
   

 

   

 

 

 

 

 

 

 

 

 

 

 

N
T

N
U

 

N
o
rw

e
g

ia
n
 U

n
iv

e
rs

it
y
 o

f 
S

c
ie

n
c
e

 a
n

d
 T

e
c
h

n
o

lo
g

y
 

F
a

c
u
lt
y
 o

f 
In

fo
rm

a
ti
o

n
 T

e
c
h

n
o

lo
g

y
 a

n
d

 E
le

c
tr

ic
a

l 
E

n
g

in
e

e
ri
n

g
 

D
e
p

a
rt

m
e

n
t 
o

f 
IC

T
 a

n
d

 N
a
tu

ra
l 
S

c
ie

n
c
e

s
 

B
a
c
h
e
lo

r´
s
 t

h
e
s
is

 
Ahmadi, Fereshta 

Midthus, Hjelle Steinar 

Skorpen, Sindre 

Synnes, Brevik Malin 

 

System for utilizing eye 

tracking in a virtual maritime 

environment 
 

Evt. undertittel 

 
Sted dato år 

 
 

 

 

Bachelor´s thesis in Engineering in Computer Science  

Supervisor: Di Wu 

May 2023 



 Table of contents 

- 1 - of 131 
 

Abstract 

This thesis explores the opportunities of combining eye tracking and virtual 

reality applications for the Norwegian Coastal Administration (NCA). After 

creating a virtual reality vessel simulator in collaboration with Morild Interaktiv 

AS, the NCA wanted to see which opportunities existed for including eye tracking 

in this simulator. 

 

Preliminary research from an industrial project conducted during the previous 

semester showed potential of eye tracking for aiding in the productivity of users. 

A group of people showing interest in this industrial project was assembled to 

create an implementation of eye tracking in virtual reality as a bachelor’s 

project. 

 

When certain bridge staff are working in a vessel, there are specific areas they 

are expected to keep an eye on. As an example, some are required to look out 

of the window as much as possible to not rely too often on instruments. 

 

 This is data that can be recorded in virtual reality to provide feedback on the 

performance of a crew member in a visual way. A virtual reality demo was 

developed to investigate how this data can be recorded and presented to the 

user. The demo contains visual models that shows viewing patterns of the user 

in various ways. Additionally, a website was created to present data as graphs. 

In this website, the viewing patterns of the user can be compared other users. 

 

The final project shows how eye tracking could be used in a virtual maritime 

training simulation to provide feedback and comparisons between users. This 

can be valuable, especially if a large amount of data is collected for extensive 

comparison.   

  



 Table of contents 

- 2 - of 131 
 

Sammendrag 

Denne avhandlingen undersøker mulighetene til kombinasjonen mellom 

øyesporing i virtuell virkelighet for Kystverket. Etter å ha utviklet en 

skipssimulator i samarbeid med Morild Interaktiv AS ønsket Kystverket å se på 

muligheter for å inkludere øyesporing i denne simulatoren. 

 

Forarbeid har blitt utført gjennom en industrirapport fra et tidligere semester. 

Denne rapporten viste potensialet til øyesporing som et verktøy som kan øke 

produktiviteten til en bruker. En rekke personer interessert i industriprosjektet 

ble samlet for å utvikle en løsning som et bachelorprosjekt. 

 

Når en los er på en båt, skal de helst se mest mulig ut av vinduet for å unngå 

ulykker og ikke bruke instrumentene for mye. Dermed om disse dataene kan tas 

opp i skipssimulatoren til Morild Interaktiv kan man bli presentert hvordan 

oppførselen er over tid på en visuell måte. 

 

Løsningen som ble laget i dette prosjektet ser på hvordan det kan gis objektiv 

tilbakemelding på brukerens adferd i en virtual reality demo applikasjon. Her kan 

brukerens synsdata visualiseres gjennom punktskyer og kart som viser hvor 

brukeren har sett over tid. I tillegg ble en nettside utviklet for å se 

tilbakemeldingene i grafformat. Her kan de sammenligne sin egen prestasjon 

mot andres prestasjoner. Dette kan ha stor verdi i treningssimulatorer der det 

kan leveres raske objektive tilbakemeldinger, og utføre sammenlikninger mellom 

store mengder brukere.  

  



 Table of contents 

- 3 - of 131 
 

Preface 

 

About 

Thea idea of gathering eye tracking data and visualizing seemed like an 

interesting project. The group worked in pairs, where they focused on creating a 

demo where they gathered the data and made a website to show this data. The 

group worked in the agile method Scrum, where they planned, created the two 

parts, and ensured effective communication and progress.  

 

The group wishes to thank the following: 

Our supervisor, Di Wu. Thanks for letting us have frequent and comprehensive 

meetings during the drafting of this thesis and being especially available near 

the deadline.  

 

Our client at the Norwegian Coastal Agency, Odd Sveinung Hareide, who 

maintained a clear vision of how he wanted the project to progress. 

 

Arne Styve, responsible for the IIR Visualization lab, who provided an additional 

VR headset, ensuring more efficient development. 

 

OpenBridge team, especially Kjetil Nordby that did a design review for the 

webpage. 

 

NTNU Ocean Ålesund, for lending us a laptop to speed up development at 

campus. 

 

  



 Table of contents 

- 4 - of 131 
 

Assignment text 

The definition of the assignment can be found in appendix A.  

  



 Table of contents 

- 5 - of 131 
 

Table of contents 
 

Table of contents ...................................................................... - 5 - 

Figures ..................................................................................... - 8 - 

Coding examples ........................................................................... 9 

1. Introduction ............................................................................ 10 

1.1 Background ................................................................................ 10 

1.2 Problem ..................................................................................... 10 

1.3 Requirements ............................................................................ 10 

1.3.1 VR Demo ............................................................................................. 10 
1.3.2 Backend .............................................................................................. 11 
1.3.3 Frontend .............................................................................................. 12 

1.4 Limitations ................................................................................. 12 

1.5 Structure ...................................................................................... 12 

1.6 Acronyms and Glossary ................................................................ 13 

1.6.1 Acronyms ............................................................................................ 13 

1.6.2 Glossary .................................................................................... 14 

2. Theory ..................................................................................... 15 

2.1 Software development ................................................................. 15 

2.1.1 Agile development ................................................................................ 15 
2.1.2 Cohesion and coupling ........................................................................... 16 
2.1.3 Functional programming and object-relational programming ...................... 17 
2.1.4 Quality assurance ................................................................................. 18 
2.1.5 Distributed version control ..................................................................... 18 
2.1.6 Security ............................................................................................... 18 
2.1.6 Design process ..................................................................................... 19 

2.2 Design patterns ............................................................................ 20 

2.2.1 Observer pattern .................................................................................. 20 
2.2.2 Façade pattern ..................................................................................... 21 
2.2.3 Entity Component System ...................................................................... 21 
2.2.4 Singleton pattern .................................................................................. 21 
2.2.5 Builder pattern ..................................................................................... 21 

2.3 Virtual reality ............................................................................... 22 

2.3.1 XR ...................................................................................................... 22 
2.3.2 3D graphics.......................................................................................... 22 
2.3.3 Game engine ........................................................................................ 24 

2.4 Eye tracking in VR ........................................................................ 24 

2.4.1 Eye Tracking terms ............................................................................... 24 

3. Method and Material ................................................................ 26 

3.1 Project Management .................................................................... 26 



 Table of contents 

- 6 - of 131 
 

3.1.1 Team .................................................................................................. 26 
3.1.2 Task Distribution .................................................................................. 26 
3.1.3 Client .................................................................................................. 26 
3.1.4 Advisor ................................................................................................ 26 
3.1.5 Meetings with the client ......................................................................... 26 
3.1.6 Project structure ................................................................................... 26 
3.1.7 Scrum ................................................................................................. 28 
3.1.8 Communication .................................................................................... 28 
3.1.9 Collaboration tools ................................................................................ 29 

3.2 Hardware and tools ...................................................................... 33 

3.2.1 HMDs .................................................................................................. 33 
3.2.2 Computers ........................................................................................... 33 

3.3 VR development ........................................................................... 34 

3.3.1 VR ...................................................................................................... 34 
3.3.2 3D Modeling ......................................................................................... 35 
3.3.3 Software Development Kit (SDK) ............................................................ 36 
3.3.4 C# ...................................................................................................... 37 

3.4 Backend ....................................................................................... 37 

3.4.1 Java .................................................................................................... 37 
3.4.2 Spring boot .......................................................................................... 37 
3.4.3 Spring security and tokens ..................................................................... 38 
3.4.8 SonarLint ............................................................................................. 38 
3.4.9 DBeaver .............................................................................................. 38 
3.4.10 Docker ............................................................................................... 39 

3.5 Frontend ....................................................................................... 39 

3.5.1 HyperText Markup Language (HTML) ....................................................... 39 
3.5.2 Cascading Style Sheet (CSS) .................................................................. 39 
3.5.3 JavaScript ............................................................................................ 39 
3.5.4 Node.js ................................................................................................ 40 
3.5.5 React JS .............................................................................................. 40 
3.5.6 OpenBridge Design System .................................................................... 40 
3.5.7 Figma .................................................................................................. 41 
3.5.8 Chart.js ............................................................................................... 41 

3.6 Testing ......................................................................................... 41 

3.6.1 Unit testing .......................................................................................... 41 
3.6.2 Usability testing .................................................................................... 42 

4. Results .................................................................................... 43 

4.1 Development process ................................................................... 43 

4.1.1 Eye tracking ......................................................................................... 43 
4.1.2 Persistence and API .............................................................................. 44 
4.1.3 Webpage ............................................................................................. 44 

4.2 Eye tracking implementation ........................................................ 45 

4.2.1 Eyes and raycasting .............................................................................. 45 
4.2.2 Position and trackable object .................................................................. 46 
4.2.3 Sessions and predefined setups .............................................................. 47 
4.2.4 Point records ........................................................................................ 48 

4.3 Interactions ................................................................................. 49 

4.3.1 Seat teleporter ..................................................................................... 49 



 Table of contents 

- 7 - of 131 
 

4.3.2 Grab Interactable.................................................................................. 50 
4.3.3 Settings and Tasks menu ....................................................................... 50 
4.3.4 Tasks .................................................................................................. 51 

4.3 3D models .................................................................................... 52 

4.4 Persistence and API ................................................................................. 55 
4.4.1 Registers and Services .......................................................................... 55 
4.4.2 Database and repositories ...................................................................... 56 
4.4.3 Security ............................................................................................... 58 
4.4.4 REST controllers ................................................................................... 59 
4.4.5 Testing ................................................................................................ 60 

4.5 Information and visualization ...................................................... 61 

4.5.1 Design Principles .................................................................................. 61 
4.5.2 Register and login page ......................................................................... 62 
4.4.3 Sessions .............................................................................................. 62 
4.4.4 Session Overview ................................................................................. 63 
4.4.5 Profile ................................................................................................. 63 
4.4.6 Help and support .................................................................................. 64 
4.4.7 Error handling ...................................................................................... 64 
4.4.8 Application responsiveness ..................................................................... 66 
4.4.9 The top bar .......................................................................................... 66 

4.5 Usability test ................................................................................ 67 

4.5.1 Demo adjacent issues ........................................................................... 67 
4.5.2 Issues with the demo ............................................................................ 68 

4.6 Collaboration tools ....................................................................... 68 

4.6.1 Jira ..................................................................................................... 68 
4.6.2 Confluence ........................................................................................... 69 
4.5.3 GitHub................................................................................................. 69 

5. Discussion ............................................................................... 71 

5.1 Implemented functions ................................................................ 71 

5.1.1 Virtual Reality demo .............................................................................. 71 
5.1.2 Backend .............................................................................................. 73 
5.1.3 Frontend .............................................................................................. 74 

5.2 Limitations ................................................................................... 76 

5.3 Integration ................................................................................... 76 

5.1.1 VR ...................................................................................................... 76 
5.2.2 Backend .............................................................................................. 76 

5.4 Deployment .................................................................................. 77 

5.5 User Testing ................................................................................. 77 

5.6 Development process ................................................................... 79 

6. Conclusion ............................................................................... 81 

6.1 Conclusion .................................................................................... 81 

6.1.1 Teams conclusion ...................................................................... 81 

6.1.2 Clients conclusion ..................................................................... 81 

6.2 Further work ................................................................................ 81 



 Figures 

- 8 - of 131 
 

6.2.1 VR Demo ............................................................................................. 81 
6.2.2 Backend .............................................................................................. 82 
6.2.3 Frontend .............................................................................................. 82 

Societal Impact ........................................................................... 83 

Ethical concerns ................................................................................. 83 

Sustainable goals ............................................................................... 83 

References .................................................................................. 84 

Appendices .................................................................................. 89 

A Preliminary project plan .................................................................. 89 

B Industry report ............................................................................. 109 

Repositories .............................................................................. 131 

 

Figures 
Figure 1 A painted green corrugated metal wall PBR material consists of multiple maps. 

From top left to bottom right: Diffuse, normal, displacement, ambient occlusion, 

specular, roughness. ........................................................................................... 22 

Figure 2 All maps combined and applied to a sphere in the Unity game engine. .......... 23 

Figure 3 A panoramic HDRI visualized as a sphere in the Unity game engine. ............. 24 

Figure 4 High level project diagram ....................................................................... 27 

Figure 5 An overview of all the tests in the backend on the left and figma prototype on 

the right. ........................................................................................................... 41 

Figure 6 Visualization of the gaze hit and ray casting from the eyes........................... 46 

Figure 7 example of gaze data separation based on the position ............................... 47 

Figure 8 Question panel with both point cloud and points of interest displayed. ........... 49 

Figure 9 The tasks and settings menu tabs in VR..................................................... 50 

Figure 10 Wristwatch, windshield wipers, terminal and seat teleporter ....................... 52 

Figure 11 Exterior models, interior props, player models .......................................... 53 

Figure 12 Example of the light cone shader. The cone itself is in the bottom right corner

......................................................................................................................... 54 

Figure 13 The water shader in the demo ................................................................ 55 

Figure 14 Automatically generated Entity relationship diagram of the database and its 

tables ................................................................................................................ 58 

Figure 15 Home page, register page and login page on the webpage ......................... 62 

Figure 16 Example of the sessions page with an overview of some sessions on the left, 

the filter option in the center, and the filtered results on the right side. ..................... 63 

Figure 17 Shows the user tested sessions and their respective graphs. ...................... 64 

Figure 18 Help and support page. An overview of definitions related to eye tracking 

metrics and definition of fixations. ......................................................................... 65 

Figure 19 Error when signing into the account on the left and profile page on the right. 65 

Figure 20 Example of how the session overview page looks on a desktop. .................. 66 

Figure 21 The top menu. ...................................................................................... 66 

Figure 22 The main menu for the webpage. ............................................................ 67 

Figure 23 Profile card ........................................................................................... 67 



 Coding examples 

 
9 of 131 

 

 

Coding examples 
 

Coding example 1 Example of code documentation in the backend (Session.class) ...... 31 

Coding example 2 Example of how serialized variables are displayed in the Unity 

inspector. (HandUIUtilities.class) ........................................................................... 32 

Coding example 3 The sessions interface with one of its defined methods. 

(SessionRegister.class) ........................................................................................ 56 

Coding example 4 Implementation of the sessions register interface. 

(SessionService.class) ......................................................................................... 56 

Coding example 5 the trackable objects class and annotations used to store it in the 

database. (TrackableObject.class) ......................................................................... 57 

Coding example 6 PreAuthorize used to get all the simulation setup. 

(UserController.class) .......................................................................................... 59 

Coding example 7 Example of JSON property used in a constructor. (GazeData.class) . 60 

Coding example 8 Failed test since the input type is not null. Testing method above and 

error underneath. (CategoryFeedbackTest.class) ..................................................... 61 

 

  



 1. Introduction 

 
10 of 131 

 

1. Introduction  

1.1 Background 

The Norwegian Coastal Administration is currently investigating virtual reality maritime 

training. They are currently utilizing a VR simulator from Morild Interaktiv. One 

investigation into the state of the art of eye tracking was conducted in an industrial 

project the fall of 2022 by Steinar Hjelle Midthus and Trine Staverløkk, of which Midthus 

is participating in this project. This investigation found opportunities of eye tracking 

usage within VR training simulations. 

 

A bachelor’s project was proposed following the industrial project – create an 

implementation of a feedback system gathering data from eye tracking, either 

integrating with the VR application Morild Interaktiv already created, or developing an 

entirely new demo project. The industry project can be found as appendix B. 

 

1.2 Problem 

The problem definition of the bachelor thesis is to look at how eye tracking can be used 

to give objective feedback to a trainee and compare them to an expert's performance.  

In the project, the task is to track the eye movement of the captain of the ship. Look at 

how eye tracking data in a simulation can be used to give objective feedback to the user. 

Based on the data that is collected, there shall be an analysis carried out that can tell 

something about possible improvements. It is also a desire that a user should be able to 

be monitored by a third party who can give feedback during a session. Hence, they can 

say where they need to improve with the use of their own computer. The wanted 

solution should gather data about what percentage of the user is looking at different 

objects and display it on a graphical user interface (GUI). The GUI should also have the 

added functionality of comparing the trainee’s performance against an expert. The data 

that was gathered should also be stored for further analysis. 

 

1.3 Requirements 

The requirements were taken from the assignment text in appendix A and defined 

throughout the project as wishes from both the supervisor and the project owner.  

