11.01.2023

- Meetings will be used for discussing work that has been done and needs to be done in future.

7.1.2 Group meetings
- Group will meet every Wednesday, Thursday, Friday to work on and discus the project.

 Periodic reports

7.2.1 Progress reports - milestones
- Progress reports will be produced every two hundred hours of combined work.

- Meeting notes will be produced after every meeting with supervisors.

8 DEVIATION PLAN

- Responsibility for progress of this project is on both members.

- Deviation is expected but both members need to agree on how that deviation will be done

- If any conflicts occur, we will contact our supervisors on their opinion and move on from that.

9 EQUIPMENT/PREREQUISITES FOR COMPLETION

- IDUN High Performance Computing Group

E. Supervisor meeting notes

E1

Mee ng notes bachelor project
This document contains the notes taken from each supervisor mee ng throughout the
bachelor project, as well as any relevant pictures taken from whiteboards/blackboards.

Most of it is wri en in Norwegian, and is wri en pre y has ly as to not stop the flow of the
mee ngs. Typos are expected, but the meaning of everything should be clear.

Møte 11.01.23 Referat
 - Skriv innledning tidlig for å begrense/beskrive oppgaven
 Ikke bruk forrige rapport som mal, de var for mange med for stort skop
 Åpen oppgave / opp til oss hva vi vil gjøre
 Simulatoren er under utvikling, dokumentasjon blir for utdatert/unyttig, men skriv
gjerne kapitel for hvordan komme I

Plan til neste møte/2 uker:
Skrive forrapport
Skrive ned tanker
Begynne på evnt innledning til rapport for tilbakemelding
Skriv lite literatursammendrag fra det vi leser (merk relevante ting)
Neste møte: 25.01.23

Møte 25.01.23 Referat
 Hans Georg gikk gjennom forprosjektrapport for å forstå fordelingen.
 Forprosjektrapport var ok, ingen endring nødvendig
 Tclkt
 Qt er antageligvis den beste for GUI, men ikke for python (opencv)
 Bedøm på veiledningsmøter fra backlog hva vi skal gjøre til neste gang
 Prøv å ha ny prototype klar til neste møte hver gang
 Felles forventing på hvert møte om hvor vi er om 14 dager (eller annet
intervall)

 Ben david notes: teori, historisk, helt I starten står det prosjekt overview
(figur 1.1), fysikksiden er på SIE.
 Resten av notaten: kapitel 3 forklarer roulette-modellen. Den forsto vi ikke
(mattematisk).
 Kapitel 4: Spesifikke utregninge (trenger ikke forstå alt). Hente ut det vi
trenger?
 Vi kan gjennomføre prosjekt basert på simulator allerede lagd. Vi trenger en
implementasjon av BDN modeller. Hvis vi vil debugge simulatoren eller
videreutvikle eller validere, da må vi forstå BDN notat. Eller implementere
elliptiske modeller.
 Fortell Hans Georg om 4 uker om vi vil gjøre selv eller dytte den på HGS og
BDN fordi vi skal fokusere på maskinlæringen.
 Kapitel 5: Litt utdatert skrevet av HGS. Teknisk dokumentasjon av simulator.
 Vi kan bruke CosmoSIM som sort boks. Burde det I starten iallefall.
 Vi kan bruke det lette I notatet I introduksjonen I hovedoppgaven.
 Les iallefall til og med 3.2 om ikke lenger.
 Gjennomgang av figur 3.2 på tavle
 PM modell finner x,y,R_E,sigma,chi
 Det er implementert betingelser for hva parametre kan være (R > R_E bl.a.).
Ferdig for PM model, ikke for SIS/SIE. Hvor spredt kan massen være før det blir
en vesentlig forskjell fra PM model. Med en klynge kan det samla massen være
stor. En punkt-sky model burde kunne være realistisk nok. Hvis den er lett å
regne på (og finnes) kan den være nyttig.
 Kapitel 4.1.2: Utvidelse fra punktlinse til andre burde være enkelt.
 Focus more on Neural network that is more accurate rather than efficient

Ben David undervisning/opptatt:

 Mandag: 12-14
 Tirsdag: 8-10 og 16-18
 Onsdag: EiT hele dagen (men kan bookes)
 Torsdag: Fri hele dagen (iallefall til masterstudent kommer)
 Fredag: Permisjon hele dagen
 På campus 7-17 man-fre

Til neste møte:

 Lage en backlog
 Få ting til å kjøre

Bilde:

Møte 08.02.23

Spørsmål:
 Hva er forventet av oss på maskinlæringsfronten? Er det nok med at vi
forbedrer den/lager vår egen?
 Svar: Hvis vi skal lage en god avhandling, skal vi forkuserer på evaluering av
hva vi gjøre (hva er bra her). Hva er gjort nesten ingenting? Studentene I fjor fikk
now til å virke. De dokumenterte ikke hvorfor de valfte hva de gjode. Vi må finne
ut om det er den beste eller om der er bdre alternatic. De fjorde en feil; De
genererte bildet, de visste hvor midten av bildet er. Du får veldig mye
informasjon av hvor den ligger I forhold til senter av bildet. I realiteten vet du
ikke det. Informasjonen om dette burde vært tatt ut av bildet, og sentrering
burde gjøres. Centerimage.py regner gj snittlig av alle pixler og vekter med
lysintensiteten. Sort = 0 vekt, Hvit = 1 vekt. Den beregner og translaterer slik at
den sentrerer bildet.

