

 i

Didrik Eilertsen

Eirik Dahle

Jones Maaroufi

Interactive Visualization Platform for Fish Health

Bachelor thesis in Computer Science

Supervisor: Di Wu

May 2023

NTNU (Norges Teknisk Naturvitenskapelige Universitet)

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Department of ICT and Natural Sciences

 iii

Abstract

PatoGen, a leading company specializing in fish health and disease diagnostics, plays a pivotal
role in the aquaculture industry by providing fish farms with invaluable data through
comprehensive test analysis. However, managing and comprehending the vast amount of
generated data poses a significant challenge for fish farm managers and other stakeholders.

To address this issue, this bachelor thesis aimed to develop a user-friendly web-based
application that visualizes fish health and disease risk using a traffic light system, leveraging
the data provided by PatoGen. The traffic light system, a widely recognized method for
representing risk levels, was chosen for its intuitive ability to convey complex information in
a simple and understandable manner. By utilizing this application, fish farm managers and
stakeholders can easily assess the risk levels associated with various diseases, enabling them
to make informed decisions regarding farm management practices.

The developed application is seamlessly integrated with the PatoGen database, ensuring real-
time and accurate information for users. The project employed Java and Springboot for
efficient communication between the React frontend and the database, resulting in a well-
integrated system. To visualize the color-coded risks, a customizable map platform using the
Google Maps API was implemented.

Throughout the development process, an agile methodology was followed to ensure the
delivery of a fully functional product. Clear goals and individual tasks were established using
Jira and Confluence, aiding in progress tracking and adherence to time constraints. Regular
and effective communication with the customer and supervisor proved crucial in adjusting the
project trajectory when faced with challenges or unclear requirements.

In conclusion, the result stands as a highly advantageous tool for the end users. By leveraging
the power of advanced technology, it greatly simplifies the challenging task of explaining
intricate data.

 iv

Sammendrag

PatoGen, et ledende selskap som spesialiserer seg på diagnostikk av fiskehelse og
sykdommer, spiller en avgjørende rolle i akvakulturindustrien ved å gi oppdrettsanlegg
uvurderlige data gjennom omfattende test-analyser. Imidlertid utgjør håndtering og
forståelse av den store mengden genererte data en betydelig utfordring for eiere av
oppdrettsanlegg og andre interessenter.

For å løse dette problemet hadde denne bacheloroppgaven som mål å utvikle en brukervennlig
nettbasert applikasjon som visualiserer fiskehelse og sykdomsrisiko ved hjelp av et trafikklys-
system, ved å dra nytte av dataene som PatoGen leverer. Trafikklys-systemet, en anerkjent
metode for å representere risikonivåer, ble valgt for sin intuitive evne til å formidle kompleks
informasjon på en enkel og forståelig måte. Ved å bruke denne applikasjonen kan
fiskefarmeiere og interessenter enkelt vurdere risikonivåene forbundet med ulike sykdommer,
slik at de kan ta informerte beslutninger om driftspraksis på gården.

Den utviklede applikasjonen er sømløst integrert med PatoGen-databasen, slik at brukerne
får sanntidsinformasjon som er nøyaktig. Prosjektet benyttet Java og Springboot for effektiv
kommunikasjon mellom React-frontenden og databasen, noe som resulterte i et
velfungerende system. Fargekodede risikoer vises deretter på et kart hentet fra Google Maps
API.

I løpet av utviklingsprosessen ble det fulgt en streng smidig metodikk for å sikre levering av
et fullt funksjonelt produkt. Tydelige mål og individuelle oppgaver ble etablert ved hjelp av
Jira og Confluence, noe som hjalp med å spore fremgangen og overholde tidsbegrensninger.
Regelmessig og effektiv kommunikasjon med kunden og veilederen viste seg å være
avgjørende for å tilpasse prosjektets kurs når det oppstod utfordringer eller uklare krav.

Til slutt står resultatet som et svært fordelaktig verktøy for sluttbrukerne. Ved å utnytte
kraften av avansert teknologi, forenkler det betydelig den utfordrende oppgaven med å
visualisere komplisert data.

 v

Preface

Why did we choose this assignment?

The task "Risk model and web app" was the obvious candidate for our choice of bachelor
thesis. This is primarily because we wanted to create a simple, visual, and user-friendly
website, as well as the group members being both familiar and interested with the
technologies used in web development. Also, fish farming is an industry with interesting
challenges and issues. Everyone in the group wanted to gain experience from the ocean and
fishing industry. All members of the group also live in Ålesund and are familiar with the fact
that the city has a large market share within the fish industry.

Supporters

Thanks to the people who have helped the group complete the process:

x Client: PatoGen AS.
x Client Supervisor/Reference person: Noralf Gamlem (Thank you for always being

available and providing us with necessary support when needed).
x Project Supervisor: Di Wu (Thank you Di for Giving helpful feedback and supportive

suggestions throughout the entire process).

 vi

Contents

Abstract .. iii

Sammendrag ... iv

Preface ... v

Why did we choose this assignment? .. v

Supporters ... v

Contents .. vi

List of code examples .. x

List of figures ... x

Before reading ... 1

Glossary and Phrases ... 1

Acronyms and jargons ... 4

1 Introduction .. 5

1.1 Background .. 5

1.2 Problem ... 5

1.3 Requirements.. 6
1.3.1 Confidentiality ... 6
1.3.2 User authentication .. 6
1.3.3 Data visualization ... 6
1.3.4 Graphical interface ... 7

1.4 Traffic Light Labeling .. 7

2 Theory ... 8

2.1 Client-server communication ... 8

2.2 Relational database .. 8

2.3 Agile development ... 8

2.4 Coupling and cohesion .. 9

2.5 Testing .. 9
2.5.1 Unit Tests ... 9
2.5.2 API Testing ... 9

2.6 Continuous integration .. 10

2.7 Client-side processing ... 10

2.8 Server-side processing ... 10

 vii

2.9 Polymerase Chain Reaction .. 11

2.10 Cycle Threshold Values ... 11

2.11 Human-Computer Interaction ... 11

3 Methodology and tools.. 12

3.1 Planning phase .. 12
3.1.1 Pre-project plan ... 12
3.1.2 Use cases ... 12
3.1.3 Wireframes & Design .. 14
3.1.4 Research .. 14

3.2 Tools ... 14
3.2.1 SQL ... 15
3.2.2 React ... 15
3.2.3 Material UI & Recharts .. 15
3.2.4 Redux .. 15
3.2.5 Google maps API.. 17
3.2.6 Spring Boot ... 17
3.2.7 Version Control .. 17
3.2.8 OpenAI (ChatGPT, GPT-4).. 18
3.2.9 Postman ... 18
3.2.10 Microsoft Authentication Library .. 18
3.2.11 Deployment tools ... 19

3.3 Collaboration .. 19
3.3.1 Jira .. 19
3.3.2 Confluence .. 19

3.4 Development .. 20
3.4.1 Agile Methods .. 20
3.4.2 Minimal Viable Product & User tests ... 20
3.4.3 Connecting to Azure Database .. 21
3.4.4 Spring Boot ... 22
3.4.5 Visualizing data ... 22
3.4.6 Improving availability ... 24
3.4.7 Authenticated access .. 25
3.4.8 Postman ... 25
3.4.9 Version control .. 25
3.4.10 Collaboration ... 26
3.4.11 Processing and optimalization ... 26

4 Results .. 29

4.1 General .. 29

4.2 Engineering results .. 29
4.2.1 Map integration with polygons .. 30
4.2.2 Design principles .. 32
4.2.3 Authorizing accounts... 34
4.2.4 Filtered search and date picker ... 35

 viii

4.2.5 API development .. 36
4.2.6 Assessing disease impact ... 40
4.2.7 Deployment .. 40

4.3 Administrative results ... 41
4.3.1 Using Jira & Confluence ... 41
4.3.2 Git ... 41
4.3.3 Milestones .. 42
4.3.4 Quality insurance ... 42

4.4 Performance and Optimization Results ... 43
4.4.1 Application performance .. 43
4.4.2 Code optimization .. 43
4.4.3 Accessibility and usability .. 43
4.4.4 Code reliability... 43

4.5 Integration and Compatibility Results .. 45
4.5.1 Integration with external systems ... 45
4.5.2 Cross-platform and browser compatibility ... 46

4.6 Learning Outcomes and Skill Development ... 46

5 Discussion ... 47

5.1 Choice of technologies .. 47

5.2 Team collaboration and communication ... 47
5.2.1 Version control .. 47
5.2.2 Testing ... 48

5.3 Time constraints and milestones ... 48

5.4 Quality assurance .. 48

5.5 Alternative approaches ... 49

5.6 Agile Methods ... 49
5.6.1 Sprints ... 49
5.6.2 Daily standups ... 49
5.6.3 Jira .. 50
5.6.4 Confluence .. 50
5.6.5 Client and supervisor .. 50

5.7 Fulfillment of Client Requirements... 51
5.7.1 Confidentiality ... 51
5.7.2 User Authentication .. 51
5.7.3 Data visualization ... 51
5.7.4 Graphical interface ... 52

6 Conclusion... 52

6.1 Summary of Achievements .. 52
6.1.1 Technology Selection .. 52
6.1.2 Team Collaboration and Project Management .. 53
6.1.3 Application Design and Functionality .. 53
6.1.4 Overcoming Time Constraints ... 53

 ix

6.1.5 Quality Assurance .. 53

6.2 Limitations and Future Research ... 54
6.2.1 Alternative Approaches ... 54
6.2.2 Additional Features and Improvements .. 54

6.3 Identified problems .. 54
6.3.1 Spring Boot in deployment ... 54

6.4 Final Remarks ... 55

7 Societal Impact ... 56

7.1 Benefits for Aquaculture Industry ... 56
7.1.1 Economic implications ... 56

7.2 Environmental Impact .. 56

7.3 Public health and food industry .. 57

7.4 Future Research and Development .. 57

Bibliography ... 58

 x

List of code examples
CODE 1 (GOOGLE MAPS CONTAINER COMPONENT) .. 30
CODE 2 (CODE FOR EXTRACTING LATLNG-COORDINATES) ... 31
CODE 3 (IMPLEMENTATION OF THE GENERATEPATHS-FUNCTION) .. 31
CODE 4 (CUSTOM LOGIN-SCREEN COMPONENT) .. 34
CODE 5 (CUSTOM LOGIN-SCREEN COMPONENT) .. 35
CODE 6 (EXAMPLE OF REPOSITORY INTERFACE) ... 37
CODE 7 (EXAMPLE OF CONTROLLER CLASS) ... 37
CODE 8 (EXAMPLE OF SERVICE CLASS) .. 37
CODE 9 (EXAMPLE OF A NATIVE QUERY USING JPAREPOSITORY) .. 38
CODE 10 (EXAMPLE OF THE SAMPLEDATA ENTITY CLASS BEING ASSOCIATED TO REPOSITORY INTERFACE) .. 38
CODE 11 (EXAMPLE OF A QUERY USING JDBCTEMPLATE) ... 39
CODE 12 (CI BUILD BACKED JOB - ALL PARAMETERS IN MVN CLEAN VERIFY NOT DEPICTED) 44
CODE 13 (BUILD FRONTEND JOB) .. 44
CODE 14 (CI AUTOMATED POSTMAN TEST) ... 45

List of figures
FIGURE 1 (USE-CASE DIAGRAM) ... 13
FIGURE 2 (REDUX DEVTOOLS EXAMPLE, SHOWING THE DIFFERENT STATES MANAGED) 16
FIGURE 3 (HISTORICAL DATA GRAPH FROM "RECHARTS") ... 23
FIGURE 4 (GENERAL INFORMATION GRAPH) ... 23
FIGURE 5 (DROPDOWN HINT BUTTONS (ON HOVER)) ... 24
FIGURE 6 (DESCRIPTIVE TEXT ABOUT COLOR VALUES) ... 24
FIGURE 7 (NUMBER OF ROWS IN A QUERY) .. 27
FIGURE 8 (PERFORMANCE OF FINAL ENDPOINT) ... 28
FIGURE 9 (SIZE AND PERFORMANCE OF QUERY) ... 28
FIGURE 10 (EXPLANATORY PICTURE OF THE RESULT) ... 30
FIGURE 11 (RESULTING MAP WITH POLYGONS) ... 32
FIGURE 12 (ON CLICK/ON HOVER POLYGON POPUP) .. 32
FIGURE 13 (SIDEWINDOW PC-SCREEN) ... 33
FIGURE 15 (SIDEWINDOW TABLET-SCREEN) .. 33
FIGURE 14 (SIDEWINDOW MOBILE-SCREEN) .. 33
FIGURE 16 (AGD-PERU 2022) ... 35
FIGURE 17 (AGD-PERU 2021) ... 35
FIGURE 18(PACKAGE/CLASS HIERARCHY, INCLUDING EXAMPLE OF ENTITY CLASS) 36
FIGURE 19 (A SINGLE REQUEST TAKING OVER 5.6 SECONDS) .. 37
FIGURE 20 (JDBC, UPDATED NTNU-VIEW FILE-STRUCTURE) .. 39
FIGURE 21 (JPA, NTNU-VIEW FILE-STRUCTURE) ... 39
FIGURE 22 (INITIAL FILE-STRUCTURE, SERVICE AND CONTROLLER CLASSES NOT FULLY IMPLEMENTED) 39
FIGURE 23 (THE URL OF THE WEBSITE)... 40
FIGURE 24 (EXAMPLE OF COMMUNICATIONS WITH CLIENT USING DISCORD) 50

https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385325
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385328
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385329
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385333
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385334
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385351
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385352
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385353
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385363
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385364
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385365
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385368
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385369
https://studntnu-my.sharepoint.com/personal/eiriknd_ntnu_no/Documents/Risk%20Application.docx#_Toc135385370

 0

 1

Before reading
This report includes technical language and acronyms which can be hard to understand. Be
sure to glance at the following and keep them in your mind while reading.

Glossary and Phrases

Frontend: The part of a website that the user directly interacts with, among the likes of
styles, layouts, buttons, forms, etc.

Backend: The part of a website that runs behind the scenes, which handles data, requests,
database management, etc.

Framework: A framework is a reusable software structure that provides a foundation for
developing applications, simplifying the development process by offering pre-built
functionality and enforcing best practices.

Library: A library is a collection of pre-written code, functions, or routines that developers
can use to avoid writing repetitive or commonly used code, saving time, and improving code
quality.

Web-based: Web-based applications or systems run in a web browser and are accessible
through the internet, allowing users to access and interact with them from any device with
an internet connection.

Cloud-based: Cloud-based solutions are hosted on remote servers and delivered over the
internet, providing scalability, flexibility, and accessibility from any location, as opposed to
being hosted on local servers or machines.

Wireframe: A wireframe is a visual representation or blueprint of a web page or application's
layout, used to plan and organize the user interface elements, content, and overall structure
before development.

Development: Development refers to the process of designing, creating, and testing
software applications or systems, involving various stages such as planning, coding,
debugging, and deployment.

 2

Version control: Version control is a system that tracks and manages changes to source
code or other files in a project, allowing developers to work on different versions, merge
changes, and revert to previous states if needed.

Agile: Agile is a project management and product development approach that emphasizes
flexibility, collaboration, and iterative progress, allowing teams to quickly adapt to changing
requirements and deliver incremental value.

