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ABSTRACT

Kongsberg Maritime has expressed interest in using sound to automate boat lo-
cation tracking. The bachelor group is entrusted with doing research into efficient
ways to carry out this.

The thesis will simulate a boat that send some form of sound signals. Sev-
eral microphones and an FPGA (Field-Programmable Gate Array) will be used to
sample the signals. Then, using signal processing, determine how long the sound
waves’ arrival delay is. After that, calculate the object’s direction and distance
and display the results on a GUI (Graphical User Interface).

The bachelor group was unable to finish the prototype due to a lack of time.
The FPGA took longer than expected to complete. As a result, the group was
unable to fine-tune the inputs and alter the variables in the various classes.
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CHAPTER

ONE

INTRODUCTION

1.1 Background
According to maritime regulations, a boat must be able to communicate through
sound signals of a foghorn[1]. This task should be automated, in accordance
with Kongsberg Maritime. In addition, Kongsberg Maritime tasked the group to
investigate the reliability of location estimation of a sound source, and understand
the issues that could appear in the signal processing.

1.2 Objective
The main objective of the project is to automate sound source location between
two ships by the use of sound triangulation, in an simulated environment. The
pipeline evolves around receiving the sound by an FPGA, signal processing the
data in the frequency domain if the desired frequency is detected, extracting the
timestamps from the microphones, and finally estimating the location of the source
in the form of angle and distance estimators.

The objectives for this thesis are:

1. To create a prototype with the ability to efficiently sample a signal that
simulates a foghorn.

2. Process the recorded signals when the desired frequency is detected, and
extract time samples from the microphone readings.

3. Use the time stamps as a basis for angle and distance estimations.

4. Present the estimated position on a GUI.

5. Examine the various methods that were developed and talk about their
viability.

1



2 CHAPTER 1. INTRODUCTION

1.3 Structure of the rapport
• Chapter 2 - Theory - Introduction to the theoretical background which

is the basis of this thesis.

• Chapter 3 - Methods - Contains a description of the methodology and
materials that were considered throughout the project.

• Chapter 4 - Results - Showcase of what the group accomplished through-
out the project.

• Chapter 5 - Discussion - Discussion of the project’s planning, group pro-
cess, outcomes, benefits and drawbacks of the prototype, and recommenda-
tions for further improvement.

• Chapter 6 - Conclusions - Presentation of overall conclusion and final
results of the whole assignments.



CHAPTER

TWO

THEORY

2.1 Hardware

2.1.1 Raspberry pi

Raspberry Pi is a UK tech company that manufacture micro computers that can
run multiple operating systems (OS), making them versatile[2]. Raspberry Pi has
developed their own Linux-based OS with python[3] as a central part of the built
in application[2].

2.1.2 Field Programmable Gate Array

A field programmable gate array, FPGA for short, is a chip that consist of config-
urable logic blocks. They are specialized for performing high speed applications
like signal processing, low latency networking and so on[4]. The truth tables are
connected so that they can be programmed to do close to anything[5].

An FPGA’s manufacturer can deliver FPGA’s with pre-programmed parts
called "hard-cores"[5]. These "hard-cores" are usually widely used in digital sys-
tems[5], like this thesis project. If the pre-programmed parts have programmable
functions or can be configured they are called "soft-cores"[5]. FPGAs with either
"hard- or soft-cores" or both are called platform FPGAs, they can implement
whole systems in themselves[5]. The manufacturer Xilinx has called "hard- and
soft-cores" for "IP-cores" and they will be used for programming the FPGA.

3



4 CHAPTER 2. THEORY

2.1.3 Analog to Digital Converter

An analog to digital converter (ADC) is used to replicate an analog signal as a
digital one. It does this by measuring a voltage or current that is proportional
with the analog signal with a given frequency. The greater the voltage or current
is the greater the returned bit-value is[6].

As figure 2.1.1 illustrates, the Arty has two 12-bit internal ADCs that can
operate at a speed of one mega sample per second[7].

Figure 2.1.1: XADC module overview[7].

When the ADC is not used in it’s differential mode it can only measure between
zero and one volt making the output wave fluctuate around 0.5 volt instead of zero.
This offset is the main reason for DC-bias to occur[6].

The ADC is instantiated and configured by the IP-core[7]. The hardware could
be setup to be sampling continuously. When configured to do so, the ADC can
transfer data to the microprocessor through AXI4 protocol[7]. When AXI4 is
enabled the ADC can be configured by software through AXI channels. It can be
configured to operate in interrupt mode or polling mode as well.

Polling mode is when the software constantly checks if the ADC has ready
data. Interrupt mode on the other hand sets up an interrupt controller to let the
microprocessor know when data is ready[7]. That way the program can perform
other tasks while waiting for the interrupt to be called. The microprocessor can be
configured to perform a certain function every time the interrupt controller gives
the signal.

Equation 2.1 finds the time it takes to fill a number of buffers in seconds.

time_to_fill_x_buffers =
buffer_size · number_of_buffers

sampling_rate
(2.1)
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2.2 Communication System

2.2.1 Advanced Extensible Interface protocol

The AXI protocol supports high-performance, high-frequency system designs[8].
It is an on-chip master and slave communication protocol[8]. On Xilinx’s FPGAs
it is widely used as the communication protocol between the IP-cores.

2.2.2 Cross platform communication

For one platform to communicate with another one multiple protocols are at play.
The internet protocol suite is a term that gathers all the protocols that work
together to transfer data cross platform[9]. Four layers make up the internet
protocol suite[9]. The four layers are; the link layer, internet layer, transport layer
and application layer[9].

The library "Lightweight IP" (lwIP) is an open source library designed for
embedded systems[10]. It follows a standard that combines the layers, and allows
a user to make configure the network interface and make callback functions to
connect the users application to the library. When programming on an embedded
system with no OS the raw API has to be used[10]. It require more setup from
the user. LwIP combines parts of the link layer and internet layer into a C[11]
object called "netif", short for network interface. The netif object stores the
MAC-address of the hardware and the start- and end point IP(v4) addresses.

User datagram protocol (UDP) is a transport layer protocol that excels on
speed and broad-casting[12]. UDP’s speed is great because the protocol does not
present a handshake that guarantee that the package reached it’s destination.

To make a link between two or more computers a protocol has to begin the
communication and establish the link. The transport layer nor internet layer has
an internal routine for making that link. Therefore protocols on the link layer like
"Address resolution protocol" (ARP) is necessary for network communication[13].

ARP discovers the link layer’s address, like the MAC-address[13].
To hold the various information that the UDP needs a protocol control block

is needed (PCB). A PCB holds the information common for all transport layer
end points[14].



6 CHAPTER 2. THEORY

2.3 Signal processing

2.3.1 DC Removal

The output of an analog-to-digital converter often has a tiny DC bias when digi-
tizing analog signals, meaning that the average of the digitized time sample is not
zero. An audio signal with a nonzero DC bias level is particularly problematic
since switching between audio signals or concatenating two audio signals causes
annoying clicks.

DC elimination is simple if the signal is processed non-real time and the signal
data is acquired in blocks of block length N. To create a new time sequence with
a very low DC bias, simply calculate the average of N time samples and subtract
that average value from each original sample [15].

2.3.2 Harmonic Product Spectrum

HPS measures the maximum coincidence for harmonics for each spectral frame
according to the following equation 2.2 [16].

Y (ω) =
R∏

r=1

|X(ωr)| (2.2)
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The resulting periodic correlation array Y (ω) can then be searched for the
highest value [16]. A visualisation of the equations in use can be seen in figure
2.3.1.

Ŷ = max
ωi

Y (ωi) (2.3)

Figure 2.3.1: Example of Harmonic product spectrum

2.3.3 Cross correlation

Cross-correlation is convolution of two signals where the second signal is conju-
gated. Convolution is a mathematical way of combining two signals to form a
third signal. The third signal represents the similarity between the two signals
2.4.

y[n] =
∞∑

k=−∞

x1[k] · x2[n− k] (2.4)

This equation can be transformed into the frequency domain, where it can be
performed by multiplying the two signals, with the second signal being conjugated
2.5.

y = x1 ∗ x2
∗ (2.5)
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2.3.3.1 Noise whitening

Whitening allows one to only take phase of Xi(k) into account, giving each fre-
quency component the same weight and narrowing the wide maxima caused by
correlations within the received signal. This is used in order to narrow down the
peak of cross-correlation [17][18].

