
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Karl Johan Alvestad
Helene L. Rasmussen
Lasse Raaum
Henrik Rian

OpenBridge Design System
Implementation in maritime
applications

Bachelor’s thesis in Electrical Engineering - Automation and
Robotics
Supervisor: Ottar L. Osen
Co-supervisor: Lars Ivar Hatledal, Eirik Fagerhaug
May 2023

Karl Johan Alvestad
Helene L. Rasmussen
Lasse Raaum
Henrik Rian

OpenBridge Design System
Implementation in maritime
applications

Bachelor’s thesis in Electrical Engineering - Automation and Robotics
Supervisor: Ottar L. Osen
Co-supervisor: Lars Ivar Hatledal, Eirik Fagerhaug
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Department of ICT and Natural Sciences

IELEA2920 - Bachelorthesis Automation

OpenBridge Design System
Implementation in maritime applications

Karl Johan Alvestad (10002)

Helene L. Rasmussen (10025)

Lasse Raaum (10017)

Henrik Rian (10030)

Supervisor: Ottar L. Osen

Supervisor: Lars Ivar Hatledal

Supervisor: Eirik Fagerhaug

May 2023

Preface

This bachelor thesis is written by four students from Electrical Engineering - Automation and
Robotics at NTNU Ålesund. The project was conducted in collaboration with Kongsberg Maritime,
started in January, and was completed in late May. Our motivation to choose this task came from
an interest in the maritime industry, a desire to expand our knowledge about the field, and the
opportunity to combine it with what we have learned over the past three years.

We extend our sincere gratitude to the following:

• Kongsberg Maritime for the opportunity to collaborate on this project.

• Our supervisors, Eirik Fagerhaug, Lars Ivar Hatledal, and Ottar L. Osen, for their invaluable
advice, constructive feedback, and guidance throughout the duration of this project.

• The staff at the Ocean Industries Concept Lab for their insightful feedback, which proved
instrumental in shaping the trajectory of our project.

• Our informants for the research and feedback to the project.

• Our family and friends for their support and valuable feedback during the course of this
project.

i

Abstract

This thesis aims to evaluate the potential of the OpenBridge Design System (ODES) as a design
framework for maritime applications, both current and future. The task was conducted as an
assignment by Kongsberg Maritime, aiming to evaluate the feasibility of integrating OpenBridge
into their existing systems, which involves seamless integration of software and hardware. Additionally,
the research aimed to evaluate the effectiveness of the OpenBridge standard in traditional user
interfaces (UI) and human-machine interfaces (HMI), while also exploring possible avenues for
implementing OpenBridge in maritime applications.

As part of the assigned tasks from Kongsberg Maritime, the group accomplished various outcomes.
These included designing aspects using Figma, developing an application using Electron, and
conducting an evaluation of OpenBridge. Notably, the most comprehensive design created in
Figma was subsequently transformed into an Electron application, serving as a demonstration of
how real-time data from a Programmable Logic Controller (PLC) could be presented within an
Electron app, following the guidelines and elements provided by OpenBridge. Additionally, the
group performed a comparative analysis between the OpenBridge system and existing systems,
focusing on aspects such as visual aesthetics, user experience, and workflow.

The findings of the project indicate that OpenBridge offers a viable solution for creating a recognizable
and secure system at sea. Its use of well-established symbols and elements contributes to a more
user-friendly experience on ship bridges for novice operators. In contrast, existing systems in
the present day often prioritize uniqueness and brand logos to capture clients’ attention and
differentiate themselves, sometimes neglecting the importance of prioritizing a user-centered safe
system experience. The developers of OpenBridge are actively involved in expanding its capabilities
through the development of extensions that further enhance the OpenBridge framework.

ii

Terminology

Abbreviations

• ODES - OpenBridge Design System

• GUI - Graphical User Interface

• HMI - Human-Machine Interface

• UI - User Interface

• HCI - Human-Computer Interface

• PLC - Programmable Logic Controller

• IAS - Integrated Automation System

• CDP - Control Design Platform

• ACK - Acknowledge message

• GPS - Global Positioning System

• IDE - Integrated development environment

• npm - Node Package Manager

• IEC - International Electrotechnical Commission

• WCAG - Web Content Accessibility Guidelines

• SOLAS - International Convention for Safety of Life at Sea

• URL - Uniform Resource Locator

• SVG - Scalable Vector Graphics

• XML - Extensible Markup Language

• PNG - Portable Network Graphics

• MCS- Machinery Control System

• PMS - Power management system

• AMS - Alarm and monitoring system

• IBS - Integrated bridge system

• CMS - Cargo management system

• API - Application programming interface

iii

Contents

Preface i

Terminology iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Background . 1

1.2 Kongsberg Maritime . 1

1.3 Problem Formulation . 1

1.4 Approach . 2

1.5 Structure of the report . 3

2 Theoretical basis 4

2.1 Integrated automation system (IAS) . 4

2.1.1 Acon and K-Chief . 4

2.2 Ocean Industries Concept Lab (OICL) . 4

2.2.1 OpenBridge Design System (ODES) . 4

2.2.2 OpenBridge’s Goal . 5

2.3 User experience (UX) . 5

2.3.1 Human machine interface (HMI) . 5

2.3.2 Human computer interface (HCI) . 5

2.3.3 Graphical user interface (GUI) . 5

2.4 Runtime Environment, frameworks & other technologies 6

2.4.1 Node.js . 6

2.4.2 Electron . 6

2.4.3 Figma . 6

2.4.4 Node Package Manager (npm) . 7

2.4.5 JavaScript Object Notation (JSON) . 7

2.4.6 Scalable Vector Graphics (SVG) . 7

2.5 Companies that have implemented OpenBridge . 8

2.5.1 CDP Studio . 8

2.5.2 Alphatron Marine . 8

2.5.3 SEAM AS . 8

iv

2.6 Regulations . 9

2.6.1 IEC 62288 . 9

2.6.2 WCAG 2.0 . 9

2.6.3 SOLAS . 9

3 Materials 10

3.1 Software . 10

3.1.1 Libraries . 10

3.2 Hardware . 11

4 Method 12

4.1 Project Organization . 12

4.2 Design in Figma . 13

4.2.1 Using OpenBridge in Figma . 13

4.2.2 Design process of UI in Figma . 17

4.3 Application and programming structure development 19

4.3.1 Application . 19

4.3.2 Outdated method of implementing OpenBridge design 30

5 Result 33

5.1 Figma design . 33

5.1.1 Design Process . 33

5.1.2 Drafts . 33

5.1.3 Final UI design . 39

5.2 Electron application . 52

5.2.1 SVG layout implementation . 52

5.2.2 SVG component implementation . 53

5.2.3 Outdated method for app design . 55

5.2.4 Responsive design . 56

6 Discussion 58

6.1 Scalability . 58

6.1.1 Figma . 58

6.1.2 Electron . 58

6.1.3 Scaling the code . 59

6.1.4 OpenBridge . 59

6.2 Challenges . 60

v

6.2.1 Figma . 60

6.2.2 Electron . 60

6.2.3 OpenBridge . 60

6.3 Existing programs . 61

6.3.1 CDP Studios . 61

6.3.2 Alphatron Marine . 62

6.3.3 SEAM AS . 62

6.4 Usability . 63

6.4.1 Ease of use . 63

6.4.2 Open source . 64

6.4.3 Presets for operation . 64

6.5 Process . 64

7 Conclusion 65

7.1 Further work . 65

Bibliography 66

Appendices 68

A Preliminary project report . 68

B Gantt diagram . 69

C Hour list . 71

D Biweekly reports . 72

E Meeting reports . 73

F Project pitch . 74

G Poster . 75

H Figma project . 77

I Electron Code using SVG files . 78

J Electron Code using online library . 79

K e!COCKPIT . 80

L Contact log . 81

M Video . 82

List of Figures

1 PNG vs SVG . 7

2 Organization chart . 12

vi

3 The OpenBridge library in Figma . 13

4 Empty page in Figma . 14

5 Illustration of finding OpenBridge components in Figma 14

6 Setting interactions between components in Figma 15

7 Illustration of running a prototype in Figma . 15

8 Building blocks library in Figma . 16

9 Palettes swapped in Figma . 17

10 One of the templates provided by Kongsberg Maritime. This is specifically an
overview page of an IAS system . 17

11 Flow chart of the design process in Figma . 18

12 Overview of the ideal process . 23

13 Overview of the communication between the server and clients 23

14 Overview of the demo process . 24

15 The complete overview of the Wago PLC program, see appendix K for full program 25

16 Live Data from PLC updated in Electron, see index.html in appendix I 27

17 Flowchart of the element from OpenBridge library to HTML 30

18 OpenBridge online demo . 31

19 Design process, from the initial draft to the final result 33

20 Draft V0.1 IAS overview page . 35

21 Example of a sub-application in draft V0.1 . 36

22 Draft V0.2 IAS overview page . 36

23 Example of a sub-application in draft V0.2 . 37

24 Example of navigating to sub-pages within a sub-application 37

25 Draft V0.3 IAS overview page . 38

26 Example of a sub-application in draft V0.3 . 38

27 Example of navigating to sub-pages within a sub-application 39

28 Illustration of the structure of the Final UI design 40

29 Final design IAS Overview . 40

30 Final design Sidebar navigation . 41

31 Final design Subpage navigation . 41

32 The application menu popup . 42

33 Final design Conning application . 42

34 Final design ECDIS application . 43

35 Final design RADAR application . 43

36 Exposed sidebar in navigation applications . 44

vii

37 IAS overview page in day mode . 44

38 IAS overview page in dusk mode . 45

39 IAS overview page in night mode . 45

40 User Login popup in the final UI design . 46

41 Notification popup in the final UI design . 47

42 Notification popup in the final UI design . 48

43 Notification popup in the final UI design . 49

44 The screen control window . 49

45 Example of choosing an application the screen will host 50

46 Example of choosing which part of an application the support screen should display,
in this case, the conning application . 50

47 Example of how the screen layout could look like using the Final UI design 51

48 Conning layout SVG file example . 52

49 The components made for implementation into bigger systems 53

50 First Electron design in Electron . 55

51 Scaled Thruster window . 55

52 Full screen test window . 56

53 Smaller screen test window . 56

54 Long screen test window . 57

55 CDP Studios UI . 61

56 AlphaMINDS UI . 62

57 e-SEA Bridge . 62

58 Totem Plus- & Navi Conning . 63

59 Free Technics - & K-Bridge Conning . 64

List of Tables

1 Overview of programs used . 10

2 Overview of libraries used . 10

3 Overview of hardware . 11

4 Overview of icons . 34

viii

1 Introduction

This chapter introduces the projects background. Including an introduction of the client and
their problem formulation for this project. Lastly, a description of how the group approached the
problem formulation.

1.1 Background

The maritime sector plays an important role in Norway, and it is a big industry in the northwest
part of Norway. In 2018, the maritime industry employed around 84 000 people and generated
a total value of 89 billion NOK [14]. Modern ship bridges as a workplace are usually composed
of a large number of systems supplied by many providers, all of which are typically built using
very different user interfaces (UI) philosophies [27]. Bridges, according to the OpenBridge project,
have become cluttered due to human error, inefficient operations, and an increasing requirement
for training. Standardization of the UI decreases the margins associated with these issues, allowing
the industry to increase productivity and quality, without increased cost. Suppliers must develop
and maintain numerous system variations aimed at individual suppliers or ship vendors [2]. The
OpenBridge project initiative was formed to address all of these issues above by standardizing the
UI in the maritime sector.

1.2 Kongsberg Maritime

Kongsberg Maritime is a global leader in maritime technology. Their solutions include marine
automation, safety, maneuvering, navigation, and dynamic positioning, as well as energy management,
deck handling, propulsion systems, and ship design services [24]. They have one of the most
comprehensive product lines in the world, from the engine room to the working deck.

Through the Kongsberg Maritime problem formulation, it stands to gain a groundwork of understanding
how to utilize OpenBridge in new and existing systems, giving older equipment a fresh and modern
look. The firm stands to gain a collective knowledge base of how user experience (UX) and UI
systems can be improved and how they can impact the safety of their constructions.

1.3 Problem Formulation

The project client from Kongsberg Maritime offered some suggestions about what they wanted for
the project, namely a solution for the duties listed below with an emphasis on UI (Contact log L).

Integration of OpenBridge Design System with AIS systems, K-chief and Acon

• Implementing the OpenBridge Design System in an Acon (IAS) to K-Chief One Project,
tying together the software and design principles to an actual hardware system.

• Evaluating the OpenBridge standard towards traditional User- and HumanMachine-interfaces
with regards to ease of use, safety, scalability, reliability, security, and more.

• Explore future possibilities for implementation in a broad application of maritime applications.

The group devised a suitable goal in collaboration with the client and supervisors. They were
aiming to provide a comprehensive comparison of existing software and the OpenBridge design
system. Examine the new design guideline, OpenBridge, and compare it to the existing systems.
The client wanted an analysis of OpenBridge to determine whether it might be utilized to design
and develop a marine UI in the future.
The group had a lot of leeway in approaching the project. A constraint agreed upon by the

1

group, supervisors, and adviser was that the design created in Figma may be less advanced in
the programming section. The programming portion was thus limited to verifying whether the
OpenBridge parts could handle live data, utilizing only a few pieces and not attempting to program
the entire Figma design.

1.4 Approach

A meeting was convened by the research group, attended by both the client and supervisors,
during which the project, ideas, and thoughts were formally presented. The group was accorded
significant autonomy from the project’s inception in determining the approach and resolution to
the challenge at hand. The undertaking encompassed a broad array of novel systems, applications,
and information. In the initial phase, the group’s objective revolved around acquiring knowledge
and establishing a comprehensive overview of the project’s milestones, thereby fostering a deeper
understanding of the project’s scope and significance.

The project was logically subdivided into five distinct milestones to facilitate systematic progression:

• Milestone 1: Research and Analysis - This stage involved acquiring essential expertise in
OpenBridge, software systems, design principles, programming methodologies, and the maritime
industry.

