
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Eduard Andrei Cristea
Jonas Tøsse
Richileu Alphonso Bailey
Torstein Eide

Refactoring and development of Web
User Interface for a control system
for flood-, bow- and searchlights

Bachelor’s thesis in Computer Science Engineering
Supervisor: Arne Styve
May 2023

Eduard Andrei Cristea
Jonas Tøsse
Richileu Alphonso Bailey
Torstein Eide

Refactoring and development of Web User
Interface for a control system for flood-,
bow- and searchlights

Bachelor’s thesis in Computer Science
Supervisor: Arne Styve
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

ABSTRACT

Luminell AS, a leading manufacturer and distributor of LED floodlights, bow
lights, and searchlights for demanding environments, saw a need to update and
refactor their web-based user interface for controlling searchlights. This project
aimed to give Luminell’s clients a better user experience by providing a robust and
more capable web user interface. The project focused on enhancing the existing
web user interface solution by refactoring the codebase and introducing new fea-
tures and functionalities that improved the monitoring and control of connected
searchlights.

The scope of the project included several additions to the existing solution, such
as network settings, debug window, device control and monitoring features, and
other functions proposed by the students. The team faced limitations related to
the backend and firmware of the searchlight, requiring creativity to overcome these
challenges while ensuring the project remained within its scope.

Challenges found in this project include inaccurate estimation of time, somewhat
going outside the scope, and much more. The outcome of this bachelor thesis is
an updated, dynamic solution that not only improves the monitoring and control
of connected devices but also enhances the overall user experience for Luminell’s
clients. This project demonstrates the potential of computer engineering to op-
timize marine lighting products and highlights the value of collaborative efforts
between academia and industry.

i

SAMMENDRAG

Luminell AS, en ledende produsent og distributør av LED-flomlys, bauglys og
søkelys for krevende miljøer, så et behov for å oppdatere og refaktorisere nettgrens-
esnittet til Unity-Hub produktet sitt. Målet var å gi Luminells kunder en bedre
brukeropplevelse i et ellers tøft miljø, ved å tilby et robust og mer kapabelt bruk-
ergrensesnitt. Prosjektet fokuserte på å forbedre den eksisterende web-bruker-
grensesnitt-løsningen, ved å refaktorere kodebasen og introdusere nye funksjoner
og funksjonaliteter som forbedret overvåking og kontroll av tilkoblede søkelys.

Omfanget av prosjektet inkluderte flere tillegg til den eksisterende løsningen, som
nettverksinnstillinger, feilsøkingsvindu, enhetskontroll og overvåkingsfunksjoner
og andre funksjoner foreslått av studentene. Teamet møtte begrensninger knyttet
til "backend" og fastvaren til søkelyset, noe som krevde kreativitet for å overvinne
disse utfordringene samtidig som de sørget for at prosjektet holdt seg innenfor sitt
omfang.

Utfordringer funnet i dette prosjektet inkluderer unøyaktighet i estimering av tid,
gått noe utenfor rammen av prosjektet og mye mer. Resultatet av denne bache-
loroppgaven er en oppdatert, dynamisk løsning som ikke bare forbedrer overvåking
og kontroll av tilkoblede enheter, men som også forbedrer den generelle brukerop-
plevelsen for Luminells kunder. Dette prosjektet demonstrerer potensialet til
datateknikk for å optimalisere marine belysningsprodukter og fremhever verdien
av samarbeid mellom akademia og industri.

i

PREFACE

About

This is the report for the bachelor thesis "Refactoring and development of Web
User Interface for a control system for flood-, bow- and searchlights". This project
was concluded in May 2023 in Ålesund. The bachelor thesis has been conducted
by:

Eduard Andrei Cristea

Jonas Tøsse

Richileu Alphonso Bailey

Torstein Eide

The project assignment was worked on, in close collaboration with Luminell Nor-
way AS, with Frode Kolgrov as the company representative.

The bachelor project was chosen from a request made by Luminell for further de-
velopment on their current web-frontend solution, which a group member already
had worked on through the summer of 2022.

Motivations for this project were the group member’s existing knowledge about
this project and challenges, as well as the practical side of this project, as the
project encompassed many trials and errors.

Acknowledgements

We would like to thank Frode Kolgrov for the ease of communication, access to
services and materials, a space to work, and feedback throughout the project.

We would also like to thank our supervisor Arne Styve at the Department of ICT
and Science at the Norwegian University of Science and Technology, for good ad-
vice and guidance throughout the entire process.

ii

iii

Assignment

The project client was Luminell Norway AS and our main contact was with Frode
Kolgrov. Luminell is a company making light technologies. They are particularly
strong on floodlights and searchlight systems. Luminell is using a gateway named
"Unity-Hub" which gives external systems the ability to control the searchlights.
Unity-hub had a web server with a simple user interface where all connected units
could be viewed, and simple configurations could be made. They wanted a more
advanced solution where searchlights could be controlled and monitored and rel-
evant information regarding the lights could be viewed. The scope of the project
consisted of several additions to the existing solution, and refactoring of the initial
solution.

CONTENTS

Abstract i

Sammendrag i

Preface ii

Contents vi

List of Figures vi

Abbreviations ix

1 Introduction 1
1.1 Background . 1

1.1.1 The teams contribution . 2
1.1.2 System overview . 3

1.2 Problem . 4
1.3 Requirements . 4
1.4 Limitations . 6
1.5 Structure . 7

2 Theory 9
2.1 Refactoring . 9

2.1.1 Principles of Refactoring . 9
2.1.2 Benefits of Refactoring . 9
2.1.3 Common Refactoring Techniques 10
2.1.4 Terms . 10

2.2 Morse code . 10
2.3 Client Server Communication . 11

2.3.1 HTTP . 11
2.3.2 REST API . 11

2.4 Multi-Paradigm programming . 11

iv

CONTENTS v

2.4.1 Object-oriented Programming 12
2.4.2 Functional Programming . 12
2.4.3 Event-driven Programming 12

2.5 Design patterns . 12
2.5.1 Factory pattern . 12

2.6 Quality assurance . 13
2.6.1 GitFlow . 13
2.6.2 Merge requests . 15
2.6.3 Code review . 16

2.7 Development . 16
2.7.1 Version control . 16
2.7.2 Agile development . 16
2.7.3 Scrum . 16

3 Methods 21
3.1 Materials and Tools . 21

3.1.1 Introduction . 21
3.1.2 Programming Languages and Frameworks 21
3.1.3 Software Applications and Tools 22
3.1.4 Development and Collaboration Tools 22
3.1.5 Hardware Equipment . 22
3.1.6 The types of nodes . 23
3.1.7 External libraries . 25
3.1.8 Refactoring . 26

3.2 Project process . 26
3.2.1 Team . 26
3.2.2 Supervisor . 27
3.2.3 Client . 27
3.2.4 Meetings . 27
3.2.5 Development process . 28

4 Results 31
4.1 Engineering result . 31

4.1.1 Overall results . 31
4.1.2 Refactoring . 32
4.1.3 Implemented functionality 38

4.2 Frontend Architecture and Technologies 45
4.2.1 Figma . 45
4.2.2 Consistency . 45
4.2.3 External libraries . 48

4.3 Administrative results . 51

vi CONTENTS

4.3.1 Collaboration . 51
4.3.2 Confluence . 51
4.3.3 Jira . 51
4.3.4 Scrum . 52

4.4 Version control . 53
4.5 Constraints . 54

4.5.1 Obstacles . 54
4.5.2 Time estimation . 55

5 Discussion 57
5.1 General discussion . 57
5.2 Engineering discussion . 57

5.2.1 Refactoring . 57
5.2.2 Page overview . 58
5.2.3 Light Controller . 59
5.2.4 Morse Module . 59
5.2.5 Statistics . 60
5.2.6 Settings . 61
5.2.7 Network Settings . 62

5.3 Administrative discussion . 62
5.3.1 Time estimation . 62
5.3.2 Work estimation . 63
5.3.3 Motivation and teamwork 63
5.3.4 Remote vs on-location work 63

6 Conclusions 65
6.1 Problem solving . 65
6.2 Our contribution . 66
6.3 Further work . 66

7 Social impact 69

References 71

LIST OF FIGURES

1.1.1 Two CL-38 mounted on a ship’s bridge 1
1.1.2 SL1 mounted on a rescue ship . 2
1.1.3 SL2 in use . 2
1.1.4 Reference diagram . 3
1.1.5 Overall system layout . 4
1.3.1 Project requirement . 5

2.5.1 Factory pattern method example [8] 13
2.6.1 Gitflow workflow . 14
2.6.2 Feature branches . 14

3.1.1 SL1 . 23
3.1.2 SL2 . 24
3.1.3 CL-38 . 24
3.1.4 Unity Reference . 25
3.2.1 Project roadmap . 28

4.1.1 User-interface with sidebar and controllers for SL1, SL2 and CL38 . 32
4.1.2 API separated within the file structure 33
4.1.3 Instance of a searchlight being defined in JavaScript before refactoring 34
4.1.4 Definition of a searchlight using TypeScript after refactoring 35
4.1.5 Searchlight React Component Pre-Refactor and Post-Refactor . . . 36
4.1.6 Initial file structure . 37
4.1.7 Refactored file structure . 37
4.1.8 Dashboard / sidebar . 39
4.1.9 Light controller SL2 . 40
4.1.10Light controller SL1 . 40
4.1.11Light controller SL2 with menu open 41
4.1.12Light controller for the CL models 41
4.1.13Morse module . 42
4.1.14Statistics page . 43

vii

viii LIST OF FIGURES

4.1.15Settings Settings page . 44
4.1.16Bridge dropped onto a boat view 44
4.1.17Slots where lights can be dropped 45
4.2.1 Design guideline colors . 46
4.2.2 Design guideline typography rules 46
4.2.3 Design guideline hierarchy rules . 47
4.2.4 Design guideline rules for icons, shadows, and border rounding . . . 47
4.2.5 All MUI components used . 48
4.2.6 Simplicity and customizability of the morse-converter 49
4.2.7 Circular slider for moving horizontally 50
4.2.8 Chart using ChartJS . 50

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• API Application programming interface

• DOM Document Object Model

• HMI Hydrargyrum Medium-Arc Iodide

• HTTP Hypertext Transfer Protocol

• IP Internet Protocol

• LED Light Emitting Diode

• Mamsl meter above mean sea level

• MUI MaterialUI

• NTNU Norwegian University of Science and Technology

• PCA Principal Component Analysis

• REST Representational State Transfer

• TCP Transmission Control Protocol

• UI User Interface

ix

CHAPTER

ONE

INTRODUCTION

This chapter will introduce the project background, the project requirements,
limitations, and the report structure.

1.1 Background

Luminell is a company with an impressive range of marine lighting products.
Luminell has broad expertise in floodlights and searchlight systems. Using a device
called Unity-Hub which acts as a gateway, external systems can communicate
with Luminell’s searchlights. For a couple of years, they have had a simple web-
based user interface where lights and other connected devices could be viewed
and simple configurations could be made. They wanted an updated, broader, and
more advanced solution where lights and devices could not only be viewed but
also monitored and controlled. In the summer of 2022, a team member started
working on the project as an intern and saw the opportunities and potential for
this project to become a bachelor’s thesis.

Figure 1.1.1: Two CL-38 mounted on a ship’s bridge

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1.2: SL1 mounted on a rescue ship

Figure 1.1.3: SL2 in use

1.1.1 The teams contribution

In this project, it is necessary to be precise about which part of the code base is
made by the team. To recreate this very project, the Unity Hub is needed. The
team has not modified Luminell’s existing back end, as this would be outside the

CHAPTER 1. INTRODUCTION 3

scope of the project. The team did get an already set up web UI, but this needed
feature improvement. When refactoring, much of the existing functionality needed
tailoring to fit the refactored standards. That way, Luminell’s existing front end
merely served as a template for layout and structure. Therefore, the great majority
of the user interface functionality and logic is made by the team. The figure below
illustrates the entire project system, with the part outlined in red being the only
part that was within the team’s scope. The figure describes Luminell’s Unity Hub
with Colornet and the Axon protocol as part of Luminell’s proprietary technology
(fig. 1.1.4).