Hvilket nettverk er best? Begrunne Begrunne Begrunne
Sentrerte bilde: Hvilke parameter kan vi estimere.

 Hvordan kan vi bevise at bilde med same forhold mellom E_R og Chi er
same?
 Svar: Hvis vi kan konstruere dataset som beviser vi har pratisk talt like bilder,
har vi godt bevis. God strategi å statistisk vurdere datasettet for å bevise det.

o Hivlke parameter er ubestemmelig?
 Vi for artifakter I bilde generering vårt. Hva det betyr? Har dere vært bort i
det?
 Svar: HGS rettet feilen sist uke, men husker ikke hva som var feilen. I
simulatoren hadde noen glemt å initialisere midlertidig bilde med 0. Når den
overskriden bilde regner den ut akkurat den regionen rundt inni roulettesirkelen.
Gammel bildedata lå under ny.

 Svar:

Hans Georg tips om hva vi skal gjøre først:
 Sentrerte bilder: Hvilke parametre kan vi estimere?
 Er noen parametre ubestemmelige fra datasettet? (ML eller
statistikk)

o Regn ut bildedifferanse (absoluttverdi / kvadrert)
o

Notater:

 Last ned develop-brach, ikke master
 Cosmosimpy lager python-ting i c++. Den lager en klassefasade for å sette
alle parameter I modellen og velge hvilken du bruker. Slik bruker python mindre
kraft.
 Cosmosim init.py importerer cosmosimpy
 Hvis c++ kode virker, generer den cosmosimpy
 Init tråder (multithread) for at GUI ikke skal henge seg opp I real time sim.

 Å kunne argumentere for at programmet vårt er unikt eller så bra som mulig
er bra.

 Verdt å lese og finne ut hva forfattere hadde I tankene I papers på NN (hva
var de laget for?)
 Målet er ikke å ha nyeste NN/ML, men heller ha noen som er godt beskrevet,
så kan vi gjøre en vurdering for hva våre problem har til felles til de nettverkene
og sammenligne. Prøve forstå så mye som mulig, teste hypoteser.
 Grave I empiriske data?
 Burde ha med en nettverksdefinisjon(?). HVis vi finner ett nettverk (ferdig
eller kodet selv), ha med referanser så leser kan slå opp definisjon,. Hvis vi lager
selv burde hele dokumentasjon følge med. Legg med python kode I vedlegg +
grov beskrivelse I teksten.
 Andre måten er å lage en figur som beskriver lagene. Det er mye arbeid å få
til, men ser bedre ut.
 Definisjon av nettverket må være med.

Vurderingsgrunnlag: Hvor mye nytt ligger I teksen? Hvor godt presenterer teksten denne?
Bedre å ikke skrive for mye/overfladisk. Vi burde hatt litt råd fra Ottar. Alltid en risiko å
avvike fra tradisjon. Hvis sensor forventer samme som alle andre, er det risiko for å bli
trekket for å skrive kort men bra. Hvis vi kan argumentere bra, trenger den ikke være lang.
Ikke drukne resultat I tekst. Innledningskapitel veldig mange som skriver samme som året
før. Det irriterer ottar. Mange skriver om hvert bibliotek/library. Unødvendig. Skriv heller
om hvorfor du velger de om det sto mellom flere. Ikke skriv for mye om slike ting.
Metodekapitel (material and methods): Hvordan henter man data og gjøre statistisk analyse
om den. Vi har ikke så mye å si på den. Det blir ofte langt for andre, men ikke nødvendigvis
for oss. Ottar er ingeniør. Hvis sensor er usikker på kriterier spør de Ottar.
Kan få tilbakemelding fra medstudenter på om det er leselig. Bytt gjerne rapporter med en
annen gruppe for å gi gjensidig tilbakemelding.
Tydelig med referansene for å gjøre det mer leselig.
Avslutt gjerne med åpne spørsmål?

Møte 22.02.23

Spørsmål & svar:
 Vi sammenlignet bilder med samme Chi/E_R forhold, og ca 40-50% av
bildene er identiske, mens de resterende er under 1 pixel forskyvet til siden. Er
dette nok for ML? Er dette nok til å si at de er samme bildene?

o For 8-bit bilde: 255-pixel span – For å tolke: Se på hvilken avstand vi
får når vi regner avstand mellom bilder. To bilde, det nærmest linsen det
minste. Hvis kilden er I origo, så vil
o Dem slyber it fra s,a,e aksen fra origo, når bidlet er I orgigo skjer ikke
dette. Da vil den dra bildet ut langs x aksen. Hvis bildet ikke er I origo vil
det antageligvis ikke skje.
o - Sjekk om forskjellen er større med lave og høye verdier av chi (nært
0 og 100). Hans georg tipper det er numerisk feil. Modellen er ikke
nøyaktig hvis vi får små tall (f eks chi = 1) åga høy avrundingsfeil.
o Opencv bruker brøkdeler av pixler, de interpolerer, men
avrundingsfeil kan føre til at de hopper over en pixel.
o Vi kan regne euklids avstand mellom 2 bilder og kvantifisere
aacvstanden. Da kan vi med 8bit bilde vise at største lysfeil er 1 enhet. At
ingen pixler avviker med mer enn 1 eller 2 I lysstyrke. Kan også sjekke
hvor ofte store feil oppstår.
o Flat sky har en tilnørming, så avrundingsfeil skjer. Det er en
avrundingsfeil fra flat-sky approximation. Vi kan ikke unngå
avrundingsfeil.
 Hva skjer I lavere oppløsning? Blir det større forskjell?
 Kan bruke redshift for å finne avstand for å finne chi

 Test med chi konstant (50 f eks) og kjør ML med det for å sjekke om
det blir bra.

