
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Ba
ch

el
or

’s
th

es
is

Brandvold, Tom Arne Haugen
Damhaug, Alexander Kristian
Holhjem, Benjamin Knutsen
Lie, Kristoffer

Setup and operation of an e-learning
platform

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Erik Hjelmås
May 2023

Brandvold, Tom Arne Haugen
Damhaug, Alexander Kristian
Holhjem, Benjamin Knutsen
Lie, Kristoffer

Setup and operation of an e-learning
platform

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Erik Hjelmås
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Preface

This bachelor’s thesis is written at the department of Information Security and
Communication Technology at NTNU in Gjøvik by Tom Arne Haugen Brandvold,
Alexander Kristian Damhaug, Benjamin Knutsen Holhjem and Kristoffer Lie.

We would like to thank our supervisor Erik Hjelmås for his support and guidance.

We would also like to thank Orange Business Services, and more specifically Truls
Enstad for an exiting and challenging assignment, and his good collaboration.

Thanks to k6 for granting our request for a premium subscription of their service
used for testing in the project.

Lastly we want to thank each other for a good and constructive collaboration over
the last semester. This has been an educational and rewarding process. Sammen
er vi dynamitt!

iii

Abstract

Orange Business Services aims to deploy an e-learning platform utilizing Moodle
for training their technicians, offering enhanced flexibility, scalability, and cost-
effectiveness compared to conventional training methods. The project involves
implementing different infrastructure architectures, ranging from a single server
setup to advanced containerized Docker Swarm architecture. Furthermore, load
testing is conducted to assess response times, while monitoring the systems load
using the TICK-stack, with the ultimate goal of ensuring a robust, scalable, and
secure e-learning platform.

v

Sammendrag

Orange Business Services har som mål å implementere en e-læringsplattform ved
hjelp av Moodle for opplæring av teknikerne deres. Dette vil gi forbedret fleksi-
bilitet, skalerbarhet og kostnadseffektivitet sammenlignet med konvensjonelle op-
plæringsmetoder. Prosjektet innebærer implementering av ulike infrastrukturer,
fra en enkelt server til avansert containerisert Docker Swarm-arkitektur. Videre
gjennomføres ytelsestesting for å vurdere responstider, samtidig som systembe-
lastningen overvåkes ved hjelp av TICK-stack. Hovedmålet er å sikre en robust,
skalerbar og sikker e-læringsplattform.

vii

Contents

Preface . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Background . 2
1.1.1 Problem area . 3
1.1.2 Delimitation . 3
1.1.3 Project definition . 4

1.2 Target audience . 4
1.2.1 Report . 4
1.2.2 Technical documentation and code 5

1.3 Academic background . 5
1.4 Purpose . 5
1.5 Project goals . 6
1.6 Project limitations . 7
1.7 Roles . 8
1.8 Report structure . 8

1.8.1 Contents . 8
1.8.2 Report layout . 9

2 Theory . 11
2.1 Background and professional field . 12

2.1.1 Iron vs Cloud age . 12
2.1.2 Deployment Options (Public, Private, Hybrid) 12
2.1.3 Cloud service models . 13

2.2 Topic theory . 14
2.2.1 Redundancy and Load Balancing 14
2.2.2 Database and database clusters 14

ix

x Contents

2.2.3 Scalability . 14
2.2.4 Automation . 15
2.2.5 Monitoring . 15
2.2.6 Containerization . 16
2.2.7 Security . 16
2.2.8 Open-source software . 17

3 Requirements specification . 19
3.1 Functional . 20
3.2 Operational . 21

4 Working method . 23
4.1 Working method . 24

4.1.1 Communication and meetings 25
4.2 Application of working method . 25

4.2.1 Practical and experimental implementation 27
5 Implementation . 29

5.1 Technologies, tools and software used 30
5.1.1 Detailed description . 34

5.2 Additional components . 35
5.2.1 TI(CK)-Stack . 35
5.2.2 Testing . 36
5.2.3 LDAP server . 40
5.2.4 Docker Registry server . 40

5.3 Implementation of infrastructures and components 40
5.3.1 Single server architecture . 41
5.3.2 3-Layer architecture . 42
5.3.3 Docker architecture . 44
5.3.4 Docker Swarm architecture . 48

6 Discussion . 53
6.1 Comparison of the infrastructure architectures 54

6.1.1 Single server architecture . 54
6.1.2 3-Layer architecture . 54
6.1.3 Docker architecture . 54
6.1.4 Docker Swarm architecture . 55

6.2 Test results . 56
6.2.1 Architecture hardware resources 59
6.2.2 k6 Test results . 59
6.2.3 Analysis of architecture performance and requirements . . . 67

6.3 Knowledge and technological familiarity’s influence on choices and
technologies . 69

7 Assignment critique . 71
7.1 Short overview of the assignment . 72
7.2 Critique of the assignment . 72
7.3 Student Performance . 73
7.4 Reflection on Learning . 73

Contents xi

8 Further work . 75
8.1 Implementation improvements . 76
8.2 Performance improvements . 77
8.3 Security improvements . 77
8.4 Monitoring . 78
8.5 Kubernetes . 79

9 Project evaluation . 81
9.1 Organization . 82
9.2 Work delegation . 82
9.3 Progress plan . 82

10 Conclusion . 85
Bibliography . 87
A Progress plan . 93
B Documentation . 95

B.1 Architectures . 96
B.1.1 Single server setup . 96
B.1.2 3-Layer architecture . 102
B.1.3 Docker . 107
B.1.4 Docker swarm . 115

B.2 Additional infrastructure . 123
B.2.1 TI-Stack . 123
B.2.2 LDAP server . 127

B.3 Other documentation . 132
B.3.1 OpenStack GUI-Setup . 132

C Code . 135
C.1 Infrastructure 1: Single server setup . 136
C.2 Infrastructure 2: 3-Layer Architecture 137
C.3 Infrastructure 3: Docker . 147

C.3.1 docker_code . 147
C.3.2 docker_Infra . 149

C.4 Infrastructure 4: Docker Swarm . 158
C.5 Additional Component 1 - Monitoring 161

D Testing result summaries . 167
D.1 Single instance . 168
D.2 3 layer . 172
D.3 Docker . 176
D.4 Docker Swarm . 180

E Project plan . 185
F Contract . 203
G Meeting minutes . 211

G.1 Client meetings . 212
G.2 Supervisor meetings . 215
G.3 Group meetings . 219

H Timesheet . 225

Figures

3.1 Moodle home page. 20

5.1 InfluxDB dashboard . 36
5.2 Single postman test . 37
5.3 k6 simple run . 39
5.4 k6 executive summary . 40
5.5 LAMP-Stack Moodle. 41
5.6 3-layer architecture with Moodle. 43
5.7 Docker with Moodle . 46
5.8 Docker swarm with Moodle. 49

6.1 Large test course . 57
6.2 Large test course without GlusterFS . 58
6.3 Medium test course . 58
6.4 Monitoring of single instance architecture during test run 61
6.5 Monitoring of 3 layer web server 1 during test run 62
6.6 Monitoring of 3 layer web server 2 during test run 62
6.7 Monitoring of 3 layer web server 3 during test run 63
6.8 Monitoring of 3 layer database during test run 63
6.9 Monitoring of Docker host during test run 64
6.10 Monitoring of Docker database during test run 64
6.11 Monitoring of Docker Swarm container 1 during test run 65
6.12 Monitoring of Docker Swarm container 2 during test run 66
6.13 Monitoring of Docker Swarm container 3 during test run 66

xiii

Tables

2.1 Iron vs Cloud Age . 12

4.1 Infrastructure architectures . 26

5.1 Docker container images used with Moodle 45

6.1 Architecture resources . 59
6.2 Infrastructure test results . 59
6.3 Client requirements . 67
6.4 Operational requirements . 68

xv

Code Listings

5.1 Postman script . 37
5.2 Test script k6 . 38
5.3 Web service Dockerfile . 47
5.4 Init.sh . 47
5.5 Docker compose file . 50

xvii

Acronyms

AI Artificial Intelligence. 26

IaaS Infrastructure as a Service. 32

IDS Intrusion Detection System. 17

KISS Keep It Simple Stupid. 26

LDAP Lightweight Directory Access Protocol. 3, 16, 21, 34

LMS Learning Management System. 3, 5, 14, 30, 44

MVP Minimum Viable Product. 54

NFS Network File System. 31, 55

NTNU Norwegian University of Science and Technology. 3

SSL Secure Sockets Layer. 16

TLS Transport Layer Security. 16

VPN Virtual Private Network. 3

xix

Glossary

LATEX Is a mark up language specially suited for scientific documents. 9

bash Bash is the shell, or command language interpreter, for the GNU operating
system. 30

Cloud Infrastructure Is a term used to describe the components needed for cloud
computing, which includes hardware, storage, and network resources . 5

Gantt-chart is a visual representation of a project schedule. 24

GlusterFS is a free opensource distributed file system software. 31, 43

HAProxy is a free opensource load balancing software. 43

kanban board is an agile project management methodology. 24

LAMP Stack of software components, specifically; Linux, Apache, MySQL and
PHP. 30, 41

Moodle is a free online learning management system. 3, 5, 19–21, 29, 30

on-prem on-premises also known as on-prem refers to IT infrastructure hardware
and software applications that are hosted on-site. 8

OpenStack tool for managing and provisioning infrastructure resources . 32

Overleaf is an online collaborative writing and publishing platform. 9

SkyHiGh NTNU’s private cloud solution running OpenStack. 3, 32

Terraform is a vendor free infrastructure as code tool that lets you define both
cloud and on-prem resources. 31, 32, 43

xxi

xxii Tables

TICK-stack is a collection of open-source software tools developed by InfluxData
for managing time-series data and monitoring. 4

Toggl is a time tracking and time management platform. 24

Trello Trello is a web-based project management tool that simplifies task organi-
zation and collaboration.. 24

Chapter 1

Introduction

This chapter provides an introduction to the project, outlining the background
and problem area. It highlights the need for a dedicated e-learning platform for
Orange Business Services and the advantages of using an e-learning platform over
traditional training methods. The chapter also defines the problem statement and
delimits the scope of the project. It presents the project goals and limitations and
introduces the target audience and academic background of the project team.
The purpose of the project and the structure of the report are also outlined in this
chapter.

1

2 Chapter 1: Introduction

1.1 Background

Orange Business Services is experiencing rapid growth and sees an increasing
need to use a dedicated e-learning platform to train technicians. To meet this need,
Orange Business Services wants to use the learning platform Moodle, and the
service and underlying platform should meet requirements for up-time, security,
and capacity.

The e-learning platform will be designed to provide technicians with a compre-
hensive training program that will enable them to develop the necessary skills to
support Orange Business Services’ critical IT solutions. The platform will be used
to provide online courses and interactive activities, quizzes, and assessments to
measure the progress of the trainees.

In today’s fast-paced business environment, traditional training methods can be
time-consuming and costly. Employees often need to take time off work to at-
tend training sessions, and the cost of travel, accommodation, and other expenses
can quickly add up. Additionally, traditional training methods may not be able to
keep up with the rapidly changing technology landscape, making it challenging
to ensure that employees have the latest skills and knowledge required for their
jobs.

An e-learning platform, on the other hand, offers several advantages over tradi-
tional training methods. Primarily, e-learning is accessible from anywhere, at any
time, as long as there is an internet connection. This means that employees can
learn at their own pace, at a time and place that is convenient for them, without
needing to take time off work or travel to a training location. E-learning platforms
are also highly scalable, allowing companies to train a large number of employees
at once without the need for additional resources. The use of multimedia, such
as videos, animations, and interactive activities, can also make learning more en-
gaging and effective. The e-learning platforms can be updated quickly and easily
to reflect changes in technology, regulations, or best practices.

This project is an exciting opportunity to provide Orange Business Services with a
comprehensive and scalable training platform for their technicians. The platform
will be built with a complete infrastructure, based on careful consideration of the
appropriate technologies, and designed to meet the client’s specific requirements.
By providing a reliable e-learning platform, Orange Business Services can increase
the efficiency and effectiveness of its workforce, resulting in improved outcomes
for its customers. The use of an e-learning platform, such as Moodle, can pro-
vide Orange Business Services with a more cost-effective, scalable, and engaging
training solution for their technicians.

Chapter 1: Introduction 3

1.1.1 Problem area

Setting up and operating an e-learning platform for Orange Business Services with
a focus on meeting the company’s requirements for up-time, security, and capacity
while using Moodle as the training platform. The thesis will cover the complete in-
frastructure setup, including , servers, database, web server, LDAP, and necessary
plugins. The solution should be secure, redundant, and scalable. The thesis will
also cover testing of the different infrastructure architectures, redundancy and
load balancing of web server and database. Additionally, the thesis will provide a
justification for the chosen technologies and services. Finally, the thesis will doc-
ument all configurations to ensure the solution can be deployed in a production
environment.

Adopting a LMS for training delivery offers several advantages over traditional
training methods [1]. Firstly, a LMS provides a centralized platform for managing
and delivering training content to learners, which can enhance the consistency
and quality of the training program. Secondly, a LMS can be customized to meet
the specific needs of the organization and the learners, improving the effective-
ness of the training program. Thirdly, a LMS provides accessibility and flexibility
for learners, allowing them to access the training content anytime, anywhere, and
on any device. This can make training more convenient and accessible for learn-
ers with busy schedules or those who work remotely. Fourthly, a LMS can increase
the efficiency of training delivery and administration, saving time and effort for
trainers and administrators. Finally, a LMS can generate data-driven insights that
can help the organization measure the impact of the training program and make
informed decisions about future training investments and improvements. There-
fore, the implementation of a LMS can have significant benefits for Orange Busi-
ness Services in terms of improving the quality, effectiveness, and efficiency of its
training program.

1.1.2 Delimitation

Given the scope of the task assigned by Orange Business Services, it is essential to
establish clear boundaries for the project. In line with the Keep It Simple Stupid
(KISS) principle [2, p.595], the project will follow an iterative approach with a
focus on developing small and simple components that can be easily revised as
necessary. While Orange Business Services will be responsible for the logical and
technical content of the Moodle platform, our team will facilitate its use by inte-
grating the necessary plugins and additional software. To this end, our work will
be conducted and tested on SkyHiGh, NTNU’s on-premise cloud solution running
OpenStack, which differs from the client’s preferred cloud platform.

Access to SkyHiGh is limited to NTNU’s internal network or through VPN for au-
thorized users. External access is not available due to the solution being hosted on
the internal network. In view of the fact that Orange Business Services does not
require direct access to the solution, access restrictions will not be a significant

4 Chapter 1: Introduction

issue.

1.1.3 Project definition

The purpose of this project is to implement Moodle on a complete infrastructure
platform with full resource access to manage the service. These are the require-
ments set by Orange Business Services in the project description:

1. There will be configured an infrastructure platform with reasonable choices
of services and technologies.

2. The platform must be secured against unauthorized users, and it is expected
to run security tests on common vulnerability continuously.

3. The web-server and database must be configured with redundancy and load-
balancing to ensure up-time.

4. Simulated problems will also be tested, to make sure the system is able to
be shielded from failure, or potential attacks.

5. TICK-stack will be configured to any operational issues that may appear.
6. Necessary operation tasks, and how it will affect the service’s up-time will

be documented.
7. Choice of services and technologies should be justified, and all configura-

tions should be documented thoroughly, so the solution later can be used in
a production environment.

These requirements can be effectively summarized by the following problem state-
ment:

Develop and configure a complete Moodle infrastructure that ensures reliability,
scalability and security using cloud technologies.

1.2 Target audience

1.2.1 Report

The target audience of this report can be segmented into two distinct groups:
NTNU and Orange Business Services. NTNU will evaluate the report based on
the quality of decision-making and the overall report quality. On the other hand,
Orange Business Services serves as the intended client for the report, focusing on
the technological findings, in-depth discussions, and recommendations outlined.

The report also caters to additional target audiences, including students in rele-
vant fields of study and academic researchers. Our objective is to ensure that the
research findings and recommendations presented in this report serve as valuable
and practical resources for these audiences.