Figure 1.1.4: Reference diagram

1.1.2 System overview

A system delivered by Luminell is any desired searchlight and the Unity Hub. The
searchlights can be controlled by either the Luminell operating panel or the web-
based UI. The figure below (fig. 1.1.5) illustrates a representation of an example
system.

4 CHAPTER 1. INTRODUCTION

Figure 1.1.5: Overall system layout

1.2 Problem

Continuing development on an existing project takes much time to get into. Espe-
cially when the existing solution needs to be updated and is a particular solution
with limited functionality. It then becomes a priority to update the technologies
and develop new features.

1.3 Requirements

Since the existing solution was outdated, Luminell wanted an updated version with
many new features. As mentioned, the Unity-Hub device acts as a gateway for
third-party systems to control and monitor all activity from all connected devices,
whether these are searchlights, floodlights, or even operating panels. With this
in mind, Luminell made a list of requirements, for a bachelor’s thesis for further
development of the web user interface for Unity Hub. This list had a set of
technologies currently being used, as well as a set of additions they wanted to add
to the system. With this list of requirements, the team was free to decide on their
own project requirement proposal.

CHAPTER 1. INTRODUCTION 5

Figure 1.3.1: Project requirement

6 CHAPTER 1. INTRODUCTION

1.4 Limitations

The team was limited by the backend and the firmware of the searchlight. These
limitations include a lack of functionality in the backend and inconsistency in the
API documentation. Backend problems can be resolved, however, it is not part of
the project scope.

Another limitation has been the course done in parallel with the bachelor’s thesis.
This course has taken three out of five weekdays throughout the entirety of the
course. Leaving little to no time for the bachelor project during the 11 weeks the
course lasted.

CHAPTER 1. INTRODUCTION 7

1.5 Structure

The rest of the report is structured as follows:

Chapter 2 - Theoretical basis: Contains theoretical background information
for methods and technologies that have been used throughout the project.

Chapter 3 - Methods: Includes tools and methodologies used and describes
how the team planned to approach and have approached the project.

Chapter 4 - Results: Describes the results of the project.

Chapter 5 - Discussion: Here an assessment of the team’s results will be
discussed. This will be an assessment in regard to limits, changes, and deviations
in the project according to the original plans.

Chapter 6 - Conclusion and further work: Gives a conclusion of the project
as a whole in regard to the requirements, based on results and discussion.

Chapter 7 - Social impact: Provides an overview on how the project can affect
different aspects of our society.

8 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

THEORY

2.1 Refactoring

Refactoring is a systematic process of improving the structure of existing software
code while preserving its external behavior. It is an essential practice in software
development aimed at enhancing the maintainability, readability, and modularity
of the codebase without affecting the software’s functionality. This section of the
bachelor thesis provides an in-depth understanding of the theory of refactoring in
programming, its principles, benefits, and various techniques employed. [1]

2.1.1 Principles of Refactoring

• Behaviour Preservation: Refactoring should not alter the external behav-
ior or functionality of the software. It must aim at improving the internal
structure of the codebase.

• Small Steps: Refactoring should be done incrementally, focusing on small,
manageable changes to the codebase. This approach reduces the risk of
introducing bugs and makes it easier to comprehend and review the code
changes.

• Testing: A comprehensive test methodology should be in place before refac-
toring to avoid introductions of new bugs or regressions within the code
changes.

2.1.2 Benefits of Refactoring

• Improved Code Readability: Refactoring enhances code readability, making
it easier for developers to understand, maintain and extend the codebase.

• Reduced Complexity: By simplifying the code structure and breaking down
complex functionality into smaller, more manageable pieces, refactoring helps
reduce the codebase’s complexity.

9

10 CHAPTER 2. THEORY

• Increased Maintainability: A well-structured, modular codebase is easier to
maintain and debug, leading to increased efficiency and reduced development
costs.

• Faster Development: A clean, well-organized codebase allows for faster de-
velopment of new features and easier identification of resolution of bugs
within a codebase.

2.1.3 Common Refactoring Techniques

There are several refactoring techniques in programming to improve code quality.
Some of the most common techniques include:

• Extract Method: This technique involves breaking down a large, complex
method into smaller parts, improving code readability and maintainability.

• Renaming: Renaming parts of code such as variables, methods, and compo-
nents to be a more descriptive, meaning.

• Move Method/Field: Relocating methods or fields to more appropriate places
can improve code organization and modularity.

2.1.4 Terms

Terms are often used by programmers to define parts of code.

• Dirty Code: Result of tight deadlines, mismanagement, inexperience, or
shortcuts taken during the development process.

• Code Smells: Indicators of problems, often easy to spot and fix, but may
show symptoms of problems with the codebase.

• Clean Code: Code that is easily read/understood and maintainable.

2.2 Morse code

Morse code is a method of communication that consists of a set of dots and dashes,
transmitted as on/off signals, that represents letters and numbers. The commu-
nication method can be transmitted through technology like lights, radio, and
telegraph. The speed of the Morse code transmission can vary, but a general
implementation is: dots are one unit of time, dashes are three units, the pause
between words is one unit, pauses between letters are three units, and the pause
between words is seven units [2].

An example of this is:-.. .-.. — / .– — .-. .-.. -..
That forms the words: "HELLO WORLD"

CHAPTER 2. THEORY 11

2.3 Client Server Communication

Client and server communication are communication between a client, often used
by a user, and a server, often a backend service in which the interpreter requests
from the client and handles them accordingly. Client-server communication is used
for inter-process communication. For this to work both sides need to follow the
same protocol so they both know what to expect.

2.3.1 HTTP

HTTP or Hyper Text Transfer Protocol is a common protocol used for communi-
cations between a client and a server. HTTP clients make a connection with the
IP protocol to a specific port on the server. The most used transport protocol is
Transfer Control Protocol (TCP).

2.3.2 REST API

The application programming interface (API) serves as an intermediary, enabling
applications or services to access resources from other applications or services.
RESTful APIs use the representational state transfer (REST) architectural style
to support seamless data exchange. Utilizing the HTTP protocol, RESTful APIs
allow users to perform various operations. These operations are known as CRUD
(Create, Read, Update, and Delete) and are performed through specific request
methods. [3]

These CRUD operations correspond to the following HTTP methods: POST for
creating new resources, GET for reading or retrieving resources, PUT for updating
existing resources, and DELETE for removing resources. Each operation manages
the resources within an application or service. These ensure that users can ef-
fectively interact with, modify, and maintain data. By implementing the CRUD
operations in a RESTful API, developers can create a flexible and scalable system,
streamlining data management and promoting interoperability between different
applications and services.

2.4 Multi-Paradigm programming

Multi-paradigm programming is a software development approach that leverages
multiple programming paradigms to solve problems effectively and efficiently. A
programming paradigm is a fundamental style, approach, or methodology used to
structure, design, and build software programs. Different paradigms emphasize
different aspects of software development, such as data manipulation, code orga-
nization, or computation models.

The theory of multi-paradigm programming suggests that no single programming
paradigm can address all the complexities and requirements of modern software
development. By combining the strengths of multiple paradigms, developers can

12 CHAPTER 2. THEORY

create more flexible, scalable, and maintainable software systems.

Multi-paradigm programming advocates for the use of different paradigms based
on the specific needs of a project or problem domain. By embracing multiple
paradigms, developers can create software systems that are better suited to handle
the diverse and evolving challenges of modern computing.

2.4.1 Object-oriented Programming

Object-oriented Programming or OOP for short, emphasizes the organization of
code around "objects," which are instances of classes that encapsulate data and
behavior. This paradigm promotes modularity, code reusability, and abstraction
through inheritance, polymorphism, and encapsulation. [4]

2.4.2 Functional Programming

This paradigm treats computation as the evaluation of mathematical functions,
avoiding changing state or mutable data. Functional programming emphasizes
immutability, first-class functions, and higher-order functions to enable more pre-
dictable and easily testable code. [5]

2.4.3 Event-driven Programming

This paradigm focuses on the flow of control in a program, which is determined
by events such as user actions, messages from other programs, or sensor outputs.
Event-driven programming is widely used in graphical user interfaces, real-time
systems, and server applications. [6]

2.5 Design patterns

2.5.1 Factory pattern

A factory pattern is a design pattern, which leverages a factory-like structure to
limit the amount of reoccurring code. It enhances the reusability and flexibility
of code. A typical implementation of the factory pattern is to have a base class
to be overwritten by derived classes, this makes sure to simplify object creation,
hides complexity, and improves readability [7].

CHAPTER 2. THEORY 13

Figure 2.5.1: Factory pattern method example [8]

2.6 Quality assurance

2.6.1 GitFlow

Atlassian describes the GitFlow workflow as an alternative Git branching model
that ensures good code quality and project integrity by separating the project into
feature branches and two branches that record the history of the project named
"main" and "develop" which have an infinite lifetime [9]. With this work method-
ology developers create feature branches and delay merging with the main branch
until the feature is complete. GitFlow introduces a development branch from
which all feature branches should be created, this branch will act as a less stable
main branch. It will act as an intermediary between the main branch and feature
branches, ensuring that the main branch always will be stable and operational.
When finally pushing to the main it is convenient to tag the commit with a version
number. The development branch will contain the entire history of the project.
In addition to the "main", "develop" and feature branches, GitFlow frequently
consists of release and hotfix branches.

14 CHAPTER 2. THEORY

Figure 2.6.1: Gitflow workflow

2.6.1.1 Feature branches

Features branches are branches that are created for developing a certain feature.
When creating feature branches they should originate from the develop branch
and when done, merged back into the same branch. Feature branches should
never interact directly with "main", and should rather be merged into "develop"
which, when stable and ready for a new release, should be merged into "main". [9]

Figure 2.6.2: Feature branches

CHAPTER 2. THEORY 15

2.6.1.2 Release branch

The purpose of a release branch is to prepare for a new production release. This
branch is forked from development and no new features should be added from
this point, rather the branch should only be used for documentation generation,
bug fixes, and other release-related tasks. Once the branch is ready, it should be
merged into "main" with a release tag. In addition, it should also be merged back
into development so it is up to date [9].

2.6.1.3 Hotfix branch

The hotfix branch lies between the "main" and "release" branches. This branch is
the only branch that should fork directly from main. Once a fix is complete, the
hotfix branch should be merged back into both main and develop, tagged with an
updated version number [9].

2.6.1.4 Pros and cons

Pros:

• The main branch is always stable and production-ready, as it only gets up-
dated after the development branch is thoroughly tested and deemed stable.

• Multiple features can be developed and tested simultaneously without inter-
fering with each other, thanks to the use of feature branches.

Cons:

• Due to the increased number of branches and merges, the likelihood of merge
conflicts increases, requiring developers to resolve conflicts frequently. This
increases the amount of overhead. The process of maintaining multiple
branches, merging them, and ensuring they are all up to date can be time
consuming and may slow down the development process.

2.6.2 Merge requests

Merge requests can be requests made by a developer to merge their working branch
into another branch. These merge requests often consist of a description, reasons
for the changes, and links to related issues. Merge requests are often assigned
a reviewer that is to review the code for any errors or faults, and can choose to
approve whenever they see fit. This process enables collaborative programming
and ensures good code quality and stability of code. [10]

16 CHAPTER 2. THEORY

2.6.3 Code review

After a developer is done developing a new feature in a feature branch. They
naturally want to merge their changes and additions into an upstream branch.
Before these changes are merged, it is good practice to perform a code review.
A code review is an important tool in software development, as it allows second
opinions on the solution and implementation as well as helps identify bugs, logic
problems, and other issues with the code. Code reviews are important to ensure
good code quality and transparency. In addition to the already mentioned benefits,
code reviews also help to share knowledge across the team. When team members
make changes they might learn new techniques and solutions. As everyone in the
team has the ability to review and offer feedback, this prevents one person from
being a single point of failure [11].