Møte 08.03.23

Notater:

 Vi må holde mye konstant, og variere få parameter/element
o Hvis vi varierer alt vet vi ikke hvorfor, så test få nye parameter om
gangen

 Velg referansepunkt
o Finne noe som har ok nøyaktighet

 Antageligvis AlexNet
 Kan spisse søket til å forbedre etter utgangspunkt er greit

 Kan være interessant å se hvorfor efficientnet er tregt når det skal være
raskt, kanskje tyngre referansepunkt

 AlexNet referanse:

o Velge optimaliseringsalgoritme
o Velge kostfunksjon
o Hvor mange epoker?
o Kjøretid? (inference og training)
o Nøyaktighet (feil per parameter, gj sniit og varians)
o DOKUMENTER ALT DOKUMENTER ALT
o DOKUMENTER ALT DOKUMENTER ALT
o DOKUMENTER ALT DOKUMENTER ALT

 Når vi har referanse, kan vi vurdere hvor mange ting vi har mulighet til å
kjøre resten av prosjektet. Dokumenter dette og begrunn i rapporten.

 300k bilder for å trene er veldig mye, fordi vi har få parameter så bildene har
ikke mye variasjon.
 Bildene må være sentrert

o Linsen må flyttes til midten av det forvrengte bildet (se tavlebildet)
 Dette er antageligvis gjort (ser slik ut)
 Må være gjort for trening på empirisk data

 Prøv med 300k bilder eller mindre for å se om det gjør en forskjell hvis det
ikke tar for lang tid

 Adversarial training:
o Begynne med tilfeldige sett

 Ta bilder som gir dårlige resultat for å lage nytt sett med kun
de

 Tren på nytt med bildene som gir dårlig resultat
 Kan sammenligne estimat -> simulator -> fasit med input (se tavlebilde)

o Kan trene noen epoker til med sett av de som ga dårlig resultat etter
vanlig trening.

 Sett tilbake i treningsmodus etter test automatisk.

 300k bilder i 50 epoker -> ett par epoker med de få dårlige bildene vil
antageligvis gi lite resultat
 Adversarial training må sjekkes ut videre, veldig relevant og nytt
 Hva gjør du så? Mate tilbake adversarial training eller bruke fasiten til å
forbedre estimat? Åpent.

 Masterstudent skal ikke begynne før august

 Må ha en del nokså ferdigstilte sider før påske for tilbakemeldinger. Det tar litt tid og
tar noen runder fram og tilbake.

 Ikke modifiser nettverk før vi har funnet ut hva som er bra og ikke og hvorfor. Da kan
vi bruke tid på slikt.

 Anbefalt å gjøre ting med SIS også, ikke bare punktmasse.

o Kan lønne seg fordi det gir oss flere sjanser til å finne noe interessant
 Vi kan ikke bare se på punktlinse og se på hva som er best, fordi hvis
det ikke er noe spennende der står vi fast
 Hvis vi har SIS også, er det flere ubesvarte spørsmål som gir mer
interessante problemer og løsninger:

 Hvorfor er SIS vanskeligere enn punktlinse? Etc. etc. etc.

 Det viktige er å sette opp grunnlaget skikkelig (referanse).

 Mer informasjon når man trunkerer(?)

 Klarer vi kartlegge den mørke materien? Hva tar oss lengst mot det endelige målet?

Møte 22.03.23

Kapitel for rapport: “What batch size should we use?”

 Two experiments: different batch size and everything else the same
 Observations
 Interpertation
 Use the result to shape the rest of the projects parameters

Det er noe med algoritmen som gjør at batch size spiller en rolle. Godt å skrive om i rapporten.

HGS tipper at med små nettverk har ikke batch size så mye å si, men det blir vesentlig ved større
nettverk.

 Trenger antageligvis ett kritisk minste antall batches (700 batch size med 3000 bilder
gir muligens ikke nok batches). Den gjør en normalisering, der den kanskje mister noe.

HGS enig i at vi skal fokusere mye på å skrive fram til påske.

Ødelagte roulette bilder:

 R_E < || chi ||
 Chi er avstanden fra origo+y til linsen

 R_E > sigma + ||ñ|| = actualAbs = sqrt(x^2+y^2)
 R_E > sigmaX + ||ñ||X
 ñ = eta

Tror vi må bruke carthesian coordinates, men polar er støttet
Hvis linse kommer for nært E_R får vi problem(?)

Møte 12.04.23

Now our work should focus on PsiFunctionSIS generated images not Roulette.
Roulette may be useful in the future but not now.
Make bigger mages and crop them so more of the centered image is used up by galaxy.
Now is time to focus, write experiments,
We wrote a script, describe why, how with 3 pages(uffff)
Write about Roulette, what we found works, although we moved away from them.