Chapter 1: Introduction 5

1.2.2 Technical documentation and code

The target audience for the technical documentation and code is primarily our
client, Orange Business Services, who is particularly interested in a recommended
infrastructure solution that can be deployed on their private cloud. Nevertheless,
other interested parties, such as the students and faculty at NTNU, may also find
the documentation and code to be of practical value. Additionally, any individuals
who are seeking guidance on how to set up Moodle as a LMS may also benefit
from the documentation and code, serving as a source of inspiration.

1.3 Academic background

This bachelor thesis is written by a team of four students in the final semester
of their Bachelor’s degree in Digital Infrastructure and Cybersecurity. The team
members possess a shared passion for technology, with each individual exhibiting
unique interests in various areas, including programming, networking, and infras-
tructure development. The team members have chosen slightly different elective
courses that collectively enhance the application of comprehensive professional
knowledge throughout the project.

The bachelor program comprises four courses per semester that cover program-
ming, infrastructure, network, and cybersecurity. Most courses emphasize team-
work through group projects with a focus on work methodology, such as cyber-
security, teamwork, and software engineering. The focus on teamwork is what
makes a project like this bachelor project possible. Notably, courses like "DCSG2003
- Robust and scalable services" and "IIKG3005 - Infrastructure as Code" have laid
the foundation for building and configuring infrastructures.

While the study program covers most of the essential topics for this project, areas
such as databases, statistics, testing, the Moodle platform, and academic report
writing are areas that needs to be researched. Most topics are often covered super-
ficially in courses due to the rapid advancements in the field. This project provides
us with the opportunity to delve deeper into these theories and technologies.

1.4 Purpose

As mentioned in the background 1.1, Orange Business Services seek to integrate
the learning platform Moodle onto their Cloud Infrastructure, to train their tech-
nicians. It is relevant to understand how the Moodle platform works as a Learning
Management System, how to deploy it on existing infrastructure, how to model
the infrastructure to fit the needs for running the platform, and the specific needs
to run it efficiently.

Orange Business Services commissioned this project to conduct extensive research
and evaluate alternative possibilities for implementing Moodle as a learning plat-

6 Chapter 1: Introduction

form. They want to use the results of this project to aid in taking decisions about
the software and services to use, and how to configure the infrastructure in the
best possible way. The solution of this project presents how to successfully config-
ure a LMS on different infrastructure architectures and gives the client perspective
and guidance on how to do so themselves. By doing their research through the
work of a bachelor’s project, Orange Business Services saves cost and resources,
and the project gives graduate students relevant industry experience.

Due to the broad nature of the problem, it is possible to redefine the problem
statement quite freely. To address the challenges posed by the tasks effectively,
justifications for the chosen approaches must align with the established objec-
tives. The problem statement introduced in section 1.1.3; Develop and configure a
complete Moodle infrastructure that ensures reliability, scalability and security using
cloud technologies, Is chosen for a number of reasons. While the original assign-
ment contains most of the required components, some limitations have to be im-
plemented due to the broad nature of the project. These issues are prioritized as
essential for developing a functional solution for Orange Business Services.

Despite the extensive theoretical discussions and technological implementations
involved in setting up the Moodle platform and achieving quality improvements,
the project will not end with the completion of this stage. Rather, it will provide
Orange Business Services with a solid foundation that they can build upon and
further develop in the future. This project can also assist future graduate students,
to further investigate the issues provided.

1.5 Project goals

Result goals

1. Setup a robust, scalable and secure infrastructure that is able to host Moodle
for use as an internal learning platform for Orange Business Services.

2. Develop documentation at a quality that makes replicating the work easier
for Orange Business Services when implementing the solution.

Business goals

3. Implementing our solution should greatly reduce the time and resources
needed to train technicians.

4. The solution should reduce the resources needed to get the learning plat-
form up and running for Orange Business Services.

5. The solution should be modifiable by Orange Business Services so that they
can make the necessary changes to get the platform ready for implementa-
tion and use in their workplace.

Chapter 1: Introduction 7

Learning outcome

6. Take a deeper dive into setting up and configuring a robust and scalable
infrastructure, and at the same time make sure that the infrastructure is
secure.

7. Get broader knowledge with Moodle, web-hosting in general, Terraform,
Tick Stack and other tools and services we will touch on during the project
work.

8. Together with the technical learning outcomes we get real life experience
with a bigger project, and the collaboration within a group and with the
client.

9. Insights that will help us reflect on the work during the project, and to see
potential improvements.

1.6 Project limitations

The project is limited by multiple factors, and while some limitations are beyond
the group members control, like project deadline, others are set by the group. The
project is limited by the goals set in the project plan (appendix E), time constraints
and set deadlines, physical and practical constraints, project organization, and
also the project definition listed in chapter 1.1.3.

Time constrains

1. Deadlines set by supervisor/client
2. Planning defined in our Gantt-chart
3. Internal deadlines set by the group
4. The project deadline is 22.05.23

Physical and practical constrains

5. The use of SkyHiGh vs. other cloud services
6. Client based in Oslo
7. Budget
8. Desired quality standard

Project organization

9. Group roles
10. Collaboration
11. Group routines

Time, physical, and practical constraints, as well as project organization, are fre-
quently encountered limitations during the development of a bachelor’s thesis.

8 Chapter 1: Introduction

These limitations can limit the project’s scope, affect the level of detail and com-
plexity achievable, and decrease the quality of the final product. Therefore, it is
crucial for the project team to recognize these limitations early on and make nec-
essary adjustments to ensure the successful completion of the project within the
given constraints.

1.7 Roles

Supervisor Erik Hjelmås and client point of contact Truls Enstad play central roles
in the bachelor project.

Erik Hjelmås is an Associate Professor at NTNU and has broad knowledge in the
professional field. His recommendations and discussions at the weekly meetings
ensure consistency and professionalism throughout the project.

Truls Enstad is a passionate Technical Trainer at Orange Business Services and is
our point of contact with the client. He knows how Orange Business Services’ on-
prem cloud solution works. His contributions are ensuring that the work aligns
with the client’s interests. His experience is helping the team to gain a different
perspective on the project, and to identify opportunities from a fresh point of view.

The project plan in appendix E explains the administrative background of this
project more thoroughly, and explains risks, tools and roles in depth.

1.8 Report structure

1.8.1 Contents

The report is divided into the following chapters with several sub-chapters:

Introduction: This chapter is a short introduction to the thesis and the project.

Theory: This chapter introduces the theory necessary to know to be able to
follow the rest of the thesis.

Requirements specification: This chapter includes an in-depth specification
of the requirements of the project.

Working method: This chapter describes how we have worked with this
thesis and project, and how this method has been applied throughout the
project.

Implementation: This chapter goes through the practical implementation of
code and how we have developed the different infrastructure architectures.

Discussion: This chapter includes explanation of all choices and goes through
the results and alternatives found in the project.

Assignment critique: This chapter discusses our critique of the assignment.

Chapter 1: Introduction 9

Further work: This chapter identifies potential areas for future research and
development that could build upon the current study and address unre-
solved questions or limitations.

Project evaluation: This chapter is an evaluation of the project.

Conclusion: This chapter is a conclusion of the thesis.

Appendices: This chapter includes all the appendices to our report. This in-
cludes our progress plan, all our technical documentation and code, test
result summaries, project plan, contract, meeting minutes, and timesheet.

1.8.2 Report layout

The report is written in Overleaf using the mark up language LATEX. We use a
template developed by the Community of Practice in Computer Science Education
at NTNU [3].

Chapter 2

Theory

The professional field surrounding this project is extensive and intricate, with fre-
quent developments of new tools aimed at enhancing performance, security, and
problem-solving. Throughout the project, we gain theoretical knowledge of var-
ious technologies, followed by practical application of one or multiple tools that
use these technologies. This is providing us with a understanding of the profes-
sional field IT infrastructure [4] and system administration [5].

11

12 Chapter 2: Theory

2.1 Background and professional field

2.1.1 Iron vs Cloud age

Iron age refers to how we used static systems and often worked directly on phys-
ical hardware with manual processes. The cloud age facilitates rapid access to
virtualized resources via the internet, thereby enabling automated processes that
reduce the likelihood of human error. These virtualized resources are as IBM states
"the foundation of cloud computing" [6]. Software is used to create an abstrac-
tion layer of hardware resources that is made available through a cloud provider.
This technological advancement allows for the development of new, faster pro-
cesses that leverage the advantages of cloud computing. The comparison of iron
vs cloud age are illustrated in table 2.1 from the book Infrastructure as Code by
Kief Morris [7].

Iron Age Cloud Age
Cost of change is high Cost of change is low
Changes represent failure (changes
must be “managed,” “controlled”)

Changes represent learning and im-
provement

Reduce opportunities to fail Maximize speed of improvement
Deliver in large batches, test at the
end

Deliver small changes, test continu-
ously

Long release cycles Short release cycles
Monolithic architectures (fewer,
larger moving parts)

Micro-services architectures (more,
smaller parts)

GUI-driven or physical configuration Configuration as Code

Table 2.1: Iron vs Cloud Age

2.1.2 Deployment Options (Public, Private, Hybrid)

In brief, the public cloud utilizes services offered by external providers, while in
a private cloud model, infrastructure must be built and maintained internally.
A hybrid cloud is a combination of building internal infrastructure and utilizing
external providers.

Public Cloud

When a business uses a public cloud service model, it "rents" existing resources
from a service provider [8]. The customer owns the data itself, and the provider
is responsible for preparing, delivering, and maintaining the application and re-
sources. The user is not responsible for significant capital expenses, but instead
pays a subscription fee proportional to the company’s usage. This model ensures
scalability and focus on the company’s core operations.

Chapter 2: Theory 13

Private Cloud

In the private cloud service model, the user connects to the cloud exclusively,
often on a secure private network where only selected individuals have access to
the services [8]. This model suits companies that require better security, control
over resources, and avoids sharing resources with other cloud costumers. These
features is often ensured by hosting the cloud model on-premise. The advantages
of this service model can also be seen as disadvantages. Owning infrastructure for
better security and control, entails greater capital expenses, operating expenses,
and complexity.

Hybrid Cloud

Hybrid cloud is the combination of private and public cloud service models [8].
A well-designed hybrid cloud service model utilizes the advantages of the models
above, resulting in: a seamless user experience, good flow of data between ser-
vices, and compliance with legislation and service agreements. This is achieved
by placing non-sensitive data in public cloud services, while sensitive and legally
required data is stored securely in private cloud. The use of hybrid cloud will
however increase complexity, and good design crucial to ensure these benefits.

2.1.3 Cloud service models

IaaS - Infrastructure as a Service

Infrastructure as a Service is the service model where the customer gains access
to raw hardware resources on demand using a service provider such as Microsoft
Azure or Amazon Web Services [9]. The user can easily provision and configure
these resources as if they were on-premises hardware. The cloud service provider
is responsible for hosting, managing and maintaining these hardware resources
in their data centers.

PaaS - Platform as a Service

Platform as a Service is a service where the development and distribution of cloud-
based applications is at the center. The cloud service provider is responsible for
hosting, managing and maintaining the hardware and software included in the
platform. This gives value for developers as they get a quickly and cost effective
way to run and test applications in the cloud [8].

SaaS - Software as a Service

Software as a Service is service model that delivers a fully distributed cloud ap-
plication that is updated and managed by the SaaS vendor [9]. The service min-
imizes the time customers spend on configuring and setting up the application
while offering services that support the customers business goals. Services in this
scope require internet connectivity and are often accessed through a web browser.

14 Chapter 2: Theory

A user connects to the service without dealing with underlying infrastructure or
configuration.

2.2 Topic theory

The use of an e-learning platform is a contemporary method adopted by Orange
Business Services to provide training for their technicians. This platform offers
technicians the flexibility to access course materials from any device, at any time.
Moodle is the chosen platform that supports the clients needs in this regard. It is
imperative to examine some essential theoretical considerations in the underlying
infrastructure of the platform.

2.2.1 Redundancy and Load Balancing

In order to support a robust running service, it is necessary to understand redun-
dancy and load balancing. Redundancy, referred as Fault tolerance by Schlossna-
gle [10, p.37], refers to the use of backup resources or systems to ensure that
the e-learning platform remains operational even if there are hardware failures
or other issues with the primary systems. Load balancing involves distributing the
workload across multiple servers to ensure that no single server is overwhelmed
and that the platform can handle high levels of traffic or user activity [10, p.61].
These theoretical aspects are achieved using various technologies.

2.2.2 Database and database clusters

A database [11] is information set up for easy access, management and updating.
Computer databases store aggregations of data records and files that contain in-
formation produced in an environment. A Learning Management System such as
Moodle, produce tremendous amounts of data once active in production. Moo-
dle use the type relational databases, which are comprised of tables with unique
predefined categories. Each column within a table has at least one data category,
and rows with certain data instances that match a columns category specification.
These tables, are indexed using SQL queries to retrieve, update, and delete data
located in a table.

Database clustering [12] is the process of connecting more than one single database
instance or server to your system with the same purpose. In a database cluster, it
is usual that one or a group of servers are managing the cluster. The benefits of
this structure are system redundancy, load balancing, and performance.

2.2.3 Scalability

In the context of e-learning platforms, a scalable service or system is of high im-
portance to accommodate the growth of the user base and changing demands
over time. The ability to scale vertically, by increasing resources like RAM, CPU

Chapter 2: Theory 15

on the instance running the service, and horizontally, by distributing the load
across multiple instances, is made possible by the advancements in cloud tech-
nology [10, p.5-6]. Horizontal scaling is the more modern approach and involves
the use of load balancers to distribute the workload across multiple servers or in-
stances. This results in increased availability, reliability, and performance of the
e-learning platform, allowing it to handle high levels of traffic or user activity.
However, it’s crucial to note that proper planning and implementation of scalabil-
ity strategies, along with ongoing monitoring and testing, are necessary to ensure
optimal performance and to identify and address any issues that may arise.

2.2.4 Automation

IBM defines automation as the utilization of technology to execute tasks while
minimizing human involvement [13]. The use of cloud computing and automation
enhances productivity by enabling the delivery of greater value within reduced
time frames [7]. When automation is effectively utilized, these technologies offer
convenience, safety, efficiency, and accountability required to implement changes
successfully. However, it is important to note that the benefits of utilizing cloud
automation depend upon the proper implementation.

Without automation, systems can experience configuration drift, where similar
systems end up with different configurations due to manual changes. Kief Mor-
ris suggests that this fear of configuration drift hinders the adoption of automa-
tion [7]. In essence, a lack of confidence in automating processes results in man-
ual adjustments, ultimately leading to inconsistencies across servers. Therefore,
it is crucial to build in automation right from the beginning of the development
process. This will reduce the chance of human error and minimize variation in
configuration.

2.2.5 Monitoring

Schlossnagle puts monitoring on the list of mission-critical environment in his
book about Scalable Internet Architectures [10, p.25-30]. It is an essential as-
pect of maintaining a reliable and secure e-learning platform. Monitoring involves
the continuous tracking of system performance, resource usage, and user activ-
ity to detect and address any issues that may arise. Monitoring can be achieved
through various tools and techniques, including log analysis and network moni-
toring. Monitoring helps to ensure high availability, performance, and security of
the Moodle service, thereby providing a positive user experience. Regular moni-
toring can also provide valuable insights into system usage patterns and help to
identify opportunities for optimization and improvement.

16 Chapter 2: Theory

2.2.6 Containerization

Containerization represents a paradigm wherein a cloud-native application is packed
within a compact and executable entity. This entity encompasses the software
code itself, alongside the essential operating system libraries and dependencies re-
quired for its proper execution [8]. The "lightweight" attribute of containers refers
to their ability to share the host machine’s underlying operating system, thereby
avoids the need to allocate a separate operating system to each individual appli-
cation. Consequently, this decreases the start-up time and enables the concurrent
operation of multiple containers on a single host, whitch leads to reductions in
server and licensing expenses.

Containerization gives developers the advantage of deploying their code across di-
verse host environments with ease. This inherent portability facilitates accelerated
development processes, mitigates the risk of vendor lock-in associated with spe-
cific cloud providers, ensures fault isolation, simplifies management procedures,
and enhances overall security [14].