2.7 Development

2.7.1 Version control

Version control is a practice used to keep track of and monitor changes made to
software code. It is an important tool within agile development as it can help create
an overview of changes in code, hence reducing development time and increasing
the chances of a successful deployment. Version control lets developers keep track
of releases through branches and the merging of these branches. This enforces the
concept of agile development as it helps release iterations of development, and if
anything goes wrong, version control enables rollback to older iterations. [12]

2.7.2 Agile development

Agile development is an approach to software development that focuses on devel-
oping a product through iterations rather than having a big launch. The goal of
agile development is to have continuous delivery of high quality and to create close
collaboration among team members, as well as flexibility and adaptability within
teams. This is so that teams can respond quickly to changes in requirements or
priorities. Agile development introduces short, incremental cycles. Each cycle
consists of planning, testing, development, and delivery of functionality. [13]

2.7.3 Scrum

Scrum is a framework within agile methodologies that facilitates the structuring of
a group’s work process and the creation of dynamic solutions for complex problems
[14]. The Scrum framework helps the team maintain communication, consistency,
quality, and deadlines [15]. To achieve this, Scrum utilizes an iterative and incre-
mental approach, aiming to optimize productivity, predictability, and risk control
[14]. The iterative approach involves the team planning, working through, and re-
viewing sprints, as well as reviewing the product [14]. The incremental approach
refers to the group breaking down the problem into smaller tasks. The team then

CHAPTER 2. THEORY 17

adds tasks based on the workload they estimate they can handle and the priority
of the tasks [14].

Scrum’s Six Principles

For Scrum to work, there are certain theoretical processes that it emphasizes, such
as Scrum’s six principles.

• The empirical process is applied in Scrum to increase adaptability by having
the group learn from their experience and plan sprints based on observed
results and achievements[16].

• Self-organization: For Scrum to work, it is important that every member of
the group is able to engage in self-organization and independent operation
[14].

• Collaboration is important for Scrum so that the team can communicate and
cooperate on changes and issues that arise during the process and thereby
keep everyone on the team updated.

• Value-based prioritization is utilized to organize tasks so that the important
tasks and those with short time limits are addressed first.

• Time-boxing is used to designate how much time each task is assigned to
help the group keep track of time and prevents wasted time and delays.[14].

• Iterative development allows the team to adapt and manage changes more
easily through the understanding that the project will have to be refined
several times throughout the project’s lifecycle [14].

The Team

A Scrum development team should consist of a small group of workers with the
combined knowledge to create the project. The members should be treated equally
without any hierarchy [15]. The team should also be cross-functional and take
accountability.

Product Owner

The product owner of the team is the one who conceives and owns the idea.
They are responsible for managing and organizing the backlogs [15]. It is
important that they communicate the product goal to the team.

Scrum Master

The Scrum Master is responsible for facilitating the Scrum process and the
communication between the team and the product owner. The Scrum
environment they facilitate should also make it easy for stakeholders to inspect
and adjust the sprint. This can be done by having a routine where the product

18 CHAPTER 2. THEORY

owner orders work for the problem by creating items in the backlog. Then, the
Scrum team decides which items they add to the sprint during sprint planning,
and concludes with the team and stakeholders inspecting and adjusting the
results before the next sprint is planned. To foster this environment, the Scrum
Master should help lead, train, and coach the organization in its Scrum
implementation. They should also find techniques to facilitate communication
between all members of the Scrum team and help the team plan Scrum
implementations [15].

Sprints

Sprint Planning

In Sprint Planning, the team comes together to plan which items from the
backlog they intend to work on for that particular sprint. The team also plans
how they intend to solve the items and who will be responsible for solving them.
While planning the sprint, it is important for the team to properly estimate the
workload to avoid situations where there is a lack of tasks, resulting in wasted
time, and also to avoid excessive workload.

Daily Standup

The Daily Standup is a short meeting that allows each member of the group to
update the team on their progress, as well as issues and other changes. This
helps detect, communicate, and address issues quickly. Daily Standup should not
last long; a common rule is that members should be able to stand during the
entire meeting, hence why it is referred to as a Standup. This allows
stakeholders, the product owner, and other teammates to provide feedback. The
backlog is also updated to reflect any changes in priority, requirements, or
changes caused by issues.

Sprint Review

At the end of a sprint, a Sprint Review is held. The team reviews and discusses
accomplishments, issues, and changes. During the Sprint Review, the group can
check if any changes were made that drastically altered the sprint goal [15].

Sprint Retrospective

The Retrospective is also held at the end of the sprint. During the
Retrospective, the focus is on how the group worked during the sprint and how
that affected the outcome. If necessary, this allows for changes to be made to
collaboration between group members and individual work ethics.

CHAPTER 2. THEORY 19

Scrum Artifacts and Items

In Scrum, items represent functions that need to be created or implemented. These
functions are defined through User Stories, which have a title and description that
explain what the user should be able to do once the User Story is completed.
Epics are collections of User Stories that represent a user experience, and Issues
are minor tasks broken down from the User Stories. Duties include all other
charges that are not related to functions. To keep track of these items, Scrum
artifacts are used. These tools help keep the project on track. The three Scrum
artifacts are:

Product Backlog

The Product Backlog is the project’s to-do list. It includes the project roadmap
and requirements. The backlog should be updated whenever achievements are
made or obstacles are met and after sprints. A backlog is a build-up or
accumulation of prioritized tasks like user stories, changes to functionality, and
bug fixes. An accurate and prioritized backlog reinforces the development team
to work smart to get the “must have” functionality before the other tasks aren’t
as important. A backlog is necessary when using an agile workflow because sprint
planning relies on the backlog to both scope and size the development tasks.

Sprint Backlog

The Sprint Backlog is a smaller to-do list created for a specific sprint. During
Sprint Planning, the development team fills it with items from the Product
Backlog and assigns them to team members. It is essential to choose high-priority
projects during Sprint Planning; a well-managed backlog will make this easy.
Having a good Sprint Backlog helps keep the team updated and focused [15].

Increments

Increments are defined as concrete stepping stones towards the product goal [15].
Every increment must be built upon all prior increments and verified before its
addition, ensuring that all increments work together.

User Stories

User stories are a way for an end user or a customer to give an informal general
explanation to describe wanted functionality or changes to the software. A user
story aims to discuss with the end user to improve the software to the user’s
needs. A user story consists of four elements, known as “The four Cs,” these
elements being: the Card, The Conversation, The Confirmation, and The
Context.

• The card is meant to establish "the” who, “what,” and "the why." It
contains who wants the change, what it is, and why it is needed.

20 CHAPTER 2. THEORY

• The conversation is vital to establish a dialogue with stakeholders or
product owners to establish a shared understanding of what’s necessary for
a user story to reach a reasonable goal.

• Confirmation is a set of rules for agreeing when a user story is done. The
warranty is given when all the criteria are met and the solution’s owner
formally accepts said resolution.

• The context is, as you might suggest, the context of the user story and how
that user story relates to other user stories. The context will be critical
when dealing with highly interconnected or somewhat overlapping stories.

Scrum Poker

Scrum poker, or planning poker, is an estimation technique agile teams use. It
estimates a project’s effort, complexity, or size. This method is used in Scrum
development processes to make estimates for user stories or other functions in
sprint planning.

CHAPTER

THREE

METHODS

3.1 Materials and Tools

3.1.1 Introduction

This section describes the materials, tools, and technologies utilized in the devel-
opment of the bachelor thesis.

3.1.2 Programming Languages and Frameworks

The main programming languages and frameworks used in the development of the
project were:

• HTML: For creating the structure of the web application. [17]

• CSS: For designing and styling the components and layout of the web appli-
cation. [18]

• TypeScript: For defining interfaces and types for the data being used and
returned. Typescript was used because it provides enhanced code quality by
defining interfaces, classes, and other constructs that improve code organiza-
tion and readability. In addition, it was also used because of its compatibility
with JavaScript. [19]

• React: For building the user interface components and managing their state.
React was used because it allows for creating single-page applications, this
means that instead of re-rendering the entire web page upon interaction,
only necessary components are re-rendered. Resulting in a more responsive
and interactive user interface, making an overall better user experience. [20]

• Rust: For developing a mock of a searchlight node, implementing a REST
API and used to create the service for changing network settings of the
Unity Hub. Rust was used as the programming language of choice due to its
powerful memory safety guarantees and performance benefits, this makes it
an ideal choice for a high-performance REST API. [21]

21

22 CHAPTER 3. METHODS

3.1.3 Software Applications and Tools

The following software applications and tools were employed during the project:

• Figma: For creating wireframes and designing the user interface. Figma was
used for its powerful ability to create interactable wireframes in a cloud-
based environment, this allows several team members to work together at
once. Additionally, Figma provides a user interface that is easy to use. [22]

• Postman: For testing API calls and learning about the searchlight’s behav-
ior. Postman was chosen for its capability to simplify the process of testing
API endpoints by providing a user-friendly interface to send and receive
HTTP requests and display their responses in an easily understandable for-
mat. [23]

3.1.4 Development and Collaboration Tools

To facilitate efficient collaboration among team members and manage the devel-
opment process, the following tools were employed:

• Git: For version control. Chosen for its powerful version control system that
makes it easy to track changes made to code over time, and its ability to roll
back changes, merge and review code [24].

• GitLab was used for collaborative code management, adhering to the Git-
Flow workflow model 2.6.1. GitLab was used specifically due to the codebase
already being situated on the client’s GitLab repository [25].

• Scrum: For project management and agile development methodologies. Scrum
was chosen because of its ability to facilitate agile teamwork [26].

• Confluence: For handling administrative aspects of the project. This tool
was chosen for its project management ability, as it offers a collaborative
and customizable platform for the team to share and organize information.
[27]

• Jira: Track sprints and issues. Jira was used because of its compatibility with
Confluence and because it provides an intuitive environment for planning,
tracking, and releasing software. [28]

• Discord: For instant messaging with team members. Discord was chosen
due to every team member already using it on a regular basis. Additionally,
discord provides the ability to easily create new channels, making it easy
and quick to set up. [29]

3.1.5 Hardware Equipment

Hardware equipment played a crucial role in the development and testing of the
project. The main hardware components used were:

CHAPTER 3. METHODS 23

• SL1 Searchlight: Loaned to the team by Luminell for development and test-
ing purposes.

• Unity Hub: Served as the server, running a custom Linux-based distribution
hosting the Unity Hub application. The Unity hub contains the backend
and the REST API, which is necessary for communicating with searchlights
through third-party interfaces.

3.1.6 The types of nodes

The reasoning to include some different searchlights designed by Luminell in this
chapter (SL1 3.1.6, SL2 3.1.6, CL-38 3.1.6) is to underline the distinction between
the different lights. There are important differences in limitations to be considered
when designing components in the frontend solution. Furthermore, the team will
also describe the Unity Hub in this chapter.

SL1

SL1 is a led searchlight designed by Luminell AS. The searchlight has a single led
module, as opposed to the SL2 (Fig. 3.1.1). The searchlight has a servo base with
full 360◦ free range in horizontal movement. In vertical movement, however, the
servo has 120 degrees of movement.

Figure 3.1.1: SL1

SL2

SL2 is also a searchlight designed by Luminell AS. The SL2 has two led modules
that are oriented vertically. The SL2 has 360◦ free range horizontal and vertical
movement. The searchlight is shown below (Fig. 3.1.2)

24 CHAPTER 3. METHODS

Figure 3.1.2: SL2

CL-38

CL-38 is a searchlight with long-range direct lighting because of its HMI technol-
ogy. Burn time (i.e., the amount of time the light has been on) is a related topic
with the HMI lamp technology having a burn time of about 400-500 hours, which,
as opposed to LED techonlogy, having a burn time of around 50 000 hours. In
contrast to the earlier discussed LED lights, the HMI lamps have a longer startup
routine, and if the light are turned on and off in quick succession multiple times,
the bulbs could be damaged. The CL-38 has the same base as SL2 and has a 360◦
free range horizontal and vertical movement. The searchlight is shown below (Fig.
3.1.3)

Figure 3.1.3: CL-38

Unity Hub

The Luminell Unity Hub is designed to be the central gateway unifying the Col-
ornet and Axon protocol by exposing an easy-to-use REST API. It allows the
retrieval of system information and the current status of connected nodes. Unity
Hub can be referred to as a server. It runs a custom Linux-based distribution that

CHAPTER 3. METHODS 25

hosts the Unity Hub application. The diagram below is for reference purposes
only. Details might be imprecise or intentionally left out.