Møte 19.04.23

 Sett opp issue på github angående “RuntimeWarning: overflow encountered in
scalar add” (at centering “ødelegger” bilder).

 Vi bruker heller roulette enn psifunction pga det er enklere å jobbe rundt
problemene
 Vi lagde formel for å sette maks/min R og sigma for å unngå konvergensringen
 HGS klarer ikke lage en robust maske I tide. Tidligere laget han en “directed
component”, en maske basert på det, som kunne vært brukt. Den burde være
implementert I samme modul som centerimage.

Møte 03.05.23
 Bilder skulle lages med raytracing ikke roulette med amplituder

o Var ikke tenkt at man skulle generere med mange ampltuder med roulette
o Hvis du insisterer på roulette kan du spytte ut mange nok aplituder
o Hvis vi lager 100/200/whatever og bare bruker første 5/6/whatever, går det
fint? Burde gå fint.
o

 Vi skal nå gjøre ting raskest mulig, ikke perfekt. Kun rapporten skal være perfekt,
men alt annet skal kun være “bra nok”.

 IDUN er en del fikling, men verste fiklingen var bibliotek og bygg-systemet som er
ferdig.

o IDUNbuild.sh for å bygge
 Hvis det funker er det lite arbeid, hvis ikke er det mye
 Største utfordringer er knyttet til module-load
 Du må eksplisitt laste modulene du vil ha, ellers får du nyeste
 Enten virker det, eller ikke

o CosmoML/Tests/LargeSet/ slurm scripts
 Rediger scripts for å legge de I IDUN kø
 Når det begynner har vi rett på resurssene vi har bedt om
 Images.slurm er eksempel på en jobb som generer bilder

 Linje 2 velger cpu eller gpu
 4: maks klokketid (maks kjøretid før stopp)
 6: c12 = antall cpu jkerner
 10: endre epost
 7: array kjører 100 jobber nummerert fra 0-99, ta bort når
eksprementering
 SBATCH er ting køsystemet leser
 14-23: diagnostic
 28-: laste moduler
 Gammel versjon som bruker c++ versjon, er ikke testet på
nye python-scriptene på idun
 35: kritisk, python-kjøremiljø; inneholder mer enn bare
torch (ikke scipy)
 Må skjønne hvordan module load funker, ha kontroll på
python-kjøremiljø, skjønne konfigurasjon sbatch

 Cartesian120k2.slurm:
 Mest relevant for oss
 Tilsvarende machine learning job.
 7: hvor mange gpuer
 8: velger type GPU
 Kjører ikke simulator, kiun pytorch så mindre module load
 Klarte ikke bruke pre-installert python

 Cartesian120k2plot.slurm
 33: <<EOF = mindre enn mindre enn EOF (EOF er linje 44)

o Kjører IDUN-koden gjennom Git.
o Kan lage egen IDUN-branch om nødvendig. HGS har gitt opp på å bruke 2
like grener samtidig.
o CMAKE sjekker om pcnavn begynner med IDUN, og kjører egen kode hvis
det gjør det

Møte 10.05.23

In 3.4 Hyperparameter optimisation, include more graphics showing the results from changing the
hyperparameters if we have them. "Choosing the optimizer" already has a graph, need more like that
with results alongside.

Write more about Idun scripts and how much faster we could train with Idun.
Combine figure 3.4 to 3.12 in groups that makes sense, and put them at the end of chapter 3.2 (Right
before 3.3 Creating a reference network).
Explain the groups in paragraphs, each paragraph explaining one group (example: "figure 3.6 shows
different results with different learning rates. 3.6a has a learning rate of" blabla
"Figure 3.14 justifies our choice" in "Loss function choice" is not scientific enough. Explain why figure
3.14 justifies it.

Move AlexNet explanations from 3.3 to theory 2.2 (only the parts that explain it)
import code snippets as code into latex, not screenshots from pycharm (at least no red lines under
text....)
Explain simply how formula 3.1 works, and how we found it (trial-and-error but make it sound like it
was skills)
Make better name for table 3.1 ("# better than average" is not correct) and fix the text explaining it to
reflect what is being shown in table

Møte 16.05.23

Kode-vedlegg:

Den ene er at siden vi legger ved som vedlegg, og/eller henviser l open-source, så må vi
skille mellom det vi har skrevet, det vi har lånt, og det som vi har lånt+modeifisert såpass at
det ikke kan skilles. Om vi har endret et opensource prosjekt l graden at det ikke kan
kjennes igjen, så går det fint men skriv det. Ikke bruk kode fra andre uten at det nevnes.

Når det er som vedlegg har det neppe for seg å kopiere inn kode vi ikke har skrevet selv.

På ne verk vi har ta og så vidt modifisert: Ta d i development l å forklare hva vi har
endret og hvorfor. Det er åpenbart vi har ta kode og testet den.

Vi kan gjøre det mer tydelig at vi tar utgangspunkt i koden vi fikk i or. Forklare hva vi endrer
i development for hver prototype. De e er programupviklingsprosjekt ikke så mye koding. Vi
tar komponenter og lodder sammen.