2.2.7 Security

Security is fundamental in all modern web applications, and it is important to
develop and deploy secure infrastructure to host the application. With the ever-
increasing reliance on web-based services, ensuring the protection of sensitive
data, user privacy, and system integrity is crucial.

Securing the architecture represents a vital element. Adhering to secure architec-
ture principles, such as the principle of least privilege [15], is of great importance.
Implementing stringent access controls, segregating components into isolated lay-
ers, and regularly updating and patching all software and frameworks are essen-
tial measures. Password management is important, and it is important to enforce
robust password policies to minimize the risk of unauthorized access [16]. Admin-
istrator access to infrastructure and software should be limited to specific needs,
and all services should be configured with strong passwords saved in a secure
location.

The storage of sensitive data needs special attention, encrypting data both at rest
and in transit is crucial [17]. Utilizing robust encryption algorithms and securely
managing encryption keys are vital steps to ensure data integrity and confidential-
ity. Regular audits and reviews of access controls are necessary to maintain good
security.

When communicating with services such as Lightweight Directory Access Protocol
(LDAP), secure transport protocols such as Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) should be utilized [18]. Ensuring the encryption of commu-
nication channels and verifying the authenticity of server certificates is essential
for secure communication.

Chapter 2: Theory 17

Regularly backing up web application data and securely storing backups are cru-
cial for disaster recovery [19]. Implementing encryption and access controls for
backup files and regularly testing the restoration process are necessary to ensure
data integrity.

Conducting regular security audits and penetration testing [20] aids in the iden-
tification of vulnerabilities and weaknesses in the web application and infrastruc-
ture. Promptly addressing any findings and keeping security measures up to date
is crucial.

It is crucial to remember that security is a process that one never finishes. Reg-
ularly monitoring logs and implementing Intrusion Detection System (IDS) help
identify any suspicious activities. Staying informed about emerging threats and
adapting security measures accordingly is vital. Prioritizing security in web appli-
cations and their underlying infrastructure not only safeguards sensitive data and
protects user privacy but also ensures the trust of users.

2.2.8 Open-source software

Open-source software, such as Moodle, TICK stack, Ubuntu, and Terraform, pro-
vides users with the liberty to modify, distribute, and copy its code, as they de-
sire [21]. These features sets open-source software apart from closed-source soft-
ware, where the code is proprietary, and the exclusive legal right to modify, copy,
and inspect the code belongs to the original author or licensed users [22]. In most
cases, open-source software is available free of charge due to the contributions
of the community, in contrast to the fees associated with the use of proprietary
software such as Canvas [23].

Chapter 3

Requirements specification

The primary objective of this project is to establish a fully operational infrastruc-
ture that can support a functional Moodle setup, configured according to the spec-
ifications provided by Orange Business Services that is listed in chapter 1.1.3. The
project must ensure that the user experience is seamless, with an emphasis on ser-
vice response time. Additionally, it is imperative that the developed product can
be easily deployed for the client. The deployment process should be automated
and in compliance with the best practices of the relevant professional field.

19

20 Chapter 3: Requirements specification

3.1 Functional

The functional requirement for the bachelor’s project is to enable connectivity to
a functional Moodle site over the internet in a testing environment. Upon the
successful completion of the setup a web browser should display figure 3.1.

Figure 3.1: Moodle home page.

Chapter 3: Requirements specification 21

While the functional requirement specification is comprehensive, certain aspects
are beyond the scope of this project, such as the setup of Moodle, except for minor
plugins like Lightweight Directory Access Protocol (LDAP), and the testing- and
installation processes.

3.2 Operational

The operational requirements for the project focus on the necessary components
and considerations to effectively run Moodle. These requirements encompass re-
sponse time, security, scalability, availability, and usability. The intention is to
align with Moodle’s documentation for the specific hardware and software re-
quirements and adhere to best practices for operational functionality.

Response Time: The final product should provide an average response time that
is comparable to other similar services, ensuring a smooth user experience.

Security: The service must guarantee the security of the hosted service on the
company’s internal network and its integration with their LDAP-server. It is essen-
tial to adhere to industry best practices for security.

Scalability and Availability: The service must be scalable and capable of accom-
modating at least 100 concurrent users. Additionally, it should be designed to
ensure high availability to minimize downtime and maximize accessibility.

Usability: The usability of the final product is crucial. It should be user-friendly
and intuitive, catering to the intended purpose of facilitating effective learning
management.

Monitoring and Compliance: To ensure that the service meets all the require-
ments, it should be easily monitored using the TICK-stack monitoring system. This
will allow for efficient tracking and assessment of the system’s performance.

The hardware requirements for Moodle, as specified in Moodle’s documentation [24],
will be followed to set up and configure the foundational infrastructure. The fo-
cus will be on obtaining the necessary hardware resources through a cloud service
provider like SkyHiGh (OpenStack) that offers access to virtual central process-
ing units (vCPUs), virtual machines (VMs), random access memory (RAM), disk
space, and other networking components.

The software requirements for hosting Moodle involve configuring specific soft-
ware on each server instance. Moodle is hosted on the LAMP infrastructure, which
includes Linux, Apache, MySQL, and PHP. The selected software should not only
meet the project requirements but also ensure secure and efficient application per-
formance. It is vital to use up-to-date software and avoid any potential security
risks.

Chapter 4

Working method

This bachelor’s thesis follows a structured working method that combines a flex-
ible Kanban framework, effective time management practices, and efficient com-
munication channels. The project is divided into distinct phases, including plan-
ning, research and development, improvements and documentation, and final-
ization. Various infrastructure architectures are explored using a combination of
reliable resources and expert advice. Practical and experimental implementation
are conducted to integrate technologies smoothly into the project.

23

24 Chapter 4: Working method

4.1 Working method

The adopted work management framework involves utilizing a kanban board,
specifically Trello. Kanban is chosen over other frameworks due to its flexibility,
adaptability, visual workflow management, focus on continuous delivery, mini-
mal overhead, reduced work in progress, and emphasis on continuous improve-
ment [25]. It offers teams the ability to work at their own pace, visualize and
manage workflows effectively, deliver value continuously, and make incremental
improvements. The choice of this framework is important to enable the tracking
of task progress and to simplify task delegation to team members.

Time management is accomplished through the utilization of a Gantt-chart, which
is prepared during the planning phase in appendix E. Actual time usage is mea-
sured and analyzed using the time-tracking software Toggl, based on a recom-
mendation from our supervisor.

The project is structured into four phases:

1. Planning
2. Research, development and testing
3. Improvements and documentation
4. Writing report and finishing touches

The planning phase is structured around the project-plan and contains extensive
discussions about the project’s operational framework. The planning phase is a
critical component of any project as it lays the foundation for the project’s success.
This phase involves establishing the project’s goals, objectives, and deliverables,
and defining the strategies and tactics required to achieve them.

The second phase of the project involves research, development, and testing. The
research part is focused on investigating the required and desired technologies,
like Terraform, Moodle and monitoring with TICK-stack. Development is the next
part of the phase in which the findings from the research are used to develop
solutions. Lastly, the solutions are tested to ensure it meets the desired quality
standards.

The third phase is dedicated to implementing improvements and perfecting the so-
lution, while also ensuring that everything is adequately documented. This phase
is a crucial part of the project as it focuses on ensuring that the project’s solu-
tion is optimized and adequately documented. This phase involves implementing
changes and improvements to the project solution, based on feedback from Or-
ange.

The final phase involves the creation of a comprehensive report and performing
finishing touches. This stage is crucial for ensuring that the quality of the report
and accompanying documentation that explains the implementations and results
in detail.

Chapter 4: Working method 25

4.1.1 Communication and meetings

The project process involves consistent communication and planning, primar-
ily facilitated through a private Discord-server, with team members engaging in
both digital and physical discussions regularly. A dedicated Discord-server for the
project makes it easier to communicate and collaborate, and all information re-
lated to the project is kept in one place. The Discord-server is chosen because it is
the group members preferred method for digital communication in larger projects,
and the benefits over other communication platforms greatly improves the time it
takes to find information. With a solution based primarily on text chat, like Face-
book Messenger, it is not as easy to share documents and hold digital meetings or
working sessions.

The project process also consists of weekly group and supervisor meetings, along
with client meetings every other week. These meetings are essential components
of the process, and ensures that the project is on track, and meeting the supervi-
sor’s expectations and the client’s requirements. All meetings are also documented
in meeting minutes, to make sure that the discussed topics are available to all
team members and nothing is forgotten. Some meeting minutes is appended in
appendix G.

Client meetings play a crucial role in the project’s success, as they provide an op-
portunity for the project team to receive feedback from the client and ensure that
their requirements are met. During these meetings, the project team can discuss
progress updates, address any issues or concerns, and receive guidance from the
client. The team can also use these meetings to provide the client with updates
on the project’s status and gather any additional information necessary to ensure
that the project’s outcomes meet the client’s expectations.

Continuous client feedback enables the project team to make any necessary ad-
justments to the project and ensure that the project work is continuously perfected
to meet client requirements. Through regular client meetings and open commu-
nication, the project team can establish a strong working relationship with the
client, which can contribute to the project’s overall success.

4.2 Application of working method

The table 4.1 presents a brief outline of the architectures planned to develop in
the project, while the actual implementation details and guidelines is explained in
chapters 5 and 6. A range of infrastructure architectures are determined in collab-
oration with the supervisor, progressing in chronological order from the simplest
to the most advanced. Each infrastructure architecture presents benefits over the
others:

26 Chapter 4: Working method

Architecture Advantage Disadvantage
Single instance Easy to set up and test Not redundant, low performance
3-layer Separate services "Old fashioned"
Docker Disposable containers Could be more scalable
Docker Swarm Container cluster Relatively complex

Table 4.1: Infrastructure architectures

The infrastructure architectures are systematically reviewed in chronological or-
der, all of which are running the Moodle platform as a service. Throughout the
development process, a variety of resources such as textbooks, literature, Google
searches, YouTube videos, and ChatGPT are utilized. These resources serve as vital
tools for knowledge acquisition and problem-solving.

Text books and articles offer comprehensive information on specific topics, while
Google searches enable efficient identification of relevant online resources, tutori-
als, and best practices. Similarly, YouTube videos provide practical demonstrations
of complex technical processes, aiding in their comprehension.

Furthermore, ChatGPT is an Artificial Intelligence (AI) tool [26] that responds to
input it receives from the user, and returns a response to imitate a conversation.
Unlike search engines, the ChatGPT algorithm, takes a user input and returns a
response that is the most statistically accurate in the current data set. The ben-
efits in a project, is it can quickly provide information in any field of area. For
example queries about resolving technical issues, or recommendation of tools or
technologies. It can be used as an assistance tool, to help the user to rephrase
poor language, and improve the quality of what’s originally written. The group
understand the benefits of ChatGPT, but are closely aware of the flaws the tech-
nology contains. ChatGPT is never used as a reference for scientifically accurate
information, as it often writes factually incorrect answers. In summary, the incor-
poration of these resources can significantly enhance the development process, by
providing a wealth of information and expertise to address technical challenges
and ensure that the project meets its objectives.

The typical infrastructure development process begins with researching the most
suitable tools, how-to instructions, and best practices, followed by the actual im-
plementation. The outcome is aligned with the KISS principle emphasizing the
importance of learning by doing (or failing). This approach results in a significant
amount of troubleshooting being resolved through communication with technical
experts within and beyond NTNU, as well as through discussions during internal
group meetings.

Chapter 4: Working method 27

4.2.1 Practical and experimental implementation

Practical implementation refers to the final working result of experimental imple-
mentations. Practical implementation in this context entail well documented and
easy to follow recipes, with well defined prerequisites, and simple understandable
code. The Implementation chapter will introduce all of the working dependencies,
infrastructure models, tools and technologies used in this project.

Experimental implementation reefers to the working method during this assign-
ment. An experiment is a system of scientific investigation, usually based on a
design to be carried out under controlled conditions, that is intended to test a hy-
pothesis and establish a causal relationship between independent and dependent
variables [27]. In this project, existing documentation is being utilized to prac-
tically implement technologies as support systems within the architectures. The
objective is to identify functional components that can be seamlessly integrated.
By the use of trial and error methodology during implementation, it is possible to
decide if a component can be integrated with the existing architecture or not.

Chapter 5

Implementation

The implementation chapter holds great significance in this bachelor’s thesis, as
the project primarily comprises of a practical assignment. As mentioned earlier,
this project consist of researching potential architecture solutions, implement-
ing these to fit the Moodle platform, and to implement functional and opera-
tional specifications. To reach these milestones, The workflow during this project
involves experimental and practical implementation of the proposed solutions.
Specifically, this entails configuring infrastructure using different technologies,
and employing a trial and error approach to reach functional and stable solutions.

29

30 Chapter 5: Implementation

5.1 Technologies, tools and software used

Moodle

Moodle is a free online Learning Management System (LMS). It is a learning plat-
form designed to provide educators, administrators and learners with a single
robust, secure and integrated system to create personalized learning environ-
ments [28].

Linux

Linux, particularly Ubuntu as the distribution, serves as the primary operating
system for deploying instances and services on the infrastructure. The group’s
extensive understanding of Linux’s command line interface is a crucial aspect of
this, but it is the comprehensive benefits of Linux as an operating system and
its numerous advantageous features that make it the obvious choice for primary
usage.

Bash

Bash is the shell, or command language interpreter, for the GNU operating system,
the name is an acronym for the ’Bourne-Again SHell’ [29]. It is built in the Ubuntu
operating system, and is a powerful scripting language that opens thousand of
possibilities to automating a sequence of commands, without needing to apply
themselves [30].

Bash is utilized as the main command language due to its widespread use as
the main script method for Linux operating systems or distributions like Ubuntu.
It proves invaluable in automating software installation on virtual machine re-
sources during startup when provisioned in Terraform. This approach allows for
the semi-automation of services in the infrastructure. Terraform supports the merg-
ing of startup scripts as user data for machine resources, enabling more efficient
provisioning.

LAMP

The LAMP Stack is a stack of four different software technologies. It is an acronym
for Linux, Apache, MySQL, and PHP. It includes an operating system, Linux; a web
server, Apache; a database, MySQL; and a versatile programming language, PHP.
All components are available through the default Ubuntu software repositories
and their combination is used for running web-services [31].

During the research phase, the LAMP stack emerged as the primary set of tech-
nologies encountered. This stack proved to be compatible for implementing a
functional solution on a single instance, representing a significant achievement.
The successful integration of the LAMP stack with the Moodle software marked
the initial milestone in the project. Following a comprehensive evaluation of vari-
ous infrastructure models, the decision was made to persist with the LAMP stack,
owing to its extensive adoption within the Moodle platform [32].

Chapter 5: Implementation 31

MySQL

MySQL is a relational database management system (DBMS), used to structure
data within a database. A relational database stores data in separate tables rather
than putting all the data in one big storeroom. The database structures are orga-
nized into physical files optimized for speed. It is developed to use a logical model
with objects such as, databases, tables, view, columns and rows to offer a flexible
programming environment [33].

MySQL database software is primarily utilized for storing and managing Moodle
data and information. Moodle supports various types of MySQL databases such as
MariaDB and PostgreSQL in addition to traditional MySQL software.

MariaDB-Cluster - Galera

MariaDB is a free and open-source database management system, and is one of
the most widely used databases today, besides MySQL and Oracle [34].

Galera Cluster is a software package that allows users to set up and configure
MariaDB and MySQL clusters. Galera clusters use synchronous replication. A repli-
cation process that allows change in any cluster node, and simultaneously update
data on the remaining nodes, so no divergence can be carried out [35].

HAProxy

HAProxy is a free loadbalacning software that delivers a fast and reliable reverse-
proxy offering high availability and proxying for TCP and HTTP-based applica-
tions. It is particularly suited for high traffic, and is the most commonly used load
balancing software [36]. HAProxy is a software that evenly distributes traffic be-
tween components in a infrastructure.

While there are various types of load balancing tools available, the group decided
to utilize HAProxy due to prior experience with the software, as well as it is one
of the most commonly used load balancing software [36].

