
ABSTRACT

Project development estimation is a challenging and critical aspect of project manage-
ment. Accurate estimations of a project’s duration and cost allow for proper planning,
resource allocation, and budgeting. On the other hand, inaccurate estimates can lead to
budget overruns, project cancellation, or losing clients. Project estimation is also a com-
plex field with numerous random elements that can be difficult to plan for. In this thesis,
we have been tasked by the software company Axbit with standardizing their estimation
method and building the demonstrator for a tool to assist them with project estimation.

The team used the Agile development methodology to keep the project moving at a
steady pace and in the right direction throughout the development. User stories aided us
in aligning our requirements and expectations. This made setting up issues to work on
easier and more manageable. Having weekly status meetings helped us get a good end
and start on each iteration in the development.

During the project, we utilized modern frameworks and tools, such as SvelteKit, Web
Workers, and Docker to create an application with modern features, among which are
server-side rendering and multithreading.

The result of our project is a simulation-based method built on estimation theories like
PERT and the Monte Carlo method. The method utilizes normalized units of estimation
and takes into account the degree of uncertainty of each task’s duration and the availabil-
ity and efficiency of the members of the project’s development team. As a demonstrator
for a tool to assist with this method, we also made a web application with a complete
CICD pipeline. The application implements the method and produces a visualization of
the estimations, including an optimized project development plan.

i

SAMMENDRAG

Prosjektutviklingsestimering er en utfordrende og kritisk del av prosjektledelse. Nøyak-
tige estimater av et prosjekts varighet og kostnad tillater riktig planlegging, ressursalloker-
ing og budsjettering. På den annen side kan unøyaktige estimater føre til budsjettoverløp,
prosjektavbestilling eller tap av kunder. Prosjektberegning er også et komplekst felt med
mange tilfeldige elementer som kan være vanskelig å planlegge for. I denne avhandlingen
har vi blitt bedt av programvareselskapet Axbit om å standardisere deres estimeringsme-
tode og bygge en demonstrator for et verktøy for å hjelpe dem med prosjektberegning.

Teamet brukte Smidige utviklingsmetoder for å holde prosjektet i gang, i et jevnt tempo
og i riktig retning gjennom hele utviklingen. User stories hjalp oss med å justere våre krav
og forventninger. Dette gjorde det enklere og mer håndterlig å sette opp saker å jobbe
med. Ukentlige statusmøter hjalp oss med å få en god slutt og start på hver iterasjon i
utviklingen.

I løpet av prosjektet benyttet vi moderne rammeverk og verktøy, som SvelteKit, Web
Workers og Docker for å skape en applikasjon med moderne funksjoner, deriblant server-
side rendering og multithreading.

Resultatet av prosjektet vårt er en simuleringsbasert metode bygget på estimeringste-
orier som PERT og Monte Carlo-metoden. Metoden benytter normaliserte enheter av
estimater og tar hensyn til graden av usikkerhet for hver oppgaves varighet og tilgjenge-
ligheten og effektiviteten til medlemmene i prosjektets utviklingsteam. Som en demon-
strator for et verktøy til å assistere med denne metoden, lagde vi også en webapplikasjon
med en komplett CICD-pipeline. Applikasjonen implementerer metoden og produserer
en visualisering av estimatene, inkludert en optimalisert prosjektutviklingsplan.

ii

PREFACE

This thesis is written by Espen Otlo, Janita Røyseth, and Sakarias Sæterstøl and is the
final assignment of their computer science study program at NTNU Ålesund. It describes
a project conducted in cooperation with the software company Axbit.

The project has provided multiple challenging tasks and experiences in several fields,
some worthy mentions being the interpretation of customer requirements, project plan-
ning, simulation, multithreading, and full-stack development. This thesis describes the
theoretical foundations and methods utilized and the results that were achieved in the
project.

Acknowledgements

We would like to express our sincere gratitude to the following individuals for their in-
valuable contribution and support during our project:

Firstly, we want to extend our heartfelt thanks to Anniken Karlsen, who served as our
supervisor throughout the project. Her guidance, encouragement, and constructive feed-
back helped us to stay on track and deliver a successful outcome.

We would also like to acknowledge Franck Chauvel, who represented Axbit and served
as the project’s stakeholder representative, whose collaboration and teamwork were in-
strumental in the project’s success. His expertise and willingness to share his knowledge
were truly appreciated.

Our sincere thanks also go to Girts Strazdins for the support he has provided throughout
our three years of undergraduate studies, as well as for the commitment he has shown
not only as a lecturer and program coordinator but also towards the subject matter and
helping us to complete our studies successfully.

Finally, we express our gratitude to Arne Styve for his unwavering dedication to our ed-
ucation and for inspiring us to pursue our academic goals. His teachings and mentorship
provided us with a solid foundation for our bachelor’s degree and equipped us with the
skills and knowledge to succeed in our future endeavors.

Once again, thank you to all these individuals for their contributions, without which the
project would not have been possible.

iii

Contents

Abstract i

Sammendrag ii

Preface iii

Contents ix

List of Figures ix

List of Tables xi

Abbreviations xii

Glossary xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Formulation . 1

1.3 Objectives . 1

1.4 Limitations . 2

1.5 Thesis Structure . 2

2 Theory 3

2.1 Agile Development . 3

2.1.1 User Requirements . 3

2.1.2 User Stories . 4

2.2 Challenges of Estimation . 4

2.2.1 Problem Scope . 4

2.2.2 Project Size . 4

2.2.3 Unknown Elements . 5

2.2.4 Efficiency . 5

iv

CONTENTS v

2.2.5 Units of Estimation . 5

2.3 Estimation Methods . 6

2.3.1 Project Evaluation and Review Technique 6

2.3.2 Critical Path Method . 7

2.3.3 COCOMO . 7

2.3.4 Planning Poker . 7

2.3.5 Estimation of project duration for Scrum team with differentiated
specializations . 7

2.3.6 Monte Carlo Simulation . 8

2.4 Object-Oriented Programming . 8

2.4.1 Cohesion and Coupling . 8

2.5 System Documentation . 9

2.5.1 Source Code Comments . 9

2.5.2 API Documentation . 9

2.5.3 UML Diagram . 9

2.5.4 README . 9

2.5.5 Wireframes . 9

2.6 Testing . 10

2.6.1 Unit Tests . 10

2.6.2 Integration Tests . 10

2.6.3 End-to-end Tests . 10

2.6.4 Test Pyramid . 10

2.6.5 Usability Testing . 11

2.7 Continuous Integration, Continuous Deployment, and Continuous Delivery 13

2.7.1 Continuous Integration . 13

2.7.2 Continuous Delivery . 13

2.7.3 Continuous Deployment . 13

2.8 Universal Design . 13

2.8.1 Web Content Accessibility Guidelines 13

2.8.2 Accessible Rich Internet Applications 14

2.8.3 The Authority for Universal Design of ICT 14

2.9 Design . 14

2.9.1 Design Principles . 14

2.9.2 Iterative Design Process . 15

2.9.3 Design Guidelines . 16

2.9.4 Wireframes . 16

vi CONTENTS

2.10 Technologies . 16

2.10.1 Programming Languages . 16

2.10.2 Code Version Control . 17

2.10.3 Command Languages . 18

2.11 Web Application . 18

2.11.1 Roles of HTML, CSS, and JS . 18

2.11.2 Single-page Application . 18

2.11.3 Server-side Rendering . 18

3 Methods 19

3.1 Organization . 19

3.1.1 Team . 19

3.1.2 Supervisor . 19

3.1.3 Client & Product Owner . 19

3.2 Project Planning . 20

3.2.1 Preliminary Report . 20

3.2.2 Gannt Diagram . 20

3.2.3 Work Contract . 20

3.2.4 User Requirements . 20

3.2.5 User Stories . 21

3.3 Management Tools . 22

3.3.1 Teams . 22

3.3.2 Confluence . 22

3.3.3 Overleaf . 22

3.3.4 GitHub . 23

3.4 Developmental Tools and Applications 23

3.4.1 Figma . 23

3.4.2 Lighthouse . 23

3.4.3 VS Code . 23

3.4.4 Docker . 23

3.4.5 pgAdmin . 23

3.4.6 Traefik . 24

3.4.7 Make . 24

3.4.8 Vite . 24

3.4.9 Vitest . 24

3.4.10 Storybook . 24

CONTENTS vii

3.4.11 Playwright . 24

3.4.12 Package Manager . 24

3.4.13 GitHub Actions . 25

3.5 Framework, Libraries, Programming- and Scripting Languages 25

3.5.1 Svelte . 25

3.5.2 SvelteKit . 25

3.5.3 Typescript . 25

3.5.4 SCSS . 26

3.5.5 Carbon Design Systems . 26

3.5.6 PostgreSQL . 26

3.6 Data and Configuration . 26

3.6.1 JSON . 26

3.6.2 YAML . 26

3.6.3 DTO . 26

3.7 System Documentation . 27

3.7.1 ER Diagram . 27

3.7.2 Class Diagram . 27

3.7.3 Source Code Documentation . 27

3.7.4 Svelte Component Documentation 27

3.8 Design . 28

3.8.1 Wireframing . 28

3.8.2 Design Guidelines . 28

3.8.3 Accessibility . 28

3.9 Testing Methodology . 28

3.9.1 Unit Tests . 28

3.9.2 Integration Tests . 29

3.9.3 End-to-end Tests . 29

3.9.4 Usability Tests . 29

4 Results 30

4.1 Method of Estimation . 30

4.2 Continuous Integration and Delivery . 31

4.2.1 CI/CD Process Overview . 31

4.2.2 Workflows . 31

4.3 Environment Files . 33

4.4 Documentation . 33

viii CONTENTS

4.4.1 Code Documentation . 33

4.4.2 Component Documentation . 35

4.5 Backend . 38

4.5.1 Entity Classes . 38

4.5.2 Simulation . 39

4.5.3 Database . 44

4.5.4 Server . 44

4.5.5 Docker . 45

4.5.6 Postgres . 46

4.6 Front-end . 47

4.6.1 Design . 47

4.6.2 Components . 49

4.6.3 Routing . 49

4.6.4 State Management . 50

4.6.5 User Interface . 52

4.7 Service Classes . 61

4.7.1 CalendarService . 62

4.7.2 EstimatableService . 62

4.7.3 ModalService . 63

4.7.4 RandomService . 64

4.7.5 SimulationService . 64

4.8 Test and Quality Assurance . 66

4.8.1 Unit Tests . 66

4.8.2 Integration Tests . 66

4.8.3 End-to-end Tests . 68

4.8.4 Usability Tests . 69

4.8.5 Code Format and Lint . 70

5 Discussion 71

5.1 Estimation Method . 71

5.1.1 Basic Unit . 71

5.1.2 Three-point Estimates . 71

5.1.3 Employee Efficiency . 71

5.1.4 Method Steps . 72

5.2 Framework . 72

5.3 Security . 72

5.4 UI/UX . 72

5.5 Testing . 73

5.6 Group Dynamic and Methodology . 74

5.6.1 Methodology . 74

5.6.2 Group Dynamic . 74

6 Conclusions 75

6.1 Conclusions . 75

6.2 Future work . 76

6.2.1 Validation . 76

6.2.2 Integration . 76

6.2.3 Historical data . 76

6.2.4 MTBF & MTTR . 76

References 76

Appendices: 83

A - Preliminary Project Plan 84

B - First Draft Wireframe 94

C - Second Draft Wireframe 96

D - Final Draft Wireframe 98

E - Design Guidelines 100

F - Test Template 104

G - 1st Iteration User Tests - Test Plan 106

H - 1st Iteration User Tests - User A 109

I - 1st Iteration User Tests - User B 115

J - 2nd Iteration User Tests - Test Plan 121

K - 2nd Iteration User Tests - User A 124

L - 2nd Iteration User Tests - User B 129

ix

x LIST OF FIGURES

List of Figures

2.2.1 Project Size . 5
2.6.1 Test pyramid . 11

4.2.1 Github action workflow . 31
4.2.2 CI . 32
4.2.3 CD to development environment . 33
4.3.1 .env.example file . 33
4.4.1 Code example from SortableList documentation in code 34
4.4.2 Code example from SortableList documentation in code 35
4.4.3 Code example from SortableList documentation in code 36
4.4.4 Documentation displayed from SortableList component documentation 36
4.4.5 Storybook UI button . 37
4.4.6 Storybook UI button edited properties 37
4.5.1 Entities UML diagram . 38
4.5.2 Simulation Project Level . 40
4.5.3 Code Example - Project Level . 41
4.5.4 Simulation Assignee Level . 42
4.5.5 Code Example - Assignee Level . 43
4.5.6 ER Diagram . 44
4.5.7 Dockerfile . 45
4.5.8 Sequence code . 46
4.6.1 Final iteration of wireframes . 48
4.6.2 Color scheme . 48
4.6.3 Components folder . 49
4.6.4 Routes . 50
4.6.5 Code example from the $projects store 51
4.6.6 Login page . 52
4.6.7 Projects page . 52
4.6.8 Code projects layout . 53
4.6.9 Search projects modal . 54
4.6.10Screenshot of the create project modal 55
4.6.11Project overview . 55
4.6.12Edit project modal . 56
4.6.13Delete project modal . 56
4.6.14Features page . 57
4.6.15Feature modal . 57
4.6.16Creating and editing features in the application 58
4.6.17Delete feature modal . 58
4.6.18Tasks page . 59
4.6.19Task modal . 59

LIST OF FIGURES xi

4.6.20Modal in Create and Edit modes . 60
4.6.21Delete task modal . 60
4.6.22Tasks page . 61
4.7.1 Services UML diagram . 62
4.7.2 Code example from the calendar service 62
4.7.3 Code example from the estimatable service 63
4.7.4 Code example from the modal service . 63
4.7.5 Code example from the modal service . 64
4.7.6 Code example from the random service 64
4.7.7 Code example from the simulation service 65
4.8.1 Code Example - Assignee Level . 66
4.8.2 Storybook Configuration . 67
4.8.3 Storybook interaction test . 67
4.8.4 Integration test coverage . 68
4.8.5 End-2-end tests results . 69

ABBREVIATIONS

API Application Package Interface. 62

ARIA Accessible Rich Internet Applications. 14, 28

CDel Continuous Delivery. xiv, 13

CDep Continuous Deployment. xiv, 13

CI Continuous Integration. xiv, 13, 70

CICD Continuous Integration and Continuous Delivery. i, xv, 25, 31, 45

CLI Command Line Interface. 18

COCOMO Constructive Cost Model. xiv, xv, 6, 7

CORS Cross-origin resource sharing. 72

CPM Critial path method. xv, 6

CSS Cascading Style Sheets. vi, 17, 18, 26, 73

DOM Document Object Model. 17, 18

DTO Data Transfer Object. 26

E2E End-to-End. 10, 24, 29, 68, 73

ERD Entity Relation Diagram. 44

ERP Enterprise Resource Planning. 76

ESM Enterprise Systems Management. 24

FP Function Points. 6

GHA GitHub Actions. 25, 31

HTML HyperText Markup Language. vi, 17, 18, 27

HTTPS Hypertext transfer protocol secure. 72

xii

Abbreviations xiii

JS JavaScript. vi, 16–18, 25

JSON JavaScript Object Notation. 26

LoC Lines of Code. 6

MVP Minimum Viable Product. 29, 73

OOP Object-Oriented Programming. 1, 8, 16

PERT Project evaluation and review technique. i, xiv–xvi, 6, 30

PR Pull Request. 23, 25, 31

SCSS Sassy CSS. 26

SQL Structured Query Language. 17, 26

SSR Server-side rendering. 18

TPE Three-point estimate. 71

TS TypeScript. 17

UI User Interface. 1, 10, 14, 15, 73, 74

UML Unified Modeling Language. 9, 27

UX User Experience. 1, 14, 15, 73, 74

VM Virtual Machine. 17

W3C World Wide Web Consortium. 13

WAI Web Accessibility Initiative. 13

WAI-ARIA Web Accessibility Initiative - Accessible Rich Internet Applications. 14

WBS Work breakdown structure. 6, 7

WCAG Web Content Accessibility Guidelines. 13, 14, 28, 73

YAML YAML Ain’t Markup Language. 25

GLOSSARY

80-hour rule Stems from PERT and states that no single activities, or group of activities
a the lowest level of a work breakdown structure should be more than 80 hours of
effort. 30

Agile development An iterative and flexible approach to software development that
emphasizes collaboration, adaptability and continuous improvement. Further de-
scribed in section 2.1. i, 3, 4, 74, 75

average software developer Is a term defined by Teslyuk et al [1] to be used as a
normalized metric for efficiency and refers to a software engineer with mid-level
competency. xv

Continuous Delivery Continuous Delivery (CDel) is a practice where the code changes
are automatically built, tested and pushed to a non-production environment, testing
or staging. xii, xiv, 31

Continuous Deployment Continuous Deployment (CDep) is a practice where the code
changes are automatically tested, build and released into production. xii, xiv

Continuous Integration Continuous Integration (CI) is a practice where developers
merge their code changes regularly into a central repository. xii, xiv, 31

cross-origin resource sharing a mechanism that uses additional HTTP headers to tell
browsers to give a web application running at one origin (domain) permission to
access selected resources from a server at a different origin. xii

Docker Docker is a platform for developing, shipping and running applications. Further
described in section 3.4.4. i, 33

Enterprise Resource Planning A type of software that organizations use to manage
day-to-day business activities such as accounting, procurement, project manage-
ment, employee management and supply chain operations. . xii

Extreme Programming An agile software development methodology, advocating con-
tinuous code reviews in the form of pair programming. 7

Function Points A basic unit for measuring the size of a software system in the project
estimation method COCOMO. xii, 6

xiv

Glossary xv

GitHub Actions An automation tool for CICD provided by GitHub.. xii, 25, 31

hypertext transfer protocol secure An internet communication protocol that pro-
tects the integrity and confidentiality of data sent between a user’s computer and
a website. xii

ideal hours Refers to the required number of undisturbed hours spent by an average
software developer working solely on the implementation of a task. 20–22, 39, 71,
75

Lines of Code A unit of measurement in the COCOMO method, that is used to mea-
sure the scope of a project. xiii, 6, 7

linking table A table in a database that exist solely to represent relationships between
entities, especially many-to-many relationships.. 44

man-hour A unit used to measure the effort of a task in various project estimation
methods, such as PERT and CPM. 6

Monte Carlo method A mathematical technique that simulates the range of possible
outcomes for an uncertain event. Further described in section 2.3.6. i, 30

multithreading A feature that allows multiple lines of code to execute concurrently,
thereby increasing the performance and responsiveness of a program.. i, 72

object-oriented programming A programming paradigm that organizes code into ob-
jects. Further explained in section 2.4. 25

Planning Poker A concencus-based technique for estimating. Further described in sec-
tion 2.3.4. 30

Product Owner Serving as the ’voice of the customer’ the Product Owner is the person
or part of the team responsible for guiding the project toward the desired result.
2.3.1. 19–21, 25, 27, 74

project evaluation and review technique An expertise-based method of project es-
timation. Further described in section 2.3.1. xiii, xvi, 6

scrum An agile development framework, designed for small teams who structure their
work into time-boxed iterations called sprints, and conduct daily status meetings
of up to 15 minutes. 4, 7

server-side rendering A technique in web development where a web page is generated
on the server upon each request and sent to the client, instead of being rendered in
the client’s browser. Further described in section 2.11.3. i

story point Used in Agile development as a measure for expressing an estimate of the
effort required to implement a user story, task or other work item. 21, 22

SvelteKit A framework for creating Single-page applications with Server-side rendering.
Further described in section 3.5.2. i, 72

xvi Glossary

t-shirt size Used in Agile development as a rough estimation technique to estimate
the relative effort of user stories, tasks or other work items. The t-shirt sizes are
typically represented by small, medium and large, similar to the sizes of t-shirts.
21, 22

three-point estimate Stems from Project evaluation and review technique and refers
to the process of making one estimation for the number of hours required for the
completion of a task for each of the best case scenario, the most likely scenario and
the worst case scenario. xiii, 30, 39

user story Used in Agile development, a user story is an informal explanation of a
software feature written from the perspective of the end user or customer. Further
described in section 3.2.5. i, xv, xvi, 21, 75

Web Worker A feature of JavaScript that allows scripts to be executed in the back-
ground, on a separate thread from the main application. This feature allows for
running multithreaded applications in the browser. i, 72

work breakdown structure A concept developed with the project evaluation and re-
view technique, and is described as a hierarchical and incremental decomposition of
a project into phases, deliverable and work packages. Further described in section
2.3.1. xiii, xiv, 6, 30, 72

CHAPTER

ONE

INTRODUCTION

This chapter will introduce the motivation for the project, the problem formulation and
the objectives and limitations for the project, followed by a deliberation of the structure
of this thesis.

1.1 Motivation
We have selected this task because it challenges all that we have learned through our
study program at NTNU, touching all of UI/UX design, DB- and server management,
Object-Oriented Programming, statistics and application development. Another reason
for choosing this task was that through our projects in the study program, we have ex-
perienced first-hand the importance and the challenges of the cost and time estimation
involved in project management. While extensive research has been conducted in this
field, the complex and ever-evolving nature of project management presents a vast and
multi-faceted problem that may not have a definitive and foolproof solution. Never-
theless, we believe further research into this area may bring valuable insights, enhance
our understanding of the problem, and enable us to make more informed decisions and
estimations with greater confidence in the future.

1.2 Problem Formulation
Axbit currently does not have a standardized method of formulating project descriptions
and constraints, and so the aim of our thesis is two-fold; Develop a method for project
planning and estimation to be used by project managers in their interactions with clients,
and create a demonstrator for a tool to assist project managers with this task.

