
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Lund, Jørgen Meland
Sønderland, Henning
Vos, Jesper

3DOF Motion Platform For
Educational Applications With Model
Predictive Control

Bachelor’s thesis in Electrical Engineering - Automation and
Robotics
Supervisor: Coates, Erlend
May 2023

Lund, Jørgen Meland
Sønderland, Henning
Vos, Jesper

3DOF Motion Platform For Educational
Applications With Model Predictive
Control

Bachelor’s thesis in Electrical Engineering - Automation and Robotics
Supervisor: Coates, Erlend
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

3DOF Motion Platform For Educational

Applications With Model Predictive Control

Jørgen Meland Lund, Henning Sønderland & Jesper Vos

May 2023

BACHELOR’S THESIS

Department of ICT and Natural Sciences

Norwegian University of Science and Technology

Supervisor: Erlend Coates

i

Preface

This thesis is written by three students from the bachelor’s degree programme in Electrical En-

gineering, study programme Automation and Robotics, NTNU Ålesund, Norway.

What intrigued us is the lack of good practical educational tools in the control theory field.

Especially the lack of practical development tools for Model Predictive Control strategies. We

were eager to explore the possibilities of making a versatile motion platform that allows other

people to make their own controllers.

Acknowledgements

First and foremost, we would like to thank our supervisor, Erlend Coates, for providing us with

the idea and support. This project would not have been completed without his guidance and

feedback. We would also like to thank Anders Sætersmoen for providing us with parts and pos-

sible solutions to problems we encountered throughout the project. Last but not least, we are

grateful for our friends and families whose support and encouragement ensured we were moti-

vated throughout our project.

ii

Abstract

The motion platform is an excellent tool for students to simulate real-world scenarios in a con-

trolled environment for testing and experimenting. Model Predictive Control is seen as a more

viable option in control methods due to recent improvements in algorithm development. MPC

controls a system by calculating the appropriate control action by using measurements and a

dynamical model of the system to predict future states. There is a lack of good practical edu-

cational tools to experiment with using this control strategy due to its computational require-

ments and complex nature. MPC, traditionally, is not commonly taught to undergraduates

pursuing a bachelor’s degree. It is often regarded as an advanced control technique and thus

more frequently encountered at the master’s level. However, incorporating MPC into a bache-

lor’s program can introduce the topic to undergraduate students, familiarizing them and poten-

tially sparking greater interest in it. In this thesis, a 3DOF motion platform that is both robust

and user-friendly has been developed and built. This motion platform is developed to serve as

an educational and experimental platform for students. It is developed to allow others to eas-

ily modify the design and implement their own controllers and systems. The platform is also

equipped with a touch-screen to allow others to easily tune and change parameters for their

controllers. All scripts are programmed in Python and are modular, such that each script can

be replaced. To meet the requirement for computational power, a Khadas VIM3 single-board

computer serves as the system for all software. This allows the MPC to easily control a ball on

the top with minimal errors.

iii

Sammendrag

En Bevegelsesplattform er et utmerket verktøy som studenter kan bruke til å simulere virke-

lige scenarioer i et kontrollert miljø til testing og eksperimentering. Model Predictive Con-

trol betraktes som et mer gjennomførbart alternativ innen kontrollmetoder på grunn av nylige

forbedringer innen algoritmeutvikling. MPC styrer et system ved å beregne den optimale kon-

troll handlingen ved å bruke målinger og en dynamisk modell av systemet for å forutsi frem-

tidige tilstander. Det er en mangel på gode praktiske utdanningsverktøy for å eksperimentere

med denne kontrollstrategien på grunn av dens beregningskrav og komplekse natur. Tradis-

jonelt sett blir MPC ikke vanligvis undervist til studenter som tar en bachelorgrad. Det blir ofte

betraktet som en avansert kontrollteknikk og blir derfor oftere brukt på masternivå. Imidler-

tid kan bruk av MPC i et bachelorprogram introdusere emnet for studenter, gjøre dem kjent

med det, og potensielt vekke større interesse for det. I denne hovedfagsoppgaven er det utviklet

og bygget en 3DOF bevegelsesplattform som er både robust og brukervennlig. Denne beveg-

elsesplattformen er utviklet for å fungere som en utdannings- og eksperimentell plattform for

studenter. Den er utviklet for å tillate andre å enkelt modifisere designet og implementere sine

egne kontrollere og systemer. Plattformen er også utstyrt med en berøringsskjerm som gjør

det enkelt for andre å justere og endre parametere for sine kontrollere. Alle skriptene er pro-

grammert i Python og er modulære, slik at hvert skript kan erstattes. For å oppfylle kravene til

beregningskraft, brukes en Khadas VIM3 som systemet for all programvare. Dette gjør at MPC

enkelt kan styre en ball på toppen med minimale feil.

Contents

Preface . i

Acknowledgement . i

Summary and Conclusions . ii

Acronyms . xiv

1 Introduction 1

1.1 Background . 1

1.2 Problem Formulation . 2

1.3 Related Work . 3

1.4 Scope . 4

1.5 Structure of the Report . 5

2 Preliminaries 6

2.1 Software . 6

2.1.1 PyCharm . 6

2.1.2 Arduino IDE . 6

2.1.3 Autodesk Fusion 360 . 7

2.1.4 Pruca Slicer . 7

2.1.5 Geogebra . 7

2.1.6 EPLAN Electric . 7

2.1.7 Flexi Designer . 8

2.1.8 Programming libraries . 8

2.1.9 Version Table . 10

2.2 Degrees Of Freedom . 11

iv

CONTENTS v

2.3 Model Predictive Control . 12

2.3.1 Tuning MPC . 13

2.4 Disciplined Convex Programming . 14

2.4.1 Disciplined Parameterized Programming . 14

2.5 HSV Colour Space . 14

2.6 Shared Memory . 15

3 Method 17

3.1 Design and assembly . 17

3.1.1 Foundation and enclosure . 18

3.1.2 Platform . 19

3.1.3 Practicality . 20

3.1.4 Integration . 21

3.2 Stepper Motors . 24

3.2.1 Motor Specifications . 24

3.2.2 Motor Drives . 25

3.2.3 Control . 26

3.2.4 Communication . 27

3.2.5 Limit Switches . 29

3.2.6 Calibration . 29

3.2.7 Encoders . 30

3.2.8 Low-Pass Filter . 31

3.2.9 Simulation-sketches . 32

3.3 Camera . 34

3.3.1 Ball Tracking Algorithm . 35

3.3.2 Camera Initialization . 36

3.3.3 Colour Detection . 36

3.3.4 Velocity Estimation . 37

3.4 Control Algorithm . 38

3.4.1 MPC Mathematical Model . 38

CONTENTS vi

3.4.2 Generating C Code . 41

3.4.3 MPC Algorithm . 42

3.4.4 Additional Control Algorithms . 44

3.4.5 Motor Angles . 45

3.5 Graphical User Interface . 46

3.5.1 Controller Config . 46

3.5.2 Main GUI . 48

3.5.3 Controller And Input Mode Selector . 55

3.6 Main.py . 59

3.6.1 Config.py . 61

3.6.2 Shared Memory Declaration . 61

3.6.3 GUISharedMemHandler . 62

3.6.4 BackEnd . 64

3.6.5 if __name__ == "__main__": . 66

3.7 Data collection and calculation . 67

3.7.1 Data Recorder . 68

3.7.2 Snap Recorder . 68

3.7.3 Recording Of Miscellaneous Data . 70

3.8 Khadas Setup . 71

3.8.1 Operating System . 71

3.8.2 Boot File . 71

3.8.3 Deployment on Khadas . 72

3.8.4 Desktop Script . 74

3.8.5 Shared Folder . 75

4 Results 77

4.1 Design . 77

4.2 GUI Results . 78

4.3 MPC Results . 80

4.3.1 Khadas VIM3 MPC Results . 81

CONTENTS vii

4.3.2 Computer MPC Results . 82

4.3.3 MPC Prediction Horizon . 83

4.3.4 Latency Stress Test . 84

5 Discussion 86

5.1 Design Results . 86

5.1.1 Part Selection & Changes . 86

5.1.2 Mechanical Improvements . 87

5.1.3 Electrical Improvements . 88

5.1.4 Planning and Ordering parts . 89

5.2 The Code . 89

5.2.1 Programming Results . 89

5.2.2 Main Codebase Language . 90

5.2.3 GUI . 90

5.2.4 Ball Tracking Algorithm . 91

5.3 MPC Results . 91

5.3.1 Ball Position . 92

5.3.2 Angles . 93

5.3.3 Prediction Horizon . 94

5.3.4 Stress Test Results . 94

5.4 Future Improvements & Developments . 95

5.4.1 Camera Distortion & Plane Coordinates . 95

5.4.2 Kalman Filter . 96

5.4.3 Tuning . 96

6 Conclusions 97

6.1 Further Work . 98

Bibliography 99

Appendices 102

A Appendix Folder List 102

CONTENTS viii

B Source Code 105

B.1 Main.py . 105

B.2 GUI.py . 114

B.3 CameraCode.py . 142

B.4 MPC.py . 148

B.5 C_CodeGenerator.py . 153

B.6 PID.py . 155

B.7 State_Space.py . 157

B.8 ControllerTemplate.py . 160

B.9 Config.py . 161

B.10 ArduinoCode . 164

C Gantt Diagram 170

D Pre-project Report And Progress Reports 171

D.1 Pre-project report . 171

D.2 Report 08.02 . 183

D.3 Report 23.02 . 185

D.4 Report 21.03 . 187

D.5 Report 11.04 . 190

E Video Links 192

List of Figures

2.1 Figure illustrating all six degrees of freedom[10]. 11

2.2 three-dimensional model representation of HSV colour space.[7]. 15

3.1 First sketch of the platform. 17

3.2 Fusion design of the foundation. 18

3.3 Fusion design of the enclosure. 19

3.4 Fusion design of the platform. 20

3.5 Fusion design of the joint between the motors and platform. 20

3.6 Electrical drawing of the System. 22

3.7 Component Layout Overview. 23

3.8 Data Sheet for stepper motors [2]. 25

3.9 Dip switch Setting for motor drives [2]. 26

3.10 Code excerpt of the stepper motor setup. 27

3.11 Code of how the Arduino controls the stepper drives. 27

3.12 Code excerpt of the communication function in Arduino. 28

3.13 Code excerpt of the communication function in Python. 28

3.14 Limit switch triggered by the motor leg. 29

3.15 Code excerpt the limit switch trigger. 30

3.16 Code excerpt of calibration. 30

3.17 Encoder mounted on the stepper motor shaft. 31

3.18 Electrical schematic of one filter channel. 32

3.19 Geogebra simulation sketch of the correlation between platform angle β and mo-

tor angle α. 33

ix

LIST OF FIGURES x

3.21 Code excerpt of camera initialization. 36

3.22 Code excerpt of camera colour detection. 37

3.23 Code excerpt of HSV upper and lower bounds. 37

3.24 Code excerpt of velocity estimation. 38

3.25 Code excerpt of C code generation of problem parameters. 41

3.26 Code excerpt of C code generation of problem formulation. 42

3.27 Code excerpt from the main algorithm of lines defining MPC parameters. 43

3.28 Code excerpt from the main algorithm with the lines running the MPC controller. 43

3.29 Code excerpt of the PID Controller. 44

3.30 Code excerpt of the state space controller. 45

3.31 Code excerpt of the angle conversions. 45

3.32 Code excerpt of the config frame for the MPC. 46

3.33 Code excerpt of the gain button definition. 47

3.34 Code excerpt of the decimal shift button. 47

3.35 Code excerpt of the decimal update function. 47

3.36 Code excerpt of the save and Cancel objects. 48

3.37 Code excerpt of the save and cancel function. 48

3.38 Code excerpt of the main GUI frame class. 49

3.39 Colour changing function. 51

3.40 Paint functions. 52

3.41 Show controller config frame. 53

3.42 Close and exit function. 53

3.43 Record Data button. 55

3.44 Code excerpt of the controller selector. 56

3.45 Code excerpt of the controller selector function. 56

3.46 Code excerpt of the GUI update values. 57

3.47 Code excerpt of the save and cancel function. 58

3.48 Timeout timer for the UpdateInformativeValues function. 58

3.49 Data flowchart and structure. 60

3.50 Declaration of the shared memory. 61

LIST OF FIGURES xi

3.51 Code excerpt of clearing and destroying the shared memory. 62

3.52 Code excerpt of the data handler function. 63

3.53 Function to execute en external script. 64

3.54 BackEnd function and controller start and stop. 64

3.55 Camera start and stop. 65

3.56 Code excerpt of multi-processed code termination. 65

3.57 Start and stop the communication thread. 66

3.58 Application execution. 67

3.59 Desktop run script. 68

3.60 Desktop run script. 69

3.61 Desktop run script. 70

3.62 Adding the Khadas interpreter. 72

3.63 SSH connection. 73

3.64 Sync path. 73

3.65 Deployment path. 74

3.66 Desktop run script. 75

3.67 Shared folder on Windows. 76

3.68 Samba code. 76

4.1 Final render of the assembled platform. 77

4.2 Figure of the complete GUI. 78

4.3 Figure of the resulting config frame for the MPC. 78

4.4 Figure of camera buttons. 79

4.5 Figure of Arduino buttons. 79

4.6 Figure of Arduino buttons. 80

4.7 A plot of the target and feedback position of the ball on the X-axis on the Khadas

VIM3. 81

4.8 A plot of the target and feedback position of the ball on the Y-axis on the Khadas

VIM3. 81

4.9 A plot of the target and feedback angle of the X-axis on the Khadas VIM3. 81

LIST OF FIGURES xii

4.10 A plot of the target and feedback angle of the Y-axis on the Khadas VIM3. 82

4.11 A plot of the target and feedback position of the ball on the X-axis on the Computer. 82

4.12 A plot of the target and feedback position of the ball on the Y-axis on the Computer. 82

4.13 A plot of the target and feedback angle of the X-axis on the Computer. 83

4.14 A plot of the target and feedback angle of the Y-axis on the Computer. 83

4.16 Process refresh rate from the stress test. 85

4.17 A plot of the target and feedback angle from the stress test. 85

List of Tables

2.1 Preliminary package table. 10

2.2 Software version table. 10

3.1 Amount of bolts used. 21

3.2 Part list. 22

3.3 Table explaining location of each part. 23

3.4 Table of QLabel objects from GUI.py. 50

3.5 Table listing all functions. 51

3.6 Table listing all buttons. 54

3.7 QComboBox objects. 55

3.8 Table listing miscellaneous objects. 57

4.1 Table describing the functions of MPC config window. 79

4.2 Table describing the functions of each camera button. 79

4.3 Table describing the functions of the Arduino buttons. 80

4.4 Table describing the functions of the controller buttons. 80

xiii

LIST OF TABLES xiv

Acronyms

MPC Model Predictive Control

FOV Field of View, the angle at which something is observable.

GUI Graphical User Interface, makes it possible to interact with a computer.

DOF Degrees of Freedom, number of configurations for an object.

LP Linear Programming, formulation for solving MPC problem.

QP Quadratic Programming, formulation for solving MPC problem.

DCP Disciplinary Convex Programming.

DPP Disciplinary Parameterized Programming.

HSV Hue, Saturation, Value, alternate representation of a colour space.

CPU Central Processing Unit.

UART Universal Asynchronous Receiver-Transmitter.

OS Operating System.

SSH Secure Shell.

PID Proportional–Integral–Derivative controller.

GPIO General-purpose input/output.

Hz Hertz.

LIST OF TABLES xv

Nomenclature

x(i) System state in the MPC.

u(i) System input in the MPC.

Q Weighting matrix for state variables in MPC.

R Weighting matrix for input variables in MPC.

J Cost function for MPC.

∆t Sampling time.

H Horizon length in MPC.

n Number of state variables in MPC.

m Number of input variables in MPC.

xr e f Reference states in the MPC cost function.

uu and lu Input bounds in the MPC.

xi ni t i al Initial condition for the states in the MPC.

φ Platform angle along the X-axis.

θ Platform angle along the Y-axis.

α Platform angle in the simulation-sketch.

β Motor angle in the simulation-sketch.

p The length from the centre to the platform leg.

f The length of the motor leg.

Chapter 1

Introduction

To gain a deeper understanding of control systems, hands-on experience with practical and

real-world systems is necessary. In this thesis, we seek to fill this gap by designing and building

a motion platform suitable for educational purposes. The motion platform is an excellent tool

for students to simulate real-world scenarios in a controlled environment for testing and exper-

imenting. In recent years a powerful control strategy called Model Predictive Control has gained

popularity due to its application for high-performance control, and its ability to handle com-

plex nonlinear systems with constraints. The MPC has also been seen as a more viable option

due to recent improvements in algorithm development. The MPC calculates the appropriate

control action by using measurements, and a dynamical model of the system to predict future

states. Due to its computational requirements, and complex nature, there is a lack of good prac-

tical educational tools to experiment with using this control strategy. This motion platform is

designed to educate students and provide a hands-on learning experience with MPC, and other

control strategies, to allow them to gain a deeper understanding of control systems.

1.1 Background

A motion platform is a mechanical system, often referred to as a motion simulator or motion

system, that simulates the motion and forces people and items might experience in a given

environment or circumstance.

Motion platforms are widely used in multiple fields, including entertainment, military, avi-

1

CHAPTER 1. INTRODUCTION 2

ation, and technical research. For example, in motion theatres, or vehicle simulators. They can

mimic the motion of different moving objects, including cars, ships, and planes. In addition

to being used for entertainment and training applications, motion platforms can also be used

in research and development to study the consequences of motion on human physiology and

performance.[11]

The dynamic behaviour of a motion platform can be described by a mathematical model of

the system that describes an object and platform’s position, velocity, and acceleration in relation

to the forces and torques acting on it. These models can be written in the form of differential

equations or state-space models, which is a mathematical representation of the system in terms

of its states, inputs, and outputs. Because of their wide range of use and complexity, motion

platforms are an ideal teaching tool for students studying control theory.

1.2 Problem Formulation

The main problem formulation for our project is to design and build a 3 degrees of freedom

motion platform that is robust and user-friendly, to be used as a testing ground for students to

learn and experiment with various controllers including Model Predictive Control.

The problems addressed throughout this project are derived from two main objectives. The

first objective is to design and assemble a motion platform that others can easily modify to suit

their own objectives. The second objective is to explore the possibilities of designing an MPC

that supplements the motion platform.

These two main objectives form the foundation for further tasks and problems addressed

throughout the project. To ensure these main objectives are accomplished to an acceptable

degree the following problems are to be addressed.

Goals to achieve

1. Design and assemble a stable and robust 3DOF motion platform.

2. Design and assemble a compact enclosure, with easy access, to house all necessary com-

ponents.

CHAPTER 1. INTRODUCTION 3

3. The motion platform should fit in a typical shelf, and be stackable. Given that shelves have

various sizes the width of the motion platform should be less than 60 cm.

4. Model and program a model predictive controller to balance a ball for the motion plat-

form.

5. Create a graphical user interface that allows users to experiment with different approaches

and tuning.

6. Ensure the software is easy to modify with the aim to allow users to make their own con-

trollers.

1.3 Related Work

This report is mainly based on these publications:

• Design and Application of a Motion Platform in Three Degrees of Freedom[9]. This pub-

lication presents a 3DOF motion platform which is used to balance a ball by using servo

motors. Presents thorough documentation of the mathematical models and angle trans-

formations between the X and Y-axis to the 3DOF platform.

• Fast Real-Time Model Predictive Control for a Ball-on-Plate Process[17]. This publica-

tion uses a 2DOF motion platform that incorporates MPC to control a ball. A thorough

demonstration of how to incorporate MPC in a ball-balancing platform. Discusses multi-

ple approaches and methods to achieve good results.

• 3DOF Ball on Plate Using Closed Loop Stepper Motors[8]. This publication includes a

step-by-step guide on how to construct a 3DOF motion platform that incorporates stepper

motor control and robust design. Presents design approaches and demonstration of how

to achieve a stable and robust construction.

CHAPTER 1. INTRODUCTION 4

1.4 Scope

Because of the limited time frame and the number of possible approaches to designing motion

platforms, certain limitations are imposed on the functionality.

• The platform is expected to have the capability of three degrees of freedom, but the con-

troller will only incorporate roll and pitch functionality.

• The control algorithm should be simplified by using certain approximations and lineariza-

tions due to the complex nature of the mathematical models underlying a motion plat-

form.

CHAPTER 1. INTRODUCTION 5

1.5 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Preliminaries: Chapter two gives an introduction to the theoretical background

and preliminaries used to model, construct and develop the system, controller, and software for

the 3DOF motion platform.

Chapter 3 - Method: Contains a description of the development of the platform, and which

solutions were considered and attempted throughout the development to arrive at the desired

result.

Chapter 4 - Result: Contains a presentation of the finished product and performance tests.

Chapter 5 - Discussion: A summary and evaluation of the performance and results, the uti-

lization, and which changes can be made to further improve the product.

Chapter 6 - Conclusions: This chapter present an overall conclusion of the 3DOF motion plat-

form

Chapter 2

Preliminaries

The project’s underlying foundations will be covered in this chapter. It will outline the software

applications used to create the project as well as the theoretical approach taken to solve the

problem.

2.1 Software

There were several programs and special software libraries used throughout the project. The

section below includes a list of these.

2.1.1 PyCharm

PyCharm is an integrated development environment (IDE) used for coding Python. There are

multiple features that improve the efficiency of coding and troubleshooting. It provides a code

editor with syntax highlighting, code completion, and error highlighting. It also offers custom

tools for debugging, testing, profiling, and integration of version control. The software is avail-

able in two editions: the Community edition and the Professional edition. The software is user-

friendly and provides a helpful user guide.

2.1.2 Arduino IDE

Arduino IDE (Integrated Development Environment) is a software program used to develop and

upload code to Arduino micro-controller boards. The program allows users to create interactive

6

CHAPTER 2. PRELIMINARIES 7

electronic projects using the open-source electronics platform Arduino. The Arduino IDE of-

fers libraries and functions made specifically for Arduino boards, and it supports the C and C++

programming languages. As a result, beginners don’t need to have a strong background in pro-

gramming to get started creating electronic projects.

2.1.3 Autodesk Fusion 360

Autodesk Fusion 360 is a cloud-based 3D computer-aided design software application that is

used for product design, engineering, and manufacturing. Designers and engineers can use

Fusion 360 to build 3D models and parts assemblies, as well as 2D drawings based on those

models. It is a complete software solution for product development because it also offers tools

for collaboration, generative design, and simulation.

2.1.4 Pruca Slicer

Prusa Slicer is a slicer software for 3D printing. It is an open-source, feature-rich, and frequently

updated tool that contains everything you need to export print files to a Prusa 3D printer. To

guarantee the greatest outcome possible, the application offers parameter modifications for in-

fill, print quality, and customizable supports.

2.1.5 Geogebra

GeoGebra is a free and open-source mathematics software program that allows users to create

and manipulate dynamic geometrical constructions, as well as perform algebraic computations,

statistics, and calculus. Users can drag and manipulate objects in real-time, and observe the

effect of changes on other objects in the construction.

2.1.6 EPLAN Electric

EPLAN Electric P8 is an electrical schematic software where the user can plan and design elec-

trical drawings. It supports the use of I/O lists and can directly wire components by itself. Man-

ual drawing is also supported by the software, together with standardized and template-based

methods. The software allows the user to have large projects that can utilize both 2D and 3D

formats. The program is very technical, but courses and guides are provided for the user.

CHAPTER 2. PRELIMINARIES 8

2.1.7 Flexi Designer

Flexi Designer is a program that is used for laser-cutting purposes. It allows the user to import

2D sketches and modify them if needed. When the sketch is finished, it gets exported to the

desired laser-cutting equipment. The laser cutter will follow the 2D lines which were displayed

in the software. The software is easy to use and requires little training.

2.1.8 Programming libraries

CVXPY

CVXPY is an open-source Python package used for Python-embedded modelling of convex opti-

mization problems. CVXPY allows users to formulate convex optimization problems in a math-

ematical and natural way using Python syntax, rather than using the strict forms other solvers

require. It supports a wide range of convex optimization problems, including linear program-

ming, quadratic programming, semidefinite programming, and cone programming. CVXPY is

built by a community of researchers, engineers, and students across the world.[4][3][5]

CVXPY is licensed under the Apache License, Version 2.0

CVXPYgen

CVXPYgen is an add-on library for the CVXPY python package. It is built on top of the CVXPY

model and allows users to generate custom solvers in the C language by defining the problem

parameters in Python. It is designed to create easy and efficient solvers for convex optimiza-

tion problems. The generated code uses low-level optimization techniques to achieve high per-

formance. CVXPYgen is particularly useful in situations where standard convex optimization

solvers do not provide the desired performance, or when custom optimization algorithms are

needed for specialized applications.[16]

CVXPYgen is licensed under the Apache License, Version 2.0

OpenCV

OpenCV is an open-source computer vision and machine learning software library that is de-

signed to help developers create real-time applications for image and video processing. It pro-

CHAPTER 2. PRELIMINARIES 9

vides a wide range of algorithms for image processing and computer vision, including object

detection and tracking, image segmentation, feature detection, and optical flow analysis.

OpenCV was originally developed by Intel Corporation in 1999 and is now maintained by

the OpenCV Foundation, a non-profit organization with the goal of promoting and advancing

computer vision research. It is available for interfacing in C++, Python, Java, and MATLAB, and

supports Windows, Linux, Android, and Mac OS.

OpenCV 4.5.0 and higher versions are licensed under the Apache 2 License. While OpenCV

4.4.0 and lower versions are licensed under the 3-clause BSD license.

PyQt5

PyQT is a Python library that is used to create graphical user interface applications with the use

of the QT tool. The library is free and open source and has been in development since 1999. The

newest version is PyQT5 which was released in 2016. The library provides a wide range of classes

and modules which are used to create the applications. Its use of widgets makes it flexible and

easy to use and this is why the library is very popular. PyQT5 also supports integration with

other Python libraries such as NumPy and Matplotlib.

PyQT5 is developed by Riverbank Computing and is licensed under GNU GPL v3.

Other minor packages

Table 2.1 Summarizes all preliminary packages used in the thesis. The Table lists version num-

bers and a short description of each package.

CHAPTER 2. PRELIMINARIES 10

Package Version Description

platformdirs 3.2.0 Package for determining platform-specific directories.

numpy 1.23.24 Mathematical package, useful for array and matrix calculations.

time N/A Package for determining time.

datetime N/A package for determining both date and time.

pickle N/A Package for converting byte-stream.

sys N/A Package with system-specific parameters and functions.

threading N/A Multi-thread package, run multiple parts of a script concurrently.

multiprocessing N/A Similar to threading runs scripts concurrently as subprocesses instead of threads.

subprocess N/A Package for spawning new process.

pyserial 3.5 Package for serial communication.

struct N/A Package for interpreting bytes.

atexit N/A Cleanup package for terminating functions.

Table 2.1: Preliminary package table.

2.1.9 Version Table

Table 2.2 lists the version numbers of all software.

Software Version

Arduino IDE 2.1.0

Autodesk Fusion 360 2.0.15995

Prusa Slicer 2.5.0

Geogebra Classic 5.0.775.0

EPLAN Electric 2023

Flexi Designer 12

CVXPY 1.3.1

CVXPYgen 0.2.2

OpenCV 4.7.0

PyQt5 5.15.9

Table 2.2: Software version table.

CHAPTER 2. PRELIMINARIES 11

2.2 Degrees Of Freedom

Degrees of freedom is a term that describes the number of independent parameters used to de-

scribe the configurations of a robot. The position and orientation of the body can be described

by three components of translation and three components of rotation. When a body can be de-

scribed by all six of these components, it is said to have six degrees of freedom shown in Figure

2.1[1]. These components contain the following:

• Rotation

– Roll - Tilting side to side along the X-axis.

– Pitch - Tilting forward and backwards on the Y-axis.

– Yaw - Turning left and right on the Z-axis

• Translation

– Surge - Moving forward and backwards on the X-axis.

– Sway - Moving left and Right on the Y-axis.

– Heave - Moving up and down on the Z-axis

Figure 2.1: Figure illustrating all six degrees of freedom[10].