Hooks: React Hooks are functions that let you "hook into" React state and lifecycle features
from functional components, allowing you to manage state and side effects without needing
to write a class component.

Devtools: Short for developer tools, devtools are an essential tool for web developers,
providing a suite of features that assist with debugging and optimizing web pages and
applications.

Agens: In physics, chemistry, and medicine, the term "agens" is used to refer to a substance
or material that causes a biological, chemical, or physical change (effect).

View: A database view is a virtual table created by combining data from one or more tables
in a database. It does not store any data itself but retrieves data dynamically from the
underlying tables. A database view can simplify data access and management by providing a
single, consistent, and secure interface to a subset of the data in the database.

Query: Queries are requests for specific information or data from a database or system. They
are used to retrieve, manipulate, and analyze data by specifying conditions and parameters.
Queries enable users to search, filter, and extract relevant information based on their needs
and criteria.

Stack trace: A stack trace is a report of the active function calls at a specific point in a
program's execution. It provides a detailed list of function calls that led to the point where
the program crashed or encountered an error. A stack trace can be a useful tool for debugging
and identifying the root cause of errors in software applications.

 3

JpaRepository: An interface in Spring Data JPA that provides methods for all the CRUD
(Create, Read, Update, Delete) operations on the entity for which it is created. It simplifies
the data access layer by eliminating boilerplate code, and it can be extended to create custom
queries and methods for interacting with the database.

Java Database Connectivity: Spring Boot JDBC is a part of the Spring Framework that
simplifies database interaction in Java applications, providing an abstraction over Java
Database Connectivity (JDBC). It offers a `JdbcTemplate` class that automates common
tasks such as connection management, statement preparation, result set handling, and
exception handling, enabling developers to focus more on business logic rather than low-level
database operations.

TCP/IP: TCP/IP stands for Transmission Control Protocol/Internet Protocol. It is a set of
protocols that allows computers and other devices to communicate and share information
over networks, such as the Internet.

HTTP/HTTPS: HTTP, short for Hypertext Transfer Protocol, is a protocol used for transferring
hypertext requests and information between servers and browsers, forming the basis of any
data exchange on the Web. HTTPS is an extension of HTTP where the data transferred is
encrypted.

FTP: FTP, short for File Transfer Protocol, is a commonly utilized network protocol that
facilitates the transmission of computer files from one system to another via a network built
on the TCP protocol, like the internet.

WebSocket: WebSockets are a communication protocol that enables real-time, bidirectional
data transfer between a client (such as a web browser) and a server.

Prop Drilling: Prop drilling refers to the process in React where props are passed from a
parent component down through the component tree to child components, which can become
complex and unwieldy in large applications.

Mock testing: Mock testing is a methodology in software testing where individual units of
source code are tested in isolation using simulated responses (mock objects) in place of actual
dependencies to verify the functionality and behavior of the unit.

 4

Acronyms and jargons

API ... iii; iv; 9; 14; 17; 18; 22; 31; 36; 46; 48; 53

CSS .. 10; 20; 21

DTO... 39

HTML .. 10; 20; 21

JS ... 47; 48; 50; 53; 55

MVP .. 13; 20; 21

API: Application Programming Interface

CSS: Cascading Style Sheets

DTO: Data Transfer Object

HTML: Hypertext Markup Language

JS: JavaScript

MVP: Minimum Viable Product

 5

1 Introduction

1.1 Background

In recent years, fish farming has grown rapidly, making it more important than ever to
monitor and manage fish health effectively. Good fish health is essential for the success of
fish farms, as diseases can cause serious problems for both the fish and the overall business.
Reportedly, over 58 million salmon were killed in Norwegian farms alone, mainly due to lice
and other diseases in 2022 [1]. Having accurate and timely information about fish health and
different diseases helps fish farm managers make better decisions about how to run their
farms.

PatoGen is looking for a way to keep their customers updated on the status of fish farms in
Norway. PatoGen is responsible for testing the fish in these fish farms for diseases. Currently,
they do not have an efficient way to convey this information to their customers and have
concluded that a web-based application would be suitable for this.

It is to be expected that the customers of PatoGen have various levels of competence in terms
of using digital solutions, therefore the application should be simple to use, and not require
any digital prerequisites.

1.2 Problem

Currently, all the information regarding the process of testing fish-samples from a customer
is stored in a relational database controlled by PatoGen. These fish-samples are sent by mail,
ZKLFK�3DWR*HQ�FDOOV�³RUGHUV´� An order has numerous properties to it, among the likes of; the
disease, if the test was positive, where the test was taken, and so on.

The problem consists of displaying all this information in a graphical interface, in a simple,
comprehensive way that people of all digital competencies can understand. This requires well
thought out solutions, and a close, continuous dialogue with PatoGen.

The solution shall strive to be scalable, secure, optimized for speed, be well documented, and
use the principles of high cohesion and loose coupling.

 6

1.3 Requirements

1.3.1 Confidentiality

All the data provided by PatoGen contains sensitive and confidential data about their
customers. In a theoretical use-case, the data should be retrieved and displayed in such a
way that a customer cannot access information about another customer.

The group had to sign a confidentiality agreement and the team received several specific
demands for the application to maintain the confidentiality. One of these demands was that
there should be data available from at least three customers at the same time before any
data is displayed. This demand should be implemented in such a way that if a user changes
the application's settings (what month to see data from, what diseases to analyze, etc.), it
should still be at least three customers before any data is displayed.

If this demand was not met, the following problem could occur: if two customers were in a
zone with no other competitors, and they both submitted tests the same month, a customer
could analyze the data and subtract their own results. What would remain is the data of the
competitor. This way one competitor can effectively gather information about the competitor's
progress.

1.3.2 User authentication

As previously stated, a lot of the client's data is confidential. As an extra security measure,
they want to authenticate users before they gain access to the website. The client has already
registered their customers in a list in a cloud-system and implemented authentication towards
that list in their other websites. They wanted us to implement a similar design for the
authentication in our project.

1.3.3 Data visualization

The client had specific requirements regarding the visualization of their data. They wanted
their users to be provided with an effortless way to compare data from different production
areas and to filter data with specific search parameters, all in a simple and intuitive interface.
Even though the data provided was well known to PatoGen, they did not have any clear
intentions on how to visualize them. The development team discussed and figured out visual
solutions on their own and lastly insured these with the client.

 7

1.3.4 Graphical interface

PatoGen gave the group full freedom to design the initial graphical interface for the web-
application, but they provided a sheet with fonts and colors they wanted implemented. These
colors and fonts are already used in other technology-services offered by PatoGen, so
implementing their fonts and colors will help strengthen their brand and make the application
more recognizable for the users.

After the initial design, there was still room for creative freedom, but the group also received
a lot of feedback and guidance along the way.

1.4 Traffic Light Labeling

The Norwegian Ministry of Industry and Fisheries has decided to incorporate a traffic light
system to determine the potential risk of diseases for salmon and trout production along the
Norwegian coastline. This is a tactical measure that could result in a growth in production of
23 000 tons [2]. However, their system only analyzes the data from fish-lice.

Companies want to maximize their profits. If their data is analyzed correctly, the farms can
maximize their production without having critical diseases spread to the point where they
must eradicate all the fish. PatoGen does tests for about 50 diseases, which are also important
to take into consideration when the fish farmers are making administrative decisions about
their production. Therefore, PatoGen and their customers have a need for analyzing and
displaying data about the status of different diseases, and not just fish-lice.

 8

2 Theory

2.1 Client-server communication

Client-server communication is a fundamental concept in modern computing. It refers to the
exchange of data between two entities: a client and a server. The client is a device or
application that requests data or services from the server, while the server is a device or
application that provides data or services to the client. The communication between the client
and the server occurs over a network, which can be either a local network or the Internet.

This communication can be implemented using various protocols and technologies. Some
common protocols include TCP/IP, HTTP, FTP, and WebSocket. These protocols define the
rules for how data is exchanged between the client and the server. Different protocols have
different strengths and weaknesses in terms of performance, security, and reliability, and the
choice of protocol depends on the specific requirements of the application [3].

2.2 Relational database

A relational database is used as a store of information. It uses tables with columns and rows
to store the data, whereas each row represents a unique record, and each column represents
the attribute of the column. Each table also has a primary key for each row used as a unique
identifier for each object in a table. This primary key can then be used on different tables as
a foreign key, which will relate data from one table to another. This provides the ability to
create connections between tables and allows for data manipulation [4].

2.3 Agile development

The agile development methodology is a strategy for software creation which prioritizes
adaptability, teamwork, and the fulfillment of customer needs. It is based on iterative and
incremental progress. Agile methodologies encourage adaptive planning, evolutionary
development, continuous improvement, with a focus on delivering high-quality software that
meets the needs of the end-users. This approach makes the development process easily
adaptive to unexpected changes [5].

 9

2.4 Coupling and cohesion

Coupling refers to the degree of interdependence between software modules or components.
When code is highly coupled, a change in one module may negatively impact other modules,
leading to difficulties in maintaining the software, whether it is for extending functionality or
making modifications. As a result, it is essential to strive for "loose coupling" to ensure a more
maintainable, flexible, and scalable system [6]. Cohesion refers to the relationship between
the responsibilities or functionalities within a software module. High cohesion means that the
module is focused on a single task, while low cohesion indicates that the responsibilities within
the module are unrelated and serve different purposes. In general, modules should strive to
adhere to the Single Responsibility Principle (SRP) and serve a single purpose. High cohesion
is highly desirable, as it makes the module easier to understand, maintain, and modify [6].

Cohesion refers to the relationship between the responsibilities or functionalities within a
software module. High cohesion means that the module is focused on a single task, while low
cohesion indicates that the responsibilities within the module are unrelated and serve different
purposes. In general, modules should strive to adhere to the Single Responsibility Principle
(SRP) and serve a single purpose. High cohesion is highly desirable, as it makes the module
easier to understand, maintain, and modify [6].

2.5 Testing

Testing is a critical process in the development of scientific applications, ensuring their
accuracy, reliability, and overall quality. A comprehensive testing strategy helps identify
potential issues early in the development process, reducing the likelihood of errors causing
larger problems or jeopardizing the project's success [7].

2.5.1 Unit Tests

A unit test is a type of software testing that focuses on verifying the functionality of individual
components or modules within an application. By isolating these components, unit tests can
effectively detect errors, inconsistencies, or unintended behaviors. This approach allows for
the prompt resolution of issues and minimizes the risk of bugs propagating to other parts of
the system [8].

2.5.2 API Testing

API tests, also known as integration tests, are designed to verify the correct functioning of
interfaces between different components or systems. In the context of scientific applications,
these tests ensure that data is accurately transferred and processed between various

 10

components, such as databases, external APIs, and user interfaces. This type of testing helps
maintain data accuracy and consistency across the entire application, contributing to its
reliability and stability.

2.6 Continuous integration

Continuous integration is a practice within agile methodology that serves as a safety measure
when working with multiple developers. Often used alongside version control, continuous
integration comes into play when a developer merges their code with a shared codebase. To
ensure that the newly implemented changes do not cause issues, continuous integration
performs checks on the codebase with the new code, verifying its compatibility. In cases
where the changes fail these checks, the standard practice is to reject the changes and notify
the developer to resolve the issues [9].

2.7 Client-side processing

Client-side processing refers to processing data and logic on the user's device, typically using
programming languages like JavaScript, HTML, and CSS. This approach can provide a faster
and more responsive user experience, as the processing is done locally on the user's device.
Client-side processing has several advantages, including faster response times, reduced
server load, and offline functionality. However, it also has several disadvantages, such as
security risks, limited resources on the user's device, and browser compatibility issues [10].

2.8 Server-side processing

Server-side processing refers to the processing of data and requests on the server side of a
client-server architecture. In this approach, the application's code and data are stored on the
server, and the server processes the data and responds to client requests. Server-side
processing can involve a wide range of tasks, including database queries, calculations, and
application logic. This approach is often used in web development and other client-server
applications, where the server handles the heavy lifting of processing data and serving up
content to the client [10].

Server-side processing has several advantages, including better security, greater scalability,
and access to more resources on the server. However, it also has several disadvantages, such
as slower response times due to communication with the server, higher server load, and
limited offline functionality. The choice between client-side and server-side processing
depends on the specific requirements of the application, including factors such as
performance, security, and scalability. Careful consideration of these factors is necessary to
determine which approach is best suited for a particular application.

 11

2.9 Polymerase Chain Reaction

PCR (Polymerase Chain Reaction) is a laboratory technique used to amplify specific segments
of DNA or RNA, which is the main technique used by PatoGen to analyze their tests. It is a
sensitive and efficient method that allows for the amplification of a single or a few copies of
a target DNA or RNA sequence to millions or billions of copies. PCR has revolutionized many
fields of biological research and has a wide range of applications, including disease diagnosis,
genetic analysis, forensics, and biotechnology [11].

2.10 Cycle Threshold Values

CT-Values (Cycle Threshold Values) are a measurement of the amount of PCR cycles required
for a sample to produce a detectable signal in a real-time PCR assay. In other words, it is a
measure of the amount of amplification required to detect a target sequence in a sample [12].

CT-Values are often used to quantify the amount of a target sequence in a sample, with lower
CT-Values indicating higher levels of the target sequence. They are also used to determine
whether a sample is positive or negative for a particular target sequence, with CT-Values
below a certain threshold indicating a positive result. While analyzing test results for PatoGen,
CT-Values below 36.9 are treated as a positive.

2.11 Human-Computer Interaction

Human-computer interaction (HCI) is a study aimed at optimizing the way humans interact
with computers by designing interactive user interfaces that makes communication between
humans and computers easier, while still satisfying the user and their needs [13].

 12

3 Methodology and tools

3.1 Planning phase

During the first weeks of 2023 the group started to evaluate the project and had multiple
meetings with both client and supervisor to determine what was needed of the group to be
able to deliver a successful bachelor thesis. This includes everything from working hours to
regular meetings and updates. Working in sprints and setting clear goals for every sprint also
states an important requirement which would be followed strictly during the coming months
to guarantee progress. Having multiple meetings with the client helped with the overall
understanding of their desires and expectations. After the client showed some examples of
similar applications, the group was able to discuss and sketch up some possible solutions
which the client considered very doable.

3.1.1 Pre-project plan

After some planning the group wrote everything down in a Pre-project plan. This document
contains the instructions for completing this project, including responsibilities, constraints,
milestones, and various guidelines for preventing harmful situations. As deadlines and
milestones were becoming clearer, a roadmap/Gantt-chart was created for visualizing the
important sections and dates during the development process.

3.1.2 Use cases

Creating use-cases and gathering user stories from user-tests can help a team reach a better
understanding of the task at hand. The group needed to understand the workflow and created
a simple use-case diagram visualizing the probable situations when using the intended
application. Also listening to the needs of users during user-tests helps tremendously.

 13

3.1.2.1 Use case diagram

Figure 1 (Use-case diagram)

3.1.2.2 User stories

User stories created based on the wants and needs of users during tests, which the team has
conducted along the way. (Stories 5 and 6 are not from the initial user-tests with wireframe,
but MVP)

User story 1: ³As a user I want to navigate the different zones in the map.´

User story 2: ³As a user I want to see the status of diseases in my zone.´

User story 3: ³As a user I want to be able to see historic data and choose specific dates.´

User story 4: ³As a user I want to choose a specific production zone and see the relevant
data.´

User story 5: ³As a user I want WR�FRPSDUH�GLVHDVHV�WR�HDFK�RWKHU´.