1.3 Objectives
The objectives for the thesis are as follows:

• Research project estimation theory and existing methods of operation in regards to
project estimation used by Axbit’s project managers.

• Develop a standardized method for project estimation that can be integrated into
the business practices of Axbit.

1

2 CHAPTER 1. INTRODUCTION

• Develop a software application to serve as a demonstrator for a tool that can be
used by the Axbit’s project managers to provide estimates with low effort from the
user.

1.4 Limitations
Axbit expressed an intention of furthering the development of the demonstrator, and
therefore gave us the following requirements:

• The method must be suitable for agile teams working iteratively.

• The method must be usable both at the preliminary planning stage and during
development.

• The tool must provide a project plan, including cost and time.

1.5 Thesis Structure
The remaining parts of the thesis are divided into theory, methods, results, discussion, and
conclusion. In the theory chapter, we delve into the theoretical foundation and concepts
used to solve our objectives in the thesis. The method chapter discusses the methods and
materials used throughout the project’s development. In the results chapter, we discuss
and showcase the results we achieved. In the discussion chapter, we discuss our process
and the results of our work. Lastly is the conclusion, where we summarize and conclude
our findings throughout this thesis.

CHAPTER

TWO

THEORY

In this chapter, we explore the theories that are relevant to our project. We discuss both
the theories of the technologies we utilized and the theories that guided our decision-
making process throughout the project.

2.1 Agile Development
Agile development is an iterative and flexible approach to software development that
emphasizes collaboration, adaptability, and continuous improvement. It focuses on de-
livering value to customers by frequently delivering working software increments.

The Agile Manifesto [2] was created in 2001 by a group of software developers and outlines
the core principles of Agile development. These principles promote short and iterative
development cycles, maintaining good communication and close cooperation, and using
working software as the primary measure of progress.

The usage of the Agile development method has increased rapidly since it was introduced.
As of 2022, the adoption of Agile has increased from 37% to 86% for software development
teams [3], thereby becoming the leading method for software development.

2.1.1 User Requirements

User requirements describe what a user expects a system or product to do to fulfill their
needs or goals. They focus on the functionality, features, and characteristics that are
desired from the user’s perspective. User requirements might include:

• Functional requirements: These specify what the system or product should do.

• Performance requirements: These dictate the quantified level of performance the
system or application must achieve.

• Interface requirements: These refer to how the user will interact with the system
or product.

• Data requirements: These detail the specific data formats, or how data is to be
entered or displayed.

3

4 CHAPTER 2. THEORY

• Security requirements: These outline any needs related to data privacy, authenti-
cation or authorization.

• Usability requirements: These specify any user needs related to the usability of the
system or product, such as ease of use or accessibility.

2.1.2 User Stories

User stories are a technique used in Agile development to serve as informal, general ex-
planations of a software feature written from the perspective of the end user or customer.
User stories focus on the value or benefit the user expects to derive from the software.
They serve as a communication tool to ensure that the development team builds what
the users truly need, thus enhancing the chances of product success.

2.2 Challenges of Estimation

Project development estimation is a critical aspect of project management. Accurate es-
timations allow for proper planning, resource allocation, and budgeting. However, there
are several challenges and problems associated with reaching this accuracy. This section
will cover the scope of the problem and present some of the larger contributing factors.

2.2.1 Problem Scope

The Standish Group in their CHAOS report from 2015 [4] found that only 40% of projects
were completed on time, and 44% were completed within budget. The global consulting
firm McKinsey also found in their study [5] that software development projects have
an average cost overrun of 66% and a timetable delay of 33%. This great problem of
inaccuracy stems from numerous factors, and mapping all of them in detail would be a
study of its own. Instead, we focused on key factors relevant to Axbit, which operates
with scrum teams with differentiating specializations. These factors include project size,
unknown elements, employee efficiency and units of estimation.

2.2.2 Project Size

According to the CHAOS Report [4], the largest contributing factor to the project success
rate is the scope of the project. Small projects showed a 61% success rate, whereas grand
projects had a success rate of 6%. The decrease in accuracy of estimations introduced by
an increase in project scope correlates with the "Cone of Uncertainty" [6], which states
that the more unknown variables exist within a project, the higher the uncertainty of its
estimations will be.

CHAPTER 2. THEORY 5

Figure 2.2.1: The success rates of projects by project size [4].

2.2.3 Unknown Elements

Another factor closely linked with project scope is the number of unknown elements
in the project. Larger projects tend to include more unknown elements, and these are
particularly subjected to optimism bias and pressure from clients, which again leads to
inaccurate estimates. This ’unknown’ factor can to some degree be mitigated by team
experience and/or altering the project scope to utilize familiar methods and technologies.
The Chaos Report from 2015 [4] showed that the project success rate of experienced
teams was more than twice that of inexperienced teams.

2.2.4 Efficiency

A misconception often made, especially by new or inexperienced teams, is mistaking
working hours for time actually spent working. A survey from Vouchercloud [7] showed
that the average time an office employee actually spends working each day is 2 hours and
53 minutes. Another survey from Zippia [8] found that the average time American workers
spend actually working each day is 4 hours and 12 minutes. Because of this difference
between time spent at work, and time spent actually working, it is paramount in the
estimation process to clearly differentiate these two in order to avoid communication
errors and misconceptions.

2.2.5 Units of Estimation

When it comes to project estimation, two main types of basic units of measurement exist
- parametric and relative.

6 CHAPTER 2. THEORY

• Parametric units are are absolute, and remain the same regardless of any other
variable. Some examples of parametric units are days, meters and pixels.

• Relative units are relative to another value, and examples include percentages,
story points and function points, the two latter being units most used in Agile
development.

The usage of these types vary among the different well established estimation methods.
For instance, COCOMO [6] uses the relative units Lines of Code (LoC) and Function
Points (FP), while other methods, such as PERT [9] and CPM [10] use the parametric
unit man-hour.

Mike Cohn, a prominent figure in the Agile community, argues that relative units of
measurement require lower effort and they allow team members with different skill levels
to communicate about and agree on an estimate [11]. However, a survey on project
teams by A. Zarour and S. Zein [12] showed that 84% of the participants used expertise-
based models, and a vast majority used time-based units for effort estimation, making
parametric units the most popular in project estimation.

2.3 Estimation Methods

The field of project estimation is both sizeable and complex, and several different methods
of estimation have been developed in efforts to simplify or improve the accuracy of project
estimations. The following sections contain summaries of some of these methods.

2.3.1 Project Evaluation and Review Technique

Project evaluation and review technique (PERT) is a project management technique used
to analyze and evaluate the time required to complete specific tasks within a project.
PERT is a probabilistic method that takes into account the uncertainties and variations
in task durations to estimate the project’s overall duration [9].

PERT introduces the concept of a Work breakdown structure (WBS), which is a tool
used to represent the scope of a project. It involves the decomposition of a project
into smaller, manageable parts. This allows for more accurate planning, scheduling and
tracking. PERT lists the following principles to follow when creating a WBS:

1. 100% Rule: The WBS should include all work defined by the scope, and only the
work required to complete the project. This means that every level of the WBS
should account for 100% of the work of its parent level.

2. Mutually Exclusive Elements: Each element of the WBS should be distinct
with no overlap in scope with any other elements. This ensures clear assignments
and avoids confusion or duplication of work.

3. Outcome-Focused: The WBS should focus on deliverables or outcomes, not ac-
tions. Each element represents a tangible output or result, not the work required
to produce it.

CHAPTER 2. THEORY 7

4. 80 Hour Rule: The lowest level of the WBS, often called work packages, should be
detailed enough that they can be scheduled, estimated, monitored, and controlled.
As a rule of thumb, a work package should not require more than 80 hours of work.

5. Coding Scheme: WBS elements are usually numbered in decimal sequence from
top to bottom. With such numbering, it is easier to identify the level of the task
that the element represents when referring to it from outside of the context of the
WBS chart.

2.3.2 Critical Path Method

The Critical Path Method (CPM) is a project management technique used to identify
the sequence of activities that must be completed on time in order to complete a project
within its allotted schedule. It helps project managers determine the longest path of
dependent activities and identifies the tasks that have the most impact on the project’s
overall duration [10].

2.3.3 COCOMO

The Constructive Cost Model (COCOMO) is a method for estimation of the cost, effort
and schedule of a sofware project. It was developed by Barry Boehm in 1981. The model
calculates the effort and cost associated with a software development project, based on
the size of the software, and a set of cost drivers. The size of the software is usually
measured in Lines of Code, or function points. These are both relative units that are
easy to measure with, but due to their abstract nature they are not perfect indicators of
true system complexity or functionality.

2.3.4 Planning Poker

Planning Poker is a consensus-based agile estimation technique used in software devel-
opment projects, particularly in Scrum and Extreme Programming. It is a collaborative
approach that allows team members to collectively estimate the effort or size of user
stories, tasks, or backlog items [13].
The primary goal of Planning Poker is to achieve more accurate and unbiased estimates
by involving the entire team in the estimation process. It helps to avoid individual biases
and promotes collective decision-making.

2.3.5 Estimation of project duration for Scrum team with differ-
entiated specializations

Estimation of project duration for Scrum team with differentiated specializations is a
method developed as part of a study by Teslyuk et al [1]. This method aims at software
development projects implemented by Scrum teams with differentiated specializations
and is based on the authors’ system of working-time balance equations and the approach
to measuring project scope with normalized time-based units.

8 CHAPTER 2. THEORY

2.3.6 Monte Carlo Simulation

Also known as the Monte Carlo method, Monte Carlo simulation is a mathematical
technique, which is used to estimate the possible outcomes of an uncertain event. It was
invented by John von Neumann and Stanislaw Ulam during World War II to improve
decision-making under uncertain conditions. This method predicts a set of outcomes
based on an estimated range of values versus a set of fixed input values [14].

2.4 Object-Oriented Programming

Object-Oriented Programming (OOP) is a programming paradigm that organizes code
into objects, which are instances of classes that encapsulate data and behavior. It focuses
on objects, as opposed to functional programming, which focuses on action or logic [15]

The key principles of OOP include the following:

• Encapsulation: Objects encapsulate data and methods, hiding internal details and
providing an interface to interact with the object. This improves code modularity
and reusability.

• Inheritance: Classes can inherit properties and methods from other classes, forming
a hierarchy of classes. This also improves reusability.

• Polymorphism: This allows objects of different classes to be treated as objects of a
common parent class. It enables methods to be defined in a generic class and their
functionality overridden in more specialized child classes.

• Abstraction: This means creating a simplified representation of complex real-world
objects or systems. It focuses on essential characteristics while hiding unnecessary
details.

These principles mean that OOP provides increased maintainability, modularity, and
reusability in software applications [15].

2.4.1 Cohesion and Coupling

In the context of OOP, cohesion, and coupling are two important concepts that describe
the relationships and dependencies between classes and objects in a system [15].

Cohesion refers to the degree of which members of a class are related and work together
to achieve a single, well-defined purpose or responsibility. High cohesion leads to a more
modular and maintainable code [15].

Coupling refers to the connectivity between classes and is measured by how much a class
relies on or knows about other classes. Tight coupling means that a class is heavily
dependent on one or more other classes, reducing the class’s modularity. Loose coupling
means that the class is mostly independent of other classes and their internal properties.
Having classes with loose coupling increases the modularity and maintainability and
makes it more flexible and resilient to changes in other parts of the code [15].

CHAPTER 2. THEORY 9

2.5 System Documentation

Documentation in a software project includes all written materials that provide infor-
mation about the software system. It serves to facilitate understanding of the system,
for developers, stakeholders and users. Following is a more in-depth explanation of the
various types of documentation that a software product may contain.

2.5.1 Source Code Comments

Source code documentation is the explanatory text, comments and annotations within
the source code of an application, and serves to provide a clear understanding of the
functionality of the code to a reader. The purpose of code documentation is to increase
the maintainability of the code, by making it easier for a developer or maintainer to
comprehend the code. In some programming languages, such comments are used to
automatically generate API documentation.

2.5.2 API Documentation

API documentation serves as a technical guide that explains how to effectively use and
integrate with an Application Programming Interface (API). APIs are sets of rules and
protocols that determine how different software applications should interact, and their
documentation is the map that guides developers through these rules. API documentation
covers the functionalities of the API, explaining the available functions, including their
parameters, response formats and potential error messages.

2.5.3 UML Diagram

Unified Modeling Language (UML) is a standardized general-purpose modeling language.
It includes a set of graphical notation techniques to create visual models of object-oriented
software systems. UML diagrams provide an abstracted view of the system, that hides
the implementation details, making it easier for diverse stakeholders to understand the
system and communicate about it. UML diagrams can be used to present two different
views of a system model:

• Static view: Class diagrams, package diagrams and component diagrams are types
of diagrams used in UML to represent the static system structure.

• Dynamic view: Sequence diagrams, activity diagrams and state machine diagrams
are types of diagrams used to represent dynamic behaviour of the system.

2.5.4 README

README is a file used by developer to tell about the project and provides inforimation
on how to use it and sometime also how to continue the development of the project.

2.5.5 Wireframes

Wireframes are also part of the system documentation, and is used to guide development
of the front-end. Wireframes are further described in section 2.9.4.

10 CHAPTER 2. THEORY

2.6 Testing

Tests are a form of quality assurance used in software development. These tests ensure
that the application works as expected. There are different kinds of tests to test different
components of the software as well as the usability of the application [16].

2.6.1 Unit Tests

Unit tests are created to test the low-level components of a system. These tests can be
created to test classes, services, or other small functions used throughout the application.
Unit tests are usually created with the Arrange-Act-Assert pattern; instances are created
and tested to have an expectant value after calling constructors or functions.

2.6.2 Integration Tests

Integration tests are second-level tests that test UI components or the API of an appli-
cation. The integration tests check that these components behave as expected, and that
they can work together [16]. Integration tests also asserts that UI are held to certain
criteria like accessibility requirements.

2.6.3 End-to-end Tests

End-to-End (E2E) tests are high-level tests that test multiple components of an applica-
tion, like UI and API together. It will check that a page can be visited, navigated, and
handle requests. E2E tests are the most time-intensive test to create and run[17].

2.6.4 Test Pyramid

Achieving an appropriate balance between testing and time consumption is important.
The testing pyramid, as shown in Figure 2.6.1, provides a helpful framework for un-
derstanding the quantities of different tests to make a good balance in a testing plan.
Following the test pyramid, unit tests should make up the bulk of the test plan [17]. Unit
tests are easy to make and don’t take long to run, meaning they are inexpensive in a
system. Integration tests are more time-consuming to create and run than unit tests,
however, it is still important to ensure that the system functions properly. There should
be fewer integration tests than unit tests to keep the balance between tests. E2E tests
are the most difficult and time-consuming tests to create [17]. However, they are still
valuable for ensuring the system’s overall quality. Therefore, a good testing plan should
still have a handful of E2E tests.

CHAPTER 2. THEORY 11

Figure 2.6.1: The test pyramid displays the sought-after quantity of tests for
each section [18].

2.6.5 Usability Testing

Usability testing involves testing, evaluating, researching a product or service, and an-
alyzing how users interact [19]. Usability tests, also called user tests, are crucial in
uncovering potential issues and problems in product design that could negatively impact
the product. Observing and questioning a target group as they perform various intended
tasks with the product makes it possible to identify less intuitive design decisions and
develop better solutions [20].

User tests can be performed on various products as well as on prototypes. Prototype
testing allows for early intervention in product development so changes can be made be-
fore much effort is put into creating a less-than-ideal design.

2.6.5.1 Elements in User Tests

Several methods exist to perform user tests, and various elements are used. Key elements
when discussing user tests are as follows:

• Moderator - A person who guides the user through the user test, asks the user
to perform tasks and answers questions. While not required, user tests are distin-
guished between moderated and unmoderated and are a key element in user tests
[20].

• Tasks - A set of realistic actions the user should perform to test the product or
prototype. Moderators have a challenging job of learning how to communicate the
tasks clearly to the user and avoid misunderstandings and uncertainty about what
actions are to be performed, as it can negatively impact the test [20].

12 CHAPTER 2. THEORY

• Participant - The test user who should represent a realistic target group for the
product or prototype being tested[20].

2.6.5.2 Types of User Tests

Some methods used to perform user tests are moderated or unmoderated, in-person or
remote, and quantitative or qualitative.

In a moderated user test, a moderator guides participants through predefined actions
while answering questions and observing their performance. On the other hand, unmod-
erated user tests rely on tools such as video recording or eye tracking to observe user
behavior. Moderated tests offer the advantage of personalized follow-up questions and
the ability to clarify any misunderstandings. However, unmoderated tests allow users to
perform in their natural environment and are preferred when collecting data from larger
groups [21].

User tests can be conducted in person or remotely. In-person testing involves the moder-
ator and participants in the same room, while remote testing may involve screen-sharing
through software. In-person testing allows observing body language and testing on vari-
ous devices. Still, it can be challenging to set up if participants are in different locations
and require travel and equipment. Remote testing is less time-consuming and allows for
a larger test group, but it can result in communication issues such as participants being
uncomfortable thinking out loud over a call or the test becoming one-sided [22].

Qualitative user tests focus on the user’s experience with the product. A moderator would
focus on the user’s body language and reaction to perform tasks such as eye squinting.
Quantitative focuses on how a user performs the given tasks, the success rate, and how
long it took to solve the task. When doing quantitative user tests, a larger test group is
usually recommended. Qualitative is, therefore, more common as it uses the think-out-
loud protocol and does not need a large group of users [23].

2.6.5.3 Conducting User Tests

Before conducting user tests, there are many factors to consider. Before the tests, it is
important to have a test plan with objectives for the user test. The test plan should also
include tasks the users should perform. As previously mentioned, these tasks must be
formulated well to minimize misunderstandings that may distort the test results.

When conducting user tests, it is good to have more than one person observing to col-
lect more qualitative data from more than one perspective [24]. The user should also
be encouraged to use the think-out-loud method, saying what they think and what they
are doing and continuously providing feedback [24]. The moderator should also think
about how they speak with the user. There are three primary methods for this; Echo,
Boomerang, and Columbo [25]. The Echo method is repeating the last thing the user
said in more of an interrogative manner and waits for the user’s response[25]. When using
the Boomerang method, the moderator asks the user’s opinion instead of answering their
questions [25]. Lastly, when using the Columbo method, the moderator will intentionally

CHAPTER 2. THEORY 13

ask unclear questions with long pauses to let the user fill in [25].

After conducting the user tests, the moderator and the other observers in the user tests
should go together and analyze their findings. When an analysis has been made, the
team should figure out what changes need to be with the product to address the results
of the user tests.

2.7 Continuous Integration, Continuous Deployment,
and Continuous Delivery

2.7.1 Continuous Integration

Continuous Integration (CI) is a practice where developers merge their code changes
regularly into a central repository. When the code is merged automated tests and builds
are run. Some of the key goals of CI are to improve the quality of the software and code
and find bugs and address them quicker [26].

2.7.2 Continuous Delivery

Continuous Delivery (CDel) is a practice where the code changes are automatically built,
tested, and pushed to a non-production environment, testing, or staging. This allows the
developers to manually test and ensure the code is ready for production before it’s built
and shipped [27].

2.7.3 Continuous Deployment

Continuous Deployment (CDep) is a practice where the code changes are automatically
tested, built, and released into production [28].

2.8 Universal Design

2.8.1 Web Content Accessibility Guidelines

Around 1 in 6 people experience serious disability [29], and even more experience disabil-
ity to a lesser extent. The level of assistance people with disability needs from assistive
technologies widely varies. For example, some individuals need screen readers to access
web content, while others may need alternative input methods, such as buttons or other
devices.

Web Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C) pro-
duced the Web Content Accessibility Guidelines (WCAG) [30] as international standards
to ensure that web applications are accessible to everyone, regardless of ability. These
guidelines outline minimum requirements for web content to guarantee that it is accessi-
ble to all users.

The WCAG is built upon four core principles of accessibility [31]:

14 CHAPTER 2. THEORY

• Perceivable - User interface components must be perceivable by all senses so that
those with hearing or visual impairments can understand them. This includes
providing visual cues for those who are hard of hearing and ensuring that screen
readers can read content for those who are visually impaired.

• Operable - User interface components must be operable, meaning that all users can
interact with them.

• Understandable - To ensure the content and interface are understandable, clear
language and intuitive design must be used.

• Robust - User interface components and the user interface as a whole must be
robust, meaning that they are compatible with a wide range of assistive technologies

2.8.2 Accessible Rich Internet Applications

The Web Accessibility Initiative - Accessible Rich Internet Applications (WAI-ARIA)
provides a framework and guidelines to make websites more accessible to people who
use assistive technologies such as screen readers or alternative input devices [32]. ARIA
defines roles and states that can be set as attributes on HTML elements to make it easier
for browsers and screen readers to communicate with assistive technology and allow users
to navigate the web interface more effectively. Today, ARIA attributes are partially
supported in 98.98% of all browsers [33].

2.8.3 The Authority for Universal Design of ICT

The Authority for Universal Design of ICT in Norway provides different regulations of
Universal Design requirements depending on what sector the system is a part of [34]. A
system used in the public sector is required by law to follow WCAG 2.1 [34], while a
system used in the private sector is required to follow WCAG 2.0 [34].

2.9 Design

2.9.1 Design Principles

The layout, appearance, and overall user experience of a product are determined by its
User Interface (UI) and User Experience (UX). To ensure a positive user experience,
it’s important that the UI/UX is user-friendly and easy to navigate. However, creating
UI/UX can present several challenges [35]. For instance, rushing through the develop-
ment process can compromise the quality of research, which is essential in understanding
the target audience and catering the design to them. Creating an intuitive UI for complex
products or accommodating many features can also be challenging [35].