Kan enten ikke forsøke ppe \chi, la den være kjent (fast eller vvarierende verdien). Enkleste
hvis vi vil ppe andre parameter.

Kan bruke rødshi analyse for å vite hvor langt unna linsen er.

Alterna vt kan man prøve hypotesen om at man ikke kan predicte chi og r_e. Sjekke at man
får samme resultat om ra o er samme.

I or fant de ut det var vanskelig å finne de ut uavhengig av hverandre. Det er ikke klart om
det er sånn eller om det burde være slik eller om det er slik når chi er nær 0 og 1.

Hvis chi er konstant kan vi teste uten problem. Hvis chi varierer mellom 30-70? klarer vi finne
e_r og chi fornu ig eller er de for avhengig av hverandre.

Legg l at vi bekre er det de fant i or at varierende chi er for vanskelig før vi bestemmer chi
skal vøre 50.

Nevn i further work at det er interessant å finne ut hvorfor chi og r_E er så avhengig av
hverandre, og om det kan fikses.

Vik g å få fram i rapporten av problemer er interessant men vi ikke har d, interessant og vi
tar d, eller ikke interessant og ikke tar d.

Nevn om vi kaster tvil over det fra i or, eller om vi bekre er det fra i gjor, eller om vi finner
noe de ikke nevnte/fant i or.

Er det mulig å få samme svar med forskjellig chi/r_e i tavle-ligningen?

svar: du har 2 ligninger og 2 ukjent. ligningene er 2. grad, så du kan ha 2 løsninger. I
prinsippet vil du ha 2 løsninger for r_e for hver ligning for hver verdi av chi. Siden vi har 2
ligninger burde det være 2 løsninger. 2 ligninger 2 ukjente = 2 muligheter. Enten unik løsning
eller uendelig løsninger i en dimensjon. Siden lingning ikke er linær er det vanskelig å si. HGS
trodde i or det var uendelig løsningsrom. Det ser ut som det er slik i e smalt område av chi
(30-70 f eks), men ikke nær 0 eller 1.

HVis du beveger deg langt (nær 0 eller 1) spiller det en stor rolle.

Det hadde vært interessant å gjenta eksperimentene i 3.1 l å ha chi fra 0.3 l 97 om vi har
d, for å sjekke.

Vi kan kjøre en test med kun ekstremverdier i chi for å sjekke om hypoteser holder vann.

Kanskje 3 tester, 1 for 70-95, 1 for 30-70 og en for 5-30. Over 95 eller under 5 da vil hele
systemet kollapse.

Når du treffer linseplanet får du en knekk (tavle figur). Hvis linsen treffer observator-planet
skjer samme problemet. Linsen får for liten effekt ved ekstreme verdier. 5-95 er grei område
å jobbe i. Skriv de e i rapporten som begrunnelse for hvorfor vi begrenser området.

Kan også bruke \pageref i latex

Formel på tavel er for pijnt mass, snakk med bdn når vi har skrevet.

F. Time lists

Kristian

Total hours: 538

F1

Date Hours worked Description of work
03.01.2023 3 Made Teams group, discussed expentations/work
04.01.2023
05.01.2023
06.01.2023 5 Read through wiki/2022 report
07/01/2023
08/01/2023
09/01/2023 9 Read rest of 2022 report, discussed possible work
10/01/2023 7.5 Installed software/dependencies/libraries
11/01/2023 7 Meeting, conan installation
12/01/2023 8 Pre-project report (almost done)
13/01/2023
14/01/2023 4 Install CMake, finished pre-report
15/01/2023
16/01/2023
17/01/2023
18/01/2023 6.5 Finished C++ setup, researched ML and possibilities
19/01/2023 7.5 Started looking at ML code
20/01/2023 6 Understanding ML code, started final report
21/01/2023
22/01/2023
23/01/2023 2 Generated train.csv, researched .slurm files
24/01/2023 4 Researched slurm files, installed WSL
25/01/2023 4 Meeting, python code dive
26/01/2023
27/01/2023
28/01/2023
29/01/2023
30/01/2023 3.5 Installed linux
31/01/2023 4 Installed linux
01/02/2023 3 Installing conan/cmake + dependencies
02/02/2023 7 Generated dataset
03/02/2023 6.5 Tested ml code
04/02/2023 4 Tested ml code
05/02/2023
06/02/2023 2 Started backlog
07/02/2023 7 Tested ML code on GPU, prepared meeting
08/02/2023 7 Cmake/conan installation (develop branch)
09/02/2023 2 Fixed yesterdays problems
10/02/2023 8 Tested machine learning on 100k images
11/02/2023
12/02/2023
13/02/2023
14/02/2023 5 More code testing / benchmark of previous code

