
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Gustavsen, Sjur
Jørgensen, Mathias
Nilsen, Sebastian

Marine Traffic Portal

Website that shows current boats in
Trondheimsfjorden

Bachelor’s thesis in Computer Science
Supervisor: Tomren, Kjell Inge
Co-supervisor: Nymo, Christian
May 2023

Gustavsen, Sjur
Jørgensen, Mathias
Nilsen, Sebastian

Marine Traffic Portal

Website that shows current boats in
Trondheimsfjorden

Bachelor’s thesis in Computer Science
Supervisor: Tomren, Kjell Inge
Co-supervisor: Nymo, Christian
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

ABSTRACT

Accenture recently relocated their office to a new building by the docks in Trond-
heim. Thus, they experienced an increasing interest among the employees sur-
rounding the subject of boats in the fjord. To compliment for this increasing
interest Accenture wanted a modern website that presented all commercial ma-
rine traffic outside their office in Throndheimsfjorden. This website where to be
showcased on all the different Info screens around the office.

This thesis offers a comprehensive understanding of the approach, development
methods, and decisions made by the group throughout the project. It delves into
the rationale behind selecting specific technologies and tools, as well as highlights
the team’s collaborative dynamics and their iterative problem-solving process.
The document serves as a valuable resource for future projects and endeavors,
showcasing the lessons learned and best practices established during this unique
undertaking.

The main objective to the given problem is to create a publicly available web-based
interactive map. This map is to display vessels in Trondheimsfjorden visible from
Accenture’s office at the docks.

During the project, the group employed agile development methodology. With
Weekly sprints and meetings with the client. This agile development made the
group adaptable to changes demanded by the client, or any other problems en-
countered. Which proved important for completing the product on time.

To conclude the project, a final and working product was delivered to the client.
The product had all the functionality and specification the client requested. The
client and students were very satisfied with the final solution provided, and client
made the following statement:
"Accenture Trondheim is very satisfied with the final solution, this is not just the
opinion of the supervisor, but also the impression I have from the other employees
at the office."

i

SAMMENDRAG

Accenture flyttet nylig kontorlokalene sine til bryggen i Trondheim. Grunnet dette
opplevde de en økt interesse i båttrafikken bland de ansatte. Derav ønsket Ac-
centure et moderne nettsted hvor all kommersiell maritim trafikk utenfor kontoret
deres vises. Denne nettsiden skal vises på diverse infoskjermer rundt i kontorloka-
lene.

Denne rapporten vil gi en omfattende forståelse av tilnærmingen, utviklings metoder,
og beslutninger tatt av gruppen gjennom hele prosjektet. Den vil utdype og be-
grunne valg gjort i forhold til teknologier og verktøy. Samt presentere gruppens
samarbeidsmetodikk og prosessen gruppen gikk gjennom for å løse problemet.
Dokumentet vil være en verdifull ressurs for fremtidige prosjekter. Ved å vise
frem gruppens erfaringer opparbeidet gjennom denne oppgaven.

Oppgavens hovedmål er å lage en offentlig tilgjengelig nettside, hvor informasjon
visualiseres på et interaktivt kart. Kartet skal vise fartøy i Trondheimsfjorden som
er synlige fra kontorlokalene til Accenture.

Under arbeidet på prosjektet brukte gruppen Agile utviklingsmetodikk. Med
ukentlige sprinter og møter med oppdragsgiver. Denne utviklingsmetoden gjorde
at gruppen kunne tilpasse seg til endringer klienten ønsket, eller ta høyde for
eventuelle problemer som oppsto. Dette hjalp gruppen å fullføre produktet i tide.

Etter prosjektets gang ble et endelig og fungerende produkt levert til oppdrags-
giver. Produktet hadde all funksjonalitet og spesifikasjoner kunden etterspurte.
Og både kunden og gruppen var fornøyd med det leverte produktet. Etter opp-
gaven ga kunden følgende tilbakemelding:
"Accenture Trondheim is very satisfied with the final solution, this is not just the
opinion of the supervisor, but also the impression I have from the other employees
at the office."

ii

PREFACE

About
This Project was chosen as developing and deploying a complete fullstackk web
application seemed like a good challenge to the group. The prosses of designing
and fitting the application based on the customer’s needs was a process the group
found exiting and interesting. The idea that the final product where to be used
and be publicly available was a huge motivation for the group during development.
The development prosses consisted of three main phases, planning, creating and
lastly publishing.

Thanks to
The group would like to express their sincere thanks to:

• The client Accenture for providing the topic of this thesis. And a special
thanks Christian Nymo for guidance and being broadly available to answer
questions and give feedback.

• Our supervisor, Kjell Inge Tomren. Thanks for good advice on what to
prioritize and guidance through all stages of development and report writing.

iii

ASSIGNMENT

Assignemt Text
Create a public website that shows current boats in Trondheimsfjorden. Provision
a public cloud environment that hosts the marine traffic website and its function-
ality. The audience for the website is boat enthusiasts, as well as the Accenture
employees. Gather data about traffic and present interesting data points. For
example - when was the last time this boat was here?

iv

CONTENTS

Abstract i

Abstract ii

Preface iii

Assignment iv

Contents ix

List of Figures ix

Code examples x

Abbreviations xii

Glossary xiii

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 1
1.3 Limitations . 2
1.4 Motivation . 2
1.5 Goals . 2
1.6 Result . 2
1.7 Report structure . 3

2 Theory 5
2.1 Domain specific theory . 5

2.1.1 MMSI . 5
2.2 Object-Oriented Programming . 5

2.2.1 Coupling and cohesion . 5
2.2.2 Coupling . 5
2.2.3 Cohesion . 5

2.3 Design patterns . 6
2.3.1 Observer and observable pattern 6
2.3.2 Singleton pattern . 6
2.3.3 State design pattern . 6

v

vi CONTENTS

2.4 Client server communication . 6
2.4.1 HTTP . 7
2.4.2 REST API . 7

2.5 Web scraping . 7
2.5.1 The robots.txt file . 7

2.6 Accessibility . 8
2.6.1 Color blindness . 8
2.6.2 Screen readers . 8
2.6.3 Alt text . 9

2.7 Web application . 9
2.7.1 Singe page application . 9

2.8 Development . 9
2.8.1 Agile development . 9
2.8.2 Version control . 10
2.8.3 Git . 11
2.8.4 Cloud services . 11
2.8.5 Containerization . 11
2.8.6 Relational database . 11
2.8.7 DRY principle . 11

2.9 Algorithms . 11
2.9.1 Point in Polygon algorithm 11

2.10 Quality assurance . 12
2.10.1 Design principles . 12
2.10.2 API testing . 12

2.11 Technologies . 13
2.11.1 SQL . 13
2.11.2 Open-source . 13
2.11.3 CSS . 13
2.11.4 JavaScript . 13
2.11.5 TypeScript . 14
2.11.6 JSON . 14
2.11.7 GeoJSON . 14
2.11.8 Artificial inteligence . 14

2.12 CI/CD . 14
2.12.1 Continuous Integration (CI) 14
2.12.2 Continuous Deployment (CD) 14

3 Methods 17
3.1 Project Planning and Design Process 17

3.1.1 Preliminary Project Plan . 17
3.1.2 Responsibilities . 17
3.1.3 Meeting with client . 17
3.1.4 Design . 18
3.1.5 Wireframe . 18

3.2 Technologies . 18
3.2.1 Java Spring Boot . 18
3.2.2 NextJS . 18
3.2.3 MapBox . 19

CONTENTS vii

3.2.4 Selenium . 19
3.2.5 PostgreSQL . 19
3.2.6 Docker . 19
3.2.7 Microsoft Azure . 21

3.3 Tools . 21
3.3.1 Github Actions . 21
3.3.2 Postman . 22
3.3.3 Prettier . 22
3.3.4 Figma . 23
3.3.5 PgAdmin4 . 23
3.3.6 ChatGPT . 23
3.3.7 IDE�s . 23

3.4 Collaboration tools . 24
3.4.1 GitHub . 24
3.4.2 Jira . 24
3.4.3 Confluence . 24
3.4.4 Communication . 25

3.5 Agile development . 25
3.5.1 Roles and work distribution 25
3.5.2 Sprint . 25

3.6 Development process . 26
3.6.1 User Experience . 26
3.6.2 BarentsWatch . 26
3.6.3 Backend server and Database 26

3.7 Testing . 27
3.7.1 Endpoint testing . 27
3.7.2 User testing . 27
3.7.3 Lighthouse . 28

4 Results 29
4.1 Final result . 29
4.2 Gathering additional data for the vessels 29

4.2.1 Problem . 29
4.2.2 Possibilities . 29
4.2.3 Process . 30
4.2.4 Result . 32

4.3 Deployment of the backend . 32
4.3.1 Problem . 32
4.3.2 Possibilities . 32
4.3.3 Process . 33
4.3.4 Result . 34

4.4 Designing the website . 35
4.4.1 Problem . 35
4.4.2 Possibilities . 35
4.4.3 Process . 35
4.4.4 Result . 36

4.5 Handling the visitor counter for the vessels 37
4.5.1 Problem . 37

viii CONTENTS

4.5.2 Possibilities . 38
4.5.3 Process . 38
4.5.4 Result . 39

4.6 Server application . 39
4.6.1 Problem . 39
4.6.2 Possibilities . 39
4.6.3 Process . 39
4.6.4 Result . 41

4.7 Web application . 41
4.7.1 Problem . 41
4.7.2 Possibilities . 41
4.7.3 Process . 42
4.7.4 Result . 43

4.8 Backtracking the vessels . 43
4.8.1 Problem . 43
4.8.2 Process . 43
4.8.3 Result . 45

4.9 TV Mode . 45
4.9.1 Problem . 45
4.9.2 Process . 46
4.9.3 Result . 46

4.10 User experience . 47
4.10.1 Wireframes on screens . 47
4.10.2 Survey . 47
4.10.3 Interviewes . 47

4.11 Making a public site . 47
4.11.1 Problem . 47
4.11.2 Possibilities . 48
4.11.3 Process . 48
4.11.4 Result . 48

5 Discussion 49
5.1 Communication . 49

5.1.1 With Client . 49
5.1.2 Within the group . 49

5.2 Development process . 50
5.2.1 The plan . 50
5.2.2 Agile methodology . 50

5.3 Collaboration with Jira and Confluence 50
5.4 Ethics of Web scraping . 51
5.5 Social impact . 52
5.6 Correct data . 52
5.7 General Data Protection Regulation 53
5.8 Environmental impact . 53
5.9 Economical impact . 53

CONTENTS ix

6 Conclusions 55
6.1 Conclusion . 55
6.2 Final Product . 55
6.3 Further work . 56

References 57

Appendices: 61

A - Requirements Documentation 62

B - Procject Plan 66

C - Collaboration Agreement 74

D - Wireframe 78

E - System Documentation 84

F - Survey 94

G - Lighthouse Result 97

H - Feedback 105

LIST OF FIGURES

3.5.1 Issueboard from sprint 10 . 26
3.7.1 Example of postman test. This test checks if inArea call has no

vessels older than 1 hour . 27

4.3.1 Process of deploying a new version of the backend 34
4.4.1 Displays how the site looks with different types of color blindness.

Light mode on the left and darkmode on the right 37
4.7.1 What the finished web application looks like 43
4.8.1 Shows how the backtracking was on some vessels when the points

was stored in a list of max 50 points 44
4.8.2 Shows how the backtracking is when the point removal was donw

via a database query . 45
4.11.1Resources in Azure . 48

5.4.1 The infocard showing the information scraped and the credits . . . 52

x

LISTINGS

3.1 Dockerfile . 20
3.2 GitHub Actions . 21
4.1 The scraping functions login method 30
4.2 Collecting the image URL . 30
4.3 Example of Vessel object after scrapper has gotten data 32
4.4 Maven dependency causing error 33
4.5 Initial use of the webdrivermanager library 33
4.6 Revised implementation of the chromedriver 34
4.7 Code to check if coordinates are inside a GeoJSON area 38
4.8 Defining the query call for receiving all active vessels in the Area of

interest . 40
4.9 Update a vessel when new information is retreived from the API. . 40
4.10 Gets a list of all . 41

xi

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• MMSI Maritime Mobile Service Identity

• NTNU Norwegian University of Science and Technology

xii

GLOSSARY

• API Application Programming Interface

• CD Continuous Deployment

• CSS Cascading Style Sheets

• HTML Hypertext Markup Language

• HTTP Hypertext Transfer Protocol

• IDE Integrated Development Environment

• IP Internet Protocol Address

• JS JavaScript

• JSON JavaScript Object Notation

• MVP Minimum Viable Product

• REST Representational State Transfer

• TCP Transfer Control Protocol

• TS TypeScript

• SQL Structured Query Language

• AIS AIS is a system that automates ship identification and tracks its move-
ment. It consists of a transceiver, which is a combined transmitter and
receiver, that sends out information about the ship’s identification, position,
speed, and course. Additionally, it can also transmit information about the
vessel’s type, cargo, destination, and other relevant details.

• Backend This term refers to the software infrastructure responsible for man-
aging business logic and data storage. It is not directly accessible to the user.

• DevOps DevOps is a set of practices that combines software development
(Dev) and IT operations (Ops) to streamline the process of delivering soft-
ware and services, aiming to shorten development cycles, increase deploy-
ment frequency, and improve collaboration, efficiency, and overall quality.

xiii

• Frontend This term refers to the graphical user interface (GUI), which is
the software stack that enables user interaction with a system.

• Repository This is a storage location for software code and related re-
sources, such as documentation and configuration files. It’s a centralized sys-
tem that enables developers to collaboratively manage and track changes to
code over time, making it easier to maintain and improve software projects.

• Scrape/Crawl Scraping and crawling are techniques used in web data ex-
traction and retrieval. They involve automated processes to collect data
from websites.

• Wireframe This is an illustration of a webpage’s interface and layout. It is
used to help visualize the concept.

CHAPTER

ONE

INTRODUCTION

1.1 Background

Accenture recently relocated their office premises to the waterfront area in Trond-
heim. This move sparked a growing fascination with nautical activity among the
employees. Consequently, they sought a convenient and efficient method to access
information about the vessels outside their office. They concluded that the best
way for all to get this information was to get a costume website running on the
info screens placed around in the office.

At present, employees rely on various websites on their computers or smartphones
to gather vessel information. However, this process is inefficient, as different sites
offer varying levels of detail, often requiring individuals to visit multiple sites to
obtain the desired data. The client believes that featuring the custom website on
the information screens would not only simplify access but also optimize the use
of these screens, which are currently underutilized.

1.2 Objectives

The team collaborated with Accenture Trondheim, an IT service and consulting
firm. Accenture has multiple TV screens throughout their office and sought to
display engaging content on them. They determined that a website showcasing
ships located in the fjord outside their office would be ideal.

Accenture tasked the group with developing this website and ensuring it was fully
operational for public use. The team had the freedom to choose their approach
for completing the task. Accenture’s requirements specified that the site should
be publicly accessible, with vessel updates occurring in real-time. Another cru-
cial factor was that the site would be displayed on TV screens, necessitating an
automated operation with no user interaction

1

2 CHAPTER 1. INTRODUCTION

1.3 Limitations
Throughout this semester, the students were concurrently enrolled in another sub-
ject alongside their bachelor thesis. This factor significantly limited the time avail-
able for the project. The parallel subject was intensive, spanning 10 weeks and
occupying 3-4 days per week. Consequently, it was challenging for students to
allocate time for their thesis during this period. As the subject concluded with an
exam at the end of March, students had to dedicate their time to exam prepara-
tion, leaving no room for the thesis.

1.4 Motivation
The primary motivation for this project stemmed from the freedom provided in
devising and developing the application. With this autonomy, the group felt com-
pelled to deliver a functional product they could take pride in. Knowing that
Accenture would implement the completed project in their office further boosted
motivation. Accenture also assigned a supervisor to the students, who proved to
be incredibly helpful and consistently positive about the project’s development.
This support fostered a sense of progress and bolstered motivation.

1.5 Goals
• Find a source for location data of the vessels within the fjord.

• Create a backend able to fetch the data of the vessels and save them to a
database.

• Create endpoints in the backend where one can fetch data stored.

• Develop a web-based application that can display the vessels on a map.

• Be able to gadder interesting data on the vessel. Like Images, county of
origin, and so on.

• Deploy application in an cloud environment.

1.6 Result
At the end of the project a complete and finalized product was handed over to
the client. The final application was a working site that had all the functionalities
requested by the client. The client was satisfied with the result.

CHAPTER 1. INTRODUCTION 3

1.7 Report structure
This thesis report is split into extensive 6 parts

Chapter 1 Introduction
Gives an overview of the problem domain and the vision for the project at the
beginning

Chapter 2 Theory
Describes Presents the required theoretical background of this thesis. Including
definitions necessary to understand the thesis.

Chapter 3 Method
Provides insight to the choices made throughout the project.