Don Norman, a highly prolific researcher in user-centered design provides 6 design prin-
ciples to use for creating an intuitive and user-friendly UI/UX [36].

CHAPTER 2. THEORY 15

2.9.1.1 Visibility

According to the first design principle, visibility, all functionality in the user interface
should be visible and accessible. This principle can be difficult to achieve in software
development when making a product for small screen sizes [36]. To solve this issue, a
menu icon is commonly used to indicate that additional functionality is available in the
product.

2.9.1.2 Feedback

Don Norman’s next design principle is feedback. It is used to inform the user of their
location on the product and what is happening [36]. Feedback can be demonstrated
through changes in color, size or shadow of elements when they are interacted with, or
by displaying a spinner to indicate that a process has begun.

2.9.1.3 Affordance

Affordance is the mapping between how something looks and how it is used [36]. For
software development an example is buttons. A button is expected to perform an action
and therefore using something that looks like buttons as headings will create confusion
as it is not intuitive.

2.9.1.4 Mapping

The design principle mapping dictates that there should be a connection between the
appearance of an object and its functionality [36]. For instance, the arrow controls on a
keyboard are placed based on their corresponding directional movements and are labeled
with arrows pointing in the same direction. In software development, icons used on
buttons serve as a more specific example; a plus icon typically signifies addition, while a
trash icon deletes.

2.9.1.5 Constrains

The constraints principle refers to visible restrictions in the user interface of a product.
This may, for example, be visibly disabling input fields and buttons when they are not
allowed to be used [36]. This helps guide the user to how the product should be used.

2.9.1.6 Consistency

The final design principle is consistency. This means that the UI/UX should have a
uniform appearance and behavior across the entire product, while also maintaining a
consistent layout with similar products. By doing so, the user experience becomes more
intuitive and user-friendly [36].

2.9.2 Iterative Design Process

The iterative design process involves continuously improving the product. This process
can begin at any stage of development, but typically starts with creating a prototype and
conducting user tests, and making design adjustments based on the feedback received [37].
Using the iterative design process allows for improvements to be made throughout the

16 CHAPTER 2. THEORY

development cycle. This approach also encourages frequent testing and demos which is a
great benefit for clearing up misunderstanding between client and developing teams and
ensuring the system requirements meets the user’s needs [37]. It may be advantageous
to perform the grunt of the design work and more iterations during the prototype stage,
as it is easier and less time-consuming to make changes at that point.

2.9.3 Design Guidelines

Design guidelines, also known as style guides, are used to ensure a consistent look and
feel for products and specifications in a design [38]. They are helpful tools for creating
uniformity in components and style sheets that do not already exist. Design guidelines
may include various sections such as typography, color schemes, layout, and images to
name a few. Larger brands and businesses may have more detailed sections regarding the
tone used in the text.

2.9.4 Wireframes

Wireframes are a useful tool for planning the layout and concept of an application. They
are easy to distribute to all stakeholders and inexpensive to change and redo if there has
been a misunderstanding of the product’s expectations. Wireframes can be split up into
two categories, low fidelity, and high fidelity.

2.9.4.1 Low Fidelity

Low-fidelity wireframes are rough sketches of the layout of the product and do not closely
resemble a finished product. These wireframes can be made on the go with just a pen
and paper or made with software such as Balsamiq or Figma which also can make the
wireframes interactive for prototype testing. Wireframes with low fidelity is better to
test the flow of the application [39].

2.9.4.2 High Fidelity

High-fidelity wireframes closely resemble the end product. It shows the layout of the
product with its desired look, and feel, possibly using design specifications from the design
guidelines. High-fidelity wireframes allow the stakeholders to see a realistic version of the
product being planned and therefore can provide more meaningful feedback from usability
testing [39]. High-fidelity wireframes can be made through mock-ups using software like
Photoshop, Gimp or Figma, or through code using HTML and CSS.

2.10 Technologies

2.10.1 Programming Languages

2.10.1.1 JavaScript

JavaScript (JS) is a widely-used, lightweight scripting language. JS is used mainly for
web pages and in various non-browser environments such as Apache, Node.js, and Adobe
Acrobat [40]. JS is also a multiparadim programming language; it supports the program-
ming paradigms such as Object-Oriented Programming and functional programming.

CHAPTER 2. THEORY 17

2.10.1.2 TypeScript

TypeScript (TS) is a library which allows you to write strongly typed JS and gives you
the ability to use type interface without additional code. TS also gives you additional
syntax to JS for supporting a tighter integration with your editor and catch errors early.
It converts to JS and will therefore be able run everywhere JS runs [41].

2.10.1.3 HTML

HyperText Markup Language (HTML) is the fundamental component that builds the
web. By defining the underlying structure and meaning of web content, HTML enables
web pages to be interpreted and rendered consistently across all devices and browsers
[42]. When HTML is loaded on the client side a Document Object Model (DOM) is
built. It is the DOM that JS manipulates to change the content and data on web pages.

2.10.1.4 CSS

Cascading Style Sheets (CSS) is a stylesheet language that defines the appearance of a
web page. By providing a separation between content and presentation [43].

2.10.1.5 SQL

Structured Query Language (SQL) is a programming language used to manage and ma-
nipulate relational databases. Administrators, developers, and analysts use it to manage
and analyze relational databases [44].

2.10.1.6 Virtual Machines

A Virtual Machine (VM) is a computer resource that uses software instead of a physical
computer to run programs and deploy apps [45].

2.10.1.7 Reverse Proxy

A reverse proxy is a server sitting in front of other servers or applications forwarding
traffic and requests to those servers or applications from the clients. This is mostly done
to increase performance and security. [46]

2.10.2 Code Version Control

2.10.2.1 Git

Git is a version control system built to have high speed and efficiency. It handles every
type and size of project and is free and open source. Developed by Linus Thorvald it
quickly took hold as it was used for development of the Linux kernel [47][48].
Git organizes code in repositories, that is split into branches were development can be per-
formed in parallel. A repository can be added to a Git server for collaboration and backup.
GitHub, Bitbucket, and GitLab are some examples of popular git server providers.

18 CHAPTER 2. THEORY

2.10.3 Command Languages

2.10.3.1 Bash

Bash is a Command Line Interface (CLI) or shell used in Linux and macOS [49].

2.10.3.2 Shell

Shell is a computer program that allows you to control a computer’s operating system
directly using a CLI. [49]

2.11 Web Application

2.11.1 Roles of HTML, CSS, and JS

There are various ways to create web applications, but the traditional primary building
blocks are HTML, CSS, and JS which are discussed in section 2.10. Each of these tech-
nologies has different roles and responsibilities in the web application. HTML is meant to
define the document, as any report, pamphlet, or essay would be defined. CSS is respon-
sible for the presentation of the HTML document; it is through CSS that for example
colors and font sizes are defined. JS can send and retireve data from an API and can
manipulate the Document Object Model (DOM) to update the webpage. For usability
and accessibility purposes it is important to try and keep the use of each technology
within their domain.

2.11.2 Single-page Application

A single-page application is a web application that only loads the HTML, JS, and CSS
for the application once and then re-renders the necessary content using JS, instead of
the whole page as traditionally done with multiple-page applications[50]. Single-page
applications often perform better than multiple-page application as it only needs to load
small contents to re-render parts of the document, and multiple-page applications will load
whole documents. However, it can be harder to handle routing and state management
on a single-page application.

2.11.3 Server-side Rendering

Server-side rendering (SSR) also called universal rendering utilizes both server rendering
and client-side rendering [51]. Page documents are rendered on the server and after being
loaded on the client-side JavaScript is added to the page document to allow for DOM
manipulation. When data changes the client will re-render components through fetching
data and using the script. Server-side rendering (SSR) has the advantage that the first
contentful page load happens quickly and has better search engine optimization. The
downside is that it can take longer to become interactive.

CHAPTER

THREE

METHODS

In this chapter, we delve into the methods we used for all the stages of development in
our project.

3.1 Organization

3.1.1 Team

The project team consists of three students from NTNU in Aalesund, Espen Otlo, Janita
Røyseth, and Sakarias Sæterstøl. We decided to take on specialized roles in the project,
and so our team had the following role distribution: Espen Otlo has been the lead systems
architect and backend developer, Janita Røyseth has been in charge of the design and
frontend development of the application, and Sakarias has been the head of DevOps and
DB- and server management. Other responsibilities in the project were shared between
all team members.

3.1.2 Supervisor

The supervisor for this project has been Anniken T. Susanne Karlsen. She has acted as
a guide and mentor for the team throughout the project. She has also participated in
several meetings with the product owner.

3.1.3 Client & Product Owner

The client for this assignment is AxBit. AxBit is a software company with approximately
50 employees divided between their three offices in Møre & Romsdal and Poland. They
specialize in the creation of tailored solutions and digital transformation.

Franck Chauvel served as AxBit’s representative and the Product Owner for the project
and has played an instrumental role in guiding the project to its current state.

19

20 CHAPTER 3. METHODS

3.2 Project Planning

3.2.1 Preliminary Report

We started working on the preliminary report after the initial meetings with our stake-
holders, where we in-depth discussed our assignment. In the preliminary report, we first
began by explaining our motivation for choosing this assignment, what our stakeholder’s
project description and outcome goals of this bachelor assignment are, and what impact
goals we wished to achieve for this bachelor thesis. We also explained the organization
and roles of this project’s team members and stakeholders. Next, we defined the main
activities to be done, the different milestones for the project, and how quality assurance
would be performed. Lastly, we created a risk assessment for the execution of our project.
The preliminary project plan can be found in appendix A.

3.2.2 Gannt Diagram

For planning our project’s timeline, we created a Gannt diagram. A Gannt diagram is
a diagram that shows activities and the timeline for the tasks from start to finish. Each
team member added their expected activities and the timeline for them.

3.2.3 Work Contract

While planning the project, we also created a work contract where we internally defined
the responsibilities of each team member and agreed on different procedures like meeting
invitations, document handling, version control, and how to interact with each other.

3.2.4 User Requirements

When deciding upon the method of estimation to use for this project, we first saw the need
to concretize our constraints, and so, together with the Product Owner, we established
the following requirements:

1. The method would need to be easy to adapt to and use by Axbit. Axbit currently
uses ideal hours as their basic unit of estimation, and work in scrum teams with
differentiating specializations. Their previous estimations varied in detail - some
projects were broken down into individual tasks, with estimations made per task,
whereas others were only estimated on a feature-level. This meant that in order for
our application to be easily adaptable by Axbit, our method of estimation would
need to:

• Be flexible in its level of detail

• Take the teams’ specialization differentiation into account

• Use ideal hours as the basic unit.

2. Our application is meant to be used as a tool both during project development as
well as in the planning phase, so our method would need to be able to estimate a
project at any stage of development.

CHAPTER 3. METHODS 21

3. The method needed to provide a degree of uncertainty to the estimations. A central
tendency alone does not give any hints as to the uncertainty, and therefore cannot be
used confidently on its own. A means of illuminating the variance of the estimation
was necessary to provide this confidence.

3.2.5 User Stories

In addition to the requirements listed above, we (in cooperation with the Product Owner)
also established the following user stories to help guide our development. In order for
this project to be considered a success we would need to achieve the features marked as
(MUST).

As a project manager, I want:

1. (MUST) given an existing project estimated by the team, to get a expected delivery
date (calendar time estimation).

2. (MUST) given an existing project estimated by the team, to get a cost estimation.

3. (MUST) to see the most likely release plan, the best and the worst (e.g., burn-up
chart), possibly including constraints (i.e., budget, deadline, features).

4. (MUST) to create a project with tasks / add / delete.

5. (MUST) to assign tasks to specific people or group of persons.

6. (MUST) to manage availability for the team (e.g., vacations, illness, part-time
allocation, etc.).

7. (MUST) to define cost parameters for the team (e.g., hourly rate, profit margin).

8. (MUST) to set the starting point of the project.

9. (SHOULD) to refine a task into a finer-grain task flow, that can be estimated by
developer.

10. (SHOULD) to update the plan with actual project execution data (task started,
task ended).

11. (SHOULD) to identify delivery (features) in the plan.

12. (SHOULD) to mark feature as Must-have, could-have, should-have or won’t have

13. (COULD) to see the prediction of a specific task, possibly depending on a given
starting date.

14. (COULD) to import availability from the Axbit ERP system.

15. (COULD) to decide how t-shirt sizes map to ideal hours.

16. (COULD) to decide how story points map to ideal hours.

17. (COULD) to export existing projects (tasks) from external sources, say JIRA,
Asana, etc.

22 CHAPTER 3. METHODS

18. (COULD) As the project progresses, to see the current estimation bias and absolute
error.

19. (COULD) to see the utilization of staff, who is hiding sleeping, who is overloaded.

20. (COULD) to detect bottleneck tasks.

21. (COULD) to import existing projects (tasks) from external sources, say JIRA,
Asana, etc.

As a developer I want:

22. (MUST) to estimate task, in ideal hours.

23. (SHOULD) to be able to say when I start and when I am done with a task.

24. (COULD) to see my own estimation bias and absolute estimation error.

25. (COULD) to estimate task durations in story points.

26. (COULD) to estimate task duration in t-shirt sizes.

3.3 Management Tools

3.3.1 Teams

We used Teams for meetings and collaboration within the group and with our stakehold-
ers. We chose to use Teams our stakeholders also had access. Teams is a collaboration
tool part of the Microsoft Office 365 bundle. Teams have a wide variety of functional-
ity like chat, meetings, voice calls, wiki, and shared team folders for collaboration on
documents [52].

3.3.2 Confluence

We used confluence to centralize our system documentation and to collaborate with our
product owner. Confluence is a collaboration tool for creating a wiki, which has pages
with documentation [53].

3.3.3 Overleaf

We used Overleaf for writing our thesis. Overleaf is a collaboration tool for LaTeX
documents. LaTeX allows more explicitly marking elements making formatting easier.
We decided to use Overleaf because we had a better experience using Overleaf in previous
courses.

CHAPTER 3. METHODS 23

3.3.4 GitHub

GitHub is a platform used for hosting code and for collaboration and version control. [54]
We used GitHub to store, organize and keep control of issues that we needed to work on.

To make sure that we did not implement any breaking changes to the code, we all made
a branch for the issue we were working on. This allowed us to work with one code base
without any code-breaking of others’ code. When we are done with the issue we make a
PR to check for conflict with the code on the development branch.

3.4 Developmental Tools and Applications

3.4.1 Figma

Figma was used to create wireframes and diagrams. Figma is a collaboration tool for
creating prototypes, diagrams, and many other types UI based tools for brainstorming
and planning [55]. Figma offers premium functionality for students. We were already well-
versed with Figma from our previous group projects together, so Figma was a natural
choice.

3.4.2 Lighthouse

We used Lighthouse to check our application for issues, particularly looking out for ac-
cessibility issues. Lighthouse is an open-source development tool that checks the perfor-
mance, accessibility, and search engine optimization of web pages [56].

3.4.3 VS Code

Visual Studio Code (VS Code) is a free source code editor that is powerful but lightweight
and built on open source. Out of the box, it has support for TypeScript, JavaScript, and
Node.js. The vast collection of extensions for other runtimes and languages makes it one
of the most used editors [57]. We decided to use this as our common editor for easily
being able to help debug errors, both in code and other issues that might come up.

3.4.4 Docker

Docker is a platform for developing, shipping, and running applications. It allows you
to build a container with your application to ship and run on any other platform. This
makes it easy to ensure the application runs on the server [58]. Docker makes it easy
to spin up and down and ship new builds. It will run on the client’s server without any
issues. This is the reason we chose to use Docker for our application.

3.4.5 pgAdmin

pgAdmin is a database management tool built for PostgreSQL. It can run as a web
application making it easy to access from anywhere [59]. We choose to use this to have
a standard tool for managing the database for our application.

24 CHAPTER 3. METHODS

3.4.6 Traefik

For our reverse proxy, we are using Traefik. It’s an open-source Edge Router that receives
all requests sent to our server and directs the request to the right service. It is natively
compliant with Docker, which makes it easy to set up with our services [60].

3.4.7 Make

Make is an automation tool to build libraries and executable programs from source code.
It utilizes a Makefile file to specify what and how to build [61].

3.4.8 Vite

Vite is a platform-agnostic tool for building web applications quickly. It pre-bundles
dependencies and delivers source code over native ESM, allowing faster server start times
than JavaScript-based bundlers. Because of it’s speed and out-of-the-box support for
TypeScript, we saw it as a good fit for our application.

3.4.9 Vitest

Vitest is a framework for unit testing created and maintained by Vue and Vite team
members. We chose to use it for unit tests in our application because it utilizes Vite’s
strengths to provide faster run times and requires little configuration.

3.4.10 Storybook

We used Storybook for component documentation and integration tests. Storybook is a
tool used for UI documentation and testing. It creates a UI for component documentation
and allows for various tests, like interaction tests and accessibility tests [62]. To set up
component documentation in the storybook UI, so-called stories must be defined. Stories
are files next to your components that document their arguments and what interaction
should be done on the component.

3.4.11 Playwright

We utilized Playwright for executing E2E tests. Playwright is a tool developed by Mi-
crosoft. It uses a Chromium browser that connects to the internet and performs predefined
interactions on a live website [63]. We decided to use Playwright for E2E tests because it
is a popular and well-established tool that integrates well with VS code since Microsoft
developed both.

3.4.12 Package Manager

For package management we have used both npm and pnpm. They are both very popular
and similar.

3.4.12.1 npm

npm is the world’s largest software registry. It’s used to store packages to share and
borrow to and from other open-source developers [64].

CHAPTER 3. METHODS 25

3.4.12.2 pnpm

pnpm, short for Performant npm, is a fast and disk space-efficient package manager. It
utilizes npm but is up to 2x as fast. The main difference is the way it stores the packages;
pnpm stores a package only once. If you use the same package in 100 projects, it will
only store it once. If you have a project #101 with an updated version of that package,
pnpm will only store the file changed and reuse the same package as for the 100 other
projects [65].

3.4.13 GitHub Actions

GitHub Actions is an automation tool for CICD provided by GitHub. It allows for
workflows to be run on predefined events. We have utilized this for our project to run
automatically when a PR is created and when it is merged to the development or main
branch. For configuring the workflows, we have used YAML (3.6.2) files in a .github
folder. GitHub parses this folder automatically and starts the workflow.

3.5 Framework, Libraries, Programming- and Script-
ing Languages

Being an experienced software company, Axbit is well-versed in a variety of languages
and constantly has to try out new ones, therefore, there were hardly any limitations to
what languages and frameworks we could use.

3.5.1 Svelte

Svelte is an open-source front-end JS framework aiming to simplify web development by
shifting the work to the compile step when you build your app instead of the browser
[66]. Svelte is component-based and is used to create single-page applications.

3.5.2 SvelteKit

SvelteKit is a framework for building full-stack server-side rendered web applications with
Svelte [67]. It combines Svelte’s component-based architecture with server-side rendering
to provide a streamlined development experience. We used SvelteKit as we wanted to use
a reactive framework to create a Single-page application. Our Product Owner requested
the back end to be implemented using Python or JavaScript. Because of our inexperience
with Python, we utilized SvelteKit’s full-stack capabilities.

3.5.3 Typescript

We used Typescript for both front-end and back-end development together with Svel-
teKit. Typescript is a programming language that is strongly typed and based on
Javascript, a multiparadigm scripting language. Because Typescript is typed it is eas-
ier to keep the code type-safe and to debug code when issues occur. Typescript and
Javascript both support object-oriented programming, which we had planned to use for
our system architecture.

26 CHAPTER 3. METHODS

3.5.4 SCSS

Sassy CSS (SCSS) was used to create the global styling and component styling in the
application. SCSS is a CSS preprocessor scripting language that extends the capabilities
of CSS [68]. With its support for nested selectors, SCSS provides improved readability
and it also allows for more advanced functionality. Additionally, regular CSS can still be
used for anyone who may not be familiar with SCSS.

3.5.5 Carbon Design Systems

We used Carbon Design Systems’ component library and icons. Carbon Design System is
a design system developed by IBM. Using a component library allowed us to focus more
on developing functionality crucial to the concept of our application.

3.5.6 PostgreSQL

PostgreSQL is a powerful open-source object-relational database. It extends the SQL
language and adds many features that safely scale and store the most complicated data
workloads. We used PostgreSQL as our database. This mostly because we are have used
it for projects before and because it’s open source.

3.6 Data and Configuration

3.6.1 JSON

JavaScript Object Notation (JSON) is a human-readable lightweight data-interchange
format. JSON is easy both for machines to generate and parse and for humans to read
and write [69]. We used JSON to pass data to forms.

3.6.2 YAML

YAML Ain’t Markup Language, is one of the most used languages for configuration files,
ending with either .yaml or .yml. YAML is easy to read as it’s a human-readable data
serialization language. Serialization means data structures can be converted, translated,
and wrapped up in another format. The new format can then be stored or transmitted to
a different application or service. As YAML is human-readable and has intuitive syntax
it’s widely used as the format for writing configuration files for applications, DevOps
tools, and programs [70].

3.6.3 DTO

A Data Transfer Object (DTO) is a design pattern used in objective-oriented program-
ming, and its main purpose is to encapsulate data and transport it efficiently between
different parts of a system. They are typically used for moving data between layers or
components of an application, such as between a client, server, and database. DTOs
focus solely on data transfer and should not contain any business logic, validation rules,
or behavior associated with the data.

CHAPTER 3. METHODS 27

3.7 System Documentation

3.7.1 ER Diagram

We began planning the database structure by creating a simple sketch of a database with
what we thought we needed to store. During the development process we discovered that
our sketch was not sufficient so we made an ER diagram to have a better understanding
of database set up.