User story 6: ³$V�D�XVHU�,�ZDQW�the map to zoom in on my location, when I give access to my
position´.

 14

3.1.3 Wireframes & Design

Deciding on a final design is an important milestone in every project, after thoroughly
discussing potential application designs, the group managed to agree on a solution. The group
used Figma, a cloud-based design tool great for collaboration [14]. Using this tool allowed the
group to simultaneously work on the same wireframe sketches and see alterations in real
time. Having the ability to work side by side while creating the application layout helped create
a clean and useful webapp.

The applications usage and design are tailored to fit the needs of fish health experts, primarily
PatoGen, and their customers will have the accessibility to review detailed information about
the different production areas.

3.1.4 Research

Before starting a development process, having the right tools is exceptionally important.
Initially PatoGen wrote in the project description that they would like the application to be
written in Angular, a development platform, built on TypeScript. [15]. However, as the team
had previous experience using the JavaScript library React, the team asked permission to use
this, as the development of the application would be more effective.

Further research included finding different APIs for map services. The group finally decided
on using the Google Maps API, as this is one of the most used map $3,¶V, which is highly
documented and contains a lot of easy-to-use functions.

It was found that as a backend Java framework, Spring Boot delivers an easy integration and
data funnel between PatoGen¶s database, and the frontend React application. In comparison
Spring oot offers both a more developer-friendly experience and more well-known
concepts/documentation, than many of the newer competitive solutions, like Micronaut,
Quarkus or Javalin [16]. Previous experiences using Spring and their frameworks also made
this decision easier as the group already knew the basics of these technologies.

Generally, the group had to perform individual research on the topic at hand to discover the
true meaning and basic terminology within the fish farming industry. With significant help
from the PatoGen representative Noralf, the group has managed to garner a decent
understanding of the importance of keeping our fish healthy.

3.2 Tools

After carefully researching the possibilities, some tools and technologies stood out from the
rest. The group's decisions are made primarily on quality and experience as the members all
have previous experience with most of these.

 15

3.2.1 SQL

SQL, commonly known as structured query language, is a programming language for
manipulating data in relational databases. The main ability of the language is to create, read,
update, and delete data. This is the language used to communicate with the database of the
project. Not only used by database administrators, but also developers and analysists for
writing integrated scripts or generally write analytic queries [17].

3.2.2 React

For the frontend portion of this project, the group decided on using React, a JavaScript library
for building user interfaces. React lets you create individual components and combine them
to easily create complex applications [18]. Some components, however, are already made.
External libraries containing can easily be integrated within any application including. These
libraries make it possible for the developer to focus on more important tasks, instead of
spending time on creating components that already exist in an external library.

3.2.3 Material UI & Recharts

Material UI is a library of tailored React components, ranging from charts to buttons to lists,
Material UI offers a wide variety of components that seamlessly integrate in most react
projects. The purpose of Material UI is to reduce the time developers use to create reusable
FRPSRQHQWV��³08,�RIIHUV�D�FRPSUHKHQVLYH�VXLWH�RI�8,�WRROV� WR�KHOS�\RX�VKLS�QHZ�IHDWXUHV�
IDVWHU´�[19].

Recharts, similarly to Material UI, is an external library of React components. Recharts has
an extensive collection of reusable react components that visualize and graph data. ³5HFKDUWV�
LV�D�FRPSRVDEOH�FKDUWLQJ�OLEUDU\�EXLOW�RQ�5HDFW�FRPSRQHQWV�´ [20]. For visualizing complex
data in scalable charts, the group found that recharts was a great tool.

3.2.4 Redux

Redux is a prominent JavaScript library that primarily serves as a state management tool. It
provides a central repository where diverse states can be stored and accessed from any point
in your project [21]. By ensuring data and state synchronicity throughout the application,
Redux significantly contributes to a well-maintained system. In this particular project, Redux
plays a crucial role in preventing excessive prop drilling and maintaining a tidy component
structure. As it allows for global access to information within the project, data and states

 16

referenced across various components are readily available, contributing to a more efficient
and cleaner codebase.

Redux also has its own chrome developer tools extension. This is an extremely useful feature
for development, as it offers the ability to access information about a redux state, like
initialization, current value, method, etc. The redux developer tool is an elegant and effective
tool compared to the alternatives, like manually logging variables and states to the console.

Figure 2 (Redux devtools example, showing the different states managed)

 17

3.2.5 Google maps API

The Google Maps API allows developers to access the popular and widely recognized Google
Maps. Google¶V data and functionality could therefore be incorporated in different private or
corporate projects. The interactive map is highly customizable making it suitable for web,
mobile or unique applications. By creating an API key, which is a specific code associated with
the intended project, a developer is able to make calls to Googles API using this key. This
way Google can regulate and monitor the usage of different applications.

3.2.6 Spring Boot

Spring Boot is a powerful Java framework designed to simplify backend development by
providing pre-configured components and functionality, particularly for database interactions
and web services. As a part of the larger Spring framework, Spring Boot enhances developer
productivity through streamlined database connectivity, annotation-based syntax,
dependency injection, and autoconfiguration. One of the most common use cases is the
development of REST APIs, which serve as an abstraction layer for applications, enabling
faster development cycles and more maintainable code [22] [23].

3.2.7 Version Control

Version control systems like Git are essential for managing changes in software development
projects, allowing developers to track and collaborate on different code versions. Git, a
popular distributed version control system, offers robust functionality and enables developers
to work independently with local repositories. Its primary purpose is to provide safety and
stability during development by saving snapshots of code, ensuring easy recovery from
unexpected events, and minimizing the risk of losing critical work [24].

3.2.7.1 GitHub

GitHub is the leading platform for hosting remote Git repositories, offering an intuitive
graphical user interface that facilitates collaboration among multiple developers. It provides
an extensive array of tools to streamline development processes, including support for agile
methodologies, in-depth insights into project progress, comprehensive commit history, and
more. As a versatile platform, GitHub empowers developers to work more efficiently and
effectively in a collaborative environment [25].

 18

3.2.7.2 GitHub actions

GitHub Actions is a powerful feature of GitHub that provides a robust platform for Continuous
Integration (CI). By creating highly customizable workflow files, GitHub Actions enables the
automation of various tasks that are triggered by events, such as Git pull requests. These
workflows can execute user-defined scripts to perform a wide range of tasks, including
building projects, running tests, and deploying applications. This seamless integration with
the GitHub platform streamlines the development process and enhances collaboration among
team members [26].

3.2.8 OpenAI (ChatGPT, GPT-4)

A brief time before the development of the thesis began, an AI (Artificial Intelligence) research
and deployment company named Open AI [27] released a revolutionary large multimodal
model known as GPT-4, which is a machine learning model capable of handling text and image
inputs, and output text [28]. As GPT-4 is capable of handling code input, it offers the ability
to aid in developing, debugging, and generally improving code quality and speed of
development.

3.2.9 Postman

Postman is a highly popular platform for developing and testing APIs. 3RVWPDQ¶V�SRSXODULW\�is
related to WKH�SURJUDP¶V ease of use, simple interface, extensive functionality, debugging
opportunities, and collection structure [29]. Postman can also be used for continuous
integration, which is a good addition for the reliability of API endpoints.

3.2.10 Microsoft Authentication Library

The Microsoft Authentication Library (MSAL) is a set of client libraries and APIs that enable
developers to integrate authentication and authorization capabilities in their applications.
MSAL is designed to work with Azure Active Directory (Azure AD) and Microsoft accounts
(MSAs), allowing users to sign in with their Microsoft identities and grant access to their
resources and data. It also supports a wide range of programming languages and platforms,
including .NET, Java, Python, iOS, Android, and JavaScript [30]. It also comes with predefined
react hooks that make developing in react more effective.

 19

3.2.11 Deployment tools

NTNU, in partnership with OpenStack, provides virtual machines equipped with substantial
resources to cater to various project requirements. Each virtual machine is provisioned with
two virtual CPU cores, 6GB of RAM, and 40GB of storage, along with the Ubuntu 22.04
operating system. These specifications effectively accommodate the team's objectives for
employing the virtual machine, primarily as a server to host web applications and ensure their
public availability on the internet.

Nginx is an open-source web server and reverse proxy server. It offers high performance,
stability, is easy to configure and is resource effective. Nginx is used to serve web content to
users and is often placed in front of other web servers to improve load handling and response
times [31].

3.3 Collaboration

3.3.1 Jira

Jira is a project management and issue tracking tool developed by Atlassian, initially designed
for software development, but now offers solutions for different industries and project types.
It offers a wide range of features, including customizable issue types, custom workflows,
support for Agile methodologies with Scrum and Kanban boards, reporting and dashboards,
integrations with third-party tools, and robust access control and permission management.

3.3.2 Confluence

Confluence is a powerful collaboration and knowledge management tool developed by
Atlassian, designed to help teams create, organize, and share content more efficiently. It
serves as a centralized platform for storing and managing documents, meeting notes, project
plans, and other essential information. Confluence supports rich-text editing, multimedia
embedding, and offers a wide range of templates for various use cases. Key features include
version control for tracking document changes, real-time collaboration with simultaneous
editing, and integration with other Atlassian products such as Jira.

 20

3.4 Development

3.4.1 Agile Methods

Agile methodologies were employed to enhance team collaboration and organization. This
dynamic approach to project management emphasizes flexibility and continuous
improvement, enabling teams to adapt rapidly to changes and challenges encountered
throughout the project's life cycle.

3.4.1.1 Sprints

Working in sprints is one of the key practices of agile development. A sprint is a working
period for a project, commonly around 1-4 weeks, which is focused on completing a larger
goal. Splitting the development process into sprints helps keep the goal in mind, and splits
the tasks into smaller, more concise, easier to handle pieces.

The team agreed to work in sprints of 2 weeks, and average roughly 30-35 hours of work a
week per member.

3.4.1.2 Retrospectives

At the end of each sprint, the team reflects on what has been good in a sprint, and what could
be improved. Reflecting on the process in the sprint is necessary to uncover flaws and make
development more effective. An example of a retrospective can be found in the attached
document ³Project manual´��section 4.

3.4.2 Minimal Viable Product & User tests

Working closely in relation to the wireframes, and with time to spare, the team managed to
produce an MVP (Minimum Viable Product). Using mainly basic tools for web development
including JavaScript (React), HTML and CSS, the web-based application now looked and felt
like the envisioned wireframes previously created in Figma. Even though this is the minimum
requirement for an application like this, the MVP made it easier to conduct more intuitive user
testing and experimentation to find weak points within the application.

 21

User tests were mainly done by the clients, but also by peers in the school computer lab. They
were encouraged to provide general feedback and to attempt to break the application in any
way they could. Bugs and errors were immediate, but the overall vision, look and feel was
greeted nicely by everyone that tried it out. The team noted user stories and fixes in Jira as
tasks. This made development smooth and easy as every member could grab a task and mark
LW�DV�³LQ�SURJUHVV´�WR�SUHYHQW�team members from working on the same tasks simultaneously.

The most notable feedback provided by the peers at the school while testing was the
suggestion to implement URL parameters to provide the users a way to copy a set of filters
to another user. The other testers that were present and the group members agreed that this
was an outstanding idea, so the development to implement this started the same day.

By closely collaborating with the wireframes and effectively managing their time, the team
fortunately developed a Minimum Viable Product (MVP) in suitable time. The web-based
application, built primarily using fundamental web development tools such as JavaScript
(React), HTML, and CSS, achieved the desired look and functionality outlined in the initial
Figma wireframes. While the MVP met the minimum requirements for such an application, its
existence greatly facilitated intuitive user testing and experimentation, allowing for the
identification of weak points within the system.

User testing primarily involved clients, but peers in the school computer lab were also
encouraged to participate. Testers were invited to provide general feedback and to actively
attempt to uncover any flaws or issues within the application. While some bugs and errors
were identified, the overall design and user experience received positive feedback from all
testers. To ensure efficient development, the team utilized Jira to document user stories and
log fixes as individual tasks. This streamlined the development process, preventing team
members from duplicating efforts by enabling them to assign and track tasks using the "in
progress" status.

During testing by peers at the school, notable feedback emerged, suggesting the
implementation of URL parameters to enable users to copy a set of filters and share them
with others. This suggestion received unanimous agreement from the other testers and group
members, leading the team to initiate development of this feature on the same day.

3.4.3 Connecting to Azure Database

To display relevant information, data is required. PatoGen provided the team with a large set
of their own collected data for the development of the application. The group was given
permission to access a direct copy of the main database which updates concurrently. PatoGen
performs analysis on hundreds of samples every day and their databases are frequently
updated. This means that an application should optimally retrieve updates in real time to the
user.

The team members were given individual login credentials for connecting to the Azure
database. Afterwards, the main focus was to become familiar and discuss relevant data fields
with the client and the supervisor. The database had an unnecessary complex structure, which

 22

meant that a lot of tables had to be ³joined´ to provide basic information about a customer
order. Joining several tables for every request is computationally expensive [32], which
means that the provided data structure resulted in inferior performance.

Therefore, the team suggested to PatoGen that a new custom ³view´ would increase the
performance of the application. Considering the fact that the database was restricted to read
only, the group provided the client with SQL-code for the view. This view contained all data
that was required to finish developing the application and meet all the customers' and clients'
needs.

3.4.4 Spring Boot

Spring Boot was chosen for its reliability and simplicity. Although one of the initial ideas was
to send database queries directly from the frontend, this was quickly dismissed as it was
agreed that this was not the best practice due to potential security risks during data transfers.
Furthermore, handling database requests directly from the frontend doesn't scale well as the
application grows in size, as managing numerous or complex requests can quickly become
challenging. Another issue to consider is the potential for data from the database to arrive in
undesired formats, necessitating additional parsing.

Using spring boot to retrieve the data from the database and manipulating it to a format that
suits the use case of the frontend was deemed as a better solution. This way, spring boot
offers a layer of abstraction between the database and frontend, whereas spring boot handles
the technicality of the data and database handling and serves as an API for the frontend. It
also provides much utility, like implementing user authentication, adding restrictions to the
endpoints ± who is allowed to access it, etc. Debugging opportunities are strong with plenty
built in functionality and testing and verifying the data are all steps spring boot can provide.

3.4.5 Visualizing data

Being able to connect the correct values onto the map was a big step in successfully tying the
project together, as the map represents the heart of this application and visually gives it a
more finished look. When selecting the other visualization tools for this app the team
depended on PatoGen and their employees/specialists to help. As the team only have a certain
basic understanding in this industry, the ones that will use it know more about what is needed
and appreciated in this kind of application. Multiple meetings were had, and it became more
and more obvious that no one really knew what they wanted. It was up to the team to
construct some charts or diagrams that best represented the data and rather receive
feedback/input from PatoGen.

 23

3.4.5.1 Charting libraries

The reasoning for choosing charting libraries like ³5echarts´ or ³0aterial 8,´ was for quick
and easy alteration between look and feel. For instance, data from an entire year can be
represented in a single graph (as seen in the picture below). The graph displays the
percentage of positive test results from a selected disease and displays a value between 0
and 100 percent for each month, for an entire year at a time. For instance, 8,7 percent of all
WHVWV�IRU�WKH�GLVHDVH�³$*'-3(58´�VXEPLWWHG�LQ�April of 2022 were positive.