Chapter 4 Results
Presents the results from the project

Chapter 5 Discussion
Discussion points not touched in chapter 4

Chapter 6 Conclusion
Provides a conclusion to the thesis and recommendations for future work

4 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

THEORY

2.1 Domain specific theory

2.1.1 MMSI
An MMSI is a unique identification number temporarily assigned by the object’s
current flag state. It serves as the international telephone number for various
types of maritime objects, such as vessels, fixed offshore installations, mobile units,
maritime aircraft, coast stations, and more. [1]

2.2 Object-Oriented Programming
Object oriented programming is a programming model that organizes software
design around objects, rather than functions and logic. An object can be defined
as an instance of a class, encapsulating related data fields (attributes) and methods
(functions or behaviors) within it.[2]

2.2.1 Coupling and cohesion
In object-oriented programming, it is important to think about coupling and cohe-
sion when writing high quality code. High-quality code is characterized by several
aspects, one of which is the ease with which features can be changed without caus-
ing unnecessary work. It can be achieved by writing code which has low coupling
and high cohesion. [3]

2.2.2 Coupling
The level of interdependence between modules is referred to as coupling, and a
well-designed software system should aim to minimize it. [3]

2.2.3 Cohesion
Cohesion measures the functional relationship between elements in a module, de-
termining how well they work together to accomplish a specific task. Essentially,

5

6 CHAPTER 2. THEORY

cohesion acts as a glue that binds the modules elements together. A strong soft-
ware design will prioritize high cohesion. [3]

2.3 Design patterns
A design pattern in software engineering refers to a frequently encountered problem
in software design, for which a generalized, reusable solution is provided. Rather
than a complete design that can be immediately translated into code, it serves as
a guideline or blueprint for addressing the problem and can be adapted to various
scenarios. [4]

2.3.1 Observer and observable pattern

The Observer pattern is classified as a behavioral design pattern that outlines
how objects communicate with each other, specifically between observables and
observers. An observable is an object that updates its observers about any changes
made to its state. The Observer are objects that wishes to be notified when a state
of another object changes. [5]

2.3.2 Singleton pattern

Singleton design pattern ensures that there is only one object of its kind that
exists. The singleton object must provide a global access point to get the instance
of the object. [6]

2.3.3 State design pattern

The intent of the state design pattern is to let an object alter its behavior when the
object’s state changes. In computer programming, the state pattern is utilized to
encapsulate different behaviors for a single object, depending on its internal state.
[7]

2.4 Client server communication
The client-server model is a widely used distributed computing architecture where
servers provide services or resources to clients upon request. Servers are typi-
cally categorized into three types: application servers, database servers, and web
servers. Application servers run applications, often connecting client requests to
database servers. Database servers store, retrieve, and manage data in a database.
Web servers deliver web pages to clients through the HTTP protocol.

Clients send requests to servers and receive responses back, using protocols such as
TCP/IP, HTTP, or REST. Servers run on dedicated hardware or virtual machines
and can handle multiple requests simultaneously, using advanced techniques such
as threading or pooling.

CHAPTER 2. THEORY 7

Clients run on user devices and initiate communication sessions with servers by
establishing network connections. The model offers several benefits, including scal-
ability, reliability, security, and maintainability. Examples include email, network
printing, and the World Wide Web. [8]

2.4.1 HTTP

HTTP or Hypertext Transfer Protocol is a protocol in the application layer. It is
the foundation of communication on the World Wide Web, and it is mainly used
for communication between the server and the client to transfer files. [9]

2.4.2 REST API

API or Application Programming Interface defines how devices or applications
can connect and communicate with one another. REST or Representational State
Transfer is an architecture style, therefore the REST API is an API that follows
the design principles of REST. [10]

2.5 Web scraping

Web scraping is a technique used to extract data from websites. It involves using
software to automatically collect information from web pages and save it in a
structured format, such as a spreadsheet or a database. The data can be anything
that is publicly available on the website, such as prices, product descriptions,
reviews, or contact details. Web scraping can be done manually, by copying and
pasting data from web pages, or automatically, by using specialized tools or scripts.
It is often used for market research, competitive analysis, content aggregation, or
data analysis. However, web scraping may be illegal or unethical if it violates the
website’s terms of use or privacy policy, or if it harms the website’s performance
or integrity. [11]

2.5.1 The robots.txt file

The robots.txt file is a text file that is placed on a website to provide instructions
to web crawlers, such as search engine robots, on what pages or sections of the
website should or should not be crawled or indexed. It is often used to prevent web
scraping tools from accessing certain pages or data, in order to protect the website’s
content or resources, or to enforce legal or ethical restrictions. The robots.txt file
can contain rules that specify which user agents are allowed or disallowed, which
directories or files are allowed or disallowed, and how often or at what time the
crawler can access the site. Web scrapers should always check the robots.txt file
of a website before scraping it, and should comply with the rules and restrictions
stated in the file, in order to avoid legal or ethical issues. [12]

8 CHAPTER 2. THEORY

2.6 Accessibility
Accessibility means treating everyone equally and giving them the same opportu-
nities, regardless of their abilities or circumstances. Just like it’s unacceptable to
exclude someone in a wheelchair from a physical building, modern public buildings
have wheelchair ramps or elevators to ensure equal access. Similarly, it’s not right
to exclude someone with a visual impairment from a website. We’re all unique
individuals, but we share the same human rights. This can open up new markets
for your products and services, as you’ll be able to serve customers who might not
have been able to access your offerings otherwise. Having an accessible website
benefit everyone, and it is important to think of this in every aspect of the devel-
opment, from the heading structure to the formatting, layout, and other uses of
visual media. [13] [14]

There are several rules to ensure sufficient accessibility on a public website. These
are the most essential.

2.6.1 Color blindness

When designing a website for color blind users, there are several technical solu-
tions that can be implemented to ensure accessibility. The first step is to use a
color palette that takes into account the most common types of color blindness,
such as red-green or blue-yellow deficiencies. This can be achieved by using color
contrast analyzers to check the color combinations and ensure that they meet the
Web Content Accessibility Guidelines (WCAG) criteria.

Another solution is to provide alternative text descriptions for non-textual con-
tent such as images and charts, which may convey important information that
color-blind users might miss. In addition, it is important to avoid relying solely
on color to convey information or to differentiate between elements, as this can
cause confusion for users with color blindness. Instead, use other visual cues such
as patterns, shapes, or icons to distinguish between different elements.

Finally, it is important to test the website with real color-blind users to ensure
that the design is effective. There are online tools and browser extensions that
simulate different types of color blindness, which can be used to test the website’s
accessibility. By following these technical solutions and testing with real users,
designers can create websites that are accessible to all users, including those with
color blindness. [15]

2.6.2 Screen readers

Screen readers are software programs used by people with visual impairments to
access and navigate the web. To ensure web accessibility for screen reader users,
several theories can be applied in web development. One such theory is the use of
semantic HTML, which involves utilizing appropriate HTML tags to help screen
readers navigate and interpret the content accurately. Another theory is the use of
Accessible Rich Internet Applications (ARIA), which is a set of attributes that can

CHAPTER 2. THEORY 9

be added to HTML elements to provide additional information to screen readers.
Additionally, focus management is crucial for keyboard navigation, and testing
with screen readers and other assistive technologies is essential for identifying and
resolving accessibility issues. Overall, these theories play a critical role in creating
accessible web experiences for screen reader users. [16]

2.6.3 Alt text
Alternative text or alt text for short. Is a descriptive text that expresses the
content/meaning of a visual item. Examples of such items can be images and
videos. Alt text is commonly used on websites to express an items content either
for screen readers or if the item fails to load. [17]

2.7 Web application
Web applications are software programs accessed through a web browser inter-
face over the internet. They are designed for various purposes, including e-
commerce, data management, and communication. These applications can be
accessed through any browser, but some may have specific requirements for opti-
mal performance.

Web apps play a crucial role in modern computing, providing users with a con-
venient and accessible way to interact with software over the internet. They are
platform-independent and offer several advantages, such as easy accessibility and
flexibility. However, they may also have certain limitations, such as browser com-
patibility issues or slower performance. Despite these limitations, web applications
are essential for a wide range of use cases, from small-scale individual needs to
large-scale organizational needs, and they continue to evolve to meet changing
user demands. [18]

2.7.1 Singe page application
A single page application (SPA) is a web application that operates within a single
web page. The content is updated dynamically as the user interacts with the page,
without loading new pages from the server. This creates a smoother user experi-
ence without interruptions. SPAs are commonly built with JavaScript frameworks
like React, Angular, or Vue. [19]

2.8 Development

2.8.1 Agile development
Agile methodology is a project management and software development approach
that emphasizes iterative processes to deliver customer value more efficiently. Un-
like traditional "big bang" launches, an agile team breaks down work into small,
easily consumable increments. The team continuously evaluates requirements,
plans, and outcomes, allowing them to quickly adapt to change. This approach

10 CHAPTER 2. THEORY

enables teams to respond to feedback and changes in a more timely and efficient
manner. [20]

2.8.1.1 Scrum

Scrum is a framework rooted in empiricism and lean thinking, and decisions are
based on observations gained from experience. The latter focuses on eliminating
waste and prioritizing essentials. Scrum is a heuristic framework that facilitates
continuous learning and adjustment to fluctuating factors. It recognizes that teams
don’t have complete knowledge at the start of a project and are likely to evolve
through experience. With built-in mechanisms for re-prioritization and short re-
lease cycles, Scrum enables teams to naturally adapt to changing conditions and
user requirements while consistently improving their output.

The framework of scrum provides a comprehensive guide for scrum teams to cre-
ate and deliver a product or service, encompassing a set of values, principles, and
practices. It outlines the responsibilities of the scrum team members, defines the
key "artifacts" used to create and refine the product, and details the scrum cere-
monies that facilitate the team’s progress through the work.

A scrum team is a small and agile group focused on delivering committed product
increments. While its size is typically compact, it is still capable of completing
a significant amount of work within a sprint. In order to function effectively, a
scrum team must have three key roles: the product owner, the scrum master, and
the development team.

The product owner’s primary responsibility is to understand the business, cus-
tomer, and market requirements, and then prioritize the work for the engineering
team accordingly. The Scrum master serves as the champion of the Scrum frame-
work within the team. They coach the team, the product owner, and the business
on the Scrum process and continuously improve its implementation. The develop-
ment team drives the plan for each sprint and consists of members with varying
skill sets who cross-train each other to avoid any bottlenecks in the delivery of
work.

A sprint refers to the designated period in which the scrum team collaborates to
complete a product increment. While a two-week sprint is commonly used, some
teams may opt for a shorter duration of one week for easier project scoping. [21]

2.8.2 Version control

Version control or source control is a method of keeping track and managing
changes med to a file, though mostly used for software code. This assists develop-
ment teams in managing changes to files over time. Helping the team collaborate
quicker and easier. If a mistake where to happen. The developers can go back in
time to a specific working version of the file and compare the two, or rollback to
the working version completely.

CHAPTER 2. THEORY 11

2.8.3 Git
Git is an open-source distributed version control system that’s both free and de-
signed to manage projects of all sizes, from small to extremely large, with great
speed and efficiency. [22]

2.8.4 Cloud services
Cloud services is a broad term used to describe a variety of on-demand services
delivered over the internet to businesses and customers. These services are aimed
at offering convenient and cost-effective access to resources and applications with-
out requiring internal hardware or infrastructure. Whether or not employees are
aware of it, most use cloud services during their workday, from email checking to
collaborating on documents. Using a cloud server allows one to run an application
without setting up and maintaining a physical server for the client. [23]

2.8.5 Containerization
Containerization refers to a deployment procedure for software that involves pack-
aging an application’s code together with all necessary files and libraries required
for its operation on any infrastructure. In the past, it was necessary to install
a software package that matched the operating system of your computer to use
any application. With containerization, a single container can be developed that
operates across all device types and operating systems. [24]

2.8.6 Relational database
A relational database is a database that enables storage and retrieval of related
data points. The relational model forms the basis of these databases, offering a
clear and intuitive method of representing data through tables. Each row in a
relational database table represents a record, and it has a unique ID called the
key. The table columns contain data attributes, and each record typically has
a value for every attribute, facilitating the establishment of relationships among
data points. [25]

2.8.7 DRY principle
DRY stand for don’t repeat yourself. The principle is a practice in software devel-
opment that recommends the engineers to not exactly that. Meaning one should
write something once, and only once. [26]

2.9 Algorithms

2.9.1 Point in Polygon algorithm
The Point in Polygon algorithm is a method for determining whether a given point
lies inside, outside, or on the boundary of a polygon. It works by tracing a line
from the point to a point outside the polygon, and counting the number of times

12 CHAPTER 2. THEORY

the line intersects with the polygon’s edges. If the number of intersections is odd,
the point is inside the polygon; if it’s even, the point is outside the polygon. This
algorithm can be used in a variety of applications, such as geolocation and spatial
analysis. [27]

2.10 Quality assurance

2.10.1 Design principles

Design principles are a set of guidelines on how to create accessible and pleasant
design and user interfaces. These guidelines are often referred to as the UX prin-
ciples. The principles provide a framework where designers can seek direction and
lean against when in doubt. Some of key principles in web development are:

• Consistency: Maintain a consistent design across your website, including
fonts, colors, and layout elements.

• Hierarchy: Organize information and elements in a clear hierarchy, priori-
tizing content and functionality based on their importance.

• Context: Consider the circumstances of which the product is to be used.
Ask yourself what device the user use will and where might they be.

• Simplicity: Keep designs simple and avoid unnecessary complexity. Focus
on the essential elements and functions, and eliminate distractions.

• White space: Use white space (empty space) strategically to create visual
separation between elements, improve readability, and reduce cognitive load.

• Navigation: Create intuitive and easy-to-use navigation systems that help
users find their way around your website.

• Feedback: Provide users with feedback on their interactions, such as indi-
cating which buttons have been clicked or which form fields are required.

• Accessibility: Ensuring that the site is accessible to and usable for as many
people as possible

By following these principles, one can create a user-friendly website that meets
the needs of the users. [28]

2.10.2 API testing

API testing is a type of software testing that helps programmers verify and an-
alyze an API. Making it easier to check the API’s functionality, security, and
performance. By making automated tests that calls the API’s endpoints and ver-
ifies/presents the values returned by the API. This allows for an easy and quick
check on all the endpoints whenever a change is made to the API’s code [29]

CHAPTER 2. THEORY 13

2.11 Technologies

2.11.1 SQL

SQL is a programming language that facilitates storing and manipulating informa-
tion within a relational database. This type of database organizes data in tabular
format, using rows and columns to represent distinct data attributes and the in-
terrelatedness of data values. By utilizing SQL statements, users can perform
various operations such as storing, updating, removing, searching, and retrieving
data from the database. [30]

2.11.1.1 Hibernate

Hibernate is an object-relational mapping (ORM) framework for Java that sim-
plifies the development of database-driven applications. It maps Java objects to
database tables and provides a way to query and manipulate data from those ta-
bles using object-oriented programming techniques. Hibernate automates much of
the repetitive database-related coding tasks, such as opening and closing database
connections and converting data between Java and SQL data types. This makes
it easier for developers to focus on the business logic of their application, rather
than the low-level details of database access. [31]

2.11.2 Open-source

Open source software (OSS) refers to software that comes with its source code,
allowing users to access, modify, and distribute it with the same rights as the
original software. The source code represents the program’s inner workings and
the instructions that developers use to manipulate its behavior. Access to source
code enables programmers to modify the software by adding new features, making
changes, or fixing any issues with the program’s functionality. Typically, OSS
includes a license that grants programmers the freedom to customize the software
to their specific requirements and determine how the software can be distributed.
[32]

2.11.3 CSS

Cascading Style Sheets or CSS is a type of stylesheet language utilized to define
the visual appearance of HTML or XML documents. It specifies how individual
elements should be displayed on a range of media, such as computer screens, paper,
audio devices, or other forms of output. [33]

2.11.4 JavaScript

JavaScript is a programming language that is popular among web developers for
its ability to enhance user interaction and create more dynamic web pages, appli-
cations, servers, and games. Typically used in conjunction with HTML and CSS,
JavaScript complements CSS by providing the ability to create interactive features
that CSS cannot achieve on its own, while CSS focuses primarily on formatting

14 CHAPTER 2. THEORY

HTML elements. Despite being a lightweight language, JavaScript plays a vital
role in web development due to its versatility and broad range of applications. [34]

2.11.5 TypeScript
TypeScript is a programming language that builds upon JavaScript. It allows
users to add extra syntax(types), on top of JavaScript. [35]

2.11.6 JSON
JSON, or JavaScript Object Notation, is a lightweight data exchange format de-
signed to be readable and writable by humans, while also being easily parsed and
generated by machines. This text-based format is commonly utilized as an al-
ternative to XML for transmitting data between a server and a web application.
While JSON is based on a subset of the JavaScript programming language, it can
be utilized with a variety of other programming languages as well. [36]

2.11.7 GeoJSON
GeoJSON is a JSON-based format used to encode geographic data structures,
frequently utilized for the representation of geographic features, such as points,
lines, polygons, and multi-geometries, along with their corresponding attributes.
[37]

2.11.8 Artificial inteligence
2.11.8.1 Prompt

In the context of AI chatbots, a prompt is the input message or question the user
provides. The chatbot then analyzes and responds to it. [38]

2.12 CI/CD

2.12.1 Continuous Integration (CI)
Continuous Integration (CI) is a DevOps development practice that streamlines
the process of integrating code changes from multiple contributors. It achieves this
by consolidating code updates from various sources into a single software project.
From this unified repository, builds or tests can be executed, enabling faster val-
idation and deployment. This approach ultimately enhances collaboration and
accelerates software development processes.[39]

2.12.2 Continuous Deployment (CD)
Continuous Deployment (CD) is a DevOps development practice that automates
all stages following the completion of code writing. This process ensures that
the code is automatically built and deployed to the production environment once
specific requirements are met. By streamlining the software development lifecycle,

CHAPTER 2. THEORY 15

CD fosters efficiency and minimizes the time it takes to release new features and
improvements. [40]

16 CHAPTER 2. THEORY

CHAPTER

THREE

METHODS

3.1 Project Planning and Design Process

Throughout this phase of the project, the team conducted comprehensive planning
and preparation efforts.