• Milestone 2: OpenBridge Design and Integration - Leveraging the capabilities of Figma, the
group undertook the task of developing a system adhering to OpenBridge’s guidelines and
incorporating its fundamental components.

• Milestone 3: Communication and App - The group focused on constructing an Electron
application capable of facilitating seamless communication while integrating real-time data
from a PLC into the developed app.

• Milestone 4: Usability Evaluation - An integral aspect of the project involved conducting an
evaluation of the user experience associated with employing OpenBridge, encompassing its
ease of use, efficiency, and overall usability.

• Milestone 5: Future Possibilities - This final milestone encompassed a thorough investigation
and assessment of prospective applications and possibilities that could be realized through the
utilization of OpenBridge’s guidelines, offering insights into its potential future developments.

2

1.5 Structure of the report

The report is structured as follows:

Chapter 2 - Theoretical basis

• This chapter provides an introduction to the theoretical basis employed to acquire the
knowledge necessary for the successful completion of this project.

Chapter 3 - Materials

• This chapter presents a comprehensive description of the materials utilized in this project,
including various programming languages and software employed.

Chapter 4 - Method

• This chapter outlines the techniques employed by the group to design using OpenBridge in
Figma and subsequently implement it in an Electron app.

Chapter 5 - Results

• This chapter showcases the results achieved throughout the project. It encompasses a
detailed description of the Figma design, the programmed Electron app, and an evaluation
of OpenBridge.

Chapter 6 - Discussion

• This chapter engages in a comprehensive discussion of the project’s findings, including an
exploration of the results, the decisions made, and an overall assessment of OpenBridge.

Chapter 7 - Conclusion

• This chapter concludes with a concise summary of the results and experiences garnered by
the group throughout the project.

3

2 Theoretical basis

This chapter provides a comprehensive overview of the theoretical concepts this project builds upon.
It covers important topics such as Integrated Automation Systems (IAS) and their relevance to
the project. Additionally, it introduces the OpenBridge project, highlighting its objectives and
significance. The chapter also delves into the theory of User Experience (UX) and its relevance
to the project’s design considerations. Furthermore, it explores various programming languages
and frameworks employed in the project, shedding light on their features and benefits. Lastly,
the chapter discusses companies that have successfully implemented OpenBridge design system
guidelines into their systems and provides examples of the products where these guidelines have
been incorporated.

2.1 Integrated automation system (IAS)

The IAS is an integrated marine automation system that can control and monitor various operations
and functions on board a modern vessel. It integrates many automation and control systems into
one single platform, enabling seamless coordination and communication across various subsystems
such as machinery control system (MCS), navigation, Power Management System (PMS), Alarm
and Monitoring System (AMS), Integrated Bridge System (IBS), Cargo Management System
(CMS) and Safety and Emergency Systems [7] [17]. An IAS’s major goal is to improve the efficiency,
safety, and dependability of ship operations by automating and integrating numerous procedures.
It substitutes manual processes with automated methods, lowering staff labor and the danger of
human mistakes. The system transmits real-time data and feedback on the state and operation
of several ship systems [19]. This section provides an overview of the two IAS systems Acon and
K-chief, that Kongsberg Maritime offers.

2.1.1 Acon and K-Chief

Acon and K-chief are distinct systems that perform similar functions as control and monitoring
of IBS, PMS, MCS, and more. Acon was developed by Rolls Royce, and the company was later
bought by Kongsberg. Acon is no longer being supported, therefore it is no longer available for
purchase L. K-chief was developed by Kongsberg and is the IAS system they currently offer.

2.2 Ocean Industries Concept Lab (OICL)

Ocean Industries Concept Lab (OICL) is a research group dedicated to developing knowledge that
will aid the process of user-centered innovation in the maritime sector. The OICL is a part of
the Institute of Design at the Oslo School of Architecture and Design. The group works closely
with top industry actors on various projects and is founded on design methods such as industrial,
interface, graphic, and service design, and it works on projects in close collaboration with key
industry players [3].
The most recent project the OICL has had is the OpenBridge design system, which aims to provide
uniform user interfaces for all systems aboard ships [3]. OpenBridge is the first open marine design
system of its sort, and you can learn more about it in the section that follows.

2.2.1 OpenBridge Design System (ODES)

OpenBridge design system is a design guideline for optimizing the design, readability, and approval
of maritime interfaces for equipment. It is an open-source library based on modern UI design ethics,
that has been customized to maritime environments and laws. The primary purpose of OpenBridge
is to standardize integration frameworks due to the contemporary issues in maritime workplaces
encompassing both design and technical implementation. It is designed to support all modern
maritime bridges aboard ships as well as land-based UX for maritime operations [2].

4

2.2.2 OpenBridge’s Goal

In this subsection, the goals OpenBridge wants to realize are listed [2].

• Safe and efficient workplaces with consistent design across all systems regardless of supplier.

• Efficient technical integration that will allow maritime systems to be installed on all OpenBridge
compatible ships bridge systems.

• A component-based approval system that works within current regulations

2.3 User experience (UX)

UX refers to the overall experience a person gets when utilizing a product, application, system, or
service. It focuses on understanding and addressing users’ needs, expectations, and emotions to
create meaningful and enjoyable experiences [39].
The concept of UX is frequently used interchangeably with terms like ”User interface (UI)” and
”usability”. Usability and UI design are key parts of UX design, yet they are subsets of it.
A UX designer is concerned with the entire integration and acquisition process of a product,
including design, usability, and function. This subsection describes the theory behind the various
interfaces and the user experiences they offer. Human-machine interface (HMI) and human-
computer interface (HCI) are interfaces used to operate a device, whereas GUI is the produced
digital screen that controls the device [35].

2.3.1 Human machine interface (HMI)

HMI is a user interface that enables communication between automated systems and operators.
Enabling two-way communication between humans and machines, interaction, information sharing,
and machine control. An HMI’s purpose is to build a user-friendly interface that facilitates
communication and enables efficient control of machines [16].

2.3.2 Human computer interface (HCI)

HCI is a UI that allows a person to control a computer. Computers are not machines; they are
meant to process and store data. Machines are intended to exert mechanical force. Touchscreens
and keyboards are examples of HCI [16].

2.3.3 Graphical user interface (GUI)

A graphical user interface (GUI) refers to a control system that enables users to execute commands
on a computer or electronic device by utilizing visually represented icons and other digital images.
One commonly encountered example is the touchscreen functionality found in smartphones and
tablets. These mobile devices incorporate touch-sensitive screens that display images, allowing
users to interact with the displayed elements to operate the device. For instance, to access the
internet on a tablet, a user can simply tap the icon representing the mobile browser application.
A GUI can be described as an interface that is digitally rendered and presented on a screen [15].

5

2.4 Runtime Environment, frameworks & other technologies

This subsection gives an overview of the Runtime Environment, framework, and other technologies
that are used in this project. In the sections that follow, you will learn more about the Node.js
Runtime Environment, the Electron framework, and other technologies such as Figma, NPM, and
JSON.

2.4.1 Node.js

Node.js is a server-side JavaScript development runtime environment. Node.js is for the development
of building scalability, and network applications with JavaScript [4].

2.4.2 Electron

Electron is a framework specifically designed for the development of cross-platform desktop applications
utilizing HTML, CSS, and JavaScript. This framework empowers developers to employ familiar
web development tools to create applications that seamlessly run on diverse operating systems,
including Windows, Mac, and Linux. Notably, Electron combines the functionalities of a web
browser within a desktop application environment.

In addition to its cross-platform compatibility, Electron also prioritizes data security. By encapsulating
an application and migrating it to the Electron framework, data remains securely stored locally
within the system [37].

Furthermore, Electron facilitates high-performance application development. It significantly reduces
production time and offers flexible development options by providing a unified code base for
all targeted platforms. This approach alleviates challenges associated with native application
development and enables developers to leverage a single code base for both web and desktop
applications. Consequently, Electron offers enhanced reusability, making it a more user-friendly
and convenient framework compared to alternative options. The motto ”Code once, distribute
everywhere” aptly encapsulates Electron’s ability to streamline development and deployment processes
[13].

2.4.3 Figma

Figma is a cloud-based tool used by designers to create user interfaces, prototypes, and real-time
feedback. Figma gives the power to create high-fidelity designs with easy sharing functions for
collective feedback, which makes it popular among UX/UI designers. Figma has a variety of
features, including vector editing tools, layout and grid systems, theme components, and plugins
[38].

Figma’s key feature is its ability to enable real-time collaboration. Multiple group members can
work on the designs simultaneously, and each member’s edits are always visible to others. Figma
facilitates collaboration even if the design team is not in the same physical location. Figma allows
for the creation of interactive prototypes to test and validate design concepts with users.

The versatility of Figma is further amplified by its export capabilities. Design elements crafted
within the Figma environment can be exported as PNGs or interactive SVGs. This flexibility
enables the utilization of interactive images in coding applications, ensuring seamless integration
and scalability within various software development contexts.

6

2.4.4 Node Package Manager (npm)

The Node Package Manager (npm) is a fundamental JavaScript package manager that is integrated
within the Node.js environment. Functioning as a centralized repository, npm facilitates the
maintenance of reusable code packages. By leveraging npm, developers can conveniently access and
employ code packages contributed by other developers in their respective projects. This streamlined
approach reduces development time by mitigating the need for extensive custom code authorship.
Notably, the utilization of Node.js enables the utilization of JavaScript for both front-end and
back-end development, enhancing language consistency throughout the entire application [1].

2.4.5 JavaScript Object Notation (JSON)

JavaScript Object Notation (JSON) is a widely used and lightweight format for exchanging data
between different systems. It provides a simple and intuitive syntax that can be easily understood
by humans and processed by machines. JSON is based on a subset of the JavaScript programming
language, which ensures its compatibility with popular programming languages like C, Java,
JavaScript, Perl, and Python. This language-agnostic nature of JSON makes it a versatile choice
for data interchange [21].

2.4.6 Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) represents a web-friendly file format specifically designed for vector
graphics. By employing SVG, designers can create graphics that retain their quality regardless
of the size or resolution of the output. In contrast, raster-based formats like Portable Network
Graphics (PNG) are composed of static pixels, which impose limitations when scaled. SVG employs
mathematical equations to describe the shapes and curves of an image. As a result, SVG graphics
can be freely scaled without compromising details or clarity as shown in Figure 1. This attribute
makes SVG an ideal choice for various graphical elements such as logos, icons, and charts that
demand adaptability and flexibility. SVG supports animation capabilities through the utilization
of CSS or JavaScript [33][34].

Figure 1: PNG vs SVG

7

2.5 Companies that have implemented OpenBridge

OpenBridge is used by over 170 companies from all around the world that have registered to use
the guideline [31]. This subsection will provide an introduction to three companies, as well as their
products.

2.5.1 CDP Studio

CDP Studio is a modern software platform for developing complex control and automation systems.
The software is produced by the independent Norwegian software company, CDP Technologies.
The intention of CDP is to simplify control system development so that companies can create
next-generation industry solutions [9].

CDP Studio is a development tool that includes the OpenBridge guidelines. Designing and
developing OpenBridge UIs in CDP Studio is fast and efficient. The use of a no-code editor with
the OpenBridge library significantly reduces the complexity and knowledge required to design UIs
in accordance with the standard [30].

2.5.2 Alphatron Marine

Alphatron Marine is a supplier of integrated bridge solutions and a producer of unique complementary
products. Their software Conning and Docking are applications of their powerful all-in-one software
suite AlphaMINDS (Multifunctional Information Navigation & Docking System).

The AlphaMINDS software is based on their automation and connecting platform Lynx, designed
as maritime SCADA software for monitoring and controlling all equipment onboard a vessel.
Integrated with Lynx is the OpenBridge design guideline [26].

2.5.3 SEAM AS

SEAM AS is a supplier of zero-emission solutions to the maritime industry. Their goal is to develop
and deliver zero-emission solutions, securing the transition to green shipping. SEAM aims to make
voyages environmental and operation efficient, predictable, and risk-free, by developing, delivering,
and implementing cost-reductive and future-ready technology and systems [12].

The bridge solution e-SEA Bridge was the first bridge solution based on the OpenBridge design
system. e-SEA Bridge is a bridge solution that integrates what the captain needs to remotely
control and monitor while sailing, in easily accessible control units connected to the captain’s seat.

8

2.6 Regulations

Regulations play a crucial role in the maritime sector, ensuring the provision of safety, security,
and environmental protection measures. This subsection aims to provide an overview of three
fundamental regulations that hold relevance for the OpenBridge guideline, IEC 62288, WCAG 2.0,
and SOLAS.

2.6.1 IEC 62288

IEC 62288 is an international standard developed by the International Electrotechnical Commission
(IEC), which is titled ”Maritime navigation and radiocommunication equipment and systems
- Presentation of navigation-related information on shipborne displays - General requirements,
methods of testing and required test results”. The standard provides guidelines for the presentation
of navigation-related information on shipborne displays, including electronic charts, radar images,
and other navigational information [18].

2.6.2 WCAG 2.0

WCAG 2.0, stands for ”Web Content Accessibility Guidelines 2.0,” constitutes a technical standard
disseminated by the World Wide Web Consortium (W3C). It aims to furnish comprehensive
guidelines for enhancing the accessibility of web content, particularly for individuals with disabilities.
This standard outlines directives pertaining to the perceptibility, operability, comprehensibility,
and robustness of web content. It covers a broad spectrum of considerations, including the provision
of text alternatives, the design of content conducive to keyboard and mouse navigation, and the
facilitation of seamless user experiences for individuals with disabilities [36].

2.6.3 SOLAS

The International Convention for the Safety of Life at Sea (SOLAS) represents an internationally
recognized maritime convention that establishes minimum safety standards for ship construction,
equipment, and operation [32]. Initially adopted in 1914, this convention has undergone various
revisions and amendments over the years, with the most recent iteration being SOLAS 2020 [20].
Its overarching objective is to safeguard human life at sea, promote maritime safety, and mitigate
potential hazards through a comprehensive framework of regulations.

9

3 Materials

This chapter describes the materials used to complete this project. The project is mostly made
up of software, and the Tables below list the program software, libraries, and hardware that were
utilized, as well as a description of how they were used.