This functionality was made specifically for the employees at PatoGen, as they would like to
view trends of which diseases bloomed in different months and then compare them to previous
years to identify patterns.

Given the size and complexity, showing larger graphs in the applications information window
brought some challenges. For example, the width of the side window did not allow for the x-
axis to display every field. It was therefore made changes to some of the graphs, which were
flipped to show horizontally instead.

Figure 3 (Historical data graph from "Recharts")

Figure 4 (General information graph)

 24

3.4.6 Improving availability

During the development process the team conducted continuous user tests on peers and
clients, resulting in a lot of constructive feedback. A particular functionality lacking was
availability. Separate groups of users did not find it obvious what to do when handed over the
application. As the team was working on this application every day and knew exactly how to
navigate the app, small components like hint buttons and informative texts were forgotten.
Keeping the application as clean and minimalistic as possible was always a priority, so
integrating filler information and helpers was a difficult, but necessary measure to really
extend the applications quality.

The group decided on implementing hint buttons that display text descriptions of the
applications functionality. These buttons come with a highly recognizable question mark-
symbol which communicates to the user that they will contain information if some functionality
is not understood. There are two of these buttons within the application. One for both
dropdown menus, which is used to navigate and update most of the applications functionality.

In Norwegian, this hint button VWDWHV�³6HOHFW�D�SURGXFWLRQ�DUHD�ZKLFK�\RX�ZRXOG�OLNH�WR�NQRZ�
more about. Feel free to combine with diseases´� To tell the user what possibilities there are
to customize both the map and side window by choosing an area, a disease, both, or nothing
at all.

Figure 6 (Descriptive text about color values)

Figure 5 (dropdown hint buttons (on hover))

 25

Additionally, inside the side window, explanatory text and information is added to give the
user some pinpointed information about what the different charts or icons represent. For
example, what gives a production area green, yellow, or red risks, as seen in the picture
above (the text translates to: "The risk assessments are based on the ratio of positive and
negative tests from the individual production areas. If less than 15% of the tests are positive,
the risk level is green. If 30% of the tests are positive, the risk level is red. Between these
percentages, the risk level is yellow").

3.4.7 Authenticated access

Since this application uses a lot of confidential information, PatoGen requested that the
solution should be behind a wall of authentication. As PatoGen uses Microsoft Azure Active
Directory (Azure AD) for their current operations, a similar approach was desired in this
application. Azure AD has premade login interfaces, which the user is redirected to when first
entering the website. Only recognized login credentials will have access to the application
after logging in. The list of authorized users is stored inside Azure AD.

3.4.8 Postman

Whenever a new endpoint has been established in spring boot and is ready for testing,
Postman is used to send a request to the endpoint to verify that the data is correct. It is also
great for debugging endpoints, as if they do not work correctly, tweaks can be made in spring
boot and the endpoint can be tested again.

3.4.9 Version control

When working in a team it is crucial to implement version control for code safety and
consistency. The team has used Git and GitHub for version control. GitHub is used to create
a remote repository, where multiple collaborators can work together on a single code base.

Every time a member makes changes to the code, git tracks the changes locally. When a
member then has developed code and is satisfied with the result, the member can commit
these changes, saving them, then pushing these changes so they can be reached by the other
team members. Given that the team has almost always worked together in person, only the
main branch has been used during the project, since the team had a high degree of
communication while developing.

 26

3.4.10 Collaboration

Collaboration tools are crucial for creating an excellent product, therefore multiple tools with
different purposes were used from the start of the project.

3.4.10.1 Jira

Jira was used to track ongoing issues for each sprint during development. Whenever an issue
was discovered, it would be logged in jira, and added to the current sprint. From there on,
the issue could be assigned a working member of the team. This way all members of the team
know what each member is working on, making collaboration easier, preventing multiple
members working on the same task.

Another function in Jira that was highly relevant ZDV�³7HPSR´��7KLV�LV�D�highly user-friendly
time logging functionality, where a working member can log time worked on an issue in the
timesheet. This provides a comprehensive retrospective on what issues have been the most
demanding, as well as seeing the time and effort each member has put down.

3.4.10.2 Confluence

Confluence has been used for administrative features, mostly writing meeting notes, sprint
retrospectives, and taking notes during development on crucial information. This makes it
easy to recall previously discussed themes and lowers the risk of misunderstandings.

3.4.10.3 Discord & Messenger

Discord is a chat application that allows voice, video, and text. The group has primarily used
this application for loose continuous communication with the client which is also using Discord.
This application makes it easy to update and share new functionality or requirements as well
as receive help and feedback. Whereas Discord makes working in groups simpler, messenger
allows for a push notification to update the team on upcoming meetings or other difficulties
etc. Discord also allows for smaller file & code sharing, which has been handy on multiple
occasions.

3.4.11 Processing and optimalization

During the development of the application, some interesting questions arose regarding
processing and optimalization. The initial database-structure resulted in a lot of unnecessary
joins, which in turn resulted in large tables with many fields as previously discussed in chapter

 27

3.4.3 ³Connecting to Azure Database´. Joining tables is computationally demanding [32], and
it resulted in severe performance issues. As a result, a new database view was created
containing all relevant data.

However, even though the database view is simplified with as few columns as possible, there
are still more than 800,000 rows of data. None of the queries in the backend request the
entire view at once, but some of the queries need data for an entire year at a time, which can
contain around 300,000 rows in the table (as shown in the picture below). These queries can
contain up to around 24MB of data, which can result in some problems for the user.
Considering this fact, the group had some interesting discussions about processing. Firstly,
about whether the processing should be client-side or server-side. Secondly, what the data
structure should be like when retrieving it from the database. Both client-side and server-side
processing has some drawbacks, which are discussed in the following paragraphs.

Figure 7 (number of rows in a query)

Even though most user devices can handle 24MB of data, there may still be a considerable
number of users with older or less powerful devices. Processing a dataset of this size on the
client-side may cause performance issues, consume a substantial portion of the device's
memory, or even crash the application on less capable devices. Client-side processing relies
on the user's device resources, which can vary greatly. While some devices might process
the data quickly, others might take a considerable amount of time, leading to an
inconsistent user experience. There are also some security risks associated with processing
the data on the client-side. The data is more accessible to users and can be more easily
tampered with, potentially compromising data integrity [33].

Lastly, and possibly the most crucial point in this discussion, is the fact that transferring 24MB
of data from the server to the client may consume significant bandwidth and take a noticeable
amount of time, especially for users on slower or less reliable internet connections. If the
processing is done on the server-side, the server can do some calculations to reduce and
simplify the data to fit in a smaller table. This table could potentially be reduced to a few
bytes, which could drastically help the performance of the application.

A drawback to giving the server responsibility of processing tasks is that intensive or resource-
demanding tasks can put a strain on the server, potentially leading to performance
bottlenecks or decreased overall system performance. This issue is even more prominent

 28

when the number of clients increases, as the server can become overwhelmed with processing
requests. Scaling server-side processing can be complex and may require additional
hardware, infrastructure, or distributed computing techniques to handle the increased load
effectively [34].

Considering all these factors, the team eventually decided to do most of the data processing
on the server side. The application is intended for a relatively small handful of customers, so
the hardware needed to maintain server stability is fairly low. If the client eventually wants
to use a cloud service for the deployment of the website, the cost of server scalability will not
be too high, unless the target group of the website suddenly grows rapidly.

Below is a provided example of how this decision drastically improved the performance of the
application. Instead of returning 12 451 rows of data directly to the client, the data is
processed on the server and then only 12 rows of data are transferred (one row for each
month, with a total size of 934 Bytes).

Figure 8 (performance of final endpoint)

As seen in the picture below, retrieving the complete list of 12,451 rows from the database
takes around 1,4 seconds with a fast and stable network, and this data is unprocessed,
which means that the total time for retrieving and processing data would be even higher
than 1,4 seconds. In the currently implemented solution the total time is 513 milliseconds,
which is more than three times as fast.

Figure 9 (size and performance of query)

 29

4 Results

This section of the report focuses on the finished process. Here the different solutions within
the application will be explained and discussed as the methodology and technologies are
considered. Engineering results specify the actual application and the parts surrounding its
development, whereas administrative results center the parallel processes included such as
documentation and teamwork.

4.1 General

During this process, the group has been able to accomplish deployment of a fully functional
application that meets all requirements from the client. The application is built using the
JavaScript framework Reactjs, it contains a spring boot backend integrated with PatoGen¶s
Azure database, it is deployed on a provided OpenStack server, and it is hosted to the web
using nginx. Authorization is provided by 0LFURVRIW¶V�$FWLYH�'LUHFWRU\ to keep control over
future sensitive data. An in-depth description of the reasonings behind the selected
technologies are found in ³3.2 Tools´. Due to familiarity and confidence with the tools, the
team has been able to perform and deliver a product that meets all expectations.

4.2 Engineering results

The web-based application was intended to serve to simplify complex data and visualize
3DWR*HQ¶V�most recent findings. As interpreted by the client PatoGen, showing customers the
results of their analysis can be reduced and simplified, since the only people who could
possibly understand the raw data are the ones generating it. A quote by a PatoGen employee
and fish health expert has stuck with the team ever since meeting him; ³.,66�± keep it simple
stupid´. This quote has been a source of inspiration for the team through the entire process.
The goal was that if you were to hand this application over to anyone, they would figure it
out.

 30

Figure 10 (Explanatory picture of the result)

The picture above highlights the main interactive components that this application offers. By
altering the dropdown menus or date picker, the map and collapsible side window will
automatically change appearance and adapt to the recent changes. This gives the user the
ability to tailor the information displayed to match their purpose. The application is
therefore considered to be highly dependent on computer and human interaction to reach
full potential.

Additional interactive components include disease specific date selection inside the
collapsible side window. Functionality explained in chapter 4.2.4 ³Filtered search and date
SLFNHU´.

4.2.1 Map integration with polygons

Using Google Maps as the applications integrated map proved to be effective as the amount
of addons, documentation and customization available are unmatched. Drawing polygons,
changing coloring, removing borders and cities made the application look simple and elegant.

Code 1 (google maps container component)

 31

Inside this component lies ³SRO\JRQV´��WKHVH�DUH�OLQHV�GUDZQ�RQWR�WKH�PDS�XVLQJ coordinates
that represent each production area. The color of these polygons is determined by the
percentage of positive tests for the specific production area. The team figured that in addition
to the green, yellow, and red colored risks, another color should be provided if data is lacking.
As a result, the team decided that polygons should display a grey color upon not having
enough data available. For instance, this usually happens at the start of a month, when there
is no new data submitted. The production zones will therefore be grey, indicating that there
is not enough data available for the zone(s).

The polygons themselves were created by extracting a list of latitude and longitude
coordinates from a JSON-file that the client provided. A line is then drawn between every
coordinate-point from this list, which eventually becomes a polygon-shape. The
implementation of this logic is shown in the code below. The returned list from this function
is added as a prop �³SDWKV´��to a Polygon-component that already exists in the Google Maps
API (as shown in the next picture).

Code 2 (Code for extracting LatLng-coordinates)

Code 3 (implementation of the generatePaths-function)

 32

Figure 11 (Resulting map with polygons)

As shown in the picture above, for the first production area (PO1 ± the Swedish border to
Jæren, bottom of the picture) does not display any colors. The reasoning for this is that there
is not enough data or not enough submitters. In this specific area there are only a few farms
making it tricky to display data without exposing singular companies and such.

Additionally, the map provides another interactive method which allows the user to click
polygons to select new production areas to review. A hover pop up message indicates the
production DUHD¶V name and risk assessment with a slight outline differential to show the user
that this production area is selected.

Figure 12 (on click/on hover polygon popup)

4.2.2 Design principles

As previously mentioned, the group strived to follow the quote ³.,66´�RU� ³keep it simple
stupid´. Considering the fact that technology isn't always well-understood by the general
public, a simple UI design is desirable as it makes the process of using the application much
easier.

 33

As it stands, the application KDV�VWULYHG�WR�NHHS�³unnecessary´ functionality to a minimum, if
any at all. The only parts users can alter the state of in this application are selected production
area, disease(s), and date. The focused sections of this single-page application are that of
visualizing the different customizations. The map covers the entire screen and side window
displaying information covers about 40% horizontally when opened (50% horizontally on
tablet / 60% vertically on mobile) for optimal viewing possibilities. Dropdown menus and
timecard are free floating components that do not cover a large portion of the map.

Figure 13 (sideWindow PC-screen)

Figure 15 (sideWindow Tablet-screen) Figure 14 (sidewindow
Mobile-screen)

 34

4.2.3 Authorizing accounts

Authorizing users was not a priority during the development of the application. After some
initial discussions with PatoGen, it was decided that authorization should be a stretch goal.
They were more interested in seeing rapid development in the core functionality. One of the
considerations in the discussion was that PatoGen had some very specific demands about
confidentiality, as previously discussed in chapter 1.3.1 ³Confidentiality´, which undermined
the importance of authorizing users. As previously described, users are not able to see any
data from individual fish farms, and there must be at least three customers in a production
area before the application displays anything to the user.

The group did eventually finish the application with enough time left to consider finishing the
stretch goal, which PatoGen expressed that they would like the group to do. The client is also
considering extending the scope of the application in the future to display data about
individual fish farms to the individual customers, which renders authorization an absolute
necessity.

For authentication, PatoGen suggested using Microsoft Azure Active Directory. Mainly because
this technology was already familiar to them, and because their customers/users already have
registered Microsoft accounts with PatoGen.

To implement the authorization, the group used the Microsoft Authentication Library (MSAL).
The group configured a tenant in the Azure Portal and created a configuration file in the source
code. The configuration file contains several variables and application properties, which are
exported to other relevant functions like the predefined hooks from the MSAL-library.

The code provided below shows the custom react component which is implemented to redirect
the user to a login-screen. This implementation is a high-level abstraction of a login screen.
The abstraction ensures low coupling, because the code which is rendering the component
does not know about the internal logic.

In the code below, the previously mentioned abstraction is visible. The App-component does
not know the internal logic of the LoginScreen-component, it only renders the component if

Code 4 (Custom login-screen component)

 35

some parameters are true. The logic is as follows: the code inside the Unauthenticated
Template-component is called if a user is not logged in, which is where the custom
³LoginScreen´-component is rendered. Therefore, a user is redirected to a login screen if they
are not logged in. However, if a user is logged in, the MainContent-component is rendered,
which contains the core content of the entire application.

Code 5 (Custom login-screen component)

4.2.4 Filtered search and date picker

Searching or selecting different options gives the user a whole new visualization. For example,
someone working for a fish farming company selecting the production area they are currently
located in and a disease that has been/could potentially be causing problems. This specific
customization will display a graph showing the number of tests provided with the number of
positives for the month selected. Graphs and customizations stay the same when going back
and forth in time. It is therefore possible to find patterns of contagiousness, an example of
this is selecting a disease without specific areas and inspecting yearly progressions.

As this was one of the most specific requests from employees at PatoGen, the team
understood the importance of this functionality. Employees discuss and show each other latest

Figure 16 (AGD-PERU 2022) Figure 17 (AGD-PERU 2021)

 36

trends within the field. As shown in the previous diagrams, there are patterns for when a
certain bacterium is active or unactive. AGD-PERU is a gill disease that targets fish and is
caused by the amoeba ³Neoparamoeba per Urans´� This specific disease usually blooms when
fall arrives and water temperature drops, and calms down again when the summer
approaches and water temperature rise.