2.3.3.2 Spectral weighing

In order to detect specific sounds, one can take signal to noise ratio (SNR) into
account. This can be done be weighing the different frequencies with the following
equation [18].

w(k) = max(0.1,
X(k)− αXn(k)

X(k)
) (2.6)

where α < 1 is a coefficient that makes the noise estimate more conservative.
In order to increase the contribution of tonal regions of the spectrum (where the
local SNR is very high), one can define enhanced weighting function we(k) as [18]:

we(k) =

{
w(k) , X(k) ≤ Xn(k)

w(k)( X(k)
Xn(k)

)γ , X(k) > Xn(k)

}
(2.7)

2.4 Angle and direction estimation

2.4.1 Angle estimation

The thesis uses two alternative methods to calculate angles. The first technique
calculates several angles using the various times between the microphones and the
distance between the same microphones. The second method calculates a single
angle using vector computations, but both approaches begin by assuming that
sound waves move in a straight line rather than a circle.

In order to calculate distance, both methods first multiply the sound speed by
the time difference. It is feasible to create a triangle with this distance as shown
in figure 2.4.1

Figure 2.4.1: Computing source direction from TDOA [18]

Here, the various approaches start to diverge. The first technique uses the
equation 2.8 to calculate the angles between each time difference and obtains
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more angles with additional microphones. In actuality, this approach determines
a triangle’s angle. As a result, each angle has a unique offset that corresponds to
the microphone’s initial position; it is crucial to offset them in order for the angle
to represent the correct coordinate system.

angleij = arccos(
c ·∆Tij√

(|xi|+ |xj|)2 + (|yi|+ |yj|)2
) + offset (2.8)

The second method, however, calculates the distance based on the time differ-
ence using a vector method, as illustrated in equation 2.9 [18].

−→u · −→xij = c∆Tij (2.9)

Where −→u is a unit vector pointing in the source’s direction,
−→
xij is a vector

connecting microphones i and j, and c is the speed of sound. You might rewrite
this as shown in equation 2.10 [18].

u(xj − xi) + v(xj − xi) + w(zj − zi) = c∆Tij (2.10)

Equation 2.11 illustrates how, given N microphones, one might arrive to a set
of N-1 equations [18].

(x2 − x1) (y2 − y1) (z2 − z1)
(x3 − x1) (y3 − y1) (z2 − z1)

...
...

...
(xN − x1) (yN − y1) (z2 − z1)

 ·

u
v
w

 =


c∆T12

c∆T13
...

c∆T1N

 (2.11)

Because the angle to the object is contained in the unit vector, it is possible
to find the unit vector and angle to the object by applying pseudo-inverse to the−→
xij vector [18].

It is possible to obtain an angle from a sound-producing object with some
margin of error using these two techniques. Look through [18] for more details
about the second method.
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2.4.2 Distance estimation

Utilizing the angles determined in the angle estimation section 2.4.1 is necessary to
determine the object’s direction. Polar coordinates must be converted to Cartesian
coordinates in order to find the distance. For this, the equation 2.12 was used.

x = r · cos(θ)
y = r · sin(θ)

(2.12)

With the various coordinates, lines may now be created that connect to their
own starting locations. Now there is an intersection of several lines going in the
same direction. The object is located at the junction, with some possibilities of
margin.



CHAPTER

THREE

METHODS

The terminal experiment that provides all the results for the live test follows these
conditions:

A computer was used to play a piano note with the fundamental frequency of
440Hz one meter from the prototype. The prototype is oriented with a zero degree
angle from the sound source. This test will be used as a basis for the live data, in
the result section of this rapport.

Figure 3.0.1: Experiment setup

Multiple smaller experiments were conducted under the same conditions to
further gather- and analyze data- and result.

3.1 Hardware

3.1.1 Equipment

• Arty A7 35T FPGA

• SparkFun Electret Microphone Breakout

• Platform

11



12 CHAPTER 3. METHODS

3.1.2 Design

It was decided to arrange the four microphones in a square arrangement for this
thesis. There is a ideal distance to maintain sufficient wave tops when there is
cross-correlation between sound sources. This formula can be used to explain this
distance 3.1.

distM =
c

fM · 2
(3.1)

c denotes the speed of sound, which for the purposes of this project is estimated
to be 343 m/s. fM represents the highest frequency the system can detect, and
distM the greatest distance between the microphones. The group determined
that the prototype could detect frequencies up to 440 Hz, therefore using the
equation 3.1, they were able to determine that the maximum distance between
the microphones should be 38.98 cm. Pythagoras formula [19] can be used to
calculate the distance between square sides. This distance model was created
with this data.

Figure 3.1.1: Design of microphone placement with measurement in mm

3.1.3 Platform

A holding device was created for the platform in order to mount the FPGA to it.
Easy installation and dismounting were prioritized throughout the holding unit’s
design process because the FPGA was still in development at the time.

Figure 3.1.2: CAD file of the unit holder
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The finishing platform is 34 cm by 34 cm by 10 cm. It was decided to raise the
platform 10 cm above the ground to make it easier to move around. The platform
can been seen in figure 3.1.3.

Figure 3.1.3: Picture of platform

3.1.4 Field Programmable Gate Array

So Google was used as a search engine to look into what an FPGA even was
and find a suitable one for the application. On "Diligent.com" a suitable FPGA
platform with an on-chip ADC and microprocessor was found[20]. Xilinx AMD is
the vendor of the chosen FPGA; the Arty A7 35t evaluation board.

Figure 3.1.4: Arty A7 evaluation board [20].

3.1.4.1 Vivado suite

The Vivado suite is the collective software tool for all Xilinx’s FPGA’s and eval-
uation boards. It has configurable IP-cores to place and interconnect to make a
hardware design with desirable characteristics.
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The IP’s needed for the application of sampling an ADC and transfer data
with ethernet is:

• System clock

• DDR3 memory

• Microblaze processor

• AXI slave- master interconnect

• AXI timer

• Interrupt controller

• System- and processor reset

• XADC wizard

• UART

• Ethernetlite

A good base is using the Microblaze base project in Xilinx’s tutorials[21]. From
there add the remaining IP’s and let the DDR3 ui clock drive the entire system.
Configure everything to communicate on the AXI4 protocol, and lastly reconfig-
ure the DDR3 to not create an instance of the XADC to monitor the internal
temperature.

Figure 3.1.5: Hardware diagram of FPGA platform. TODO (made by me)

3.1.4.2 Vitis SDK

If designed correctly Vivado should be able to generate a HDL wrapper and bit-
stream from it. From there export the hardware with the "include bitstream" box
checked. The exported hardware file is needed to create a platform project in the
Vitis SDK. On the platform all the hardware drivers are located. Additionally a
library for internet protocols and configuration is needed. Lightweight IP can be
located on the "board support package" tab in Vitis.



CHAPTER 3. METHODS 15

Lightweight IP’s source file "xadapters.c" has a syntax error that needs to be
fixed in order for the library to work properly. Inside the function "xemac_add"
there is a switch-case which is missing break statements for each case, which makes
this switch always resort to the default state that returns an error message. The
Vitis template "TCP echo server" was the base for the application layer for the
previously made platform. To refactor the echo server to use UDP instead of
TCP a Github repository was used as a guide[22]. The callback function in figure
3.1.6 for handling received messages shouldn’t be needed, but for stability of the
application it was kept and will simply echo back the received message.

Figure 3.1.6: UDP receive message callback function[22].

Static IP addresses were used for the project. The default IP address of the
board was "192.168.1.10", but it could be changed. The IP address used for the
receiving end was "192.168.1.50", it could also be changed. The netmask was set
to the default value. Finally, the boards MAC address is found on the sticker of
the ethernet port on the arty board as illustrated by arrow four in figure 3.1.4. It
is a string of hexadecimal numbers. All of this was passed to a netif function to
setup the network interface.

Figure 3.1.7: Start application function.

The function in figure 3.1.7 sets up the PCB with receive callback function
and end point’s information. The PCB is instantiated by the function "udp_new"
and filled by the functions; "udp_bind", "udp_connect" and "udp_recv". Bind
inserts the local end-point information in the PCB while connect inserts the remote
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end-point information, and recv places a pointer to the callback function in the
PCB.