 

1.3.1 VR Demo 

Using Unity engine 

One of the goals of the project was an ability to integrate eye tracking solutions into the 

simulator software developed by Morild Interaktiv. Their software is based on the Unity 



 1. Introduction 

 
11 of 131 

 

engine, which required this project to be developed with Unity as well. During further 

discussion, integration into Morild Interaktiv’s application stopped being a requirement, 

in favour of creating an open project they could base their solution on.   

 

VR headset compatibility 

Another requirement was to develop and ensure compatibility with modern VR headsets, 

with or without built-in eye tracking. The options here were the HP Reverb G2 Omnicept 

Edition, the Meta Quest Pro, and the Pico 4 Pro Enterprise. Of the three, HP and Meta’s 

HMDs were available through the university and NCA. The group initially targeted both 

HMDs, but later moved on to just having the Meta Quest Pro as the target hardware. 

 

Eye tracking requirements 

One requirement was gathering data on an object category basis. Objects should be 

categorized as for example windows or props and stats for these categories should be 

saved.  

It should be possible to see some visualizations of eye tracking data in the demo. This 

can be of several different types of data or visualizations if it is related to eye tracking.  

 

Demo content 

The demo should be able to be “played” from start to finish. Have a situation that can be 

completed by the user with a clear start and end. This can provide a clear way to 

compare data.  

 

The users should also be able to do several types of interactions, like picking up objects 

and interacting with menus in the world. This way making the gathering of data less 

boring for the end user.  

 

Unity Editor requirements 

The logic created in this demo should be easy to set up for developers in a new scene. 

This is intended to make it easier for developers utilizing our project as a basis for 

modified scenes or new eye tracking applications entirely.  

 

1.3.2 Backend 

The backend should be able to handle persistent data, this data should be accessible via 

endpoints. The backend should also be able to handle different users and make it 

possible to compare data from different users.  



 1. Introduction 

 
12 of 131 

 

 

1.3.3 Frontend 

The frontend should be able to display different sessions from the backend and compare 

these. It should also show visualizations from the gathered data. The website should be 

fully functional both on mobile and desktop devices. The website should follow an 

established maritime UX standard, called the Open Bridge standard.  

 

1.4 Limitations 

Working with the Norwegian Coastal Administration and Morild Interaktiv came with 

some limitations. The frontend was requested to comply with the OpenBridge System 

standard, due to NCA having familiarity with that standard. The VR demo was required 

to be developed in Unity, so that Morild Interaktiv could utilize our findings more easily 

in their internal Unity project. The demo was not required to be in a naval setting, but 

with NCA as the main client, the group decided to set the demo in a ship bridge setting. 

The demo also needed to run properly on target hardware, that being laptops with 

dedicated graphics at least as or more powerful than an Nvidia RTX 3060.  

 

1.5 Structure 

The structure of the report: 

 

Chapter 1: Introduction 

Introduction of the project with an explanation of the background, the problem, 

requirements, and limitations.  

 

Chapter 2: Theory 

Presents the theoretical background of the solution and the development. The foundation 

of the bachelor thesis. 

 

Chapter 3: Method and Material 

Description of the methods utilized and material that is used out of this project. 

 

Chapter 4: Results 

Presenting the results of the completed project. 



 1. Introduction 

 
13 of 131 

 

 

Chapter 5: Discussion 

Discussion and reflection of the achieved results, results related to the problem thesis 

and further development.  

 

Chapter 6: Conclusion 

Concludes the bachelor thesis as a thematic and subsequent discussion.  

 

1.6 Acronyms and Glossary 

1.6.1 Acronyms 

NTNU – Norwegian University of Science and Technology  

IIR – Department of ICT and Natural Sciences 

IHB – Department of Ocean Operations and Civil Engineering 

HMD – Head Mounted Display 

VR – Virtual Reality 

XR – Extended Reality 

CSS – Cascading Style Sheet 

HTML – Hypertext Markup Language 

OOP – Object Oriented Programming 

ORM – Object Relational Mapping 

ECS – Entity Component System 

SDK – Software Development Kits 

GUI – Graphical User Interface 

UI – User Interface 

UX – User Experience 

IDE – Integrated Development Environment 

PBR - Physically Based Rendering 

REST – Representational State Transfer 

HDRI – High Dynamic Range Image 

POC – Proof of concept 



 1. Introduction 

 
14 of 131 

 

 

1.6.2 Glossary 

Backend – The server side of the website. Stores and treats data.  

Frontend – The visual side of the website. Connects the user to the backend. 

VR demo – A demo VR application created to showcase eye-tracking in VR, through the 

game engine Unity. Feeds data to the backend.  

Screen Space – A 2D coordinate system based on the display an application is running 

on. Often used in game development for GUI. If a third dimension is introduced to the 

coordinate system, the Z axis represents the inward/outward of the screen.  

World Space – A 3D coordinate system used for 3D scenes. Used for scenes in Unity, 

and especially relevant for GUI in VR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2. Theory 

 
15 of 131 

 

2. Theory 
This chapter will be about the theory of the project. The project management method, 

some common eye-tracking terms and technology will be stated here.  

 

2.1 Software development 

2.1.1 Agile development 

Agile development is a project management and software development methodology 

that emphasizes iteration and continuous delivery of value to a user (Atlassian n.d.). 

Instead of delivering a complete product all at once, agile teams usually break down 

their work into smaller, more manageable increments. This approach allows for ongoing 

evaluation and adjustment of requirements, plans and outcomes. This enables teams to 

respond more quickly to changes in circumstances, and with less complexity than 

traditional project management methods.   

 

Sprints 

In agile and scrum methodologies, a sprint is a crucial time-bound period in which a 

scrum team focuses on completing a defined amount of work (Atlassian n.d.). By 

breaking down larger projects into sprints, teams can ensure steady progress towards 

the end goals while also maintaining flexibility and adaptivity. Sprint management is 

essential for successfully delivering high-quality software products in a timely and 

efficient manner. This will minimize complications and simplify the development process.  

 

Sprint reviews 

The sprint reviews assist the developers to gather feedback from the stakeholders (Zoho 

n.d.). This meeting is held at the end of each sprint. The developers will talk about the 

process in the project.  

 

User stories 

A user story can be described as a non-formal and broad software feature, presented 

from the viewpoint of an end-user. The primary objective of a user story is to express 

how a software feature will benefit the user and provide value to them. 

 

Meetings 



 2. Theory 

 
16 of 131 

 

In Scrum, meetings promote transparency and facilitate regular communications within 

the team (Radigan n.d.). This will help to plan, discuss, and gather feedback on the 

work. Sprint planning and daily stand-ups are a part of scrum meetings.  

 

Roles 

According to the scrum model, there are three roles: product owner, scrum master, and 

development team members (West n.d.). The product owner sets clear direction since 

they understand the customer and business needs. The scrum master is the one holding 

it all together and should ensure that scrum is being done well. This implies that they aid 

the product owner in determining the value, enable the delivery of such value by the 

development team, and help the scrum team to continuously improve themselves in 

practical terms. The development team members consist of people that do the work, 

such as engineers, designers etc.  

 

Daily stand-ups 

Daily stand-ups, also called daily scrum, are short meetings daily to discuss the progress 

and identify potential blockers (Radigan n.d.). The purpose is to provide a brief and 

efficient update to the entire team regarding ongoing activities. Unlike a status meeting, 

it aims to quickly inform everyone in a light-hearted and enjoyable manner. The 

atmosphere should be informative and enjoyable. The team should be standing up to 

keep the meeting short optimally no more than 15 minutes.  

 

Scrum 

Scrum is a framework developed to help with complex product development. Scrum is 

one of the leading frameworks for software developers but can be useful in other 

contexts (Ramsøy 2022). It is based on empiricism which means that knowledge comes 

from experience and decisions are based on what is known. Scrums have three 

fundamental roles. The first one is a product owner, the second is the development team 

and at last the scrum master.  

 

2.1.2 Cohesion and coupling 

 

High cohesion 

High cohesion is the wanted type of cohesion (Josikakar n.d.). Cohesion is how well 

element in a module work together to their purpose. If they are closely related or if they 

are loosely related. High cohesion is that they are closely related and only serve one 

purpose. It makes it easier to make changes to the code since one function has one 

task. The function is consistently, and the reliability of the system is improved.  



 2. Theory 

 
17 of 131 

 

 

Loose coupling 

Loose coupling has a lot of advantages. For instance, it improves maintainability and 

scalability (Josikakar n.d.). It reduces the impact of changes in one module to the other 

modules. It facilitates adding new modules and removing the existing ones. Loose 

coupling gives enhanced modularity that allows modules to be developed and tested in 

isolation. These are the reasons for wanting loose coupling. Coupling refers to the 

interdependence between the modules.  

 

2.1.3 Functional programming and object-relational 

programming 

JSON Web token 

JSON Web Token (JWT) is an authentication method that uses a token to identify the 

user and their credentials (Okta n.d.). Authentication based on tokens uses the token in 

each request to the server to authenticate the user.  

 

Object-oriented programming paradigm 

The object-oriented programming paradigm is a programming paradigm that has objects 

as their focus (MDN contributors 2023). These objects are represented as “blueprints” 

that are called classes that says what fields and methods the object has. The fields 

represent any data like text or numbers, and methods define the behaviour of the 

object. When an object is made with its defined values through a constructor that is 

called an instance. These values are held by the objects fields and belong only to this 

object.  

 

Functional programming 

Functional programming is a paradigm that uses functions as the main method of 

programming (Hargrave 2023). Each function represents a way of solving a simple 

problem and is then called from multiple sources to do the same actions multiple places. 

 

Object-Relational mapping  

When it comes to the Object-relational mapping (ORM) is a mapping method for 

databases that combines the advantages of object mapping and relational mapping. 

(Chehab 2023). The advantages of using an ORM is that the objects themselves and 

their relations are stored in the database. This way making it more like the code that the 

data is built on. One major disadvantage is the complexity it introduces the system. 



 2. Theory 

 
18 of 131 

 

 

2.1.4 Quality assurance 

User testing 

User testing is the testing process where you test your product on real users. The users 

get a task preform in realistic conditions (OmniConvert 2023). The purpose with this 

testing is to evaluate the usability of the product. For getting results that is relevant the 

user must not be directed too much, because the product should be intuitive. The user 

should feel comfortable with using the product even though they are not familiar with it. 

There are different types of user tests. There is the usability testing, A/B testing, focus 

group and beta testing.  This process will eventually tell the developer if their product is 

ready to be launched for real users.  

 

Unit tests 

Unit tests help the developers to validate that each unit of the software works as 

intended and meets the needs (pp_pankaj 2023). These tests are automatically run each 

time the code is executed and will help the developer determine if the issue is made by 

the developers.  

 

Code review 

Code reviews assist the developers to identify bugs, sharing the developer's knowledge, 

increasing collaboration, increasing their code quality, and helping the developers learn 

the source code (GitLab n.d.). This is important because a strong code review process 

will set the foundation for continuous improvement and prevents unstable code from 

shipping to customers.  

 

2.1.5 Distributed version control  

Distributed version control system or DVCS makes it possible for each member of a 

project to have their own copy of the complete repository (GitLab n.d.). The team 

members can commit and merge locally. An example of a system that uses DVCS is Git. 

DVCS help developers that work in team to create a robust workflow. It gives a flexibility 

with for example working home or offline. When a developer pushes changes to their 

own copy others can set a code review process to ensure that the quality to the code is 

decent.  

 

2.1.6 Security 

Authentication and authorization 



 2. Theory 

 
19 of 131 

 

Authentication is the process of checking if the person is who they say they are to get 

access to methods or data (Okta n.d.). It is important to not give the wrong data to the 

wrong people. Authorization is the process that checks if you have access to get the 

requested information. 

 

GDPR 

The General Data Protection (GDPR) does explicitly state the specific requirement of user 

authentication for accessing personal data, it does emphasize the need for appropriate 

security measures to protect personal data  (Intersoft consulting n.d.). Article 32 of the 

GDPR states that organizations are required to implement appropriate technical and 

organizational measures to ensure a level of security appropriate to the risks presented 

by the processing of personal data. This includes measures such as ongoing 

confidentiality, integration, availability, and robustness of processing systems, and 

regularly testing and evaluating the effectiveness of security measures. 

 

2.1.6 Design process 

Interaction design  

Interaction design alias IxD, is an essential part in user experience design (Interaction 

Design Foundation n.d.). It means the design of interactive product and services where 

the designer has a high focus on the item in development to include how a user will 

interact with it. Interaction design is the interaction between a user and the product. IxD 

works in five dimensions, the fist is words. The second is Visual representation. The last 

ones are physical objects and space, time, and behaviour.  

 

OpenBridge Design System  

The OpenBridge Design System serves as the primary design during the application 

design process. This system compromises a set of rules and principles that were 

implemented throughout the development phase. 

• Application: The OpenBridge standard has a strict main structure with a fixed 

top bar on top and a set of mandatory and optional functions. It should take up a 

full-screen space and scale responsively to a range of screen sizes (OpenBridge 

n.d.).  

• Top bar: The top bar must be on each page and show where the user is currently 

on the webpage. This top bar should include a navigation menu, an application 

label to the left and an account button to the right (OpenBridge n.d.). 

• Cards: Maritime user interfaces have optional cards embedded in a user 

interface. These types of cards are reusable and can be shared across many 

applications. The system includes variations depending on its content. Each card 

has an optional minimize function that allows users to collapse the card if it is 

possible (OpenBridge n.d.).  



 2. Theory 

 
20 of 131 

 

• Help & Support: The support page must have a search bar and the buttons 

must be clear and rich. It should also have a close button so that the user can go 

back to the last application view (OpenBridge n.d.).  

 

Palette 

• Typography: The font that should be used is Open Sans. The text styles should 

be used for normal text content, static text, and components. The instrument text 

should be used for dynamic data. The instrument text should be in a tabulator 

format (OpenBridge n.d.).  

• Colours: The colour should be organized into types that reflect the function each 

colour has in an application. The colours are predefined palette sets for bright, 

day, dusk, and night (OpenBridge n.d.). 

• Styles: will visually format an interactive element. The state of an element will 

change behaviour once interaction has occurred and the style change 

(OpenBridge n.d.).  

 

Don Normans principles 

Don Norman's 7 principles are also considered while developing the application 

(educative n.d.). The seven principles are the following: 

• Visibility: Things must be visible so that users can access them.  

• Feedback: Give feedback to the user so that the user knows whether their 

actions were successful or not.  

• Affordance: The link between how something looks and how they are used. 

• Mapping: The design must resemble what they are doing. 

• Constraints: Restrictions for users so that the user does not become 

overwhelmed. 

• Consistency: Patterns need to be recognized and learned by users, so using the 

same patterns will not frustrate the user. 

 

2.2 Design patterns 

Design patterns are ways to solve a general problem that comes often to developers 

when applications are made (Source Making n.d.). These patterns are often so general in 

nature that the implementation and how it should be done can be decided by the user. 

 

2.2.1 Observer pattern 

The observer pattern is a commonly used design pattern that solves the problem of 

constantly checking when a state changes (Freeman, Robson et al. 2021). This pattern 

works by having the objects that wants to “listen” to a state subscribe to the object. 



 2. Theory 

 
21 of 131 

 

When the objects state changes it goes through and alerts the observers about the 

change. This way reducing the need of constantly checking the state of the object. 

  

2.2.2 Façade pattern 

“Facade patterns take a complex subsystem and make it easier to use by implementing 

facade class that provides one, more reasonable interface.” (Freeman, Robson et al. 

2021) The pattern uses a higher level of simple interfaces, that then simplify the 

subsystem. The important thing about the pattern is that it is intent. Façade makes one 

interface that assembles the subclasses into one. That is the reason that makes it so 

much easier to use for the user. The user interacts with the interface instead of all the 

subclasses.   

 

2.2.3 Entity Component System 

The ECS pattern is a pattern commonly used in game development (Unity n.d.). 

“Entities” are object references without data, and “components” are pieces of data that 

can be connected to entities. “System” is the system that acts upon the components. An 

example of this could be a system of “time”, which iterates on a “move” component to 

move a “car” entity.  

 

2.2.4 Singleton pattern 

The singleton pattern is commonly used pattern when a class only needs one instance of 

that class to be accessible for the rest of the code (Freeman, Robson et al. 2021). For 

that class to only make one of itself the code must ensure that the constructor cannot 

create a new instance and the class itself can control and send the instance to other 

classes.  This is often done through static get method for the class and a private 

constructor. 

 

2.2.5 Builder pattern 

Builder pattern is used for preventing that the steps of creating the object, get mixed. 

Some steps come before other steps (Refactoring Guru n.d.). Too solve that we 

encapsulate the way a complex object is constructed, and then allows the object to be 

constructed in multistep. This pattern is often used for building composite structures 

(Refactoring Guru n.d.). This design pattern makes it possible to decide what the object 

will have of possibilities. You have one class that builds the object. Subclasses under is 

possibilities for building the object and this pattern build it in the right steps.  

 



 2. Theory 

 
22 of 131 

 

2.3 Virtual reality 

2.3.1 XR  

XR stands for extended reality. XR is combination of both VR and AR. Virtual reality and 

argumented reality (Midthus and Staverløkk 2022). AR is overlays digital content on top 

of the real world when VR is a virtual environment to create realistic situations. That 

means that XR is uses both. You can also say that XR uses mixed reality that uses the 

best of VR and AR for capture the real world (Qualcomm 2022).   

 

2.3.2 3D graphics 

Large parts of the 3D graphics are handled in the game engine, but theoretical 

knowledge of computer graphics is still needed to utilize the game engine effectively. 

 

PBR Materials 

Physically based rendering (PBR) materials change the rendering of surfaces to represent 

different physical properties. This is achieved through various bitmaps applied to the 

material in steps. 