3.1 Software

Table 1 shows an overview of the software used in this project.

Softwares
Software Version Description

OpenBridge
design
system

4.0/5.0 BETA Guideline built on modern principles of user
interface and workplace design adapted to
maritime context and regulations

Figma Collaborative interface design tool
CDP Studio 4.11 Software platform for developing

comprehensive control and automation
systems

JavaScript Programming language
Electron 23.1.4 Open-source software framework for building

desktop applications
e!Cockpit 1.11.1.2 Wago PLC programming IDE
Visual studio
code

1.78.1 IDE

npm 9.5.0 Open source code repository for JavaScript
Git 2.40.0 Version control system
GitHub Collaboration tool

Table 1: Overview of programs used

3.1.1 Libraries

Table 2 lists the libraries used to achieve tasks.

LIBRARY
Library Version Program Usage

Nodemon 2.0.22 npm Used to continuously update electron for every
save without restarting the software

Modbus-serial 8.0.11 npm Library used for Modbus communication from
node package manager

openbridge-css 0.2.2 npm OpenBridge’s online CSS for fonts/styles
within its designs

openbridge-web-
components

0.2.2 npm OpenBridges early design for components to
implement into clients’ systems

jsmodbus 4.0.6 npm Javascript Modbus library used for
establishing communication with Modbus

Table 2: Overview of libraries used

10

3.2 Hardware

Table 3 shows the hardware that was used in this project. The PLC was used to check the
compatibility of Electron, using live data through Modbus.

HARDWARE
Hardware Version Description

Wago PLC 750-8214 PLC used to check compatibility

Table 3: Overview of hardware

11

4 Method

This chapter contains in-depth explanations of the techniques used to solve the project milestones.
First how the project was organized is described, focusing on how the project was planned and
executed. Next, a description of the method used to develop the various designs in Figma, followed
by how the design was programmed in Electron and the application.

4.1 Project Organization

The project team consisted of four students who alternated between the roles of project leader
and secretary. This arrangement was implemented to ensure that each member had additional
responsibilities and tasks. The project leader’s primary duties encompassed organizing, disseminating
information, and supervising meetings with supervisors and the client. The secretary assumed
organizational responsibilities such as maintaining biweekly updates (see appendix D), managing
the gantt diagram (appendix B), and compiling meeting notes (appendix E). Despite the existence
of a designated project leader, all decisions were made collectively by the group, reflecting their
shared and individual accountabilities for the project’s outcome.

Regular meetings were scheduled biweekly to facilitate effective communication and collaboration.
During the meetings, the group presented problem-solving ideas and showcased Figma designs,
engaging in discussions regarding potential solutions with supervisors and the client. Prior to
project initiation, a preliminary-project plan was formulated (see appendix A), accompanied by
the creation of a gantt diagram and a description of the key milestones, as introduced in Chapter
1.4. These initiatives aimed to provide a holistic overview of the entire project. Figure 2 presents
a visual representation of the three key parties involved in the project.

Figure 2: Organization chart

12

4.2 Design in Figma

This section begins with an introduction to the utilization of OpenBridge in Figma, covering the
steps involved in creating an OpenBridge UI within the Figma platform and exploring the potential
opportunities it presents. Furthermore, later in this chapter, the process of generating the project’s
designs will be discussed.

4.2.1 Using OpenBridge in Figma

Figma provides access to the most recent OpenBridge component libraries as well as the ability
to design and develop UI prototypes. The OpenBridge library is obtained via the OpenBridge
website, which offers a direct link to its Figma library [29]. This library is open source, and several
contributors can post comments and submit requests about the various components.

To utilize the OpenBridge library in your own drafts, you can duplicate it and incorporate it
into your design process. By doing so, you gain access to the components and can start creating
UI sketches that adhere to the OpenBridge guidelines. See Figure 3 for an illustration of the
OpenBridge library in Figma.

To fully utilize Figma’s collaborative features, it is recommended to upgrade to a Professional
account. This upgrade allows you to create a team and collaborate with other team members on
the same project, enhancing the collaborative design and development process.

Figure 3: The OpenBridge library in Figma

13

4.2.1.1 Adding OpenBridge components in Figma

When adding pages to your Figma project, you start with an empty page where you can begin
adding components. Figure 4 illustrates this initial empty page where you can start building your
UI.

The library is located on the left sidebar. The components library is organized into different
categories such as buttons, instruments, menus, bars, and more. These categories make it easier to
find the specific components you need for your design. Figure 5a showcases the categorized library
in the sidebar.

The library offers a search bar, allowing you to narrow down your search and find the desired
components. This makes it efficient to locate specific elements for your UI design.

The library supports a drag-and-drop function. By clicking and holding the mouse button over a
component, you can drag it to the desired location in your design. This drag-and-drop functionality
simplifies the process of integrating components into your project. Figure 5b provides an example
of the search bar and drag-and-drop function.

Figure 4: Empty page in Figma

(a) Copying components from library pages (b) Search for components in the assets search bar

Figure 5: Illustration of finding OpenBridge components in Figma

14

4.2.1.2 Testing the OpenBridge UI in Figma

In Figma, you have the capability to test your UI design by setting up interactions between different
components. This allows you to evaluate the usability and flow of your UI. The prototype function
in Figma facilitates this process.

Using the prototype function, you can select the desired component and define its interaction with
other components by setting up the desired action. For example, in the case shown in Figures 6a
and 6b, clicking the app menu icon in the top bar triggers a pop-up menu to appear.

Figma offers various types of interactions to choose from, as depicted in Figure 6b. You can select
the appropriate interaction that matches your intended behaviour.

By running the prototype, you can test and experience the interactions in action. Figures 7a and
7b provide visual examples of how the interactions can be tested during the prototype evaluation
process. This allows you to assess the functionality and UX of your UI design.

(a) Setting an interaction for the app’s icon (b) Connecting the interaction to a desired
component. In this case a Pop-up menu. And then
set the desired interaction

Figure 6: Setting interactions between components in Figma

(a) Running the prototype, and clicking the icon (b) When the icon is clicked the pop-up menu is
revealed

Figure 7: Illustration of running a prototype in Figma

15

4.2.1.3 Creating customized components in Figma using OpenBridge

The OpenBridge library offers building blocks that can be utilized to construct components, as
illustrated in Figure 8. These building blocks serve as the foundation for creating customized
components tailored to specific needs.

By using these building blocks, you can design and develop components that align with your
desired specifications and requirements. These customized components, although not included in
the official OpenBridge library, can be created using the building blocks provided.

Furthermore, if you believe that your customized components could benefit the broader OpenBridge
community, you have the option to submit them as suggestions to the OpenBridge developers. They
can then evaluate and potentially incorporate your suggested components into future updates of
the library, expanding its functionality and versatility.

Figure 8: Building blocks library in Figma

4.2.1.4 Changing palettes of the UI in Figma

In Figma, it is possible to modify the colour palette of the UI to visualize different colour schemes,
such as dusk and night mode. The OpenBridge website offers Figma files that include various
colour styles for different palettes, which can be accessed through the provided link 1.

To apply these palettes to your design, Figma provides a ”swap library” function, which allows
you to replace the existing colour styles with the desired palette 2. By utilizing this function, you
can switch between different colour palettes to visualize how they impact the UI.

Figure 9 showcases an example of a palette swap.

1Figma library and palettes library, Link: https://www.openbridge.no/figma/current-release
2How to change libraries in Figma, Link: https://help.figma.com/hc/en-us/articles/4404856784663-Swap-style-

and-component-libraries

16

(a) Palette swapped to dusk (b) Palette swapped to night

Figure 9: Palettes swapped in Figma

4.2.2 Design process of UI in Figma

The design process for creating a new interface begins with conducting research and analyzing
existing interfaces. As the group had limited experience in designing UI for maritime contexts, we
utilized the Acon and K-Chief interfaces as templates for reference, as shown in Figure 10. These
templates provided a starting point for designing new interface drafts in Figma, incorporating the
OpenBridge library. The process of developing drafts is illustrated in Figure 11.

Figure 10: One of the templates provided by Kongsberg Maritime. This is specifically an overview
page of an IAS system

17

Figure 11: Flow chart of the design process in Figma

The provided interfaces served as valuable tools and guides throughout the design process in
Figma. During the analysis of these interfaces, the group focused on gathering specific information
to inform our own design decisions. The following key points were particularly sought after by the
group:

• General layout: Understanding the overall structure and arrangement of elements in the
interfaces.

• Necessary information: Identifying the essential information that users need to access and
interact with.

• Always available information: Determining which information should be readily accessible to
the user at all times.

• Examining how alarm-related information is presented to the user, ensuring effective alert
management.

• Colour usage: Exploring how colours are employed in the interface design, including colour
schemes and the representation of different states or modes.

• Navigation methods: Investigating how users navigate through the interface, such as through
menus, buttons, or other interactive elements.

By addressing these key points and considering the insights gained from analyzing the provided
interfaces, the group established drafts in Figma that incorporated important design considerations
meeting the needs of the intended users.

18

4.3 Application and programming structure development

In this section, the group reviewed various coding techniques for creating a demo for structuring
components in an application.

4.3.1 Application

One of the project’s goals was to develop an application that was capable of handling live data from
a PLC and displaying the values inside the application. This section describes the technologies
that were used to make it possible. The project is open-sourced and can be used by everyone that
wants to try OpenBridge.

4.3.1.1 Electron functions

None of the members within the group possessed any prior experience in JavaScript, HTML, or
CSS coding. To bridge this knowledge gap, the initial phase of the project involved engaging in
self-directed learning through the utilization of freely available crash courses discovered through
online platforms such as Google and YouTube. The supervisors played an important role by
offering recommendations and conducting research, leading the group to familiarize themselves
with Electron.

During the selection process for the application’s primary platform provider, Electron was chosen to
be the framework. The group ultimately opted for Electron due to its straightforward architecture
and framework. Leveraging JavaScript, HTML, and CSS, Electron facilitated a smoother learning
curve for the group members in contrast to competing options. Notably, the application harnessed
the Chromium engine for rendering, thereby simplifying the utilization of developer tools and
facilitating access to storage.

The installation process for Electron involved utilizing npm within the Node.js environment. Upon
successfully installing Node.js and navigating to the desired directory within the terminal, Electron
could be installed by executing the command in snippet 1.

Listing 1: Installing Electron example

1 npm init

2 npm install --save-dev electron

After installing electron it’s needed to go into the package.JSON file and edit by inserting a script
that starts electron, as shown in snippet 2.

Listing 2: Standard script added snippet

1 "scripts": {

2 "start": "electron ."

3 }

The script allows the application to be launched using the new ”start” command, which replaces
the previous ”electron .” command. In order for Electron to be launched correctly, it requires a
relative path to the ”main.js” file from the directory where the ”package.json” file is located. This
path specifies what should be launched within the Electron program. An example of a standard
”package.json” file is shown in snippet 3, where you can observe the ”main” property on line 5.

Listing 3: Standard package JSON file

1 {

2 "name": "my-electron-app",

3 "version": "1.0.0",

4 "description": "Hello World!",

5 "main": "./main.js",

19

6 "author": "Jane Doe",

7 "license": "MIT"

8 }

By following the quick start guide provided on the Electron website 3, obtains the complete
standard code that serves as a foundation for building a basic Electron application. The code
snippet 4 demonstrates the standard structure.

Listing 4: standard Electron example

1 const { app, BrowserWindow } = require('electron')
2 const path = require('path')
3

4 function createWindow () {

5 const win = new BrowserWindow({

6 width: 800,

7 height: 600,

8 webPreferences: {

9 preload: path.join(__dirname, 'preload.js')
10 }

11 })

12

13 win.loadFile('index.html')
14 }

15

16 app.whenReady().then(() => {

17 createWindow()

18

19 app.on('activate', () => {

20 if (BrowserWindow.getAllWindows().length === 0) {

21 createWindow()

22 }

23 })

24 })

25

26 app.on('window-all-closed', () => {

27 if (process.platform !== 'darwin') {

28 app.quit()

29 }

30 })

The Electron application utilizes the app module4 and BrowserWindow module5 on line 1, which
are imported using the require tag to leverage the functionality provided by these modules from
Node.js. When executed correctly, running the command ”npm start” will open an empty application
window.

As shown in the quick start guide, the whenReady function is used to ensure that the entire
program is loaded before launching the browser window, reducing the likelihood of crashing during
the booting process. This function ensures that certain operations are withheld until all variables
are established, preventing attempts to apply new values to each variable prematurely.

The program offers various features. The ability to set custom frame sizes, enable full-screen mode,
specify the monitor on which to launch the application, and determine the application to switch
when the display becomes disconnected. In snippet 5, lines 3, 4, and 6 demonstrate the capability
to detect extended displays and configure the appropriate display resolution.

Additionally, on lines 11 and 12 of the code snippet, the integration of Node.js modules is enabled
within the Electron frame, allowing for global data sharing instead of being limited to a single

3electronjs.org
4information about the module: https://www.electronjs.org/docs/latest/api/app
5information about the module: https://www.electronjs.org/docs/latest/api/browser-window

20

window. It is important to note that the approach may pose security risks, but the risks are
confined to the shared repositories of the Node.js modules6.

Listing 5: Createwindow Function for full main.js in appendix I

1 function createWindow() {

2 const { screen } = require('electron')
3 const primaryDisplay = screen.getPrimaryDisplay()

4 const { width, height } = primaryDisplay.workAreaSize

5 mainWindow = new BrowserWindow({

6 fullscreen: true,

7 width,

8 height,

9 webPreferences: {

10 nodeIntegration: true,

11 contextIsolation: false,

12 }

13 });

The consideration of security should be evaluated on a project-by-project basis, as the requirements
and needs can vary. In the case of the application demo, setting the context isolation to false can
be a reasonable choice to avoid unnecessary challenges during the demonstration. It is important
to note that in a production environment, security measures should be carefully assessed and
implemented based on the specific requirements and potential risks associated with the application.

