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Abstract

This thesis details the implementation and application of the time-
dependent coupled cluster (TDCC) method and two variants of the
time-dependent equation-of-motion coupled-cluster (TD-EOM-CC)
method in the recently released quantum chemistry program eT . The
methods are used to simulate interactions between atomic and molecular
electrons and electromagnetic fields, on the attosecond-to-femtosecond
timescale and for different field strengths, with the purpose of enhancing
the knowledge of photochemistry and the mathematical characteristics of
the different real-time coupled-cluster (RT-CC) methods.

In particular, we simulate transient absorption of attosecond x-ray
pulses by molecular electrons following electronic excitation by ultrashort
ultraviolet-visible pulses, with both TDCC and TD-EOM-CC. For the
TD-EOM-CC simulations, the time-dependent state is expanded in a basis
of field-free EOM-CC states obtained through an approach based on the
asymmetric band Lanczos algorithm, which targets transitions involved in
the interaction with the two pulses. For the TDCC simulations, the x-ray
absorption is related to the phases of the valence-excited superposition,
and analyzed in terms of the excitation energies of the field-free EOM-CC
states. For the TD-EOM-CC simulations, the fluctuating electron density,
approximated by a projected expectation value of the dipole moment vec-
tor, correlates with the time-dependence of the absorption integrated over
relevant x-ray frequencies. The results demonstrate that real-time coupled
cluster methods can be used for modeling attosecond spectroscopy in the
weakly nonlinear regime, and support the idea that x-ray pulses can be
used as local probes of the time-dependent electron density.

Furthermore, the TDCC and TD-EOM-CC methods are used for simu-
lating the interaction of atomic and molecular electrons with strong fields.
From simulations of collective Rabi oscillations, the TD-EOM-CC method
is shown to be more stable than the TDCC method, for which certain time-
dependent parameters blow up during the integration. The stability of TD-
EOM-CC does however come at a cost, as the errors in the expectation
values are seen to increase with the number of subsystems in resonance
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iv RT-CC approaches for electronic multiphoton processes in atoms and molecules

with the field. However, subsystems out of resonance with the field do not
impact the time-dependent energy expectation value, suggesting that TD-
EOM-CC can be used for simulating single-subsystem transitions even in
strong fields and for non-zero subsystem interactions. Moreover, through
both theoretical analysis and simulations it is demonstrated that TDCC ex-
hibits the correct scaling properties, even when dealing with multiple sub-
systems in resonance with the field.

The TD-EOM-CC method is also used to model process of stimulated
x-ray Raman scattering (ISXRS) by atoms and molecules, where the TD-
EOM-CC state is analyzed in terms of field-free EOM-CC state popula-
tions and visualizations of the time-dependent one-electron density in real
space. The populations are shown to be sensitive to the polarization and
carrier frequency of the external field, and the one-electron density dis-
plays a behavior agreeing with the expected behavior of a valence-excited
wavepacket generated through ISXRS.
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Chapter 1

Introduction

The true dynamical behavior of molecules is hard to unravel. Not only be-
cause of their small size and short timescale of motion, but also due to the
diverse ways in which a molecule can interact, both internally and with
its environment. For some processes occurring in nature, the molecular
behavior can be well-represented by simple models, making use of empir-
ical parameters and classical equations of motion [1–3]. Other molecular
processes, involving for instance charge migration and bond breaking, can
demand a more precise description.

The most precise description of molecular behavior is given by quan-
tum theory. Unfortunately, the computational resources needed for full
quantum simulation of large molecules quickly grow beyond the reach of
present-day computers [4]. However, quantum methods can in many cases
be approximated through the identification and omission of less important
degrees of freedom. A primary goal of quantum chemistry to develop prac-
tical approximate methods that can accurately predict and explain the be-
havior of molecules in a broad range of chemical processes. Together with
careful experimentation and analysis, such models can hopefully increase
the conceptual understanding of chemistry.

One of the frontiers of quantum chemistry is the proper description of
molecules exposed to short and strong laser pulses. Such pulses are often
used in experiments that aim to give an increased understanding of photo-
chemistry, since they can quickly probe and change the state of a molecule.
The pulses can for instance be used to make the analog of movies of molec-
ular motion [5], by combining measurements by pulses at different time
delays. Strong pulses can also be used to quickly control the molecular
state, which can lead to new ways of doing chemistry [6]. The simulation
of molecules interacting with short and strong laser pulses is often done in
the time domain, since ultrafast and multiphotonic processes can be stud-
ied in a non-perturbative manner, and time-dependent properties can be

1



2 RT-CC approaches for electronic multiphoton processes in atoms and molecules

calculated straightforwardly.

Free-electron lasers and tabletop high-harmonic generation sources
can now produce x-ray pulses with durations in the range of attoseconds,
enabled by the short periods of x-ray radiation [7, 8]. Core excitations
resulting from molecular x-ray absorption are generally sensitive to
the density around a particular nucleus [9]. As a result, pulsed x-ray
spectroscopy has the potential to accurately resolve molecular charge
migration, both temporally and spatially [10]. This motivates the further
development and application of quantum chemical methods for simulating
pulsed x-ray spectroscopy.

Traditional coupled-cluster methods originated in nuclear physics, and
have since been both adopted and further popularized by the electronic
structure community [11]. Untruncated coupled-cluster methods can
describe the correlated system exactly in the given basis set. Truncated
coupled-cluster methods, on the other hand, are approximate methods
that often give accurate descriptions of correlated electronic struc-
ture [12], with properties and computational costs that scale reasonably
with respect to the size of the quantum system.

Coupled-cluster methods have traditionally been treated in the fre-
quency domain, and the molecular response to external interactions
calculated perturbatively. However, the number of studies which treat
coupled-cluster methods in the real-time domain has grown recently [13],
including approaches based on the time-dependent coupled-cluster
(TDCC) method [14] and the time-dependent equation-of-motion
coupled-cluster (TD-EOM-CC) method [15, 16]. In this thesis, truncated
TDCC and TD-EOM-CC methods have been implemented and used for
simulating molecular electrons interacting with laser pulses. The methods
have been compared, revealing that truncated TD-EOM-CC methods can
fail to describe strong-field interactions, in a distinct manner from the
known numerical instability issues of TDCC methods [17, 18].

In Chapter 2 the theory of quantum mechanics is introduced, and its
use in describing atoms and molecules is explained. A classical description
of the electromagnetic field and its semiclassical interaction with atomic
and molecular electrons in the length gauge is given in Chapter 3.
Chapter 4 provides an introduction to the solution of the electronic time-
independent Schrödinger equation for atoms and molecules. In Chapter 5,
time-independent and time-dependent coupled-cluster methods are
introduced, which are used for the simulations in this thesis. Chapter 6
introduces select topics in semiclassical laser-molecule interactions that
serve a basis for understanding the physical effects observed in our
simulations. The findings of the papers in this thesis are summarized and
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concluded in Chapter 7.





Chapter 2

Quantum mechanical description
of molecules

In this chapter, an introduction is given on the description of atoms and
molecules in the framework of traditional quantum mechanics, with an
emphasis on the time-dependence of the atomic and molecular electrons.

2.1 Vectors and operators in Dirac notation

The pure quantum state of a N -particle system can, in the Schrödinger
picture and Dirac notation, be represented by the time-dependent "ket"

|Ψ(t)〉 (2.1)

residing in a Hilbert space [19], and its dual, the "bra"

〈Ψ(t)|= |Ψ(t)〉† . (2.2)

The dagger is used to denote Hermitian conjugation, which is the combined
operation of complex conjugation and transposition.

Observable properties of the system are represented by linear Hermi-
tian operators

O(t) = O†(t), (2.3)

which can exhibit an explicit dependence on time. The bra and ket are
used to form inner products in the Hilbert space, possibly involving opera-
tors. In accordance with the Born rule, physical measurements have their
theoretical analog in the inner product

〈O〉 (t) = 〈Ψ(t)|O(t) |Ψ(t)〉 , (2.4)

5



6 RT-CC approaches for electronic multiphoton processes in atoms and molecules

which gives the sum of the probabilities of the different outcomes of the
measurement, which can vary with time. The probabilities can be com-
pared to repeated measurements made in experiments by an observer. The
order of appearance of operators in equations matters, as operators do not
necessarily commute, O1(t)O2(t) 6= O2(t)O1(t). The lacking commutativ-
ity of certain operators sets fundamental limits on how precise simulta-
neous measurements of the corresponding observables can be made. This
forms the foundation for the different variants of the Heisenberg uncer-
tainty principle. For more information about bras, kets and operators in
quantum mechanics, see Ref. [19]

2.2 Time-dependent Schrödinger equation

The time evolution of the non-relativistic N -particle ket |Ψ(t)〉 is governed
by the time-dependent Schrödinger equation (TDSE) [20]

i
d
dt

|Ψ(t)〉= H(t) |Ψ(t)〉 , (2.5)

where the linear Hermitian operator H(t) is the Hamiltonian, the generator
of the time evolution of the system. Assuming that the state of the system
is known at t = t0, the time-dependent state at time t can be written as
the time evolution operator U(t, t0) acting on the initial state |Ψ(t0)〉,

|Ψ(t)〉= U(t, t0) |Ψ(t0)〉 . (2.6)

Inserting Equation (2.6) into Equation (2.5) before projecting onto 〈Ψ(t0)|,
we get the following equation for the time evolution operator

i
d
dt

U(t, t0) = H(t)U(t, t0). (2.7)

Formally, the solution to this equation can be written as

U(t, t0) = T e−i
∫ t

t0
dt1H(t1), (2.8)

where the time-ordering procedure, denoted by T , orders all operators
that correspond to earlier time values to the right of the later ones. If the
Hamiltonian is time-independent, the time-evolution operator has the sim-
pler form

U(t, t0) = e−iH(t−t0), (2.9)

leading to the time-dependent state

|Ψ(t)〉= e−iH(t−t0) |Ψ(t0)〉 . (2.10)

For more details about the TDSE, see Chapter 3 of Ref. [20].
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2.3 Position-spin representation

Until now, we have described the quantum states and operators in terms
of abstract quantities, without reference to their explicit representation in
terms of mathematical functions. Such a representation is needed in order
to perform numerical simulations of quantum systems.

A useful representation of quantum states of systems with N distin-
guishable particles can be found through resolution of the identity oper-
ator in terms of the quantum eigenstates belonging to the position-spin
coordinates x j = (r j,σ j) of the N particles [20], where r j is the position
and σ j the spin of particle j,

1=
∫

dx 1 · · ·dx N |x 1, . . . , x N 〉 〈x 1, . . . , x N | . (2.11)

By application of the identity operator onto the ket and bra, we get the
following identities

|Ψ(t)〉=
∫

dx 1 · · ·dx N |x 1, . . . , x N 〉Ψ(x 1, . . . , x N , t), (2.12)

〈Ψ(t)|=
∫

dx 1 · · ·dx N Ψ
∗(x 1, . . . , x N , t) 〈x 1, . . . , x N | , (2.13)

where the function

Ψ(x 1, . . . , x N , t) = 〈x 1, . . . , x N |Ψ(t)〉 , (2.14)

is called the wavefunction of the quantum state in the position-spin repre-
sentation, and the asterisk denotes complex conjugation. The quantity

ρ(x 1, . . . , x N , t) = |Ψ(x 1, . . . , x N , t)|2 (2.15)

is the probability density associated with observing the particles with in-
dices 1, . . . , N at the respective coordinates x 1, . . . , x N , at time t. For iden-
tical particles, Equation (2.15) corresponds to the probability density as-
sociated with observing one of the identical particles at x 1, another one at
x 2, and so on. The additional normalization factor 1/N ! is then needed on
the right-hand side of the resolution of identity in Equation (2.11) [20].

In the position-spin representation, the TDSE takes the following form

i
d
dt
Ψ(x 1, . . . , x N , t) = H(x 1, . . . , x N , t)Ψ(x 1, . . . , x N , t). (2.16)
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2.4 Minimal coupling molecular Hamiltonian

Assuming no external interactions, the non-relativistic and spin-free Hamil-
tonian of an atom or a molecule can in the position-spin representation be
written as

H(x 1, . . . , x N , t) = −
∑

i

1
2mi

∇2
i +

1
2

∑

i 6= j

qiq j

|r i − r j|
, (2.17)

where mi is the mass, qi the charge, r i the position and∇i =
∂
∂ x i
+ ∂
∂ yi
+ ∂
∂ zi

the gradient along the Cartesian coordinates of particle i. Note that this
Hamiltonian is time-independent.

The minimal coupling scheme can be used to introduce the interaction
with a time-dependent electromagnetic field into the Hamiltonian. As an
introduction to this scheme, we assess the effect of performing the gauge
transformation

Ψ(x 1, . . . , x N , t)→ Ψ ′(x 1, . . . , x N , t) = ei
∑

i qiχ(x i ,t)Ψ(r 1, . . . , r N , t), (2.18)

in the TDSE of the molecular Hamiltonian, where χ(r , t) is a local
and time-dependent scalar gauge field. By pre-multiplying the TDSE by
ei

∑

i qiχ(r i ,t), we can identify the transformed Hamiltonian H ′ as [21]

H ′(x 1, . . . , x N , t)

= ei
∑

i qiχ(r i ,t)H(x , t)e−i
∑

i qiχ(r i ,t) −
∑

i

qi
dχ(r i, t)

dt

=
∑

i

1
2mi

�

p i − qi∇χ(r i, t)
�2
+

1
2

∑

i 6= j

qiq j

|ri − r j|
−
∑

i

qi
dχ(r i, t)

dt
,

(2.19)

which implies that the Hamiltonian is not invariant to this gauge transfor-
mation.

Introducing the electromagnetic field into the Hamiltonian can restore
the gauge invariance. In classical electromagnetic theory, the physically
observable electric E(r , t) and magnetic B(r , t) fields can be related to
the vector A(r , t) and scalar ϕ(r , t) potentials through the equations

E(r , t) = −∇ϕ(r , t)−
∂ A(r , t)
∂ t

, (2.20)

B(r , t) =∇× A(r , t), (2.21)

which are invariant to the following gauge transformations

ϕ(r , t)→ ϕ′(r , t) = ϕ(r , t)−
dχ(r , t)

dt
, (2.22)

A(r , t)→ A′(r , t) = A(r , t) +∇χ(r , t). (2.23)
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Taking the gauge transformation properties of the vector and scalar poten-
tials into account, one can argue that the following form of the Hamiltonian
is reasonable

H(x 1, . . . , x N , t) =
∑

i

1
2mi

�

p i+qiA(r i, t)
�2
+
∑

i> j

qiq j
�

�ri − r j

�

�

+
∑

i

qiϕ(r i, t),

(2.24)
since Equation (2.18), Equation (2.23) and Equation (2.22) imply that the
Hamiltonian is invariant under gauge transformations,

H(x 1, . . . , x N , t)→ H ′(x 1, . . . , x N , t) = H(x 1, . . . , x N , t). (2.25)

The coupling of the classical electromagnetic field to the molecule given
in Equation (2.24) is known as minimal coupling, since it does not involve
higher multipole moments of the charge distribution.

2.5 Clamped nuclei

The coordinates of the molecule can be separated into the electronic coor-
dinates x , . . . , x Ne

and the nuclear coordinates x Ne+1, . . . , x Ne+Nn
. For ease

of notation, we denote the electronic coordinates by x and the nuclear co-
ordinates by X . The molecular Hamiltonian Equation (2.17) can be written
as

H(x 1, . . . , x N ) = H0(x , X) + Tn(X), (2.26)

where the term corresponding to the nuclear kinetic energy has been sep-
arated out,

Tn(X) = −
∑

I

1
2MI

∇2
I , (2.27)

with the index I running over the nuclear coordinates only. The other term
is known as the electronic Hamiltonian,

H0(x , X) = −
1
2

∑

i

∇2
i +

1
2

∑

i 6= j

1
|r i − r j|

−
∑

iJ

ZJ

|r i −RJ |
+

1
2

∑

I 6=J

ZI ZJ

|RI −RJ |
,

(2.28)
and includes the kinetic energy of the electrons, indexed by i, and the
Coulomb interaction between all particle pairs. It only depends parametri-
cally on the nuclear coordinates.

The atomic and molecular Hilbert space typically exhibits high dimen-
sionality, with the kinetic energy of the nuclei often significantly smaller
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than the total atomic or molecular energy [22]. As a result, we can sim-
plify the system by invoking the clamped nuclei approximation, which in-
volves neglecting the nuclear kinetic energy term. This approximation im-
plies that

H(x 1, . . . , x N )≈ H0(x , X), (2.29)

thus reducing the description of the system to the electronic Hilbert space.
The Born-Oppenheimer approximation involves the clamped nuclei ap-

proximation as its first step, allowing for the description of nuclear dynam-
ics under the assumption that electrons adjust adiabatically to the moving
nuclei. Although the original formulation of the Born-Oppenheimer ap-
proximation does not account for time-dependent interactions, formula-
tions including such interactions have been proposed [23]. For simplicity,
however, we choose to avoid the description of the nuclear dynamics. By
applying the minimal coupling scheme to the electronic Hamiltonian in
Equation (2.28) and invoking the clamped nuclei approximation, the total
atomic or molecular Hamiltonian can be expressed as

H(x , X , t)

≈ −
1
2

∑

i

�

∇2
i + qiA(r i, t)

�

+
1
2

∑

i 6= j

1
|r i − r j|

−
∑

iJ

ZJ

|r i −RJ |

+
1
2

∑

I 6=J

ZI ZJ

|RI −RJ |
+
∑

i

qiϕ(r i, t).

(2.30)



Chapter 3

Semiclassical description of
laser-molecule interactions

In semiclassical physics, the system is treated in two parts, where one part
is described quantum mechanically and the other one classically. We choose
to describe the atomic and molecular electrons quantum mechanically, and
the external electromagnetic field as a classical field described by Maxwell’s
equations. In the following, the mathematical description of the external
field and its semiclassical interaction with the electrons is introduced.

3.1 Wave equation for the vector potential

The homogeneous Maxwell’s equations are given by [24]

∇ · B(r , t) = 0, (3.1)

∇× E(r , t) +
∂ B(r , t)
∂ t

= 0. (3.2)

By construction, the vector A(r , t) and scalar ϕ(r , t) potentials satisfy
these equations, which can be seen by insertion of Equation (2.20) and
Equation (2.21). In the following, we derive additional conditions for the
scalar and vector potentials. Assuming that the electromagnetic field is it-
self without sources, that is, that the charge density ρ(r , t) and the current
density J(r , t) are zero, the inhomogeneous Maxwell’s equations take the
following form [24]

∇ · E(r , t) = 0, (3.3)

∇× B(r , t)−
1
c2

∂ E(r , t)
∂ t

= 0, (3.4)

11
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where c = 1/
p
µ0ε0 is the speed of light in vacuum, µ0 the vacuum perme-

ability and ε0 the vacuum permittivity. We choose to partially fix the gauge
of the scalar and vector potentials through the Coulomb gauge condition

∇ · A(r , t) = 0. (3.5)

By thereafter inserting Equation (2.20) and Equation (3.5) into Equa-
tion (3.3), we obtain Laplace’s equation for the scalar potential,

∇2ϕ(r , t) = 0. (3.6)

By imposing the boundary condition of the scalar field ϕ(r , t) vanishing at
infinity, the gauge is completely fixed and Equation (3.6) has the unique
solution

ϕ(r , t) = 0. (3.7)

Inserting Equation (2.20), Equation (2.21) and Equation (3.7) into Equa-
tion (3.4), we obtain the homogeneous wave equation for the vector po-
tential

�

∇2 −
1
c2

∂ 2

∂ t2

�

A(r , t) = 0. (3.8)

3.2 Plane waves

The vector potential A(r , t) can be written as a linear combination of plane
waves, which are arbitrary functions of k · r −ωt, where k is the wave vec-
tor and ω the angular frequency of the plane wave. In vacuum, where the
vacuum dispersion relation ω = c|k| holds, the plane waves are solutions
to Equation (3.8) and propagate without dispersion along the wave vec-
tor k [25]. The monochromatic plane waves are plane waves that can be
written as [24]

eAk,ωei(k·r−ωt), (3.9)

where the coefficient eAk,ω is a vector. The monochromatic plane waves
form a complete basis for the vector potential A(r , t), and in the limit
of continuous summation, the coefficients eAk,ω can be represented by the
function eA(k,ω), and the general vector potential expressed as

A(r , t) =

∫

dk

∫

dω eA(k,ω)ei(k·r−ωt). (3.10)
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3.3 Dipole approximation

The dot product k · r can be rewritten as

k · r = kr
�

k̂ · r̂
�

, (3.11)

where the magnitudes k = |k| and r = |r |, and the unit vectors k̂ =
k/k and r̂ = r/r. The magnitude of the wave vector k is known as the
wavenumber, and can be related to the wavelength λk through k = 2π/λk,
giving

k · r =
2πr
λk

�

k̂ · r̂
�

, (3.12)

We assume that the electromagnetic radiation of a given wavelength only
interacts in a spatial region that is much smaller than the corresponding
wavelength, 2πr/λk � 1. Under this assumption, the use of the dipole
approximation

k · r ≈ 0 (3.13)

can be justified [26].
Inserting Equation (3.13) into Equation (3.10), the vector potential is

approximated as

A(r , t)≈ A(t) =

∫

dω eA(ω)e−iωt , (3.14)

where we have defined eA(ω) =
∫

dk eA(k,ω). We can see that the electric
field takes the shape of an electric dipole by inserting Equation (3.14) into
Equation (2.20)

E(r , t)≈ E(t) =
∂

∂ t
A(t) =

∫

dω eE(ω)e−iωt (3.15)

where we have defined the function eE(ω) = −iωeA(ω). From the freedom
in choosing the function eA(k,ω), we can also choose eE(ω) as an arbitrary
function of ω. Inserting Equation (3.14) into Equation (2.21), we can see
that the magnetic field disappears in the dipole approximation,

B(r , t)≈∇× A(t) = 0. (3.16)
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3.4 Carrier and envelope separation

In the dipole approximation, the time-dependent electric field E(t) can be
expressed with respect to the carrier frequency ω0 by choosing the arbi-
trary function eE(ω) in Equation (3.15) as

eE(ω) =

∫

dt ′ F0(t
′)ei(ω−ω0)t ′ , (3.17)

where F0(t) is an arbitrary function of t. This choice gives the following
form of the electric field

E(t) =

∫

dω eE(ω)e−iωt

=

∫

dt ′ F0(t
′)e−iω0 t ′

∫

dω eiω(t ′−t)

= F0(t)e
−iω0 t ,

(3.18)

where the time-dependent amplitude of the field oscillates as a monochro-
matic carrier wave at ω0, modulated by the complex amplitude of F0(t).

Furthermore, we assume that the field is linearly polarized,

F0(t) = F0(t)ε̂, (3.19)

where ε̂ is the real unit vector and F0(t) the complex amplitude in the
polarization direction. We can write F0(t) in the complex form

F0(t) = |F0(t)|e−iϕ(t) (3.20)

where the real and non-negative envelope function |F0(t)| is responsible
for any amplitude modulation, and the real phase ϕ(t) = −arg(F0) for any
angle modulation. We furthermore assume that ϕ(t) describes a constant
offset between the phases of the carrier and envelope functions, ϕ(t) =
ϕCEP. Since the classical electric field is an observable, and thus real, we
then obtain

E(t) = Re
�

|F0(t)|e−iωt−iϕCEP
�

ε̂

= |F0(t)| cos(ωt +ϕCEP)ε̂.
(3.21)

This equation still leaves the flexibility of choosing the envelope |F0(t)|
of the electric field as any real and non-negative function of t, and the
carrier-envelope phase ϕCEP as any real constant.
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Figure 3.1: Illustration of pulses with Gaussian and cosine squared en-
velopes, and ϕCEP = 0. The electric fields are shown in solid blue lines
and the envelope functions in dashed orange lines.

3.5 Laser pulses

We model laser pulses with Equation (3.21), by choosing the envelope
|F0(t)| as a function that is centered around a value of t, which we for
simplicity take to be zero. One such choice of envelope is the Gaussian
envelope

|F0(t)|= E0e−t2/(2σ2) (3.22)

which is non-zero for all t. Another choice is the cosine squared envelope

|F0(t)|=

¨

E0 cos2
�

πt
T

�

, − T
2 ≤ t ≤ T

2

0, otherwise,
(3.23)

which is only non-zero within a single period of the squared cosine func-
tion. In Figure 3.1, we illustrate the magnitude |E(t)| of the electric field
for both Gaussian and cosine-squared envelopes, assuming ϕCEP = 0.

In preparation for a discussion on the energy content of laser pulses,
we note that the energy U contained in the electromagnetic field can be
found by integrating the electromagnetic energy density u(r , t) over all
space and time,

U =

∫

dr

∫

dt u(r , t). (3.24)

In vacuum, the electromagnetic energy density is given by [24]

u(r , t) =
1
2

�

ε0|E(r , t)|2 +
1
µ0

|B(r , t)|2
�

, (3.25)
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where ε0 is the vacuum permittivity and µ0 the vacuum permeability.
Within the dipole approximation, the electric field is assumed to be

spatially uniform, and the magnetic field can be neglected. This approx-
imation is generally valid when the size of the system interacting with a
laser pulse is much smaller than the dominant wavelengths in the pulse.
The energy density of the laser pulse can then be expressed as

u(r , t)≈
ε0

2
|E(t)|2 =

ε0

2
|F0(t)|

2 cos2(ωt +ϕCEP), (3.26)

where the last equality is obtained by inserting Equation (3.21), which
relates the electric field to the envelope and carrier wave of the pulse.
However, the total energy derived from integrating this density over all
space and time is infinite, since the integral is proportional to the inte-
gration volume. The integration can be limited to a specific volume that
represents the spatial extent of the pulse, but the choice of this volume can
be ambiguous because the dipole approximation is not valid for the entire
volume of pulses with finite spatial extent. Instead of considering the total
energy in the dipole approximation, it is more appropriate to focus on the
energy density or the energy transfer to the system. To estimate the energy
transfer, one can analyze the response of the system to the laser pulse by
solving the time-dependent Schrödinger equation with the inclusion of the
electric field interaction.

3.6 Length gauge

In the dipole approximation, the length gauge gives a simple description
of semiclassical light-matter interaction, in which the classical electromag-
netic field is represented only by the electric field E(t). The transforma-
tion from the Coulomb gauge to the length gauge can be performed with
the gauge transformation χ(r , t) = −r · A(t), which inserted into Equa-
tion (2.22) and Equation (2.23) gives

A′(r , t) = A(t) +∇
�

− r · A(t)
�

= 0,
(3.27)

ϕ′(r , t) = ϕ(r , t)−
d
dt

�

− r · A(t)
�

= −r · E(t),
(3.28)

where Equation (3.7) and Equation (3.15) are also used in obtaining the
last equation.
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Inserting these equations into the clamped nuclei Hamiltonian in Equa-
tion (2.30), we get the clamped nuclei length gauge Hamiltonian

H(x , t) = H0(x ) + V (x , t), (3.29)

where H0(x ) is the field-free electronic Hamiltonian and

V (x , t) =
∑

i

r i · E(t) (3.30)

describes the interaction of the electrons with the classical electromagnetic
field.

3.7 Field-free eigenbasis

We can use the eigenstates of the field-free Hamiltonian H0, represented
by |ψi〉 and 〈ψi|, as a basis to express operators as matrices, with elements

Oi j(t) = 〈ψi|O(t) |ψ j〉 . (3.31)

The time-dependent Hamiltonian H(t) describing the electrons and their
interaction with the field can also be written in this basis, with elements

Hi j(t) = δi j E j + Vi j(t), (3.32)

where E j is the eigenvalue of H0 for |ψi〉 and the interaction term

Vi j(t) = −d i j · E(t), (3.33)

where d i j are the matrix elements of the electric dipole moment operator
d = −

∑

i r i.





Chapter 4

Solving the electronic
time-independent Schrödinger
equation

In real-time methods, the TDSE is solved by propagating the state of the
quantum system from an initial state, which can often be constructed from
the eigenstates of the field-free Hamiltonian. The temporal evolution of the
time-dependent state can also often be expressed using these same eigen-
states, as alluded to in Section 3.7. This chapter presents techniques for
approximating these eigenstates, with a particular emphasis on the lowest-
energy eigenstate corresponding to the ground state of the system. The
discussion leads to the next chapter’s topic of coupled cluster methods.

4.1 Time-independent Schrödinger equation

If the Hamiltonian in the position-spin representation is time-independent,
H(x 1, . . . , x N , t) = H(x 1, . . . , x N ), as is the case for the field-free electronic
Hamiltonian, it is possible to separate the dependence on the coordinates
x 1, . . . , x N and the time t. Following the method of separation of variables,
we assume that the nth solution of the TDSE can be factorized into a prod-
uct of a position-spin-dependent and a time-dependent function,

Ψn(x 1, . . . , x N , t) =ψn(x 1, . . . , x N )φn(t). (4.1)

Inserting this factorized solution into Equation (2.16), we obtain

H(x 1, . . . , x N )ψn(x 1, . . . , x N )
ψn(x 1, . . . , x N )

=
dφn(t)

dt

φn(t)
= En. (4.2)

19
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The constant eigenvalue En is interpreted as the energy of the system in
eigenstate n. From Equation (4.2), we get the time-dependent equation

dφn(t)
dt

= Enφn(t), (4.3)

which, assuming that φn(t0) = 1, has the phase factor solution

φn(t) = e−iEn(t−t0). (4.4)

From Equation (4.2), we also get the stationary eigenvalue equation
known as the time-indepedent Schrödinger equation (TISE)

H(x )ψn(x 1, . . . , x N ) = Enψn(x 1, . . . , x N ). (4.5)

Since the Hamiltonian is Hermitian, it can according to the spectral theo-
rem be diagonalized, and the solutions can be made orthogonal

∫

dx 1 · · ·dx N ψ
∗
n(x 1, . . . , x N )ψm(x 1, . . . , x N ) = δnm. (4.6)

The non-separable solutions of the TDSE can be expanded as a time-
dependent linear combination of the solutions found through separation
of variables,

Ψ(x , t) =
∑

n

cn(t)ψn(x 1, . . . , x N )φn(t),

=
∑

n

cn(t)ψn(x 1, . . . , x N )e
−iEn(t−t0),

(4.7)

where

cn(t0) =

∫

dx 1 · · ·dx N ψ
∗
n(x 1, . . . , x N )Ψ(x 1, . . . , x N , t0). (4.8)

4.2 Hartree-Fock method

The Hartree method [27] is a simple method for solving the electronic TISE
approximately, which starts by assuming that the N -electron wavefunction
Ψ(x ) can be written as a product of N independent one-electron functions

Ψ(x )≈ψ1(x 1) · · ·ψN (x N ). (4.9)

In this approximation, an electron interacts with the other electrons
through a mean field, corresponding to the Coulomb repulsion from
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the other electrons averaged over their degrees of freedom. To calculate
the mean field, an iterative process is often used where an initial guess
is refined until a self-consistent solution is obtained. This means that
the mean field does not change significantly between iterations. The
equation Equation (4.9) used in this approximation excludes the exchange
interaction and all correlation between the electrons, including Coulomb
correlation. The exchange interaction arises from the Pauli exclusion prin-
ciple, which forbids identical fermions from occupying the same quantum
state and can be expressed mathematically by requiring the wavefunction
to be antisymmetric under the exchange of two identical fermions.
The electronic Coulomb correlation is the part of the electron-electron
Coulomb repulsion that is not accounted for by the mean field.

The Hartree-Fock method [28] improves on the description given by
the Hartree method, by assuming that the wavefunction can be written as
a Slater determinant

Ψ(x )≈ ΨHF(x )

=
1

p
N !

�

�

�

�

�

�

�

�

ψ1(x 1) ψ2(x 1) · · · ψN (x 1)
ψ1(x 2) ψ2(x 2) · · · ψN (x 2)

...
...

. . .
...

ψ1(x N ) ψ2(x N ) · · · ψNe
(x N ),

�

�

�

�

�

�

�

�

(4.10)

where the N functions ψ1,ψ2, . . . ,ψN are known as the occupied spin or-
bitals of the molecule. The Slater determinant formulation gives an exact
representation of the electronic exchange correlation, since the determi-
nant is antisymmetric under the exchange of two electrons

ΨHF(x 1, . . . , x I , . . . , x J , . . . , x N ) = −ΨHF(x 1, . . . , x J , . . . , x I , . . . , x N ).
(4.11)

Since the position and spin operators commute, each spin orbital can be
written as the productψI(x ) = φI(r )χI(σ), whereφI(r ) is a spatial orbital
and χI(σ) a spin function. The spin function can be chosen as one of the
orthonormal functions α(σ) and β(σ), corresponding to "spin up" (�) and
"spin down" (�), respectively, along some quantization axis. Together, α(σ)
and β(σ) form a complete basis for the spin space. The spatial orbitals are
expanded in a set of position-dependent mathematical functions ϕJ(r ),
referred to as the basis set,

φI(r ) =
∑

J

CI JϕJ(r ). (4.12)

When the number of functions in the basis set M exceeds the number
of electrons N , the additional degrees of freedom lead to M − N virtual
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spin orbitals. Although these orbitals do not take part in the self-consistent
Hartree-Fock determinant, they play an important role during the Hartree-
Fock optimization and for post-Hartree-Fock methods.

In practice, Hartree-Fock calculations are performed using incomplete
basis sets. This is a significant source of error, as insufficiently flexible basis
sets can fail to properly describe the spatial orbitals obtained in the com-
plete basis set limit. However, the computational cost of Hartree-Fock and
post-Hartree-Fock calculations grows quickly with respect to basis set size,
requiring a compromise between cost and accuracy. In the simulations of
this thesis, the spatial molecular orbitals are expanded in model atomic
orbitals centered at the positions of the different nuclei, represented by
contracted Gaussian functions.

4.3 Second quantization

The second quantization formalism is often used to simplify the formula-
tion of multiparticle quantum theories, including Hartree-Fock and post
Hartree-Fock methods. In this formalism, the occupation of the different
spin orbitals can be described by the vector

|k〉= |k1, k2, . . . kM〉 , (4.13)

where M is the number of orbitals, and the occupation number

kP =

¨

1 if ψP is occupied,

0 otherwise,
(4.14)

can be modified by the Hermitian conjugate creation a†
P and annihilation

aP operators. The antisymmetry under fermion exchange can be enforced
by letting the operators satisfy the following anticommutation relations

{a†
P , a†

Q} = {aP , aQ} = 0, (4.15)

{a†
P , aQ} = δPQ, (4.16)

where {A, B}= AB + BA. Following Ref. [29], the creation operator a†
P can

be expressed as

a†
P |k〉= δkP 0Γ

k
P |k1, . . . , 1P , . . . , kM〉 , (4.17)

adding an electron to the spin orbital with index P. The Kronecker delta
δkP 0 ensures that creation of an electron in an occupied spin-orbital is for-
bidden, and the coefficient Γ k

P is the sign given by

Γ k
P =

P−1
∏

Q=1

(−1)kQ . (4.18)
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The annihilation operator aP can be expressed as

aP |k〉= δkP 1Γ
k
P |k1, . . . , 0P , . . . , kM〉 , (4.19)

removing an electron from the spin orbital with index P. The Kronecker
delta δkP 1 ensures that annihilation of an electron in an unoccupied spin-
orbital is forbidden. The Hartree-Fock determinant can be expressed as the
vacuum state acted on by the product of the N creation operators corre-
sponding to the lowest-energy orbitals

|HF〉=
N
∏

I=1

a†
I |01, . . . , 0M〉 . (4.20)

In the position-spin representation, the general one- and two-electron
operators f and g can be expressed as

f =
∑

i

f (x i), (4.21)

g =
1
2

∑

i 6= j

g(x i, x j). (4.22)

where the indices i and j run over the N electrons in the system.
In the second-quantization formalism, however, the general one- and
two-electron operators f and g can be expressed as

f =
∑

PQ

fPQa†
P aQ, (4.23)

g =
1
2

∑

PQRS

gPQRSa†
P a†

RaSaQ, (4.24)

respectively, where the one- and two-electron integrals

fPQ =

∫

dx ψ∗
P(x ) f (x )ψQ(x ), (4.25)

gPQRS =

∫

dx

∫

dx ′ψ∗
P(x )ψ

∗
R(x

′)g(x , x ′)ψQ(x )ψS(x
′), (4.26)

respectively.
The field-free Hamiltonian in Equation (2.28) is a two-electron oper-

ator, and can in accordance with Equation (4.25) and Equation (4.26) be
written as the second-quantization operator

H0 =
∑

PQ

hPQa†
P aQ +

1
2

∑

PQRS

gPQRSa†
P a†

RaSaQ + hnuc, (4.27)
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where hPQ and 1
2 gPQRS are the integrals of the one- and two-electron parts of

the Hamiltonian, respectively, and the constant nuclear-nuclear Coulomb
interaction term is given by

hnuc =
1
2

∑

I 6=J

ZI ZJ

|RI −RJ |
. (4.28)

Note that the two-electron integrals gPQRS are symmetric under particle
permutation PQ ↔ RS, and the matrix g with compound indices (PQ, RS)
is thus positive definite [30]. This means that g can be decomposed into
the product g = LL† [31] using Cholesky decomposition. This observation
can be leveraged to reduce the computational cost of calculations depend-
ing on the two-electron integrals [32], which is done throughout the eT

program [33].
Furthermore, we note that the dipole operator taking part in the in-

teraction term of the time-dependent Hamiltonian can be written as the
one-electron operator

d =
∑

PQ

dPQa†
P aQ (4.29)

in the second quantization formalism.