CHAPTER 2. PRELIMINARIES 12

The motion platform considered in this thesis has three degrees of freedom: roll, pitch, and

heave. We therefore refer to this platform as a 3DOF motion platform.

2.3 Model Predictive Control

Model Predictive Control (MPC) is a control strategy that solves a constrained optimization

problem. The MPC solves the problem at each control interval to find the optimal control ac-

tions that minimize a cost function subject to system dynamics and input constraints. The MPC

predicts and optimizes future process behaviour subject to the cost function and constraints

over a predicted time horizon. MPC is a widely used technique in control engineering because

it can handle nonlinear systems, constraints, and disturbances.[6]

The optimization problem for the MPC is typically cast into one of two forms. Either a linear

Programming formulation or a quadratic programming formulation. In an LP formulation, both

the cost function and constraints are linear. In a QP formulation, the cost function is quadratic

while the constraints are linear. Additionally, a QP requires that the problem is convex such that

a unique optimal solution can be found quickly.[6]

An example of a QP optimization problem that typically arises in MPC applications is given

by:(2.1)

Minimize: J =
N−1∑
i=0

[
(x(i)−xr e f)T Q(x(i)−xr e f)+u(i)T Ru(i)

]
Subject to: x(i +1) = Ax(i)+Bu(i), i = 0. . . N −1

x(0) = xi ni t i al

lu ≤ u(i) ≤ uu

x(i) ∈X , i = 1. . . N

(2.1)

CHAPTER 2. PRELIMINARIES 13

x(i) is the system state at time step i .

u(i) is the control input at time step i .

N is the prediction horizon.

xr e f is the reference state.

Q and R are positive definite weighting matrices.

A and B are the state and input matrices of the system model.

lu and uu are the lower and upper bounds on the control inputs.

X is the feasible region of the state variables.

2.3.1 Tuning MPC

Several parameters are required to be specified to design an MPC controller. All of these param-

eters can be used to tune and change the response of the controller. Defining an MPC controller

requires a sampling period ∆t and a model horizon H . The sampling period determines the

length of time between each update of the system states and inputs of the predicted state and

control variables. The horizon length determines how far into the future the controller updates

these variables. For example, a sampling time of 0.1 seconds and a horizon length of 10 updates

the state and control variables every 0.1 seconds 1 second into the future. Typically a smaller

value for H results in more aggressive control.

The other parameters used to tune an MPC controller are the weighting matrices Q and R.

These matrices determine the amount of weight used in the state and input variables when

calculating the optimal input variable. The Q matrix has a size of n ×n where n is the number

of states, and the R matrix has a size of m ×m where m is the number of input variables. The Q

matrix has weights across the diagonal where each number corresponds to the amount of weight

placed on each state variable. The R matrix follows the same principle with weights placed

across its diagonal, where each number correspond to the amount of weight placed on each

input variable. By tuning these numbers, one can easily decide which variable the controller

will react more aggressively to. Typically a larger Q equals more aggressive control, and a larger

R equals more conservative control.[12]

CHAPTER 2. PRELIMINARIES 14

2.4 Disciplined Convex Programming

Disciplined Convex Programming is a framework for writing optimization problems with a set

of rules and guidelines. This way of formulation allows for efficient and reliable optimization

using convex programming techniques. Convex optimization is a powerful mathematical tool

for solving a wide range of problems in engineering, economics, and other fields. A convex

optimization problem is one where the objective function and the constraints are all convex

functions.

The set of rules the DCP framework provides allows the optimization problem to be auto-

matically checked for convexity. The rules specify how mathematical expressions can be com-

bined, what operations are allowed, and what functions are convex. By following these rules,

one can be sure that the resulting optimization problem is convex, which means that it has a

unique global minimum.[4][3][5]

2.4.1 Disciplined Parameterized Programming

Disciplined Parameterized Programming is a ruleset for producing parameterized DCP-compliant

problems. In DPP parameters are used to define the behaviour of a program, and the program is

designed to work correctly for any valid input values of the parameters. The first time a DPP pa-

rameterized problem is compiled, the program caches the mapping from parameters to prob-

lem data. This allows further iterations of the program to run substantially faster, even when

changing the parameters of the problem. [4][3][5]

Both the DCP and DPP rulesets and concepts are included in the CVXPY and CVXPYgen

programming libraries.

2.5 HSV Colour Space

HSV refers to an alternate representation of colour space which represents the colour based on

how the human eye observes colour. This colour space represents the colour in three layers

respectively. These layers are hue (H), saturation (S), and value (V). Hue is the attribute that

represents the wavelength, or pureness of the colour such as red, green, or blue. Saturation is

CHAPTER 2. PRELIMINARIES 15

the attribute that describes the intensity, or purity of the colour which is diluted by white light.

Value is the attribute that represents the brightness of the intensity for the colour. These layers

of attributes can be represented in a three-dimensional model as seen in Figure 2.2.[14]

Figure 2.2: three-dimensional model representation of HSV colour space.[7].

The HSV colour space is often used in image editing software for adjusting the colour and

brightness of images. It is also used in computer vision applications such as object recognition

and tracking, where it can be useful for isolating objects based on their colour.

HSV colour space is often, but not always, used in colour detection and tracking applications

in the computer vision industry, where it can be used to isolate objects based on their colour.

It is also widely used in image editing software to adjust the colour and brightness of images.

Because HSV colour space has adjustable brightness and intensity attributes, it is quite robust

under different light conditions.

2.6 Shared Memory

Shared memory is a technique used in programming that allows multiple processes or threads to

access the same memory. This means that multiple processes can easily share variables without

the need for inter-process communication techniques such as pipes or messages.

In a shared memory system, a process can allocate memory within a shared memory seg-

ment. Other processes can then access this shared memory segment at the same time, and

CHAPTER 2. PRELIMINARIES 16

access the memory another process has allocated. This enables processes to collaborate with-

out synchronization or copying mechanisms. The shared memory technique is a simple way

to communicate variables and information streams between processes and eliminates the need

for more complicated and time-consuming techniques. The downside to using shared memory

is that when a large number of processes try to access the same memory segment, issues can

occur.[13]

Chapter 3

Method

This chapter describes how the platform was designed, wired, and how the code was imple-

mented. It will also provide sufficient technical documentation to simplify how the project was

solved.

3.1 Design and assembly

This section describes the design and assembly of the motion platform. There are multiple fac-

tors to consider when making the platform to ensure it is robust and stable, such that mechan-

ical error is minimized. The most important part is a robust foundation. Figure 3.1 shows the

initial design sketch for the platform.

Figure 3.1: First sketch of the platform.

17

CHAPTER 3. METHOD 18

3.1.1 Foundation and enclosure

The foundation consists of a rectangular bottom plate which is 60cm x 41 cm. 3D-printed

columns are placed in each corner to act as a robust framework to which the side plates and

top plate can be attached. On the furthest end of the bottom plate, triangle supports are at-

tached to hold the plate for the GUI screen. The side plates are laser cut with a square-shaped

mesh, such that fans can provide sufficient cooling. All plates are laser cut from 6 mm MDF. This

is because MDF is the cheapest and most available option. The foundation is shown in Figure

3.2.

Figure 3.2: Fusion design of the foundation.

To make the total enclosure a top plate and screen plate are attached on top of the foun-

dation. The screen plate is a simple frame in which a rectangular hole exists to fit the screen

perfectly. This allows all cables coming from the screen to be concealed on the inside of the en-

closure. The top plate is attached on top of the column framework, and includes holes for each

stepper motor mount to be attached. A small round hole is placed in the centre of the plate.

this hole is designed to let the camera observe the platform above, while at the same time being

concealed. The total dimension for the enclosure is 60cm×41cm×12.2cm. The enclosure is

shown in Figure 3.3.

CHAPTER 3. METHOD 19

Figure 3.3: Fusion design of the enclosure.

3.1.2 Platform

The platform and motors are placed on top of the enclosure. This is to make sure all wiring

and cables can be concealed and passed easily inside the enclosure. The stepper motors are

placed on custom-designed mounts which are 3D-printed in PLA. The mounts are hollow on the

inside to ensure all cables can be concealed. The platform is laser cut from acrylic to allow the

camera to observe the ball. The platform is designed with protrusions to attach the joints. This

is to make sure the joints are attached without obstructing the view of the camera. The joints

are attached to the protrusion using 3D-printed intermediary bricks. This is done to minimize

friction and allow easy mounting for the ball joints. The platform is shown in Figure 3.4.

The leg joints for the platform consist of one ball joint at the top and two ball joints at the

bottom. To ensure these ball joints are stable, and to minimize flexing, legs in the form of an A

are attached. From the bottom ball joints to the motor a 3D-printed leg is attached. This motor

leg clamps down on the motor axle to make sure the leg does not slide. The leg is also very thick

to reduce the amount of flexing and trembling. A close-up of the leg joint is shown in Figure 3.5.

CHAPTER 3. METHOD 20

Figure 3.4: Fusion design of the platform.

Figure 3.5: Fusion design of the joint between the motors and platform.

3.1.3 Practicality

In order for the design to achieve goal 2, every component is placed and integrated together

inside one box. This makes the device easy to transport and store. When shut off the dimensions

of the motion platform are 60 cm×41 cm×26 cm to 60 cm×41 cm×33.1 cm when operating.

This makes it compact enough to store in shelves or other storage locations. The box also serves

as a stable and robust foundation for the motors and platform to operate on. When the device

is shut off, the platform descends to a resting position on top of the motors. This decreases its

CHAPTER 3. METHOD 21

height and allows the device to be stacked with other inventory.

This device is designed for easy recreation to ensure that it can be used to its fullest potential

in education, and for other students to make their own on campus. The parts are either laser

cut in 4mm and 6mm MDF and acrylic, or 3D printed in PLA. All parts are easy to obtain, widely

available, and could be provided as a kit, all parts are listed in Table 3.1 and 3.2. All integrated

components are attached with bolts, and the holes are laser cut or 3D printed. All this adds up

to a simple build which is easy to recreate and modify.

3.1.4 Integration

A great variety of components are integrated together to run and operate the platform. All com-

ponents which are listed in the parts Table 3.2 had to be located inside the box and be easy to

access. Since the stepper motor drives run on 48V, a 230V AC to 48V DC converter had to be

installed. Having 3 stepper motors running independently requires 3 motor drives. The Khadas

card was not able to handle interrupts from the encoders, which lead to the need to add an Ar-

duino. The camera also needs a mount to be in the correct position to ensure visibility of the

whole platform. The touchscreen for the GUI is placed in a convenient position for easy use.

The original power adapters are used for the Khadas and touchscreen to avoid noise and other

compatibility issues. Therefore two 230V sockets were installed. To prevent any form of over-

heating issue, mainly from the Khadas VIM, 2 fans are placed strategically to process the heat.

One for inlet, and one for outlet. The fans operate on a 12V DC supply, which demands a 230V

AC to 12V DC supply. In addition to this, a user-friendly solution is established for the wires

coming from each motor. This is done by mounting 12-pin plugs for each motor. All electrical

components are presented in the component overview 3.7 and the electrical schematic drawing

3.6. A list of all bolts which are used to construct the platform is listed in Table 3.1. A list of all

parts which are used to construct the platform is listed in Table 3.2.

Table 3.1: Amount of bolts used.

CHAPTER 3. METHOD 22

Table 3.2: Part list.

Figure 3.6: Electrical drawing of the System.

CHAPTER 3. METHOD 23

Figure 3.7: Component Layout Overview.

ID Meaning Description
LF 1 Low Pass Filter A custom built low pass filter for handling noise
X1 Plug 12 Pin plug for connecting Motor 1, Limit switch 1 and Encoder 1
X2 Plug 12 Pin plug for connecting Motor 2, Limit switch 2 and Encoder 2
X3 Plug 12 Pin plug for connecting Motor 3, Limit switch 3 and Encoder 3
S1 Socket Outlet Socket Outlet for powering the GUI Touch Display
S2 Socket Outlet Socket Outlet for powering the Khadas (K1)
P1 Power Supply Power Supply converting 230VAC to 48VDC to power the motor drives (D1-D3)
P2 Power Supply Power Supply converting 230VAC to 12VDC to power the cooling fans (CF1 & CF2)
P3 Power Plug IEC Female power connector for 230VAC
K1 Khadas Khadas single board computer to run the code
B1 Converter Bi-Directional Logic Level Converter for converting 5VDC to 3.3VDC between the Khadas and Arduino (K1 & A1)
CF1 Cooling Fan Inlet Cooling Fan to manage high temperatures generated by the Khadas card (K1)
CF2 Cooling Fan Outlet Cooling Fan to manage high temperatures generated by the Khadas card (K1)
A1 Arduino Arduino Mega which handles the stepper motor signals to the motor drives (D1-D3) and passes it to the Khadas (K1)
C1 Camera Wide lens camera to track ball position and send data to the Khadas (K1)
D1 Drive Stepper Motor Drive 1 which controls motor 1 by communication with the Arduino (A1). (Top position in Figure)
D2 Drive Stepper Motor Drive 2 which controls motor 2 by communication with the Arduino (A1). (Middle position in Figure)
D3 Drive Stepper Motor Drive 3 which controls motor 3 by communication with the Arduino (A1). (Bottom position in Figure)

Table 3.3: Table explaining location of each part.

CHAPTER 3. METHOD 24

3.2 Stepper Motors

This section describes which stepper motors were chosen to control the platform, and how they

were implemented.

3.2.1 Motor Specifications

The stepper motors that are used, were of the type Nema 23HS30-2804D 3.2, which can be ob-

served in the provided data sheet 3.8. It is a bipolar 2-phase stepper motor which runs on 48V

from the motor drives, which again are powered from the ADS-15548 Power supply 3.6. Each

step angle equals 1.8 degrees of rotation on the shaft. At peak torque, it can deliver 1.8 Nm. The

torque needed was calculated by a simple set of formulas:

The volume of the top plate is given by:

π ·20cm2 ·0.6cm = 753cm3 (3.1)

Given that the density of acrylic sheet is 1.18 gcm−3 the weight and force of the plate be-

comes:

753cm3 · 1.18g

cm3
= 0.8897kg

0.8897kg ·9.81m/s2 = 8.7280N
(3.2)

Given that 3 motors are used, the minimum holding torque of each motor with a motor leg

length of 10 cm becomes:

8.7280N

3
= 2.9093N

2.9093N ·0.1m = 0.291N m
(3.3)

A minimum requirement of 0.6 Nm has been set to account for fast movements and design

changes. This made the Nema 23HS30-2804D a good choice because of price and specifications

as seen in Figure 3.8

CHAPTER 3. METHOD 25

Figure 3.8: Data Sheet for stepper motors [2].

3.2.2 Motor Drives

The stepper motors were operated by the DM556T Digital Stepper Drives shown in Table 3.2.

These ensured great flexibility for speed and smoothness by having dip-switch options to micro-

step. This feature ranged from 400 to 25600 steps per rotation of the shaft shown in Figure 3.9.

The motor drives are connected to the Arduino for communication.

CHAPTER 3. METHOD 26

Figure 3.9: Dip switch Setting for motor drives [2].

3.2.3 Control

The motors, and motor drives, are controlled by an Arduino. The Arduino sends a pulse to define

how many steps to complete and the direction of the rotation. The speed is determined by the

SetSpeedInHz variable and the acceleration is determined by the SetAcceleration variable shown

in Figure 3.12. The Arduino receives its input values from the Khadas running the main scripts.

This signal goes through a 3.3V to 5.0V Bi-Directional Logic Level Converter shown in Figure 3.6.

This is done because the Arduino operates on 5V and the Khadas on 3.3V.

CHAPTER 3. METHOD 27

Figure 3.10: Code excerpt of the stepper motor setup.

The motor angles are controlled by sending target positions to each motor. This target posi-

tion is first converted from degrees to steps. This is done because the motors operate on steps,

and not degrees. Figure 3.11 shows how the control is done.

Figure 3.11: Code of how the Arduino controls the stepper drives.

3.2.4 Communication

The communication between the Arduino and the Khadas runs on a serial protocol. This al-

lows the Arduino to communicate with either the Khadas or a computer without having to do

changes to the code. The communication is done, on the Arduino side, by using the function

Serial.readbytes(), as seen in Figure 3.12.

CHAPTER 3. METHOD 28

The communication can either be done over a USB cable, or by connecting cables to the uni-

versal asynchronous receiver-transmitter ports on the Khadas and Arduino. The UART commu-

nication is set up, as seen in Figure 3.6, by connecting both RX/TX ports together. It is important

to note that when an RX port is used on one card, it has to be connected to the TX port on the

second card, and vice versa.

Figure 3.12: Code excerpt of the communication function in Arduino.

Figure 3.13: Code excerpt of the communication function in Python.

CHAPTER 3. METHOD 29

The function used for the UART communication in Python is shown in Figure 3.13. First, the

port used for the communication is selected based on which operating system the application is

running on. Then a serial object is created from the serialpy library. This takes the communica-

tion port, baud rate, and timeout as arguments. Furthermore, in the while loop, a Byte package

is created from the values to send. This byte package is then written to the Arduino card, fol-

lowed by awaiting a response. This response is then written to its corresponding variables.

3.2.5 Limit Switches

Limit switches are added on every single motor. This is done to make sure that if the motors

missed a step, they can be re-calibrated. When the limit switch is triggered, it sends a signal to

the Arduino, and the code will start to run the motor back to the home position. This can be

done by pressing the calibrate button on the touch display GUI. The limit switches are placed

right before the lower bound angle of the motor leg. This is to ensure that leg can not collide

with the motor bracket.

Figure 3.14: Limit switch triggered by the motor leg.

3.2.6 Calibration

The calibration sequence begins when the calibration function is called. The calibration se-

quence rotates the motors one position down until they trigger the limit switches. When a limit

CHAPTER 3. METHOD 30

switch is triggered the corresponding motor stops turning. This sequence is shown in Figure

3.15

Figure 3.15: Code excerpt the limit switch trigger.

Once every limit switch has been triggered the motors update their current position to zero.

This aligns all motors to have the same starting point. This sequence is shown in Figure 3.16.

When all motors are calibrated, the platform returns to the starting position.

Figure 3.16: Code excerpt of calibration.

3.2.7 Encoders

Encoders are mounted on the back end of the shaft from the stepper motors. These are used

to measure the axial rotations of the shaft, to keep track of its position. Typically there are 2

types of encoders; absolute or incremental. The AMT102-V 3.2 that is used on this project, is

a incremental encoder. The encoder sends feedback back to the Arduino. The signal travels

through a special shielded cable to avoid any noise disrupting the signal. This is a common

issue when mounting them close to the magnetic fields of a motor. The encoders are not used

because stepper motor accuracy is sufficient on its own.

CHAPTER 3. METHOD 31

Figure 3.17: Encoder mounted on the stepper motor shaft.

3.2.8 Low-Pass Filter

A Low-pass filter is constructed to prevent issues with electromagnetic interference, also called

noise. It is made out of capacitors and resistors from the lab. The components are soldered onto

a PCB board in the same way as in the schematic 3.18. The schematic represents one filtered

channel. The filter consists of 6 channels with room for more if needed. The limit switches

are filtered before connecting to the Arduino. 3.6 This eliminates any noise being transmitted

through the switches wires.

CHAPTER 3. METHOD 32

Figure 3.18: Electrical schematic of one filter channel.

3.2.9 Simulation-sketches

During the research and development stages, various sketches were drawn to demonstrate both

the physical limits of the platform and the mathematical model of the system.

CHAPTER 3. METHOD 33

Figure 3.19: Geogebra simulation sketch of the correlation between platform angle β and motor
angle α.

As you can see in Figure 3.19, the legs and angles of the platform are sketched. This is done to

help find which angles for the platform and motors are to be used as physical limits. The Sketch

is also drawn to suitable dimensions for the legs, and which formula is to be used to convert the

platform angle to motor angle. The sketch is a simplified version and may not be accurate when

working with three legs, or different configurations.

While sketching multiple good dimensions for the platform legs were found. In order to

decide which dimensions were to be used, consistency and stability were taken to mind, and

further testing had to be done to arrive at a decision. A motor leg length of 7.5 cm and a platform

CHAPTER 3. METHOD 34

leg length of 10 cm proved to be a good combination to achieve good stability, robustness, size

and functionality.

By sketching the dimension and movements of the leg, the physical limits for the platform

angles were found to be ±18◦. The formula to convert platform angle to motor angle was found

by observing and analyzing the sketch. The formula was achieved by using simple trigonometry

on the platform angle and leg dimensions. The formula is shown in equation 3.4

arcsin(sinα ·p)/ f =β (3.4)

α Is the platform angle.

β Is the motor angle.

p Is the length from the centre to the platform leg.

f Is the length of the motor leg.

The formula for the motor angleα gives accurate conversions between the angles when close

to zero, and only reaches an error of ±7% when the platform angle is at its maximum angle of

±20◦. This error is seen as acceptable.

3.3 Camera

There exist many cameras suitable for object detection, the challenging part is to find a camera

that fits the strict specifications of the design. The most important specification for a camera

to be suitable for the design is that it has a field of view of a minimum of 100 degrees vertically

and horizontally. One of the other specifications the camera needs to meet is small size. This is

to ensure the camera can be mounted easily in the middle of the enclosure without obstructing

other parts. Once these specifications are met there seem to be only two good camera options.

The first option is the Khadas 8MP HDR camera1. The positive thing about this camera is that it

comes from the same supplier as the Khadas VIM3 single-board computer. The other good cam-

era option is the Arducam 1080P Low Light WDR Ultra Wide Angle USB Camera2. This camera

1https://www.khadas.com/product-page/os08a10-8mp-camera
2https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-

angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-

https://www.khadas.com/product-page/os08a10-8mp-camera
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//

CHAPTER 3. METHOD 35

(a) Khadas 8MP HDR camera. (b) Arducam 1080P Wide Angle USB Camera.

is quite small and supports a wider range of lenses. The specifications for both of these cameras

are shown in Figure 3.20a and 3.20b

After testing both of the cameras shown in Figure 3.20a and 3.20b, the most suitable choice

seems to be the Arducam. This camera has a wider range of compatible lenses that can be at-

tached, which allows the use of a wide-angle lens with appropriate FOV without too much dis-

tortion.

3.3.1 Ball Tracking Algorithm

This section describes the methods used to implement the ball-tracking algorithm. This in-

cludes the initialization and parameters for the camera, the algorithm to detect the ball, and the

estimation of velocity.

uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-
mac-os//

https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//
https://www.arducam.com/product/arducam-1080p-low-light-wdr-ultra-wide-angle-usb-camera-module-for-computer-2mp-cmos-imx291-160-degree-fisheye-mini-uvc-usb2-0-spy-webcam-board-with-microphone-3-3ft-cable-for-windows-linux-mac-os//

CHAPTER 3. METHOD 36

3.3.2 Camera Initialization

The camera is initialized by using the OpenCV package in Python. OpenCV includes a wide

range of user-friendly functions that make camera utilization easy. The camera is initialized by

running the VideoCapture function, and based on which system is in use, this function com-

municates with the appropriate camera input. this is done by a simple IF-sentence that checks

which operating system is in use. The video-feed resolution is set to a 4:3 format with 640 by 480

pixels. By using this resolution the pixels align correctly with the dimensions of the platform in

millimeters. An excerpt of the initialization is shown in Figure 3.21.

Figure 3.21: Code excerpt of camera initialization.

3.3.3 Colour Detection

To be able to accurately detect colours in the video feed, the frame is converted into HSV colour

space. A threshold is then applied to only include a set of boundaries which are defined in HSV

colour space. This boundary of colour representation is shown in the excerpt of code in Figure

3.23. By doing this the feed is only able to detect and view the colours which are defined by the

boundary.

The next step is to obtain the coordinates of the colours which are included by the threshold.

This is done by using the findCountours function included in OpenCV. This function searches

for pixels which are visible in the feed. If the boundaries for the threshold are defined correctly,

the only thing which is visible to the feed should be the colour of the ball. When the algorithm

detects a contour in the feed, it draws a circle around it and returns the coordinates of the circle

CHAPTER 3. METHOD 37

centre. To eliminate noise and unwanted pixels that show up in the feed, the algorithm only

returns the coordinates for the maximum point of contours, and with a circle radius larger than

10 pixels. In the end, the coordinates of the ball are offset to have a point of origin in the centre

of the frame. An excerpt of this algorithm is shown in Figure 3.22

Figure 3.22: Code excerpt of camera colour detection.

Figure 3.23: Code excerpt of HSV upper and lower bounds.

3.3.4 Velocity Estimation

The velocity estimation is done by deriving the position over time. To be able to estimate veloc-

ity, two different measurements of position are needed. These measurements are gathered from

the colour detection and are assigned to a variable. An if-sentence then checks if a previous

position measurement exists. If a previous measurement exists the derivative is calculated and

assigned as the velocity estimate. If no other position measurement exists, the velocity is set as

zero. After the velocity estimate is calculated, the current position gets assigned to a variable

which is the previous position. This previous position carries over to the next iteration and is

used to calculate the next velocity estimate. A code excerpt of this estimation is shown in Figure

CHAPTER 3. METHOD 38

3.24.

Figure 3.24: Code excerpt of velocity estimation.

3.4 Control Algorithm

This section describes the development and methods used to implement the MPC control al-

gorithm for the platform. The methods include the generation of C code, problem formulation,

methods to reduce time, and the main algorithm for the controller.

3.4.1 MPC Mathematical Model

The models and formulas in equations 3.5 - 3.12 are derived from the article [17] and [9]. The

models and formulas are altered to fit the 3DOF motion platform system.

Given that air resistance, friction, centrifugal force and other small forces of error and noise

are neglected. The nonlinear relation between the platform and the ball along the X-axis be-

comes:

a = 5

7
(g sinφ− φ̇2l) (3.5)

Because the platform is constrained between an angle of±0.43 radians, sinφ and sinθ can be

approximated to φ and θ. This removes the non-linearity and the relation between the platform

CHAPTER 3. METHOD 39

and the ball becomes equation 3.6. The units in the equation are also adjusted from meters to

millimetres explaining the presence of the number 1000, which is a conversion factor.

a = 5

7
· g ·1000

ẍb(t) =φa(t)

ÿb(t) = θa(t)

(3.6)

The equation above can be represented as:

ẋ(t) = Ac x(t)+Bc u(t) (3.7)

The state vector x and input vector u is given as:

x =


xb

ẋb

yb

ẏb

 , u =
φ
θ

 (3.8)

The continuous-time state space model is given as:

Acontinuous =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , Bcontinuous =


0 0

a 0

0 0

0 a

 (3.9)

The discrete-time state space model is Euler discretized by:

CHAPTER 3. METHOD 40

A = Ac∆t + I

B = Bc∆t
(3.10)

Which gives the discrete time state space model as:

x(k +1) = Ax(k)+Bu(k) (3.11)

A =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 , B =


0 0

a∆t 0

0 0

0 a∆t

 (3.12)

The MPC problem formulation is formulated as a cost function of the sum of squares of the

error in the states + the input control angle. The angles are constrained between ±0.43 radians.

The states are updated for each time step by using the discretized model matrices in equation

3.12.

Minimize: J =
20−1∑
i=0

[
(x(i)−xr e f)T Q(x(i)−xr e f)+u(i)T Ru(i)

]
Subject to: x(0) = xi ni t i al

x(i +1) = x(i)+ (Ax(i)+Bu(i)), i = 0. . .20−1

−0.43 ≤ u(i) ≤ 0.43

(3.13)

CHAPTER 3. METHOD 41

x(i) is the system state at time step i .

u(i) is the control input at time step i .

xi ni t i al is the initial conditions for the states.

xr e f is the reference states.

Q and R are positive definite weighting matrices.

A and B are the discrete state and input matrices of the system model.

3.4.2 Generating C Code

The MPC problem formulation is created in C and later used in Python. This is done to decrease

the amount of time the algorithm uses to calculate the optimal angle. The problem is formu-

lated in Jupyter Notebook once by using the CVXPY and CVXPYgen packages. CVXPY also makes

use of the DCP and DPP concepts and rulesets to further decrease the time it takes for the al-

gorithm to calculate the optimal angle. Figure 3.25 contains a code excerpt which defines the

variables and parameters in the problem. Figure 3.26 contains the problem formulation as a for

loop to calculate the desired angle over the time horizon. These code excerpts are the main nec-

essary components required to generate the MPC problem in C. The technicalities of converting

written Python code to C code and wrapping this code are done by the CVXPYgen package. This

simplifies the process and gives extra time to focus on the MPC problem formulation itself. The

C code must be generated on the system it is planned to be used on.