To interact with the ADC through C the driver xSysMon is presented by Vitis.
The driver needs to be configured for interrupt driven mode to be able to receive
samples at the desired frequency. Additionally, to read from the ADC channels,
bit-masks are defined in the xSysMon header files. Make sure to not confuse the
masks to enable the channels for the masks to read them. The bit-masks are not
equal!

xSysMon does not provide a Interrupt Service Routine (ISR). To make one, a
callback function has to be made which describes what to do when the interrupt
has been issued. A pointer to the callback function and the XSysMon-instance is
then passed to the instance of the interrupt controller to connect them. XSysMon
presents a function to enable interrupts for certain interrupt-registers. The driver
also has bit-masks to use to identify specific interrupt-registers on the physical
ADC.

Figure 3.1.8: Start ADC function.

Because the enabled interrupt was for the "end of sequence" register the op-
timal place to get the values from the ADC was inside the interrupt callback
function. The "end of sequence" register goes high each time the ADC has com-
pleted a conversion for each channel that is enabled and the data is ready to be
read. The data is transferred directly into a big buffer that is allocated in the
RAM. The transfer is done by creating a pointer which points to an address in the
buffer. The data is then redirected to the memory where the pointer is pointing,
and the pointer is incremented by one. Effectively meaning that the pointer points
to the next address in the memory. This is how the data is gathered in the FPGA,
observe figure 3.1.9b for source code.
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(a) ADC’s interrupt routine setup. (b) ADC’s interrupt callback routine

Figure 3.1.9: ADC’s interrupt setup- and callback function source code.

When the pointer have come halfway through the buffer a flag is raised telling
the main loop that the first half of the buffer is ready to be sent. Finally, when the
pointer has filled the last address another flag is raised signaling that the last half
is ready to be sent, and the pointer loops back to the first address in the buffer.

The way the sending functions finds the data to transfer is quite similar to
the way the data is stuffed in the buffer. Before sending, a struct containing a
pointer pointing to the first address of the payload, and the length of the payload
is defined. Therefore, even though the payload-data is stored in an array, only the
contents of the array is sent and not the array itself.

3.1.4.3 Control unit validation

Different methods were used to validate the operation of the hardware and data
gathering. The test to check if the sampling speed was correct was to count how
many times "udp_send" was called and for every tenth call to "udp_send" a print
was issued.

Another test would point out if the two buffers where filled much faster than
data could be transferred. This was done by making a variable that was incre-
mented by one when sending the first buffer and decreased by one when sending
the second buffer. As a precaution the interrupt routine can only write to the
buffers if a "write_enable" variable is true. In the event that transfer data has
not completed sending the buffer before the ADC tries to over-write it, write will
be disabled, and a print will alarm the user.

Another fail-safe to alarm one if the program cannot keep up with the frequent
interrupts uses the interrupt-controller’s instance. The instance includes a counter
of how many interrupts is not handled.

It was tested how many buffers python was receiving per second to see if the
FPGA was the culprit for the observed error. The setting of test was that the
FPGA continuously sent data while python was started at a random time. 1.05
seconds after start the python script stopped gathering data. The number of
buffers received was then counted.

While gathering buffers for a set amount of time the data was also put together
to form a bigger data set with multiple seconds of data. That big data set was
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used to make a WAV file and print the graph to look at the consistency of the
waveform.

3.2 Signal processing

This project required several tests in order to better understand the signal process-
ing. Thus the group started by developing simulated tests to see how the different
functions perform with a recording from mobile devices of a 440Hz piano note,
with 44,1kHz sampling rate. All tough the results may differ between the live test
and the simulated test, the pipeline of function use is the same. Therefore, the
method part of signal processing focuses on the different functions used in both
of the environments.

Figure 3.2.1: Removing DC bias from block of data

3.2.1 Harmonic Product Spectrum

The use of HPS allows the program to calculate what frequency is currently domi-
nating the signal. It also takes into account harmonic copies detected of the sound
in the signal, as can be seen in figure 2.3.1 and later on in 4.2.3a. The following
function represents the way it was implemented in the final version of the code.

Figure 3.2.2: HPS implementation in python

These calculations are performed in the frequency domain, thus the use of
np.argmax(Y k) outputs the index of the frequency with the highest peak, which
then has to be converted into the actual frequency, as can be seen in line 36 in
figure 3.2.2.
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3.2.1.1 Signal verification

In order to save processing in the final program, a simple function was design
to only perform signal processing when all the different microphones detect the
desired frequency. This is done by performing HPS.
The use of HPS is done on all the different microphones independently. The
results are then compared to a desired frequency. In the current implementation
the frequency is 440Hz. It is to be expected that the frequency detected will vary
and not be exactly 440.0Hz. Thus a range is specified with ± 20Hz in the simulated
environment, and ± 120Hz in live test. If all of the microphone signals are within
the desired range the function outputs true, meaning that all the microphones
are detecting the desired signal, and the following signal processing is ready to
be performed. The implementation of this logic can be seen in the following code
3.2.3. pro.hps is the function that calculates the hps of the signal, as explained in
3.2.2.

Figure 3.2.3: Signal verification in python

3.2.2 Cross correlation

Cross-correlation is the use of convolution between two signals, with the second
signal being conjugated. In this project, this is performed in the frequency do-
main. It also includes noise whitening and spectral weights in order to perform an
accurate correlation. At the very end of the calculation, it is taken into account
which of the peaks is the highest, and then the index of which is exported and used
to convert it into time delay between the two signals. The function performing
this task can be seen in figure 3.2.4.
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Figure 3.2.4: Cross-correlation function

This process is performed between microphone 1 and microphone n. This
means that microphone 1 is the reference. This can be seen in the code here 3.4.3.
A term called Time of arrival delay (TOAD) or Time delay of arrival (TDOA)
refers to the time delay between the reading of the different microphones. In other
words, time it takes for the other microphones to receive the sound. Unfortunately,
it sometimes switches between the two abbreviations throughout the code and this
rapport, but they both describe the same values. It is also important to note that
an assumption is made that the sound arriving is a straight line.

3.2.2.1 Spectral weighing

In order for the system to be more robust, and not so sensitive to noise, methods
introduced in an article [18] were implemented. Noise whitening is performed my
dividing the cross-correlation with the absolute sum of the variables multiplied
with each other. This can be seen in line 49 in figure 3.2.4. This causes all
the different frequencies to have equal amount of impact on the final result, thus
weights are calculated and then multiplied with the function as seen in line 50
3.2.4.

A closer look at how the weights are calculated can be seen in figure 3.2.5.
This function is quite large, so it has to be broken down.
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Figure 3.2.5: Spectral weights function definition

The input for the function consist of an array of size 4. Where each index holds
a buffer size worth of values read by a single microphone. Meaning that mic[0]
holds the last 4096 samples from microphone 1, mic[1] holds the last 4096 samples
from microphone 2, and so on. All of these signals have to be converted into
the frequency domain, since the weights calculated in this function will later be
multiplied with the cross-correlation function, which performs it’s calculations in
the frequency domain. In the for-loop, Xk is the average between all microphones
at a given index, Xnk is the standard deviation between the microphones at the
same sample, and if the value is lower than 0.01, its set to that instead. Afterwards
wk is calculated with function found in article [18], and can be seen in equation
2.6. Finally weK can be calculated with the equation 2.7, and can be seen in
python figure3.2.5 between lines 98 to 102. weK is the final weights used as an
input in the cross-correlation.

3.2.3 DC Removal

The only environment specific function which is of importance is the DC-bias
removal, which can be seen in figure 3.2.1. This is done in order to remove the
noise produced by the Analog to Digital Converter (ADC) in FPGA. The function
performs a simple subtraction of the average value of the entire buffer from the
input, at every single sample, in time domain as stated in theory 2.3.1.

3.3 Angle and distance estimation

It is possible to choose alternative class parameters while initializing the class. It’s
possible to choose the distance between the microphones, the sound speed, and
the maximum distance the distance estimator can calculate. If nothing is supplied,
it will automatically utilize a distance of 0.27 meters between the microphones, a
sound speed of 343 meters per second, and a maximum distance of 100 meters.