4.2.5 API implementation

One of the priorities the team had during the development was handling the data provided by
PatoGen in a good manner. The Spring Boot serves as a backend, between the database
provided by PatoGen, and the React frontend. This serves numerous advantages, as it scales
well, makes changes easier, and in general is aligned with the principles of coupling and
cohesion.

4.2.5.1 Initial approach

During early development, it was attempted to use standard spring boot syntax consisting of
Entity, repository, service, and controller classes. Whereas entity represents an entity ± or a
row, in the table of a database, repository is used for retrieving data, service is used for
manipulating the retrieved data, and controller for handling requests. This approach works
well for retrieving data from a single table.

Figure 18(package/class hierarchy, including example of Entity class)

 37

Code 6 (Example of repository interface)

However, as mentioned in chapter 3.4.3 ³&RQQHFWLRQ�WR�GDWDEDVH´�DQG�������� ³Processing
DQG�RSWLPDOL]DWLRQ´��WKHUH�ZDV�D�QHFHVsity to make several joins to tables in order to get the
data desired for usage in the frontend. In Spring Boot, this is a slightly complex process as it
has to be done between entity classes. This also ended up causing unjustifiably long request
times.

Figure 19 (A single request taking over 5.6 seconds)

Code 8 (Example of Service class) Code 7 (Example of Controller class)

 38

4.2.5.2 JPA Repository

Assisting the client to create a single view with all the data, the team required drastically
simplifying the process of requesting data, as the data was ready to be extracted without the
usage of computationally expensive join operations.

Using JpaRepository, queries could be written in the repository classes for CRUD operations.
Spring boot comes with a fleet of predefined queries based on a name syntax. Unfortunately,
the predefined queries do not support more complex queries, JpaRepository also supports
native(custom) queries. With the new view, native queries were used to retrieve data from
the database.

Code 9 (Example of a native query using JpaRepository)

Unfortunately, using native queries in JpaRepository had its own catch. The main issue with
JpaRepository is that a repository can only be connected to a single entity class, and it only
works with the fields of the associated entity class.

Code 10 (example of the SampleData entity class being associated to repository interface)

As a result, the return type must contain all the corresponding fields defined in the entity
class. It was attempted to create a DTO which only used the fields that are actually needed
for usage in the frontend, but this was not allowed, as it did not fulfill all the fields of the
entity class associated to the repository.

One workaround was to return a table with the datatype Double[][], a two-dimensional array,
to extract data. This approach was used for a certain period, but it was sub optimal to work
with, as the data must be manipulated from a matrix standpoint, rather than a list of arrays
which are easier to index and use in general. This approach also has a lot of limitations, as if
not all the fields of the data extracted from the query are of the intended type, it will not
work.

 39

4.2.5.3 JDBC Template

Having encountered the problem with JpaRepository, it was concluded that a different
approach had to be used for querying data. After doing some research, it was discovered that
JdbcTemplate could be used for extracting data, as this quiring feature has the flexibility to
extract exactly the data that is desired. It has also proved to be concise, as both entity and
repository classes serve no purpose using JdbcTemplate, as it does not use that format. This
way, each table in the database only needs a service and controller class, and results in a
cleaner structure altogether.

Code 11 (Example of a query using jdbcTemplate)

Figure 22 (Initial file-
structure, service and
controller classes not
fully implemented)

Figure 21 (Jpa, NTNU-view file-
structure)

Figure 20 (Jdbc, updated NTNU-
view file-structure)

 40

4.2.6 Assessing disease impact

Diseases exhibit significant variation, encompassing distinct properties and consequences
for fish farms. Their ability to thrive or struggle is influenced by diverse climates and
conditions. For instance, certain diseases, such as NSP1PD, are considered critical when
detected above a specific geographical latitude. According to the client, even the detection
of a single positive sample warrants giving the entire production area a critical status
(symbolized as a red color).

Different diseases DOVR�KDYH�FHUWDLQ�WKUHVKROGV�RU�³WLSSLQJ�SRLQWV´�for when the disease
should be treated as a threat. These thresholds indicate the critical level at which a disease
can rapidly spread throughout a fish population, potentially causing an outbreak. The
outbreak thresholds are unfortunately not researched enough, so the client was not able to
provide set of values for thresholds, or any systematic way of handling different diseases in
the dataset. Therefore, all diseases are handled equally in all the data calculations in the
project. The client specified that a more concise way of treating different diseases in the
dataset could be implemented in future versions of the application if more research is done
regarding these tipping points.

The calculations made to assess what traffic light-color to assign to a production area was
as follows:

1) The selected date, disease and production area are parameters selected by the user.
These parameters change the displayed data on the webpage.

2) When these parameters are selected, associated data is retrieved from the database.
3) For every selected disease, the ratio of negative and positive test results is

calculated by dividing positive tests by the total number of tests.
4) If the ratio is above certain thresholds (15% for yellow, 30% for red), a color is

displayed in the zone.

4.2.7 Deployment

The project files are copied to the server using Git clone, which are continuously active on
the server. The frontend is compiled to a build file, which is used to host the application.

To comply with the authentication requirements of PatoGen, the hosted application needed
to have https implemented, since it is a requirement for using Azure Active Directory on a
publicly hosted site. PatoGen provided a wildcard certificate for this, so that the name of the
hosted website is configurable. By request, the name of the site is trafikklys.patogen.no.

Figure 23 (The URL of the website)

 41

4.3 Administrative results

Due to the team working beside each other every day, fixing bugs, and handling other difficult
problems, all the progressions were thoroughly discussed between each other and ultimately
figured out. Every member usually came up with their own opinions but also listened to other
solutions. This process proved to be crucial in the development of the application. It often
resulted in less need for research, as the need for reading long stack traces or searching the
web for potential fixes was minimal if someone within the team had knowledge about the
problem.

As the team worked together in person, sharing information and notes became slightly
inorganic. However, as time went on the team became better at noting both small and
important matters down in Jira or Confluence. These tools were used throughout the entire
process to mark deadlines and progress. Notes from our meetings with supervisor or client
are stored in Confluence and tasks in Jira making it possible for attendees to look through or
reference them later. Working in the same codebase, utilizing git for version control helped
us tremendously.

4.3.1 Using Jira & Confluence

For assigning tasks and keeping every team member up to date, Jira was used. Every user
can create their own task and assign it to others or themselves. After the person assigned an
issue/task is finished, the task could be marked as done, letting the team know.

Workflows, Roadmaps, Issue logs are provided as attachments to this document (in ³3URMHFW�
0DQXDO´ chapter 2, 5, 6).

Confluence allows teams to collaborate in a space where only members can edit, supervisors
or clients are invited to review meeting notes or updates if necessary. The team has used
confluence to create roadmaps, take meeting notes and give sprint retrospectives. �³3URMHFW�
0DQXDO´�FKDSWHU��).

4.3.2 Git

Having previous experience utilizing GitHub and git in general really makes a difference when
working together in groups. The ability to continuously extend and work together on the same
code allows for new functionalities to be seamlessly integrated. The group used git for version
control throughout the whole development process of this application. Having continuous
commits with over 300 in total spread evenly across the spring-semester (³3URMHFW�0DQXDO´ -
git-contribution summary).

 42

GitHub Actions, a feature available in GitHub was used by the team mainly for continuous
integration, checking that newer commits passed certain tests. If passed, the team knew that
latest changes could be deployed without failure.

4.3.3 Milestones

The team created a subfield in the pre project plan called milestones. Here important dates
were set to ensure that the team would be working towards finishing certain parts of the
project within set dates. However, this has proved to be somewhat inaccurate as it does not
really take development into consideration. For administrative work it represents the multiple
subtasks the team have had to complete along the way and development has been done in
between these dates when schedule allowed it ($WWDFKPHQWV�³3re project plan 3.2´).

After looking back at the milestones that were set, it is clear to see that the team was looking
for a steady workflow, starting and finishing tasks early to have sufficient time in the end to
perfect both product and report. The team has been successful in sticking to this philosophy
as the team was able to complete tasks along the way with enough time to complete the
project over the past months.

4.3.4 Quality insurance

To ensure that the project met all expectations, the team wrote down certain measures. These
include thorough planning, documentation, and continuous feedback from both supervisor
and client. After finishing some new functionality, the team would always discuss these with
the client to ensure that it was understandable and necessary. As documented in confluence,
every meeting the team had with the client was concluded with a meeting note including
changes and discussions for a better product. The feedback that was received from these
meetings really set the standard for the quality of this project, as it helped the team a lot with
understanding the business and the FOLHQW¶V needs.

Another key step in ensuring quality was assigning roles within the team, having a team lead
helped substantially with keeping focus and initiating meetings. Also, members being
responsible for keeping the overall quality of design and code up to par was necessary to
XQGHUVWDQG�HDFK�RWKHU¶V�FKDQJHV�HWF��/DVWO\�VRPHRQH�that oversees documents and structure
proved handy as the team were required to provide substantial documentation for the end
delivery.

 43

4.4 Performance and Optimization Results

4.4.1 Application performance

During the development process, the team monitored the application's performance by using
browser-based tools such as Google Chrome's Developer Tools. The team ensured that the
application responded quickly to user inputs, minimizing the load time for content, and
maintaining a smooth user experience. Regular performance testing and optimizations were
carried out to ensure that the application continued to perform well as new features were
added.

4.4.2 Code optimization

The team continuously reviewed the codebase for opportunities to optimize and improve the
overall code quality. By adhering to best practices, the team minimized technical debt and
ensured that the code was maintainable and scalable for future developments. Code reviews
were conducted regularly, which provided opportunities for the team to identify and address
any potential bottlenecks or areas for improvement.

4.4.3 Accessibility and usability

Throughout the development process, the team focused on creating an accessible and user-
friendly interface for the application. By following accessibility guidelines and best practices,
the team ensured that the application could be used by a diverse range of users, including
those with disabilities. The team performed usability testing with different user groups to
gather feedback and adjust if needed, ensuring that the application met the needs of its
intended audience.

4.4.4 Code reliability

To ensure reliable, bug free code, multiple proactive steps were implemented. Measures
such as CI (continuous integration) and testing stands for the majority of reliability
insurance.

 44

4.4.4.1 Continuous integration

Using GitHub Actions, two workflow files were created to ensure consistency between commits
and maintain reliability of code. One workflow file is to build and test the react application, as
well as the spring boot application. This sets up a virtual machine for both the frontend and
backend, and checks if it can compile. If it succeeds, it means the code can compile and run
on the virtual machine, which means it works for any system with correct versions of npm
and java, respectively. Thereafter, locally created tests in both the frontend and backend are
run to ensure the application works as intended.

The second workflow file was later implemented later in development as it consists of
automating Postman endpoints tests for the backend running on the server. This is to ensure
WKH�VHUYHU¶V�HQGSRLQWV�DUH�ZRUNLQJ�DV�LQWHQGHG��,W�UXQV�D�Sre-created folder in Postman with
the endpoint tests as well as a fleet of internal JavaScript tests to verify the data received is
as desired in terms of having the correct fields, being correct datatype, etc.

Code 13 (Build frontend job) Code 12 (ci build backed job - all parameters in mvn clean verify
not depicted)

 45

Code 14 (CI Automated Postman test)

These workflow files are set to trigger on each git push, meaning that every time new code is
submitted to the codebase, these files will be run.

4.4.4.2 Unit testing

A part of the continuous integration workflow are unit tests for the backend and frontend.
The frontend tests commonly used methods as well as all existing redux states. The
backend has simple tests for all DTOs.

The tests check if constructors and functions work as initially intended, and that objects and
redux states can be initialized, and be mutated ± if it corresponds with business logic.

4.5 Integration and Compatibility Results

4.5.1 Integration with external systems

The team successfully integrated the application with external systems such as Microsoft
Azure Active Directory for authentication and Google Maps API for map integration. The
integration process made the team able to leverage the features and functionality provided
by these external systems effectively, enhancing the application's capabilities. An extensive
look at the communication between application, server and database can be found in
DWWDFKPHQWV�³6HTXHQFH�GLDJUDP´�

 46

4.5.2 Cross-platform and browser compatibility

The team tested the application on various platforms (Windows, macOS, Linux) and in
different web browsers (Google Chrome, Mozilla Firefox, Microsoft Edge, and Safari) to ensure
that it was fully compatible and functional across different environments. The team addressed
any compatibility issues that were identified during the testing phase, ensuring that the
application provided a consistent user experience regardless of the platform or browser used.
The application is also fully scalable, slightly manipulating the UI to fit smaller and larger
devices (4.3.2). This makes it possible to use the application on both computer, tablet and
mobile. The application is intended for customers, employees, and experts to show each other
discoveries and trends, which means that the application should be functional on mobile
devices, as they are generally available out of the office.

4.6 Learning Outcomes and Skill Development

Throughout the project, the team members were able to develop and enhance their skills in
various areas, including:

x Project management and teamwork: Working together in a structured manner,
managing tasks, and maintaining open lines of communication.

x Software development: Enhancing the team's understanding of React.js, Spring Boot,
and other relevant technologies.

x Problem-solving and debugging: Tackling complex issues and finding solutions by
leveraging the collective knowledge and experience of the team.

x Research and learning: Exploring new tools, technologies, and techniques to improve
the application's functionality and overall quality.

x Presentation and documentation: Effectively communicating the project's progress and
results to the client, supervisor, and other stakeholders.

The skill development and learning outcomes not only contributed to the successful
completion of the project, but also provided valuable experience for the team members,
preparing them for future challenges in their careers.

 47

5 Discussion

In the discussion chapter, the focus will be on interpreting and analyzing the results obtained
from the entire process. Discussing the choices that were made and the potential methods
that could have been used will give a deeper understanding and insight for both the reader,
as well as the team.

5.1 Choice of technologies

React.js was chosen for the frontend due to the team's familiarity with the technology, which
allowed for rapid development of the application. The use of React.js also provided an
advantage in terms of scalability and maintainability, as it is a widely used library with
extensive documentation and community support. Spring Boot was chosen for the backend
as it enabled easy integration with PatoGen's Azure database and provided a robust platform
for building the necessary APIs. Using Microsoft Azure Active Directory for user authorization
was a logical choice, as PatoGen and its users were already familiar with the system.

The use of Google Maps API allowed for seamless integration of map features and polygons,
providing a visually appealing and interactive interface for users. Additionally, the use of Git
and GitHub for version control and collaboration proved invaluable, allowing the team to work
simultaneously on the codebase while maintaining a prominent level of quality. Lastly, the
use of an Openstack server with nginx to host the application proved to be simple and
effective.

5.2 Team collaboration and communication

The team's approach to collaboration and communication played a crucial role in the effective
completion of the project. By working closely together and frequently discussing issues, the
team was able to effectively problem-solve and avoid significant roadblocks in the
development process. The use of Jira and Confluence for project management and
documentation also contributed to the team's success, ensuring that tasks were properly
assigned, and progress was documented.

5.2.1 Version control

As mentioned in chapter 4.3.2 ³Git´, the team used GitHub for version control during the
development of this application. Initially the team was torn between options, creating
separate branches for development, or keeping the development all in the same branch. Since
the team valued teamwork and planned to work together in person every day, it seemed

 48

easiest to all be working within the same ³PDVWHU´ branch. Starting out, this strategy worked
out well, but eventually some bad changes were committed, and some development time was
lost to joint debugging. However, the team learned from their mistakes and became careful
when committing changes and closely analyzed their changes before pushing them to the
main branch.