 

 

Figure 1 A painted green corrugated metal wall PBR material consists of multiple maps. From top 
left to bottom right: Diffuse, normal, displacement, ambient occlusion, specular, roughness. 

 

The map that provides the most significant difference is the diffuse map (see figure 1, 

top left), alternatively referred to as the colour map. This image decides how the surface 

will be coloured. In some cases, this can be enough to provide the detail a material 

needs (Marschner and Shirley 2015). 



 2. Theory 

 
23 of 131 

 

 

A normal map (figure 1, top middle) changes the direction of lighting on a given point, 

providing significant details. The direction is decided by the RGB colour in the position, 

where the RGB values are interpreted as a 3D vector (Marschner and Shirley 2015).  

 

Displacement map (figure 1 top right) changes the height of a given point, based on a 

black and white value which corresponds to 0 and 1 (Marschner and Shirley 2015). 

 

Ambient occlusion (figure 1 bottom left) is used to determine how hard or soft shadows 

should be on a given point of a texture (Marschner and Shirley 2015).   

 

Specular (figure 1, bottom middle) determines how much light is reflected off a given 

point of a surface (Marschner and Shirley 2015). 

 

Roughness (figure 1, bottom right) represents how rough or shiny a material is on a 

scale from 0 to 1, where 0 is completely shiny, and 1 is a rough surface scattering light. 

This is interpreted through a black and white bitmap (Marschner and Shirley 2015).  

 

Figure 2 All maps combined and applied to a sphere in the Unity game engine. 

HDRI 

An HDRI is a panoramic image that provides reflection values and lighting. These can 

function both as the sky in the scene, and baked reflections.  



 2. Theory 

 
24 of 131 

 

 

Figure 3 A panoramic HDRI visualized as a sphere in the Unity game engine. 

 

 

2.3.3 Game engine 

A game engine is a software framework containing various relevant tools for game 

development. Rendering technology for realistic 3D graphics, scripting language 

interfaces, input handling, and UI tools are examples of common tools found in game 

engines. 

 

2.4 Eye tracking in VR 

2.4.1 Eye Tracking terms 

Fixation 

Fixation is the number of times that the trainee looks at a spot or area for a small period 

(Midthus and Staverløkk 2022). It is often defined as 50-200ms to register as a fixation. 

 

Fixation duration  

Fixation duration is the amount of time the fixation is held at a certain point in space 

(Midthus and Staverløkk 2022).  

 

Average fixation duration 

Average fixation duration is found by taking the fixation duration and dividing it by the 

number of fixations (Midthus and Staverløkk 2022). This way getting the average time 

spent per fixation.   

 

  



 2. Theory 

 
25 of 131 

 

Area of interest 

An area of interest (AOI) is an area in space that is interesting to track get data from in 

a session (Midthus and Staverløkk 2022). Instead of focusing on each point the user 

looks at the AOI represents a general area to simplify the visualization of eye tracking 

data. It has the same properties to track as fixations, fixation duration and average 

fixation as a normal observation. 

 

Ray casting 

In 3D space, ray casting is the process of sending a 3D vector through space form an 

origin point, and recording what it hits. This can be used for several applications, such as 

hit registration for pointers, point registration in eye-tracking, path tracing, or UI 

interactions. 

 

Gaze plot 

Gaze plot is a representation of the location, time, and order that a person used to look 

at an item (Midthus and Staverløkk 2022). If we have a point of interest, the number on 

that point will show the order of where the person looked. That means that the points 

will be marked with 1, 2 ,3 for the order. Then we have the size of the point of interest 

that indicates the time or duration the person used looking at that point. The greater the 

point is, the more time the person used to look at that point. The gaze plots are 

sometimes represented in the virtual word by using the points directly on the objects.  

 

Heatmap 

Heatmap is a general statistical model. The purpose of this model is to display where the 

user has used most time (Midthus and Staverløkk 2022). The model uses red and blue 

colours where the blue is location that is viewed less, and the red are viewed more. The 

colour gets brighter the more fixations time is used. This indicates that the heatmap is 

used to see what the user is interested in. Although the heatmap can indicate confusion 

with the time regions that are viewed for a longer time.  

 

Pupillometry and cognitive load 

Pupillometry is defined as the study of the correlation between cognitive load and 

changes in pupil size (Sirois and Brisson 2014). When the user experiences a higher 

cognitive load or increased attention the pupil size gets bigger. Pupil size is also a good 

indicator of fatigue since the size then decreases and the stable behaviour of the pupil 

gets more unpredictable.  

 



 3. Method and Material 

 
26 of 131 

 

3. Method and Material 

This chapter will show the working processes and tools this project.  

 

3.1 Project Management  

3.1.1 Team 

The team is made up of four students at NTNU Ålesund. All 4 students are in their final 

year of a bachelor’s degree in computer science. 

 

3.1.2 Task Distribution 

Steinar Hjelle Midthus was assigned to a team leader role, and divided tasks among 

other group members. Malin Synnes and Fereshta Ahmadi were responsible for 

development of the front- and backend for data visualization. Sindre Skorpen and 

Midthus had a shared responsibility for developing the VR prototype. Midthus handled 

networking and eye-tracking logic, as well as shader graphics. Skorpen developed VR 

interactions such as teleporting and picking up items, in addition to scene building and 

model creation. 

 

3.1.3 Client 

The client in this project is the Norwegian Coastal Administration. Odd Sveinung Hareide 

is the representative of the administration and the project owner.  

 

3.1.4 Advisor  

The advisor in this project is Di Wu. Wu is an associate professor and lecturer at NTNU. 

Her role in this project is to advise the group and be the scrum master. Meaning that she 

assures that Scrum is being followed within the group.  

 

3.1.5 Meetings with the client 

The group had meetings with the client every week. During these meetings, the status of 

the project was given to the client with a clear and specific agenda. This gave the client 

opportunities to ask questions and give feedback to the group. The client received demos 

of how the project worked as well after the meetings were done. 

 

3.1.6 Project structure 

The project's structure was clear from the beginning since the project owner defined a 

good goal for this project. That’s when the group decided to separate the project into 

three parts. A frontend, backend, and simulation demo. 



 3. Method and Material 

 
27 of 131 

 

The simulation demo was responsible for gathering the data that was needed from a 

trainee and sending this to the backend. Since the eye-tracking data gathered could be 

visualized it would also be possible to look at how the data could be represented in 

Unity. The project owner also wanted to look at the possibility of having an observer that 

could tell the trainee what they should look more at in a live simulated setup.  

The backend was going to be used to store the data gathered in the simulation demo 

and handle requests from other applications using the REST principles.  

The GUI that would show the data was decided to be on a webpage since it can be 

developed for both a desktop and mobile. This way it will ensure that the data can be 

looked at across any media. A webpage would also be possible later to be exported to a 

mobile app if the right framework was used. 

 

 

Figure 4 High level project diagram 

  



 3. Method and Material 

 
28 of 131 

 

 

3.1.7 Scrum 

Roles and work distribution 

The group was divided into two separate pairs. One pair was focused on creating the 

demo in Unity, and the other one was focused on making visualization. Additionally, the 

group leader kept an overview of the project progress, and participated in frontend, 

backend, and demo development.  

 

Sprints 

The project was divided into sprints. A sprint helped the group split bigger tasks into 

smaller sections, so it wasn’t that overwhelming to understand. This made it easier to 

focus on a specific part of a task. Each sprint lasted a week. After each sprint, the group 

had a sprint review and wrote a retrospective. These were used to summarize what was 

good in the sprint and what we could have done better. In the beginning, we started a 

new sprint every Friday, but afterwards, it was every Monday. 

 

User stories 

User stories in agile methods were used to describe the requirement specification. In 

agile methods, the requirements and tests are the same thing. The developers made 

user stories and acceptance criteria during the development process. This set of different 

types of criteria needed to be fulfilled when finishing a task. 

These types of stories were made in Jira, and tasks were made to accomplish the 

requirements. The group had an overview of what the main goal was, and how to reach 

it by taking one step at a time. This ensured that the person taking the task would not 

be overwhelmed as well. 

 

3.1.8 Communication  

Messenger 

Most of the informal group communication was conducted through the chat application 

Messenger. Daily problem discussion and communication regarding planning such as 

attendance, project, and documentation decisions, as well as task allocation often 

happened in the Messenger group chat before it was formalized elsewhere.  

 

Discord 

Some of the communication happened on Discord as well. Sometimes the sprint reviews 

were conducted in Discord voice chats. Discord allows users to join voice chat rooms at 

any time, showing that the user is available. This allows for more spontaneity than for 

example Teams, where a meeting needs to be set up beforehand. Working remotely, 



 3. Method and Material 

 
29 of 131 

 

team members could join the Discord voice chat, ensuring a lower threshold for 

communication.  

 

Microsoft Teams 

More formal communication with stakeholders was conducted through Microsoft Teams. 

One Teams group was made for sharing documents and holding meetings with the 

stakeholders, and another was made to post progress videos to external parties.  

 

3.1.9 Collaboration tools 

During the project, different types of tools were used to collaborate. All documentation, 

version control, time logs, code, sprints etc. got shared so that the whole group always 

had access to it. 

 

GitHub 

GitHub is the chosen coding platform for version control and collaboration (GitHub Docs 

n.d.). This platform lets people work on a project together, regardless of where they are. 

Three different repositories were created. One for the frontend, one for the backend and 

one for the VR demo. Due to the size of the binary files in the VR demo, a subscription 

for data packs were used on that repository to ensure sufficient bandwidth. All three 

repositories were made in one organization belonging to the group developers. 

 

Jira 

The chosen software application development tool for tracking issues, managing 

projects, and automating workflow is Jira. This tracking tool gave the group an overview 

of each task and the working status (ProductPlan n.d.). The issue board made it clear 

what each group member was doing and what needed to be done. This made it easier to 

avoid several group members working on the same task at the same time.  

 

Confluence 

Confluence made it easier to create, collaborate and organize all the work documentation 

in a single place (Atlassian n.d.). Meeting notes, sprint retrospectives, agreements, 

decision logs, agendas for meetings and more is saved on the Confluence page. An 

additional advantage of Confluence is its connectivity to Jira. This connectivity allows 

sprint retrospective notes to be automatically created once a sprint in Jira is ended for 

example.  

 

Microsoft Teams 

Microsoft Teams was also used in forms of communication, collaboration, and file-sharing 

(Microsoft n.d.). The invitations to the meetings could be sent here. The status meetings 



 3. Method and Material 

 
30 of 131 

 

with the supervisor and client were often held on Teams. Teams have a chat function 

where different types of files were shared with the client and supervisor efficiently.  

 

Microsoft Word 

Initial drafting of the bachelor’s thesis was written in Microsoft Word due to its tools that 

can help collaborative writing. Within Word, multiple group members can edit the 

document at the same time, while always seeing the most updated version. Additionally, 

tasks can be assigned and shown where something needs to get done very precisely. 

The group members can add comments to other group members’ work. This will help 

with the improvement of the project. 

 

Documentation 

Documentation is an important part of the coding process. The group members can 

easily understand what the others are trying to do with their code, without having to 

ask. This makes the process more structured. The group have been strict on 

documentation from the beginning. The reason is that this will help to debug the code if 

needed later and learn from their own mistakes. It will also help future developers 

understand the code and make it easier for them to maintain and update it if needed. 

 

Backend documentation 

The backend documentation contains extensive documentation following the Java 

documentation standards. Excluding the endpoints, the documentation is comprehensive 

enough for the application to be understood without having to read the code itself.  

The code in the backend is documented well. Everything is coded so that the other group 

members easily can understand what the code means without questioning the code. The 

code is written in Java, with the IDEA tool IntelliJ.  



 3. Method and Material 

 
31 of 131 

 

 

Coding example 1 Example of code documentation in the backend (Session.class) 

 

Frontend 

The code in the frontend is documented the same way that the backend is documented. 

This is written in React JS and in the code editor Visual Studio Code. All the methods and 

classes are documented on the frontend.  

 

Unity 

Several of the code snippets used in Unity are components, which can be accessed by 

developers in the Unity Editor, possibly without ever seeing the code. Because of this, 

Unity has various functionality for presenting components in an understandable way for 

Unity developers. 

 

Components are attached to game objects and accessed via the “inspector”. The 

inspector allows users to edit variables and run certain functions. Public variables are 

visible in the inspector by default. Private variables addressed with a “SerializeField” 

header will also be visible, while maintaining their private accessibility. “Tooltip(String)” 

lets users mouse-over the variable in the inspector in order to see a tooltip. Additional 



 3. Method and Material 

 
32 of 131 

 

properties include but are not limited to: Headers that segment variables in the 

inspector, number ranges that create convenient sliders and graphing.  

 

Coding example 2 Example of how serialized variables are displayed in the Unity inspector. 

(HandUIUtilities.class) 

In the case of coding example 2, the component is used to play an animation where the 

menu flies and shrinks into the hand of the user. Through serialized fields, the developer 

utilizing the script can change the timing and positioning of the close/open animation in 

runtime, which can be helpful during developer testing.  



 3. Method and Material 

 
33 of 131 

 

3.2 Hardware and tools 

3.2.1 HMDs 

Meta Quest Pro 

The Meta Quest Pro was used to develop and test the VR demo. This HMD contains in-

built eye-tracking hardware, which can be calibrated to fit different users. Due to this 

headset being new on the market, and having a high cost, no more than one Meta Quest 

Pro could be issued to the project. It was initially used for general development and 

testing of the VR demo until an additional HMD was provided. When the group got 

access to an additional HMD, the Meta Quest Pro was provided to the developer that 

would work most closely with eye-tracking implementation. (Midthus and Staverløkk 

2022) 

 

Meta Quest 2 

The Meta Quest 2 was also used to perform testing and development of the VR demo 

(Meta n.d.). This HMD does not contain any eye-tracking hardware, but in the case of 

this project, it is functionally identical in all other aspects. This allowed two developers to 

work separately with the VR demo. This HMD was issued to a separate developer which 

was assigned to tasks not related to eye-tracking, such as world-space menus, hand 

interactions, and scene building.  

 

HP Reverb G2 Omnicept Edition 

The group was originally issued an HP Reverb G2 Omnicept edition (Midthus and 

Staverløkk 2022). This Windows Mixed Reality HMD contains built-in eye-tracking, 

pupillometry and heartrate and can be accessed through the Omnicept or Tobii SDK. This 

HMD only saw usage early in the project and was later dropped for two reasons. The first 

reason was licensing problems with Tobii and Omnicept. The second reason was 

compatibility with the Oculus HMDs. The group had issues with getting the VR demo to 

run using both Mixed Reality and OVR, so it was decided that development for the HP 

Reverb G2 Omnicept edition would be dropped in favour of Meta Quest 2 and Pro.  

 

3.2.2 Computers 

Two laptop computers were provided for the project. The computer with the lowest 

specifications, the Alienware computer was set as the target hardware of the demo 

project. The computer specifications are as follows: 

 

IHB Lenovo Legion computer 

Processor: AMD Ryzen 7 5800H-Processor 

Graphics card: Nvidia GeForce RTX 3080 

RAM: 16GB DDR4 RAM 



 3. Method and Material 

 
34 of 131 

 

Storage: 1000GB SSD 

Operating System: Windows 11 

 

IIR Alienware computer 

Processor: Intel i7-12700H 

Graphics card: Nvidia GeForce RTX 3060 

RAM: 16GB 

Storage: 500GB SSD  

Operating System: Windows 10 Education.1 HMDs 

 

3.3 VR development 

3.3.1 VR 

Since the ship simulator developed by Morild Interaktiv AS is based on Unity, the project 

also had to be based on the same engine. This way the project would encounter the 

same issues that Morild would and solve them so that they don’t have to.  

 

Unity 

Unity is a game development engine used for video games, digital twins, as well as other 

real-time 3D applications. 

The engine supports a wide variety of platforms, such as consoles like the PlayStation 4, 

or the most common operating systems, like Windows 10 or Linux, as well as 17 other 

platforms. This project is primarily built to work with Windows 10 specifically (Khronos 

n.d.) 

Unity also supports several VR devices through the OpenXR standard. Along with Unity’s 

XR Interactions toolkit, this allows for setting up a basic VR application with head 

tracking and controller interactions relatively quickly (Unity n.d.) 

In scripting and scene composing, Unity uses the entity component system paradigm. 

Objects in the scene are stored as game objects. The game objects can have multiple C# 

scripts attached to them as components, creating different behaviour. One common 

example of a component is the transform component, which specifies the scale, position, 

and rotation of a given game object.  

To make these components cooperate, Unity contains an event and broadcast system. 

Components can listen to events, so that when an event is invoked, a given method can 

be called in the component. In the inspector, a developer can add as many function calls 

of different objects as needed. One example from our project is the TaskListProducer 

component which listens to Task objects to show them in the GUI. When Task objects 

are changed, added, or removed, they invoke the UpdateLists() event, which updates 

the TaskList and TaskListProducer. Broadcasts work similarly but are limited to the 



 3. Method and Material 

 
35 of 131 

 

gameobject the broadcast is called in, as well as its children. Broadcasts also apply to 

specified functions in components, while events have a broader usage. 

 

VR headset SDK Licensing 

The project from the beginning had two headsets that where capable of doing eye 

tracking in VR. The Hp Reverb G2 Omnicept edition and the Meta Quest Pro. Both 

headset’s support OpenXR, but eye tracking is not implemented into that library yet. 

The Omnicept headset is the first one that was considered since the university had 

acquired the headset for the previous industry project. But a problem that was 

encountered was that the library Tobii XR never responded to the request for an 

educational license in both the industry project and in the beginning of the bachelor 

thesis. Another problem was encountered with the Omnicept but is also described in the 

industry project that is an attachment. 