3.1.1 Preliminary Project Plan

Prior to commencing the project, the team formulated a preliminary project plan.
This plan supplied the group with well-defined routes, guidelines, and deadlines to
adhere to throughout the project’s development. The decision was made for the
team to adopt a weekly sprint approach, ensuring a steady workflow and promoting
consistent effort from the outset. The specifics of the preliminary project plan can
be found in Attachment B.

3.1.2 Responsibilities

The team established a collaborative agreement at the onset of the project. This
agreement served to structure the group by assigning roles and delineating areas of
responsibility for each member. These roles were designed to enhance organization
within the team and provide a sense of belonging for all members. The roles
given where team leader, document manager and quality assurance. Although
each member had a designated area of responsibility, they actively supported one
another across all aspects of the project. The collaborative agreement can be
found in Attachment C.

3.1.3 Meeting with client

The team engaged with the client early in the planning phase. The purpose of
this meeting was to clarify essential requirements for the solution that the team
was to develop. Throughout the meeting, uncertainties surrounding delivery and
technology requirements were thoroughly discussed and addressed

17

18 CHAPTER 3. METHODS

3.1.4 Design

3.1.4.1 Research

A significant component of the planning process involved conducting research.
The team examined existing platforms, such as MarineTraffic and Kystverket, to
gain insights into their page layouts and methods of displaying vessels on maps.
Additionally, the team explored other websites for further design inspiration.

3.1.5 Wireframe

Following the research and collection of design inspiration, the team initiated the
wireframe development. Collaboratively, the team utilized Figma to create the
wireframes. Figma was chosen due to its cost-free availability and its status as
one of the most widely employed tools for wireframe creation and high-level sketch-
ing. Furthermore, it allows multiple users to work on the same file concurrently,
enabling seamless collaboration for the entire team. The primary design objective
was to develop an aesthetically appealing site that also offered ease of use. To ac-
complish this, the team applied the principles of design referenced in section 2.10.1

The web application’s primary use case is for display on large TV screens within the
office setting. Consequently, the design emphasized readability on larger screens
and visibility from a considerable distance. The color themes were inspired by
ocean hues and Kystverket’s visual elements. The wireframes can be found in
appendix D

3.2 Technologies

3.2.1 Java Spring Boot

Spring Boot was the chosen framework for developing a backend server for the
application. It was chosen because of all the functionality it included. Another
major reason was the developer experience. Java is a language all members of the
team are highly comfortable using. Because of this experience, the team could
rapidly start the development proses.

From a technical standpoint Java and Spring Boot was also a good choice since
Java is a cross-platform language, meaning the code will work on MacOS, Windows
and Linux despite being compiled on another operating system. This makes the
application flexible and futureproofs the application by easily being deployed on
different systems.

3.2.2 NextJS

The main requirement of the project was to create a web application. Next.js is
a React framework that gives the possibility to create building blocks to create
a web application. By using Next.js the group could create the site part by part
with React, and use additional tools given by Next.js to make the process easier.

https://www.marinetraffic.com
https://nais.kystverket.no/

CHAPTER 3. METHODS 19

3.2.2.1 React

React is a free and open-source front-end JavaScript library. It is used for building
user interfaces via the usage of components. React also has extensive support for
TypeScript. With this functionality the team agreed that React was a good choice
for a UI framework.

3.2.2.2 Typescript

The team wanted to use TypeScript in the project as it offers several advantages.
Some of these advantages including improved code readability, maintainability,
and error prevention. Typescript’s has static typing this feature enables early
detection of type-related issues. TypeScript’s advanced language features, such as
interfaces, generics, and decorators, allow for better structuring and abstraction,
making it easier to scale and collaborate on projects.

3.2.3 MapBox

Upon researching various map APIs, the team ultimately selected MapBox GL
JS as the map API for the project. MapBox offered exceptional customization
options on their maps, such as adjusting map colors and detail level. This allowed
for the removal of all unnecessary details and highlights from the map, ensuring a
clean look for the application. MapBox also supplied all the requisite functionality
the team sought in a map API, including the creation of markers and automatic
camera panning to specific points on the map.

3.2.4 Selenium

Selenium, is an open source Java library, that was used to obtain vessel images by
web scraping the Ship-Info website. Since the website’s /.robots.txt endpoint was
unspecified, the team reached out to the website to ask for permission to scrape
it. Ship-info agreed to provide with login credentials and permission to crawl the
site, on the condition that accreditation was given. They were also insistent that
credit must be given to all the photographers when displaying their images.

3.2.5 PostgreSQL

A PostgreSQL database, herby referred to as Postgres, is an open source relational
database management system. Its high compatibility with a wide range of oper-
ating systems, diverse database models, and programming languages. Postgres is
both robust and reliable, and offering support for complex data types, full-text
search, and geospatial data processing. This makes it an ideal choice for the
project.

3.2.6 Docker

The utilization of Docker facilitated the process of containerizing the backend of
the project. Selenium, a library used in the project (See sec. 3.2.4), necessitates

http://www.skipslistene.no/

20 CHAPTER 3. METHODS

the installation of chromedriver on the operating system. However, Docker circum-
vents this issue by ensuring that all the necessary project dependencies, including
libraries and the chromedriver, are automatically and accurately installed.

Listing 3.1: Dockerfile
1 # Base image with Maven and JDK 17
2 FROM --platform=linux/amd64 maven :3.9.0 - eclipse -temurin -17
3

4 # Google Chrome installation
5 #ARG CHROME_VERSION
6 RUN apt -get update -qqy \
7 && apt -get -qqy install gpg unzip curl \
8 && wget -q -O -

https ://dl -ssl.google.com/linux/linux_signing_key.pub
| apt -key add - \

9 && echo "deb http ://dl.google.com/linux/chrome/deb/
stable main" >
/etc/apt/sources.list.d/google -chrome.list \

10 && apt -get update -qqy \
11 && if [-z "$CHROME_VERSION"]; then \
12 apt -get -qqy install google -chrome -stable; \
13 else \
14 apt -get -qqy install

google -chrome -stable=$CHROME_VERSION; \
15 fi \
16 && rm /etc/apt/sources.list.d/google -chrome.list \
17 && rm -rf /var/lib/apt/lists/* /var/cache/apt/* \
18 && sed -i ’s/" $HERE \/ chrome "/" $HERE\/ chrome"

--no-sandbox/g’ /opt/google/chrome/google -chrome
19

20 # ChromeDriver installation
21 RUN CHROME_DRIVER_VERSION=$(curl -sS

https :// chromedriver.storage.googleapis.com/
LATEST_RELEASE) \

22 && wget -q -O /tmp/chromedriver.zip
https :// chromedriver.storage.googleapis.com/
$CHROME_DRIVER_VERSION/chromedriver_linux64.zip \

23 && unzip /tmp/chromedriver.zip -d /opt \
24 && rm /tmp/chromedriver.zip \
25 && mv /opt/chromedriver

/opt/chromedriver -$CHROME_DRIVER_VERSION \
26 && chmod 755 /opt/chromedriver -$CHROME_DRIVER_VERSION \
27 && ln -s /opt/chromedriver -$CHROME_DRIVER_VERSION

/usr/bin/chromedriver
28

29 # Expose port for the application
30 EXPOSE 8080
31

32 # Copy the JAR file and set the entrypoint
33 COPY target/MarineTraffic -0.0.1 - SNAPSHOT.jar app.jar
34 ENTRYPOINT ["java","-jar","/app.jar"]

CHAPTER 3. METHODS 21

3.2.7 Microsoft Azure

Microsoft Azure is a cloud computing platform. The team chose azure as its de-
ployment environment. For the project Azure is used for hosting all parts of the
project (Database, Backend and frontend), this allowed for excellent communica-
tion and integration between all layers of the application.

3.3 Tools

3.3.1 Github Actions

GitHub Actions is GitHub’s CI/CD (Continuous Integration and Continuous De-
ployment) service. Since the team had already chosen GitHub as their platform,
GitHub Actions became a natural selection. GitHub Actions enables teams to au-
tomate their workflows for building, testing, and deploying software. Throughout
the project, the team employed GitHub Actions to deploy the frontend to Azure
whenever the main Git branch was updated. The code in listing 3.2 demonstrates
this process. This action first runs ’npm install’ and then ’build’ to compile the
application from the source code. Upon completion, it compresses the build for
faster uploading and transfers the files. After uploading, the compressed files are
deployed to the webapp platform in Azure.

Listing 3.2: GitHub Actions
1 name: Build and deploy Node.js app to Azure Web App -

MarineTrafficFrontend
2

3 on:
4 push:
5 branches:
6 - main
7 workflow_dispatch:
8

9 jobs:
10 build:
11 runs -on: ubuntu -latest
12

13 steps:
14 - uses: actions/checkout@v2
15

16 - name: Set up Node.js version
17 uses: actions/setup -node@v1
18 with:
19 node -version: ’18.x’
20

21 - name: npm install , build , and test
22 run: |
23 export NEXT_PUBLIC_MAPBOX_TOKEN=${{

secrets.NEXT_PUBLIC_MAPBOX_TOKEN }}
24 npm install
25 npm run build --if -present
26

27 - name: zip all files for upload between jobs
28 run: zip next.zip ./* .next -qr

22 CHAPTER 3. METHODS

29

30 - name: Upload artifact for deployment job
31 uses: actions/upload -artifact@v2
32 with:
33 name: node -app
34 path: next.zip
35

36 deploy:
37 runs -on: ubuntu -latest
38 needs: build
39 environment:
40 name: ’Production ’
41 url: ${{ steps.deploy -to -webapp.outputs.webapp -url }}
42

43 steps:
44 - name: Download artifact from build job
45 uses: actions/download -artifact@v2
46 with:
47 name: node -app
48

49 - name: ’Deploy to Azure Web App’
50 id: deploy -to -webapp
51 uses: azure/webapps -deploy@v2
52 with:
53 app -name: ’MarineTrafficFrontend ’
54 slot -name: ’Production ’
55 publish -profile: ${{

secrets.AZUREAPPSERVICE_PUBLISHPROFILE_
D6D0780E31D34C8A84E636850018D1D7 }}

56 package: next.zip
57

58 - name: Delete zip file
59 run: rm next.zip

3.3.2 Postman

Postman is a platform where developers can design, build, and test APIs. During
the project the team used postman for creating tests on the API. In postman it is
easy to create a set of tests and then run them all with a click. This assisted the
team in checking all the endpoints of the backend part of the project. See figure
3.7.1 for example.

3.3.3 Prettier

Prettier was the teams chosen code formatter and was taken in use for the devel-
opment of the Frontend part of the application. This was taken in use to enforce
a consistent style through the project. In prettier the team defined a ruleset on
how the project were to be formatted. This helped the team to maintain a more
readable code and making it easier when merge conflicts happened.

CHAPTER 3. METHODS 23

3.3.4 Figma
The team selected Figma as their tool of choice for designing and creating wire-
frames. Figma was chosen for its accessibility and collaborative capabilities. As a
cloud-based platform, Figma enabled all team members to access and edit wire-
frames using either the Figma application or directly within a browser. Figma
also supports real-time collaboration, allowing multiple team members to work on
and discuss the same file simultaneously, even when working remotely. Utilizing
Figma, the team was able to develop everything from basic mockups to polished
wireframes.

3.3.5 PgAdmin4
For project database management and administration, the team opted for pgAd-
min4 as their preferred tool. pgAdmin4 is an open-source administration and
management tool specifically designed for PostgreSQL databases [41]. It provided
the team with an intuitive interface for managing the database. The tool en-
ables the execution of SQL queries and visualizes the query results, simplifying
the team’s database analysis and management process. The team’s database is
relatively small, comprising only two tables. Consequently, using a visualization
tool proved to be a fast and straightforward method for managing the tables.

3.3.6 ChatGPT
Throughout the development process, the team employed Chat GPT (Generative
Pre-trained Transformer) as a tool to assist in debugging code. Chat GPT is an
artificial intelligence-powered chatbot. When the team encountered difficulty un-
derstanding or resolving errors within the backend or frontend code, they utilized
Chat GPT as a supportive tool to identify and address the issue. To accomplish
this, the team provided the chatbot with the error message and created a prompt
that included the problematic code and other relevant project information. The
chatbot then responded with suggestions to rectify the error.

3.3.7 IDE�s
3.3.7.1 VSCode

Visual Studio Code (VS Code) is a lightweight yet powerful code editor. It was
the preferred choice for two team members, thanks to its extensive selection of
available extensions, which allows users to customize and enhance its functionality
as desired. When working on large projects encompassing various file types, VS
Code can swiftly open, view, and edit these files, while still supporting formatting
and autocompletion features.

3.3.7.2 Webstorm

JetBrains WebStorm is a highly regarded integrated development environment
(IDE) for web development. With its intelligent code assistance and smart nav-
igation features, WebStorm allows developers to efficiently code in HTML, CSS,

24 CHAPTER 3. METHODS

and JavaScript, among other languages. It also comes with an array of power-
ful features, such as integrated version control, advanced debugging tools, and
support for popular frameworks like Angular and React. Thanks to its seamless
integration with other JetBrains tools, WebStorm is an excellent choice for teams
that want a comprehensive web development environment.

3.3.7.3 IntelliJ

JetBrains IntelliJ IDEA is a widely used integrated development environment
(IDE) that supports a multitude of programming languages and frameworks. It is
particularly popular among Java developers, thanks to its advanced code analysis
and debugging features. With its extensive customization options and plugin
ecosystem, IntelliJ IDEA is known for providing a highly tailored development
experience, and therefore was a natural fit for out team. The team used several
plugins to compliment the IDEs features such as Sonarlint, Docker and Prettier.

3.4 Collaboration tools

3.4.1 GitHub

GitHub was the teams chosen code collaboration tool. Two separate Git reposi-
tories were created on GitHub, one for frontend and one for backend. With the
use of version control via GitHub the team could streamline their collaboration
on the same code-basis.

3.4.2 Jira

The team selected Jira for project management, which assisted in tracking tasks
that needed completion and those already accomplished. Within Jira, the team
created a project containing a backlog of tasks to be completed. As new features
or bugs were identified, they were added as issues in the backlog. Each week,
a new sprint commenced, and the team chose tasks from the backlog to address
during that week. Throughout the sprint, all relevant issues were displayed on
an issue board. Team members could assign tasks to themselves (or others), and
everyone maintained an overview of the ongoing work and pending tasks at any
given time.

3.4.3 Confluence

Throughout the project, the team utilized Confluence in tandem with Jira for
creating sprint retrospectives and documenting meeting notes. This seamless in-
tegration was facilitated by both platforms being developed by the same company,
Atlassian. As a result, Confluence emerged as an optimal choice for composing
sprint retrospectives, which served as the primary reason for its selection.

CHAPTER 3. METHODS 25

3.4.4 Communication
During the development process, the team employed a variety of communication
methods to facilitate both internal and external interactions. For internal com-
munication, Facebook Messenger was used for informal and quick exchanges, such
as when a member was running late for a meeting. Microsoft Teams served as
another platform for internal discussions, primarily for sharing simple files like
Word documents and images.

For external communication, email was the primary channel, used to schedule
meetings with clients and supervisors. A Microsoft Teams chat was also estab-
lished, which included all group members and the external supervisor from Ac-
centure. This chat enabled quicker communication between the team and the
client, and was particularly useful when either party had questions that needed
addressing before scheduled weekly meetings

3.5 Agile development
Early in the project, the team chose to adopt an Agile work methodology. This
approach allowed the team to adapt to unforeseen circumstances and maintain
flexibility in response to changes.