GlusterFS

The Gluster File System (GlusterFS) is a Network File System (NFS), and an open-
source solution that offers a low cost, highly scalable distributed file system to
meet the storage requirements of a range of environments. In GlusterFS, all enti-
ties are treated as volumes which are then assembled to form a specific file system
setup [37]. This NFS technology is used particularly in architectures where the
load is distributed horizontally over multiple instances.

Terraform

HashiCorp Terraform [38] is an infrastructure as code tool that provides the op-
portunity to define both cloud and on-prem resources in human-readable configu-
ration files that you can version, reuse, and share. Terraform creates and manages

32 Chapter 5: Implementation

resources on cloud platforms and other services through their application pro-
gramming interfaces (APIs). Providers enable Terraform to work with virtually
any platform or service with an accessible API.

At the beginning of the project, the team reached a consensus to utilize Terraform
as the principal infrastructure as code tool for constructing the physical infras-
tructure necessary for the Moodle platform. This decision was made, because Ter-
raform is a vendor-free technology that supports integration on virtually any cloud
platform. Subsequently, a considerable amount of time was allocated to acquiring
proficiency with the tool, as well as provisioning tangible infrastructure compo-
nents, such as compute, storage, and networking.

Alternatives for Terraform are orchestration tools specifically OpenStack Heat.
Heat [39] is the main project in the OpenStack Orchestration program, and it
implements an orchestration engine to launch multiple cloud applications based
on templates in the forms of text file that can be treated as code. This orchestration
tool, could provide the same benefits to launch infrastructure stacks, the same way
Terraform can. The difference is that Terraform is vendor neutral, and OpenStack
Heat can only be used on infrastructure using the OpenStack software. This is why
Terraform is the preferred technology used in this assignment.

SkyHiGh and OpenStack

SkyHiGh is NTNU’s private on-prem cloud solution and is running the OpenStack
software, which is a multi-tenant virtualization-platform. Through the OpenStack
platform at NTNU students and faculty can setup the following resources: single
instance machine with an operating system of the user’s choice, or a full Open-
Stack project it is possible to create networks, routers and virtual machines based
on specific needs [40]. OpenStack is therefore used as an Infrastructure as a Ser-
vice (IaaS) tool for managing and provisioning infrastructure resources, and the
software can control large pools of compute, storage, and networking resources
throughout a data-center, all managed and provisioned through APIs with com-
mon authentication mechanisms [41].

Students and faculty at NTNU can access the SkyHiGh’s infrastructure if virtual-
ization resources are needed through the OpenStack software [40].This approach
presents the opportunity to provision infrastructure resources in real-time through
coding, making it the most suitable option for this bachelor’s assignment. That is
why it is the cloud service used in this project.

Docker

Docker is a orchestration software engine [42] that allow services and applications
to be run in containers. With Docker installed on the host one can instantly run the
container of the application or service without the need to install or download the
software and applications used by the application. The container works by running
an image that is built with the needed software, services and files needed for the
container to perform its task. To run a container one will need to either download

Chapter 5: Implementation 33

or build an image. Since images can be downloaded and then run instantly in
a container, this makes applications hosted in Docker containers highly portable
and quick to deploy.

Docker Compose

Docker Compose is a tool that allow the use of a single YAML-file to define the re-
quired Docker containers, and resources to deploy the application or service [43].
This supports the use of declarative code which handles the underlying logic of
how to achieve the desired state [7].

Docker Swarm

Docker Swarm allow several Docker host machines to connect and share their
available resources to deploy the defined containers. The defined containers will
be distributed among all the connected Docker hosts. Docker Swarm provide in-
creased robustness by re-deploying containers if they disappear. When one of the
hosts disappear, the defined containers on the specific host will be distributed be-
tween the physical hosts available [44].

Docker Registry

Similar to files in 5.1, docker images can also be committed, pushed and pulled
in repositories. Instead of using a git repository, one can use a Docker Registry to
host images for Docker [45]. Doing so allows the Docker images to be easily ac-
cessible across multiple instances or even across multiple networks. Registries can
be either self hosted or one can use a public registry server. By using a public reg-
istry server, the images can be made publicly available. A commonly used public
registry server is the "Docker Hub", which is the official registry server provided by
Docker. The use of Docker registry allow the images to be easily accessible without
the need for building the images.

TICK-stack

The TICK-stack comprises of Telegraf (T), InfluxDB (I), Chronograf (C), and Ka-
pacitor (K), making it a popular open-source monitoring platform. Chakraborty
and Kundan highlight that Chronograf and Kapacitor from the stack has been
merged into InfluxDB 2.0 [46, p.133]. To gather information on a system/soft-
ware, it is necessary to configure a scraper (Telegraf), a software tool or program
that automatically extracts data, to collect and transfer it to InfluxDB 2.0, which
manages the remaining operations.

k6

k6 is a web testing tool developed by Grafana [47], with wide usage in enter-
prise companies such as Amazon and Microsoft. The functionality aids in pre-
venting failures and improving system reliability. k6 operates by writing tests in
JavaScript, similarly to Postman, and presents various packages and modules that
enhance testing procedures. Being an open-source tool, k6 facilitates productive

34 Chapter 5: Implementation

and straightforward testing processes that may be preformed locally or via cloud
computing. Consequently, the results are easily exportable as JSON, CSV, or to a
cloud API to enable comprehensive analysis.

OpenLDAP

OpenLDAP is an open-source implementation of Lightweight Directory Access Pro-
tocol (LDAP) used to store and manage user and group information in large-scale
networks. It supports various authentication mechanisms, and includes robust ac-
cess control features for defining fine-grained permissions. Its flexibility and power
make it a popular choice for managing user and group information in many envi-
ronments [48]. OpenLDAP is the authentication service used by Orange Business
Services.

GIT

GIT [49] is an open source distributed version control system. It is a system used
to store code developed, and to run services using the same code. The benefits
of it being a version control, gives the opportunity for developers to change code
independently, without damaging previous work. If something breaks, there is no
issue to revert to a previous version. It is a distributed software, which means it
operates on a local repository (a developers computer), and a remote repository,
the main repository, stored on a central server. This solution provides flexibility
between developers across the same project.

As an essential component for the project collaboration, particularly in develop-
ment projects, the establishment of a shared repository was necessary. GitLab was
chosen as the platform for this purpose, where the repository was created com-
prising with a main branch along with four distinct branches assigned to each
group member. These individual branches granted each member unrestricted au-
tonomy in their approach to project work. Consequently, this repository fostered
a conducive environment for the exchange of technological advancements across
various branches, thus facilitating an efficient workflow throughout the project.

5.1.1 Detailed description

Moodle

The installation of Moodle software involves a number of configuration and imple-
mentation steps to ensure full integration on the provided infrastructure. Initially,
the software dependencies must be installed and pre-configured to enable the
platform to run and be managed. It is also necessary to modify the

max_input_vars

variable in the configuration of the php libapache2 to 5000 [50]. The Moodle
repository should then be cloned, and the appropriate stable branch version tracked.
Appropriate permissions must be set for the directory that runs Moodle, as well

Chapter 5: Implementation 35

as the directory that locally saves data on the web-server. Afterwards, the Moo-
dle database must be created, with an admin user possessing the necessary per-
missions. Finally, the appropriate Moodle configurations must be applied either
through the GUI configuration or the CLI configuration script, with the pre-configured
config.php file.

Although this is the simplest way to have a functional Moodle platform, it is not
sufficient to ensure a reliable and secure platform. The Moodle platform is a highly
complex and critical service once used in production, so important security mea-
sures must be implemented to ensure reliability in both functional and operational
sections, to avoid unforeseen events [51].

GlusterFS on distributed architectures

The Moodle platform stores some information locally on the file system in a direc-
tory called moodledata [52], this includes the hash value of pictures, user sessions,
together with other temp files, logs and user info. The reason for this is to improve
performance optimization by retrieving this information locally on the file system,
instead of retrieving it from the database. For this reason, NFS must be designed
for distributed architectures with multiple web servers that share the same moo-
dledata folder. Here we use GlusterFS as a popular NFS technology to resolve this
issue, because it is a software recommended by the Moodle developers, and it is
a familiar software to use by the group.

MariaDB - Galera

Upon increasing the complexity of the infrastructure, it is relevant to implement a
database cluster. There are several different cluster models supported by Moodle,
such as MySQL, MariaDB, and PostgreSQL. Through experimental implementa-
tion and research, the group reached a consensus to implement the MariaDB-
based Galera Cluster. Alternative systems, such as CockroachDB, which is part of
the course material is not supported by Moodle, and therefore not used.

5.2 Additional components

5.2.1 TI(CK)-Stack

An essential aspect of this project is to monitor the underlying infrastructure for
operational disruptions using the TICK-stack. Monitoring is critical for efficient
service operation and effective resource utilization. Historical resource utilization
provides fundamental values for the architecture design and provides developers
with quantitative data to utilize. Monitoring valuable data is essential to preemp-
tively detecting anomalous behavior [46, p.8].

Use of TI-stack

In this project, the TI-stack is utilized to monitor the running e-learning platform.
To achieve this, a separate InfluxDB server is required, which functions as the

36 Chapter 5: Implementation

database for storing and processing data. Additionally, InfluxDB offers a variety
of methods for displaying processed data, including dashboard templates.

The monitoring documentation in appendix B uses dashboard templates supported
by Telegraf plugins, which offer a variety of tools to aid in monitoring [53]. Specifi-
cally, the Linux Monitoring Template dashboard [54] is utilized to monitor crucial
metrics of an operating system including but not limited to disk usage, system
load, memory, and CPU utilization.

Figure 5.1: InfluxDB dashboard

To send data to the InfluxDB host, the utilization of Telegraf is employed. Telegraf
is installed and configured on each server that require monitoring. The processed
data can be viewed on the Linux monitoring dashboard 5.1. A predefined Telegraf
configuration is implemented, making use of environment variables. The process
outlined in the provided documentation offers a explanation of the steps and in-
cludes code listings for further guidance.

5.2.2 Testing

Postman response time test

In order to validate the response time of different architectures in a consecutive
manner, Postman is used along with a simple JavaScript test script. The script
checks the response time of the web service running on the architecture to ensure
that they meet the requirements specified by the client. This approach helps to
validate the performance of different architectures, and facilitates the selection of
an architecture that provides optimal response time while satisfying the client’s
requirements.

Chapter 5: Implementation 37

Postman test

Code listing 5.1: Postman script

pm.test("Status␣code␣is␣200", function () {
pm.response.to.have.status(200);

});

let responsTime = pm.response.responseTime;

console.log(responseTime);

pm.test(‘Response time is ${responseTime} ms
and should be less than 5000 ms‘, function () {

pm.expect(responseTime).to.be.below(5000);
});

Upon execution in Postman, script 5.1 evaluates two criteria for passing. The first
condition checks that the status code of the HTML response is 200 - OK. The
second criterion validates that the actual response time is less than 5000ms. A
successful execution of the script is depicted in figure 5.2.

Figure 5.2: Single postman test

k6 testing

The k6 testing tool [47] can capture actions on web browsers, perform analyses,
and generate test scripts that may be run on a local or cloud platform. Nonetheless,
the free trial version of k6 is subject to limitations, such as a cap on virtual users,
duration of run, and other parameters.

38 Chapter 5: Implementation

k6 has a diverse range of tests available and possesses an extensive community
and documentation, which makes it accessible and user-friendly. K6 has a flexible
and scalable architecture, which enables it to manage large-scale testing scenarios.
Furthermore, K6 provides real-time analytics for test runners.

The script 5.2 was generated using the k6 browser extension, which captured a
user navigating to the first Apache site of the Docker Swarm load balancer. The
parameters used were default and not modified.

Simple k6 test script

Code listing 5.2: Test script k6

import { sleep, group } from ’k6’
import http from ’k6/http’

export const options = {
ext: {
loadimpact: {
projectID: 3638175,
// Test runs with the same name groups test runs together
name: "Docker Swarm 100VUs"

}
},
ext: {
loadimpact: {
distribution: { ’amazon:us:ashburn’:
{ loadZone: ’amazon:us:ashburn’, percent: 100 } },

apm: [],
},

},
thresholds: {},
scenarios: {
Scenario_1: {
executor: ’ramping-vus’,
gracefulStop: ’30s’,
stages: [
{ target: 20, duration: ’1m’ },
{ target: 20, duration: ’3m30s’ },
{ target: 0, duration: ’1m’ },

],
gracefulRampDown: ’30s’,
exec: ’scenario_1’,

},
},

}

export function scenario_1() {
let response

group(’page_1 - http://10.212.169.172/’, function () {
response = http.get(’http://10.212.169.172/’, {
headers: {
host: ’10.212.169.172’,
accept:
’text/html,application/xhtml+xml,application/xml;

q=0.9,image/avif,image/webp,*/*;q=0.8’, ’accept-language’:
’nb-NO,nb;q=0.9,no-NO;q=0.8,no;q=0.6,

Chapter 5: Implementation 39

nn-NO;q=0.5,nn;q=0.4,en-US;q=0.3,en;q=0.1’,
’accept-encoding’: ’gzip, deflate’,
dnt: ’1’,
connection: ’keep-alive’,
’upgrade-insecure-requests’: ’1’,

},
})

})

// Automatically added sleep
sleep(1)

}

Script 5.2 executes a single scenario named "Scenario 1". The script gradually
increases the number of virtual users up to 20 for one minute and maintains this
level for three minutes and thirty seconds before decreasing the load to zero users
for one minute. During the execution, the script utilizes HTTP GET requests to the
Apache site of the Docker Swarm load balancer.

The test is executed from an Ubuntu instance that is running on SkyHiGh to guar-
antee connection with the tested site on NTNU’s internal network. The instance is
equipped with k6, and the test script provided above is copied into a file named
"simpleHTTPtest.js." As illustrated in figure 5.3, the script is executed using the
"-o cloud" parameter, instructing k6 to transmit the test results to k6 Cloud for
analysis. As demonstrated in figure 5.4, it is easy to produce an executive sum-
mary of the test execution. The test report comprises the essential details of the
test run, such as max throughput, HTTP failures and the average response time.

Figure 5.3: k6 simple run

40 Chapter 5: Implementation

Figure 5.4: k6 executive summary

5.2.3 LDAP server

The setup of an LDAP server is elemental to this project, because that is the authen-
tication solution in use at Orange Business Services. The setup and configuration
of the LDAP server used in this project is simple, and only the bare minimum to
be able to test LDAP as an authentication method for Moodle. This is because Or-
ange Business Services already have their LDAP server configured and they will
continue to use that. The setup of the LDAP server is detailed in appendix B,
and details the installations of OpenLDAP, creating users, adjusting Moodle to use
LDAP for authentication, and the scheduling of cron-jobs to make sure the user-
database is up to date with the LDAP server.

5.2.4 Docker Registry server

To support the architectures where Docker is used, there is a Docker Registry
server where images that will be used are pushed to. The server is made available
to the rest of the network through a floating IP address in the network where the
architectures are connected to. The server is set up following the documentation
in appendix B.

5.3 Implementation of infrastructures and components

This section will cover how to implement the different infrastructure models, and
their respective components to successfully implement the Moodle platform on a
completely new environment. The following content will display context for the
different technologies and terminology used cross-platform, and refer to the exist-
ing documentation and code attachments in this report. This section will also cover
independent technologies, that operates on the following architectures, making
them more reliable and predictable.

Chapter 5: Implementation 41

5.3.1 Single server architecture

This section will cover how to implement the Moodle platform more in depth
on a LAMP stack. A LAMP stack is the simplest form of infrastructure resource
configuration, and is the easiest way to run the Moodle platform on-premise. The
figure 5.5, shows a visual representation of how this infrastructure model is built.

SkyHiGh is NTNU’s cloud on-prem infrastructure platform, and all the physical
resources are connected through the network called "ntnu-internal". The Open-
Stack project assigned contains a router that connects to a created private subnet.
Lastly there is a single virtual machine that contains the necessary software de-
pendencies, including the Moodle platform. The necessary software dependencies
and technologies used, are defined in section 5.1.

Internet (ntnu-internal)

Private subnet

VM1

Router

Services and folders

Se
rv

ic
es

Apache MySQL Moodle

Fo
ld

er
s

/var/www/
html/moodle

Moodledata

Line colors

Network traffic

Connected services

Figure 5.5: LAMP-Stack Moodle.