Quest pro is then the option that we landed on. Since there is no need for an educational 

license.  

 

OpenXR 

OpenXR is an open standard that aims to solve fragmentation in the XR development 

space (Khronos n.d.). There is a large number of devices in the XR space which used 

differing standards. This made development of XR applications for different hardware 

configurations cumbersome. OpenXR acts as a middleware so that developers can ship 

their products to more devices while having to do less porting work.  

 

Oculus Integration SDK 

Some aspects of the demo utilize the Oculus Integration SDK, such as the hand models 

and eye tracking input. Ideally, use of this SDK would be limited, so that use of multiple 

HMDs and controllers could be simplified.  

 

3.3.2 3D Modeling 

Blender 3D 

Blender is a 3D content creation suite. It is free and open source under the GNU General 

Public License (Blender Freedom n.d.). In the project, Blender is used to model and 

texture 3D models for use in the VR demo. These models are exported as.fbx and 

imported into Unity. Due to differences in material standards, material properties such 

as metallic can be lost in import/export. Because of this, some inspection and post 

processing is required on model import to Unity, to ensure the imported model looks as 

expected.  

 

Unity primitives  



 3. Method and Material 

 
36 of 131 

 

Unity contains a suite of shapes, referred to as primitive objects. These primitives can 

used to construct basic scenes and objects very quickly. This was used to prototype the 

scene layout, and carriable objects before the scene was modelled with the external tool 

Blender. 

 

Blender modelling 

Blender was used to do the more detailed 3D modelling in the demo. While Unity allows 

for placement of primitives and basic assigning of materials, Blender allows for more 

sophisticated editing. Some conveniences include texture coordinates that can be edited 

to fit objects of strange shapes more easily, objects that can be mirrored and spun to 

reduce repetition, model smoothing, and assigning materials to any small part of an 

object. This increased the possibility of detailed models such as keyboards, boats, and a 

lighthouse in the distance.  

 

External assets 

External assets were utilized where time or experience was lacking. One area that used a 

large amount of external assets was texturing. These were sourced via public domain 

texture websites such as polyhaven.com and ambientcg.com. Producing PBR materials of 

the quality found in the public domain would take time and camera hardware which 

would be a challenge for the group to source. It was important to only retrieve public 

domain assets, as they can be redistributed in an open repository. 

An additional external asset that was implemented into the project was the VR hands. 

These are taken from the Oculus SDK. These hands were already rigged and animated, 

which saved time for modelling other assets.  

 

Shaders and visual effects 

The shaders were made in Unity using a tool that is called shader graph. This shader 

graph allows developers and graphical designers to make shaders by connecting nodes 

instead of writing shaders manually (Unity n.d.). Almost the same tool is also developed 

for visual effects where the user uses nodes and logic to trigger actions (Unity n.d.). 

The reason that we used these tools instead of writing shaders and visual effects with 

code is that this approach was a more understandable way of making these effects for 

newcomers.  

 

3.3.3 Software Development Kit (SDK) 

An SDK is a collection of tools and programs provided by vendors to make building 

projects for their target platforms more accessible (Yasar 2022). SDKs can contain 

documentation, use case example projects, APIs, software libraries, and other data that 

can be helpful for developing on a given platform.  

 



 3. Method and Material 

 
37 of 131 

 

3.3.4 C# 

C# is an object-oriented programming language. It shares close similarities to Java and 

is the chosen language for scripting in the Unity engine (BillWagner, gewarren et al. 

2023). It is also used to build .NET applications and takes extensive use of .NET 

libraries.  

 

3.4 Backend 
When it comes to the backend and different technologies, the group quickly decided to 

pick a framework and language that the group already have a lot of experience with. The 

reason being that this project is a POC. So, the projects backend is based on java, spring 

and hibernate. SonarLint and Checkstyle was used to adhere to coding standards and 

make our code more readable. The members also had experience with these plugins 

already. Docker is used for the deployment of both the backend and the frontend. This is 

because the services then run in their own environments that cannot affect each other.  

 

3.4.1 Java 

Java is an object-oriented programming language that was developed in 1991 by James 

Gosling (IBM n.d.). The most useful usage of this language is the “compile once, run 

everywhere” feature that it has with its own virtual machine. This combined with its wide 

usage makes this a good choice for many applications. 

 

3.4.2 Spring boot 

Spring Boot was chosen since the group already has experience with this framework. At 

the same time, it’s based on Java and has support for the REST-API (spring by VMware 

Tanzu n.d.). The framework was also chosen since the NCA asked for endpoints that 

could be accessed at an early stage so that the data could be processed by other 

applications or algorithms. And the framework used for the frontend is also based on 

REST requests to display data. 

 

Representational State Transfer (REST) 

Representational state transfer (REST) is an architectural style that waits for a request 

before it responds to it with the according information (visheshy2ey 2022). The REST 

webservices uses HTTP requests to send and receive data to an end client no matter the 

programming language on the client and server side. This way ensuring that data can be 

accessed if the request is sent with a HTTP request. The system is also easily scalable 

and maintainable since there is not direct code to interfere in changes made to the API. 

 

 



 3. Method and Material 

 
38 of 131 

 

3.4.3 Spring security and tokens 

Since the data gathered is personal data that must be stored for later analysis the 

backend needed some security. Therefore, we used Spring Security and implemented 

JWT tokens. Spring security is a framework that adds authentication, authorization, and 

protection for spring applications (spring n.d.). This way the user must be authenticated 

before they can access the stored data.  

 

3.4.5 JPA and hibernate 
Java Persistence API or JPA is a specification that defines how data can be persisted in 

Java applications (baeldung 2022).  

Hibernate is an open-source Java framework that implements the JPA specification to 

store ORM objects (javaTpoint n.d.). It handles the setup and query of information from 

and to the database. The data itself is stored in a relational database through hibernate.  

 

3.4.6 MySQL Database 
MySQL is one of the most popular open-source source databases (Vyas 2023). This is a 

relational database management system. Some benefits of using MySQL are that it 

provides good security and dependability, is high efficiency, and has excellent workflow 

control and scalability on demand. 

 

3.4.7 CheckStyle 
CheckStyle is an open-source tool that inspects Java code against a set of rules 

(Checkstyle 2023). This tool can be integrated into a Java project via Maven and IDE 

plugins. The sole purpose is to save time by doing this task for humans and enforcing a 

coding standard.  

 

3.4.8 SonarLint 

SonarLint is an IDE extension that fixes coding issues. It is like a spell checker for coding 

(SonarSource n.d.). This extension highlights the bugs and vulnerabilities. It will also 

give a guide so that it is possible to fix them before committing code.  

 

3.4.9 DBeaver 

DBeaver is a free and open-source universal database tool for developers and database 

administrators (DBeaver n.d.). DBeaver has a lot of benefits. It is easy to use and 

implement a database. It is also free, open-source, multiplatform and supports any 

database if the user has a JDBC driver.  

 



 3. Method and Material 

 
39 of 131 

 

3.4.10 Docker 

Docker is an open-source project that allows developers to simply deploy their project on 

a container. Then they can run on the host operating system Linux. “The key benefit of 

docker is that it allows user to package an application with all of their dependencies into 

a standardized unit for software development “ (Srivastav n.d.). The containers have 

note high overhead unlike virtual machines. They do make the use of underlying system 

and resources more effective (Srivastav n.d.).  

 

3.5 Frontend 
The frontend was decided to be a webpage since it can support both mobile and desktop 

views with little altering of the webpage. But the webpage itself had to use the RESTful 

API that the backend has implemented. Therefore, we chose to react as a framework to 

host the webpage and expand the groups knowledge. The OpenBridge standard was 

decided to be used to make prototyping of the webpage easier. It’s also a standard that 

the users already are familiar with at the NCA. The group made a prototype in Figma so 

that the client could give feedback during the development process. With their integrated 

comment function, Figma made it easier to get feedback on smaller parts of the project. 

 

3.5.1 HyperText Markup Language (HTML) 

HyperText Markup Language (HTML) is the first of the three standard web technologies 

used in the modern web. HTML is the markup language that enables us to organize and 

assign significance to the content on our website (OnkarRuikar 2023). With HTML, we 

can create various elements such as paragraphs, headings, and tables, as well as 

incorporate multimedia elements like images and videos into our web pages. HTML gives 

the webpage structure and content which then can be manipulated.  

 

3.5.2 Cascading Style Sheet (CSS) 

Cascading Style Sheet (CSS) is the second of the three standard web technologies. CSS 

is a style sheet language used to apply formatting and visual design to HTML content 

(OnkarRuikar 2023). It allows developers to set properties such as background colours, 

font styles, and layout, enabling them to create a visually appealing and organized web 

page. By using CSS, developers can manipulate the structure and style of the webpage 

in an effective manner. 

 

3.5.3 JavaScript 

JavaScript (JS) is a versatile scripting and programming language that empowers the 

incorporation of sophisticated functionalities on a web page (OnkarRuikar 2023). 

Whenever a web page goes beyond displaying simple static information and includes 

dynamic features such as timely content updates, interactive maps, animated graphics, 

etc. JavaScript is often the driving force behind changes on a webpage. JavaScript forms 

the third layer as part of the triad of standard web technologies and makes a webpage 

more responsive.  



 3. Method and Material 

 
40 of 131 

 

 

Prettier 

To make the coding process in React JS more efficient, a coding formatter called Prettier 

was used. This is an opinionated code formatted with support for JavaScript. This tool 

removes all the original styling and ensures that all the outputted code conforms to a 

consistent style (Prettier n.d.). Prettier is useful for the group because there was less 

time spent on formatting the code when it was nested. The magic key binding is 

pressed, and the code is formatted like that. It is also easy to adapt to the project. In 

Visual Studio Code it is an extension that needed to be downloaded.  

 

3.5.4 Node.js 

Node.js is an open-source server environment (w3schools n.d.). It uses JavaScript on 

the server. It stands out in building fast and scalable network applications. This server 

environment can generate dynamic page content through JavaScript. It can create, 

open, read, write, delete, and close files on the server. Node.js can collect form data. It 

can also add, delete, and modify the data in a database. The web applications can be in 

real-time, with two-way connections. JavaScript was used in combination with Node, to 

get a working application.  

To start the application, a package manager is used. This is a package manager for 

Node.js packages or modules. A package in Node.js contains all the files needed for a 

module. A module is a JavaScript library, which can be used in a project.  

 

3.5.5 React JS 

React JS is a JavaScript library for building user interfaces (React n.d.). It is declarative, 

meaning that it is painless to create interactive UIs. The framework will be able to 

optimize the rendering process by updating only the necessary components whenever 

your data undergoes changes. React JS is also component-based. This means that it can 

build encapsulated components that manage their own state, and then compose them to 

make complex user interfaces. The complex data is seamlessly transmitted throughout 

the application by writing component logic in JavaScript instead of templates. Another 

benefit to React is that is no need to rewrite code since there are already a lot of ready-

to-use codes out there.  

 

3.5.6 OpenBridge Design System 

The OpenBridge Design System is a set of design guidelines. This system is owned by 

the Oslo School of Architecture and Design who has developed it with support from the 

OpenBridge Design System consortium (OpenBridge 2020). By using this standard, there 

was a set of rules that needed to be followed. The use of OpenBridge made it easier to 

develop since it consisted of a set of guidelines to follow and ready-made tools to use. 

Their package was ready to be implemented in React JS.  

 



 3. Method and Material 

 
41 of 131 

 

3.5.7 Figma  

Figma is a prototype tool that allows interaction between how a client can use the 

design. Prototypes like this are a good way for previewing interactions, share ideas and 

discuss ideas on how the final product will look like.  

 

3.5.8 Chart.js 

Chart.js is a part of JS Graphics for making graphs chart. Chart.js is a JavaScript library 

for making HTML-based charts (w3schools n.d.). It is free and one of the easiest 

visualization libraries for JS. The library contains of bar, pie, donut, bubble, mixed, 

radar, area, line, and scatter charts.  

 

3.6 Testing 

3.6.1 Unit testing 

Unit testing consists of testing small parts of a code, often methods. These tests are 

often automated and are done by a testing framework like JUnit (Java). The tests are 

made in their own test classes and will be run as a part of the building process. To make 

the process more effective, a default test class was made and used in each class. This 

default class had methods that would check for different types of errors and display the 

errors in tests in a better way. Every object had its own test class. The registers for each 

object were also tested. These types of tests were a central part of the backend 

structure. If one of the tests failed, that meant that something was wrong in the code.  

 

Figure 5 An overview of all the tests in the backend on the left and figma prototype on the right. 



 3. Method and Material 

 
42 of 131 

 

3.6.2 Usability testing 

Usability testing was used to make sure that the client got what they wanted. Tools like 

Figma were used to gather feedback on the final product's appearance. The client also 

got a demo of what the simulation looks like at the end of every week. The reason was 

that the client could get an overview of how far we have gotten in the project, and how 

they potentially could implement the project on their own. 

The usability tests reveal problems and bugs with the project that the group might have 

missed. The user tests were conducted with at least one group member acting as the 

guide, and another taking notes and spectating how the user approached the tasks. With 

this method, several issues were discovered with the VR demonstration.  

The users got the VR headset adjusted to their heads and calibrated for eye tracking. 

Then they entered the simulation and got tasks that they had to finish. During these 

tasks, their eye data movements were tracked and gathered. At the end of the user 

tests, the users got to see their data visualized on the graph on the webpage.   

  



 4. Results 

43 of 131 

 

4. Results 
When a trainee is put into a simulated environment the performance varies based on 

their experience. An expert might have different behaviours and habits that they have 

earned through their experience. Therefore, if their experience and habits can be 

analysed by using their gaze patterns the performance of a less educated trainee can 

improve significantly. 

 

4.1 Development process 

4.1.1 Eye tracking 

Problem 

How can the headsets eye tracking be implemented into the VR demo and gather the 

necessary data for each category of objects. 

Process 

Even though the eye tracking data could be gathered, the project had to find a way to do 

it efficiently in Unity, store it and visualize it in the virtual environment. Since the setup 

with the VR simulator is supposed to be used by one person the system had to be easy 

to use and self-explanatory.  

Also, how the tracking of all the objects in a scene can be done might be difficult if some 

parts can be environment can be changed. Objects in the virtual world might move and 

thus change positions from once it was observed if raw eye tracking datapoints was 

used.  

Possibilities 

One possibility to gather eye tracking data in Unity is to take the raw position of the 

observation and store it locally according to the object that it hit as an observation 

instance. 

Another possibility is to define each object of interest as an AOI and track the total 

amount of fixations and fixation time for each object. This decreases the number of 

instances that are made per observation since the object is tracking itself. 

Solutions 

The solution that was chosen to mainly be used is the AOI solution. Where each object 

that is observed has a component that oversees their own fixations and fixation 

duration. These objects can then be observed by any headset since the object only had 

to be alerted when its observed.  

 

  



 4. Results 

44 of 131 

 

4.1.2 Persistence and API 

Problem 

The data that is gathered in the VR demo needs to be persisted on a server and be easy 

to access for the users. The backend also needs to have a REST API that can handle 

requests so that the data can be analysed using different software.  

Process 

Handling and storing large amounts of data could be a complex task, and in this the risk 

of changing the code since it’s a proof of concept is high. Therefore, the backend had to 

be flexible to changes to make the implementation as painless as possible. 

The backend also had to support a REST API and handle HTTP requests from users, and 

at the same time get data from the VR demo and store it. Since the sessions themselves 

has a user, the data would also need to be connected in some way to indicate what 

users did what session.  

Possibilities 

One possibility was to use a monolithic structure for the backend. This way both the 

webpage and REST API could be hosted by the server and no framework was needed to 

host the webpage. The VR demo could use the REST API to store and get information 

from the server, and the webpage would have implemented security measures.  

Another possibility is to make a backend that only has a REST API and session-less token 

authentication. This would also reduce the complexity and dependence on Spring Boot 

implementation and the website could be hosted on another framework. 

Solutions 

The possibility that made it easiest to implement was the backend with only a REST API 

to do operations. This was chosen since the backend already needs to support an API 

and if both the API and website had to be deployed on the backend both had to use the 

same logic. That could result in a lacking feature set on the REST API.  

 

4.1.3 Webpage 

Problem 

As the information is gathered in the VR demo and stored on the backend it also needs 

to be displayed on a webpage to give the user an objective feedback based on their 

performance. This webpage should also have the capability to compare against an 

expert’s performance. 

Process 

The data that is going to be displayed on the webpage must be visualized to a user in a 

manner that is understandable and easy way. This is done so that the user does not 

have to depend on an analyst to understand the data. 

The different seats and metrics also had to be taken into consideration since each seat 

has its own metric per object. The user must be able to select all the seats and change 

between the different metrics.  



 4. Results 

45 of 131 

 

Possibilities 

One possibility is to show the data in tables that can show the different categories and 

the metric per position in one place. This table would also be large and maybe a bit 

confusing, but the user could then change the metric in a dropdown or button bar to see 

fixations and fixation duration.  

The second possibility is to show the data directly in a graph. Each graph would be able 

to change between the different eye-tracking metrics and positions. This change of 

metrics would be represented in a dropdown menu or button bar like the positions.  

Solutions 

The solution chosen was the graph representation of the data. This is because it shows 

the data in a visual way instead of plotting a lot of data in a rather chaotic table. It also 

allows for the data to easily be compared against each other since all that is needed is 

another dataset that can be visualized in the same graph with different colour coding. 