Figure 3.25: Code excerpt of C code generation of problem parameters.

CHAPTER 3. METHOD 42

The code allows for easy tuning and edits in the problem parameters when writing as shown

in Figure 3.25. By doing this the parameters can be edited in Python without needing to generate

the code from scratch or lowering iteration time.

Figure 3.26: Code excerpt of C code generation of problem formulation.

In Figure 3.26 The cost function of the MPC problem is written as the cost to be minimized

in the problem. The constraints of the problem are defined in the constr list. This list is updated

for each iteration of the for loop.

3.4.3 MPC Algorithm

The main MPC used to calculate the optimal control angle consists of two main parts, but also

includes miscellaneous code which acquires and calculates error. The first part consists of

defining parameters and tuning values used in the MPC. This includes both the A and B model

matrices, and the Q and R weighting matrices. The code used to define these is shown in Fig-

ure 3.27. Because of the methods used to define these parameters in the generation of C code,

these parameters can easily be tuned in the main script without generating new C code for each

change.

CHAPTER 3. METHOD 43

Figure 3.27: Code excerpt from the main algorithm of lines defining MPC parameters.

The main loop running the MPC controller is shown in Figure 3.28. This excerpt takes the

state errors and inserts them into the imported C code of the problem formulation. The C code

then runs the problem and extracts the optimal X and Y angles which should be used to control

the platform.

Figure 3.28: Code excerpt from the main algorithm with the lines running the MPC controller.

CHAPTER 3. METHOD 44

3.4.4 Additional Control Algorithms

To be able to compare and check the results of the MPC two additional controllers are made.

These controllers act as a reference for the MPC to be able to confirm that the MPC works as

intended. These two controllers are a proportional–integral–derivative controller and a state

space controller. Both controllers are derived from the report [15] and changed to fit the current

system.

PID

A simple PID controller was implemented for comparison. The code for the PID controller is

shown in Figure 3.29. The PID calculates the appropriate angle by taking the sum of each PID

term multiplied by the error in the system. More information regarding the PID controller can

be found in the report [15].

Figure 3.29: Code excerpt of the PID Controller.

StateSpace

A simple State Space controller was implemented for comparison. The state space controller is

shown in Figure 3.30. The controller calculates the appropriate control angle by multiplying the

control gains by the error in the system. More information about the controller gains, and the

mathematical equations, can be found in the report [15].

CHAPTER 3. METHOD 45

Figure 3.30: Code excerpt of the state space controller.

3.4.5 Motor Angles

The controllers only calculate the necessary platform angle on the X and Y-axis. Because of this,

the platform angle has to be converted to the appropriate motor angle for each of the three

motors. The necessary equations required to do this are derived from Section 2.3.3 in the article

[9]. These equations are combined with Equation (3.4) to give the mathematical operations

shown in Figure 3.31.

Figure 3.31: Code excerpt of the angle conversions.

CHAPTER 3. METHOD 46

3.5 Graphical User Interface

This section describes the methods used to program the GUI. The GUI is written in Python using

the PyQT5 library.

3.5.1 Controller Config

The controller config consists of a config window frame. This frame makes it possible to change

the parameters for the controller through a user interface. The config frames are implemented

by creating a QWidget class which describes the layout of the controller config UI. This class is

created for each config, such that all configs follow the same structure.

Figure 3.32: Code excerpt of the config frame for the MPC.

In Figure 3.32 a class named MP_Config is defined, which inherits from the QWidget class.

By using the QWidget class, one can create frame elements by calling the objects from the class.

The frame’s geometry is set and information labels are created and placed in the frame. The font

object is used to set the text size.

CHAPTER 3. METHOD 47

Figure 3.33: Code excerpt of the gain button definition.

In Figure 3.33 a QDoubleSpinBox object is created. This object allows the user to set its value

by using two buttons on the right side of the object. In the setStyleSheet, the button dimensions

are enlarged. Two more QDoubleSpinnBox objects are also created for the Q Velocity and R

value, these follow the same setup.

Figure 3.34: Code excerpt of the decimal shift button.

Figure 3.35: Code excerpt of the decimal update function.

In the QDoubleSpinBox from Figure 3.34, a setSingleStep is used to set how much the value

will change on each click of the button. To make it easy to use, a new QSpinBox object is created

to change the step value by a factor of 10X where X goes from -5 to 0. This is done by connect-

ing the Decimal object to trigger the updateDecimal function when the value is changed. The

CHAPTER 3. METHOD 48

updateDecimal function is shown in Figure 3.35.

Figure 3.36: Code excerpt of the save and Cancel objects.

Figure 3.37: Code excerpt of the save and cancel function.

To save the new values a QPushButton object is created. This object is connected to the Save

function when clicked. This save function is shown in Figure 3.37. This Function updates the

internal variable in the Config.py file to the corresponding QDoubleSpinnBox object value and

then hides the frame. To cancel or abort the changes to the new values a Cancel QPushButton

object is created to hide the frame when clicked. The cancel and save objects are shown in Figure

3.36.

3.5.2 Main GUI

The main GUI code contains numerous repetitive objects, for the sake of simplicity, the various

objects will be represented in lists.

CHAPTER 3. METHOD 49

Figure 3.38: Code excerpt of the main GUI frame class.

The main GUI class shown in Figure 3.38 starts by getting an instance of the controller config

classes. This is done so that the main GUI

Labels

Figure 3.4 contains all the QLabel objects created for the GUI class in the GUI.py script. These

objects are used for two different cases described by the comment in Figure 3.4. Text label de-

fines a static label used for informative text. Value label is used to represent a label where the

text changes over time.

CHAPTER 3. METHOD 50

Table 3.4: Table of QLabel objects from GUI.py.

CHAPTER 3. METHOD 51

Functions

To execute background tasks functions need to be created. These functions perform tasks when

executed by an object. Most of the tasks change a value from True to False. All of these functions

created is described in Table 3.5. Some of the functions have specific tasks and are explained

further below.

Table 3.5: Table listing all functions.

Figure 3.39: Colour changing function.

The function shown in Figure 3.39 takes the QPushButton object that executes it as an input

argument. This function then changes the object’s colour to red or green, dependent on if it is

checked or not.

CHAPTER 3. METHOD 52

Figure 3.40: Paint functions.

To paint a circle to represent the physical platform on the GUI, a QPainter object is used.

This object can paint shapes to the GUI. In the paintEvent function on line 867 from Figure 3.40,

the physical platform border, and the two circles representing the target and feedback position

are painted. They are painted by painter.drawElipse() where the pixel coordinates, width, and

height is given as the argument.

There are two more functions named mousePressEvent and mouseMoveEvent from Figure

3.40. These two functions trigger whenever an event happens, and then take the event as an

argument. The purpose of these two functions is to check if a left mouse button or a click-drag

event has happened inside the platform’s circle. If an event happens inside of the border, the

pixel coordinate of that event is written to the Target_ball_pos variable. These pixel coordinates

are offset to the middle of the platform circle, converted to millimetres, and stored to their rep-

resentative variable in Config.py.

CHAPTER 3. METHOD 53

Figure 3.41: Show controller config frame.

To display a controller config window frame, it has to be called by .show(). The function in

Figure 3.41 checks which controller is selected, and shows the config frame for that controller.

In addition to this, the function updates the values of the QDoubleSpinBox objects in the config

class to be shown. To make sure the frame doesn’t disappear behind the main application frame,

the .setWindowFlags(Qt.WindowStaysOnTopHint) is used to force the frame to be on top.

Figure 3.42: Close and exit function.

For the application to close properly, all frames and background tasks need to be closed. This

CHAPTER 3. METHOD 54

task is done by the function CloseButton in Figure 3.42. This function displays a popup window

where you have to confirm if you want to exit. This is done so that a miss click won’t happen.

If you answer yes all frames that are open will close, and a close event will be sent. This close

event triggers the closeEvent function in Figure 3.42 and sets the application exit_flag to True.

Two functions are used for this because a close event can also come from pressing the close/exit

button located in the top right corner.

Buttons

For interaction with the GUI, QPushButton objects are used. These objects can execute func-

tions from different actions by adding .clicked, .pressed or .released followed by .connect() to

connect it to a function when that action happens.

Table 3.6: Table listing all buttons.

In Table 3.6 all the QPushbutton objects are shown. The Table also lists which function they

are connected to by what action triggers it.

CHAPTER 3. METHOD 55

Figure 3.43: Record Data button.

From Figure 3.43 the Record Data button object declaration is shown. This shows the basic

structure of a QPushButton object declaration, and how it is connected to functions.

3.5.3 Controller And Input Mode Selector

The application contains three different controllers. In order to change which controller is se-

lected, a QComboBox object is created. This object is shown in Table 3.7 and Figure 3.44, and

the function is shown in Figure 3.45.

Table 3.7: QComboBox objects.

CHAPTER 3. METHOD 56

Figure 3.44: Code excerpt of the controller selector.

Figure 3.45: Code excerpt of the controller selector function.

From Table 3.7, two QComboBox objects are created, but only the Controller object is used

further in the application. This object is the QComboBox object shown in Figure 3.44. This

object has a dropdown menu showing all the items it contains. All the controllers are added as

string variables. Whenever a new item is selected from the drop-down menu, a string variable

will be passed to the function ControllerSelector shown in Figure 3.45. This function takes the

item’s string value as an argument and stores it in the Config.py file.

Miscellaneous objects

This section describes miscellaneous objects used in the GUI class.

CHAPTER 3. METHOD 57

Table 3.8: Table listing miscellaneous objects.

Table 3.8 shows a list of the different objects used for special purposes. The QFrame object is

used to create a box frame around buttons and labels to get a graphical collection. The QTextBox

object is used to create a text frame where a string array can be shown. The QMessageBox objects

create a popup window that returns an action.

Update GUI values

Figure 3.46: Code excerpt of the GUI update values.

CHAPTER 3. METHOD 58

Figure 3.47: Code excerpt of the save and cancel function.

Figure 3.48: Timeout timer for the UpdateInformativeValues function.

To update the Value label objects shown in Table 3.4, their text needs to be changed by using

.setText(). This is done in the function UpdateInformativeValues from Figure 3.46 and 3.47. Fig-

ure 3.46 does not contain every object, but only a small sample because of repetitiveness. The

labels are updated from the values stored in Config.py

The UpdateInformativeValues function also updates some of the objects used in the GUI.

From line 756 in Figure 3.47 the feedback coordinates for the FB_ball are updated from the Con-

fig.py file. From line 761 to 765 the LogBox object from Table 3.8 is updated. The object takes

a string list from Config.py as an argument for .setText(). A problem is that the LogBox object is

CHAPTER 3. METHOD 59

scrollable but the scroll is reset each time the object is updated. An if sentence is used to update

the object when a change is detected in the string list. There is also an if sentence on line 768, to

set the value and disable the button used to show the camera frame and mask.

To make the function execute, a trigger has to be created. This trigger object is shown in

Figure 3.48. In the trigger object, a time object is created from QTime. This object is connected

to the UpdateInformativeValues function whenever the timer is timed out. The timeout is set to

50ms. This will execute the UpdateInformativeValues function every 50ms.

3.6 Main.py

To merge the application, a main Python script is created. This script initialises the GUI, back-

ground threads and processes. The structure and data flow of the main operations in the appli-

cation is shown in Figure 3.49.

CHAPTER 3. METHOD 60

Figure 3.49: Data flowchart and structure.

CHAPTER 3. METHOD 61

The Main.py script contains three threaded operations. These are shown in the yellow boxes

in Figure 3.49. It is important to thread the background operations when using a GUI. This

is to make sure the GUI doesn’t freeze under large operations. Further sections describe all

operations and declarations created in the Main.py script.

3.6.1 Config.py

Config.py is a script where all the shared variables are declared. This script is used as a module

import in other Python scripts to overwrite or read the variable values.

3.6.2 Shared Memory Declaration

The different controller and camera scripts which are used are multi-processed. This is to make

sure they can run on separate central processing unit cores with more resources available. This

causes them to not share the same memory space as the Main.py script. In order for the scripts

to communicate, a shared memory block is created which the different scripts can access.

Figure 3.50: Declaration of the shared memory.

The shared memory object is declared as shm by using the multiprocessing.shared_memory

.SharedMemory package on line 21 in Figure 3.50. Next, a NumPy array named shm_array is

created where the buffer argument sets the array buffer to be the shared memory buffer. This

means that the NumPy array is backed by the shared memory block of the shm object. The

shm_array is predefined in Config.py as Shm_array = np.zeros(25, dtype=np.float16), this is done

so that its size only has to be defined one time. This also makes it possible to edit its size without

editing the other scripts. It’s important to note that the elements in the shm_array need to be

float values. There can not be any integer or boolean values stored in the array.

CHAPTER 3. METHOD 62

Figure 3.51: Code excerpt of clearing and destroying the shared memory.

To protect against memory leaks, there needs to be a way to remove the shared memory

block. This is done in the function cleanup_shm from Figure 3.51.

3.6.3 GUISharedMemHandler

To read and write values in the shared memory block a function is used. This function works as

a data handler which transports data in and out of the shared memory block.

CHAPTER 3. METHOD 63

Figure 3.52: Code excerpt of the data handler function.

The data handler is shown as the GUISharedMemHandler function in Figure 3.52. The spe-

cific data handling happens in between the lock.acquire() and lock.release() methods. These two

methods are used to acquire a lock on the shm_array object. This is done to make sure that other

processes can’t modify its content while the current process is running.

CHAPTER 3. METHOD 64

3.6.4 BackEnd

To start and stop the different background operations a backend function is created, This func-

tion will handle the start and stop of multi-processed and multi-threaded code and also the data

recording.

Figure 3.53: Function to execute en external script.

The function shown in Figure 3.53 is used to execute an external Python script. While exe-

cuting this script it also passes the shared memory object shm from Figure 3.50 into the script.

Figure 3.54: BackEnd function and controller start and stop.

In Figure 3.54 the backend function is defined, further a while loop is created so the code

runs continuously. The first operation the BackEnd function have is the start and stop of the

CHAPTER 3. METHOD 65

controller code. It takes the controller code selected from Figure 3.44 and 3.45, and passes that

string as a name argument for the controller code to be executed in Figure 3.53.

When the controller code is terminated all the variables it has changed are set back to zero,

this includes the values it has written to the shared memory as well.

Figure 3.55: Camera start and stop.

The second operation the BackEnd function handles is the start and stop of the camera code.

It follows the same procedure as the controller start and stop, but it has an included section

to check if the camera code has no frame. If the camera code has no frame it will terminate

automatically after passing the numbers 1, 9, 9, 9 to the shared memory.

Figure 3.56: Code excerpt of multi-processed code termination.

To make sure the parallel processes are terminated upon exit the BackEnd function is the last

to stop and the exit_Flag variable tries to terminate the processes before it sets its own running

CHAPTER 3. METHOD 66

flag to False. A try operation is used so that no error occurs if it tries to terminate a process that

isn’t running.

Figure 3.57: Start and stop the communication thread.

To start the communication with the Arduino card, a thread is started from the USBAr-

duinocom function shown in Figure 3.13. This is done in Figure 3.57. Since the code is threaded,

it has access to the same memory space as the application. It is then possible to use the Se-

rial_Com_Running variable to stop the thread. This variable stops the while loop inside the

USBArduinocom function, and the thread task will stop automatically after that.

3.6.5 if __name__ == "__main__":

if __name__ == "__main__": is a condition statement used in Python to check whether the cur-

rent script is being run as the main program. This is commonly used in multiprocessing appli-

cations to not spawn unintended processes.

CHAPTER 3. METHOD 67

Figure 3.58: Application execution.

The part of the Main.py script that starts the application is shown in Figure 3.58. Here, an

instance of the QApplication class is created. This instance needs to be created to manage the

application’s control flow and handle events. Next, an instance of the GUI class from the GUI.py

script is created.

After a GUI class instance is created, a thread is started for each of the two background op-

erations. These operations are the functions declared in Figure 3.52 and 3.54. These functions

have a while loop inside them to make them run repetitively. The while loop has a condition

variable that is meant to stop the loops when the application is closed.

To create and show the actual GUI window frame the .showFullScreen() is called on the GUI

instance. One can also use .show() but this has a big offset on the Ubuntu operating system. The

clean_shm function from Figure 3.51 is set to be executed when the application is exited. This is

done by using the atexit library.

Finally by calling sys.exit(app.exec_()) the Qt event loop is started by the argument and will

be terminated by the function when the event loop calls for it or an error occurs.

3.7 Data collection and calculation

To save data for analysis two data collection methods have been built into the application. Both

methods start when the Record Data button is activated. The first method takes the variable

values stored in Config.py and stores them continuously until the Record Data button is deac-

CHAPTER 3. METHOD 68

tivated. The other method is specifically designed for the MPC code and takes a snapshot of

the current predicted angles and states. This snapshot also captures the feedback values in the

same time window as the MPC prediction horizon.

3.7.1 Data Recorder

The data recorder is located in the BackEnd thread from the Main.py script. This recorder

records all the target values and feedback values. These values are then stored in a text file

stored in the "/SavedData/Record" directory for later analysation.

Figure 3.59: Desktop run script.

3.7.2 Snap Recorder

The snap recorder is located in the MPC.py code, this recorder will take a snapshot of the predic-

tion horizon to the MPC one second after the Record Data button is pressed. It will also record

the new values in and out of the MPC so that it is possible to see if the prediction is true.

CHAPTER 3. METHOD 69

Figure 3.60: Desktop run script.

CHAPTER 3. METHOD 70

Figure 3.61: Desktop run script.

The snap recorder code is shown in Figure 3.60 and 3.61. The recorder is written in such a

way as to minimize its impact on the loop time of the MPC. A new data point is stored in a list

every loop and when the prediction window time has been reached one value from the list will

be written to a .txt file every loop. This is done so as not to be stuck in a loop in the writing phase.

This is a bit time-consuming and the whole process Will take around 3-4 seconds to complete.

The .txt file is stored in the "/SavedData/Snap" directory.

3.7.3 Recording Of Miscellaneous Data

There is also additional data that wants to be stored, this is done by replacing the data that is

being saved from the data recorder by changing the data variable in Figure 3.59.

The first set of data to be recorded is the refresh rate of the different parallel processes. For

this the data variable is set to "data = f ’{C.BackEnd_Hz} {C.SharedMem_Hz} {C.UartCom_Hz}

{C.Cam_Hz} {C.Controller_Hz}’". The second set of data recorded is the latency between the

GUISharedMemHandler thread, the MPC.py process and the Arduino. Additionally, the hertz

CHAPTER 3. METHOD 71

for these two processes is also added to check for any correlation. This is done by defining a sine

wave in the GUISharedMemHandler function, passing that through the MPC.py process back

to the GUISharedMemHandler, and then writing the sine wave to all the stepper motors and

recording the feedback angles. For this the record data will be "data = f ’{C.sine} {C.sine_controller}

{C.Stepper1_Feedback} {C.Stepper2_Feedback} {C.Stepper3_Feedback} {C.SharedMem_Hz} {C.Controller_Hz}

{PrintTime}’", one also needs to change the data sent in the USBArduinocom function shown

in Figure 3.13 to "data = struct.pack(’ffff ’, C.sine_controller, C.sine_controller C.sine_controller,

float(C.Calibrate_Arduino))".

3.8 Khadas Setup

This section will describe how the Khadas vim3 is configured.

3.8.1 Operating System

The Khadas VIM3 originally comes with an Android operating system, this is not sufficient for

this use case so an Ubuntu OS is going to be installed. To install this OS the USB flash tool and

installation guide provided in the Khadas document3 is going to be used. The different Ubuntu

OS versions supported by this method on the Khadas can be acquired from Khadas download

page4. From here the vim3-ubuntu-20.04-gnome-linux-4.9-fenix-1.5-230425-emmc.raw.img.xz

is used.

3.8.2 Boot File

The screen that is being used has a resolution of 1280x800. The Khadas should be able to auto-

detect this resolution but that wasn’t the case. To get the Khadas set to the correct resolution, the

hdmi_autodetect in the /boot/env.txt file has to be disabled and set to a fixed resolution.

This is done by following the steps in the Khadas documents about resolution5.

3https://docs.khadas.com/products/sbc/vim3/install-os/install-os-into-emmc-
via-usb-tool

4https://dl.khadas.com/products/vim3/firmware/ubuntu/emmc/
5https://docs.khadas.com/products/sbc/vim3/configurations/hdmi-resolution#

tab__configuration-file

https://docs.khadas.com/products/sbc/vim3/install-os/install-os-into-emmc-via-usb-tool
https://docs.khadas.com/products/sbc/vim3/install-os/install-os-into-emmc-via-usb-tool
https://dl.khadas.com/products/vim3/firmware/ubuntu/emmc/
https://docs.khadas.com/products/sbc/vim3/configurations/hdmi-resolution#tab__configuration-file
https://docs.khadas.com/products/sbc/vim3/configurations/hdmi-resolution#tab__configuration-file

CHAPTER 3. METHOD 72

The predefined usage of the general-purpose input/output pins is also located in the/boot/env.txt

file. the UART setup for the GPIO pins should be turned on by default but this is possible to check

by following the Khadas documents for the devise tree overlay6 and UART7.

3.8.3 Deployment on Khadas

To transfer the application to the Khadas the Secure Shell connection deploy method in Py-

charm was used, this method requires the Pycharm professional edition.

For this to work the Khadas need to be connected to the same network as the computer run-

ning Pycharm, this is done with an Ethernet cable connected to the Khadas. Now it is possible

to add the Python interpreter used on the Khadas to Pycharm, to do this go to File -> Settings...

and locate the section shown in Figure 3.62.

Figure 3.62: Adding the Khadas interpreter.

When in the Python Interpreter section on Pycharm go to "Add Interpreter" and select "On

SSH...". From here, a window to set up the SSH connection will pop up, this is shown in Figure

3.63 and 3.64.
6https://docs.khadas.com/products/sbc/common/configurations/device-tree-

overlay#tab__vim1233ledge1
7https://docs.khadas.com/products/sbc/vim3/applications/gpio/uart

https://docs.khadas.com/products/sbc/common/configurations/device-tree-overlay#tab__vim1233ledge1
https://docs.khadas.com/products/sbc/common/configurations/device-tree-overlay#tab__vim1233ledge1
https://docs.khadas.com/products/sbc/vim3/applications/gpio/uart

CHAPTER 3. METHOD 73

Figure 3.63: SSH connection.

After pressing next in Figure 3.63 a password authentication window shows, the password

here is "Khadas".

Figure 3.64: Sync path.

The final step is to add the external interpreter’s location and the application’s external sync

path. The interpreter to be used is the Khadas python3 system interpreter. Where everything

is located is shown in Figure 3.64. Here the "Remote Path" is the directory where the whole

Pycharm project is going to be uploaded to.

By using this method it is possible to deploy and run code on the Khadas from an external

CHAPTER 3. METHOD 74

machine by using the ordinary run method in Pycharm, Pycharm will print any values or error

messages as that if it was running on the local machine. This is helpful when testing different

testing codes like the camera code, I2C or UART. This method also has its limitations where

running code that opens graphical events on the Khadas does not work. So it is not possible to

test the GUI code or show the camera frames from an external run.

Figure 3.65: Deployment path.

At first, the whole Pycharm project is synchronized to the Khadas. This is done by using the

deploy method rather than the sync method. This is to make sure the files don’t get downloaded

back to Pycharm after a name change or deletion in Pycharm.

The deployment path is changed so that the application code located in the Main folder is

deployed to its corresponding Main folder on the Khadas. The changes needed to be done are

shown in Figure 3.65 under "Local path:" and "Deployment path:".

For forced deployment or sync go to Tools -> Deployment located in the top right toolbar on

Pycharm. The best option here is to upload the open window or the current file. The current file

will be the file window in Pycharm that was last clicked on.

3.8.4 Desktop Script

To be able to easily run the application for the motion platform, a desktop script has been cre-

ated. The desktop script executes the Main.py script with the Python 3.8 interpreter. The desk-

top script sets the home directory of the Main.py script to be the project directory. A Desktop

image is attached to the desktop file font from the project directory icons folder. The run script

is displayed in Figure 3.66. To make this script executable, a chmod +x Controller_GUI.desktop

command needs to be called in the Ubuntu terminal. It is important to not use sudo privileges

CHAPTER 3. METHOD 75

when doing this, if so the scripts can only be executed by a sudo user.

Figure 3.66: Desktop run script.

3.8.5 Shared Folder

The folder that holds the data recorded is made available as a shared folder, which makes it

possible to access the folder by connecting the Khadas to a Windows computer using the same

WIFI or by using an Ethernet cable. Then by opening File explorer on your Windows computer

and heading to the Network folder located in the bottom left, it is possible to open the folder

by typing "\\khadas.local" in the directory path. This will direct you to the guest folder

shown in Figure 3.67.

CHAPTER 3. METHOD 76

Figure 3.67: Shared folder on Windows.

To make this possible a program named samba is installed, this program allows Linux-based

operating systems to share files with Windows computers. To install and configure the Samba

program follow these steps.

1. Install samba by typing the following in the terminal "sudo apt-get install samba"

2. Open the samba configure file by typing "sudo nano /etc/samba/smb.conf" in

the terminal.

3. Add the lines shown in Figure 3.68 to the end of the config file.

4. Save and close the file.

5. Restart the samba service by typing "sudo service smbd restart" in the terminal.

Figure 3.68: Samba code.

Chapter 4

Results

This chapter presents the results of the design, GUI, and control algorithms. A video demon-

stration can be found here1.

4.1 Design

This section presents the final render of the platform in the design process.

Figure 4.1: Final render of the assembled platform.

1https://youtu.be/brYy_x_78rQ

77

https://youtu.be/brYy_x_78rQ

CHAPTER 4. RESULTS 78

4.2 GUI Results

This section presents the final GUI frame and config frame for the controller. It also contains a

description of the functionality behind the buttons in the GUI.

Figure 4.2: Figure of the complete GUI.

Figure 4.3: Figure of the resulting config frame for the MPC.

CHAPTER 4. RESULTS 79

Field Description

Q Position Position weight in Q matrix for both X and Y axis

Q Velocity Velocity weight in Q matrix for both X and Y axis

R Angle Angle weight in R matrix for both X and Y axis

Number of decimals Decimal position. Decide which decimal position changes apply to

Table 4.1: Table describing the functions of MPC config window.

Figure 4.4: Figure of camera buttons.

Button Description

Button 1: Initialize Initialize and start the camera code

Button 2: Frame Show the normal camera feed

Button 3: Mask Show the HSV camera feed

Button 4: Pause Pause or unpause the camera values

Table 4.2: Table describing the functions of each camera button.

Figure 4.5: Figure of Arduino buttons.

CHAPTER 4. RESULTS 80

Button Description

Button 1: Serial Start the serial communication between Khadas and Arduino

Button 2: Pause Pause or unpause the serial communication

Button 3: Calibrate Calibrate the internal stepper motor values

Table 4.3: Table describing the functions of the Arduino buttons.

Figure 4.6: Figure of Arduino buttons.

Button Description

Button 1: Controller Choose which controller to use. The start button must be off to change controller

Button 2: Settings Pause or unpause the serial communication

Button 3: Input No function

Button 4: Start Start the controller. Must be off to change controller

Button 5: Record Data Start data collection of target values and feedback values

Table 4.4: Table describing the functions of the controller buttons.

4.3 MPC Results

This section presents plots of the results gained by balancing a ball on the motion platform. All

results are recorded with the same tuning parameters. Half of the results are gathered while

running the application on the Khadas. The other half of the results are gathered while running

the application on a computer. The first two plots in the MPC results present the actual position

of the ball compared with the target position. The last two plots of the MPC results present and

compare the feedback angles of the X-axis with the target angle of the X-axis.

CHAPTER 4. RESULTS 81

4.3.1 Khadas VIM3 MPC Results

Figure 4.7: A plot of the target and feedback position of the ball on the X-axis on the Khadas
VIM3.

Figure 4.8: A plot of the target and feedback position of the ball on the Y-axis on the Khadas
VIM3.

Figure 4.9: A plot of the target and feedback angle of the X-axis on the Khadas VIM3.