42 Chapter 5: Implementation

How to configure Moodle on a single instance

The appended documentation in appendix B is a comprehensive implementation
manual, that offers a complete set of commands and guidelines to facilitate suc-
cessful development of a LAMP-stack model running Moodle. The documentation
covers further implementation steps after the needed code has been run. The fol-
lowing code is available in appendix C. The architecture is relatively straightfor-
ward, comprising of infrastructure resources such as; a single Ubuntu 22.04 virtual
machine for compute, and a router for networking. This specific environment con-
nects to the outside world (internet) via "ntnu-internal", which is a vendor-specific
infrastructure network for this project. Finally, the Moodle platform and associ-
ated software are installed on the Ubuntu machine to enable a working Moodle
platform.

To successfully follow the documentation, there are some prerequisite steps that
must be pre-configured. The user should have a fresh Ubuntu instance with the
latest image, equipped with a floating-IP and internet connectivity. This can be
accomplished in an OpenStack environment as shown in appendix B.

Once implemented, the user will have a fully functioning and independent Moo-
dle platform running on a single instance, which can be utilized as a working LMS.
It is important to note that the dependent software and configuration are applied
into a single instance, and therefore the solution lack redundancy, and scalability.
Conclusively this is a solution that shouldn’t be applied in a real production en-
vironment, it should be considered as a foundation for acquiring knowledge on
how to establish a working Moodle platform.

5.3.2 3-Layer architecture

This section covers the initial setup and implementation of the Moodle platform
similar to the Single Server architecture. The difference here, is that this architec-
ture is evolved to feature a standard 3-layer architecture, and is a more sophisti-
cated infrastructure model for integrating Moodle compared to the Single Server
architecture. The figure 5.6 is a visual representation on the architecture, along
with the dependent technologies and software used to build the infrastructure
architecture.

The underlying network infrastructure is similar to the Single Server architecture,
but the components are quite different in this solution. Instead of a single vir-
tual machine doing the work of the whole service, the components are split into
5 physical components instead. This includes a load-balancer, at least two web-
servers, and a database. The necessary software dependencies and technologies
used, are defined in section 5.1 similar to the Single Server architecture.

Chapter 5: Implementation 43

Internet (ntnu-internal)

Private subnet

Load balancer

Database

Web1 Web2 Web3

Router

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Moodledata

Services

MySQL

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Moodledata

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Moodledata

GlusterFS GlusterFS

Line colors

Network traffic

Database traffic

Connected services
Services

Figure 5.6: 3-layer architecture with Moodle.

How to configure Moodle on a 3-layer architecture

Similar to the LAMP-stack configuration, the appended documentation in appendix B
provides specific details on how to successfully implement the Moodle-platform
on a 3-layer architecture combined with the code in appendix C. This architecture
has a greater complexity compared to the single server architecture explained in
the previous section. The 3-layer architecture contains five Ubuntu 22.04 virtual
machines that runs different services and are unique components in the infras-
tructure. Three of the machines are web-servers running the Moodle-platform and
the Apache services, along with the PHP dependencies, managing the front-end
and back-end operations. One machine is running the HAProxy software, used for
load-balancing between the web servers, and the last machine in the architecture
is the database that the web-servers communicate with. The networking is the
same as the previous solution, and is a pre-configured component. In this archi-
tecture GlusterFS is introduced as a new logical component. It is used to mount a
shared volume onto the Moodledata directory.

To configure the following architecture using the documentation provided, there
are some prerequisite steps that needs to be implemented beforehand. These are
defined in the documentation, and are used to run the architecture. The most
important step is to have an Ubuntu machine with Terraform installed and con-

44 Chapter 5: Implementation

figured to provision the cloud resources on the cloud platform.

After implementation of the architecture, the user will have a functioning Moodle
platform on a simple 3-layer architecture, which can be suitable for a small-scale
Learning Management System (LMS). The architecture itself is a more redundant
solution, as one of the web servers can turn off and the service will still be avail-
able. Although it’s an improvement, there are still single point of failures in the
infrastructure including the database and load-balancer.

5.3.3 Docker architecture

To effectively utilize Docker, certain prerequisites must be met. Initially, the in-
stallation of Docker software is essential on all servers intended for Docker usage.
Additionally, the configuration involves the provision of a Docker image capable
of executing the desired containers.

In certain scenarios, it is possible to utilize pre-existing images developed by ex-
ternal entities, obtained from the Docker Hub. Typically, the official Docker image
corresponding to a specific software can be found there [55]. Alternatively, one
may choose to construct the image independently. This can be accomplished by
generating a Dockerfile, which specifies the characteristics and composition of the
image. Subsequently, the Docker software can be used to build an image based on
this file.

For Moodle to run in a container the following dependencies are needed:

• The Moodle Source code
• A database
• Apache
• Moodle config file

The Moodle source code can be obtained from the Moodle GitHub repository [56].
Additionally, Moodle requires configuration to function with a database. To set up
the database, it is necessary to execute a script included in the Moodle source code.
This script only needs to be run during the initial use of the database. Hence, it
can be beneficial to create an image specifically designed to execute the database
setup script and then automatically stop once the task is finished.

Furthermore, it is necessary to have an additional image that runs the web server
service, such as Apache. This container is responsible for hosting the Moodle web
service’s source code and making it available to users. To achieve this, the image
should install Apache, retrieve the Moodle source code and configuration file, and
then launch the web server service. Pre-configuring the Moodle configuration file
beforehand is important to avoid the need for manual configuration after the web
service has been started.

Chapter 5: Implementation 45

Image Task Duration

Database setup
Run the Moodle install
script

Until the script is com-
pleted

Moodle web server
Run Apache with the
Moodle code

Until stopped

Table 5.1: Docker container images used with Moodle

Table 5.1 lists Docker container images used with Moodle, along with their cor-
responding tasks and durations. The images include "Database setup" which runs
the Moodle install script, and "Moodle web server" which runs Apache with the
Moodle code. The duration for the database setup is until the install script is
completed, while the duration for the Moodle web server is until it is manually
stopped. Database setup has to complete running before Moodle web server can
be started.

The images used in the architecture is hosted in the registry server 5.2.4, making
it easy and effective to run the required containers. The use of the registry server
eliminate the need for building the images on the Docker host machine.

The commands and code needed to be able to replicate this implementation of
Moodle on a Docker based architecture can be found in the appended documen-
tation in appendix B. This documentation is a draft of Docker documentation rep-
resented in the public GitLab repository.

46 Chapter 5: Implementation

Internet (ntnu-internal)

Private subnet

Docker host Load balancer Database

Router

Line colors

Network traffic

Database traffic

Connected services

Services and folders

Se
rv

ic
es

Docker

Fo
ld

er
s

Moodledata

Containers

Web1 Web3Web2

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Services

MySQL

Services

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Figure 5.7: Docker with Moodle

Figure 5.7 illustrates the Docker-based architecture comprising a Docker host, a
load balancer, and a database server. The Docker server is equipped with Docker
and runs the container hosting the Moodle web service. Within the Docker server,
three containers are operational, all utilizing the Moodle web service image. These
containers establish connections to the database and are accessible externally
through the load balancer.

The Docker architecture’s implementation utilizes an image running Ubuntu, which
subsequently installs Apache and other essential packages to facilitate Moodle’s
operation. The image also incorporates the Moodle source code. To obtain the
necessary configuration file and initiate Apache, the image is using "init.sh" from
listing 5.3 as its entry point.

Chapter 5: Implementation 47

Code listing 5.3: Web service Dockerfile

1 FROM ubuntu:22.04
2 ENV DEBIAN_FRONTEND=noninteractive
3
4 RUN mkdir /moodledata
5 RUN chmod 777 /moodledata
6
7 RUN apt update
8 RUN apt install -y php-mbstring php-curl php-zip php-gd php-intl
9 RUN apt install -y apache2 libapache2-mod-php

10 RUN apt install -y php-xml php-mysql php-cli
11 RUN apt install -y git curl
12 RUN apt install -y git curl
13 RUN apt install -y php-ldap
14
15 RUN rm -rf /var/www/html/*
16 COPY moodle /var/www/html/moodle
17
18 RUN echo "max_input_vars = 5000" >> /etc/php/8.1/cli/php.ini
19
20 COPY docker_www/init.sh /
21 EXPOSE 80
22 ENTRYPOINT ["/init.sh"]

The Dockerimage in listing 5.3 will run the script in listing 5.4.

Code listing 5.4: Init.sh

#!/bin/bash -x
curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-api> >> \
/var/www/html/moodle/config.php

Run crontab
/usr/bin/php /var/www/html/moodle/admin/cli/cron.php
echo "*/1 * * * * /usr/bin/php /var/www/html/moodle/admin/cli/cron.php \
>/dev/null" | crontab -u root -

/usr/sbin/apache2ctl -D FOREGROUND -k start

The script 5.4 use the curl command together with GitLab’s API to download the
latest version of the Moodle config file without needing to clone the whole git
repository. This approach allow the admin to push a new version of the config.php
file without needing to build a new image to use the new configuration. Every time
a container with this image is started the most recent version of the configuration
is used. The script’s last line runs Apache.

To sum up, the Moodle platform will require two images to be able to run. One
that has the purpose of running the database setup script, and one that has the
purpose of hosting the web service.

48 Chapter 5: Implementation

5.3.4 Docker Swarm architecture

The Docker Swarm architecture is an extension to the Docker architecture where
the Moodle web containers are distributed among several servers and connected
using the Docker Swarm technology. In order to have Moodle work with this setup,
it is also required to have a shared storage solution between the machines where
the docker containers are running. This is accomplished using the network file
system (NFS) GlusterFS. To further improve the robustness of the architecture,
the database in this architecture is implemented in the form of a database cluster
using the same virtual machines as Docker as its host.

For the database cluster to work together with the web-containers, there is a need
for a load-balacer to allow the containers to communicate with the database.
When using Docker, this can be solved by introducing an additional container for
load-balancing. In this architecture the haproxy container from Docker Hub [57]
is used as part of the Docker Swarm.

The swarm will be running on the three servers and will, like the Docker architec-
ture, run three containers of the Moodle-web image. In addition to one container
running the "haproxy" image. The web-containers are configured to go through
the haproxy-container in order to reach the database.

To further improve the robustness of the Moodle service this architecture will
use the built in load-balacing functionality of OpenStack. Like the load-balancer
previously used, this setup will also balance between the three servers using the
round-robin algorithm.

Chapter 5: Implementation 49

Internet (ntnu-internal)

Private subnet

Docker host Docker hostDocker host
OpenStack

Load balancer

Router

Line colors

Network traffic

Database traffic

Connected services

Containers (swarm)

Web1 Web2 Web3 Database
Load balancer

Services and folders

Se
rv

ic
es

Docker

Fo
ld

er
s

Moodledata

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

ServicesServices and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

Services and folders

Se
rv

ic
es

Apache Moodle

Fo
ld

er
s

/var/www/
html/moodle

GlusterFS GlusterFS

Services and folders

Se
rv

ic
es

Docker

Fo
ld

er
s

Moodledata

Services and folders

Se
rv

ic
es

Docker

Fo
ld

er
s

Moodledata

DB Cluster DB Cluster

Swarm Swarm

Figure 5.8: Docker swarm with Moodle.

As seen in figure 5.8, traffic from the outside trying to reach the Moodle service
will first reach the OpenStack load-balancer and then be routed to the Moodle web
containers. The container will then reach out to the HAProxy container, which will
then further direct to one of the databases. This setup ensures that traffic to both
the web server and the database is equally distributed among the hosts.

The figure 5.8 also show that, similar to the 3-layer architecture, the host machines
have their databases connected in a database cluster as well as a shared storage
using GlusterFS. To allow the Docker hosts to dynamically distribute the Docker
containers the hosts are connected in a Docker Swarm. The "Containers (swarm)"
box in the figure illustrate the resources provided by the Docker Swarm.

To set up the Docker Swarm architecture with Moodle it is first required to install
Docker and then install and set up the database cluster. Then the GlusterFS NFS

50 Chapter 5: Implementation

need to be created with the needed folders for Moodle mounted. When the NFS
and the database cluster is running the next step is to run the Docker container
with a similar database startup script as the one used in chapter 5.3.3. After this
script have been run, the Docker Swarm can be set up to allow the servers to work
together as a swarm. When the swarm is ready, the Moodle web containers can
be started and distributed among the servers in the swarm.

To begin with there will be three of these containers distributed across the three
servers. The Moodle service is with this setup reachable through the floating IP
address associated with the OpenStack load-balancer. The swarm containers are
deployed using Docker Compose. The compose file in code listing 5.5 is used to
deploy the web server containers.

Code listing 5.5: Docker compose file

version: ’3.3’

configs:
haproxy_config:
file: ./haproxy.cfg

networks:
moodle:
attachable: true

services:
web:
image: 10.212.170.44:5000/moodle_www

ports:
- "80:80"

networks:
- moodle

volumes:
- type: bind
source: /moodledata
target: /moodledata

environment:
MOODLE_DB_HOST: db_balance

deploy:
replicas: 3

db_balance:
image: haproxy

restart: always

configs:
- source: haproxy_config
target: /usr/local/etc/haproxy/haproxy.cfg

networks:
- moodle

ports:

Chapter 5: Implementation 51

- "1936:1936"

In the code listing 5.5, the IP or URL of the registry server will be used when
specifying the image. The HAProxy image is also deployed using the Compose
file. For this image the IP is not specified because we in this case one should use
the official HAProxy image from Docker Hub.

Upon successful implementation, the Docker Swarm architecture will be able to
host a comprehensive Moodle service, while ensuring redundancy through a database
cluster.

Chapter 6

Discussion

This chapter provides a comprehensive analysis and evaluation of the study’s find-
ings, aiming to shed light on the implications and significance of the research. This
chapter delves into a comparison of various infrastructure architectures, and the
strengths and weaknesses of each architecture are examined, considering factors
such as robustness, scalability, and the presence of single points of failure. Addi-
tionally, the chapter presents the test results offering insights into the performance
and responsiveness of the infrastructures under load.

53

54 Chapter 6: Discussion

6.1 Comparison of the infrastructure architectures

6.1.1 Single server architecture

The single server setup is mainly meant as a suggestion for a Minimum Viable
Product (MVP) and does not have the characteristics of robustness and scalability
required for this architecture to be recommended for use in a production environ-
ment. Although the architecture does have the components required to be able to
run in production, it has several weak-points making it unfit for production. Since
everything is running on a single server this means there is no opportunity for
load balancing between several web servers. The database is also running on the
same single host machine. With this architecture a single error in either Apache,
MySQL or a general error in the single host machine will make Moodle instantly
unreachable meaning that the host machine will be a single point of failure for
Moodle. The failure could occur either as a result of a high load or from some of
the services on the host machine crashing.

6.1.2 3-Layer architecture

The 3-Layer architecture improves some of the aspects discussed in 6.1.1. In this
improved architecture the components are distributed over several host machines.
The database is running on a dedicated machine in this architecture and Apache
is running on three different web servers allowing for load balancing between
them for the web traffic. This architecture also introduce a load balancing server
as a new component. One challenge with this architecture is that both the load-
balancer and the database still can be single points of failures. With the three web
servers, this architecture can be made more robust by having the load-balancer
only route traffic to the web server while it is responding. This means that if one
or two of the web servers stop working it will still be possible to reach Moodle.
However if the load-balancer stops working, Moodle will not be reachable from
the internet because no route to the web servers will be found. If the database
stop working, Moodle will stop functioning. Even though this architecture comes
with some improvements from the single server architecture it is still having single
points of failures that can cause problems in an production environment.

6.1.3 Docker architecture

The 3-layer architecture improves robustness, however there is also ways to im-
prove on the scalability of the architectures. By moving Apache from a dedicated
server to a Docker container, the architecture can be made more flexible. With a
Docker image for the Moodle web server, the web server can be instantly started on
a host with Docker installed and access to the Moodle web server image. In this ar-
chitecture three web containers are running on a single Docker host machine. This
means that if Apache stops working in one of the containers or the container itself
stops working, Moodle can still be accessed on the two other containers. However

Chapter 6: Discussion 55

if Docker stops working or the Docker host machine stops working Moodle will
stop working completely until the problem is resolved. The Docker architecture
also comes with the disadvantages seen in the 3-layer and single server architec-
tures, where the database and load-balancer are single points of failure. To sum
up, the absence of either the database, the load-balancer or the Docker host will
lead to Moodle being unavailable.