3.7.2 Class Diagram

In the initial planning stage of the project we created a class diagram to help us plan
and design our application. A class diagram is a type of UML diagram, as described
in section 2.5.3. The class diagram helped us to communicate, both within the team
and with the Product Owner. It was continuously updated as the system evolved, and
thereby remained useful throughout the project development.

3.7.3 Source Code Documentation

Because we were developing a demonstrator which Axbit intended to continue the develop-
ment of, thorough documentation of the source code was crucial. As part of development
of the application, three forms of source code documentation were used, namely JSDoc,
inline comments and Svelte component documentation.

3.7.3.1 JSDoc

As part of our source code documentation we used JSDoc, which is a documentation
system for JavaScript, to automatically generate documentation that provides an easy-
to-navigate interface for understanding the structure and purpose of the code. The use
of JSDoc for our functions and class definitions made it easier for the team to collaborate
when developing the application.

3.7.3.2 Inline Comments

Our application contains some functions and methods that are particularly large or com-
plex. For these cases, we wrote inline comments to explain their processes step-by-step,
to make them easier to understand and maintain.

3.7.4 Svelte Component Documentation

We documented our components using the Svelte Documentation. Svelte Component doc-
umentation is denoted by an HTML comment starting the first line with a @component.
We made sure to document each prop, event, and slot for each component.

28 CHAPTER 3. METHODS

3.8 Design

3.8.1 Wireframing

To ensure that our system’s design aligned with our stakeholder’s expectations, we started
the design process by creating wireframes. Wireframes provide an inexpensive way to
visualize a system’s layout and functionality. This allowed us to quickly create and
iterate on design concepts without investing too much time or resources. While deciding
on the first conceptual layouts of the application, we kept in mind Don Norman’s design
principles and other applications our client frequently used to ensure a familiar, intuitive
layout our client. Using wireframes to show our stakeholders and doing user tests on
wireframes for the first test iteration, we could make changes early in the design process
when changes were less time-consuming and affordable.

3.8.1.1 Figma

Figma was used to create high-fidelity wireframes that closely resemble the end product.
By using high-fidelity wireframes, confusion about the end product would be limited,
allowing for better user test feedback. Figma also lets wireframes be interactive, which
was a benefit for testing on wireframes. Because Figma is a SaaS, it only requires an
internet connection and a browser for prototype testing.

3.8.2 Design Guidelines

We created design guidelines before beginning front-end development to ensure our web
application’s look and feel stayed consistent. To ensure a cohesive look and feel, design
guidelines hold specifications for specific design elements such as spacing, font, color,
border-radius, and shadows. They make it easier to develop a coherent design when
multiple developers are working together.

3.8.3 Accessibility

The application was made to adhere to WCAG 2.0 requirements since it is a web ap-
plication for a private business. Accessibility was considered while designing the layout,
look, and feel. To ensure that our color choices were acceptable regarding the contrast
required by WCAG 2.0, we first checked before deciding on what primary color and what
background color to use. To make our application usable for disabled people, ARIA
attributes have likewise been a part of our development process. Throughout the devel-
opment process, Lighthouse was regularly used to ensure that the application met the
WCAG 2.0 requirements and that we used ARIA attributes correctly.

3.9 Testing Methodology

3.9.1 Unit Tests

We created unit tests from the beginning of the development process to ensure that the
low-level components behaved as expected. The vitest testing framework was used to
create unit tests.

CHAPTER 3. METHODS 29

3.9.2 Integration Tests

We used Storybook to create integration tests by using the Storybook’s accessibility test
plugin and by writing interaction tests.

3.9.3 End-to-end Tests

We used Playwright to create E2E tests. The E2E tests would run on the developer’s
machine or the development built.

3.9.4 Usability Tests

We performed usability tests on wireframes and the Minimum Viable Product. We only
performed qualitative, moderated remote user tests where the participants shared their
screens while testing. At least two team members were present at each user test to assist
in taking notes of the participants’ performance. Before each user test, a test plan was
created to analyze the results and compare the user tests of that iteration. The test plan
would contain predefined tasks the user was to perform, and the plan was used to take
notes on how the user performed and note any potential feedback from the user. After
each user test, the team analyzed and discussed the results, deciding on the appropriate
changes to respond to the feedback received.

3.9.4.1 Prototype Testing

We created a high-fidelity wireframe for prototype testing in Figma, which made it readily
available for remote testing. The participant shared their screen while clicking through
the Figma prototype and performing actions asked by a moderator.

3.9.4.2 Alpha Testing

We performed a second round of user tests when the MVP was completed. The users
shared their screens and entered our applications’ development build to test.

CHAPTER

FOUR

RESULTS

In this chapter, we will describe in detail the results of the project, including findings
from our research and the resulting demonstrator application. The demonstrator can be
accessed at https://savvyest.io.

4.1 Method of Estimation

As a result of our research of estimation theory, we have devised a method for project
estimation. The method borrows traits from various existing methods currently used by
project managers in Axbit. This makes the method easier for Axbit to adopt it as their
new standard for project estimation. Following is a detailed explanation of the estimation
method we have used in our application.

The estimation method is intended to be used in a collaborative planning session by the
project team, and consists of the following steps:

1. Work breakdown structure - Start by defining the scope of the project by
identifying the key features that will be included. Segment these features into tasks
and collaboratively assign them three-point estimates using Planning Poker. If a
task has estimates larger than two weeks, break it down into smaller tasks. Repeat
this until no tasks have estimates larger than two weeks (as per PERT’s 80-hour
rule mentioned in section 2.3.1).

2. Establish relationships - The completion of some tasks or features may be de-
pendent on the prior completion of other tasks or features. These relationships
must be mapped out in order to create a valid workflow.

3. Assign team members - Assign the tasks to the member(s) of the team best
suited for their completion.

4. Simulate - Use the Monte Carlo method to generate multiple iterations of the
project and simulate the development of each iteration, creating a joint probability
distribution.

The simulation step is part of our application, and further described in section 4.5.2.

30

https://savvyest.io

CHAPTER 4. RESULTS 31

4.2 Continuous Integration and Delivery

4.2.1 CI/CD Process Overview

We have used Continuous Integration and Continuous Delivery (CICD) in our project.
This has been done with the use of GitHub Actions (3.4.13). The repository has workflows
that are run on PR and merge to the development, or the main branch. Linting and check
workflow are run when the PR is made and the deployment workflow runs when the PR
is merged.

4.2.2 Workflows

Lint and check workflow was performing checks for formatting and to check that there
were no syntax errors.

Deploying to development environment performs an SSH logging to the server and
running commands to set up the development environment using the newest code.

Deploying to production environment performs a SSH logging to the server and
running commands to set up the production environment using the newest code.

Figure 4.2.1: The Github Action workflow for CI/CD

32 CHAPTER 4. RESULTS

Figure 4.2.2: CI

CHAPTER 4. RESULTS 33

Figure 4.2.3: CD to development environment

4.3 Environment Files
We have used a .env file for environment variables. This file is used by Docker, to set up
the containers and by the application it self for connecting to the database.

Figure 4.3.1: The .env.example file used in our project.

4.4 Documentation

4.4.1 Code Documentation

The back-end of the application is documented inside the source code as JSDoc and by
inline comments, and by UML class diagrams.

34 CHAPTER 4. RESULTS

4.4.1.1 JSDoc

All classes and methods in the application back-end has been documented by JSDoc, ex-
plaining their structure and functionality. Displayed below is the JSDoc for the doWork()
method in the Assignee class.

Figure 4.4.1: Code example: JSDoc of the doWork() method of the Assignee
class.

4.4.1.2 Inline Comments

In addition to JSDoc we also added inline comments in the more complex methods and
functions to increase readability and maintainability. Following is an example of the
doWork() method of the Assignee class.

CHAPTER 4. RESULTS 35

Figure 4.4.2: Code example: doWork() method of the Assignee class has inline
comments to clarify the method process.

4.4.1.3 Class diagrams

The class diagram of the entity models can be seen in Figure 4.5.1 and the diagram for
the service classes is in Figure 4.7.1.

4.4.2 Component Documentation

The Svelte components created for the application are documented in the code as well as
through Storybook.

36 CHAPTER 4. RESULTS

4.4.2.1 Component Code Documentation

Figure 4.4.3 displays the code documentation for the SortableList component. The
documentation covers the name, description, and example of how to implement the com-
ponent, and if applicable, it will document the props, events, and slots. Figure 4.4.4
showcases how the component code documentation is viewed when implemented.

Figure 4.4.3: Code example: documentation of the SortableList component
in code

Figure 4.4.4: Documentation displayed from SortableList component docu-
mentation

4.4.2.2 Storybook Documentation

Storybook documentation is defined through story files denoted by the extension *.stories.ts.
The story files reside next to their respective components for which they hold documen-
tation. In the story file, the component is documented, and its argument types are

CHAPTER 4. RESULTS 37

defined. Using the story file, Storybook mounts the components in the Storybook UI.
It is possible to change fields and properties through the UI and see how this changes
the component. Figure 4.4.5 displays the Storybook UI’s documentation and properties
for the button element. Figure 4.4.6 shows the button component with properties edited
through the UI. The Storybook component documentation can be found at the link:
https://storybook.savvyest.io

Figure 4.4.5: Button documentation in the Storybook UI

Figure 4.4.6: Storybook Button documentation with edited properties

https://storybook.savvyest.io

38 CHAPTER 4. RESULTS

4.5 Backend

4.5.1 Entity Classes

Figure 4.5.1: UML diagram describing the structure of the entity classes.

4.5.1.1 Project

Projects are represented in our application by the Project class, which contains informa-
tion on what the project entails, such as who will be leading the project and who will
be working on it, what needs to be done in order to finish the project, as well as hourly
rates and cost margin towards the customer.

4.5.1.2 Estimatable

A deliverable, milestone, feature or task all share several traits; they can all be estimated,
they all represent work in a project that needs to be completed, and they all may be
dependent on other tasks/features, etc. to be completed before work on them can be
commenced. Therefore, we have decided to represent these in the application as an
Estimatable.
An Estimatable may be broken down into any number of sub-Estimatables, and may
have any number of other Estimatables as dependencies. As the project is mapped out

CHAPTER 4. RESULTS 39

with Estimatables, it will take on a tree-like structure, with a root node (the project
itself) and one or, most likely, several leaf nodes (Estimatables without children). Each
leaf node Estimatable has three-point-estimates in ideal hours (best case, worst case, and
the most likely scenario), which form the basis of the project estimation. An Estimable
can be assigned to any number of assignees. If it is not assigned to any specific team
members, all employees assigned to the project may contribute towards its completion.

4.5.1.3 Employee

The Employee class represents an employee in the company, without being directly tied
to any projects. Employees have an efficiency rating, which is the ratio of hours spent
developing per work day. Their level of competence also factors into this value. We found
in our research [7][8] that this efficiency factor tends to lie between 40-60%. However,
our Product owner requested the default value for this to be set to 85% for their initial
testing.

4.5.1.4 Assignee

The Assignee class in our application represents an employee’s role in a project. An
employee assigned to a project has a level of commitment (the fraction of their working
hours they will be spending on the project, and also manages their scheduled leaves. This
class also forms the backbone of our simulator.

4.5.2 Simulation

This section details the simulation process and explains the different levels of the simu-
lator, followed by code examples.

4.5.2.1 Monte Carlo Method

The project to be simulated is first duplicated multiple times. Every duplication also
randomizes the estimated ideal hours of each task using a triangular distribution gener-
ated from the task’s three-point estimates, thereby creating a large number of iterations
of the project. The development process of every iteration is then simulated, as described
below.

4.5.2.2 Overview

Our simulator has two levels - The project level and the assignee level. The project level
manages date tracking and advancement, while the actual project work and progress is
handled on the assignee level.

40 CHAPTER 4. RESULTS

4.5.2.3 Project Level

Figure 4.5.2: Describes the simulation process for the project.

The simulation is started on the project level on the date set as the project start date
or the latest date a task was registered as either started or finished (in cases where the
project is already in development). It will then check if its current date is a work day,
and if so it will notify all team members that a new work day has started. Once all team
members have acted, it will advance time to the following date and repeat this process,
until the project is finished.

CHAPTER 4. RESULTS 41

Figure 4.5.3: Code example: Simulation on the project level

42 CHAPTER 4. RESULTS

4.5.2.4 Assignee Level

Figure 4.5.4: Describes the simulation process for an assignee.

The Assignee Level manages the actions of each employee working on the project. Every
work day, the project will notify all assignees in the project that a new work day has
begun, and each assignee will start the following action sequence:

1. The assignee will check if they are on leave, and if so will skip any further actions
for the day.

2. Check if they currently have an unfinished task they are working on.

3. If they do not currently have an active task to work on, they will check if there
are any unfinished tasks that can be started, that is assigned to them, or open for
contributions by all assignees to work on. If multiple such tasks are found, they
will select the available task with the highest priority.

4. If they now have a task to work on, they will continue working on this task until
either the task is completed or the work day is finished, registering worked hours
adjusted by the assignee’s level of assignment and efficiency factors. If they finish
the task, they will repeat this process from step 3.

5. If not currently working on a task and no unfinished tasks are available to this
assignee, they will wait for a new task to become available to them.

CHAPTER 4. RESULTS 43

Figure 4.5.5: Code example: Simulation on the assignee level

When the simulation completes, it will return the project in it’s finished state, with actual
start- and actual end dates for all tasks, and the number of hours worked and spent idle
for each assignee.

44 CHAPTER 4. RESULTS

4.5.3 Database

The Entity Relation Diagram in figure 4.5.7 describes the relationship between the differ-
ent entities and linking table. A project have a one-to-many relationship to estimatables
and a many-to-many relationship with employees. The relationship with employees can
be seen through the linking table project_assignment_lvl.

Figure 4.5.6: Entity relation diagram

4.5.4 Server

For the server NTNU provided us with an Ubuntu server 22.04 from their Openstack [71]
solution. The server was setup with a public IPv4 with some restriction on ports. Since

CHAPTER 4. RESULTS 45

we decided to use Docker for our deployment, we had do set up and configurate Docker,
Traefik, Node.js and Sveltekit. When this was done the CICD workflow took care of the
rest of the deployment of the services including the PostgreSQL and pgAdmin container.

4.5.5 Docker

Working with Docker we decided to build our own image for the application to be able
to have a smaller container deployed.This was done with a Dockerfile.

Figure 4.5.7: Dockerfile

For the actual deployment we set up in total three docker-compose files, docker-compose.yml,
docker-compose-dev.yml and docker-compose-prod.yml. This was done for it to be easy

46 CHAPTER 4. RESULTS

to set up just the PostgreSQL and pgAdmin containers for developing on your own com-
puter, running only the docker-compose.yml file. And for the ease use of CD to deploy to
our dev environment with the docker-compose-dev.yml file and production environment
with the docker-compose-prod.yml file
Traefik, our reverse proxy, was sat up using Traefik’s own guides and example files. And
did not need any extra configuration for extra containers.

4.5.6 Postgres

PostgreSQL was easy to set up and maintain during the development of this project. We
decided to make have a column in our estimatables table that would increment for each
estimatable added with the same project_id. With PostgreSQL this turns out to be easy.

Figure 4.5.8: Code to set up and remove sequence and trigger

CHAPTER 4. RESULTS 47

With pgAdmin as the management tool we were able to access the database from any
computer without the need of downloading any extra software.

4.6 Front-end

4.6.1 Design

Axbit had no preferences or requirements for the design of the application as we were
creating a demonstrator and they would most likely implement their own UI/UX after
validating the system. To create the design of the application, Don Norman’s design
principles and accessibility were considered. In terms of the principle consistency, the
design was inspired by two applications used by Axbit, Slack, their main internal com-
munication channel, and Jira, their sprint planner and issue tracker. Jira was also often
discussed in the first meetings of how to define features and tasks.

4.6.1.1 Wireframe

The first iteration of the wireframe was started after the initial meetings with the product
owner, so we could have time to reiterate the design regarding any misunderstandings.
The first draft of the wireframe can be found in appendix B. We created a high-fidelity
wireframe to closely resemble the end product and showcase the design more clearly. After
three iterations, where each iteration was displayed to the product owner, the wireframe
was ready to be tested through usability tests. The second draft of the wireframe can be
found in appendix C. The result of the wireframe after the usability test is showcased in
Figure 4.6.1 and in appendix D.

48 CHAPTER 4. RESULTS

(a) Sign in/up page (b) Project overview page

(c) Progress page (d) Features page

(e) Tasks page (f) Dependencies page

Figure 4.6.1: Final iteration of wireframes

4.6.1.2 Design Guidelines

We implemented our own design guidelines as no design guidelines were provided for us.
Two distinct shades of blue were used as a primary and secondary colors. Figure 4.6.2
displays the color scheme chosen for the application.

Figure 4.6.2: The color scheme of the application

CHAPTER 4. RESULTS 49

The monospace font IBM Plex Mono was used as the primary font, keeping on the theme
for an application made for a software company. Monospace fonts are serif fonts, known
to improve readability, which was beneficial for an information-heavy application. The
complete design guidelines developed can be found in appendix E.

4.6.2 Components

We used Carbon Design System’s component library for generic components. To tailor
the components to our design we applied styling to them. As well as using the Carbon
components we also implemented some of our own generic and specialized components
which reside in the ‘src/lib/components‘ folder. The folder structure for the components
is displayed in Figure 4.6.3. The application represents 4 entities, assignees, projects,
tasks, and features, where tasks and features and based on the Estimatable data model.
The components created for each entity reside in a respective folder of the name and the
generic components reside in the general folder.

Figure 4.6.3: The folder structure for the components folder

4.6.3 Routing

SvelteKit uses file-based routing where directories signify the route as displayed in figure
4.6.4. The routes folder maps to 7 routes in the web application where the slug is a

50 CHAPTER 4. RESULTS

parameter which in this case is the id of a project.

Figure 4.6.4: The file-based routing of the application

The following routes are displayed in the routes directory:

• / the route used for signing in to the application.

• /projects lists all the projects.

• /projects/[slug] This route automatically redirects to the /projects/[slug]/overview
where [slug] is the id of the project.

• /projects/[slug]/overview displays information about the project where the slug
is the project id.

• /projects/[slug]/progress where simulations can be run and estimated progress
viewed for the project where the slug is the project id.

• /projects/[slug]/features lists all the features in the project where the slug is
the project id.

• /projects/[slug]/tasks lists all the tasks in the project where the slug is the
project id.

4.6.4 State Management

Svelte comes bundled with stores, which are global reactive variables. Global reactive
variables update their subscribers upon changes; this allows simpler state management
in components, as the state does not explicitly need to be set, and variables don’t get
passed through many props before their intended use. We implemented 4 different stores,
$projects, $employees, $currentProject, and $app.

CHAPTER 4. RESULTS 51

• $projects - The $projects store contains the complete list of projects accessible to
the user in the application. The projects are updated when there are changes to the
data through the SvelteKit function invalidateAll(), which causes all load func-
tions defined in pages or layouts to reload. For updating data, the invalidateAll()
function is used after form requests have been responded to.

• $employees - The $employees store contains the list of employees added to the
application. The employee store is also updated when the SvelteKit function
invalidateAll() is called after form requests have been responded to.

• $currentProject - The $currentProject store contains the currently displayed
project. The store is updated when entering a given valid project. Otherwise, the
store is undefined.

• $app - The $app store is meant to contain general application information; for now,
it has only if the application is ready. The $app store variable is an object that
now only holds one variable ready. The store variable ready defaults to false and
is updated to true once data has loaded and been applied to their respective stores.

Displayed in Figure 4.6.5 is the creation of the $projects store. The object returned
from the contains the list of projects, helping functions to update the store, and the
store-specific functions.

Figure 4.6.5: Code example: $projects store implementation

52 CHAPTER 4. RESULTS

4.6.5 User Interface

4.6.5.1 Login Page

Figure 4.6.6: Screenshot of the login page.

Authentication was not implemented because we were making a demonstrator, and if
Axbit were to continue using the application, they wished to integrate it with their
Enterprise Resource Planner system. Figure 4.6.6 is the login page for the application.
The form toggles between sign up and sign in and validates input with regex.

4.6.5.2 Projects Page

Figure 4.6.7: Screenshot of the projects page.

CHAPTER 4. RESULTS 53

Figure 4.6.7 is the projects page. The projects page lists all the projects in the database.
The buttons have tooltips to make finding the right project and function easier. The
projects aren’t accessible through tabbing, considering if there are 30 projects, it would
make navigating the page for keyboard users inefficient and burdensome. Instead, key-
board users must use the search modal to navigate to a project. The user can also log
out, which is only a redirect to the login page for the time being.

4.6.5.3 Projects Layout

The list of projects on the far left in Figure 4.6.7 is a static component for our single-
page application. For this route, /projects, and any child routes, the project bar remains
static. This is defined through the +layout.svelte in the projects folder, sample seen in
Figure 4.6.8. The layout will always display the project bar and conditionally renders the
project menu on whether the slug parameter is defined in the page route. The contents
of this page, child page, or child layouts will be visible through the <Slot/> component.

Figure 4.6.8: Code sample for the projects layout.

54 CHAPTER 4. RESULTS

4.6.5.4 Search Projects

Figure 4.6.9: Screenshot of a search feature modal.

Figure 4.6.9 displays the modal used for searching projects. The modal is accessible
through the search icon on the left lower corner on any page after /projects route, or
through the shortcut ctrl + G or + G for Mac users, the same shortcut used in
Slack which is the main communication app Axbit uses internally.

4.6.5.5 Creating Projects

Figure 4.6.10 displays a screenshot of the create project modal. The modal has four steps:

1. Project - How the project is displayed, its name and icon

2. Details - Project details like profit, start date, deadline, etc.

3. Members - Project lead and assignees are designated in this step.

4. Summary - Summary of the project to be created as seen in figure 4.6.10

CHAPTER 4. RESULTS 55

(a) The project step (b) The details step

(c) The member step (d) The summary step

Figure 4.6.10: Screenshot of the create project modal

4.6.5.6 Project Overview Page

Figure 4.6.11: Screenshot of project overview page

Figure 4.6.11 is the project overview page. It displays details about the projects and
their team.