CHAPTER 4. RESULTS 82

Figure 4.10: A plot of the target and feedback angle of the Y-axis on the Khadas VIM3.

4.3.2 Computer MPC Results

Figure 4.11: A plot of the target and feedback position of the ball on the X-axis on the Computer.

Figure 4.12: A plot of the target and feedback position of the ball on the Y-axis on the Computer.

CHAPTER 4. RESULTS 83

Figure 4.13: A plot of the target and feedback angle of the X-axis on the Computer.

Figure 4.14: A plot of the target and feedback angle of the Y-axis on the Computer.

4.3.3 MPC Prediction Horizon

These results present the prediction horizons the MPC calculates with an error in the position

of -120. The position and velocity graph also shows the corresponding feedback in position and

velocity for comparison.

CHAPTER 4. RESULTS 84

(a) MPC example angle prediction horizon.
(b) MPC example velocity prediction horizon
and feedback velocity.

(c) MPC example position prediction horizon
and feedback position

4.3.4 Latency Stress Test

This section presents the results from the MPC stress test where the ball position has a fast and

big change in position. These results show the refresh rate of the memory handler, controller,

and a sine wave. The first plot presents the latency in the controller. The second plot presents

the corresponding target and feedback to illustrate the difference in feedback at low latency.

CHAPTER 4. RESULTS 85

Figure 4.16: Process refresh rate from the stress test.

Figure 4.17: A plot of the target and feedback angle from the stress test.

Chapter 5

Discussion

This chapter will discuss the design results, the code, the MPC results and future improvements.

It highlights both the solutions and the challenges that were encountered during this project.

5.1 Design Results

The final platform was fairly close to the original concept. During testing, the dimensions were

slightly altered, but this did not significantly change the design. The few modifications made

were necessary due to practicality and mechanical stability issues.

5.1.1 Part Selection & Changes

Stepper Motors

We selected stepper motors instead of servo motors for this project because of the cost factor.

Servo motors with the same specs and capabilities as stepper motors can be more than 3 times

as expensive. Because of this, stepper motors were seen as a better option than servo motors for

managing the budget. The Dual Shaft Nema 23 (23HS30-2804D) from Figure 3.8 which was used,

suited our project well. The increased amount of steps made the rotation smoother, but the

acceleration slower. The finished project runs on 1600 micro-steps, to ensure a balance between

smoothness and precision. This was determined through trial and error. Running below 1600

steps caused vibrations because each step was too large to operate smoothly. Running above

86

CHAPTER 5. DISCUSSION 87

1600 steps made the platform slow, because each step is small, which affects the acceleration.

The stepper motors are so-called open loop stepper motors since they do not feedback a

value to the motor drives. A closed-loop stepper motor compares the number of output steps to

how many steps were completed and compensates based on the error. Since the original plan

was to use encoders as a feedback source, there was no need to use closed-loop stepper motors.

This is why open-loop stepper motors are used in this project. In the end, no encoders were

used because of the noise and instability issues discussed in the encoder issue sections 5.1.3

and 5.1.3. This made the only solution to use the open-loop stepper motors. However, since

the motors were accurate, no problems occurred with using open-loop motors and steps were

rarely missed.

Camera

This section discussed the results and problems that occurred during the selection of the cam-

era. Initially, the Khadas 8MP HDR camera was chosen to be used as the camera for object

detection. This camera seemed to be the best option at first since it was the most compatible

with the Khadas VIM3 single-board computer. When the camera was tested it was observed that

the FOV listed in the specification was diagonal, and not horizontal and vertical. This meant

that the camera did not have a large enough FOV to observe the entire platform. To solve this

a new lens seemed to be the best option. When the wider lens arrived, it was observed that the

Khadas camera used non-standardized threads for its interchangeable lens mount. This meant

a new lens could not be attached. In the end, the Arducam camera was the only option left. This

camera proved to be a much better fit and had multiple lens options to choose from.

5.1.2 Mechanical Improvements

Modifications were required because the motor legs slipped and flexed. A thicker leg was first

modelled and printed, but this had little effect. Experimentation on the infill percentage when

3D printing was also attempted unsuccessfully. Another option was to shorten the leg. This

would reduce the torque force on the leg and therefore reduce the flexing. The original length

was 10 cm and was reduced to 7.5 cm, which would lead to a 25% torque reduction. To increase

its strength even further, the leg was also made thicker.

CHAPTER 5. DISCUSSION 88

The platform top’s circumference was decreased when shortening each of the three legs. The

reduction caused the top’s diameter to decrease from 45cm to 40cm. This meant that the area

was reduced from 1590 cm2 to 1257 cm2. As a result, the plate had less room to flex because

there was less space between the fastening joints. The thickness of the plates was also increased

from 4 mm to 6 mm, which significantly improved stability and eliminated flexing of the plate.

5.1.3 Electrical Improvements

Encoder Issues and Arduino implementation

Precise and accurate control is essential when operating a 3DOF platform. This is why encoders

were used to feedback the axial rotation of the stepper motors. The encoders were wired directly

to the Khadas board, to begin with. At first, the readings were noisy and fluctuated in value.

Earthing wires were applied to the stepper motors to eliminate the noise 3.6. After some testing,

another issue occurred, since the Khadas I/O ports could not handle the interrupts from the

encoders. An Arduino (Mega 2560 Rev3) 3.2 board was added to work as a dedicated encoder

signal reader. The Arduino forwards the encoder feedback to the Khadas. This solution gave

steady and reliable feedback.

In retrospect, this was a positive change since it meant all code on the Khadas could be

programmed in Python. This meant that only one extra script had to be made on the Arduino

to handle the stepper motor control. The only disadvantage to this solution is the extra layer of

serial communication between the Khadas and the Arduino.

Noise Issues

Having steady and dependable signals between the electronics is one of the most important

aspects to guarantee precise control. A lot of electrical noise was present during the project,

which made it difficult to maintain reliable control. It was challenging to identify the precise

components that caused the noise. The noise effect was caused by the stepper motors. This oc-

curs because the stepper motors are using large coils (stators) which emit high magnetic forces

to rotate the axial shaft. These magnetic forces will affect electronics nearby by causing EMI

(Electromagnetic Interference). This effect was influencing both the encoder and limit switch

CHAPTER 5. DISCUSSION 89

readings. The encoder had issues with counting rotations even if the motor was not rotating. By

grounding all components properly, this issue was reduced but still present.

5.1.4 Planning and Ordering parts

Key components of the original design were ordered early in the project’s time frame. This was

done to ensure having all the parts on time. To ensure quick delivery of the parts, it became cru-

cial to use geographically convenient logistical vendors. This was successful, and the building

phase got underway as scheduled. Later on, however, some components did not function as

intended. For example, the camera field of view was not great enough in the vertical direction.

As a result, a new camera was required and therefore ordered. Little progress was accomplished

prior to the new camera’s arrival because the project depended on it.

Another example was the special shielded encoder cables. These were ordered to eliminate

the noise on the encoders by grounding the protective shield on the cable. The delivery time on

these was 3 weeks, which meant that the 12-pin cables could not be finished, and testing had to

continue with noise issues.

5.2 The Code

This section discusses the results of the source code and the choice of programming language.

5.2.1 Programming Results

The code was designed to be flexible and capable of running on various computers and op-

erating systems with minimal to no modifications. It was also designed to be modular where

operations can be modified or changed without compromising other operations. The code is

also scaleable to a point where new features and operations can be added with minimal modifi-

cations. By using Python, one can easily achieve all of these goals without issues occurring with

OS-specific compilers and builds.

CHAPTER 5. DISCUSSION 90

5.2.2 Main Codebase Language

The initial plan was to use C++ to get the most out of the iteration speed for the software to the

motion platform. This was because C++ is seen as a better option for high-performance compu-

tations, and speed. While researching and testing, Python gave surprisingly fast computational

results. Python also had the best availability and easiest implementation of packages. With rea-

sonably fast computational speeds, easy implementation, and better package options for MPC

and camera implementation, Python was chosen as the main language for the implementation

of algorithms.

By choosing Python as the algorithm language, the time consumption of programming and

implementing a working system became substantially lower. This gave more time to fine-tune

and adjust design, in order to make the motion platform as user-friendly as possible for others

to use and modify. The motion platform is also seen as a tool for students to implement, and

test their own controllers, and by using Python as a programming language, further implemen-

tations of code are substantially easier.

5.2.3 GUI

The GUI provides a good user experience with options for people to observe how each part of

the system functions. The GUI is made with user-friendliness in mind, such that the GUI is as

self-explanatory as possible. The left side of the GUI provides an additional control experience

which allows others to change the target position of the ball. This allows users to experiment

with the ball in a more controlled environment, rather than applying disturbance to the ball.

The right side of the GUI provides the user with controller, camera, recording, and communica-

tion options. This frame also provides a wide variety of feedback values, which allows users to

analyze the system in more detail. Further details and explanations of the GUI can be seen in

section 4.2.

After the application was installed on the Khadas, it was discovered that the GUI alone con-

sumed a significant amount of resources. Due to a lack of CPU resources, the application crashed

when the camera and MPC code were launched. Additionally, the camera and MPC code would

still be running as a result of this action. Investigation revealed that the GUI utilized between 80

CHAPTER 5. DISCUSSION 91

and 85 % of all CPU cores. This was discovered to be the result of the functions .self.update() and

.UpdateInformativeValues being called every 50 ms and at each paint event. A significant reduc-

tion in CPU usage was observed by altering the .self.update() function. These alterations con-

sisted of moving it to its own update function with a 100ms timeout and also removing it from

the paint event functions and .UpdateInformativeValues function. The .UpdateInformativeVal-

ues function refresh time was also increased from 50ms to 550ms. These changes resulted in the

GUI using between 50 and 60 % of the CPU, which allowed stable operation at full capacity. It’s

important to keep in mind that changing these variables only affects how frequently graphics

are refreshed.

5.2.4 Ball Tracking Algorithm

The ball tracking algorithm works as intended. By observing the video feed while running the

platform, one can see that the ball is easily detected, and a circle is painted around it. To arrive

at the exact HSV bounds for the colour detection to only track the ball, it is possible to display

the video feed in HSV colour space. By adjusting the bounds while displaying the HSV feed, the

most suited bounds were discovered. These were found to be within ([0,88,85]) as the lower

bound, and ([13,255,201]) as the upper bound. This boundary for colours lets the algorithm

detect the red ball, without any noise, or unwanted background colours being detected.

There are only two possible errors that can occur while tracking. One of the issues is that the

platform is placed directly under a sharp light source. This light source has a high probability

to cause unwanted errors in the tracking, depending on the strength of the lighting. The other

source for errors is if similar objects appear in the frame. For example, a hand or face from a

human. Although human skin isn’t red, it is still detected because of the orange colour tone.

5.3 MPC Results

This section discusses the results and graphs gained from the MPC algorithm while trying to

balance the ball. This includes which parameters were used to gain the results and comparisons

between the Khadas VIM and a computer. The results are gathered with a sampling time of

0.05 seconds and a horizon length of 20 steps. By using this horizon, updates to the prediction

CHAPTER 5. DISCUSSION 92

happen every 50 milliseconds for a total of one second. The weighting matrix Q was tuned with

([1.7,0.55,1.7,0.55]) across the diagonal and the weighting matrix R was tuned with ([305,305])

across the diagonal. To get the most accurate input for the angle, the second value from the

returned angle array is sent to the motors. These angles compensate for the ball’s predicted

position 50 ms ahead of time from when the measurement is taken and eliminates some of the

error between measurement and actual response. These tuning values seemed to give stable

results and were gathered by testing different parameters through trial and error. The results are

gathered by using a red ping-pong ball with minimal mass.

The overall iteration speed for the MPC algorithm is surprisingly fast. The iteration speed

averages around 1.5 ms on the computer and 5 ms on the Khadas VIM. This speed is better

than expected and manages to keep up with the measurement frequencies. These results in-

dicate that the rule sets and concepts of DCP and DPP included in the CVXPY packages work

as expected. One of the downsides to running the MPC on the Khadas is its unstable calcula-

tion speed. Even though the Khadas averages 5 ms, it tends to vary greatly in its speed, which

can cause the control over the ball to lag. The calculation speeds range from 2 ms up to about

15 ms. This is still in an acceptable range for the algorithm to keep up with the measurement

frequencies but may cause the motion platform to lose control over the ball.

5.3.1 Ball Position

The results and graphs of the MPC algorithm performance for the ball position are shown in

section 4.3 in Figure 4.7, 4.8, 4.11, and 4.12.

The graphs for the Khadas VIM3 results show varying responses. The ball seems to reach the

target position at an average of 1 second and settles between 1.5 to 2 seconds. This is relatively

fast considering the distance the ball has to travel to go from one end of the platform to the

other. A small concern in the result for the Khadas is that it tends to be a bit slow and overshoot

the target. The reason for this could be internal lag when recording high speeds with the Khadas,

bad tuning, or errors in the velocity estimate.

The graphs for the computer results show promising performance of the MPC. The ball man-

ages to reach the target at about 1 second similar to the Khadas and settles at about 1.5 seconds.

The computer graphs also show stable positioning of the ball, with minimal corrections.

CHAPTER 5. DISCUSSION 93

When comparing the graphs of the Khadas and computer results, it is possible to see that

the computer performs a little better. The computer has little to no tendencies to overshoot the

target and stabilizes the ball faster than the Khadas. This is to be expected since the computer

has a significant advantage in computational power compared to the Khadas. With this in mind,

the Khadas still gives surprisingly good results considering it is a single-board computer and its

small size.

When comparing the data sets used to plot these graphs, a small difference in the frequency

of readings was noticed. The Computer records values from the algorithms such as feedback

position, time, and target at around 91 Hz, while the Khadas seem to record at a frequency of

83 Hz. This difference in frequency is not major but signifies a general slowness in the Khadas

system.

5.3.2 Angles

The results containing the graphs for target and feedback angle are shown in section 4.3 in Figure

4.9, 4.10, 4.13, and 4.14. These graphs present the calculated angle the MPC algorithm finds

optimal, and the actual feedback angle on the platform. By observing the graphs it is possible to

infer that the actual angle on the platform follows the target angle closely. When looking at the

stability of the angles, it is possible to observe oscillations when the angles should stabilize the

ball. This is a repercussion of unstable measurements or bad tuning. When the MPC algorithm

is tuned to perfection these oscillations should be near non-existent, indicating the ball has

reached its target and is idle. To achieve better stability, better estimations of position and speed

through filtering should be implemented, and further tuning should be experimented with.

When comparing the Khadas VIM results with the computer results, both show equal results.

This indicates there is no additional delay in the Khadas from when the angle is calculated until

the platform reaches its target position. The platform uses 100 ms to achieve its target position

from when the angle is calculated on both the Khadas and the computer.

CHAPTER 5. DISCUSSION 94

5.3.3 Prediction Horizon

In section 4.3.3 graphs containing the angle, velocity, and position for a prediction horizon are

shown. The MPC calculates a unique prediction horizon based on each measurement of the

states as initial conditions. The graphs only show the prediction horizon for the X-axis since the

Y-axis has the same results. These prediction horizons are calculated with states containing -120

in positional error, and 0 in velocity error. The predicted horizon for the position also contains

the feedback of the ball with -120 in positional error. On observation, the MPC gives an accurate

representation of the prediction horizons. The MPC initially calculates and predicts the angle as

aggressive before giving a small response in the opposite direction to brake the velocity and sta-

bilize the ball. The velocity and position prediction results give corresponding actions based on

the angle the MPC calculates. It is also possible to observe the actual feedback of the ball follows

the predicted trajectory closely, with only small deviations. This is a good sign that indicates the

system models are accurate.

5.3.4 Stress Test Results

During the MPC testing, a latency in control feedback was sometimes observed. Upon closer

inspection, it was noted the ball had to be held in the same location for a few seconds before

the platform reduced its latency. This was found to be caused by the MPC algorithm using hot-

start. This means that the MPC starts searching for an optimal solution from the previously

measured position. If there is a big difference in position, the MPC will have a larger range to

search through before it finds the optimal solution. This results in the MPC using a long time

to calculate the optimal control response. No significant latency was observed under normal

operation.

A stress test of the MPC algorithm was performed to analyze the latency of the loop time.

This was accomplished by using large, quick ball movements and sending a sine wave through

the MPC algorithm before sending it to the Arduino code, which is then used to record the la-

tency. The resulting frequency and sine wave can be seen in Figure 4.16 and 4.17. By comparing

Figure 4.16 and 4.17 it is possible to observe the MPC refresh rate drop under large, rapid ball

movements and how that affects the sine wave. Upon closer inspection, a latency of 100 ms is

CHAPTER 5. DISCUSSION 95

observable under normal operation. The latency peaks at approximately 200ms when a large

positional error occurs.

5.4 Future Improvements & Developments

This section will discuss how the project can be further developed and which features that can

be improved.

5.4.1 Camera Distortion & Plane Coordinates

The motion platform is currently using an uncalibrated fisheye camera to gather the position of

the ball. The disadvantage of using such a camera is the distortion outside of its centre. While

this distortion is not significant enough to cause problems while the platform is level, it does

cause significant errors in the positional measurements while the platform is at a large angle.

This is due to the ball changing height, and since the fisheye camera captures images in an

hemispherical area errors in the measurements appear. There are multiple solutions to this

problem. One solution is to calibrate the camera, and another is to implement another camera

measuring the vertical Z-axis.

There was an attempt to calibrate the camera, but this attempt was unsuccessful. Fisheye

cameras are notoriously hard to calibrate due to the number of models used to obtain such a

wide angle of view. The calibration was attempted by using a Python script to capture images

of a checkerboard and try to calibrate based on the alignment of squares. This only made the

distortion worse and often ended up with a significantly less accurate image representation of

the area. Further attempts could be made to improve the distortion with more expertise on the

subject.

Another solution is to implement a secondary camera to measure the ball’s position along

the vertical Z-axis. This solution could be attempted alongside the implementation of control

with heave on the Z-axis. By using a mathematical model, the ball’s position along the level

XY-plane could be offset by its position along the vertical Z-plane.

CHAPTER 5. DISCUSSION 96

5.4.2 Kalman Filter

One possibility for future improvement is to implement a Kalman filter. A Kalman filter would

be a good substitute for the current method of estimating the velocity by deriving position. The

reason for choosing a Kalman filter is due to its ability to account for uncertainties, and estimate

current velocity based on position measurements and previous velocity estimates. The Kalman

filter was not attempted during this project due to time constraints but could prove to be a

good substitute and improvement over current methods. Other state estimators could also be

implemented.

5.4.3 Tuning

Based on the current results that are gathered, further tuning and experiments on the MPC can

still be done to improve the results. The MPC has a vast amount of possible configurations in

tuning parameters that can be experimented with, and tuning the algorithm to perfection could

take an endless amount of time. As it currently stands using a Khadas single-board computer

limits the number of variables that can be used in the prediction horizon. If one were to use

something with a greater amount of computational power, one could extend the horizon length

and increase the number of time steps. The computational requirements are the only constrain-

ing factor that limits some of the tuning capabilities. One could also experiment with algorithms

that tune the MPC parameters at a faster rate than a human. An example of this could be a ge-

netic algorithm.

Chapter 6

Conclusions

In conclusion, the final platform closely resembled the original concept with only slight modifi-

cations required to improve practicality and mechanical stability. The camera selection required

some experimentation and ultimately the Arducam camera proved to be the best fit. The legs

of the platform were shortened and made thicker to reduce torque and flexing issues, while the

top plate was made thicker to improve stability. Encoder and noise issues were also encoun-

tered and addressed with the addition of an Arduino board for encoder feedback, and earthing

wires to reduce electrical noise from the stepper motors. Overall, the final platform design met

the requirements for precision control and stability necessary for a 3DOF platform. The motion

platform also fulfils the goal of being user-friendly and modifiable for other students.

In addition to fulfilling the design criteria, the controller results also proved to be good. The

results obtained from the Khadas VIM3 and computer graphs show that the MPC algorithm can

control the motion platform successfully. Although the computer outperforms the Khadas in

terms of stability and overshoot, the Khadas gives good results considering its small size and

lower computational power. In terms of angle stability, both the Khadas and the computer show

equal results, indicating no additional delay in the Khadas. However, there are some oscillations

observed when the angles should stabilize the ball, indicating small oscillations in the measure-

ments or bad tuning. The prediction horizon results show that the MPC algorithm accurately

predicts the ball’s trajectory based on the initial conditions. By this one can infer that the MPC

is implemented successfully and works as intended.

97

CHAPTER 6. CONCLUSIONS 98

6.1 Further Work

To improve the project several options are available. These improvements are listed below:

• Implement a Kalman filter for velocity estimation.

• Add an additional camera for measurements and control along the vertical Z-axis.

• Tune the MPC further to improve stability and settling time.

Bibliography

[1] Summary of ship movement. https://web.archive.org/web/

20111125015923/http://www.pomorci.com/Zanimljivosti/Ship%27s%

20movements%20at%20sea.pdf. (Accessed on 04/24/2023).

[2] Stepper online datasheets. https://www.omc-stepperonline.com/dual-

shaft-nema-23-bipolar-1-9nm-269oz-in-2-8a-3-2v-57x57x76mm-4-

wires-23hs30-2804d. (Accessed on 05/15/2023).

[3] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting sys-

tem for convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

[4] The CVXPY Authors. Welcome to cvxpy 1.3 — cvxpy 1.3 documentation. https://www.

cvxpy.orgl, Present. (Accessed on 04/01/2023).

[5] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for

convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[6] Morten Hovd. A brief introduction to model predictive control, Marc 2004. (Accessed on

04/01/2023).

[7] k.ivoutin. Hsv color space cylinder. http://flickr.com/photos/ivoutin/

1501340505/sizes/o/in/set-72157602264055525/, 2007.

[8] Matt. 3dof ball on plate using closed loop stepper motors : 13 steps (with pictures)

- instructables. https://www.instructables.com/3DOF-Ball-on-Plate-

Using-Closed-Loop-Stepper-Motor/. (Accessed on 04/26/2023).

99

https://web.archive.org/web/20111125015923/http://www.pomorci.com/Zanimljivosti/Ship%27s%20movements%20at%20sea.pdf
https://web.archive.org/web/20111125015923/http://www.pomorci.com/Zanimljivosti/Ship%27s%20movements%20at%20sea.pdf
https://web.archive.org/web/20111125015923/http://www.pomorci.com/Zanimljivosti/Ship%27s%20movements%20at%20sea.pdf
https://www.omc-stepperonline.com/dual-shaft-nema-23-bipolar-1-9nm-269oz-in-2-8a-3-2v-57x57x76mm-4-wires-23hs30-2804d
https://www.omc-stepperonline.com/dual-shaft-nema-23-bipolar-1-9nm-269oz-in-2-8a-3-2v-57x57x76mm-4-wires-23hs30-2804d
https://www.omc-stepperonline.com/dual-shaft-nema-23-bipolar-1-9nm-269oz-in-2-8a-3-2v-57x57x76mm-4-wires-23hs30-2804d
https://www.cvxpy.orgl
https://www.cvxpy.orgl
http://flickr.com/photos/ivoutin/1501340505/sizes/o/in/set-72157602264055525/
http://flickr.com/photos/ivoutin/1501340505/sizes/o/in/set-72157602264055525/
https://www.instructables.com/3DOF-Ball-on-Plate-Using-Closed-Loop-Stepper-Motor/
https://www.instructables.com/3DOF-Ball-on-Plate-Using-Closed-Loop-Stepper-Motor/

BIBLIOGRAPHY 100

[9] Webjørn Rekdalsbakken. Design and application of a motion platform in three degrees of

freedom. 2005.

[10] Webjørn Rekdalsbakken. Kinematics in 3d space, 2021.

[11] Jeffery A. Schroeder. Helicopter flight simulation motion platform requirements. 1998.

[12] Dale E. Seborg, Duncan A. Mellichamp, and Thomas F. Edgar. Process Dynamics and

Control, chapter 20. Wylie Series in Chemical Engineering. John Wiley & Sons, third

edition, 2011. ISBN 9780470646106. URL http://www.worldcat.org/isbn/

9780470646106.

[13] tutorialspoint. Shared memory. https://www.tutorialspoint.com/inter_

process_communication/inter_process_communication_shared_

memory.htm#. (Accessed on 05/11/2023).

[14] Patrick Sebastian, Yap Vooi Voon, and Richard Comley. Colour space effect on tracking in

video surveillance. https://d1wqtxts1xzle7.cloudfront.net/87370921/

docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-

content-disposition=inline%3B+filename%3DColour_Space_

Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=

YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-

rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-

d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-

tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-

Id=APKAJLOHF5GGSLRBV4ZA, 2010. (Accessed on 05/08/2023).

[15] Jørgen Meland Lund , Henning Sønderland , Jesper Vos. Ais2102 dynamical systems project

report - 3dof motion platform, 2022.

[16] Maximilian Schaller, Steven Diamond, Akshay Agrawal, Alan Yang. Cvxpygen. https:

//github.com/cvxgrp/cvxpygen, Present.

[17] Krzysztof Zarzycki and Maciej Ławryńczuk. Fast real-time model predictive control for a

http://www.worldcat.org/isbn/9780470646106
http://www.worldcat.org/isbn/9780470646106
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_shared_memory.htm#
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_shared_memory.htm#
https://www.tutorialspoint.com/inter_process_communication/inter_process_communication_shared_memory.htm#
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/87370921/docs-16879897224d22a8ee11166-libre.pdf?1655002471=&response-content-disposition=inline%3B+filename%3DColour_Space_Effect_on_Tracking_in_Video.pdf&Expires=1683561315&Signature=YYgyKlIR1KyQyV~qydoST2wqwcq3CwF0tWQvpCNP3j3m2buVNDz6D2W2pwm6V1VVBnJeT0WOGJ1EalbgpMdWk2ZeOnBioAmRKQlZ1t61WXMGbJgpgJ5aCv6RhoehX0FqKioWrnKDO3vHu3f3R4r2MurRQWfIfGryThTvGp9NprnFI8I-rlb7OpoTNAQ7B0Y64n8WDUDWb7S3duRJJ2HrfxiaRDblcfGm59IBjPNIEq8L3AdzPMu~QXJj-d0OXgO1fipi2SVapaaUw3s6~GlDwG2bTmpE7YkiKDdT4K-tyyQ2MzjLDUec2LRJRDQkhreBCYaWAwm3b9Jzj3ALJuPdMQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://github.com/cvxgrp/cvxpygen
https://github.com/cvxgrp/cvxpygen

BIBLIOGRAPHY 101

ball-on-plate process. Sensors, 21(12), 2021. ISSN 1424-8220. doi: 10.3390/s21123959. URL

https://www.mdpi.com/1424-8220/21/12/3959.

https://www.mdpi.com/1424-8220/21/12/3959

Appendix A

Appendix Folder List

List detailing the contents of the zip folder delivered as an attachment.

• STL files for 3D-printer

– BearingColumn, column to glue between the bearing and PlatformLeg.

– CameraBracket, camera bracket inside the enclosure.

– MotorBracket, bracket to fasten the stepper motors.

– PlatformBracket, bracket to fasten the PlatformLeg to the platform.

– PlatformLeg, leg between the StepperLeg and platform.

– StepperLeg, leg to fasten to the stepper motor.

– SupportLegBack, support frame at the back of the enclosure.

– SupportLegLeft, support frame at the front left side of the enclosure.

– SupportLegRight, support frame at the front right side of the enclosure.

– SupportTriangleLeft, left side support for the screen.

– SupportTriangleRight, right side support for the screen.

• DXF files for laser cutter

– Platform, plexiglass platform.

– DisplayFrameBottom, bottom support frame for the screen.

102

APPENDIX A. APPENDIX FOLDER LIST 103

– DisplayFrameOuter, outer frame for the screen.

– DisplayFrameTop, top support frame for the screen.

– EnclosureBack, back wall for the enclosure.

– EnclosureBottom, floor for the enclosure.

– EnclosureSide, side walls for the enclosure.

– EnclosureTop, roof for the enclosure.

– EnclosureTriangle, triangle wall for the front.

– InnerWallLong, long inside wall for the fan.

– InnerWallShort, short inside wall for the fan.

• Datasheets, folder containing all datasheets and diagrams for the parts which are used in

this project.