4.4 Spin restriction

We restrict the Hartree-Fock wavefunction to be an eigenfunction of the
squared total spin operator S2. This is done by restricting the spin orbitals
to come in pairs ψpα(x ) = φp(r )α(σ) and ψpβ(x ) = φp(r )β(σ) of a spa-
tial orbital φp(r ) multiplied with the two spin functions α(σ) and β(σ).
Consequently, the compound spin and spatial index pσ is used instead of
the spin-orbital index P, giving

a†
P = a†

pσ, (4.30)

aP = apσ. (4.31)

Since the Hamiltonian in Equation (2.28) does not influence the spin
of the wavefunction, the spin-orbital indices of the one- and two-electron
integrals can be expressed in terms of compound indices, (P,Q, R, S) =
(pσ, qτ, rµ, sν), and the integrals rewritten as

hPQ = hpσ qτ = hpqδστ, (4.32)

gPQRS = gpσ qτ rµ sν = gpqrsδστδµν, (4.33)
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where the spatial integrals

hpq =

∫

dr φ∗
p(r )

�

−
∇2

2
−
∑

I

ZI

|r −RI |

�

φq(r ), (4.34)

gpqrs =

∫

dr

∫

dr ′φ∗
p(r )φ

∗
r (r

′)
1

|r − r ′|
φq(r )φs(r

′). (4.35)

Inserting Equations (4.30) to (4.33) into Equation (4.27), we obtain the
following expression for the field-free Hamiltonian

H0 =
∑

pq

hpqEpq +
1
2

∑

pqrs

gpqrsepqrs + hnuc, (4.36)

where we define the one- and two-electron singlet excitation operators

Epq =
∑

σ

a†
pσaqσ, (4.37)

epqrs =
∑

στ

a†
pσa†

rτasτaqσ

= EpqErs −δqr Eps.
(4.38)

Furthermore, the dipole moment integrals can in accordance with Equa-
tion (4.32) and Equation (4.34) be written as

dPQ = d pqδστ, (4.39)

where

d pq = −
∫

dr φ∗
p(r )rφq(r ). (4.40)

The spin of a singlet wavefunction, which has spin quantum number s = 0,
is conserved under operation by the singlet excitation operators, as they
excite the electrons in a spin orbital pair equally.

We furthermore assume that the Hartree-Fock wavefunction is closed-
shell, where the spin orbital pairs are either occupied or empty. This gives
the regular restricted Hartree-Fock method, where the total spin of the
wavefunction is zero. The left part of Figure 4.1 illustrates how the occu-
pied orbitals, which are the lowest-energy orbitals of the system, are filled
with paired electrons in the restricted Hartree-Fock determinant. The cen-
ter and right parts of the figure illustrates how electrons in the restricted
Hartree-Fock determinant can be promoted from the HOMO to the LUMO
orbital by one- and two-electron singlet excitation operators.
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|HF〉

virtual orbitals

occupied orbitals

LUMO
HOMO

+

Eai |HF〉 1
2 Eai Eb j |HF〉

Figure 4.1: Molecular orbital diagrams illustrating how electrons pairs
occupy the orbitals of the Hartree-Fock determinant, and how Eai and
1
2 Eai Eb j excite the Hartree-Fock determinant for a = b = LUMO and i =
j = HOMO. Note that the excited determinants can be open-shell, but are
spin adapted.

4.5 The Roothaan-Hall equations

The average Coulomb potential experienced by each electron from the
other electrons in the system is represented by the Fock potential

V =
∑

i

�

2gpqii − gpiiq

�

Epq. (4.41)

The Fock operator f is the sum of the one-electron part of the Hamiltonian
and the Fock potential,

f = h+ V

=
∑

pq

fpqEpq
(4.42)

where
fpq = hpq +

∑

i

�

2gpqii − gpiiq

�

. (4.43)

In the basis of the canonical Hartree-Fock molecular orbitals, the Fock op-
erator is diagonal,

fpq = εpδpq (4.44)

where εp is the orbital energy of molecular orbital p. This is however gen-
erally not the case, and the canonical Hartree-Fock orbitals can be found
by solving the Roothaan-Hall equations [30, 34]

f C = SCε (4.45)

iteratively. In these equations, f is the Fock operator expressed in an initial
basis and S is the overlap matrix of the initial basis functions. C the matrix
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→

Valence excitation

→

K-edge excitation

Figure 4.2: Molecular orbital diagrams illustrating a valence excitation
from the HOMO to the LUMO orbital (left) and a core excitation from the
K-shell orbital to the LUMO orbital (right).

of orbital coefficients, which relate the initial basis functions to the solution
at a given iteration, see Equation (4.12). The equations are nonlinear in
the orbital coefficients, which is why an iterative approach is needed.

4.6 Valence and core orbitals

The core orbitals of a Hartree-Fock determinant are the lower-energy or-
bitals that are mainly localized around the core of the molecule, while the
higher energy valence orbitals are more delocalized and participate more
readily in bonding. Although more energy is needed for exciting and ion-
izing core electrons, the probability of resonant excitation of a core elec-
tron can be higher in high-energy radiation. This is reflected in molecular
absorption cross-sections, which in general increase steeply as the core-
exciting energies are approached from below.

The features of the cross-section associated with core excitation are
known as absorption edges, and are named with respect to the core orbitals
that are excited by the given energy. The K-edge is a manifestation of exci-
tations from the K-shell, the L-edge of the excitations from the L-shell, and
so on. In Figure 4.2, we illustrate how a HOMO-LUMO valence excitation
differs from a K-edge excitation from the K-shell to the LUMO orbital, dis-
regarding Coulomb correlation. For most elements, the core edges are in
the x-ray frequency range, and the correct representation of the edge fea-
tures are thus important for models of x-ray spectroscopy. The absorption
edges of a molecule are closely linked to the absorption edges of its con-
stituent atoms. The absorption edges are also sensitive to electronic density
around the nuclei, and thus the chemical environment of the bound atoms.
This gives a spectroscopic footprint that can reveal information about the
structure of molecules.
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4.7 Correlation

As mentioned in Section 4.2, the electron-electron Coulomb repulsion is
approximated by a mean-field in the Hartree-Fock method, and the elec-
tronic Coulomb correlation thus disregarded. Using the definition of the
Fock operator in Equation (4.42), the second-quantization Hamiltonian in
Equation (4.36) can be rewritten as

H = f +Φ+ hnuc, (4.46)

where the fluctuation potential Φ is

Φ=
1
2

∑

pqrs

gpqrsepqrs − V. (4.47)

The fluctuation potential is disregarded in the Hartree-Fock method, and
post-Hartree-Fock methods are methods that aim to represent the fluctu-
ation potential, either exactly or approximately, by correcting the descrip-
tion given by the Hartree-Fock determinant. A conceptually simple way of
doing this is through the standard configuration interaction (CI) method,
where the state is parametrized as a linear combination of the excited de-
terminants obtained by applying excitation operators to the Hartree-Fock
determinant. The spin-adapted full configuration interaction (FCI) method
includes singlet excitation operators to all orders,

|Ψ〉=
∑

κ

τκcκ |HF〉

= |HF〉 c0 +
∑

ai

Eai |HF〉 ca
i +

∑

aib j

Eai Eb j |HF〉 cab
i j + . . . ,

(4.48)

where τκ denotes a product of singlet excitation operators. The spin-
adapted FCI method gives an exact representation of the fluctuation
potential for spin-free Hamiltonian operators, and thus also fully repre-
sents the electronic correlation in the given basis. The method is exact
in the complete basis set limit. However, the FCI method can in practice
only be used for calculating the properties of small molecules, as the
number of determinants Ndet, and thus the computational effort needed
for the method scales factorially with system size, since the number of
determinants is given by

Ndet =
�

M
N

�

=
M !

N !(M − N)!
(4.49)

where N is the number of electrons and M the number of orbitals. Al-
ternatively, truncated CI methods can be used, in which the expansion in
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Equation (4.48) is truncated at a certain order of one-electron excitation
operators. These methods reduce the computational effort required to a
polynomial scaling with system size

4.8 Size extensivity and intensivity

The proper behavior of observables with the scaling of the size of the quan-
tum system is a central theme of quantum chemistry, and is seen as partic-
ularly important for the correct description of large molecular systems. In
the FCI limit, properties can be classified into two categories: size-extensive
and size-intensive. Size-extensive properties, such as the energy of the sys-
tem, are additive for subsystems, that is,

EAB = EA+ EB, (4.50)

where A and B are two non-interacting systems. Size-intensive proper-
ties, on the other hand, such as excitation energies and transition mo-
ments [35], do not scale with the number of subsystems. Approximate
methods can misrepresent the properties by giving the wrong scaling be-
havior. Excitation energies of truncated CI methods, for example, are not
size-intensive. The favorable size-scaling behavior is one of the most im-
portant reasons for why coupled-cluster methods have gained favor as an
alternative to configuration interaction methods.





Chapter 5

Coupled-cluster methods

The time-independent and time-dependent methods used in this thesis all
fall within the framework of coupled-cluster methods. In this chapter, the
ground-state coupled-cluster method is introduced, and the various exten-
sions and numerical methods that are used for simulating the interaction
of atoms and molecules with an external field.

5.1 Coupled-cluster ground state

In the traditional coupled-cluster method [36], the ket vector of the ground
state is parametrized as

|ψ0〉= eT |HF〉 , (5.1)

In the spin-adapted variant, the cluster operator T is a linear combination
of singlet excitation operators of all orders,

T =
∑

λ

τλ tλ

= t0 +
∑

ai

Eai t
a
i +

1
2

∑

ai≥b j

Eai Eb j t
ab
i j + . . . ,

(5.2)

where τλ denotes a product of singlet excitation operators and the expan-
sion parameters tλ are known as the cluster amplitudes. Note that the am-
plitude t0 is often omitted in time-independent coupled cluster methods,
and it does not participate in the ground state equations. The amplitude is,
however, usually included in time-dependent treatments, and we include
it throughout this chapter for a consistent definition of the cluster operator.

As in the CI method, the full coupled cluster method can be approx-
imated by truncating the cluster operator at a given order of the one-
electron excitation operators. The truncation level needed for an accurate

31
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description of the system increases with the strength of the correlation of
the targeted quantum state. Truncation at the single excitation level gives
the coupled-cluster singles (CCS) method, at the double excitation level
gives the coupled-cluster doubles (CCSD) method, and so on, with poly-
nomial computational scaling increasing with the truncation level. Using
perturbation theory, additional coupled-cluster methods with intermediate
computational scaling can be defined, by expressing coupled-cluster equa-
tions in orders of the fluctuation potential given by Equation (4.47).

The ground-state solution of the electronic TISE

H |ψ0〉= E0 |ψ0〉 (5.3)

is in coupled-cluster methods often found by projecting the equation onto
〈HF| e−T and 〈eµ| e−T , for µ > 0, where the excited bra determinant

〈eµ|= 〈HF| eτ†
µ
. (5.4)

The excited bra determinants are biorthogonal to the Hartree-Fock ket de-
terminant

〈eµ|HF〉= 0. (5.5)

The projection onto 〈eµ| e−T gives the amplitude equations

〈eµ| H̄ |HF〉= 0, (5.6)

where we denote the similarity transformation of an arbitrary operator O
by the cluster operator with an overbar,

Ō = e−T OeT . (5.7)

The number of equations in the form of Equation (5.6) is equal to the
number of amplitudes in the cluster operator, and the set of equations can
be solved for the ground state amplitudes. The equations are often written
out explicitly by using the Baker-Campbell-Hausdorff formula

e−T OeT = O+
1
2!
[O, T] +

1
3!
[[O, T], T] +

1
3!
[[[O, T], T], T] + . . . , (5.8)

which for the Hamiltonian O = H truncates at the fourth term. Since the
equations are non-linear in the amplitudes, they are solved with methods
suitable for non-linear equations, such as the Newton method.

Assuming that the Hartree-Fock determinant is normalized,

〈HF|HF〉= 1, (5.9)
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the projection of the TISE onto 〈HF| e−T gives the ground state energy equa-
tion

〈HF| H̄ |HF〉= E0. (5.10)

Once the amplitudes have been found from solution of Equation (5.6), the
ground state energy follows from Equation (5.10) and Equation (5.8).

In contrast to Equation (5.10), the general expectation value ansatz

〈HF| Ō |HF〉 (5.11)

does not describe a ground state expectation value that satisfies the
Hellman-Feynman theorem. However, this limitation can be overcome
by treating coupled-cluster theory in the Lagrangian formulation. In this
approach, the amplitude equations in Equation (5.6) are introduced
as constraints, accompanied by corresponding Lagrange multipliers t̄µ,
resulting in the following Lagrangian

L = 〈HF| H̄ |HF〉+
∑

µ

t̄µ 〈eµ| H̄ |HF〉 . (5.12)

The Lagrange multipliers of the ground state can be found by solving the
following set of stationarity conditions

〈HF| H̄ |ν〉+
∑

µ

t̄µAµν = 0, (5.13)

where the excited ket determinant

|ν〉= τν |HF〉 , (5.14)

which we take to be biorthogonal to the bra determinants

〈HF|ν〉= 0, 〈eµ|ν〉= δµν. (5.15)

The coupled-cluster Jacobian

Aµν = 〈eµ| [H̄,τν] |HF〉 , (5.16)

is the derivative of the left-hand side of Equation (5.6) with respect to the
amplitude tν.

The Lagrangian leads to the ground state expectation value expression

〈O〉= 〈 eψ0|O |ψ0〉 , (5.17)

where
〈 eψ0|= 〈HF| e−T +

∑

µ

t̄µ 〈eµ| e−T , (5.18)

which obeys the Hellman-Feynman theorem. Note that the equation re-
duces to Equation (5.10) for O = H. Ground state expectation values given
by Equation (5.17) are equal to full configuration interaction ground state
expectation values when the cluster operator is untruncated.
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5.2 Equation-of-motion coupled-cluster method

The equation-of-motion coupled-cluster (EOM-CC) method [37] is a way
of extending the ground-state coupled-cluster method to excited states.
This is done by defining the coupled-cluster ket and bra of EOM-CC state
i as

|ψi〉= eT Ri |HF〉 , (5.19)

〈 eψi|= 〈HF| Lie
−T , (5.20)

where the linear excitation operators

Ri =
∑

λ

τλrλi, (5.21)

Li =
∑

κ

liκeτ
†
κ
. (5.22)

The summation indices κ and λ include the reference determinant with
index κ= λ= 0, and are usually truncated at the same excitation level as
the cluster operators. In EOM-CC, the cluster operator T is not allowed to
relax in calculations of excited states.

In the following, we derive the well-known EOM-CC eigenvalue equa-
tions for the parameters of Ri and Li. Projecting the associated TISEs

HRie
T |HF〉= eT Ri |HF〉 Ei (5.23)

〈HF| Lie
−T H = Ei 〈HF| Lie

−T (5.24)

onto 〈eκ| e−T and eT |λ〉, respectively, we obtain
∑

λ

Hκλrλi = rκi Ei, (5.25)

∑

κ

liκHκλ = Ei liλ, (5.26)

where the elements of the Hamiltonian matrix is given by

Hκλ = 〈eκ| H̄ |λ〉 . (5.27)

This matrix can be seen to be non-Hermitian due to the similarity transfor-
mation of the Hamiltonian operator. Consequently, both the left and right
eigenvalue problems are defined, where in general both eigenvectors are
needed for the calculation of EOM-CC operator matrix elements, whereas
in Hermitian theories only a single eigenvalue problem is required. The
Hamiltonian matrix can be written in the following commutator form

Hκλ = 〈eκ| [H̄,τλ] |HF〉+ 〈eκ|τλH̄ |HF〉 (5.28)
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Inserting the resolution of identity 1=
∑

η |η〉 〈eη| in the last term, and also
Equation (5.6) and Equation (5.10), we obtain

Hκλ = 〈eκ| [H̄,τλ] |HF〉+δκλE0 (5.29)

Inserting this back into Equation (5.25) and Equation (5.26), we obtain
∑

ν

〈eκ| [H̄,τν] |HF〉 rνi = rκi∆Ei, (5.30)

∑

κ

liκ 〈eκ| [H̄,τλ] |HF〉=∆Ei liλ, (5.31)

where ∆Ei = Ei − E0.
For the indices κ= µ, where µ > 0, Equation (5.30) reduces to

∑

ν

Aµνrνi = rµi∆Ei, (5.32)

which defines the right EOM-CC eigenvalue problem. For κ= 0, the equa-
tion reduces to

∑

ν

〈HF| H̄ |ν〉 rνi = r0i∆Ei, (5.33)

which after inserting Equation (5.13) and Equation (5.32) and assuming
∆Ei 6= 0 gives

r0i = −
∑

µ

t̄µrµi. (5.34)

For λ= 0, Equation (5.31) reduces to

∆Ei li0 = 0, (5.35)

which for ∆Ei 6= 0 gives

l0i = 0. (5.36)

For λ= ν, where ν > 0, the equation reduces to
∑

κ

liκ 〈eκ| [H̄,τν] |HF〉=∆Ei liν, (5.37)

which after inserting Equation (5.36) gives
∑

µ

liµAµν =∆Ei liν, (5.38)

which defines the left eigenvalue problem.
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Equation (5.32) and Equation (5.38) can be written in the matrix form

ARi = Ri∆Ei, (5.39)

AT Li =∆EiLi, (5.40)

respectively, where the vectors Ri and Li contain the excited determinant
components rµi and liν, and the Jacobian matrix A is non-Hermitian. These
eigenvalue problems generally have multiple solutions, which come in ad-
dition to the single ground-state solution with energy E0 obtained from the
ground state coupled-cluster equations.

In EOM-CC, the operator O can be expressed as a matrix in the basis of
the different EOM-CC eigenstates, with elements

Oi j = 〈 eψi|O |ψ j〉
= 〈HF| LiŌR j |HF〉 ,

(5.41)

where R j comes from the solution of Equation (5.39) and Li from the solu-
tion of Equation (5.40). For i = j, Equation (5.41) reduces to expressions
for the EOM-CC expectation values of O.

5.3 Core-valence separation approximation

Core-excited solutions of Equation (5.39) and Equation (5.40) can be dif-
ficult to calculate, since these often have high-lying eigenvalues embed-
ded in a valence ionization (pseudo-)continuum. Some eigenvalue algo-
rithms, such as the ones based on the shift-and-invert procedure, can be
used to target specific spectral regions, but these generally require the so-
lution of additional linear equations. An alternative approach is to use the
core-valence separation (CVS) approximation [37], where the off-diagonal
core-valence and valence-core determinant blocks of the Jacobian are ne-
glected. Then, Equation (5.39) and Equation (5.40) separate into inde-
pendent eigenvalue problems for the valence-valence and core-core de-
terminant blocks, where the lowest-eigenvalue solutions are approximate
valence-excited and core-excited states, respectively. In this way, estab-
lished and well-performing exterior eigenvalue algorithms can also be used
for calculating core-excited states.

We calculate the core-excited states in the CVS approximation by pro-
jecting out all EOM-CC vector elements that do not reference at least a
single core orbital at each iteration of the eigenvalue algorithms, which
for EOM-CCSD can be stated as [38]

PCVS
I ra

i = la
i P

CVS
I = 0, if i /∈ I , (5.42)

PCVS
I rab

i j = lab
i j P

CVS
I = 0, if i /∈ I and j /∈ I . (5.43)
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This projection effectively removes the valence-valence, core-valence and
valence-core determinant blocks of the Jacobian, decoupling the core-core
block from the rest of the spectrum. The complementary projector can be
used in order to calculate the valence-excited states in the CVS approxi-
mation, which by design are biorthogonal to the CVS approximated core
states. If the valence-excited states are instead calculated as the lowest-
eigenvalue solutions of the full Jacobian, they can have a non-zero over-
lap with the CVS approximated core-excited states. The Rayleigh-Ritz pro-
cedure can then be used in order to generate a non-overlapping set of
valence- and core-excited states, which we do in Paper III and Paper V.

5.4 Methods for solving the EOM-CC eigen-
value problem

The full Jacobian matrix A is often too large to be stored in memory or
even on disk, as the number of elements is equal to the number of de-
terminants in the projection space squared. These limitations are often cir-
cumvented by the use of matrix-free methods, where the matrix is accessed
only through the matrix-vector products ρ = Ar and σ = AT l, which can
be used to construct solutions to the eigenvalue problem. The calculation
and storage of all solutions is also often not possible for large systems, and
it is thus also important to use methods that target the most important
states for describing the physical process of interest.

In the papers in this thesis, we use matrix-free Davidson [39] and Lanc-
zos [40] methods to construct approximate solutions to Equation (5.39)
and Equation (5.40). The two methods have many features in common.
Both start out from predefined starting vectors, and iteratively generate a
basis from these vectors. Both methods also use the Rayleigh-Ritz method
in order to approximate the solutions of the eigenvalue problem, by di-
agonalizing the matrix in the generated basis. The approximate solutions
generally converge towards the exact solutions as the size of the basis in-
creases, but this convergence is also sensitive to the choice of the start-
ing vectors, which should be chosen with respect to the solutions of in-
terest. The iteratively generated basis vectors often start to overlap as the
algorithms proceed, and therefore orthogonalization procedures are often
used to ensure the stability of the methods. Both methods perform well at
converging the outer eigenvalues of a spectrum, provided they are well-
separated.

The Lanczos and Davidson methods do, however, have some distinc-
tive characteristics. In the asymmetric Lanczos method [41], the expan-
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sion of the basis is done through repeated multiplication of the right and
left starting vectors by the matrices A and AT , respectively, meaning that
the method is a Krylov subspace method. More details about the Lanczos
algorithm that we have used are given in Paper III. In each iteration of the
Davidson method, the Rayleigh-Ritz method is used to construct the ap-
proximate right and left solutions. Then, the basis is expanded by applying
the inverse preconditioner

P−1 = (D − eωi I)
−1, (5.44)

to the residuals of each insufficiently converged solution, where eωi is its
approximate eigenvalue and D is a diagonal approximation of the matrix
A. In Paper II, we use the diagonal approximation

Dµν = εµδµν, (5.45)

which is equal to the term originating from the Fock operator in the Jaco-
bian, where εµ is the orbital energy differences of excited determinant µ
with respect to the reference Hartree-Fock determinant.

When compared to Krylov space methods, the construction of the ap-
proximate solutions and preconditioning at each iteration adds significant
cost per iteration for the Davidson method. However, for diagonally dom-
inant matrices, which are commonly encountered in quantum chemistry,
the Davidson method has an asymptotic quadratic convergence towards
specific eigenvalues. This is since the preconditioning can increase the sep-
aration of the targeted eigenvalues from the rest of the spectrum [42].
Note, however, that the method breaks down for eigenvalue problems with
completely diagonal matrices, as the generated basis vectors are linearly
dependent on the previous ones. The Lanczos method tends to have a
slower convergence towards specific eigenvalues, but on other hand often
gives a better global convergence, and does not break down for diagonal
matrices.

5.5 Time-dependent coupled-cluster method

The time-dependent coupled cluster method [43] can be derived by pro-
jecting the time-dependent Schrödinger equations for the time-dependent
ket |Ψ(t)〉= eT (t) |HF〉 and bra 〈eΨ(t)|=

∑

κ t̄κ(t) 〈eκ| e−T (t), namely

i
d
dt

�

eT (t) |HF〉
�

= H(t)eT (t) |HF〉 , (5.46)

−i
d
dt

�

∑

κ

t̄κ(t) 〈eκ| e−T (t)
�

=
∑

κ

t̄κ(t) 〈eκ| e−T (t)H(t), (5.47)
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onto 〈eκ| e−T (t) and eT (t) |λ〉, respectively, giving

i
dtκ(t)

dt
= 〈eκ| H̄(t) |HF〉 , (5.48)

−i
d t̄λ(t)

dt
=

∑

κ

t̄κ 〈eκ| [H̄(t),τλ] |HF〉 . (5.49)

The structure of the TDCC equations ensure that expectation values given
by Equation (5.17) scale properly with the size of the system, see Paper IV.

The coupled-cluster response method is a frequency-space method
based on Equation (5.48) and Equation (5.49). The method can be derived
by expressing the parameters in terms of the orders of perturbation,

tκ(t) = t(0)
κ
(t) + t(1)

κ
(t) + t(2)

κ
(t) + . . . (5.50)

t̄λ(t) = t̄(0)
λ
(t) + t̄(1)

λ
(t) + t̄(2)

λ
(t) + . . . , (5.51)

and inserting the Fourier transform of the time-dependent fields, result-
ing in expressions for frequency-dependent response functions [43]. The
method gives size-intensive molecular properties. It does, however, require
the solution of extra sets of linear equations, and implementations are non-
trivial for higher-order perturbations.

In addition to the perturbative approach given by the coupled-cluster
response method, the set of nonlinear equations given by Equation (5.48)
and Equation (5.49) can be solved in the real time domain [14], which is
the approach used in this thesis.

5.6 Time-dependent equation-of-motion coupled-
cluster method

In the time-dependent equation-of-motion coupled-cluster (TD-EOM-CC)
method [15, 16], the time-dependence of the state is parametrized by
the linear singlet excitation operator R(t) and deexcitation operator L(t),
while the cluster operator T is taken to be constant. As in TDCC, the time
dependence of the TD-EOM-CC parameters can be found by projecting the
time-dependent Schrödinger equations of the ket |Ψ(t)〉= eT R(t) |HF〉 and
bra 〈eΨ(t)|= 〈HF| L(t)e−T

i
d
dt

�

eT R(t) |HF〉
�

= H(t)eT R(t) |HF〉 , (5.52)

−i
d
dt

�

〈HF| L(t)e−T
�

= 〈HF| L(t)e−T H(t), (5.53)
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onto 〈eκ| e−T (t) and eT (t) |λ〉, respectively, giving the equations

i
drκ(t)

dt
=

∑

λ

〈eκ| H̄(t) |λ〉 rλ(t), (5.54)

−i
dlλ(t)

dt
=

∑

κ

lκ(t) 〈eκ| H̄(t) |λ〉 . (5.55)

Time-dependent expectation values can be found through the expression

〈O(t)〉= 〈eΨ(t)|O(t) |Ψ(t)〉

=
∑

κλ

lκ(t) 〈eκ| Ō(t) |λ〉 rλ(t).
(5.56)

The TD-EOM-CC method shares similarities with the time-dependent
configuration-interaction (TD-CI) method, where the time dependence is
also parametrized by linear operators. The CI method does, however, not
incorporate the similarity transformation used in coupled cluster meth-
ods, and as a result methods based on the truncated CI parametrization
do not exhibit the correct scaling of expectation values and transition mo-
ments with the size of the system. Conversely, ground state expectation
values and excitation energies are correctly represented in truncated EOM-
CC methods. In contrast to coupled cluster response theory, the EOM-CC
frequency response can be deduced by inserting the biorthogonal EOM-CC
states into the expressions obtained for exact states [44]. The equations de-
scribing the time evolution of the TD-EOM-CC state are also linear in the
time-dependent parameters, while the equations for the time-dependent
TDCC amplitudes are non-linear.

In this thesis, Equation (5.54) and Equation (5.55) are solved in the
real time domain, both directly in the elementary basis given by Equa-
tion (5.54) and Equation (5.55) and also in the eigenstate basis obtained
by diagonalizing the field-free Hamiltonian, in which the time-dependent
state can be expressed as

|Ψ(t)〉=
∑

j

|ψ j〉 c j(t) (5.57)

〈eΨ(t)|=
∑

i

bi(t) 〈 eψi| . (5.58)

The expectation value expression in Equation (5.56) can also be written in
this basis

〈O〉=
∑

i j

bi(t)Oi j(t)c j(t), (5.59)

where the operator matrices Oi j(t) are given by Equation (5.41).
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The TD-EOM-CC formulation employed in this thesis is closely related
to the approaches presented by Sonk et al. [15] and Luppi and Head-
Gordon [16], both of which utilize the field-free eigenstate basis. However,
our method differs from these approaches by propagating the state using
the full non-Hermitian Hamiltonian without symmetrization, which better
aligns it with prevalent non-Hermitian EOM-CC and TDCC formulations.
This comes at the cost of allowing the time-dependent energy to become
complex.

There are alternative moment-based formulations of TD-EOM-CC as
well, in which moment functions are constructed by operating on the bra
and ket of the coupled-cluster ground state with a one-electron operator of
interest, such as the dipole moment operator [45–48]. In these approaches,
one of the moment functions is propagated using the time-independent
electronic Hamiltonian. To simulate linear electron spectroscopy, the auto-
correlation function is employed, involving the product of the propagated
and unpropagated moment functions. However, this method does not ac-
count for nonlinearities, making it unsuitable for simulating multiphoton
processes, which are the primary focus of this thesis.

In Paper III, we demonstrate that TD-EOM-CC can give reasonable re-
sults for small molecular systems in weak fields. Properties other than the
energy can, however, have the wrong size-scaling behavior. In Paper IV, we
demonstrate that the errors of TD-EOM-CC get more pronounced in strong
fields, in particular for systems containing multiple subsystems that are in
resonance with an external field.

5.7 Real-time integration algorithms

In the TDCC and TD-EOM-CC methods, the system of equations obtained
from projecting the right and left TDSEs can be written as

dy(t)
dt

= f (t, y(t)), (5.60)

where the vector y(t) contains all the time-dependent parameters of the
method. The TD-EOM-CC equations are linear in y(t), while the TDCC
ones are nonlinear. Assuming that the parameters are known at t = t0,
the problem of finding the parameters at a later time is an initial value
problem, which can be solved by integrating Equation (5.60) numerically
in discrete time steps. Note that in addition to the implicit time dependence
of the parameters, Equation (5.60) also allows for an explicit dependence
on time, which enters for interactions with a time-dependent external field.



42 RT-CC approaches for electronic multiphoton processes in atoms and molecules

In all papers in this thesis, Equation (5.60) is integrated with Runge-
Kutta methods. These methods propagate the solution y(t) sequentially in
single time steps, and can from step n to n + 1 be written in the general
form [49]

yn+1 = yn + h
ν

∑

i=1

bi f
�

tn + cih,ξi

�

(5.61)

ξi = yn + h
ν

∑

j=1

ai j f
�

tn + c jh,ξ j

�

, (5.62)

where h is the time step size, and the specific method is determined by
the matrix a and the vectors b and c. The integer ν gives the number of
stages per time step. For well-designed Runge-Kutta methods, the number
of stages generally correlates with the error of the method, which is clas-
sified with respect to the order of the time step size, O(hn). The methods
are also classified as explicit when all stages are given explicitly in terms
of previously calculated stages, and implicit when the stages have an im-
plicit dependence on stages that have not been calculated yet. We explored
the use of both explicit and implicit Runge-Kutta methods with fixed time
steps in Paper II, and obtained solutions that were well-converged with re-
spect to the time step size for all methods. In Paper III and Paper IV, we
used embedded explicit Runge-Kutta methods with adaptive time steps.
The time steps were adapted by calculating the size of an error estimate,
obtained by evaluating the norm ‖yn − y ′

n‖ of the difference between the
two vectors yn and y ′

n calculated with Runge-Kutta methods of different
error orders. These methods are simpler to use, as inadequate choices of
the time step size can be automatically corrected for, such as when the
integration reaches a region with a large estimated integration error. In
Paper III, we show that results calculated with the embedded Runge-Kutta
methods indeed reproduce the results of Paper II for large initial time step
sizes.



Chapter 6

Select topics in semiclassical
laser-molecule interaction

In this chapter, we introduce some concepts and models that help explain
the observations made in Papers II to V. We start by introducing the interac-
tion picture and the Dyson series, and use these concepts when introducing
the phenomena of symmetry in multiphoton transitions, quantum beats in
transient absorption and semiclassical Rabi oscillations.

6.1 Interaction picture and Dyson series

The interaction picture is useful for describing interactions of atoms and
molecules with external fields, as the interaction picture Hamiltonian is
zero when the interaction is zero. The time-dependent interaction picture
ket can be related to the ket in the Schrödinger picture by the unitary
transformation

|Ψ I(t)〉= eiH0 t |Ψ(t)〉 , (6.1)

where H0 is the field-free term of the Hamiltonian. The interaction picture
transformation leads to the modified TDSE

d
dt

|Ψ I(t)〉= V I(t) |Ψ I(t)〉 (6.2)

where V I(t) = eiH0 t V (t)e−iH0 t and V (t) is the interaction term of the
Hamiltonian.

In the interaction picture, the time-evolution operator is related to the
Schrödinger picture operator through the transformation

U I(t, t ′) = eiH0 t U(t, t ′)e−iH0 t ′ , (6.3)
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Figure 6.1: Multiphoton transitions. From the ground state, the system
can absorb a single photon from the external field, exciting the system to
a higher energy state. Thereafter, the system can be excited or deexcited
by stimulated absorption or emission of a second photon. In very strong
fields, this process can continue and involve a high number of photons.

and can be written as a Dyson series [50] in increasing orders of V I(t),

U I(t, t ′) =
∑

n≥0

U I
n(t, t ′), (6.4)

where

U I
0(t, t ′) = 1 (6.5)

U I
1(t, t ′) = −i

∫ t

t ′
dt1 V I(t1) (6.6)

... (6.7)

U I
n(t, t ′) = (−i)n

∫ t

t ′
dt1

∫ t1

t ′
dt2 · · ·

∫ tn−1

t ′
dtn V I(t1)V

I(t2) · · ·V I(tn). (6.8)

The nth order term in the Dyson series can be interpreted as corresponding
to a n-photon transition, where each single-photon exchange is associated
with the transition between two states of the system. See Figure 6.1 for an
illustration of such multiphoton transitions starting from the ground state.
The number of significant terms in the expansion depends on the strength
of the interaction, and only the first orders are significant for perturbative
interactions.

In the basis of the field-free eigenstates, the matrix elements of the
interaction term can in the interaction picture, be written as

V I
i j(t) = 〈ψi| eiH0 t V (t)e−iH0 t |ψ j〉

= Vi j(t)e
i∆Ei j t

(6.9)
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where∆Ei j = Ei−E j is the difference between the energies of the field-free
energies. The time evolution of the coefficients c j is thus given by

i
dci(t)

dt
=

∑

j

V I
i j(t)c j(t)

=
∑

j

Vi j(t)e
i∆Ei j t c j(t)

(6.10)

6.2 Symmetry in multiphoton transitions

The symmetry of atoms or molecules interacting with an external field can
provide valuable insights into the possible electronic transitions that may
occur within them. This symmetry is commonly explained within the con-
text of group theory, where the atom or molecule and the field are rep-
resented by a point group that encompasses all the symmetry operations
that the entity is invariant to. Atoms and small molecules are often highly
symmetric, and their point groups can therefore contain a high number of
symmetry operations, while the number generally decreases with increas-
ing molecular complexity. The diatomic lithium fluoride molecule is for
instance invariant to the identity operation, any rotation around the verti-
cal axis, and an infinite number of vertical mirror planes, and is identified
with the C∞v point group. The lowest-energy conformer of the amino acid
glycine, however, is only invariant to the reflection through a single mirror
plane in addition to the identity operation, and is identified with the point
group Cs.

The representation of a point group in a given basis can be decomposed
into a direct sum of irreducible representations, which are representations
that cannot be decomposed further and behave differently with respect to
the set of symmetry operations of the point group. Electronic eigenstates
are often classified in terms of the irreducible representations of the atom
or molecule, as each eigenstate can be shown to transform as one of these
representations. Qualitative information about the interaction matrix el-
ement Vi j(t) = 〈Ψi|V (t) |Ψ j〉 can be deduced from the direct product of
three irreducible representations

Γi × ΓV × Γ j, (6.11)

where eigenstates i and j transform as Γi and Γ j, respectively, and the length
gauge interaction operator V (t) = −d ·E(t) is assumed to transform as ΓV .
If the product does not contain the totally symmetric irreducible repre-
sentation of the point group, Γsym, the interaction matrix element is zero,
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and the electronic transition forbidden. If the product contains Γsym, on the
other hand, the electronic transition is allowed. This does, however, not
imply that the transition is important in simulations, as its strength can be
negligible and its energy outside the bandwidth of the external field.

So far, we have only examined the symmetry properties of the interac-
tion matrix elements. However, the complete time-dependent interaction
is represented by the time evolution operator, which can involve higher-
order products of these matrix elements, see Equation (6.4). By using the
same approach as we did when describing the interaction matrix elements
in terms of irreducible representations, we can infer that an N -photon tran-
sition is only allowed when Γsym is contained in the direct product

Γi × ΓV × · · · × ΓV
︸ ︷︷ ︸

N

×Γ j. (6.12)

6.3 Quantum beats in transient absorption

We now outline an explanatory model of quantum beats in transient ab-
sorption, which we observe in the simulated transient absorption spectra
in Paper II and Paper III. We start by assuming that the interaction term
V (t) in Equation (3.29) is a sum of interaction terms corresponding to
temporally separated pump V1(t) and probe V2(t) pulses

V (t) = V1(t) + V2(t). (6.13)

Both pulses are treated in the dipole approximation and length gauge. We
also assume that the pulses are linearly polarized, meaning that their elec-
tric field vectors can be written as products of a polarization vector ê and
a time-dependent amplitude E(t). The terms for the two pulses can thus
be written as

V1(t) = −d · ε̂1E1(t), (6.14)

V2(t) = −d · ε̂2E2(t). (6.15)

The amplitude of transition between the initial state i at time t0 and
the final state f at time t, where both states are eigenstates of H0 with
eigenvalues ωi and ω f , respectively, is given by

c f i(t) = 〈ψ f |U(t, t0) |ψi〉
= 〈ψ f | e−iH0 t U I(t, t0)e

iH0 t0 |ψi〉
= ei(ωi t0−ω f t) 〈ψ f |U I(t, t0) |ψi〉 .