3.5.1 Roles and work distribution
During the planning phase, it was decided that all members would contribute
equally to every aspect of the project. However, to maintain organized, specific
team roles were assigned. Sjur Gustavsen was designated as the team leader,
Mathias Jørgensen took on the role of document manager, and Sebastian Nilsen
was appointed as quality assurance. The team leader’s responsibilities included
serving as the primary point of contact with the client and supervisor. The docu-
ment manager’s primary responsibility was to oversee all project-related documen-
tation. Meanwhile, the quality assurance role involved ensuring high code quality
throughout the project.

3.5.2 Sprint
The team operated in one-week sprints, with each sprint commencing with a meet-
ing on Monday. During these meetings, the team determined which tasks/issues
to tackle during the sprint, allowing them to prioritize tasks based on urgency
or client feedback. On the last day of the sprint (Friday), the team conducted
a sprint retrospective. This review session summarized each member’s work and
progress during the sprint. The team also discussed what went well and areas for
improvement. In this forum, members could express any dissatisfaction with the
current working methods, allowing for swift resolution before issues could nega-
tively impact the project.

By employing sprints in this manner, the team was able to break the project into
manageable segments, facilitating focus and progress. The ability to consistently

26 CHAPTER 3. METHODS

see progress by completing tasks made for a more satisfying development process.

Figure 3.5.1: Issueboard from sprint 10

3.6 Development process

3.6.1 User Experience

The team initiated the application development by creating a static website, which
functioned as a simple image gallery showcasing the wireframes in full screen. This
site was presented on screens at Accenture to gather feedback. Concurrently, the
team began searching for data sources on boats, determining how to set up the
database, and developing the backend.

3.6.2 BarentsWatch

Ultimately, the team chose BarentsWatch’s AIS API for real-time vessel data
within the fjord. This API provides a data stream containing up-to-date vessel
positions, sourced from the reputable Kystverket. Furthermore, the API allows
data filtering based on a position grid, enabling the team to focus exclusively on
vessels within the fjord. This approach saves time and resources by eliminating
the need for manual filtering.

3.6.3 Backend server and Database

Database Population
Upon choosing the BarentsWatch API as the data provider, the team began de-
veloping the Spring Boot server. They decided to prioritize creating functionality
for obtaining data from the API before developing other backend features.

To store the data, the backend application is connected to a relational database,
using hibernate, which consists of tables linked by primary keys. The data from
the BarentsWatch API includes the vessels’ MMSI, a unique ID assigned to each
vessel, which serves as an ideal key for storing vessel data.

CHAPTER 3. METHODS 27

3.7 Testing

3.7.1 Endpoint testing
The team created a test set in postman to test to test the endpoints of the
RESTAPI. This helped the team quickly see if all the endpoints still worked as
intended after changes was made to the backend server. If all tests where to pass
the returned values where as expected. If some of the tests where to fail the team
could check out that specific test to see what It returned to figure out what went
wrong. This was a great help in maintaining quality and hindering bugs. Without
it, it could have been hard to figure out if the error happened in the frontend or
backend. The Figure 3.7.1 shows how one of the test is set up.

Figure 3.7.1: Example of postman test. This test checks if inArea call has no
vessels older than 1 hour

3.7.2 User testing
A survey was created during the later stages of the development process to gather
feedback on the significance of various available data for display. The findings
were utilized to identify which data should be displayed on the website based on
the users’ level of interest.

The team also employed additional methods of user testing. They conducted
interviews with employees, discussing functionality and providing a live demo of
the application. Furthermore, a static demo site showcasing the wireframes was

28 CHAPTER 3. METHODS

created and sent to the client for feedback on the design. This allowed the team
to gather valuable insights and make necessary adjustments based on the client’s
preferences.

3.7.3 Lighthouse
Google Lighthouse is an open-source tool for automatically measure the quality
of a webpage. It gives a score on performance, accessibility, and search engine
optimization. This testing tool was utilized to test the frontend webpage to get
feedback on these factors. The use of Lighthouse gave the team a quick way to
generate a general report or the sites performance and usability. This was a helpful
tool alongside user feedback and testing. [42]

CHAPTER

FOUR

RESULTS

4.1 Final result
At the end of the project, the team delivered a fully functional website with all the
functionality and attributes requested by the client. The client was very pleased
with the result, and the website is to be shown on the info-screens at the Accenture
offices. The client cited in the feedback (see section 6.3) that:

"the team had successfully captured the end-users needs and transformed these to
functional code, something which is crucial for success". Further more they gave
the following statement about the result:

"The final solution meets the requirements outlined in the assignment and does
exactly what a marine traffic portal catered to a specific location is supposed to do.
Provide real-time updates on the marine ship movements in a predefined grid in
an easy-to-understand graphical interface primarily designed for large monitors."

4.2 Gathering additional data for the vessels

4.2.1 Problem

Following a meeting with the client, the team was tasked with collecting additional
information to present about the vessels. This included details such as nationality,
origin, and images, among others. However, during the search for compelling data,
the team encountered difficulties in obtaining vessel images and determining their
nationality. The Barentswatch API did not include this information, necessitating
the team to seek out an alternative source to acquire the data.

4.2.2 Possibilities

4.2.2.1 BarentsWatch API

In the search of an alternative source for vessel data, the team considered purchas-
ing the Marine Traffic API. While this option would have provided the necessary

29

30 CHAPTER 4. RESULTS

information, it proved to be quite costly. Unfortunately, due to limited spending,
this approach was not feasible for the team to pursue.

4.2.2.2 Web Scraping

A practical solution that emerged from the team’s brainstorming efforts was to
collect the required vessel data through web scraping the ship-info website. How-
ever, this approach required the team to first seek permission from the website
owner to use this technique.

Web scraping involves extracting data from websites using automated software,
making it a potentially valuable approach for collecting large amounts of informa-
tion efficiently. However, it’s important to note that web scraping can potentially
infringe on the website owner’s terms of service or even violate copyright laws.
Hence, it was essential for the team to ensure that they had explicit permission
from the website owner before proceeding with this strategy.

4.2.3 Process

Listing 4.1: The scraping functions login method
1 public void loginToWebsite (){
2 driver.get("https :// www.ship -info.com/prog/login.htm");
3 // Insert the username to the field
4 driver.findElement(By.xpath("/html/body/table/tbody/tr

/td[2]/ table/tbody/tr[2]/td/table/tbody/tr/td/form/p/
input[@id=’theFieldID ’]"))

5 .sendKeys(username);
6 // Insert the password to the field
7 driver.findElement(By.xpath("/html/body/table/tbody/tr

/td[2]/ table/tbody/tr[2]/td/table/tbody/tr/td/form/p/
input [2]"))

8 .sendKeys(password);
9 // Clicking the submit button

10 driver.findElement(By.xpath("/html/body/table/tbody/tr
/td[2]/ table/tbody/tr[2]/td/table/tbody/tr/td/form/p/
input [3]"))

11 .click();
12 }

Listing 4.2: Collecting the image URL
1 // check if the vessel has an image.
2 List <WebElement > imageDOMElement =

driver.findElements(By.xpath("/html/body/table [1]/ tbody/
tr[2]/td/table [3]/ tbody/tr[1]/td/table/tbody/tr/td[2]
/table/tbody/tr/td[1]/ img"));

3 if (imageDOMElement.size() != 0) {
4 // Vessel has an image.
5 // get the image url.
6 imageURL = imageDOMElement.get (0).getAttribute("src");
7 } else {
8 imageURL = "Unknown";

CHAPTER 4. RESULTS 31

9 }

32 CHAPTER 4. RESULTS

4.2.4 Result

In conclusion, the adoption of a scraping technique proved to be an effective so-
lution for collecting supplementary information. The utilization of this technique
offers an automated process that functions for a broad range of vessels worldwide.

Listing 4.3: Example of Vessel object after scrapper has gotten data
1 {
2 "mmsi": 257234800 ,
3 "name": "M S NIDARHOLM",
4 "longitude": 10.385262 ,
5 "latitude": 63.451208 ,
6 "type": 60,
7 "speed": 0.6,
8 "length": 19.0,
9 "destination": null ,

10 "nationality": "Norway",
11 "course": 246.6,
12 "lastUpdated": "2023 -05 -08 T13 :30:11.414077",
13 "width": 5.0,
14 "lastVisited": null ,
15 "visitedCounter": 0,
16 "image": "https ://www.ship -info.com/Vessels/K123612.jpg",
17 "imageAuthor": "Photo: Per Kristian Rognes |

Published: 01.10.2008",
18 "portOfRegistry": "Trondheim",
19 "owner": "Valso , Lindis Pauline",
20 "yard": "B.K.V. Staalprodukter , Valsoybotn , Nordmore",
21 "buildYear": "1974",
22 "passengerCapacity": "98",
23 "backTrack": [...] ,
24 }

4.3 Deployment of the backend

4.3.1 Problem

During the deployment of the backend to Azure, the team faced an issue with the
installation of the chromedriver, which is a prerequisite for the Selenium library.
As App Service on Azure does not permit manual installation of packages and
programs on the virtual machine, it became impossible to install the necessary
component.

4.3.2 Possibilities

4.3.2.1 Change scraping library

To resolve the problem of installing chromedriver during deployment to Azure App
Service, the team can explore alternative solutions. One option is to use a different
library for scraping the data, such as Jsoup etc. This would lead to refactoring
the whole scraping code and may cause other similar problems.

CHAPTER 4. RESULTS 33

4.3.2.2 Dockerize

Alternatively, the team can consider using a containerization solution, such as
Docker (Sec. 3.2.6), to package and deploy the application and its dependencies
together. This approach would allow for the easy installation of chromedriver
as part of the containerized application. Additionally, the team can explore the
possibility of using a different library for web automation that does not require
chromedriver.

4.3.2.3 Change azure resource type

A third possible solution is to switch the resource in Azure to a standard virtual
machine. However, this may raise security concerns since endpoints in an App
Service can only be accessed through Azure using keys. If the team opts for a
standard virtual machine, these endpoints will be open to all users without any
additional security measures implemented in the application.

4.3.3 Process
The team researched the different possibilities mentioned above, and tried to fig-
ure out what was the best solution for this project. The solution to Dockerize the
application seemed to the group to be the best and most flexible solution. This
allowed the application to easily be deployed to other cloud hosting platforms,
thus not locking the group to azure.

At the next meeting with the supervisor for Accenture. The team presented the
problem and their idea for the solution. The supervisor strongly aggreged to this
fix and said that he would also have done the same.

The next step was to begin the Dockerization. During this phase the team faced
significant challenges with getting the image build correctly. The biggest problem
was still the chromedriver. The team figured out the problem was with driver
installed through a maven dependency.

Listing 4.4: Maven dependency causing error
1 <dependency >
2 <groupId >io.github.bonigarcia </groupId >
3 <artifactId >webdrivermanager </artifactId >
4 <version >5.3.2</version >
5 </dependency >

Listing 4.5: Initial use of the webdrivermanager library
1 import io.github.bonigarcia.wdm.WebDriverManager;

2
...

3 WebDriverManager.chromedriver ().setup ();

To solve this the team removed the dependency completely and instead installed
the chromedriver directly into the system of which the program was running. This

34 CHAPTER 4. RESULTS

was done by specifying the image base as linux platform with maven and JDk 17
installed. Then linux terminal commands where run to install both Google Chrome
and the Chrome driver onto the system. Thus, the application was able to directly
access the systems chromedriver by locating the executable file as shown below.

Listing 4.6: Revised implementation of the chromedriver
1 File file = new File("/usr/bin/chromedriver");
2 System.setProperty("webdriver.chrome.driver",

file.getAbsolutePath ());

Despite having implemented the Docker solution for our project, the team en-
countered a few minor problems. One of them was an incompatibility between the
Chrome driver and the Chrome browser. Additionally, we faced an issue where the
hard-coded version to be downloaded might have been deprecated or unavailable
for download. To resolve this problem, we made the Docker image capable of au-
tomatically checking and downloading the latest versions available. This approach
effectively resolved both issues.

4.3.4 Result

As a result of the dockerization of the application. The team managed to de-
ploy the application to an Azure Web App using a Container registry. In the
deployment settings of the Web App it was specified to always use image ma-
rine_traffic/backend with the latest tag. Thus, when we pushed a new image to
the Container registry, we always tagged it with “latest”. When the image was
successfully pushed, the Web App automatically fetched the images and deployed
the new version. Figure 4.3.1 underneath shows the process. All issues related to
the chromedriver and deployment were successfully resolved by implementing this
solution.

Figure 4.3.1: Process of deploying a new version of the backend

CHAPTER 4. RESULTS 35

4.4 Designing the website

4.4.1 Problem
When design the website the team wanted to make sure the website was usable by
everyone at the Accenture’s office regardless of disabilities such as color blindness,
week sight and sensitive eyes. At the same time the site needed to be easy to
use and understand. To do this the team should follow the design guidelines for
designing a website. See section 2.10.1

4.4.2 Possibilities
To make the site usable by people with color blindness. The site must make use
colors that does not clash for different color blinded users and make use of anima-
tions or other forms of markings to display changes or critical information. Such
that the site can be used without any colors at all.

For making an easy-to-use site the team should make the site easy to understand.
This can be done by using pure text to display information. And when using icons,
the icons should be easy to understand. The site also needs to take users with
weak or no eyesight into account making the site optimized for screen readers.
Another factor to consider is if the user does not have access to a mouse and just
uses a keyboard. Then the site needs to be usable with just a keyboard.

The site needs to be optimized for TV screens as this is the primary usage area.
Thus, the site needs to have big font so that the text is readable far away. This
also applies to all factors of the site such as being able to clearly see which vessel
is selected.

4.4.3 Process
The team made sure to follow all the design guidelines to their best ability given
the time limit on the task. Firstly the team started by making the wireframes
in Figma to decide on the layout and the colors of the page. Before deciding on
design a user test was done on the wireframes. See section 4.10.1 for more infor-
mation on how the test was done.

After agreeing on the wireframes, the team had a meeting with two of Accenture’s
design team to get further input on the design and how the team could improve
the wireframes more. More about this can be found in section 4.10.

Following the design guidelines, the colors of the site was an important aspect
for the team, as they wanted all users regardless of colorblindness to be able to
use the site to. Thus, the team made sure that there was as little color clash as
possible on the site. However, there are a lot of different vessel types. And the
team could not use different colors on all of them and still regard optimization for
color blindness. To work around this animation and enlargement was added to
the selected vessel. Such that a user would be able to clearly see which vessel is
selected regardless of colorblindness. The vessel type is also displayed within the

36 CHAPTER 4. RESULTS

information box of the vessel. Making one able to find out about the type without
needing to see the color. A dark color theme was also implemented to the site.
This was implemented in case of viewing in a darker room. The dark mode would
be more pleasant to look at and not as straining on the eyes in darker environment.

To optimize the site for multiple user inputs, multiple measures where set in place.
Firstly, the team implemented alt text to images and buttons on the site. This was
to ensure functionality with users using screen readers. Secondly, tab indexation
was implemented onto the TV mode toggle, dark mode toggle and settings icon.
This allows the user to use the tab-key to navigate between the elements. Then to
activate the selected element the user can hit either return/enter or the space-key.
This implementation as done as some users might not have or use a mouse. Thus,
ensuring the capability of entering TV-mode and toggling settings when opening
the site on the TV screens.

4.4.4 Result

After taking these different forms of accessibility and usability into account. The
team was able to create a usable site for the client. The team got great feedback
from the client on the implementation of dark mode to the site. Saying it was
good looking and appreciated. The team simulated how the site would look with
different version of color blindness. The figure 4.4.1 under shows how the results
of this. As the results shows the maps color difference between the ocean and land
works well regardless of color blindness. The vessel icons, however, looks similar.
Regardless one is still able to see a difference between them and separate them
from the ocean.

The icons used on the website are recognizable icons. The settings icon is the icon
of a cog this is the generic and typical icon used for settings. This makes the icon
easily recognizable by the user and the user will be able to understand its usage
and functionality. Furthermore, the Icon used for the vessels is in the chape of a
boat looked down upon. Thus, making it easy to understand what it is. Lastly
the icon used for the toggle switches is also a commonly used way of displaying a
toggle switch. Again, making it easy for the user to understand its functionality.
The switch also changes color and has an animation when clicked to give the user
feedback on that something happened.

The team also ran a Lighthouse test on the site. This is an accessibility tester
that scores the site on accessibility, performance, best practices, and search engine
optimization. The result gathered form this was excellent ant to the groups satis-
faction, scoring almost 100/100 on accessibility, best practices, and search engine
optimization. The results can be found in attachment G.

https://developer.chrome.com/docs/lighthouse/overview/

CHAPTER 4. RESULTS 37

Figure 4.4.1: Displays how the site looks with different types of color blindness.
Light mode on the left and darkmode on the right

4.5 Handling the visitor counter for the vessels

4.5.1 Problem

The client requested a counter to be displayed indicating the number of times a
vessel has visited the fjord, along with its last visited date and time. However,
the team faced a dilemma on how to approach this task in order to accurately
calculate the vessel’s entrance and exit from the fjord.