• Source code

– Main

* CameraCode.py, camera and ball tracking code.

* Config.py, contains all variables shared between codes.

* ControllerTemplate.py, template for others to make their own controllers.

* GUI.py, GUI code.

* Main.py, main application code.

* MPC.py, MPC controller.

* PID.py, PID controller.

* StateSpace.py, State Space controller.

* Info.txt, short information regarding the use of the code.

* MPC_generator, folder containing the Jupyter notebook code for generating MPC

C code.

* icons, folder containing images for GUI.

* MPC_code, folder containing generated C code for MPC on Windows.

APPENDIX A. APPENDIX FOLDER LIST 104

* MPC_code_Linux, folder containing generated C code for MPC on Linux.

– MotorControllerV4

* MotorControllerV4.ino, Arduino code for the motor control.

• Presentations, folder containing the midterm presentation and poster.

• Videos, folder containing the video demonstration and presentation.

Appendix B

Source Code

This chapter includes all the source code required to run the application.

B.1 Main.py

1 # ! −usr /bin/

2

3 from PyQt5 . QtWidgets import QApplication

4 import sys

5 import numpy as np

6 from GUI import GUI

7 import Config as C

8 import multiprocessing

9 from multiprocessing import shared_memory

10 import threading

11 import subprocess

12 import time

13 import s e r i a l

14 import s t r u c t

15 import datetime

16 import platform

17 import a t e x i t

18

19 lock = multiprocessing . Lock ()

105

APPENDIX B. SOURCE CODE 106

20 shm_ array = C.Shm_ array

21 shm = multiprocessing . shared_memory. SharedMemory(create=True , s i z e =shm_ array . nbytes)

22 shm_ array = np . ndarray (shm_ array . shape , dtype=np . f loat16 , buffer=shm. buf)

23

24 s t a r t _Record_time = time . time ()

25

26 RtD = (np . pi / 180)

27

28 path = ’ SavedData/Record/ ’

29 filename = ’ ’

30 #−−

31

32 def run_python_ s c r i p t (scr ipt , shm) :

33 # Execute the s c r i p t and pass the shared memory object as an argument

34 shared_data = { ’ shared_data ’ : shm}

35 exec (open(s c r i p t) . read () , shared_data)

36

37 def run_cpp_program (program , shared_data) :

38 # Execute the program and pass the shared memory object as an argument

39 subprocess . run ([program , s t r (shared_data [0]) , s t r (shared_data [1]) , s t r (shared_data

[2])])

40

41 def BackEnd () :

42 Running_ Flag = True

43

44 PrevT = time . time ()

45

46 while Running_ Flag :

47

48 CurrT = time . time ()

49 dt = CurrT − PrevT

50 PrevT = CurrT

51 i f dt == 0 :

52 C. BackEnd_Hz = 9999.99

53 else :

54 C. BackEnd_Hz = round(1 / dt , 2)

APPENDIX B. SOURCE CODE 107

55 # −− S t a r t Controller

selected

56 i f (C. S t a r t) and not (C. Running) :

57

58 ControllerCode = C. Control_Mode + ’ . py ’

59 i f C. Control_Mode == ’No Control Mode selected ’ :

60 C. Log . i n s e r t (0 , ’No Controller selected ! ’)

61 else :

62 C. Log . i n s e r t (0 , ’ S t a r t i n g Controller : ’ + ControllerCode)

63 p1 = multiprocessing . Process (t a r g e t =run_python_ scr ipt , args =(

ControllerCode ,shm,))

64 p1 . s t a r t ()

65 C. Running = True

66

67 i f not C. S t a r t and C. Running :

68 C. Running = False

69 C. Log . i n s e r t (0 , ’ Stopping Controller ’)

70 p1 . terminate ()

71 C. Stepper1_ Target = 0

72 C. Stepper2_ Target = 0

73 C. Stepper3_ Target = 0

74 lock . acquire ()

75 shm_ array [8] = 0

76 shm_ array [9] = 0

77 lock . release ()

78 # −− S t a r t Camera Code

79 i f (C. Camera_ S t a r t and not C. Camera_Runnig) :

80 C. Log . i n s e r t (0 , ’ S t a r t i n g Camera Code ’)

81 p2 = multiprocessing . Process (t a r g e t =run_python_ scr ipt , args =("CameraCode . py" ,

shm,))

82 p2 . s t a r t ()

83 C. Camera_Runnig = True

84

85 i f C. Camera_Runnig and C.cam_x == 1 and C.cam_y == 9 and C.cam_x_ vel == 9 and C.

cam_y_ vel == 9 :

86 #C. Camera_Runnig = False

APPENDIX B. SOURCE CODE 108

87 C. Log . i n s e r t (0 , ’No connection to camera ’)

88 lock . acquire ()

89 shm_ array [4] = 0

90 shm_ array [5] = 0

91 shm_ array [6] = 0

92 shm_ array [7] = 0

93 lock . release ()

94

95 i f not C. Camera_ S t a r t and C. Camera_Runnig :

96 C. Log . i n s e r t (0 , ’ Stopping Camera Code ’)

97 p2 . terminate ()

98 C. Camera_Runnig = False

99

100 lock . acquire ()

101 shm_ array [4] = 0

102 shm_ array [5] = 0

103 shm_ array [6] = 0

104 shm_ array [7] = 0

105 lock . release ()

106 # −− Stop

Multithreading code at e x i t

107 i f C. e x i t _ f l a g :

108 t r y :

109 Running_ Flag = False

110 p1 . terminate ()

111 except :

112 pass

113 t r y :

114 p2 . terminate ()

115 except :

116 pass

117 # −− S t a r t Data

recording

118 i f C. Record_Data or C. Record_Data_Running :

119 i f C. Record_Data and not C. Record_Data_Running :

120

APPENDIX B. SOURCE CODE 109

121 now = datetime . datetime .now()

122 s t a r t _Record_time = time . time ()

123 timestamp = now. s t r f t i m e ("%Y−%m−%d_%H−%M−%S")

124

125 filename = f " { path } Recorded Data for {C. Control_Mode} at { timestamp } . t x t "

126 #filename = f " { path } Recorded Data for sine delay at { timestamp } . t x t "

127 with open(filename , "a") as f i l e :

128 f i l e . write (C. Data_Names + ’ \n ’)

129 # f i l e . write (C.Hz_Names + ’\n ’)

130 # f i l e . write (C. Sine_Name + ’\n ’)

131

132 C. Record_Data_Running = True

133 i f C. Record_Data_Running :

134 with open(filename , "a") as f i l e :

135 PrintTime = time . time () − s t a r t _Record_time

136 data = f ’ {C. Target _Pos_x } {C. Target_Pos_y } {C.cam_x } {C.cam_y } {C.cam

x vel } {C.cam_y_ vel } \

137 { round (C.U_rad_x/RtD , 3) } { round (C.U_rad_y/RtD , 3) } {C.U_x_v_ fb } {C.U_y_v_ fb } { PrintTime } ’

138 #data = f ’ {C. BackEnd_Hz} {C. SharedMem_Hz} {C. UartCom_Hz} {C.Cam_Hz} {

C. Controller _Hz} ’

139 #data = f ’ {C. sine } {C. sine _ c o n t r o l l e r } {C. Stepper1_Feedback } {C.

Stepper2_Feedback } \

140 # {C. Stepper3_Feedback } {C. SharedMem_Hz} {C. Controller _Hz} { PrintTime } ’

141 f i l e . write (data + ’ \n ’)

142 i f not C. Record_Data and C. Record_Data_Running :

143 f i l e . close ()

144 C. Record_Data_Running = False

145

146 i f C. S t a r t _ S e r i a l _Com and not C. S e r i a l _Com_Running :

147 C. S e r i a l _Com_Running = True

148

149 S e r i a l _Com = threading . Thread (t a r g e t =USBArduinocom)

150 S e r i a l _Com. s t a r t ()

151

152 i f not C. S t a r t _ S e r i a l _Com:

153 C. S e r i a l _Com_Running = False

APPENDIX B. SOURCE CODE 110

154

155 time . sleep (0 . 0 1)

156

157

158

159 sine _ c o n t r o l l e r = 0

160 def GUISharedMemHandler () :

161 Last _ Target_x = 0

162 Last _ Target_y = 0

163 PrevT = time . time ()

164 while not C. e x i t _ f l a g :

165 CurrT = time . time ()

166 dt = CurrT − PrevT

167 PrevT = CurrT

168 i f dt == 0 :

169 C. SharedMem_Hz = 9999.99

170 else :

171 C. SharedMem_Hz = round(1 / dt , 2)

172 #C. sine = 45*np . sin (5 * time . time ())

173 #−− shm handler

174 lock . acquire ()

175 shm_ array [0] = C. Target_Pos_x

176 shm_ array [1] = C. Target_Pos_y

177 shm_ array [2] = C. Target_Vel_x

178 shm_ array [3] = C. Target_Vel_y

179 #shm_ array [2] = C. sine

180 #C. sine _ c o n t r o l l e r = shm_ array [3]

181

182 C.cam_x = shm_ array [4]

183 C.cam_y = shm_ array [5]

184 C.cam_x_ vel = shm_ array [6]

185 C.cam_y_ vel = shm_ array [7]

186

187 C.U_rad_x = shm_ array [8]

188 C.U_rad_y = shm_ array [9]

189

APPENDIX B. SOURCE CODE 111

190 shm_ array [1 0] = C. PID_P_x

191 shm_ array [1 1] = C. PID_D_x

192 shm_ array [1 2] = C. PID_ I _x

193

194 shm_ array [1 3] = C. SS_k1_x

195 shm_ array [1 4] = C. SS_k2_x

196

197 shm_ array [1 5] = C.MPC_Q_xp

198 shm_ array [1 6] = C.MPC_Q_xv

199 shm_ array [1 7] = C.MPC_R_Vin

200 i f C. S t a r t :

201 C. Controller _Hz = shm_ array [1 8]

202 else :

203 C. Controller _Hz = 0

204 shm_ array [1 9] = C.MPC_SnapShot

205

206 shm_ array [2 0] = C.No_ B a l l

207 shm_ array [2 1] = C. Camera_show_Frame

208 shm_ array [2 2] = C. Camera_show_Mask

209 shm_ array [2 3] = C. Camera_Pause

210 i f C. Camera_Runnig :

211 C.Cam_Hz = shm_ array [2 4]

212 else :

213 C.Cam_Hz = 0

214 lock . release ()

215

216 #−−

217

218 # l = 426.5mm − 123.12 , 213 ,25 , (sq (3) * l) / 6 , l /2

219 # l 2 = 346.41mm, 99.99 , 173.205

220

221 i f C. Running :

222 #

223 t1 = 100 *np . sin (C.U_rad_y) *np . cos (C.U_rad_x)

224 t2 = 173.2 *np . sin (C.U_rad_x)

225

APPENDIX B. SOURCE CODE 112

226 z1 = −t1 − t2

227 z2 = −t1 + t2

228 z3 = t1

229

230 z1 = LimitAngle (z1)

231 z2 = LimitAngle (z2)

232 z3 = LimitAngle (z3)

233

234 C. Stepper1_ Target = np . arcsin (z3/ 75) /RtD

235 C. Stepper2_ Target = np . arcsin (z2/ 75) /RtD

236 C. Stepper3_ Target = np . arcsin (z1/ 75) /RtD

237

238 sin _y_cos_x = (75 * np . sin (C. Stepper1_Feedback * RtD)) / 100

239 sin _x = ((75 * np . sin (C. Stepper2_Feedback * RtD)) + 100 * sin _y_cos_x) / 173.2

240 C.U_x_v_ fb = round (np . arcsin (sin _x) / RtD , 2)

241

242 c = sin _y_cos_x/np . cos (np . arcsin (sin _x))

243 i f c > 1 :

244 c = 1

245 e l i f c < −1:

246 c = −1

247 C.U_y_v_ fb = round ((np . arcsin (c)) /RtD , 2)

248 time . sleep (0 . 0 0 5)

249

250

251

252

253 def LimitAngle (Value) :

254 # 62 ’ , +50

255 i f Value > 70:

256 Value = 70

257 e l i f Value < −60:

258 Value = −60

259 return Value

260

261

APPENDIX B. SOURCE CODE 113

262

263 def USBArduinocom () :

264

265 PrevT = time . time ()

266 i f platform . system () == ’Windows ’ :

267 Com = ’COM3’

268 else :

269 Com = ’ /dev/ ttyS3 ’

270 t r y :

271 Arduino = s e r i a l . S e r i a l (Com, 115200 , timeout =1)

272 except :

273 C. Log . i n s e r t (0 , ’ Failed Connection to Arduino ’)

274 return

275 pass

276

277 while not C. e x i t _ f l a g and C. S e r i a l _Com_Running :

278

279 CurrT = time . time ()

280 dt = CurrT − PrevT

281 PrevT = CurrT

282 i f dt == 0 :

283 C. UartCom_Hz = 9999.99

284 else :

285 C. UartCom_Hz = 1 / dt

286 # print (dt)

287

288

289 i f C. Paus_New_Arduino_Values :

290 data = s t r u c t . pack (’ f f f f ’ , 0 . 0 , 0 . 0 , 0 . 0 , f l o a t (C. Calibrate _Arduino))

291 else :

292 data = s t r u c t . pack (’ f f f f ’ , C. Stepper1_Target , C. Stepper2_Target , C. Stepper3_

Target , f l o a t (C. Calibrate _Arduino))

293 #data = s t r u c t . pack (’ f f f f ’ , C. sine _ control ler , C. sine _ control ler , C. sine _

control ler , f l o a t (C. Calibrate _Arduino))

294

295 Arduino . write (data)

APPENDIX B. SOURCE CODE 114

296 response = Arduino . readline () . decode () . s p l i t ()

297 t r y :

298 C. Stepper1_Feedback = f l o a t (response [0])

299 C. Stepper2_Feedback = f l o a t (response [1])

300 C. Stepper3_Feedback = f l o a t (response [2])

301 except :

302 pass

303 C. UartCom_Hz = 0

304

305 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−− shm clear

306 def cleanup_shm() :

307 shm. close ()

308 shm. unlink ()

309

310 i f __name__ == "__main__" :

311 app = QApplication (sys . argv)

312 a = GUI()

313

314 ShareMemoryThread = threading . Thread (t a r g e t =GUISharedMemHandler)

315 ShareMemoryThread . s t a r t ()

316

317 BackendThread = threading . Thread (t a r g e t =BackEnd)

318 BackendThread . s t a r t ()

319

320 a . showFullScreen ()

321 #a . show ()

322 a t e x i t . r e g i s t e r (cleanup_shm)

323

324 sys . e x i t (app . exec_ ())

B.2 GUI.py

1

2 # 07.05.2023 3 DOF gui code

3 # Verson 1.2

APPENDIX B. SOURCE CODE 115

4 #

5

6 import subprocess

7

8 from PyQt5 . QtWidgets import QApplication , QWidget , QLabel , QComboBox, QPushButton , QFrame

, QDoubleSpinBox , \

9 QSpinBox , QTextEdit , QMainWindow, QMessageBox

10 from PyQt5 . QtGui import QPainter , QPen, QColor , QFont , QIcon

11 from PyQt5 . QtCore import Qt , QPoint , QRect , QTimer

12 import Config

13

14 import platform

15 RtD = (3.14 / 180)

16

17 c l a s s PID_Config (QWidget) :

18 def __ i n i t __ (s e l f) :

19 super () . __ i n i t __ ()

20 s e l f . setGeometry (700 ,350 ,570 ,440)

21 s e l f . setWindowTitle (’PID Config ’)

22 # −−

23 s e l f . font1 = QFont ()

24 s e l f . font1 . setPointSize (16)

25

26 s e l f . font2 = QFont ()

27 s e l f . font2 . setPointSize (12)

28 # −−− info

29 s e l f . Info = QLabel (s e l f)

30 s e l f . Info .move(10 ,5)

31 s e l f . Info . setText (’Change P , D and I Gains . Save and rerun the PID ’)

32 s e l f . Info . setFont (s e l f . font1)

33

34 s e l f . info2 = QLabel (s e l f)

35 s e l f . info2 .move(10 ,335)

36 s e l f . info2 . setText (’NB! a l l values are multiplied by 10 ’)

37 s e l f . info2 . setFont (s e l f . font2)

38 # −−− Set P gain

APPENDIX B. SOURCE CODE 116

39 s e l f . LableP = QLabel (s e l f)

40 s e l f . LableP .move(65 ,45)

41 s e l f . LableP . setText (’P Gain ’)

42 s e l f . LableP . setFont (s e l f . font1)

43

44 s e l f . PGain = QDoubleSpinBox (s e l f)

45 s e l f . PGain . setObjectName (u"doubleSpinBox")

46 s e l f . PGain . setGeometry (QRect (5 , 80 , 220 , 100))

47 s e l f . PGain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

48 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

49 s e l f . PGain . setDecimals (5)

50 s e l f . PGain . setMinimum(0.00000)

51 s e l f . PGain . setSingleStep (0.01000)

52 # −−− Set D gain

53 s e l f . LableD = QLabel (s e l f)

54 s e l f . LableD .move(360 ,45)

55 s e l f . LableD . setText (’D Gain ’)

56 s e l f . LableD . setFont (s e l f . font1)

57

58 s e l f . DGain = QDoubleSpinBox (s e l f)

59 s e l f . DGain . setObjectName (u"doubleSpinBox")

60 s e l f . DGain . setGeometry (QRect(300 , 80 , 220 , 100))

61 s e l f . DGain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

62 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

63 s e l f . DGain . setDecimals (5)

64 s e l f . DGain . setMinimum(0.00000)

65 s e l f . DGain . setSingleStep (0.01000)

66 # −−− Set I gain

67 s e l f . LableI = QLabel (s e l f)

68 s e l f . LableI .move(75 , 190)

69 s e l f . LableI . setText (’ I Gain ’)

70 s e l f . LableI . setFont (s e l f . font1)

71

72 s e l f . IGain = QDoubleSpinBox (s e l f)

APPENDIX B. SOURCE CODE 117

73 s e l f . IGain . setObjectName (u"doubleSpinBox")

74 s e l f . IGain . setGeometry (QRect (5 , 220 , 220 , 100))

75 s e l f . IGain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

76 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

77 s e l f . IGain . setDecimals (5)

78 s e l f . IGain . setMinimum(0.00000)

79 s e l f . IGain . setSingleStep (0.01000)

80

81 #−− Set decimal

82 s e l f . LableDe = QLabel (s e l f)

83 s e l f . LableDe .move(300 , 190)

84 s e l f . LableDe . setText (’Number of decimals ’)

85 s e l f . LableDe . setFont (s e l f . font1)

86

87 s e l f . Decimal = QSpinBox (s e l f)

88 s e l f . Decimal . setObjectName (u"Decimal")

89 s e l f . Decimal . setGeometry (QRect (300 , 220 , 220 , 100))

90 s e l f . Decimal . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height :

50px ; } "

91 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

92 s e l f . Decimal . setMinimum(−5)

93 s e l f . Decimal . setMaximum(0)

94 s e l f . Decimal . setSingleStep (1)

95 s e l f . Decimal . setValue (−2)

96 s e l f . Decimal . valueChanged . connect (s e l f . updateDecimal)

97 #−− Save and close

98 s e l f . CancelButton = QPushButton (’ Cancel ’ , s e l f)

99 s e l f . CancelButton . setGeometry (2 , 355 , 275 , 80)

100 s e l f . CancelButton . cl icked . connect (s e l f . Cancel)

101

102 s e l f . SaveButton = QPushButton ("Save" , s e l f)

103 s e l f . SaveButton . setGeometry (287 , 355 , 283 , 80)

104 s e l f . SaveButton . cl icked . connect (s e l f . Save)

105

106

APPENDIX B. SOURCE CODE 118

107

108 def Save (s e l f) :

109

110 Config . PID_P_x = s e l f . PGain . value ()

111 Config . PID_D_x = s e l f . DGain . value ()

112 Config . PID_ I _x = s e l f . IGain . value ()

113 Config . PID_P_y = s e l f . PGain . value ()

114 Config . PID_D_y = s e l f . DGain . value ()

115 Config . PID_ I _y = s e l f . IGain . value ()

116 s e l f . hide ()

117

118 def Cancel (s e l f) :

119 s e l f . hide ()

120

121 def updateDecimal (s e l f) :

122 s e l f . PGain . setSingleStep (10 * * (s e l f . Decimal . value ()))

123 s e l f . DGain . setSingleStep (10 * * (s e l f . Decimal . value ()))

124 s e l f . IGain . setSingleStep (10 * * (s e l f . Decimal . value ()))

125

126 #−− State space config

window

127 c l a s s SS_Config (QWidget) :

128 def __ i n i t __ (s e l f) :

129 super () . __ i n i t __ ()

130 s e l f . setGeometry (700 ,350 ,570 ,440)

131 s e l f . setWindowTitle (’ State Space Config ’)

132 #−−

133 s e l f . font = QFont ()

134 s e l f . font . setPointSize (16)

135

136 s e l f . font2 = QFont ()

137 s e l f . font2 . setPointSize (12)

138 # −−− info

139 s e l f . Info = QLabel (s e l f)

140 s e l f . Info .move(10 ,5)

141 s e l f . Info . setText (’Change K1 and K2 Gains . Save and rerun the StateSpace ’)

APPENDIX B. SOURCE CODE 119

142 s e l f . Info . setFont (s e l f . font)

143

144 s e l f . info2 = QLabel (s e l f)

145 s e l f . info2 .move(10 , 335)

146 s e l f . info2 . setText (’NB! a l l values are multiplied by 10 ’)

147 s e l f . info2 . setFont (s e l f . font2)

148 #−−− Set K1 value

149 s e l f . LableK1 = QLabel (s e l f)

150 s e l f . LableK1 .move(65 ,45)

151 s e l f . LableK1 . setText (’K1 Gain ’)

152 s e l f . LableK1 . setFont (s e l f . font)

153

154 s e l f . k1Gain = QDoubleSpinBox (s e l f)

155 s e l f . k1Gain . setObjectName (u"doubleSpinBox")

156 s e l f . k1Gain . setGeometry (QRect (5 , 80 , 220 , 100))

157 s e l f . k1Gain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

158 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

159 s e l f . k1Gain . setDecimals (5)

160 s e l f . k1Gain . setMinimum(0.00000)

161 s e l f . k1Gain . setSingleStep (0.01000)

162 # −−− Set K2 value

163 s e l f . LableK1 = QLabel (s e l f)

164 s e l f . LableK1 .move(360 ,45)

165 s e l f . LableK1 . setText (’K2 Gain ’)

166 s e l f . LableK1 . setFont (s e l f . font)

167

168 s e l f . k2Gain = QDoubleSpinBox (s e l f)

169 s e l f . k2Gain . setObjectName (u"doubleSpinBox")

170 s e l f . k2Gain . setGeometry (QRect(300 , 80 , 220 , 100))

171 s e l f . k2Gain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

172 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

173 s e l f . k2Gain . setDecimals (5)

174 s e l f . k2Gain . setMinimum(0.00000)

175 s e l f . k2Gain . setSingleStep (0.01000)

APPENDIX B. SOURCE CODE 120

176 #−− Set Decimal

177 s e l f . LableK1 = QLabel (s e l f)

178 s e l f . LableK1 .move(5 , 190)

179 s e l f . LableK1 . setText (’Number of decimals ’)

180 s e l f . LableK1 . setFont (s e l f . font)

181

182 s e l f . Decimal = QSpinBox (s e l f)

183 s e l f . Decimal . setObjectName (u"Decimal")

184 s e l f . Decimal . setGeometry (QRect (5 , 220 , 220 , 100))

185 s e l f . Decimal . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height :

50px ; } "

186 "QAbstractSpinBox : : down−button { width : 100px ; height : 50px ; } ")

187 s e l f . Decimal . setMinimum(−5)

188 s e l f . Decimal . setMaximum(0)

189 s e l f . Decimal . setSingleStep (1)

190 s e l f . Decimal . setValue (−2)

191 s e l f . Decimal . valueChanged . connect (s e l f . updateDecimal)

192 #−− Save and close

193 s e l f . SaveButton = QPushButton ("Save" , s e l f)

194 s e l f . SaveButton . setGeometry (287 ,355 ,283 ,80)

195 s e l f . SaveButton . cl icked . connect (s e l f . Save)

196 #−−Cancel

197 s e l f . CancelButton = QPushButton ("Cancel" , s e l f)

198 s e l f . CancelButton . setGeometry (2 , 355 , 275 , 80)

199 s e l f . CancelButton . cl icked . connect (s e l f . Cancel)

200

201 def Save (s e l f) :

202 Config . SS_k1_x = s e l f . k1Gain . value () *10

203 Config . SS_k2_x = s e l f . k2Gain . value () *10

204 Config . SS_k1_y = s e l f . k1Gain . value () *10

205 Config . SS_k2_y = s e l f . k2Gain . value () *10

206 s e l f . hide ()

207

208 def Cancel (s e l f) :

209 s e l f . hide ()

210

APPENDIX B. SOURCE CODE 121

211 def updateDecimal (s e l f) :

212 s e l f . k1Gain . setSingleStep (10 * * (s e l f . Decimal . value ()))

213 s e l f . k2Gain . setSingleStep (10 * * (s e l f . Decimal . value ()))

214 #−− MPC config window

215

216 c l a s s MPC_Config (QWidget) :

217 def __ i n i t __ (s e l f) :

218 super () . __ i n i t __ ()

219 s e l f . Decimal = None

220 s e l f . setGeometry (700 ,350 ,570 ,440)

221 s e l f . setWindowTitle (’MPC Config ’)

222

223 s e l f . font = QFont ()

224 s e l f . font . setPointSize (16)

225

226 s e l f . font2 = QFont ()

227 s e l f . font2 . setPointSize (12)

228 #−−− info

229 s e l f . Info = QLabel (s e l f)

230 s e l f . Info .move(10 ,5)

231 s e l f . Info . setText (’Change the Q and R matrix . Save and rerun the MPC’)

232 s e l f . Info . setFont (s e l f . font)

233

234 s e l f . Info2 = QLabel (s e l f)

235 s e l f . Info2 .move(10 , 335)

236 s e l f . Info2 . setText (’NB! a l l values are multiplied by 10 ’)

237 s e l f . Info2 . setFont (s e l f . font2)

238

239 #−−− Set K1 value

240 s e l f . LableK1 = QLabel (s e l f)

241 s e l f . LableK1 .move(65 , 45)

242 s e l f . LableK1 . setText (’Q Position ’)

243 s e l f . LableK1 . setFont (s e l f . font)

244

245 s e l f . k1Gain = QDoubleSpinBox (s e l f)

246 s e l f . k1Gain . setObjectName (u"doubleSpinBox")

APPENDIX B. SOURCE CODE 122

247 s e l f . k1Gain . setGeometry (QRect (5 , 80 , 220 , 100))

248 s e l f . k1Gain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

249 "QAbstractSpinBox : : down−button { width : 100px ; height :

50px ; } ")

250 s e l f . k1Gain . setDecimals (4)

251 s e l f . k1Gain . setMinimum(0.00000)

252 s e l f . k1Gain . setSingleStep (0.01000)

253 # −−− Set K2 value

254 s e l f . LableK2 = QLabel (s e l f)

255 s e l f . LableK2 .move(360 , 45)

256 s e l f . LableK2 . setText (’Q Velocity ’)

257 s e l f . LableK2 . setFont (s e l f . font)

258

259 s e l f . k2Gain = QDoubleSpinBox (s e l f)

260 s e l f . k2Gain . setObjectName (u"doubleSpinBox")

261 s e l f . k2Gain . setGeometry (QRect(300 , 80 , 220 , 100))

262 s e l f . k2Gain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

263 "QAbstractSpinBox : : down−button { width : 100px ; height : 50

px ; } ")

264 s e l f . k2Gain . setDecimals (4)

265 s e l f . k2Gain . setMinimum(0.00000)

266 s e l f . k2Gain . setSingleStep (0.01000)

267 # −−− Set K3 value

268 s e l f . LableK3 = QLabel (s e l f)

269 s e l f . LableK3 .move(75 , 190)

270 s e l f . LableK3 . setText (’R Angle ’)

271 s e l f . LableK3 . setFont (s e l f . font)