It is recommended to conduct a thorough security assessment and consider implementing appropriate
security measures based on factors such as data sensitivity, potential vulnerabilities, user authentication,
and authorization requirements. Adhering to best practices and following the guidelines provided
by the Electron documentation can help ensure the security and integrity of the application.

4.3.1.2 File structures

In an Electron application, there are three main files involved in the boot-up process: main.js,
renderer.js, and the HTML webpage. Each of these files has a specific role in the application’s
function.

The HTML document serves as the main layout for the program. It includes other files, such as
CSS stylesheets and JavaScript files, to provide the necessary functionality for the application.

The main.js file contains the back-end functions and core operations that continuously occur in the
background. It handles tasks such as creating the main Electron application window, managing
application lifecycle events, and handling system-level operations.

The renderer.js file is responsible for communication channels between the main process and the
renderer process. It establishes a channel to send information from the main process to the renderer
process, allowing it to be utilized within the context of the HTML environment. The renderer
process handles UI interactions and manipulates the HTML elements dynamically.

For communication between the main.js and renderer.js files, Electron provides the ipcMain and
ipcRenderer modules. The ipcMain module is used in the main.js file to handle messages and
events from the renderer process. It allows the main process to listen and respond to specific
channels or events triggered by the renderer process. An example of using ipcMain is shown in
snippet 6.

Listing 6: IpcMain example

1 const { ipcMain } = require('electron');
2 ipcMain.on("raised flag", (event) => {

3 client.doSomething(function (err, data) {

4 if (err) {

6information about the security: https://www.electronjs.org/docs/latest/tutorial/security

21

5 console.log("error : " + err);

6 return;

7 }

8 event.reply("named-channel", data.data[information]);

9 });

10 });

The ipcRenderer module is used in the renderer.js file to send messages or trigger events from the
renderer process to the main process. It allows the renderer process to communicate with the main
process and exchange information. An example of using ipcRenderer is shown in snippet 7.

Listing 7: IpcRenderer example

1 const { ipcRenderer } = require("electron");

2 const namedElement = document.getElementById("raised-flag");

3 ipcRenderer.on("raised-flag", (event, data) => {

4 console.log("named-channel" + data);

5 namedElement.innerHTML = data;

6 });

22

4.3.1.3 The process

To achieve real-time synchronization of data across multiple control stations or clients in different
locations, you would typically need a server-client architecture.

To achieve a system that can be accessed from multiple locations, the main, renderer, and HTML/CSS
components can serve as individual clients that mimic the values of the server. They can also send
information back to the server in the same order, establishing bidirectional communication. An
overview of this ideal process is depicted in Figure 12, while the communication process is illustrated
in figure 13.

Figure 12: Overview of the ideal process

Figure 13: Overview of the communication between the server and clients

To demonstrate the feasibility and execution of this process in a larger project, the group made
the decision to develop a smaller contextual demo. This demo involves retrieving values from a
PLC and replicating those values in an Electron window. The communication between the PLC
and the Electron window is depicted in figure 14.

23

Figure 14: Overview of the demo process

4.3.1.4 The demo

The modular design of the demo enables its utilization as an illustrative example of creating
components for a larger system that accurately reflects values on the screen. The process involves
utilizing e!Cockpit, to configure a PLC to receive a signal on an input register. This signal is
then stored in a new variable within the PLC, which subsequently returns the signal on a different
register. Additionally, the demo incorporates boolean values as buttons, which are reflected on
different registers.

Snippet 8 showcases the e!cockpit program, which provides a visual representation of the configuration
and setup of the PLC.

Listing 8: E!cockpit program for full program see appendix K

1 VarCount := VarCount + 1;

2 Sine:= IN_1;

3 OUT_1:= Sine;

4 OUT_2 := Switch1;

5 OUT_3 := Switch2;

The e!Cockpit program is installed on a Wago PLC model 750-8214, and it is connected to a
virtual Modbus as depicted in Figure 15a. The PLC is connected to a local network with a static
IP address.

In the program, a value is received on register 32000 and stored in the Sine variable. This value is
then re-emitted on register 2, as shown in Figure 15c. Additionally, the program sends the status
of its inputs to their respective registers, as illustrated in Figure 15b.

24

(a) Wago PLC and Modbus

(b) The assigned inputs to the PLC

(c) All the emitting Modbus variables

Figure 15: The complete overview of the Wago PLC program, see appendix K for full program

To accomplish the demo’s functionality, the Modbus-serial library was utilized. The library, which
can be obtained from npm, offers support for Modbus communication. The installation of the
library was carried out by executing the command shown in Snippet 9 within the terminal.

Listing 9: Terminal call to install modbus-serial

1 Npm install modbus-serial

To establish a connection with an existing Modbus using the Modbus-serial library, the environment
can utilize the command depicted in Snippet 10. This command, provided by the library, allows
the environment to initiate a connection with the desired Modbus device.

Listing 10: Modbus connect and read function

1 // create an empty modbus client

2 const ModbusRTU = require("modbus-serial");

3 const client = new ModbusRTU();

4

5 // open connection to a tcp line

6 client.connectTCP("127.0.0.1", { port: 8502 });

7 client.setID(1);

8

9 // read the values of 10 registers starting at address 0

10 // on device number 1. and log the values to the console.

11 setInterval(function() {

12 client.readHoldingRegisters(0, 10, function(err, data) {

13 console.log(data.data);

14 });

15 }, 1000);

Using the Modbus-serial library, the group developed a function to facilitate the reading and writing
of a sine signal to and from the input registers 0 through 7. This function was created to establish
communication between the environment and the Modbus device, as demonstrated in Snippet 11.
Initially, the code was designed to send a positive sine signal ranging from 0 to 2 over Modbus.
However, to mitigate potential complications, the code was subsequently modified to send a signal

25

ranging from -1 to 1 within the program by subtracting the necessary values.

Listing 11: Code for PLC values for the demo full code inside main.js in appendix I

1 function connectModbus() {

2 client.connectTCP("158.38.140.60", { port: 502 })

3 .then(() => {

4 console.log("Connected to Modbus PLC");

5 startReadingModbus();

6 sendData();

7 })

8 .catch(error => {

9 console.error(error);

10 });

11 }

12

13 // Generate and write the sine wave values continuously

14 function sendData() {

15 let i = 0

16 setInterval(() => {

17 if (i < NUMSAMPLES) {

18 value = Math.sin(2 * Math.PI * FREQUENCY * i / NUMSAMPLES) * AMPLITUDE + OFFSET;

19 i++;

20 value = value.toFixed(3); //Restrict the decimals

21 client.writeRegisters(REGISTERADDRESS, [value]) //send values

22 .catch(error => {

23 console.error(error);

24 });

25 i=0;

26 }, DELAY);

27 }

28

29 //Receive signals

30 function startReadingModbus() {

31 setInterval(() => {

32 client.readInputRegisters(0, 7, function (err, data) {

33 if (err) {

34 console.log("Modbus error: " + err);

35 return;

36 }

37 SINVALUE = data.data[SINRAW];

38 mainWindow.webContents.send('sine-raw-data', SINVALUE);

39 });

40 }, DELAY);

41 }

The use of mainWindow.webContents.send allows the HTML environment to receive and handle
the values for projection within the HTML context.

By utilizing the constructed system, the HTML component receives the necessary information to
project values. This can be observed within the index.html file, as presented in Appendix I. The
outcome of this process is depicted in Figure 16, which showcases the projection of values from the
connected PLC within the Electron application.

26

Figure 16: Live Data from PLC updated in Electron, see index.html in appendix I

4.3.1.5 Implementing the design into Electron

The group sought quick solutions to implement Figma designs into the application. This approach
aimed to streamline and speed up the repetitive process associated with each production, particularly
when aligning with various OpenBridge release versions. During their search, the group discovered
community-developed plugins that facilitate the export of SVG files as comprehensive and interactive
constructs.

the plugins were SVG to JSX with MUI, which exports components as React code components.
This plugin allows for seamless integration of Figma designs into React-based projects7. Another
plugin called Codelessly simplifies the conversion of Figma designs into Flutter code8. Additionally,
there is a plugin called Figma to code that enables the conversion of designs into code in the
language of choice9.

It is worth noting that currently, there is no universally recognized and future-proof solution for
this particular step in the process. The available plugins provide various options for exporting and
converting Figma designs, but further research and exploration may be required to identify the
most suitable and sustainable solution.

The group determined that the most advantageous approach for implementing a page was to export
it as an SVG file for the demo. The group chose to import the conning page from the first UI
version (V0.1), which can be found in appendix H. This page was selected because it contains
reusable components that can be leveraged in the future of the implementations.

When exporting the page from Figma, several important settings need to be considered. These
include checking the options for ”ignore overlapping layers,” ”include bounding box,” and ”include
’id’ attribute.” Additionally, it is recommended to uncheck the options for ”outline text” and
”simplify stroke.” Enabling the ”include ’id’ attribute” option ensures that the IDs of the document’s
elements are set accordingly. Choosing to uncheck ”outline text” allows the text to remain as
editable text within the SVG, which can be manipulated and stored as a variable. This is preferable
to having the text appear as an image representation of the text example in the design, the different
exports are shown in snippet 12.

Listing 12: Example Code for different exports

1 //correct "id" attribute and non-outlined text example

2 <text id="Label" fill="black" fill-opacity="0.6" xml:space="preserve"

style="white-space: pre" font-family="Open Sans" font-size="32"

letter-spacing="0em"><tspan x="0" y="35.4141">Pressure</tspan></text>

3

7Source: https://www.figma.com/community/plugin/1115700158761255786/SVG-to-JSX-with-MUI
8Source: https://codelessly.com/#careers
9Source: https://www.figma.com/community/plugin/1083031796594968801/

27

4 //incorrect "id" attribute and outline text example

5 <path d="M9.09375 12.1562C12.0417 12.1562 14.1927 12.7344 15.5469 13.8906C16.9115

15.0365 17.5938 16.6823 17.5938 18.8281C17.5938 19.7969 17.4323 ...

If the exported page contains multiple units of the same components, there may be a risk of
overlapping IDs. Figma addresses this issue by appending ”n +1” to the ID, ensuring uniqueness.
To avoid confusion, it is important to appropriately name each component before exporting.

Once the SVG code is placed within an HTML file, it becomes possible to manipulate specific
elements by using the getElementById(” ”) function10 (later replaced with querySelector(”#”))11).
This approach allows for the creation of modular functions that can be called to rotate or set
values for different variables. By connecting the ”sine-raw-data” mentioned in Snippet 11 to the
IDs attributes, the earlier method described in section 4.3.1 can be integrated. This method saves
significant production time as it eliminates the need to recreate components from scratch for every
Figma design.

To ensure that variable values are not changed before the variables themselves are created, the
code is structured to execute static functions first. After a brief timeout, the remaining functions
are loaded. Snippet 13 provides an example of the static section of the windAndWeather.html
component in appendix I.

Listing 13: Code of the buttons inside the windAndWheater Component for full code got to
windAndWheater inside component folded in appendix I

1 export function windStartUp() {

2 var windButtons = document.querySelectorAll("#tab-item");

3 var svgWind = document.querySelector("#svgWind");

4 var svgWeather = document.querySelector("#svgWeather");

5 var weatherButtons = document.querySelectorAll("#tab-item_2");

6

7 windButtons.forEach((buttonElement) => {

8 buttonElement.style.cursor = "pointer";

9 buttonElement.addEventListener("click", function () {

10 console.log("clicked wind.");

11 svgWind.style.display = "inline";

12 svgWeather.style.display = "none";

13 });

14 });

15 weatherButtons.forEach((buttonElement) => {

16 buttonElement.style.cursor = "pointer";

17 buttonElement.addEventListener("click", function () {

18 console.log("clicked weather.");

19 svgWind.style.display = "none";

20 svgWeather.style.display = "inline";

21 });

22 });

23 }

By utilizing the ”windStartUp” function in the includer.js file, the system can systematically
initialize itself and establish its necessary components before executing any changes. This function
takes priority in ensuring the proper setup of the system. Following the start-up process, the switch-
case statement12 in Snippet 14 is executed to handle different cases and perform corresponding
actions.

Listing 14: Code of the includer to bring component htmls into the main page for full code see I

1 import { windStartUp } from "./Components/windAndWheater.js";

2 import file from "./components.json" assert { type: "json" };

10Source: https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById
11Source: https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
12Source: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/switch

28

3

4 file.components.forEach((component) => {

5 switch (component.name) {

6 case "windAndWeather":

7 container.innerHTML += `<div data-windspeed="${component.speed}"
data-winddir="${component.direction}"
w3-include-html="./Components/windAndWeather.html"></div>`;

8 setTimeout(() => {

9 windStartUp();

10 }, 1000);

11 break;

12 case "speedometer":

13 container.innerHTML +=

14 '<div w3-include-html="./Components/Speedometer.html"></div>';
15 break;

After the booting order, the code will fetch the necessary functions by utilizing an import statement
in the script section of the main ”indexNew.html” page in appendix I. This import statement, as
illustrated in Snippet 15, allows the code to access and use the required functions.

Listing 15: Code of the function import and call with values inside the main HTML page for full
code see appendix I

1 <script type="module" src="Includer.js"></script>

2 <script type="module">

3 import {

4 windWindRotate,

5 } from "./Components/windAndWheater.js";

6 windWindRotate(0);

7 </script>

8 </script>

The function calls the value 0 into the function defined in the windAndWheater.js file that changes
the value within the id of windAndwheater.html as shown in snippet 16. The windDir gets a minus
value on line 3 before adding the new value in the parameter using the setAttribute13. It is to set
the offset to zero in the correct zero position, making the absolute zero rotate in relevance to the
forward position.

Listing 16: Code of the function windWindRotate, for full code see appendix I

1 export function windWindRotate(windDir) {

2 setTimeout(() => {

3 windDir -= 35;

4 var windDirEl = document.querySelector("#windAndWheaterFrame_331");

5 console.log(windDir);

6 windDirEl.setAttribute("transform", "rotate(" + windDir + ",181,116)");

7 }, 200);

8 }

The described method concludes the approach employed by the group to manipulate SVG files and
project accurate information using components from Figma.