56 CHAPTER 4. RESULTS

4.6.5.7 Editing Projects

Figure 4.6.12: Screenshot of the edit project modal

Figure 4.6.12 displays the edit project modal. The modal takes up the whole screen and
will prevent users from leaving if there are unsaved changes. Everything configured while
creating the project can also be changed here.

4.6.5.8 Deleting Projects

Figure 4.6.13: Screenshot of modal for deleting a project.

Figure 4.6.13 displays the confirmation modal for deleting a project.

CHAPTER 4. RESULTS 57

4.6.5.9 Features Page

Figure 4.6.14: Screenshot of the features page

Figure 4.6.14 is the features page. All the features for the projects are listed here and
can be searched through. Features can also be edited, added, and deleted from this page.
The features are ordered by priority; a new feature will always have the lowest priority
unless placed higher in the list. The features can be sorted through the buttons or by
dragging a feature card and dropping it to another location in the list.

4.6.5.10 Feature Details

Figure 4.6.15: Screenshot of a feature modal displaying information about a
feature.

Figure 4.6.15 displays the feature modal, which shows details about the feature and allows
for tasks to be created under the feature and dependencies added. The progress bar shows
how many tasks out of the total number of tasks are completed.

58 CHAPTER 4. RESULTS

4.6.5.11 Create and Edit Features

(a) Screenshot of a feature being created (b) Screenshot of a feature being edited

Figure 4.6.16: Creating and editing features in the application

The creation and editing of features happen in the same modal, which has two different
modes displayed in figures 4.6.16a and 4.6.16b. Tasks under a feature can not be created
under a feature in edit mode. A feature already needs to exist; to save place; this is done
under the feature detail modal. A feature can be edited through the options button on
the feature modal.

4.6.5.12 Delete Feature

Figure 4.6.17: Screenshot of modal for deleting a feature.

Figure 4.6.13 displays the deletion confirmation modal on a feature. A feature can be
deleted through the options button on the feature modal.

CHAPTER 4. RESULTS 59

4.6.5.13 Tasks Page

Figure 4.6.18: Screenshot of the tasks page

Figure 4.6.18 displays the tasks page in the application. Viewing, creating, editing, and
deleting tasks happen through this page. The page contains a table of tasks in the
projects, and the table has customizable headers as displayed.

4.6.5.14 Task Details

Figure 4.6.19: Screenshot of the task modal, which displays details about a
task.

Figure 4.6.19 displays the task modal, which shows details about a task. The modal
contains a link back to its parent which can either be a task or a feature, and has a
button to update the actual date fields quickly. The modal also allows for editing fields
that might frequently change, like estimated time, child tasks, dependencies, assignees,
and when the task started and ended.

60 CHAPTER 4. RESULTS

4.6.5.15 Create and Edit Tasks

(a) Create details step (b) Create estimation step

(c) Edit details step (d) Edit estimation step

Figure 4.6.20: Modal in Create and Edit modes

The creation and editing of tasks are done in the same modal. The modal has a create
and edit mode, as displayed in Figure 4.6.20. There are two steps in the modal; the
first step is for the details of the tasks, such as name and description and what feature
it belongs to. The second step is to estimate how long the task will take and possible
dependencies on the task. A task can be edited through the options button on the modal.

4.6.5.16 Delete Task

Figure 4.6.21: Screenshot of modal for deleting a task.

Displayed in 4.6.21 is task deletion confirmation. A task can be deleted through the
options button on the modal.

CHAPTER 4. RESULTS 61

4.6.5.17 Progress Page

Figure 4.6.22: Screenshot of the progress page

Figure 4.6.22 displays the progress page. From this page, simulations can be run, and the
results of the cost estimation simulation are shown in the chart and table. The chart on
this page is perhaps the most essential front-end component added to the application, as
it provides a clear overview of how the project is estimated to complete. The chart also
has a "threshold," a red line, and a highlight, which signifies the project’s deadline. The
table contains information about how much cost and time each feature is estimated to
take, making it easier to cherry-pick important features to finish a project within budget
and deadline.

4.7 Service Classes

Figure 4.7.1 displays the UML diagram of our implemented service classes. We utilized
service classes to define the logic that belonged to neither the models nor the components.
The service classes assisted in keeping the models and components object-oriented and
prevented code repetition.

62 CHAPTER 4. RESULTS

Figure 4.7.1: UML diagram describing the structure of the service classes.

4.7.1 CalendarService

The calendar service was created to assist with work-hours to calendar time calculations
and provide methods for tracking work days and holidays. The methods isHoliday,
isWorkDay and workHoursToCalendarTime are implemented in this service. To retrieve
the list of Norwegian bank holidays, the method isHoliday uses the API WebApi.no
[72]. Figure 4.7.2 shows the implementation of the isHoliday method in the calendar
service.

Figure 4.7.2: Code example: CalendarService

4.7.2 EstimatableService

The estimable service was used in front-end components for logic not belonging to the
model Estimatable, but still required for presenting information about objects of the
model. The functions getPossibleTaskDependencies, isParentAFeature,
getPossibleFeatureDependencies, getTaskStatusForChildlessTask, and getTaskStatus

CHAPTER 4. RESULTS 63

are implemented in the estimatable service. Figure 4.7.3 displays the implementation of
the getTaskStatus function from the estimable service.

Figure 4.7.3: Code example: EstimatableService

4.7.3 ModalService

Modal service is responsible for the modal windows opened in the user interface. To
make the opening of modals through code more straightforward, the modal service creates
SvelteComponents through code. The modal service has a stack over the modals currently
open in the application. Figure 4.7.4 displays the openProjectIconModal function; the
SvelteComponent is created and pushed on top of the modal stack. Figure 4.7.5 shows
the implementation of closeModal function; the last item in the modal stack is removed
using the SvelteComponent specific function component.$destroy().

Figure 4.7.4: Code example: ModalService open project icon modal

64 CHAPTER 4. RESULTS

Figure 4.7.5: Code example: ModalService close modal

4.7.4 RandomService

The role of the random service is to provide methods for pseudorandom number gener-
ation. It contains the triangular distribution number generation method in use by the
simulation.

Figure 4.7.6: Code example: RandomService

4.7.5 SimulationService

The simulation service manages the simulations of the development of projects through
the use of web workers. It also provides helper functions relating to simulated projects,
such as getBestCaseProject(), which returns the simulated project with the earliest end
date, getMostLikelyProject(), which returns the project with the latest end date, and
getWorstCaseProject() which returns a project in which all of the project’s tasks’ start
and end dates are averages of the corresponding tasks in all of the simulations. Below is
a code example showing the method simulateProject() in the simulation service that
creates and instructs the web workers to perform simulations of a project. The internal
process of the simulation is described in detail in section 4.5.2.

CHAPTER 4. RESULTS 65

Figure 4.7.7: Code example: SimulationService

66 CHAPTER 4. RESULTS

4.8 Test and Quality Assurance

4.8.1 Unit Tests

For unit tests, the vitest framework was used, which allowed us to thoroughly test the
robustness of the backend models in different states. Automated unit tests, both positive
and negative, were made for all model classes and services to ensure code stability, and
prevent regression upon the implementation of additional features.

Figure 4.8.1: Code example: Positive and negative Employee unit tests

4.8.2 Integration Tests

Integration tests were created using Storybook. The files for denoting documentation and
tests for the components can be found next to the components in the /src/lib/components
folder. Showcased in Figure 4.8.2 is the configuration for Storybook, where we had im-
ported interaction tests, accessibility tests, and test coverage to see how much our tests
covered the code.

CHAPTER 4. RESULTS 67

Figure 4.8.2: Storybook configuration

The accessibility is tested automatically by Storybook with no need to write tests, how-
ever, interaction tests have to be explicitly written. Showcased in Figure 4.8.3 is the
interaction test of SortableList component. The resulting test coverage is displayed in
Figure 4.8.4

Figure 4.8.3: Interaction test for SortableList

68 CHAPTER 4. RESULTS

Figure 4.8.4: Integration test coverage

4.8.3 End-to-end Tests

Playwright was used to create E2E tests. We placed the end-to-end tests in the folder
e2e. Playwright uses the Chromium browser where it loads the denoted web page and
performs the interactions specified in the test files on a live site. Displayed in Figure
4.8.5 are the results of our 2 primary tests. We have a smaller test that creates, edits,
and deletes a single project, and large tests which take on the whole process of creating,
editing, and deleting projects, features, and tasks.

CHAPTER 4. RESULTS 69

Figure 4.8.5: End-2-end tests results

4.8.4 Usability Tests

We executed two usability tests throughout the duration of the project. One prototype
test and one test on the MVP. Due to the location of the participants, the usability tests
were performed remotely. We did moderated tests with a focus on qualitative finds. The
users were encouraged to think out loud and to perform tasks according to a predefined
test plan. The test template for the test plan can be found in appendix F.

4.8.4.1 Prototype Test

We performed prototype tests on two users before beginning to implement the front end.
The prototype tests were performed by the users’ sharing their screens and getting a link
to the interactive Figma prototype. The main objective of the prototype tests was the
navigation of the app, the layout, and the information related to the different concepts of
tasks and features. Both users performed well on the prototype tests and gave valuable
feedback for changes to improve the layout, navigation, and information displayed. The
test plan and test documentation for the prototype test can be found in appendices G,
H, and I.

4.8.4.2 Alpha Test

When the MVP was ready we performed an alpha test on two users, one of the users was
new and had not had a previous introduction to the application. For this iteration of user
tests the user shared their screen and was given a link to the applications dev build. The
main objective of the alpha test was to test the changes implemented from the prototype
tests and to test the simulation and how the readable information in the graph was. The
test plan and test documentation for the alpha tests can be found in appendices J, K and
L.

70 CHAPTER 4. RESULTS

4.8.5 Code Format and Lint

For Code formatter we decided to go for Prettier, one of the most popular formatters.
For linting we have used ESLint. We noticed early on in the development process that we
were not used to these tools. We sat up a CI workflow to check if we had formatted the
code, and it almost always failed. Luckily this is easy to fix when you see the test fail,
you just run the command for formatting and it automatically formats for you. When it
comes to ESLint, we got some bigger issues with ESLint not liking all the SvelteKit code.
Most of the errors that we came across during development was fixed, but for some we
needed to make exceptions in the ESLint configuration, or make a comment in the code
for ESLint to ignore it.

CHAPTER

FIVE

DISCUSSION

In this chapter we will discuss the process, results and decisions we made through this
project.

5.1 Estimation Method
From our research into project estimation we made several findings that guided us to
the method we used in the demonstrator. This section will discuss the choices made
regarding the method of estimation.

5.1.1 Basic Unit

Using a time-based basic unit of estimation makes the method heavily reliant on expert
judgement, as insight and expertise is required to make reliable estimates. Using ideal
hours was, however, a part of the user requirements listed in section 3.2.4. In order to
avoid misconceptions, the difference between ideal hours and worked hours should be
clearly communicated to the people involved in the project planning.

5.1.2 Three-point Estimates

We used TPE in our method due to their value in providing a degree of uncertainty
pertaining to the task’s required effort. In cases of minor tasks where the degree of
uncertainty is very low, the TPE will have a small spread, and this will be reflected in
the simulations, providing increased accuracy. Without TPE the tasks in the simulations
would all be subjected to the same degree of variance, and the simulator would therefore
produce a less accurate result.

5.1.3 Employee Efficiency

Our simulator uses the efficiency of the employee to increase the accuracy of the simu-
lations. The idea of mapping an employee’s ideal hours per work day can pose ethical
questions due to the social implications it may lead to, however it also brings large ben-
efits when it comes to project planning. It is also worth noting that a developer’s work
also includes time spent in meetings or performing other work-related tasks, and not only
time spent on development as ideal hours.

71

72 CHAPTER 5. DISCUSSION

5.1.4 Method Steps

1. Work breakdown structure - The work breakdown structure is important, as
smaller tasks are easier to recognize and understand, and thereby easier to estimate ac-
curately. It also makes the task of establishing relationships easier, as each task is more
clearly defined.

2. Establish relationships - The relationships must be mapped out in order to create
a functional workflow in projects where some tasks are dependent on the completion of
others. However, in projects that don’t have any dependencies between tasks, this step
may be skipped. In such cases the simulator is given total freedom in the generation of
workflows, which can increase workflow optimization.

5.2 Framework
In the project we used SvelteKit as the framework for our full-stack application, which the
team members had little prior experience with. We were very pleased with our decision,
however it introduced some restrictions on our application. The strict naming convention
in the file system of the project made the directories more challenging to browse and
navigate through. In addition, this framework uses JavaScript and TypeScript, neither
of which have native support for multithreading. This posed some challenge for the
implementation of the simulation, however, we were able to solve it using Web Workers.
An alternative to Web Workers would have been to perform the simulations on the server
side, using a different framework or language. This would entail either dividing our stack
or changing the framework for our full-stack application, which would be an alteration
too significant to introduce nearing the end of the project.

5.3 Security
An application containing sensitive information should always be locked behind a secu-
rity layer. As our application is a demonstrator intended for integration into Axbit’s
systems and further developed internally by Axbit, we have not implemented our own
authentication system. It still uses the HTTPS protocol and CORS restrictions which
are included in modern security standards.

5.4 UI/UX
By beginning to plan the user interface through wireframes right after the initial meet-
ings with our product owner, we were able to show our product owner our interpretation
of the application from our discussions, and we were able to correct misunderstandings
quickly and iteratively. The wireframe was changed a lot during the first weeks until our
views and our product owners’ views on the application coincided. We proceeded with
the layout and performed usability tests on the wireframe.

We used Carbon Components for Svelte to make implementing the front end faster. Us-
ing Carbon components allowed us to focus more on implementing functionality key to
our demonstrator rather than creating generic components. We had to load the whole

CHAPTER 5. DISCUSSION 73

Carbon Design System CSS to use the components, as the components did not come
styled and are styled through a global stylesheet. The Carbon stylesheet posed an issue
as the stylesheet styled our whole application. The Carbon Design System is similar in
style to our application, so only a few elements had to be cascaded through our CSS.
This is, of course, an unfavorable implementation of styling as any significant changes to
the Carbon Design System CSS may cause substantial changes to the application, and it
will require effort to change.

Perhaps the most challenging part of creating the UI/UX was the amount of information
needed to be displayed to the user. It took a lot of trials to create something that looked
the least amount of messy. In particular, the tasks, both the modal and the table on the
tasks page. Due to the amount of information needed to be displayed, which created size
restrictions, and that this application is for a private business and only needs to follow
WCAG 2.0 requirements, the app was not made mobile-friendly; apart from that, the
application was thoroughly and often checked for accessibility violations with lighthouse
through Google DevTools, and later with integration tests.

5.5 Testing

The unit tests were written simultaneously with their respective models and updated as
changes were implemented on the models. They proved valuable throughout the project.
As more complexity was added to the models, the unit tests aided us in ensuring the
continued integrity of our classes.

In the preliminary report, we had originally planned to use Playwright for integration
and E2E testing; however, upon further research, Storybook was discovered. Storybook
is mainly used for component documentation however it also offers component testing.
Because of Storybook’s add-ons for accessibility and its support for interaction tests,
we decided to use Storybook for integration tests of the UI components. Throughout
the development of the application, integration tests also became down-prioritized as
there was a lot of pressure to implement features and functionality so we could perform
usability tests on the MVP. After performing alpha tests and correcting the UI according
to the feedback of the user tests, integration tests were finally implemented. While the
tests were implemented later than hoped, they provided great benefits by warning about
accessibility violations ignored by Lighthouse and the IDE.
’
End-to-end tests were the last tests to be created. We had hoped to create a test database
or have separate databases for the dev branch and main branch so as not to pollute the
production database with test data. The test written does clean up after itself; how-
ever, if a test fails, it will not be able to clean up. Considering that we are creating
a demonstrator and not an application ready for production, we concluded it would be
more important to implement the end-to-end tests now than to put it off any longer and
risk not having end-to-end tests at all.

The usability tests had fewer available users than we had hoped for, with only two users
for each iteration. We performed moderated qualitative user tests to make the most out
of the user tests. We also made a high-fidelity wireframe to make the end product more

74 CHAPTER 5. DISCUSSION

transparent and avoid misunderstandings, as there were few chances to find participants.

5.6 Group Dynamic and Methodology
In this section we will discuss the group dynamic and software methodology used during
this project. As we will discuss later we have worked together on different projects and
subjects earlier and have though those found a good dynamic and method of working
that suits us very well.

5.6.1 Methodology

As a group we set out to use Scrum, but as defined in The 2020 Scrum Guide
"Scrum is a lightweight framework that helps people, teams and organizations gener-

ate value through adaptive solutions for complex problems." "While implementing only
parts of Scrum is possible, the result is not Scrum." [73] Since we did not implement the
whole Scrum process we did not use Scrum.

We however did work in line with Agile development. For everything needed to be worked
on, we made an issue in our GitHub repository. When you started to work on an issue, you
assigned yourself and created a new branch. This made it easy for the other members
to see what was being worked on. We used our weekly status meeting with the and
supervisor, alternating biweekly between them, as start of a new iteration. This made us
work towards that meeting on new features and issues. It also gave the and supervisor
an insight in how we were doing on our project.

5.6.2 Group Dynamic

Our group is an experienced team, having worked together on many projects before em-
barking on this bachelor thesis. All of our members complement each other’s capabilities
and interests well; one is highly interested in logic, another in DevOps, and the last in
UI/UX. Due to our experience as a group, we were familiar with what expectations we
could hold for each other as some members struggled more than others with motivation.
We also had another course running alongside the bachelor causing a slow start for the
project. It was difficult to pick up the pace when that course ended as we had fallen into
a routine with the slow pace. While there has been a significant difference in our hours
logged, this does not reflect a difference in efforts. We were aware of this possibility before
we started our bachelor assignment and adjusted expectations and workload accordingly,
as a team should. All team members performed their roles well, and we are all pleased
with each other’s efforts and the results we collectively achieved with this bachelor thesis.

CHAPTER

SIX

CONCLUSIONS

This chapter will present our conclusions and suggestions for further work based on our
results and discussions from Chapters 4 and 5. Our conclusions are based on the require-
ments for the project compared to the results we have achieved.

6.1 Conclusions

The goals of our project were to research project estimation theory, research the existing
methods used in AxBit, develop a standardized method for project estimation, and create
a demonstrator which implemented the method. In this thesis, we have described our
process and the results of completing these goals.

As a result of our research, we have successfully created a method for project estimation
that is ready to be adopted by Axbit as their new standard. The method is flexible in
its level of detail, considers the team’s specializations, and uses ideal hours as the basic
unit for estimates, thereby fulfilling all of Axbit’s requirements for the method.

We have developed a demonstrator application that meets all expectations set by Axbit
in the form of user requirements, and all mandatory user stories have been successfully
implemented in the back end. Only user story No.6 in section 3.2.5 was not fully imple-
mented into the front end.

The team is happy with having used the Agile development methodology. This method
has made the team adaptable to problems faced and changed during development. We
have used GitHub for version control, collaborating, and tracking issues to work on. This
can be recommended as it has helped us during development.

In summary, we feel the project has been a success. It has given us a way to test out new
frameworks and technologies as well as giving us a better understanding of the complex
field of estimation and project management. Axbit and we are very satisfied with how
this project turned out, and we are eager to see how the product will evolve as Axbit
continues its development.

75

76 CHAPTER 6. CONCLUSIONS

6.2 Future work
This section includes suggestions for future implementation and improvements on the
estimation method and the application and its simulator.

6.2.1 Validation

The method needs validation through trials with real-life projects. Using the application
with historical data and on new projects are ways of achieving this.

6.2.2 Integration

Integration with an ERP system would provide further automation to the project cre-
ation process. The application could also benefit from being integrated into an existing
authentication system, adding the necessary security.

6.2.3 Historical data

Our method and application could stand to benefit from adding a feature that uses
historical data to adjust its estimates.

6.2.4 MTBF & MTTR

Mean time between failure (MTBF) and mean time to repair (MTTR) are metrics typi-
cally used with hardware systems.

MTBF refers to the average duration between system failures, but we can adapt them to
refer to the average duration between an employee’s unscheduled leaves.

MTTR refers to the average time it takes to repair a broken system, but here we adapt
it to mean the average duration of an employee’s unscheduled leaves.

The simulator in the application currently does not take unforeseen absences of the em-
ployees into consideration. Introducing MTBF and MTTR to the assignees in the project
could improve the accuracy of estimations. These factors could be calculated from his-
torical data (e.g. from an ERP system), and could be introduced as a chance every time
an employee clocks in to call in sick and thereby adding a leave with a duration equalling
the MTTR.

REFERENCES

[1] Volodymyr Voityshyn Vasyl Teslyuk Anatoliy Batyuk. Method of Software Devel-
opment Project Duration Estimation for Scrum Teams with Differentiated Special-
izations. July 2022. url: https://www.mdpi.com/2079-8954/10/4/123 (visited
on 05/12/2023).

[2] Principles behind the Agile Manifesto. 2001. url: https://agilemanifesto.org/
principles.html (visited on 05/16/2023).

[3] 16th State of Agile Report. 2022. url: https://digital.ai/resource-center/
analyst-reports/state-of-agile-report/ (visited on 05/16/2023).

[4] Inc. The Standish Group International. CHAOS Report 2015. Aug. 2015. url:
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-
Final.pdf (visited on 03/28/2023).