Figure 3.1.4: Unity Reference

Client-node communication

The interaction between the client and the nodes is facilitated through a front-
end interface, which presents the user with pertinent information and control
mechanisms for light manipulation. This interface is supported by a RESTful
API integrated within the Unity Hub central gateway. Communication between
the front-end client and the Unity Hub gateway employs the JavaScript Object
Notation (JSON) format to transmit data. Subsequently, the Unity Hub gateway
executes requisite logic to guarantee accurate translation to and from a node.
Nodes within the system represent devices such as, but not limited to, searchlights,
operator panels, and wireless lights.

3.1.7 External libraries

Several external libraries were used across the project. Libraries often provide pre-
built and tested solutions to common problems, due to this libraries were added
to save time on creating components and implementing functionality.

• FontAwesome: FontAwesome provided the front end with free icons that fit
well with the theme of the web page. It was chosen due to the vast variety
in customizable and scalable icons it introduces [30].

• MaterialUI: Used for its components. Chosen because MaterialUI introduces
many pre-built components that are responsive, visually appealing, and cus-
tomizable [31].

• ChartJS: ChartJS was used to create an interactive and responsive chart
for displaying information from lights, It provides an easy-to-use API for
creating charts that work across multiple browsers [32].

26 CHAPTER 3. METHODS

• Lodash: Used functionality to only send requests in intervals or on events.
Was chosen to avoid boilerplate and come up with a proprietary solution
that this utility library contains.

• morse-converter: Used to translate plain text into Morse code. This library
was chosen due to its easy-to-use nature [2].

• react-dnd: used for implementing drag and drop functionality. Chosen be-
cause of its simplicity, customizability, and large community [33].

• Axios: For sending HTTP requests. Axios was chosen for its simple, lightweight
way to handle HTTP requests and responses [34].

3.1.8 Refactoring

The team utilized refactoring to update the initial code and make it more easily
scalable. Refactoring was used on the following aspects of the project.

• Frameworks: To update the frameworks to newer versions.

• Code: To fit the standards of the updated frameworks.

• Styling: To follow a single naming convention across the entire project.

• File structure: To make it easier to navigate when the project scales up.

3.2 Project process

3.2.1 Team

The development team in this project consists of four bachelor students from
NTNU Ålesund: Richileu Alphonso Bailey, Eduard Andrei Cristea, Jonas Tøsse,
and Torstein Eide. Adhering to the Scrum roles, the team was assigned as the
development team (2.7.3). Furthermore, Eide was designated as the "daily Scrum
Master" to oversee all team Scrum-related activities on a daily basis.

Roles and task distribution

Aside from being designated as the development team, each member of the team
was also assigned a specific role to aid in effective project management and su-
pervision, which extended beyond the Scrum framework. The objective of these
roles was to ensure timely submissions, especially the team leader role, which was
crucial to ensure every member was motivated and on time with their assignments.
These roles were suggested as tightly attached to the academic part of the project,
such as the pre-project plan and report.

A draft of the distribution of roles and responsibilities was drafted in a group
contract during the commencement of the project. According to the original doc-
ument, Eide was designated as the team leader and report manager, while Cristea

CHAPTER 3. METHODS 27

was appointed as the meeting manager, and Bailey and Tøsse were assigned the
roles of document and submission managers. Additionally, all team members were
assigned the responsibility of quality control to ensure comprehensive oversight of
the project.

3.2.2 Supervisor

Arne Styve is an associate teaching professor at NTNU in Ålesund. Styve’s role in
this project is that of the Scrum Master and project supervisor. A Scrum Master’s
role is to ensure that the Scrum framework is followed and should act as a coach
for the rest of the team (ref. 2.7.3). A project supervisor’s role is to assist the team
with technical and theoretical information and give the team advice throughout
the project’s lifetime.

3.2.3 Client

Luminell Norway AS is the client for this project, with Frode Kolgrov as their rep-
resentative fulfilling the role of the product owner as per the Scrum methodology
(ref. 2.7.3). The team will deliver the final product to Luminell Norway AS.

3.2.4 Meetings

Regular meetings were to be held with both the client and supervisor to ensure
the project progressed smoothly. At the conclusion of each sprint, meeting notes
would be generated to document the feedback provided by both the product owner
and supervisor. These meetings took place at either the NTNU or Luminell’s
office, either in person or via Teams. Initially planned for a duration of thirty
minutes, the meetings were extended when necessary to discuss significant features
or challenges encountered by the team.

Mettings with client

In-person meetings with clients were held every other week, to ensure that prod-
uct owners were up to speed on development and potential difficulties regarding
existing software. Important decisions both for design and functionality were also
discussed in these meetings. Even though the meetings were held bi-weekly, the
client attended the meetings with the supervisor, on teams, whenever they wanted.

Meetings with supervisor

The team held bi-weekly meetings with their supervisor on the weeks when they
did not have in-person meetings with the client. These meetings served as an
opportunity to discuss the project status, as well as any issues or concerns with
the Scrum workflow or work methodology. The team used these meetings to receive
guidance and feedback from their supervisor to ensure the project was on track.

28 CHAPTER 3. METHODS

3.2.5 Development process

Project setup

This section outlines the initiation phase of the project, namely the project setup
phase. During this stage, the project team established a framework for the project
by creating Confluence and Jira spaces that accommodated the administrative
and workflow aspects of the project. Additionally, a roadmap was developed and
approved by the supervisor and client representative, outlining the project’s ob-
jectives (fig. 3.2.1). The setup phase also involved making Scrum-related decisions
such as sprints, sprint reviews, and daily stand-ups, as well as scheduling manda-
tory physical meetings. Lastly, the team finalized the planning phase by creating
a product requirement specification (fig. 1.3.1).

Figure 3.2.1: Project roadmap

Scrum

Scrum has been used as the agile management framework to provide a flexible
and iterative approach to the development process and to provide structure to the
development throughout the project’s lifetime.

CHAPTER 3. METHODS 29

Sprints

During the project setup, it was agreed to have weekly sprints. After each sprint,
a sprint review meeting with the client and/or Scrum Master was conducted,
followed by planning for the next sprint.

Sprint Planning

As the name implies, sprint planning was utilized to prepare for the upcoming
sprint. Although this procedure could be carried out in collaboration with the
client and supervisor, it primarily involved the development team. This is due to
the fact that story points were assigned to issues to estimate the necessary hours
for each task and that the client prioritized issues in Jira. Based on these criteria,
the team could independently determine the scope of each sprint.

Daily Stand-up

Throughout the sprint, daily standup was employed to maintain regular updates
on the progress of both the sprint and the overall project. The daily standup
did adhere to a specific schedule; instead, it was conducted just before the shared
lunch. The duration of the standup was consistently kept within a five-minute
timeframe. Within this brief period, each member presented their progress, issues,
and changes that had occurred, facilitating clear communication of individual
needs.

Jira

Jira was set up using Atlassian’s template for Scrum projects, this template pro-
vided a backlog, issue board, reports, and a roadmap. This space was set up by
the project supervisor and Scrum Master. Jira was used to create issues, which
could be categorized as user stories, tasks, improvements, bugs, or epics. Each
issue was required to have a summary, version tag, description, and label. The
summary provided a brief overview of the issue, while the description provided
more detailed information, including the completion criteria for the issue.

The backlog was populated with the created issues, which were ordered based
on their priority. The higher a task was on the list, the higher it was prioritized.
This allowed the client to adjust the priority of the issues by changing their order
within the backlog.

Confluence

Confluence was configured to match the Jira space after using the Scrum template,
it was also based on a development process template. Inside this space, a main
page was constructed. This page included an introduction to the project, with
information about the project, team, and issues from Jira. Additionally, pages for
meeting notes, retrospectives, status reports, files, and decision logs were added.

30 CHAPTER 3. METHODS

These pages included a button for creating a new corresponding page with a
template, as well as a list of all pages related to their parent.

Quality assurance

The team adopted the practice of utilizing merge requests to maintain high code
quality. Essentially, when a feature branch is prepared to merge with another
branch, a merge request is created (ref. 2.6.2). Subsequently, the merge request is
assigned to one or more team members who review the changes made, commonly
referred to as a code review (ref. 2.6.3). The reviewer evaluates the modifications,
provides feedback, and comments, and ultimately approves or closes the merge
request. In the event that the merge request is closed or changes are requested,
it’s essential to provide comments that outline the criteria for approval.

Furthermore, GitLab pipelines were employed to verify that each version of a
branch was compiled correctly. Pair programming was utilized, ensuring a higher
level of consistency and code quality.

CHAPTER

FOUR

RESULTS

4.1 Engineering result

4.1.1 Overall results

In this project, the team has developed a web-based application for Luminell AS
to serve the Unity Hub (ref. 3.1.6). The application has been developed by using
React and Typescript. The overall solution is a refactored and improved solution
upon Luminell’s web-based user interface that represents all searchlights connected
through Luminell’s Unity Hub. The final result included versions of React and
Node that were up to date. Additionally, much of the existing code was refactored
from class components to react functional components. All this resulted in a user
interface with a navigational sidebar, used for navigating through the different
pages and functionality.

31

32 CHAPTER 4. RESULTS

Figure 4.1.1: User-interface with sidebar and controllers for SL1, SL2 and CL38

Furthermore, extra features were added. These features include a morse module,
an error -and statistics page, dimming of lights, parking, sweeping, surveillance,
and network settings. Looking at the requirements defined in the list of project
requirements, it is clear that not all requirements were met. The lack of met re-
quirements is a result of both lack of time and features missing from the backend.

Although not all requirements were met, the solution is updated, robust, scal-
able, and well-documented. These are all factors that make the project easier to
continue development on. The following resulted in the client being satisfied with
our development.

4.1.2 Refactoring

Refactoring the codebase resulted in higher cohesion and lower coupling, as op-
posed to the early iteration which the team took over. Core functionality which
would be used in multiple parts of the code has now been moved separately from

CHAPTER 4. RESULTS 33

the part of the code which is responsible for displaying the DOM. API calls to
specific parts of the REST endpoints are now defined and no longer dangling with
new definitions in different parts of the codebase.

Figure 4.1.2: API separated within the file structure

Before embarking on the development of new features and components, the team
prioritized refactoring the existing codebase. This decision aimed to ensure a thor-
ough understanding of the logic and reasoning behind the original design choices.
The team meticulously analyzed the codebase, applying industry best practices to
enhance its quality and documenting the processes involved.

When refactoring, the team quickly identified that the existing code was outdated
and required a significant overhaul. The solution was using outdated versions of
NodeJS and React. Class component states were used instead of the more effi-
cient and simpler state hooks with functional components. Furthermore, the team
preferred to use TypeScript instead of JavaScript. Refactoring played a crucial
role in the initiation of the project and took much longer than anticipated, with a
total of 51 hours spent across three sprints to upgrade, switch to TypeScript, and
refactor from class component states to state hooks.

However, during the sprint planning process, the team underestimated the amount
of time the refactoring would require. This experience highlighted a significant
challenge in project management with Scrum - that things often do not go as
planned, and careful sprint planning is necessary to avoid delays and ensure project
success in the future. This would help shape how the team would plan their up-
coming sprints, and would later lead to the introduction of story points in Jira.

In addition to addressing "dirty code", the team also tackled "code smells" during
the refactoring process (ref. 2.1.4). These are indicators of deeper issues within
the code that may not necessarily cause problems but could indicate sub-optimal
design or coding practices. To ensure the stability and safety of the refactored
codebase, the team conducted tests after each change, verifying that the modifica-
tions behaved predictably and did not introduce new issues. This rigorous testing
process further contributed to the overall improvement of the software’s quality
and maintainability. The approach facilitated more predictable and higher-quality
software development.

34 CHAPTER 4. RESULTS

Node and React

When the team would begin to upgrade the node and react versions. It was
decided that it would be easier to upgrade node and react versions on their local
development environments and poke at the existing project, and then create a new
React project using the "create-react-app" TypeScript template.

JavaScript to TypeScript

Using TypeScript the team has set constraints on the definition of a searchlight.
JavaScript is known for its "loosely typed" nature, indicating that it has the
capability to automatically convert data to the expected data type whenever an
operator or statement requires it. This behavior can be malicious to systems that
require precision and safety, in this case, a searchlight is a critical component
on a ship and must be treated and guarded from unpredictable behavior. The
figures below show the result of conversion and refactoring of how a searchlight is
represented.