Additionally, it’s crucial to remember that the estimators only work with four
microphones.
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Figure 3.3.1: Initializing the angle and distance estimator

Additionally, for convenience, all the functions described in this section have
been combined into one function. While it is still feasible, it is not required, to
use them separately.

Figure 3.3.2: Function receiving timestamps and returning coordinates

3.3.1 Angle estimation

The timestamps entered into the routines must begin with the first microphone
receiving a signal being zero and the remaining microphones being positive in
order for the direction estimate class to perform. Consequently, a method was
created to ensure this.

Figure 3.3.3: Function for normalizing the timestamps

There are two distinct ways to determine the angle of the object after nor-
malizing the timestamps. The first technique uses equation 2.8 to compute six
distinct angles.

Figure 3.3.4: Angle calculation with the first method

This code determines the angle between the sound wave and these various lines
as shown in figure 3.3.5.
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(a) Angle a (b) Angle b (c) Angle c (d) Angle d (e) Angle e (f) Angle f

Figure 3.3.5: The different angels calculated from the angle estimation

Because the cosine formula is only intended to produce a degree between 0
and 180, first quadrant was used to calculate the angle and then offset to the
appropriate quadrant to identify a degree that was higher than 90. Because the
maximum and minimum time discrepancies between the various microphones are
the same, it is possible to relocate the angle computations to the first quadrant.

To be able to calculate the angle in the first quadrant, the timestamps must be
moved to match the timestamps that the first quadrant would receive. Making a
duplicate of the timestamp is crucial when working on this to prevent them from
changing during the procedure.

Figure 3.3.6: Copying time difference values

It’s possible that microphones 1 and 2 make initial contact with the sound
wave in the first quadrant. As a result, it was required to create some code that
took this issue into account and then adds the fictitious time difference to a list
so that it matches the values in the first quadrant.
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Figure 3.3.7: Rotating the timestamps to the first quadrant

There is an issue when calculating the degree between 0 and 45 degrees for the
angle computations for m3-m1 and m4-m2. The issue arises because a negative
value is returned when the time differential is found between these microphones.
When a cosine is given a negative value, the remaining angle rather than the true
angle is returned. It was essential to write some code that corrected the issue in
order to go around it.

Figure 3.3.8: Fixing angle

With the aid of all the timestamps, the second technique of calculation merely
computes one angle. It is required to include the location of the microphones and
the timestamps, as seen in equation 2.11. Applying pseudo-inverse to the −→u vector
will provide the unit vector. Numpy [23] is used to accomplish this. The system
illustrated by the equations is intended for a system with the x-, y-, and z-axes;
however, as this system only contains the x- and y-axes, thus the z-axis can be
eliminated. In this system the unit vector is calculated to an angle. It’s possible
to use the method separately and not calculate it to an angle, but to coordinate
the methods together this pipeline was enforced.
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Figure 3.3.9: Rotating the timestamps to the desired quadrant

The angles thereafter adjusted to return to the original quadrant. The code in
figure 3.3.10 is used to accomplish this.

Figure 3.3.10: Adjusting the correct quadrant

3.3.2 Distance estimation

Angles calculated during angle estimation must be used in the technique to deter-
mine the distance from the object. Create lines, then intersect them to determine
the object’s overall coordinate. Finding the lines’ ends is the first thing that must
be done. The used equation are: 2.12 .
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Figure 3.3.11: Making end-points for the lines used in intersection

The line’s beginning and ending points must then be determined, as well as
their connections. Based on the distance between the microphones, the start
positions are determined. The lined are determined in accordance from the left
most microphone the angle is made from.

Figure 3.3.12: Establishing start-points and making lines with them

The intersecting of the lines can be done in two different ways. The first
technique located every line’s intersection that wasn’t the seventh line. Because
the seventh line was created using the second direction technique, which hadn’t yet
been integrated into the system when the first intersection method was created,
the seventh line wasn’t intersected using this approach. The seventh line serves as
the base for the second intersection method, which intersects all other lines with
it. Since they were both equally accurate, the second intersection method was
used further in the project.
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Figure 3.3.13: Intersecting the lines

Several indications about the location of the object can be found at the in-
tersection. As a result, the average value of the coordinates is determined, and
that coordinate is what the function returns. It’s also crucial to remember that
some of the coordinates from the intersection are illogical and are eliminated from
the average value. The PySide6 [24] library is utilized to accomplish this. When
locating junctions, the algorithm additionally reports whether the intersection oc-
curs on the line, is unbound, or don’t have an intersection. The coordinate is
dropped if it’s an unbound intersection. The function will return True for the
angle overrule if no points are intersected. It will also provide back a coordinate
that is calculated using the average angle and half of the greatest distance between
the endpoints. It’s vital to remember that if the intersection returns a coordinate
may not be completely accurate.

Figure 3.3.14: Removing unbound intersection coordinates and finding average
coordinate
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3.3.3 Simulating estimators

It was required to test the system without microphones when constructing the
estimators. To achieve this, it was necessary to simulate an object creating sound
and determine the various values. It was decided to use three different objects in
the test that followed. The first object would be at a distance of 20 meters and
78 degrees. The second object would be 12 meters away and at a 45-degree angle.
The final object would be at 35 meters distant and 34 degrees.

Figure 3.3.15: Overview of the placement of the different objects for simulations

The temporal differentials between the various items have to be calculated after
that. The sound wave travel distance between the microphones was discovered in
order to determine time differences.

Figure 3.3.16: Sound waves travel distance between microphones

When the distance between the different microphones and the first microphone
was found it was possible to calculate the time differentials. This was done with
formula 3.2, where ∆T1−j is the time differential between the first microphone and
another microphone, ∆D1−j is the distance differential between the first micro-
phone and another microphone and c is the speed of sound.

It was able to determine the time differentials once the distance between the
various microphones and the first microphone was established. This was accom-
plished using the formula 3.2 where ∆T1−j represents the time difference between
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the first and second microphones, ∆D1−j represents the distance difference be-
tween the first and second microphones, and "c" represents the speed of sound.

∆T1−j =
∆D1−j

c
(3.2)

It was possible to use the same time differentials for all four quadrants because
the time differences would be the same in each quadrant, but the microphones
receiving them would be different.

3.4 Python

The programming language of choice for this project is python 3.8. While static
testing was performed, jupiter notebook was used, but otherwise, pycharm was
the main IDE.

In order for the code to be easily manageable, all the different functions were
developed in separate files, which then were included in the main program. Github
was used to store different version of the code, and enable group members to work
separately on the same code.

3.4.1 Main program

Main program has a pipeline of two threads. One is called prod (producer) and
the other is called consumer. The two threads communicate with the help of a
queue system, and a simple lock, to avoid overwriting data while it’s being used.
Producer continually reads data sent from the FPGA with the use of UDP pro-
tocol. Converts the bit values to actual integers. Normalizes data by dividing
the given sample by the max value, and stores the sample in an array. Finally it
removes the DC-bias from the signals, and stores the ready signals in an array,
which is then placed in the queue. This function can be seen in the following figure
3.4.1.

Figure 3.4.1: Producer function in the main program

Consumer on the other hand reads the data sent from the producer and pro-
cesses them. This function is too large to have a single figure of, so it will be
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broken down in 3 separate parts; Signal verification, signal processing, and dis-
tance and angle estimation.

Figure 3.4.2 shows how the main program receives the data from the queue
and uses the verification function explained in chapter "Signal Processing 3.2".
Start variable is then used to start the signal processing if the desired frequency
is detected in all the microphones.

Figure 3.4.2: Signal verification in the main program

Signal processing can be seen in figure 3.4.3. Weights are initially calculated,
and then used as an input in the cross-correlation functions. Cross-correlation is
calculated between microphone 1 and microphone n as explained in section 3.2.
An array of time delays is then normalized and placed in an array.

Figure 3.4.3: Signal processing in main program

Last part of the consumer thread is a simple call of a function that converts
the time delays, toad array, to an angle and distance. The function call can be
seen in figure 3.4.4.