6.1.4 Docker Swarm architecture

In order to avoid any single point of failure there are several steps that can be
taken. The Docker Swarm architecture seeks to solve these. By using several databases
and connecting them in a database cluster the architecture can handle the loss of
one of the databases. As seen in 6.1.3 having Docker containers running on one
host machine only, leads to lack of robustness. By having several host machines
and joining them together in a Docker Swarm, their resources can be shared, and
the provision of containers are decentralized across the machines. With Docker
Swarm the defined set of containers will always be available as long as one of
the Docker hosts in the swarm is available. If one of the hosts disappear the other
hosts will instantly spin up the missing containers.

To achieve robustness one will need to perform load-balancing between the ma-
chines. However, if load balancing is performed using a single machine, the loss
of this machine will result in Moodle not being accessible. To solve this problem,
the Docker Swarm architecture makes use of OpenStack’s built in load-balancer.
With this, the architecture have web servers, databases and load balancing with-
out them acting as single points of failure. By using the swarm technology one
can easily scale up horizontally by joining additional servers to the swarm and
connecting them to the Network File System (NFS).

One could argue that the 3-layer architecture could be a good competitor to the
Docker Swarm architecture if it also had implemented a database cluster and the
OpenStack built in load-balancer. However there is a fundamental difference be-
tween them as Docker Swarm will take care of the load-balancing between the
containers internally by itself. When scaling up the 3-layer architecture one would
need to also take care of configuration of the load balancing as part of the process,
however with the swarm architecture the Docker Swarm will take care of the load
balancing itself when the additional Docker host have joined the swarm.

Unless the configuration of the load-balancer is modified, any additional Docker
hosts that join the swarm after the initial setup will not act as an entry point for
the swarm for traffic from the outside. However, they will still receive traffic from
the internal Docker Swarm load balancing, making their resources available for
the swarm. Adding hosts to the swarm will increase the capacity of the swarm.
With increasing traffic it may also be necessary to include more hosts in the Open-
Stack load-balancer configuration to distribute the load related to handling and
directing incoming traffic for the entry points of the swarm.

56 Chapter 6: Discussion

It is important to acknowledge that the act of scaling up the swarm does not
automatically result in the scaling up of the database. In the event of a bottleneck
within the database, it becomes necessary to scale up the corresponding database
cluster. The incorporation of both exceptional robustness, achieved through the
elimination of single points of failure, and remarkable scalability facilitated by the
straightforward addition of supplementary machines to the swarm, renders this
infrastructure highly appealing for utilization within a production environment.

6.2 Test results

In this thesis, the postman test described in chapter 5 is used to obtain an initial
assessment of the infrastructure architectures and their response time. The data
collected from these tests are utilized in the k6 load tester, which generates a more
realistic load on the infrastructures.

All architectures are given the same standardized test course, consisting of 100MB
of content, including 100 assignments, 1000 pages, and 1000 users. This is com-
monly referred to as the medium test course by Moodle [58] and satisfies the
specified operational requirement of availability and scalability in chapter 3.

Initially, a test run with Postman was conducted with the Large test course with
1GB of content. However, after executing the Postman test, it was evident that the
infrastructures did not handle that much data well, particularly in cases where
the load was distributed across multiple servers that utilized GlusterFS as shown
in figure 6.1.

Chapter 6: Discussion 57

Figure 6.1: Large test course

Figure 6.2 presents the impact of unmounting GluserFS on the 3-layer and Docker
Swarm architectures. However, these architectures do not work properly without
a shared folder.

58 Chapter 6: Discussion

Figure 6.2: Large test course without GlusterFS

By decreasing the size of the course, the average response time of the two architec-
tures using GlusterFS is reduced to approximately 4 seconds as seen in figure 6.3.

Figure 6.3: Medium test course

Chapter 6: Discussion 59

6.2.1 Architecture hardware resources

Table 6.1 presents the allocation of infrastructure resources for each architecture
during testing. The resource allocation has been carefully set to align with the re-
quirements presented in chapter 3, as well as current understanding and expertise
in the team. It is important to acknowledge that the hardware resources allocated
to the architectures may potentially influence the outcomes of the tests.

Architecture Instances vCPUs and RAM
Single Server Setup 1 instance 4 vCPUS, 4Gb RAM
3-Layer Architecture 4 Instances 8 vCPUs, 13GB RAM

Docker 2 instances 6 vCPU, 12GB RAM
Docker Swarm 3 Instances 6 vCPU, 12GB RAM

Table 6.1: Architecture resources

Each architecture is set up as described in chapter 5.

6.2.2 k6 Test results

During the k6 test, the test course is made accessible to everyone in order to
ease the creation of test scripts. The script itself involves the following actions:
Accessing the Moodle home page, load the test course, access a small file, return
to the previous page, and access a discussion forum.

The k6 test is designed to perform the above actions while generating load of 100
concurrent users for a duration of 12 minutes. The executive summary for each
test is documented in appendix D.

Summary of the test results

Architecture Max Throughput HTTP Failures Avg Response Time 95% Response Time
Single server 54 reqs/s 0 reqs 1231ms 6079ms

3 layer 25 reqs/s 4012 reqs 1797ms 1306ms
Docker 36 reqs/s 0 reqs 1393ms 4927ms

Docker Swarm (50VUs) 4 req/s 357 reqs 31642ms 50020ms

Table 6.2: Infrastructure test results

Architecture: Table 6.2 compares different architectures, namely Single server,
3-layer, Docker, and Docker Swarm (50VUs). Each architecture represents a dif-
ferent setup or configuration being tested.

Max Throughput: This column indicates the maximum throughput achieved by
each architecture during the test. The higher the value, the more requests per sec-
ond (reqs/s) the architecture can handle. The Single server architecture achieved
the highest throughput of 54 reqs/s. The 3-Layer architecture had a lower through-

60 Chapter 6: Discussion

put of 25 reqs/s. The Docker architecture achieved a slightly higher throughput of
36 reqs/s. The Docker Swarm architecture had the lowest throughput of 4 req/s.

HTTP Failures: This column represents the number of HTTP failures or requests
that failed during the test. A HTTP request failure occurs when the HTTP response
is a status code other than 200 OK. The Single server architecture and "Docker"
architectures had 0 failed requests. The 3-Layer architecture experienced 4012
failed requests. The Docker Swarm architecture had 357 failed requests.

Avg Response Time: This column indicates the average response time (in mil-
liseconds) for each architecture. It represents the time it takes for the system to
respond to a request on average. The Single server architecture had an average
response time of 1231ms. The 3-Layer architecture had a slightly higher average
response time of 1797ms. The Docker architecture had a lower average response
time of 1393ms. The Docker Swarm architecture had a significantly higher aver-
age response time of 31642ms.

95% Response Time: This column represents the 95th percentile response time,
which indicates the response time for the 95% slowest requests. The Single server
architecture had a 95th percentile response time of 6079 ms. The 3-Layer archi-
tecture had a lower 95th percentile response time of 1306 ms. The Docker archi-
tecture had a higher 95th percentile response time of 4927 ms. The Docker Swarm
architecture had the highest 95th percentile response time of 50020 ms.

Load on instances during test

During the load test, the TI-stack is used to monitor the crucial system metrics of
the instances, specifically CPU, memory, disk I/O, and network.

Disk I/O: The graphs bellow displays the disk I/O in bytes per second, reaching a
maximum of approximately 30 MB/s on the Docker database during the test run
(see Figure 6.10). This value is well below the limit of an SSD drive.

Network: Among the architectures, the highest network traffic is observed in
the transmission and reception of data in the docker architecture. It is notable
that the database and Docker host exhibit complementary patterns, with the blue
graph representing bytes sent and the purple graph representing bytes received.
Although other architectures show lower network traffic, the measured traffic is
as expected. It’s important to consider that network traffic can be influenced by
factors such as available network bandwidth and the nature of the transmitted
data, making it difficult to track accurately.

Single Instance

CPU usage: The graphs in figure 6.4 illustrates that the majority of the CPU is
actively engaged, with approximately 83% of the CPU utilization attributed to
user processes (indicated by the orange line). The remaining usage is allocated to

Chapter 6: Discussion 61

system operations (kernel). This indicates that a substantial portion of the CPU
resources is being utilized by user processes, specifically the Moodle application.

Memory: Throughout the test, the memory utilization reaches a maximum of 54%
of the available memory, indicating a moderate level of usage.

Figure 6.4: Monitoring of single instance architecture during test run

3 layer

CPU usage: The web servers exhibit an average CPU utilization of approximately
40% for user data, while the system operations account for slightly over 23%.
Additionally, it can be observed that some of the CPU cores remain idle during the
load tests. The database CPU has an average idle rate of approximately 85%. This
indicates that a large portion of the database’s CPU resources is not being actively
utilized.

Memory: All web servers reach a maximum memory usage of 26%. This indicates
that the memory resources on the web servers are not fully utilized and there is
still a significant amount of available memory.

62 Chapter 6: Discussion

Figure 6.5: Monitoring of 3 layer web server 1 during test run

Figure 6.6: Monitoring of 3 layer web server 2 during test run

Chapter 6: Discussion 63

Figure 6.7: Monitoring of 3 layer web server 3 during test run

Figure 6.8: Monitoring of 3 layer database during test run

Docker

CPU usage: The Docker host, as shown in figure 6.9, exhibits CPU utilization
similar to a single instance. Approximately 80% of the CPU is utilized by user
processes, while the remaining CPU is allocated to system operations. This dis-
tribution of CPU usage indicates that a significant portion of the CPU resources
on the Docker host is consumed by user applications or containers. The high user

64 Chapter 6: Discussion

CPU utilization suggests that the workload primarily consists of user processes,
while the system operations utilize the remaining CPU capacity. Around 23% of
the CPU resources in the database 6.10 are not actively utilized.

Memory: The Docker host reaches a peak memory usage of just above 35%, while
the database host has a peak memory usage of 15%.

Figure 6.9: Monitoring of Docker host during test run

Figure 6.10: Monitoring of Docker database during test run

Chapter 6: Discussion 65

Docker Swarm

The three nodes in the swarm exhibit a well-distributed traffic pattern as their
system loads appear to be quite similar.

CPU usage: The CPU usage in the Docker swarm architecture resembles the Three-
layer architecture, with approximately 40% utilization by user processes and 20%
utilization by system operations. Additionally, around 20% of the CPUs remain
idle. The presence of idle CPUs implies that there is available processing capacity
within the Docker swarm architecture.

Memory: This indicates that the memory resources in the architecture are utilized
up to 40% of their capacity during peak usage. The memory usage level suggests
that the architecture operates with a moderate level of memory consumption.

Figure 6.11: Monitoring of Docker Swarm container 1 during test run

66 Chapter 6: Discussion

Figure 6.12: Monitoring of Docker Swarm container 2 during test run

Figure 6.13: Monitoring of Docker Swarm container 3 during test run

The architectures exhibit varying CPU load and memory usage during the load
test. Both the 3-layer architecture and the Docker Swarm architecture demon-
strate similarities in system load. This can be attributed to the shared load distribu-
tion among different instances and the potential impact of GlusterFS as explained
earlier 6.2.

Chapter 6: Discussion 67

6.2.3 Analysis of architecture performance and requirements

The Docker Swarm architecture, as discussed in section 6.1, offers a combination
of robustness by addressing all single points of failure and scalability through the
easy addition of machines to the swarm. This theoretically positions it as the rec-
ommended infrastructure architecture. However, the results presented indicate
that the architecture did not perform as expected. This can be attributed to an in-
complete setup, which highlights the need for further improvements, as discussed
in section 8.

Based on the obtained results, it is noticeable that the Single Server architecture
preformed better that the other architectures in terms of throughput, average re-
sponse time, and 95th percentile response time. On the other hand, the Docker
Swarm architecture exhibited the lowest performance across all metrics, despite
having only 50 concurrent users during the test. An analysis of the monitored data
suggests that both the 3-layer and Docker Swarm architectures were affected by
the slow response of GlusterFS, which resulted in idle CPU usage as they awaited
files from the NFS GlusterFS. In contrast, the Docker and Single Instance architec-
tures showed 100% CPU utilization, primarily by the www-data (Moodle applica-
tion), leading to better performance. It is worth noting that high CPU utilization
implies that a new CPU process will have to wait for its turn, potentially resulting
in increased response times for tasks.

Clients requirements:

No Requirement Status
1 Configurable infrastructure platform. Implemented
2 Secure, tested platform. Theoretical, not implemented
3 Redundant, load-balanced infrastructure. Implemented
4 Robustness testing conducted. Not yet addressed
5 TICK-stack for monitoring. Implemented
6 Documented operation tasks. Not yet implementation
7 Justified, documented configurations. Implemented

Table 6.3: Client requirements

Table 6.3 presents the client requirements in short together with status.

Requirement No. 1 has been fulfilled by establishing the infrastructure platform
based on thorough research and discussions on technologies and services. All in-
frastructure architectures and components have been extensively documented and
explained. However, there is still potential for further improvement in the solu-
tion.

68 Chapter 6: Discussion

Requirement No. 2 has been theoretically implemented in this report, but practical
implementation of the security is pending, as outlined in chapter 8. It is worth
mentioning that the client follows security practices on their end.

Requirement No. 3 has been implemented in this project. The architectures im-
plemented aim to incorporate load balancing and redundancy. Furthermore, these
architectures can be combined in various ways beyond the scope of this project,
such as integrating the Docker or 3-layer architecture with a database cluster, ul-
timately ensuring high up-time for the service.

Requirement No. 4 has not been addressed yet. However, the project team has
encountered issues such as machines being turned off and database failures, al-
though these occurred during development and were not properly documented.
The importance of this requirement is acknowledged, and security features such
as backup and restoration are discussed in chapter 8.

Requirement No. 5 has been implemented using the TI-stack, which was used to
monitor the services during the load test. TI-stack offers additional convenient
services that can be implemented, including alerts and service monitoring. It can
also be integrated with tools like Grafana.

Requirement No. 6 is yet to be implemented. This includes documenting oper-
ational tasks such as upgrading the version of Moodle, performing backup and
restoration procedures, and scaling the service. These aspects will be addressed
in chapter 8.

Requirement No. 7 has been fulfilled through the documentation provided in the
public GitLab repository and the justification of technologies and architectures in
this thesis. The documentation is designed to be easy to follow and adopt to the
client’s environment.

Operational requirements:

No Requirement Status
1 Response Time Implemented, Potential for improvement
2 Security Theoretical implementation, yet to be implemented
3 Scalability and Availability Implemented, Potential for improvement
4 Usability Implemented
5 Monitoring and Compliance Implemented

Table 6.4: Operational requirements

Table 6.4 present in short the operational requirements defined in chapter 1.1.3.

Requirement No 1 regarding response time has been fulfilled in two out of four
architectures, the single instance and Docker architectures. The average response
time for a single request in both architectures is below 500 ms, as one can see in

Chapter 6: Discussion 69

figure 6.3. However, it is important to note that the Docker Swarm architecture
reveal low response time when GlusterFS service is not running, as shown in fig-
ure 6.1. It should be highlighted that the Moodle application does not function
properly without the Moodledata shared between instances. During the load test
with 100 concurrent users, the Docker and single server architectures demonstrate
acceptable average response times. Conversely, the Docker Swarm and 3-layer ar-
chitectures struggle when the load is increased, as indicated in table 6.2.

Requirement No 2 has been discussed and analyzed in this report; However, the
practical implementation is still pending and is outlined in section 8. It is crucial
to highlight that the client follows their own security practices and guidelines.

Requirement No 3 has been implemented and discussed. As observed in the load
test, two of the architectures, Docker and single instance, are capable of accom-
modating 100 concurrent users. The Docker architecture leverages the benefits of
containerization technology, resulting in reduced startup time, concurrent opera-
tion, and lower server and licensing costs. Additionally, the Docker host eliminates
single points of failure in the web service.