38 CHAPTER 4. RESULTS

4.5.2 Possibilities

4.5.2.1 Time check

Initially, the team proposed assuming that a vessel was outside the fjord if it hadn’t
received an update in the past hour. However, this approach proved impractical
as some vessels would turn off their AIS while docked, leading to inaccurate data.
Consequently, the team decided to repurpose this solution for hiding inactive ves-
sels on the /inArea endpoint, which displays all vessels on the map.

4.5.2.2 Point in polygon algorithm

The team’s second solution involved using two hexagons to determine the vessel’s
position: one to define the "Active area" and a slightly larger one to outline the
region accurately. With the help of the Point in Polygon algorithm(Sec. 2.9.1), the
team could check if the vessel was moving from the active area into the "deadzone"
or vice versa.

4.5.3 Process

A function called checkIfInArea() was added to the vessel class by the team. This
function accepts a location point and a geoJSON area as arguments and evaluates
if the point is contained within the area. The function returns a boolean value
where True indicates the point lies inside the polygon. The following code snippet
shows an example implementation.

Listing 4.7: Code to check if coordinates are inside a GeoJSON area
1 boolean inside = false;
2 for (int i = 0, j = vertices.size() - 1; i <

vertices.size(); j = i++) {
3 VesselCoordinatePoint v1 = vertices.get(i);
4 VesselCoordinatePoint v2 = vertices.get(j);
5 if ((v1.getLatitude () > currentPoint.getLatitude ())

!= (v2.getLatitude () >
currentPoint.getLatitude ()) &&

6 (currentPoint.getLongitude () <
(v2.getLongitude () - v1.getLongitude ())
* (currentPoint.getLatitude () -
v1.getLatitude ()) /
(v2.getLatitude ()-v1.getLatitude ()) +
v1.getLongitude ())) {

7 inside = !inside;
8 }
9 }

10 return inside;

When determining whether a vessel is departing from the active area, the team
utilizes this function. Their criteria for a vessel leaving the area is when the
current position is located outside the active area while the previous position
remains inside. If both conditions are met, the visitor counter will increment, and
the last visited date will be updated.

CHAPTER 4. RESULTS 39

4.5.4 Result
The implemented solution allows the application to determine with a high degree of
accuracy whether a vessel has visited the fjord. However, in some infrequent cases
where the AIS data is slightly inaccurate, the counter may update multiple times
for a single visit. To address this issue, a cooldown timer could be introduced to
determine when the counter should be updated. This feature could be incorporated
into future work.

4.6 Server application

4.6.1 Problem
The team needed a server for storing data from different vessels, in addition, the
team wanted to have calls to the BarentsWatch API in the backend to reduce the
number of calls the fronted would make. Therefore, the team needed to choose a
server application that could both store data easily and serve as a REST API.

4.6.2 Possibilities
4.6.2.1 Firebase

The teams’ initial thought was to use Firebase as it is very easy to set up and
implement. However, as we wrapped our heads around the problem the team
figured the solution had to be a relational database. Implementing this in firebase
would be more complicated as a result. In addition, the amount of calls/writes
made to the database needed the pricing would extend above our budget.

4.6.2.2 Spring Boot

The team has previous experience with the Java Spring Boot framework, so natu-
rally it was the next option. Spring boot creates a Hibernate relational database,
and it is also convenient for setting up a REST API, as it is built in the frame-
work. There is no limit to calls/writes, which is a huge advantage, and we also
have experience with deployment of a spring boot application.

4.6.3 Process
4.6.3.1 Models

Within the Spring Boot application, controllers, services, and repositories utilize
models to present data and entities in a way that is easy to manipulate. These
models also reflect the structure of the corresponding tables they are based on.

4.6.3.2 Repositories

In the Spring Boot application, the repositories function as the data access layer
and serve as interfaces for interacting with the persistence layer. They are respon-
sible for creating and managing queries between the application and database. By

40 CHAPTER 4. RESULTS

utilizing repositories, the service layer can easily retrieve data from the database
as shown in code example 4.8.

Listing 4.8: Defining the query call for receiving all active vessels in the Area of
interest

1 @Query(value = "SELECT vessel.mmsi , vessel.latitude ,
vessel.longitude , vessel.type , vessel.course from vessel
where vessel.last_updated > NOW() - interval ’5
MINUTE ’", nativeQuery = true)

2 List <Object > getActiveVessels ();

4.6.3.3 Services

The service layer handles the business logic. When the service is called from the
controller, it handles the boundaries and then executes the call. The service often
uses, alters, or updates data from the repository layer as shown below in 4.9.

Listing 4.9: Update a vessel when new information is retreived from the API.
1 public boolean updateVessel(Vessel vesselToUpdate , Long

mmsi , String name , double longitude , double latitude ,
int type , double speed , double length , String
destination , String nationality , Double course , double
width , LocalDateTime lastVisited , int visitedCounter ,
String image , String imageAuthor) throws
MalformedURLException {

2

3 vesselToUpdate.setMmsi(mmsi);

4
...

5 vesselToUpdate.setImageAuthor(imageAuthor);
6

7 try {
8 vesselRepository.save(vesselToUpdate);
9 return true;

10 }catch (Exception e){
11 return false;
12 }
13 }

4.6.3.4 Controllers

The controller handles the endpoints of the server. The responsibility of the con-
troller is to handle the requested data sent to the server, and then send back a
response. This includes formatting the JSON from the request body, as shown in
code example 4.10, or converting request parameters into arguments that can be
used by the service layer. The controllers also call the appropriate methods in the
service layer to generate the desired response to the request.

CHAPTER 4. RESULTS 41

Listing 4.10: Gets a list of all .
1 @CrossOrigin
2 @GetMapping("/inArea")
3 public ResponseEntity <List <Object >>

getVesselsWithinActiveArea () throws
ExecutionException , InterruptedException {

4 List <Vessel > vessels =
vesselService.getVesselsWithinActiveArea ();

5 JSONArray vesselInfo = new JSONArray ();
6 for (Vessel vessel : vessels) {
7 JSONObject vesselJson = new JSONObject ();
8 vesselJson.put("mmsi", vessel.getMmsi ());

9
...

10 vesselJson.put("type", vessel.getType ());
11

12 vesselInfo.put(vesselJson.toMap());
13 }
14 return ResponseEntity.ok(vesselInfo.toList ());
15 }

4.6.4 Result

The implemented solution is working well, as it is storing all the data received
from the BarentsWatch API in the database, and the REST API is working well
for sending data from the backend to the frontend. The code is separated into
layers and in their own packages to make it more organized, more cohesive, and
easier to maneuver – hence the Spring boots best practices[43] have been followed.
6.3

4.7 Web application

4.7.1 Problem

The initial challenges faced by the team included determining the optimal organi-
zation of the codebase for ease of explanation and maintenance, as well as deciding
on the most suitable framework, if any, to use. The next issue they had to address
was figuring out how the website would display and retrieve information from the
server.

4.7.2 Possibilities

4.7.2.1 Organizing the codebase

A viable strategy for organizing code and minimizing duplication is to employ a
framework that enables the creation of components. By developing a component
once and using it in multiple locations within the code, maintenance becomes more
manageable, as any changes made to the component will automatically apply to
all its instances.

42 CHAPTER 4. RESULTS

4.7.2.2 Deciding on framework

The team explored various framework options for the project. They first investi-
gated Next.js, then considered Svelte, and finally examined the possibility of using
standard React or Vue.

4.7.2.3 Displaying information

The first essential piece of information to display is the background map, as it pro-
vides context for the rest of the data. The team identified two main approaches
for displaying the map: using a map API to present an interactive map in the
background or using an image of a map as the background.

To display the vessels, the team discovered only one viable method – using an
icon on the map to represent the position of each vessel. These icons needs to be
clickable and then the site is to show specific information about that vessel.

4.7.3 Process

The team initially focused on selecting a framework, as they wanted the abil-
ity to create components. They considered both React and Vue but ultimately
chose React, as most team members had experience with it. After agreeing on
React, they decided between using native React or another React-based frame-
work. They selected Next.js for its appealing features and the opportunity to try
something new. Next.js also allowed for both client-side and server-side rendering.

Once Next.js was chosen, the team explored map solutions, eventually settling on
MapBox for its features (see section 3.2.3 for details). They quickly discarded
the idea of using a static background image, as it would make positioning vessels
difficult. Using the MapBox library, they were able to directly insert coordinates
from the server as map markers. This approach enabled them to create a func-
tion that fetched all vessels from the backend, created markers with unique MMSI
identifiers, assigned colors based on vessel type, and set rotation based on course.

After implementing the map with all vessels, the team focused on displaying in-
formation about specific vessels and their selection. They first needed to obtain
the MMSI number of a particular vessel, achieved by assigning each marker a click
function that returned the marker’s ID. In the application’s root, an MMSI state
was created, which was then set to the returned marker ID.

Next, the team created the info card component, which contained all information
fields and used conditional rendering to display only the fields relevant to the cur-
rent vessel. A function to update the information on the card was then developed
and placed inside a React useEffect. This function would run every time the root
MMSI changed, effectively updating the info card for the selected vessel.

CHAPTER 4. RESULTS 43

4.7.4 Result

The outcome of this process was a fully functional web application that the team
deployed and made accessible to everyone. Refer to section 4.11 for details on
how this was achieved. The code structure and organization made it easy for the
team to modify and expand the code when necessary. The technologies chosen
by the team worked seamlessly, and they felt confident in their choices. As of
today (May 8, 2023), the application is ready for further expansion if the addition
of new features if desired. Accenture provided positive feedback and expressed
satisfaction with the results.

Figure 4.7.1: What the finished web application looks like

4.8 Backtracking the vessels

4.8.1 Problem

The client expressed a desire to view the past locations of specific vessels. As a
result, the team began exploring the development of a backtracking feature. Upon
investigation, they identified two primary challenges that needed to be addressed.
First, they had to find a way to store the position data for all vessels. Second,
they needed to effectively and logically display the stored data on the website,
ensuring it was easy to understand and navigate.

4.8.2 Process

The team initiated work on collecting data and storing it in the database. They
began by implementing a function to save each vessel’s current position in a list.
This meant that when a vessel was updated, a new position would be stored in
the list. The list was ordered with the oldest points first and the newest points
last, and was integrated into the vessel class, ensuring that all vessels had a list
of their previous positions stored. Initially, this solution seemed to work, so the

44 CHAPTER 4. RESULTS

team started developing a way to visualize the points on the frontend.

To display the backtracking points, the team fetched information about the se-
lected vessel, sorted it, and extracted the points. They utilized several MapBox
functions to display the points on the map. First, a new canvas source was created,
specifying that the source was of type GeoJSON and that the points should be
connected with a line. Next, a new layer was added to the map using this source
as a template, defining the line’s styling. Lastly, the coordinate list was inserted,
creating a pathed line between all the points.

Initially, this approach appeared to work, but the team soon discovered an issue
with the order of the points. To address this, they limited the number of points a
vessel could store, removing the first element from the list whenever a point was
added at the end. While this improved the backtracking visualization for some
time, they later observed incorrect backtracking for certain vessels. See figure
4.8.1.

Figure 4.8.1: Shows how the backtracking was on some vessels when the points
was stored in a list of max 50 points

Upon investigation, the team discovered that the issue was related to the removal
of points in the backend. They realized that their method of adding and removing
objects from the list was not only inefficient but also resource-intensive. This was
because each time a vessel received a new point, the program had to remove a
point and shift all the points to their new positions. With approximately 40 ves-
sels in the fjord this meant around 300 points received every minute, this shifting

CHAPTER 4. RESULTS 45

process was executed far too many times.

The team decided to revert to their original method of adding points to the list
and implemented a deletion function that deleted all points older than one hour
using a database query. They scheduled this function to run every 10 minutes.
By doing so, the team shifted the load of iterating and shifting the list away from
the backend, and by using query operations on the database, the process became
both faster and more resource-efficient.

These changes resolved the backtracking issues, significantly improving its ap-
pearance and accuracy. See figure 4.8.2. Moreover, this modification enhanced
the backend’s performance, making the website feel more responsive and efficient
overall.

4.8.3 Result
After addressing the challenges associated with creating the backtrack, the team
achieved the desired results. The backtrack lines accurately reflect the position of
the vessels, smoothly following their turns. No points are misplaced, and every
vessel now has a backtrack displayed correctly. The figure 4.8.2 under shows how
the backtrack ended up.

Figure 4.8.2: Shows how the backtracking is when the point removal was donw
via a database query

4.9 TV Mode

4.9.1 Problem
Upon receiving the assignment, the team swiftly recognized the need for a "pre-
sentation mode" on the website that could effectively exhibit the vessels on TV
screens without depending on user input. To achieve this, the website would have

46 CHAPTER 4. RESULTS

to be capable of automatically cycling through the vessels and displaying their
relevant data on the screen.

4.9.2 Process

The implementation process for the TV mode involved both backend and frontend
development to ensure a seamless and engaging experience for TV screen display.

4.9.2.1 Backend

The team aimed to develop an algorithm that generates a list of the most interest-
ing and desired vessels to be displayed on the TV mode. In collaboration with the
client, the team created a geojson area that served as a priority zone for vessels
to be displayed on the TV screen. Subsequently, the backend would collect the
IDs of all vessels located within this zone and return them, one by one, through
the REST endpoint. This endpoint also employs the code in Listing 4.10 for the
purpose of code reuse. Once a vessel was shown, it was removed from the list.
If the list became empty, the system would check for vessels in the priority zone
again. If no vessels were found in the priority zone, the system would randomly
select a vessel from the entire fjord area. The algorithm performed adequately as
an initial solution, but there is room for improvement in the future. Fine-tuning
can be achieved by incorporating metrics such as a visited counter and other rel-
evant factors to enhance the algorithm’s effectiveness. By implementing these
enhancements, the algorithm can be optimized for even better results.

4.9.2.2 Frontend

The frontend component for the TV mode heavily relies on the functionality pro-
vided by the interactive modes’ React states and hooks. It is designed to dynam-
ically change the selected vessel at regular time intervals. As the interval triggers,
the browser sends a request to fetch an MMSI for display. Once the MMSI is
received, the corresponding React state, called MMSI, is updated automatically,
resulting in the display of the information card and the selected vessel. To ensure
a smooth transition between vessel changes, a brief zoom and move animation is
employed when the TV mode is active. This animation enhances the seamless
experience of switching between vessels.

4.9.3 Result

The implementation of the TV mode was successful. The backend algorithm
generated a curated list of vessels within the priority zone, ensuring captivating
display on the TV screen. The frontend seamlessly updated the selected vessel
at regular intervals, providing a smooth transition between changes. Overall, the
TV mode achieved its objectives, delivering an immersive and enjoyable viewing
experience.

CHAPTER 4. RESULTS 47

4.10 User experience
Throughout the project, the team presented all decisions made to the client for
their review and approval. Since the client would be an end-user of the application,
they where used actively in the development process for testing and review. This
approach ensured that all design and functionality aspects were in line with the
client’s expectations and provided a proper user experience. In addition, the team
conducted three targeted test cases to gather feedback directly from end-users.
This feedback was then incorporated into the development process to enhance the
overall user experience.

4.10.1 Wireframes on screens
Before deciding on a design for the website, the team made a static website con-
sisting of the different wireframes created. This website was a simple image gallery
displaying each wireframe in full screen mode. The purpose of this site was for
Accenture to open it on their TVs to view how the site would look on the in-
tended screens. Then they where to send feedback on which design, they liked
the most. However, the team never got any feedback from this, thus they with
agreeance from the supervisor decided on the design they thought was the best.
The static website codebase can be accessed from the following github repository:
https://github.com/GustavsenSj/MarineTrafficStatic

4.10.2 Survey
During the project, the team conducted a survey for the end-users to gather their
feedback on the most important data points. The primary objective of the survey
was to obtain insights into the users’ interests. The survey was distributed to
end-users, and seven responses were received. The survey results are provided in
appendix F. Based on the survey results, the team identified that the users were
highly interested in images, country of origin, and vessel type. Additionally, they
were interested in the vessel’s backtrack and passenger capacity. The team took
these suggestions into consideration and implemented them into the website.

4.10.3 Interviewes
In the later stages of the development, the team asked the client to provide end-
users to interview for user testing. The purpose of the intevievew was for the
team to identify any flaws when the end users interacted with the website. The
meetings where held at online. The format of the interview was that the test
subjects scared their screen, while the

4.11 Making a public site

4.11.1 Problem
A part of the assignment from the client was to make a public website, which was
in a public cloud environment that hosts our website. Therefore, the team needed

https://github.com/GustavsenSj/MarineTrafficStatic

48 CHAPTER 4. RESULTS

to find a way to host the website and create a cloud environment.

4.11.2 Possibilities
Since Accenture uses Microsoft Azure in their own applications, the client wanted
us to use Azure in our development, to make it easier for them to take over the
website. Microsoft Azure is a cloud computing platform operated by Microsoft
that provides global access to data centers for the management, development, and
utilization of applications and services.