(6.16)
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Here, U I(t, t0) is the interaction picture time evolution operator in Equa-
tion (6.3). For simplicity, we assume that that all transitions to state f
must involve the absorption of two photons, the first from the pump and
the second from the probe. From the second-order term in the Dyson series
in Equation (6.4), we then obtain

c f i(t) = −ei(ωi t0−ω f t)

∫ t

t0

dt1

∫ t1

t0

dt2 〈ψ f |V I
2(t1)V

I
1(t2) |ψi〉 (6.17)

We insert the resolution of identity in terms of all states 1=
∑

n |ψn〉 〈ψn|,
write the interaction picture operators in terms of the Schrödinger picture
operators, V I(t) = eiH0 t V (t)e−iH0 t , and insert Equations (6.14) to (6.15),
obtaining

c f i(t) = −ei(ωi t0−ω f t)
∑

n

(d f n · ε̂2)(dni · ε̂1)

×
∫ t

t0

dt1 E2(t1)e
iω f n t1

∫ t1

t0

dt2 E1(t2)e
iωni t2 ,

(6.18)

where ωi j =ωi −ω j and the dipole matrix element d i j = 〈ψi|d |ψ j〉.
We assume that both pulses are temporally confined, implying that they

have a non-zero bandwidth in the frequency domain. We further assume
that all interactions with the pulses start after time t0 and end before t, and
that the pump interaction ends before the start of the probe interaction.
The two integrals then become independent, and their lower and upper
limits can be expanded to negative and positive infinity, respectively. We
also separate out the effect of the pump-probe time delay τ by describing
the probe pulse in terms of the temporally shifted electric field Eτ2 (t) =
E2(t +τ) [51], giving

c f i(t) = −ei(ωi t0−ω f t)
∑

n

(d f n · ε̂2)(dni · ε̂1)

×
∫ ∞

−∞
dt1 Eτ2 (t1 −τ)eiω f n t1

∫ ∞

−∞
dt2 E1(t2)e

iωni t2

(6.19)

By substituting t1 = t ′1 +τ, we obtain

c f i(t) = −eiωi t0−iω f (t−τ)
∑

n

(d f n · ε̂2)(dni · ε̂1)e
−iωnτ

×
∫ ∞

−∞
dt1 Eτ2 (t

′
1)e

iω f n t ′1

∫ ∞

−∞
dt2 E1(t2)e

iωni t2 .

(6.20)
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In comparison with the following convention for the Fourier transform,

E(t) =
1

p
2π

∫ ∞

−∞
dω eE(ω)e−iωt , (6.21)

eE(ω) =
1

p
2π

∫ ∞

−∞
dt E(t)eiωt , (6.22)

we recognize that Equation (6.20) involves the product of two Fourier
transform integrals, and can be written as

c f i(t) = −2πeiωi t0−iω f (t−τ)
∑

n

(d f n · ε̂2)(dni · ε̂1)e
−iωnτ

eEτ2 (ω f n)eE1(ωni)

(6.23)

By defining the real numbers

ani =
p

2π(dni · ε̂1)
�

�
eE1(ωni)

�

�, (6.24)

b f n =
p

2π(d f n · ε̂2)
�

�
eEτ2 (ω f n)

�

�, (6.25)

Equation (6.23) can be written as

c f i(t) = −eiωi t0−iω f (t−τ)
∑

n

b f nanie
−i(ωnτ+ϕ2(ω f n)+ϕ1(ωni))

(6.26)

where the spectral phases ϕ1(ω) = arg
�

eE1(ω)
�

and ϕ2(ω) = arg
�

eEτ2 (ω)
�

.
The probability of transition from state i to state f is equal to the

squared magnitude of the transition amplitude

�

�c f i

�

�

2
=

�

∑

n

b f nanie
i(ωnτ+ϕ2(ω f n)+ϕ1(ωni)

�

×
�

∑

m

b f mamie
−i(ωmτ+ϕ2(ω f m)+ϕ1(ωmi)

�

=
∑

n

b2
f na2

ni + 2
∑

n>m

b f nani b f mami cos
�

ωnmτ+ϕ f nmi

�

(6.27)

where ϕ f nmi = ϕ2(ω f n)−ϕ2(ω f m)+ϕ1(ωni)−ϕ1(ωmi). Equivalent expres-
sions have been reported in several earlier works [52–55]. Note that the
relative contribution from the different states depends both on the charac-
teristics of the laser pulse and on the transition matrix elements.

In a four state system, the probability of transition from the ground
state i = 0 to the final state f = 3 through the two intermediate states
n= 1,2 is given by

|c3|
2 = b2

31a2
10 + b2

32a2
20 + 2b32a20 b31a10 cos(ω21τ+ϕ3210) (6.28)
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Figure 6.2: Illustration of the quantum beats described by Equa-
tion (6.28), occurring in a system with the four states |ψ0〉, |ψ1〉, |ψ2〉
and |ψ3〉 and sequential absorption of the photons γ1 and γ2. In the left
part of the illustration, it is shown how the system can be excited from
the initial state |ψ0〉 to the final state |ψ3〉 through two interfering path-
ways, where the intermediate states |ψ1〉 and |ψ2〉 have the energy dif-
ference ω21. In the right part of the figure, the absorption signal corre-
sponding to the interfering transitions to |ψ3〉 is illustrated, which has the
period 2π/ω21 and a phase shift arising from the spectral phase differ-
ence ϕ3210 = ϕ2(ω32)−ϕ2(ω31) +ϕ1(ω20)−ϕ1(ω10).

An illustration of the behavior of the four-state system described by this
equation is given in Figure 6.2. Note that the signal changes as a phase
shifted cosine function, with the frequency ω21 corresponding to the en-
ergy difference of the two intermediate states. That is, the signal will dis-
play a quantum beat as the two transition pathways interfere in a time-
dependent fashion. This is analogous to the double-slit experiment, where
the pathways through the two different slits interfere, creating a position-
dependent interference pattern.

The overlap between the pump and probe pulses was neglected in the
above model of quantum beats. For short pulse delays, this overlap can
modify the absorption signal, generating what is known as coherent arti-
facts. We observe these artifacts in simulated transient absorption spectra
in both Paper II and Paper III, where the overlap is not neglected.

Note that Equation (6.27) assumes a precise knowledge about the spec-
tral phases of the pump and probe pulses and the inter-pulse delay. This
level of control is unrealistic for many experimental setups, as state-of-the-
art free-electron lasers, amplified by self-amplified spontaneous emission
(SASE) have stochastic phases. In addition, timing jitter often makes it
hard to synchronize the pump and probe pulses [56], and it is difficult to
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lower this jitter to values shorter than the typical timescales of electronic
motion. However, approaches such as ghost imaging may be used to char-
acterize the pulses in a non-invasive way [57], and for high repetition rate
sources, the results can be sorted by pulse characteristics for comparison
with theoretical results [58].

6.4 Semiclassical Rabi model

The semiclassical Rabi model gives an explanation of how a two-level quan-
tum system can sequentially undergo stimulated absorption and emission
in a classical external field. In the following, we show a simple derivation
of the model, following Ref. [59].

We start by assuming that the external laser field is monochromatic,
having the frequency ω and the peak electric field in the polarization di-
rection E0, and write the interaction term in Equation (3.29) as

V (t) = d · E0 cos(ωt). (6.29)

We also assume that the system can be described by two eigenstates of the
field-free Hamiltonian

H0 |ψ1〉=ω1 |ψ1〉 , (6.30)

H0 |ψ2〉=ω2 |ψ2〉 , (6.31)

and that the diagonal elements of the interaction Hamiltonian are zero,

V11(t) = V22(t) = 0, (6.32)

which is valid for states with definite parity, such as for all atomic eigen-
states. Under these assumptions, the time evolution of the eigenstate coef-
ficients, given by Equation (6.10), reduces to the two equations

i
dc1(t)

dt
= V12(t)e

iω12 t c2(t), (6.33)

i
dc2(t)

dt
= V21(t)e

iω21 t c1(t). (6.34)

We now define the Rabi frequency

Ω= d12 · E0 = d21 · E0, (6.35)

where the real observable d12 = d∗
21 = d21. This gives

V12(t) = V21(t)
= Ω cos(ωt)

=
1
2
Ω
�

eiωt + e−iωt
�

.

(6.36)



Chapter 6: Select topics in semiclassical laser-molecule interaction 51

0
1

0

Pr
ob

ab
ili

ty

Time

|ψ1〉 |ψ2〉

Figure 6.3: Illustration of Rabi oscillations of a two-state system in a
monochromatic electric field, where the field is tuned in resonance with
the interstate transition. The time-dependent probability of observing the
system in state |ψ1〉 and |ψ2〉 are shown in solid blue and dashed orange
lines, respectively.

Inserting Equation (6.36) into Equation (6.33) and Equation (6.34), we
obtain

dc1(t)
dt

=
i
2
Ω
�

ei(ω−ω21)t + e−i(ω+ω21)t
�

c2(t), (6.37)

dc2(t)
dt

=
i
2
Ω
�

ei(ω+ω21)t + e−i(ω−ω21)t
�

c1(t). (6.38)

The above set of equations are in general non-integrable, but can be solved
under certain assumptions [59]. First, we assume that the laser field is in
resonance with the transition between the two states, which gives ω −
ω21 = 0, and thus e±i(ω−ω21) = 1. We invoke the rotating wave approxima-
tion (RWA), in which the rapidly oscillating terms containing the phase fac-
tor e±i(ω+ω21) are neglected. The RWA generally works very well close to res-
onance [59]. Taking the above assumptions into account, Equation (6.37)
and Equation (6.38) simplify to

dc1(t)
dt

=
i
2
Ωc2(t), (6.39)

dc2(t)
dt

=
i
2
Ωc1(t). (6.40)

Assuming that the time-dependent state starts out in |ψ1〉, which leads to
the initial conditions c1(t0) = 1 and c2(t0) = 0, these differential equations
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have the solutions

c1(t) = cos
�

Ωt
2

�

, (6.41)

c2(t) = i sin
�

Ωt
2

�

, (6.42)

and the time-dependent probabilities of observing the system in the two
states are

|c1(t)|
2 = cos2

�

Ωt
2

�

=
1+ cos(Ωt)

2
, (6.43)

|c2(t)|
2 = sin2

�

Ωt
2

�

=
1− cos(Ωt)

2
. (6.44)

We can see that the system oscillates sinusoidally between the two states
with the Rabi frequency Ω, due to the alternating absorption and emission
of radiation. The probability of observing the system in the two states is
illustrated as a function of time in Figure 6.3.



Chapter 7

Summary of papers and
conclusion

In this chapter, we summarize the five papers that are included in this
thesis.

7.1 Paper I: eT 1.0: An open source electronic
structure program with emphasis on cou-
pled cluster and multilevel methods

In the first paper of this thesis, the capabilities of version 1.0 of the elec-
tronic structure program eT are described. The program was developed in
collaboration between authors at the Norwegian University of Science and
Technology, the Technical University of Denmark and the Scuola Normale
Superiore in Italy. The program is written mainly in modern Fortran, and
the object-oriented capabilities of the language are used extensively in or-
der to make the code modular and easily extensible. It is inspired by the
Dalton program [60], which many of the time-independent methods in eT

were tested against during development.
The eT code is based on Cholesky decomposed two-electron integrals,

leading to reduced storage requirements and increased computational
efficiency. Version 1.0 includes well-performing ground state and
equation-of-motion coupled-cluster methods based on spin-adapted CCS,
CC2, CCSD and CC3, and time-dependent coupled-cluster methods based
on spin-adapted CCS and CCSD. See Chapter 5 for an introduction to
these methods. The version also includes multilevel methods, where the
orbital space is partitioned into active and inactive orbitals and the active
orbitals are treated at a higher level of theory than the inactive ones, and

53
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hybrid quantum mechanics/molecular mechanics methods.
A prerequisite for the implementation of time-dependent coupled-

cluster methods is the ability to handle complex time-dependent cluster
amplitudes and multipliers, which can be seen from Equation (5.48) and
Equation (5.49) in Chapter 5. In order to avoid manual maintenance
of both the complex code and the more efficient real code used in
time-independent methods, we developed scripts that auto-generate most
of the complex code from the real one. We also implemented several
Runge-Kutta integrators and the capability to calculate interactions with
an arbitrary number of pulses, with different linear polarizations, field
strengths, carrier frequencies, envelopes and carrier-envelope phases.
See Section 5.7 and Section 3.5 for more information about Runge-Kutta
methods and the pulse shapes, respectively.

For illustrative purposes, two different TDCCSD simulations of the exci-
tation of a water molecule by linearly polarized Gaussian pulses were per-
formed. The frequency-space dipole moment of the excited molecule was
found by Fourier transforming the time-dependent dipole moment, and
displayed peaks at the same positions as EOM-CCSD peaks calculated with
the Davidson method, which is given a brief introduction in Section 5.4.
The intensities of the peaks from the two methods differed, however, due
to the finite bandwidth of the pulse used in the TDCC simulation.

7.2 Paper II: Time-dependent coupled-cluster
theory for ultrafast transient-absorption
spectroscopy

This paper describes the spin-adapted TDCC method implemented in the
eT program in further detail, and includes a demonstration how it can
be used for simulating ultrafast transient absorption spectroscopy. More
specifically, the method was used to calculate the frequency-dependent
response of diatomic molecules to an attosecond valence-exciting pump
pulse followed by an attosecond core-exciting probe pulse. Initial simu-
lations were used to ensure the stability of the method with respect to
changing model parameters, including the numerical integrator, the basis
set and the truncation level of the TDCC method. The results were seen
to be reasonably well-behaved with respect to the changing parameters,
indicating that the TDCC approach can be used for modeling molecular
multiphoton processes that involve bound states targeted by valence- and
core-exciting pulses.

We then proceeded to calculate the frequency-resolved transient ab-



Chapter 7: Summary of papers and conclusion 55

sorption, which exhibits variations with the temporal pump-probe separa-
tion. In the x-ray frequency region, the peaks of the transient absorption
spectrum were seen to oscillate as a linear combination of a few sinusoidal
functions. This suggests that the TDCC method can model the phenomenon
of quantum beats occurring in x-ray transient absorption spectroscopy, see
Section 6.3. We also observed that the oscillations and positions of the
peaks in the spectrum can be interpreted in terms of energy differences of
the different field-free EOM-CC eigenstates involved in the laser-molecule
interactions.

7.3 Paper III: Simulating weak-field attosec-
ond processes with a Lanczos reduced basis
approach to time-dependent equation-of-
motion coupled-cluster theory

This paper describes the generation of field-free valence- and core-excited
EOM-CC states with an asymmetric band Lanczos algorithm, and the use
of these states in simulations of attosecond pump-probe spectroscopy with
the TD-EOM-CC method. Several extensions to the eT program were made
for this paper. First, the asymmetric band Lanczos algorithm in Ref. [61]
was implemented, where we modified the biorthogonalization steps in this
algorithm for improved numerical stability. See Section 5.4 for a brief intro-
duction to Lanczos methods. We furthermore implemented starting vectors
based on excited EOM-CC states, and a Rayleigh-Ritz procedure for com-
bining EOM-CC states from different calculations. The program was mod-
ified to handle the integration of the TD-EOM-CC equations in the basis of
field-free EOM-CC eigenstates, see Section 5.6. Embedded integrators with
adaptive time steps were also implemented, for increased stability and ease
of integration as described in Section 5.7.

The particular starting vectors direct the asymmetric band Lanczos
algorithm toward field-free EOM-CC states contributing to the inter-
action with pump and probe pulses in weak-field transient absorption
spectroscopy. In the basis of a few such states, we demonstrated that
TD-EOM-CC largely reproduces the TDCC results in Paper II, and the
removal of irrelevant degrees of freedom makes the approach significantly
more computationally efficient than TDCC. This suggests that the use of
TD-EOM-CC can be warranted in the weakly non-linear regime. From
additional simulations of the ethylene molecule in the paper, however,
the results also indicate that TD-EOM-CC can behave differently from
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TDCC for certain systems and pulses, but this claim was not investigated
further in this paper. We furthermore investigated the effect of the CVS
approximation, see Section 5.3. The approximation was seen to work
well for the K-edges of heavy nuclei, but for lighter nuclei we noticed the
presence of valence pseudo-continuum states with energies around the
K-edge, complicating the simulation and interpretation of the results. The
paper also includes a TD-EOM-CC simulation of the integrated transient
absorption of glycine at the oxygen K-edge. We noted that the absorption
correlates with the projection of the dipole moment in the direction from
the molecular center-of-mass to the oxygen atom, suggesting that the
probe pulse reveals the charge migration in this direction.

7.4 Paper IV: Comparing real-time coupled
cluster methods through simulation of
collective Rabi oscillations

For this paper, the eT program was extended for handling TD-EOM-CC
methods in the determinant basis, see Section 5.6, which is equivalent to
expressing TD-EOM-CC in terms of all field-free EOM-CC states.

Theoretically, we demonstrated that the TDCC method gives properties
that scale correctly with respect to system size, irrespective of the strength
of external field, and also that this is not the case for the TD-EOM-CC
method unless there is no interaction with the field. The scaling proper-
ties of the two methods were further assessed through simulations of dis-
tant atoms interacting with an electromagnetic field chosen to be resonant
with transitions of helium atoms in the simulations. This interaction gives
rise to Rabi oscillations, see Section 6.4. In exact quantum theory, the fre-
quency of Rabi oscillations should not scale with the number of identical
and non-interacting systems in resonance with the field. From TD-EOM-
CCSD simulations, however, the Rabi frequency was shown to increase as
the square root of number of subsystems in resonance with the field, but
also to not increase with the number of non-resonant subsystems. This sug-
gests that TD-EOM-CCSD does not give a qualitatively correct description
of collective Rabi oscillations, but can be used for simulating solitary Rabi
oscillations in extended systems.

We further expanded on the observation that TDCCSD fails for refer-
ence depletion made in Ref. [17] by showing that simulations also fail
when the system of multiple distant atoms approaches complete popula-
tion inversion. We observed two reasons for why this happens. First, the
cluster amplitudes blow up due to the two-center Coulomb integrals, which
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are small in magnitude, not being exactly equal to zero. Second, the left
amplitudes that do not contribute to time-dependent expectation values
for non-interacting systems also blow up. Nevertheless, the TDCC method
still exhibits the correct scaling properties up to the point of instabilities,
and we demonstrated that the simulations of multiple distant atoms can
be made to finish by eliminating the two-center Coulomb integrals and
the badly behaved left amplitudes. This modification did not affect the en-
ergy expectation value significantly, except for removing a slight blowup of
the value occurring at the point of failure. After these modifications were
made to the TDCC method, the scaling properties of the Rabi frequencies
were shown to be correct with respect to the numbers of resonant and
off-resonant atoms.

7.5 Paper V: Coupled cluster simulation of im-
pulsive stimulated x-ray Raman scattering

In this paper, the diagonal basis TD-EOM-CCSD method was used to simu-
late impulsive x-ray Raman scattering by molecules, where an attosecond
x-ray pulse transfers a fraction of the electronic population of molecules
to valence-excited states, through a Raman process going through inter-
mediate core-excited states, as described by the second-order term of the
Dyson series in Section 6.1. The Raman process was tracked by calculating
the time-dependent and final populations of the relevant field-free EOM-
CC states, and by calculating and visualizing the difference between the
electronic time-dependent and ground state densities. We demonstrated
that the relative orientation of the molecule and laser pulses has great
importance for the yield of the Raman process for symmetry reasons, see
Section 6.2. The time-dependent electronic density difference was further-
more used to demonstrate that the intermediate core excitations of the
Raman process are local to the atom with the K-edge targeted by the at-
tosecond pulse, and that the valence-excited wavepacket is created in ap-
proximately a single femtosecond. This supports the claim that attosecond
x-ray pulses can be used for initiating photochemical processes with high
temporal and spatial precision.

7.6 Summary and outlook

The TDCC and TD-EOM-CC approaches described in this thesis enabled
us to simulate electronic multiphoton processes in atoms and molecules in
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the real-time domain. The details of the approaches and simulations were
reported in a total of five papers, including explorations and comparisons
of the properties of the TDCC and TD-EOM-CC methods. In Paper II and
Paper III, we demonstrated how the TDCC and TD-EOM-CC methods can
be used for modeling attosecond transient absorption spectroscopy. Fur-
thermore, in Paper III we observed that the two methods can give similar
results for small systems in weak fields. In Paper IV, on the other hand,
we demonstrated that the scaling properties of TDCC agree with the prop-
erties of exact quantum theory, while the scaling properties of TD-EOM-
CC can be incorrect, in particular for systems with multiple subsystems
in resonance with a strong field. The TDCC method is, however, seen to
fail when certain multi-atom systems approach complete population in-
version. The TD-EOM-CC method is easier to handle: the method does not
exhibit the instabilities seen for TDCC in the simulations of Paper IV, and
we demonstrate how a reduced-basis formulation can be used to increase
the numerical efficiency of the method in Paper III. In Paper V we also show
how the time-dependent TD-EOM-CC state can be interpreted in terms of
eigenstate probabilities, while it is not clear how this can be done consis-
tently for TDCC [62]. In conclusion, the methods have their own sets of
strengths and weaknesses, and the method should be chosen with regard
to the nature of the physical process of interest.

The approaches considered in this thesis are far from giving a complete
picture of the physical processes occurring in the experiments we have at-
tempted to simulate. The nuclear degrees of freedom have been neglected.
So has the coupling of the atoms and molecules to their environment, in-
cluding the coupling to the vacuum electromagnetic field, which causes
spontaneous emission. We have assumed fixed relative orientations be-
tween the atom or molecule and the polarization of the electromagnetic
field, and also precise control over the phases and amplitudes of attosec-
ond laser pulses. This is often not realized in experiments. Furthermore,
spin and relativistic effects have been neglected, and we have assumed the
validity of the dipole approximation, which breaks down in the limit of
large systems and strong fields. The employed Gaussian basis sets are very
sparse, and must be amended or replaced before Rydberg states and ioniza-
tion can be described properly. Many of the shortcomings of the approaches
can be addressed, but remedies are often associated with an increase in
computational cost. In Paper II and Paper III we did, however, target the
lowest-energy weak-field valence- and core-excitations of moderately sized
molecules with light nuclei, shortly after excitation, which should be rea-
sonably well represented within the chosen approximations. Also, Paper IV
focuses more on the internal workings of the implemented methods, which
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makes the faithful representation of the strong laser-molecule interactions
less important. Importantly, we have demonstrated that truncated real-
time coupled-cluster methods have several properties that are consistent
with the behavior of untruncated methods, which motivates their further
use for simulating molecular quantum dynamics.
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ABSTRACT

The eT program is an open source electronic structure package with emphasis on coupled cluster and multilevel methods. It includes efficient
spin adapted implementations of ground and excited singlet states, as well as equation of motion oscillator strengths, for CCS, CC2, CCSD,
and CC3. Furthermore, eT provides unique capabilities such as multilevel Hartree–Fock and multilevel CC2, real-time propagation for CCS
and CCSD, and efficient CC3 oscillator strengths. With a coupled cluster code based on an efficient Cholesky decomposition algorithm for
the electronic repulsion integrals, eT has similar advantages as codes using density fitting, but with strict error control. Here, we present the
main features of the program and demonstrate its performance through example calculations. Because of its availability, performance, and
unique capabilities, we expect eT to become a valuable resource to the electronic structure community.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004713., s

I. INTRODUCTION

During the last five decades, a wide variety of models and
algorithms have been developed within the field of electronic struc-
ture theory and many program packages are now available to the
community.1 Programs with extensive coupled cluster functional-
ity include CFOUR,2 Dalton,3 GAMESS,4 Gaussian,5 Molcas,6 Mol-
pro,7 NWChem,8 ORCA,9 PSI4,10 QChem,11 and TURBOMOLE.12

Although these are all general purpose quantum chemistry pro-
grams, each code is particularly feature rich or efficient in specific
areas. For instance, a large variety of response properties13 have
been implemented in Dalton, CFOUR is particularly suited for gra-
dients14,15 and geometry optimization, and QChem is leading in
equation of motion16,17 (EOM) features. However, due to the long

history of many of these programs, it can be challenging to modify
and optimize the existing features or to integrate new methods and
algorithms.

In 2016, we began developing a coupled cluster code based on
Cholesky decomposed electron repulsion integrals.18,19 While start-
ing anew, we have drawn inspiration from Dalton3 and used it
extensively for testing purposes. Our goal is to create an efficient,
flexible, and easily extendable foundation upon which coupled clus-
ter methods and features—both established and new—can be devel-
oped. That code has now evolved beyond a coupled cluster code into
a freestanding electronic structure program. It is named eT after the
expression for the coupled cluster ground state wave function,20

∣Ψ⟩ = eT ∣R⟩, (1)

J. Chem. Phys. 152, 184103 (2020); doi: 10.1063/5.0004713 152, 184103-1
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and released as an open source program licensed under the GNU
General Public License 3 (GPL 3.0).

The first version of eT offers an optimized Hartree–Fock
(HF) code and a wide range of standard coupled cluster meth-
ods. It includes the most efficient published implementations of
Cholesky decomposition of the electron repulsion integrals21 and
of coupled cluster singles, doubles, and perturbative triples22,23

(CC3). Furthermore, eT features the first released implementa-
tions of multilevel HF24 (MLHF), multilevel coupled cluster sin-
gles and perturbative doubles25,26 (MLCC2), and explicitly time-
dependent coupled cluster singles (TD-CCS), and singles and dou-
bles (TD-CCSD) theory. All coupled cluster models can be used
in quantum mechanics/molecular mechanics27,28 (QM/MM) calcu-
lations or be combined with the polarizable continuum model29,30

(PCM).
eT is primarily written in modern Fortran using the Fortran

2008 standard. The current version of the code is interfaced to two
external libraries: Libint 231 for the atomic orbital integrals and
PCMSolver 1.232 for PCM embedding. In addition, eT applies the
runtest library33 for testing and a CMake module from autocmake34

to locate and configure BLAS and LAPACK.
With the introduction of the 2003 and 2008 standards, For-

tran has become an object oriented programming language. We have
exploited this to make eT modular, readable, and easy to extend.
Throughout the program, we use OpenMP35 to parallelize compu-
tationally intensive loops and BLAS and LAPACK routines wher-
ever possible. In order to preserve code quality, extensive code
review and enforcement of a consistent standard have been prior-
itized from the outset. While this requires extra effort from both
developers and maintainers, it pays dividends in code readability
and flexibility.

II. PROGRAM FEATURES
A. Coupled cluster methods

The eT program features all standard coupled cluster methods
up to perturbative triples: singles (CCS), singles with perturbative
doubles36 (CC2), singles and doubles37 (CCSD), singles and doubles
with non-iterative perturbative triples38 [CCSD(T)], and singles and
doubles with perturbative triples22 (CC3). At the CCSD(T) level of
theory, only ground state energies can be computed. For all other
methods, efficient spin adapted implementations of ground and
excited singlet states are available. Moreover, dipole and quadrupole
moments, as well as EOM oscillator strengths, can be calculated.
Equation of motion polarizabilities are available at the CCS, CC2,
and CCSD levels of theory.

A number of algorithms are implemented to solve the cou-
pled cluster equations. For linear and eigenvalue equations, we have
implemented the Davidson method.39 This algorithm is used to
solve the ground state multiplier equations, response equations,
and excited state equations. To handle nonlinear coupled cluster
equations, we have implemented algorithms that use direct inver-
sion of the iterative subspace40,41 (DIIS) to accelerate convergence.
The ground state amplitude equations can be solved using DIIS
combined with the standard1,42 quasi-Newton algorithm or exact
Newton–Raphson. We also use a DIIS-accelerated algorithm43 for

the nonlinear excited state equations in CC2 and CC3. Our imple-
mentation of DIIS incorporates the option to use the related con-
jugate residual with optimal trial vectors44,45 (CROP) method for
acceleration. For the nonperturbative coupled cluster methods, the
asymmetric Lanczos algorithm is also available.46,47

The time-dependent coupled cluster equations can be explic-
itly solved for CCS and CCSD48,49 using Euler, Runge–Kutta 4
(RK4), or Gauss–Legendre (GL2, GL4, and GL6) integrators. This
requires implementations of the amplitude and multiplier equations
with complex variables. Any number of classical electromagnetic
pulses can be specified in the length gauge, assuming that the dipole
approximation is valid. A modified version of the fast Fourier trans-
form library FFTPACK 5.150 is used to extract frequency domain
information.

B. Cholesky decomposition for the electronic
repulsion integrals

Cholesky decomposition is an efficient method to obtain a
compact factorization of the rank deficient electron repulsion inte-
gral matrix.18,19,51 All post-HF methods in eT rely on the Cholesky
vectors to construct the electron repulsion integrals. One advan-
tage of factorization is the reduced storage requirements; the size
of the Cholesky vectors scales as O(n3

AO), while the full integral
matrix scales as O(n4

AO). The Cholesky vectors are kept in memory
when possible but are otherwise stored on disk. Another advan-
tage is that they allow for an efficient construction and transforma-
tion of subsets of the integrals. The Cholesky decomposition in eT

is highly efficient, consisting of a two-step procedure that reduces
both storage requirements and computational cost compared to ear-
lier algorithms. For a description of the algorithm and performance
comparisons to Molcas,6 see Ref. 21.

C. Hartree–Fock
The restricted HF (RHF) and unrestricted HF (UHF) mod-

els are implemented in eT . The implementations are integral direct
and exploit Coloumb and exchange screening and permutation sym-
metry. We use a superposition of atomic densities52 (SAD) initial
guess constructed from spherically averaged UHF calculations on
the constituent atoms. The Hartree–Fock equations are solved using
a Roothan–Hall self-consistent field (SCF) algorithm accelerated by
either DIIS or CROP. To improve the screening and reduce the
number of integrals that must be evaluated, density differences are
used to construct the Fock matrix.

D. Multilevel and multiscale methods
In MLHF, a region of the molecular system is defined as active.

A set of active occupied orbitals are obtained through a restricted,
partial Cholesky decomposition of an initial idempotent AO den-
sity matrix.53 The active virtual orbitals are obtained by constructing
projected atomic orbitals54,55 (PAOs) centered on the active atoms.
The PAOs are orthonormalized through the canonical orthonor-
malization procedure.56 The MLHF equations are solved using a
DIIS accelerated, MO based, Roothan–Hall SCF algorithm. Only the
active MOs are optimized.57

The most expensive step of an MLHF calculation is the con-
struction of the inactive two-electron contribution to the Fock
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matrix. As the inactive orbitals are frozen, it is only necessary
to calculate this term once. The iterative cost in MLHF is domi-
nated by the construction of the active two-electron contribution
to the Fock matrix. An additional Coulomb and exchange screen-
ing, which targets accuracy of the matrix in the active MO basis,
reduces the cost. The active orbitals are localized, and consequently,
the elements of the AO Fock matrix that correspond to AOs dis-
tant from the active atoms will not significantly contribute to the
active MO Fock matrix. This is similar to the screening used in
MLHF specific Cholesky decomposition of the electron repulsion
integrals.21

In MLCC2,23,25,26,58 an active orbital space is treated at the CC2
level of theory, while the remaining inactive orbitals are treated at the
CCS level of theory. MLCC2 excitation energies are implemented in
eT . The active space is constructed using the approximated corre-
lated natural transition orbitals,59,60 Cholesky orbitals, or Cholesky
occupied orbitals and PAOs spanning the virtual space.

Frozen orbitals are implemented for all coupled cluster meth-
ods in eT . In addition to the standard frozen core (FC) approxima-
tion, reduced space coupled cluster calculations can be performed
using semi-localized orbitals. This type of calculation is suited to
describe localized properties. In reduced space calculations, the
occupied space is constructed from Cholesky orbitals, and PAOs are
used to generate the virtual space.

Two QM/MM approaches are available in eT : electro-
static QM/MM embedding61 and the polarizable QM/Fluctuating
Charge62 (QM/FQ) model. In the former, the QM density interacts
with a set of fixed charges placed in the MM part of the system.61

In QM/FQ, the QM and MM parts mutually polarize. Each atom in
the MM part has a charge that varies as a response to differences
in atomic electronegativities and the QM potential.62 These charges
enter the QM Hamiltonian through a term that is nonlinear in the
QM density.63

PCM embedding can be used in eT for an implicit description of
the external environment. A solute is described at the QM level and
is placed in a molecule shaped cavity. The environment is described
in terms of an infinite, homogeneous, continuum dielectric that
mutually polarizes with the QM part, as in QM/FQ.64

In the QM/PCM and QM/FQ implementations, additional
terms are only added to the Fock matrix. Additional terms at the
coupled cluster level can also be considered.65–69

E. Spectroscopic properties and response methods
Coupled cluster is one of the most accurate methods for mod-

eling spectroscopic properties, and both ultraviolet-visible (UV/vis)
and x-ray absorption spectra can be modeled in eT . Core excitations
are obtained through the core valence separation (CVS) approxi-
mation.70 CVS is implemented as a projection71,72 for CCS, CC2,
MLCC2, and CCSD. For CC3, amplitudes and excitation vector ele-
ments that do not contribute are not calculated. This reduces the
scaling of the iterative computational cost for excited states from
O(n7

MO) to O(n6
MO).

Intensities are obtained from EOM oscillator strengths,16,17

which are available for CCS, CC2, CCSD, and CC3. In addition,
linear response48 (LR) oscillator strengths can be calculated at the
CCS level of theory. The asymmetric Lanczos algorithm46,47 can be
used to directly obtain both energies and EOM oscillator strengths

for CCS, CC2, and CCSD. It can also be combined with the CVS
approximation.

Real-time propagation offers a nonperturbative approach to
model absorption spectra. Following an initial pulse that excites
the system, the dipole moment from the subsequent time evolution
can be Fourier transformed to extract the excitation energies and
intensities.

Valence ionization potentials are implemented for CCS, CC2,
and CCSD. A bath orbital that does not interact with the system is
added to the calculation. Excitation vector components not involv-
ing this orbital are projected out in an approach similar to the
projection in CVS.71,72

III. ILLUSTRATIVE APPLICATIONS AND
PERFORMANCE TESTS

In this section, we will demonstrate some of the capabilities of
eT with example calculations. Energy thresholds refer to the change
in energy from the previous iteration. The maximum norm of the
gradient vector is used in Hartree–Fock calculations. For coupled
cluster calculations in eT and Dalton, residual thresholds refer to the
L2 norm of the residual vectors. Finally, the Cholesky decomposi-
tion threshold refers to the largest absolute error on the diagonal
of the electron repulsion integral matrix. This threshold gives an
upper bound to the error of all matrix elements. Coupled cluster
calculations were performed with either Cholesky vectors or elec-
tron repulsion integrals in memory. All geometries are available
from Ref. 73.

A. Coupled cluster methods
The CC2 method is known to yield excitation energies with

errors of about 0.1–0.4 eV for valence states with single excitation
character.74–76 The iterative cost of CC2 scales as O(n5

MO), and it may
be implemented with an O(n2

MO) memory requirement. In Table I,
we report the lowest FC-CC2/aug-cc-pVDZ excitation energy of the
antibiotic rifampicin77 (chemical formula C43H58N4O12, see Fig. 1).
The calculated excitation energy is 2.58 eV, which is consistent with
the orange color of the compound. The ground state was converged
to a residual threshold of 10−6, and the excited state was converged
to residual and energy thresholds of 10−3 and 10−6, respectively. We
used a Cholesky decomposition threshold of 10−2, which is suffi-
cient to ensure accuracy of excitation energies in CC2 and CCSD
(see Table IV). The calculation was performed on two Intel Xeon
Gold 6138 processors using 40 threads and 360 GB shared mem-
ory. The average iteration time for the ground state equations was
73 min, and the average iteration time for the excited state equations
was 9 h.

TABLE I. The lowest FC-CC2/aug-cc-pVDZ excitation energy (ω) of rifampicin. nfrozen
is the number of frozen core orbitals.

nAO nMO nfrozen ω

1879 1865 59 2.579 eV
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FIG. 1. Rifampicin.

At the CCSD level of theory, we report calculations for the
amino acid tryptophan78 (chemical formula C11H12N2O2) and exci-
tation energies for the psychoactive agent lysergic acid diethylamide
(LSD)79 (chemical formula C20H25N3O). Tryptophan and LSD are
depicted in Fig. 2.

For tryptophan, we have determined the four lowest exci-
tation energies and the corresponding oscillator strengths at the
CCSD/aug-cc-pVDZ level of theory (nMO = 453). Energies and oscil-
lator strengths are reported in Table II. Timings for eT 1.0, Dalton
2018, and QChem 5.0 are given in Table III. Thresholds in eT were
set to target an energy convergence of 10−6: the residuals were con-
verged to 10−6 for the ground state and 10−3 for the excited states
(assuming quadratic errors for the energy). In QChem, thresholds
for ground and excited states were set to 10−6. We report the total
wall time for each calculation. The excited state timing includes
the time to converge ground state and excited state equations. The
oscillator strength timing also includes the time to solve the multi-
plier and the left excited state equations. eT and QChem are equally
efficient for the CCSD ground state, while Dalton is considerably
slower. For the CCSD excited state calculation, QChem reduced the
wall time by a factor of 1.6 compared to eT and a factor of 5.6 com-
pared to Dalton. For the oscillator strength calculations, QChem
reduced the wall time by a factor of 2.7 compared to eT . The supe-
rior performance of QChem for oscillator strengths is primarily due
to an efficient starting guess for the left excitation vectors, which are
restarted from the right vectors: only 27 transformations are needed
to converge all four roots. In eT 1.0, orbital differences are used as
the starting guess for both left and right states, which explains the
poorer performance for oscillator strengths.

TABLE II. CCSD/aug-cc-pVDZ excitation energies (ω) and oscillator strengths (fω)
for tryptophan.

ω (eV) f ω

S1 4.806 0.032
S2 4.821 0.001
S3 4.972 0.088
S4 5.364 0.001

TABLE III. Total calculation times for CCSD/aug-cc-pVDZ ground state (tgs), excita-
tion energy (tω), and oscillator strength (tfω ) calculations for tryptophan. ngs

calls is the
number of calculations of the residual vector for the ground state. nR

calls and nL
calls are

the number of calls to the Jacobian and Jacobian transpose transformations, respec-
tively. The calculations were performed on an Intel Xeon E5-2699 v4 using 44 threads
and 1.5 TB shared memory.

tgs (min) tω (h) tfω (h) ngs
calls nR

calls nL
calls

Dalton 2018 1409 84 . . . 18 88 . . .

eT 1.0 201 24 53 16 79 81
QChem 5.0 196 15 20 18 90 27

TABLE IV. The FC-CCSD/aug-cc-pVDZ correlation energy (Ecorr) and lowest exci-
tation energy (ω) of LSD. A set of decomposition thresholds (τ) for the Cholesky
decomposition of the electron repulsion integral matrix were used. Both the ground
and excited state equations are converged to within a residual threshold of 10−6.
Deviations in the correlation and excitation energies (ΔEcorr and Δω) are relative to
τ = 10−8.