272

273 s e l f . k3Gain = QDoubleSpinBox (s e l f)

274 s e l f . k3Gain . setObjectName (u"doubleSpinBox")

275 s e l f . k3Gain . setGeometry (QRect (5 , 220 , 220 , 100))

276 s e l f . k3Gain . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height : 50

px ; } "

APPENDIX B. SOURCE CODE 123

277 "QAbstractSpinBox : : down−button { width : 100px ; height :

50px ; } ")

278 s e l f . k3Gain . setDecimals (4)

279 s e l f . k3Gain . setMinimum(0.00000)

280 s e l f . k3Gain . setSingleStep (0.01000)

281 #−− Set Decimal

282 s e l f . LableDesi = QLabel (s e l f)

283 s e l f . LableDesi .move(300 , 190)

284 s e l f . LableDesi . setText (’Number of decimals ’)

285 s e l f . LableDesi . setFont (s e l f . font)

286

287 s e l f . Decimal = QSpinBox (s e l f)

288 s e l f . Decimal . setObjectName (u"Decimal")

289 s e l f . Decimal . setGeometry (QRect(300 , 220 , 220 , 100))

290 s e l f . Decimal . setStyleSheet ("QAbstractSpinBox : : up−button { width : 100px ; height :

50px ; } "

291 "QAbstractSpinBox : : down−button { width : 100px ; height :

50px ; } ")

292 s e l f . Decimal . setMinimum(−5)

293 s e l f . Decimal . setMaximum(0)

294 s e l f . Decimal . setSingleStep (1)

295 s e l f . Decimal . setValue (−2)

296 s e l f . Decimal . valueChanged . connect (s e l f . updateDecimal)

297 #−− Save and close

298 s e l f . SaveButton = QPushButton ("Save" , s e l f)

299 s e l f . SaveButton . setGeometry (287 , 355 , 283 , 80)

300 s e l f . SaveButton . cl icked . connect (s e l f . Save)

301 # −−Cancel

302 s e l f . CancelButton = QPushButton ("Cancel" , s e l f)

303 s e l f . CancelButton . setGeometry (2 , 355 , 275 , 80)

304 s e l f . CancelButton . cl icked . connect (s e l f . Cancel)

305

306 def Cancel (s e l f) :

307 s e l f . hide ()

308

309 def Save (s e l f) :

APPENDIX B. SOURCE CODE 124

310 Config . Log . append(’New values saved for the MPC’)

311 Config .MPC_Q_xp = round (s e l f . k1Gain . value () * 10 , 5)

312 Config .MPC_Q_xv = round (s e l f . k2Gain . value () * 10 , 5)

313 Config .MPC_R_Vin = round (s e l f . k3Gain . value () * 10 , 5)

314 s e l f . hide ()

315

316 def updateDecimal (s e l f) :

317 s e l f . k1Gain . setSingleStep (10 * * (s e l f . Decimal . value ()))

318 s e l f . k2Gain . setSingleStep (10 * * (s e l f . Decimal . value ()))

319 s e l f . k3Gain . setSingleStep (10 * * (s e l f . Decimal . value ()))

320

321

322 #−−Main GUI

323

324 c l a s s GUI(QMainWindow) :

325 def __ i n i t __ (s e l f) :

326 super (GUI, s e l f) . __ i n i t __ ()

327

328 s e l f . PID_ config = PID_Config ()

329 s e l f . ss _ config = SS_Config ()

330 s e l f .MPC_ config = MPC_Config ()

331

332 s e l f . setWindowTitle ("3 DOF")

333 s e l f . setGeometry (0 , 0 , 1280 , 800)

334

335 s e l f . c i r c l e _ rect = QRect (QPoint (50 , 80) , QPoint (750 , 750))

336 s e l f . Target _ b a l l _pos = None

337 s e l f . FB_ b a l l = None

338 s e l f . log _ s t r i n g = []

339 s e l f . log _ s t r i n g _old = []

340 s e l f . font1 = QFont ()

341 s e l f . font1 . setPointSize (9)

342

343 #−−− Update Clock

344 timer = QTimer(s e l f)

345 timer . timeout . connect (s e l f . UpdateInformativeValues)

APPENDIX B. SOURCE CODE 125

346 timer . s t a r t (550)

347 timer1 = QTimer(s e l f)

348 timer1 . timeout . connect (s e l f . UpdateFBBall)

349 timer1 . s t a r t (100)

350

351 s e l f . ExitButton = QPushButton (’ E x i t ’ , s e l f)

352 s e l f . ExitButton . setGeometry (10 , 10 , 80 , 60)

353 s e l f . ExitButton . setStyleSheet ("background−color : red ")

354 s e l f . ExitButton . cl icked . connect (s e l f . CloseButton)

355 #−− CPU Tmp

356

357 s e l f . CPUTmpLabel = QLabel ("CPU Temp: C r i t at < 110" , s e l f)

358 s e l f . CPUTmpLabel . setGeometry (780 ,425 ,150 ,22)

359

360 s e l f .CPUTmp1 = QLabel (s e l f)

361 s e l f .CPUTmp1. setGeometry (780 ,450 ,60 ,22)

362 s e l f .CPUTmp1. setFont (s e l f . font1)

363 s e l f .CPUTmp1. setFrameShape (QFrame . Panel)

364

365 s e l f .CPUTmp2 = QLabel (s e l f)

366 s e l f .CPUTmp2. setGeometry (850 , 450 , 60 , 22)

367 s e l f .CPUTmp2. setFont (s e l f . font1)

368 s e l f .CPUTmp2. setFrameShape (QFrame . Panel)

369 # −−− box for

buttons

370 s e l f . ControlerBox = QFrame(s e l f)

371 s e l f . ControlerBox . setGeometry (660 ,105 ,580 ,60)

372 s e l f . ControlerBox . setFrameShape (QFrame . StyledPanel)

373 s e l f . ControlerBox . setLineWidth (2)

374

375 #−−− Controller

s e l e c t o r

376 s e l f . ControlModeLable = QLabel (s e l f)

377 s e l f . ControlModeLable . setGeometry (660 , 85 , 180 , 20)

378 s e l f . ControlModeLable . setText (" Controller s e t t i n g s : ")

379

APPENDIX B. SOURCE CODE 126

380 s e l f . Controller = QComboBox(s e l f)

381 s e l f . Controller . setFont (s e l f . font1)

382 s e l f . Controller . addItem ("No Control Mode selected ")

383 s e l f . Controller . addItem ("PID")

384 s e l f . Controller . addItem (" StateSpace ")

385 s e l f . Controller . addItem ("MPC")

386 s e l f . Controller . setObjectName (u"comboBox1")

387 s e l f . Controller . setGeometry (QRect (670 , 110 , 190 , 50))

388 s e l f . Controller . activated [s t r] . connect (s e l f . Control lerSelecter)

389 # −−− Edit

c o n t r o l l e r

390 s e l f . EditButton = QPushButton (" . . . " , s e l f)

391 s e l f . EditButton . setGeometry (870 , 110 , 40 , 50)

392 s e l f . EditButton . cl icked . connect (s e l f . toggle _window)

393 #−−− Input

s e l e c t o r

394

395 s e l f . InputMode = QComboBox(s e l f)

396 s e l f . InputMode . addItem ("No Input selected ")

397 s e l f . InputMode . addItem ("Hunt (not implemented) ")

398 s e l f . InputMode . addItem ("Track (not implemented) ")

399 s e l f . InputMode . setObjectName (u"comboBox2")

400 s e l f . InputMode . setGeometry (QRect(920 , 110 , 120 , 50))

401 s e l f . InputMode . activated [s t r] . connect (s e l f . InputtModeSelector)

402

403 # −−− S t a r t

Controller

404 s e l f . StartButton = QPushButton (" S t a r t " , s e l f)

405 s e l f . StartButton . setGeometry (1060 , 110 , 50 , 50)

406 s e l f . StartButton . setCheckable (True)

407 s e l f . StartButton . setStyleSheet ("background−color : red ")

408 s e l f . StartButton . cl icked . connect (s e l f . StartButton1)

409 s e l f . StartButton . cl icked . connect (s e l f . on_button_ cl icked)

410

411 # −−− Record data

412 s e l f . RecordData = QPushButton (’ Record Data ’ , s e l f)

APPENDIX B. SOURCE CODE 127

413 s e l f . RecordData . setGeometry (1130 , 110 , 100 , 50)

414 s e l f . RecordData . setCheckable (True)

415 s e l f . RecordData . setStyleSheet ("background−color : red ")

416 s e l f . RecordData . cl icked . connect (s e l f . on_button_ cl icked)

417 s e l f . RecordData . cl icked . connect (s e l f . StartValuesRecord)

418 s e l f . RecordData . pressed . connect (s e l f .MPC_Snap_Shot_True)

419 s e l f . RecordData . released . connect (s e l f .MPC_Snap_Shot_ False)

420

421 # −−− Box for

camera buttons and l a bl e

422 s e l f . CameraBoxLable = QLabel (s e l f)

423 s e l f . CameraBoxLable . setGeometry (590 , 2 , 150 , 12)

424 s e l f . CameraBoxLable . setText (’Camera Buttons : ’)

425

426 s e l f . CameraBox = QFrame(s e l f)

427 s e l f . CameraBox . setGeometry (590 , 15 , 280 , 60)

428 s e l f . CameraBox . setFrameShape (QFrame . StyledPanel)

429 s e l f . CameraBox . setLineWidth (2)

430

431 # −−− S t a r t

Camera

432 s e l f . StartCamera = QPushButton (s e l f)

433 s e l f . StartCamera . setGeometry (600 , 20 , 50 , 50)

434 s e l f . StartCamera . setCheckable (True)

435 s e l f . StartCamera . setStyleSheet ("background−color : red ")

436 s e l f . StartCamera . setIcon (QIcon (’ icons /Camera . svg . png ’))

437 s e l f . StartCamera . cl icked . connect (s e l f . on_button_ cl icked)

438 s e l f . StartCamera . cl icked . connect (s e l f . CameraStart)

439

440 s e l f . CamerashowFrame = QPushButton (’Frame ’ , s e l f)

441 s e l f . CamerashowFrame . setGeometry (670 , 20 , 50 , 50)

442 s e l f . CamerashowFrame . setCheckable (True)

443 s e l f . CamerashowFrame . setStyleSheet ("background−color : red ")

444 s e l f . CamerashowFrame . cl icked . connect (s e l f . on_button_ cl icked)

445 s e l f . CamerashowFrame . cl icked . connect (s e l f . CameraShowFrame)

446

APPENDIX B. SOURCE CODE 128

447 s e l f . CamerashowMask = QPushButton (’Mask ’ , s e l f)

448 s e l f . CamerashowMask . setGeometry (740 , 20 , 50 , 50)

449 s e l f . CamerashowMask . setCheckable (True)

450 s e l f . CamerashowMask . setStyleSheet ("background−color : red ")

451 s e l f . CamerashowMask . cl icked . connect (s e l f . on_button_ clicked)

452 s e l f . CamerashowMask . cl icked . connect (s e l f . CameraShowMask)

453

454 s e l f . CameraStopReading = QPushButton (s e l f)

455 s e l f . CameraStopReading . setGeometry (810 , 20 , 50 , 50)

456 s e l f . CameraStopReading . setCheckable (True)

457 s e l f . CameraStopReading . setChecked (True)

458 s e l f . CameraStopReading . setStyleSheet ("background−color : green")

459 s e l f . CameraStopReading . setIcon (QIcon (’ icons / Play _Pause . svg . png ’))

460 s e l f . CameraStopReading . cl icked . connect (s e l f . on_button_ cl icked)

461 s e l f . CameraStopReading . cl icked . connect (s e l f . PauseAndSetCameraValues)

462

463 # −−− Arduino box

and l ab l e

464

465 s e l f . ArduinoBoxLable = QLabel (s e l f)

466 s e l f . ArduinoBoxLable . setGeometry (980 , 2 , 150 , 12)

467 s e l f . ArduinoBoxLable . setText (’ Arduino Buttons : ’)

468

469 s e l f . ArduinoBox = QFrame(s e l f)

470 s e l f . ArduinoBox . setGeometry (980 , 15 , 240 , 60)

471 s e l f . ArduinoBox . setFrameShape (QFrame . StyledPanel)

472 s e l f . ArduinoBox . setLineWidth (2)

473

474 # −−− S e r i a l

475 s e l f . SerialConnect = QPushButton (’ S e r i a l ’ , s e l f)

476 s e l f . SerialConnect . setGeometry (990 , 20 , 50 , 50)

477 s e l f . SerialConnect . setCheckable (True)

478 s e l f . SerialConnect . setStyleSheet ("background−color : red ")

479 s e l f . SerialConnect . cl icked . connect (s e l f . on_button_ clicked)

480 s e l f . SerialConnect . cl icked . connect (s e l f . StartSerialCom)

481

APPENDIX B. SOURCE CODE 129

482 # −−− Pause

483 s e l f . PausReadWriteConnect = QPushButton (s e l f)

484 s e l f . PausReadWriteConnect . setGeometry (1060 , 20 , 50 , 50)

485 s e l f . PausReadWriteConnect . setCheckable (True)

486 s e l f . PausReadWriteConnect . setChecked (True)

487 s e l f . PausReadWriteConnect . setStyleSheet ("background−color : green")

488 s e l f . PausReadWriteConnect . setIcon (QIcon (’ icons / Play _Pause . svg . png ’))

489 s e l f . PausReadWriteConnect . cl icked . connect (s e l f . on_button_ cl icked)

490 s e l f . PausReadWriteConnect . cl icked . connect (s e l f . PauseAndSetArduinoValues)

491

492 # −−− Calibrate

493

494 s e l f . Cal ibrate = QPushButton (’ Calibrate ’ , s e l f)

495 s e l f . Cal ibrate . setGeometry (1130 , 20 , 80 , 50)

496 s e l f . Cal ibrate . setCheckable (False)

497 s e l f . Cal ibrate . pressed . connect (s e l f . CalibrateArduino _True)

498 s e l f . Cal ibrate . released . connect (s e l f . CalibrateArduino _ False)

499

500

501 # −−− Stepper

feedback angles

502

503 s e l f . Stepper1_ l ab l e = QLabel (’ Stepper 1 ’ , s e l f)

504 s e l f . Stepper1_ l ab l e . setFont (s e l f . font1)

505 s e l f . Stepper1_ l ab l e . setGeometry (335 , 0 , 100 , 26)

506

507 s e l f . Stepper1_TargetValue = QLabel (s e l f)

508 s e l f . Stepper1_TargetValue . setFont (s e l f . font1)

509 s e l f . Stepper1_TargetValue . setGeometry (335 , 22 , 160 , 26)

510 s e l f . Stepper1_TargetValue . setFrameShape (QFrame . Panel)

511

512 s e l f . Stepper1_FeedbackValue = QLabel (s e l f)

513 s e l f . Stepper1_FeedbackValue . setFont (s e l f . font1)

514 s e l f . Stepper1_FeedbackValue . setGeometry (335 , 50 , 160 , 26)

515 s e l f . Stepper1_FeedbackValue . setFrameShape (QFrame . Panel)

516

APPENDIX B. SOURCE CODE 130

517 s e l f . Stepper2_ l ab l e = QLabel (’ Stepper 2 ’ , s e l f)

518 s e l f . Stepper2_ l ab l e . setFont (s e l f . font1)

519 s e l f . Stepper2_ l ab l e . setGeometry (660 , 678 , 100 , 26)

520

521 s e l f . Stepper2_TargetValue = QLabel (s e l f)

522 s e l f . Stepper2_TargetValue . setFont (s e l f . font1)

523 s e l f . Stepper2_TargetValue . setGeometry (660 , 700 , 160 , 26)

524 s e l f . Stepper2_TargetValue . setFrameShape (QFrame . Panel)

525

526 s e l f . Stepper2_FeedbackValue = QLabel (s e l f)

527 s e l f . Stepper2_FeedbackValue . setFont (s e l f . font1)

528 s e l f . Stepper2_FeedbackValue . setGeometry (660 , 728 , 160 , 26)

529 s e l f . Stepper2_FeedbackValue . setFrameShape (QFrame . Panel)

530

531 s e l f . Stepper3_ l ab l e = QLabel (’ Stepper 3 ’ , s e l f)

532 s e l f . Stepper3_ l ab l e . setFont (s e l f . font1)

533 s e l f . Stepper3_ l ab l e . setGeometry (10 , 678 , 100 , 26)

534

535 s e l f . Stepper3_TargetValue = QLabel (s e l f)

536 s e l f . Stepper3_TargetValue . setFont (s e l f . font1)

537 s e l f . Stepper3_TargetValue . setGeometry (10 , 700 , 160 , 26)

538 s e l f . Stepper3_TargetValue . setFrameShape (QFrame . Panel)

539

540 s e l f . Stepper3_FeedbackValue = QLabel (s e l f)

541 s e l f . Stepper3_FeedbackValue . setFont (s e l f . font1)

542 s e l f . Stepper3_FeedbackValue . setGeometry (10 , 728 , 160 , 26)

543 s e l f . Stepper3_FeedbackValue . setFrameShape (QFrame . Panel)

544

545 # −−− Information

546

547 s e l f . TargetBoxLable = QLabel (s e l f)

548 s e l f . TargetBoxLable . setGeometry (760 , 172 , 100 , 12)

549 s e l f . TargetBoxLable . setText (’ Values : ’)

550

551 s e l f . TargetBox = QFrame(s e l f)

552 s e l f . TargetBox . setGeometry (760 , 190 , 500 , 155)

APPENDIX B. SOURCE CODE 131

553 s e l f . TargetBox . setFrameShape (QFrame . StyledPanel)

554 s e l f . TargetBox . setLineWidth (2)

555

556 s e l f . PositionX = QLabel (s e l f)

557 s e l f . PositionX . setGeometry (765 ,215 ,150 ,20)

558 s e l f . PositionX . setText (’ Position x : ’)

559

560 s e l f . PositionY = QLabel (s e l f)

561 s e l f . PositionY . setGeometry (765 , 235 , 150 , 20)

562 s e l f . PositionY . setText (’ Position y : ’)

563

564 s e l f . VelX = QLabel (s e l f)

565 s e l f . VelX . setGeometry (765 , 255 , 150 , 20)

566 s e l f . VelX . setText (’ Velocity x : ’)

567

568 s e l f . VelY = QLabel (s e l f)

569 s e l f . VelY . setGeometry (765 , 275 , 150 , 20)

570 s e l f . VelY . setText (’ Velocity y : ’)

571

572 s e l f . AngleX = QLabel (s e l f)

573 s e l f . AngleX . setGeometry (765 , 295 , 150 , 20)

574 s e l f . AngleX . setText (’ Angle x : ’)

575

576 s e l f . AngleY = QLabel (s e l f)

577 s e l f . AngleY . setGeometry (765 , 315 , 150 , 20)

578 s e l f . AngleY . setText (’ Angle y : ’)

579

580 #Target Column

581 # T i t l e

582 s e l f . TargetValues = QLabel (s e l f)

583 s e l f . TargetValues . setGeometry (865 , 190 , 150 , 20)

584 s e l f . TargetValues . setText (’ Target Values : ’)

585

586 s e l f . TargetPosX = QLabel (s e l f)

587 s e l f . TargetPosX . setGeometry (895 ,215 ,150 ,20)

588

APPENDIX B. SOURCE CODE 132

589 s e l f . TargetPosY = QLabel (s e l f)

590 s e l f . TargetPosY . setGeometry (895 , 235 , 150 , 20)

591

592 s e l f . TargetVelocityY = QLabel (s e l f)

593 s e l f . TargetVelocityY . setGeometry (895 , 255 , 150 , 20)

594

595 s e l f . TargetVelocityX = QLabel (s e l f)

596 s e l f . TargetVelocityX . setGeometry (895 , 275 , 150 , 20)

597

598 s e l f . TargetAngleX = QLabel (s e l f)

599 s e l f . TargetAngleX . setGeometry (895 , 295 , 150 , 20)

600

601 s e l f . TargetAngleY = QLabel (s e l f)

602 s e l f . TargetAngleY . setGeometry (895 , 315 , 150 , 20)

603

604 #Feedback Column

605 # T i t l e

606 s e l f . FeedbackValues = QLabel (s e l f)

607 s e l f . FeedbackValues . setGeometry (985 , 190 , 150 , 20)

608 s e l f . FeedbackValues . setText (’ Feedback Values : ’)

609

610 s e l f . FeedbackPosX = QLabel (s e l f)

611 s e l f . FeedbackPosX . setGeometry (1020 , 215 , 150 , 20)

612

613 s e l f . FeedbackPosY = QLabel (s e l f)

614 s e l f . FeedbackPosY . setGeometry (1020 , 235 , 150 , 20)

615

616 s e l f . FeedbackVelocityY = QLabel (s e l f)

617 s e l f . FeedbackVelocityY . setGeometry (1020 , 255 , 150 , 20)

618

619 s e l f . FeedbackVelocityX = QLabel (s e l f)

620 s e l f . FeedbackVelocityX . setGeometry (1020 , 275 , 150 , 20)

621

622 s e l f . FeedbackAngleX = QLabel (s e l f)

623 s e l f . FeedbackAngleX . setGeometry (1020 , 295 , 150 , 20)

624

APPENDIX B. SOURCE CODE 133

625 s e l f . FeedbackAngleY = QLabel (s e l f)

626 s e l f . FeedbackAngleY . setGeometry (1020 , 315 , 150 , 20)

627

628 # Error Column

629 # T i t l e

630 s e l f . ErrorValues = QLabel (s e l f)

631 s e l f . ErrorValues . setGeometry (1140 , 190 , 150 , 20)

632 s e l f . ErrorValues . setText (’ Error : ’)

633

634 s e l f . ErrorPosX = QLabel (s e l f)

635 s e l f . ErrorPosX . setGeometry (1155 , 215 , 150 , 20)

636

637 s e l f . ErrorPosY = QLabel (s e l f)

638 s e l f . ErrorPosY . setGeometry (1155 , 235 , 150 , 20)

639

640 s e l f . ErrorVelocityY = QLabel (s e l f)

641 s e l f . ErrorVelocityY . setGeometry (1155 , 255 , 150 , 20)

642

643 s e l f . ErrorVelocityX = QLabel (s e l f)

644 s e l f . ErrorVelocityX . setGeometry (1155 , 275 , 150 , 20)

645

646 s e l f . ErrorAngleX = QLabel (s e l f)

647 s e l f . ErrorAngleX . setGeometry (1155 , 295 , 150 , 20)

648

649 s e l f . ErrorAngleY = QLabel (s e l f)

650 s e l f . ErrorAngleY . setGeometry (1155 , 315 , 150 , 20)

651

652 #−− Hz

653 s e l f . Hzbox = QFrame(s e l f)

654 s e l f . Hzbox . setGeometry (760 , 375 , 500 , 30)

655 s e l f . Hzbox . setFrameShape (QFrame . StyledPanel)

656 s e l f . Hzbox . setLineWidth (2)

657

658 s e l f . HzLable1 = QLabel (’GUI Hz ’ , s e l f)

659 s e l f . HzLable1 .move(790 ,350)

660

APPENDIX B. SOURCE CODE 134

661 s e l f .GUIHz = QLabel (s e l f)

662 s e l f .GUIHz. setGeometry (800 , 380 , 100 , 20)

663

664 s e l f . HzLable2 = QLabel (’Memory Hz ’ , s e l f)

665 s e l f . HzLable2 .move(870 , 350)

666

667 s e l f .SharedMemHz = QLabel (s e l f)

668 s e l f .SharedMemHz. setGeometry (880 , 380 , 150 , 20)

669

670 s e l f . HzLable3 = QLabel (’BackEnd Hz ’ , s e l f)

671 s e l f . HzLable3 .move(950 , 350)

672

673 s e l f . BackEndHz = QLabel (s e l f)

674 s e l f . BackEndHz . setGeometry (960 , 380 , 150 , 20)

675

676 s e l f . HzLable4 = QLabel (’ Uart Hz ’ , s e l f)

677 s e l f . HzLable4 .move(1030 , 350)

678

679 s e l f . UartComHz = QLabel (s e l f)

680 s e l f . UartComHz . setGeometry (1040 , 380 , 150 , 20)

681

682 s e l f . HzLable5 = QLabel (’Camera Hz ’ , s e l f)

683 s e l f . HzLable5 .move(1100 , 350)

684

685 s e l f . CameraHz = QLabel (s e l f)

686 s e l f . CameraHz . setGeometry (1120 , 380 , 150 , 20)

687

688 s e l f . HzLable6 = QLabel (’ Controller Hz ’ , s e l f)

689 s e l f . HzLable6 .move(1180 , 350)

690

691 s e l f . ControllerHz = QLabel (s e l f)

692 s e l f . ControllerHz . setGeometry (1200 , 380 , 150 , 20)

693

694 # −−− Log Box

695

696 s e l f . LogBoxLable = QLabel (s e l f)

APPENDIX B. SOURCE CODE 135

697 s e l f . LogBoxLable . setGeometry (970 ,430 , 160 ,20)

698 s e l f . LogBoxLable . setText (’ Information Box : ’)

699

700 s e l f . LogBox = QTextEdit (s e l f)

701 s e l f . LogBox . setGeometry (970 , 450 , 300 , 320)

702 # −−−

703

704

705 def on_button_ cl icked (s e l f) :

706 sender = s e l f . sender ()

707 i f sender . isChecked () :

708 sender . setStyleSheet ("background−color : green")

709 else :

710 sender . setStyleSheet ("background−color : red ")

711

712 # −−− Update

Informative Values

713

714 def UpdateInformativeValues (s e l f) :

715 s e l f . Stepper1_TargetValue . setText (’ Target Angle : ’+ s t r (round (Config .

Stepper1_Target , 3)))

716 s e l f . Stepper1_FeedbackValue . setText (’ Feedback Angle : ’+ s t r (round (Config .

Stepper1_Feedback , 3)))

717

718 s e l f . Stepper2_TargetValue . setText (’ Target Angle : ’ + s t r (round (Config .

Stepper2_Target , 3)))

719 s e l f . Stepper2_FeedbackValue . setText (’ Feedback Angle : ’ + s t r (round (Config .

Stepper2_Feedback , 3)))

720

721 s e l f . Stepper3_TargetValue . setText (’ Target Angle : ’ + s t r (round (Config .

Stepper3_Target , 3)))

722 s e l f . Stepper3_FeedbackValue . setText (’ Feedback Angle : ’ + s t r (round (Config .