[5] Jürgen Laartz Michael Bloch Sven Blumberg. Delivering large-scale IT projects on
time, on budget, and on value. Oct. 2012. url: https://www.mckinsey.com/
capabilities/mckinsey-digital/our-insights/delivering-large-scale-
it-projects-on-time-on-budget-and-on-value (visited on 03/28/2023).

[6] Barry W. Boehm. Software Cost Estimation with COCOMO II. Prentice Hall, Aug.
2000.

[7] Vouchercloud. How Many Productive Hours in a Work Day? Just 2 Hours, 23
Minutes... 2019. url: https://www.vouchercloud.com/resources/office-
worker-productivity (visited on 04/04/2023).

[8] Kathy Morris. HERE’S HOW MANY HOURS WORKERS ARE ACTUALLY PRO-
DUCTIVE (AND WHAT THEY’RE DOING INSTEAD). Jan. 2023. url: https:
//www.zippia.com/advice/average-productive-hours-per-day/ (visited on
04/04/2023).

[9] United States. Bureau of Naval Weapons. Special Projects Office. Program Evalu-
ation Research Task (PERT): Summary Report. Phase 2. Special Projects Office,
Bureau of Naval Weapons, Department of the Navy, 1958.

[10] James E Kelley Jr and Morgan R Walker. “Critical-path planning and scheduling”.
In: Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM
computer conference. 1959, pp. 160–173.

[11] Mike Cohn. What Are Story Points and Why Do We Use Them? Dec. 2022. url:
https://www.mountaingoatsoftware.com/blog/what- are- story- points
(visited on 05/02/2023).

77

https://www.mdpi.com/2079-8954/10/4/123
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value
https://www.vouchercloud.com/resources/office-worker-productivity
https://www.vouchercloud.com/resources/office-worker-productivity
https://www.zippia.com/advice/average-productive-hours-per-day/
https://www.zippia.com/advice/average-productive-hours-per-day/
https://www.mountaingoatsoftware.com/blog/what-are-story-points

78 REFERENCES

[12] Samer Zein Ahmed Zarour. Software development estimation techniques in indus-
trial contexts: An exploratory multiple case-study. Feb. 2019. url: https://www.
learntechlib.org/p/207264/ (visited on 05/12/2023).

[13] Mike Cohn. Agile Estimation and Planning. Robert C. Martin Series. Prentice Hall,
2005, p. 330.

[14] Nikolai Valnakov Metodi Mazhdrakov Dobriyan Benov. The Monte Carlo Method.
ACMO Academic Press, Aug. 2018.

[15] Michael H. Goldwasser Michael T. Goodrich Roberto Tamassia. Data Structures
Algorithms in Java, 6th Edition International Student Version. Wiley, June 2014.

[16] url: https://www.ibm.com/topics/software-testing (visited on 05/13/2023).

[17] Grant Ongstad. The Testing Pyramid: Understanding the Pros and Cons. 2022.
url: https://sofy.ai/blog/the- testing- pyramid- understanding- the-
pros-and-cons/ (visited on 03/06/2023).

[18] Daniel Knott. The Mobile Test Pyramid. 2015. url: https://www.ministryoftesting.
com/articles/2102876b (visited on 03/04/2023).

[19] U.S Department of Health and Human Services. Usability testing. url: https:
//www.usability.gov/how-to-and-tools/methods/usability-testing.html
(visited on 03/30/2023).

[20] Kate Moran. Usability testing 101. 2019. url: https : / / www . nngroup . com /
articles/usability-testing-101/ (visited on 04/13/2023).

[21] Aicha Diallo. Moderated vs. unmoderated tests. 2023. url: https://help.usertesting.
com/hc/en-us/articles/360060344951-Moderated-vs-Unmoderated-Tests-
(visited on 04/29/2023).

[22] The Story. Remote usability testing vs. in-person usability testing. 2022. url: https:
//thestory.is/en/journal/remote-and-in-person-usability-testing/
(visited on 04/28/2023).

[23] Raluca Budiu. Quantitative vs. qualitative usability testing. 2017. url: https://
www.nngroup.com/articles/quant-vs-qual/ (visited on 04/28/2023).

[24] Hoa Loranger. Checklist for Planning Usability Studies. 2016. url: https://www.
nngroup.com/articles/usability-test-checklist/ (visited on 05/02/2023).

[25] Kara Pernice. Talking with users in a usability test. 2016. url: https://www.
nngroup.com/articles/talking-to-users/ (visited on 05/02/2023).

[26] What is Continuous Integration? – Amazon Web Services. [Online; accessed 16.
May 2023]. May 2023. url: https://aws.amazon.com/devops/continuous-
integration.

[27] What is Continuous Delivery? – Amazon Web Services. [Online; accessed 16. May
2023]. May 2023. url: https://aws.amazon.com/devops/continuous-delivery.

[28] Continuous Deployment: An Essential Guide | IBM. [Online; accessed 16. May
2023]. May 2023. url: https://www.ibm.com/topics/continuous-deployment.

[29] World Health Organization. Disability. 2022. url: https://www.who.int/news-
room/fact-sheets/detail/disability-and-health (visited on 03/04/2023).

https://www.learntechlib.org/p/207264/
https://www.learntechlib.org/p/207264/
https://www.ibm.com/topics/software-testing
https://sofy.ai/blog/the-testing-pyramid-understanding-the-pros-and-cons/
https://sofy.ai/blog/the-testing-pyramid-understanding-the-pros-and-cons/
https://www.ministryoftesting.com/articles/2102876b
https://www.ministryoftesting.com/articles/2102876b
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/
https://help.usertesting.com/hc/en-us/articles/360060344951-Moderated-vs-Unmoderated-Tests-
https://help.usertesting.com/hc/en-us/articles/360060344951-Moderated-vs-Unmoderated-Tests-
https://thestory.is/en/journal/remote-and-in-person-usability-testing/
https://thestory.is/en/journal/remote-and-in-person-usability-testing/
https://www.nngroup.com/articles/quant-vs-qual/
https://www.nngroup.com/articles/quant-vs-qual/
https://www.nngroup.com/articles/usability-test-checklist/
https://www.nngroup.com/articles/usability-test-checklist/
https://www.nngroup.com/articles/talking-to-users/
https://www.nngroup.com/articles/talking-to-users/
https://aws.amazon.com/devops/continuous-integration
https://aws.amazon.com/devops/continuous-integration
https://aws.amazon.com/devops/continuous-delivery
https://www.ibm.com/topics/continuous-deployment
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.who.int/news-room/fact-sheets/detail/disability-and-health

REFERENCES 79

[30] Shawn Lawton Henry. W3C Accessibility Standards Overview. 2022. url: https:
//www.w3.org/WAI/standards-guidelines/#intro (visited on 03/04/2023).

[31] Accessibility Guidelines Working Group (AG WG) Participants. Understanding
the Four Principles of Accessibility. 2022. url: https : / / www . w3 . org / WAI /
WCAG21/Understanding/intro#understanding- the- four- principles- of-
accessibility (visited on 03/04/2023).

[32] Shawn Lawton Henry James Nurthen Michael Cooper. WAI-ARIA Overview. 2022.
url: https://www.w3.org/WAI/standards- guidelines/aria/ (visited on
03/04/2023).

[33] Can I use. WAI-ARIA Accessibility features. 2023. url: https://caniuse.com/
?search=ARIA (visited on 03/04/2023).

[34] The Authority for Universal Design of ICT. Gjeldende regelverk og krav (Cur-
rent regulations and requirements). 2023. url: https://www.uutilsynet.no/
regelverk/gjeldende-regelverk-og-krav/746 (visited on 03/08/2023).

[35] Jésus Husbands. UI Design Challenges and How to Deal with Them. 2022. url:
https://bootcamp.uxdesign.cc/ui-design-challenges-and-how-to-deal%
20with-them-2437535cae16 (visited on 04/30/2023).

[36] Educative Answers Team. What are Norman’s design principles? 2023. url: https:
//www.educative.io/answers/what-are-normans-design-principles (visited
on 03/04/2023).

[37] Design iteration brings powerful results. so, do it again designer! 2023. url: https:
//www.interaction-design.org/literature/article/design-iteration-
brings-powerful-results-so-do-it-again-designer (visited on 04/26/2023).

[38] David Martin. Website style guide - how to create a web design style guide. 2022.
url: https://uxhacks.com/website-style-guide/ (visited on 04/28/2023).

[39] Studio by UXPin. High-fidelity prototyping vs low-fidelity prototypes: Which to
choose when? 2023. url: https://www.uxpin.com/studio/blog/high-fidelity-
prototyping-low-fidelity-difference/ (visited on 04/24/2023).

[40] JavaScript | MDN. [Online; accessed 8. Mar. 2023]. Mar. 2023. url: https://
developer.mozilla.org/en-US/docs/Web/JavaScript (visited on 03/08/2023).

[41] JavaScript With Syntax For Types. [Online; accessed 8. Mar. 2023]. Mar. 2023. url:
https://www.typescriptlang.org (visited on 03/08/2023).

[42] HTML: HyperText Markup Language | MDN. [Online; accessed 8. Mar. 2023]. Mar.
2023. url: https://developer.mozilla.org/en-US/docs/Web/HTML (visited on
03/08/2023).

[43] CSS: Cascading Style Sheets | MDN. [Online; accessed 8. Mar. 2023]. Mar. 2023.
url: https : / / developer . mozilla . org / en - US / docs / Web / CSS (visited on
03/08/2023).

[44] Peter Loshin and Jessica Sirkin. Structured Query Language (SQL). Feb. 2022.
url: https://www.techtarget.com/searchdatamanagement/definition/SQL
(visited on 03/08/2023).

[45] What is a Virtual Machine? | VMware Glossary. [Online; accessed 15. May 2023].
Aug. 2022. url: https://www.vmware.com/topics/glossary/content/virtual-
machine.html (visited on 05/15/2023).

https://www.w3.org/WAI/standards-guidelines/#intro
https://www.w3.org/WAI/standards-guidelines/#intro
https://www.w3.org/WAI/WCAG21/Understanding/intro#understanding-the-four-principles-of-accessibility
https://www.w3.org/WAI/WCAG21/Understanding/intro#understanding-the-four-principles-of-accessibility
https://www.w3.org/WAI/WCAG21/Understanding/intro#understanding-the-four-principles-of-accessibility
https://www.w3.org/WAI/standards-guidelines/aria/
https://caniuse.com/?search=ARIA
https://caniuse.com/?search=ARIA
https://www.uutilsynet.no/regelverk/gjeldende-regelverk-og-krav/746
https://www.uutilsynet.no/regelverk/gjeldende-regelverk-og-krav/746
https://bootcamp.uxdesign.cc/ui-design-challenges-and-how-to-deal%20with-them-2437535cae16
https://bootcamp.uxdesign.cc/ui-design-challenges-and-how-to-deal%20with-them-2437535cae16
https://www.educative.io/answers/what-are-normans-design-principles
https://www.educative.io/answers/what-are-normans-design-principles
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://www.interaction-design.org/literature/article/design-iteration-brings-powerful-results-so-do-it-again-designer
https://uxhacks.com/website-style-guide/
https://www.uxpin.com/studio/blog/high-fidelity-prototyping-low-fidelity-difference/
https://www.uxpin.com/studio/blog/high-fidelity-prototyping-low-fidelity-difference/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.typescriptlang.org
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.techtarget.com/searchdatamanagement/definition/SQL
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html

80 REFERENCES

[46] What is a reverse proxy? | Proxy servers explained. [Online; accessed 15. May 2023].
May 2023. url: https : / / www . cloudflare . com / learning / cdn / glossary /
reverse-proxy (visited on 05/15/2023).

[47] Git. [Online; accessed 14. May 2023]. May 2023. url: https://git- scm.com
(visited on 05/14/2023).

[48] Contributors to Wikimedia projects. Git - Wikipedia. [Online; accessed 21. May
2023]. May 2023. url: https://en.wikipedia.org/w/index.php?title=Git&
oldid=1155506831.

[49] Michael Klein. What Is Bash Used For? Oct. 2021. url: https://www.codecademy.
com/resources/blog/what-is-bash-used-for (visited on 05/15/2023).

[50] url: https://developer.mozilla.org/en-US/docs/Glossary/SPA (visited on
05/15/2023).

[51] Addy Osmani and Jason Miller. Rendering on the web. Feb. 2019. url: https:
//web.dev/rendering-on-the-web/ (visited on 05/15/2023).

[52] Luke O’Neill. What is Microsoft teams? everything you need to know. 2021. url:
https://www.techtarget.com/searchunifiedcommunications/definition/
Microsoft-Teams (visited on 05/13/2023).

[53] url: https://www.atlassian.com/software/confluence/use-cases/wiki
(visited on 05/13/2023).

[54] Hello World - GitHub Docs. [Online; accessed 14. May 2023]. May 2023. url:
https://docs.github.com/en/get-started/quickstart/hello-world (visited
on 05/14/2023).

[55] url: https://www.figma.com/ (visited on 05/13/2023).

[56] url: https://developer.chrome.com/docs/lighthouse/overview/ (visited on
05/13/2023).

[57] Documentation for Visual Studio Code. [Online; accessed 16. May 2023]. May 2023.
url: https://code.visualstudio.com/docs.

[58] Docker overview. [Online; accessed 15. May 2023]. May 2023. url: https://docs.
docker.com/get-started/overview (visited on 05/15/2023).

[59] Dave Page. FAQ. [Online; accessed 15. May 2023]. May 2023. url: https://www.
pgadmin.org/faq (visited on 05/15/2023).

[60] traefik. io. Traefik Proxy Documentation - Traefik. [Online; accessed 15. May 2023].
May 2023. url: https://doc.traefik.io/traefik (visited on 05/15/2023).

[61] Contributors to Wikimedia projects. Make (software) - Wikipedia. [Online; accessed
15. May 2023]. May 2023. url: https://en.wikipedia.org/w/index.php?title=
Make_(software)&oldid=1152862650 (visited on 05/15/2023).

[62] url: https://storybook.js.org/ (visited on 05/13/2023).

[63] url: https://playwright.dev/ (visited on 05/13/2023).

[64] About npm | npm Docs. [Online; accessed 15. May 2023]. May 2023. url: https:
//docs.npmjs.com/about-npm (visited on 05/15/2023).

[65] pnpm. pnpm. [Online; accessed 15. May 2023]. May 2023. url: https://github.
com/pnpm/pnpm (visited on 05/15/2023).

https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy
https://www.cloudflare.com/learning/cdn/glossary/reverse-proxy
https://git-scm.com
https://en.wikipedia.org/w/index.php?title=Git&oldid=1155506831
https://en.wikipedia.org/w/index.php?title=Git&oldid=1155506831
https://www.codecademy.com/resources/blog/what-is-bash-used-for
https://www.codecademy.com/resources/blog/what-is-bash-used-for
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://web.dev/rendering-on-the-web/
https://web.dev/rendering-on-the-web/
https://www.techtarget.com/searchunifiedcommunications/definition/Microsoft-Teams
https://www.techtarget.com/searchunifiedcommunications/definition/Microsoft-Teams
https://www.atlassian.com/software/confluence/use-cases/wiki
https://docs.github.com/en/get-started/quickstart/hello-world
https://www.figma.com/
https://developer.chrome.com/docs/lighthouse/overview/
https://code.visualstudio.com/docs
https://docs.docker.com/get-started/overview
https://docs.docker.com/get-started/overview
https://www.pgadmin.org/faq
https://www.pgadmin.org/faq
https://doc.traefik.io/traefik
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=1152862650
https://en.wikipedia.org/w/index.php?title=Make_(software)&oldid=1152862650
https://storybook.js.org/
https://playwright.dev/
https://docs.npmjs.com/about-npm
https://docs.npmjs.com/about-npm
https://github.com/pnpm/pnpm
https://github.com/pnpm/pnpm

REFERENCES 81

[66] Svelte • Cybernetically enhanced web apps. [Online; accessed 8. Mar. 2023]. Mar.
2023. url: https://svelte.dev (visited on 03/08/2023).

[67] Introduction • Docs • SvelteKit. [Online; accessed 8. Mar. 2023]. Mar. 2023. url:
https://kit.svelte.dev/docs/introduction (visited on 03/08/2023).

[68] url: https://sass-lang.com/guide (visited on 05/13/2023).

[69] JSON. [Online; accessed 14. May 2023]. Apr. 2023. url: https://www.json.org/
json-en.html (visited on 05/14/2023).

[70] Dionysia Lemonaki. “What is YAML? The YML File Format”. In: FreeCodeCamp
(Nov. 2022). url: https://www.freecodecamp.org/news/what-is-yaml-the-
yml-file-format (visited on 05/14/2023).

[71] Openstack at NTNU - SkyHigh - NTNU Wiki. [Online; accessed 17. May 2023].
May 2023. url: https://www.ntnu.no/wiki/display/skyhigh.

[72] Stian Sandberg. WebApi.no. 2022. url: https://webapi.no (visited on 05/20/2023).

[73] Scrum Guide | Scrum Guides. [Online; accessed 21. May 2023]. May 2023. url:
https://scrumguides.org/scrum-guide.html.

https://svelte.dev
https://kit.svelte.dev/docs/introduction
https://sass-lang.com/guide
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.freecodecamp.org/news/what-is-yaml-the-yml-file-format
https://www.freecodecamp.org/news/what-is-yaml-the-yml-file-format
https://www.ntnu.no/wiki/display/skyhigh
https://webapi.no
https://scrumguides.org/scrum-guide.html

82 REFERENCES

APPENDICES

83

A - PRELIMINARY PROJECT PLAN

84

Project no. 15

Software Project Cost Estimation

Preliminary project plan

Version <1.0>

Project no. 15

Revision history
Date Version Description Author

19/Jan/23 0.1 Initial version Janita, Sakarias, Espen

25/Jan/23 0.2 Finalized first draft Janita, Sakarias, Espen

01/Feb/23 1.0 Revised according to feedback from

supervisor

Janita, Sakarias, Espen

Project no. 15

Table of contents
Table of contents ... 3

1. Goals and Frameworks .. 4

1.1 Orientation ... 4

1.2 Research question/project description and outcome goals ... 4

1.3 Impact goals ... 4

1.4 Frameworks ... 5

2. Organization ... 6

3. Implementation ... 6

3.1. Main activities ... 6

3.2. Milestones .. 8

4. Follow-up and Quality Assurance .. 8

4.1 Quality assurance... 8

4.2 Reporting ... 8

5. Risk assessment ... 9

6. Annex ... 9

6.1 Schedule ... 9

6.2 Agreement documents .. 9

6.2.1 Work contract for the bachelor group ... 9

6.2.2 3-party agreement .. 9

Project no. 15

1. Goals and Frameworks

1.1 Orientation
We chose this task because inaccuracy in cost and time estimation is a widely known problem that

all companies working with projects experience. A significant amount of research has been done in

this field, but due to the near infinite scope of the issue, a true, guaranteed solution has not yet, and

may never be discovered, but conducting more research into finding a solution can bring us more

enlightenment and put us in a stronger position to make more confident estimates in the future.

1.2 Research question/project description and outcome goals
The task consists of developing a tool that consumes a project description and provides a project

plan, including its cost and time. In this thesis, we will focus on building a tool that gives us estimates

with low effort: Streamlining (and documenting) the estimation process and clarifying/documenting

the inputs it requires. The focus is therefore automation as opposed to accuracy, which the product

owner will tackle in a later phase.

The biggest challenge lies in the cost estimation itself; Many factors affect the overall project

duration: project complexity, learning curves for the selected technologies, domain expertise,

developer experience, developers’ availability, uncertainty of the requirements, etc.

Another challenge will be balancing complexity against accuracy. The project owner requires a tool

that is minimally complex while still providing estimates of adequate accuracy. Identifying the most

significant variables will therefore be a preliminary goal.

There is also an aspect of psychology involved in making estimations that needs to be considered.

The human mind has an average time prediction error of 20-30%1, so, finding a way to minimize the

manual estimation done by the developers could potentially prove beneficial. Eliminating this factor,

however, would require defining every possible task in all potential projects for the product owner,

which is far too complex and out of scope, so some manual estimation will be required. Because of

this we will not be able to remove this factor entirely.

1.3 Impact goals
Our goal is to create a demonstrator of an application that provides estimations that are adequately

feasible as defined by the product owner, of time and cost for projects that the project owner may

use in customer interactions and project planning. Being able to successfully automate these

calculations and give reliable and transparent estimates will give the project leads a better

understanding of the scope of a project which they may use in customer interactions and result in a

better customer satisfaction and a smoother development process. It is however important to note

that we are building an example of implementation which our product owner will later validate, and

if valid will then continue to develop.

To concretize the goals, the product owner has provided us with the following user stories:

1 Halkjelsvik T, Jørgensen M (2012) From origami to software development: a review of studies on judgment-

based predictions of performance time. Psychol Bull 138(2):238–271

Project no. 15

As a project manager, I want to...

1. (Must) given an existing project estimated by the team, get an expected delivery date

(calendar time estimate).

2. (Must) given an existing project estimated by the team, get a cost estimation.

3. (Must) see the most likely release plan, the best and worst (e.g., burn up chart), possibly

including constraints (I.e., budget, deadline, features).

4. (Must) create a project with tasks / add / delete.

5. (Must) assign tasks to a specific employee or group of employees.

6. (Must) define cost parameters for the team (e.g., hourly rate, profit margin).

7. (Must) set the starting date of the project.

8. (Should) manage availability for the team (e.g., vacations, illness, part-time allocation, etc.).

9. (Should) update the plan with actual project execution data (task started, task ended).

10. (Should) identify delivery (features) in the plan.

11. (Should) mark feature as Must-have, could-have, should-have, or will not have.

12. (Should) refine a task into a finer-grain task flow, that can be estimated by the developer.