τ Ecorr (Eh) ΔEcorr (Eh) ω (Eh) Δω (Eh)

10–2 −3.649 673 3 2.3×10−2 0.165 734 3 7.1×10−4

10–3 −3.672 021 8 2.3×10−4 0.165 037 0 7.7×10−6

10–4 −3.672 342 1 −9.2×10−5 0.165 027 9 −1.4×10−6

10–6 −3.672 254 2 −3.6×10−6 0.165 029 4 1.1×10−7

10–8 −3.672 250 6 . . . 0.165 029 3 . . .

We have performed FC-CCSD/aug-cc-pVDZ calculations on
LSD (nMO = 777, nfrozen = 24). To demonstrate the effect of inte-
gral approximation through Cholesky decomposition, we consider
a range of decomposition thresholds. The correlation energy and
the lowest excitation energy are given in Table IV. Both ground

FIG. 2. Tryptophan (left) and LSD (right).
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and excited state residual thresholds are 10−6. With a decom-
position threshold of 10−2, the error in the excitation energy
(Δω) is less than 10−3Eh, well within the expected accuracy of
FC-CCSD.74–76

The CC3 model can be used to obtain highly accurate excitation
energies. However, an iterative cost that scales as O(n4

vn3
o) severely

limits system size. To the best of our knowledge, eT 1.0 includes the
fastest available implementation of CC3. A ground and excited state
calculation on glycine (chemical formula C2H5NO2) using the aug-
cc-pVDZ basis set took 33 min with eT 1.0. Comparable numbers
for the new23 and old80 CC3 implementations in Dalton 20183 were
73 min and 1279 min, respectively.

We have calculated valence and core excitation energies and
EOM oscillator strengths for the nucleobase uracil (chemical for-
mula C4H4N2O2, see Fig. 3). The geometry was optimized at the
CCSD(T)/aug-cc-pVDZ level using CFOUR.2 One valence excita-
tion energy was calculated at the FC-CCSD/aug-cc-pVTZ and FC-
CC3/aug-cc-pVTZ levels of theory (nMO = 452). Two core excited
states were calculated for each of the oxygen atoms (O1 and O2,
see Fig. 3) at the CCSD and CC3 levels. The aug-cc-pCVTZ basis
was used on the oxygen being excited and aug-cc-pVDZ on the
remaining atoms (nMO = 256). The results are given in Table V. The
total timings for the uracil calculations are presented in Table VI. In
Table VII, we present the averaged timings from the CVS calcula-
tions. They clearly demonstrate the reduced computational cost of
the CVS implementation for CC3. The ground state calculation was
about four times more expensive per iteration than the right excited
state. Without the CVS approximation, the computational cost of
the excited states scales as 4n4

vn3
o per iteration, while the ground state

scales as 2n4
vn3

o. Using CVS, the excited state scaling is reduced to
4n4

vn2
o.
In Table VIII, we compare the timings for solving the ground

and right excited state equations of glycine with aug-cc-pVDZ for
different number of threads. All calculations were run on similar
nodes, and all 40 cores on each node were reserved for the jobs to

FIG. 3. Uracil with labels on the oxygens.

TABLE V. CC3 valence and core (oxygen edge) excitation energies (ω) and EOM
oscillator strengths (fω) for uracil. Valence excitations were calculated with the aug-
cc-pVTZ basis on all atoms and the frozen core approximation. Core excitations were
calculated using the CVS approximation with the aug-cc-pCVTZ basis on the oxygen
atom being excited and the aug-cc-pVDZ basis on the remaining atoms.

CCSD CC3

ω (eV) f ω ω (eV) f ω

Valence 5.08 2.24×10−8 4.81 2.23×10−6

Core O1 536.04 3.35×10−2 533.64 1.95×10−2

539.60 3.23×10−4 535.66 2.24×10−4

Core O2 536.98 3.13×10−2 534.64 1.32×10−2

539.44 1.47×10−4 535.75 1.34×10−4

TABLE VI. Total wall times for CC3 on uracil. The valence calculation was performed
on a node with two Intel Xeon Gold 6138 processors using 40 threads and 320 GB
shared memory. The CVS calculations were performed on a node with two Intel Xeon
Gold 6138 processors using 40 threads and 150 GB shared memory. no and nv are
the number of occupied and virtual orbitals, respectively.

Calculation Basis set t (h) no nv

Valence excitation aug-cc-pVTZ 147 21 431
CVS O1 aug-cc-pV(CT)Z 36 29 227
CVS O2 aug-cc-pV(CT)Z 38 29 227

TABLE VII. Average wall time per function call for both CC3 core excitation
calculations on uracil. ncalls is the total number of routine calls in the two calculations.

Contributions t (min) ncalls

Ground state amplitudes 14 28
Ground state multipliers 23 30
Right excited states 4 195
Left excited states 7 244

minimize variation. Increasing the number of threads results in sig-
nificant reductions in time, even for a relatively small system such as
glycine with 20 occupied and 140 virtual orbitals. Intermediates are
currently stored on disk, resulting in overhead that can be reduced
by placing them in memory when possible. In addition to more
adaptive memory usage, we are working on improving the coupled
cluster algorithms for better parallelization.

B. Cholesky decomposition
We have determined the Cholesky basis for the transmem-

brane ion channel gramicidin A (chemical formula C198H276N40O34,
see Fig. 4). The geometry is taken from the supplementary mate-
rial of Ref. 81. Decomposition times are given in Table IX
for the cc-pVDZ and aug-cc-pVDZ basis sets and a range of
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TABLE VIII. Time to solve the ground and right excited state equations of glycine for CC3 and CCSD with different numbers
of threads in seconds using a development version of eT 1.1. Factor is the improvement compared to the row above. With
perfect parallelization, the factors would be 5, 2, 2, and 2. The calculations were performed on nodes with two Intel Xeon Gold
6138 processors and 150 GB shared memory.

CC3 GS CC3 ES CCSD GS CCSD ES

Threads Time (s) Factor Time (s) Factor Time (s) Factor Time (s) Factor

1 6048 . . . 15 617 . . . 639 . . . 654 . . .
5 1681 3.60 4 418 3.53 150 4.27 238 2.75
10 923 1.82 2 308 1.91 76 1.96 126 1.89
20 675 1.37 1 482 1.56 41 1.88 72 1.76
40 532 1.27 1 252 1.18 30 1.34 53 1.34

decomposition thresholds. These are compared to the time of one
HF iteration. Except when using cc-pVDZ with the tightest thresh-
old, the decomposition time is small or negligible compared to one
Fock matrix construction.

FIG. 4. Gramicidin A. The active MLHF/cc-pVDZ density is shown.

TABLE IX. Cholesky decomposition wall times (t) for gramicidin. τ is the decomposi-
tion threshold, and nJ is the number of Cholesky vectors. For reference, we include
the time (tHF

it ) for one full Hartree–Fock iteration. All calculations were performed on
an Intel Xeon E5-2699 v4 using 44 threads and 1.5 TB shared memory.

Basis nAO τ nJ t (min) tHF
it (min)

cc-pVDZ 5188

10–2 11 574 3

3510–3 16 368 6
10–4 24 652 12
10–8 75 446 125

aug-cc-pVDZ 8740

10–2 12 813 8

119110–3 18 587 27
10–4 29 818 61
10–8 90 656 645

C. Hartree–Fock
Systems with several hundred atoms are easily modeled in eT

using Hartree–Fock. In Table X, we present the wall times for cal-
culations on gramicidin A (see Fig. 4) and an amylose chain with 16
glucose units (chemical formula C96H162O81, see Fig. 5). The amy-
lose geometry is taken from Ref. 24. We compare the results and
timings from eT 1.0 and QChem 5.0.11 This comparison is compli-
cated because the accuracy depends on several thresholds apart from
the gradient and energy thresholds, e.g., screening thresholds and
integral accuracy. Therefore, we list the energies and absolute energy
differences along with the timings in Table X. QChem 5.0 outper-
forms eT by about a factor of 2. The energies converge to slightly
different results in the two programs. In the case of amylose, we
find a 2 × 10−7 Eh energy difference using the tightest thresholds
(τSCF = 10−10). Since QChem is a closed source program, we do not
know the reason for the deviation. However, we are able to repro-
duce the eT results for amylose to all digits using tight thresholds in
LSDalton 2018.3

D. Multilevel and multiscale methods
To demonstrate the efficacy of multilevel methods for excita-

tion energies, we consider a system of sulfur dioxide with 21 water
molecules (see Fig. 6). In Table XI, we present different flavors of
multilevel calculations to approximate the two lowest FC-CC2 exci-
tation energies for this system. Three sets of active atoms are defined.
The first set contains sulfur dioxide and nine water molecules;
these atoms determine the active orbitals of the MLHF calculation.
The second set contains sulfur dioxide and five water molecules;
these atoms determine the reduced space coupled cluster calcula-
tions. The third set contains only sulfur dioxide and determines the
CC2 active space in the MLCC2 calculations. The reduced space
FC-CC2 calculations are denoted FC-CC2-in-HF and FC-CC2-in-
MLHF and similarly for the reduced space FC-MLCC2 calcula-
tions. The orbital spaces are partitioned using the Cholesky occupied
orbitals and PAOs for the virtual orbitals. In all calculations, the
deviation with respect to full FC-CC2 is within the expected error
of CC2.75,76

In order to assess the performance of the MLHF implementa-
tion, we compare full HF and MLHF for gramicidin A and amylose.
The active electron densities from the MLHF calculations are shown
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TABLE X. Hartree–Fock/cc-pVDZ calculations on amylose and gramicidin. The total wall time is denoted by t, and τSCF is the Hartree–Fock convergence threshold. We present
timings for eT and QChem along with the computed Hartree–Fock energies (E) and absolute energy differences (|ΔE|) with respect to the calculation with the tightest threshold.
Calculations were performed on two Intel Xeon E5-2699 v4 processors using 44 threads and 1.5 TB shared memory.

eT QChem

τSCF E (Eh) |ΔE| (Eh) t (min) τSCF E (Eh) |ΔE| (Eh) t (min)

Amylose

10–3 −9792.085 129 90 4 × 10−5 21 10–5 −9 792.085 350 39 2 × 10−4 9
10–4 −9792.085 178 33 5 × 10−6 31 10–6 −9 792.085 180 84 7 × 10−6 14
10–5 −9792.085 174 42 7 × 10−7 42 10–7 −9 792.085 171 19 2 × 10−6 19
10–6 −9792.085 173 77 1 × 10−8 60 10–8 −9 792.085 173 23 4 × 10−7 26
10–7 −9792.085 173 76 <1 × 10−8 78 10–9 −9 792.085 173 61 3 × 10−8 33
10–10 −9792.085 173 76 . . . 153 10–10 −9 792.085 173 58 . . . 46

Gramicidin
10–4 −12 383.458 832 54 4 × 10−6 130 10–6 −12 383.458 825 13 1 × 10−5 50
10–5 −12 383.458 836 34 7 × 10−8 198 10–7 −12 383.458 827 10 1 × 10−5 77
10–6 −12 383.458 836 27 . . . 280 10–8 −12 383.458 836 77 . . . 111

FIG. 5. Amylose chain of 16 glucose units. The active
MLHF/cc-pVDZ density is shown.

FIG. 6. SO2 and water. (Left) SO2 and 21
water molecules. (Middle) SO2 and nine
water molecules; these are the HF active
atoms in the MLHF calculations. (Right)
SO2 and five water molecules; these are
the CC active atoms. In the MLCC2 cal-
culations, only SO2 is treated at the CC2
level of theory.

TABLE XI. The two lowest excitation energies (ω1 and ω2) of SO2 with 21 water molecules, calculated with full and
reduced space FC-CC2 and FC-MLCC2 using HF and MLHF reference wave functions. The deviation from full FC-CC2 (Δωi
= ωi − ωFC-CC2

i ) is given. We also list the number of occupied (no) and virtual (nv) orbitals treated at the different levels of
theory. There are a total of 121 occupied orbitals and 813 virtual orbitals in the system.

HF CCS CC2 ω1 Δω1 ω2 Δω1

Calculation no nv no nv no nv (eV) (eV) (eV) (eV)

FC-CC2 121 813 . . . . . . 93 813 3.11 . . . 3.39 . . .
FC-CC2-in-HF 121 813 . . . . . . 40 266 3.14 0.03 3.43 0.04
FC-CC2-in-MLHF 75 426 . . . . . . 40 266 3.16 0.05 3.44 0.05
FC-MLCC2 121 813 93 813 14 67 3.18 0.07 3.45 0.06
FC-MLCC2-in-HF 121 813 40 266 14 66 3.18 0.07 3.45 0.06
FC-MLCC2-in-MLHF 75 426 40 266 15 66 3.20 0.09 3.47 0.08
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TABLE XII. Multilevel Hartree–Fock wall times for amylose and gramicidin. tit is the
wall time to construct the Fock matrix. For the calculations with (aug)-cc-pVDZ, aug-
cc-pVDZ is used on the active atoms and cc-pVDZ for the rest. The total number
of AOs and the active MOs is labeled nAO and nactive

MO , respectively. Thresholds for
Coulomb and exchange are set to 10−12 and 10−10, respectively, and the integral
cutoff is set to 10−12. Calculations were performed on two Intel Xeon E5-2699 v4
processors using 44 threads and 1.5 TB shared memory.

HF MLHF

Basis nAO tit (min) nactive
MO tit (min)

Amylose cc-pVDZ 3288 8 335 1
(aug)-cc-pVDZ 3480 11 552 4

Gramicidin cc-pVDZ 5188 35 546 11
(aug)-cc-pVDZ 5506 69 942 50

in Figs. 4 and 5. The plots were generated using UCSF Chimera.82

Cholesky orbitals were used to partition the occupied space, and
PAOs were used for the virtual space. We present the timings in
Table XII. For amylose, the iteration times are reduced significantly
with MLHF: by a factor of 8 when cc-pVDZ is used on all atoms

and a factor of 3 when aug-cc-pVDZ is used on the active atoms.
In contrast, only a factor of 3 was reported by Sæther et al.24 in
the cc-pVDZ case. The iteration time is also reduced by a factor of
8 for amylose/cc-pVDZ (titeration = 1 m, nactive

MO = 318) when using
Cholesky virtuals (as in Ref. 24) instead of PAOs. The savings for
amylose reflect the small active region as well as the linear struc-
ture of the chain. Savings are less significant for the gramicidin
system, where the MLHF iteration time is a third of the HF itera-
tion time for cc-pVDZ, but only about two thirds when the active
atoms are described using aug-cc-pVDZ. The smaller savings reflect
the relatively large active region and the more compact shape of the
gramicidin system.

For systems in solution, electronic spectra can be calculated
using QM/MM or QM/PCM. Paranitroaniline (PNA) has an exper-
imental vacuum-to-water solvatochromism of about 1 eV.87 For
QM/PCM, we use two different atomic radii, UFF85 (QM/PCMc)
and Bondi86 (QM/PCMd), and the dielectric permittivity of water
was set to ε = 78.39. For QM/MM, 64 snapshots were extracted
from a classical molecular dynamics simulation88 [see Fig. 7(a) for
an example structure]. The UV/vis spectra were then computed by
treating PNA at the CC2/aug-cc-pVDZ level and modeling the water
using an FQ force field. Here, we present results using two differ-
ent FQ parameterizations: QM/FQa from Ref. 83 and QM/FQb from

FIG. 7. (a) Schematic representation of a random snap-
shot of PNA in aqueous solution. (b) and (c) UV/vis spectra
of PNA calculated at the CC2/aug-cc-pVDZ level of the-
ory with an aqueous solution described at the PCM or FQ
level of theory. (b) QM/FQ raw data (sticks) together with
their Gaussian convolution (FWHM = 0.3 eV). (c) QM/PCM
(top) and QM/FQ (bottom) spectra in aqueous solution. A
gas phase CC2/aug-cc-pVDZ reference spectrum is also
reported (black). For QM/FQa, the FQ parameterization is
from Ref. 83, and for QM/FQb, the parameterization is from
Ref. 84. In QM/FQc, the PCM cavity is constructed using
the UFF radii,85 and in QM/FQd, it is constructed using the
Bondi radii.86
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TABLE XIII. The first vertical excitation energy of PNA in vacuum (ωv) and in aque-
ous solution (ωs), as well as water-to-vacuum solvatochromatic shifts (Δω). PNA is
treated at the CC2/aug-cc-pVDZ level of theory, and the solution is described with
PCM or FQ. 68% confidence intervals for excitation energies are also reported for
QM/FQ, calculated as σ/

√

N, where σ is the standard deviation and N is the number
of the snapshots used to obtain the average property. Experimental data are taken
from Ref. 87.

ωv (eV) ωs (eV) Δω (eV)

CC2 4.38 . . . . . .
CC2/FQa . . . 3.88±0.01 0.50±0.01
CC2/FQb . . . 3.38±0.01 1.00±0.01
CC2/PCMc . . . 3.86 0.52
CC2/PCMd . . . 3.76 0.62
Expt.e 4.25 3.26 0.99

aFQ parameterization taken from Ref. 83.
bFQ parameterization taken from Ref. 84.
cPCM cavity constructed by exploiting UFF radii.85

dPCM cavity constructed by exploiting the Bondi radii.86

eReference 87.

Ref. 84 (see the supplementary material for additional computa-
tional details).

The spectra calculated using QM/FQ are presented in Fig. 7(b).
The results for individual snapshots are presented as sticks together
with their Gaussian convolution. As can be seen from Fig. 7,
QM/FQb results in a greater spread in the excitation energies. This

is probably due to the larger molecular dipole moments of the water
molecules in this parameterization.88,89

In Fig. 7(c), the convoluted spectra calculated using QM/PCMc

and QM/PCMd (top), and QM/FQa and QM/FQb (bottom), are pre-
sented with their vacuum counterparts. The excitation energies are
also given in Table XIII together with the experimental data from
Ref. 87. For QM/FQ, we also report 68% confidence intervals for
the calculated excitation energies. QM/FQb reproduces the experi-
mental solvatochromism, while the other approaches give errors of
40%–50%.

E. Modeling spectroscopies
The spectroscopic properties can also be modeled with the

Lanczos method or with real-time propagation of the coupled
cluster wave function. In Fig. 8, we show CCSD/aug-cc-pCVDZ
UV/vis absorption spectra of H2O,90 calculated using the Davidson
(top) and asymmetric Lanczos (bottom) algorithms. Note that we
have artificially extended the spectra beyond the ionization poten-
tial (12.3 eV IP-CCSD/aug-cc-pCVDZ) to illustrate convergence
behavior. With the Lanczos algorithm, the low energy part of the
spectrum converges with a smaller reduced space than the high
energy part.47

We have also generated oxygen edge x-ray absorption spectra
using the Davidson and Lanczos algorithms with CVS projection
(see Fig. 9. We see the same overall behavior as in Fig. 8.

Absorption spectra can also be obtained from real-time
propagation of the coupled cluster wave function (see Fig. 10
for UV/vis and oxygen edge x-ray absorption spectra; see the

FIG. 8. Water CCSD/aug-cc-pCVDZ
UV/vis absorption spectrum. Lorentzian
broadening (0.02 Eh FWHM) has been
applied to the stick spectra. The top plot
shows the spectrum obtained using the
Davidson. The spectrum in the bottom
plot is from Lanczos calculations with
chain lengths 100 (red), 200 (magenta),
and 500 (blue).
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FIG. 9. Water CCSD/CVS/aug-cc-
pCVDZ x-ray absorption spectrum.
Lorentzian broadening (0.02 Eh FWHM)
has been applied to the stick spectra.
The top plot shows the spectrum
obtained using the Davidson. The
spectrum in the bottom plot is from
Lanczos calculations with chain lengths
50 (red), 100 (magenta), and 500 (blue).

FIG. 10. Water UV and x-ray CCSD
absorption spectra obtained using David-
son (CVS/aug-cc-pCVDZ for x ray and
aug-cc-pVDZ for UV) and real-time prop-
agation (aug-cc-pCVDZ for x ray and
aug-cc-pVDZ for UV). The top and bot-
tom plots show the simulated UV and
x-ray spectra, respectively. The David-
son spectra were produced by apply-
ing Lorentzian broadening to the stick
spectra (0.0025 Eh FWHM). Intensities
from the time-dependent simulation have
been scaled so that the intensity of the
first peak matches the EOM oscillator
strength.

supplementary material for computational details). The first peak
in both plots has been scaled to match the intensity obtained
using Davidson. The position of the peaks are the same with both
approaches, but the intensities differ because we specified pulses
with frequency distributions centered on the first excitation energy.

IV. CONCLUDING REMARKS

eT 1.0 is an optimized open source electronic structure pro-
gram. Several features are worth emphasizing. To the best of our
knowledge, our CC3 implementation is the fastest for calculating
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ground and excited state energies and EOM oscillator strengths.
The low memory CC2 code has memory and disk requirements of
order O(n2

MO) and O(n3
MO), respectively, allowing us to treat sys-

tems with thousands of basis functions. At the core of our program
is the Cholesky decomposition of the electron repulsion integral
matrix; our implementation is faster and less storage intensive than
that of any other program. Exciting new developments are also part
of eT . It features the only spin adapted closed shell implementa-
tion of time-dependent coupled cluster theory. Furthermore, the
MLHF and MLCC2 methods extend the treatable system size with-
out sacrificing accuracy for intensive properties such as excitation
energies.

The eT source code is written in modern object oriented For-
tran, making it easy to expand and contribute to the program. It
is freely available on GitLab,91 and the manual can be found at
www.etprogram.org. We will continue to expand the capabilities of
eT , focusing on molecular properties and multilevel methods. We
believe that the program will be useful for the quantum chemistry
community, both as a development platform and for production
calculations.

SUPPLEMENTARY MATERIAL

See the supplementary material for details regarding QM/MM
calculations as well as specifications for the time-dependent CCSD
propagation calculations.
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We present a spin-adapted time-dependent coupled-cluster singles and doubles model for the molecular
response to a sequence of ultrashort laser pulses. The implementation is used to calculate the electronic response
to a valence-exciting pump pulse, and a subsequent core-exciting probe pulse. We assess the accuracy of the
integration procedures used in solving the dynamic coupled-cluster equations, in order to find a compromise
between computational cost and accuracy. The transient absorption spectrum of lithium fluoride is calculated for
various delays of the probe pulse with respect to the pump pulse. We observe that the transient probe absorption
oscillates with the pump-probe delay, an effect that is attributed to the interference of states in the pump-induced
superposition.
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I. INTRODUCTION

Recent advances in the field of ultrafast pulse shaping have
enabled the generation of broadband few- to subfemtosecond
laser pulses in the near-infrared to vacuum ultraviolet spectral
ranges [1–3]. These ultrashort pulses open the possibility to
study valence electron dynamics of molecules, on time scales
shorter than times characteristic for nuclear dynamics. Also,
the generation of intense isolated soft-x-ray free-electron laser
pulses with subfemtosecond temporal widths has recently
been achieved [4]. This paves the way for attosecond-resolved
core-level spectroscopy at high intensities and repetition rates.

Core excitations are typically local to specific atoms,
and are sensitive to their electronic environment [5]. The
associated attosecond-resolved transient absorption can thus
be used to observe superpositions of valence-excited states
from the point of view of a specific atomic site, provided that
the superposition is of a certain degree of coherence [6]. In
the short-pulse limit, the energy-integrated absorption of a
core-exciting pulse is indicative of the electronic hole density
in the valence region around the nucleus of the specific
atom [7,8]. For subfemtosecond pulses outside this limit,
the relationship between the pump-induced charge migration
and the resultant transient absorption of the probe pulse is
more complex. Thus more complete theoretical models are
necessary for guiding the pump-probe experiments and for
interpreting ensuing results.

Provided that the transient absorption of a probe pulse
can be modeled and understood, the valence-level pump and
subsequent core-level probe by ultrafast pulses can then be
used to investigate the valence electron response of molecules
[7,8]. A refined conceptual understanding of this response
will shed light on processes occurring in nature, such as
photosynthesis and eyesight, and be used for the advance-

*These authors contributed equally to this work.
†henrik.koch@sns.it

ment of technological applications, such as photovoltaics and
photocatalysis.

Nonperturbative modeling of electron dynamics for ultra-
fast laser-matter interactions offers certain advantages: the
models are applicable for a large range of field intensities [9],
and the interaction between a molecule and ultrashort pulses
resembles experimental setups in a more natural way.

Electron correlation is often important for a qualitative
and quantitative description of many-electron systems. The
full configuration interaction (FCI) model is computationally
impracticable in most situations [10], and thus we advocate
the use of coupled-cluster theory in this paper. Other meth-
ods have been used to describe electron dynamics, such as
real-time density-functional theory (DFT) [11,12]. However,
DFT methods are limited by the accuracy of the exchange-
correlation functionals, and thus could lead to misinterpre-
tations [13]. Several implementations of real-time coupled-
cluster models have been developed in the past, includ-
ing approaches based on the time-dependent coupled-cluster
(TDCC) equations derived by Koch and Jørgensen [14–17],
and approaches based on equation of motion (EOM) theory
[9,18–24]. These models offer an accurate description of
dynamic correlation, and static correlation in excited states.
Needless to say, the coupled-cluster models are also inherently
size extensive and intensive [25]. This while keeping the
polynomial scaling of the computational costs with respect to
system size.

A spin-unrestricted time-dependent coupled-cluster singles
and doubles (TDCCSD) model was recently implemented by
Pedersen and Kvaal, and used to calculate the absorption
spectra of helium and beryllium irradiated by ultrashort pulses
at various intensities [26]. Even above the perturbative limit,
the TDCCSD spectra show promising correspondence with
spectra calculated with time-dependent FCI. The authors also
noted that the Lagrangian time-dependent equations have a
Hamiltonian structure, well suited for the use of symplectic
integrators.

In this work, we will continue the discussion of TDCC
models, by presenting a spin-adapted TDCC model of
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ultrafast transient absorption spectroscopy. Applied to closed-
shell molecules interacting with laser pulses within the dipole
approximation, this model offers equivalent results as its spin-
unrestricted counterparts, with lower computational costs.
The reduced cost implies that larger molecules can be studied
within this model, making progress towards the accurate
modeling of correlated dynamics in interesting photoactive
molecules.

This paper is organized as follows. In Sec. II we present
the theory underlying the TDCC model and discuss a gener-
alization of the Ehrenfest theorem in this framework. We also
describe how absorption spectra are calculated. In Sec. III, we
optimize the different parameters used in TDCC calculations,
and illustrate this for the LiH molecule. The model is applied
to transient absorption of the LiF molecule. Final remarks are
given in Sec. IV.

II. THEORY

A. Spin-adapted coupled-cluster method

An accurate account of the electron correlation in
molecules is offered by coupled-cluster models, in which the
time-independent wave function can be written as

|CC〉 = eT |HF〉, (1)

where |HF〉 is the closed-shell Hartree-Fock reference de-
terminant and T is the spin-adapted cluster operator. The
cluster operator is defined as a linear combination of singlet
excitation operators τμ,

T =
∑
μ>0

tμτμ. (2)

The expansion coefficients tμ are referred to as the ampli-
tudes. The operator T is usually truncated at a given level
of excitation, for instance, after single excitations gives the
coupled-cluster singles (CCS) model, after double excitations
gives the coupled-cluster singles and doubles model (CCSD),
and so on.

In the Lagrangian formulation of coupled-cluster theory,
which satisfies the Hellman-Feynman theorem, the dual state
corresponding to the |CC〉 state is [27]

〈�| =
(
〈HF| +

∑
ν>0

t̄ν〈ν|
)
e−T , (3)

where the linear expansion coefficients t̄ν will be referred
to as the (Lagrange) multipliers. The level of excitations is
truncated at the same level as the excitations in the cluster
operator. We note that the |CC〉 state and its dual state 〈�| are
biorthonormal, 〈�|CC〉 = 1.

In this formulation, the expectation values of operators are
given as

〈A〉 = 〈�|A|CC〉

=
(
〈HF| +

∑
ν>0

t̄ν〈ν|
)
Ā|HF〉, (4)

where the similarity transformed operator is defined as

Ā = e−T A eT . (5)

The amplitudes and multipliers that parametrize the ground
state are determined from [28]

〈μ|H̄ |HF〉 = 0, (6)

〈�|[H, τμ]|CC〉 = 0, (7)

and the corresponding ground-state energy ECC is given by

ECC = 〈�|H |CC〉
= 〈HF|H |CC〉, (8)

where we have used Eq. (6) to eliminate the multiplier
contribution.

B. Time-dependent coupled-cluster methods

In order to allow for time dependence in the description,
the coupled-cluster state is parametrized as [14]

|CC(t )〉 = eT (t )|HF〉eiε(t ), (9)

and the corresponding dual state as

〈�(t )| =
(
〈HF| +

∑
ν>0

t̄ν (t )〈ν|
)
e−T (t )e−iε(t ). (10)

The amplitudes tμ and multipliers t̄μ now explicitly depend
on time, while the excitation operators τμ are still time inde-
pendent. An overall time-dependent phase ε(t ) has also been
introduced.

The equation describing the time evolution of the ampli-
tudes tμ(t ) is obtained from the time-dependent Schrödinger
equation for the |CC〉 state, by projecting onto the corre-
sponding excited determinant 〈μ|. This gives the differential
equation

dtμ(t )

dt
= −i〈μ|H̄ (t )|HF〉. (11)

The equation describing the time evolution of the multi-
pliers t̄μ(t ) is obtained by projecting the time-dependent
Schrödinger equation for the dual state 〈�(t )| onto the excited
determinants |ν〉, giving the differential equation

dt̄ν (t )

dt
= i

(
〈HF| +

∑
μ>0

t̄μ(t )〈μ|
)
[H̄ (t ), τν]|HF〉. (12)

The equation for the phase ε(t ) is determined by projection
onto the |HF〉 state

dε(t )

dt
= −〈HF|H̄ (t )|HF〉. (13)

Detailed derivations can be found in Ref. [14]. In this frame-
work, the time-dependent expectation value of a generic oper-
ator A(t ) is defined as

〈A(t )〉 = 〈�(t )|A(t )|CC(t )〉, (14)

where 〈�(t )|CC(t )〉 = 1.

C. Generalized Ehrenfest theorem and conserved
quantities in TDCC

For ease of notation, we suppress the explicit time de-
pendence in this section. Ideally, observables calculated in
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truncated TDCC should have the same properties as in the
untruncated case, in order to give a faithful representation of
the physical system. In this context, we derive a generalized
Ehrenfest theorem for truncated TDCC (the detailed deriva-
tion is given in Appendix A). We obtain the equation

d

dt
〈�′|A|CC〉 = i〈�′|H eT

′
Pne

−T ′
A|CC〉

− i〈�′|A eTPne
−TH |CC〉 + 〈�′|∂A

∂t
|CC〉,

(15)

where the left 〈�′| state and the right |CC〉 state are indepen-
dent solutions to the projected time-dependent Schrödinger
equation. The projection operator Pn of maximum excitation
level n is defined as

Pn = |HF〉〈HF| +
n∑

μ>0

|μ〉〈μ|, (16)

and in untruncated TDCC, Pn = 1. From Eq. (15) we can see
that, in untruncated TDCC,

d

dt
〈�′|A|CC〉 = i〈�′|[H,A]|CC〉 + 〈�′|∂A

∂t
|CC〉, (17)

regardless of the initial values of the amplitudes, multipliers,
and phases.

In truncated TDCC, the projection operator cannot in gen-
eral be replaced by the identity operator, and hence Eq. (15)
cannot be simplified further. Still, some conservation laws
from untruncated TDCC apply under certain constraints: we
see from (15) that the Hamiltonian matrix element 〈�′|H |CC〉
is conserved for a time-independent Hamiltonian operator as
long as T ′ = T , regardless of the initial values of the multi-
pliers and phases. The overlap matrix element 〈�′|1|CC〉 is
also conserved for T ′ = T , since exp(T )Pn exp(−T )1|CC〉 =
|CC〉 and 〈�′|T ′=T1 exp(T )Pn exp(−T ) = 〈�′|T ′=T . In con-
clusion, we note the energy and overlap conservation for a
time-independent Hamiltonian in untruncated TDCC, and in
truncated TDCC for T ′ = T .

D. Interaction with an external electromagnetic field

In the semiclassical approximation, the electronic Hamil-
tonian for a molecule interacting with an external electromag-
netic field can be written as

H (t ) = H0 +V (t ), (18)

where H0 is the time-independent electronic Hamiltonian
and V (t ) is the operator describing the interaction with
the external field. We choose to express the interaction in
the length gauge and dipole approximation, meaning that the
electromagnetic field is represented by an electric field,

V (t ) = −d · E (t ), (19)

where d is the electric dipole moment operator. Since this
operator is a one-electron operator, it can also be expressed in
terms of the molecular-orbital (MO) dipole moment integrals
dpq and one-electron singlet excitation operators Epq,

d =
∑
pq

dpqEpq. (20)

Since electric fields are additive, the external electric field
E (t ) can be written as a linear combination of individual laser
pulses,

E (t ) =
∑
n

E0n cos[ω0n(t − t0n)] fn(t ), (21)

where E0n is the peak electric field of pulse n in its polariza-
tion direction, ω0n the carrier (angular) frequency and t0n the
central time of the pulse, and fn(t ) an envelope function that
determines its shape. A commonly used family of envelopes
fn(t ), that resemble physical laser intensity profiles, are the
Gaussian functions. Since Gaussian functions have infinite
support, we choose to set them to zero at a finite number N
of root-mean-square (rms) widths σn outside the central time,
i.e.,

fn(t ) =
{
e−(t−t0n )2/(2σ 2

n ), an � t � bn,
0, otherwise,

(22)

where an = t0n − Nσn and bn = t0n + Nσn. In addition to
resembling physical intensity profiles, a useful feature of
Gaussian envelopes is that they give pulses with Gaussian
frequency distributions. Hence these pulses can offer a good
compromise between temporal precision and spectral nar-
rowness. This is useful for producing temporally precise
electronic transitions within the molecule, while keeping the
probability of ionization low.

E. Frequency-resolved transient absorption

Following the procedure of [29], the energy absorbed
during the interaction with the external electromagnetic field
can be given by

	E =
∫ ∞

−∞

dE (t )

dt
dt . (23)

The time derivative of the expectation value of the Hamilto-
nian in Eq. (18) can be found through Eq. (15):

dE (t )

dt
= d

dt
〈�(t )|H (t )|CC(t )〉

= 〈�(t )|∂H (t )

∂t
|CC(t ) = −d(t ) · ∂E (t )

∂t
, (24)

where the TDCC dipole moment expectation value is given by

d(t ) = 〈�(t )|d|CC(t )〉. (25)

The energy exchanged between the electromagnetic field and
the molecule is thus given by

	E = −
∫ ∞

−∞
d(t ) · ∂E (t )

∂t
dt . (26)

Equation (26) can be frequency resolved by inserting the
relations between the components di(t ) and Ei(t ) and their
Fourier transforms, d̃i(ω) and Ẽi(ω). We use the following
convention:

f (t ) = 1√
2π

∫ ∞

−∞
f̃ (ω)eiωt dω, (27)

f̃ (ω) = 1√
2π

∫ ∞

−∞
f (t )e−iωt dt . (28)
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After inserting the relations, the expression

	E =
∫ ∞

0
ωS(ω)dω (29)

is obtained, where

S(ω) = −2 Im[̃d(ω) · Ẽ∗
(ω)], ω > 0. (30)

The response function S(ω) has the opposite sign as in [29],
due to different Fourier transform conventions. It represents
the absorption per unit frequency at a given frequency, so that
positive (negative) ωS(ω) equals the amount of energy gained
(lost) by the molecule per unit frequency at ω [29].

The TDCC dipole moment d(t ) can be found from Eq. (14)

d(t ) =
∑
pq

〈�(t )|Epq|CC(t )〉dpq

=
(
〈HF| +

∑
μ>0

t̄μ(t )〈μ|
)
Ēpq(t )|HF〉dpq

=
∑
pq

Dpq(t )dpq,

(31)

where Dpq(t ) is an element of the standard coupled-cluster
one-electron density matrix, which can be calculated given the
time-dependent amplitudes and multipliers.

F. Initial value problem

In order to calculate the time-dependent amplitudes and
multipliers for the system represented by the Hamiltonian in
Eq. (18), the system is prepared in the ground state at t = −T
(before the interaction). The time-dependent amplitudes and
multipliers are then propagated by integration of Eqs. (11)
and (12), until t = T (after the interaction). This is done
using Runge-Kutta methods (a general introduction to these
methods is given in Appendix B). Once the time-dependent
amplitudes and multipliers are calculated, they can be used to
calculate evenly sampled values of the TDCC dipole moment
with Eq. (31).

The main Runge-Kutta method used for integration is the
explicit Runge-Kutta (ERK) method known as RK4, and
referred to as “the best-known fourth-order four-stage ERK
method” in [30]. In many cases, this method gives a good
compromise between accuracy and the number of evaluations
for each time step.

The performance of two methods in the family of ν-
stage 2νth-order implicit Runge-Kutta (IRK) methods, known
as Gauss-Legendre methods, is also assessed. An interest-
ing property of these methods is that they are symplec-
tic, meaning that they often perform well with regards to
preserving the energy expectation value of noninteracting
Hamiltonian systems. The application of these methods to
TDCC methods was discussed in greater detail in the work
by Pedersen and Kvaal [26]. The Gauss-Legendre methods
that will be considered here are the two-stage fourth-order
Gauss-Legendre method (GL4) and the three-stage sixth-
order Gauss-Legendre method (GL6).