Stepper3_Feedback , 3)))

723

724 s e l f . TargetPosX . setText (s t r (Config . Target _Pos_x))

725 s e l f . TargetPosY . setText (s t r (Config . Target _Pos_y))

APPENDIX B. SOURCE CODE 136

726 s e l f . TargetVelocityY . setText (s t r (Config . Target_Vel_x))

727 s e l f . TargetVelocityX . setText (s t r (Config . Target_Vel_y))

728 s e l f . TargetAngleX . setText (s t r (round (Config .U_rad_x/RtD , 3)))

729 s e l f . TargetAngleY . setText (s t r (round (Config .U_rad_y/RtD , 3)))

730

731 s e l f . FeedbackPosX . setText (s t r (Config .cam_x))

732 s e l f . FeedbackPosY . setText (s t r (Config .cam_y))

733 s e l f . FeedbackVelocityY . setText (s t r (Config .cam_x_ vel))

734 s e l f . FeedbackVelocityX . setText (s t r (Config .cam_y_ vel))

735 s e l f . FeedbackAngleX . setText (s t r (Config .U_x_v_ fb))

736 s e l f . FeedbackAngleY . setText (s t r (Config .U_y_v_ fb))

737

738 s e l f . ErrorPosX . setText (s t r (round (Config . Target_Pos_x − Config .cam_x , 2)))

739 s e l f . ErrorPosY . setText (s t r (round (Config . Target_Pos_y − Config .cam_y , 2)))

740 s e l f . ErrorVelocityY . setText (s t r (− Config .cam_x_ vel))

741 s e l f . ErrorVelocityX . setText (s t r (− Config .cam_y_ vel))

742 s e l f . ErrorAngleX . setText (s t r (round (Config .U_rad_x/RtD − Config .U_x_v_fb , 2)))

743 s e l f . ErrorAngleY . setText (s t r (round (Config .U_rad_y/RtD − Config .U_y_v_fb , 2)))

744

745 s e l f .GUIHz. setText (’X ’)

746 s e l f .SharedMemHz. setText (s t r (round (Config . SharedMem_Hz, 2)))

747 s e l f . BackEndHz . setText (s t r (round (Config . BackEnd_Hz, 2)))

748 s e l f . UartComHz . setText (s t r (round (Config . UartCom_Hz, 2)))

749 s e l f . CameraHz . setText (s t r (round (Config .Cam_Hz, 1)))

750 s e l f . ControllerHz . setText (s t r (round (Config . Controller _Hz, 1)))

751 # −−− CPU TMP

752 i f platform . system () == ’ Linux ’ :

753 s e l f . output = subprocess . check_output ([’ sensors ’])

754 s e l f . temp1 = s e l f . output . s p l i t () [5] . decode ()

755 s e l f . temp2 = s e l f . output . s p l i t () [1 4] . decode ()

756 s e l f .CPUTmp1. setText (s e l f . temp1)

757 s e l f .CPUTmp2. setText (s e l f . temp2)

758 else :

759 s e l f .CPUTmp1. setText (’ only linux ’)

760 s e l f .CPUTmp2. setText (’ only linux ’)

761

APPENDIX B. SOURCE CODE 137

762 # s e l f . FB_ b a l l = QPoint(400 +(700 / 400) * Config .cam_x , 400 −(700/ 400) * Config .cam_y)

763 # i f s e l f . Target _ b a l l _pos i s None :

764 # s e l f . Target _ b a l l _pos = QPoint (400 , 400)

765 # s e l f . update ()

766

767 s e l f . log _ s t r i n g = ’ \n ’ . join (Config . Log)

768

769 i f s e l f . log _ s t r i n g ! = s e l f . log _ s t r i n g _old :

770 s e l f . LogBox . setText (s e l f . log _ s t r i n g)

771

772 s e l f . log _ s t r i n g _old = s e l f . log _ s t r i n g

773

774 i f not Config . Camera_Runnig :

775 s e l f . CamerashowMask . setEnabled (False)

776 s e l f . CamerashowMask . setChecked (False)

777 s e l f . CamerashowMask . setStyleSheet ("background−color : red ")

778 Config . Camera_show_Mask = 0

779 s e l f . CamerashowFrame . setEnabled (False)

780 s e l f . CamerashowFrame . setChecked (False)

781 s e l f . CamerashowFrame . setStyleSheet ("background−color : red ")

782 Config . Camera_show_Frame = 0

783 else :

784 s e l f . CamerashowMask . setEnabled (True)

785 s e l f . CamerashowFrame . setEnabled (True)

786

787

788

789 def StartValuesRecord (s e l f) :

790 i f Config . Record_Data == False :

791 Config . Record_Data = True

792 else :

793 Config . Record_Data = False

794

795 def PauseAndSetArduinoValues (s e l f) :

796 i f Config . Paus_New_Arduino_Values == False :

797 Config . Paus_New_Arduino_Values = True

APPENDIX B. SOURCE CODE 138

798 else :

799 Config . Paus_New_Arduino_Values = False

800 # −−− S t a r t button

action

801 def StartButton1 (s e l f) :

802 i f Config . S t a r t == False :

803 Config . S t a r t = True

804 else :

805 Config . S t a r t = False

806

807 # −−− Camera

808

809 def CameraStart (s e l f) :

810 i f Config . Camera_ S t a r t == False :

811 Config . Camera_ S t a r t = True

812 else :

813 Config . Camera_ S t a r t = False

814

815 def CameraShowFrame(s e l f) :

816 i f Config . Camera_show_Frame == 0 :

817 Config . Camera_show_Frame = 1

818 else :

819 Config . Camera_show_Frame = 0

820

821 def CameraShowMask(s e l f) :

822 i f Config . Camera_show_Mask == 0 :

823 Config . Camera_show_Mask= 1

824 else :

825 Config . Camera_show_Mask = 0

826

827 def PauseAndSetCameraValues (s e l f) :

828 i f Config . Camera_Pause < 0 . 0 :

829 Config . Camera_Pause = 12.34

830 else :

831 Config . Camera_Pause = −5.67

832

APPENDIX B. SOURCE CODE 139

833

834 #−− S t a r t Com

835 def StartSerialCom (s e l f) :

836 i f Config . S t a r t _ S e r i a l _Com == False :

837 Config . S t a r t _ S e r i a l _Com = True

838 else :

839 Config . S t a r t _ S e r i a l _Com = False

840

841

842 def StartI2CCom (s e l f) :

843 i f Config . S t a r t _I2C_Com == False :

844 Config . S t a r t _I2C_Com = True

845 else :

846 Config . S t a r t _I2C_Com = False

847

848 def CalibrateArduino _True (s e l f) :

849 i f Config . S e r i a l _Com_Running and not Config . Running :

850 Config . Calibrate _Arduino = 10.56

851 Config . Log . append(’ Calibrate signal ’)

852

853 def CalibrateArduino _ False (s e l f) :

854 Config . Calibrate _Arduino = −5.65

855

856 def MPC_Snap_Shot_True (s e l f) :

857 i f Config . Running and Config . Control_Mode == ’MPC’ and not Config . Record_Data :

858 i f Config .MPC_SnapShot < 0 . 0 :

859 Config .MPC_SnapShot = 10.57

860 Config . Log . append(’MPC_Snap ’)

861

862 def MPC_Snap_Shot_ False (s e l f) :

863 Config .MPC_SnapShot = −5.65

864

865 # −−− Write Control

Mode to config f i l e

866 def Control lerSelecter (s e l f , t e x t) :

867 Config . Control_Mode = t e x t

APPENDIX B. SOURCE CODE 140

868

869 # −−− Write Input

Mode to config f i l e

870 def InputtModeSelector (s e l f , t e x t) :

871 Config . Input_Mode = t e x t

872

873 def UpdateFBBall (s e l f) :

874 s e l f . FB_ b a l l = QPoint(400 + (700 / 400) * Config .cam_x , 400 − (700 / 400) *

Config .cam_y)

875 i f s e l f . Target _ b a l l _pos i s None :

876 s e l f . Target _ b a l l _pos = QPoint (400 , 400)

877 s e l f . update ()

878

879 def paintEvent (s e l f , event) :

880 painter = QPainter (s e l f)

881 pen = QPen(Qt . black , 2 , Qt . SolidLine)

882 brush = QColor (0 , 0 , 0 , 0)

883 painter . setPen (pen)

884 painter . setBrush (brush)

885 painter . drawEllipse (s e l f . c i r c l e _ rect)

886

887 i f s e l f . Target _ b a l l _pos :

888

889 brush1 = QColor (255 , 0 , 0)

890 painter . setBrush (brush1)

891 painter . drawEllipse (s e l f . Target_ b a l l _pos , 10 , 10)

892 brush2 = QColor (255 , 255 , 0)

893 painter . setBrush (brush2)

894 painter . drawEllipse (s e l f . FB_ ball , 5 , 5)

895

896 def mousePressEvent (s e l f , event) :

897 i f event . button () == Qt . LeftButton :

898 i f s e l f . c i r c l e _ rect . contains (event . pos ()) :

899 Config . Target_Pos_x = round((400 / 700) * (−400 + event . x ()) , 1)

900 Config . Target_Pos_y = round((400 / 700) * (400 − event . y ()) , 1)

901 s e l f . Target _ b a l l _pos = event . pos ()

APPENDIX B. SOURCE CODE 141

902 # s e l f . update ()

903

904 def mouseMoveEvent(s e l f , event) :

905

906 i f s e l f . c i r c l e _ rect . contains (event . pos ()) :

907 Config . Target _Pos_x = round((400 / 700) * (−400 + event . x ()) , 1)

908 Config . Target _Pos_y = round((400 / 700) * (400 − event . y ()) , 1)

909 s e l f . Target _ b a l l _pos = event . pos ()

910 # s e l f . update ()

911

912

913

914 def EditConfig (s e l f) :

915 print (’ ops ’)

916 s e l f . ss _ config . show ()

917 ControllerCode = Config . Control_Mode + ’ Config ’

918

919 def toggle _window(s e l f) :

920 i f Config . Control_Mode == ’PID ’ :

921 i f not s e l f . PID_ config . i s V i s i b l e () :

922 s e l f . PID_ config . setWindowFlags (Qt . WindowStaysOnTopHint)

923 s e l f . PID_ config . show ()

924 s e l f . PID_ config . PGain . setValue (Config . PID_P_x)

925 s e l f . PID_ config . DGain . setValue (Config . PID_D_x)

926 s e l f . PID_ config . IGain . setValue (Config . PID_ I _x)

927

928 i f Config . Control_Mode == ’ StateSpace ’ :

929 i f not s e l f . ss _ config . i s V i s i b l e () :

930 s e l f . ss _ config . setWindowFlags (Qt . WindowStaysOnTopHint)

931 s e l f . ss _ config . show ()

932 s e l f . ss _ config . k1Gain . setValue (Config . SS_k1_x/ 10)

933 s e l f . ss _ config . k2Gain . setValue (Config . SS_k2_x/ 10)

934

935 i f Config . Control_Mode == ’MPC’ :

936 i f not s e l f .MPC_ config . i s V i s i b l e () :

937 s e l f .MPC_ config . setWindowFlags (Qt . WindowStaysOnTopHint)

APPENDIX B. SOURCE CODE 142

938 s e l f .MPC_ config . show ()

939 s e l f .MPC_ config . k1Gain . setValue (Config .MPC_Q_xp/ 10)

940 s e l f .MPC_ config . k2Gain . setValue (Config .MPC_Q_xv/ 10)

941 s e l f .MPC_ config . k3Gain . setValue (Config .MPC_R_Vin/ 10)

942

943 def CloseButton (s e l f) :

944 # Display a confirmation dialog before quitt ing the application

945 reply = QMessageBox . question (s e l f , ’ Confirm E x i t ’ , ’ Are you sure you want to e x i t

? ’ ,

946 QMessageBox . Yes | QMessageBox .No, QMessageBox .No

)

947

948 i f reply == QMessageBox . Yes :

949 QApplication . closeAllWindows ()

950

951 def closeEvent (s e l f , event) :

952 # Set a f l a g to signal the threads to e x i t

953 QApplication . closeAllWindows ()

954 Config . e x i t _ f l a g = True

B.3 CameraCode.py

1 import cv2

2 import numpy as np

3 import time

4 from multiprocessing import shared_memory

5 import multiprocessing

6 import Config as C

7 import platform

8

9 PrevT = time . time ()

10

11 lock = multiprocessing . Lock ()

12

13 shm = shared_memory. SharedMemory(name=shared_data .name)

APPENDIX B. SOURCE CODE 143

14 shm_ array = np . ndarray (C.Shm_ array . shape , dtype=np . f loat16 , buffer=shm. buf)

15 #shm_ array = C.Shm_ array

16 #shm_ array = np . zeros (20)

17

18 l a s t _ values _x = []

19 l a s t _ values _y = []

20 l a s t _ values _v_x = []

21 l a s t _ values _v_y = []

22

23

24

25 Camera_Pause = −5.67

26

27 ang_x = 0

28 ang_y = 0

29

30 # Define the lower and upper bounds of the orange color in HSV format

31 orange_lower = np . array ([0 , 88 , 85])

32 orange_upper = np . array ([1 3 , 255 , 201])

33 Show_Frame = 0

34 Show_Mask = 0

35

36 Frame = False

37 Mask = False

38 gx = 0

39 gy = 0

40 gx_ vel = 0

41 gy_ vel = 0

42

43

44 gx_prev = 0

45 gy_prev = 0

46

47

48

49

APPENDIX B. SOURCE CODE 144

50 gx_ vel _prev = 0.0

51 gy_ vel _prev = 0.0

52

53 # I n i t i a l i z e the video stream

54 i f platform . system () == ’ Linux ’ :

55 cap = cv2 . VideoCapture (0)

56 e l i f platform . system () == ’Windows ’ :

57 cap = cv2 . VideoCapture (1 , cv2 .CAP_DSHOW)

58

59 #cap = cv2 . VideoCapture (1 , cv2 .CAP_DSHOW)

60 #cap = cv2 . VideoCapture (0)

61

62

63 # Set the video resolution to be square , centered on (0 , 0)

64 width = 640

65 height = 480

66

67 cap . set (cv2 .CAP_PROP_FRAME_WIDTH, width)

68 cap . set (cv2 .CAP_PROP_FRAME_HEIGHT, height)

69

70 def average_ f i l t e r _x (value) :

71 l a s t _ values _x . append(value)

72 i f len (l a s t _ values _x) > 3 :

73 l a s t _ values _x . pop(0)

74 return np . average (l a s t _ values _x)

75

76 def average_ f i l t e r _y (value) :

77 l a s t _ values _y . append(value)

78 i f len (l a s t _ values _y) > 3 :

79 l a s t _ values _y . pop(0)

80 return np . average (l a s t _ values _y)

81

82

83

84

85 while True :

APPENDIX B. SOURCE CODE 145

86 # Read a frame from the video stream

87 ret , frame1 = cap . read ()

88

89 i f r e t == False :

90 lock . acquire ()

91 shm_ array [4] = round (1 , 0)

92 shm_ array [5] = round (9 , 0)

93 shm_ array [6] = round (9 , 0)

94 shm_ array [7] = round (9 , 0)

95 lock . release ()

96 break

97 # Crop frame to only include platform

98 frame2 = np . zeros ((480 , 640 , 3) , dtype=np . uint8)

99 cv2 . c i r c l e (frame2 , (320 , 240) , 205 , (255 , 255 , 255) , −1)

100 frame = cv2 . bitwise _and(frame2 , frame1)

101

102 CurrT = time . time ()

103 dt = CurrT − PrevT

104 PrevT = CurrT

105 i f dt == 0 :

106 Hz = 9999.99

107 else :

108 Hz = 1 / dt

109

110 # Convert the frame from BGR color space to HSV color space

111 hsv = cv2 . cvtColor (frame , cv2 .COLOR_BGR2HSV)

112

113 # Threshold the image to i s o l a t e the orange color

114 mask = cv2 . inRange (hsv , orange_lower , orange_upper)

115

116 # Find the contours in the mask

117 contours , hierarchy = cv2 . findContours (mask , cv2 .RETR_EXTERNAL, cv2 .CHAIN_APPROX_

SIMPLE)

118

119 # I f a contour i s found , get i t s center and draw a c i r c l e around i t

120 i f len (contours) > 0 :

APPENDIX B. SOURCE CODE 146

121 c = max(contours , key=cv2 . contourArea)

122 ((x , y) , radius) = cv2 . minEnclosingCircle (c)

123 i f radius > 10:

124 cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , i n t (radius) , (0 , 255 , 255) , 2)

125 cv2 . c i r c l e (frame , (i n t (x) , i n t (y)) , 2 , (0 , 255 , 255) , −1)

126 # Scale the coordinate system in terms of the fisheye lens

127 lock . acquire ()

128 ang_x = shm_ array [8]

129 ang_y = shm_ array [9]

130 lock . release ()

131

132 gx = −(x − width / 2)

133 gy = −(y − (height +16) / 2)

134

135 #gx = −(x − width / 2) / np . cos (ang_x * 2)

136 #gy = −(y − (height + 16) / 2) / np . cos (ang_y * 2)

137

138 i f −1 < (gx − gx_prev) < 1 :

139 gx = gx_prev

140

141 i f −1 < (gy − gy_prev) < 1 :

142 gy = gy_prev

143

144

145 #gx = average_ f i l t e r _x (gx)

146 #gy = average_ f i l t e r _y (gy)

147

148 i f gx_prev == gx :

149 gx_ vel = 0

150 else :

151 gx_ vel = (gx − gx_prev) / dt

152 i f gy_prev == gy :

153 gy_ vel = 0

154 else :

155 gy_ vel = (gy − gy_prev) / dt

156

APPENDIX B. SOURCE CODE 147

157 gx_prev = gx

158 gy_prev = gy

159 else :

160 gx = 0

161 gy = 0

162 gx_ vel = 0

163 gy_ vel = 0

164

165 i f Camera_Pause > 0 . 0 :

166 gx = 0

167 gy = 0

168 gx_ vel = 0

169 gy_ vel = 0

170

171 lock . acquire ()

172 shm_ array [4] = round (gx , 0)

173 shm_ array [5] = round (gy , 0)

174 shm_ array [6] = round (gx_ vel , 0)

175 shm_ array [7] = round (gy_ vel , 0)

176 Show_Frame = i n t (shm_ array [2 1])

177 Show_Mask = i n t (shm_ array [2 2])

178 Camera_Pause =shm_ array [2 3]

179 shm_ array [2 4] = Hz

180 lock . release ()

181

182

183 i f Show_Frame :

184 cv2 . imshow("frame" , frame)

185 Frame = True

186 e l i f (not Show_Frame and Frame) :

187 cv2 . destroyWindow ("frame")

188 Frame = False

189

190 i f Show_Mask :

191 cv2 . imshow("mask" , mask)

192 Mask = True

APPENDIX B. SOURCE CODE 148

193 e l i f (not Show_Mask and Mask) :

194 cv2 . destroyWindow ("mask")

195 Mask = False

196

197 # Wait for a key press and e x i t i f ’q ’ i s pressed

198 i f cv2 . waitKey (1) & 0xFF == ord (’q ’) :

199 break

200

201 # Release the video stream and close a l l windows

202 cap . release ()

203 cv2 . destroyAllWindows ()

B.4 MPC.py

1 import time

2 import pickle

3 import platform

4

5 i f platform . system () == ’ Linux ’ :

6 print (’ import Mpc_Linux ’)

7 from MPC_code_Linux_ 05. cpg_ solver import cpg_ solve

8 e l i f platform . system () == ’Windows ’ :

9 from MPC_code . cpg_ solver import cpg_ solve

10

11 from multiprocessing import shared_memory

12 import numpy as np

13 import multiprocessing

14 import Config

15 import datetime

16

17 u_ t r a j = np . array ([0 , 0])

18

19 i f platform . system () == ’ Linux ’ :

20 print (’open Mpc_Linux ’)

21 with open(’MPC_code_Linux_05/problem . pickle ’ , ’ rb ’) as f :

APPENDIX B. SOURCE CODE 149

22 problem = pickle . load (f)

23 e l i f platform . system () == ’Windows ’ :

24 with open(’MPC_code/problem . pickle ’ , ’ rb ’) as f :

25 problem = pickle . load (f)

26

27 lock = multiprocessing . Lock ()

28 shm = shared_memory. SharedMemory(name=shared_data .name)

29 shm_ array = np . ndarray (Config .Shm_ array . shape , dtype=np . f loat16 , buffer=shm. buf)

30

31

32 # Assign Parameters for MPC

33 Apar = np . array ([[0 . 0 , 1 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , 0 . 0 , 0 . 0 , 1 . 0] , [0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0]])

34 Bpar = np . array ([[0 . 0 , 0 . 0] , [7000.0 , 0 . 0] , [0 . 0 , 0 . 0] , [0 . 0 , 7 0 0 0 . 0]])

35

36 problem . param_ d i c t [’A ’] . value = Apar

37 problem . param_ d i c t [’B ’] . value = Bpar

38

39

40 x_pos_prev = 0

41 y_pos_prev = 0

42 x_ vel = 0

43 y_ vel = 0

44 t3 = 0

45

46

47 PrevT = −0.001

48

49 lock . acquire ()

50 MPC_Q_xp = shm_ array [1 5]

51 MPC_Q_xv = shm_ array [1 6]

52 MPC_R_Vin = shm_ array [1 7]

53 lock . release ()

54

55 MPC_q = np . diag ([MPC_Q_xp , MPC_Q_xv , MPC_Q_xp , MPC_Q_xv])

56 MPC_ r = np . diag ([MPC_R_Vin , MPC_R_Vin])

APPENDIX B. SOURCE CODE 150

57

58 problem . param_ d i c t [’ Qsqrt ’] . value = MPC_q

59 problem . param_ d i c t [’ Rsqrt ’] . value = MPC_ r

60 SnapShotRunnig = False

61 SnapTaken = False

62 WriteSnap = False

63 TimeAdded = False

64 path = ’ SavedData/Snap/ ’

65 sine _out = 0

66 while True :

67

68 CurrT = time . time ()

69 dt = CurrT − PrevT

70 PrevT = CurrT

71 i f dt == 0 :

72 Hz = 9999.99

73 else :

74 Hz = round(1 /dt , 2)

75 # print (dt)

76

77 lock . acquire ()

78 #sine = shm_ array [2]

79 #shm_ array [3] = sine _out

80 x_pos = shm_ array [4]

81 y_pos = shm_ array [5]

82 x_ vel = shm_ array [6]

83 y_ vel = shm_ array [7]

84 s_ r = np . array ([[shm_ array [0]] , [0] , [shm_ array [1]] , [0]])

85 shm_ array [8] = round (u_ t r a j [0] , 4)

86 shm_ array [9] = round (u_ t r a j [1] , 4)

87 shm_ array [1 8] = Hz

88 MPC_SnapShot = shm_ array [1 9]

89

90 lock . release ()

91

92 s_ s t a t e s = np . array ([[x_pos] , [x_ vel] , [y_pos] , [y_ vel]])

APPENDIX B. SOURCE CODE 151

93

94 s_ error = (s_ r − s_ s t a t e s) # I n i t i a l s t a t e

95

96 problem . param_ d i c t [’ s_ error ’] . value = s_ error

97 problem . r e g i s t e r _ solve (’CPG ’ , cpg_ solve)

98 problem . solve (method= ’CPG ’)

99 angle_ l i s t = problem . var _ d i c t [’U’] . value

100 s t a t e _ l i s t = problem . var _ d i c t [’ S ’] . value

101 u_ t r a j = angle_ l i s t [: , 1]

102 #sine _out = sine

103 # −−− Take a snapshot of the

predict

104 i f MPC_SnapShot > 0.0 and not SnapShotRunnig :

105 StartTime = time . time ()

106 FB_U_x = []

107 FB_P_x = []

108 FB_V_x = []

109 FB_U_y = []

110 FB_P_y = []

111 FB_V_y = []

112 TimeList = []

113 SnapShotRunnig = True

114

115 i f SnapShotRunnig :

116 RunTime = time . time () − StartTime

117 i f RunTime > 1 :

118 i f not SnapTaken :

119 Predicted _U_x = angle_ l i s t [0 , :]

120 Predicted _S_P_x = s t a t e _ l i s t [0 , :]

121 Predicted _S_V_x = s t a t e _ l i s t [1 , :]

122 Predicted _U_y = angle_ l i s t [1 , :]

123 Predicted _S_P_y = s t a t e _ l i s t [2 , :]

124 Predicted _S_V_y = s t a t e _ l i s t [3 , :]

125 SnapTaken = True

126 FB_U_x . append(u_ t r a j [0])

127 FB_P_x . append(s_ error [0])

APPENDIX B. SOURCE CODE 152

128 FB_V_x . append(s_ error [1])

129

130 FB_U_y . append(u_ t r a j [1])

131 FB_P_y . append(s_ error [2])

132 FB_V_y . append(s_ error [3])

133 TimeList . append(RunTime−1)

134

135 i f RunTime > 2 :

136 SnapShotRunnig = False

137 WriteSnap = True

138 FileCreated = False

139 n_ predict = 0

140 n_feedback = 0

141

142 i f WriteSnap :

143 i f not FileCreated :

144 now = datetime . datetime .now()

145 s t a r t _Record_time = time . time ()

146 timestamp = now. s t r f t i m e ("%Y−%m−%d_%H−%M−%S")

147 filename_ Predicted _x = f " { path } MPC SnapShot Predicted x { timestamp } . t x t "

148 filename_ Predicted _y = f " { path } MPC SnapShot Predicted y { timestamp } . t x t "

149 filename_FB_x = f " { path } MPC SnapShot True x { timestamp } . t x t "

150 filename_FB_y = f " { path } MPC SnapShot True y { timestamp } . t x t "

151 FileCreated = True

152

153 i f (len (Predicted _U_x) > n_ predict) :

154 with open(filename_ Predicted _x , "a") as f i l e _ 1 :

155 data1 = f ’ { Predicted _U_x [n_ predict] } { Predicted _S_P_x [n_ predict] } {

Predicted _S_V_x [n_ predict] } ’

156 f i l e _ 1 . write (data1 + ’ \n ’)

157

158 with open(filename_ Predicted _y , "a") as f i l e _ 2 :

159 data2 = f ’ { Predicted _U_y [n_ predict] } { Predicted _S_P_y [n_ predict] } {

Predicted _S_V_y [n_ predict] } ’

160 f i l e _ 2 . write (data2 + ’ \n ’)

161

APPENDIX B. SOURCE CODE 153

162 n_ predict += 1

163

164

165 i f (len (FB_U_x) > n_feedback) :

166 with open(filename_FB_x , "a") as f i l e _ 3 :

167 data3 = f ’ {FB_U_x [n_feedback] } {FB_P_x [n_feedback] } {FB_V_x [n_feedback] }

{ TimeList [n_feedback] } ’

168 f i l e _ 3 . write (data3 + ’ \n ’)

169

170 with open(filename_FB_y , "a") as f i l e _ 4 :

171 data4 = f ’ {FB_U_y [n_feedback] } {FB_P_y [n_feedback] } {FB_V_y [n_feedback] }

{ TimeList [n_feedback] } ’

172 f i l e _ 4 . write (data4 + ’ \n ’)

173 n_feedback += 1

174

175 else :

176 f i l e _ 1 . close ()

177 f i l e _ 2 . close ()

178 f i l e _ 3 . close ()

179 f i l e _ 4 . close ()

180 WriteSnap = False

B.5 C_CodeGenerator.py

1 import cvxpy as cp

2 import numpy as np

3

4 # define dimensions

5 H, n , m = 10 , 4 , 2

6

7 # define variables

8 U = cp . Variable ((m, H) , name= ’U’)

9 S = cp . Variable ((n , H+1) , name= ’ S ’)

10

11 # define parameters

APPENDIX B. SOURCE CODE 154

12 Q = cp . Parameter ((n , n) , name= ’ Qsqrt ’)

13 R = cp . Parameter ((m, m) , name= ’ Rsqrt ’)

14 A = cp . Parameter ((n , n) , name= ’A ’)

15 B = cp . Parameter ((n , m) , name= ’B ’)

16 s_ error = cp . Parameter ((n , 1) , name= ’ s_ error ’)

17 dt = 0.05

18

19

20 # discrete −time dynamics

21 Apar = np . array ([[0 . 0 , 1 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , 0 . 0 , 0 . 0 , 0 . 0] , [0 . 0 , 0 . 0 , 0 . 0 , 1 . 0] , [0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0]])

22 Bpar = np . array ([[0 . 0 , 0 . 0] , [7000.0 , 0 . 0] , [0 . 0 , 0 . 0] , [0 . 0 , 7 0 0 0 . 0]])

23 A . value = Apar

24 B . value = Bpar

25

26 # cost

27 Q. value = np . diag ([1 . 0 , 0 . 1 , 1 . 0 , 0 . 1])

28 R . value = np . diag ([0 . 0 0 0 0 , 0 .0000])

29

30 # measurement

31 s_ error . value = np . array ([[2 0] , [0] , [2 0] , [0]])

32

33

34 cost = 0.0

35 constr = []

36 # define objective

37 for t in range (H) :

38 #Make the Cost Function in terms of t o t a l error from reference point + control angle

39 cost += cp .sum_squares (Q@(S [: , t : t +1]))

40 cost += cp .sum_squares (R@(U[: , t]))

41 #Update position and v e l o c i t y s t a t e s for the next timestep

42 constr . append(S [: , t +1] == S [: , t] + dt * (A @ S [: , t] + B@U[: , t]))

43 #Constrain the control angle in radians

44 constr += [U[: , t] <= 0 . 4 3]

45 constr += [U[: , t] >= −0.43]

46 constr += [S [: , 0] == s_ error [: , 0]]

APPENDIX B. SOURCE CODE 155

47

48 #Solve the problem based on the optimal t r a j e c t o r y and input angle from the MPC

49 problem = cp . Problem (cp . Minimize (cost) , constr)

50

51

52 val = problem . solve ()

53

54

55 print (val)

56 print (U. value)

57 from cvxpygen import cpg

58

59 cpg . generate_code (problem , code_ dir = ’MPC_code ’)