15/02/2023 7.5 Tried different hyperparameters
16/02/2023 6 Tried different hyperparameters
17/02/2023 5 Tried different hyperparameters
18/02/2023
19/02/2023
20/02/2023 2 Generating images for testing same images
21/02/2023 6 Proving images are the same
22/02/2023 3 Meeting + coding
23/02/2023
24/02/2023 4 Proving images are the same
25/02/2023
26/02/2023
27/02/2023 5 Researching neural networks
28/02/2023 5 Researching neural networks
01/03/2023 6 Researching neural networks
02/03/2023
03/03/2023
04/03/2023
05/03/2023
06/03/2023 7 Pytorch tutorial
07/03/2023 6 Pytorch tutorial
08/03/2023 5.5 Møte + AlexNet
09/03/2023 5 AlexNet coding
10/03/2023
11/03/2023
12/03/2023
13/03/2023 N/A Focusing on other subject
14/03/2023 N/A Focusing on other subject
15/03/2023 N/A Focusing on other subject
16/03/2023 N/A Focusing on other subject
17/03/2023 N/A Focusing on other subject
18/03/2023 N/A Focusing on other subject
19/03/2023 N/A Focusing on other subject
20/03/2023 N/A Focusing on other subject
21/03/2023 4 Report writing
22/03/2023 5 Report planning and meeting
23/03/2023 5 Researching GAN
24/03/2023 6 Experimenting with GAN
25/03/2023
26/03/2023
27/03/2023 7 Coding GAN implementation
28/03/2023 4 Coding GAN implementation
29/03/2023 5 Coding GAN implementation
30/03/2023 3.5 Coding GAN implementation

31/03/2023 6 Coding GAN implementation
01/04/2023
02/04/2023
03/04/2023 5 Coding GAN implementation
04/04/2023 5.5 Report writing + building C++
05/04/2023 6 Trying different networks
06/04/2023 2.5 Trying different networks
07/04/2023 6 Trying different networks
08/04/2023
09/04/2023
10/04/2023 5
11/04/2023 2 Report writing
12/04/2023 4 Report writing
13/04/2023 4.5 Report writing
14/04/2023 4 Fixing python
15/04/2023 1 Coding ML networks
16/04/2023 3 Building new version
17/04/2023 5.5 Write report + generate reference data set
18/04/2023 7 Modifying networks
19/04/2023 5.5 Modifying networks
20/04/2023 9.5 Report writing based on feedback
21/04/2023 7 Report writing
22/04/2023
23/04/2023
24/04/2023 8 Old code testing + report
25/04/2023 8.5 Old code testing + report
26/04/2023 8.5 Write report
27/04/2023 6 Researching networks
28/04/2023 7 Researching networks
29/04/2023
30/04/2023
01/05/2023 6 Report writing + testing networks
02/05/2023 8 Report writing + testing networks
03/05/2023 6 Report writing + testing networks
04/05/2023 7 Report writing + testing networks
05/05/2023 8 Report writing + testing networks
06/05/2023 4 Report writing + testing networks
07/05/2023 4 Report writing
08/05/2023 8 Report writing
09/05/2023 9 Report writing
10/05/2023 8 Report writing
11/05/2023 14 Report writing
12/05/2023 3 Report writing
13/05/2023 4 Report writing

14/05/2023 5.5 Report writing
15/05/2023 7.5 Report writing
16/05/2023 10 Report writing
17/05/2023 13 Report writing
18/05/2023 10 Report writing + making presentation
19/05/2023 10 Report writing + writing script
20/05/2023 9 Report writing + recording presentation video
21/05/2023 12 Report writing

F. Time lists

Modestas

Total hours: 536

F6

Date Time Description of what have been done

03/01/2023 2 Talked about expectations and weekly plans, decide the next meeting activity.

04/01/2023

05/01/2023

06/01/2023 5 Start readin up on wiki

07/01/2023

08/01/2023

09/01/2023 9 Read rapport and disscuse workspace

10/01/2023

11/01/2023 8.5 Try running CosmoSim program

12/01/2023 8 Write pre-project report, try running Cosmosim, try VirtualBox(Ubuntu) for Cosmosim

13/01/2023

14/01/2023 5 Working further with VirtualBox(Ubuntu)

15/01/2023

16/01/2023 2.5 Working further with VirtualBox(Ubuntu)

17/01/2023

18/01/2023 9 CosmoSim is finnaly working

19/01/2023 7 try different fits file viewer

20/01/2023 6 Read Gravitational lensing report by David and work further with fits

21/01/2023 4 Finnaly opend a FITS file, reaserch into different NN architectures

22/01/2023

23/01/2023 2 Reading further on NN arhitecures

24/01/2023 4 Reading on papers about deep regression

25/01/2023 4 Meeting with supervisors, discust further with group

26/01/2023

27/01/2023

28/01/2023

29/01/2023

30/01/2023 2 Reading on CNN in regression task

31/01/2023 2 Reading on CNN in regression task

01/02/2023 2 Reading on CNN in regression task

02/02/2023 7 Setting up my home pc

03/02/2023 7 Setting up my home pc

04/02/2023 4 Setting up my home pc

05/02/2023

06/02/2023

07/02/2023 8 Setting up remote access to my home pc

08/02/2023 6 Continue on setting up home pc

09/02/2023 6 CosmoGUI work on home PC!!!