Figure 4.1.3: Instance of a searchlight being defined in JavaScript before refac-
toring

CHAPTER 4. RESULTS 35

Figure 4.1.4: Definition of a searchlight using TypeScript after refactoring

Class Component State to State Hooks

A big part of refactoring from an older version of react to a new one, is that of
refactoring from class component states to state hooks. State hooks provide a sim-
pler and more concise syntax compared to class components, by letting developers
manage state directly within functional components, eliminating the need for con-
structor functions and binding methods. The team handled this refactoring in a
systematic way (ref. 2.1.3). This approach did not work for all components, how-
ever, and some needed to be handled with more care or even recreated completely.
This resulted in functional programming, instead of object-oriented.

36 CHAPTER 4. RESULTS

Figure 4.1.5: Searchlight React Component Pre-Refactor and Post-Refactor

CSS

When the team started the refactoring process there was no apparent structure
to the styling, as much of the styling was inside of a single style sheet, and there
did not seem to be a systematic naming convention for the class names. When
refactoring started, the single stylesheet was split into multiple ones with names
corresponding to the component it was manipulating. After this job was done,
a global stylesheet was established. This sheet would contain global styles (for
buttons, etc.), unit resets, and variables that were set according to rules set in
the design guidelines. Additionally, a set of IDs would be set in this sheet, these
would represent the style of different content-related components, like content

CHAPTER 4. RESULTS 37

cards, wrappers, and headers. This would be changed in the future due to the
nature of ids.

When establishing a structure and standard for styling, it was established that
the project was to contain a styling folder that contained style sheets for each
component and page, this would prove efficient for scalability and navigation.
These sheets were to be named the same as the file they were manipulating. With
this established, a naming convention was established. Class names should start
with the name of the component it wishes to manipulate followed by a hyphen
("-") and a description of the part of the component that should be manipulated,
according to standard practices within the industry [35].

File structure

During the refactoring process, the team decided to revamp the entire source folder
of the initial solution. Originally the source folder contained two folders, one for
images and one for components, whereas, in the component folder, both pages
and components were located. It was decided early to split the source code into
folders for assets, components, error handling, model, pages, styles and tools.

Figure 4.1.6: Initial file structure

Figure 4.1.7: Refactored file structure

38 CHAPTER 4. RESULTS

When the project becomes more complex, it becomes more difficult to navigate,
this was done in an attempt to keep order and to make scalability easier.

Summary

All things considered, the refactoring process was to be carried out systematically,
with the team focusing on the core functionality and streamlining the code design
for simplicity and maintainability. Any "dirty code" result of shortcuts, inex-
perience, or tight deadlines was then identified and replaced with cleaner, more
comprehensible code until it was deemed as "clean code".

4.1.3 Implemented functionality

Page overview

Figure 4.1.8 gives an overview of the entirety of the web application. On the launch
of the application, the dashboard loads by showing you the connected searchlight
and the corresponding light controllers (fig. 4.1.11). This is a scrollable page that
dynamically adds a controller for every consecutive searchlight.

On the left of the figure, it shows the sidebar, consisting of the Unity Hub headline,
and the following buttons for the different pages: Dashboard, Morse, Statistics,
Commissioning, and Settings.
The prior pages will be presented below.

CHAPTER 4. RESULTS 39

Figure 4.1.8: Dashboard / sidebar

Light Controller

The Light Controller, aptly named, serves as the functional controller for the
searchlights. The device features an array of controls including an on/off button,
an intensity adjuster, and a park button. Additionally, the controller incorporates
adjustable sliders, whose functionality varies based on the specific light under con-
trol. As introduced in the method chapter, certain searchlights have a restricted
range of motion (ref. 3.1.6); a factor that was thoughtfully considered during the
creation of these controllers.

The Light Controller comes in two distinct models. The first model allows unre-
stricted movement (fig. 4.1.9), equipped with a pair of circular controllers that
offer comprehensive 360-degree control in both the horizontal and vertical planes.

40 CHAPTER 4. RESULTS

Figure 4.1.9: Light controller SL2

The second variant maintains the same circular controller for horizontal motion
but employs a different mechanism for vertical movements. This adaptation is
due to the SL1 searchlight’s limited movement range of 120 degrees, hence the
inclusion of a vertical adjustment slider (fig. 4.1.10).

Figure 4.1.10: Light controller SL1

Both controller models incorporate an icon in the top right corner resembling a
slide drawer. Upon pressing, this expands to unveil the additional functionalities
of a searchlight. The available options in the menu consist of surveillance, mimic,
sweep, single lamp mode, wave compensation, beam focus, and reboot.

CHAPTER 4. RESULTS 41

Figure 4.1.11: Light controller SL2 with menu open

The CL(-38) controller is the same as the SL2 controller, except, this controller
should not have the option to adjust light intensity. The reason for not fixing this
problem in time for submission is that there needed to be a way to distinguish
between SL2 and CL models. This fix to the backend was applied at the end of
the project, with no time to implement it in the web UI.

Figure 4.1.12: Light controller for the CL models

Morse Module

In the event of electronic communication failure for vessels traversing the open
sea, alternative methods of communication with other ships or land become in-
creasingly essential. One such approach involves the transmission of Morse code
via searchlights. The figure below illustrates two primary functionalities incorpo-
rated within this system: a text-to-Morse code module and a Morse code-to-text
module. These modules were developed after the theory of Morse code (ref. 2.2).

42 CHAPTER 4. RESULTS

Figure 4.1.13: Morse module

The text-to-Morse code module is specifically designed to facilitate the conver-
sion of desired textual information into Morse code for transmission through the
vessel’s searchlights. This module allows users to input the required text, select
the appropriate searchlight(s) for transmission, determine whether the message
should be looped, adjust the playback speed, and ultimately initiate the Morse
code transmission.

Conversely, the Morse code-to-text module provides a means of decoding incoming
Morse code messages into textual form. This process necessitates manual input
from the operator and a basic understanding of Morse code principles. This com-
ponent facilitates an input field followed to the right by a keyboard button, which
reveals a set of buttons to input received Morse code. The empty whitespace
below shows the deciphered Morse code in textual form. By utilizing these two
modules, vessels can maintain vital lines of communication, even under challenging
circumstances.

Statistics

In case of an error concerning a searchlight, the searchlight’s error gets added to a
designated error array. The error is subsequently displayed in the table as shown
below. The error array is structured to assess whether a particular error already
exists for a given searchlight. The error implementation consists of sending API
requests to check the status of the searchlight. Then there is relatively simple
logic: sleep until the searchlight should have done what was requested, and con-
versely, check if the searchlight status is the same as requested. Then the error
creation is handled by a class called "ErrorFactory."

Additionally, a separate window is incorporated to display the burn time for in-
dividual searchlights. By providing this information, customers can effectively
predict the approximate duration before a bulb replacement is necessary. This
feature enhances the overall user experience and contributes to proactive mainte-

CHAPTER 4. RESULTS 43

nance and improved system reliability.

Figure 4.1.14: Statistics page

Settings

The settings page is a page with information about the different searchlights, as
well as network settings for changing the Unity Hub’s IP, gateway, and subnet
mask. Starting on the top of the page; it shows connected devices, starting with
the name of the device, address, and node type. This table is there to easily be able
to identify how many devices are connected, and which ones. If the user rather
wants to check out specific information or change some settings, then the table
below is the designated table to look up. Here the user can adjust settings like
the position of the searchlight, and modes like tracking and upside-down mode.
Lastly the box at the left bottom displays three input boxes for inputting new
network settings. This is an advanced setting, requiring some understanding of
networks.

44 CHAPTER 4. RESULTS

Figure 4.1.15: Settings Settings page

Drag and Drop

Drag and drop logic was implemented, but not finished. Within the commissioning
page located in the sidebar, users should be able to view an overview of their vessel.
Additionally, they should be able to choose the location of their bridge, as well as
their searchlights, in order to make the overview fit their specific vessel. The logic
behind dragging components into a droppable slot was implemented, however, the
team did not find the time to fully implement this feature.

Figure 4.1.16: Bridge dropped onto a boat view

CHAPTER 4. RESULTS 45

Figure 4.1.17: Slots where lights can be dropped

4.2 Frontend Architecture and Technologies

4.2.1 Figma

The project’s wireframes, based on the outlined features, were created using
Figma. The wireframes underwent several iterations throughout the project. Ini-
tially, rough sketches were presented to the client for feedback. Once the sketches
and feedback were approved, the team worked on designing them in greater de-
tail. Throughout the project, the sketches were modified to align better with the
website’s overall theme and ambiance. This was a favorable decision as it resulted
in an improved user experience.

4.2.2 Consistency

To ensure design consistency the team would create and follow a design guideline.
This design guideline contained a set of rules that were to be followed when working
on the web UI. In this guideline rules for the following points could be found:
theme, color scheme, typography, hierarchy, icons, border rounding, and shadows.
With the implementation of this guideline, all components, pages, etc. would be
consistent and would have the same feel. The rules defined in the design guideline
would be added to the global stylesheet as variables.

Colors

The colors defined in the design guideline were "main", "accent" and "client logo
color". The main and accent colors were to be used. The main colors with the
"client logo color" were used for elements that should be more noticeable. The
colors were decided from the existing solution, as well as from Luminell’s logo.

46 CHAPTER 4. RESULTS

Figure 4.2.1: Design guideline colors

Typography

The typography section defined every aspect related to typography. This included
font sizes in multiple units, font family, and a set of rules for header text and body
text.

Figure 4.2.2: Design guideline typography rules

Hierarchy

The hierarchy of the front end would be described loosely in this section of the
design guideline. Here the main components of the website would be described,

CHAPTER 4. RESULTS 47

with what they should contain and how they should work. Additionally, this sec-
tion would contain a set of spacing rules that should be used across the entirety
of the front end.

Figure 4.2.3: Design guideline hierarchy rules

4.2.2.1 Icons, border rounding and shadows

Rules for use of border-rounding, shadows as well as icons were defined in the
design guidelines as well, these rules were short, and just specified the specifics of
the values that should be used on borders and on shadows. Additionally rules for
the use of icons, as well as the type of icons were described.

Figure 4.2.4: Design guideline rules for icons, shadows, and border rounding

48 CHAPTER 4. RESULTS

4.2.3 External libraries

Several external libraries were used to reach the point the project is at today.
Libraries were used to provide circular sliders, morse translation, and multiple
frontend components like icons, provided by FontAwesome, sliders, and switches,
provided by MaterialUI (MUI).

MaterialUI

While most components represented are custom-made, many components were
gathered from external libraries such as MaterialUI, and styled to fit the theme of
the website. MaterialUI provided the team with responsive and visually appealing
components that were customizable. The components used were styled to fit the
theme of the website, with respect to the design guideline (ref. 4.2.2).

Figure 4.2.5: All MUI components used

Morse-Converter

When developing the Morse module, the team needed logic that could convert text
to Morse code and vice versa, as well as logic for transmitting lights according to
the Morse code. To save time, it was decided to use an external Morse converting
library that offered the required functionalities. The team specifically chose this
library for its simplicity and customizability, as it allowed the team to easily
convert from one to another, as well as change characters for dots, dashes, spaces,
separators, and unknown characters.

CHAPTER 4. RESULTS 49

Figure 4.2.6: Simplicity and customizability of the morse-converter

React-circular-slider

The react-circular-slider library is an important part of the light controllers. As
lights are able to move 360 degrees in the horizontal direction and some models
are able to move 360 degrees in a vertical direction, it was necessary to implement
a circular slider that could display the current degrees of the light, in terms of its
point of origin. To implement this feature a circular slider library was used and
styled to fit the theme given in the design guidelines.

50 CHAPTER 4. RESULTS

Figure 4.2.7: Circular slider for moving horizontally

FontAwesome

FontAweomse introduced many icons to the project. It was used to save time
so that the team would not need to draw icons themselves. It was decided that
FontAwesome’s classic solid icons would be used, this was because they fitted best
with the theme of the website.

Lodash

The Lodash library was used primarily for its Debounce and Throttle functions.
The functions implement techniques to control how many times we allow a function
to be executed over time.