G. Discrete Fourier transformation of TDCC dipole moment
and electric field

After the dipole moment and electric field have been calcu-
lated in [−T,T ], a discrete approximation of d̃i(ω) and Ẽi(ω)
can be found from doing the discrete Fourier transform of the
time series.

Assuming that the finite and discrete time series are sam-
pled from infinitely extending analytic dipole moment and
electric-field functions, the time series can equally be repre-
sented as the analytic functions modulated by the rectangular
window function,

fwR (t ) = f (t )wR(t ), (32)

sampled in [−T,T ], where the rectangular window function

wR(t ) =
{
1, |t | � T,

0, otherwise. (33)

Since the Fourier transform of a windowed function is equal to
the convolution of the Fourier transform of the function with
the Fourier transform of the window function [31],

f̃w(ω) = f̃ (ω) ∗ w̃(ω), (34)

the spectral leakage of the peaks in the finite Fourier spectrum
will be related to the Fourier transform of the rectangular
window function. In order to reduce the intensity of sidelobes
of peaks in the Fourier spectrum [31], the rectangular window
can be replaced with a Hann window, by multiplying the
sampled values with the Hann function,

wH (t ) = cos2
(

πt

T

)
, (35)

before doing the discrete Fourier transform.

III. RESULTS AND DISCUSSION

A. Convergence of LiH pump-probe absorption spectra

In the following, we investigate the convergence properties
of the spin-adapted TDCCmodel of molecular ultrafast pump-
probe absorption. The convergence will be assessed with
respect to the individual variation of several parameters: the
basis set, the size of the time steps, and the integration method.
The TDCC method was implemented in the recently released
eT program [32]. This program is used for all reported com-
putations. Unit conversions are done from Hartree atomic
units using the 2018 CODATA recommended values [33]. All
reported calculations are run on a two-socked node equipped
with Intel Xeon-Gold 615 22.1GHz processors and 1.5 TB of
memory.

The higher level coupled-cluster methods scale rapidly
with the size of the system, and quickly reach the limits
of practicability. Therefore, we have chosen lithium hydride
(LiH) for the convergence studies. This serves as an ele-
mentary example of a closed-shell molecule with atoms of
different core excitation energies. The electronic charge can
migrate between the two atoms, making it an interesting case
for examination by pump-probe spectroscopy.

The lithium atom is placed at the origin, and the hydrogen
atom at −1.594 913 18 Å along the z axis, corresponding to
the experimentally measured equilibrium bond length of LiH
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TABLE I. LiH and LiF pump and probe pulse parameters. Gaus-
sian rms width σ , carrier frequency ω0, peak electric-field strength
|E0|, and the nonperturbative intensity parameter z0 = |E0|2/(4ω3

0 )
[34] for the carrier waves. A Gaussian rms width of 20 a.u. corre-
sponds to a field strength (intensity) full width at half maximum
of 1.139 fs (805.5 as) and 10 a.u to a full width at half maximum
of 569.6 as (402.8 as). From the relation S0 = |E0|2/Z0 (SI units),
where Z0 is the impedance of free space, a peak electric-field strength
of 0.01 a.u. corresponds to a peak intensity S0 of 7.019 × 1012

W/cm2, and 0.1 a.u. to a peak intensity of 7.019 × 1014 W/cm2. The
perturbation limit can be taken to be the intensity where z0 = 1 for
a given carrier frequency [34]. Note that z0 � 1 for all pulses, indi-
cating that the interactions also could be described with perturbative
approaches.

σ (a.u.) ω0 (eV) |E0| (a.u.) z0

LiH pump 20 3.552 47 0.01 1.12 × 10−2

LiH probe 10 57.6527 0.1 2.63 × 10−4

LiF pump 20 6.448 01 0.01 1.88 × 10−3

LiF probe 10 688.018 0.1 1.55 × 10−7

[35]. Gaussian envelopes are used for the pump and probe
pulses, which are polarized in the z direction. The electric
fields of each pulse are temporally truncated at eight rms
widths σ from the central time, and thus nonzero only inside
this interval [see Eq. (22)]. The carrier frequency of the pump
pulse corresponds to the first LiH valence excitation energy
and the carrier frequency of the probe pulse to the first LiH
K-edge excitation energy. These excitation energies are cal-
culated using EOM-CCSD. The core excitations are obtained
within the core-valence separation (CVS) approximation [36].
The parameters of the pulses are shown in Table I. As the
Gaussian envelopes give the pulses a frequency content dis-
tributed around the central frequencies, the pump and probe
pulses will induce excitations in the valence and core regions,
respectively.

The pump pulse is given a central time of t = −40 a.u.
and the probe a central time of t = 0 a.u. The time-dependent
dipole moment and electric field are calculated every 0.1 a.u.
in the [−5000 a.u., 5000 a.u.] interval. Since the system re-
mains in the ground state until the onset of the truncated
pump pulse—with the ground-state dipole moment—the in-
teraction with the pulses only needs to be calculated in
[−200 a.u., 5000 a.u.]. Subsequently, the Hann windowed
components of the dipole moment and electric field are
discrete Fourier transformed, and the transient absorption is
calculated using Eq. (30).

We use the correlation-consistent basis sets of Dunning
et al. (cc-pVXZ, X = D, T) [37] that are suitable for de-
scribing valence correlation effects in molecules. In some
of the calculations, the basis sets are augmented by diffuse
functions (denoted by aug-) and/or functions describing core
correlation (denoted by C) [38]. From now on, we will use a
C in round brackets to indicate that core correlation functions
are added to the basis set of the heaviest atom in the molecule.

The individual variation of the calculation parameters
is done with respect to a common reference: TDCCSD/

aug-cc-p(C)VDZ, and integrated with RK4 with 0.005 a.u.
time steps. This basis set gives two occupied and 34 virtual

FIG. 1. Normalized reference LiH pump-probe absorption,
S′(ω), as a function of energy. The time-dependent dipole moment
is calculated using TDCCSD/aug-cc-p(C)VDZ, and integrated with
RK4 with 0.005 a.u. time steps.

MOs, and hence 4828 time-dependent parameters. The re-
ported calculation uses around 1GB of memory and 0.12 s
wall time per time step on eight cores, and 0.15 s per time step
on four cores. The unnormalized reference absorption Sref(ω)
is used to calculate the normalization factor

Nref = 1

maxω |Sref(ω)| . (36)

This factor is used to normalize all the absorption spectra of
the following LiH calculations, by means of

S′(ω) = NrefS(ω), (37)

where S(ω) is calculated with the parameters in question. The
normalized deviation of S′(ω) from a more accurate result
S′
acc(ω) is calculated as

D′(ω) = |S′(ω) − S′
acc(ω)|. (38)

The reference absorption spectrum, normalized according
to Eq. (37), is shown in Fig. 1. We observe absorption in
two energy regions: one corresponding to the valence-exciting
pump pulse and the other to the core-exciting probe pulse.

1. TDCCS and TDCCSD

In Fig. 2, the normalized reference TDCCSD spectrum
is shown together with the normalized time-dependent CCS
(TDCCS) spectrum. The two spectra display substantial dif-
ferences in intensities and positions of the peaks in both
the pump and the probe absorption regions. Since TDCCSD
includes double excitations, while TDCCS does not, this
demonstrates that higher-order excitations are needed to ob-
tain qualitatively correct results for the LiH model system.

2. Basis set

In Fig. 3, the normalized reference spectrum is shown
together with normalized spectra calculated using cc-pVDZ,
cc-p(C)VDZ, and aug-cc-pVDZ. The inclusion of diffuse
functions in the basis sets seems important for representing the
dynamics properly. Increasing the basis set from cc-pVDZ to
aug-cc-pVDZ shifts the peaks in both the pump and the probe
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FIG. 2. Normalized TDCCSD and TDCCS LiH pump and probe
absorption, S′(ω), as a function of energy. Time-dependent dipole
moments are calculated using aug-cc-p(C)VDZ, and integrated with
RK4 with 0.005 a.u. time steps.

absorption regions. This is consistent with the concept of the
pump pulse forcing electrons to the outer valence regions
of the molecule, which is better represented with diffuse
functions.

Furthermore, comparing cc-p(C)VDZ and cc-pVDZ spec-
tra in Fig. 3, we see the importance of the added core corre-
lation functions. As expected, they cause a substantial shift in
the probe absorption peaks, while they are not important for
the pump absorption.

We also performed calculations with cc-pVTZ, cc-
p(C)VTZ, aug-cc-pVTZ, and aug-cc-p(C)VTZ basis sets.
Note that, for the aug-cc-pVTZ and aug-cc-p(C)VTZ spectra,
the time-dependent dipole moments are only calculated in
the [−2500 a.u., 2500 a.u.] interval, in order to reduce com-
putational time. Thus these spectra have a lower resolution
than the others. The normalized spectra are shown together
with the normalized reference spectrum in Fig. 4. Here we
observe that triple zeta functions change the position of the
peaks in the probe absorption region. This indicates that basis
sets larger than aug-cc-p(C)VDZ should be used if precise
peak positions are required, bringing about a substantial in-
crease in the computational costs. The aug-cc-p(C)VDZ basis
set is used as the reference for the other LiH calculations,
as the larger basis sets are too computationally expensive for
practical purposes.

Note that the pulses are not strong enough to induce con-
siderable multiphoton absorption (see Table I). The electrons
should thus primarily be confined to low angular momen-
tum bound states, which are fairly well described with the
aforementioned basis sets. At higher intensities, the results
obtained with these basis sets should deviate further from
the complete basis set limit, as the representation of Rydberg

FIG. 3. Normalized aug-cc-p(C)VDZ, aug-cc-pVDZ,
cc-p(C)VDZ, and cc-pVDZ LiH pump and probe absorption,
S′(ω), as a function of energy. Time-dependent dipole moments are
calculated using TDCCSD, and integrated with RK4 with 0.005 a.u.
time steps.

states and the continuum will be more important [39]. The
results can then be improved by adding suitable functions
to the basis set, for instance, Gaussians optimized for the
representation of the continuum [39,40].

3. Integration

We calculated normalized spectra for 0.125 a.u., 0.025 a.u.,
and 0.001 a.u. time steps. The deviations from the 0.001 a.u.
time step are calculated according to Eq. (38). The results are
shown in Fig. 5. The deviations decrease with the time step
size, indicating that the spectra approach a time step limit.

We further calculated normalized spectra with GL4 and
GL6. The deviations of the RK4 (reference) and GL4 spectra
from the GL6 spectrum are shown in Fig. 6. Although the
TDCC equations have a Hamiltonian structure, the use of
symplectic integrators does not seem to be necessary to cal-
culate accurate spectra for this system, with the applied field
strength. As the three integration methods give comparable
results, we will use RK4 for the other calculations, as this
generally requires fewer evaluations of the TDCC equations
per time step.

B. LiF transient absorption

In this section, variations in molecular absorption caused
by ultrafast charge migration are modeled in the described
pump-probe framework. We consider the lithium fluoride
(LiF) molecule, where the fluorine atom is placed at the origin
and the lithium atom at−1.563 864 13Å along the z axis. This
corresponds to the experimentally measured equilibrium bond
length of LiF [35]. In order to classify some of the transitions
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FIG. 4. Normalized aug-cc-p(C)VDZ, cc-pVTZ, cc-p(C)VTZ,
aug-cc-pVTZ, and aug-cc-p(C)VTZ LiH pump-probe absorption,
S′(ω), as a function of energy. Time-dependent dipole moments are
calculated using TDCCSD, and integrated with RK4 with 0.005 a.u.
time steps.

involved in the molecular absorption, the first eight valence-
excited and the first eight core-excited states are calculated
using EOM-CCSD/aug-cc-p(C)VDZ. The core excitations
are obtained within the CVS approximation. The molecular
term symbols and excitation energies are given in Table II.

In the TDCC calculations, all probe pulses are z polarized,
and have carrier frequencies corresponding to the first LiF
core excitation energy (see Table II). Central times are chosen
to be 0 a.u., to minimize the effect of the windowing on

FIG. 5. LiH pump-probe absorption. Normalized deviation of the
0.100 a.u., 0.025 a.u., and 0.005 a.u. time step spectra from the
0.001 a.u. time step spectrum, D′(ω), as a function of energy. Time-
dependent dipole moments are calculated using TDCCSD/aug-cc-
p(C)VDZ, and integrated with RK4.

FIG. 6. LiH pump-probe absorption. Normalized deviation of
the RK4 and GL4 spectra from the GL6 spectrum, D′(ω), as a
function of energy. Time-dependent dipole moments are calculated
using TDCCSD/aug-cc-p(C)VDZ, and integrated with 0.005 a.u.
time steps.

the probe absorption. The pump pulses are also z polarized,
and have carrier frequencies corresponding to the first LiF
valence excitation energy (see Table II). The pump pulses
have different central times with respect to the probe pulses,
corresponding to probe delays from 0 a.u. to 240 a.u., in
increments of 5 a.u. Other parameters of the pump and probe
pulses are given in Table I. As for the LiH calculations, the
electric fields of each pulse are temporally truncated at eight
rms widths σ from the central time, and thus nonzero only
inside this interval [see Eq. (22)].

The parameters used for the LiH reference calculation
offered a compromise between computational cost and accu-
racy. For pragmatic reasons, we also use the parameters for all
LiF calculations. The calculations in this section are thus done
using TDCCSD/aug-cc-p(C)VDZ, and integrated with RK4
with 0.005 a.u. time steps. The basis set gives six occupied and
44 virtual MOs, and hence 70488 time-dependent parameters.
The time-dependent dipole moments and electric fields are
calculated every 0.1 a.u. in the [−5000 a.u., 5000 a.u.] inter-
val, where the external field interactions are only calculated
after the onset of the temporally truncated pump pulses. The

TABLE II. Molecular term symbols and ground-state excitation
energies 	E of some excited states of LiF, calculated with the EOM-
CCSD method. Valence-excited states are denoted by a subscript v.
Core-excited states, calculated within the CVS approximation, are
denoted by a subscript c.

State 	E (eV) State 	E (eV)

Av
1� 6.448 01 Ac

1�+ 688.018
Bv

1�+ 6.899 82 Bc
1� 689.462

Cv
1	 8.104 63 Cc

1�+ 690.159
Dv

1�− 8.140 74 Dc
1�+ 691.039

Ev
1�+ 8.511 16 Ec

1� 691.435
Fv 1� 8.589 43 Fc 1�+ 691.625
Gv

1� 8.625 89 Gc
1� 692.917

Hv
1�+ 9.106 55 Hc

1�+ 693.154
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FIG. 7. Normalized LiF pump and probe absorption, S′
pump(ω)

(top) and S′
probe(ω) (bottom), as a function of energy. The most

dominant peaks are identified with ground-state transitions to EOM-
CCSD valence- and core-excited states. Time-dependent dipole mo-
ments are calculated with TDCCSD/aug-cc-p(C)VDZ, integrated
with RK4 with 0.005 a.u. time steps.

reported calculations use around 2GB of memory and 0.41 s
wall time per time step on 16 cores, and 0.50 s per time step
on eight cores.

In order to assess the relative occupation of the states in the
pump-induced superposition [see Eq. (29)], the normalized
absorption of the pump pulse, centered at 0 a.u., is calculated
using

S′
pump(ω) = NpumpSpump(ω), (39)

where

Npump = 1

maxω |Spump(ω)| . (40)

An analogous procedure is used to obtain the normalized
probe spectrum S′

probe(ω).
The normalized absorption of the pump pulse and of the

probe pulse are plotted in Fig. 7, where the most dominant ab-
sorption peaks are identified using the calculated EOM-CCSD
states (see Table II). The small pump absorption peaks that
lie below the ground-state valence excitation energy gap are
presumably caused by two-photon absorption. The positions
of the other visible peaks in the two spectra fit well with
single-photon EOM-CCSD transitions allowed by symmetry.

The pump-probe absorption S(ω, τ ) is calculated as a
function of the energy, ω, and the delay of the probe pulse
with respect to the pump pulse, τ . In order to directly assess
the change in absorption caused by the interaction with the
pump pulse, the normalized transient absorption

	S′(ω, τ ) = Nprobe	S(ω, τ )

= Nprobe[S(ω, τ ) − Sprobe(ω)] (41)

is calculated for all delays, where Nprobe is the normalization
factor for the probe spectrum. The normalized transient ab-
sorption in the probe absorption region is shown in Fig. 8. The
spectrum features several constant energy peaks that oscillate
with the pump-probe delay. The five peaks that oscillate the

FIG. 8. Normalized LiF transient absorption 	S′(ω, τ ), as a function of energy and pump-probe delay. The five peaks oscillating with
the largest amplitude are identified with EOM-CCSD transitions. Time-dependent dipole moments are calculated using TDCCSD/aug-cc-
p(C)VDZ basis set, integrated with RK4 with 0.005 a.u. time steps.
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FIG. 9. Normalized LiF transient absorption 	S′(ω, τ ) (black
crosses) as a function of pump-probe delay, given at the dis-
crete Fourier transform energies closest to the energies of the
transitions shown to the right. The colored functions in the four
topmost panels are found from least-squares fitting A sin(ωAt +
φA) +C, with fixed values of ωA, to the absorption, in the do-
main [40 a.u., 240 a.u.]. The values of ωA are 6.899 82 eV (red)
8.511 16 eV (blue), 6.899 82 eV (green), and 6.899 82 eV (purple).
The orange function in the bottom panel is found from least-
squares fitting A sin(ωAt + φA) + B sin(ωBt + φB ) +C, with ωA =
6.899 82 eV and ωB = 8.511 16 eV, to the absorption, in the domain
[40 a.u., 240 a.u.].

most with respect to the pump-probe delay are identified using
the states in Table II. Note that, for pump-probe delays shorter
than about 40 a.u., the oscillations of some of the peaks are
rapidly damped as a function of increasing delays. This effect
can be attributed to the decreasing overlap between the pump
and probe pulses. For pump-probe delays longer than about
40 a.u., where the overlap of the pulses can be neglected, the
damping of the oscillations is also negligible.

We note that the excitation by the pump pulse enables
new transitions in the probe absorption region. An illustrative
example is the oscillating peak at around 681.1 eV in Fig. 8.
The energy corresponding to this peak is lower than the lowest
ground-state core excitation energy of 688.018 eV. This peak
is identified as the Ac

1�+–Bv
1�+ transition. Its occurrence

indicates that the pump has generated an electronic hole in
a previously occupied region of the molecule, allowing a
lower-energy core excitation to take place.

In Fig. 9, the normalized transient absorption of the five
peaks identified in Fig. 8 are plotted at the nearest discrete
Fourier-transform energies. Two of these peaks describe tran-
sitions involving the Ac

1�+ state. Beyond the pump-probe
overlap region, the oscillations of these peaks correlate with
the quantum interference of the two probed states, as expected
for the ultrafast high-energy probing of two states in a co-
herent superposition [6]. This since both oscillations can be
fitted with sinusoids with the frequency corresponding to the
Bv

1�+ and X 1�+ energy difference.
Three peaks in Fig. 9 correspond to transitions involving

the Hc
1�+ state. The oscillation of the Hc

1�+–Bv
1�+ peak

correlates well with the quantum interference of the Bv
1�+

and X 1�+ states, as the oscillations are well fitted with
a sinusoid with the frequency corresponding to the energy

difference of these two states. Similarly, the oscillation of the
Hc

1�+–Ev
1�+ peak correlates with the quantum interfer-

ence of the Ev
1�+ and X 1�+ states. Note that the oscilla-

tions of the two peaks are slightly phase shifted with respect
to each other, an effect that may be caused by the difference
in spectral phase of the two corresponding frequencies in the
probe pulse.

The linear combination of two sinusoids is needed to give
a good fit with the oscillation of the Hc

1�+–X 1�+ peak: one
corresponding to the Bv

1�+ and X 1�+ energy difference and
the other corresponding to the Ev

1�+ and X 1�+ energy dif-
ference. Hence the ground state X 1�+ seems to have a similar
probability of interfering with the Bv

1�+ and Ev
1�+ states.

This is reasonable, considering that most of the population
will be left in the ground state after the interaction with the
pump pulse.

IV. CONCLUSION

In this work, a time-dependent coupled-cluster model of
ultrafast pump-probe absorption spectroscopy has been pre-
sented. First, we investigated the convergence of LiH pump-
probe absorption spectra with respect to different calculation
parameters. The deviations related to the integration param-
eters (integration method and time step size) were small in
comparison to other parameter-dependent deviations. As the
computational costs scaled linearly with the time step size, we
chose a time step size that gave a small deviation, 0.005 a.u. In
future works, calculations on larger systems can be facilitated
by the use of larger and adaptive time steps, as the maxi-
mum normalized deviation of the absorption calculated with
0.025 a.u. time steps was only on the order of 1 × 10−4. The
use of symplectic integrators did not seem to be necessary;
hence RK4 was used. Changes in the basis set had a big
impact on the results. As the computational cost scales steeply
with respect to the basis set, TDCCSD/aug-cc-p(C)VDZ was
chosen as a compromise between accuracy and computational
cost.

After using the time-dependent coupled-cluster model to
assess the convergence of LiH spectra, we used the model to
calculate the ultrafast transient absorption in LiF, using the
same parameters. The transient absorption displayed peaks
that oscillate with respect to pump-probe delay, and the os-
cillation frequencies were correlated with the quantum inter-
ference of different states in the pump-induced superposition.

Note that nuclear motion, which has been neglected in the
model, will cause broadening of the spectral peaks [41]. A
natural next step would be to include the nuclear motion to
the model, which for instance can be done using the approach
in [42].
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APPENDIX A: DERIVATION OF GENERALIZED
EHRENFEST THEOREM IN TRUNCATED TDCC

For ease of notation, the time dependence is not written ex-
plicitly in this section. The derivation of Eq. (15) in truncated
TDCC is given here. It makes use of the identity resolution

1 = |HF〉〈HF| +
∑
μ>0

|μ〉〈μ|, (A1)

where the summation is over all the excited determinants.
Sums that are restricted to the excited determinants in the
projection space will be denoted by the upper summation
limit n.

Consider a generic operator A with no parametric time
dependence and two independent solutions to the projected
time-dependent Schrödinger equation, |CC〉 and 〈�′|. The
time derivative of the matrix element 〈�′|A|CC〉 is

d

dt
〈�′|A|CC〉 =

(
d

dt
〈�′|

)
A|CC〉 + 〈�′|∂A

∂t
|CC〉

+ 〈�′|A
(
d

dt
|CC〉

)
. (A2)

Equations (11) and (13) can be used to rewrite the term
containing the time derivative of the |CC〉 state,

〈�′|A
(
d

dt
|CC〉

)
=

n∑
μ>0

〈�′|Aτμ|CC〉dtμ
dt

+ i〈�′|A|CC〉dε

dt

= −i〈�′|A eT Pne
−TH |CC〉. (A3)

Equations (11), (12), and (13) can be used to rewrite the
term containing the time derivative of the 〈�′| state,

(
d

dt
〈�′|

)
A|CC〉 =

n∑
μ>0

dt̄ ′μ
dt

〈μ|e−T ′
e−iε′

A|CC〉

−
n∑

μ>0

〈�′|τμA|CC〉dt
′
μ

dt
− i〈�′|A|CC〉dε′

dt

=
n∑

μ>0

i〈�′|H eT
′ |μ〉〈μ|e−T ′

A|CC〉

−
n∑

μ>0

i〈�′|eT ′
τμH̄

′|HF〉〈μ|e−T ′
A|CC〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉. (A4)

The right-hand side of Eq. (A1) is inserted between τμ and H̄ ′
in the second term, giving

(
d

dt
〈�′|

)
A|CC〉

=
n∑

μ>0

i〈�′|H eT
′ |μ〉〈μ|e−T ′

A|CC〉

−
n∑

μ>0

i〈�′|eT ′ |μ〉〈HF|H̄ ′|HF〉〈μ|e−T ′
A|CC〉

−
n∑

μ>0

∑
ν>0

i〈�′|eT ′
τμ|ν〉〈ν|H̄ ′|HF〉〈μ|e−T ′

A|CC〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉

=
n∑

μ>0

i〈�′|H eT
′ |μ〉〈μ|e−T ′

A|CC〉

−
∑
μ>0

i〈�′|eT ′ |μ〉〈μ|e−T ′
A|CC〉〈HF|H̄ ′|HF〉

−
n∑

ν>0

∑
μ>0

i〈�′|eT ′
τν |μ〉〈μ|e−T ′

A|CC〉〈ν|H̄ ′|HF〉

+
n∑

μ>0

i〈�′|τμA|CC〉〈μ|H̄ ′|HF〉

+ i〈�′|A|CC〉〈HF|H̄ ′|HF〉. (A5)

The factors
∑

μ>0 |μ〉〈μ| in the second and third terms are
replaced by using Eq. (A1), with |HF〉〈HF| subtracted from
both sides of the equation, giving

(
d

dt
〈�′|

)
A|CC〉

=
n∑

μ>0

i〈�′|HeT
′ |μ〉〈μ|e−T ′

A|CC〉

+ i〈�′|eT ′ |HF〉〈HF|e−T ′
A|CC〉〈HF|H̄ ′|HF〉

+
n∑

ν>0

i〈�′|eT ′ |ν〉〈HF|e−T ′
A|CC〉〈ν|H̄ ′|HF〉

=
n∑

μ>0

i〈�′|H eT
′ |μ〉〈μ|e−T ′

A|CC〉

+ i〈�′|eT ′ |HF〉〈HF|H̄ ′|HF〉〈HF|e−T ′
A|CC〉

+
∑
ν>0

i〈�′|eT ′ |ν〉〈ν|H̄ ′|HF〉〈HF|e−T ′
A|CC〉

= i〈�′|H eT
′
Pne

−T ′
A|CC〉, (A6)
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where the definition of Pn is given in Eq. (16). Equations (A3)
and (A6) are inserted into Eq. (A2), giving the desired result:

d

dt
〈�′|A|CC〉 = i〈�′|H eT

′
Pne

−T ′
A|CC〉

− i〈�′|A eT Pne
−TH |CC〉

+ 〈�′|∂A
∂t

|CC〉. (A7)

APPENDIX B: RUNGE-KUTTA METHODS

The commonly used one-step integration methods known
as Runge-Kutta methods are introduced below in the notation
of [30].

Given the following Cauchy problem:

dy(t )
dt

= f (t, y(t )), t � t0, y(t0) = y0, (B1)

we can find a numerical approximation of the solution y(t )
by the use of a ν-stage Runge-Kutta method, which can be
written in the form

yn+1 = yn + h
ν∑
j=1

b jf (tn + c jh, ξ j ), (B2)

where

ξ j = yn + h
ν∑

i=1

a jif (tn + cih, ξi ), j = 1, . . . , ν. (B3)

Here, aji, b j , and c j are method specific coefficients, where
a ji and c j need to satisfy the condition

ν∑
j=1

a ji = c j, j = 1, . . . , ν (B4)

to obtain nontrivial orders of integration. In explicit Runge-
Kutta (ERK) methods, the matrix A = (a ji ) j,i=1,...,ν is strictly
lower triangular. In these methods, ξ j are explicitly given as a
function of ξ j−1, . . . , ξ1.

In the cases where the matrix A is not strictly lower
triangular, ξ j may also depend on ξ j, . . . , ξν , which in practice
means that a system of equations have to be solved at each
time step. These methods are known as implicit Runge-Kutta
(IRK) methods, and in many cases offer greater stability than
their explicit counterparts. Since IRK methods involve the
solution of a set of equations at each time step, it is hard to
give an a priori estimate of the number of function evaluations
needed at each time step. This number is usually higher than
for ERK methods, leading in general to higher computational
costs.
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A time-dependent equation-of-motion coupled-cluster singles and doubles (TD-EOM-CCSD) method is
implemented, which uses a reduced basis calculated with the asymmetric band Lanczos algorithm. The approach
is used to study weak-field processes in small molecules induced by ultrashort valence pump and core probe
pulses. We assess the reliability of the procedure by comparing TD-EOM-CCSD absorption spectra to spectra
obtained from the time-dependent coupled-cluster singles and doubles method, and observe that spectral features
can be reproduced for several molecules, at much lower computational times. We discuss how multiphoton
absorption and symmetry can be handled in the method, and general features of the core-valence separation
projection technique. We also model the transient absorption of an attosecond x-ray probe pulse by the glycine
molecule.

DOI: 10.1103/PhysRevA.105.023103

I. INTRODUCTION

Stimulated by the recent experimental realization of vari-
ous laser pulses with durations on the attosecond (1×10−18 s)
time scale [1–5], capable of monitoring electronic motion,
the theoretical simulation of coherent electron dynamics is
currently an active field of research [6].

Real-time electronic structure theory considers the explicit
time dependence of the electronic system by evolving the
time-dependent Schrödinger equation in the time domain [6].
Explicitly time-dependent methods can directly provide the
time-domain evolution of electronic wave functions together
with nuclear motion, representing a versatile way of tracking
ultrafast phenomena in both perturbative and nonperturbative
regimes [7,8].

The development of real-time methods commenced in the
late 1970s and early 1980s in the field of nuclear physics
[9–11]. Despite these early endeavors, real-time methods did
not become practical at that time due to the lack of electron
correlation effects at the Hartree-Fock level and the high com-
putational cost associated with propagation of correlated wave
functions. However, decades of steady advancements in com-
puting power and numerical algorithms have led to a renewed
interest in explicit time propagation in correlated methods like
density-functional theory [12,13], multiconfigurational self-
consistent-field [14–16], configuration-interaction [17–20],
algebraic diagrammatic construction [21,22], and coupled-
cluster [23–33] methods.

*These authors contributed equally to this work.
†soco@kemi.dtu.dk
‡henrik.koch@sns.it

In this paper, we present an implementation and represen-
tative case studies of the time-dependent equation-of-motion
coupled-cluster (TD-EOM-CC) model for simulating weak-
field attosecond valence pump–core probe processes. In
conjunction with a reduced-space band Lanczos algorithm for
obtaining the valence and core excited states, this model offers
results similar to its time-dependent coupled-cluster (TDCC)
counterpart in weak fields, at significantly lower computa-
tional costs. The reduction in cost enables the study of larger
systems.

The paper is organized as follows. In Sec. II we detail the
theory behind TD-EOM-CC and the asymmetric band Lanc-
zos algorithm. Here, we also discuss a strategy used in order
to guide the reduced space solver to directly obtain the tran-
sitions between excited states. The computational procedure
used is detailed in Sec. III. In Sec. IV, simulations for various
molecular systems are presented. First a benchmark study is
presented for LiF, validating our proposed method. Second,
the applicability of the core-valence separation (CVS) scheme
is tested for LiH. Then, a two-photon absorption phenomenon
has been captured using a stepwise procedure emulating the
actual physical process for C2H4. Finally, we put forward
a theoretical assessment of pump-probe absorption for the
glycine molecule, which is deemed suitable for further experi-
mental investigations. The findings are summarized in Sec. V.

II. THEORY

A. System

We model the system, composed of a molecule and its
interaction with laser pulses, with the Hamiltonian

H (t ) = H (0) +V (t ), (1)

2469-9926/2022/105(2)/023103(15) 023103-1 ©2022 American Physical Society
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where the field-free Hamiltonian H (0) describes the molecule
with fixed nuclei and without interactions with the exter-
nal electromagnetic field. The semiclassical time-dependent
interaction term, written in the dipole approximation and
length gauge, is

V (t ) = −d · E (t ) (2)

and describes the interaction between the molecular elec-
trons and the external electromagnetic field. The latter is
represented by the electric field E (t ) = [Ex(t ) Ey(t ) Ez(t )]T
and electronic dipole operator vectors, d = [dx dy dz]T . We
assume that the molecule is initially in the ground state of
the field-free Hamiltonian, and take the electric field to be a
linear combination of the electric fields of any number of laser
pulses:

E (t ) =
∑
n

E0n cos[ω0n(t − t0n) + φn] fn(t ). (3)

The field of laser pulse n has an associated carrier frequency
ω0n, peak strength |E0n|, polarization E0n/|E0n|, and an 8σn-
truncated Gaussian envelope function

fn(t ) =
{
e−(t−t0n )2/(2σ 2

n ) if |t − t0n| � 8σn

0 otherwise
(4)

with duration specified by σn, the temporal rms width. It is
also specified by the central time t0n and the carrier-envelope
phase φn. We assume the carrier-envelope phase to be zero for
all pulses, meaning that the maximum values of the envelope
and cosine carrier functions belonging to pulse n coincide at
t0n.

The energy absorbed during the interaction can be given by
[28,34]

�E =
∫ ∞

0
ωS(ω)dω, (5)

where S(ω) is the response function

S(ω) = −2Im[〈̃d〉(ω) · Ẽ∗(ω)] ω > 0. (6)

The vectors 〈̃d〉(ω) and Ẽ (ω) are the Fourier transforms of the
time-dependent dipole moment expectation value and electric-
field vectors, respectively, and the asterisk denotes complex
conjugation. A positive or negative value of the function S(ω)
describes the probability of absorption or emission of light
with frequency ω, respectively [34].

B. TD-EOM-CC states

The time-dependent ket and bra of a TD-EOM-CC state
can be expressed as

|�(t )〉 =
∑
j

|ψ j〉s j (t ), 〈�̃(t )| =
∑
i

ki(t )〈ψ̃i|, (7)

where the italic indices i and j are used to denote general
equation-of-motion coupled-cluster (EOM-CC) states, includ-
ing the ground state with index zero. The time-independent
EOM-CC kets and bras are given by

|ψ j〉 = eT Rj |HF〉, 〈ψ̃i| = 〈HF|Lie−T . (8)

We assume that the EOM-CC states are biorthonormal:

〈ψ̃i|ψ j〉 = δi j . (9)

In the following, we let the indices κ and λ denote general
determinants in the projection space, including the reference
Hartree-Fock determinant with index zero. We use the indices
μ and ν, on the other hand, to denote excited determinants.

The cluster operator T and the right and left operators
Rj and Li of Eq. (8) can be expressed as linear expansions in
a finite set of operators τλ and τ †

κ ,

T =
∑

ν

τνtν, Rj =
∑

λ

τλrλ j, Li =
∑

κ

liκτ
†
κ , (10)

where the operator with index zero is the unit operator,

τ0 = τ
†
0 = 1, (11)

and the τν and τ †
μ operators generate excited determinants

from the ket and bra reference Hartree-Fock determinants,
respectively:

τν |HF〉 = |ν〉, 〈HF|τ †
μ = 〈μ|, (12)

τ †
μ|HF〉 = 0, 〈HF|τν = 0. (13)

We assume that the determinants are biorthogonal:

〈κ|λ〉 = δκλ. (14)

If all possible electronic excitations are included in the
summations in Eq. (10), the method is equivalent to full
configuration interaction. The sum can also be restricted to
given excitation levels, giving approximate methods that scale
polynomially with the system size. This includes the coupled-
cluster singles and doubles method, where summation is only
done over single and double excitations. We do not explicitly
state the excitation levels included in the following expres-
sions, since they hold for both restricted and unrestricted
summation.

The cluster amplitudes tν in Eq. (10) can be found
from solving equations involving the similarity-transformed
field-free Hamiltonian operator H̄ (0) projected onto the right
reference and left excited determinants

〈μ|H̄ (0)|HF〉 = 0, (15)

where the similarity transformation of an operator X is de-
noted by an overbar:

X̄ = e−T XeT . (16)

After the optimal cluster amplitudes tν have been deter-
mined, the right and left vectors of EOM-CC state i, with
components rλ j and liκ , can be found as right and left eigen-
vectors of the field-free Hamiltonian matrix, with elements

H (0)
κλ = 〈κ|H̄ (0)|λ〉. (17)

The right and left eigenvectors of the matrix in Eq. (17)
with the lowest eigenvalue, specifying the ground EOM-CC
state with index zero, have the following structure:

r00 = 1, rν0 = 0, (18)

l00 = 1, l0μ = t̄μ. (19)

The multipliers t̄μ are solutions to the equations

〈HF|H̄ (0)|ν〉 +
∑

μ

t̄μA
(0)
μν = 0, (20)
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where elements of the field-free coupled-cluster Jacobian ma-
trix A(0) are given by

A(0)
μν = 〈μ|[H̄ (0), τν]|HF〉. (21)

The other right and left eigenvectors of the matrix in Eq. (17)
correspond to excited EOM-CC states, denoted by the italic
indices m and n. The eigenvectors have the following refer-
ence determinant components:

r0n = −
∑

ν

t̄νrνn, (22)

lm0 = 0. (23)

These components enforce the biorthogonality between the
ground and excited states, in accordance with Eq. (9). The
vectors Rm and Lm, containing the components rνm and lmμ

of excited EOM-CC state m, are right and left eigenvectors of
A(0) with eigenvalue ωm.

C. Derivation of TD-EOM-CC equations

The time derivative of the coefficients of the TD-EOM-
CC ket can be found from projecting the ket time-dependent
Schrödinger equation (TDSE)

ι
∂

∂t
|�(t )〉 = H (t )|�(t )〉, (24)

where ι denotes the imaginary unit, onto the bra of EOM-CC
state i, giving

ι
∂si(t )

∂t
=

∑
j

Hi j (t )s j (t ), (25)

where the matrix elements of an operator X (t ) are given by

Xi j (t ) = 〈ψ̃i|X (t )|ψ j〉. (26)

Likewise, the time derivative of the coefficients of the TD-
EOM-CC bra can be found from projecting the bra TDSE,

−ι
∂

∂t
〈�̃(t )| = 〈�̃(t )|H (t ), (27)

onto the ket of EOM-CC state j, giving

−ι
∂k j (t )

∂t
=

∑
i

ki(t )Hi j (t ). (28)

The TD-EOM-CC equations (25) and (28) were to our
knowledge first presented in Ref. [18], and have also been
used in Ref. [19]. In those works, the matrix elements di j of
the dipole moment operator, entering in the time-dependent
Hamiltonian, are approximated by discarding non-Hermitian
components. This was achieved by using the Hermitian (di j +
d∗
ji )/2 instead of the di j given by Eq. (26). In the present paper,

however, the full non-Hermitian di j are used in the solution of
Eqs. (25) and (28). After the time-dependent coefficients ki(t )
and si(t ) have been obtained, the time-dependent expectation
value of a time-independent operator X can be calculated
according to

〈X 〉(t ) =
∑
i j

ki(t )Xi js j (t ). (29)

D. Asymmetric band Lanczos algorithm

We use the asymmetric band Lanczos algorithm to generate
approximate eigenvalues ω̃n and right R̃n and left L̃n eigen-
vectors of the field-free Jacobian matrix A(0). As outlined in
Sec. II F, the approximate eigenvectors are used as a reduced
basis for solving Eqs. (25) and (28).