  

4.2 Eye tracking implementation  
The eye tracking in Unity is designed to be universal in some matters. Since the headset 

can be changed out without affecting the logic on a too radical scale when it comes to 

the main implementation. All the eye-tracking classes and basic logic have their own 

controller classes that are responsible for reacting to the events inside the simulation.  

The controllers in Unity are designed to separate the game interactions and the main 

logic. These controllers are then components of the game object that defines a certain 

behaviour for the object to do on the logical classes it holds. Some of these controllers 

utilize the façade pattern to separate the logic and the reactions from the game object. 

This is done to ensure loose coupling and high cohesion between the logic classes and 

controllers in Unity.  

The managers in Unity are designed to handle the large interactions between the 

different objects in the virtual environment. Managers also handle the communication 

between themselves.   

 

4.2.1 Eyes and raycasting 

The Meta Quest Pros movement SDK does not have any API methods to show what the 

user is looking at by default, but it can take the position and rotation of the eye and 

show it in Unity world space. To get what the eyes are looking at a gaze vector is 

calculated. This vector is found by calculating the centre position between the eyes and 

their combined rotation and direction. Then using raycast or sphere cast to shoot a ray 

and hit the game objects and their colliders.  

After an object is hit by the raycaster controller broadcasts a message on the game 

object to alert it of its new state. This broadcasting system is included in Unity and calls 

this method on all components of the object. This way ensuring that an object might 

have more components reacting to the same method in different ways. One component 

can track the fixations and fixation duration, and another can spin the object on its axis. 



 4. Results 

46 of 131 

 

The broadcasted message is also transmitted to the children of this game object so they 

might react accordingly.  

The raycaster object class is an abstract this way the implementations can support 

multiple eyes or just one. So, if the user only has their right eye the new implementation 

can only use one point of reference like the single raycaster object. Instead of two points 

of reference like the Eye caster object. When the raycaster object hits a point in space 

the “new” position is only changed if the distance to the “old” hit is larger than 0.06 

meters. This value can also be adjusted on the raycaster object by using the editor. 

The raycaster object also implements the observer pattern so that other classes can 

subscribe and get watched objects. An example of this can be seen in the figure 6 where 

the white circle is a component that subscribes to the position of the eyes to visualize 

the gaze hit point. The red arrow illustrates the point of origin for the raycast and its 

direction. 

 

Figure 6 Visualization of the gaze hit and ray casting from the eyes. 

 

4.2.2 Position and trackable object 

A game object that is defined as an area of interest is called a trackable object. This 

object only identifies the object by a unique name, unique numeric identifier, and 

category. The category of the object is used to calculate the total metrics for each 

category. 

The positions that the user can teleport between are static since the simulator that 

Morild has made also contains static positions. Therefore, they are predefined with a 

unique name and unique numeric identifier. When an observation is made on a trackable 

object, the position of the user is also taken into consideration and stored in the gaze 

data class. 

The gaze data class records the number of fixations and fixation duration for a certain 

position for each trackable object. By having this class, the performance per category of 

seat 1 can be evaluated based on what the trainee looked at when they were in seat 1. 

This object is then stored inside a trackable record.  



 4. Results 

47 of 131 

 

Since the position and trackable objects are logic classes used to identify the different 

objects the data per session is stored in other objects called records. The record for the 

trackable object holds the different gaze data instances for each position. Almost the 

same is done for position where the record holds the time the user has been standing at 

the position, and the feedback received on the position.  

Feedbacks are records for a certain time that are calculated throughout the session. The 

feedback itself is based on the trackable objects and uses the category to find out the 

fixation duration for each position. If the total time of all the categories is less than the 

recorded position time the remaining time is added into the “other” category. The 

feedback is automatically recorded every 10 seconds and can be adjusted.  

 

Figure 7 example of gaze data separation based on the position 

 

 

 

4.2.3 Sessions and predefined setups 

All the objects that are in the scene are stored as a simulation setup. This class holds the 

positions and trackable objects to simplify the storage of the sessions. Instead of storing 

each trackable object once per session, it is stored in a predefined object on the server 

to reduce the number of objects per session. This also allows for multiple setups that 



 4. Results 

48 of 131 

 

have their own unique defined areas of interest. The session itself is stored inside the 

session object. The session object holds the simulation setup that the session was done 

in and the records of all the positions and trackable objects. Thus, only holding the 

recorded data of that specific session.  

Simulation setup controller has the responsibility of gathering the trackable objects and 

reference positions that are child objects of this controller. Thus, the setup is collected 

when the VR demo is started.  

 

4.2.4 Point records 

The point record is when the point of contact between the cast ray and the object is hit 

and placed into a class. This class contains the world position, trackable object 

component if the object hit has one and the position relative to the object the ray hit.  

Then the record is stored inside a container class that holds the transform of the hit 

object. This is done to increase the efficiency of deploying the objects instead searching 

for the objects each time they should be visualized.  

The point of interest recording extends this point record class and adds an order 

identifier so that the points of interest can be displayed with what order the user has 

been looking at the different points for. It also indicates how many points that have been 

placed since they can differ in fixation duration for each point. 

These basic point records are used to make a point cloud. This cloud is an 

implementation of a “heatmap” that uses transparent dots of red to show where the user 

has been looking. The brighter the red colour, the more the point recordings are 

displayed in that area. These red dots are displayed using visual effects and are relative 

to each object that was observed.  

The points of interest recordings are used to generate a gaze plot based on what the 

user has been looking at for a period. The top number that can be seen on figure 8 is the 

order of the points that counts from 0 to n. The number on the bottom is the number of 

seconds that the user looked at each point. 



 4. Results 

49 of 131 

 

 

 

Figure 8 Question panel with both point cloud and points of interest displayed. 

 

 

4.3 Interactions 

4.3.1 Seat teleporter 

The seat teleporter is an interactable that the user can teleport to by aiming at 

them with the hand controllers and pressing the left or right trigger buttons. The 

teleporter utilizes the component “XRSimpleInteractable“ from the XR toolkit for 

receiving input, as well as keeping track of when a user is aiming at it. When 

occupying a seat, the player is assigned to the role of that seat, which is 

reflected in the eye-tracking data. When the user is aiming at a seat teleporter, 

its collider will gradually become visible to indicate that this is an object the user 

can interact with. 

 



 4. Results 

50 of 131 

 

4.3.2 Grab Interactable 

There are several objects that can be picked up and manipulated by the user via 

the “Grab interactable” component. By aiming at a grabbable object and holding 

the respective trigger button, the object will teleport into the hand of the user. 

Custom transforms ensure that the object is grabbed in a position and rotation 

one would expect the object to be held in, such as from the handle of the coffee 

cup. The user can rotate and move the grabbable object by using the joystick of 

the controller that holds the object. This utilizes the “Collider” component to 

check if rays from the controller hit the grabbable object. 

 

4.3.3 Settings and Tasks menu 

A wristwatch is placed on the left hand of the player. On the face of the watch, 

an icon is placed which indicates a menu can be opened. The player can point at 

this icon and press the trigger to open the Settings and Tasks menu. The hand 

icon and menu use several components from the XR interaction toolkit. The XR 

UI canvas allows UI to be shown to the VR user in world space, 

“TrackedDeviceGraphicRaycaster” allows the VR controller to use continuous 

raycasts to interact with UI elements.  

This menu contains one tab for each of the menus. The menu can be moved by 

interacting with the orb underneath the menu (using a grab interactable without 

physics enabled) and closed either by pressing the “x” icon or pressing the watch 

icon again. 

  

 

Figure 9 The tasks and settings menu tabs in VR 

 



 4. Results 

51 of 131 

 

 

4.3.4 Tasks 

There are different tasks that can be done in the scene to guide the user through 

and have a scenario that could collect data. The task class is the abstract 

definition of what a task should be. This is done to have different tasks with 

different finish conditions for each. An example of this Is the questions class that 

is done when all the question options are correctly answered according to their 

correct answer Boolean. If one of them is invalid the whole task is not completed 

or done. The task order can also be forced if the setting is enabled in the task 

manager. This way ensures that each task must be completed in order.  

Two other task classes are simple tasks and timed tasks. The timed task looks at 

the time that the user has interacted with the task itself and records it. It can 

either be in continuous mode or just record time when the task is done. In 

continuous mode the task needs to be focused on for that specified amount of 

time or else the task resets the time of the task. The simple task on the other 

hand is a class that only needs to set the task to be done in its method. 

The task controller is also abstract to support multiple different task behaviours. 

To alert the GUI and different elements that a task has changed their status the 

controllers has implemented the unity event system. This system also utilizes 

the unity event system. When a task is completed, the controller alerts the 

listeners of the state change through the event. An example of the question task 

controller can be found in figure 8. 

Task manger is used to make different default tasks for the user. An example of 

this is the hold and gaze tasks that could be added. Where each object can be 

dragged into the configuration field and add different tasks to that object. The 

manager also utilizes the singleton pattern if the task order is forced. This is 

done so that the tasks can check if it’s their turn before they are completed.   

  



 4. Results 

52 of 131 

 

4.3 3D models 
The final scene contains a collection of different 3D models which were utilized to make 

the scene replicate the bridge environment of a ship at sea. 

 

 

Figure 10 Wristwatch, windshield wipers, terminal and seat teleporter 

 

Wristwatch 

Wristwatch model, attached to left left hand of the user to make the “open menu” button 

look more natural on the user’s hand.  

 

Windshield Wipers 

Windshield wiper and clear view wiper models. Attached to the windows of the bridge to 

provide some detail to otherwise empty space.  

 

Computers, seat teleporters 

Figure 10 displays a bridge and tablet computers. They resemble the different 

instrument terminals one could see in a bridge. These are placed in the scene to act as 

interactable objects. UI screen overlays are placed on top of the black displays.  

 

A chair is also shown in figure 10. These chairs can be teleported to by the user. A lot of 

real bridge operations happen from a standing perspective, but because of our seated 

experience with teleportation as movement, we needed a model that could act as a 

“teleport” waypoint.  

 



 4. Results 

53 of 131 

 

 

Figure 11 Exterior models, interior props, player models 

 

Exterior environment 

Three 3D models were used for the exterior. The lighthouse is placed atop the rocky 

crags, with boats travelling around on the ocean surface. A shader was attached to the 

lighthouse to make a rotating spotlight effect. A component was attached to boats to 

make them move around in the scene.   

 

Interior props 

Four 3D models were added to make the back of the bridge more interactive and visually 

appealing. The wooden table and “sofa” chairs are set up as a casual break area on the 

bridge. 

The fire extinguisher and coffee cup are interactable objects that the user can pick up 

and carry around.  

 

Player models 

The player controller consists of two hands, a set of eyes, and (optionally) an eye “gun”. 

The eyes are not visible to the player perspective and are simply used for debugging in 

scene view. The eye gun behaves similarly to the eyes and can be used for testing when 

an eye-tracking HMD is unavailable.  

 

The hand models can open and close based on player input. The watch is placed on the 

left hand of the player and can be used to open the settings and tasks menu as indicated 

by the suitcase/cog icon.  

 

Shaders 

There was a total of three shaders made for this project that are currently in use. The 

first one is the light cone effect of the lighthouse. This shader has been made to flicker 



 4. Results 

54 of 131 

 

and represent a light that changes its brightness when it moves towards and away from 

the user. There is also used a Fresnel effect to simulate the brightness when the lights 

rotation is closer to the user.  An example of what it looks like can be seen in figure 12 

with the visual graph included. 

The water shader is another shader that is used in the demo. This shader is made to 

simulate the water in the demo and alters the vertex height of the mesh to simulate 

moving water. A colour shift is also added to the upper and lower bound of the shader, 

simulating the real-life colour changes of a water surface. 

 

Figure 12 Example of the light cone shader. The cone itself is in the bottom right corner 

 

Visual Effect 

The only visual effect that was added is the red dot that appears in the point cloud when 

it is rendered. This is done to save performance since too many game objects lags the 

world. This can be seen in 8, where the red dots are the visual effect.  



 4. Results 

55 of 131 

 

 

Figure 13 The water shader in the demo 

 

4.4 Persistence and API 

 

The backend is used to store the sessions done in the VR demo for later analysis. The 

backend itself is a REST API so it supports data fetching from other applications other 

than the website. The Spring framework is used to persist the data through hibernate, 

configure authentication, and endpoint management.  

 

4.4.1 Registers and Services 

The register of backend has registers that are abstract definitions of what methods they 

should have to be implemented. This is done so that the refactoring cost is reduced if the 

project's storage should be changed in the future. An example of this is the sessions 



 4. Results 

56 of 131 

 

register found in coding example 3 and 4. Where the interface just defines a method on 

coding example 5 and the SessionService class implements it in coding example 6.  

 

Coding example 3 The sessions interface with one of its defined methods. (SessionRegister.class) 

 

Coding example 4 Implementation of the sessions register interface. (SessionService.class) 

 

4.4.2 Database and repositories 

The service classes use repositories from hibernate to do basic CRUD operations on the 

database for each class that needs a database connection.  

The database itself is automatically generated using annotations on the logic classes in 

java. An example of this can be seen in coding example 5. To assure that each object 

gets its unique identifier the GeneratedValue annotation is used.    



 4. Results 

57 of 131 

 

 

Coding example 5 the trackable objects class and annotations used to store it in the database. 

(TrackableObject.class) 

The number of tables that is generated is 22 where one of them is responsible for 

autogenerating identifiers also called primary keys. The primary and foreign keys are 

used to generate a relationship between the different tables. The repositories that are 

needed for hibernate is also able to have custom methods to retrieve data based on 

other factors like the username.  



 4. Results 

58 of 131 

 

 

Figure 14 Automatically generated Entity relationship diagram of the database and its tables 

4.4.3 Security  

The data that is gathered through eye tracking is classified as personal data since its 

biometric data. That is why the application has implemented security in form of JWT 

authentication. If a trainee wants to compare their session against another or just simply 

access their own sessions, they must be logged in. This is done by JWT authentication 

which is implemented through the spring security package. If the user is signed in, they 

get a basic role called “User” and then they can access their own sessions, post new 



 4. Results 

59 of 131 

 

sessions, and access other people’s sessions. The preauthorize annotation is used to 

check if the user Is logged in and has access to a resource before doing any operations.  

 

Coding example 6 PreAuthorize used to get all the simulation setup. (UserController.class) 

 

4.4.4 REST controllers 

The REST controllers on the backend handles the endpoints that are vital to get and 

store the data from the VR demo. Each endpoint path like user has their own controller 

to handle requests from that revolve around the users, and each rest controller also has 

services that match the model class that it is responsible for.  

When a post or put request is received, the object is not built in the parameters of 

spring, even though it is supported. This is done since SonarLint once showed that 

taking a class as a parameter is prone to malicious attacks. So instead, an object 

mapper is used from the Jackson library to correctly convert a class from JSON to actual 

code by using predefined constructors. These constructors are predefined by the group, 

and all have their input checked so that valid values are set for the instance. The only 

difference is the JsonProperty annotation that marks each variable and what their JSON 

name should be. If the number of parameters that the object mapper has access to is 

more than the assigned to the constructor an exception is thrown. An example of the 

JsonProperty annotation can be seen in coding example 7.  



 4. Results 

60 of 131 

 

 

Coding example 7 Example of JSON property used in a constructor. (GazeData.class) 

 

4.4.5 Testing 

The backends testing is based on Midthus´ previous experiments with tests. Since each 

test should have its own method, the number of tests needed to test a given method 

with different parameters can be tiresome. Therefore, this project uses a system that 

tests either positive or negative outcomes for all the parameters of a method in one test.  

In top part of coding example 8 we can see an example of this where both the trackable 

type and time are tested in the same method but in separate try and catch blocks. If the 

input value is invalid and there is no exception, the “addError” method will be called. 

This method uses a string builder to store the error strings until the test is completed. 

When the test is done the method with the annotation “afterEach” is called and checks if 

the string builders’ length. If the length is larger than zero, then an error has been 

added to the builder and the number of failed tests is listed as well as their cause. See 



 4. Results 

61 of 131 

 

coding example 8 for a failed test example. 

 

Coding example 8 Failed test since the input type is not null. Testing method above and error 
underneath. (CategoryFeedbackTest.class) 

 

4.5 Information and visualization 

The product was developed to look at how eye tracking can be used to give objective 

feedback to a trainee and compare them to an expert´s performance. The main pages 

that can be found is sessions, session overview, login, register user, profile, and support 

page. The website, which was made in a combination of React JS and ChartJS It also 

followed sets of requirements according to the OpenBridge System standard as well. 

 

4.5.1 Design Principles 

Most of the design was made according to the OpenBridge system. The client wanted an 

application that was user-friendly and straightforward to navigate. In addition to these 

design principles, other design principles were considered as well when designing the 

application. This is according to Don Norman's design principles. In this section, both 

principles will be reviewed. 

There was a total of two different prototypes since the open bridge standard was 

followed the first draft of the webpage. When the first prototype changed to the open 

bridge standard the figma prototype was sent to a member of the Open Bridge project. 



 4. Results 

62 of 131 

 

They did a design review and checked that the first draft met their expectations. The 

result was not checked with a design review due to time constraints. 

 

4.5.2 Register and login page 

The application is using token-based authentication. The token is stored locally on their 

devices and when the token is validated, the user gets to log in to the application and 

use all the different functions available. This token is then stored in a cookie for the 

session. The token has an expiration time that can be used by the server to check if they 

still have access before doing any operations. The user can register with a username and 

password. Then login to the application and get access to all the features.  

   

Figure 15 Home page, register page and login page on the webpage 

 

4.4.3 Sessions 

The main purpose of the application is to compare eye-tracking data from an 

unexperienced user against an experienced user. In the application, the users will have a 

full overview of the sessions for the users and the option to compare them to against 

each other. The user can filtrate the sessions by date, simulation type and users. The 

user needs to be logged in to do so. By clicking the “See Session” button, the user 

navigates to the session overview page.  