13. (Could) see the prediction of a specific task, possibly depending on a given starting date.

14. (Could) import availability from AxBit ERP system.

15. (Could) decide how T-shirt sizes map to ideal time.

16. (Could) decide how story points map to ideal time.

17. (Could) export existing projects (tasks) from external sources (e.g., JIRA, Asana, etc.).

18. (Could) import existing projects (tasks) from external sources (e.g., JIRA, Asana, etc.).

19. (Could) as the project progresses, see the current estimation bias and absolute error.

20. (Could) see the utilization of staff, who is hiding sleeping, who is overloaded.

21. (Could) detect bottleneck tasks.

As a developer, I want to...

1. (Must) estimate a task in “ideal time” (effective hours).

2. (Should) be able to say when I start and when I am done with a task.

3. (Could) see my own estimation bias and absolute estimation error.

4. (Could) estimate task durations in story points.

5. (Could) estimate task durations in T-shirt sizes.

These user stories are separated into ‘must’, ‘should’ and ‘could’. The functionality described as

‘must’ specify the requirements for the MVP. The ‘should’ functionalities will have priority over the

‘could’ when it comes to finalizing the project.

1.4 Frameworks
The team, in collaboration with the product owner, has chosen to create a web application,

considering the ease of use we wish to achieve with this system. Svelte Kit, a JavaScript framework,

will be used for the front-end and backend development. Furthermore, we will use PostgreSQL for

data persistency. SASS, Syntactically Awesome Style Sheets, will be used for more comprehensible

and readable styling, and Tailwind CSS for faster development of arbitrary styling. Other tools we will

consider using are cypress or playwright for integration tests in browser, and Carbon Design System

Project no. 15

to quickly set up a usable application. We will use Docker for containerization of the app for

smoother testing and deployment.

GitHub will be used for version control, task management and CI/CD pipeline. Figma will be used for

designing and planning the system as well as the development of the system through wireframes

and diagrams.

We will need access to a server for the deployment of our application. We are considering an

OpenStack server which would be provided to us by NTNU.

2. Organization
Franck Chauvel (AxBit) will be involved in the project as the product owner and will provide

requirements and necessities, and feedback during the development process.

Anniken Karlsen (NTNU) will be involved as a supervisor, providing feedback and guidance.

Janita Lillevik Røyseth will be the lead UI/UX designer.

Sakarias Sæterstøl will be the lead DevOps architect.

Espen Otlo will be the lead system architect.

In addition to the aforementioned roles, Janita, Sakarias, and Espen will work across roles to ensure

continuous development.

3. Implementation

3.1. Main activities
Requirements gathering: This includes identifying the needs and wants of the app users and product

owner and defining the scope and objectives of the project. Who does it: All team members. Why is

it done: To understand the project's need, define the scope, and set the objectives. How is it done:

By conducting user research and interviews. When is it done: At the beginning of the project.

Necessary conditions before it can be done: Product owner availability, and scope.

Design and prototyping: This includes creating wireframes, mockups, and interactive prototypes of

the app's user interface and user experience using Figma. Who does it: Janita and Sakarias. Why is it

done: To create a visual representation of the app, to test the usability, and to get feedback. How is

it done: By using Figma design tool. When is it done: After requirements gathering and before

development. Necessary conditions before it can be done: Requirements and scope defined.

Development: This includes writing code to build the app, testing it, and fixing any bugs that are

found using Svelte Kit for frontend and backend, and incorporating styling and theme using Tailwind

CSS. Who does it: All team members. Why is it done: To bring the app to life and make it functional.

How is it done: By using Svelte Kit, Tailwind CSS, and related technologies. When is it done: After

design and prototyping. Necessary conditions before it can be done: Design and requirements

defined.

Project no. 15

Database set up: This includes setting up the app's database and configuring it to work with the app

using PostgreSQL. Who does it: Sakarias and Espen. Why is it done: To add persistence to the app.

How is it done: By using PostgreSQL and Docker. When is it done: After design and prototyping.

Necessary conditions before it can be done: Design and requirements defined.

Containerization: This includes packaging the application and its dependencies in a container using

Docker. Who does it: Sakarias. Why is it done: To make the app easy to deploy and run consistently

across different environments. How is it done: By using Docker containers. When is it done: During

development. Necessary conditions before it can be done: Project skeleton finished.

Testing: This includes verifying that the app meets the requirements, is functional and is free of bugs

using integration test and unit tests with Cypress and Vitest. Who does it: All team members. Why is

it done: To ensure that the app is of high quality, meets the requirements and is usable. How is it

done: By using Cypress for automated testing. When is it done: After development and

containerization. Necessary conditions before it can be done: Development, Database set up,

containerization completed.

Deployment: This includes launching the app on the web, on the client's servers or cloud. Who does

it: Sakarias. Why is it done: To make the app available to users. How is it done: By deploying the app

on the client's servers, or on a server provided by the team/NTNU. When is it done: After testing.

Necessary conditions before it can be done: Testing completed and approved.

Reporting: This includes drafting and finalizing the detailed report on the project, including design

guidelines, what framework we used and why, how we implemented our solutions, how we did our

testing and the results we found, diagrams showing our workflow and app designs, how we

deployed the app and why we chose to do it this way as well as meeting minutes. Why is it done: To

track the progress of the project, identify issues, evaluate our performance, and document our

accomplishments. How is it done: By using Microsoft Word. When is it done: Before, during and

after development. Necessary conditions before it can be done: Each segment of the report has its

own requirements and should be written as soon as these requirements are met.

Presentation: This includes preparation of two presentations, one during the project in English and

one on the end of the project. Who does it: All team members. Why is it done: To showcase our

work to fellow students. How is it done: The presentations are to be made with Google Slides. When

is it done: First presentation is to be held in April, the second one in May. Necessary conditions

before it can be done: Feedback on preliminary project plan.

Project no. 15

3.2. Milestones
Whom/who Milestone Deadline

Students, supervisor,

product owner

First meeting 13.01.2022

Students Completing preliminary project plan 27.01.2022

Supervisor Feedback on preliminary project plan 03.02.2022

Students English presentation 21.04.2022

Students Deliver thesis to supervisor 05.05.2022

Supervisor Feedback on thesis 5 workdays after delivery

of thesis

Students Completing poster for thesis 18.05.2022

Students Presentation of thesis ~19.05.2022

Students Delivery of thesis 22.05.2022

Figure 1 Milestones for the project

4. Follow-up and Quality Assurance

4.1 Quality assurance
Quality assurance is a critical component of software development and can greatly impact the

success of a project. "Quality is never an accident; it is always the result of intelligent effort." - John

Ruskin. This quote highlights the importance of putting effort into ensuring that the work produced

is of high quality. In order to achieve this, all members are responsible for double-checking their own

work and conducting peer-reviews of others' work, as well as ensuring that documents are handed

off for proof-reading to the supervisor and product owner in a timely manner. Proof-reading by our

supervisor and product owner will help to ensure that the deliverables meet the required standards

and helps to identify any issues that may have been missed during the internal group meetings. By

implementing this quality control process, the team can ensure that all deliverables meet the

required standards and that any issues are identified and addressed before they are submitted to

the supervisor and product owner. It also ensures that there is enough time for any necessary

revisions or feedback to be incorporated before the final deadline.

4.2 Reporting
The group will keep their supervisor informed by providing regular progress reports in weekly

meetings and will actively involve the product owner in the development of the system throughout

the project. This ensures that the product owner is aware of the progress and any issues that may

arise and can provide feedback on the direction of the project. The team will also use the weekly

meetings as an opportunity to discuss challenges and collaborate to find solutions, align on

priorities, and set goals for the next period.

Project no. 15

5. Risk assessment
The task at hand is complex and large, with the potential to become even bigger. There is a risk that

the project's scope may become too extensive for the group of 3 students to complete within the

given timeframe while balancing other coursework and part-time jobs along with their studies.

Other risks include limited availability of some group members due to caring for children and other

personal obligations, as well as potential challenges in coordinating and cooperating effectively due

to differing priorities and working styles among group members. It is important to identify and

address these risks early on to mitigate any negative impact on the project's progress and outcome

and to develop effective strategies for managing time and resources effectively. The result of these

issues could be not meeting deadlines, falling behind on the project's desired progress, and failing

the project. However, it is believed that the likelihood of this happening is lower than one would

expect, as the group has proven to be strong and capable of overcoming challenges during their 2

years of working together, consistently supporting one another, and going great lengths for their

group projects and has achieved favorable results in their previous projects.

Risk Probability Impact Rating

Project scope becoming too extensive 3 5 15

Limited availability of group members 3 4 12

Challenges in coordinating and cooperating 2 3 6

Figure 2 Risk assessment where 1 is considered low and 5 is considered high.

6. Annex
The following documents will be delivered as separate files when submitted to Blackboard in January

(mandatory work requirement), but not in the final delivery of the main report on May 20th!

6.1 Schedule
GANTT.pdf

(In separate file)

6.2 Agreement documents

6.2.1 Work contract for the bachelor group
Work Contract.pdf

(In separate file)

6.2.2 3-party agreement
Standard agreement.pdf

(In separate file)

B - FIRST DRAFT WIREFRAME

94

C - SECOND DRAFT WIREFRAME

96

D - FINAL DRAFT WIREFRAME

98

E - DESIGN GUIDELINES

100

Design guidelines

Theme

The system we are building is catered to software developing teams. To ensure efficient use, we are placing a strong emphasis on creating a user-friendly
and intuitive interface. We aim for a professional and polished appearance, which is why our design concept balances a functional aesthetic with subtle
touches of color and rounded edges, to create a visually pleasing and easy-to-use experience that is not overly playful.

Color Scheme

We have been given the freedom to choose our own colors for this project. Given the professional nature of the cost estimation system we are building, we
have chosen to primarily use various shades of grey for the background to create a sleek and sophisticated design. This will also help in differentiating
between different sections of the system. As our primary color, we have chosen a shade of blue, as it evokes a sense of trust and reliability, which aligns
well with the purpose of the system.

Colors

Our color palette consists of two distinct shades of blue. Our primary blue color is #376BF1, while the second blue color, #1E96FC, is used for accents.
We chose these colors with the goal of creating a professional theme. By using a different shade for accents, we aim to create visual interest without
sacrificing the overall serious tone of our design.

Hierarchy and Layout

We do not have a specific message or product to promote, but rather the focus is on providing a user-friendly and efficient tool for cost estimation. Our
main goal is to make the cost estimation process as smooth and easy as possible for our users. While the first page is important, it is not the primary focus
of the system as it is not a standalone, consumer-facing app, but rather a tool for our product owners to use as an add-on to their existing workflow.
Therefore, the emphasis should be placed on the functionality and usability of the system rather than the design of the first page.

In order to provide a familiar and modern user experience, we have decided to adopt a similar layout as popular team communication tools such as
Discord and Slack. Slack, in particular, is widely used by our target audience, our product owner and his team. This familiar layout will make it easy for
users to navigate the app. Our main sections will consist of a sidebar for navigating different projects, a second sidebar for switching between different
views within a project, and a header/top bar for user-related functionality, such as account settings and notifications, if time allows it. This layout will
provide a clear and intuitive structure.

In order to increase the visibility of our main section we will have the project navigation a darker grey then the the project menu. The project menu will be a
darker grey than the main section. The main section won't be white as the components shown in the main section should be more visual and not blend in
too much with the background.

Simplified visual representation:

We will need to create accents for the chosen the project and the chosen menu item in the project menu to give visual representation to the user were they
are.

Images

We have chosen not to use images for decorative purposes in the design of our cost estimation system. However, projects will have the option to add an
icon, and later on, we may allow users to upload their own profile images. Therefore, we have not planned on incorporating text over images, overlay on
images, or blurring images in the design. If the need arises to add a decorative element to the design, we will consider these options, but they are not
currently part of our plan. Instead, we will focus on creating a clean and professional look that prioritizes functionality and usability.

Icons

In order to maintain a consistent and intuitive design, we have decided to use icons for different types of buttons throughout the app. Icons provide a clear
visual representation of the action being performed, making it easier for users to understand and interact with the system. This approach aligns with our
design principles of prioritizing functionality and simplicity. It is important to note that icons will be used only for buttons and not for decorative purposes to
keep the system consistent. We will use either black or white icons depending on what's necessary to keep a preferable color contrast in regards to
accessibility.

The icon pack chosen is .Carbon Design Systems Icons

Typography

When selecting the typeface for our system, we considered various options and how the typeface will effect readability and overall design. While sans-serif
fonts are popular and considered modern, they may not be the best choice for a system that contains a large amount of information. Serif fonts, on the
other hand, are more comfortable for reading large amounts of text. However, to align with our theme, a system for a dev team, we have chosen to use a
monospace font. Monospace fonts are commonly associated with coding and technical work, making them a fitting choice for our target audience. This font
choice not only enhances the overall theme of the application, but also makes it easier for the users when reading and interpreting the information.

The font chosen for the application is IBM Plex Mono. We will use this font for all purposes in our design.

The font scale is as following:

0.625rem / 10px
0.750rem / 12px
0.875rem / 14px
1.000rem / 16px
1.250rem / 20px
1.500rem / 24px
2.000rem / 32px
2.500rem / 40px
3.000rem / 48px

Spacing

The space scale is as following:

0.125rem / 2px
0.250rem / 4px
0.500rem / 8px
0.750rem / 12px
1.000rem / 16px
1.500rem / 24px
2.000rem / 32px
3.000rem / 48px
4.000rem / 64px
5.000rem / 80px
6.000rem / 96px
8.000rem / 128px
...

Border radius

With regards to the overall design theme, we aim to create a look that is professional and sophisticated, while still being approachable and user-friendly.
To achieve this balance, we will incorporate subtle soft edges in the design, giving it a rounded appearance that is not overly playful. At the same time, we
will avoid making the design too round or circular to maintain a serious and professional look that aligns with the purpose of the software.

Buttons: 5px

Project icons: 25px

Project navigation buttons: round

The reason for the difference in rounding is to create a visual distinction between elements that are do not have similar functionality. This approach
improves the overall usability and user experience by making it easier for users to quickly identify and interact with the different elements on the page.

Shadows

Due to the same reason specified in the border radius section, we will not have too much shadow, but aim for a small shadow to separate the different
elements especially when it comes to modals.

F - TEST TEMPLATE

104

1.
a.
b.

2.

Testing
Template for documenting user tests:

User test iteration - n'th Tester name
Test performed: dd/MM/yyyy

Introduction

The introduction we sent to the user and/or how we introduced the test to user.

Background

(Contains information about the user being tested on)

Name: Testers name

Age: Testers age

Profession: Testers profession

Previous experience: What previous experience does the tester have relating to the system we are building.

Tasks

(Predefined tasks the user should test)

Test feature.
Do this with feature.
Do that with feature.

Test another feature.

Feedback

(How did the user do on the tasks, what more feedback did the user provide beyond the tasks?)

Task How did the user perform? Feedback

1.a Write how the user performed What did the user think themself?

2.b

2

Feedback outside of tasks:

Feedback given outside of a task
should be written in a list like this.

Analysis

(At a later stage, we write our conclusion of the user test and write what we have decided to change or why not)

G - 1ST ITERATION USER TESTS

106

1st iteration

For our first user test iteration, we have created an interactive wireframe prototype using Figma,

see prototype. The wireframe represents a high-fidelity prototype that closely resembles our

planned implementation of the software. Our decision to create a high-fidelity prototype was

based on the small size and busy schedules of our test group. It was not feasible to create a low-

fidelity prototype and do many test rounds as one of our testers is located in another city.

The main objective of the first test iteration is to test the usability of layout and test how this

implementation translated to the concept of the application.

The user we are testing on for this iteration is:

• User A, system engineer

• User B, project manager

While having someone a part of our team be a tester is not ideal, Franck is also our product

owner and "customer", and so given the limited pool of testers, it will suffice for this project.

The tasks we will ask our users to perform is as following:

1. Sign-in screen

1. Sign up

2. Progress

1. Change chart

3. Project

1. Search project

2. Create project

1. Set task level

3. View project

4. Edit project

5. Delete project

4. Feature

1. View feature list

2. Create feature

1. Add connected task

3. Edit feature

1. Edit title

2. Edit description

4. Delete feature

5. Task

1. View task list

2. Create task

1. Add dependency

3. Edit task

1. Edit title

2. Edit description

3. Add child issue

4. Add assignee

6. Dependencies

1. View dependencies

7. Roadmap

1. View roadmap

H - 1ST ITERATION USER TESTS - USER A

109

User test 1st iteration – User A

Test performed: 16/02/2023 - 09:00-10:15

Introduction

User A is a part of our team but is also our "customer" in a sense. Because of the lack of testers,

User A was asked to do user tests as well. Because User A is a part of our team, they were given

an informal introduction to the user tests and know that we won’t implement all the features in

the wireframe. It is still really beneficial for our project that User A tests the wireframe so they

can give us feedback and make sure that we have interpreted his idea for this cost estimation

software correctly.

Background

Name: User A

Age: 41

Profession: Software engineer

Previous experience: A few years with agile projects, and also other types of estimations.

Tasks

1. Sign-in screen

1. Sign up

2. Progress

1. Change chart

3. Project

1. Search project

2. Create project

1. Set task level

3. View project

4. Edit project

5. Delete project

4. Feature

1. View feature list

2. Create feature

1. Add connected task

3. Edit feature

1. Edit title

2. Edit description

4. Delete feature

5. Task

1. View task list

2. Create task

1. Add dependency

3. Edit task

1. Edit title

2. Edit description

3. Add child issue

4. Add assignee

6. Progress

1. Change chart

7. Dependencies

1. View dependencies

8. Roadmap

1. View roadmap

Feedback

Task

How did

the user

perform?

Feedback

1.a Good Nothing noteworthy.

2.a Good

Buttons instead of

dropdown menu so it is

not hidden.

3.a

Good,

found in

second

attempt.

Nothing noteworthy.

3.b Good

Optional starting date,

customers budget,

customer deadline.

3.b.i Good Nothing noteworthy.

3.c Good Nothing noteworthy.

3.d Good
Estimated budget, time

and cost.

3.e Good Nothing noteworthy.

Task

How did

the user

perform?

Feedback

4.a Good

Manually order the

feature list, grouped

releases, time

estimation should be

bigger, ID on features.

4.b Good Nothing noteworthy.

4.b.i Good Nothing noteworthy.

4.c Good Nothing noteworthy.

4.c.i Good Nothing noteworthy.

4.c.ii Good Nothing noteworthy.

4.d
Didn't find

right away.

Should be easier to

delete.

5.a Good

Ideal duration instead

estimated hours.

Uncertainty in list and

modal, maybe change

the uncertainty through

buttons and radio

buttons to swap

between showing start

date and end date.

5.b Good Nothing noteworthy.

5.b.i Good Nothing noteworthy.

5.c Good

Quicker way to edit

ideal duration, a panel

instead of a modal.

Summary of how many

child issues and

dependencies.

5.c.i Good Nothing noteworthy.

5.c.ii Good Nothing noteworthy.

5.c.iii Good Nothing noteworthy.

5.c.iv Good Nothing noteworthy.

Task

How did

the user

perform?

Feedback

6.a Good

Drag and drop

dependencies would be

nice but not important

for now.

7.a Good
Not useful, gantt is not

used in AxBit,

Feedback outside of tasks:

• Show uncertainty is a top priority

Analysis

User feedback:

In this prototype the first page to show when opening a project was the progress page and the

charts was toggled through a dropdown menu. It would be better to have buttons to swap

between the charts so the options aren't hidden. The landing page when opening a project was

not intuitive, it would be better to create a project overview for the project with much of the

same information provided in the edit project page and maybe more like the most likely

estimated budget and end date. When creating a project the starting date for the project should be

optional and possible to add the customers budget and the customers preferred deadline. The

feature list should be possible to manually order in regards to the priority of what should be

done, the features should also have an id to make it easier to distinguish and the time estimation

should be bigger. The features should also be easier to delete. For the task list view there was

wrong terminology for estimated hours, a preferred term is ideal duration. The task list was

lacking information like uncertainty, which should be a part of the list and modal. Alternatively

the uncertainty could be toggled through buttons so you see the estimation for the different levels

of estimation, like best case, most likely and worst case. Also it would be good to have some

means to change the columns that are shown in the list. When it comes to editing the tasks it

would be beneficial to edit some fields quicker in the list itself, instead of opening a modal. It

could also be better to have a side panel open instead of a modal, giving a better view of the list

and its information while editing a task. The editing view itself could still show more

information like number child issues and dependencies, and should have two fields for ideal

duration, a best case and worst case. The dependency graph should have more information for

what is shown and it would be nice to drag and drop dependencies between task in the graph, but

it is however not important for now. The roadmap is redundant as it is not used in AxBit.

What we will change:

We will add a project overview page to display the same information as when editing the

information and the last estimation for budget and estimated end date. We will also add

customers budget and customers deadline as input fields for project, This can be especially

helpful in graphs to see how risky a project will be. In terms of creating/editing project the

starting date will also be optional. We will also be adding another estimated hours field so we

can have best case and worst case as inputs for tasks. In the task details modal we will also add a

summary or a number of child tasks and dependent tasks. Also the term will be ideal duration

instead of estimated hours. IDs will be added to features and tasks. The drop down menu for the

progress page will be removed, and in the case of more graphs being added we will add buttons

instead to display the options right away instead of having them hidden. The roadmap will be

removed as it is not useful for AxBit.

What we might change:

While a highly sought after feature and definitely a priority the manually ordering of features is

not easily implemented as of now and will require restructuring of backend. Because of this, the

manually ordering of features is a definitely later, not a maybe. A side panel was a wish instead

of a modal, it has positive qualities as one can see the list while editing/viewing information, but

we wish to get something up right away and might look into it later. There was also a wish for

buttons to toggle information of uncertainty in the task list and toggling fields, we believe a way

of optionally choosing what features is shown might be a better way than toggling. So we will

show the uncertainty when we come to that stage, but the toggling of columns might be later.