The algorithm is a generalization of the simple asymmetric
Lanczos algorithm, employing m right (b1, . . . , bm) and p left
(c1, . . . , cp) starting vectors instead of single ones [35–37]. A
sequence of right vectors is constructed by transforming the
right starting vectors by increasing powers of a given square
asymmetric matrix M. For our purpose, M = A(0). The i first
vectors in the sequence, which can be linearly dependent, span
the n-dimensional right band Krylov subspace,

Ki(M, b1, . . . , bm)

= span{b1, . . . , bm,Mb1, . . . ,Mbm,M2b1, . . .︸ ︷︷ ︸
i

}, (30)

where i − n is the number of redundant vectors in the se-
quence. Likewise, a sequence of left vectors is constructed by
transforming the left starting vectors by increasing powers of
the transpose matrix MT . The j first vectors in the sequence,
which can be linearly dependent, span the n-dimensional left
band Krylov subspace,

K j (MT , c1, . . . , cp)

= span{c1, . . . , cp,MT c1, . . . ,MT cp, (MT )2c1, . . .︸ ︷︷ ︸
j

},

(31)

where j − n is the number of redundant vectors in the se-
quence. Note that the subspaces can be regarded as block
Krylov subspaces [37] whenever i and j are multiples of the
number of starting vectors. The n right (v1, . . . , vn) and left
(w1, . . . ,wn) Lanczos vectors, which form respective bases
for Ki(M, b1, . . . , bm) and K j (MT , c1, . . . , cp), are obtained
by discarding redundant vectors of the sequences in Eqs. (30)
and (31). A n × n-dimensional band Krylov subspace approx-
imation of M can then be obtained by expressing the matrix
in the Lanczos vector bases.

The right and left Lanczos vectors can be generated itera-
tively with the recurrence relations [35]

MV n = V nT n + V̂
C
n + V̂

D
n , (32)

MTW n = W nT̃ n + Ŵ
C
n + Ŵ

D
n , (33)

where the right and left Lanczos vectors form the matrices
V n = [v1 · · · vn] and W n = [w1 · · · wn], respec-
tively. The un-normalized vectors that form the nonzero
columns of V̂

C
n = [0 · · · 0 v̂n+1 · · · v̂n+mc ] and

Ŵ
C
n = [0 · · · 0 ŵn+1 · · · ŵn+pc ] serve as candi-

dates for the next right and left Lanczos vectors, respectively.
The sparse matrices V̂

D
n and Ŵ

D
n contain un-normalized can-

didates from previous iterations that have been deflated (i.e.,
discarded) due to linear dependence on already accepted right
and left Lanczos vectors, respectively. Finally, the nonzero
elements of T n and T̃ n are used to enforce the biorthogonality
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between the m + p+ 1 vectors that can overlap in exact arith-
metic at each iteration [35].

In numerical implementations, vectors are usually deflated
when linear independence is below a given threshold, since
inexact arithmetic prevents the description of exact linear
dependence. The numbers mc and pc, initially equal to the
number of right and left starting vectors m and p, give the
current number of vectors available for deflation. We say that
the sequence in Eqs. (30) and (31) is fully exhausted when
m or p deflations have occurred, respectively. The iterative
procedure is then terminated, giving equal numbers of right
and left Lanczos vectors.

The iterative solution of Eqs. (32) and (33) is done in
accordance with Algorithm 5.1 of Ref. [37], with two excep-
tions. The following biorthogonalization step is added at the
beginning of step 1:

if n > 1 then
for k = 1 to max{1, n − pc − 1} do
v̂n ← v̂n − vk (wT

k v̂n)
end for

end if

and the following at the beginning of step 2:
if n > 1 then

for k = 1 to max{1, n − mc − 1} do
ŵn ← ŵn − (ŵT

n vk )wk

end for
end if

These additions lead to an algorithm that enforces the
biorthogonality between all Lanczos vectors in inexact arith-
metic,

W T
nV n = �n = diag(δ1, δ2, . . . , δm), (34)

and not just between the vectors that can overlap in exact
arithmetic. We observe that this modification of the algo-
rithm is important for numerical stability when the number
of iterations becomes large, but the modification also makes
the number of vector operations substantially higher. The
number of operations can potentially be reduced in future
implementations, e.g., by formulating a restarted asymmetric
band Lanczos algorithm, based on existing approaches [38].

The iterative procedure continues until a given maximum
chain length (i.e., number of iterations) n = nmax is reached,
unless the procedure is terminated at a lower n because of full
exhaustion of the sequence in Eq. (30) or (31). The algorithm
generates the n × n matrices

T P
n = �−1

n W T
nMV n

= T n + �−1
n W T

nV
D
n , (35)

T̃ P
n = (

W T
nMV n�

−1
n

)T
= T̃ n + [(

WD
n

)T
V n�

−1
n

]T
, (36)

in accordance with Algorithm 5.1 of Ref. [37]. The matrices
T P

n and T̃ P
n are related by

�nT P
n = (

T̃ P
n

)T
�n, (37)

and are banded when no deflations have occurred [35].

The matrix T P
n can be viewed as the oblique projec-

tion of M onto the n-dimensional Ki(M, b1, . . . , bm) and
orthogonally to the n-dimensional K j (MT , c1, . . . , cp) [37].
Diagonalization of the matrix yields n eigenvalues, which ap-
proximate the eigenvalues of M, and associated right and left
eigenvectors. The right eigenvectors can be transformed to ap-
proximate eigenvectors of M by premultiplication by V n, and
the left eigenvectors to approximate eigenvectors of MT by
premultiplication by W T

n �−1
n [35]. Approximate eigenvectors

with dominant (low- and high-lying) eigenvalues are typically
better converged than the ones in the middle [39–41].

E. Choice of starting vectors

In Appendix A, we demonstrate that operator matrix ele-
ments involving excited state n are linear in the right and left
vector components rνn and lnμ. We assume that n is one of
the states targeted by the band Lanczos algorithm, and state
i is a previously calculated ground or excited state. Matrix
elements between n and i can thus be written as the product
of two vectors. The first vector is the right or left vector of
state n. The second vector, which we take to be the starting
vector of the algorithm, is based on state i and operator X . This
choice of starting vectors simplifies the calculation of operator
matrix elements, as will be shown in the following. Analogous
arguments have been used in previous work [42–45] to guide
the choice of start vectors for the simple Lanczos algorithm
for coupled-cluster response [42,43] and EOM-CC theories
[44,45].

The starting vectors based on the ground state i = 0, which
are similar to the starting vectors used in coupled-cluster lin-
ear response theory [42,43], are given by

bXμ0 = ξX
μ , (38)

cX0ν = EOMηX
ν − X00t̄ν, (39)

and the starting vectors based on excited EOM-CC state i = m
are given by [44]

bXμm =
∑

ν

(
EOMAX

μν + δμνX00 − ξX
μ t̄ν

)
rνm, (40)

cXmν =
∑

μ

lmμ

(
EOMAX

μν + δμνX00 − ξX
μ t̄ν

)
. (41)

The specification of ξX
μ , EOMηX

ν , X00, and EOMAX
μν is given in

Appendix A.
The starting vectors can be expressed in the Lanczos ba-

sis by inserting the resolution of identity in terms of the
biorthonormal Lanczos vectors:

bXi =
∑
j

v j
(
wT

j b
X
i

)

=
m∑
j=1

v jb
X
ji, (42)

(
cXi

)T =
∑
j

[(
cXi

)T
v j

]
wT

j

=
p∑

j=1

cXi jw
T
j . (43)

023103-4



SIMULATING WEAK-FIELD ATTOSECOND PROCESSES … PHYSICAL REVIEW A 105, 023103 (2022)

The sum in Eq. (42) is restricted since bXi ∈ span{v1, . . . , vm}
while each (wm+1, . . .) is biorthogonal to all (v1, . . . , vm).
Likewise, the sum in Eq. (43) is restricted since cXi ∈
span{w1, . . . ,wp} while each (vp+1, . . .) is biorthogonal to all
(w1, . . . ,wp).

Thus, the transition moments involving excited states can
be obtained by contracting the starting vectors with the vectors
of excited state n:

Xin = (
cXi

)T
Rn

=
p∑

j=1

cXi j
(
wT

j Rn
)

=
p∑

j=1

cXi jR jn, (44)

Xni = LT
n b

X
i

=
m∑
j=1

(
LT
n v j

)
bXji

=
m∑
j=1

Ln jb
X
ji. (45)

Rjn and Ln j are simply the components of the right and left
eigenvectors of T P

n , respectively, and bXji = wT
j b

X
i and cXi j =

(cXi )T v j are products of starting vectors and biorthonormal
Lanczos vectors.

F. Generation of a reduced basis

The iterative process that is used to calculate sets of excited
EOM-CC states is given below. The set Jc contains the indices
of already calculated EOM-CC states. At the beginning of
the procedure, where c = 0, only the ground state has been
calculated, and J0 = {0}. The iterative procedure for the cth
EOM-CC state calculation is as follows.

(1) Choose a subset of the state indices from previous
calculations, Ic ⊆ Jc−1, and a set of operators Xc based on the
final states that can be accessed by the operators (see Sec. IV).
Also choose a maximum chain length nmax

c , and maximum
eigenvalue ωmax

c and minimum transition strength Smin
c values.

(2) Sequences of right and left starting vectors, (bXi )i∈Ic,X∈Xc

and (cXi )i∈Ic,X∈Xc , are constructed in accordance with
Eqs. (38)–(41).

(3) The band Lanczos algorithm described in Sec. II D is
run with the maximum chain length nmax

c , the field-free Jaco-
bian matrix A(0), and the sequences of starting vectors. The
algorithm terminates at nc � nmax

c , constructing the matrix
T P

nc .
(4) The eigenvalues and corresponding right and left eigen-

vectors of T P
nc are calculated. Together, these determine a set

of nc approximate EOM-CC states indexed by Nc.
(5) States n ∈ Nc with approximate eigenvalues ω̃n of A(0)

that are greater than ωmax
c are discarded.

(6) Matrix elements for all operators X ∈ Xc and combi-
nations of final n ∈ Nc and initial i ∈ Ic states are calculated
in accordance with Eqs. (44) and (45). States n ∈ Nc with

FIG. 1. Illustration of the structures of lithium fluoride (top left),
lithium hydride (top right), ethylene (bottom left), and glycine (bot-
tom right), together with the polarization of the valence-exciting
pump (orange arrow) and core-exciting probe (purple arrow) pulses.

transition strengths SXin = XinXni that are smaller than Smin
c for

all operators and initial states are discarded.
(7) For each nondiscarded state n ∈ Nc, the right and left

eigenvectors of T P
nc are transformed to approximate right and

left eigenvectors R̃n and L̃n of A(0) by premultiplication byV n

and W T
n �−1

n , respectively.
(8) If an assessment of the convergence of the vectors is

requested, residual norms of all approximate right and left
vectors are calculated. All states with a left or right residual
norm exceeding a given threshold are discarded.

(9) Finally, nondiscarded states with vectors linearly in-
dependent of previously calculated vectors are stored, and
indexed by N ′

c ⊆ Nc. The indices are added to the previous
index set Jc = Jc−1 ∪ N ′

c.
The iterative procedure is repeated if states of higher

excitation levels are desired. Afterwards, the excited-state Ja-
cobian and overlap matrices, with elements Ã(0)

mn = L̃T
mA

(0)R̃n

and S̃mn = L̃T
mR̃n, are constructed in the reduced basis of

the approximate eigenvectors. The right and left generalized
eigenvalue problems are solved, giving new sets of right and
left eigenvectors of Ã(0). The dipole and field-free Hamil-
tonian matrices are then calculated in the basis of both the
ground and the newly generated excited states, in accordance
with Eq. (26), and used in solving the time-dependent prob-
lems defined by Eqs. (25) and (28).

III. COMPUTATIONAL DETAILS

Experimental geometries from the NIST database [46] are
used for LiH, LiF, and C2H4. An optimized geometry from
the same database is used for glycine, obtained with the MP2
method with all electrons correlated and the cc-pVTZ basis
set. The linear molecules LiH and LiF are aligned along the z
axis, as done in Ref. [28]. The ethylene molecule is placed
in the xy plane, with the C-C bond along the x axis. The
glycine molecule is of Cs symmetry for the chosen geometry,
with the xy plane as the mirror plane. An illustration of the
structures of the molecules, together with the polarizations of
the valence-exciting pump and core-exciting probe pulses, is
shown in Fig. 1.

In all following calculations, the aug-cc-pCVDZ basis set
[47,48] is used for atoms targeted by the core-exciting pulses;
the aug-cc-pVDZ [47] basis set is adopted for the remaining
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FIG. 2. LiF pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. EOM-CC valence (V) states are calculated in the full projection space, while the core (C) states are
calculated within the CVS approximation. Valence states energetically inaccessible by a single pump photon γv are discarded, and so are core
states energetically inaccessible by subsequent absorption of a probe photon γv + γc. The chain lengths of the calculations are given, together
with the number of converged states (in brackets).

atoms in the molecules. Valence and core states are obtained
with the asymmetric band Lanczos algorithm with varying
chain lengths as specified in Sec. IV.

Lanczos vectors with Euclidian norms of less than 1×10−9

are deflated, but this did not occur in any of the calculations.
Final excited states that do not have a minimum transition
strength of at least 1×10−7 to any initial state, for any of the
operators used to construct the starting vectors, are discarded.
This is done to only keep states that give a non-negligible
contribution to the dynamics. Also, states with excitation en-
ergies above ωmax = ∑nγ

i Emax
γi

are discarded, where Emax
γi

=
ωi + 8σω

i is an estimate of the maximum energy of photon
i involved in the nγ -photon transition to the desired excited
states. The carrier frequency ωi and the frequency rms width
σω
i = 1/(2σ t

i ) are parameters of the pulse providing photon i
(see Sec. II A).

CVS [49–51] projectors were used to calculate core states.
A “core-only” CVS projector is applied to remove excita-
tions that originate exclusively from valence orbitals. This is
done by zeroing out all right and left vector elements that
only involve molecular orbitals with energies greater than
the energy of the lowest core molecular orbital of a given
atom. This yields a Lanczos spectrum starting at the lowest
core excitation energy of the chosen edge. A complementary
“valence-only” CVS projector is used to obtain valence ex-
cited states that are orthogonal to the core excited states.

Except for the spectra presented in Fig. 2, only sufficiently
converged valence and core band Lanczos vectors are used for
calculating stationary states and corresponding Hamiltonian
and transition moment matrices. This is done by discarding
states with either right or left residual norms greater than
1×10−2 for valence states and 1×10−1 for core states.
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In all calculations, valence states are calculated first, with
starting vectors based on the ground state. All accepted va-
lence states are, together with the ground state, used to
construct starting vectors for the core state calculations (see
Sec. II F). The energies and maximum transition strengths for
all accepted valence and core states are given in the Supple-
mental Material [52].

A fixed pump-probe delay of 40 a.u. (about 0.968 fs) is
used for lithium fluoride, lithium hydride, and ethylene. The
delay is varied for glycine, in order to calculate the transient
absorption of the molecule. In all calculations the central time
of the probe pulse is set to zero and the negative central times
of the pump pulses are set accordingly.

Unless otherwise stated, integration of the TD-EOM-CC
and TDCC equations is done using a Dormand-Prince 5(4)
integration scheme [53] with a maximum time step of 0.1
a.u., and maximum and minimum local errors of 1×10−7

and 1×10−9, respectively (see Appendix B). Each component
of the time-dependent dipole moment expectation value and
electric-field vectors is multiplied with the Hann window be-
fore Fourier transformation.

All calculations are performed using a development ver-
sion of the eT program [54].

IV. RESULTS AND DISCUSSION

A. Lithium fluoride: Convergence and nonlinear
pump interaction

When discussing the applicability of the band Lanczos
algorithm for modeling attosecond pump-probe processes, a
key question is how spectra are affected by the chain length
used. With this in mind, a single TDCC LiF pump-probe
absorption spectrum, calculated with the RK4 integrator and
fixed time steps of 5×10−3 a.u., is in Fig. 2 compared to TD-
EOM-CC spectra calculated with the Dormand-Prince 5(4)
integration scheme and various band Lanczos chain lengths.
In all calculations, the pulses have the parameters used for the
LiF spectra in Sec. III B of Ref. [28], where the F K edge is
targeted by the probe pulse. Figure 1 illustrates the polariza-
tion of the pulses relative to the orientation of the molecule.
All states with energies inaccessible by the absorption of one
photon from each pulse are discarded from the TD-EOM-CC
calculations.

For lower chain lengths, the peaks of the band Lanczos
spectra shown in Fig. 2 both shift and scale significantly
with variations in the chain length, indicating that excitation
energies and dipole matrix elements are badly converged.
The convergence generally improves with the chain length,
and low-energy high-amplitude peaks seem to converge first.
Higher chain lengths are needed for good convergence of
high-energy low-amplitude peaks, as expected from the con-
vergence behavior of Lanczos algorithms.

As demonstrated, the inclusion of badly converged states
can give spectral peaks with incorrect positions and ampli-
tudes. In addition, these states can also increase the cost
of matrix element calculation and propagation, decrease the
convergence rate of consecutive band Lanczos calculations,
and cause serious numerical instabilities during propagation.
In order to avoid these adverse effects, states with badly con-

verged right or left vector residual norms will be discarded in
the following band Lanczos calculations.

In Fig. 3, the aforementioned TDCC LiF pump-probe ab-
sorption spectrum is compared to TD-EOM-CC spectra from
converged states only. Note that the three most dominant
peaks in the TDCC spectrum are present in the green spec-
trum, which is calculated with a valence chain length of 300,
but a chain length of 400 is needed in order to converge the
short peak at around 9.9 eV. The low amplitude peaks below
and around the tall peak at around 6.9 eV are missing.

In an earlier work [28], we speculated that the smaller
peaks below 6.9 eV in the pump-only LiF spectrum could
originate from two-photon absorption. This claim was later
discussed by Pedersen et al. [32], where the TDCC state of
LiF interacting with the pump pulse was analyzed in terms of
stationary state populations. Their analysis supports the inter-
pretation that two photons are absorbed from the pump pulse.

In order to take two-photon absorption into account, spec-
tra are recalculated with the inclusion of valence states
energetically accessible by two pump photons and core states
accessible by an additional probe photon. The corresponding
results obtained with chain lengths of 300 and 400 are shown
in purple and red in Fig. 3, respectively. Note that the 300
valence chain length spectrum still lacks the smaller features
of the TDCC spectrum, but the 400 valence chain length
spectrum is practically indistinguishable from the TDCC one.
This similarity corroborates the claim that two photons are ab-
sorbed from the pump pulse. Furthermore, the results demon-
strate that reduced-basis TD-EOM-CC can faithfully repro-
duce TDCC results in particular systems, even when nonlinear
interactions are involved. The embedded Dormand-Prince
5(4) integrator is seen to perform well for TD-EOM-CC.

The bottom panel of Fig. 3 demonstrates the use of the
valence-only CVS projector to calculate the valence states.
The approximation seems to improve the rate of convergence
with respect to chain length, as a length of 300 is enough to
retrieve all the features of the TDCC spectrum while a higher
number is necessary in the nonprojected case. This improved
convergence can be explained by the reduction in dimension
from projecting out transitions from core orbitals. Moreover,
since the approximation does not seem to lead to significant
scaling or shifting of the valence peaks, it is adopted in the
following calculations.

B. Lithium hydride: Applicability of the CVS projectors

To further assess the performance of the proposed proce-
dure, as well as the applicability of the CVS projectors, we use
the TD-EOM-CC procedure to model the interaction of the
lithium hydride molecule with the pump-probe pair described
in Sec. III A of Ref. [28]. Figure 1 illustrates the polarization
of the pulses relative to the orientation of the molecule. Li
K-edge spectra are notoriously difficult to describe accurately
due to the small energy separation between the valence and
core excitation regions. This can be considered a challenging
test case for the applicability of the core-valence separation
scheme.

A comparison between TD-EOM-CC and TDCC spectra is
given in Fig. 4, where the latter is taken from Ref. [28]. In all
core state calculations a fixed band Lanczos chain length of
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FIG. 3. LiF pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. EOM-CC valence (V) states are calculated in the full projection space (middle panels) or within the
CVS approximation (bottom panels), while the core (C) states are calculated within the CVS approximation only. Valence states energetically
inaccessible by a single or two pump photons, γv or 2γv, are discarded, and so are core states energetically inaccessible by subsequent
absorption of a probe photon, γv + γc or 2γv + γc. The chain lengths of the calculations are given, together with the number of converged
states (in brackets).

400 is used. However, the number of converged core states,
given in brackets, differs due to the different starting vectors
employed.

Since TD-EOM-CC with energy-limited valence and core
states successfully reproduced the TDCC spectrum of LiF in
Sec. IV A, a similar procedure is attempted for calculating
the TD-EOM-CC LiH spectrum. That is, valence states in-
accessible by two pump photons and core states inaccessible
by an additional probe photon are discarded. The results are
shown in orange in the second topmost panels of Fig. 4. The
spectrum lacks some of the weaker features in the valence
excitation energy region, and, more notably, many of the dom-
inant features in the core excitation region. In other words,
a characteristic of the LiH molecule seemingly prevents us
from reproducing the TDCC spectrum using the procedure in

the previous section. In the following, we argue that the Li K
edge in LiH involves states that cannot be obtained with the
core-only CVS projector alone, since they do not correspond
to core excitations.

TD-EOM-CC spectra calculated with states obtained with
the valence-only CVS projector, energetically accessible by
two pump and one probe photons, are shown in the three
middle rows of panels in Fig. 4. The valence chain lengths
used are 100 (green), 150 (red), and 200 (purple). The number
of converged states in the valence region increases with the
chain length. Remarkably, increasing the valence chain length
also leads to additional peaks in the core region, illustrated
in the right panels. This demonstrates that, apart from the two
intense peaks obtained at about 54.1 eV and 57.7 eV, the other
peaks are of pure valence excitation character.
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FIG. 4. LiH pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest peaks
in the spectra. The TDCC results are shown in the top left and right panels. TD-EOM-CC results, calculated at different band Lanczos chain
lengths, are shown in the lower panels. All EOM-CC valence (V) and core (C) states are calculated within the CVS approximation. For the
CVS valence calculation for the results shown in orange, states energetically inaccessible by two pump photons, 2γv are discarded. For all
other band Lanczos calculations, only the states inaccessible by two pump photons and one probe photon 2γv + γc are discarded. The results
shown in brown are calculated from CVS valence states only. The chain lengths of the calculations are given, together with the number of
converged states (in brackets).

The necessity to include high-energy states calculated with
the valence-only CVS projector is further validated by su-
perimposing a spectrum exclusively from valence-only CVS
states (brown) with the spectrum calculated from energy-
limited valence and core states (orange), shown in the bottom
panels of Fig. 4. The peaks of the composite spectrum are
in good agreement with the TDCC ones. Therefore, we as-
sert that use of both the core-only and the complementary

valence-only CVS projectors is necessary in order to accu-
rately capture the spectral features around the Li K edge
in LiH. Note that this should not be taken as a failure of
the CVS projectors, but as a consequence of the peculiar
electronic structure of LiH. In fact, the high-energy states of
pure valence character can be more easily calculated in the
dimension reduced by the valence-only CVS projector. One
may still question whether the corresponding peaks will be as
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FIG. 5. Ethylene pump-probe absorption S(ω) as a function of frequency ω in the valence and core regions, normalized by the tallest
peaks in the spectra. The TDCC results are shown in the top left and right panels, and TD-EOM-CC results are shown in the lower panels.
In the middle panels, a ground-state z dipole operator starting vector is used for calculating the valence (V) states. In the bottom panels, both
ground-state z dipole operator and z2 quadrupole operator starting vectors are used. All valence and core (C) states are calculated within the
CVS approximation. The chain lengths of the calculations are given, together with the number of converged states (in brackets).

prominent in experimental spectra, since continuum electrons
are very crudely represented in the chosen basis set.

C. Ethylene: Nonlinear pump interaction for a different
symmetry group

For ethylene, rms widths of the z-polarized pump and
x-polarized probe pulses are set to 10 a.u. and 5 a.u., corre-
sponding to intensity full width at half maximum (FWHM)
durations of about 403 as and 201 as, respectively. Figure 1
illustrates the polarization of the pulses relative to the orienta-
tion of the molecule. The carrier frequency of the pump pulse
is set to 0.294 114 89 a.u. (about 8.0 eV), and the probe pulse
is set to 10.495 830 66 a.u. (about 285.6 eV, C K edge). The
field strengths of the pump and probe pulses are set to 0.01 a.u.
and 0.1 a.u., respectively. The time-dependent state is propa-
gated with the Dormand Prince 5(4) integration scheme, from
−2500 a.u. to 2500 a.u. of time. The TDCC spectrum, shown
in the top panel Fig. 5, is characterized by four dominant peaks
in the valence excitation region. A low amplitude peak at
around 7.3 eV is present in the TDCC spectrum, but missing in
the TD-EOM-CC spectrum calculated with a z dipole operator
starting vector, shown in the middle panels. In accordance
with the interpretation of the spectrum of LiF in Sec. IV B, we
attribute the missing peak to a two-photon excitation process,

even though valence states energetically accessible by two
photons are included. Note that quadratic functions of the z
dipole operator belong to the Ag representation of D2h, the
point group of ethylene for the chosen geometry. Hence, we
should not expect the single starting vector, belonging to the
B1u representation, to facilitate the convergence of the two-
photon peaks.

In order to mimic the two pump photon absorption pro-
cess, we include a starting vector constructed from the z2

quadrupole operator in the valence-state calculation. The re-
sults, shown in the bottom panels of Fig. 5, now capture the
two-photon peak at around 7.3 eV. The amplitude yielded by
TD-EOM-CC is, however, underestimated compared to the
TDCC one, which might indicate that more secondary valence
excited states should be included in the computation. It might
also hint at differences in two-photon absorption as described
by TD-EOM-CC and TDCC.

D. Glycine: Transient absorption

As a final example, we use the computational proce-
dure to model attosecond transient absorption by the glycine
molecule. The polarization of the pump pulse is set to the
polarization of the EOM-CC transition dipole moment be-
tween the ground and first dipole allowed valence excited
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FIG. 6. Glycine. Top left: Pump pulse absorption from the ground state SV(ω), normalized by the tallest peak in the spectrum. Top right:
Probe pulse absorption from the ground state SC(ω), normalized by the tallest peak in the spectrum. Bottom left: Pump-probe absorption minus
the probe absorption from the ground state �SC(ω) = S(ω) − SC(ω), normalized by the tallest peak in the SC(ω) spectrum. The results for two
different pump-probe delays are shown. Bottom right: In blue, the numerically integrated probe absorption difference

∫
�SC(ω)dω is shown

as a function of pump-probe delay. In orange, the dipole induced by the pump pulse in the direction from the center of mass to the N atom,
〈d〉N, is shown as a function of time after the center of the pump pulse.

state, (0.490 072x + 0.871 682y), which is in the mirror plane
of the molecule (xy plane). The probe is z polarized. Figure 1
illustrates the polarization of the pulses relative to the ori-
entation of the molecule. The rms widths of the pump and
probe pulses are set to 20 a.u. and 10 a.u., corresponding
to intensity FWHM durations of about 806 as and 403 as,
respectively. The carrier frequency of the pump pulse is set
to 0.233 683 25 a.u. (about 6.4 eV), and the probe pulse is set
to 14.894 573 19 a.u. (about 405.3 eV, N K edge). The field
strengths of the pump and probe pulses are set to 0.01 a.u.
and 0.1 a.u., respectively. The time-dependent state is propa-
gated with the Dormand Prince 5(4) integration scheme, from
−5000 a.u. to 5000 a.u. of time.

A single band Lanczos calculation is used for construct-
ing the valence states, where states energetically inaccessible
by two-photon transitions are discarded. Note that we do
not need to use quadrupole operators in order to get two-
photon valence states of glycine in the reduced basis, as
otherwise done for the ethylene valence states, since both
linear and quadratic functions of x and y dipole opera-
tors belong to the A′ representation of Cs. A valence-state
calculation, with ground-state starting vectors and a chain
length of 1500, gives 17 converged states. A subsequent
core state calculation, with ground- and valence-state start-
ing vectors and a chain length of 3000, gives 20 converged
states.

As a note of caution, all the converged valence states have
energies below 10.5 eV, which is below the double frequency
of the carrier photons. This indicates that two-photon absorp-
tion is not properly accounted for by the reduced basis, and

nonlinear features involving higher-energy valence states may
be missing in the spectra.

In the top left panel of Fig. 6, the absorption of the pump
pulse is shown as a function of frequency. Even though
the glycine molecule is substantially larger than the other
molecules considered, the spectrum is still dominated by a
small number of peaks. The number of dominant peaks is
also smaller than the number of converged states in the basis
(=17). The spectrum of the absorption of the probe pulse by
the ground state, shown in the top right panel, also has fewer
dominant peaks than the number of converged states (=20).

In order to calculate the transient absorption of the probe
pulse by the glycine molecule, absorption spectra are calcu-
lated with the pump-probe setup used for the other molecules,
with pump-probe delays varying from 0 a.u. to 120 a.u. (about
2.903 fs) in intervals of 2.5 a.u. The reduced basis energies
and dipole matrix elements do not have to be recalculated be-
tween the different TD-EOM-CC calculations, since these are
independent of the pump-probe delay. Difference spectra are
then calculated by subtracting the ground-state probe absorp-
tion spectrum from the pump-probe absorption spectra, before
normalizing by the tallest peak in the ground-state probe
spectrum. In the bottom left panel, the difference spectra at
52.5 a.u. and 65 a.u. (about 1.270 fs and 1.572 fs) are shown
in blue and orange, respectively. Both spectra are dominated
by negative peaks, indicative of ground-state bleaching. In ad-
dition, the spectra vary slightly with pump-probe delay, which
is particularly visible for the peaks that are not energetically
accessible from the ground state, e.g., in the energy range from
395 eV to 405 eV shown in the inset.

023103-11



ANDREAS S. SKEIDSVOLL et al. PHYSICAL REVIEW A 105, 023103 (2022)

In order to quantify the delay-dependent difference in the
absorption of the full probe pulse, each of the 49 pump-probe
difference spectra are numerically integrated from 390 eV to
420 eV using the trapezoidal rule. The results are shown as
function of pump-probe delay in the bottom right panel of
Fig. 6, in blue. Note that the absorption difference is smaller
for short pump-probe delays, which can be explained by the
fact that ground-state bleaching happens gradually during the
pump pulse interaction. A shorter pump-probe delay implies
that the molecule is probed while bleaching still occurs, which
can lead to a smaller difference between the pump-probe
absorption and the ground-state probe absorption.

We have also calculated the pump-induced time-dependent
dipole moment in the direction from the center of mass to the
center of the N atom, as a way of quantifying the migration
of charge between the end containing the N atom and the
opposite end of the molecule. The dipole moment is shown
in the bottom right panel of Fig. 6, in orange.

Note that the dominant periods of both the time-dependent
dipole moment and the integrated absorption (after 1 fs),
shown in the bottom right panel of Fig. 6, fall within 0.57(4)
fs. This indicates that the pump-induced TD-EOM-CC state
is a coherent superposition dominated by states with energy
differences of 7.3(6) eV, which is in agreement with the
ground-state pump absorption spectrum (top left). It also indi-
cates that the dominant features of the time-dependent charge
migration and the delay-dependent K-edge absorption are cor-
related and can be measured with phase-controlled pulses
with finite duration, as has previously been demonstrated for
instantaneous pulses [55,56].

V. CONCLUSION

We have demonstrated the use of the asymmetric band
Lanczos algorithm to generate reduced TD-EOM-CC bases
for various molecules, taking the characteristics of pulses
suitable for probing attosecond phenomena into account. The
specific starting vectors used in the calculations direct the
band Lanczos algorithm towards states that are useful for
representing the interactions. The starting vectors also allow
for the affordable calculation of transition strengths, which are
used, together with excitation energies, to automatically select
the reduced basis. The basis is further reduced by removing
unconverged states.

In Sec. IV A, we demonstrated how lithium fluoride spec-
tral peaks can converge towards peaks calculated with TDCC
by increasing the band Lanczos chain length and taking a
sufficient number of relevant states into account. In particular,
we showed that two-photon absorption has to be taken into
account in order to reproduce the smaller features of the
TDCC spectrum, as speculated in Ref. [28].

In Sec. IV B, we demonstrated that the core-only CVS
projector eliminates several of the peaks around the K edge of
lithium in lithium hydride. The missing peaks can be captured
with the complementary valence-only CVS projector, which
enabled us to target high-energy states of pure valence charac-
ter. This observation indicates that care should be taken when
the CVS scheme is used for light elements such as lithium,
where the energy separation of the core and valence orbitals
is small, so that pure valence excitations can fall within the
region of core excitations.

In Sec. IV C, we used starting vectors constructed from
both dipole and quadrupole operators, in order to converge
ethylene valence states that are dark with respect to one-
photon transitions from the ground state.

In Sec. IV D, pump and probe pulses with varying time
delays were used to assess the transient absorption of a K-
edge probe pulse as a function of pump-probe delay. We
showed how the transient absorption seems to correlate with
the migration of charge induced by the pump, and how both
quantities seem to reveal the dominant timescale in the coher-
ent superposition.
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APPENDIX A: REWRITING EOM-CC MATRIX
ELEMENT EXPRESSIONS

The matrix element Xi j of the operator X and the left and
right vectors of EOM-CC states i and j, respectively, can be
written as

Xi j = 〈ψ̃i|X |ψ j〉
=

∑
κλ

liκ〈κ|X̄ |λ〉rλ j

=
∑

ν

li0〈HF|X̄ |ν〉rν j +
∑
μν

liμ〈μ|X̄ |ν〉rν j

+
(
li0X00 +

∑
μ

liμξX
μ

)
r0 j

=
∑

ν

li0〈HF|[X̄ , τν]|HF〉rν j
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+
∑
μν

liμ
(

LRAX
μν + 〈μ|τν X̄ |HF〉)rν j

+
(
li0X00 +

∑
μ

liμξX
μ

)
r0 j, (A1)

where

LRAX
μν = 〈μ|[X̄ , τν]|HF〉, (A2)

X00 = 〈HF|X̄ |HF〉, (A3)

ξX
μ = 〈μ|X̄ |HF〉. (A4)

1. Excited-state left and ground-state right vectors

The left vector of excited state m has the reference com-
ponent lm0 = 0 [see Eq. (23)], while the right vector of
the ground state has components r00 = 1 and rν0 = 0 [see
Eq. (18)]. Inserting this into Eq. (A1), we obtain

Xm0 =
∑

μ

lmμξX
μ , (A5)

which is also the expression appearing in CC response theory
[42]. Note that this expression is linear in the excited determi-
nant components lmμ.

2. Ground-state left and excited-state right vectors

The left vector of the ground state has the components
l00 = 1 and l0μ = t̄μ [see Eq. (19)], while the right vec-
tor of excited state n has the reference component r0n =
−∑

ν t̄νrνn [see Eq. (22)]. Inserting this into Eq. (A1), we
obtain

X0n =
∑

ν

(
LRην +

∑
μ

t̄μ〈μ|τν X̄ |HF〉
)
rνn

−
(
X00 +

∑
μ

t̄μξX
μ

) ∑
ν

t̄νrνn, (A6)

where

LRην = 〈HF[X̄ , τν]HF〉 +
∑

μ

t̄μ
LRAX

μν. (A7)

The term
∑

ν
LRηνrνn appears in CC response theory [42],

and the other terms are specific to EOM-CC. Equation (A6)
is equivalent to Eq. (65) in Ref. [57] and can also be written
as

X0n =
∑

ν

(
EOMηX

ν − X00t̄ν
)
rνn, (A8)

where

EOMηX
ν = LRηX

ν +
∑

μ

t̄μ〈μ|τν X̄ |HF〉 −
( ∑

μ

t̄μξX
μ

)
t̄ν (A9)

[see Eq. (18) of Ref. [58]]. Note that Eq. (A8) is linear in the
excited determinant components rνn.

3. Excited-state left and right vectors

The left vector of excited state m has the reference com-
ponent lm0 = 0, while the right vector of excited state n has
r0n = −∑

ν t̄νrνn [see Eqs. (22) and (23)]. Inserting this into
Eq. (A1), we obtain

Xmn =
∑
μν

lmμ

(
LRAX

μν + 〈μ|τν X̄ |HF〉)rνn
−

∑
μ

lmμξX
μ

∑
ν

t̄νrνn

=
∑
μν

lmμ

(
LRAX

μν + 〈μ|τν X̄ |HF〉 − ξX
μ t̄ν

)
rνn

=
∑
μν

lmμ

(
EOMAX

μν + δμνX00 − ξX
μ t̄ν

)
rνn, (A10)

where
EOMAX

μν = 〈μ|X̄ |ν〉 − δμνX00

= LRAX
μν + 〈μ|τν X̄ |HF〉 − δμνX00 (A11)

[see Eq. (20) in Ref. [58]].
The term

∑
μν lmμ

LRAX
μνrνn appears in CC response theory,

and the other terms are specific to EOM-CC [44,58]. Note that
all matrix elements in Eq. (A10) are linear in both lmμ and rνn.