Figure 3.4.4: Use of timestamp 2 coord function in the main code

The remaining code of the consumer thread revolves around breaking the while
loop in the case that producer has stopped sending data. After a certain amount
of empty values, the while loop will break, resulting in thread finishing.
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3.4.2 UDP

To receive the data the FPGA sends, the python script uses a socket API library
to catch any message sent on the network interface that was set. The library’s
receive-function automatically returns the data indexed byte by byte as integers.
Therefore an extra step has to be implemented. The data array is passed through
a for-loop that converts the data back to bits and splices two and two indexes
back together before casting the type to an integer again. The entire conversion
is done with byte order "little" meaning the least-significant byte is stored in the
smallest address[25].

(a) UDP class (b) Bit splicing

Figure 3.4.5: Receiving data

3.4.3 GUI

It was vital to present the found elements in some way in this thesis. Because
the thesis focused on locating boats using sound, it was chosen to create a model
of radar to replicate how the process would work if the system were installed on
a boat. The QT application or the Python package PySide6 [24] was utilized to
present the GUI. The range the GUI can display and the amount of time an object
can stay visible on the GUI can both be set when the GUI is initialized. If nothing
is set, it will have a showcase of 5 seconds and a maximum distance of 100 meters
by default.

Figure 3.4.6: Initializing the GUI

Additionally, as the GUI is designed to mimic a radar, it uses the same mech-
anism to display angles rather than using a mathematical method to represent
them.
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Figure 3.4.7: Overview of the placement of the different objects for simulations

It was chosen to use QPainter from PySide6 [24] to create the GUI. This
program made it possible to create a canvas on which to paint the radar and
different objects.

Figure 3.4.8: Function that paints the radar

The primary function of the GUI is to display the type of object the prototype
is finding. Three different sorts of figures are available for the GUI. A squire
indicates that distance estimation successfully located an object; a rounded squire
indicates that it successfully located an object outside of its maximum distance;
and a circle indicates that distance estimation failed to locate the object and is
now only able to identify the object’s angle. The figures are painted in two distinct
colors. The object has a 440 Hz sound wave if the figure is red, and a 260 HZ
sound wave if it is blue.
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(a) Found coordinate
from distance estima-
tion

(b) Couldn’t find coor-
dinate from distance es-
timation

(c) Coordinate out of
range for GUI

Figure 3.4.9: The different figures that are able to show on the GUI

You must call the update_GUI function 3.4.11 in order for one of the objects to
appear on the GUI. The x, y, HZ, and angle overrule coordinates are required for
this function. After gathering the required data, the coordinates must be adjusted
to meet the GUI. Although (0, 0) is in the middle for a normal coordinate, it is
in the top left corner of the GUI. The coordinate_center function is therefore
invoked.

Figure 3.4.10: Centering the coordinate to fit the GUI

The coordinate is not only centered but also checked for out-of-bounds condi-
tions. After centering the coordinate update_GUI 3.4.11 places the coordinates,
color, and timestamp in the appropriate figure lists at the time the coordinate was
called upon.
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Figure 3.4.11: Function for updating the GUI

The item_placement_on_GUI function is called after the required parameters
have been entered. This function displays the most recent coordinate additions
on the GUI.

Figure 3.4.12: Adding the newest figure on the GUI

A timer is created when the GUI is initialized and attempts to remove objects
every 100 milliseconds. This timer will continue to run while the GUI is active.
When the timer expires, the removing_from_GUI method is called.
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Figure 3.4.13: Removing symbols from the GUI

The first symbol in the lists is attempted to be removed each time the remov-
ing_from_GUI function is used. The delayed timestamp will be examined using a
clock. Nothing will happen if the timestamp is larger than the timer; if the timer
is larger, the radar and other symbols on the canvas will be repainted, the first
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index in the separate list will be removed, and the canvas will be white-painted.
Since QT wasn’t designed specifically for creating radars, every time a symbol is
removed, there are no utilities in the PySide6 [24] library to erase them. Therefore,
if an object on the canvas needs to be removed, the entire piece must be repainted.
The memory the GUI uses is unaffected by this solution. Since the canvas creates
a collection of pixels and then paints those, memory stacking is not occurring.
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RESULTS

The result of the terminal experiment was sub-optimal. The prototype could not
give an estimate for the location of the sound source. Hence the project group
began analyzing every step of the process, and the findings for each major part
will be presented in this chapter, with the result of the experiment presented at
the end.

4.1 Hardware

The control unit validation tests came out with the following results:

With a buffer size of 4410 a print happened about every second as expected,
although, it was discovered later in the testing-faze that the configured sample-rate
was 43706. Because the method to measure the timing was not a very accurate
one, it seemed like the print happened every second. However, in theory it would
take 1.009 seconds to fill ten buffers, as determined by equation 2.1.

As for the sending mechanism itself, the control-variable came out unchanged
after the test meaning the buffer to be sent was alternating as intended. Thereby,
write did never get disabled, and the write_enable fail-safe did not activate.

The buffer size was set to 4370 samples per microphone, meaning in theory,
ten buffers should be filled per second. Python was set to gather buffers for 1,05
seconds to allow the data transfer routine some time to send the tenth buffer, but
still only nine buffers came through.

37
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Figure 4.1.1: Captured buffers.

4.1.1 Data analysis

In graph 4.1.2 one buffer has been plotted. Most of the data is noise, but the sound
signal can be observed from sample number 3000 and outwards. This indicates
that either the microphones should have its sensitivity tuned or the sound should
be louder.

Figure 4.1.2: A single buffer plotted.

When multiple buffers were put together to form a WAV file a distortion was
detected. It can be observed in the center of graph 4.1.3. The distortion did not
happen at the exact sample where two buffers are put together, but rather about
150 samples later. The full distortion lasted for about 100 samples, and it occurred
in every buffer.

Figure 4.1.3: Multiple buffers assembled into a greater data set.
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While analyzing the graph formed by the two data sets some patterns emerged.
The two graphs in figure 4.1.4a is a zoomed in version of graph 4.1.3. The upper
graph show’s the distorted part, while the lower graph is an equally zoomed in
part right before the distortion. Here it’s possible to observe that the wave tops
inside the red boxes seems to correspond well between the two graphs. Meaning
the upper graph show’s what formation to expect to find between the boxes.

Additionally, inside the distorted part it’s possible to observe that the graph
does some incredibly steep jumps. Where the arrow points to, the graph jumps
from a magnitude of 800 till one of -950 in the span of a single sample or 22.8
microseconds.

Furthermore, a similar occurrence can be observed at the same range in figure
4.1.2.

(a) Analyzing the distortion.

(b) Possible time contraction earlier in the graph

Figure 4.1.4: Analyzing figure 4.1.3.

Graph 4.1.4b clearly show’s that the signal is different before and after the
distortion.

4.2 Signal Processing
The signal processing happens in two separate environments. Simulated static
files, and with live data. For ease of readability when discussing the results, each
step of the process will be gathered and look at simultaneously. Meaning that the
inputs of the system will be placed in one figure.
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Resulting figures may differ slightly, but the essence of the data is the same.
This was due to lack of time, and focus being centered around developing a solution
for the problems.

4.2.1 Signal reading

Figure 4.2.1 presents the results of both live and simulated data. The top graph
of each figure shows the raw signal in time-domain, while the bottom one is the
same signal but presented in frequency-domain, by performing FFT. The main
difference between the data is size of the raw signals. In simulated data, the size
is 44100 samples, while in live testing its 4410.
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(a) Simulated input

(b) Live input

Figure 4.2.1: Reading of one of the microphones of the different systems

4.2.2 HPS

The first step of HPS is to use the frequency domain version of the signal, and
downscale it 4 separate times. This can be seen in figure 4.2.2. It is important to
note that the simulated data is presented with a logarithmic y-axis, while the live
data is not.
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(a) Simulated HPS with an logarithmic y-axis

(b) Live HPS

Figure 4.2.2: Scaled harmonic spectrum before summing
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The signals are then multiplied with each other. Figure of this process were
only printed in simulated test, and can be seen in figure 4.2.3a. The scaled version
of the signal can be seen at the bottom of figure 4.2.3a. The summation of these
is represented by the magenta colored signal, and will later be used to determine
the dominating frequency.

(a) Simulated HPS with overlapping scaled version of the signal and the
bottom, and the product presented with magenta color signal

(b) Simulated HPS sum zoomed in at the dominating frequency before sum

Figure 4.2.3: Scaled harmonic spectrum before summing
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4.2.3 Weights

Weights are calculated between all the microphones in a given environment. Mean-
ing that the processes of calculating the weights is only performed once in the
system. The result of which can be seen in figure 4.2.4.