Dragging and dropping dependencies would be cool in the dependency page however it is far

from a priority and is not something to spend time on as of now. Grouping releases was also

mentioned however this will wait until later when we implement releases.

What we won't change:

We won’t be changing the location for deleting tasks and feature, whether it is beneficial to have

feature and task easily deleted varied, and keeping it as is keeps the ui clean.

I - 1ST ITERATION USER TESTS - USER B

115

User test 1st iteration – User B

Test performed: 16/02/2023 - 13:00-14:15

Introduction

User B is not a part of our team and had no knowledge of what this project was about, Franck

Chauvel took it upon himself to spend 5 minutes before our user test to show User B the

following the powerpoint informing what the project was about:

user-test.pptx

Background

Age: 39

Profession: Sales manager / Project manager

Previous experience: 2 years experience with estimation as project manager

Tasks

1. Sign-in screen

1. Sign up

2. Progress

1. Change chart

3. Project

1. Search project

2. Create project

1. Set task level

3. View project

4. Edit project

5. Delete project

4. Feature

1. View feature list

2. Create feature

1. Add connected task

3. Edit feature

1. Edit title

2. Edit description

4. Delete feature

5. Task

1. View task list

2. Create task

1. Add dependency

3. Edit task

1. Edit title

2. Edit description

3. Add child issue

4. Add assignee

6. Dependencies

1. View dependencies

7. Roadmap

1. View roadmap

Feedback

Task

How did

the user

perform?

Feedback

1.a Okay Nothing noteworthy.

2.a Confusing
One graph view is

enough.

3.a Good
Change position of the

search button.

3.b Good

"Remove" is enough,

do not need to add

"member", or use a

trashcan for removing a

member. Back instead

of prev.

3.b.i Good Coverage?

3.c Good Nothing noteworthy.

3.d Good

Slack integration, an

"x" to cancel the

editing.

3.e Good Confirm dialog.

4.a Good

Total tasks in feature.

Add dependencies

between features. Epic

instead? Show ID

number for feature.

Task

How did

the user

perform?

Feedback

4.b Good

Have requirements for

feature description,

more inputs?

technologies?

4.b.i Good Nothing noteworthy.

4.c Good Nothing noteworthy.

4.c.i Good Nothing noteworthy.

4.c.ii Good Nothing noteworthy.

4.d Good Nothing noteworthy.

5.a Good

Have IDs for tasks,

show dependency

degree of task.

5.b Good

Help with description,

remind user of things

to think of.

5.b.i Good Nothing noteworthy.

5.c Good

Too simple to edit a

task, better to do it

through the dot menu?

Show which feature the

task is connected to.

Colors on the

estimation of whether

its best or worst?

5.c.i Good Nothing noteworthy.

5.c.ii Good Nothing noteworthy.

5.c.iii Good Nothing noteworthy.

5.c.iv Good Nothing noteworthy.

6.a Good

Search bar instead of a

horizontal list, simpler

to have a list?

7.a Not tested with User B

Feedback outside of tasks:

• What role does an assignee have?

• Catered to not use icon for project, dummy icons? three first letters?

• Notification when uncertainty is close to being reached.

Analysis

User feedback:

For this prototype we removed the roadmap as it was not useful in anyway for our software, but

this was our only change. We got feedback again with this user test that it would be beneficial to

have a project overview as a landing page instead of diving straight into the information. It was

also not ideal to have multiple charts, but one chart view. When testing the creation of a project,

we got feedback that the wireframe had redundant terminology and could use simpler terms, like

"Remove" or a trashcan instead of "Remove member", and use "Back" instead of "Prev" for

navigating modals. The project should also be catered to not using an icon as few project does

have something visually to be an icon. When editing a project it would be better to have an "x",

or a means to escape the editing mode, and deleting projects should have a confirmation modal.

With level of assignment in a project there was some feedback regarding temporary leaves. The

feature list could show more information like the total number of tasks, and maybe it should be

able to add dependencies between features. Epic maybe a better term than feature as it more

aligns with Jira. The tasks should have IDs too, and show the dependency degree of tasks. When

editing a task it could be useful to have a tooltip for the description, to remind the user of helpful

things to add to the description. It was also too easy to edit the task, one would expect one more

step with going through the dot menu button and editing. The task modal should also display

what feature it belongs to. Another point User B brought up was having colored inputs for best

case estimation and worst case estimation when viewing the task information. For the

dependency page it might be helpful to have a search bar, and it's simpler to have a list.

What we will change:

There were similarities between User B’s feedback and Franck’s feedback, like a project

overview as a kind of landing page when opening a project. We will address this and create a

project overview. Another common feedback amongst our two testers was ID’s of features and

tasks, this is a simple change that we will address immediately. Other feedback User B gave us

was to simplify the terms used so "Remove member" will be changed to just "Remove", and

«Back» instead of «Prev» for navigating the modals. The projects will also be more catered

towards not using an icon, as well as still allowing to upload an icon we will maybe provide

dummy icons or use three first letter. We will also add a confirmation modal when anyone

attempts to delete a project as User B gave us feedback for. It was also sufficient enough with

just one graph view, and we will make the progress page simpler and the information more clear.

Editing a task and feature was also too simple, it wasn't intuitive so we will add "edit ****" in

the dot menu for feature and tasks. We will also add more help with the description of feature

and task, perhaps a more descriptive placeholder or a tooltip. When editing projects we will also

add an "x" or another means to escape the editing view.

What we might change:

Other feedback User B provided which is thoughts for later is search field on the dependency

page, list in dependency tasks and child tasks. We will wait with the search field in the

dependency page as the dependency page its not priority. User B also mentioned a sort of

warning when the estimation is closing worst case uncertainty as it will give the project manager

time to update the customer. This warning is down prioritized till a later stage but it definitely

has value and we hope to implement at one point.

What we won't change:

What we will not be implementing however is changing the location of the search button, while

it is not in an ideal position having a search bar on top while there are many other search bars

will be cluttered with repetitive looks and might be confusing. A search bar over the project

menu, which would look akin to how discord is in our opinion not ideal either as it is confusing

in terms of what the menu represents, it holds items for a project, and searching projects there is

not intuitive. Placing the search button on top won’t look good either as the search and add

buttons should be grouped, and add buttons are normal to stay on the bottom in this kind of

layout. None of our users really struggled with the position, it took at most a second glance and

is a learning matter in this case. User B mostly mentioned this as a fun idea but slack integration

would be fun when seeing list of members in a project, to easily communicate as they use Slack

in AxBit, however given the scope of our project we won’t be attempting this for now. The last

feedback was given in a discussion about the results of the user test with Franck, where we will

add another input field for estimated hours so they can add best case and worst case, in this

regard User B mentioned coloring the input fields, while a fun idea a red input field can be

confusing as it often mean wrong input, we might play with the idea later as coloring a label but

not for now.

J - 2ND ITERATION USER TESTS

121

2nd iteration

For the second user test iteration, we have an MVP of our demonstrator available on the URL:

https://dev.savvyest.io. This version of our application is capable of creating and editing projects,

features and tasks as well as performing simulation-based estimation through the information

provided by the features and tasks in a project.

Our objective with the second iteration of the user test is to test our previous changes with the

last user test, but most importantly it is testing the simulation and the data provided and

displayed from the simulation. We will emphasize the feature-completion chart and how the

users manage to decipher it.

The user we are testing on for this iteration is:

• User A, project manager

• User B, HR and administration

The tasks we will ask our users to perform is as following:

1. Sign-in screen

1. Sign in

2. Project

1. View projects

2. Search project

3. Create project

1. Assignees and level of assignment

4. Edit project

3. Feature

1. View feature list

2. Create feature

3. Edit feature

4. Task

1. View task list

1. Information provided in the table (like depth?).

2. Create task

1. Dependencies

2. Child tasks

3. Edit task

5. Progress

1. Running a simulation

2. Reading the chart

3. Reading the table

K - 2ND ITERATION USER TESTS - USER A

124

User test 2nd iteration – User A

Test performed: 03/05/2023

Introduction

User A was a test user for our previous iteration and therefore was familiar with the concept of

our application, we sent the following email to her to invite her back for the second iteration of

user tests (translated):

Hi User A!

Thank you so much for last time!

Our application is nearing readiness for demo. On this occasion, we hope that you would be

willing to act as a test user again.

We also wonder if you might know more people who could be willing and have the ability to be

test users.

We hope to have a demo-ready application at the beginning of next week.

Hope to hear from you

Background

Age: 39

Profession: Sales manager / Project manager

Previous experience: 2 years experience with estimation as project manager

Tasks

1. Sign-in screen

1. Sign in

2. Project

1. View projects

2. Search project

3. Create project

1. Assignees and level of assignment

4. Edit project

3. Feature

1. View feature list

2. Create feature

3. Edit feature

4. Task

1. View task list

1. Information provided in the table (like depth?).

2. Create task

1. Dependencies

2. Child tasks

3. Edit task

5. Progress

1. Running a simulation

2. Reading the chart

3. Reading the table

Feedback

Task

How did the

user

perform?

Feedback

1.a Excellent Nothing noteworthy

2.a Excellent Nothing noteworthy

2.b Excellent Nothing noteworthy

2.c Good

Plus icon is intuitive for adding a new project. Would be cool to have

integration with sales software where information like rates are

provided. Don't use gear for adding (project lead or assignees), but also

maybe allow to change the title of the project lead?

2.c.i Good
Hard to hit the exact level of assignment, perhaps a bigger slider or a

supporting input field.

2.d Excellent Confirmation if you exit editing when there are unsaved changes

3.a Excellent Nothing noteworthy

3.b Excellent Nothing noteworthy

3.c Good
Allow for tasks under a feature to be added directly in the feature,

instead of going through the tasks page.

4.a Excellent Nothing noteworthy

4.a.i Excellent
Ideal hours should be estimated hours. Negative hours? The icon for

completion is nice information, could add another icon for under works.

4.b Excellent Nothing noteworthy

4.b.i Excellent Nothing noteworthy

4.b.ii Excellent Nothing noteworthy

4.c Excellent
Allow for setting only one date on the start and completion date for

tasks. Do not link the status to the date, have a button for "completed".

5.a Excellent
The number of simulations is not intuitive. If a task has no assignees it

should be omitted from the simulation.

5.b Excellent It was hard to hit the points to show the info on the graph.

5.c Excellent Nothing noteworthy

Analysis

This was User B’s second time participating as a test user for our application. She had no issues

logging in or navigating the app. When creating a project User B was puzzled about the gear icon

used for editing a list or field (project lead and project assignees), she believed it meant to

change something about that field, not to edit the field's content. The level of the assignment

slider was also hard to control and she wished for a supporting input field for easier input. When

editing a project she wished for a confirmation when exiting if the project had unsaved changes.

She also wanted to be able to add tasks under a feature directly, creating them there instead of

going back to the tasks page and then creating them. Ideal hours was not a favorable term and

User B suggested estimated hours instead. User B also noticed a bug in our app where ideal

hours were allowed to be negative. The start date and end date on a task were also confusing,

they stand under the "Estimate" section and she thought it was the estimated start and end.

Setting the status of a task was also not easy to understand and she wished for a button to do so.

She also suggested adding another status for "working", where the actual start date would be set

and not finished. She also wished to be able to set only one date, not both which is required at

this stage. On the progress page, the number of simulations to run was not clear and should have

labels or more text to tell what it means. Hovering over the graph was also not easy to hit the

exact point on the graph to see more information. After the test, we discussed the app some more

and User B wished that tasks with no assignees would be omitted from the simulation as it meant

they had not been approved by the customer, per now we randomize the assignees unless a task

has them defined.

Based on the feedback provided we want to change the start date and end date on a task to

"actual start date" and "actual end date", and move them out of the estimate section. The date

input will be changed from range to two individuals so it does not require both to be set at the

same time. We will also make it easier to set the status on a task and add another status for

"working". We will also add a confirmation on the edit project page if the user is trying to exit

with unsaved changes. The gear icon on the editable list will be changed to a plus icon, and the

assignment level slider will get a supporting number input field. We will add that tasks can be

created directly under a feature. Lastly, we will change the input field for the number of

simulations to run.

We will not change the graph as it is a library and we cannot easily change it. After discussion,

we will also not omit task which has no assignees from the simulation and keep that an

unassigned task gets a random chosen assignee. The term ideal hours will also be kept.

L - 2ND ITERATION USER TESTS - USER B

129

User test 2nd iteration – User B

Test performed: 04/05/2023

Introduction

We sent the following email to User B to invite them to the second iteration of user tests

(translated):

Hi ***!

Thank you so much for being willing to be test users. We greatly appreciate your help.

Could you give me the times when it would suit each of you?

A bit about us:

We are a group of three students - Espen Otlo, Sakarias Sæterstøl, and me, Janita Røyseth. We

are working on our bachelor's thesis this spring, with AxBit as our client, represented by Franck

Chauvel. We are developing a demonstrator for simulation-based cost and time estimation for

system development projects.

The application we have developed will be ready for a demonstration next week, and with that

occasion, we want to perform alpha tests.

If you have any questions, please feel free to contact us.

Thank you again for taking the time to contribute!

Background

Age: 30

Profession: PMO, HR and administration

Previous experience: Project manager for a handful of projects.

Tasks

1. Sign-in screen

1. Sign in

2. Project

1. View projects

2. Search project

3. Create project

1. Assignees and level of assignment

4. Edit project

3. Feature

1. View feature list

2. Create feature

3. Edit feature

4. Task

1. View task list

1. Information provided in the table (like depth?).

2. Create task

1. Dependencies

2. Child tasks

3. Edit task

4. Setting task as finished

5. Progress

1. Running a simulation

2. Reading the chart

3. Reading the table

Feedback

Task
How did the user

perform?
Feedback

1.a Excellent Nothing noteworthy

2.a Okay
Project icons were confusing, they looked like icons for arcade

games.

2.b Okay The search bar was hard to see, expected on top.

2.c Excellent
The gear on the project lead and assignees lists was misleading,

thought it had another function than adding.

2.c.i

Okay, took two

tries before she

found it

The slider wasn't pleasant to use, and it was difficult to hit the

exact number.

2.d Excellent Liked the unsaved changes snack bar.

3.a
Excellent, no issue

finding it.
The page is very plain. It doesn't provide any help for what to do.

3.b

Good, didn't find it

right away,

confused of what it

was.

Difficult wording, especially "dependant" (for dependant features).

3.c
Excellent, no issue

finding it.

Where to click when adding dependant feature, want to click on

the name but the add button is on the far right.

4.a Excellent Nothing noteworthy

4.a.i Good/Okay

Misunderstood the feature column, thought it was hours. Would

like an "actual hours" column. Liked that she can hide columns.

Didn't understand "depth", explain in simpler terms. Didn't like

seeing the assignees when hovered, show the names and if there

are many have a hide/show all function.

4.b Excellent Nothing noteworthy

4.b.i Excellent Still not a fan of the dependent word.

4.b.ii Excellent Nothing noteworthy.

4.c Good
Changes when viewing a task should have a "save" button, as it is

used elsewhere.

4.d Good
Could be easier, thought that the start and end date was for the

whole project.

5.a
Good, looked

around a bit
The number of simulations is unclear.

5.b Okay

Didn't understand that the worst case was an estimation, thought it

was the actual path of the project. Wanted to scroll horizontally.

Liked the color-coded lines.

5.c Excellent Nothing noteworthy

Feedback outside of tasks:

• Little visual guidance, don't know where to look.

• Atrocious font, hard to read, to digest what's written.

• Difficult language

Analysis

User B tested our application for the first time on this iteration and had not seen it before. User B

had no issues logging on to our application. Right off the bat User B also did not like our font

choice as they found it hard to read and digest the information provided in the application. The

project page was also confusing, the project icons looked like something for arcade games. It

wasn't easy to understand that it represented a project. For searching projects, User B had to look

twice to find the search button but then had no issues navigating to a project. The button for

adding a project was easier to find. Problems that occurred when creating a project were that the

gear icon was used on top of fields like project lead, or assignees list, but didn't actually have any

more functionality than changing the field. Also when changing the level of assignment on

assignees the slider was hard to use. When editing a project, the snack bar which warned the user

of unsaved changes was well received. The feature page was very plain and had no visual guide

for what to do, or information about what it represents. There were also challenges when creating

a project, the language used in the app is kinda hard, especially the word "dependant", also wants

to be able to click on the feature name to be able to add a dependent feature, not only the "add"

button. User B had no issue finding the tasks page however the columns in the table were

somewhat misinterpreted and unfavorable, the feature column wasn't obvious it referred to the

features sequence id, the depth should be explained in simpler terms and assignees shouldn't be

placed into a tooltip but perhaps instead show the names and then a "hide/show" function for

toggling to see all assignees. User B had no problems creating a task. However when quickly

(without going into the 'edit mode') editing a task or feature she wished there was a save button

as it is used rigorously elsewhere in the application. Setting a task as complete was not intuitive,

but it wasn't difficult, however, it could be made easier. Lastly, for the progress page, the number

of simulations to run was not clear. The best case and worst case for the graph weren't clear

enough that it was estimations, User B thought the worst case was the actual case. In the end, we

had a discussion of the app and User B liked the concept and could see how it can be used in

discussions with the customer and planning an application.

Based on User B feedback, things we will change are the gear icon on fields, it will be swapped

with a plus icon or removed altogether. The assignment level slider also will undergo some

improvements, it will receive a supporting number field for easier exact input. We will also try to

provide better descriptions for components in the app, as well as rework existing descriptions

that were insufficient. We will let clicking on the list item in an editable list/field be sufficient

enough for toggling the item. Setting the status for a task will be made simpler. Lastly, the

progress page will emphasize that it is showing an estimation, not the actual project

We won't change the project icons this far into the project, it took one moment to learn that the

icons represented a project. The font will also not be changed, it is the first and only complaint

we have received on it; unless we get more complaints we will not change it.

	Abstract
	Sammendrag
	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Glossary
	Introduction
	Motivation
	Problem Formulation
	Objectives
	Limitations
	Thesis Structure

	Theory
	Agile Development
	User Requirements
	User Stories

	Challenges of Estimation
	Problem Scope
	Project Size
	Unknown Elements
	Efficiency
	Units of Estimation

	Estimation Methods
	Project Evaluation and Review Technique
	Critical Path Method
	COCOMO
	Planning Poker
	Estimation of project duration for Scrum team with differentiated specializations
	Monte Carlo Simulation

	Object-Oriented Programming
	Cohesion and Coupling

	System Documentation
	Source Code Comments
	API Documentation
	UML Diagram
	README
	Wireframes

	Testing
	Unit Tests
	Integration Tests
	End-to-end Tests
	Test Pyramid
	Usability Testing

	Continuous Integration, Continuous Deployment, and Continuous Delivery
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	Universal Design
	Web Content Accessibility Guidelines
	Accessible Rich Internet Applications
	The Authority for Universal Design of ICT

	Design
	Design Principles
	Iterative Design Process
	Design Guidelines
	Wireframes

	Technologies
	Programming Languages
	Code Version Control
	Command Languages

	Web Application
	Roles of HTML, CSS, and JS
	Single-page Application
	Server-side Rendering

	Methods
	Organization
	Team
	Supervisor
	Client & Product Owner

	Project Planning
	Preliminary Report
	Gannt Diagram
	Work Contract
	User Requirements
	User Stories

	Management Tools
	Teams
	Confluence
	Overleaf
	GitHub

	Developmental Tools and Applications
	Figma
	Lighthouse
	VS Code
	Docker
	pgAdmin
	Traefik
	Make
	Vite
	Vitest
	Storybook
	Playwright
	Package Manager
	GitHub Actions

	Framework, Libraries, Programming- and Scripting Languages
	Svelte
	SvelteKit
	Typescript
	SCSS
	Carbon Design Systems
	PostgreSQL

	Data and Configuration
	JSON
	YAML
	DTO

	System Documentation
	ER Diagram
	Class Diagram
	Source Code Documentation
	Svelte Component Documentation

	Design
	Wireframing
	Design Guidelines
	Accessibility

	Testing Methodology
	Unit Tests
	Integration Tests
	End-to-end Tests
	Usability Tests

	Results
	Method of Estimation
	Continuous Integration and Delivery
	CI/CD Process Overview
	Workflows

	Environment Files
	Documentation
	Code Documentation
	Component Documentation

	Backend
	Entity Classes
	Simulation
	Database
	Server
	Docker
	Postgres

	Front-end
	Design
	Components
	Routing
	State Management
	User Interface

	Service Classes
	CalendarService
	EstimatableService
	ModalService
	RandomService
	SimulationService

	Test and Quality Assurance
	Unit Tests
	Integration Tests
	End-to-end Tests
	Usability Tests
	Code Format and Lint

	Discussion
	Estimation Method
	Basic Unit
	Three-point Estimates
	Employee Efficiency
	Method Steps

	Framework
	Security
	UI/UX
	Testing
	Group Dynamic and Methodology
	Methodology
	Group Dynamic

	Conclusions
	Conclusions
	Future work
	Validation
	Integration
	Historical data
	MTBF & MTTR

	References
	Appendices:
	A - Preliminary Project Plan
	B - First Draft Wireframe
	C - Second Draft Wireframe
	D - Final Draft Wireframe
	E - Design Guidelines
	F - Test Template
	G - 1st Iteration User Tests - Test Plan
	H - 1st Iteration User Tests - User A
	I - 1st Iteration User Tests - User B
	J - 2nd Iteration User Tests - Test Plan
	K - 2nd Iteration User Tests - User A
	L - 2nd Iteration User Tests - User B