Requirement No 4 has been fulfilled through comprehensive documentation and
explanation of the architectures in this report. The documentation and actual code
are stored in a publicly accessible GitLab repository, with well-structured develop-
ment practices. The prioritization lies in the development of code and documen-
tation that is clear and comprehensible, aiming to enhance understandability and
facilitate efficient collaboration and maintenance.

Requirement No 5 has been achieved by utilizing the TI-stack, which effectively
monitored the services during the load test. The TI-stack offers additional conve-
nient services, including alerts and service monitoring, which have been utilized.
Additionally, the k6 tool has been employed to test the load on the architectures.

6.3 Knowledge and technological familiarity’s influence
on choices and technologies

The project team faces a significant bias originating from limited experience be-
yond the concepts learned exclusively within the study program’s courses. The
bias centers around the course DCSG2003 - Robust and scalable services. It can
be argued that the implementation closely adhered to the course curriculum, par-
ticularly with regards to Docker Swarm and the 3-layer architecture. The success-
ful utilization of GlusterFS in the course led to a biased assumption that it would
seamlessly adapt to accommodate the Moodle platform. However, as indicated by
the test results, the bottleneck in the Docker Swarm and 3-layer architectures lies
in GlusterFS, resulting in slow response times.

Chapter 7

Assignment critique

This chapter goes trough assignment critique based on the experience throughout
the project. It discusses the strength and weaknesses of the assignment as a whole
together with areas of improvement.

71

72 Chapter 7: Assignment critique

7.1 Short overview of the assignment

To accommodate the growth of Orange Business Services, it is necessary to uti-
lize an e-learning platform for technician training. This platform offers multiple
advantages compared to traditional learning methods, such as improved acces-
sibility, scalability to handle 100 simultaneous users, and the ability to provide
multimedia content. By leveraging this platform, training becomes more engag-
ing and effective, ensuring that the content remains up-to-date with current and
future best practices.

The use of specific technologies is not assigned, however, the students are required
to utilize the open-source e-learning platform Moodle and establish the necessary
infrastructure [59]. Orange Business Services has assigned this task to evaluate
how bachelor students approach and address the challenges and opportunities
presented in this assignment. Additionally, the use of TICK-stack [60] for mon-
itoring is expected. The report and documentation includes a explanation and
justification for the technologies employed.

7.2 Critique of the assignment

The assignment is quite extensive and require effective collaboration among the
team members. The development process can follow various paths that ultimately
lead to the same outcome: an e-learning platform that fulfills the requirements for
up-time, security, and capacity. This includes understanding of the professional
fields IT infrastructure [4] and system administration [5]. It is essential to be-
come acquainted with a range of tools, thereby providing an explanation for the
rationale behind their usage.

It is crucial to have a clear plan and effective working method to use in the project
together with a plan of how to choose technologies. It is easy to get lost in the
possible technologies that all support the same purpose, specially for students
that only have a few guidelines. The task at hand is clear on what to expect as the
final product, but not the way to get there or what techniques to use. This gives
the group the freedom of choice when it comes to technologies.

The project team is primarily responsible for managing their own time usage,
but they also have regular meetings with both the supervisor and the client. In
addition, Orange Business Services offers dedicated resources that can be utilized
if needed, while the supervisor provides guidance throughout the entire project,
from beginning to end.

When it comes to complexity, the project group itself sets the complexity level
based on knowledge and prior experience. The group can choose between a simple
3-layer architecture or a more complex containerized solution for the underlying
infrastructure. The project group is responsible for administration like the level of

Chapter 7: Assignment critique 73

automation used, and allocated time for each part of the project in communication
with supervisor.

Despite the assignment being broad and allowing for interpretation, it does pro-
vide clear operational requirements. This gives the project group the opportunity
to explore and apply what they see appropriate based on their learning in the
study program. The assignment can be viewed as a typical task presented by a
company seeking assistance from consultants.

7.3 Student Performance

The students have very different personalities, which lead to well developed project
solving skills. Though this also lead to various plans and ways to solve a problem,
some are happy to read up on new literature and apply this to the project, while
others are more likely to use prior knowledge and working solutions. This lead to
diversion of same product and sometimes discussion on what to implement.

The cooperation in the group have lead to a well developed solution, although
there have been some obstacles on the way. As described in chapter 8, there is
not a lack of technologies to develop this product further. The students could
be better at giving specific tasks to one another, set deadlines and follow these.
Despite the students knowledge trough the study program, the use of resources
at Orange Business Services could be utilized to more effectively solve problems
encountered.

7.4 Reflection on Learning

This assignment has provided the students with a real-life project in which the
requirements are defined, but the choice of technologies and how to fulfill those
requirements is open. As a result, extensive research, trial and error, and iterative
development approach have taken place. The project team has faced challenges
in terms of working methods and collaboration due to their differences. All in
all, it can be stated that this assignment has equipped the students with knowl-
edge of new technologies and a profound understanding of both new and existing
technologies and tools.

Chapter 8

Further work

During this project, the group found different alternatives for solutions, technolo-
gies and software. The options available could have been used to improve the
quality of the architectures. This bachelor’s project gave the group the opportunity
to define the working methods freely, and made it difficult to decide the specific
approaches to use to solve the problem given. This chapter outlines examples on
further work the group would focus on if the project was extended.

75

76 Chapter 8: Further work

8.1 Implementation improvements

The code implementation of the infrastructure as it stands, use Terraform modules
for provisioning infrastructure components as a stack. Each component are using
start-up scripts for running specific services on the components. Start-up scripts
are imperative coding languages, and is a static, unreliable method for configuring
services, as Bash scripts deprecate quickly. If the Moodle platform is updated, or
any of the infrastructure components changes in the future, it is probable that the
existing implementation of code no longer will work, and therefore needs to be
frequently updated to fit the new software.

In the future, it is necessary to use declarative languages like Puppet or Ansible
as well as Terraform, to handle the service configuration for the infrastructure
components provisioned efficiently.

CI/CD

Continuous Integration (CI), is a software development practice in which all de-
velopers merge code changes in a central repository multiple times a day. CD,
stands for Continuous Delivery, and is automating the release of code into pro-
duction [61]. Although we are not developing the Moodle Platform ourselves, the
group wants to secure a pipeline from when the Moodle developers release a new
version of the Moodle platform, and when the new version is integrated on our
service. This is to add an extra layer of security and to check that the new version
does not include any security vulnerabilities or malicious code that could harm
our system.

It is also desired by the group to have a more flexible and automated implemen-
tation system, to have our platform stay up to date with the latest software. This
pipeline allows for reduced manual work and human error, and faster delivery of
new functionality and improved security, which again allows for improved flexi-
bility.

Consul

Consul [62] is a micro service networking solution with service mesh capabili-
ties. Micro services are useful for many reasons. They support scalability, and can
flexibly scale independently from each other, they are isolated systems meaning
if a micro service fails, the rest of the services can still run. It allows for flexibility
and improved integration and delivery because they are independent from each
other. Although micro services greatly improve an application in numerous ways,
the architecture’s complexity will increase considerably. This issue can be greatly
solved by Consul. Consul gathers information about every micro service devel-
oped, and monitors health and location of all services in real-time. The four core
functionalities from Consul are service discovery, automated networking, secured
networking, and controlled access. These functionalities can greatly improve the
automation process of different services in the Moodle platform, but also enhance

Chapter 8: Further work 77

security on the network through encryption and authentication. All these func-
tionalities are worth to explore and integrate in the future.

8.2 Performance improvements

Nginx

Nginx [63] is one of the most reliable servers for scalability and speed. It is one
of the fastest growing web servers in the industry, number one after Apache. The
main difference between Apache and Nginx is that Nginx has event-driven archi-
tecture, handling multiple requests simultaneously within a single thread, while
Apache is process-driven creating one thread per request. This allows for generally
greater performance, compared to Apache.

Since the Moodle platform is a complex platform to host, the group wants to
further explore the possibilities to use Nginx as a future web server. We also wish
to explore the possibilities to combine both services for performance optimization,
as they both serve great purposes.

Caching

Caching [64] is a technique to reduce peak traffic rates by prefetching popular
content into memory at the end-user. These techniques are able to significantly
improve response time for the end-user and is one the most efficient methods to
increase performance. The groups current solutions have weak response times,
and therefore it is highly desired for the group to focus on this further.

Docker

The orchestration technology Docker is intended to run lightweight containers for
maximum performance. In this bachelor’s project the group has used Ubuntu as
the distro for running the Docker and other technologies/services. To maximize
the performance of the physical resources, the group wants to further explore
the use of other Linux distributions that are better supported and optimized to
run docker containers. Distributions the group want to explore are Alpine and
Fedora.

8.3 Security improvements

HTTP encryption (HTTPS)

An important step to secure the platform is to implement encrypted communica-
tion on the service. When requesting and responding to the HTTP protocol, data
should be secured on the path to the destination or back to source, so the data
can not be compromised. This is especially important for passwords and securing
sessions for users.

78 Chapter 8: Further work

Vulnerability testing

Testing the running platform for vulnerabilities is a time consuming job, but an
important practice to secure the platform against unforeseen events or attacks.
These measures helps an administrator understand the security applied by the
Moodle developers, and gives perspective on security measures that can be taken
on a self-hosted platform.

Sensitive data handling

To improve storage and handling of sensitive data like passwords, we wish to
expand the current solutions overview on the use of the LDAP-server. In future
architectures improvements, we wish to implement a LDAP-server where we can
test the authentication process directly on the solution, and test reliability and
performance of the additional component.

Backup and restoration

The most important security measure to secure data at rest from threat actors has
always been backup and restoration. 0-days and other vulnerabilities are con-
stantly being discovered and exploited. A business can never guarantee to be
100% secure from external or internal attacks. Therefore everyone should assume
that their business can be compromised in the future. The best security measure to
protect data is to always have a backup available. An active business consistently
updates their data, so to counter this issue, it is important to backup frequently
and preferably automatically. This will significantly reduce the risk of losing criti-
cal data when recovering from outdated files.

It is also worth mentioning that frequent backups are unhelpful unless there are
reliable restoration and recovery systems. The group wants to explore the pos-
sibilities for a reliable, secure, and efficient backup/restoration system for the
Moodle platform and its data at rest. It would also be relevant to test the back-
up/restoration system in a test environment before setting it in production, to test
the security and reliability of the system, and to measure how quickly and painless
the restore system is.

8.4 Monitoring

Continuous monitoring

Monitoring is an essential part of operating a running platform in production. The
purpose is to always have knowledge of any incidents that may occur on the run-
ning platform. The group wants to explore the possibility of further developing
a system that can continuous monitor the Moodle platform, so any administrator
can reliably assure up-time of the service, and how to use this system for contin-
uous monitoring.

Chapter 8: Further work 79

Grafana is an open-source solution for running data analytics with the help of
metrics which gives an insight on complex infrastructure and a massive amount
of data that our services have to process. Grafana [65] compiles all data analyzed
into customizable dashboards. Grafane can easily be integrated with the already
set up monitoring.

The group also wants to explore the possibilities of running automated alerts in
case of any incident that may happen. The goal is to eventually have a reliable
system, that can automatically resolve issues consistently. These opportunities can
be resolved by the use of Kubernetes, which is also an orchestration technology
that might be an infrastructure architecture option for the Moodle platform in the
future.

Automated testing

Load testing an architecture is usually a superior method for understanding how
much traffic a platform can handle, before the platform suffers from latency, or
even reduction of service reliability. The group wishes to efficiently improve the
automation of load testing tools, to retrieve and analyze data after a load testing
session has occurred. This is to efficiently test how much traffic an architecture
can handle, and to apply knowledge on how to improve the performance under
different circumstances.

The end goal is to implement a reliable system that can efficiently scale up and
down infrastructure resources, depending on platform traffic. This will relieve
stress on infrastructure components where traffic is low, but uphold the expecta-
tions for response time when the traffic is high. This method can reduce cost and
extend the life cycle of physical infrastructure components.

8.5 Kubernetes

Kubernetes, commonly referred as K8s, is an open source solution that helps ad-
ministrate containers in a cluster [66]. K8s a is widely used solution for managing
containers in the cloud, and serves as a container orchestration engine. It manages
the life-cycle of containers with ease.

Built upon docker as the Container Runtime Environment(CRE), Kubernetes act
as the mastermind of the cluster orchestrating the containers. As developers, one
only need to build the app image of the application and push it to the registry,
and Kubernetes can deploy the app anywhere, thus making it homogeneous [66].
When configured properly, K8s takes care of activities such as restart on failure,
auto scaling based on rules, and redeploying containers (pods) to different nodes
in case of node failure.

Kubernetes can be seen as a further advancement of the Docker Swarm architec-
ture that is implemented in the project. By setting up the Kubernetes cluster in
the cloud provider one should have an even more robust and scalable service due

80 Chapter 8: Further work

to Kubernetes’ features. It is however a stiff learning curve with K8s, where as
Docker Swarm serves as a simpler container orchestration tool.

Gonzalez’s book contains a compelling and noteworthy point [67], that Docker
Swarm and Kubernetes is not directly competitors, but rather servers different
purposes. While Docker Swarm is seen as Docker on steroids, mostly straightfor-
ward to deploy, Kubernetes is suited for more advances applications and aids in
areas like security and monitoring, backed up by research by the community and
Google.

It is worth it to use time to implement Kubernetes, and look at the performance
in context with the performance of the already developed architectures.

Chapter 9

Project evaluation

This section includes an evaluation of the groups work throughout the project.
This is divided into how the work was organized and delegated, and the groups
experience working with the project.

81

82 Chapter 9: Project evaluation

9.1 Organization

The organization of the group has been working as planned. The weekly meetings
between the group members has been a successful event that has consistently oc-
curred throughout the semester. It has been essential to have these group meet-
ings, to understand the current workflow in the group, and to stay up to date
with the progress on current work assignments delegated. The group meetings
has helped us gain perspective on issues encountered, resolving of earlier issues,
discussions on how we should generally move forward with the project from week
to week, and further delegations of work.

The meetings with the supervisor and client has also been essential to get inputs
from other viewpoints. These meetings has been important for guiding the project
in the right direction and to get answers on questions throughout the project.

9.2 Work delegation

During the weekly meetings, each group member explains to the rest of the group
what work they are planning to do the upcoming week. This has given the oppor-
tunity for each group member to focus on where they can utilize their work best,
and has been conclusively a successful work methodology, although this could
have been discussed a lot clearer during the group meetings.

The use of a Kanban board has been a useful framework tool that has given the
group members perspective on what each group member is working on, and has
efficiently improved the work flow during the project. This framework combined
with the KISS principle, has helped the group members acquired basic knowledge
that had been further developed to design more advanced solutions. This learning
method improved each members knowledge, and has been successful throughout
the project.

9.3 Progress plan

Throughout the project, the group had a Gantt-chart which is appended in ap-
pendix E, which prepared the different phases the project would follow. Due to
frequent issues encountered throughout the research, development, and testing
phase, the group had to postpone and alter the subsequent phases of the project.
The amount of issues encountered from developing the architecture solutions, led
the time management planned on the later phases to be spent on troubleshoot-
ing problems in the research phase. It was expected to have some problems and
delayed activities during the research phase, but it was a significantly underesti-
mated prediction prior to the project start.

During the planning phase, the group designed a risk analysis that would explain
following risks and mitigations. Unfortunately the group didn’t have a specific risk

Chapter 9: Project evaluation 83

associated with troubleshooting problems. If this was noted in the risk analysis
with specific mitigations, perhaps the time management could’ve been spent more
efficiently.

Appendix H presents a summary of the hours tracked in the Toggl time-tracking
software. It displays the distribution of work hours throughout the bachelor’s the-
sis. The three most frequently tracked activities are project reporting, develop-
ment, and research.

Chapter 10

Conclusion

This project implements various infrastructure architectures to host the e-learning
platform Moodle for Orange Business Services, aiming to meet the need for a
training platform to train their technicians.