APPENDIX B: INTEGRATION SCHEME

In order to limit the error of the time-dependent results, the
integration of the TDCC and TD-EOM-CC equations is done
with the embedded Dormand-Prince method of order 5(4)
[53]. This method yields both fourth- and fifth-order accurate
solutions at each time step, and is specified by the Butcher
tableau [53,59]

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187

2100
1

40

(B1)

where the next-to-last and last rows give the coefficients of
the fifth- and fourth-order solutions, respectively. Although
the method has seven stages, its first same as last property
assures that only six function evaluations are needed per time
step.

The Euclidean distance between the solutions gives a
fourth-order estimate of the local integration error:

εO(4) = ||yO(5) − yO(4)||2. (B2)

This local error estimate is kept below a given maximum
value by adapting the time step during the integration. The
fifth-order solution is accepted as the solution at the beginning
of the next step whenever the error estimate satisfies this
condition.
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The following adaptive time-stepping scheme was de-
signed, implemented, and used together with the Dormand-
Prince 5(4) method for the relevant calculations in Sec. IV.
At the start of the integration, the step size is set to a given
maximum value. During the integration, the variable step size
is halved, and the integration step redone, whenever the error
estimate exceeds the given maximum error. After a successful
integration step, the step size is doubled whenever the error

estimate is below a given minimum value, provided that the
doubled step size is smaller than the maximum step size and
also a submultiple of the elapsed time. This is in order to
increase the efficiency of the integration while ensuring that
the solution is evaluated at times corresponding to integer
increments of the maximum time-step size. Evaluation of
time-dependent observables is done using the solutions at
these integer increments.
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The time-dependent equation-of-motion coupled cluster singles and doubles (TD-EOM-CCSD)
and time-dependent coupled cluster singles and doubles (TDCCSD) methods are compared by sim-
ulating Rabi oscillations for distant atoms in a classical electromagnetic field. While the TD-EOM-
CCSD simulations are numerically stable, the oscillating time-dependent energy expectation value
displays an incorrect scaling with the number of atoms resonant with the field. On the other hand,
the TDCCSD simulations exhibit the correct scaling in the initial stages of the Rabi cycle, but break
down when the multi-atom system approaches complete population inversion. The numerical stabil-
ity of the TDCCSD simulations is shown to be very sensitive to any interactions between the atoms,
and to left amplitudes that do not participate in the expression for time-dependent expectation
values for non-interacting atoms. Moreover, we introduce a general theoretical framework for de-
scribing the two methods, where the cluster amplitude time derivatives serve as auxiliary conditions
related to a shift of the time-dependent Hamiltonian matrix. In this framework, time-dependent
coupled cluster methods exhibit a shifted Hamiltonian matrix with a block upper triangular struc-
ture in terms of the number of excited non-interacting subsystems, explaining the correct scaling
properties of TDCCSD.

I. INTRODUCTION

With recent developments in the shaping and am-
plification of laser pulses, the production of short and
strong pulses can now be realized in several frequency
domains [1–3]. The progress sparks further interest in
the dynamical and non-linear response of molecules to
strong fields, which can involve a high number of quan-
tum states [4]. This since many of the states that are
inaccessible by a single-photon transition, either energet-
ically or by symmetry selection rules, can be accessed by
a multiphoton transition [5, 6].

The ultrafast non-linear response of molecules to
strong fields can give an extended degree of dynamic con-
trol of chemical reactions [7–9]. It can also reveal infor-
mation about the system that is inaccessible in weaker
fields, which can be used for improving the imaging of dif-
ferent reaction stages [5, 8]. That said, the involved cou-
pling between the numerous affected states can lead to
an intricate relationship between the shape and strength
of laser pulses and the molecular response, which calls
for the interpretation by appropriate quantum chemistry
methods [10].

Both the accuracy and computational complexity of
quantum chemistry methods often increase with the or-
der of approximation of the particle correlations in the
system [10, 11] and the size of the finite basis set [12], but
the accuracy also depends heavily on the mathematical

∗ henrik.koch@sns.it

structure of the method. Considerable effort is spent on
constructing the most well-behaved methods for a given
order of computational complexity, with respect to both
numerical stability and correspondence to experimental
results for various systems. Real-time variants of quan-
tum chemistry methods are convenient for modeling mul-
tiphoton transitions in systems [13], as expressions for the
high-order frequency response can be difficult to both de-
rive and to solve numerically.

The well-established single-reference coupled cluster
(CC) hierarchy of methods often gives accurate and
rapidly converging molecular properties [14] for states
with weak multi-reference character [15]. An impor-
tant reason for this accuracy is the physically reason-
able scaling properties of the methods, even when the
cluster operator is truncated. For instance, the energy
of the ground state is size-extensive, meaning that it
scales linearly with the number of non-interacting iden-
tical subsystems [16]. In the equation-of-motion (EOM-
CC) framework, the excitation energies are size-intensive,
meaning that they do not scale with the number of non-
interacting subsystems [17]. In the linear response frame-
work, which is based on time-dependent coupled cluster
theory, ground state—excited state transition moments
are also size-intensive [18]. Truncated configuration in-
teraction methods, on the other hand, do not possess
these properties, and errors generally increase with the
size of the simulated system [19].

Traditionally, the coupled cluster methods have almost
exclusively been treated in the frequency domain, but
the last decade has witnessed an increased exploration
into their real-time behavior [13]. As demonstrated by
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Pedersen and Kvaal [20] and further investigated by
Kristiansen et al. [21], the exponential parametriza-
tion makes the standard time-dependent coupled cluster
(TDCC) method inherently unstable whenever the refer-
ence determinant weight is depleted by a strong field.
These instabilities can require the use of exceedingly
small time steps in numerical solutions, and can at times
also lead to breakdowns that cannot be solved by de-
creasing the time step size.

The orbital adaptive time-dependent coupled cluster
(OATDCC) method, which requires the solution of an
additional set of linear equations at each time step, was
shown to be more stable than TDCC. Nonetheless, the
method still fails at higher field strengths, where the
reference determinant weight can become greater than
one [21].

Variants of the time-dependent equation-of-motion
coupled cluster (TD-EOM-CC) method have also been
used for modeling laser-molecule interactions, but only
a handful applications have included the full non-linear
real-time propagation of the laser-driven electron dy-
namics [13, 22–24]. In these cases, the TD-EOM-CC
equations were expressed in the basis obtained by diag-
onalizing the field-free equation-of-motion coupled clus-
ter Hamiltonian. We instead express the equations in
the elementary basis, leading to equations that are sim-
ple to implement and have computational and memory
requirements that scale more favorably with respect to
system size than the full diagonal basis equations. This
makes the formulation particularly useful for assessing
the short-time and non-linear behavior of the TD-EOM-
CC method.

The paper is organized as follows. In Section II, the
TD-EOM-CC and TDCCmethods are described in a gen-
eral theoretical framework, and it is shown how the time
derivative of the cluster amplitudes affects the analyt-
ical scaling properties of the truncated variants of the
methods. Section III outlines the computational methods
used to simulate distant atoms undergoing semiclassical
Rabi oscillations in a resonant electromagnetic field. In
Section IV, results of the simulations are presented and
discussed, including a demonstration of how the time-
dependent energy expectation value scales with respect
to system size in TD-EOM-CCSD and TDCCSD. The
key findings are summarized in Section V.

II. THEORY

A. System

The time-dependent system of the molecule and the
electromagnetic field is described by the Hamiltonian

H(t) = H(0) + V (t). (1)

The field-free molecular system is described by the
Hamiltonian H(0), and the interaction between the

molecular system and the electromagnetic field is de-
scribed by V (t). We describe the interaction semi-
classically, in the dipole approximation and length gauge.
This gives V (t) = −µ ·E(t), where µ is the electric dipole
moment vector and E(t) the classical time-dependent
electric field vector. The system is also treated within
the Born-Oppenheimer approximation, with fixed nuclei.

B. Time dependence in coupled cluster methods

The TD-EOM-CC and TDCC methods can be writ-
ten in a general theoretical framework by expressing the
time-dependent ket and bra vectors as

|Ψ(t)⟩ = eT (t)R(t) |HF⟩ , (2)

⟨Ψ̃(t)| = ⟨HF|L(t)e−T (t), (3)

where the cluster operator

T (t) =
∑
κ≥0

τκtκ(t) (4)

and the right and left operators

R(t) =
∑
κ≥0

τκrκ(t), L(t) =
∑
κ≥0

lκ(t)τ̃
†
κ. (5)

The operators τ0 and τ̃ †0 are the unit operator,

τ0 = τ̃ †0 = 1, (6)

and the operators τµ and τ̃ †µ, where µ > 0, excite and
deexcite electrons between occupied and virtual Hartree-
Fock molecular orbitals, respectively,

τµ |HF⟩ = |µ⟩ , ⟨HF| τ̃ †µ = ⟨µ̃| , (7)

τ̃ †µ |HF⟩ = 0, ⟨HF| τµ = 0. (8)

These operators are chosen so that the resulting deter-
minants are biorthonormal,

⟨κ̃|λ⟩ = δκλ, κ ≥ 0, λ ≥ 0, (9)

where δκλ is the Kronecker delta. The sums over ex-
citation levels in Eq. (4) and Eq. (5) can be truncated
in order to reduce computational scaling, yielding the
coupled cluster singles method (CCS) when only single
excitations are included, coupled cluster singles and dou-
bles (CCSD) when both single and double excitations are
included, and so on.

The field-free coupled cluster ground state can be de-

fined by setting the right and left amplitudes r
(0)
µ = 0

and r
(0)
0 = l

(0)
0 = 1, and letting the ground state cluster

amplitudes t
(0)
µ and left amplitudes l

(0)
µ be determined as

solutions of the field-free ground state equations

⟨µ̃| e−T (0)

H(0)eT
(0)

|HF⟩ = 0, (10)(
⟨HF|+

∑
µ>0

l(0)µ ⟨µ̃|
)
[e−T (0)

H(0)eT
(0)

, τν ] |HF⟩ = 0.

(11)
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For simplicity, we also set the undetermined phase-

related cluster amplitude t
(0)
0 = 0.

The equations for the time dependence of the param-
eters of Eq. (5) can be derived from the right and left
time-dependent Schrödinger equations (TDSEs)

i
d

dt
|Ψ(t)⟩ = H(t) |Ψ(t)⟩ , (12)

−i d
dt

⟨Ψ̃(t)| = ⟨Ψ̃(t)|H(t). (13)

Inserting Eq. (2) into Eq. (12) before projecting onto
⟨κ̃| e−T (t), and likewise inserting Eq. (3) into Eq. (13) be-
fore projecting onto eT (t) |λ⟩, the following matrix-vector
TDSEs are obtained

i
drκ(t)

dt
=

∑
λ≥0

H̃κλ(t)rλ(t), (14)

−idlλ(t)
dt

=
∑
κ≥0

lκ(t)H̃κλ(t), (15)

where the shifted Hamiltonian

H̃(t) = H(t)− i
dT (t)

dt
. (16)

The elements of the coupled cluster matrix O(t) of oper-
ator O(t) are given by

Oκλ(t) = ⟨κ̃|O(t) |λ⟩ , (17)

where an overbar is used to denote the similarity trans-
formation by the exponentiated time-dependent cluster
operator,

O(t) = e−T (t)O(t)eT (t). (18)

By invoking the resolution of identity 1 = |HF⟩ ⟨HF|+∑
µ>0 |µ⟩ ⟨µ̃|, the matrix elements of the shifted Hamil-

tonian in Eq. (16) can be expressed as

H̃κλ(t) = ⟨κ̃|H(t) |λ⟩ − i ⟨κ̃|
(∑

η≥0

τη
dtη(t)

dt

)
|λ⟩

= ⟨κ̃| [H(t), τλ] |HF⟩

+ ⟨κ̃| τλ
(
|HF⟩ ⟨HF|+

∑
µ>0

|µ⟩ ⟨µ̃|
)
H(t) |HF⟩

− i ⟨κ̃|λ⟩ dt0(t)
dt

− i
∑
µ>0

⟨κ̃| τµ |λ⟩
dtµ(t)

dt

= Uκλ(t) + D̃κλ(t) + L̃κλ(t),
(19)

where

Uκλ(t) = ⟨κ̃| [H(t), τλ] |HF⟩ , (20)

D̃κλ(t) = δκλ

(
⟨HF|H(t) |HF⟩ − i

dt0(t)

dt

)
, (21)

L̃κλ(t) =
∑
µ>0

⟨κ̃| τµ |λ⟩
(
⟨µ|H(t) |HF⟩ − i

dtµ(t)

dt

)
.

(22)

To explain the choices of the names of the three terms
in Eq. (19) in anticipation of the discussion in II C, we
remark that the commutator [H(t), τλ] in Eq. (20) im-
plies that the U(t) term of the shifted Hamiltonian ma-
trix for two non-interacting subsystems is block upper
triangular in terms of the number of excited subsystems.
Furthermore, the excitation operator τµ in Eq. (22), im-
plies that the L(t) term is block lower triangular, and the
Kronecker delta in Eq. (21) implies that the D(t) term
is (block) diagonal.
Once all time-dependent amplitudes have been found

at a given point in time t, the time-dependent expecta-
tion values of the time-dependent operator O(t) can be
obtained through

⟨O(t)⟩ = ⟨Ψ̃(t)|O(t) |Ψ(t)⟩

=
∑

κ,λ≥0

lκ(t)Oκλ(t)rλ(t)

= lT (t)O(t)r(t).

(23)

The indeterminate matrix-vector equations in Eq. (14)
and Eq. (15) give a unified representation of the TD-
EOM-CC and TDCC methods, since the two methods
can be recovered by imposing constraints on the cluster
amplitude time derivatives and assuming that the prop-
agation starts from the ground state. The TD-EOM-CC
method is usually derived without consideration for the
time dependence of the cluster amplitudes [22–24], how-
ever the time-dependence can equivalently be removed
after the derivation of Eq. (14) and Eq. (15) by setting

i
dtκ(t)

dt
= 0. (24)

Since we also assume that the propagation starts from
the ground state, Eq. (24) implies that T (t) = T (0), and
Eq. (19) can thus be expressed as

H̃κλ(t) = Uκλ(t) + D̃κλ(t) + L̃κλ(t), (25)

where

Uκλ(t) = ⟨κ̃| [e−T (0)

H(t)eT
(0)

, τλ] |HF⟩ , (26)

D̃κλ(t) = δκλ ⟨HF| e−T (0)

H(t)eT
(0)

|HF⟩ , (27)

L̃κλ(t) =
∑
µ>0

⟨κ̃| τµ |λ⟩ ⟨µ| e−T (0)

V (t)eT
(0)

|HF⟩ , (28)

and the H(0) term of L̃κλ(t) is zero because of Eq. (10).
The TDCC time derivatives of the phase ϵ(t) and clus-

ter amplitudes tµ(t) [25] can be gathered in the expres-
sion

i
dtκ(t)

dt
= ⟨κ̃|H(t) |HF⟩ (29)

by making the identification ϵ(t) = −it0(t). From this
expression, Eq. (21) and Eq. (22) can be seen to reduce
to

D̃κλ(t) = 0, (30)

L̃κλ(t) = 0, (31)
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implying that

H̃κλ(t) = Uκλ(t)

= ⟨κ̃|
[
H(t), τλ

]
|HF⟩

(32)

in TDCC.
The ket and bra vectors used in standard derivations

of the TDCC method [25] do not include the right op-
erator R(t) in Eq. (2), nor the time-dependence of the
reference component of L(t) in Eq. (3). To demonstrate
that the TDCC method is still retrieved when the prop-
agation starts from the ground state, we start by noting
that Eq. (14) and Eq. (32) imply that the time deriva-
tives of all rκ(t) are zero whenever all rµ(t) are zero for
µ > 0. Furthermore, Eq. (15) and Eq. (32) imply that
the time derivative of l0(t) is zero. Therefore, when the
propagation starts from the coupled cluster ground state,
rµ(t) = 0 and l0(t) = r0(t) = 1 at all times t. For κ > 0,
Eq. (15) is hence equivalent to the expression for the left
amplitude time derivatives in TDCC [25], and the TDCC
method is retrieved despite the additional flexibility in
the parametrization of Eq. (2) and Eq. (3).

The choice of cluster amplitude time derivatives has
major implications for the properties of the resulting
method. In TD-EOM-CC, Eq. (24) implies that the
cluster amplitudes do not change with time, and real
arithmetic can be used to reduce the cost of TD-EOM-
CC propagation provided the cluster amplitudes of the
ground state are real. In TDCC, on the hand, Eq. (29)
implies that the time-dependent cluster amplitudes are
complex, requiring the use of complex arithmetic. The
TDCC time derivatives also imply that Eq. (14) and
Eq. (15) are non-linear in the time-dependent parame-
ters, and the expression and interpretation of the time-
dependent state in terms of EOM-CC states is thus
nontrivial [26]. For TD-EOM-CC, on the other hand,
Eq. (14) and Eq. (15) are linear in the time-dependent
parameters, and the time independence of the cluster op-
erator allows for the method to be expressed in the basis
of the field-free EOM-CC states. This can be shown by
operating with the resolution of identity

1 =
∑
i≥0

|ψ(0)
i ⟩ ⟨ψ̃(0)

i | (33)

onto both Eq. (2) and Eq. (3), where the ket and bra of
field-free EOM-CC state i can be expressed as

|ψ(0)
i ⟩ = R

(0)
i eT

(0)

|HF⟩ , ⟨ψ(0)
i | = ⟨HF| eT

(0)

L
(0)
i ,
(34)

and the amplitudes of the operators R
(0)
i =

∑
κ≥0 τκR

(0)
κi

and L
(0)
i =

∑
κ≥0 L

(0)
iκ τ

†
κ are the right and left eigenvec-

tors of the field-free coupled cluster Hamiltonian matrix

H
(0)
κλ = ⟨κ| e−T (0)

H(0)eT
(0) |λ⟩. By letting ⟨ψ̃(0)

i |Ψ(t)⟩ =
si(t) and ⟨Ψ̃(t)|ψ(0)

i ⟩ = ki(t), the elementary basis formu-
lation of TD-EOM-CC presented here can be seen to be
equivalent to the diagonal basis formulation of Ref. [24].
As demonstrated in that reference, field-free EOM-CC

states that do not participate in the dynamics can be re-
moved from the diagonal basis in order to reduce compu-
tational costs. However, the full elementary basis formu-
lation of TD-EOM-CC, as given by Eq. (14), Eq. (15) and
Eq. (25), straightforwardly ensures the inclusion of all
transitions without requiring the calculation of all field-
free EOM-CC states and transition moments.

C. Scaling properties of real-time coupled cluster
methods

In order to theoretically investigate the scaling proper-
ties of methods based on the parametrization in Eq. (2)
and Eq. (3), we assume that the system is composed of
multiple non-interacting subsystems. We let τλI

denote
an elementary excitation operator and τ̃ †κI

an elementary
deexcitation operator of subsystem I. The elementary
excitation and deexcitation operators of the composite
system can be constructed as tensor products of all the
operators of the different subsystems. Untruncated TD-
EOM-CC and TDCC methods can represent all tensor
products, since the excitation and deexcitation levels of
the methods are not limited. In truncated methods, how-
ever, all elementary excitation and deexcitation operators
that exceed the truncation level specific to the method
are excluded, which can lead to errors related to the scal-
ing from one to multiple subsystems.
For two subsystems I ∈ {A,B}, the elementary exci-

tation and deexcitation operators of the composite sys-
tem can be constructed as the tensor products τλA ⊗ τλB

and τ̃ †κA
⊗ τ̃ †κB

. We split the sets of these operators into
four partitions, which we label by 0, A, B and AB. The
0 partition includes the operators that do not change
the excitation level of the subsystems, τ0A ⊗ τ0B and

τ̃ †0A ⊗ τ̃ †0B . The A partition includes the operators that
change the excitation level of subsystem A only, τµA

⊗τ0B
and τ̃ †µA

⊗ τ̃ †0B , and the B partition the operators that
change the excitation level of subsystem B only, τ0A⊗τµB

and τ †0A ⊗ τ †µB
, where µ > 0. The AB partition includes

the operators that change the excitation level of both
subsystems, τνA

⊗ τνB
and τ̃ †µA

⊗ τ̃ †µB
, where µ > 0 and

ν > 0. Truncation can affect the AB partition, since the
tensor products of the truncated subsystem operators can
include excitations and deexcitations that in combination
go beyond the truncation level of the method. In the fol-
lowing, we assess the general impact of this truncation on
the TD-EOM-CC and TDCC methods, without limiting
the discussion to any particular truncation level.
We start by assuming that the cluster amplitudes cor-

responding to the operators τνA ⊗ τνB are zero at a given
time t. The cluster operator T (t) can then be written as
the tensor sum,

T (t) = TA(t)⊗ IB + IA ⊗ TB(t), (35)

where TI(t) is the cluster operator for subsystems I. Since
operators on non-interacting subsystems commute, we
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have that

e±
(
TA(t)⊗IB+IA⊗TB(t)

)
= e±TA(t) ⊗ e±TB(t). (36)

We furthermore let O(t) be any operator that does not
involve any interaction between the two subsystems and
thus can be written as the tensor sum

O(t) = OA(t)⊗ IB + IA ⊗OB(t), (37)

where OA(t) and OB(t) are subsystem operators. Equa-
tion (36) then implies that the similarity transformed
operator in Eq. (18) can be written as the tensor sum

O(t) = e−TA(t)OA(t)e
TA(t) ⊗ IB

+ IA ⊗ e−TB(t)OB(t)e
TB(t)

= OA(t)⊗ IB + IA ⊗OB(t),

(38)

which does not contain terms where both two subsystems
are excited simultaneously.

We furthermore assume that the time-dependent
Hamiltonian H(t) does not involve any interaction be-
tween the two subsystems, implying that it can be writ-
ten on the form of Eq. (37). In TDCC, the time deriva-
tive of the cluster amplitudes in Eq. (29) can for the AB
partition then be written as

i
dtµAµB

(t)

dt
=

(
⟨µ̃A| ⊗ ⟨µ̃B|

)
×

(
HA(t)⊗ IB + IA ⊗HB(t)

)
×
(
|HFA⟩ ⊗ |HFB⟩

)
= 0.

(39)

If Eq. (35) is true at the initial time, it will remain true
for later times in TDCC provided the Hamiltonian still
separates as HA(t)⊗ IB + IA ⊗HB(t). In TD-EOM-CC,
the time derivatives of these cluster amplitudes are also
zero as seen by Eq. (24).

We use the subscript ∥ to denote that all amplitudes
and matrix elements corresponding to the excitation and
deexcitation operators that are not represented in trun-
cated methods have been set to zero. This is used to for-
mulate the truncated methods in the untruncated prod-
uct basis, for a more straightforward comparison to un-
truncated methods. Accordingly, the truncated right and
transposed left amplitude vectors r∥ and lT∥ are obtained
by eliminating components from the untruncated r and
lT , and can in the partitioned product bases be written
as

r∥ =

 r0
rA
rB

(rAB)∥

 , lT∥ =
(
l0 lA lB (lAB)∥

)
, (40)

where only the AB partitions are affected by the trun-
cation. Moreover, the truncated operator matrix O∥ is
obtained from O, which is the projection of Eq. (38) onto

the kets τλA
|HFA⟩ ⊗ τλB

|HFB⟩ and bras ⟨HFA| τ̃ †κA
⊗

⟨HFB| τ̃ †κB
. In the partitioned product bases, this matrix

can be written as

O∥ =

O0 0 O0A O0B 0
OA0 OAA 0 (OAAB)∥
OB0 0 OBB (OBAB)∥
0 (OABA)∥ (OABB)∥ (OABAB)∥

 , (41)

where only the AB partition row and column are affected
by the truncation.
We proceed to investigate whether time-dependent ex-

pectation values in truncated methods, given by

⟨O(t)⟩∥ = lT∥ (t)O∥(t)r∥(t), (42)

have any dependence on the truncated AB partition, as
this would imply that the the general scaling properties
of the method are incorrect. Assuming that the state of
system is known at t = t0, the time-dependent right and
transposed left amplitude vectors of truncated methods
can be given as exact solutions of the truncated right and
left matrix TDSEs in Eq. (14) and Eq. (15),

r∥(t) = U∥(t, t0)r∥(t0), lT∥ (t) = lT∥ (t0)U∥(t0, t), (43)

where

U∥(t, t0) = I∥+
∞∑

n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn H̃∥(t1) · · · H̃∥(tn)

(44)

and I is the identity matrix. Inserting Eq. (43) into
Eq. (42), we get that

⟨O(t)⟩∥ = lT∥ (t0)U∥(t0, t)O∥(t)U∥(t, t0)r∥(t0). (45)

In general, the truncated shifted Hamiltonian matrices
taking part in this equation have the same block structure
as Eq. (41), namely

H̃∥(t) =
H̃0 0(t) H̃0A(t) H̃0B(t) 0

H̃A0(t) H̃AA(t) 0 (H̃AAB(t))∥
H̃B0(t) 0 H̃BB(t) (H̃BAB(t))∥

0 (H̃ABA(t))∥ (H̃ABB(t))∥ (H̃ABAB(t))∥

 .

(46)

In TD-EOM-CC, truncated shifted Hamiltonian matrices
generally exhibit this block structure. This is because the
U(t) term given by Eq. (20) contributes to all upper tri-

angular blocks of Eq. (46) except H̃0 0(t), the D̃(t) term
given by Eq. (27) to all diagonal blocks of the matrix, and

the L̃(t) term given by Eq. (28) to all lower triangular

blocks of the matrix except H̃0 0(t).
If no further assumptions can be made regarding the

block structure of H̃∥(t) in Eq. (46), we cannot assume
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the correctness of the scaling properties of the method.
This becomes apparent when considering that the block
matrices in both Eq. (41) and Eq. (46) can map par-
titions of right and transposed left amplitude vectors
to partitions where the numbers of excited subsystems
have both increased and decreased by one. Consequently,
the products of two or more such matrices participat-
ing in U∥(t0, t)O∥(t)U∥(t, t0) in Eq. (45) can result in
a mapping between the non-zero 0 partition of r∥(t0)

and the truncated AB partition of lT∥ (t0). This im-
plies that time-dependent expectation values for two non-
interacting subsystems, given by Eq. (42), are generally
affected by the truncation of the product bases, that is,

⟨O(t)⟩∥ ̸= lT (t)O(t)r(t). (47)

Thus, the scaling properties of the truncated TD-EOM-
CC method are generally incorrect.

In TDCC, the L̃(t) term of the shifted Hamiltonian

matrix H̃(t) is always zero, as seen from Eq. (31). In TD-

EOM-CC, the L̃(t) term is zero whenever the interaction
term V (t) is zero, as seen from Eq. (28). In both these

cases, the blocks below the diagonal of H̃∥(t) are equal
to zero, and Eq. (46) can be written as

H̃∥(t) =


H̃0 0(t) H̃0A(t) H̃0B(t) 0

0 H̃AA(t) 0 (H̃AAB(t))∥
0 0 H̃BB(t) (H̃BAB(t))∥
0 0 0 (H̃ABAB(t))∥

 .

(48)

The D̃(t) term given by Eq. (21) is also zero in TDCC,

implying that H̃00(t) = 0. However, we choose to include

the non-zero H̃00(t) in the following discussion, where it
is seen that this element does not have any impact on
the scaling properties of truncated methods. This is to
accommodate field-free TD-EOM-CC in the discussion,
where V (t) = 0 for all times t.

We now examine how the vectors of the initial state are
affected by the repeated transformation by shifted Hamil-
tonian matrices with the block structure of Eq. (48).
These matrices do not map partitions of right amplitude
vectors to partitions with a higher number of excited
subsystems. Consequently, assuming r(t0) = r(0) =
(1,0,0,0)T ,

H̃∥(t1) · · · H̃∥(tn)r∥(t0) =


(
H̃(t1) · · · H̃(tn)r(t0)

)
0

0
0
0

 ,

(49)

where the right-hand side is described purely in terms of
untruncated matrices and vectors, which is valid since the
AB partition does not contribute to any of the matrix-
vector transformations. Furthermore, the same matrices
do not map partitions of transposed left amplitude vec-

tors to partitions with a lower number of excited subsys-
tems. Consequently,

lT∥ (t0)H̃∥(tn) · · · H̃∥(t1) =
(
lT (t0)H̃(tn) · · · H̃(t1)

)
0(

lT (t0)H̃(tn) · · · H̃(t1)
)
A(

lT (t0)H̃(tn) · · · H̃(t1)
)
B(

lT∥ (t0)H̃∥(tn) · · · H̃∥(t1)
)
AB


T

,
(50)

where the 0, A and B partitions on the right-hand side
are described purely in terms of untruncated matrices
and vectors, which is valid since the AB partition does
not contribute to any of the corresponding matrix-vector
transformations.
Under the condition that the matrix H̃(t) has the

block upper triangular structure of Eq. (48) for all times
t, and that the right amplitude vector starts out as the
ground state vector r(t0) = r(0), Eq. (49) and Eq. (50)
imply that

r∥(t) =


(
U(t, t0)r(t0)

)
0

0
0
0

 , (51)

lT∥ (t) =


(
lT (t0)U(t0, t)

)
0(

lT (t0)U(t0, t)
)
A(

lT (t0)U(t0, t)
)
B(

lT∥ (t0)U∥(t0, t)
)
AB


T

, (52)

where U(t, t0) is the untruncated counterpart of the time
evolution operator in Eq. (44), containing the untrun-

cated time-dependent Hamiltonian matrices H̃(t) evalu-
ated at different times t.
To assess the effect of truncation on time-dependent

expectation values in TDCC and field-free TD-EOM-CC,
we note that the matrix O∥(t) does not map between
the 0 partition of right amplitude vectors and the AB
partition of transposed left amplitude vectors. Hence,
time-dependent expectation values for systems with two
non-interacting subsystems, given by Eq. (45), are unaf-
fected by the truncation of the product bases,

⟨O(t)⟩∥ = lT∥ (t0)U∥(t0, t)O∥(t)U∥(t, t0)r∥(t0)

=
(
lT (t0)U(t0, t)

)
0
O0 0(t)

(
U(t, t0)r(t0)

)
0

+
(
lT (t0)U(t0, t)

)
A
OA0(t)

(
U(t, t0)r(t0)

)
0

+
(
lT (t0)U(t0, t)

)
B
OB0(t)

(
U(t, t0)r(t0)

)
0

= lT (t)O(t)r(t).
(53)

Furthermore, time-dependent expectation values can be
shown to be unaffected by the truncation of the prod-
uct bases for any number of non-interacting subsystems,
by sequentially dividing one of the remaining compos-
ite subsystems into two subsystems and reapplying the
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aforementioned arguments. This implies that truncated
TDCC and truncated field-free TD-EOM-CC methods
have the correct scaling properties when the system starts
out in the ground state.

III. COMPUTATIONAL DETAILS

In order to investigate the properties of the meth-
ods described in Section II B numerically, we truncate
the methods at the CCSD level, giving the TD-EOM-
CCSD and TDCCSD methods. The TD-EOM-CCSD
method is implemented in the spin-adapted elementary
basis in a development version of the eT program [27].
Furthermore, we use the existing implementations of the
spin-adapted ground state and TDCCSD methods in eT

1.0 [27, 28]. The methods are used to calculate the in-
teraction of atoms with the electromagnetic field repre-
sented by the electric field

E(t) = E0ϵ cos(ω0(t− t0) + ϕ)f(t) (54)

where ϵ0 is the peak field strength, ϵ the polarization, ω0

the carrier frequency, ϕ the carrier-envelope phase and
f(t) the envelope of the field. The envelope is given the
functional form

f(t) =


0, t < a,

sin2
(

2π(t−a)
4(b−a)

)
, a ≤ t ≤ b,

1, t > b,

(55)

which increases from zero to one in the interval from a
to b.

The aug-cc-pVDZ basis set is used for the helium and
beryllium atoms in the simulations. The field is given a
carrier frequency of 1.005 749 62 a.u., which corresponds
to the transition between the ground 0 1S0 state and the
first dipole-allowed excited 2 1P1 state of helium calcu-
lated with EOM-CCSD and aug-cc-pVDZ. By adopting
this carrier frequency, the field is in resonance with the
same transition for a single helium atom in both the TD-
EOM-CCSD and TDCCSD simulations. The field is fur-
thermore given a peak field strength of 3 × 10−2 a.u.,
a polarization in the z-direction and a carrier-envelope
phase of ϕ = −π/2. The envelope of the field is set to in-
crease from a = 0a.u. of time until b = 15 optical cycles
(≈93.709 a.u.). The envelope gives the field a narrow
bandwidth, centered around the 0 1S0–2

1P1 resonance,
which ensures that the time-dependent state of single-
helium simulations is kept in a superposition dominated
by the two states. The integration of the time-dependent
differential equations is done using the Dormand-Prince
method of order 5(4) with the adaptive time stepping
procedure described in Appendix B of Ref. [24]. The
initial time step size is set to 1× 10−2 a.u., and the max-
imum and minimum values of the estimated error are set
to 1× 10−9 a.u. and 1× 10−11 a.u., respectively. The in-
tegration is stopped when the size of the adaptive time
step becomes smaller than 1× 10−10.

t (a.u.)

TDCCSD TD-EOM-CCSD
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‖t
A
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0 200 400

0
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(t
)‖

0 200 400

0.0

0.5

‖r
A
(t
)‖

FIG. 1. Real part of the time-dependent energy expectation
value, Re

(
⟨H(t)⟩

)
, and the right and left 2-norms of the A

partitions of the cluster, right and left amplitudes, ∥tA(t)∥ ,
∥rA(t)∥ and ∥lA(t)∥ , from time-dependent TD-EOM-CCSD
and TDCCSD simulations of a single helium atom in an ex-
ternal field.

IV. RESULTS AND DISCUSSION

A. Simulating single-subsystem Rabi oscillations
with TD-EOM-CCSD and TDCCSD

For a single helium atom, both the TD-EOM-CCSD
and TDCCSD methods can describe all possible ex-
citations of the reference determinant, and the time-
dependent observables are thus analytically equal for the
two methods. In the top panel of Fig. 1, we show that this
is also the case numerically for the time-dependent en-
ergy expectation value, as the two methods give the same
result. The expectation value is initially equal to the
ground state energy, and periodically increases and de-
creases as a function of time, illustrating that the system
undergoes Rabi oscillation between the 0 1S0 and 2 1P1

states of the helium atom. The time-dependent 2-norms
of the cluster, right and left amplitudes are also shown in
Fig. 1. In contrast to the right and left amplitude norms
of both methods, the norm of the A partition of the clus-
ter amplitudes in TDCCSD displays narrow peaks which
coincide with the maxima of the time-dependent energy
expectation value. TDCCSD is known to be numerically
unstable when the weight of the reference determinant
approaches zero [20, 21], but we observe that the method
can still be used for simulating Rabi oscillations between
the 0 1S0 and 2 1P1 states of a single helium atom.
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FIG. 2. TD-EOM-CCSD simulations of one (1He) and two
distant (2He) helium atoms in an external field. Results
from two different two-helium simulations are shown, one per-
formed with the regular TD-EOM-CCSD method (gAB ≈ 0),
and one where the two-center Coulomb integrals have been
set to zero (gAB = 0). The single-helium results in Fig. 1 are
also shown for comparison. In the top panel, the real part of
the time-dependent energy expectation value, Re

(
⟨H(t)⟩

)
,

is shown, where the single-helium result has been multiplied
by two to better assess the scaling properties of the method.
In the first column below the top panel, the 2-norms of the
A partitions of the right and left amplitudes, ∥rA(t)∥ and
∥lA(t)∥, are shown. In the next column, the 2-norms of the
AB partitions of the right and left amplitudes, ∥rAB(t)∥ and
∥lAB(t)∥, are shown.

B. Simulating two-subsystem Rabi oscillations
with TD-EOM-CCSD

To numerically investigate the scaling properties of
TD-EOM-CCSD, we simulate the interaction between
two helium atoms and the external field, where one of the
atoms is located at the origin and the other at 1× 107 a0
along the x-axis. The large interatomic separation is
chosen in order to minimize any interaction between the
atoms, without requiring any modifications to the inte-
gral code. At this separation, the only non-zero two-
center electronic integrals are the two-center Coulomb
integrals, since the other integrals rapidly decay below

the default integral cutoffs of eT due to their dependence
on the overlap of the orbitals on the different centers.
The two-center Coulomb integrals decay as the inverse
distance between the electrons on the two centers, and
have magnitudes of less than 1 × 10−6Eh in the simula-
tions, implying that H(t) ≈ HA(t)⊗ IB + IA ⊗HB(t).
The simulation successfully completes, and the time-

dependent energy expectation value and various time-
dependent amplitude 2-norms are shown together with
the single-helium results of Section IVA in Fig. 2. The
single-helium energy expectation value has been multi-
plied by a factor of two, since the correct scaling prop-
erties would require the two-helium energy expectation
value to be equal to two times the single-helium one.
The frequency of the oscillations in the scaled energy
expectation value and single-subsystem norms increases,
and their magnitude decreases, as the number of helium
atoms increases from one to two.
A separate TD-EOM-CCSD simulation is performed

where the two-center Coulomb integrals are eliminated.
The results are shown in Fig. 2, demonstrating that the
elimination of the integrals does not have any significant
impact on the results. It further demonstrates that the
incorrect scaling properties of TD-EOM-CCSD is not due
to the weak interaction between the distant atoms, but
rather a problem caused the insufficient flexibility of the
parametrization of the method.