 4. Results 

63 of 131 

 

   

Figure 16 Example of the sessions page with an overview of some sessions on the left, the filter 

option in the center, and the filtered results on the right side. 

 

4.4.4 Session Overview 

This is the page where the user can see the selected session and compare them to each 

other. The information about each session is stated in the cards above current stats. On 

the top of the page, there is an option to choose which seat to display the data from. By 

clicking the “compare” button, the user can choose navigates to the sessions and can 

choose another session to compare the chosen session against.  

The current stats show the total for all the objects that are observed at the end of the 

session for that seat. The metrics can also be changed by using the dropdown menu on 

the current stats graph. The graphs themselves are displayed by ChartJS for react and 

are not made by us. 

Feedback timeframes is the recorded feedback over time that is shown on a graph. 

There is a dropdown menu where the user can choose the time to compare the two 

sessions against each other. Each feedback is taken 10 seconds apart, so the math 

works out to “n * 10 seconds” to find out what time the selected option is for. In figure 

16 the selected time is after 6 minutes.  

The graphs can also be changed for both cards on the button bar below the graphs.  

 

4.4.5 Profile  

The profile page shows the details of the user. The user can see their name, the number 

of sessions done, the total time used to do these sessions and the different simulation 

types that has been done. This page serves as a consolidated view to get an overview 

and of the users’ achievements. 



 4. Results 

64 of 131 

 

   

Figure 17 Shows the user tested sessions and their respective graphs. 

 

4.4.6 Help and support  

The help and support page are able to help the user understand the different parts of the 

webpage and how to use the webpage. The search bar allows the user to find exactly 

what they want. The buttons are divided into bigger categories, such as “Eye tracking 

metrics” and “Sessions”. When clicking the button, the user will get an overview of 

subcategories belonging to each category. An example of the support pages can be seen 

in figure 18. 

 

4.4.7 Error handling 

The application has a way to alert the user to errors as well. The user gets a notification 

if they did something wrong or if sessions could not be loaded. This could potentially 

happen if the backend isn’t up and running. Or if the username and password does not 

match any users in the database. 

  



 4. Results 

65 of 131 

 

   

Figure 18 Help and support page. An overview of definitions related to eye tracking metrics and 

definition of fixations. 

 

   

Figure 19 Error when signing into the account on the left and profile page on the right. 

 



 4. Results 

66 of 131 

 

4.4.8 Application responsiveness 

The application has the capability to function as both a mobile and desktop website due 

to its scalability. Consequently, the layout of the application is dynamically adjusted 

based on the device being utilized. This adaptive behaviour ensures that the user 

interface and design elements are optimally displayed and organized, irrespective of the 

device´s screen size or resolution. By automatically adjusting to different devices, the 

application offers an enhanced user experience and facilitates seamless interaction 

across different types of platforms.  

 

Figure 20 Example of how the session overview page looks on a desktop. 

 

4.4.9 The top bar 

 

The top bar is always visible in the application. The upper section of the interface 

includes a navigation bar with a hamburger menu positioned on the left side, offering 

options to access the sessions, profile and help pages. It also displays the application 

name and indicates the current page. On the right side, there is a timestamp along with 

the options to navigate to the profile page and initiate the sign-out process.  

 

Figure 21 The top menu. 



 4. Results 

67 of 131 

 

 

Figure 22 The main menu for the webpage. 

  

 

Figure 23 Profile card 

 

4.5 Usability test 

4.5.1 Demo adjacent issues 

User testing can reveal problems with software which one might not encounter during 

development testing. User testing was conducted with at least one group member acting 

as a guide, and one taking notes of the user experience. With this method, several 

issues were discovered with the VR demo.  

Some of these issues were not strictly VR demo related, but problems the testers 

encountered with the Meta Quest Pro. To get eye-tracking to work accurately, the HMD 

needs to be recalibrated when a new user tests the demo due to differences such as a 

user’s eye distance. This consists of entering a developer menu in the Quest System 

Software and performing a calibration task. This task cannot be performed by anyone 

but the current tester, making it a required step before each demo.  

One user experienced blurry visuals, which could have been caused by a lack of 

explanation of how the HMD needs to be adjusted vertically and horizontally to fit the 

user’s eyes, in addition to an adjustment in the distance between the two lenses. 

More issues with the HMD were found by user testing. One of these being the HMD and 

controllers automatically entering sleep mode. A user experienced problems with this 

when the controllers entered sleep mode during setup, requiring the user to re-awaken 

them. If the controllers were to sleep on demo start, the VR hands became an 



 4. Results 

68 of 131 

 

annoyance as they are initially placed at the same position as the user’s head, causing 

the hands to obscure vision.  

 

4.5.2 Issues with the demo  

At one point of testing, the demo was run through the Unity editor. Due to being an 

environment with variable performance load, the editor hanged and crashed before 

testing. This could likely be prevented by building a version of the demo that can be run 

without the editor.  

An additional issue noted by testers is a performance drop when point clouds of a 

significant duration are loaded. There is a visible downturn in framerate when point 

clouds are displayed, likely caused the large number of particles being spawned. 

At one point in the demo, users are asked to navigate a menu and select if boats of 

certain colours exist in the scene. Several of the testers failed to accurately describe 

some of the colours, especially on the black boat, which they assumed was some darker 

shade of grey.  

Differing heights of users turned out to be mildly problematic. Shorter users could not 

see out of the windows of the bridge, but height quickly turned into a non-issue when 

the user teleported to any seat. Tall users should not be facing any problems. 

Users needed a lot of guidance and following up to understand what they needed to do. 

There were multiple aspects of the demo that were unclear to users and required 

explanation from the group members. One such issues was opening and navigating the 

Settings/Tasks menu. One user didn’t notice that the menu could be accessed via the 

wristwatch on their left hand, or that the tasks menu could scroll to reveal additional 

tasks. Several of the tasks required additional explanation to how they could be 

completed.   

Several bugs were found by using user testing. One bug is in the rendering of materials. 

While observing a tester, the material on the chair colliders turned into a bright cyan 

colour for a short time before turning into the intended transparent green colour. The 

same user spotted two boats repeatedly colliding with each other and getting stuck.  

 

 

4.6 Collaboration tools 

Jira and Con5fluence were used to ensure that Scrum was being followed. This includes 

tracking issues, logging time, writing different types of reports, and starting sprints. The 

name of the project is shortened into ETIVR, which stands for Eye tracking in Virtual 

Reality.  

 

4.6.1 Jira 

Jira is the software used to track issues, log time and start/end sprints. The issues 

assisted the other team members get an idea of how far the other group members had 

come and eventually help each other if needed. Jira has an issue board, where all the 



 4. Results 

69 of 131 

 

current issues were listed. This shows what issues had to be done, what issues were 

under development and what was finished.  

Jira is mainly used to make sprints that lasted one week in the end and two weeks at the 

beginning. All the issues got added here and assigned to the group members when they 

were prioritized. The issues also had subtasks that had to be done for the issue to be 

done. Before making issues, the team made different types of user stories that explained 

what the user should be able to do, from a user’s point of view. A description is also 

added that explains what needs to be done for the task to be marked “done”.  

The team was responsible to log their time. This helped the team get an overview of 

what the other team members were doing, and what tasks they used the most time on. 

All the meetings were also logged. The time gets listed under time sheets, and the whole 

team have access to it.  

 

4.6.2 Confluence 

Confluence was used to write different types of documents throughout the project 

process. This includes documents like meeting agendas, meeting notes, agreements, and 

retrospectives. This team workspace assisted the team with keeping track of documents 

and making documents more efficient. 

Meeting agendas were written before every meeting so that the people invited could get 

an idea of what the meeting was going to be about. These agendas included questions, 

concerns, and things we had to find out during the meeting. 

Meeting notes were written after each meeting. These notes had an overview of where 

and when the meeting was held, who attended, whether there was any absence, the 

type of meeting, the purpose of the meeting and what was done during the meeting.  

The agreement was written at the beginning of the project. The agreement included the 

goals, roles and division of tasks, procedures, and interaction. The members of the team 

had to sign this contract to be a part of the project.  

Retrospectives were written after each sprint was done. This made it easier to look back 

on what was done in the sprint. The team reasoned about what went well and what 

should have been better during the sprint. If some members had things they could 

improve, then they would be called out here.  

Confluence was also used to make decisions within the group. This function assisted the 

team with being more democratic and the group members having the ability to vote for 

what they want.   

 

4.5.3 GitHub 

The coding platform, GitHub was used for version control and collaboration. The team 

made an organization for the project and divided the project into three different 

repositories. One for the Unity project, one for the backend and one for the frontend. 

This made it easier for the members to work on the different parts of the project without 

being dependent on each other. Some parts of the project had a lot of storage as well. 

Having separate repositories helped avoid unnecessary storage use.  



 4. Results 

70 of 131 

 

Skorpen and Midthus had the responsibility of creating the Unity project. This project 

had everything from assets to C# code logic for the Unity model. They worked together 

during the development process and used the Unity repository. This gave both tracks of 

who committed and pushed what to the repository. 

Brevik and Ahmadi had the responsibility of creating the frontend and backend. They 

worked on the backend repository first and then began on the frontend repository later. 

Midthus assisted them throughout the project if it was needed. They worked on different 

branches and merged their branches into the main branch afterwards. 

  



 5. Discussion 

71 of 131 

 

5. Discussion 

This chapter will be discussing the results and reflecting the work that has been 

done. Any challenges and problems during the development process will be 

discussed here.  

 

5.1 Implemented functions 

The following chapters discuss what requirements we have met according to the 

requirements of the project owner.  

5.1.1 Virtual Reality demo 

Gather eye tracking data based on each category of objects. 

One of the requirements was to gather eye-tracking data based on each category of 

objects. This has been accomplished by looking at the different metrics for an object. 

Each object has a defined category that can be used to sort the performance based on 

their total metrics for that category instead of only showing it on a per object basis. This 

is done since the performance per object basis is not interesting and could possibly 

confuse the user.  

 

Visualizations of different data in Unity 

The visualization methods that are implemented is the point cloud and the points of 

interest. These models show both where the user has been looking, but they do not 

display the metrics per trackable object. Therefore, in a sense the data has been 

visualized but only the raw hit positions. The rest of the metrics per object is still not 

visualized in the VR demo and could be displayed by using the object-based colour 

coding. The reason that we didn’t implement this was due to the time constraint. Some 

of the logic was done, but for a colour to change the RGB values had to be altered. 

Recording the session was another visualization that could have been implemented and 

was planned. But the recorder that unity supports can only be used when the game is 

run in the editor. This limits the usage of it since it cannot be used when the application 

is compiled and published in a later demo. Therefore, recording was dropped as a 

possibility.  

 

Have a situation that can be done by a user in the demo. 

The demo itself includes a set of tasks that must be done to “finish” their session. These 

are included so that the group could gather data for the final report. The tasks must 

either be configured in the task manager or placed directly on the objects themselves. 

 

  



 5. Discussion 

72 of 131 

 

Interaction with menus and objects 

Menu and object interactions were successfully implemented through rays being cast out 

of the hands of the user. The user can use these rays as pointers to navigate between 

seats, pick up distant objects, and as a cursor in menus. The hands are also rigged to 

correspond to trigger input from the controllers, where the hand blends from an open 

palm to a closed fist or pinch according to how far the triggers are pushed. 

Getting the hands from the Oculus SDK to work with this project proved to be a 

challenge. The controllers of these hands were based on an old input system in Unity, in 

addition to being focused on Oculus Touch controllers specifically. For this reason, they 

were incompatible with the new input system in our version, as well as our early goal of 

supporting multiple controllers and HMDs. The code had to be converted to adhere to the 

new input system as well as being controller agnostic. The OVR hand rig solution 

contained input and hand poses for pointing, thumbs up, hand open, hand closed, 

pinching and closed fists. Due to issues in conversion, only open hand, pinch, and fists 

ended up being used in the final demo. 

The group initially intended to have touch screen interactions in the VR demo. This could 

be intuitive and convenient for users familiar with touch screen input, instead of using 

the specific buttons and pointers of the controllers. This could be a good solution in an 

application where movement is free, but with the fixed teleport locations of the demo, 

one could quickly find oneself just out of range of an interactable object or menu. An 

additional problem was that the hands would need a pointer pose, which was lost in the 

conversion. It would also require more set up, as a component we were already using for 

hand interactions came with the ray cast interactable included. For these reasons the 

group decided to go with the ray casted pointers for all interactions in the final delivery. 

 

Easy to setup the logic in a new scene 

To simplify the setup of the eye tracking system the trackable objects and referecnce 

positions are automatically added if they are descendants of the simulation setup 

controller. This is done by using the broadcasting system and send the simulation setup 

manager as a parameter where the trackable objects and reference positions uses to add 

themselves to the manager. Then the simulation setup manager adds these objects to 

the wanted simulation setup controller. The only problem with this setup is that the 

manager only supports one simulation setup controller at the time and is an unnecessary 

step since the simulation controller could do the adding itself. Thus, saving performance 

and a little code time. 

The setup of the menus, tasks and objects that can be picked up are another matter. 

There is no automatic setup for this since they are using event systems and a lot of logic 

must be setup to get the systems to work. The menus and pickup able items are to a 

certain degree automatic but can be hard to debug if something does not work. Colliders 

can also affect where the “centre” of the object is resulting in weird rotations.  

Especially when it comes to the tasks since the system is complex and requires triggers 

from GUI or other interactions. Some tasks are easily made like the pickup and gaze 

tasks in the task manager with the configuration of tasks but can also be frustrating for 

the user if they must hold or look at an object for a continues time.   



 5. Discussion 

73 of 131 

 

Adaptive training system implementation 

The feedbacks are originally designed to get the different feedback for the current 

position of the user and display these to the user as an adaptive feedback system. This 

system would show the different percentages per category to the user live when the 

feedback is calculated. The feedback was then displayed on a panel that would appear 

when new feedback was calculated.  

This system was not further developed since the percentages that was displayed was 

distracting the developers during testing. That is why the system was not used during 

the user tests since the panel itself might distract the user during the data gathering 

process. The panel would also be counted as its own “category” if the eye tracking was 

not disabled and effecting the resulting metrics of the session.  

A solution to this problem would be to pause the eye tracking when the feedback was 

displayed to the user, but this would also catch their attention and maybe effect their 

performance since the world is not also paused. Another solution is to give the feedback 

through verbal means with a computer-generated voice. This would be less distracting 

than a physical panel but are harder to implement. 

 

5.1.2 Backend 

Persist the data on a database for further use. 

The approach chosen is to make an object-relational database on a MySQL server. The 

model of this data was not specified, which lead to a lot of changes in the database 

during the project development process.  

Tests were implemented to verify the database’s validity and to access and persist data. 

These tests make sure that the data gets modified, added, and removed correctly. All 

these tests need to pass for the application to run. However, due to autogenerating the 

tables, the potential for encountering additional issues and bugs might arise. These 

issues can create problems such as invalid storage of data fields that will result in the 

field being set to null when pulled out of the database. This is largely avoided with the 

tests since exceptions are thrown if the data is not persisted correctly.  

To avoid problems like this, the use of Cascade type has been necessary in the joining 

tags. Cascade type enable the systematic handling of the object itself and their 

associated fields to be inserted into the database. By implementing Cascade type, the 

system aims to ensure the integrity and consistency of the database by properly 

managing the relationships between data entities. This approach minimizes the 

probability of data inconsistencies or misplacements when deleting objects. Thereby 

enhancing the overall reliability and functionality of the application. 

 

Access the data through endpoints. 

The API consists of sending the data like sessions, users, and simulation setup through 

the designated endpoints. The approach covers the mechanism of accessing data 

through endpoints by enabling the exchange of information between the VR demo, 

client, and the server. 



 5. Discussion 

74 of 131 

 

User authentication is necessary to ensure data privacy and security, restricting access 

to authorized users only. It is possible that the requirement for users to be logged in to 

access their data is influenced by data privacy regulations such as GDPR. Compliance 

with GDPR may necessitate implementing measures to ensure that only users have 

access to their personal data.  

Even though authentication is not explicitly mentioned, it is commonly understood as an 

essential security measure to prevent unauthorized access to personal data. By 

implementing user authentication, the application owners can control and verify the 

identity of individuals seeking access to personal data, thereby reducing the risk of 

unauthorized or unlawful processing. 

 

Persist different sessions done by different users and make them 

comparable.  

The sessions that are done by a user is identified by their own user, current date, and 

session length. This implementation ensures that the user themselves can find their own 

sessions. It also makes it possible to compare the user’s performance against others or 

their own older performances if the sessions simulation setup is the same.  

The reason that the simulation setup needs to match for the sessions to be compared is 

that the data is recorded on a per position basis. If the simulation setups mismatch the 

number of positions might differ and thus the performance per seat cannot be calculated 

and compared. The total metrics could be compared between sessions with different 

simulation setups but could result into non-productive feedback since the optimal 

viewing time per position per simulation setup may differ.  

 

5.1.3 Frontend 

Compare your session against an expert. 

The implementation of sessions allows us to compare any user’s performance against 

any other user’s performance if they are the same simulation setup. The compared 

sessions can also be the same simulation setup but different sessions for the user and be 

compared against each other. 