10/02/2023 8 Start running old mashine learning code on home pc

11/02/2023

12/02/2023

13/02/2023 6 Test old nn using different data sets

14/02/2023 6 Train network on 50k images

15/02/2023 7 Made a script to load in and test neural network trained weights and biases

16/02/2023 6 Try loading images from other directory than code directory

17/02/2023 5 Search for differnet networks to use in this project

18/02/2023

19/02/2023

20/02/2023

21/02/2023 5 Continue researtch on differnet nn

22/02/2023 5 Had a meeting with supervisors, work with old ML code, continue researtch into nn

23/02/2023 2 Continue reading up on nn architectures

24/02/2023

25/02/2023

26/02/2023

27/02/2023

28/02/2023 7 Look at code changes that where made on inception source code

01/03/2023 7 Beggint to implement Efficiantnet into existing code

02/03/2023 7 Continue on implement Efficiantnet into existing code

03/03/2023 4 Finde a fix for code so that more or less than 4 parameters could be estimated

04/03/2023

05/03/2023

06/03/2023

07/03/2023

08/03/2023 6 Meeting with supervisor, implementing AlexNet

09/03/2023 6 Investigating a problem where outputs are the same no mather the inputs

10/03/2023 6 Continue investigating the problem

11/03/2023

12/03/2023

13/03/2023

14/03/2023

15/03/2023

16/03/2023

17/03/2023

18/03/2023

19/03/2023

20/03/2023

21/03/2023

22/03/2023

23/03/2023

24/03/2023

25/03/2023

26/03/2023

27/03/2023

28/03/2023

29/03/2023

30/03/2023

31/03/2023

01/04/2023

02/04/2023

03/04/2023

04/04/2023

05/04/2023

06/04/2023

07/04/2023

08/04/2023

09/04/2023

10/04/2023 8 Migrating from windows server 2019 to windows 11

11/04/2023 8 Fine tunig the parameter for data set with SIS rulette

12/04/2023 8 Meeting with supervisor, work on SIS Phi function data set

13/04/2023 8 Working further on Phi function data set

14/04/2023 8

15/04/2023

16/04/2023 5 Write rapport

17/04/2023 9 Write rapport

18/04/2023 8 Write rapport, make script for grapths.

19/04/2023 7.5 Meeting with supervisors, writing rapport, adding a script for cropping generated images

20/04/2023 9 Write rapport, make jupyter notebook code for graph

21/04/2023 8 Small meeting with supervisor discusing our rapport, write rapport

22/04/2023 3 Setup and run expierments

23/04/2023 7 Setup and run expierments

24/04/2023 8 Write rapport, make graphs out of colected data

25/04/2023 12 Write rapport, redo EfficiantNet and add extra layer option to Inception3 and AlexNet

26/04/2023 12 Write rapport, add ConvNeXt, ResNet, VGG, DensNet,

27/04/2023 12 Write rapport, add NASNet

28/04/2023 8 Write rapport, add MnasNet, meet supervisors

29/04/2023 4 Write rapport

30/04/2023

01/05/2023 8 Start working on IDUN

02/05/2023 6 Write rapport, troubleshoot IDUN

03/05/2023 8 Write rapport, meet supervisors, start testing IDUN

04/05/2023 4 Write rapport, settup test for IDUN

05/05/2023 10 Write rapport, meet supervisors, settup test for IDUN

06/05/2023 6 Write rapport, settup test for IDUN

07/05/2023 3.5 Write rapport, settup test for IDUN

08/05/2023 8 Write rapport, settup test for IDUN

09/05/2023 5 Write rapport, collect the data from IDUN tests make graphs

10/05/2023 8 Write rapport, collect the data from IDUN tests make graphs

11/05/2023 6 Write rapport, collect the data from IDUN tests make graphs

12/05/2023 7 Write rapport, meet supervisors, collect the data from IDUN tests make graphs

13/05/2023 8 Write rapport, make graphs

14/05/2023 6 Write rapport, make graphs

15/05/2023 8 Write rapport, make graphs

16/05/2023 6 Write rapport, meet supervisors

17/05/2023 10 Write rapport, make graphs

18/05/2023 10 Write rapport

19/05/2023 12 Write rapport

20/05/2023 10 Write rapport

21/05/2023 9 Write rapport

22/05/2023 12 Write rapport

G. Code tutorial

Here is a small tutorial on how CosmoSim and CosmoML code was setup and used.
For CosmoSim the IDE software used was CLion, and for Cosmo-ML it was PyCharm.
Everything was run on Windows.

Below is a step by step example for building and working with CosmoSim:

Step 1 - Copy the repository with command:
git clone <CosmoSim url>

Step 2 - Reopen project in new folder.

Step 3 - Change toolchains in Clion settings to visual studio (x86 amd64) also visual
studio has to be on top of the list in toolchains tab.(Install visual studio version 16 with
”Desktop development with C++” option if needed).

Step 4 - Install CMake if you don’t have it already.

Step 5 - Go to Clion settings->CMake->Buildtype->Release.

Step 6 - Pip install conan 1.58.0(version 2 created problems) if you don’t have it already.

Step 7 - Sett conan profile to visual studio version 16 in directory C:\Users\<user>\.

conan\profiles\default

Step 8 - Run this command in terminal:
conan install . -if .\cmake-build-release\-b missing

Step 9 - Go to Clion CMake tab -> Reset cache and reload project.

Step 10 - Change to CosmoSimPy -> Build.

After all these step it should be possible to run CosmoGUI.py with command:
python .Python\CosmoGUI.py

Look at the appendix B code for adding cropping feature to image generation.