4.11.3 Process
The team received an Azure subscription from NTNU and initially experimented
with it, as none of the members had prior experience using the platform. After
some trial and error, the team successfully created a Resource Group to house
all necessary resources and consolidate various components in one location. An
Azure PostgreSQL database was established to host the database, an identity key,
an App configuration, and a Container registry to hold the backend Docker image.
Subsequently, two Application services were created for the backend and frontend.

When a new image is pushed to the Container registry, it automatically deploys the
updates to the App service. Continuous deployment for the frontend was set up
through GitHub Actions, so updates pushed to the "main" branch are deployed to
the website. The creation of an App service also generates a domain, eliminating
the need for the team to create a new one.

Figure 4.11.1: Resources in Azure

4.11.4 Result
The application has been transformed into a public website, which is now hosted
in the Azure cloud environment. This setup allows for a seamless transition for Ac-
centure to take control of the website once the assignment is completed. The back-
end domain can be accessed through the endpoint https://marinetrafficbackend.
azurewebsites.net to retrieve data from the backend. Additionally, the frontend
of the website can be viewed at this link: https://marinetrafficfrontend.
azurewebsites.net/.

https://marinetrafficbackend.azurewebsites.net
https://marinetrafficbackend.azurewebsites.net
https://marinetrafficfrontend.azurewebsites.net/
https://marinetrafficfrontend.azurewebsites.net/

CHAPTER

FIVE

DISCUSSION

5.1 Communication

5.1.1 With Client

To gather feedback from end-users, our team conducted a survey among co-workers
at Accenture to determine what kind of information they would like to see dis-
played about the vessels. Additionally, we conducted interviews with two em-
ployees from Accenture later in the development process, which yielded valuable
insights on the design, strengths, weaknesses, and potential improvements. During
these interviews, the employees also provided us with helpful suggestions on some
minor details that could enhance the user experience.

The team has found that maintaining regular communication with the client
throughout the project is incredibly beneficial. By holding frequent meetings,
any minor issues or questions that arise can be addressed promptly, which has
prevented the need for any major rework or delays. As a result, the project has
progressed smoothly and efficiently, without any significant setbacks.

5.1.2 Within the group

To facilitate an agile development process, the team implemented daily stand-up
meetings lasting 15 minutes at 10 AM. These meetings served as a useful tool for
structuring the workday and keeping team members informed about each other’s
progress. The physical proximity of team members working on campus was also
essential in maintaining a sense of structure and morale. By working in close
proximity, team members could easily collaborate and seek help from one another,
simplifying the process of problem-solving and promoting a more cohesive working
environment.

49

50 CHAPTER 5. DISCUSSION

5.2 Development process

5.2.1 The plan

The team’s diligent planning efforts were evident in the ease of following the
plan. However, the team’s optimistic scheduling approach, which involved adding
pressure to the team, and not accounting for potential challenges or delays, led to
deviations from the original milestone plan. Some user tests had to be rescheduled
due to unforeseen issues on the client’s side, resulting in delays. Furthermore, the
completed website was published one week later than planned, as the initial target
was to complete development by the end of April. Despite these setbacks, the team
ultimately delivered a high-quality end product.

5.2.2 Agile methodology

Since the team had prior experience working in the agile methodology, and it is
the industry standard for development projects, it was a natural choice for the
team to adopt agile practices. One of the key benefits of working in an agile
environment is the ability to prioritize tasks based on their importance, rather
than following a set plan. This approach allowed the team to remain adaptable to
changing circumstances throughout the project. Additionally, the agile framework
facilitated continuous client involvement, enabling the client to stay updated of
the progress and provide feedback along the way.

5.3 Collaboration with Jira and Confluence

The team’s exceptional collaboration was a highlight of the project. Having worked
together on previous projects, the team members were familiar with one another’s
working habits, which facilitated seamless teamwork. Most workdays were spent
together in the same room, with all team members present on most days. The
team thinks Jira is a more useful tool for larger teams where direct communication
is more difficult. Since the team found it easier to ask each other directly when
working in close proximity, rather than logging bugs and assigning them to specific
team members. Despite initial challenges in adapting to Jira, the team gradually
used it more actively and found it helpful in keeping track of bugs and tasks.

Given the client’s relatively vague product specifications, creating a comprehensive
product specification in Confluence from the outset was difficult. Instead, the team
added details gradually as progress was made and new possibilities and desired
features was discovered. Confluence was also utilized to store meeting notes and
retrospectives from sprints, providing a useful reference for the team to ensure that
all feedback from the client had been incorporated into the project. Additionally,
the retrospectives helped the team to reflect and improve upon their teamwork, a
critical aspect of successful development.

CHAPTER 5. DISCUSSION 51

5.4 Ethics of Web scraping

To get the images and the information we needed the team needed to scrape the
ship-info webpage, as they didn’t have an API. According to [44], there are a
few steps needed to be followed for the scraping process to stay transparent and
ethical:

• Whenever possible, use a Public API instead of scraping data. If the API
provides the data you need, it’s best to avoid scraping altogether.

• Use a user agent string to identify yourself when sending requests to the
website. This helps the website owner know who is accessing their data.

• Limit the rate of your data scraping and control the number of requests per
second. Avoid overwhelming the website with too many requests that could
be perceived as a DDoS attack.

• Only collect and save the data that is necessary for your business purposes.
Avoid saving any unnecessary data.

• Respect the website’s robots.txt and analytics requirements to avoid scraping
private data from sensitive areas.

• Establish a formal Data Collection Policy that outlines the rules and proce-
dures for data scraping within your organization.

The web scraping process used to collect ship-info data does not store any personal
or private information. Moreover, the process is triggered only once for each new
vessel that enters the area of interest. Since the website did not have a robots.txt
page, the team proceeded with the scraping process. Furthermore, the website
owner has provided login information and granted permission to use web scraping
to gather data, on the condition that the team gives proper credit to both the
website and the photographer for the photos, 5.4.1

Based on these factors, the team believes that they have adhered to all ethical
considerations while scraping the ship-info webpage. However, it would have been
preferable if the website had an API to facilitate data collection. The website
owner expressed satisfaction that someone was interested in their data and viewed
it as a free advertisement.

52 CHAPTER 5. DISCUSSION

Figure 5.4.1: The infocard showing the information scraped and the credits

5.5 Social impact

By keeping the application open on the office info screens, it becomes an interactive
component within the workspace. This helps foster a better working environment
by giving employees a shared point of interest, sparking conversations and discus-
sions in the office. Such an environment can make the office feel more welcoming
and engaging for both new and existing employees.

5.6 Correct data

The team prioritized the collection and display of accurate data, as it was crucial
not to provide users with false information. Therefore, only trustworthy sources
were used for data gathering. BarentsWatch, a company with a decade of experi-
ence in gathering and distributing data about Norwegian coastal and marine areas
[45], was chosen for this purpose. Additionally, Skipslistene.no, which has been
publishing and collecting vessel information since 1982 [46], was used to gather
further information.

In order to maintain the accuracy of the data, the team ensured that only up-
to-date information is displayed on the map. Vessels that have not been updated

CHAPTER 5. DISCUSSION 53

recently are removed from the map, ensuring that no outdated or incorrect infor-
mation is shown. This commitment to data accuracy and timeliness adds to the
reliability and usefulness of the application.

5.7 General Data Protection Regulation
While developing the application, the team took the General Data Protection
Regulation (GDPR) into account. The application is only using vessels through
the AIS stream. AIS messages are considered in the public domain and freely
available[47], and therefore does not violate any GDP regulations.

Furthermore, the site does not store any data about the users accessing it. The
team saw no need to collect user data, as the site functions completely without
needing this information. This approach ensures the application is fully compliant
with GDPR and respects the privacy of all its users.

5.8 Environmental impact
The website’s provision of real-time vessel information in the fjord contributes to
environmental awareness within Accenture. Employees can actively monitor and
understand the impact of maritime activities on the local ecosystem, promoting a
sense of environmental responsibility and stewardship.

With access to real-time data, employees can monitor vessel movements, traffic
patterns, and interactions with the environment. This monitoring enables them
to assess the potential ecological impact, such as pollution, disturbance to marine
life, or habitat degradation. Armed with this knowledge, employees can make
informed decisions and take proactive measures to mitigate environmental risks.

5.9 Economical impact
The inclusion of real-time vessel data on the information screens significantly en-
hances employee productivity within Accenture. By providing employees with
readily available information about the vessels in real-time, the website eliminates
the need for individual research efforts, thereby saving valuable time and resources.
Employees no longer have to spend time manually gathering information about
vessels that pique their interest.

The time saved through this streamlined access to data directly translates into
increased productivity. Employees can now allocate their time and efforts more
efficiently towards their core responsibilities, without the need for extensive vessel
research. This improved productivity can have a positive impact on the overall
operational efficiency of Accenture’s workforce.

54 CHAPTER 5. DISCUSSION

CHAPTER

SIX

CONCLUSIONS

6.1 Conclusion
The primary goal of this bachelor project was to develop a comprehensive, pub-
licly accessible web application that displays vessels in Trondheimsfjorden. The
project involved creating a backend with a REST API for gathering and delivering
data, a database for storing the data, and a frontend for visualizing the data to
users. This report has provided insights into the decision-making process and the
team’s collaboration and work throughout the project.

The team successfully created a backend REST API using Spring Boot in Java,
which gathers live ship data from BarentsWatch and additional information from
ShipsListene through web scraping. The data is organized in a PostgreSQL
database, and the REST API is deployed to an Azure web app using a Docker
container image, allowing for quick deployment and updates. The frontend was
developed using React through the Next.js framework, with the MapBox library
for a customizable interactive map, fetching vessel data from the REST API server.

The learning curve for this project was steep, as most team members had no prior
experience with React or web scraping. However, the learning outcomes were ex-
cellent, with all members gaining a good understanding of these technologies and
learning about developing products in unfamiliar domains, such as marine traffic
and related concepts.

A significant takeaway from this project is the importance of user testing. Meetings
with the client and user tests conducted by the client were instrumental in shaping
the project’s development. Without these tests and interviews, the team would
not have known which information to display or how users would interact with
the site.

6.2 Final Product
The final product from the project successfully met all the criteria provided by
the client. Although the project description was open-ended and did not have

55

56 CHAPTER 6. CONCLUSIONS

many detailed specifications, the team collaborated effectively with the client to
tailor the project to their desires and requirements. As a result, a fully functional
website was created, complete with a database and back-end. Overall, both the
team members and the client were pleased with the outcomes.

6.3 Further work
As mentioned earlier, both the front-end and back-end of the project were de-
veloped and structured with an emphasis on high-quality and maintainable code.
This meant using descriptive variable and function names and adhering to the
DRY principles.

The team had several features and improvements in mind that they would have
liked to implement if more time were available. First, they wanted to improve
the TV-mode selection algorithm by creating a prioritized queue of vessels, with
those most likely to be of interest being moved to the front. For example, if a new
vessel that had not been in the fjord before were to enter, it would be prioritized
and displayed more frequently than vessels docked in the harbor for an extended
period.

Another feature the team considered implementing was map filtering, allowing
users to display only vessels of a specific type. This feature was not prioritized, as
there were not many vessels in the fjord and the map did not appear overcrowded.
However, if more vessels were to enter the fjord in the future, this feature could
be a valuable addition.
The website’s loose coupling between the frontend and backend enables easy adap-
tation for various fjords. By simply modifying the geojson area in the backend,
the website can be customized to accommodate different locations. This flexibility
makes the solution highly versatile and applicable to diverse requirements.

REFERENCES

[1] Maritime Mobile Service Identity. en. Page Version ID: 1148641562. Apr.
2023. url: https://en.wikipedia.org/w/index.php?title=Maritime_
Mobile_Service_Identity&oldid=1148641562 (visited on 04/26/2023).

[2] What is Object-Oriented Programming (OOP)? en. url: https://www.
techtarget.com/searchapparchitecture/definition/object-oriented-
programming-OOP (visited on 04/20/2023).

[3] Software Engineering | Coupling and Cohesion. en-us. July 2018. url: https:
//www.geeksforgeeks.org/software- engineering- coupling- and-
cohesion/ (visited on 04/20/2023).

[4] Design Patterns and Refactoring. en. url: https://sourcemaking.com/
design_patterns (visited on 04/20/2023).

[5] Observer pattern. en. Page Version ID: 1149928597. Apr. 2023. url: https:
//en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=
1149928597 (visited on 04/20/2023).

[6] Java Singleton Design Pattern Best Practices with Examples | DigitalO-
cean. en. url: https://www.digitalocean.com/community/tutorials/
java-singleton-design-pattern-best-practices-examples (visited
on 04/20/2023).

[7] State pattern. en. Page Version ID: 1119678476. Nov. 2022. url: https:
//en.wikipedia.org/w/index.php?title=State_pattern&oldid=
1119678476 (visited on 04/20/2023).

[8] Wikipedia contributors. Client–server model — Wikipedia, The Free Ency-
clopedia. [Online; accessed 17-April-2023]. 2023. url: https://en.wikipedia.
org / w / index . php ? title = Client % E2 % 80 % 93server _ model & oldid =
1146978876.

[9] HTTP. en. Page Version ID: 1149611086. Apr. 2023. url: https://en.
wikipedia.org/w/index.php?title=HTTP&oldid=1149611086 (visited on
04/20/2023).

[10] What is a REST API? | IBM. en-us. url: https://www.ibm.com/topics/
rest-apis (visited on 04/20/2023).

[11] Wikipedia contributors. Web scraping — Wikipedia, The Free Encyclopedia.
[Online; accessed 17-April-2023]. 2023. url: https://en.wikipedia.org/
w/index.php?title=Web_scraping&oldid=1147883001.

57

https://en.wikipedia.org/w/index.php?title=Maritime_Mobile_Service_Identity&oldid=1148641562
https://en.wikipedia.org/w/index.php?title=Maritime_Mobile_Service_Identity&oldid=1148641562
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.techtarget.com/searchapparchitecture/definition/object-oriented-programming-OOP
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://sourcemaking.com/design_patterns
https://sourcemaking.com/design_patterns
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=1149928597
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=1149928597
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=1149928597
https://www.digitalocean.com/community/tutorials/java-singleton-design-pattern-best-practices-examples
https://www.digitalocean.com/community/tutorials/java-singleton-design-pattern-best-practices-examples
https://en.wikipedia.org/w/index.php?title=State_pattern&oldid=1119678476
https://en.wikipedia.org/w/index.php?title=State_pattern&oldid=1119678476
https://en.wikipedia.org/w/index.php?title=State_pattern&oldid=1119678476
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=1146978876
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=1146978876
https://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model&oldid=1146978876
https://en.wikipedia.org/w/index.php?title=HTTP&oldid=1149611086
https://en.wikipedia.org/w/index.php?title=HTTP&oldid=1149611086
https://www.ibm.com/topics/rest-apis
https://www.ibm.com/topics/rest-apis
https://en.wikipedia.org/w/index.php?title=Web_scraping&oldid=1147883001
https://en.wikipedia.org/w/index.php?title=Web_scraping&oldid=1147883001

58 REFERENCES

[12] Wikipedia contributors. Robots.txt — Wikipedia, The Free Encyclopedia.
[Online; accessed 17-April-2023]. 2023. url: https://en.wikipedia.org/
w/index.php?title=Robots.txt&oldid=1150227804.

[13] What is Accessibility: An Introduction | SeeWriteHear. en-US. Oct. 2020.
url: https://www.seewritehear.com/learn/what-is-accessibility/
(visited on 04/20/2023).

[14] What is accessibility? - Learn web development | MDN. en-US. Mar. 2023.
url: https://developer.mozilla.org/en-US/docs/Learn/Accessibility/
What_is_accessibility (visited on 04/20/2023).

[15] 8 Ways to Design a Color Blind Friendly Website. en. url: https://www.
audioeye.com/post/8-ways-to-design-a-color-blind-friendly-
website/ (visited on 05/02/2023).

[16] How to Design Your Website for Screen Reader Accessibility. en. url: https:
//blog.hubspot.com/website/screen-reader-accessibility (visited
on 05/02/2023).

[17] Everything you need to know to write effective alt text - Microsoft Sup-
port. [Online; accessed 8. May 2023]. May 2023. url: https://support.
microsoft.com/en-us/office/everything-you-need-to-know-to-
write-effective-alt-text-df98f884-ca3d-456c-807b-1a1fa82f5dc2.

[18] TechTarget Contributor. web application (web app). [Online; accessed 20-
April-2023. 2023. url: https://www.techtarget.com/searchsoftwarequality/
definition/Web-application-Web-app.

[19] bloomreach.com. What Is a Single Page Application? en. url: https :
//www.bloomreach.com/en/blog/2018/what- is- a- single- page-
application (visited on 04/20/2023).

[20] Atlassian. What is Agile? en. url: https://www.atlassian.com/agile
(visited on 04/20/2023).

[21] Atlassian. Scrum - what it is, how it works, and why it’s awesome. en. url:
https://www.atlassian.com/agile/scrum (visited on 04/20/2023).