Another, more common approach, which arguably should have been used in combination with
branching, is pull requests. This would integrate code reviewing on each code push, which
has been proved to be effective in reducing bugs and improving code quality, since it is
reviewed by more collaborators [35].

By likelihood, creating separate branches for different development processes would be a
better approach. This would allow the team to work on separate tasks without them
interrupting one another.

5.2.2 Testing

The usage of testing in the project is deemed sufficient, as it tests a large amount of
functionality for both the backend and frontend. A case could be made for testing graphical
components in the frontend could prove beneficial, but these tests are difficult and timely to
create, and with changes in design, might even be replaced in later development.

Instead of having tested the backend in spring boot, Postman is used to test the endpoints
and data received. This is again because more complex testing in spring boot like mock
testing is difficult and time consuming and testing in Postman proved simple and effective.

5.3 Time constraints and milestones

While the team fulfilled all expectations listed in ³milestones´ �$WWDFKPHQWV�³SUH�SURMHFW�SODQ´�
and completed the project, it was acknowledged that more work could have been done earlier
in the semester. The mandatory subject INGA2300 limited the team's available time and
energy for the bachelor thesis, which may have impacted the overall quality of the project.
Despite these constraints, the team was able to deliver a functional and valuable application
for PatoGen.

5.4 Quality assurance

The team's commitment to quality assurance through planning, documentation, and
continuous feedback from the supervisor and client ensured that the project met expectations.
Assigning specific roles within the team for overseeing design, code quality, and
documentation contributed to the overall success of the project.

 49

5.5 Alternative approaches

While the chosen technologies and methodologies proved successful for the project,
alternative approaches could have been explored. For example, using a different frontend
framework or library, such as Angular or Vue.js, could have yielded different results in terms
of development speed and application performance. Additionally, alternative backend
frameworks or database systems might have been considered, depending on the team's
experience and the project's specific requirements.

In conclusion, the team's choice of technologies, collaborative approach, focus on simplicity,
and commitment to quality assurance resulted in the beneficial development of a functional
and valuable application for PatoGen. Despite facing time constraints and competing priorities,
the team was able to effectively meet the project's objectives and deliver a solution that met
the client's expectations.

5.6 Agile Methods

5.6.1 Sprints

Although agile methods were used during development, the implementation of it could have
been better. For instance, sprints were intended to be 2 weeks long, but sometimes the
sprints were finished at inconsistent times, resulting in what should have been a total of 8
sprints, turned into 7. There did not arise any negative consequences of this, but in general,
it is good practice to follow the initial plan, as too many deviations can lead to the team
losing track of the original goal.

5.6.2 Daily standups

A common practice of agile methods are daily standups. Since the group met daily in
person, there was never a question about what each member was working on, as the team
communicated closely and contributed to solving HDFK�RWKHU¶V problems and providing
different views and ideas for each other during development. Therefore, there was never a
strict point of the day for a daily standup, but rather a natural stream of communication.

 50

5.6.3 Jira

In terms of Jira, there could have been more logging of issues. The main cause for the lack
of logging is due to the team consistently working closely in person, making logging more of
a hinderance than a useful feature, since each member knew what the other members were
doing. In hindsight, the number of issues logged was sufficient, but in a different scenario
where documenting work and being able to refer to completed tasks is of high importance,
logging issues should receive more focus.

5.6.4 Confluence

In terms of using confluence, it served as a handy tool to document notes, especially for
meetings. Despite this, it should possibly have been used more frequently in taking notes
about more important decisions and complex work completed, since these factors can be
easily forgotten, and can be useful in the context of the report.

5.6.5 Client and supervisor

There were also inconsistencies with meetings with our client and supervisor, which were
originally planned to be at the end of each sprint (every two weeks). Both our supervisor
and client had busy schedules, and meeting rooms on campus were often unavailable. It
quickly became a very difficult task to arrange meetings where all these 3 factors were
aligned. This resulted in more casual forms of communication, like a discord channel where
our client was included. Because of this, the group had great, continuous communications
with the client, and were able to receive constant feedback and information.

Figure 24 (Example of communications with client using discord)

Nevertheless, the group still had several meetings with the client, often at their offices or in
online conference calls. The group maintained the goal of having meetings with the client

 51

every two weeks, but they were not exclusively held at the last date of the sprints.
Receiving continuous feedback from the client provided necessary information for the group
to know what steps were next and were always on the right course.

5.7 Fulfillment of Client Requirements

The requirements from the client have been listed in Chapter 1.3. This chapter will evaluate
whether these requirements have been met.

5.7.1 Confidentiality

PatoGen's dataset comprises sensitive and confidential information concerning their
customers, warranting strict limitations on access by other users. The team has effectively
addressed this requirement in the current version of the application, ensuring that no
competitor can extract any specific customer data through any means.

Furthermore, the team delivered another specific requirement: data will only be displayed
when information from at least three customers is available simultaneously. This logic is
implemented in a manner that regardless of the user's search parameters, no data will be
shown unless the requested dataset contains a minimum of three customers.

5.7.2 User Authentication

The client wanted to authenticate users as an extra security measure to restrict the possibility
of leaking confidential information about their customers to the public. The team implemented
this by using the Microsoft Authentication Library, which restricts access to the application to
a list of users defined in Azure Active Directory. A more in-depth description of this process
is found in chapter 4.2.3 ³$XWKRUL]LQJ�DFFRXQWV´�

5.7.3 Data visualization

The client presented specific requirements for data visualization in their system. They desired
a user-friendly interface that would enable users to easily compare data from different
production areas and apply specific search parameters to filter the data. Although PatoGen
possessed a thorough understanding of the provided data, they lacked a clear vision for its
visualization. Consequently, the development team took the initiative to brainstorm and
propose visual solutions, which were later confirmed with the client.

The implementation of filtered searches and a date picker feature enhanced the system's
usability, enabling users to customize their experience by viewing and analyzing data
according to their specific requirements.

 52

5.7.4 Graphical interface

In response to the client's request, the team embraced the "KISS" (Keep It Simple Stupid)
principle as a guiding philosophy when designing and developing the application's graphical
user interface. This approach was chosen to ensure the creation of an intuitive and easily
comprehensible interface for users. By prioritizing simplicity, the team focused their efforts
on delivering essential functionality while effectively visualizing PatoGen's data in a
meaningful manner.

6 Conclusion

Building upon the previous chapters, the conclusion will not only provide a comprehensive
overview of the entire project but also emphasize the key contributions made throughout the
research. By reflecting on the methodology, analysis, and findings, this final chapter will offer
valuable insights into the practical applications and potential benefits of the work.

Moreover, the conclusion will serve as an opportunity to critically assess the strengths and
weaknesses of the research, acknowledging any areas that could be improved or further
explored. Through this evaluation, the conclusion will present a balanced perspective on the
overall quality and relevance of the thesis, ultimately contributing to a deeper understanding
of the topic and its broader implications in the field.

6.1 Summary of Achievements

6.1.1 Technology Selection

One of the key factors contributing to the successful development of the web-based
application for PatoGen was the selection of appropriate technologies. The team's choice of
React.js for the frontend allowed for rapid development while maintaining scalability and
maintainability. Spring Boot was chosen for the backend due to its seamless integration with
PatoGen's Azure database and its robust platform for building APIs. Furthermore, Microsoft
Azure Active Directory provided a familiar and efficient authentication system, while the
Google Maps API facilitated the creation of an interactive and visually appealing map interface.
The combination of these technologies enabled the development of a feature-rich and user-
friendly application.

 53

6.1.2 Team Collaboration and Project Management

Effective team collaboration, communication, and project management played a crucial role
in the completion of this project. Utilizing Jira and Confluence for task assignment, progress
tracking, and documentation ensured that the team remained organized and efficient
throughout the development process. Regular meetings, open lines of communication, and
an emphasis on teamwork facilitated problem-solving and enabled the team to overcome
challenges that arose during the project.

6.1.3 Application Design and Functionality

The team's adherence to the "KISS" (Keep It Simple Stupid) principle in the design and
development process resulted in an intuitive and user-friendly application that effectively
visualized PatoGen's data in a meaningful and accessible way. By prioritizing core functionality
and a clean, straightforward user interface, the team was able to create an application that
met the needs of its intended audience and provided value to PatoGen.

6.1.4 Overcoming Time Constraints

Despite facing considerable time constraints due to parallel subjects, the team managed to
meet the set milestones and deliver a functional and valuable application for PatoGen. This
achievement underscores the team's dedication, resilience, and ability to prioritize tasks
effectively under challenging circumstances.

6.1.5 Quality Assurance

The team's commitment to quality assurance was evident through their thorough planning,
comprehensive documentation, and continuous feedback from the supervisor and client. By
assigning specific roles within the team to oversee design, code quality, and documentation,
the team ensured that the project maintained high standards and met the expectations of all
stakeholders.

 54

6.2 Limitations and Future Research

6.2.1 Alternative Approaches

While the chosen technologies and methodologies proved to fit seamlessly for this project and
should count as modern for years to come, alternative approaches could be explored in future
research and development. For example, the use of different frontend frameworks or libraries,
such as Angular or Vue.js, might yield different results in terms of development speed and
application performance. Similarly, alternative backend frameworks or database systems
could be considered, depending on the team's experience and the specific requirements of
the project.

6.2.2 Additional Features and Improvements

Future research could also investigate the implementation of additional features and
improvements to enhance the application's functionality and user experience. These
enhancements might include advanced data visualization techniques, more granular filtering
options, or the integration of machine learning algorithms for predicting fish health. By
incorporating these new features, the application could provide an even greater value to
PatoGen and its stakeholders.

As discussed in chapter 4.2.6 ³Assessing disease impact´, different diseases should optimally
be handled in a unique way in all calculations, as the different diseases encompass distinct
properties that operate under specific conditions. If more research is done regarding this
subject, a future version of the application could implement a more concise way of handling
specific diseases when calculating risks. Custom messages and warnings could be
implemented if certain diseases were close to ³RXWEUHDN� WKUHVKROGV´�� Local geographical
conditions and parameters (water temperature, seasons, latitude, salt-levels) could also be
regarded when handling the datasets.

6.3 Identified problems

6.3.1 Spring Boot in deployment

One issue arose after development had finished. Sometimes the Spring Boot backend on the
server stops working, currently the exact reason behind it is unknown, but after doing some
debugging, it was discovered the spring boot process running the backend is most likely
stuck in an ³,QWHUUXSWLEOH�VOHHS�VWDWH´�which suggests that the process is waiting for an

 55

event to complete [36]. As a result, none of the endpoints are reachable, and no data can
be retrieved.

This happens at seemingly random moments, usually days or weeks after deployment. After
the backend stops working, the only known fix is to restart the backend on the server. To
combat this issue, logging was implemented to log error messages output by the system,
which hopefully will provide information associated with the problem so it can be resolved
later.

6.4 Final Remarks

In conclusion, this bachelor thesis project demonstrates the promising development of a
beneficial web-based application for PatoGen that effectively visualizes fish health data,
providing valuable insights for stakeholders in the aquaculture industry. The team's choice of
technologies, collaborative approach, focus on simplicity, and commitment to quality
assurance have resulted in a solution that meets the client's expectations and offers a solid
foundation for future enhancements and research opportunities. Through this project, the
team has gained valuable experience and skills in project management, software
development, problem-solving, and teamwork, preparing the team for future challenges in
their careers.

 56

7 Societal Impact

The aim of this chapter is to discuss the societal impact of this bachelor thesis project. The
project is carried out by students at The Norwegian University of Science and Technology
(NTNU) and employees at PatoGen, a company specializing in fish health and disease analysis
in Norwegian fish farms. Both are regarded as institutions with a common value,
sustainability, new technology and groundbreaking development. New technology and
developments should be sustainable and have a positive economic and environmental impact.

7.1 Benefits for Aquaculture Industry

The application offers numerous benefits for the aquaculture industry, including improved
monitoring and management of fish health. By providing a visual representation of the health
data, the application enables fish farm owners and managers to make better-informed
decisions regarding the welfare of their fish stocks. This can lead to reduced fish mortality,
improved productivity, and overall increased efficiency within the industry. Especially for
countries like Norway, where seafood represents a large amount of WKH�FRXQWU\¶V�H[SRUW; 2.9
billion tons in 2022 [37]. Using applications like this one could potentially have huge economic
and sustainable impacts.

7.1.1 Economic implications

The application's ability to optimize fish health management can have positive economic
implications for the stakeholders involved. Healthier fish stocks can lead to higher yields and
better-quality products, which in turn can increase profitability for fish farm owners. Moreover,
by enhancing the sustainability and efficiency of the industry, the application can help ensure
the long-term growth and success of the Norwegian aquaculture sector. Implementing the
traffic light system for individual productions areas could result in a growth of 24000 additional
tons of exported fish [2], the Norwegian government believes.

7.2 Environmental Impact

By promoting optimal fish health and fish farm management practices, the application can
potentially reduce the environmental impact of fish farming. Healthier fish stocks may result
in fewer disease outbreaks and therefore a decreased reliance on antibiotics and other
medications. Additionally, a well-managed fish farm has a lower risk of negatively affecting
local ecosystems. These are examples of situations where this application can reduce the
environmental footprint of this large industry.

 57

7.3 Public health and food industry

7KH�DSSOLFDWLRQ¶V�YLVXDOL]DWLRQ�WRRO�can also have indirect benefits and impact on the public
health and food industry. By reaching better and healthier fish stocks, the application can
contribute to the production of safer and higher-quality seafood products for consumers.
Furthermore, by supporting a more sustainable and efficient aquaculture industry, the
application can play a role in ensuring a reliable and secure supply of fish products to meet
the growing global demand for seafood.

7.4 Future Research and Development

Providing the opportunity for users to further filter their searches could also be implemented
to offer users the ability to parse and analyze highly specific data, even though the main
design principle was to keep the interface as simple and understandable as possible.
Introducing location-specific data into the application is also a possibility. Due to the public¶V�
UHVWULFWHG� DFFHVV� WR� 3DWR*HQ¶V� GDWD�� WKH� WHDP� ZDV� RQO\� DEOH� WR� XVH� LQIRUPDWLRQ� DERXW�
production areas to visualize a more general status. If PatoGen chooses to further work on
this application, it could be made possible to let the customers see more personalized data,
for instance their own confidential data about specific fish farms.

The societal impact of the application is expected to grow as more research is conducted and
new features are developed. Future research could potentially focus on updating the
visualization techniques, integrating additional data sources like open-source data about fish-
lice, and maybe explore advanced analytics including artificial intelligence for predicting
outcomes and development within the fish farms. These improvements can further enhance
the DSSOLFDWLRQ¶V ability to support sustainable development and promote healthy fish farming
practices.

 58

Bibliography

[1] C. Knudsen, "58 millioner laks døde i norske oppdrettsanlegg i 2022," 7 February
2023. [Online]. Available: https://e24.no/hav-og-sjoemat/i/4omy9G/58-millioner-
laks-doede-i-norske-oppdrettsanlegg-i-2022.