ChartJS

ChartJS was used to save time when creating a chart component for displaying
information about searchlights over time. It was chosen for its simplistic way of
implementing charts and for its versatile chart types.

Figure 4.2.8: Chart using ChartJS

CHAPTER 4. RESULTS 51

Axios

The Axios library was used to handle all the HTTP requests. The tool was chosen
for its promise-based HTTP client and easy-to-use interface. Even though the
project did not have extraordinarily complicated requests,

react-dnd

React-dnd was used to ease the implementation of a drag-and-drop to an unfin-
ished and unreleased iteration of the commissioning page. The team managed to
implement draggable and droppable components.

4.3 Administrative results

4.3.1 Collaboration

For collaboration, the team used tools such as Confluence and Jira to keep track of
the project’s administrative and development aspects, as mentioned in the method
section 3.2.5. Confluence and Jira proved to be powerful tools for collaboration
among team members, supervisor, and client. The supervisor Styve (Scrum Mas-
ter), had access to the project space and could follow the team’s progression, and
give well-suited advice. The client also had access to the space and could add user
stories and prioritize issues based on the need of the different functionalities. The
benefits of having the administrative documents in Confluence and issue tracking,
with time writing, aided the team in their collaboration. Story points in Jira were
another collaboration tool that the team employed some weeks into the project;
this assisted the group in improving time estimation.

Aside from the collaboration tools, the team employed co-working practices to
overcome issues. The group also employed mandatory on-site working days to
improve collaboration and communication; this proved successful since code col-
laboration seemed harder on platforms like group calls.

4.3.2 Confluence

Confluence was used to create a general overview and to organize the project.
Supervisor Styve provided the team with a Confluence space which was set up in
the planning phase of the project. Styve has been very helpful and strict with
the use of Confluence to ensure the good and correct use of the platform. The
project space contains general information, project files, decision logs, and product
requirements given to the team by the client. This space also contains meeting
notes from sprint reviews, retrospectives, and status reports.

4.3.3 Jira

In Jira, the backlog was filled with issues during the planning phase and during the
lifetime of the project. These issues could be tagged as epics, story points, tasks,

52 CHAPTER 4. RESULTS

improvements, or bugs. These issues were then given a summary, description,
version tag, priority, and story point. The description included clear and specific
criteria that determine when the issue is considered completed. Additionally, all
descriptions should contain a statement that reads "this issue is complete when..."
to provide a clear indication of the completion status. Story points are just fictive
numbers, representing a unit that is defined by the team. In this project this
unit represented hours. This means that the story points were estimated hours an
issue would use to be complete. Priority was set to medium by default. However,
client representatives can update and set the priority in the backlog. Issues that
were higher up in the backlog were considered more important, and their priority
would be set accordingly.

4.3.4 Scrum

Using Scrum, the team has worked agile and structurally throughout the project’s
lifetime. By following the framework, the team has had regular sprint reviews,
meetings, retrospectives, and status reports that have been documented. The
Scrum roles include a team, product owner, and Scrum Master. The product
owner for this project has been the client, Luminell Norway AS, and their repre-
sentative, Frode Kolgrov. Kolgrov has been very active during the project, giving
feedback and essential to prioritizing issues within the project’s backlog. The
project supervisor, Arne Styve, was the Scrum Master, providing input on how
the team practices Scrum and its workflows.

Sprint

The sprint duration was established during the project’s initiation in a startup
meeting with the client representative and the Scrum Master (ref. 3.2.5). It was
agreed that sprints would last for one week, and at the end of each sprint, a meeting
would be held with all parties involved to discuss the latest sprint. This frequent
feedback loop increased team collaboration, communication, and productivity as
potential issues were identified and addressed more quickly. Additionally, with
more opportunities to receive feedback and adjust plans, the team was better
equipped to respond to project requirements or priorities changes. Every alternate
sprint would entail an additional meeting with the team and the supervisor/Scrum
Master to discuss Scrum theory and practice, ensuring the correct use of the
methodology. By having more frequent sprints, the team had more opportunities
to learn and improve Scrum practices through regular retrospectives.

Daily stand-up

Daily stand-ups were held standing-up every day, orally at the campus or through
calls on Discord if members could not attend physically. Initially, stand-ups were
held at a point in time when all team members saw fit; however, this raised the
issue of forgetting to conduct the meetings. To fix this, it was decided to have the
daily stand-up meetings right before lunch breaks (11:45). This resulted in much
fewer deviations. Additionally, a discord chat channel was created where each
team member would shortly write what they discussed on the stand-up, marked

CHAPTER 4. RESULTS 53

with a date. Stand-up meetings were held standing up.

During the meetings, team members could request feedback, assistance, pair pro-
gramming, and tips. In extreme cases, when a member was unable to resolve a
problem, they could also request that another member assume responsibility for
the task.

Scrum poker

The team utilized Scrum Poker to estimate the time needed for issue completion.
They employed a mobile app with cards containing numerical values representing
hours. Team members would open the app and select the card representing the
hours they believe the issue would require completion. Once everyone had chosen
their card, they would reveal them simultaneously. The final estimated time would
then be determined by taking the average values on the cards.

Meetings

As previously stated, meetings were held at the conclusion of each sprint. These
meetings took place at either the NTNU or Luminell’s office, with Frode Kolgrov
attending whenever possible, either in person or via Teams. The team generated
meeting notes to document the feedback provided by both the product owner and
supervisor. While the meetings were initially planned for a duration of thirty
minutes, they were extended when necessary to discuss significant features or
challenges encountered by the team.

Meeting with client

Meetings with the client Kolgrov were organized every Friday at 9:30 AM. The
scope of the meetings was to show an overview of the progress that the team
has done. Features would be unveiled and a demo would be shown. Thereon
feedback from the client would be noted and added as an action item in the Con-
fluence meeting notes. Meeting notes were taken by Eide. The meeting notes are
comprised of a date, attendees of the meetings, goals for the meeting, discussion
items, and action items. The client is technically knowledgeable of the product,
this project is based upon and would provide insight into the documentation and
API. Discussions around technical challenges would occur at the end of the meet-
ings so that ideas and solutions could arise. Some meetings would last for well over
an hour due to the accumulation of feedback and discussions of the searchlights.

4.4 Version control

Git was used for version control during the project. The team utilized parts of the
GitFlow model (ref. 2.6.1) to structure our use of version control. A development
branch was used to keep track of the project’s history and from it, feature branches
were created. These feature branches were named after their corresponding Jira
issues. When the features these branches were producing were complete, a merge

54 CHAPTER 4. RESULTS

request into the development branch would be created and executed as detailed
in the quality assurance section in Chapter 3 (ref. 3.2.5). While not used by the
team directly, the master branch contained the code for the initial version of the
project. The release branch was not used due to an underestimation of the time
required to implement the features in the first release and as such the features
for the subsequent releases were also not completed in time. Due to this lack of
releases, no merges were pushed to the master branch, and due to the lack of
releases and merges to the master branch hotfix branches were not necessary.

4.5 Constraints

4.5.1 Obstacles

Overcommitment

Time proved to be a significant obstacle. Initially, the team planned sprints based
on what they believed they could accomplish during each iteration. However, this
approach resulted in an overestimation of their capabilities as issues often persisted
across multiple sprints. When this happened it lead to a delay in the completion
of tasks and subsequently the overall project.

Backend

The backend turned out to be a big constraint in terms of time. Although the team
had the freedom to work with the backend as needed, it was not originally part of
the project scope. The backend contained the REST API and all its endpoints and
was documented in the client’s repository, making it readily accessible to the team.

However, during the course of the project, the team discovered that the back-
end posed a significant constraint in terms of time. While testing the system,
they noticed that the backend did not always function as described in the docu-
mentation. For example, when requesting the current mode of the searchlights,
the team found that the expected values were not returned. Upon investigation, it
became apparent that the documentation specified the modes as "string" values,
whereas in reality, each mode was assigned a numerical value. These numerical
values were not defined in the documentation, requiring the team to refactor exist-
ing code to accommodate them. Additionally, the team needed to identify which
numerical values corresponded to which modes. To address this issue, the team
communicated the problem to the client, who subsequently updated the documen-
tation to include the numerical mappings for each mode.

Another issue that arose with the backend was the omission of certain function-
alities from the documentation. While most of the backend functionalities were
well described, some were completely left out, including those that were critical to
the initial solution. As a result, the team had to search through old code to find
the missing functionalities, which were not documented in the standard format
followed by the rest of the endpoints.

CHAPTER 4. RESULTS 55

A further challenge that the team faced was related to the missing "model" of
the searchlights. Since different searchlights operate differently, it was important
to distinguish between them to avoid using them interchangeably. Specifically,
there were two main types of searchlights, LED and HMI, with significant differ-
ences in their functionality. LED lights could be turned on and off instantly and
their intensity could be changed, while HMI lights required time to power up and
were not dimmable, but were more powerful. It was therefore critical to identify
the model of each searchlight to ensure that HMI lights were not treated as LED
lights, which could cause the HMI bulb to burn out. Although the documentation
indicated that the "model" was included with each searchlight, it was not actually
present, rendering it impossible for the team to distinguish between the models
and meet all the requirements.

Overall, these challenges related to the backend of the project significantly im-
pacted the team’s progress and required considerable effort to overcome.

4.5.2 Time estimation

Time estimation began during the pre-project planning and continued throughout
the project within the sprint planning. The overall time estimation was successful,
with all sprints concluded without significant alterations and the majority of them
finishing without excessive leftover tasks. Having an extra subject that spanned
the first three days of every week, made it harder to accurately gauge the volume
of work the team could accomplish within a week. However, the biggest issue with
time estimation arose from the team being "time optimists" and underestimating
the time required for some tasks, especially the refactoring and user story 29
regarding error messages. To address this, story points were introduced from sprint
8 to assist the team in better-assessing task time requirements. The empirical
process was also employed to mitigate this, resulting in some sprints with fewer
tasks to allow the team to concentrate on resolving the challenging tasks. This is
reflected in the fact that most user stories were completed within the predicted
time frame, taking between one to three sprints. Furthermore, the team could
have improved by promptly removing deferred issues from the sprint backlog.

56 CHAPTER 4. RESULTS

CHAPTER

FIVE

DISCUSSION

5.1 General discussion

The team is happy with their result. the final solution is a refactored and up-
graded/updated version of the initial solution, with added features. Although the
solution is considered good and well-built, there is the issue of not meeting all
requirements given in the project requirement specification. Most of the more
important requirements were met, such as updating node and react versions, as
well as refactoring. However, there is the case of missing functionality, due to lack
of time within the team and due to the obstacles discussed in the previous chapter
(ref. 4.5.1).

5.2 Engineering discussion

5.2.1 Refactoring

One of the major hurdles for this project was understanding the design choices
that have been done by the previous developers. From the team’s perspective, the
codebase was a mess, code duplication, using the same variable in multiple parts
of the code, not reusing components, and unnecessary updates of components were
among the issues the team had found with the codebase. This made it extremely
difficult for the team members to start coding and precious time was spent in
figuring out the structure.

From classes to use-state hooks

The project was initially started in 2019 using an older version of React. At that
time class components were still commonly being used, currently, this is consid-
ered as a legacy API that no longer receives updates. Class components are still
supported by React, but the maintainers and developers of the library do not
recommend using them in new code. It is recommended to define components

57

58 CHAPTER 5. DISCUSSION

as functions instead of classes. The team still decided to pursue the challenge of
migrating the components from a class to a function using use-state hooks. This
proved to be quite effective in learning and understanding how the previous code-
base was written and what it actually did. Moreover, it simplified the codebase to
be more concise without requiring an unnecessary boilerplate. It is only a matter
of time until class components will no longer be supported, as use-state hooks are
much better in terms of performance, readability, and longer lifetime support.

Challenges

During the refactoring phase, the team did not have a searchlight available from
week 8 through week 9, which slowed down the development and refactoring.
During this time a mock of a searchlight was made to facilitate the development.
Although the behaviour was not completely mocked the the core functionality
was the same. This mock was drafted and coded quickly in the programming
language Rust, which one of the previous members was familiar with, mitigating
downtime. Lack of documentation and poor API documentation has affected how
fast the team was able to code. The code inherited was lacking or had poor
documentation of its components and logic.