(a) Weights for all the different microphones in an simulated environment

(b) Weights for all the different microphones in an live environment

Figure 4.2.4: Spectral weights calculated between all microphones in an given
environment
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4.2.4 Cross-correlation

There were several different version of cross correlation tested in order to improve
the result, thus all of the different methods will be presented in the following figure.
Cross-correlation which is used in the final result can be seen in the bottom graph
of any given environment figures. Meaning that in figure 4.2.5a, the bottom most
graph represents the final cross-correlation used in time estimation.

(a) Different methods of cross-correlation in simulated environment

(b) Different methods of cross-correlation in live environment

Figure 4.2.5: Visualisation of the different cross-correlation methods in a given
environment

The final result of cross correlation can be seen in the following figure 4.2.6.
The time-domain graph represents the values that will be used in order to estimate
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the time delay between the microphones. The red square highlights the highest
peak, meaning, the index where the signals are the most similar.

(a) Cross correlated signal in simulated environment, in time- and frequency
domain

(b) Cross correlated signal in live environment, in time domain

Figure 4.2.6: Final output of the signal processing pipeline. Cross correlated
result represented in the frequency domain at the top, and in time domain and
the bottom. Live data contains only time domain
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4.3 Direction and distance estimation
Figure 4.3.1 shows the test results from simulated direction and distance estima-
tion. The figures include the distance and angle of the object, the estimators’
estimates, and the location of the object on the GUI. The maximum distance that
the GUI and direction estimation can display is 100 meters. The HZ was decided
to be 440 HZ because it had no significance because this was a simulated test.
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(a) First quadrant

(b) Second quadrant

(c) Third quadrant

(d) Fourth quadrant

Figure 4.3.1: Direction and distance estimation test
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As seen in the figures the direction estimate returns a good estimate. Mean-
while, the distance estimate isn’t that good.

The estimators didn’t receive any positive outcomes from the live testing. The
acceptable frequencies breadth was raised from for the estimators’ testing. From
440 ± 20 to 440 ± 150 hertz. Additionally, as can be seen in the printout in figure
4.3.2, the incoming time stamps were zero and provided no reliable estimation of
direction or distance.

Figure 4.3.2: Picture of platform
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FIVE

DISCUSSION

Main reason for this discrepancy was the lack of time. The group choose to focus
on using the available time to better understand the problems of the project, and
hopefully find solutions. Causing the simulated data to often be better repre-
sented. While some group members attempted to access information from FPGA,
the remaining members improved the data available. Which in this case was the
simulated data. Main reason this was that it was unsure if the group would man-
age to read data from FPGA in time, and wanted to have some data to show to,
even though a working prototype would not be developed in time for this rapport.

5.1 Hardware

5.1.1 Raspberry pi

Used Raspberry pi as a stepping stone to getting live data, and understanding
how data is read from the microphones.

The raspberry was secured with an unknown password. Therefore an OS had
to be re-install and setup. Setting up the Raspberry pi meant making one able
to access it remotely through an SSH key, and installing the required drivers to
access the ADC.

We knew the Raspberry pi would not read data fast enough to make reliable
data sets without learning to set up system interrupts. Thus, we chose to not
spend time trying to make good data sets with the Raspberry pi. The only value
the Raspberry pi contributed with was to see the raw form of data the ADC
returned. That information was reassuring when beginning on the FPGA.

5.1.2 Field Programmable Gate Array

It was recommended by the supervisors to use an FPGA. However, none of the
members of the project group nor supervisors had any experience with FPGAs,
which caused the development of the prototype to be severely bottle-necked.

First of, a little disclaimer; the application won’t start sending if it is not given
a break-point- and stopped before trying to send the first package on UDP. After
the link has been established the debugger can be disconnected and the program
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can run freely. This bug was not resolved and we could not find any reason for
the application to behave that way, but some digging was done and this is what
we know so far:

Before calling "udp_send" for the first time no connection or link has actually
been established. Hence when "udp_send" is called the first time it is detected
that no link is up, and some netif-routine broadcast’s an ARP message asking who
has the configured remote IP-address. If the application is not stopped in debug
the ARP message is never sent.
The earliest point the code can be stopped is right after the network interfaced is
put inside the netif object.

Producing a hardware design was time consuming and not beginner friendly.
AMD’s tutorials did not give a good understanding of how to design your own
circuits and was in some cases actually outdated as well. To check if a hardware
design was correct a compiling sequence which would often take upwards of half
an hour had to be started. If the design had an error, you’d have to fix the mistake
and start the sequence again. Additionally, when compiling a design for the first
time it would take about an hour to complete or return an error message. The
lack of efficiency and tutorials/examples made the experience very frustrating.

When configuring the ADC to sample at a certain rate it does not tell if the
timings of the system allows the frequency or not, making you believe that it will
sample at the rate that is given. As a matter of fact it will not always sample at
the given frequency, the way to see the real sampling rate a hidden menu in Vitis
at the application layer can be opened to observe the real configurations of the
hardware. The frustrating part is that if the program tells you if the timing is
plausible is inconsistent. If a clock modulator cannot make the frequency specified,
a prompt will show up to tell the user that it has automatically been changed.

Through later experimenting with the prototype it was discovered that it is
possible to open a menu that shows the hardware configuration though Vitis. This
menu showed that the set sampling rate was indeed 174,8 KHz and not 176,4 KHz.
Which explained why the sampling rate seemed a little bit off when experimenting
the first time.

Because of the nature of the test performed the 16th of may, there is a lot of
room for error. The FPGA should use 100 ms to fill a buffer, but because the
exact time it takes to actually send the buffer is unknown, we cannot know for
sure if some samples falls through or not. Hypothetically if the gathering time
was set to 1,1 seconds we’d see 10 buffers, but because we would actually have
given it time to fill 11 buffers ten buffers was transferred while some samples still
fell through.

It would be very strange for the FPGA to have the possibility to have a sam-
pling rate of one mega samples per second if it is impossible for the microprocessor
to keep up with it. The entire reason to use an FPGA is to acquire a system with
incredible speed and little latency. Therefore I find our results pretty strange. If
we had more time we have a few thoughts that possibly could increase the FPGA’s
performance that will be discussed in section 5.5; "Future work".
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5.1.2.1 Data analysis

Taking into consideration that the ADC can return a magnitude of ± 32768, and
the magnitude of what is considered noise is about 500, making the eight least
significant bits of the ADC heavily affected by noise. The signal, noise ratio (SNR)
shown in figure 4.1.2 is quite bad.

The result accounted for figure 4.1.4a could be accomplished by presenting a
significantly higher frequency into the system or by the sampling rate suddenly
dropping and becoming unstable.

The hypotheses figure 4.1.4b sparked is that the distortion is indeed the sam-
pling rate becoming unstable. By observing the evolution of the peaks and the
density of fluctuations, we can see a waveform that abruptly shifts downwards
where the distortion is present. It then continues with its slow shrinking and
shifting movement like before. Meaning, that the sampling rate slows down for a
certain amount of samples before continuing it’s configured rate.

The reason for this to happen can be that while the function transfer_data is
called, lwIP begins a sequence of interrupts that has higher priority than sampling
the ADC. Thereby making the sampling miss it’s timing.

Then again, a counter argument is that because 100 samples is affected by this,
lwIP supposedly makes 100 interrupts in order to send data, which we don’t know
if it does.

5.2 Signal processing

The group lacked experience with live signal processing, and thus made assump-
tions at the start of the project which resulted in use of development time at
functions which would not be used in the final product. One of the main features
explored was FIR-filters in order to detect the desired frequency in the signal. It
proved to be difficult, and imprecise. After some time, a research paper was dis-
covered by one of the supervisors [18], which was used as a basis for development
of cross-correlation, weights and direction estimates.

By comparing the live and simulated data allows a better understanding of
what may be errors in the current solution.