13Information about the function: https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute

29

4.3.2 Outdated method of implementing OpenBridge design

During the development of the Electron app, alternative approaches to implementing OpenBridge
elements were explored. The incorporation of elements into the application was facilitated through
the utilization of the online library provided by OpenBridge. This method offers a convenient means
of importing elements, albeit with a limitation of an outdated library version. Specifically, the
library houses OpenBridge 2.0 elements, while the most recent and up-to-date elements employed
by the group during the Figma design phase correspond to OpenBridge 4.0 elements.

Importing elements via the source tag represents an efficient approach, enabling production with
reduced requirement for in-depth comprehension14. By locating the corresponding element ID
within the library, the element can be imported as demonstrated in Snippet 17. This particular
snippet exemplifies the importation of the ”ob-rudder-large” element.

Listing 17: Code snippet of importing element from online library

1 <head>

2 <script> src="https://unpkg.com/openbridge-web-components@0.2.1"></script>

3 </head>

4

5 <div>

6 <ob-rudder-large id = "largerudder" />

7 <script src="../JS/ob-rudder.js"></script>

8 </div>

Snippet 18 demonstrates an approach for assigning values to the various properties of an element.
This code is embedded within an HTML file and employs JavaScript within a script tag. By
leveraging JavaScript, the values can be dynamically manipulated. The process of accessing and
modifying the element is facilitated through the utilization of JavaScript.

Listing 18: Code snippet of JS for element movement for full version see largerudder.js in appendix
J

1

2 const largerudder = document.getElementById('largerudder');
3

4 largerudder.clipAngle = 90;

5 largerudder.rudderAngle = Math.sin(t*(2*Math.PI)* .1)*20;

6 largerudder.rudderSetPointAngle = Math.sin(t*(2*Math.PI)* .1)*30;

7 largerudder.showSetPoint = 1;

8 largerudder.showPortStarboard = 1;

Figure 17 presents a flowchart delineating the step-by-step process of obtaining an element from
the OpenBridge online library and ultimately transforming it into a functional component within
an HTML document, which can subsequently be executed in the Electron environment.

Figure 17: Flowchart of the element from OpenBridge library to HTML

14OpenBridge online library: https://gitlab.com/openbridge/openbridge-web-components

30

The decision to embed the JavaScript code within the div section of the HTML code, rather than
separate it into a distinct script section, is a deliberate choice. In the approach depicted in Snippet
19, the values of different properties are directly incorporated into the HTML code. This strategy
is particularly suitable for HTML pages with a smaller number of elements, as it helps mitigate
potential clutter and complexity arising from excessive div sections.

Listing 19: Code snippet of HTML element movement for full version see rudder.html in appendix
J

1

2 <div>

3 <ob-rudder-large id = "largerudder"

4 clipAngle = 90

5 rudderAngle = 45

6 rudderSetPointAngle = 45

7 showSetPoint = 1

8 showPortStarboard = 1

9 />

10 </div>

The OpenBridge online Web Components demo serves as a valuable resource for identifying the
distinct properties associated with various elements. A visual representation of the online demo is
presented in Figure 1815.

Figure 18: OpenBridge online demo

This method proves to be straightforward, efficient, and user-friendly, its limitation is compromised
by the presence of an outdated library, halting the seamless implementation of the newer, updated
versions of various OpenBridge elements.

Snippet 20 exemplifies the integration of the top bar component into an HTML page. This process
entails incorporating the top bar on each desired page. The ”navigation.html” represents a simple
HTML page that encompasses all the elements within the top bar, arranged in a row. This page
is subsequently imported and positioned within the top bar section.

15OpenBridge online demo: https://openbridge.gitlab.io/openbridge-web-components/?path=/docs/instrument-
rudder-large–default

31

Listing 20: Code snippet of topbar implementation for full version see html files in appendix J

1

2 <div id="nav-placeholder"></div>

3 <script>

4 $.get("navigation.html", function(data){

5 $("#nav-placeholder").replaceWith(data);
6 });

7 </script>

By implementing the script provided in Snippet 21, a functional mechanism is activated that
accurately identifies the name of the current HTML window being accessed by the user. This
function facilitates the addition of a class, which subsequently modifies the color of the top bar.

Listing 21: Code snippet of active-window function for full version see html files in appendix J

1

2 <script>

3

4 document.addEventListener("DOMContentLoaded", function(){

5 // get the current page URL

6 var url = window.location.href;

7 // get the ID of the link corresponding to the current page

8 var currentPage = url.substring(url.lastIndexOf("/") + 1).replace(".html", "");

9 var currentLink = document.getElementById(currentPage);

10 // add the "active" class to the current link

11 currentLink.classList.add("active");

12 });

13

14 </script>

32

5 Result

This chapter presents the results of the four parts of the project. First, the results from the Figma
design process will be presented. Second, the results of the implementation of OpenBridge to an
app in Electron. Third, an evaluation of the different functions and aspects of OpenBridge has to
offer, and a comparison to systems that have and have not implemented it.

5.1 Figma design

In this section, we will present the results of the design process in Figma. In the design process,
we focused on the usability, readability, and navigational flow aspects of the design.

5.1.1 Design Process

The design process consisted of the development of three initial drafts, which subsequently evolved
into the final result. One of the milestones of the project was to assess the usability of OpenBridge,
with a particular focus on the UI navigation components. The drafts vary in how users navigate
within the UI. The changes were based on the feedback received from the client, supervisors,
experienced outsiders in the maritime industry (appendix L), and our own iterative testing of the
UI drafts using the prototype function, as elaborated in Section 4.2.1.

Upon achieving the final result, the UI design was further expanded to depict a more comprehensive
system. This expansion aimed to capture the broader scope of functionalities and interactions
within the OpenBridge environment. A visual representation of the design process, showcasing the
progression from the initial draft to the ultimate final result, can be observed in Figure 19.

Figure 19: Design process, from the initial draft to the final result

5.1.2 Drafts

This section provides a presentation of the drafts made during the design process, highlighting the
differences between them and the reasons behind the implemented changes.

Throughout the design process, three preliminary drafts were created prior to reaching the final
UI design. The construction of both the UI drafts and the final outcome followed the method
introduced in Section 4.2.1. The drafts vary in terms of user navigation within the UI. It is
important to note that the technical components incorporated in the UI, such as azimuths, thrusters,
engines, and other instruments, are purely illustrative and should not be considered functional
elements.

The subsequent sections will go into the specific details of each draft and the final UI design,
emphasizing the modifications.

33

5.1.2.1 Icons description

The icons incorporated in both the drafts and the final UI design are sourced from the OpenBridge
library and adhere to its corresponding guidelines. The OpenBridge library consists of various
components, including top bars and other elements, all of which feature icons. In most instances,
these icons possess interactive functionalities when clicked upon, such as triggering a pop-up
window or directing the user to a new page. Table 4 presents an overview of the icons utilized in
the drafts as well as the final UI result.

SYMBOLS
Nr Symbol ID Description

1 Apps Opens an App menu pop-up containing overlaying
applications.

2 Dimming Opens brilliance control pop-up, which the user can
control screen brightness and change between day, night,
and dusk mode.

3 User Opens a user login pop-up where the user can log in with
a personalized account.

4 Notification Opens a notification pop-up where the latest notifications
are displayed.

5 Alert Opens an active alerts pop-up that shows the latest alerts
in the system

6 Mute Mutes the notifications from alerts.

7 Acknowledge Acknowledges the latest active alerts that are shown in
the latest alerts tab.

8 menu Opens up an expanded sidebar that gives access to
subpages within a sub-application.

9 Alert List Opens up a full window overview of the alert list.

9 Screen Control Opens up screen control window where the user can alter
the screen layouts.

10 Sub menu icon Navigates the user to the sub-page of an application, with
different icons for different sub-pages. Such as Propulsion,
Power, Engines, Machinery, Cargo, System, Safety, and
Thrusters.

Table 4: Overview of icons

34

5.1.2.2 Draft V0.1

The first initial draft (V0.1) was based on the given example from the client, shown in Figure 10.
It was used as a starting point for what the example UI looked like using OpenBridge components.

The main navigation method in this draft involves utilizing the sub-application overview located
on the IAS overview screen, as illustrated in Figure 20. By using the sub-application buttons,
users were able to navigate to the desired sub-application within the broader IAS application.

Figure 20: Draft V0.1 IAS overview page

Once inside a specific application, the principle of navigation relied upon the utilization of the top
bar component, which displayed distinct application icons, as depicted in Figure 21. The addition
of the top bar component aimed to provide users with access to other applications without requiring
them to navigate through the overview page. To return to the overview page, users could simply
click on either the home icon or the previous page icon.

It is important to note that the top bar component was an inclusion made by the group, utilizing
the building blocks library introduced in Section 4.2.1. This custom top bar component was not a
part of the standard top bar components available in the OpenBridge library.

35

Figure 21: Example of a sub-application in draft V0.1

5.1.2.3 Draft V0.2

In the second draft (V0.2), see Figure 22, a modification was implemented by replacing the
previously mentioned top bar component, as discussed in Section 5.1.2, with a sidebar. This
change was motivated by the fact that the sidebar was readily available within the OpenBridge
library. The sidebar fulfills the same purpose as the former top bar component, but with the added
advantage of enabling users to navigate to various sub-pages, as illustrated in Figure 24 and Figure
23. Given that sub-applications often encompass multiple underlying sub-pages, the inclusion of
the sidebar allows users to directly access these sub-pages. This functionality was deemed crucial
within the UI, as it facilitates seamless navigation to sub-pages without having to traverse through
the sub-application.

Figure 22: Draft V0.2 IAS overview page

36

Figure 23: Example of a sub-application in draft V0.2

Figure 24: Example of navigating to sub-pages within a sub-application

37

5.1.2.4 Draft V0.3

In the third draft (V0.3), see Figure 25, the primary modification is the inclusion of a menu
icon positioned in the top left corner of the top bar, see Table 4. This addition was based on
private communication with Kjetil Nordby, as documented in the appendix L. It was emphasized
that the menu icon should remain accessible regardless of the specific page the user is currently
navigating, as seen In Figure 26. Upon clicking the menu icon located in the top left corner, an
expanded sidebar menu is displayed. This sidebar menu grants users access to the diverse sub-pages
associated with the sub-applications, as seen in Figure 27.

The incorporation of the menu icon holds significant importance within the design, as it ensures
that the sub-application remains easily accessible to users at all times. Additionally, the sidebar
menu also provides access to the alert list, as depicted in Table 4.

Figure 25: Draft V0.3 IAS overview page

Figure 26: Example of a sub-application in draft V0.3

38

Figure 27: Example of navigating to sub-pages within a sub-application

5.1.3 Final UI design

The UI is organized in a structured and user-friendly manner, allowing users to navigate through
different sections and applications. Whether the user is a machinist requiring detailed IAS system
information or a navigator seeking Conning, ECDIS, or Radar applications. Throughout the design
process, we have taken into account the valuable feedback received from users and domain experts,
ensuring that the final UI design reflects their requirements and preferences.
In the following sections, it will be highlighted key features, components, and interactions.

5.1.3.1 Structure of the final design

The UI is organized in a hierarchical structure, with multiple layers of applications and sub-
applications. At the top level, there are three primary applications, each with its own set of
underlying sub-applications. These sub-applications, in turn, consist of additional sub-pages. The
UI dynamically adapts based on the main application being accessed by the user. Notably, both
the sidebar and top bar components vary depending on the active application.

The overarching applications within the UI encompass the IAS, which serves as the central system,
alongside independent applications such as screen control, cameras, calendar, and others. Additionally,
there are navigation applications. The structural arrangement of the UI, with its various applications
and their relationships, is visually depicted in Figure 28.

39

Figure 28: Illustration of the structure of the Final UI design

5.1.3.2 Final design IAS overview page

The UI encompasses a system that replicates a maritime application on a bridge, as introduced
in Section 5.1.3. The final design, see Figure 29, adheres to the same navigational structure as
the third draft, utilizing a sidebar for navigation to the desired sub-applications, as illustrated in
Figures 30 and 31.

Significant updates were made to the content of the IAS overview page. The sub-application
overview, which was initially introduced in Section 5.1.2, was removed based on the rationale that it
was redundant since the sub-applications were already accessible through the sidebar. This decision
resulted in more available space on the IAS overview page for user-related information. From
private communication with Kjetil Nordby, appendix L, it was emphasized that the IAS overview
page should contain crucial information for the user. Accordingly, the final design incorporated
trends displaying historical values of the components, providing numeric values instead of just
graphical representations or non-numeric indicators. Additionally, a shift report section was added
to the overview page, as notes from previous users could offer valuable insights to the current user.
Alarms are also more prominently displayed for the currently active sub-application on the IAS
overview page.

Figure 29: Final design IAS Overview

40

Figure 30: Final design Sidebar navigation

Figure 31: Final design Subpage navigation

41

Navigating between the Main applications

To navigate between the IAS system and the navigation applications, the user can utilize the apps
menu icon, as introduced in Table 4. By clicking on this icon, an applications menu is revealed,
as illustrated in Figure 32. Through this menu, the user gains the ability to navigate to various
overlaying applications within the UI, including the IAS system, independent applications, and
navigational applications.

To access the navigation applications specifically, the user can click on either Conning, shown in
Figure 33, ECDIS, shown in Figure 34, or Radar, shown in Figure 35. It’s important to note that
the menu app icon remains readily available at the top bar, independent of the specific application
page the user is currently controlling. This ensures consistent access to the applications menu
throughout the UI.

Figure 32: The application menu popup

Figure 33: Final design Conning application

42

Figure 34: Final design ECDIS application

Figure 35: Final design RADAR application

The design incorporates a dynamic sidebar that adjusts depending on whether the user is in
the IAS application or the navigation application. When the user is navigating within the IAS
system, the sidebar displays the IAS sub-application, as illustrated in Figure 30. When the user
is navigating the Conning, ECDIS, or Radar applications, the sidebar switches to display the
respective navigation application, as demonstrated in Figure 36.