Refactoring benefits for product owner

The product can be considered as up to date, mitigating vulnerabilities, exploita-
tions, and bad practices within the React library. Readability has increased and
the time to code has been dramatically decreased. New developers can have a
much clearer overview. This decreases time and costs for the product owner if
further development is to be continued.

Value of refactoring

While this practice can sometimes be viewed skeptically, given that it doesn’t di-
rectly contribute to the introduction of new features or functionality, the value of
refactoring lies in its indirect benefits such as improvement of the health of the
codebase, enhances developer productivity, reduces errors, and ensures the soft-
ware’s long-term sustainability and adaptability. The team deemed the codebase
hard to work on, as it was hard to expand on. The high coupling made it a sub-
stantial task for the developer to process the flow at which events would happen.
It’s an investment that pays off in the long run and should be a consistent part
of any development strategy. All in all the team is very happy with the result of
refactoring.

5.2.2 Page overview

As mentioned earlier in the thesis, Luminell had an existing web app with a
basic layout. The team was free to redesign the web app as they wanted, but
since the current solution had simplistic and easy-to-understand qualities, they
just improved upon that design. The design guidelines were followed consciously
(see dashboard figure 4.1.8 and design guidelines figure 4.2.1). The team utilized

CHAPTER 5. DISCUSSION 59

contrast to distinguish the importance of components, and therefore improve the
visibility across the application. Using the icons in the sidebar is an effort to abide
by some design principles, like utilizing visual elements to aid the understanding
of the menu item and make an aesthetically pleasing design. The team chose to
separate the different sections using colors and shadows to represent cards, as seen
in fig 4.1.8.

The team is very happy with the page overview. The consistency across the
entirety of the web application is done well, resulting in a tidy look. Furthermore,
the use of colors to indicate important content such as buttons and sliders made
it easier to see what is more important for the users.

5.2.3 Light Controller

The implementation of the light controller was a crucial aspect of the project. Con-
siderable effort was put in to ensure that the controller functioned as intended,
by the team. The controller computes the desired input provided by the user
and translates it into the output angle for the specific searchlight. In doing so,
the controller must account for different searchlight types, such as SL1 or others,
in order to calculate the accurate angle for the lights. Moreover, the controller
refreshes every three seconds to obtain the updated position for the searchlight.

Upon reflection, this solution exhibits limitations, as the controller appears unre-
sponsive and uneven in performance. Alternative approaches, such as utilizing web
sockets instead of API calls, may have yielded improved outcomes. This would be
far outside the team’s scope and would be a big overhaul of Luminell’s codebase.
Nonetheless, the team exerted their utmost effort to optimize the controller’s ac-
curacy within the constraints of the given framework.

The decision to minimize the majority of buttons for the searchlight was made
deliberately to emphasize only the most crucial functions and avoid unnecessary
complexity in the controller interface. The primary controller should incorporate
sliders for movement, an on/off toggle, a light intensity slider, and a park option(as
discussed in the results). Upon a single click, all other buttons for the searchlight
are revealed on the right side. This approach proved to be successful, as evidenced
by the client’s favorable reception of the team’s implementation.

5.2.4 Morse Module

The Morse module, as described in the results, works as expected. It is a robust
system with a logical interface, and the team is very happy with the module.
Though there was used a library for the translation from Morse to text, and vice
versa, there was an extensive amount of time put in to ensure the team met the
product owner’s standard.

Despite the team’s satisfaction with the Morse module, the question lingers: was
this truly a good solution? Overall, the outcome is regarded as robust and of high

60 CHAPTER 5. DISCUSSION

quality, with the only drawback being the morse converting library that was uti-
lized. The specific library was initially chosen for its straightforward approach to
Morse translation. However, its lack of maintenance posed a problem. The library
had not been updated for two years prior to conducting this thesis. Typically, such
a prolonged period without updates is viewed unfavorably. Nevertheless, in this
case, since Morse code is unlikely to undergo significant changes in the near future,
the team did not perceive it as a significant concern.

5.2.5 Statistics

Error messages

The logic for the error message display that the team created, is in the frontend.
This is not a good idea when coding because the systems logic should be in the
backend and the frontend should only have code for the UI. The reason the er-
ror message logic was made in the frontend was that the backend was out of the
scope of the bachelor project. This implementation was only added because Lu-
minell wanted to have error handling for its searchlights. This solution is not
recommended as it could have security flaws, but this web application will never
connect to the wide web, so the security threat is not a big concern. While having
the logic in the frontend was not the best solution. The error logic itself was well
implemented using Factory Pattern making adding more errors in the future easy.

The issue regarding the error message display is that the team failed to prop-
erly implement the communication between the error message logic and the error
message display. The team managed to make a component that dynamically dis-
played the errors, but the passing of information between the files was subpar and
could be improved by using other technologies such as Reacts Context API. How-
ever, the best solution would be to move the error message logic to the backend
and create a database. Then modify the display code to retrieve the errors from
the database and refresh periodically.

Due to not having a database, the error messages are not persistent. Though
the team could store data on the website(Client-side storage), this could lead to
sub-optimal performance, and data storage would be individual for each client, so
the team decided not to store the data. When Luminell overhauls the codebase,
the database could be easily implemented.

When opening the statistics page, the error message table appears empty. The
team decided that the error table was to be visible even though there were no
errors. This visibility ensures that the user understands where to look if there is a
failure in the system. Moreover, showing a reference to the error table if an error
occurs using the light controllers would be an excellent addition to improving the
user experience.

CHAPTER 5. DISCUSSION 61

5.2.5.1 Burn time

The burn time display’s functionality was also limited due to the absence of a
database. Initially, the team aimed to develop a display, featuring a graph that
would present information regarding burn time, gathered from the database. How-
ever, upon discovering that incorporating databases fell outside the project’s scope,
the team shifted its focus to devising a simple JSX component capable of accepting
the desired information as parameters. This approach allowed for a more simpli-
fied presentation of the burn time information, albeit with reduced functionality
compared to the original design.

In future iterations of the project, the goal is to develop a burn time card file
that utilizes the chart card component. This burn time card would feature an
interface termed "burn time info", which would contain a date, a data list, and
a labels list. The date property would facilitate access to historical burn time
data. Additionally, the file would incorporate a function to retrieve data from the
database using the date as the key. Upon rendering, this function would be called
retrieving the burn time information corresponding to the present.

The team’s proposed structure for the collection in the database, intended to
store burn time information, is as follows:

• A collection named burn time info contains several date-based collections.

• Date collections each encompassing Burn time log documents.

• Burn time log documents, created each time a light is turned on, turned off,
or experiences an intensity change. These documents would include fields
for the light’s name, its axon address, the intensity level it was set to, and
the timestamp of the intensity change.

To facilitate the logging of burn time information, a "log burn time informa-
tion" method would be implemented, which would be invoked each time a light
is turned on, off, or undergoes an intensity change. This method would record
the light intensity in the daily data list and register the date in the daily labels
list. Additionally, separate methods would be developed for calculating both the
average and total burn time based on the information retrieved from the database.

Furthermore, a calendar would be integrated to enable users to access historical
burn time data by selecting a specific date. Upon selection the retrieve data
function would be invoked using the given date, thereby providing the user with
the relevant burn time information.

5.2.6 Settings

The settings page, as seen in figure 4.1.15, is composed of 2 tables of information
for the searchlights. As well as the network setting for the Unity Hub, as mentioned
in the project requirement spec(1.3) The page is essential to the operators, with
the capability to change the position, upside-down mode, and so forth.

62 CHAPTER 5. DISCUSSION

This page is finished and considered done, as all the requested functionality has
been added. The choice of having two tables, one for displaying connected lights,
and one for displaying all nodes with input fields, is considered a good solution.
This is due to the fact that the main focus of the application is the controlling of
searchlights, hence the connected lights are displayed at the top to display all the
lights that are connected to the system. Additionally, the table below displays a
table with all nodes (searchlights, operating panels, and Unity Hub). This table
is interactive to some degree as it allows users to change the positioning of devices
as well as check the "tracking" and "upside-down" attributes of the lights.

5.2.7 Network Settings

The product owner wished for a way to be able to change the network settings
on the Unity Hub via the web UI. This is quite hard to achieve using Node.JS
as it is considered dangerous and complex to change a system file which directly
affects the network interface configuration of the device, as it leads to system
instability, loss of inactivity, and security risks. The initial way of creating this
feature was to use Node.JS to write directly to the network configuration file
by accessing the file system of the Unity-Hub and parsing it and then replace
with the newly desired configuration. This would require a great expenditure of
time, and so the team searched for other methods to do so. This feature would
fall out of the scope, however, it was highly requested so the team decided to
use the Rust programming language and leveraged it’s process builder standard
library to write a service. Upon searching the team found the standard library
"std::process::Command" while developing the mock. This allowed us to change
said network interface configuration in a safe and easy way by leveraging the
existing Linux commands which the team thought was a brilliant way of solving
this challenge, but introduced a new dependency. The Unity-Hub must run the
Rust service written to be able to change the network settings on the device via
the UI. Instead of creating something proprietary and unproven, the team used the
existing Linux command feature that every developer or network administrator is
familiar with instead, which the team thought of as a great success and solution.

5.3 Administrative discussion

5.3.1 Time estimation

INGA2300 - Engineering Systems Thinking

A major challenge the team encountered when estimating time, was the inclusion
of the subject Engineering Systems Thinking. This subject had lectures scheduled
on Mondays and Tuesdays. Wednesdays were also the only days the team had ac-
cess to teaching assistants for help with assignments and team tasks in the subject.
Consequently, the team was left with only two working days per week dedicated to
the bachelor project. Considering the examination periods, this subject extended
up to the 20th of March, thus occupying a substantial portion of the semester.
The significant time requirement by this subject made estimating the total vol-

CHAPTER 5. DISCUSSION 63

ume of work the team could feasibly accomplish, hard. During the pre-planning
phase the team had to attempt to estimate the approximate amount of time that
INGA 2300 would require. The limitation of only having two-day sprints made,
estimating the volume of work the team could realistically complete, even harder.
This posed a particularly challenging issue when attempting to approximate the
time required to resolve problems and bugs, and further estimate how these bugs
and constraints would impact the planned roadmap.

To minimize the issue of this course occupying too much time, the team could
have utilized the Wednesdays more efficiently, by coming to an agreement with
the other team members to spend less time on the course on Wednesdays and
rather spend time on the bachelor project.

5.3.2 Work estimation

The Error Message and Statistics page increment was a step in the process that
the team eventually discovered that we had wrongfully estimated. Consequently,
sprints following sprint 6 needed to account for this wrongful estimation. From
that point forward the team always considered the time required to complete
item WFLUMINELL-29 and its sub-items as well as whether the incompletion
of these items would create constraints for other items. To address this issue
a conservative approach was adopted, with the team adding slightly fewer tasks
than they believed could be completed within the sprint. Additionally, other team
members either assisted with item #29 upon completing their tasks or added new
tasks to the sprint, or contributed to the report ensuring progress would not be
hindered by the problem item. A concrete example of the empirical approach taken
to address item #29 is the planning of sprint 13. During this sprint’s planning,
the team prioritized the completion of item #29 and consequently included fewer
items in Sprint 13, with the intention of adding more tasks if the sprint backlog
items were completed ahead of schedule. Due to item #29 taking longer than
initially estimated, the sprint review often led the team to plan fewer tasks for
the subsequent sprint, prioritizing the completion of the problematic issue while
avoiding the assumption that it would be resolved quickly.

5.3.3 Motivation and teamwork

Re-delegation of tasks rarely occurred due to the standup meetings. This can be
attributed to the meeting’s ability to enable other team members to offer quick
tips on technology usage or research, as well as allocating time to pair programs
allowing tasks to be completed more quickly. As previously mentioned, convening
daily to discuss the progress, enabled the team to quickly adapt to changes.

5.3.4 Remote vs on-location work

Two mandatory office days were agreed upon at the beginning of the bachelor
project and as the final month approached all five weekdays were mandatory.
These mandatory office days further lowered the threshold, regarding requesting

64 CHAPTER 5. DISCUSSION

help, as a member could now simply ask for help from their colleague on the other
side of the table. Certain problems require more than one teammate and office
days made it easier to work together during those days.