G1

G. Code tutorial

To generate a data set for training, first data set file needs to be created. This uses
datasetgen.py all preferred setting and options need to be adjusted here. When fininshed
this command can be run to generate your file:
python .Python\datasetgen.py

Lastly to generate all the images use datagen.py. Here is an example with few used
arguments:
python .\Python\datagen.py -D ”<directory for images>” -i ”<data set csv file>” -Z
”1000” -q -C -M

-Z is for setting image resolution, -q is for cropping, -C is for centering the images, -M
is for mask when working on roulette lens.

This was the method with which all data sets in this project was created.

G2

G. Code tutorial

Below is a step by step guide for setting up and working with Cosmo-ML using Nvidia
GPU:

Step 1 - Copy the repository with command:
git clone <Cosmo-ML url>

Step 2 - Install cuda toolkit from Nvidia if you don’t have it already. It can be found
here: https://developer.nvidia.com/cuda-toolkit

Step 3 - We recommend to use virtual python environment for this project. Then install
all the needed libraries:
pip3 install torch torchvision torchaudio –index-url https://download.pytorch.org/
whl/cu118

pip install -r requirements.txt

Step 4 - Selecting network and few hyperparameters: open CudaModel.py -> write a
network to test on line 18 model=’<wanted neural network>’(all neural network options
are in MLSystem.py). At the same time number of epochs and learning rate can be
chosen.

Step 5 - Choosing the rest of hyperparameters: open MLSystem.py here batch size,
optimizer, criteration(loss function is chosen.

Step 6 - To start testing command like this with arguments should be used:
python CudaModel.py -t ”<csv file for training data set>” -i ”<csv file for testing data
set>” -T ”<directory for training data set images>” -I ”<directory for testing data set
images>” -p ”<csv file for predicted values on test set at the end of training>” -o ”<csv
file for total loss data of every epoch>”

Setup for IDUN is the same as for local machine.

Since IDUN can run multiple test at the same time, for every test a CudaModel.py file
replacement is created like VGG example.py that goes with slurm file VGG.slurm.

To start testing on IDUN command like this should be used:
sbatch VGG.slurm

To check the status of the tests:
squeue –user=<username>

To cancel the test:
scancel –name=<job name>

G3

https://developer.nvidia.com/cuda-toolkit
https://download.pytorch.org/whl/cu118
https://download.pytorch.org/whl/cu118

H. Code for comparing images

import PIL.Image

from PIL import ImageChops

import math, operator

identical = 0

ld = 0.0

min = 1

max = 100

def rmsdiff(im1, im2):

"Calculate the root-mean-square difference between two images"

global identical

global ld

h = ImageChops.difference(im1, im2).histogram()

e = ImageChops.difference(im1,im2)

if e.getbbox() is None:

identical += 1

if e.getbbox():

if float(math.sqrt(reduce(operator.add,

map(lambda h, i: h*(i**2), h, range(256))

) / (float(im1.size[0]) * im1.size[1])) > ld):

ld = float(math.sqrt(reduce(operator.add,

map(lambda h, i: h*(i**2), h, range(256))

) / (float(im1.size[0]) * im1.size[1])))

print(str(im1))

calculate rms

return math.sqrt(reduce(operator.add,

map(lambda h, i: h*(i**2), h, range(256))

) / (float(im1.size[0]) * im1.size[1]))

def equal(im1, im2):

global identical

return ImageChops.difference(im1, im2).getbbox() is None

H1

H. Code for comparing images

def reduce(function, iterable, initializer=None):

it = iter(iterable)

if initializer is None:

value = next(it)

else:

value = initializer

for element in it:

value = function(value, element)

return value

compare = True

if compare:

counter = 1

print("Starting tests: ")

print("------------------------------------")

for i in range(min, max):

for j in range (1, max-i+1):

x = str(i)

y = str(i+j)

im1 = PIL.Image.open(f'./92to98/image-{x}.png')

im2 = PIL.Image.open(f'./92to98/image-{y}.png')

print(f'Test {counter} (comparing image {x} and {y}):')

print("Equal: " + str(bool(equal(im1, im2))))

print("Difference: " + str(float(rmsdiff(im1, im2))))

print("------------------------------------")

counter += 1

diff = max-min

sum = int(diff * (diff + 1) / 2)

print(f'Number of identical pairs: {identical} out of {sum} pairings')

print(f'Largest difference: {ld}')

H2

	Foreword
	Terminology
	Notation
	Abbreviations
	Summary
	List of Figures
	List of Tables
	Introduction
	Background
	Problem
	Scope of the project
	Report structure

	Theory
	Cosmology
	Machine learning

	Development
	Testing of previous work
	AlexNet estimating same output for different inputs
	Creating a reference network
	Hyperparameter optimisation
	Choosing the optimiser
	Loss function choice
	Choosing which parameters to predict
	Creating a data set

	Achieving the best results

	Results
	Results deemed interesting
	The best performing network
	How to run the system

	Discussion
	Blunders to learn from
	AlexNet predicting same output for different inputs
	Achieving the best results
	Discussing best network results
	Interesting tidbits
	Suggestion for future work

	Retrospective
	Project management
	Prerequisite knowledge
	Learning outcomes

	Conclusion
	Appendix Cosmo-ML code
	Appendix CosmoSim code
	Other results
	Pre-project report
	Supervisor meeting notes
	Time lists
	Code tutorial
	Code for comparing images