B.6 PID.py

1 from multiprocessing import shared_memory

2 import numpy as np

3 import multiprocessing

4 import Config

5 import time

6

7 PrevT = time . time ()

8

9 U_x = 0

10 U_y = 0

11

12 i n t e g r a l _x = 0

13 i n t e g r a l _y = 0

14

15 Feedback_x = 0

16 Feedback_y = 0

17

18 PrevError _x = 0

19 PrevError _y = 0

APPENDIX B. SOURCE CODE 156

20 RtD = (3.14 / 180)

21 Run = True

22

23 lock = multiprocessing . Lock ()

24 shm = shared_memory. SharedMemory(name=shared_data .name)

25 shm_ array = np . ndarray (Config .Shm_ array . shape , dtype=np . f loat16 , buffer=shm. buf)

26

27 lock . acquire ()

28 Pid_p_x = shm_ array [1 0]

29 Pid_d_x = shm_ array [1 1]

30 Pid_ i _x = shm_ array [1 2]

31

32 Pid_p_y = shm_ array [1 0]

33 Pid_d_y = shm_ array [1 1]

34 Pid_ i _y = shm_ array [1 2]

35 lock . release ()

36

37 while Run :

38

39 CurrT = time . time ()

40 dt = CurrT − PrevT

41 PrevT = CurrT

42 i f dt == 0 :

43 HZ = 9999.99

44 else :

45 HZ = round(1 / dt , 2)

46

47 lock . acquire ()

48 Target _x_p = shm_ array [0]

49 Target _y_p = shm_ array [1]

50 Feedback_x_p = shm_ array [4]

51 Feedback_y_p = shm_ array [5]

52 shm_ array [8] = round (U_x , 4)

53 shm_ array [9] = round (U_y , 4)

54 shm_ array [1 8] = HZ

55 # print (shm_ array [4])

APPENDIX B. SOURCE CODE 157

56 lock . release ()

57

58

59

60 #−−− Pid x

61 Error _x = Feedback_x_p − Target _x_p

62

63 DeDt_x = (Error _x−PrevError _x) / dt

64 i n t e g r a l _x = i n t e g r a l _x + Error _x * dt

65

66 PrevError _x = Error _x

67

68 U_x = Pid_p_x * Error _x + Pid_d_x *DeDt_x + Pid_ i _x * i n t e g r a l _x

69 #−−− Pid y

70 Error _y = Feedback_y_p − Target _y_p

71

72 DeDt_y = (Error _y − PrevError _y) / dt

73 i n t e g r a l _y = i n t e g r a l _y + Error _y * dt

74 PrevError _y = Error _y

75

76 U_y = Pid_p_y * Error _y + Pid_d_x * DeDt_y + Pid_ i _y * i n t e g r a l _y

77

78 print (Pid_p_x * Error _x , Pid_d_x *DeDt_x)

79

80 time . sleep (0 . 0 1)

B.7 State_Space.py

1 import Config

2 import time

3 from multiprocessing import shared_memory

4 import numpy as np

5 import multiprocessing

6

7 global shm

APPENDIX B. SOURCE CODE 158

8 global shm_ array

9

10 PrevT = time . time ()

11

12 U_x = 0

13 U_y = 0

14

15 SS_k1_x = Config . SS_k1_x

16 SS_k2_x = Config . SS_k2_x

17

18 SS_k1_y = Config . SS_k1_y

19 SS_k2_y = Config . SS_k2_y

20

21 Feedback_x_p = 0

22 Feedback_y_p = 0

23 PrevFeedback_x_p = 0

24 PrevFeedback_y_p = 0

25

26 x_v_ Error = 0

27 y_v_ Error = 0

28 Run = True

29

30 lock = multiprocessing . Lock ()

31 shm = shared_memory. SharedMemory(name=shared_data .name)

32 shm_ array = np . ndarray (Config .Shm_ array . shape , dtype=np . f loat16 , buffer=shm. buf)

33

34 lock . acquire ()

35 SS_k1_x = shm_ array [1 3]

36 SS_k2_x = shm_ array [1 4]

37

38 SS_k1_y = shm_ array [1 3]

39 SS_k2_y = shm_ array [1 4]

40

41 lock . release ()

42

43 while Run :

APPENDIX B. SOURCE CODE 159

44 CurrT = time . time ()

45 dt = CurrT − PrevT

46 PrevT = CurrT

47 i f dt == 0 :

48 Hz = 9999.99

49 else :

50 Hz = round(1 / dt , 2)

51 lock . acquire ()

52 Target _x_p = shm_ array [0]

53 Target _y_p = shm_ array [1]

54 Target _x_v = shm_ array [2]

55 Target _y_v = shm_ array [3]

56 Feedback_x_p = shm_ array [4]

57 Feedback_y_p = shm_ array [5]

58 x_v_ Error = shm_ array [6]

59 y_v_ Error = shm_ array [7]

60 shm_ array [8] = round (U_x , 4)

61 shm_ array [9] = round (U_y , 4)

62 shm_ array [1 8] = Hz

63

64 lock . release ()

65

66 x_p_ Error = Feedback_x_p − Target_x_p

67 U_x = (x_p_ Error * SS_k1_x + (x_v_ Error − Target _x_v) * SS_k2_x)

68

69 y_p_ Error = Feedback_y_p − Target_y_p

70 U_y = (y_p_ Error * SS_k1_y + (y_v_ Error − Target _y_v) * SS_k2_y)

71

72 PrevFeedback_x_p = Feedback_x_p

73 PrevFeedback_y_p = Feedback_y_p

74

75 time . sleep (0 . 0 0 1)

76 # print (shm_ array , U_x)

APPENDIX B. SOURCE CODE 160

B.8 ControllerTemplate.py

1 import Config

2 import time

3 from multiprocessing import shared_memory

4 import numpy as np

5 import multiprocessing

6

7 PrevT = time . time ()

8

9 U_x = 0

10 U_y = 0

11

12

13

14

15 Run = True

16 lock = multiprocessing . Lock ()

17 shm = shared_memory. SharedMemory(name=shared_data .name)

18 shm_ array = np . ndarray (Config .Shm_ array . shape , dtype=np . f loat16 , buffer=shm. buf)

19

20 while Run :

21 #−−− HZ

22 CurrT = time . time ()

23 dt = CurrT − PrevT

24 PrevT = CurrT

25 i f dt == 0 :

26 HZ = 9999.99

27 else :

28 HZ = 1 / dt

29 # print (HZ)

30 #−−

31

32 lock . acquire ()

33 Target _x_p = shm_ array [0]

34 Target _y_p = shm_ array [1]

APPENDIX B. SOURCE CODE 161

35 shm_ array [2] = round (U_x , 4)

36 shm_ array [3] = round (U_y , 4)

37 print (shm_ array)

38 lock . release ()

B.9 Config.py

1 import numpy as np

2

3 Control_Mode = ’No controllmode selected ’

4 Input_Mode = ’ ’

5

6 Shm_ array = np . zeros (25 , dtype=np . f l o a t 1 6)

7

8 e x i t _ f l a g = False

9

10 Log = []

11 Log_Rev = []

12 S t a r t = False

13 Running = False

14

15 Record_Data = False

16 Record_Data_Running = False

17 Data_Names = ’TX TY FBX FBY FBVX FBVY TUX TUY FBUX FBUY Time ’

18 Hz_Names = ’BackEnd_Hz SharedMem_Hz UartCom_Hz Cam_Hz Controller _Hz ’

19 Sine_Name = ’ sine sine _ c o n t r o l l e r fb1 fb2 fb3 BackEnd_Hz Controller _Hz Time ’

20

21 Camera_ S t a r t = False

22 Camera_Runnig = False

23 Camera_show_Frame = 0

24 Camera_show_Mask = 0

25 Camera_Pause = −5.67

26

27 Target _Pos_x = 0

28 Target _Pos_y = 0

APPENDIX B. SOURCE CODE 162

29 Target _Vel_x = 0

30 Target _Vel_y = 0

31 Feedback_pos = 0

32

33 S t a r t _ S e r i a l _Com = False

34 S e r i a l _Com_Running = False

35

36 S t a r t _I2C_Com = False

37 I2C_Com_Running = False

38

39 Paus_New_Arduino_Values = False

40 Calibrate _Arduino = −5.65

41

42

43 cam_x = 0.0

44 cam_x_ vel = 0.0

45 cam_y = 0.0

46 cam_y_ vel = 0.0

47 No_ B a l l = 0.0

48

49

50 Stepper1_ Target = 0

51 Stepper1_Feedback = 0

52 Stepper2_ Target = 0

53 Stepper2_Feedback = 0

54 Stepper3_ Target = 0

55 Stepper3_Feedback = 0

56

57 U_rad_x = 0

58 U_rad_y = 0

59

60 U_x_v_ fb = 0.0

61 U_y_v_ fb = 0.0

62

63 #−−−−−−−−−−−−−−−−−−−−− PID parameter

64

APPENDIX B. SOURCE CODE 163

65 PID_P_x = 0.0015

66 PID_D_x = 0.0000

67 PID_ I _x = 0

68

69 PID_P_y = 0.0015

70 PID_D_y = 0.0000

71 PID_ I _y = 0

72

73 Pid_delay _time = 0.01

74 #−−−−−−−−−−−−−−−−−−−−−−−−−−−− State Space

75

76 SS_k1_x = 0.0012

77 SS_k2_x = 0.0006

78

79 SS_k1_y = 0.0012

80 SS_k2_y = 0.0006

81

82 SS_delay _time = 0.01

83 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MPC

84

85 MPC_SnapShot = −5.67

86

87 MPC_Q_xp = 1.73

88 MPC_Q_xv = 0.55

89 MPC_R_Vin = 310

90

91

92

93 #MPC_q = np . diag ([MPC_Q_xp , MPC_Q_xv , MPC_Q_xp , MPC_Q_xv])

94 #MPC_ r = np . diag ([MPC_R_Vin , MPC_R_Vin])

95

96

97 #−− Hz

98

99 BackEnd_Hz = 0.0

100 SharedMem_Hz = 0.0

APPENDIX B. SOURCE CODE 164

101 UartCom_Hz = 0.0

102

103 Cam_Hz = 0.0

104 Controller _Hz = 0.0

105

106 sine = 0.0

107 sine _ c o n t r o l l e r = 0.0

108 sine _ fb = 0.0

B.10 ArduinoCode

1

2 #include "FastAccelStepper.h"

3 #include "AVRStepperPins.h"

4

5 #define SW_1 10

6 #define SW_2 11

7 #define SW_3 12

8

9 #define Pul_1 6

10 #define Dir_1 51

11

12 #define Pul_2 7

13 #define Dir_2 52

14

15 #define Pul_3 8

16 #define Dir_3 53

17

18 int sensorVal_1 = LOW;

19 int sensorVal_2 = LOW;

20 int sensorVal_3 = LOW;

21

22 int Old_SW1 = LOW;

23 int Old_SW2 = LOW;

24 int Old_SW3 = LOW;

APPENDIX B. SOURCE CODE 165

25

26 float Calibrate_signal = -5.65;

27

28 float Target_1 = 0.0;

29 float Target_2 = 0.0;

30 float Target_3 = 0.0;

31

32 int Target_1_s = 0;

33 int Target_2_s = 0;

34 int Target_3_s = 0;

35

36 int Current_1_is = 0;

37 int Current_2_is = 0;

38 int Current_3_is = 0;

39

40 int Pos_1_s = int(-165*0.78)*2; // 800s

41 int Pos_2_s = int(-165*0.78)*2; // 800s

42 int Pos_3_s = int(-165*0.78)*2; // 800s

43

44 float DegToStep = 1600/360;

45

46 float Current_1_d = 0.0;

47 float Current_2_d = 0.0;

48 float Current_3_d = 0.0;

49 float values[5];

50

51 FastAccelStepperEngine engine = FastAccelStepperEngine();

52 FastAccelStepper *stepper_1 = NULL;

53 FastAccelStepper *stepper_2 = NULL;

54 FastAccelStepper *stepper_3 = NULL;

55

56 void setup() {

57 // put your setup code here, to run once:

58 Serial.begin(115200);

59

60 pinMode(SW_1 , INPUT);

APPENDIX B. SOURCE CODE 166

61 pinMode(SW_2 , INPUT);

62 pinMode(SW_3 , INPUT);

63

64 engine.init();

65 stepper_1 = engine.stepperConnectToPin(Pul_1);

66 stepper_2 = engine.stepperConnectToPin(Pul_2);

67 stepper_3 = engine.stepperConnectToPin(Pul_3);

68 stepper_1->setDirectionPin(Dir_1, false);

69 stepper_2->setDirectionPin(Dir_2, false);

70 stepper_3->setDirectionPin(Dir_3, false);

71

72 stepper_1->setSpeedInHz(2600); // 500 steps/s

73 stepper_1->setAcceleration(10000); // 100 steps/s^2

74

75 stepper_2->setSpeedInHz(2600); // 500 steps/s

76 stepper_2->setAcceleration(10000); // 100 steps/s^2

77

78 stepper_3->setSpeedInHz(2600); // 500 steps/s

79 stepper_3->setAcceleration(10000); // 100 steps/s^2

80 Calibrate();

81 }

82 //--- loop

83 void loop() {

84 UsbCom();

85

86 if (Calibrate_signal >= 0){

87 Calibrate();

88 }

89 sensorVal_1 = digitalRead(SW_1);

90 sensorVal_2 = digitalRead(SW_2);

91 sensorVal_3 = digitalRead(SW_3);

92

93 if ((sensorVal_1)&& !(Old_SW1)){

94 stepper_1->forceStopAndNewPosition(Pos_1_s);

95 }

96 if ((sensorVal_2)&& !(Old_SW2)){

APPENDIX B. SOURCE CODE 167

97 stepper_2->forceStopAndNewPosition(Pos_2_s);

98

99 }

100 if ((sensorVal_3)&& !(Old_SW3)){

101 stepper_3->forceStopAndNewPosition(Pos_3_s);

102 }

103

104 Current_1_is = stepper_1->getCurrentPosition();

105 Current_2_is = stepper_2->getCurrentPosition();

106 Current_3_is = stepper_3->getCurrentPosition();

107 Current_1_d = Current_1_is/DegToStep;

108 Current_2_d = Current_2_is/DegToStep;

109 Current_3_d = Current_3_is/DegToStep;

110

111 Target_1_s = int(Target_1*DegToStep);

112 Target_2_s = int(Target_2*DegToStep);

113 Target_3_s = int(Target_3*DegToStep);

114

115 stepper_1->moveTo(Target_1_s);

116 stepper_2->moveTo(Target_2_s);

117 stepper_3->moveTo(Target_3_s);

118

119 Old_SW1 = sensorVal_1;

120 Old_SW2 = sensorVal_2;

121 Old_SW3 = sensorVal_3;

122 }

123

124 void UsbCom(){

125 if (Serial.available() >= 16) { // Wait for 12 bytes (3 floats)

126

127 Serial.readBytes((char*)values, 16);

128 Target_1 = values[0];

129 Target_2 = values[1];

130 Target_3 = values[2];

131 Calibrate_signal = values[3];

132 Serial.print(Current_1_d);

APPENDIX B. SOURCE CODE 168

133 Serial.print(" ");

134 Serial.print(Current_2_d);

135 Serial.print(" ");

136 Serial.print(Current_3_d);

137 Serial.print(" ");

138 Serial.println(Calibrate_signal);

139

140 }

141 }

142

143 void Calibrate(){

144 bool Start = HIGH;

145 while (Start){

146 UsbCom();

147 sensorVal_1 = digitalRead(SW_1);

148 sensorVal_2 = digitalRead(SW_2);

149 sensorVal_3 = digitalRead(SW_3);

150

151 if (sensorVal_1 and sensorVal_2 and sensorVal_3){

152 Start = LOW;

153 break;

154 }

155 if (!sensorVal_1){

156 stepper_1->move(-1);

157 }else{

158 stepper_1->forceStop();

159 }

160

161 if (!sensorVal_2){

162 stepper_2->move(-1);

163 }else{

164 stepper_2->forceStop();

165 }

166

167 if (!sensorVal_3){

168 stepper_3->move(-1);

APPENDIX B. SOURCE CODE 169

169 }else{

170 stepper_3->forceStop();

171 }

172

173 delay(5);

174 }

175 stepper_1->forceStopAndNewPosition(Pos_1_s);

176 stepper_2->forceStopAndNewPosition(Pos_2_s);

177 stepper_3->forceStopAndNewPosition(Pos_3_s);

178 Target_1_s = 0;

179 Target_2_s = 0;

180 Target_3_s = 0;

181 Calibrate_signal = -5.65;

182 delay(1000);

183 }

Appendix C

Gantt Diagram

Gantt Diagram of the progress plan made at the start of the project. Small changes have been

made throughout to go into more detail.

170

Appendix D

Pre-project Report And Progress Reports

This chapter includes the pre-project report and progress reports made throughout the project.

D.1 Pre-project report

171

APPENDIX D. PRE-PROJECT REPORT AND PROGRESS REPORTS 183

D.2 Report 08.02

Gruppe 2
Hovedprosjekt

Project
3DOF Platform med
MPC

Antall møter denne

perioden
1 planlagt

Firma - Oppdragsgiver
NTNU Ålesund

Side
1 av 1

Framdriftsrapport Period/week(s)
2

Antall brukte timer I

henhold til logg 100
Prosjektgruppe (navn)
Jesper Vos, Henning

Sønderland, Jørgen Meland

Lund

Dato
08.02.23

Hovudmål for denne perioden

- Sjekket at alt passer ilag ved å assemble alt og lage en modell i fusion 360.
- Få de fleste deler på plass

Planlagte aktiviteter for perioden

- Bygge steppermotor mounts

- 3D-printe deler

- Bestille kulelager

- Laserkutte plate

- Bestille steppermotorer

Faktisk gjennomførte aktiviteter denne perioden

- Laserkuttet plate

- Bestilt de fleste deler

- Designet platform i Fusion 360

- Assemblet modell i Fusion 360

- 3D-printet deler

Beskrivelse av hva som avviket fra aktivitetene og hvorfor

- Ikke bestilt motorer

Erfaringer fra denne perioden

- Vanskelig å finne passende motorer

Hovudfokus neste periode

- Bygge ferdig platformen
- Få i gang Khadas og kameraet

Planlagte aktiviteter neste periode

- Starte å teste kameraet, hvordan er FOV’en, kan man se gjennom platen?

- Finne en passende strømforsyning

- Se på HSV RGB colorspace, Cielab colorspace

- Oppdatere wikien

- Vurdere å starte å bruke github

- Kjøpe skjerm

Annet

Ønsker og bistand fra veileder

− Ikke noe spesielt

Signatur fra gruppemedlemmene J.T, H.S, J.M.L

APPENDIX D. PRE-PROJECT REPORT AND PROGRESS REPORTS 185

D.3 Report 23.02

Gruppe 2
Hovedprosjekt

Project
3DOF Platform med
MPC

Antall møter denne

perioden
1 planlagt

Firma - Oppdragsgiver
NTNU Ålesund

Side
1 av 1

Framdriftsrapport Period/week(s)
2

Antall brukte timer I

henhold til logg 70
Prosjektgruppe (navn)
Jesper Vos, Henning

Sønderland, Jørgen Meland

Lund

Dato
23.02.23

Hovudmål for denne perioden

- Bygge ferdig platformen

- Få i gang Khadas og kameraet

Planlagte aktiviteter for perioden

- Starte å teste kameraet, hvordan er FOV’en, kan man se gjennom platen?

- Finne en passende strømforsyning

- Se på HSV RGB colorspace, Cielab colorspace

- Oppdatere wikien

- Vurdere å starte å bruke github

- Kjøpe skjerm

Faktisk gjennomførte aktiviteter denne perioden

- Bygd ferdig plattformen

- Startet Khadas, og lagt inn software

- Startet testing av step-motorene

- Startet testing av kamera, prøvd med forskjellige linser (litt utfordring med FOV)

- Modifisert noen 3D deler for økt robusthet og styrke

-

Beskrivelse av hva som avviket fra aktivitetene og hvorfor

- Ikke kjøpt skjerm enda, ettersom vi ikke trenger den enda

Erfaringer fra denne perioden

- Lærte at det ikke ble så lett å finne kamera/linse som passer vårt bruk

- Tidskrevenede å laste software inn på Khadas

Hovudfokus neste periode

- Matematisk modell

- Finne et passende kamera/linse

Planlagte aktiviteter neste periode

- Styre steppermotorene med Khadas

- Lage et kordinatsystem for kameraet

- Koble alt det elektriske skikkelig

Annet

Ønsker og bistand fra veileder

- Hjelp til å sette opp Khadas skikkelig

Signatur fra gruppemedlemmene J.T, H.S, J.M.L

APPENDIX D. PRE-PROJECT REPORT AND PROGRESS REPORTS 187

D.4 Report 21.03

Gruppe 2
Hovedprosjekt

Project
3DOF Platform med
MPC

Antall møter denne

perioden
1 planlagt

Firma - Oppdragsgiver
NTNU Ålesund

Side
1 av 2

Framdriftsrapport Period/week(s)
2

Antall brukte timer I

henhold til logg 100
Prosjektgruppe (navn)
Jesper Vos, Henning

Sønderland, Jørgen Meland

Lund

Dato
21.03.23

Hovudmål for denne perioden

- Bygge ferdig platformen

- Få ut kordinater fra kamera

- Styre steppermotorene med høg presisjon

Planlagte aktiviteter for perioden

- Kode for å få ut kordinater fra kameraet

- Kjøre et State Space program for å teste

- Få presise målinger fra encoder

- Sette opp MPC

- Få til kommunikasjon mellom de forskjellige programma

- Forberede pitch presentasjon

- Oppdatere wikien

Faktisk gjennomførte aktiviteter denne perioden

- MPC er 90% ferdig

- Kjørt steppermotorene Arduino.

- Lest av alle tre encoder samtidig på arduino.

- Kamera koden gir oss presise kordinater

- Platformen ble designet for lett montering, samt for å være kompakt

- Bygd platformen

Beskrivelse av hva som avviket fra aktivitetene og hvorfor

- Ikke fått kjørt State Space program for å teste motorene, pga dårlig presisjon i motorene

uten skikkelig feedback fra encoder.

Erfaringer fra denne perioden

- At MPC er omfattende

- At Khadas er dårlig på interupts og dermed upresis når man skal lese av encoder

Hovudfokus neste periode

- Teste State Space på platformen

- Få til MPC på platformen

- Lage GUI til skjermen

Planlagte aktiviteter neste periode

- Få til robust feedback fra encodere og styre motorene presist

- Programere GUI

- Ferdigstille MPC

- Teste med både State Space og MPC

- Bygge alt ferdig og koble alt fint opp

Annet

Ønsker og bistand fra veileder

− MPC generator bibliotek som Erlend nevnte på starten av året

Signatur fra gruppemedlemmene J.T, H.S, J.M.L

Gruppe 2
Hovedprosjekt

Project
3DOF Platform med
MPC

Antall møter denne

perioden
1 planlagt

Firma - Oppdragsgiver
NTNU Ålesund

Side
2 av 2

Framdriftsrapport Period/week(s)
2

Antall brukte timer I

henhold til logg 100
Prosjektgruppe (navn)
Jesper Vos, Henning

Sønderland, Jørgen Meland

Lund

Dato
21.03.23

APPENDIX D. PRE-PROJECT REPORT AND PROGRESS REPORTS 190

D.5 Report 11.04

Gruppe 2
Hovedprosjekt

Project
3DOF Platform med
MPC

Antall møter denne

perioden
1 planlagt

Firma - Oppdragsgiver
NTNU Ålesund

Side
1 av 1

Framdriftsrapport Period/week(s)
2

Antall brukte timer I

henhold til logg 120
Prosjektgruppe (navn)
Jesper Vos, Henning

Sønderland, Jørgen Meland

Lund

Dato
12.04.23

Hovudmål for denne perioden

- Kode ferdig og teste

- Koble ferdig elektronikken

- Komme i gang med rapporten

Planlagte aktiviteter for perioden

- Bruke multiprocessing og multithreading for å samkjøre koden

- Få instalert alle komponenter og koble opp alt

- Designe GUI til touchskjerm

- Skrive 10 sider på rapporten

Faktisk gjennomførte aktiviteter denne perioden

- 90% Ferdig kode

- 90% Ferdig bygging og oppkobling

- En funksjonibel GUI

- Skrevet 10 sider på rapporten

Beskrivelse av hva som avviket fra aktivitetene og hvorfor

- Encoder-kabler ble levert sent, og derfor ikke koblet opp enda

- Utfordringer med koden, og dermed ikke helt ferdig

Erfaringer fra denne perioden

- Bestille deler i tider

- Omfattende å samkjøre flere koder og opprettholde høg hastighet

Hovudfokus neste periode

- Bli ferdig, teste, kalibrere og optimalisere

- Gjøre mye på rapporten, for å kunne få feedback og veiledning

Planlagte aktiviteter neste periode

- Kjøre platformen med MPC, PID, og State Space

- Ferdigstille GUI

- Arbeide med rapporten

Annet

Ønsker og bistand fra veileder

- Feedback på rapporten, når vi har en betydelig mengde stoff å vise fram.

Signatur fra gruppemedlemmene J.T, H.S, J.M.L

Appendix E

Video Links

Demonstration - https://www.youtube.com/watch?v=brYy_x_78rQ&t

Presentation - https://www.youtube.com/watch?v=V2SLBKUJTeg

192

https://www.youtube.com/watch?v=brYy_x_78rQ&t
https://www.youtube.com/watch?v=V2SLBKUJTeg

	Preface
	Acknowledgement
	Summary and Conclusions
	Acronyms
	Introduction
	Background
	Problem Formulation
	Related Work
	Scope
	Structure of the Report

	Preliminaries
	Software
	PyCharm
	Arduino IDE
	Autodesk Fusion 360
	Pruca Slicer
	Geogebra
	EPLAN Electric
	Flexi Designer
	Programming libraries
	Version Table

	Degrees Of Freedom
	Model Predictive Control
	Tuning MPC

	Disciplined Convex Programming
	Disciplined Parameterized Programming

	HSV Colour Space
	Shared Memory

	Method
	Design and assembly
	Foundation and enclosure
	Platform
	Practicality
	Integration

	Stepper Motors
	Motor Specifications
	Motor Drives
	Control
	Communication
	Limit Switches
	Calibration
	Encoders
	Low-Pass Filter
	Simulation-sketches

	Camera
	Ball Tracking Algorithm
	Camera Initialization
	Colour Detection
	Velocity Estimation

	Control Algorithm
	MPC Mathematical Model
	Generating C Code
	MPC Algorithm
	Additional Control Algorithms
	Motor Angles

	Graphical User Interface
	Controller Config
	Main GUI
	Controller And Input Mode Selector

	Main.py
	Config.py
	Shared Memory Declaration
	GUISharedMemHandler
	BackEnd
	if __name__ == "__main__":

	Data collection and calculation
	Data Recorder
	Snap Recorder
	Recording Of Miscellaneous Data

	Khadas Setup
	Operating System
	Boot File
	Deployment on Khadas
	Desktop Script
	Shared Folder

	Results
	Design
	GUI Results
	MPC Results
	Khadas VIM3 MPC Results
	Computer MPC Results
	MPC Prediction Horizon
	Latency Stress Test

	Discussion
	Design Results
	Part Selection & Changes
	Mechanical Improvements
	Electrical Improvements
	Planning and Ordering parts

	The Code
	Programming Results
	Main Codebase Language
	GUI
	Ball Tracking Algorithm

	MPC Results
	Ball Position
	Angles
	Prediction Horizon
	Stress Test Results

	Future Improvements & Developments
	Camera Distortion & Plane Coordinates
	Kalman Filter
	Tuning

	Conclusions
	Further Work

	Bibliography
	Appendices
	Appendix Folder List
	Source Code
	Main.py
	GUI.py
	CameraCode.py
	MPC.py
	C_CodeGenerator.py
	PID.py
	State_Space.py
	ControllerTemplate.py
	Config.py
	ArduinoCode

	Gantt Diagram
	Pre-project Report And Progress Reports
	Pre-project report
	Report 08.02
	Report 23.02
	Report 21.03
	Report 11.04

	Video Links