This dynamic sidebar ensures that the relevant sub-applications are easily accessible to the user,
providing a streamlined navigation experience based on the context of their current activities within
the UI.

43

Figure 36: Exposed sidebar in navigation applications

Dimming panel

The inclusion of a dimming panel holds significant importance in the bridge UI of maritime bridge
applications. Insights gathered from personal communication with Ralf Eirik Grønning, appendix
L, emphasized the significance of the dimming function, as it emerged as one of the most frequently
used features during ship operations.

By clicking on the dimming icon, as presented in Table 4, a pop-up window is triggered, enabling
the user to adjust the screen’s brightness and toggle between different modes: dusk, night, and
day in the OpenBridge environment. The corresponding visual representations of these modes can
be seen in Figures 37, 38, and 39.

The provision of this dimming functionality allows users to adapt the screen’s brilliance according
to varying lighting conditions, ensuring optimal visibility and usability of the UI in different
environmental settings.

Figure 37: IAS overview page in day mode

44

Figure 38: IAS overview page in dusk mode

Figure 39: IAS overview page in night mode

45

User login

The user login panel serves the purpose of displaying the login status and facilitating multi-
user logins within the maritime application. Insights obtained from personal communication
with Ralf Erik Grønning, appendix L, highlighted the significance of personalized accounts in
maritime applications. Individual users often have their own preferences for screen layouts and
other personalized settings.

By clicking on the user icon, as indicated in Table 4, the user login window is triggered, enabling
users to log in with their respective credentials. This login window is illustrated in Figure 40.

Figure 40: User Login popup in the final UI design

46

Notifications

The notifications panel serves as a centralized hub for accessing various non-alert notifications,
such as messages or calls from other users, within the application. Clicking on the notification
icon, as indicated in Table 4, triggers the notification window, which is depicted in Figure 41.

Figure 41: Notification popup in the final UI design

47

Alerts

Alerts and alarm handling are fundamental aspects of UI design in maritime applications. The
top bar of the interface displays the two most recent alerts, allowing users to quickly access critical
information. Clicking on the alert icon, as introduced in Table 4, triggers a pop-up window that
provides more detailed information about recent alerts, as depicted in Figure 42.

For access to the complete alert list, users can click on the alert list icon, as shown in Figure 30,
either within the sidebar or within the alerts pop-up. This grants users the ability to view and
manage the full range of alerts and alarms in a dedicated interface.

By prominently featuring alerts in the top bar and providing easy access to the complete alert list,
the UI design ensures that users can effectively monitor and respond to critical events and alarms,
thus enhancing the safety and efficiency of maritime operations.

Figure 42: Notification popup in the final UI design

The alerts page within the application provides a view of all alerts, as depicted in Figure 43. This
page serves as a centralized hub for monitoring and managing alerts. Users have the flexibility to
filter the displayed alerts based on different criteria, including active alerts, unacknowledged alerts,
blocked alerts, and the history of previous alerts.

Moreover, the alert list can be organized and sorted based on priority or groupings. For instance,
sub-applications within the IAS system can be assigned to their respective groups in the alert list.
This grouping allows for better organization and prioritization of alerts.

48

Figure 43: Notification popup in the final UI design

Screen control

The screen control window plays a crucial role in allowing users to customize the layout of multiple
screens in maritime bridge solutions. Each user, whether a machinist or a navigator, may have
their own specific preferences regarding the arrangement and content of the screens. Machinists
may require screens displaying information from the IAS system, while navigators may prioritize
Conning, Radar, and ECDIS pages.

To access the screen control window, users can navigate to the application menu as described in
section 5.1.3. By clicking on the screen control icon, a dedicated window, depicted in Figure 44,
will appear. Within this window, users can modify and adjust the layout of the screens according
to their individual requirements and preferences.

This feature allows users to tailor the display and organization of information, ensuring that they
have easy access to the most relevant data and applications based on their specific roles and tasks.

Figure 44: The screen control window

49

When configuring the screens, the support screens are typically designated to display a subset
of information from a particular application. For instance, a support screen can host specific
sections or components of the Conning application. On the other hand, the main screens can
either accommodate entire applications or be divided into multiple support screens.

To assign an application to a support screen, users can click on the desired screen, triggering a
pop-up window. Within this pop-up, a list of available applications that can be hosted on the
screen is presented, as illustrated in Figure 45. Users can then select the appropriate application
that they wish to assign to the support screen, as illustrated in Figure 46.

Figure 45: Example of choosing an application the screen will host

Figure 46: Example of choosing which part of an application the support screen should display, in
this case, the conning application

50

Figure 47 demonstrates a screen layout that incorporates the final design. In this layout, support
screens are utilized to display specific sections or components of the navigation system, allowing
users to focus on relevant information for their tasks. On the other hand, main screens are dedicated
to displaying main applications such as Conning, ECDIS, Radar, and potentially other relevant
applications.

Additionally, integration footer screens are incorporated into the layout, which can be touch screens
providing convenient access for users to control the screen layout and manage alerts.

Figure 47: Example of how the screen layout could look like using the Final UI design

51

5.2 Electron application

In this section, the outcomes of the Electron app implementation are presented, demonstrating the
functionality and performance of the application.

5.2.1 SVG layout implementation

The group made two separate SVG systems using the provided examples in section 4.3.1. The
first is an SVG design file of the whole layout exported page, containing all the elements inside
itself and only manipulates its values using local functions. It is used to illustrate the movement
of components showing their design and readability with less focus on the code structure. To view
the SVG it’s necessary to change line 5 on the main.js file in the earlier example 4 to re-direct into
the thrusters.html. Figure 48 illustrates what the page will look like if done correctly.

Figure 48: Conning layout SVG file example

The page consists of a rotating compass, a rotating speed component, an azimuth thruster, and a
bow thruster. To make the rotational effects, it utilizes a simple sine function shown in snippet 22.

Listing 22: Code for the movement of components inside the SVG, for full code see thrusters.html
in appendix I

1 let i = 0;

2 let j = 0;

3 let k = 40;

4 let l = 0;

5 let m = 0;

6

7 function Sinewave() {

8 const t = new Date().getTime() / 1000;

9 value = Math.sin(t * (2 * Math.PI) * 0.1) * 1;

10 angle = (t * 10) % 360;

11 i++;

12 j--;

13 k += 2;

14 l -= 2;

15 m += 3;

16 }

17

18 setInterval(() => {

19 Sinewave();

20 attributeValues(

52

21 setPoint,

22 "transform",

23 "rotate(" + k + ", 256, 364)"

24);

25 attributeValues(

26 Tunnel1Bar,

27 "transform",

28 "matrix(" + value + " 0 0 1 809 205)"

29);

30 }, 50);

The first method doesn’t allow any re-usability or scaling as its’ functions are local only to the
specific SVG implemented inside. This method should never be used as it is never reusable or
scalable.

5.2.2 SVG component implementation

The second method for building the designed page was to create each component as its own HTML
file. Then be imported and implemented on multiple locations using the components.json file. The
JSON file implements each element that is corresponding with the switch case shown in example 14.
Utilizing the earlier way of coding in section 4.3.1, the group was able to construct four components
onto a page with each of their functions to call on in the main HTML file for their layout. The
group did not see the need to fully implement the compass as it had the same function and ways of
handling the code as the other components. The functions would set the value for each component
depending on the parameter assigned. The components are illustrated in Figure 49. To try the
component system, please change line 5 in example 4 to navigate into”indexNew.html”.

Figure 49: The components made for implementation into bigger systems

The second method allows components to be called on multiple locations rearranging their order
and scale to fit a custom layout in future projects. It utilizes a grid to move component positions
assigned from 1 through 8 inside its CSS elements. In snippet 23 the grid layout construction is
shown16.

Listing 23: CSS segment used to re-arrange positions, for full code see styles.css in appendix I

1 .container {

2 width: 100%;

3 display: grid;

4 grid-template-columns: repeat(8, 1fr);

5 grid-template-rows: repeat(3, 1fr);

6 grid-column-gap: 5px;

7 grid-row-gap: 5px;

8 }

16automatic generated CSS grid layout retrieved from: https://cssgrid-generator.netlify.app

53

To add more components to a page it’s needed to navigate into the ”includer.json” file and add a
new line with the name of the desired component from the switch case in mentioned example 14.
In snippet 24 the components.json file is shown.

Listing 24: components.json construction example, for full code see components.json in appendix
I

1 {

2 "components": [

3 { "name": "windAndWeather" },

4]

5 }

Using the second method of implementation with a more modular approach for applying code to
retrieve element IDs inside SVGs and applying it to singular components, allows the code to be
reused across new OpenBridge releases. Allowing it to be automated and avoiding the need to
implement every function onto every OpenBridge design release manually.

54

5.2.3 Outdated method for app design

This section presents the outcomes of employing the method described in Section 4.3.2 for implementing
elements and the top bar. The following results demonstrate the application of this approach.

Figure 50 showcases an Electron app developed in accordance with the first draft 5.1.2. It represents
the initial outcome of the Electron app and illustrates the main page featuring navigation buttons.
The top bar and middle buttons enable navigation between windows.

Figure 50: First Electron design in Electron

Figure 51 presents a window from the preliminary version of the Electron app, specifically the
thruster window. It encompasses three distinct sizes of OpenBridge thruster elements: large,
medium, and small. The app’s layout is adjusted to a wide horizontal window to observe the
responsiveness of the elements as the window size diminishes. Notably, the thruster elements in
the top bar appear in a distinct color compared to the rest. This color differentiation indicates
that the thruster window is active.

Figure 51: Scaled Thruster window

55

5.2.4 Responsive design

Responsive design offers a valuable means of distributing data and information based on the size of
the bridge, the number of available screens, and the size of the operator’s or machinist’s workspace.
By adapting to different contexts, responsive design ensures that the most crucial information is
presented prominently to the relevant operator or machinist at any given time and location.

Figures 52, 53, and 54 exemplify a responsive design test window. This window was created to
examine the visual appearance and behavior of various elements when the window size is modified.

Figure 52: Full screen test window

Figure 53: Smaller screen test window

56

Figure 54: Long screen test window

An ideal responsive design solution involves the elements dynamically adjusting their size and
layout based on the window dimensions. For instance, an element may transition from ”ob-thruster-
large” to ”ob-thruster-small” as the window size decreases while maintaining the overall page
layout.

57

6 Discussion

This chapter focuses on the discussion and evaluation of the results obtained in the project and is
structured as followed:

• The scalability of what the group has accomplished and how it could have been done
differently to accomplish a higher-scale program.

• The challenges the elements in the project have presented and their drawbacks.

• Other developers that have started using OpenBridge in their design.

• The usability of OpenBridge and its guideline.

• The groups’ collaborative process during the project and the knowledge it rewarded.

6.1 Scalability

In this subsection, we discuss the potential scalability of Figma, Electron, and OpenBridge in the
context of larger systems and future enhancements.

6.1.1 Figma

Utilizing Figma discovered that the platform offers extensive collaborative capabilities, enabling
designers to collaborate seamlessly at any scale. With the ability for each designer to provide
comments and specific feedback, Figma facilitates a comprehensive sharing of concepts. This
assists in continuous monitoring of the design process, allowing team members to track progress and
maintain a cohesive environment where everyone remains updated. Consequently, this eliminates
the issue of multiple operators unintentionally duplicating tasks as a result of miscommunication.

As the size of Figma projects expands, the performance becomes increasingly demanding and
sluggish. This is primarily due to the program’s reliance on SVG files from the OpenBridge
library, which demands substantial computational power. To prevent overwhelming the device on
which it runs, the projects are structured with multiple pages for each design. By dividing the
designs into separate pages, the group was able to optimize the prototype function, ensuring that
testing the prototype designs didn’t consume excessive time for each iteration.

6.1.2 Electron

The group’s achievement in Electron is the development of an application that simulates the
behaviour of OpenBridge elements on a smaller scale by importing values into the SVG format.
The purpose of the app is to provide a practical understanding of how the elements operate,
including the interaction with popup windows and navigation through top bars. There is potential
to expand the app by incorporating the final design from Figma, integrating all its pages, and
enhancing interactivity throughout the application.

58

6.1.3 Scaling the code

The group acknowledges the execution of the project’s code would have been more efficient if we
had possessed a deeper knowledge of JavaScript and Electron prior to the project. To compensate
for this knowledge gap, the group dedicated significant effort to researching Javascript and Electron
before determining our approach. This research process consumed approximately four weeks of
valuable time. In hindsight, the group recognizes that incorporating React, TypeScript, or Vue
alongside Electron for the layout and designs could have yielded better results. TypeScript, in
particular, would have facilitated a more robust module system, enhanced classes, and interfaces,
and provided a comprehensive type system for gradual typing [8]. The group believes the most
beneficial method, would be a combination of the different methods for integrating as reviewed in
section 4.3.1 and section 4.3.2.

React or Vue could have provided a more efficient solution for implementing a user interface with
dynamic datasets over time, such as a graph system in the system UI [22]. The group opted to
use Electron as it offered easier learning and debugging compared to React. The decision was
influenced by the potential for future development, where React and Vue could be integrated to
import and display information within the Electron framework. This approach allowed the group
to prioritize initial implementation and later explore more advanced possibilities if time permitted.

Evaluating the scalability of OpenBridge as a system, it becomes evident that developing a
comprehensive UI builder system could yield significant long-term benefits. Such a system would
eliminate the need for hard-coding when implementing new updates or components, providing a
more flexible and adaptable solution.

In an ideal scenario, a generating function could be created to extract information, including IPs,
IDs, Registers, and other relevant details, from an Excel information file and export it into a CSV
file. This information could then be assigned as a list of variables, allowing for easy access and
manipulation.

To facilitate the user interface design process, a drag-and-drop GUI interface could be implemented,
enabling users to select components from a library and place them on the screen. A grid system
could be used to align and lock the components in place. Parameters of the components could be
adjusted through a parameter interface, including the ability to assign variables from a drop-down
menu.

A drag-and-drop feature similar to the one accomplished by Peter James on Stack Overflow17 could
serve as a reference for implementing this functionality. The capabilities of CDP Studio18 could
be explored, as they have achieved similar advancements in this field.