One problem with the implementation is that there is no way of knowing what 

experience level the users have. There is no tagging that allows the webpage to identify 

or sort the sessions based on the users experience level or rank. A solution to this 

problem is to remember the usernames of the experts and compare against their 

sessions. Even that is not an optimal solution and there should be a more user-friendly 

way of achieving this without having to remember multiple usernames. A tag could also 

be included on the user profile that ranks the user based on predefined experience set 

by the administrator, and then the sessions can be sorted based on experience level of 

the attending user. But experience per simulation setup might also wary so the ranking 

system should include that into its calculations. 

 

  



 5. Discussion 

75 of 131 

 

See a visualization of the data in some form. 

The data of a session is visualized in two different graphs. The current stats graph and 

the feedback timeframes. The difference is that the current stats have more options to 

look at more metrics, but the feedback timeframes only show the fixation duration per 

category.  

If the current stats show the feedback duration both the last result of the feedback 

timeframe and current stats graphs should be identical. But unfortunately, they are not. 

The reason for that they are different is that the remaining time of the current stats are 

not added to the other category like the feedback class. This means that the total 

amount of fixation duration does not match the time for that seat, resulting in a graph 

that is not the same. A simple fix to this problem is to take the remaining time the when 

the session is finished and add it to the other category. But due to time limitations this is 

not done.   

Even though the user can change between different metrics on the current stats graph, it 

might also be confusing. Since the fixation duration is the main metric that the project 

owner was interested in. But it included so that the number of fixations could later be 

used to analyze if the user was confused. The feedback could also be altered later to 

show a time from 30 to 40 seconds since the first feedback can be subtracted the last 

feedback to get that period. And this would show easily how the user was confused in 

that timespan with the different metrics. 

 

Optimized for both desktop and mobile 

It is optimized for desktop and mobile to a certain degree. Some of the layout is not 

user-friendly for a mobile user. The buttons are too small for the text, the graph data 

labels can be pushed too close to each other when comparing a lot of different sessions. 

And the percentages of the graphs overlap when there are many sessions that is 

compared. All of these decreases the mobile user experience and needs to be fixed in 

the future. The reason that this was not done is the time constraint of the project, since 

the bugs was found when the report was being written. 

 

Follow the OpenBridge system. 

The website follows most of the guidelines that the OpenBridge design system has set. 

But there are a few things that are not properly fixed.  

An example of this is when the webpage changes to dark mode. All the components that 

OpenBridge has made changes their theme, but the additional components that we had 

to make does not. Therefore, there are some optimalisations that are missing for the 

webpage when it comes to dark mode. This could easily be fixed if the group had more 

time. 

Other factors like the design are still quite close to the first draft of the webpage. But 

some changes were made for the user to be able to change graphs. These changes and 

the final implementation have not received the same design review as the figma 

prototype because of time constraint. But probably should have, if the group had more 

time the webpage would also get a design review.   

 



 5. Discussion 

76 of 131 

 

Live sessions on the webpage 

This was not strictly a requirement, but the project owner wanted it as a “last function”. 

Because of the time limit we could not fulfill their wish, but most of the logic is there to 

make this happen.  

 

5.2 Limitations 
The Meta Quest pro itself was chosen for this project because of its more open approach 

to licensing and ease of use. The Omnicept on the other hand was difficult to get the 

license for both its native SDK and the Tobii XR library. But even though the Omnicept 

was not used it has some features that the Quest pro lacks. 

One of these features is pupillometry. This allows the pupil size of the user to be 

recorded when they are looking at different objects. This feature would be especially 

useful to add to the adaptive training system, since it’s a good indication of stress and 

fatigue. The adaptive training system could then be used to adjust the environment so 

that the user does not experience visual or mental fatigue. A report could then be 

generated every minute to log and check how the cognitive load on the user is being 

affected. Combine that with the heartrate feature of the Omnicept, and it is even easier 

to log and check when the user is stressed or overloaded by the simulation.   

Even though these features are impressive for their use they could also have their 

downsides. Since with the gaze pattern, pupillometry and heartrate could say a lot about 

someone’s health or conditions that are supposed to be private. So, the data itself had to 

be stored in a secure manner to not leak this particularly sensitive information. 

 

5.3 Integration 

5.1.1 VR 

Since the project is made in unity the integration of this project must be done 

there. The eye tracking logic that has been made during the project could be 

easily extended by another headset in some cases. The main logic with the 

objects themselves tracking their time is easily extended, since only a Boolean 

must be changed, and a method needs to be called on the object. 

The recorded points and points of interest are harder to be implemented by 

other headsets since it relies on raw gaze position and hit position. Other 

headsets might call methods on the objects themselves and not revealing their 

hit position. Thus, the integration of this mechanic to other headsets might be 

difficult.    

The logic itself is easily extended since all the code is documented and different 

design patterns are used to ensure easier extendibility. 

 

5.2.2 Backend 

Using the backend and integrating other systems is also quite developer friendly. 

This is due to the implementation of the register classes where the final user 



 5. Discussion 

77 of 131 

 

easily can change to another database implementation. The user is also a 

general class that can be changed easily to adapt better to other login systems. 

There is no interface for the users though, so it needs some work.  

Endpoints themselves are also accessible and documented well. This makes it 

easier to get the data form the server to other applications. The only problem 

with the endpoints is that there is no service like Swagger to show the 

documentation on a webpage. The user needs to get access to the source code 

or the Javadoc to know what endpoints are accessible with what permissions.  

 

5.4 Deployment 
The backend, database and frontend are hosted on the servers provided by the institute. 

This way the user data that was collected during the testing can be accessed afterwards 

and displayed in this report.  

Backend 

To deploy the backend, one needs to either have an editor or docker installed. Docker is 

used to run both the backend itself and the database in separate containers and 

simplifies the setup of the system. This secures the database against a fatal crash on the 

backend, and maintenance can be done easier since only the part that needs 

maintenance is taken down. 

If the docker container is deployed the user only needs to run the prompts that are 

included inside the readme file for the project. The only thing that needs to be done 

before deployment of the backend is to fill out the password and username of the 

database in the docker compose file. 

Frontend 

The frontend is also deployed by using docker but needs to be deployed separate from 

the backend and database. The instructions to deploy the webpage is included in the 

readme file of the GitHub repository. The distribution service like Nginx needs to be 

routed or decided by the user themselves.  

VR demo 

To run and test the VR demo a Unity editor is needed. Since the demo itself is not ready 

to be compiled and ran by any users. This is done since some login information and 

settings in different controllers also needs to be set to the correct IP address and port to 

store data on the backend. 

 

5.5 User Testing 
Conducting tests on new users provided valuable insights into improvements that could 

be made in the project that the developers might miss. Not having seen the demo 

before, the testers allow developers to understand how a new user experiences the 

application. By conducting user tests, the group spotted several specific instances where 

improvements could be made.  



 5. Discussion 

78 of 131 

 

One improvement could be in the initial testing start up process. Users reacted to the 

amount of setup and guidance needed before getting to the demo. The amount of 

guidance could be reduced by building the demo to work with the Meta Quest Pro 

hardware itself. This would remove the need to establish a link between the computer 

and the Quest, which would reduce the initial tasks to eye calibration, and starting the 

demo application. This could have other problems, however. The demo is intended to be 

set up similarly to the system the stakeholders are currently using, which is a laptop and 

Quest Pro set up with Oculus Link. Building exclusively to the Quest would differ from 

this set up. It could also cause performance issues, as the Quest Pro is significantly 

weaker than the current target laptop hardware. 

Another improvement could be with the visuals of the boats outside of the bridge. Users 

had difficulties with guessing the correct colours on the different boats. Several factors 

contribute to this issue, such as fog, simple material properties, and low model 

polycount. Steps to mitigate this colour issue could be to increase the polycount of the 

boat models to increase reflection accuracy, increase contrast between colours to make 

colour choice more obvious, and remove misleading colour choices in the multiple-choice 

menu. But at the same time the tests must contain some harder tasks so it’s not easy 

for the users. Since in a normal boat environment it might be challenging to identify the 

boats and their details.  

Boats were also difficult to keep track of when they were moving around. Making the 

boats more unique from each other could help as they are currently sharing the same 

model with different materials. Their colliders could also increase so that they are less 

likely to crash into each other.  

The point cloud setting creates 50 spheres per second where the user has been looking. 

The significant performance hit when point clouds are enabled could be reduced by 

decimating the triangle count of the sphere being used. The default sphere in Unity has a 

triangle count of 768 triangles. This sphere could be replaced by a simpler sphere with 

130 triangles. Visual difference would be negligible, because of the small size of the 

individual points of the cloud. Another solution is to display less number of points at the 

same time and have a timeframe that the point cloud is displayed for. 

Differing user height was one issue, but it was only a problem before the user teleported 

somewhere and the height got normalized. A fix for the initial height could be to teleport 

the user somewhere in the start of the demo. This is because the headset starts at a 

certain position that is not the height of the user.  

 

The settings or tasks in-world menu had several user experience issues that could be 

improved. Users didn’t understand intuitively that both the tasks and settings lists could 

be scrolled through by pressing the trigger and dragging with the pointer on the 

background. A potential improvement for this could be to add a scroll bar, allowing the 

user one more way to scroll, in addition to conveying that these areas are in fact 

scrollable. 

Opening and closing this menu was not intuitive to users. When the menu is closed, the 

users do not see that the menu “travels” into the left-hand wristwatch. A clearer way to 

convey this could be to have a trail show up during the travel time. This would show a 

path to the hand which could cause the user to investigate further. A task could also be 



 5. Discussion 

79 of 131 

 

assigned to open the menu from the left hand; thus the user instantly knows where the 

menu is.  

The hit registration of in-world UI elements proved to be inconsistent. One tester 

reported problems with their hit registering on a button they tried to press for instance. 

This problem is likely due to careless use of borders in the Unity UI system. The borders 

define what counts as a “hit” in the UI. Hit registration could be improved if the UI was 

revisited and each element received a more accurate border and larger physical size. 

When users are almost finished with their assigned tasks, they get tasked with sending 

their session to the server. This is done in several steps. Accessing the settings menu 

and unchecking the eye tracking setting reveals a button marked “send session”. 

Pressing this button sends the session and completes the task. These steps could be 

more intuitive if the “send session” button was always visible in the menu but greyed out 

until eye tracking has been stopped.  

When users managed to send their data, they were quick to send it several times on 

accident. They were uncertain if the data was sent or not. To reduce redundant data and 

server strain, a dialog asking the user if they are certain they want to re-send data could 

help. There should also be some sort of confirmation indicating if the server has received 

the data or not. A dialog should also appear when the user has sent their session so that 

they know the interaction has happened.  

 

5.6 Development process 

Using Jira as an issue & project software 

The group initially did not use Jira and Confluence for documenting their development 

process. However, upon receiving recommendation from one of the lecturers, the group 

started using Jira to track issues, assign tasks to members, and manage sprints. The 

group began by creating user stories and corresponding issues, which were then 

assigned to individual members. Confluence was used for retrospectives and meeting 

notes. 

 

Sprints  

The sprints lasted two weeks in the beginning, since the group had another subject in 

the beginning of the semester. After that subject was done in March, the group began 

having sprints that lasted one week. Even though the sprints had a defined start and end 

they were sometimes over time. This was due to most of the members being busy at the 

retrospective day, and sometimes it was forgotten. To combat this the group should 

have been stricter with following Scrum and not adjusted it accordingly to the group 

members when collisions happened. This could have been handled better by having the 

meetings, even though it only fit for some members.  

Many sprints ended with a status update to the client and supervisor either with a 

meeting and/or with video. During these updates, the group received feedback from the 

project owner and supervisor on what problems or tools we could use. The project owner 

then often gave feedback on what to focus on when the group gave options for future 

focus fields. 

 



 5. Discussion 

80 of 131 

 

Sprint reviews 

The meetings with supervisor and project owner helped to keep track of the project and 

its progress. Meeting notes were written during these meetings and demo videos of how 

far the project had progressed was done, but like sprint reviews. The videos were made 

when the project had made visible progress and was done not every week but many of 

them. Each agenda had status reports about the project, so it looks like sprint reviews.  

Videos was done because of the visual part of the project. The project had a lot of things 

that was hard to describe without having a video showing it. Eye tracking is not that 

easy to show without a demo. The quality of the videos could have been better, but the 

field of view differs from the headset to the unity editor. So, the poor field of view in the 

unity editor limits what the recording can see.  

 

Logging time 

The group faced challenges initially as they were inexperienced with the Jira software 

and its features. This resulted in incomplete time logging during the early stages of the 

project. Also, a sprint of the project was done before the group got access to Jira. This 

means that the total time of all the group members should have 10-20 hours of work per 

person.  

Initially, the use of Jira and individual responsibility for managing issues and logging 

time was effective. However, as the project progressed, some group members tended to 

forget to log their time, leading to inefficacies and incomplete log of the time. 

Furthermore, the development process faced delays in the beginning due to another 

subject that required more time than anticipated. As a result, the group had only two 

days a week to work on their bachelor project.  

Some of the group members also had more subjects, which lead to using less time for 

the bachelor project. A part of the deal was that these subjects would not affect the 

bachelor project a too much. During the project, the group had events they had to 

attend to with their families. This made it even more challenging to gather the group 

members and do the work needed. 

 

Using Confluence as a team workspace 

Confluence was used in the beginning after a lecturer recommended us to use it. Later in 

the projects process teams was used more when the report grew, but retrospectives and 

meeting notes was still stored on Confluence. This made it more structured and efficient 

when writing the report documents. The supervisor also had access to Confluence. 

 

Issue scope and epics  

Some of the issues should have a better-defined scope. The reason being, that some of 

them had a bigger scope, making it harder to do. The same can be said about epics that 

should have been broken down into smaller parts, making it easier to sort the issues and 

make new issues. There were six major epics, but if these were divided into smaller 

fragments, it would be easier to make tasks and user stories for them. Since they are 

not covering such large topics.  

  



 6. Conclusion 

81 of 131 

 

6. Conclusion 

6.1 Conclusion 

6.1.1 Teams conclusion 

 

The complete solution of the bachelor thesis is solved using unity, spring and react. The 

main requirement from the client was solved by making us able to compare two sessions 

against each other. However, there is no easy way of knowing who’s an expert without 

remembering their username. Regardless, the goal was achieved in some matter. Some 

of the requirements was also defined during the project, thus the scope grew big and 

could have been smaller to reduce the number of unmet requirements.  

In the webpage the performance from one user can be compared against another with 

graphs and charts. The webpage additionally offers the user the ability to create a user, 

login, change graphs and see their sessions. The users themselves are not integrated 

into any predefined system. Therefore, this project is easy to setup and try out. 

However, there are more testing that should have been done. That is because the group 

should confirm that it is beneficial and informative for the potential users. The graphs 

were shown after a test, except there were no real user tests on the webpage. 

Furthermore, the tests that was done with the VR demo should have been done with 

more than three users.   

The team is quite satisfied with the execution of the scrum. Despite the sprint reviews 

that was not done properly throughout the project, and some sprints exceeding their 

time. The usage of Jira and confluence as tasks tracker and documentation manager was 

also a good experience that showed how real projects are run. Except from the learning 

curve that was needed to learn these tools during the project's execution. Also, the 

logging of time on tasks for the group could have been handled better.  

 

6.1.2 Clients conclusion 

It seems like the client was happy with our exploration of eye tracking in VR. As 

stated below: 

The project has been informative for the Norwegian Costal Administration. It has 

shown the possibilities and limitations of eye tracking in VR, at the same time it 

has also shown us how fast the technological development is in this domain. It 

also shows the possibilities within combining different technologies. 

 

6.2 Further work 

6.2.1 VR Demo 

Given more time to work on the project, there are several improvements to be made. 

Regarding the VR demo, one of these improvements could be better interactivity. 

Currently, the interactable tasks are primitive in comparison to actual VR training 



 6. Conclusion 

82 of 131 

 

scenarios. The user should have interactable levers and buttons that can control the ship 

the user is in. This could provide more valuable data than simpler tasks.  

An additional improvement could be in visualization within the demo. A shader showing a 

heatmap of where the user has seen would be an intuitive way for others to understand 

the user's gaze pattern without looking at graphs. Other models like perception map and 

object-based-colour coding could also be added. 

 

6.2.2 Backend  

The backend could also get improvements. One improvement that could be made is 

converting the database from JPA to a relational database. This could provide faster 

storage speeds and allow for the storage of more raw data. More raw data storage 

provides more freedom to the users, allowing them to perform their own detailed 

analysis of an eye-tracking session. Each endpoint could have been documented with 

Swagger as well. The backend could have stored a point record. More visualization 

methods in VR could have been implemented.  

 

6.2.3 Frontend 

The frontend could use some improvements. If the group had more time, dark mode 

implementation could have been done. The ability to choose between night, dusk, day, 

and so on could also make the functionality of the website more personalized for the 

users. Another implementation could have been alerts on the navigation bar when a new 

session is uploaded. This would give the user more feedback. The website could also be 

less clunky since it can be perceived as kind of messy. The token could have been 

automatically refreshed, to have a proper user experience. Another function that could 

be implemented is the option to filter based on if the user is an expert or not. This would 

give the user an example of how good the results can be. 

  



 Societal Impact 

83 of 131 

 

Societal Impact 

Ethical concerns 

Investigating and developing virtual reality eye tracking applications can raise 

concerns regarding the ethics of using this collected data. This is particularly 

relevant in this projects case, using a VR headset created by Meta, who also 

owns Facebook. Facebook keeps extensive track of user information, creating 

profiles and grouping persons by different marketability standards (Dewey 

2016). From this, one could extrapolate and raise concerns regarding the data 

retrieved by the Meta Quest Pro, which can track eye movements and recognize 

room arrangements.  