As of writing this rapport, the time estimates gathered from the cross correla-
tion are not correct. There are several fields which could resolve the issue which
will be further discussed in their respective sections, but the group suspects that
the main error comes from either DC-bias removal, or the microphone readings
from the FPGA. This will unfortunately impact all of the live data readings, and
will make it difficult to observe if the respective functions do their task properly
or not. An attempt will be made to at least understand how the initial input error
affects the respective sections, and hypothesise their effectiveness by comparing
live data with the simulated data.

It’s important to note that the graphs in this chapter may look significantly
different between live and simulated data, but that is not entirely the case. Some
of the graphs are given in logarithmic y-axis in the simulated data, while the live
data is given in a standard scalar.
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5.2.1 Input

Figure 4.2.1 represents the sounds used in the signal processing. Both of the sig-
nals are readings of a 440Hz piano note. The frequency graphs represented are
also similar, but the values at each end of the graph are centered. Meaning, that
index 0 and 4410 in figure 4.2.1b, are flipped such that they are both placed in the
center of the graph as seen in 4.2.1a. A significant thing to note is the magnitude
of frequency 0 in figure 4.2.1b, and the center index in 4.2.1a. There is a significant
spike in both of the readings. This appears not to be an issue in the simulated
data, and thus the group was not surprised to see it in the live data. But as it
will be looked into further in the following section, DC-bias usually is detected at
frequency 0.

Another thing of note is the resolution of the live signal. The FFT of the
signal in simulations 4.2.1a is more consistent and not so noisy. While in the
live data in 4.2.1b seems significantly more noisy. The initial assumption was
that this was caused by the amount of samples used in the FFT, but even with
other test where the size of the processed data, was the same between the live-
and simulated environment, the same thing could be seen, but with slightly less
impact. The sound was recorded, DC-bias was removed and then the gathered
data was converted to a wav file, and then listened to. As explained in FPGA
section, the distortion in the signal could heard, but in addition the quality of the
microphones were significantly poorer than expected.

A noteworthy discovery while testing different SNRs in the simulation, was
that the worse the SNR is, the worse was the quality of resulting FFT of the
raw signal. This pattern was then recognized while performing test with live
data. With the eight least significant bits being affected by the noise, and the
magnitude of the recorded sound signal being ± 3000, "1011 1011 1000" written
as bits. Only the four most significant bits remain unaffected by noise, which can
cause inaccuracies, in the form of spectral leakage, when performing FFT.

5.2.2 DC-Bias

The process of removing DC-bias was only required in live data test and thus there
are no simulated figures to reference when discussing this section. In the live data
however, the dc removal seems to perform as is expected, although there is still
something that resembles DC-noise in the input signal. Thus until the FPGA
section of this project is resolved it is difficult to get a better understanding of the
success of DC-bias removal on the live data.

5.2.3 HPS

It was of interest for the group to develop a function which would only perform
most of the calculations when the desired frequency was detected. This was in
the early stages attempted by developing a FIR-filter with a band pass around
the desired frequency. This solution had quite a few issues, and was inaccurate,
and thus the group started searching for other solutions. It was recommended to
explore using HPS, but that would restrict the signal detection to be frequency
specific. Meaning, that in order to restrain the program from running until the
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desired frequency was detected, one had to preemptively know the incoming fre-
quency. This could potentially be worked around by using the magnitudes of the
harmonic frequencies detected. By comparing the magnitude the the frequencies
detected in static noise, one could create a threshold of peaks detected in noise.
Thus if a frequency was above the given threshold, that would mean that some-
thing other than noise was dominating the spectrum. This conclusion could be
used as a conditional variable in the code, and remove the need of knowing the
desired frequency. There are other issues that would have to be solved, and thus,
it was not developed in the beginning of this project.

HPS seem to perform quite consistently in the simulated data, as seen in figure
4.2.3a. For a better understanding of how the harmonic peaks overlap, one can
look at figure 4.2.3b. Here the signal is zoomed in at index 440 which is the index
which is expected to be the place where the most harmonic peaks overlap, since
that is the frequency that is produced in the input. This was tested with several
different sound inputs and it consistently found the desired frequency. This was
not to be the case in the live data, since it consistently missed by a set amount.
Meaning that instead of detecting the desired 440Hz and expected, it found the
frequency to be around 560Hz. It was hypothesised that this was caused by sample
rate error of the FPGA. This was unfortunately difficult to test as discussed in the
FPGA section. There are also other reason that could have affected the detection,
but since the group could not properly test the sample rate of the input from the
FPGA, and other issues were present before this step, no further investigation was
done to improve the detection.

5.2.4 Weights

Goal of weights is to improve the cross correlation after it is noise whitened. This
will be more thoroughly explained in the cross correlation section of discussion.
As seen in the simulated figure 4.2.4a, the weights are created initially without
constrains, wk, and with constrains as seen below in wek. In the simulated data
the weights can clearly be seen throughout the entire frequency spectrum with
significant impact. That is not the case in the live data. There is a significant
spike at index 0. Before moving forward, its important to note that there are
other values in the live result, but they are significantly smaller than the spike at
index 0. This was discovered while writing this rapport, and thus a better figure
could not be created in time.
The calculated weights are later multiplied by the FFT version of the two micro-
phones that are to be correlated. Meaning that the initial values index 0 will have
significant impact, and make the resulting time delay unreliable.

5.2.5 Cross correlation

There are 3 different versions of the cross correlation function used the project.
All of which can be seen in both live and simulated data in figure 4.2.5. It is note-
worthy that the different steps of the cross correlation look quite similar between
the live- and simulated data, beside the value at index 0. This seems to be a con-
tinuation of the error already described earlier in this section, and further point
to the issue that plagues the results since the start of computation. At this point
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the group was certain that there is no further point in developing, or improving
solutions, until the input of the system is solved. But from what has been tested
with different files in the simulated environment, it is with good certainty that it
can be concluded that the cross correlation method presented is supposed to work,
given better data in the live environment.

The result of the cross correlation in time domain as seen in figure 4.2.6, is
therefore also wrong, and produce a value of either 0.0 seconds, or 2,5*e-5 seconds.
Which with certainty can be assumed to be failed. This is further proved by using
these values in the distance and angle calculations, which result in a value of None.

5.3 Direction and distance estimation

There were many various ways to estimate direction and distance when the esti-
mators were being developed. The first method that is currently in use and the
least square method were the two suggested approaches. It was decided to try the
fist technique and see if it was successful. The second method was incorporated
into the system later on in the project. The first method has a few drawbacks.
Some were corrected, but others weren’t. For instance, one of the issues that could
be resolved was how the angle was calculated in 360 degrees. Cosines determine
a triangle’s angle. Therefore, 180 degrees is the largest angle that cosine can
calculate. Finding a solution to this was essential.

Calculating the angle in the first quadrant and then offsetting it proved to
be the appropriate approach. There were two possible outcomes when the times-
tamps were moved to the first quadrant. Mics 1 or 2 may be placed nearer to the
object than the other. To get around this problem, a system that could locate the
microphone that was nearest within a 360-degree circle and then shift the times-
tamps to the proper microphone had to be created. The answer was to determine
whether the various temporal differentials produced positive or negative values.
Then construct a boolean logic system around this to determine which microphone
was nearest as seen in figure 3.3.7.

Following the various workarounds, a precise angle estimate and imprecise
distance estimation was produced in a simulated scenario, as evidenced by the
findings 4.3. The real-worlds results aren’t discussed because the estimators didn’t
get any valuable data into the class. It is believed however that the first method
doesn’t perform as well in a real-world setting. Only two of the four time stamps
are used in this method to determine the angle. Therefore, there is a chance that
the angle estimation is inefficient if the time stamps obtained aren’t very exact.

Additionally, if the time stamps are not right, it may result in incorrect angle
estimation and a system fault. The timestamp is converted from a time unit to a
distance unit when computing the angle. The cosine is then determined by divid-
ing the calculated distance unit by the distance between the microphones. Only
inputs between 0 and 1 can be used to calculate the cosine’s return angle. The
system will output an error message if the calculated value is more than one. As a
result, incorrect time stamps have the potential to generate both a faulty estimate
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and an error alert.

The fact that the position is not taken into account while computing the angle
in the first method is an additional issue. This is not a problem when estimating
the angle alone, but it becomes a difficulty when estimating the distance.