[2] 5HJMHULQJHQ��³5HJMHULQJHQ�VNUXU�Sn�WUDILNNO\VHW�L�KDYEUXNVQ ULQJHQ�´���)HEUXDU\�
2020. [Online]. Available:
https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-
regjeringen-solberg/nfd/nyheter/nyheter-2020/regjeringen-skrur-pa-trafikklyset-i-
havbruksnaringen/id2688939/.

[3] ,%0��³LEP�FRP�´����0DUFK�������>2QOLQH@��$YDLODEOH��
https://www.ibm.com/docs/en/informix-servers/14.10?topic=server-clientserver-
communication.

[4] 2UDFOH��³:KDW�LV�D�UHODWLRQDO�GDWDEDVH"�´�>2QOLQH@��$YDLODEOH��
https://www.oracle.com/database/what-is-a-relational-database/#link2.

[5] $WODVVLDQ��³:KDW�LV�$JLOH"�´�>2QOLQH@��$YDLODEOH��KWWSV���ZZZ�DWODVVLDQ�FRP�DJLOH�

[6] -RVLNDNDU��³6RIWZDUH�(QJLQHHULQJ�_�&RXSOLQJ�DQG�&RKHVLRQ�´����$SULO�������>2QOLQH@��
Available: https://www.geeksforgeeks.org/software-engineering-coupling-and-
cohesion/.

[7] ,%0��³:KDW�LV�VRIWZDUH�WHVWLQJ"�´�>2QOLQH@��$YDLODEOH��
https://www.ibm.com/topics/software-testing.

[8] 7��+DPLOWRQ��³8QLW�7HVWLQJ�7XWRULDO�± :KDW�LV��7\SHV�	�7HVW�([DPSOH�´�����������
[Online]. Available: https://www.guru99.com/unit-testing-guide.html.

[9] Amazon Web Services, "What is Continuous Integration?," [Online]. Available:
https://aws.amazon.com/devops/continuous-integration/.

[10] Educative, [Online]. Available: https://www.educative.io/answers/client-side-vs-
server-side.

[11] Universitetet i Oslo, 19 May 2021. [Online]. Available:
https://www.mn.uio.no/ibv/tjenester/kunnskap/plantefys/leksikon/p/pcr.html.

[12] $��-��%��.��6��'��-HVVLFD�3HQQH\��³1DWLRQDO�/LEUDU\�RI�0HGLFLQH�´���$SULO�������>2QOLQH@��
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088631/.

[13] V. Kanade, "Spiceworks.com," 22 July 2022. [Online]. Available:
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-hci/.

 59

[14] %��.RSI��³7RSWDO�´�>2QOLQH@��$YDLODEOH��KWWSV���ZZZ�WRSWDO�FRP�GHVLJQHUV�XL�ILJPD-
design-tool.

[15] Angular, ³:KDW�LV�$QJXODU�´����)HEUXDU\�������>2QOLQH@��$YDLODEOH��
https://angular.io/guide/what-is-angular.

[16] 5��7KDQNDUDM��³0LFURQDXW�YV�4XDUNXV�YV�6SULQJ�%RRW�5HDFWLYH�)UDPHZRUN�'HHS�
&RPSDULVRQ�´���-XO\�������>2QOLQH@��$YDLODEOH��
https://regupathit.medium.com/quarkus-vs-micronaut-a-deep-comparison-
84cae4fea966.

[17] P. Loshin, "techtarget.com," February 2022. [Online]. Available:
https://www.techtarget.com/searchdatamanagement/definition/SQL.

[18] 5HDFWMV��³$�-DYD6FULSW�OLEUDU\�IRU�EXLOGLQJ�XVHU�LQWHUIDFHV�´�>2QOLQH@��$YDLODEOH��
https://legacy.reactjs.org/.

[19] 0DWHULDO�8,��³0DWHULDO�8,�´�>2QOLQH@��$YDLODEOH��KWWSV���PXL�FRP��

[20] 5HFKDUWV��³5HFKDUWV�´�>2QOLQH@��$YDLODEOH��KWWSV���UHFKDUWV�RUJ�HQ-US/.

[21] 1��,JKRGDUR��³8QGHUVWDQGLQJ�5HGX[��$�WXWRULDO�ZLWK�H[DPSOHV�´���2FWREHU�������
[Online]. Available: https://blog.logrocket.com/understanding-redux-tutorial-
examples/.

[22] ,%0��³:KDW�LV�-DYD�6SULQJ�%RRW�´�>2QOLQH@��$YDLODEOH��
https://www.ibm.com/topics/java-spring-boot.

[23] 0��0XOGHUV��³:KDW�,V�6SULQJ�%RRW�´����6HSWHPEHU�������>2QOLQH@��$YDLODEOH��
https://stackify.com/what-is-spring-boot/.

[24] JLW��³JLW�--IDVW�YHULVRQ�FRQWURO�´�>2QOLQH@��$YDLODEOH��KWWSV���JLW-scm.com/.

[25] -��-XYLOHU��³EORJ�KXEVSRW�´����6HSWHPEHU�������>2QOLQH@��$YDLODEOH��
https://blog.hubspot.com/website/google-maps-api.

[26] *LW+XE��³8QGHUVWDQGLQJ�*LW+XE�$FWLRQV�´�>2QOLQH@��$YDLODEOH��
https://docs.github.com/en/actions/learn-github-actions/understanding-github-
actions.

[27] 2SHQ$,��³$ERXW�´�>2QOLQH@��$YDLODEOH��KWWSV���RSHQDL�FRP�DERXW�

[28] 2SHQ$,��³*37-��´�>2QOLQH@��$YDLODEOH��KWWSV���RSHQDL�FRP�UHVHDUFK�JSW-4.

[29] -DYDWSRLQW��³3RVWPDQ�7XWRULDO�´�>2QOLQH@��$YDLODEOH��
https://www.javatpoint.com/postman.

[30] 0LFURVRIW��³2YHUYLHZ�RI�WKH�0LFURVRIW�$XWKHQWLFDWLRQ�/LEUDU\��06$/��´����'HFHPEHU�
2022. [Online]. Available: https://learn.microsoft.com/en-us/azure/active-
directory/develop/msal-overview.

 60

[31] Kinsta, "What Is Nginx? A Basic Look at What It Is and How It Works," 26 01 2022.
[Online]. Available: https://kinsta.com/knowledgebase/what-is-nginx/.

[32] 5��*ULVFKHQNR��³0LJKW\�´����2FWREHU�������>2QOLQH@��$YDLODEOH��
https://www.mighty.digital/blog/data-modeling-techniques-explained.

[33] Indeed Editorial Team, 10 March 2023. [Online]. Available:
https://www.indeed.com/career-advice/career-development/client-side-vs-server-
side.

[34] (XNKRVW��³:KDW�LV�6HUYHU�6LGH�6FULSWLQJ��*XLGH�RI�3URV�DQG�&RQV��´����December
2015. [Online]. Available: https://www.eukhost.com/blog/webhosting/server-side-
scripting-pros-and-cons/.

[35] F. Morina, "Benefits of Using Pull Requests for Collaboration and Code Review," 01
December 2022. [Online]. Available: https://developer.nvidia.com/blog/benefits-of-
using-pull-requests-for-collaboration-and-code-review/.

[36] J. L. Perez, "baeldung," 30 November 2022. [Online]. Available:
https://www.baeldung.com/linux/uninterruptible-process.

[37] Norwegian Seafood Council, "seafood.no," 4 January 2023. [Online]. Available:
https://seafood.no/aktuelt/nyheter/norge-eksporterte-sjomat-for-1514-milliarder-
kroner-i-2022/.

[38] 3RVWPDQ��³:KDW�LV�3RVWPDQ"�´�>2QOLQH@��$YDLODEOH��KWWSV���ZZZ�SRVWPDQ�FRP��

[39] $��1DRU��³IUHHFRGHFDPS�RUJ�´����$XJXVW�������>2QOLQH@��$YDLODEOH��
https://www.freecodecamp.org/news/keep-it-simple-stupid-how-to-use-the-kiss-
principle-in-design/.

 1

Attachments

Attachments include mandatory documents that is not directly relevant to subjects in the
main report or is too large to follow the flow of the document. Additional attachments like
pre project plan were initially written in Norwegian, however a copy in English is provided to
ensure that all readers understand the whole picture. Some parts within the pre project plan
are deleted for this submission as it included private information that should not be
published without consent.

Contents

Forprosjektsplan (Norsk) .. 2

Pre Project plan (English) ... 9

Sequence Diagram.. 15

Wireframes .. 16

Application Result Overview .. 18

 2

Forprosjektsplan (Norsk)

Mål og rammer

1.1 Orientering

2SSJDYHQ�³5LVLNRPRGHOO�RJ�ZHEDSS´�IUD�3DWR*HQ var den åpenbare kandidaten for valget

vårt av bacheloroppgave. Dette er først og fremst fordi vi har lyst til å lage en enkel, visuell

og

brukervennlig nettside, men også fordi fiskeoppdrett er en bransje med interessante

utfordringer og problemstillinger. Samtlige i gruppen vil også gjerne opparbeide seg erfaring

fra hav og fiske-industrien. Dette er fordi vi er bosatt i Ålesund og industrien har en stor

markedsandel i byen.

Denne oppgaven var øverst på vår liste over mulige bachelorprosjekter, noe vi tydelig

klargjorde i prosjektsøknaden hvor vi ytret våre egenskaper og motivasjon for utførelsen av

denne oppgaven.

1.2 Problemstilling / prosjektbeskrivelse og resultatmål
Oppdragsgiveren PatoGen jobber med ressursutnyttelse av oppdrettsfisk. Dette

gjennomfører de hovedsakelig ved å analysere sykdomsforløp til fisken. Ansatte og kunder

av PatoGen ser et økende behov for en brukervennlig løsning som gir en totaloversikt over

nåværende sykdom- og smittestatus til oppdrettsanleggene.

Oppdrett i Norge deles inn i flere geografiske soner. Disse produksjons-områdene følger det

VnNDOWH�³WUDILNNO\VV\VWHPHW´��KYRU�KYHU�VRQH�EOLU�WLOGHOW�U¡GW��JU¡QW�HOOHU�JXOW�O\V�- som

representerer hvorvidt produksjonsområdet kan øke eller trappe ned produksjonen for å

opprettholde en god fiskehelse.

Vår jobb er å visuelt framstille nåværende status og annen relevant data for samtlige

geografiske soner, slik at kunder og ansatte får en bedre oversikt over tilstanden til

fiskeproduksjonen i Norge, slik at de kan ta interne beslutninger for å optimalisere

produksjonen sin.

Når prosjektet er ferdig er det forventet å ha utviklet et brukergrensesnitt som enkelt kan

brukes av kunder og ansatte, hvor de kan få en oversikt over en rekke ulike risikofaktorer

for fiskeoppdrett. Risikoene varierer, men hovedsakelig bakterier, sykdommer og lus.

Brukere skal kunne navigere på et kart over Norge med alle oppdrettsanleggene, velge ut et

oppdrettsanlegg og få oversikt over risikoer basert på trafikklyssystemet. Brukere må

autentiseres, og autentiserte brukere skal kun ha tilgang til informasjon av fiskeoppdrett

som tilhører deres firma.

 3

1.3 Effektmål
Gruppen ønsker som minstekrav å tilfredsstille oppdragsgivers behov, og har ambisjoner om

å imponere oppdragsgiver. Generelt ønsker gruppen å prestere på et høyt nivå.

Den ønskelige langsiktige effekten fra oppdragsgiver sin side er at kundene deres enkelt kan

analysere tilstanden til fisken i oppdrettsanleggene sine. Dette vil hjelpe kundene med å ta

interne beslutninger og å øke produksjonseffektiviteten. Regjeringen har anslått at et

trafikklyssystem for lakselus kan gi en årlig produksjonsvekst på 23 000 tonn i året. I

oppgaven vår skal vi både ta hensyn til lakselus, men også andre agenser. Dette kan føre til

at produksjonsveksten kan øke enda mer enn hva regjeringen har anslått.

1.4 Rammer
x Faste grupperom på campus med tavle og TV-skjerm.

x Dekning av parkeringsutgifter når møter skal holdes hos PatoGen sine kontorer.

2 Organisering
Involverte aktører i prosjektet er NTNU og PatoGen.

3 Gjennomføring

3.1 Hovedaktiviteter
Opplisting av hovedaktiviteter.

x Kommunikasjon med oppdragsgiver og veileder

o Hele gruppen kommuniserer med oppdragsgiver og veileder ved jevnlige

møter for å diskutere hvordan ting har gått, og hva som er veien videre.

x Design

o Eirik Dahle er i ledelse for designet av nettsiden.

x Versjonskontroll og CI/CD

o Github, Branching, Pull Requests, GitHub Actions til Continuous Integration.

x Utvikling og rapportskriving

o Alle gruppemedlemmer skal bidra med kode- og rapportskriving underveis i

prosjektet. Vi vil bruke React som bibliotek.

https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/nfd/nyheter/nyheter-2020/regjeringen-skrur-pa-trafikklyset-i-havbruksnaringen/id2688939/

 4

x Ledelse og intern kommunikasjon

o Jones er teamleder og er ansvarlig for:

� Kommunikasjon mellom veileder, oppdragsgiver, og

gruppemedlemmer.

� Sørge for at frister blir opprettholdt.

� Sørge for at kvalitet til innlevert arbeid opprettholder høy standard i

samarbeid med Didrik.

� Sørge for at samhold til gruppen er bra, at arbeidskontrakt og

oppgaver blir fulgt.

x Statistikk, databehandling, representering/sammenligning av data

o Det er visse bransjestandarder som må bli fulgt, og utfordringer som

trenger spiss faglig kompetanse - så oppdragsgiver vil hjelpe mye til

med databehandling.

o Hvis ekstra statistikk-kompetanse blir nødvendig, så kan statistikk-

studenter fra NTNU bidra.

x Scrum-metodikk

o 2 ukers sprint, møte med veileder hver uke i startfasen, annenhver uke etter

man kommer godt i utviklingsprosessen.

o Sprint planning

o Daily standups

o Sprint review

o Sprint retrospective

o Jira til arbeidsfordeling og planlegging

o Confluence til administrativt (dokumenter, referat, etc)

3.2 Milepæler
Opplisting av kritiske datoer.

12/01/23 - Første møte med veileder og oppdragsgiver

27/01/23 - Innlevering forprosjektplan

03/02/23 - Tilbakemelding forprosjektplan, godkjenning

21/04/23 - Muntlig presentasjon av prosjekt på engelsk

21/04/23 - Innlevering rapport til veileder for tilbakemelding

18/05/23 - Postere skal være ferdig og klar til printing

22/05/23 - Innlevering av rapport og vedlegg i inspera, trolig presentasjon av prosjekt.

 5

4 Oppfølging og kvalitetssikring

4.1 Kvalitetssikring
For å forsikre at kvaliteten i prosjektet holder en viss standard er det viktig at vi som gruppe

leser og analyserer alt arbeid som blir utført og kvalitetssikrer dette før det eventuelt vises

frem til oppdragsgiver og veileder. Regelmessig kommunikasjon med veileder vil gi oss

konstruktive tilbakemeldinger slik at vi kan forbedre produktet ytterligere.

Tiltak for kvalitetssikring:

- Skissere og planlegge arbeid grundig

- Dokumentere møter, kode og annet generelt arbeid

- Regelmessig testing av applikasjon og kode-eksemplarer

- Tilbakemelding fra oppdragsgiver / veileder

- Github actions for bruk av CI

4.2 Rapportering
Rapportering skal tilstrebes annenhver uke til veileder og oppdragsgiver, som regel på

slutten av hver sprint hvor studentene møter med veileder og oppdragsgiver.