CHAPTER

SIX

CONCLUSIONS

6.1 Problem solving

In the process of implementing the proposed system, the team faced a number of
challenges due to certain constraints imposed by the backend (ref. 4.5.1). Despite
the fact that not all requirements were ultimately achieved, the team demonstrated
resourcefulness and adaptability in overcoming numerous obstacles that emerged
throughout the project’s lifecycle.

One of the main issues was related to inaccuracies and gaps in the backend’s
documentation. This issue was most apparent in the case of the searchlights’ cur-
rent modes, where the expected string values were not being returned. Instead,
they were replaced by numerical values which had not been defined in the existing
documentation. To overcome this problem, the team engaged in intensive com-
munication with the client to bring the issue to their attention and seek guidance.
As a result, the documentation was updated to include the numerical mappings
for each mode.

Another significant challenge was related to missing functionalities from the back-
end documentation. This issue was resolved by the team by painstakingly going
through old code to locate the missing functionalities. Although this task was
time-consuming and wasn’t originally planned for, the team’s determination and
collaborative efforts led to the identification and understanding of these function-
alities, which were then incorporated into the project.

A further hurdle encountered was related to the missing "model" of the search-
lights, which posed a risk of incorrect usage and potential damage to the HMI
lights. In response to this, the team spent a significant amount of time devising a
solution to distinguish between the searchlight models, ensuring that they would
be used correctly and safely.

Through these experiences, the team honed their problem-solving skills, demon-
strating the ability to adapt and innovate in the face of unanticipated challenges.

65

66 CHAPTER 6. CONCLUSIONS

6.2 Our contribution

The team’s contribution to this project was substantial and multi-faceted. It was
clear from the onset that the project would demand an extensive understanding
of various technologies, a knack for problem-solving, and a profound commitment
to collaborative work.

The team effectively took on the task of managing and organizing the project,
using project management tools such as Confluence and Jira. This ensured clear
communication within the team and with the client, facilitating the tracking of
the project’s progress and management of sprints and tasks.

On the technical front, the team navigated through the challenges imposed by
the backend. Despite numerous hitches, including inconsistent and missing doc-
umentation, the team demonstrated exceptional problem-solving skills to rectify
these issues. This often involved diving deep into the backend code, working
closely with the client, and applying a great deal of creativity and persistence.

Moreover, the team actively contributed to identifying and addressing the client’s
requirements and effectively translating these into a functional system. Despite
not being able to meet all of the requirements due to the backend constraints, the
team managed to deliver a functional, user-friendly system that added value to
the client’s operations.

6.3 Further work

While the project has achieved significant milestones, there are several areas of
potential further work due to the evolving nature of the client’s requirements and
the constraints encountered during the project.

Backend Documentation

One of the main challenges faced during this project was the missing and inconsis-
tent backend documentation. Further work could involve a thorough review and
update of this documentation to ensure that it accurately reflects the backend’s
current functionalities and responses. This would facilitate future developments
and minimize the time required for debugging and problem-solving.

Differentiating Searchlight Models

The problem of differentiating between the searchlight models was not fully re-
solved during the project. Future efforts could focus on finding a robust solution
to this issue, perhaps by working with the backend team to include the model
information in the searchlight data.

CHAPTER 6. CONCLUSIONS 67

Completing Remaining Requirements

Due to the constraints and challenges faced, not all requirements were fulfilled.

Controller

The current state of the controller is good and they work as intended, however,
they have a tendency to feel inconsistent, as it received feedback while operating
the controller. This results in the sliders moving around under operation.

Further development on this component would include making the controllers
feel consistent and making them not receive information and update during them
being operated. Additionally, the buttons for toggling functionality are updated
upon receiving information from the lights, resulting in a delay in the updating of
the button. Further, these buttons should be updated on click.

Commissioning page

The commissioning page is a page that does not have any features. In later
iterations of the project, the team would like to finalize the requested features like
drag and drop, to be able to customize the user’s vessels.

Refactor from id to components

The solution currently uses global IDs to represent content-related components,
such as headers, cards, and wrappers. This is not the correct use of IDs as they
should be unique across the entire project. Furthermore, these IDs should be
removed and swapped with components or class names.

Implement model restrictions

As it stands there is currently no separation between different models of search-
lights in the application. This is problematic as LED and HMI lights should be
handled differently. Further, a restriction in features should be implemented be-
tween the different models. Such as HMI lights not being dimmable and not being
able to transmit Morse code.

Mimic, homing, and sweeping

Mimic, homing, and sweeping are all features represented in the list of require-
ments (1.3). This logic should be implemented, such as defining sector sizes,
sweeping locations, and the logic behind lights mimicking others.

68 CHAPTER 6. CONCLUSIONS

CHAPTER

SEVEN

SOCIAL IMPACT

Social aspects:

The user interface for controlling ship searchlights can significantly enhance safety
and security onboard, especially at night. It can help avoid accidents and facilitate
communication with other ships, increasing social trust and cooperation among
vessels.

The searchlights will be more predictable, therefore leading to better mainte-
nance. Improved maintenance will also lead to improved security for the crew on
vessels since the operators can, in a higher sense, trust these searchlights to work
when a situation occurs (ex., a dangerous encounter with another ship or "man
overboard"). This higher trust is because the app reports burn time for the HMI
lights, so the crew may have a set of bulbs sent when the vessel is docked.

Environmental aspects:

If the app improved over time and then better allowed for automated or optimal
searchlight control, it could save energy, thus contributing to environmental sus-
tainability. Improved sustainability is critical when considering the marine sector’s
electrification, especially if ships become all-electric, and therefore need to save as
much as possible. Today this is not a critical implementation since most vessels
still use fossil fuels, with a dynamo charging a battery.

Light pollution is a relevant subject to the project. In a fundamental evaluation,
enhancing the user interface does not increase the existing issue of light pollution.
This is because the operating panel responsible for managing these lights is already
in active operation; thus, the level of light pollution remains constant. The light
pollution will be significantly higher for other vessels that may use searchlights
with less intuitive control methods.

69

70 CHAPTER 7. SOCIAL IMPACT

Economic aspects:

The application can lead to significant cost savings regarding maintenance. When
a light bulb change is on order, the planned maintenance could include changing
several other components on the feedback from the burn time and error modules.
The improved safety and communication capabilities could enhance operational
efficiency, potentially reducing delays and downtime, thus positively impacting the
ship’s productivity.

REFERENCES

[1] Refactoring Guru. Refactoring. url: https://refactoring.guru/refactoring
(visited on 05/08/2023).

[2] Wikipedia contributors. Morse code — Wikipedia, The Free Encyclopedia.
[Online; accessed 05-May-2023]. 2023. url: https://en.wikipedia.org/
wiki/Morse_code.

[3] Wikipedia contributors. Representational state transfer — Wikipedia, The
Free Encyclopedia. [Online; accessed 20-May-2023]. 2023. url: https://
en.wikipedia.org/w/index.php?title=Representational_state_
transfer&oldid=1155276189.

[4] Wikipedia contributors. Object-oriented programming — Wikipedia, The Free
Encyclopedia. [Online; accessed 15-May-2023]. 2023. url: https:/ /en.
wikipedia.org/w/index.php?title=Object-oriented_programming&
oldid=1154120068.

[5] Wikipedia contributors. Functional programming — Wikipedia, The Free
Encyclopedia. [Online; accessed 15-May-2023]. 2023. url: https:/ /en.
wikipedia.org/w/index.php?title=Functional_programming&oldid=
1153372920.

[6] Wikipedia contributors. Event-driven programming — Wikipedia, The Free
Encyclopedia. [Online; accessed 15-May-2023]. 2023. url: https:/ /en.
wikipedia . org / w / index . php ? title = Event - driven _ programming &
oldid=1153047477.

[7] John Hunt and John Hunt. “Abstract factory pattern”. In: Scala Design
Patterns: Patterns for Practical Reuse and Design (2013), pp. 155–161.

[8] Refactoring Guru. Factory Method. url: https://refactoring.guru/
design-patterns/factory-method (visited on 05/08/2023).

[9] Atlassian. GitFlow Workflow. Apr. 2023. url: https://www.atlassian.
com/git/tutorials/comparing-workflows/gitflow-workflow (visited
on 03/16/2023).

[10] GitLab. Merge requests. [Online; accessed 20-May-2023]. 2023. url: https:
//docs.gitlab.com/ee/user/project/merge_requests/.

[11] GitLab. What is a code review? url: about.gitlab.com/topics/version-
control/what-is-code-review (visited on 03/27/2023).

71

72 REFERENCES

[12] Atlassian. What is version control? [Online; accessed 20-May-2023]. url:
https : / / www . atlassian . com / git / tutorials / what - is - version -
control.

[13] interaction foundation. What is Agile Development? url: https://www.
interaction-design.org/literature/topics/agile-development (vis-
ited on 04/07/2023).

[14] Naveen Kumar Singh. “Scrum theory, principles, and values”. In: Elsevier
(Oct. 2021). url: https://medium.com/agilemania/scrum- theory-
principles-and-values-9a19d01c895c.

[15] UAGC Staff Member. “What is scrum? ” In: (Dec. 2021). url: https://
www.uagc.edu/blog/what-is-scrum.

[16] Hiren Doshi. “The Three Pillars of Empiricism (Scrum)”. In: (Dec. 2016).
url: https : / / www . scrum . org / resources / blog / three - pillars -
empiricism-scrum.

[17] HTML. HTML. [Online; accessed 16-May-2023]. May 2023. url: https:
//html.spec.whatwg.org/multipage/.

[18] Bert Bos. Cascading Style Sheets home page. [Online; accessed 16-May-2023].
May 2023. url: https://www.w3.org/Style/CSS/.

[19] Microsoft. TypeScript is JavaScript with syntax for types. [Online; accessed
16-May-2023]. 2023. url: https://www.typescriptlang.org/.

[20] Meta Open Source. React the library for web and native user interfaces.
[Online; accessed 16-May-2023]. 2023. url: https://react.dev/.

[21] Rust. Rust - A language empowering everyone to build reliable and efficient
software. [Online; accessed 16-May-2023]. 2023. url: https://www.rust-
lang.org/.

[22] Figma. Nothing great is made alone. [Online; accessed 16-May-2023]. 2023.
url: figma.com.

[23] Postman. Build APIs together. [Online; accessed 16-May-2023]. 2023. url:
postman.com.

[24] Git. git –fast-version-control. [Online; accessed 16-May-2023]. 2023. url:
https://git-scm.com/.

[25] GitLab. Software. Faster. [Online; accessed 16-May-2023]. 2023. url: about.
gitlab.com.

[26] Scrum. Welcome to the Home of Scrum! [Online; accessed 16-May-2023].
2023. url: scrum.org.

[27] Atlassian. Accomplish more together. [Online; accessed 16-May-2023]. 2023.
url: https://www.atlassian.com/software/confluence.

[28] Atlassian. All your work in one place. [Online; accessed 16-May-2023]. 2023.
url: https://www.atlassian.com/software/jira/work-management.

[29] Discord. IMAGINE A PLACE... [Online; accessed 16-May-2023]. 2023. url:
discord.com.

REFERENCES 73

[30] Dave Gandy. Take the hassle out of icons in your website. [Online; accessed
16-May-2023]. 2023. url: http://fontawesome.io.

[31] Material UI. Move faster with intuitive React UI tools. [Online; accessed
16-May-2023]. 2023. url: https://mui.com/.

[32] Chart js. Simple yet flexible JavaScript charting library for the modern web.
[Online; accessed 16-May-2023]. 2023. url: https://www.chartjs.org/.

[33] React DnD. Drag and Drop for React. [Online; accessed 16-May-2023]. 2023.
url: https://react-dnd.github.io/react-dnd/about.

[34] John Jakob "Jake" Sarjeant. Promise based HTTP client for the browser
and node.js. [Online; accessed 16-May-2023]. 2023. url: https://axios-
http.com/.

[35] MDN Web Docs. Organizing your CSS. [Online; accessed 20-May-2023]. url:
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_
blocks/Organizing.

74 REFERENCES