C. Simulating two-subsystem Rabi oscillations
with TDCCSD

To numerically investigate the scaling properties of
TDCCSD, we start by comparing the results from the
single-helium simulation in Section IVA with results
from simulations of two helium atoms, where one of the
atoms is located at the origin and the other at 1× 107 a0
along the x-axis. The large interactomic separation im-
plies that Eq. (39) is approximately satisfied at the start
of the simulation.
In Fig. 3, the time-dependent energy expectation value

and 2-norms of various amplitude partitions are shown,
for different two-helium TDCCSD simulations, and com-
pared to the results from the single-helium calculation in
Section IVA. From the start of the simulation and up
to 170 a.u. of time, the regular TDCCSD method gives
an energy expectation value that is equal to two times
the expectation value from the single-helium simulation,
since the absolute difference between these quantities are
on the order of 1× 10−14 and less. This agrees with the
theory in Section IIC, and implies that the TDCCSD
method treats the correlation exactly in this time range,
even though the system has four electrons and the op-
erators in Eq. (2) and Eq. (3) are truncated at the dou-
bles level. The two-helium single-subsystem norms are
also essentially equal to the single-helium norms in the
same interval, as illustrated by the small absolute dif-
ferences between these quantities. After around 170 a.u.
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FIG. 3. TDCCSD simulations of one (1He) and two distant (2He) helium atoms in an external field. Results from three
different two-helium simulations are shown, one performed with the regular TDCCSD method (gAB ≈ 0, lAB(t) ̸= 0), one
where the two-center Coulomb integrals have been set to zero (gAB = 0, lAB(t) ̸= 0), and one where both the two-center
Coulomb integrals and the AB partition of the left amplitudes have been set to zero (gAB = 0, lAB(t) = 0). The first column

of panels shows the real part of the time-dependent energy expectation value Re
(
⟨H(t)⟩2He ) and the absolute difference

∆Re
(
⟨H(t)⟩

)
=

∣∣∣Re
(
⟨H(t)⟩2He )− 2Re

(
⟨H(t)⟩1He )∣∣∣ with the single-helium result multiplied by a factor of two. In the

second column, the 2-norms of the A partitions of the cluster and left amplitudes
∥∥t2He

A (t)
∥∥ and

∥∥l2He
A (t)

∥∥ are shown, and in

the third column the absolute differences ∆∥tA(t)∥ =
∣∣∥∥t2He

A (t)
∥∥−

∥∥t1He
A (t)

∥∥∣∣ and ∆∥lA(t)∥ =
∣∣∥∥l2He

A (t)
∥∥−

∥∥l1He
A (t)

∥∥∣∣ with the

single-helium norms. In the last column, the 2-norms of the AB partitions of the cluster and left amplitudes,
∥∥t2He

AB (t)
∥∥ and∥∥l2He

AB (t)
∥∥, are shown.

of time, however, the regular TDCCSD simulation fails,
and the integration stops as adaptive time steps smaller
than 1 × 10−10 are needed to proceed. Toward the end
of the simulation, the absolute differences between the
two-helium and scaled single-helium results blow up by
increasing several orders of magnitude, implying that the
simulation does not behave according to the description
in Section IIC. Moreover, the norms of the AB partitions
of both the cluster and left amplitudes rise throughout
the simulation, and also increase dramatically at the end.
In the following, we argue that the blowup of the AB par-
titions of the amplitudes are the reason for the failure of
the regular TDCCSD simulation.

The observed increase in the norm of the AB partition
of the cluster amplitudes indicates that the conditions
for Eq. (39) are not met exactly. To enforce this equa-
tion, a separate TDCCSD simulation is conducted where
all two-center Coulomb integrals are eliminated, which
indeed results in the norm for the AB partition of the
cluster amplitudes being equal to zero for all times t.
However, the simulation still fails after around 170 a.u.,
and the 2-norm of the AB partition of the left ampli-
tudes AB increases dramatically toward the end of the

simulation, as shown in Fig. 3. The energy expectation
value and single-subsystem 2-norms are also shown and
compared to the scaled single-helium results in the figure.
In contrast to the regular TDCCSD simulation, there are
no visible instabilities in the absolute differences between
the two-helium and scaled single-helium results, although
the absolute difference in the energy expectation value
has increased to a constant on the order of 1 × 10−6Eh.
This difference is larger than the one seen in the initial
stages of the regular TDCCSD simulation, and can be
explained by the disruption of the equilibrium between
the attractive and repulsive forces between the two atoms
caused by the omission of the two-center Coulomb inte-
grals. The difference can be expected to be smaller if
all two-center interactions are removed from the integral
code. Overall, the results support the correctness of the
scaling properties of the TDCC method in the limit of no
subsystem interaction, but also highlight the sensitivity
of the cluster amplitudes to interactions between the two
subsystems in simulations of collective Rabi oscillations.

Provided the AB partition of the cluster amplitudes is
zero in TDCC, Eq. (53) predicts that time-dependent ex-
pectation values should not depend on the AB partition
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1 2 3 4 5

nHe

0.03

0.04

0.05

Ω
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FIG. 4. TD-EOM-CCSD and TDCCSD simulations of dis-
tant helium and beryllium atoms in an external field, with
the two-center Coulomb integrals set to zero. The left panel
shows results for one to five helium atoms, and the right
panel results for one helium atom and zero to two beryl-
lium atoms. The Rabi frequencies Ω are obtained by least-
squares fitting the function A sin(Ωt+ φ)+C to the real part
of the time-dependent energy expectation value. The func-
tion (2.34

√
nHe + 0.09) × 10−2 is obtained by least-squares

fitting the function A
√
nHe +C to the TD-EOM-CCSD Rabi

frequencies in the left panel.

of the left amplitudes. To verify this prediction and eval-
uate the impact of eliminating the AB partition of both
vectors on the numerical stability, a separate simulation
is conducted where the two-center Coulomb integrals and
the initial values and time derivatives of the AB parti-
tion of the left amplitudes are set to zero. This simulation
completes successfully, demonstrating that the failure of
the previous simulation is caused by the AB partition of
the left amplitudes. In Fig. 3, the resulting energy ex-
pectation value and single-subsystem 2-norms are shown
and compared to the scaled single-helium results. The
absolute differences between the two-helium and scaled
single-helium results are consistently below 1×10−6, and
there is no visible difference in the energy expectation
value caused by the removal of the AB partition of the
left amplitudes, in agreement with the theoretical obser-
vations made in Section IIC.

D. Scaling of collective Rabi oscillations with the
number of subsystems

To further investigate the scaling properties of TD-
EOM-CCSD and TDCCSD, the interaction with the field
is also calculated for three to five helium atoms, and
for one helium atom together with one to two beryllium
atoms. The first helium atom is located at the origin,
and the following atoms at increments of 1×107 a0 along
the x-axis. In all simulations, the two-center Coulomb
integrals are eliminated to circumvent the blowup of the
AB partition of the cluster amplitudes in TDCCSD and

treat the two methods on an equal footing. Furthermore,
the initial values and time derivatives of the AB partition
of the left amplitudes is also set to zero in all TDCCSD
simulations. All simulations complete successfully.
To estimate the Rabi frequencies Ω from the simula-

tion results, the sinusoidal function A sin(Ωt+ φ) + C is
least-squares fitted to the real part of the oscillating time-
dependent energy expectation value between t = 100 a.u.
and t = 500 a.u.. The resulting frequencies are dis-
played in Fig. 4. From the figure, we can see that the
Rabi frequencies from the TD-EOM-CCSD simulations
increase with the number of helium atoms. The func-
tion A

√
nHe + C is least-squares fitted to these frequen-

cies to evaluate their scaling properties, where nHe rep-
resents the number of helium atoms. The fitted curve,
also illustrated in Fig. 4, demonstrates that the Rabi fre-
quency increases as the square root of the total number
of helium atoms. As the number of subsystems in reso-
nance with the field increases, the frequency can there-
fore erroneously appear to approach infinity, meaning
that the TD-EOM-CCSD method gives a qualitatively
incorrect representation of transitions occurring in mul-
tiple subsystems simultaneously. This scaling behavior
is similar to the physical square-root scaling that can
be observed when a single excitation is symmetrically
shared among N atoms experiencing effectively uniform
coupling and interaction, such as when multi-atom Ry-
dberg excitations are blocked by van der Waals interac-
tions [29]. In our simulations, however, the scaling effect
is caused by the limited flexibility of the TD-EOM-CCSD
parametrization, as removing the two-center Coulomb in-
tegrals has no discernible impact on the results in Sec-
tion IVB.
For all TDCCSD simulations, the Rabi frequencies

shown in Fig. 4 remain constant regardless of the number
of helium or beryllium atoms, as predicted in Section IIC.
In addition, the Rabi frequencies also remain constant
in TD-EOM-CCSD simulations involving a helium atom
and up to two beryllium atoms, suggesting that Rabi fre-
quencies in TD-EOM-CC are insensitive to the number
of off-resonant subsystems. Therefore, TD-EOM-CCSD
may provide an accurate portrayal of a solitary Rabi os-
cillation in an extended quantum system while maintain-
ing superior numerical stability compared to TDCCSD.

V. CONCLUSION

In this work, a general theoretical framework for rep-
resenting both the TD-EOM-CC and TDCC methods
was presented, incorporating the time derivatives of the
cluster amplitudes as auxiliary conditions. Through this
framework, it was demonstrated that the scaling prop-
erties of truncated TD-EOM-CC methods are incorrect
in general, while the scaling properties are correct for
truncated TDCC and field-free TD-EOM-CC methods.
The TD-EOM-CCSD method was implemented in the

elementary basis, and used to numerically compare the
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scaling properties of the TD-EOM-CCSD and TDCCSD
methods through simulations of collective Rabi oscil-
lations. The simulations revealed that the TD-EOM-
CCSD method gives a qualitatively incorrect represen-
tation of collective Rabi oscillations, since the Rabi fre-
quency increases with the number of subsystems in res-
onance with the external field. Nevertheless, the results
also indicate that truncated TD-EOM-CC methods can
be suitable for simulating solitary Rabi oscillations in ex-
tended quantum systems.

All TD-EOM-CCSD simulations completed success-
fully, while the regular TDCC simulations of collective
Rabi oscillations in distant subsystems failed due to the
cluster and left amplitudes blowing up. Despite this, the
initial stages of the TDCCSD simulations displayed the
correct scaling properties, as predicted by Section IIC,
suggesting that TDCC can be suitable for simulating col-
lective transitions in extended systems, as long as com-
plete population inversion is avoided. Furthermore, it
was demonstrated that the numerical stability of the
TDCC simulations can be enhanced by ensuring that all

two-center integrals are precisely zero and eliminating the
two-subsystem deexcited partition of the left amplitudes.
However, this approach is not suitable when simulating
collective Rabi oscillations in systems that necessitate the
description of interaction between subsystems.

In conclusion, we propose that further research should
be dedicated to the development of approximate meth-
ods that can provide a qualitatively correct description
of collective Rabi oscillations, even when the interaction
between the subsystems is non-zero.
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Time-dependent equation-of-motion coupled cluster (TD-EOM-CC) is used to simulate impulsive
stimulated x-ray Raman scattering (ISXRS) of ultrashort laser pulses by neon, carbon monoxide,
pyrrole, and p-aminophenol. The TD-EOM-CC equations are expressed in the basis of field-free
EOM-CC states, where the calculation of the core-excited states is simplified through the use of the
core-valence separation (CVS) approximation. The transfer of electronic population from the ground
state to the core- and valence-excited states is calculated for different numbers of included core-
and valence-excited states, as well as for electric field pulses with different polarizations and carrier
frequencies. The results indicate that Gaussian pulses can transfer significant electronic populations
to the valence states through the Raman process. The sensitivity of this population transfer to the
model parameters is analyzed. The time-dependent electronic density for p-aminophenol is also
showcased, supporting the interpretation that ISXRS involves localized core excitations and can be
used to rapidly generate valence wavepackets.

I. INTRODUCTION

The ability to experimentally generate short and in-
tense x-ray laser pulses has been a subject of significant
interest in the field of x-ray science. Recent technological
advances, specifically the realization of x-ray free electron
lasers (XFELs) [1, 2] and new approaches based on high
harmonic generation (HHG) [3, 4], have made it possible
to generate x-ray laser pulses with high intensities and
pulse durations as short as a few hundred and even tens
of attoseconds [5]. This progress has enabled the develop-
ment of new experimental techniques with unprecedented
temporal resolution, facilitating the imaging and control
of atoms and molecules on the time scale of electronic mo-
tion. [6–12] An important phenomenon in this context is
impulsive stimulated x-ray Raman scattering (ISXRS),
which is the extension of stimulated x-ray Raman scat-
tering (SXRS) to the impulsive limit, where the duration
of the external field interaction is short compared to the
time scales of the subsequent evolution of the system.

In general, Raman scattering is a light-matter interac-
tion phenomenon in which photons trigger an excitation
of an atomic or molecular system followed by a deexcita-
tion to an energy level different from the initial one. In
the context of x-ray Raman scattering, the involved tran-
sitions are electronic in character. [6, 13–16] We focus on
the situation in which the electronic excitation in play is
a core excitation, which is deexcited to a valence-excited
state through the decay of a valence electron into a core
vacancy, see Fig. 1. Core excitations are often localized
on a specific atomic site and sensitive to the surround-
ing electronic environment, making them useful for the
local initiation of charge migration. We treat the case
where both the excitation and deexcitation are stimu-
lated by an interaction with the same laser pulse. [17]

∗ These authors contributed equally to this work.
† Electronic mail: henrik.koch@sns.it

FIG. 1. Illustration of the steps in the ISXRS process. Ini-
tially, the molecule is in its ground state (left). An external
x-ray pulse excites a core electron, leading to a core-excited
state (middle). The same pulse can trigger the decay of a
valence electron into the core vacancy, leading to a valence-
excited state (right).

This is achievable by utilizing a pulse with sufficient
bandwidth to encompass the energy differences between
the ground state and the core-excited states of interest,
as well as between these core-excited states and the final
valence-excited states. The interaction with such pulses
is similar to the interactions occurring in the first exper-
imental demonstration of electronic population transfer
via ISXRS, which was made for the NO molecule at the
Linac Coherent Light Source as recently as in 2020. [18]
The progress in experimental techniques has stimu-

lated the development of methods for modeling elec-
tron dynamics based on the time-dependent Schrödinger
equation. Real-time methods, which involve solving
this equation in the real time domain, offer a particu-
larly suitable approach for analyzing ultrafast phenom-
ena. [19] Among these methods, real-time coupled cou-
pled cluster methods offer high accuracy and computa-
tional costs that scale polynomially with the system size.
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The time evolution is described by differential equations
that can be solved using standard numerical integration
techniques such as Runge-Kutta methods.

A specific subcategory of real-time coupled clus-
ter methods is the time-dependent coupled cluster
(TDCC) methods, [20–28] where the time dependence is
parametrized by cluster amplitudes and Lagrange mul-
tipliers. [29, 30] These methods offer the advantage of
size-extensivity at all levels of truncation. Another sub-
category, the time-dependent equation-of-motion cou-
pled cluster (TD-EOM-CC) methods, [31–36] provides
less potential for numerical issues compared to TDCC
methods, [37] since the time dependence is parametrized
by the linear coefficients used in EOM-CC methods
and the cluster amplitudes remain fixed at their time-
independent ground state values. [38–40]

In the basis of field-free EOM-CC states, the TD-
EOM-CC method requires the predetermination of the
excited states that are involved in the studied processes.
Computationally, the exterior eigenvalue algorithms usu-
ally employed for calculating valence-excited states are
inefficient for the calculation of the core-excited states
often involved in x-ray interactions. This is because the
core-excited states have large eigenvalues, and the states
are embedded in an ionization (pseudo-)continuum. [41]
A useful scheme for the study of core excitations is
the core valence separation (CVS) scheme, which disre-
gards all excitations that do not involve at least one core
orbital. [42, 43] This allows for the approximate core-
excited states to be calculated as the lowest energy states
within the reduced excitation space.

In this article, we use the TD-EOM-CC method to-
gether with the CVS approximation to simulate the in-
teraction of neon, carbon monoxide, pyrrole, and p-
aminophenol with ultrashort laser pulses, and calculate
the populations of the valence-excited states following
ISXRS targeting molecular K-edges. The article is or-
ganized as follows. In Section II we briefly outline the
theory behind the calculations. We provide details of the
performed computations in Section III, and present and
discuss the results in Section IV. Conclusions are pre-
sented in Section V.

II. THEORY

The time-dependent system is described by the Hamil-
tonian

H(t) = H(0) + V (t), (1)

where H(0) is the electronic Hamiltonian of the molecule
in the Born-Oppenheimer approximation. We describe
the interaction with the external laser field V (t) in the
dipole approximation and length gauge,

V (t) = −d · E(t), (2)

where d is the vector of Cartesian dipole operators, and
E(t) the Cartesian electric field vector.

The eigenstates of the field-free Hamiltonian,

|ψj⟩ =
∑
λ

eT |λ⟩ rλj (3)

⟨ψi| =
∑
κ

liκ ⟨κ| e−T (4)

can be found by first solving the ground state coupled
cluster equations

⟨µ| e−TH(0)eT |HF⟩ = 0, (5)

which determine the cluster amplitudes tµ in the cluster
operator,

T =
∑
µ

tµτµ. (6)

Thereafter, the right and left vectors can be found
as eigenvectors of the projected time-independent
Schrödinger equation,∑

λ

⟨κ| e−TH(0)eT |λ⟩ rλj = rκjEj , (7)∑
κ

liκ ⟨κ| e−TH(0)eT |λ⟩ = Eiliλ. (8)

These equations lead to the following eigenvalue prob-
lems [44]

ARj = Rj∆Ej , (9)

LT
i A = ∆EiL

T
i , (10)

where Aµν = ⟨µ| e−T
[
H(0), τν

]
eT |HF⟩, Liµ = liµ and

Rνj = rνj for µ > 0 and ν > 0. The excitation energy
∆Ej = Ej − E0 is given as the difference between the
excited state energy and the ground state energy

E0 = ⟨HF| e−THeT |HF⟩ . (11)

The TD-EOM-CC ket and bra states can be ex-
panded in the field-free EOM-CC kets and bras, |Ψ(t)⟩ =∑

j |ψj⟩ cj(t) and ⟨Ψ̃(t)| = ∑
i bi(t) ⟨ψ̃i|. This gives the

TD-EOM-CC equations [45]

i
dci(t)

dt
=

∑
j

Hij(t)cj(t), (12)

−idbj(t)
dt

=
∑
i

bi(t)Hij(t), (13)

where Hij(t) = ⟨ψ̃i|H(t) |ψj⟩ = δijEj + ⟨ψ̃i|V (t) |ψj⟩.
The time-dependent population of EOM-CC state i in
the TD-EOM-CC superposition state can be found as
the product of the projections onto the ket and bra of
the EOM-CC state,

Pi(t) = ⟨Ψ̃(t)|ψi⟩ ⟨ψ̃i|Ψ(t)⟩
= bi(t)ci(t).

(14)
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The eigenvalues of core-excited states are interior to
the spectrum of the molecular Hamiltonian, and often
hard to reach using exterior eigenvalue methods like
Davidson or Lanczos algorithms. The core-valence sepa-
ration (CVS) approximation [42, 46] simplifies the calcu-
lation of these states by removing the valence-core and
core-valence blocks of the Hamiltonian and has become
a vital tool for the calculation of NEXAFS spectra. [41]
Let I denote the set indexing the core orbitals. We in-
voke the CVS approximation through a projector PCVS

I
that removes all vector elements that do not reference
excitations from at least one core orbital, in each eigen-
solver iteration. [43] For the coupled cluster singles and
doubles (CCSD) truncation level, this can be expressed
in compact form as

PCVS
I rai = lai PCVS

I = 0, i /∈ I (15)

PCVS
I rabij = labij PCVS

I = 0, i /∈ I ∧ j /∈ I. (16)

This projection is effectively setting all elements of the
valence-valence block of the full-space elementary basis
EOM-CC Jacobian matrix A to zero, giving the CVS
approximated Jacobian matrix, ACVS. The core-excited
EOM-CC states obtained in the CVS approximation can
have a non-zero overlap with EOM-CC states obtained
without invoking this approximation. The CVS states
are in general also not eigenstates of the full field-free Ja-
cobian, and can lead to TD-EOM-CC populations that
are non-stationary, complicating the interpretation of the
TD-EOM-CC state. To ensure that the populations are
stationary, we diagonalize the Jacobian A in the basis of
all the CVS and non-CVS (valence) states by first con-
structing the Jacobian and overlap matrices

Aij = LiARj , Sij = LiRj . (17)

respectively in the reduced space. Assuming linear inde-
pendence of the vectors in the basis, the solution of the
generalized eigenvalue problem defined by A and S gives
a new set of right and left eigenvectors of A, which pre-
serve populations when there is no interaction with the
external field.

III. COMPUTATIONAL DETAILS

The electric field in Eq. (2) is represented as

E(t) = E0 cos(ω0(t− t0) + ϕ)f(t), (18)

where E0 is the peak electric field of the pulse in its po-
larization direction, ω0 the carrier frequency and t0 the
central time of the pulse, and ϕ is the carrier-envelope
phase. The envelope function f(t) is chosen to have the
Gaussian shape

f(t) =

{
e−(t−t0)

2/(2σ2), −c ≤ t ≤ c,

0, otherwise,
(19)

where the RMS width is selected as σ = 0.5 and the
envelope truncated at c = 8σ. In all calculations, we use
the carrier-envelope phase ϕ = 0 and the peak electric
field strength |E0| of 10 a.u., which corresponds to the
maximum intensity of 7.019 × 1018 Wcm−2, calculated
from the intensity relation S0 = |E0|2/Z0 where Z0 is the
impedance of free space.
All simulations are performed using a development ver-

sion of the eT program [47] containing the TD-EOM-CC
implementation described in Ref. [45]. The Runge-Kutta
method known as RK4 is used to integrate Eq. (12) and
Eq. (13), with time steps of 0.001 a.u. for neon, carbon
monoxide, and p-aminophenol and 0.0001 a.u. for pyrrole.

IV. RESULTS AND DISCUSSION

A. Neon

In the following, the convergence properties of the final
Raman-induced populations are investigated for the neon
atom. This system is used for benchmarking purposes, as
its small size allows for the use of larger basis sets. We
focus on the convergence of the final population of the
Bv

1D valence-excited state, the lowest valence-excited
state with a significant final population.

We first study the basis set convergence with respect
to the cardinal number X of Dunning basis sets for CCS
and CCSD levels of theory. The employed basis sets
are cc-pVDZ, aug-cc-pVXZ (with X=D,...,6) and aug-
cc-pCVXZ (with X=D,...,5). As the carrier frequency ω0

of the electric field, we choose the average of two frequen-
cies. The first frequency corresponds to the transition be-
tween the ground state X1S and the Bc

1P core-excited
state. The second frequency corresponds to the transi-
tion between the Bc

1P core-excited state and the Bv
1D

valence-excited state. The Bc
1P and Bv

1D states are
chosen as they are, respectively, the lowest core-excited
and valence excited states that get significantly popu-
lated in the Raman process, except for the cc-pVDZ basis
set, where the order of Ac

1S and Bc
1P energy levels is

inverted. In these calculations, we include 4 core-excited
states and 12 valence-excited states. The frequencies
used for the different basis sets and levels of theory are
given in the Supporting Information.

From Fig. 2, we can observe how the final populations
calculated with CCS and CCSD are considerably differ-
ent, implying that CCS is not accurate enough to provide
an adequate description of the system. The addition of
functions for describing core correlation (aug-cc-pCVXZ)
leads to slightly lower final populations compared to the
corresponding basis sets without these functions (aug-cc-
pVXZ). For CCSD, the results for 5Z and 6Z are very
similar, implying that basis-set convergence is reached
for 5Z. Continuing, the convergence of the final popula-
tion of the Bv

1D state is explored with respect to the
number of valence- and core-excited states included in
the calculation. The total of the probabilites of all de-
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FIG. 2. The left panel shows the final population of the Bv
1D states of neon for different choices of level of theory and basis

set. The blue line in the right panel shows the final population of the same Bv
1D states for different numbers of valence-excited

states included in the simulation and the number of core-excited states fixed at 4, calculated with CCSD/aug-cc-pCVTZ. The
red line in the right panel shows the final population of the same Bv

1D states for different numbers of core-excited states
included in the simulation and the number of valence-excited states fixed at 79, calculated with CCSD/aug-cc-pCVTZ.

generacies of a state is calculated, such that for instance
the probabilities for the five degenerate states of D type
are added together. We perform the calculations using
the CCSD truncation level and the aug-cc-pCVTZ basis
set. The right panel of Fig. 2 exhibits the convergence
of the final population of the Bv

1D states with respect
to the number of valence-excited states included in the
simulation, with the number of core-excited states fixed
at 4. The results indicate that more than 40 valence-
excited states are needed for convergence. An analogous
procedure is performed, this time keeping the number of
valence-excited states fixed while varying the number of
core-excited states. In the right panel of Fig. 2, we can
see how the final population of Bv

1D starts to converge
after around 15 core-excited states are included in the
calculation.

B. CO

We continue by simulating ISXRS for the carbon
monoxide molecule, which is linear and belongs to the
C∞v symmetry point group. Since the system is not
centrally symmetric, results can differ depending on the
polarization of the electric field. Theoretical and ex-
perimental studies of the core-excitation spectroscopy
and ISXRS of this molecule have previously been car-

ried out. [48] In our simulations, the distance between
the two nuclei is fixed at 1.128 Å, corresponding to the
equilibrium bond length in the NIST database. [49]. The
internuclear axis of the molecule is aligned along the z-
axis and the carbon atom is placed at the origin of the
coordinate system while the oxygen atom is placed at
1.128 Å along the z-axis. The carrier frequency of the ex-
ternal electric field is again chosen as the average between
two frequencies. The first is the transition frequency
between the ground state and the first core-excited
state, which is the lowest-energy core-excited state that
gets significantly populated during the Raman process.
The second is the frequency of transition between this
core-excited state and the third valence-excited state,
which is the lowest valence-excited state that gets sig-
nificantly populated. For CCS/aug-cc-pCVTZ, the fre-
quency is 20.029 089Eh, while for CCSD/aug-cc-pCVTZ
it is 19.504 022Eh, corresponding to the O K-edge.

To investigate transitions at the C K-edge, we choose
the lowest-energy molecular orbital localized on the car-
bon atom as the molecular orbital used in the CVS ap-
proximation. The carrier frequency of the electric field is
again chosen as average of the transition frequencies be-
tween the ground state and the lowest core-excited state
that is significantly populated, and that between that
core-excited state and the lowest valence-excited state
that is significantly populated, resulting in a carrier fre-
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FIG. 3. The left panel shows the final population of the Dv
1Σ, Ev

1Σ, and Lv
1Σ valence-excited state of carbon monoxide

for different numbers of core-excited states included in the calculation, with the number of valence states fixed at 20 and the
external electric field polarization in the positive z-direction. The central panel shows the time-dependent population of the
third valence-excited state of carbon monoxide, calculated with the aug-cc-pCVTZ basis set and different levels of theory and
electric field polarizations. The right panel shows the time-dependent population of the third valence-excited state for external
electric fields tuned to different K-edges and with different polarizations, calculated with CCSD/aug-cc-pCVTZ.

quency of 10.402 530Eh

In the carbon monoxide system, linearly polarized elec-
tric fields can be decomposed into two components: the
polarization component parallel to the internuclear axis
(along the z-axis) and the polarization component per-
pendicular to it (any direction in the xy-plane). As for
neon, the convergence of the final population of cer-
tain valence-excited states is assessed with respect to
the number of included core-excited states. The results
are shown for the Dv

1Σ, Ev
1Σ and Lv

1Σ valence-excited
states in the left panel of Fig. 3, demonstrating that con-
vergence is attained by increasing the number of consid-
ered core-excited states. About 30 core-excited states
are needed for convergence when the number of valence-
excited states is fixed at 20. In the central panel of the
figure, we can see how the time-dependent population of
the third valence-excited state depends on the polariza-
tion of the electric field and level of theory, and also how
the population is constant after the interaction with the
field. The final population is exactly zero when the po-
larization is along the z-axis, as expected from the sym-
metry of the molecule and field. In the right panel, we
can see how the time-dependent population of the third
valence-excited state differs when the carrier frequency
of the electric field is tuned to the K-edge of different
elements (C or O). For the different tunings, the third

valence-excited state is reached through different transi-
tion pathways, involving other transition frequencies and
transition moments. As for the results in the central
panel, the population is exactly zero when the electric
field is polarized along the z-axis, irrespective of the cho-
sen frequency, for symmetry reasons. The populations
are also constant after the interaction with the field

C. Pyrrole

We further increase the complexity of the modeled sys-
tem by considering pyrrole, which belongs to the C2v

symmetry point group. The geometry of the molecule
is obtained from the NIST database. [49], for which the
molecule lies in the yz-plane and the symmetry axis is
along the z-axis. The Supporting Information provides
the geometry of the system, along with a figure that
shows its orientation relative to the Cartesian coordinate
axes. The final populations after the Raman process are
assessed for the electric field polarization vector set equal
to (1, 0, 0) (1, 1, 0) and (1, 1, 1) in the chosen coordinate
system. The Raman process involving the N K-edge is
studied by performing calculations at the CCSD level of
theory with aug-cc-pCVDZ for the nitrogen atom and
aug-cc-pVDZ for the other atoms. The carrier frequency
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FIG. 4. The left panel displays the final populations of various excited states of pyrrole following ISXRS with different electric
field polarizations, computed at the CCSD level of theory and with the aug-cc-pCVDZ basis set for the nitrogen atom and the
aug-cc-pVDZ basis set for the other atoms. The right panel displays the final populations of different excited states of pyrrole
for electric fields tuned to different K-edges, computed at the CCSD level of theory and with the aug-cc-pCVDZ basis set for
the atom with the targeted K-edge shown in the inset and aug-cc-pVDZ basis set for the remaining atoms.

of the external electric field is chosen as the frequency
of transition from the ground state to the most pop-
ulated core-excited state, which is 14.901 363Eh. The
Raman process involving the C K-edge is studied by per-
forming calculations at the CCSD level of theory with
aug-cc-pCVDZ for the carbon atoms and aug-cc-pVDZ
for the other atoms. The core-excited states are calcu-
lated by using the CVS approximation restricted to the
molecular orbital with the second-lowest energy. The
carrier frequency of the external electric field is set to
10.949 885Eh, which is the transition frequency from the
ground state to the fifth core-excited state, the lowest-
energy core-excited state that is the most populated.

In the left panel of Fig. 4, we can see that new valence-
excited states are populated as the polarization of the
external electric field changes from (1, 0, 0), to (1, 1, 0),
and to (1, 1, 1). In particular, when the electric field is
only polarized along the x-axis, there are no excitation
to the valence-excited states. When the electric field has
components along all three axes, all considered valence-
excited states have a nonzero final population. An in-
termediate situation occurs when the electric field has
components along both the x- and y-axes but not along
the z-axis. This is since the different polarizations of the
external electric field has components in different num-
bers of irreducible representation, enabling transitions to
electronic states belonging to different irreducible repre-

sentations. In the right panel of Fig. 4, we can see how
the final population of valence-excited states differs when
the carrier frequency of the electric field is tuned to the
N K-edge and C K-edge, calculated using the CVS ap-
proximation with the lowest- and next-to-lowest-energy
molecular orbitals, respectively. In both cases, the polar-
ization vector of the field is set to (1, 1, 1). The valence-
excited states that become populated are the same for
the two K-edge frequencies, while the populations of the
states are different.

D. p-aminophenol

Finally, we consider the planar p-aminophenol
molecule. The molecule belongs to the Cs symmetry
point group, which only contains the mirror plane and
the identity as symmetry elements. This molecule is cho-
sen in order to investigate if charge migration between
the functional groups located at the opposite side of the
aromatic ring can be observed, as the electronic charge
can easily travel along the aromatic electron cloud. [50]
Compared to the systems analyzed previously, which

offer only limited potential for charge migration due
to their small sizes, the p-aminophenol molecule is a
larger system containing two strongly electron donor sub-
stituents (amino and hydroxyl) on a benzene ring. [51].
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FIG. 5. Positive (gray) and negative (red) electronic isodensity surfaces of the time-dependent density after subtracting the
ground state density of p-aminophenol, at the times specified at the top right corner of each subfigure. The structure of the
p-aminophenol molecule is also shown in each subfigure.

We can thus expect a localized excitation to be followed
by long-range charge migration.

The geometry of p-aminophenol is calculated at the
B3LYP/aug-cc-pVDZ level of theory, and the molecule
is placed in the xy-plane. The Supporting Information
includes the geometry and a figure that illustrates the
orientation of the molecule relative to the Cartesian co-
ordinate axes. For the subsequent calculations, aug-cc-
pCVDZ is used for the oxygen atom and aug-cc-pVDZ
for all other atoms. The carrier frequency is chosen
as 19.883 479Eh, which corresponds to the frequency
of transition from the ground state to the fourth core-
excited state, which is the most populated state among
the two lowest-energy core-excited states that have a non-

zero population after the Raman process.

In Fig. 5, the charge migration is illustrated through
isodensity surfaces of the time-dependent density after
subtracting the ground state density, calculated at differ-
ent points in time. After the interaction with the exter-
nal electromagnetic pulse, we can observe how the core
excitation of the oxygen atom is reflected in a positive
charge arising around that nucleus, enclosed in a nega-
tively charged region at a bigger distance from the oxy-
gen nucleus. This is followed by an alternating pattern
of regions with increased or decreased electronic charge
throughout the entire benzene ring up to the nitrogen
atom of the amino group. In particular, the atoms of
the ring gain some negative charge while the bonds be-
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come more positively charged, and the bonds are thus
expected to be weakened. Finally, we can observe how
the nitrogen atom becomes negatively charged. As pre-
dicted, we observe a localized excitation at the hydroxyl
substituent following oxygen K-edge excitation, followed
by long-range charge migration, in accordance with what
one could expect from a superposition of valence-excited
states generated by ISXRS.

In the supplemental material we have included a movie
that shows the temporal evolution of the electronic den-
sity depicted through isodensity surfaces of the time-
dependent density difference, illustrating how the density
oscillates after the interaction with the external electric
field. The generation of electronic wavepackets with ex-
ternal laser pulses is interesting from an experimental
point of view, as it represents the first step of controlling
chemical reactions with laser pulses.

V. CONCLUSION

In this work, a time-dependent equation-of-motion
coupled cluster model of ISXRS has been presented.
First, we assessed the convergence of the final popula-
tion of neon valence states with respect to different cal-
culation parameters: the level of coupled cluster theory,
the choice of basis set, and choices of the total number
of valence- and core-excited states. We observed how the
adequate description of the system required a proper rep-
resentation of correlation and a sufficiently flexible basis
set, since the CCS level of theory and basis sets without
augmentation performed poorly. We also demonstrated
that convergence of the population of a valence-excited
state of neon was achieved when increasing the number
of valence- and core-excited states for the given level of
theory and basis set. Subsequently, the final populations
of carbon monoxide states were assessed with respect to
the number of included core-excited states. The results
showed convergence for several valence-excited states for

the given level of theory and basis set.

Furthermore, we demonstrated that the final popula-
tions of states of both carbon monoxide and pyrrole are
significantly affected by the polarization of the external
electric field, as symmetry can enable and forbid the tran-
sition to some of the excited states within the bandwidth
of the pulse. We also assessed how the results were af-
fected by tuning the external electric field to the K-edge
of the different atoms, where the frequencies were cal-
culated with the CVS approximation targeting the core
molecular orbitals of the atoms. We observed how a dif-
ferent choice of K-edge led to changes in final populations
as the final states were reached through different transi-
tion pathways.

After investigating ISXRS by neon, carbon monoxide,
and pyrrole, we studied the time evolution of the elec-
tronic density of p-aminophenol. The ground-state den-
sity was subtracted from the time-dependent density, and
the density difference was visualized through isodensity
surfaces in real space. We observed the rapid formation
of a valence wavepacket and subsequent charge migration
in the molecule. Simulations of field-induced charge mi-
gration in molecular systems can be used to predict how
chemical reactions can be controlled by external electric
fields, which we believe will be a subject of further inter-
est in the near future.
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A. Scrinzi, T. W. Hänsch, and F. Krausz, Attosecond
control of electronic processes by intense light fields, Na-
ture 421, 611 (2003).

[8] J. Duris, S. Li, T. Driver, E. G. Champenois, J. P.
MacArthur, A. A. Lutman, Z. Zhang, P. Rosenberger,
J. W. Aldrich, R. Coffee, G. Coslovich, F.-J. Decker,
J. M. Glownia, G. Hartmann, W. Helml, A. Kamalov,



9

J. Knurr, J. Krzywinski, M.-F. Lin, J. P. Marangos,
M. Nantel, A. Natan, J. T. O’Neal, N. Shivaram, P. Wal-
ter, A. L. Wang, J. J. Welch, J. Z. Wolf, Thomas J. A. Xu,
M. F. Kling, P. H. Bucksbaum, A. Zholents, Z. Huang,
J. P. Cryan, and A. Marinelli, Tunable isolated attosec-
ond x-ray pulses with gigawatt peak power from a free-
electron laser, Nat. Photonics 14, 30 (2020).

[9] M. Drescher, M. Hentschel, R. Kienberger, G. Tem-
pea, C. Spielmann, G. A. Reider, P. B. Corkum, and
F. Krausz, X-ray pulses approaching the attosecond fron-
tier, Science 291, 1923 (2001).

[10] S. Li, T. Driver, P. Rosenberger, E. G. Champenois,
J. Duris, A. Al-Haddad, V. Averbukh, J. C. T. Barnard,
N. Berrah, C. Bostedt, P. H. Bucksbaum, R. N. Cof-
fee, L. F. DiMauro, L. Fang, D. Garratt, A. Gatton,
Z. Guo, G. Hartmann, D. Haxton, W. Helml, Z. Huang,
A. C. LaForge, A. Kamalov, J. Knurr, M.-F. Lin, A. A.
Lutman, J. P. MacArthur, J. P. Marangos, M. Nantel,
A. Natan, R. Obaid, J. T. O’Neal, N. H. Shivaram,
A. Schori, P. Walter, A. L. Wang, T. J. A. Wolf, Z. Zhang,
M. F. Kling, A. Marinelli, and J. P. Cryan, Attosecond
coherent electron motion in auger-meitner decay, Science
375, 285 (2022).

[11] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. D.
Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Pala-
cios, P. Decleva, J. B. Greenwood, F. Mart́ın, and
M. Nisoli, Ultrafast electron dynamics in phenylalanine
initiated by attosecond pulses, Science 346, 336 (2014).

[12] P. M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan,
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