 

In our project, the tracked information is stored privately in a database requiring 

special access and is not used for marketing or sold in any way. There is still 

reason for concern however, as our development in these avenues can raise 

interest in potential breaches of privacy from other parties.  

 

Sustainable goals 

Development of this project can aid in the following UN sustainable development 

goals: 

Goal 8: Promote sustained, inclusive and sustainable economic growth, 

full and productive employment and decent work for all 

Through active development of maritime VR training, these types of training 

simulators can become more accessible. This can provide interested parties 

without access to real-life training a way to practice, get certifications, and start 

working at actual vessels (United Nations n.d.). 

 

Goal 14: Conserve and sustainably use the oceans, seas, and marine 

resources for sustainable development. 

Due to potential improvements in maritime training from emerging eye tracking 

technology, more training could be performed in simulators instead of at-sea. 

Reducing the amount of training needed with actual ships has potential of 

decreasing total emissions from seafaring vessels. Reduced CO2 emissions 

reduces the acidification rate of the oceans, which can aid in the survival of sea-

life (United Nations n.d.).  

 

  



 References 

84 of 131 

 

References 
Atlassian (n.d.). "Confluence basics." Retrieved 01.05.23, 2023, from 
https://www.atlassian.com/software/confluence/resources/guides/get-started/overview#about-
confluence. 

  
Atlassian (n.d.). "What is the Agile methodology?". Retrieved 18.05.23, 2023, from 
https://www.atlassian.com/agile. 

  
baeldung (2022). "Learn JPA & Hibernate." Retrieved 01.05.23, 2023, from 
https://www.baeldung.com/learn-jpa-hibernate. 

  
BillWagner, et al. (2023). "A tour of the C# language." Retrieved 20.05, 2023, from 
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/. 

  
Blender Freedom (n.d.). "The Freedom to Create." Retrieved 28.04.23, 2023, from 
https://www.blender.org/about/. 

  
Checkstyle (2023). "CheckStyle." Retrieved 18.05.23, 2023, from https://checkstyle.sourceforge.io/. 

  
Chehab, G. (2023). "What is an ORM? How Does It Work? How Should We Use One?". Retrieved 
18.05.23, 2023, from https://www.baeldung.com/cs/object-relational-mapping. 

  
DBeaver (n.d.). "About." Retrieved 28.04.23, 2023, from https://dbeaver.io/about/. 

  
Dewey, C. (2016). "98 personal data points that Facebook uses to target ads to you." Retrieved 
21.05, 2023, from https://www.washingtonpost.com/news/the-intersect/wp/2016/08/19/98-
personal-data-points-that-facebook-uses-to-target-ads-to-you/. 

  
educative (n.d.). "What are Norman´s design principles?". Retrieved 09.05.23, 2023, from 
https://www.educative.io/answers/what-are-normans-design-principles. 

  
Freeman, E., et al. (2021). Head First Design Patterns, 2nd Edition. United States, O´Reilly Media,. 

  
GitHub Docs (n.d.). "Hello World." Retrieved 01.05.23, 2023, from https://docs.github.com/en/get-
started/quickstart/hello-world. 

  
GitLab (n.d.). "What is a code review?". Retrieved 18.05.23, 2023, from 
https://about.gitlab.com/topics/version-control/what-is-code-review/. 

  
GitLab (n.d.). "What is distributed version control system?". Retrieved 20.05, 2023, from 
https://about.gitlab.com/topics/version-control/benefits-distributed-version-control-system/. 

  

https://www.atlassian.com/software/confluence/resources/guides/get-started/overview#about-confluence
https://www.atlassian.com/software/confluence/resources/guides/get-started/overview#about-confluence
https://www.atlassian.com/agile
https://www.baeldung.com/learn-jpa-hibernate
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.blender.org/about/
https://checkstyle.sourceforge.io/
https://www.baeldung.com/cs/object-relational-mapping
https://dbeaver.io/about/
https://www.washingtonpost.com/news/the-intersect/wp/2016/08/19/98-personal-data-points-that-facebook-uses-to-target-ads-to-you/
https://www.washingtonpost.com/news/the-intersect/wp/2016/08/19/98-personal-data-points-that-facebook-uses-to-target-ads-to-you/
https://www.educative.io/answers/what-are-normans-design-principles
https://docs.github.com/en/get-started/quickstart/hello-world
https://docs.github.com/en/get-started/quickstart/hello-world
https://about.gitlab.com/topics/version-control/what-is-code-review/
https://about.gitlab.com/topics/version-control/benefits-distributed-version-control-system/


 References 

85 of 131 

 

Hargrave, B. (2023). "Object- and function-oriented programming concepts and principles." 
Retrieved 20.05, 2023, from https://developer.ibm.com/tutorials/oo-v-functional-programming/. 

  
IBM (n.d.). "What is Java?". Retrieved 01.05.23, 2023, from https://www.ibm.com/topics/java. 

  
Interaction Design Foundation (n.d.). "Interaction Design." Retrieved 20.05, 2023, from 
https://www.interaction-design.org/literature/topics/interaction-design. 

  
Intersoft consulting (n.d.). "Security of processing." Retrieved 20.05, 2023, from https://gdpr-
info.eu/art-32-gdpr/. 

  
javaTpoint (n.d.). "Hibernate Tutorial." Retrieved 20.05, 2023, from 
https://www.javatpoint.com/hibernate-tutorial. 

  
Josikakar (n.d.). "Software Engineering | Coupling and Cohesion." Retrieved 20.05, 2023, from 
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/. 

  
Khronos (n.d.). "Unifying Reality." Retrieved 18.04.23, 2023, from 
https://www.khronos.org/api/index_2017/openxr. 

  
Marschner, S. and P. Shirley (2015). Fundamentals of Computer Graphics 4th Edition, A K Peters/ 
CRC Press. 

  
MDN contributors, I. (2023). "Object-oriented programming." Retrieved 01.05.23, 2023, from 
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming. 

  
Meta (n.d.). "Buy Meta Quest 2. Get two hit games.". Retrieved 20.05, 2023, from 
https://www.meta.com/no/en/quest/products/quest-2/tech-specs/#tech-specs. 

  
Microsoft (n.d.). "What is Microsoft Teams?". Retrieved 01.05.23, 2023, from 
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-
0eb5286d7a29. 

  
Midthus, S. H. and T. Staverløkk (2022). State-of-the-art report on eye-tracking in Virtual reality. 
Ålesund, NTNU (Norwegian University of Science and Technology). 

  
Okta (n.d.). "Authentication vs. Authorization." Retrieved 18.05.23, 2023, from 
https://auth0.com/docs/get-started/identity-fundamentals/authentication-and-authorization. 

  
Okta (n.d.). "Token Based Authentication." Retrieved 01.05.23, 2023, from 
https://auth0.com/learn/token-based-authentication-made-easy. 

  

https://developer.ibm.com/tutorials/oo-v-functional-programming/
https://www.ibm.com/topics/java
https://www.interaction-design.org/literature/topics/interaction-design
https://gdpr-info.eu/art-32-gdpr/
https://gdpr-info.eu/art-32-gdpr/
https://www.javatpoint.com/hibernate-tutorial
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://www.khronos.org/api/index_2017/openxr
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming
https://www.meta.com/no/en/quest/products/quest-2/tech-specs/#tech-specs
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29
https://auth0.com/docs/get-started/identity-fundamentals/authentication-and-authorization
https://auth0.com/learn/token-based-authentication-made-easy


 References 

86 of 131 

 

OmniConvert (2023). "Why is user testing important?". Retrieved 20.05, 2023, from 
https://www.omniconvert.com/what-is/user-testing/. 

  
OnkarRuikar (2023). "What is JavaScript?". Retrieved 18.05.23, 2023, from 
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript. 

  
OpenBridge (2020). "Terms of use." Retrieved 08.05.23, 2023, from 
https://www.openbridge.no/home/terms-of-use. 

  
OpenBridge (n.d.). "Application." Retrieved 20.05, 2023, from 
https://www.openbridge.no/pattern/application. 

  
OpenBridge (n.d.). "Cards." Retrieved 20.05, 2023, from https://www.openbridge.no/pattern/cards. 

  
OpenBridge (n.d.). "Colors." Retrieved 20.05, 2023, from 
https://www.openbridge.no/guidelines/palette/colors. 

  
OpenBridge (n.d.). "Help & Support." Retrieved 20.05, 2023, from 
https://www.openbridge.no/pattern/support. 

  
OpenBridge (n.d.). "Styles." Retrieved 20.05, 2023, from 
https://www.openbridge.no/guidelines/palette/styles-and-states. 

  
OpenBridge (n.d.). "Typography." Retrieved 20.05, 2023, from 
https://www.openbridge.no/guidelines/palette/typography. 

  
pp_pankaj (2023). "Unit Testing | Software Testing." Retrieved 18.05.23, 2023, from 
https://www.geeksforgeeks.org/unit-testing-software-testing/. 

  
Prettier (n.d.). "Why Prettier?". Retrieved 08.05.23, 2023, from https://prettier.io/docs/en/why-
prettier.html. 

  
ProductPlan (n.d.). "Jira." Retrieved 01.05.23, 2023, from 
https://www.productplan.com/glossary/jira/. 

  
Qualcomm (2022). "AR, VR, MR, and XR - what they mean and how they´ll transform lives." 
Retrieved 20.05, 2023, from https://www.qualcomm.com/news/onq/2022/09/ar--vr--mr--and-xr---
what-they-mean-and-how-they-ll-transform-li. 

  
Radigan, D. (n.d.). "An agile guide to scrum meetings." Retrieved 18.05.23, 2023, from 
https://www.atlassian.com/agile/scrum/ceremonies. 

  

https://www.omniconvert.com/what-is/user-testing/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://www.openbridge.no/home/terms-of-use
https://www.openbridge.no/pattern/application
https://www.openbridge.no/pattern/cards
https://www.openbridge.no/guidelines/palette/colors
https://www.openbridge.no/pattern/support
https://www.openbridge.no/guidelines/palette/styles-and-states
https://www.openbridge.no/guidelines/palette/typography
https://www.geeksforgeeks.org/unit-testing-software-testing/
https://prettier.io/docs/en/why-prettier.html
https://prettier.io/docs/en/why-prettier.html
https://www.productplan.com/glossary/jira/
https://www.qualcomm.com/news/onq/2022/09/ar--vr--mr--and-xr---what-they-mean-and-how-they-ll-transform-li
https://www.qualcomm.com/news/onq/2022/09/ar--vr--mr--and-xr---what-they-mean-and-how-they-ll-transform-li
https://www.atlassian.com/agile/scrum/ceremonies


 References 

87 of 131 

 

Ramsøy, C. (2022). "En kort introduksjon til Scrum." Retrieved 20.05, 2023, from 
https://www.visma.no/blogg/en-kort-introduksjon-til-scrum/. 

  
React (n.d.). "React." Retrieved 20.05, 2023, from https://legacy.reactjs.org/. 

  
Refactoring Guru (n.d.). "Builder." Retrieved 20.05, 2023, from https://refactoring.guru/design-
patterns/builder. 

  
Sirois, S. and J. Brisson (2014). "Pupillometry." Retrieved 20.05, 2023, from 
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wcs.1323. 

  
SonarSource (n.d.). "SonarLint." Retrieved 18.05.23, 2023, from 
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarlint-vscode. 

  
Source Making (n.d.). "Design Patterns." Retrieved 20.05, 2023, from 
https://sourcemaking.com/design_patterns. 

  
spring (n.d.). "Spring Security." Retrieved 01.05.23, 2023, from https://docs.spring.io/spring-
security/reference/index.html. 

  
spring by VMware Tanzu (n.d.). "Building REST services with Spring." Retrieved 20.05, 2023, from 
https://spring.io/guides/tutorials/rest/. 

  
Srivastav, P. (n.d.). "Docker for beginners." Retrieved 2023, 20.05, from https://docker-
curriculum.com/. 

  
United Nations (n.d.). "Conserve and sustainably use the oceans, seas and marine resources for 
sustainable development." Retrieved 21.05, 2023, from https://sdgs.un.org/goals/goal14. 

  
United Nations (n.d.). "Promote sustained, inclusive and sustainable economic growth, full and 
productive employment and decent work for all." Retrieved 21.05, 2023, from 
https://sdgs.un.org/goals/goal8. 

  
Unity (n.d.). "About Shader Graph." Retrieved 20.05, 2023, from 
https://docs.unity3d.com/Packages/com.unity.shadergraph@16.0/manual/index.html. 

  
Unity (n.d.). "ECS concepts." Retrieved 18.05.23, 2023, from 
https://docs.unity3d.com/Packages/com.unity.entities@0.1/manual/ecs_core.html. 

  
Unity (n.d.). "Visual Effect Graph." Retrieved 20.05, 2023, from 
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@12.0/manual/index.html. 

  
Unity (n.d.). "Welcome to Unity." Retrieved 28.04.23, 2023, from https://unity.com/our-company. 

https://www.visma.no/blogg/en-kort-introduksjon-til-scrum/
https://legacy.reactjs.org/
https://refactoring.guru/design-patterns/builder
https://refactoring.guru/design-patterns/builder
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wcs.1323
https://marketplace.visualstudio.com/items?itemName=SonarSource.sonarlint-vscode
https://sourcemaking.com/design_patterns
https://docs.spring.io/spring-security/reference/index.html
https://docs.spring.io/spring-security/reference/index.html
https://spring.io/guides/tutorials/rest/
https://docker-curriculum.com/
https://docker-curriculum.com/
https://sdgs.un.org/goals/goal14
https://sdgs.un.org/goals/goal8
https://docs.unity3d.com/Packages/com.unity.shadergraph@16.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@0.1/manual/ecs_core.html
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@12.0/manual/index.html
https://unity.com/our-company


 References 

88 of 131 

 

  
visheshy2ey (2022). "RESTful Web Services." Retrieved 18.05.23, 2023, from 
https://www.geeksforgeeks.org/restful-web-services/. 

  
Vyas, K. (2023). "8 Major Advantages of Using MySQL." Retrieved 20.05, 2023, from 
https://www.datamation.com/storage/8-major-advantages-of-using-mysql/. 

  
w3schools (n.d.). "Chart.js." Retrieved 2023, 20.05, from 
https://www.w3schools.com/ai/ai_chartjs.asp. 

  
w3schools (n.d.). "Node.js Introduction." Retrieved 28.05.23, 2023, from 
https://www.w3schools.com/nodejs/nodejs_intro.asp. 

  
West, D. (n.d.). "Agile scrum roles and responsibilities." Retrieved 18.05.23, 2023, from 
https://www.atlassian.com/agile/scrum/roles. 

  
Yasar, K. (2022). "software development kit (SDK)." Retrieved 20.05, 2023, from 
https://www.techtarget.com/whatis/definition/software-developers-kit-SDK. 

  
Zoho (n.d.). "Sprint review vs. sprint retrospective." Retrieved 20.05.23, 2023, from 
https://www.zoho.com/sprints/sprint-reviews.html. 

  

  

https://www.geeksforgeeks.org/restful-web-services/
https://www.datamation.com/storage/8-major-advantages-of-using-mysql/
https://www.w3schools.com/ai/ai_chartjs.asp
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://www.atlassian.com/agile/scrum/roles
https://www.techtarget.com/whatis/definition/software-developers-kit-SDK
https://www.zoho.com/sprints/sprint-reviews.html


 Appendices 

89 of 131 

 

Appendices 

A Preliminary project plan 



 Appendices 

90 of 131 

 



 Appendices 

91 of 131 

 



 Appendices 

92 of 131 

 



 Appendices 

93 of 131 

 



 Appendices 

94 of 131 

 



 Appendices 

95 of 131 

 



 Appendices 

96 of 131 

 



 Appendices 

97 of 131 

 



 Appendices 

98 of 131 

 



 Appendices 

99 of 131 

 



 Appendices 

100 of 131 

 



 Appendices 

101 of 131 

 



 Appendices 

102 of 131 

 



 Appendices 

103 of 131 

 



 Appendices 

104 of 131 

 



 Appendices 

105 of 131 

 



 Appendices 

106 of 131 

 



 Appendices 

107 of 131 

 

 

 



 Appendices 

108 of 131 

 

 
 

 



 Appendices 

109 of 131 

 

B Industry report



 Appendices 

110 of 131 

 



 Appendices 

111 of 131 

 



 Appendices 

112 of 131 

 



 Appendices 

113 of 131 

 



 Appendices 

114 of 131 

 



 Appendices 

115 of 131 

 



 Appendices 

116 of 131 

 



 Appendices 

117 of 131 

 



 Appendices 

118 of 131 

 



 Appendices 

119 of 131 

 



 Appendices 

120 of 131 

 



 Appendices 

121 of 131 

 



 Appendices 

122 of 131 

 



 Appendices 

123 of 131 

 



 Appendices 

124 of 131 

 



 Appendices 

125 of 131 

 



 Appendices 

126 of 131 

 



 Appendices 

127 of 131 

 



 Appendices 

128 of 131 

 



 Appendices 

129 of 131 

 



 Appendices 

130 of 131 

 

 

  



 Repositories 

131 of 131 

 

Repositories  
VR Project: 

https://github.com/Bacheloroppgave-Kystverket/Unity-VR-Eye-Tracking-Demo 

 

Backend: 

https://github.com/Bacheloroppgave-Kystverket/Backend 

 

Frontend: 

https://github.com/Bacheloroppgave-Kystverket/Frontend 

 

 

 

https://github.com/Bacheloroppgave-Kystverket/Unity-VR-Eye-Tracking-Demo
https://github.com/Bacheloroppgave-Kystverket/Backend
https://github.com/Bacheloroppgave-Kystverket/Frontend