[22] Git. url: https://git-scm.com/ (visited on 04/20/2023).
[23] What is a Cloud Service? – Cloud Services Solutions - Citrix. en. url:

https://www.citrix.com/solutions/digital-workspace/what-is-
a-cloud-service.html (visited on 04/20/2023).

[24] What is Containerization? - Containerization Explained - AWS. en-US. url:
https : / / aws . amazon . com / what - is / containerization/ (visited on
04/21/2023).

[25] What is a relational database? en-US. url: https://www.oracle.com/
database/what-is-a-relational-database/ (visited on 04/21/2023).

[26] Laura Fitzgibbons. “DRY principle”. In: WhatIs.com (June 2018). url:
https://www.techtarget.com/whatis/definition/DRY-principle.

[27] How to check if a given point lies inside or outside a polygon? Mar. 2023.
url: https://www.geeksforgeeks.org/how-to-check-if-a-given-
point-lies-inside-a-polygon/.

https://en.wikipedia.org/w/index.php?title=Robots.txt&oldid=1150227804
https://en.wikipedia.org/w/index.php?title=Robots.txt&oldid=1150227804
https://www.seewritehear.com/learn/what-is-accessibility/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility
https://www.audioeye.com/post/8-ways-to-design-a-color-blind-friendly-website/
https://www.audioeye.com/post/8-ways-to-design-a-color-blind-friendly-website/
https://www.audioeye.com/post/8-ways-to-design-a-color-blind-friendly-website/
https://blog.hubspot.com/website/screen-reader-accessibility
https://blog.hubspot.com/website/screen-reader-accessibility
https://support.microsoft.com/en-us/office/everything-you-need-to-know-to-write-effective-alt-text-df98f884-ca3d-456c-807b-1a1fa82f5dc2
https://support.microsoft.com/en-us/office/everything-you-need-to-know-to-write-effective-alt-text-df98f884-ca3d-456c-807b-1a1fa82f5dc2
https://support.microsoft.com/en-us/office/everything-you-need-to-know-to-write-effective-alt-text-df98f884-ca3d-456c-807b-1a1fa82f5dc2
https://www.techtarget.com/searchsoftwarequality/definition/Web-application-Web-app
https://www.techtarget.com/searchsoftwarequality/definition/Web-application-Web-app
https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application
https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application
https://www.bloomreach.com/en/blog/2018/what-is-a-single-page-application
https://www.atlassian.com/agile
https://www.atlassian.com/agile/scrum
https://git-scm.com/
https://www.citrix.com/solutions/digital-workspace/what-is-a-cloud-service.html
https://www.citrix.com/solutions/digital-workspace/what-is-a-cloud-service.html
https://aws.amazon.com/what-is/containerization/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://www.techtarget.com/whatis/definition/DRY-principle
https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/
https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/

REFERENCES 59

[28] Uxdesigninstitute. 7 fundamental UX design principles all designers should
know - UX Design Institute. en-US. June 2022. url: https://www.uxdesigninstitute.
com/blog/ux-design-principles/ (visited on 04/20/2023).

[29] Alexander S Gillis. What Is API Testing? | Definition from TechTarget. en.
Mar. 2023. url: https://www.techtarget.com/searchapparchitecture/
definition/API-testing (visited on 04/24/2023).

[30] What is SQL? - Structured Query Language (SQL) Explained - AWS. en-US.
url: https://aws.amazon.com/what-is/sql/ (visited on 04/24/2023).

[31] Wikipedia contributors. Hibernate (framework) — Wikipedia, The Free En-
cyclopedia. [Online; accessed 2-May-2023]. 2023. url: https://en.wikipedia.
org/w/index.php?title=Hibernate_(framework)&oldid=1146534247.

[32] What Is Open Source Software and How Does It Work? | Synopsys. en.
url: https://www.synopsys.com/glossary/what-is-open-source-
software.html (visited on 04/24/2023).

[33] CSS: Cascading Style Sheets | MDN. en-US. Apr. 2023. url: https://
developer.mozilla.org/en-US/docs/Web/CSS (visited on 04/24/2023).

[34] Jordana A. What Is JavaScript? A Basic Introduction to JS for Beginners.
en-US. Aug. 2021. url: https://www.hostinger.com/tutorials/what-
is-javascript (visited on 04/24/2023).

[35] TypeScript Introduction. en-US. url: https : / / www . w3schools . com /
typescript/typescript_intro.php (visited on 04/25/2023).

[36] An Introduction to JSON | DigitalOcean. en. url: https://www.digitalocean.
com/community/tutorials/an-introduction-to-json (visited on 05/08/2023).

[37] GeoJSON. en. Page Version ID: 1147050991. Mar. 2023. url: https://
en.wikipedia.org/w/index.php?title=GeoJSON&oldid=1147050991
(visited on 05/08/2023).

[38] Margaret Rouse. Prompt-Based Learning. en-US. Feb. 2023. url: https:
//www.techopedia.com/definition/34832/prompt- based- learning
(visited on 04/24/2023).

[39] Amazon Web Services. What is Continuous Integration? – Amazon Web
Services. en-US. url: https://aws.amazon.com/devops/continuous-
integration/ (visited on 04/25/2023).

[40] IBM. Continuous Deployment: An Essential Guide | IBM. en-us. url: https:
//www.ibm.com/topics/continuous-deployment (visited on 04/25/2023).

[41] pgAdmin. pgAdmin - PostgreSQL Tools. en. url: https://www.pgadmin.
org/ (visited on 04/24/2023).

[42] Lighthouse overview. en. url: https://developer.chrome.com/docs/
lighthouse/overview/ (visited on 05/03/2023).

[43] Spring Boot - Code Structure. en-us. July 2021. url: https://www.geeksforgeeks.
org/spring-boot-code-structure/ (visited on 04/27/2023).

[44] Web Scraping Done Right: Best Practices to ensure Ethical Data Collection
& Web Scraping - Merit Data Tech. en-US. Aug. 2021. url: https://
www.meritdata-tech.com/resources/blog/data/web-scraping-best-
practices-ethical-data-collection/ (visited on 05/09/2023).

https://www.uxdesigninstitute.com/blog/ux-design-principles/
https://www.uxdesigninstitute.com/blog/ux-design-principles/
https://www.techtarget.com/searchapparchitecture/definition/API-testing
https://www.techtarget.com/searchapparchitecture/definition/API-testing
https://aws.amazon.com/what-is/sql/
https://en.wikipedia.org/w/index.php?title=Hibernate_(framework)&oldid=1146534247
https://en.wikipedia.org/w/index.php?title=Hibernate_(framework)&oldid=1146534247
https://www.synopsys.com/glossary/what-is-open-source-software.html
https://www.synopsys.com/glossary/what-is-open-source-software.html
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://www.hostinger.com/tutorials/what-is-javascript
https://www.hostinger.com/tutorials/what-is-javascript
https://www.w3schools.com/typescript/typescript_intro.php
https://www.w3schools.com/typescript/typescript_intro.php
https://www.digitalocean.com/community/tutorials/an-introduction-to-json
https://www.digitalocean.com/community/tutorials/an-introduction-to-json
https://en.wikipedia.org/w/index.php?title=GeoJSON&oldid=1147050991
https://en.wikipedia.org/w/index.php?title=GeoJSON&oldid=1147050991
https://www.techopedia.com/definition/34832/prompt-based-learning
https://www.techopedia.com/definition/34832/prompt-based-learning
https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/devops/continuous-integration/
https://www.ibm.com/topics/continuous-deployment
https://www.ibm.com/topics/continuous-deployment
https://www.pgadmin.org/
https://www.pgadmin.org/
https://developer.chrome.com/docs/lighthouse/overview/
https://developer.chrome.com/docs/lighthouse/overview/
https://www.geeksforgeeks.org/spring-boot-code-structure/
https://www.geeksforgeeks.org/spring-boot-code-structure/
https://www.meritdata-tech.com/resources/blog/data/web-scraping-best-practices-ethical-data-collection/
https://www.meritdata-tech.com/resources/blog/data/web-scraping-best-practices-ethical-data-collection/
https://www.meritdata-tech.com/resources/blog/data/web-scraping-best-practices-ethical-data-collection/

60 REFERENCES

[45] About us. [Online; accessed 12. May 2023]. May 2023. url: https://www.
barentswatch.no/en/about.

[46] Shipping Publications AS. [Online; accessed 12. May 2023]. May 2023. url:
http://www.skipslistene.no/prog/reder.asp?vq=GEHKL.

[47] Overview of AIS dataset - AIS Handbook - UN Statistics Wiki. [Online;
accessed 12. May 2023]. May 2023. url: https://unstats.un.org/wiki/
display/AIS/Overview%2bof%2bAIS%2bdataset.

https://www.barentswatch.no/en/about
https://www.barentswatch.no/en/about
http://www.skipslistene.no/prog/reder.asp?vq=GEHKL
https://unstats.un.org/wiki/display/AIS/Overview%2bof%2bAIS%2bdataset
https://unstats.un.org/wiki/display/AIS/Overview%2bof%2bAIS%2bdataset

APPENDICES

61

A - REQUIREMENTS DOCUMENTATION

62

Requirements Documentation

Introduction
The purpose of this document is to elaborate on the requirements specification on the scope

and content of the bachelor thesis “Marine Traffic Portal”. This thesis is a collaboration

between Accenture and three NTNU students of NTNU Ålesund spring 2023.

Objectives of the project
The users of the website will be employees at Accenture Trondheim as well as boat

enthusiasts in Trondheim. After discussion with the client at Accenture the following needs

and wishes were given for the project:

• To be able to get an overview of all the boats in the fjord and their location.

• To be able to click on a vessel and view information specific to that vessel.

• To be able to enter “TV-mode” were the application selects and views a vessel

automatically.

• To have the application publicly available

• To show interesting and useful information about the vessels

Use case diagram

63

User Stories
The following stories is from the user’s perspective:

• As a user, I should be able to access the site form my browser.

• As a user, I should be able to click on a vessel to see information about the vessel.

• As a user, I should be able to set the site in TV-mode, and it should display vessels

outside the office and change vessels within a time interval.

• As a user, I should be able to see all the vessels in the fjord and the location should

be live.

Domain Model

64

Sequence Diagram
Get the information from a selected vessel.

65

B - PROCJECT PLAN

66

13

Marine Traffic Portal
Forprosjektplan

Versjon <1.0>

67

13

Revisjonshistorie
Dato Versjon Beskrivelse Forfatter

16/01/23 0.1 Oppstart Mathias, Sjur, Sebastian

19/01/23 0.2 Ferdigstilt prosjektplan, venter på
signaturer.

Mathias, Sjur, Sebastian

12/04/23 1.0 La til kontrakter Sjur

68

13

Innholdsfortegnelse
1. Mål og rammer 4

1.1 Orientering 4
1.2 Problemstilling / prosjektbeskrivelse og resultatmål 4
1.3 Effektmål 4
1.4 Rammer 4

2. Organisering 4
3. Gjennomføring 4

3.1. Hovedaktiviteter 4
3.2. Milepæler 5

4. Oppfølging og kvalitetssikring 5
4.1 Kvalitetssikring 5
4.2 Rapportering 5

5. Risikovurdering 5
6. Vedlegg 5

6.1 Tidsplan 6
6.2 Adresseliste 6
6.3 Avtaledokumenter 6
6.3.1 Arbeidskontrakt for bachelor-gruppen 6
6.3.2 3-partsavtale 7

69

13

1. Mål og rammer
1.1 Orientering
Oppgaven ble tildelt etter ønske fra gruppen. På bakgrunn av generell interesse hos gruppen for
oppgaven.

1.2 Problemstilling / prosjektbeskrivelse og resultatmål
Problemstilling:
Accenture har et ønske om å kunne overvåke skipstrafikken utenfor sine kontorlokaler i Trondheim.
Hvordan kan vi best visualisere båttrafikken via skjermene på kontoret?

Oppgavebeskrivelse:
Undersøk og lag en prototype på hvordan automatisere sporing av kommersiell marin trafikk i
Trondheimsfjorden, og presenter det i en moderne nettside.

Lage en offentlig nettside som viser båter i Trondheimsfjorden. Tilby et offentlig cloud environment
som hoster nettsiden og dens funksjonaliteter. Nettsidens brukere er båt entusiaster og ansatte i
Accenture. Hent inn og lagre relevant informasjon om båttrafikken, for eksempel – når var denne
båten sist inne i fjorden?

Resultatmål:
En nettside som skal kunne deles opp i to funksjoner. En inaktiv syklus modus som visualiserer båter
som kan sees fra kontorvinduene uten input fra bruker. Og en interaktiv modus hvor bruker kan
bruke et kart over Trondheimsfjorden aktivt og velge selv hvilke båter en ønsker å se nærmere på.

1.3 Effektmål
Målet for gruppen er å lage en konkurransedyktig nettside som står i henhold til moderne
standarder med tanke på design, funksjonalitet og brukervennlighet.

Vi ønsker å lage en oversiktlig og brukervennlig nettside. Hvor de ansatte kan lett få oversikt over
båter i fjorden.

1.4 Rammer
Under prosjektets gang har gruppen behov for skytjeneste til å hoste nettsiden. Microsoft Azure er
foretrukket dersom det er mulig.

2. Organisering
Accenture er oppdragsgiver for prosjektet. NTNU bidrar med veileder til prosjektet.

3. Gjennomføring
3.1. Hovedaktiviteter
Gruppen vil jobbe med SCRUM arbeidsmetodikk gjennom prosjektet. Av den grunn vil
arbeidsoppgaver tildeles underveis. Det vil bli tatt en vurdering hver uke for hvilke arbeidsoppgaver
som skall utføres. Alle på gruppen er pliktet til å føre dokumentasjon under arbeidsprosessen. Dette
føres i Confluence. Resultat av fullførte oppgaver deles mellom gruppemedlemmene med bruk av
versjonskontroll i GitHub.

70

13

3.2. Milepæler

• 16.01.23 – Oppstart
• 19.01.23 – Første møte med oppdragsgiver
• Sprintmøter gjennomføres i slutten hver uke
• 22.05.23 - Innlevering

4. Oppfølging og kvalitetssikring
4.1 Kvalitetssikring
Alle tidskritiske milepæler blir gjennomgått i internmøter ved planlagt ferdigstillelse dato.

4.2 Rapportering
Gruppen vil lage sprint-rapporter etter hver sprint. Hver uke. Rapportene sendes til veileder i bedrift
og NTNU.

Møte med oppdragsgiver og veileder vil i starten foregå ukentlig, med mulighet for endring senere
ved behov.

5. Risikovurdering
Problem Sannsynlighet Tiltak
En av gruppemedlemmene blir
fraværende over lengre tid

Lav Ha et godt og sunt
arbeidsforhold

Konflikt i gruppen Moderat/Lav Ukentlige møter og klare
forventninger til
arbeidsinnsats og resultater.

Arbeidsmengde blir for stor Lav Fordele arbeidet jevnt over
semesteret, samt dele opp
prosjektet i mindre deler med
spesifiserte datoer og jobbe
målrettet mot disse.

6. Vedlegg
Forprosjektplan, Poster, Arbeidskontrakt

71

13

6.1 Tidsplan

6.2 Adresseliste
Sebastian Nilsen, Student NTNU
+47 941 98 166
sebasn@stud.ntnu.no
Kirkegata 39, 6005 Ålesund

Mathias Jørgensen, Student NTNU
+47 466 34 708
mathijo@stud.ntnu.no
Kirkegata 39, 6005 Ålesund

Sjur Gustavsen, Student NTNU
+47 960 42 029
sjurgu@stud.ntnu.no
Lihauggata 8, 6002 Ålesund

6.3 Avtaledokumenter
6.3.1 Arbeidskontrakt for bachelor-gruppen
Ligger vedlagt som «Arbeidskontrakt»

72

13

6.3.2 3-partsavtale
Ligger vedlagt som «NTNU Standardavtale Mathias Jørgensen, NTNU Standardavtale Sebastian Nilse
og NTNU Standardavtale Sjur Gustavsen»

73

C - COLLABORATION AGREEMENT

74

Arbeidskontrakt for Bacheloroppgave
Marine Traffic Portal
Medlemmer: Sjur Gustavsen, Mathias Jørgensen og Sebastian Nilsen

Formål

Denne samarbeidsavtalen regulerer partenes ansvar, roller og rettigheter i forbindelse med

gjennomføring av Bacheloroppgave Marine Traffic Portal i henhold til prosjektbeskrivelse

som inngår som vedlegg 1 til denne avtale (heretter kalt «Prosjektet»).

Samarbeidsavtalen skal sikre at Prosjektet gjennomføres og dokumenteres i henhold til

relevant regelverk og anerkjente etiske normer.

Roller og oppgavefordeling

Partene har et selvstendig ansvar for organisering og utførelse av den del av Prosjektet som

gjennomføres i egen institusjon, og at dette skjer i henhold til relevant regelverk og formelle

godkjenninger.