This is due to the methodology used to estimate the distance. The estimate is
calculated as a series of lines, each with a start point and an endpoint. The end-
points are computed from the angles, but the angle estimation ignores the start
points entirely. As evidenced by the results 4.3, the distance estimate frequently
gets absurdly large or small. It was tested with different methods to find the in-
tersection as explained in section 3.3.2, but both returned inaccurate values. The
lack of time prevented any further investigation into solutions to this issue.

None of the aforementioned issues exist with the second angle estimation ap-
proach. It takes into account the initial point and does not employ any sort of sinus
formulae while determining the unit vector. Additionally, it finds the unit vector
using every timestamp, making it more reliable. Furthermore, it doesn’t have any
workarounds and is more apparent as a result. The second approach wasn’t tested
as much as desired because it was incorporated late in the project. Due to the
fact that this approach was created from the scientific article the project is based
on, there are probably no significant issues with it. Nonetheless, there may be
underlying issues with this method and therefore it can be worthwhile to test for
more conclusive results.

One disadvantage of this method is that it only generates a single unit vector.
The developed direction estimator cannot be applied to a single vector. Therefore,
it is vital to investigate alternative ways of distance estimation if the second angle
method is applied.

5.4 Python

5.4.1 Main program

5.4.2 Graphic User Interface

The GUI could have been improved in retrospect. First of all another software
could have been utilized to make the GUI, because Qt wasn’t the ideal application
to use for creating a radar. Once an object has appeared on the GUI, there are
no useful functions to remove it. Therefore, a cumbersome piece of code called
removing_from_GUI 3.4.13 had to be created in order to remove the figures from
the radar.

A significant problem in the GUI was also created due to a lack of experience.
When creating a GUI, it’s crucial to make all of the modifications in the same
thread. There are two threads that modify the GUI. The item placement and
removal from GUI functions. A timed function in Qt or Qtimer was used to
initiate remove_from_GUI. Each time it is called, the QTimer creates a new
thread. There are therefore two threads that modify the GUI. The GUI is in
danger of shutting down while it is running as a result of these errors. If the
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GUI were to be redone, two classes would likely be required to create it. Two
classes—one for printing the variables on the GUI and one that simply updates
the symbol variables.

It is significant to remember that the error could not manifest right away.
Occasionally, it would surface after five minutes, but frequently, the GUI would
function flawlessly for hours on end.

Additionally, the coord_center function as shown in figure 3.4.10 has some
flaws. It does not follow the outside circle but offset the symbols in a squire.
There are no practical drawbacks to this, but the user may find it puzzling. The
usage of equation 2.12 to create the offset to a circle might be feasible, but it
wasn’t given priority due to lack of time.

Figure 5.4.1: Square offset to the GUI

5.5 Future work

5.5.1 FPGA

In the case of the ADC’s interrupts being de-prioritized because of lwIP. The
prioritize could be switched around giving the ADC higher priority than lwIP.
Another solution could be adding a FIFO to the hardware design to gather the
ADC data through hardware and reading it in bursts. That way the interrupts to
gather data will not need to be called as often.

Alternatively only use HDL to make the application. Soft-cores can be found
on Github which allows a user to import certain parts of the project instead of
having to make everything from the beginning. An example of a soft-core for UDP
communication[26] was found on Github. However this approach to the FPGA
was discovered after we were done developing the prototype. Therefore the method
was not explored further.

Additionally to debug the problem with the network connection read through
the lwIP documentation, specifically netif’s documentation. Begin by checking if
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something for setting up the link is missing. Try to google the problem and see if
others have similar experience with the lwIP library. Alternatively try to contact
a Xilinx support center. It could be possible to contact "FPGA forum"[27]. One
of their committee members gives guidance for Xilinx’s FPGAs.

5.5.2 Signal processing

There are several avenues of interest for future work of signal processing. For the
project the most significant of which are the following. Gain a better understand-
ing of what causes the raw signal, and the corresponding FFT to be so poor. As
mentioned several places in the rapport, an error occurs early on in the processing
of the signal, which follows the results throughout the other functions. The cur-
rent understanding of this issue revolves around the input from the ADC reading
is poor, and the sending of the values may interfere with the data. If the issue
discovered in the FPGA are solved and the problems within signal processing still
persist, the initial place to investigate is DC-bias removal. Thereafter in cascading
order one can start solving the different functions, following the pipeline of the
project. Meaning, check if the now correct DC-bias removal solved the issues de-
tected in HPS, then move on wards to weights, and so on. The important thing of
note is that the signal detection of the project revolves around a specific frequency
detection, meaning that the detection is restricted by frequency. Detection can
be performed by observing the magnitude of the frequencies peaks detected by
the hps. These can be converted to time stamps, or used as detection of signal.
The suggested solutions have problems of their own, and thus have to be further
investigated.

5.5.3 Direction and distance estimation

A variety of things may be looked into if the estimators were taken further. First,
if at all possible, try various approaches in a real-world situation. If a robustness
test cannot be conducted in the real world, it may be possible to replicate one.
The time differentials are accurate estimates when simulating the values at the
moment. In order to examine how the direction estimators function, it could be
interesting to add delays to the time differentials and look at the results. This isn’t
an ideal solution because it’s unclear how much of a delay might be introduced
into the system. On the other hand, it’s still a technique for determining how
reliable various methods are but is not a conclusive answer if the methods are
valid for real-world situations.

If the first approach performs better than hypothesised, I would also research
ways to incorporate microphone coordination into the angle calculation. The dis-
tance estimation should improve if this can be added.

Various approaches to estimating the direction and distance can also be inves-
tigated. It is possible to estimate the angle using the least square method. Even
if there are other approaches that can be taken, the least square method was one
of the methods recommended to look into when developing the system but wasn’t
chosen to look into at that time. For the distance estimation, two microphone sets
with a defined distance between them could be used for estimating the distance.
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Both sets can make a direction estimation, and it is then possible to either apply
a trigonometric function to calculate a distance estimate or to determine the in-
tersection of the lines that were formed from them.

To determine the distance estimate using the present method, it is currently
necessary to either look into another direction method or add microphone coor-
dinate to the first direction method. It is important to include a new technique
to calculate the distance if the second approach of estimating the direction is
continued.
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CONCLUSIONS

The status of the final project can be summarized as; close to a finished proto-
type. The entire pipeline of functions interacts with each other, and the result
is being visualized. Unfortunately, somewhere between the reading of ADC data
and DC-bias removal, an error occurs which makes it difficult to process the data,
and produce a satisfying result. Other significant factors that could impact the
data readings are SNR.

Based on the test performed, it can also be concluded that the current imple-
mentation of second angle estimator is working, while the first method is hypoth-
esized to not be robust enough. First distance estimator is unfortunately not able
to produce a satisfactory result either, even with simulated data.

Future work for this project consist of the following. Performing better tests,
where the signal magnitude is greater, and causing the SNR to be less of an issue.
Resolving the network problem, and periodic distortion in the data sets gathered
by the FPGA. Finding definitive evidence of the sampling rate being what it is
configured to be. Gaining a better understanding of DC-bias removal, and reason
for why the value at index 0 of weights spikes so significantly in live data. Finally,
perform live test with the estimators which prove their effectiveness, and find a
better solution of distance estimation, by either calculating the multiple angles
with a better method, or entirely estimating distance in a different way.

The development of this project, proved that learning how to use a FPGA
in this type of project is not necessary given the complexity of the device, power
required in computation of the signals, and require more than 3 months to develop
for new beginners without supervisors and prior experience. The focus should be
shifted to easier to develop devices, like a powerful raspberry-pi, or arduino.

In addition to the technical difficulties, there was another subject in the last
semester which greatly reduced the available development time of the bachelor
thesis. The group is still proud of the results obtained in the limited time available,
and we feel that with more development time the issues currently seen in the final
solution could be resolved, and are worth pursuing.
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A - GITHUB REPOSITORY AND WIKI

• Github: https://github.com/Simeskaa/Bachelor_Elektro_ingenior_med_
auto

• Wiki: https://confluence.iir.ntnu.no/pages/viewpage.action?pageId=
83067491
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B - ATTACHMENTS

• gant plan

• møtereferat

• Forprosjektrapport

• Forslag til innkjøpsliste

• plakat

• midt veis frammføring

• risiko analyse

• Timeliste

• kode

• slutt presentasjon
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