By developing a fully-fledged UI builder system with these features, OpenBridge could greatly
enhance its scalability and usability, allowing for easier and more efficient development and customization
of user interfaces over time.

6.1.4 OpenBridge

OpenBridge is a collaborative project that has benefited from the research contributions of multiple
academic partners. It is important to note that OpenBridge is still a work in progress, continuously
evolving and improving. Over 2000 companies and partners are actively participating in the
OpenBridge guideline [28]. This strong support and participation indicate a promising future
for the project, as more organizations recognize OpenBridge as a solution for enhancing UX in
maritime bridge solutions.

OpenBridge 5.0 is in development, introducing new features and elements aimed at improving
safety and UX. The group is confident that future versions, such as OpenBridge 6.0 and beyond,
will continue to contribute to the safety and advancement of the maritime interface industry.

17Possible solution for drag-and-drop inside a JS environment: https://stackoverflow.com/questions/73251435/drag-
and-drop-cells-on-css-grid-only-works-properly-when-moving-a-cell-to-the-ri

18CDP Studio company site offers more information here: https://cdpstudio.com

59

The collaborative nature of OpenBridge, combined with its expanding user base and commitment
to ongoing development, suggests that it will continue to play a crucial role. Promoting a safer
working environment and driving innovation in the maritime sector.

6.2 Challenges

This subsection discusses challenges within the different results the group has found working with
this project.

6.2.1 Figma

Working with Figma introduced the group to the challenge of implementing the designed layouts
into interactive code. While Figma offers significant improvements for designing interfaces, there
was no straightforward method available during the project to convert the designs into functional
code. The Figma community is actively exploring this challenge and working towards creating
plugins that would simplify the conversion process. Despite the absence of a current solution, the
group believes that given Figma’s status as a leading design tool, it is likely that a plugin or a
solution will be developed in the near future to address this issue.

6.2.2 Electron

The use of Electron for creating server-client communication software presented its own set of
challenges for the group. Without further extensions of TypeScript and React or Vue applications,
the operation of Electron seemed limited. Particularly, when multiple elements required local
properties on the same page, the program became more complex to manage.

To address the needs of a larger system onboard a vessel, a more extensive hierarchy of classes would
be necessary to ensure the construction of the software remains readable and understandable. By
organizing the code into a well-defined class structure, the group would be able to maintain clarity
and manage the complexities of a bigger system more effectively. This approach would contribute
to the overall maintainability and scalability of the software solution.

6.2.3 OpenBridge

The group holds a positive perception of OpenBridge and recognizes its positive impact on the
market. There are challenges within OpenBridge that have been discussed; One such challenge
is the absence of an up-to-date online library for web components. This lack of a comprehensive
library made the programming aspect of the project more complex during the implementation of
elements.

The group is aware of the intricacies of maritime vessels, noting that each ship has its unique
construction that may not match others. This individuality poses a challenge as not all equipment
found on vessels would be available in the OpenBridge library, requiring designers to create them
themselves. While OpenBridge provides rules and equipment for styles, typography, and colour
coding, there is a void in terms of UI elements for certain types of equipment.

Addressing these challenges by expanding the online library for web components and enhancing
the coverage of equipment within OpenBridge would contribute to a more comprehensive and
user-friendly experience for designers working with maritime vessels.

60

6.3 Existing programs

The following section, discuss existing programs that already implemented OpenBridge, in designs
and hardware systems.

6.3.1 CDP Studios

Figure 55 illustrates a design template in CDP Studio that showcases OpenBridge elements.
This visual representation serves as a suggestion for the appearance of a user interface utilizing
OpenBridge elements. It is important to note that this design is for illustrative purposes only
and does not possess any functional capabilities. Nonetheless, it offers an example of how a user
interface can be visually presented with the integration of OpenBridge elements.

(a) CDP UI (b) CDP UI Alarm window

Figure 55: CDP Studios UI

The group made an attempt to recreate the conning layout presented in section 5.1.2 using CDP
Studio. They found the program to be overwhelming and challenging to work with. Given the
time constraints and limited resources available, the decision was made to abandon the project in
CDP Studio, as it was not deemed a focal point that would provide substantial value to the overall
goals of the project.

61

6.3.2 Alphatron Marine

Figure 56 displays a design created in AlphaMINDS utilizing OpenBridge. The design showcases
two distinct layouts for different operations: one for conning and another for docking.

(a) AlphaMINDS Conning [5] (b) AlphaMINDS Docking [6]

Figure 56: AlphaMINDS UI

6.3.3 SEAM AS

Figure 57 presents real-life images of a bridge where OpenBridge has been implemented.

(a) e-SEA Bridge with OpenBridge implemented [12] (b) e-SEA Bridge [12]

Figure 57: e-SEA Bridge

62

6.4 Usability

In this subsection, we will discuss the usability and ease of use of OpenBridge, as well as the
reasons behind its open-source nature.

6.4.1 Ease of use

UI designs are carefully crafted to be intuitive and user-friendly, providing a seamless experience for
users. The goal is to present information in a subtle and effortless manner, without overwhelming
users with complex requirements or the need for extensive prior knowledge. Services such as
sending messages, online shopping, or streaming music are expected to be efficiently performed
with minimal training or user effort.

Over the past two decades, Apple and Google have established a standard in UI design, offering
design guidelines that ensure users can easily comprehend and navigate systems. Adhering to these
guidelines has become a reliable approach to guaranteeing user understanding and familiarity.

OpenBridge prioritizes self-explanatory designs that facilitate user interaction. In comparing the
maritime industry to social media platforms like Twitter and Facebook, similar principles can be
observed. Ocean Industries Concept Lab’s studies [40] have indicated that maritime user interfaces
intentionally differentiate themselves from other applications for marketing purposes and individual
brand recognition.

Figure 58 and Figure 59 exemplify different conning pages in maritime systems, showcasing how
designs within this industry can vary.

(a) Totem Plus Conning [11] (b) Navi-Conning 5000 [25]

Figure 58: Totem Plus- & Navi Conning

63

(a) Free Technincs Conning [10] (b) K-Bridge Conning [23]

Figure 59: Free Technics - & K-Bridge Conning

6.4.2 Open source

According to studies [40], maritime systems are intentionally designed to distinguish themselves
from other applications, serving marketing and branding purposes. OpenBridge takes a different
approach as an open-source library, inviting contributions from anyone to expand its capabilities.
This allows for a collaborative effort, where multiple systems and stakeholders work together to
find effective solutions for enhancing UX in maritime bridge solutions.

6.4.3 Presets for operation

Presets for different operations play a crucial role in providing a comprehensive overview of the
vessel’s state during various activities. The value of data differs depending on the specific operation
being carried out. For instance, when docking a vessel, certain information becomes more critical
compared to when the vessel is engaged in a fishing operation out at sea.

While the group did not create any designs specifically addressing this aspect, Figure 56 showcases
a solution developed by Alphatron Marine that addresses the need for distinct operations, namely
conning and docking, within their user interface.

6.5 Process

This subsection will reflect and discuss the group’s approach, process, and work ethics over the
period of the project.

The team embarked on a unique project that diverged from the typical endeavors of electrical
engineering students. It proved to be a valuable experience, providing us with valuable insights into
design, programming, software, and teamwork, which will greatly benefit our future engineering
careers. It deepened our understanding of equipment communication with human operators.

Extensive research was required for the project, as it was essential to familiarize ourselves with the
software necessary for its development. The majority of the software employed in the project was
unfamiliar to the team prior to undertaking this assignment.

The group maintained a steady work pace throughout the project duration after the parallel subject
was completed. The most challenging aspect of the project has been the process of acquainting
ourselves with maritime terminology, design procedures, and complex programming codes. These
difficulties have proven to be beneficial, as they have expanded our understanding of various
engineering production processes beyond automation alone.

64

7 Conclusion

The primary objective of the project was to implement the OpenBridge design system standard in
both existing and prospective maritime applications. This implementation involved integrating the
OpenBridge standard within the Acon to K-Chief project, thereby unifying the software and design
principles of a tangible hardware system. Additionally, the project aimed to assess OpenBridge’s
suitability as a standard UI and HMI in terms of usability, safety, scalability, and security. It sought
to explore the potential future applications of OpenBridge across various maritime domains.

OpenBridge has demonstrated its efficacy as a user-friendly interface, employing universally recognized
elements and symbols. This feature facilitates comprehension for operators and unfamiliar individuals
who may encounter the system. The widespread familiarity with OpenBridge contributes to
enhanced safety within the maritime industry.

The design of the system was accomplished using Figma, allowing for a comprehensive evaluation
of the system’s flow and overall aesthetic before implementing the design into an Electron app.
Figma provides an intuitive and accessible drag-and-drop methodology for design purposes. The
successful conversion of the design into an Electron app, which integrates software and hardware,
was exemplified by the group’s demonstration of connecting a PLC to the Electron demo.

OpenBridge is a design guideline that has attracted the participation of numerous companies
aiming to foster a safer maritime work environment. Global investors and academic researchers
continue to refine this guideline, which is reinforced by its open-source library. Enabling users to
freely provide feedback directly to the designers.

Throughout the project, the group acquired useful experience in design, programming, the maritime
industry, and the intricacies of collaborative work involving multiple stakeholders.

7.1 Further work

In this section, we evaluate the tasks needed for future iterations and improvements, together with
possible ways to expand our results and evaluations given in section 6.

• Expand the design in Figma and enhance its overall feel and flow, attention should be given
to refining visual aesthetics, optimizing UX, and ensuring smooth navigation. This can
be achieved through a thoughtful selection of color schemes, typography, and intuitive UI
elements while maintaining consistency across different screens and interactions. Iterative
design processes, user feedback, and usability testing can greatly contribute to improving the
overall feel and flow of the application’s design.

• Enhance the results. The application development process can be refined by incorporating
TypeScript for robust class definitions, integrating Electron to enable GUI-driven functionality,
and leveraging React to improve layout design and streamline application animations. This
approach promotes efficient development practices and facilitates a seamless user experience.

• Establish a user database with administration rights for interface stations on a vessel. Define
user roles and access privileges, design a structured database, implement secure user authentication
mechanisms, develop user management functionality, and secure the UI with a custom layout
connected to the user’s profile.

• Ensure future-proofing of OpenBridge updates. An effective solution involves adopting a
modular code structure that facilitates easy extraction of IDs, input registers, and IPs
required for component implementation. This approach enables efficient integration of new
features and updates, allowing for agile development and minimizing the impact on the
existing codebase.

65

Bibliography

[1] 10 reasons why you should use NodeJs. 2023. url: https://www.projectpro.io/article/10-
reasons-why-you-should-use-nodejs/129 (urlseen 15/05/2023).

[2] About. NaN. url: https://www.openbridge.no/home/about (urlseen 28/04/2023).

[3] About. NaN. url: https://www.oicl.no/home/about (urlseen 15/05/2023).

[4] About — Node.js. NaN. url: https://nodejs.org/en/about (urlseen 28/04/2023).

[5] AlphaMINDS Conning. NaN. url: https://www.alphatronmarine.com/en/product/alphaminds-
conning-548/ (urlseen 15/05/2023).

[6] AlphaMINDS Docking. NaN. url: https://www.alphatronmarine.com/en/product/alphaminds-
docking-562/ (urlseen 15/05/2023).

[7] Automation system, K-Chief - Kongsberg Maritime. NaN. url: https://www.kongsberg.com/
maritime/products/engines- engine- room- and- automation- systems/automation- safety- and-
control/vessel-automation-k-chief/ (urlseen 15/05/2023).

[8] Gavin Bierman, Martın Abadi andMads Torgersen. ?Understanding TypeScript? inECOOP
2014 – Object-Oriented Programming : Springer Berlin Heidelberg, 2014, pages 257–281. doi:
10.1007/978-3-662-44202-9 11. url: https://doi.org/10.1007%2F978-3-662-44202-9 11.

[9] CDP Studios - Who we are. NaN. url: https://cdpstudio.com/aboutus/ (urlseen 15/05/2023).

[10] Conning. NaN. url: https://www.freetechnics.eu/products/conning (urlseen 15/05/2023).

[11] Conning System - For any type of vessel. NaN. url: https://www.totem-plus.com/conning
(urlseen 15/05/2023).

[12] e-SEA® Bridge - Developing a bridge solution for the future. NaN. url: https : //www.
seam.no/ insights/developing - the - bridge - solution - of - the - future - with - openbridge (urlseen
15/05/2023).

[13] Electron Development: The Complete Guide to Getting Started. 2020. url: https://www.trio.
dev/blog/electron-development-guide (urlseen 15/05/2023).

[14] Nærings- og fiskeridepartementet. Maritim næring - regjeringen.no. NaN. url: https://www.
regjeringen .no/no/tema/naringsliv/maritim- naring/ny- temaside/forste - kolonne/maritime-
naringer/id2589227/ (urlseen 04/05/2023).

[15] Human Machine Interface (HMI) vs Graphical User Interface (GUI). NaN. url: https://
nelson-miller.com/human-machine- interface-hmi- vs- graphical- user- interface- gui/ (urlseen
15/05/2023).

[16] Human Machine Interface (HMI) vs Human-Computer Interface (HCI). 2020. url: https://
nelson-miller.com/human-machine-interface-hmi-vs-human-computer-interface-hci/ (urlseen
15/05/2023).

[17] IAS - Norwegian Electric Systems. NaN. url: https://www.norwegianelectric.com/products/
ias/ (urlseen 20/04/2023).

[18] IEC 62288:2021. 2021. url: https://webstore.iec.ch/publication/64659 (urlseen 15/05/2023).

[19] Integrated Automation System - Ulstein. NaN. url: https://ulstein.com/marine-automation/
ulstein-ias (urlseen 15/05/2023).

[20] International Convention for the Safety of Life at Sea (SOLAS Convention). 2016. url:
https://www.jus.uio.no/english/services/library/treaties/08/8-03/safety- life.html (urlseen
15/05/2023).

[21] Introducing JSON. NaN. url: https://www.json.org/json-en.html (urlseen 16/05/2023).