5 Risikovurdering
Risikoanalyse som vurderer sårbarheter i prosjektet (hendelse, sannsynlighet, konsekvens

og tiltak).

Hendelse Årsak Sannsynlighe

t
Konsekvens Forebyggende

tiltak

1 Bugs Feil i kode Svært høy

Å skrive feilfri

kode kan

betegnes som

omtrent

umulig,

ettersom det

er vanskelig å

forutse

hvordan koden

kompilerer.

Lav/Middels/hø

y

Applikasjonen

har uønsket

oppførsel og

kan deretter

være

frustrerende å

bruke. I verste

fall kan deler,

eller hele

applikasjonen

være ubrukelig.

Testing,

Continuous

Integration,

dokumentere

kode, vurdere

nøye hvordan

kode og

arkitektur

fungerer,

versjonskontroll

.

 6

2 Korrupt/mistet

kode

Manglende

versjonskont

roll

Lav

Uten bruk av

git kan ikke

koden anses

som trygg,

ettersom det

kan hende den

ikke er lagret,

og dermed

kan lett tapes.

Koden kan

også bli

korrupt hvis

noe uønsket

oppstår med

filene til

prosjektet.

Svært høy

Manglende/korr

upt kode kan i

verste fall føre

til at deler av /

hele prosjektet

mistes/ikke kan

brukes.

Versjonskontrol

l som git,

gjerne knyttet

til et remote

repository.

3

Uforventet

permanent frafall,

endringer i

gruppesammenset

ning

Sykdom,

interne

konflikter,

private

årsaker.

Lav

Kortvarig

frafall kan

forekomme,

som ved

omgangssykdo

m, men

sannsynlighete

n for et

permanent

frafall kan

anses som lav,

ettersom alle

er høyt

motiverte til å

fullføre

oppgaven.

Høy

Ved et

permanent

frafall vil

arbeidsmengde

n måtte

omdistribueres,

samt

arbeidsmengde

n øker

betraktelig på

resterende

medlemmer.

 Ta vare på

samholdet i

gruppen, vis

hensyn til

andres behov

og perspektiv.

4

Kortvarig frafall Sykdom,

uforutsigbare

hendelser.

 Høy

Det er å regne

med at

sykdom kan

oppstå, samt

det er mulig at

uforutsigbare

Lav/Middels

I et tilfelle hvor

et

gruppemedlem

ikke kan

arbeide kan det

by på

Varsle tidligst

mulig ved noen

form for frafall,

ha tydelig

fordelte

arbeidsoppgave

r, slik at det

 7

hendelser som

hindrer en

persons

oppmøte, kan

oppstå.

skjevfordelt

arbeidsmengde,

og i verste fall

føre til at en

tidsfrist ikke blir

holdt.

enkelt kan

fordeles.

6 Vedlegg
Følgende dokumenter leveres som separate filer ved innlevering i Blackboard i januar

(obligatorisk arbeidskrav), men ikke i endelige leveransen av hovedrapporten den 20. mai!

6.1 Tidsplan
Confluence benyttes til å strukturere de forskjellige fasene i prosjektet. Ved hjelp av ulike

verktøy som confluence og jira kan vi lettere få oversikt over møter og arbeid som foregår

og/eller er planlagt. Disse planene strukturerer vi i tabeller og diagrammer som visualisere

arbeidsprosessen ytterligere.

 8

(Eksempelvis vil et gantt-diagram, her laget i «click-up» visualiserer arbeidsprosessen vår

de neste ukene. Her er planleggingsfasen, sprinter og møter godt organisert og lagt ut i

forhold til hverandre.)

 9

Pre Project plan (English)

1 Goals and scope

1.1 Orientation

The task "Risk Model and Web App" from PatoGen was the obvious choice for our bachelor's
thesis. This is primarily because we want to create a simple, visual, and user-friendly
website, but also because fish farming is an industry with interesting challenges and issues.
Everyone in the group also wants to gain experience from the sea and fishing industry. This
is because we are located in Ålesund and the industry has a large market share in the city.

This task was at the top of our list of possible bachelor projects, something we clearly stated
in the project application where we expressed our skills and motivation for carrying out this
task.

1.2 Issue / Project Description and Result Goals

The client PatoGen works with the utilization of farmed fish. They do this mainly by
analyzing the disease course of the fish. Employees and customers of PatoGen see an
increasing need for a user-friendly solution that provides a complete overview of the current
disease and infection status of the fish farms.

Fish farming in Norway is divided into several geographical zones. These production areas
follow the so-called "traffic light system", where each zone is assigned a red, green, or
yellow light - representing whether the production area can increase or scale down
production to maintain good fish health.

Our job is to visually present the current status and other relevant data for all geographical
zones, so that customers and employees get a better overview of the condition of fish
production in Norway, so they can make internal decisions to optimize their production.
When the project is finished, it is expected to have developed a user interface that can
easily be used by customers and employees, where they can get an overview of various risk
factors for fish farming. The risks vary, but mainly bacteria, diseases, and lice. Users should
be able to navigate on a map of Norway with all the fish farms, select a fish farm, and get
an overview of risks based on the traffic light system. Users must be authenticated, and
authenticated users should only have access to information of fish farming that belongs to
their company.

 10

1.3 Effect Goals

The group wants to at least satisfy the needs of the client and has ambitions to impress the

client. In general, the group aims to perform at a high level.

The desirable long-term effect from the client's perspective is that their customers can easily

analyze the condition of the fish in their fish farms. This will help customers make internal

decisions and increase production efficiency. The government has estimated that a traffic

light system for sea lice can provide an annual production growth of 23,000 tons per year.

In our task, we will take into account not only sea lice but also other agents. This could lead

to production growth increasing even more than what the government has estimated.

1.4 Frameworks
� Fixed group rooms on campus with board and TV screen.

� Coverage of parking expenses when meetings are to be held at PatoGen's offices.

2 Organization

The actors involved in the project are NTNU and PatoGen.

3 Implementation

3.1 Main Activities

Listing of main activities.

� Communication with the client and supervisor

o The entire group communicates with the client and supervisor at regular

meetings to discuss how things have gone, and what the way forward is.

� Design

o Eirik Dahle is in charge of the design of the website.

� Version control and CI/CD

o Github, Branching, Pull Requests, GitHub Actions for Continuous Integration.

� Development and report writing

o All group members will contribute with code and report writing throughout the

project. We will use React as a library.

o Management and internal communication

x Jones is the team leader and is responsible for:

o Communication between the supervisor, client, and group members.

o Ensuring deadlines are met.

o Ensuring that the quality of submitted work maintains a high standard in

collaboration with Didrik.

o Ensuring that the group's cohesion is good, that the work contract and tasks

are followed.

 11

x Statistics, data processing, representation/comparison of data

o There are certain industry standards that must be followed, and challenges

that require sharp professional competence - so the client will provide much

assistance with data processing.

o If additional statistical competence becomes necessary, then statistics

students from NTNU can contribute.

��6FUXP�PHWKRGRORJ\

x 2-week sprint, meeting with the supervisor every week in the initial phase, every

other week after getting well into the development process.

x Sprint planning

x Daily standups

x Sprint review

x Sprint retrospective

x Jira for work distribution and planning

x Confluence for administrative tasks (documents, minutes, etc.)

3.2 Milestones

Listing of critical dates.

12/01/23 - First meeting with supervisor and client

27/01/23 - Submission of preliminary project plan

03/02/23 - Feedback on preliminary project plan, approval

21/04/23 - Oral presentation of the project in English

21/04/23 - Submission of report to supervisor for feedback

18/05/23 - Posters should be finished and ready for printing

22/05/23 - Submission of report and appendices in Inspera, likely project presentation.

4 Monitoring and Quality Assurance

4.1 Quality Assurance

To ensure that the quality of the project maintains a certain standard, it is important that we

as a group read and analyze all work that is carried out and quality assure this before it is

potentially presented to the client and supervisor. Regular communication with the

supervisor will provide us with constructive feedback so that we can further improve the

product.

 12

Quality assurance measures:

x Sketch and plan work thoroughly

x Document meetings, code, and other general work

x Regular testing of the application and code samples

x Feedback from the client / supervisor

x Github actions for use of CI

4.2 Reporting

Reporting should be aimed for every other week to the supervisor and client, usually at the

end of each sprint where the students meet with the supervisor and client.

 13

5 Risk Assessment

Event Cause Probability Consequence
Preventive
Measures

Bugs Coding errors Very high

The application has
unwanted behavior and
can then be frustrating to
use. In the worst case,
parts or the entire
application may be
unusable.

Testing, Continuous
Integration,
documenting code,
carefully evaluating
how code and
architecture work,
version control.

Corrupted/lost
code

Lack of version
control Low

Missing/corrupt code can,
in the worst case, result
in parts of/the entire
project being
lost/unusable.

Version control like
git, preferably linked
to a remote
repository.

Unexpected
permanent
dropout, changes
in group
composition

Illness, internal
conflicts,
private reasons Low

In the event of a
permanent dropout, the
workload will have to be
redistributed, and the
workload increases
considerably for the
remaining members.

Maintain group
cohesion, be
considerate of others'
needs and
perspectives.

Short-term
dropout

Illness,
unpredictable
events High

In a case where a group
member cannot work, it
can lead to unevenly
distributed workload, and
in the worst case, cause a
deadline not to be met.

Notify as early as
possible in case of
any dropout, have
clearly divided tasks
so that they can be
easily distributed.

 14

6.1 Schedule

We use Confluence to structure the different phases of the project. With the help of various

tools like Confluence and Jira, we can more easily get an overview of meetings and work

that is taking place and/or planned. We structure these plans in tables and diagrams that

further visualize the workflow.

(For instance, a Gantt chart, made here in "Click-Up", visualizes our work process for the

upcoming weeks. Here, the planning phase, sprints, and meetings are well-organized and

laid out in relation to each other.)

 15

Sequence Diagram

The sequence diagram displays the process of launching the application, a client/user need
successful authentication with Microsoft azure active directory before being redirected to the
application. Upon initial load, server requests queried data from the database to display
when page loads. This process is the same between client-server-database when client/user
request changes in both production area, diseases and/or date.

Figure 1 (Sequence diagram for loading application)

 16

Wireframes

Figure 2 (1. Iteration digital wireframe)

Figure 3 (2. iteration digital wireframe)

 17

The wireframes shown below is the ones that were decided on during a team meeting
including PatoGen. As the visualization methods and data representation was not declared,
the side window was put on hold and would be picked up again during the later stages of
development.

Figure 4 (Wireframe sidewindow collapsed)

Figure 5 (Wireframe sidewindow opened)

 18

Application Result Overview

Figure 6 (Result sidewindow collapsed)

Figure 7 (Result sidewindow opened)

	Preface
	Why did we choose this assignment?

	List of code examples
	List of figures
	Before reading
	Glossary and Phrases
	Acronyms and jargons

	1 Introduction
	1.1 Background
	1.2 Problem
	1.3.1 Confidentiality
	1.3.2 User authentication
	1.3.3 Data visualization
	1.3.4 Graphical interface

	1.4 Traffic Light Labeling

	2 Theory
	2.1 Client-server communication
	2.2 Relational database
	2.3 Agile development
	2.4 Coupling and cohesion
	2.5 Testing
	2.5.1 Unit Tests
	2.5.2 API Testing

	2.6 Continuous integration
	2.7 Client-side processing
	2.8 Server-side processing
	2.9 Polymerase Chain Reaction
	2.10 Cycle Threshold Values
	2.11 Human-Computer Interaction

	3 Methodology and tools
	3.1 Planning phase
	3.1.1 Pre-project plan
	3.1.2 Use cases
	3.1.2.1 Use case diagram
	3.1.2.2 User stories

	3.1.3 Wireframes & Design
	3.1.4 Research

	3.2 Tools
	3.2.1 SQL
	3.2.2 React
	3.2.3 Material UI & Recharts
	3.2.4 Redux
	3.2.5 Google maps API
	3.2.6 Spring Boot
	3.2.7 Version Control
	3.2.7.1 GitHub
	3.2.7.2 GitHub actions

	3.2.8 OpenAI (ChatGPT, GPT-4)
	3.2.9 Postman
	3.2.10 Microsoft Authentication Library
	3.2.11 Deployment tools

	3.3 Collaboration
	3.3.1 Jira
	3.3.2 Confluence

	3.4 Development
	3.4.1 Agile Methods
	3.4.1.1 Sprints
	3.4.1.2 Retrospectives

	3.4.2 Minimal Viable Product & User tests
	3.4.3 Connecting to Azure Database
	3.4.4 Spring Boot
	3.4.5 Visualizing data
	3.4.6 Improving availability
	3.4.7 Authenticated access
	3.4.8 Postman
	3.4.9 Version control
	3.4.10 Collaboration
	3.4.10.1 Jira
	3.4.10.2 Confluence
	3.4.10.3 Discord & Messenger

	3.4.11 Processing and optimalization

	4 Results
	4.1 General
	4.2 Engineering results
	4.2.1 Map integration with polygons
	4.2.2 Design principles
	4.2.3 Authorizing accounts
	4.2.4 Filtered search and date picker
	4.2.5 API implementation
	4.2.5.1 Initial approach
	4.2.5.2 JPA Repository
	4.2.5.3 JDBC Template

	4.2.6 Assessing disease impact
	4.2.7 Deployment

	4.3 Administrative results
	4.3.1 Using Jira & Confluence
	4.3.2 Git
	4.3.3 Milestones
	4.3.4 Quality insurance

	4.4 Performance and Optimization Results
	4.4.1 Application performance
	4.4.2 Code optimization
	4.4.3 Accessibility and usability
	4.4.4 Code reliability
	4.4.4.1 Continuous integration
	4.4.4.2 Unit testing

	4.5 Integration and Compatibility Results
	4.5.1 Integration with external systems
	4.5.2 Cross-platform and browser compatibility

	4.6 Learning Outcomes and Skill Development

	5 Discussion
	5.1 Choice of technologies
	5.2 Team collaboration and communication
	5.2.1 Version control

	5.3 Time constraints and milestones
	5.4 Quality assurance
	5.5 Alternative approaches
	5.6 Agile Methods
	5.6.1 Sprints
	5.6.2 Daily standups
	5.6.3 Jira
	5.6.4 Confluence

	5.7 Fulfillment of Client Requirements
	5.7.1 Confidentiality
	5.7.2 User Authentication
	5.7.3 Data visualization
	5.7.4 Graphical interface

	6 Conclusion
	6.1 Summary of Achievements
	6.1.1 Technology Selection
	6.1.2 Team Collaboration and Project Management
	6.1.3 Application Design and Functionality
	6.1.4 Overcoming Time Constraints
	6.1.5 Quality Assurance

	6.2 Limitations and Future Research
	6.2.1 Alternative Approaches
	6.2.2 Additional Features and Improvements

	6.3 Identified problems
	6.3.1 Spring Boot in deployment

	6.4 Final Remarks

	7 Societal Impact
	7.1 Benefits for Aquaculture Industry
	7.1.1 Economic implications

	7.2 Environmental Impact
	7.3 Public health and food industry
	7.4 Future Research and Development

	Bibliography