Rollefordelinger

Teamleder:

Teamleder har et overordnet ansvar for prosjektmedarbeiderne, møteinnkallinger og

kommunikasjon.

Kontaktinformasjon: Sjur Gustavsen, sjurgu@stud.ntnu.no, +4796042029

Dokumentansvarlig:

Dokumentansvarlig ansvarsområde omhandler alle dokumenter og vedlegg.

Kontaktinformasjon: Mathias Jørgensen, mathijo@stud.ntnu.no, +47 46634708

Kvalitetssikring:

Kvalitetssikring sitt overordnede ansvarsområde er å sikre at alle dokumenter og loggføring

blir gjennomført. Samt sørge for at alle frister blir overholdt.

Sebastian Nilsen, sebasn@stud.ntnu.no, +47 941 98 166

75

Eksempler på roller: Teamledelse, dokumentansvarlig, Kvalitetssikring

Hva innebærer de ulike rollene, hvordan ivaretas de, hvem har ansvar for hva.

Prosedyrer (hvordan gjør man ting?)

A. Møteinnkalling

Gruppen har internt møte i slutten av hver sprint (ca. hver 2. uke). Møte innkalles med

4 dagers forvarsel.

Tidspunkt for møter med arbeidsgiver/kunde avtales nærmere etter første møte med

arbeidsgiver/kunde.

Når skal man ha møter. Hvordan innkalles det.

B. Varsling ved fravær eller andre hendelser

Gruppen kommuniserer internt via Messenger. Dersom man har planlagt fravær skal

dette informeres om i god tid. Hvis noe uanmeldt hender skal man varsle umiddelbart

dersom man ikke har mulighet å møte.

C. Dokumenthåndtering

Dokumenter blir i all hovedsak lagret og samskrevet i Microsoft Teams. Jira brukes

som issue tracking. Og Git brukes som versjonshåndtering. Dokumentansvarlig har

overordnet ansvar for at dette blir opprettholdt.

D. Innleveringer av gruppearbeider

Alle filer skal leveres i henhold til frister. Alle filer som skal leveres blir felles

kvalitets kontrollert og ferdigstilt av alle på gruppen før de leveres.

Interaksjon (Hvordan opptrer man sammen?)

A. Oppmøte og forberedelse

Alle gruppemedlemmer skal møte til avtalt tid. Kommer noe i veien for avtalt møte

tidspunkt skal medlemmet varsel de andre. Det forventes at alle har gjort kjent med

innholdet som skal gjennomgås i møter, og stiller forberedt.

Gruppen har faste arbeidstider alle hverdager fra 09-15, om ikke annet er avtalt.

B. Tilstedeværelse og engasjement

Det forventes at alle er til stedet og bidrar mens gruppen arbeider. Pauser avtales

76

fortløpende under arbeidet.

C. Hvordan støtte hverandre

Vår filosofi, er at ingen ideer er dumme. Alle skal ha mulighet til å bli hørt, og

samværet i gruppen er en viktig del av prosjektet. Derfor vil trivsel bli høyt prioritert,

og alle medlemmer har ansvar for å bidra til dette.

D. Uenighet, avtalebrudd

Når uenighet oppstår i gruppen, bestemmer flertallet. Eventuelt kan veileder bidra.

Om avtalebrudd oppstår vil veileder kontaktes.

77

D - WIREFRAME

78

79

80

81

82

83

E - SYSTEM DOCUMENTATION

84

System Documentation

Introduction
This document details the technical aspects of the system developed during the project. It

covers topics such as the project's code structure, classes utilized in the application and

server, as well as the configuration of the database.

Architecture
The system's architecture is divided into three sections. The backend, the database, and the

frontend. They are all hosted in an Azure cloud environment. The flowchart below shows the

structure.

Figure 1: Shows the systems architecture.

85

Project Structure

Frontend

The tree structure shown below visualizes all folders and config files starting from the root of

the workspace.

Figure 2: Shows the tree structure in the frontend.

• app / (contains the main .tsx and .css files for the application. Controlls the logic and

layout)

• components / (contains all the react components for the application)

• env.local (contains the token for accesing MapBox)

• .gitignore (Specifies files that Git should ignore)

• prettierrx.json (Configuration file for Prettier code formatting tool,)

• next.config.js (Used to customize various aspects of the build process and runtime

behavior of the application)

• package-lock.json (Provides version information of all npm packages installed)

• package.json (Cofigure npm package dependencies for the project)

86

• tsconfig.json (Configuration file used in TypeScript. Specifies compiler options and

project settings)

Backend

The Spring Boot server is divided into three main folders. The controller folder, the service

folder, and the repositories folder. The tree diagram below shows what these folders contain.

The project also had other folders containing logic and/or functionality needed for the

application to work.

Figure 3: Shows the tree structure in the backend.

87

Class diagram
The document below shows the class diagram for the backend server spring boot server. It

contains 8 classes, 1 main class (MarineTrafficApplication) that starts the application, 2

model classes (Vessel and VesselCordinatePoint) that defines a vessel and its position. 2 tools

classes (BarrentsAPIHandler and ShipScrapper). The first handles the data stream from the

BarentsWatch API and creates the vessels. The second ShipInfoScraper is a web scrapper

gathering information about a specific vessel. The last 3 classes are the Controller, Service

and Repository classes. These classes handle the logic, endpoints, and database

communication of the application.

88

89

Figure 4: Shows the class diagram in the backend.

Database Model
Figure 3 below shows the relation and table structure of the database. It consists of two

tables, and there is a one-to-many relation from the vessel to the backtrack table, and many-

to-one relation from backtrack to the vessel table.

Figure 5: Diagram showing relation between the two tables in the database.

90

Server Service

Vessel resources

List of all vessels

/getAll – Gets a list of all the boats in the system.

Get Active boats

/getActive – Gets a list of all the active boats in the area of interest.

Add

/add – Adds a new boat to the system

Get boat

/get{mmsi} – Requires the boat ID (mmsi) and returns the boat information from the system.

Get backtracking

/getBackTrack/{mmsi} - Requires the boat ID (mmsi) and returns the last 50 stored positions

as backtrack.

Get boats for TV view

/tvArea – get the boats inside the area of vision from the Accenture offices.

Deployment

Frontend

The website is available for everyone on the internet. The application is deployed on an

Azure web app service, which autogenerates a domain. Continuous deployment is set up by

GitHub actions, so whenever someone pushes something to the main branch in GitHub it

deploys the new updates to the website.

The following code libraries are used in the app:

• Mapbox – A map library used for the display of Trondheimsfjorden. (Mapbox, 2023)

91

Backend

The backend is deployed at Azure, using an Azure App Service. The team have set up a

PostgreSQL database in Azure, as well as a container registry. In Docker one can create a

compose file (docker image) where it is possible to create a spring boot container and a

MySQL database. The image is then pushed to the container registry in Azure, and updates

are then deployed to the backend.

Other libraries used in the backend:

• Selenium – Webdriver used for scrapping from ship-info.com. (Selenium, 2023)

Documentation of source code

Frontend
The code in the frontend is documented in-line with how to document in React. Each method

is given a describing name, as well as using the “//” notation to give smaller comments to

specify how things work.

Backend

The whole backend is documented in detail using Javadoc. The team has used a built-in

feature in IntelliJ to generate and show the documentation. This creates an HTML file

containing all the documentation of the backend.

Testing
Postman is mainly used to test the backend, and its endpoints. The website is tested publicly

as it is available for everyone. The backend has a configured docker container, and the

frontend is set up with GitHub actions, which makes it easy to push any updates.

References
(2023, 04 28). Retrieved from Selenium:

https://www.selenium.dev/documentation/webdriver/

92

(2023, 04 28). Retrieved from Mapbox: https://docs.mapbox.com/

93

F - SURVEY

94

Accenture båtinfo

1. Det finnes mye generell informasjon om båtene. Hvilke av disse synes du hadde vært mest nyttig?

2. Hvilken annen informasjon om en båt synes du det hadde vært interessant/gøy å se på en slik
side? Vennligst oppgi ting i prioritert rekkefølge

7
Responses

Latest Responses
"Seilinghistorikk"

"Ruten til fartøyet - hvor den har vært og hvor den skal "

"hvor mange kan være på båten (f. eks hvor mange passasjere på et …

3. Hvilke funksjoner ønsker du deg på en slik side?

7
Responses

Latest Responses
"Klikkbare valg"

"Hvor mange som er om bord(?)"

"Se oversikt over antall/typer båter på et område. Se hvor båten ko…

7
Responses

05:32
Average time to complete

Active
Status

Bilde 4

Navn 4

Opphavsland 6

Serienummer 1

Lengde/høyde/bredde 3

Type(Lasteskip, fiskebåt, etc.) 5

Kurs (retning) 3

Fart 2

95

4. Noen tanker/innspill du ønsker å komme med til siden?

2
Responses Latest Responses

96

G - LIGHTHOUSE RESULT

97

https://marinetrafficfrontend.azurewebsites.net/

Values are estimated and may vary. The
performance score is calculated directly from

these metrics. See calculator.

0–49 50–89 90–100

Show audits relevant to: All FCP LCP TBT CLS

Performance

63

Accessibility

92

Best Practices

100

SEO

100

PWA

Performance

63

METRICS Expand view

First Contentful Paint

0.4 s
Largest Contentful Paint

1.4 s
Total Blocking Time

1,650 ms
Cumulative Layout Shift

0
Speed Index

1.9 s

View Treemap

98

OPPORTUNITIES

Opportunity Estimated Savings

Eliminate render-blocking resources 0.14s

These suggestions can help your page load faster. They don't directly affect the Performance score.

DIAGNOSTICS

Minimize main-thread work — 2.8 s

Avoid chaining critical requests — 2 chains found

User Timing marks and measures — 2 user timings

Keep request counts low and transfer sizes small — 20 requests • 524 KiB

Largest Contentful Paint element — 1 element found

Avoid long main-thread tasks — 12 long tasks found

More information about the performance of your application. These numbers don't directly affect the Performance
score.

PASSED AUDITS (31) Hide

Properly size images

Defer offscreen images

Minify CSS

Minify JavaScript

Reduce unused CSS

Reduce unused JavaScript — Potential savings of 169 KiB

Efficiently encode images

Serve images in next-gen formats

Enable text compression — Potential savings of 2 KiB

99

Preconnect to required origins

Initial server response time was short — Root document took 170 ms

Avoid multiple page redirects

Preload key requests

Use video formats for animated content

Remove duplicate modules in JavaScript bundles

Avoid serving legacy JavaScript to modern browsers

Preload Largest Contentful Paint image

Avoids enormous network payloads — Total size was 524 KiB

Uses efficient cache policy on static assets — 0 resources found

Avoids an excessive DOM size — 179 elements

JavaScript execution time — 0.8 s

All text remains visible during webfont loads

Minimize third-party usage — Third-party code blocked the main thread for 0 ms

Lazy load third-party resources with facades

Largest Contentful Paint image was not lazily loaded

Avoid large layout shifts

Uses passive listeners to improve scrolling performance

Avoids document.write()

Avoid non-composited animations

Image elements have explicit width and height

Has a <meta name="viewport"> tag with width or initial-scale

100

These checks highlight opportunities to improve the accessibility of your
web app. Only a subset of accessibility issues can be automatically

detected so manual testing is also encouraged.

Accessibility

92

ARIA

[aria-*] attributes do not match their roles

These are opportunities to improve the usage of ARIA in your application which may enhance the experience for users
of assistive technology, like a screen reader.

NAVIGATION

The page contains a heading, skip link, or landmark region

These are opportunities to improve keyboard navigation in your application.

ADDITIONAL ITEMS TO MANUALLY CHECK (10) Show

These items address areas which an automated testing tool cannot cover. Learn more in our guide on conducting an
accessibility review.

PASSED AUDITS (17) Hide

[aria-hidden="true"] is not present on the document <body>

[role]s have all required [aria-*] attributes

Elements with an ARIA [role] that require children to contain a specific [role] have all
required children.

[role]s are contained by their required parent element

101

[role] values are valid

[aria-*] attributes have valid values

[aria-*] attributes are valid and not misspelled

ARIA IDs are unique

[user-scalable="no"] is not used in the <meta name="viewport"> element and the
[maximum-scale] attribute is not less than 5.

[aria-hidden="true"] elements do not contain focusable descendents

Background and foreground colors have a sufficient contrast ratio

Document has a <title> element

[id] attributes on active, focusable elements are unique

<html> element has a [lang] attribute

<html> element has a valid value for its [lang] attribute

Links have a discernible name

No element has a [tabindex] value greater than 0

NOT APPLICABLE (25) Show

Best Practices

100

TRUST AND SAFETY

102

Ensure CSP is effective against XSS attacks

GENERAL

Missing source maps for large first-party JavaScript

PASSED AUDITS (12) Hide

Uses HTTPS

Avoids requesting the geolocation permission on page load

Avoids requesting the notification permission on page load

Allows users to paste into input fields

Displays images with correct aspect ratio

Serves images with appropriate resolution

Page has the HTML doctype

Properly defines charset

Avoids unload event listeners

Avoids deprecated APIs

No browser errors logged to the console

No issues in the Issues panel in Chrome Devtools

NOT APPLICABLE (2) Show

103

These checks ensure that your page is following basic search engine
optimization advice. There are many additional factors Lighthouse does not
score here that may affect your search ranking, including performance on

Core Web Vitals. Learn more about Google Search Essentials.

SEO

100

ADDITIONAL ITEMS TO MANUALLY CHECK (1) Show

Run these additional validators on your site to check additional SEO best practices.

PASSED AUDITS (9) Hide

Has a <meta name="viewport"> tag with width or initial-scale

Document has a <title> element

Document has a meta description

Page has successful HTTP status code

Links have descriptive text

Links are crawlable

Page isn’t blocked from indexing

Document has a valid hreflang

Document avoids plugins

NOT APPLICABLE (5) Show

104

H - FEEDBACK

105

Bachelor thesis feedback

106

107

108

109

110

	Abstract
	Abstract
	Preface
	Assignment
	Contents
	List of Figures
	 Code examples
	Abbreviations
	Glossary
	Introduction
	Background
	Objectives
	Limitations
	Motivation
	Goals
	Result
	Report structure

	Theory
	Domain specific theory
	MMSI

	Object-Oriented Programming
	Coupling and cohesion
	Coupling
	Cohesion

	Design patterns
	Observer and observable pattern
	Singleton pattern
	State design pattern

	Client server communication
	HTTP
	REST API

	Web scraping
	The robots.txt file

	Accessibility
	Color blindness
	Screen readers
	Alt text

	Web application
	Singe page application

	Development
	Agile development
	Version control
	Git
	Cloud services
	Containerization
	Relational database
	DRY principle

	Algorithms
	Point in Polygon algorithm

	Quality assurance
	Design principles
	API testing

	Technologies
	SQL
	Open-source
	CSS
	JavaScript
	TypeScript
	JSON
	GeoJSON
	Artificial inteligence

	CI/CD
	Continuous Integration (CI)
	Continuous Deployment (CD)

	Methods
	Project Planning and Design Process
	Preliminary Project Plan
	Responsibilities
	Meeting with client
	Design
	Wireframe

	Technologies
	Java Spring Boot
	NextJS
	MapBox
	Selenium
	PostgreSQL
	Docker
	Microsoft Azure

	Tools
	Github Actions
	Postman
	Prettier
	Figma
	PgAdmin4
	ChatGPT
	IDE´s

	Collaboration tools
	GitHub
	Jira
	Confluence
	Communication

	Agile development
	Roles and work distribution
	Sprint

	Development process
	User Experience
	BarentsWatch
	Backend server and Database

	Testing
	Endpoint testing
	User testing
	Lighthouse

	Results
	Final result
	Gathering additional data for the vessels
	Problem
	Possibilities
	Process
	Result

	Deployment of the backend
	Problem
	Possibilities
	Process
	Result

	Designing the website
	Problem
	Possibilities
	Process
	Result

	Handling the visitor counter for the vessels
	Problem
	Possibilities
	Process
	Result

	Server application
	Problem
	Possibilities
	Process
	Result

	Web application
	Problem
	Possibilities
	Process
	Result

	Backtracking the vessels
	Problem
	Process
	Result

	TV Mode
	Problem
	Process
	Result

	User experience
	Wireframes on screens
	Survey
	Interviewes

	Making a public site
	Problem
	Possibilities
	Process
	Result

	Discussion
	Communication
	With Client
	Within the group

	Development process
	The plan
	Agile methodology

	Collaboration with Jira and Confluence
	Ethics of Web scraping
	Social impact
	Correct data
	General Data Protection Regulation
	Environmental impact
	Economical impact

	Conclusions
	Conclusion
	Final Product
	Further work

	References
	Appendices:
	A - Requirements Documentation
	B - Procject Plan
	C - Collaboration Agreement
	D - Wireframe
	E - System Documentation
	F - Survey
	G - Lighthouse Result
	H - Feedback