[22] Introduction to React - Cory Gackenheimer - Google Bøker. NaN. url: https : / / books .
google.no/books?hl=no&lr=&id=NZCKCgAAQBAJ&oi=fnd&pg=PR6&dq=React&ots=
KBztRlCy8e&sig=odhKnOtqOGjUmNhGlkEF9iVh0dk&redir esc=y#v=onepage&q=React&f=
false (urlseen 15/05/2023).

[23] K-Bridge Conning Display. NaN. url: https ://www.kongsberg . com/maritime/products/
bridge-systems-and-control-centres/navigation-systems/conning-display/ (urlseen 15/05/2023).

66

https://www.projectpro.io/article/10-reasons-why-you-should-use-nodejs/129
https://www.projectpro.io/article/10-reasons-why-you-should-use-nodejs/129
https://www.openbridge.no/home/about
https://www.oicl.no/home/about
https://nodejs.org/en/about
https://www.alphatronmarine.com/en/product/alphaminds-conning-548/
https://www.alphatronmarine.com/en/product/alphaminds-conning-548/
https://www.alphatronmarine.com/en/product/alphaminds-docking-562/
https://www.alphatronmarine.com/en/product/alphaminds-docking-562/
https://www.kongsberg.com/maritime/products/engines-engine-room-and-automation-systems/automation-safety-and-control/vessel-automation-k-chief/
https://www.kongsberg.com/maritime/products/engines-engine-room-and-automation-systems/automation-safety-and-control/vessel-automation-k-chief/
https://www.kongsberg.com/maritime/products/engines-engine-room-and-automation-systems/automation-safety-and-control/vessel-automation-k-chief/
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007%2F978-3-662-44202-9_11
https://cdpstudio.com/aboutus/
https://www.freetechnics.eu/products/conning
https://www.totem-plus.com/conning
https://www.seam.no/insights/developing-the-bridge-solution-of-the-future-with-openbridge
https://www.seam.no/insights/developing-the-bridge-solution-of-the-future-with-openbridge
https://www.trio.dev/blog/electron-development-guide
https://www.trio.dev/blog/electron-development-guide
https://www.regjeringen.no/no/tema/naringsliv/maritim-naring/ny-temaside/forste-kolonne/maritime-naringer/id2589227/
https://www.regjeringen.no/no/tema/naringsliv/maritim-naring/ny-temaside/forste-kolonne/maritime-naringer/id2589227/
https://www.regjeringen.no/no/tema/naringsliv/maritim-naring/ny-temaside/forste-kolonne/maritime-naringer/id2589227/
https://nelson-miller.com/human-machine-interface-hmi-vs-graphical-user-interface-gui/
https://nelson-miller.com/human-machine-interface-hmi-vs-graphical-user-interface-gui/
https://nelson-miller.com/human-machine-interface-hmi-vs-human-computer-interface-hci/
https://nelson-miller.com/human-machine-interface-hmi-vs-human-computer-interface-hci/
https://www.norwegianelectric.com/products/ias/
https://www.norwegianelectric.com/products/ias/
https://webstore.iec.ch/publication/64659
https://ulstein.com/marine-automation/ulstein-ias
https://ulstein.com/marine-automation/ulstein-ias
https://www.jus.uio.no/english/services/library/treaties/08/8-03/safety-life.html
https://www.json.org/json-en.html
https://books.google.no/books?hl=no&lr=&id=NZCKCgAAQBAJ&oi=fnd&pg=PR6&dq=React&ots=KBztRlCy8e&sig=odhKnOtqOGjUmNhGlkEF9iVh0dk&redir_esc=y#v=onepage&q=React&f=false
https://books.google.no/books?hl=no&lr=&id=NZCKCgAAQBAJ&oi=fnd&pg=PR6&dq=React&ots=KBztRlCy8e&sig=odhKnOtqOGjUmNhGlkEF9iVh0dk&redir_esc=y#v=onepage&q=React&f=false
https://books.google.no/books?hl=no&lr=&id=NZCKCgAAQBAJ&oi=fnd&pg=PR6&dq=React&ots=KBztRlCy8e&sig=odhKnOtqOGjUmNhGlkEF9iVh0dk&redir_esc=y#v=onepage&q=React&f=false
https://books.google.no/books?hl=no&lr=&id=NZCKCgAAQBAJ&oi=fnd&pg=PR6&dq=React&ots=KBztRlCy8e&sig=odhKnOtqOGjUmNhGlkEF9iVh0dk&redir_esc=y#v=onepage&q=React&f=false
https://www.kongsberg.com/maritime/products/bridge-systems-and-control-centres/navigation-systems/conning-display/
https://www.kongsberg.com/maritime/products/bridge-systems-and-control-centres/navigation-systems/conning-display/

[24] Kongsberg Maritime fast facts - Kongsberg Maritime. NaN. url: https://www.kongsberg.
com/maritime/about-us/kongsberg-maritime-fast-facts/ (urlseen 04/05/2023).

[25] NAVI-CONNING 5000. NaN. url: https://www.maritech-adriatic.com/en/Navi-Conning/
(urlseen 15/05/2023).

[26] New OpenBridge conning library in Lynx by JRC/Alphatron Marine. NaN. url: https://
www.alphatronmarine.com/en/article/new-openbridge-conning-library-in-lynx-by-jrcalphatron-
marine/ (urlseen 15/05/2023).

[27] OpenBridge Design System - ODES - Prosjektbanken. NaN. url: https://prosjektbanken.
forskningsradet .no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&
calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&
Fritekst=296151 (urlseen 19/05/2023).

[28] OpenBridge Design System - ODES - Prosjektbanken. NaN. url: https://prosjektbanken.
forskningsradet .no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&
calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&
Fritekst=296151 (urlseen 19/05/2023).

[29] OpenBridge library link to Figma. NaN. url: https://www.openbridge.no/figma/current-
release (urlseen 01/05/2023).

[30] OpenBridge maritime UI’s. NaN. url: https://cdpstudio.com/blog/openbridge-maritime-uis/
(urlseen 15/05/2023).

[31] Presenting OpenBridge Design System. NaN. url: https://medium.com/ocean- industries-
concept-lab/presenting-openbridge-design-system-3aac447a0a02 (urlseen 19/05/2023).

[32] SOLAS. NaN. url: https://www.imo.org/en/KnowledgeCentre/ConferencesMeetings/Pages/
SOLAS.aspx (urlseen 15/05/2023).

[33] SVG files. NaN. url: https://www.adobe.com/creativecloud/file- types/image/vector/svg-
file.html (urlseen 15/05/2023).

[34] SVG Standarer. NaN. url: https://www.digdir.no/standarder/svg-scalable-vector-graphics/
1731 (urlseen 15/05/2023).

[35] User Experience (UX) Design. NaN. url: https ://www.interaction- design.org/literature/
topics/ux-design (urlseen 15/05/2023).

[36] Web Content Accessibility Guidelines (WCAG) 2.0. 2008. url: https://www.w3.org/TR/
WCAG20/ (urlseen 15/05/2023).

[37] What is Electron? NaN. url: https://www.electronjs.org/docs/latest (urlseen 15/05/2023).

[38] What Is Figma and What Is It Used For? NaN. url: https://www.makeuseof.com/what-is-
figma-used-for/ (urlseen 20/05/2023).

[39] What is User Experience? — Definition and Overview. NaN. url: https://www.productplan.
com/glossary/user-experience/ (urlseen 20/05/2023).

[40] Why digital user interfaces matter for ship owners. NaN. url: https://www.oicl.no/content/
why-digital-user-interfaces-matter-for-ship-owners (urlseen 15/05/2023).

67

https://www.kongsberg.com/maritime/about-us/kongsberg-maritime-fast-facts/
https://www.kongsberg.com/maritime/about-us/kongsberg-maritime-fast-facts/
https://www.maritech-adriatic.com/en/Navi-Conning/
https://www.alphatronmarine.com/en/article/new-openbridge-conning-library-in-lynx-by-jrcalphatron-marine/
https://www.alphatronmarine.com/en/article/new-openbridge-conning-library-in-lynx-by-jrcalphatron-marine/
https://www.alphatronmarine.com/en/article/new-openbridge-conning-library-in-lynx-by-jrcalphatron-marine/
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://prosjektbanken.forskningsradet.no/project/FORISS/296151?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=296151
https://www.openbridge.no/figma/current-release
https://www.openbridge.no/figma/current-release
https://cdpstudio.com/blog/openbridge-maritime-uis/
https://medium.com/ocean-industries-concept-lab/presenting-openbridge-design-system-3aac447a0a02
https://medium.com/ocean-industries-concept-lab/presenting-openbridge-design-system-3aac447a0a02
https://www.imo.org/en/KnowledgeCentre/ConferencesMeetings/Pages/SOLAS.aspx
https://www.imo.org/en/KnowledgeCentre/ConferencesMeetings/Pages/SOLAS.aspx
https://www.adobe.com/creativecloud/file-types/image/vector/svg-file.html
https://www.adobe.com/creativecloud/file-types/image/vector/svg-file.html
https://www.digdir.no/standarder/svg-scalable-vector-graphics/1731
https://www.digdir.no/standarder/svg-scalable-vector-graphics/1731
https://www.interaction-design.org/literature/topics/ux-design
https://www.interaction-design.org/literature/topics/ux-design
https://www.w3.org/TR/WCAG20/
https://www.w3.org/TR/WCAG20/
https://www.electronjs.org/docs/latest
https://www.makeuseof.com/what-is-figma-used-for/
https://www.makeuseof.com/what-is-figma-used-for/
https://www.productplan.com/glossary/user-experience/
https://www.productplan.com/glossary/user-experience/
https://www.oicl.no/content/why-digital-user-interfaces-matter-for-ship-owners
https://www.oicl.no/content/why-digital-user-interfaces-matter-for-ship-owners

Appendices

A Preliminary project report

See attached Zip/Preproject

68

B Gantt diagram

Gantt diagram of the project

69

C Hour list

See attached Zip/HourList

71

D Biweekly reports

See attached Zip/Biweekly

72

E Meeting reports

See attached Zip/Meetingreports

73

F Project pitch

See attached Zip/projectpitch

74

G Poster

Project poster

75

Implementation in existing, and future
maritime applications

OpenBridge Design

System

Introduction:

In the maritime industry, the bridge on boats and other

maritime vessels contains a lot of systems with different

interfaces and functions. As a result, an evaluation of the

design system OpenBridge was done to explore its

possibilities of tying hardware and software into one, together

with its overall user experience.

Summary:

The goals of this project

was to use OpenBridge

guidelines to design a

prototype system in

Figma, implementing

this to an Electron app,

and lastly evaluating

OpenBridge as a whole.

Method:

Results:

Karl Johan Alvestad | Helene L. Rasmussen | Lasse Raaum | Henrik Rian

H Figma project

Link to Figma project containing the designs

https://www.figma.com/file/rTJOBciqGP3zqvJWIjenuC/OpenBridge-Bachelor-Kongsberg?type=design&
node-id=39194%3A361519&t=D31E54EKyZyQFjhC-1

77

https://www.figma.com/file/rTJOBciqGP3zqvJWIjenuC/OpenBridge-Bachelor-Kongsberg?type=design&node-id=39194%3A361519&t=D31E54EKyZyQFjhC-1
https://www.figma.com/file/rTJOBciqGP3zqvJWIjenuC/OpenBridge-Bachelor-Kongsberg?type=design&node-id=39194%3A361519&t=D31E54EKyZyQFjhC-1

I Electron Code using SVG files

Code developed for Electron design

check GitHub or zip folder

https://github.com/kongapls/OpenBridge-Bachelor/releases/tag/Release

78

https://github.com/kongapls/OpenBridge-Bachelor/releases/tag/Release

J Electron Code using online library

See attached Zip/Alternativeapp

79

K e!COCKPIT

The e!cockpit program used for the PLC configuration

can also be viewed from Zip/e!COCKPIT

https://github.com/kongapls/E-cockpit-Bachelor/releases/tag/Release

80

https://github.com/kongapls/E-cockpit-Bachelor/releases/tag/Release

L Contact log

Contact log of the informants providing feedback throughout the project

See attached Zip/Contactlog

81

M Video

The bachelor video presentation

See attached Zip/Video

82

	Preface
	Terminology
	List of Figures
	List of Tables
	Introduction
	Background
	Kongsberg Maritime
	Problem Formulation
	Approach
	Structure of the report

	Theoretical basis
	Integrated automation system (IAS)
	Acon and K-Chief

	Ocean Industries Concept Lab (OICL)
	OpenBridge Design System (ODES)
	OpenBridge's Goal

	User experience (UX)
	Human machine interface (HMI)
	Human computer interface (HCI)
	Graphical user interface (GUI)

	Runtime Environment, frameworks & other technologies
	Node.js
	Electron
	Figma
	Node Package Manager (npm)
	JavaScript Object Notation (JSON)
	Scalable Vector Graphics (SVG)

	Companies that have implemented OpenBridge
	CDP Studio
	Alphatron Marine
	SEAM AS

	Regulations
	IEC 62288
	WCAG 2.0
	SOLAS

	Materials
	Software
	Libraries

	Hardware

	Method
	Project Organization
	Design in Figma
	Using OpenBridge in Figma
	Design process of UI in Figma

	Application and programming structure development
	Application
	Outdated method of implementing OpenBridge design

	Result
	Figma design
	Design Process
	Drafts
	Final UI design

	Electron application
	SVG layout implementation
	SVG component implementation
	Outdated method for app design
	Responsive design

	Discussion
	Scalability
	Figma
	Electron
	Scaling the code
	OpenBridge

	Challenges
	Figma
	Electron
	OpenBridge

	Existing programs
	CDP Studios
	Alphatron Marine
	SEAM AS

	Usability
	Ease of use
	Open source
	Presets for operation

	Process

	Conclusion
	Further work

	Bibliography
	Appendices
	Preliminary project report
	Gantt diagram
	Hour list
	Biweekly reports
	Meeting reports
	Project pitch
	Poster
	Figma project
	Electron Code using SVG files
	Electron Code using online library
	e!COCKPIT
	Contact log
	Video