Chapter 1 presents the project’s goals categorized as results, business, and learning
outcomes. The result goals encompass the development of a robust, scalable, and
secure infrastructure, as well as high-quality documentation. The test results dis-
cussed in chapter 6 indicate that Docker can effectively handle the concurrent load
of 100 users which is one of the requirements by Orange Business Services. If this
was the only requirement in the infrastructure, it would be a sufficient solution.
Nevertheless, Docker itself lacks scalability, and especially redundancy. Therefore
it is recommended that Orange Business Services, further develop these architec-
tures, to sufficiently satisfy the specifications needed to meet the requirements.
Explained in chapter 8, Kubernetes and other performance-oriented measures,
are described as further steps that can satisfy these requirements.

The business goals focus on the client’s ability to adopt the developed solution,
and utilize the platform for technician training. On our end, these goals have been
achieved through well-documented infrastructure architectures that successfully
support a user load of 100. However, the assessment of the time and resources
required for technician training is yet to be conducted.

Regarding the learning outcome, the project team has extensively explored dif-
ferent infrastructure architectures, paying attention to security, robustness, and
scalability. The research and implementation have specifically revolved around
Moodle, complemented by monitoring using the TI-stack. Furthermore, potential
areas for further work beyond this thesis have been identified.

85

Bibliography

[1] WahooLearning. “What are the Benefits of a Learning Management System
(LMS)?” (2023), [Online]. Available: https://wahoolearning.com/blog/
learning-management-systems/benefits-customised-lms/ (visited on
05/19/2023).

[2] T. Dalzell, The Routledge Dictionary of Modern American Slang and Uncon-
ventional English. Routledge, 2009, ISBN: 9780415371827. [Online]. Avail-
able: https://books.google.no/books?id=5F-YNZRv-VMC.

[3] NTNU. “Community of Practice in Computer Science Education Home.”
(2016), [Online]. Available: https : / / www . ntnu . no / wiki / display /
copcse/Community+of+Practice+in+Computer+Science+Education+
Home (visited on 04/17/2023).

[4] Rahul Awati. “Getting started with a career in IT infrastructure: A brief
guide.” (2021), [Online]. Available: https://www.techtarget.com/whatis/
feature/Getting-started-with-a-career-in-IT-infrastructure-A-
brief-guide (visited on 04/25/2023).

[5] Coursera. “What Does a System Administrator Do? Career Guide.” (2022),
[Online]. Available: https://www.coursera.org/articles/what-is-a-
system-administrator-a-career-guide (visited on 04/25/2023).

[6] IBM. “What is virtualization?” (n.d.), [Online]. Available: https://www.
ibm.com/topics/virtualization?mhsrc=ibmsearch_a&mhq=virtualization
(visited on 05/14/2023).

[7] Kief Morris, Infrastructure as Code: Dynamic Systems for the Cloud Age.
O’reilly, 2020, ISBN: 9781098114671.

[8] IBM. “Cloud computing: A complete guide.” (n.d.), [Online]. Available:
https://www.ibm.com/cloud/learn/cloud- computing- gbl?mhsrc=
ibmsearch _ a & mhq = public % 5C % 26comma % 5C % 3B % 5C % 20private % 5C %
20hybrid%5C%20cloud (visited on 05/14/2023).

[9] IBM. “What are Iaas, Paas and Saas?” (n.d.), [Online]. Available: https:
//www.ibm.com/topics/iaas-paas-saas?mhsrc=ibmsearch_a&mhq=
cloud%5C%20service%5C%20models (visited on 05/14/2023).

87

https://wahoolearning.com/blog/learning-management-systems/benefits-customised-lms/
https://wahoolearning.com/blog/learning-management-systems/benefits-customised-lms/
https://books.google.no/books?id=5F-YNZRv-VMC
https://www.ntnu.no/wiki/display/copcse/Community+of+Practice+in+Computer+Science+Education+Home
https://www.ntnu.no/wiki/display/copcse/Community+of+Practice+in+Computer+Science+Education+Home
https://www.ntnu.no/wiki/display/copcse/Community+of+Practice+in+Computer+Science+Education+Home
https://www.techtarget.com/whatis/feature/Getting-started-with-a-career-in-IT-infrastructure-A-brief-guide
https://www.techtarget.com/whatis/feature/Getting-started-with-a-career-in-IT-infrastructure-A-brief-guide
https://www.techtarget.com/whatis/feature/Getting-started-with-a-career-in-IT-infrastructure-A-brief-guide
https://www.coursera.org/articles/what-is-a-system-administrator-a-career-guide
https://www.coursera.org/articles/what-is-a-system-administrator-a-career-guide
https://www.ibm.com/topics/virtualization?mhsrc=ibmsearch_a&mhq=virtualization
https://www.ibm.com/topics/virtualization?mhsrc=ibmsearch_a&mhq=virtualization
https://www.ibm.com/cloud/learn/cloud-computing-gbl?mhsrc=ibmsearch_a&mhq=public%5C%26comma%5C%3B%5C%20private%5C%20hybrid%5C%20cloud
https://www.ibm.com/cloud/learn/cloud-computing-gbl?mhsrc=ibmsearch_a&mhq=public%5C%26comma%5C%3B%5C%20private%5C%20hybrid%5C%20cloud
https://www.ibm.com/cloud/learn/cloud-computing-gbl?mhsrc=ibmsearch_a&mhq=public%5C%26comma%5C%3B%5C%20private%5C%20hybrid%5C%20cloud
https://www.ibm.com/topics/iaas-paas-saas?mhsrc=ibmsearch_a&mhq=cloud%5C%20service%5C%20models
https://www.ibm.com/topics/iaas-paas-saas?mhsrc=ibmsearch_a&mhq=cloud%5C%20service%5C%20models
https://www.ibm.com/topics/iaas-paas-saas?mhsrc=ibmsearch_a&mhq=cloud%5C%20service%5C%20models

88 Bibliography

[10] Theo Schlossnagle, Scalable Internet Architectures. Sams Publishing, 2007,
ISBN: 978-0-672-32699-8.

[11] Ben Lutkevich. “database (DB).” (), [Online]. Available: https://www.
techtarget.com/searchdatamanagement/definition/database (visited
on 05/21/2023).

[12] Mostafa Ibrahim. “What is Database Clustering?” (2022), [Online]. Avail-
able: https://www.harperdb.io/post/what-is-database-clustering
(visited on 05/21/2023).

[13] IBM. “What is automation?” (n.d.), [Online]. Available: https://www.ibm.
com/topics/automation?mhsrc=ibmsearch_a&mhq=Automation (visited
on 05/14/2023).

[14] IBM. “What is containerization?” (n.d.), [Online]. Available: https://www.
ibm.com/topics/containerization (visited on 05/14/2023).

[15] Xiaopu Ma, Ruixuan Li, Zhengding Lu, Jianfeng Lu, and Meng Dong, “Spec-
ifying and enforcing the principle of least privilege in role-based access con-
trol,” eng, Concurrency and computation, vol. 23, no. 12, pp. 1313–1331,
2011, ISSN: 1532-0626.

[16] Ding Wang and Ping Wang, “The emperor’s new password creation poli-
cies: An evaluation of leading web services and the effect of role in resist-
ing against online guessing,” eng, in Computer Security – ESORICS 2015,
ser. Lecture Notes in Computer Science, vol. 9327, Cham: Springer Inter-
national Publishing, 2015, pp. 456–477, ISBN: 9783319241760.

[17] Chun-Ting Huang, Lei Huang, Zhongyuan Qin, Hang Yuan, Lan Zhou, Vi-
jay Varadharajan, and C.-C. Jay Kuo, “Survey on securing data storage in
the cloud,” eng, APSIPA transactions on signal and information processing,
vol. 3, no. 1, 2014, ISSN: 2048-7703.

[18] Microsoft. “Enable LDAP over SSL with a third-party certification author-
ity.” (2023), [Online]. Available: https://learn.microsoft.com/en-
us/troubleshoot/windows-server/identity/enable-ldap-over-ssl-
3rd-certification-authority (visited on 05/21/2023).

[19] Google. “What is a Disaster Recovery Plan?” (2023), [Online]. Available:
https://cloud.google.com/learn/what-is-disaster-recovery (vis-
ited on 05/21/2023).

[20] Cloudflare Inc. “What is penetration testing? | What is pen testing?” (2023),
[Online]. Available: https://www.cloudflare.com/learning/security/
glossary/what-is-penetration-testing/ (visited on 05/21/2023).

[21] Noviantika G. “What Is Ubuntu? A Quick Beginner’s Guide.” (2023), [On-
line]. Available: https://www.hostinger.com/tutorials/what- is-
ubuntu (visited on 04/13/2023).

[22] Opensource.com. “What is open source?” (2023), [Online]. Available: https:
//opensource.com/resources/what-open-source (visited on 04/13/2023).

https://www.techtarget.com/searchdatamanagement/definition/database
https://www.techtarget.com/searchdatamanagement/definition/database
https://www.harperdb.io/post/what-is-database-clustering
https://www.ibm.com/topics/automation?mhsrc=ibmsearch_a&mhq=Automation
https://www.ibm.com/topics/automation?mhsrc=ibmsearch_a&mhq=Automation
https://www.ibm.com/topics/containerization
https://www.ibm.com/topics/containerization
https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/enable-ldap-over-ssl-3rd-certification-authority
https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/enable-ldap-over-ssl-3rd-certification-authority
https://learn.microsoft.com/en-us/troubleshoot/windows-server/identity/enable-ldap-over-ssl-3rd-certification-authority
https://cloud.google.com/learn/what-is-disaster-recovery
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.hostinger.com/tutorials/what-is-ubuntu
https://www.hostinger.com/tutorials/what-is-ubuntu
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source

Bibliography 89

[23] Instructure. “Yes, you can with Canvas.” (2023), [Online]. Available: https:
//www.instructure.com/canvas (visited on 05/21/2023).

[24] Moodle. “Installing Moodle.” (2022), [Online]. Available: https://docs.
moodle.org/401/en/Installing_Moodle (visited on 04/17/2023).

[25] Howard Lei, Farnaz Ganjeizadeh, Pradeep Kumar Jayachandran, and Pinar
Ozcan, “A statistical analysis of the effects of Scrum and Kanban on soft-
ware development projects,” eng, Robotics and computer-integrated manu-
facturing, vol. 43, pp. 59–67, 2017, ISSN: 0736-5845.

[26] David Gewirtz. “How does ChatGPT work?” (2023), [Online]. Available:
https://www.zdnet.com/article/how-does-chatgpt-work/ (visited on
05/14/2023).

[27] American Psychological Association. “experimental method.” (n.d), [On-
line]. Available: https://dictionary.apa.org/experimental-method
(visited on 04/17/2023).

[28] Moodle. “About Moodle.” (2014), [Online]. Available: https://docs.
moodle.org/401/en/About_Moodle (visited on 04/24/2023).

[29] GNU. “What is Bash?” (2022), [Online]. Available: https://www.gnu.org/
software/bash/manual/html_node/What-is-Bash_003f.html (visited on
04/13/2023).

[30] Opensource.com. “What is Bash?” (2022), [Online]. Available: https://
opensource.com/resources/what-bash (visited on 04/13/2027).

[31] Jeff Novotny. “Install a LAMP Stack on Ubuntu 22.04.” (2022), [Online].
Available: https://www.linode.com/docs/guides/how-to-install-a-
lamp-stack-on-ubuntu-22-04/ (visited on 04/13/2023).

[32] Moodle. “Installing AMP.” (2011), [Online]. Available: https://docs.
moodle.org/401/en/Installing_AMP (visited on 04/24/2023).

[33] MySQL. “What is MySQL?” (n.d.), [Online]. Available: https : / / dev .
mysql . com / doc / refman / 8 . 0 / en / what - is - mysql . html (visited on
04/29/2023).

[34] U. Hairah and E. Budiman, J. Phys.: Conf. Ser., vol. 1844, 012021, 2021.
DOI: 10.1088/1742-6596/1844/1/012021.

[35] Ionos. “What is Galera Cluster?” (2020), [Online]. Available: https://
www.ionos.com/digitalguide/hosting/technical-matters/mariadb-
galera-clusters/ (visited on 05/01/2023).

[36] HAProxy. “HAProxy.” (2002), [Online]. Available: https://www.haproxy.
org/ (visited on 04/27/2023).

[37] S. Toor et al., J. Phys.: Conf. Ser., vol. 513, 062047, 2014. DOI: 10.1088/
1742-6596/513/6/062047.

[38] HashiCorp. “What is Terraform?” (2014), [Online]. Available: https://
developer.hashicorp.com/terraform/intro (visited on 04/13/2023).

https://www.instructure.com/canvas
https://www.instructure.com/canvas
https://docs.moodle.org/401/en/Installing_Moodle
https://docs.moodle.org/401/en/Installing_Moodle
https://www.zdnet.com/article/how-does-chatgpt-work/
https://dictionary.apa.org/experimental-method
https://docs.moodle.org/401/en/About_Moodle
https://docs.moodle.org/401/en/About_Moodle
https://www.gnu.org/software/bash/manual/html_node/What-is-Bash_003f.html
https://www.gnu.org/software/bash/manual/html_node/What-is-Bash_003f.html
https://opensource.com/resources/what-bash
https://opensource.com/resources/what-bash
https://www.linode.com/docs/guides/how-to-install-a-lamp-stack-on-ubuntu-22-04/
https://www.linode.com/docs/guides/how-to-install-a-lamp-stack-on-ubuntu-22-04/
https://docs.moodle.org/401/en/Installing_AMP
https://docs.moodle.org/401/en/Installing_AMP
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://doi.org/10.1088/1742-6596/1844/1/012021
https://www.ionos.com/digitalguide/hosting/technical-matters/mariadb-galera-clusters/
https://www.ionos.com/digitalguide/hosting/technical-matters/mariadb-galera-clusters/
https://www.ionos.com/digitalguide/hosting/technical-matters/mariadb-galera-clusters/
https://www.haproxy.org/
https://www.haproxy.org/
https://doi.org/10.1088/1742-6596/513/6/062047
https://doi.org/10.1088/1742-6596/513/6/062047
https://developer.hashicorp.com/terraform/intro
https://developer.hashicorp.com/terraform/intro

90 Bibliography

[39] OpenStack. “OpenStack Orchestration.” (n.d), [Online]. Available: https:
//wiki.openstack.org/wiki/Heat (visited on 05/15/2023).

[40] Eigil Obrestad. “Openstack at NTNU.” (2016), [Online]. Available: https:
//www.ntnu.no/wiki/display/skyhigh/Openstack+at+NTNU (visited on
04/24/2023).

[41] OpenStack. “What is OpenStack?” (n.d), [Online]. Available: https://
www.openstack.org/software/ (visited on 04/18/2023).

[42] IBM. “What is Docker?” (n.d.), [Online]. Available: https://www.ibm.com/
topics/docker?mhsrc=ibmsearch_a&mhq=docker (visited on 05/21/2023).

[43] Docker Inc. “Docker Compose overview.” (n.d.), [Online]. Available: https:
//docs.docker.com/compose/ (visited on 05/21/2023).

[44] IBM. “Docker Swarm vs. Kubernetes: A Comparison.” (2022), [Online].
Available: https : / / www . ibm . com / cloud / blog / docker - swarm - vs -
kubernetes-a-comparison?mhsrc=ibmsearch_a&mhq=docker%5C%20swarm
(visited on 05/21/2023).

[45] Docker Inc. “Docker Registry.” (n.d.), [Online]. Available: https://docs.
docker.com/registry/ (visited on 05/21/2023).

[46] Mainak Chakraborty and Ajit Pratap Kundan, Monitoring Cloud-Native Ap-
plications. Apress, 2021, ISBN: 978-1-4842-6888-9.

[47] Grafana Labs. “The best developer experience for load testing.” (2023),
[Online]. Available: https://k6.io/ (visited on 05/14/2023).

[48] Wikipedia contributors. “OpenLDAP — Wikipedia, The Free Encyclopedia.”
(2023), [Online]. Available: https://en.wikipedia.org/w/index.php?
title=OpenLDAP&oldid=1139266868 (visited on 05/06/2023).

[49] Aditya Sridhar. “An introduction to Git: what it is, and how to use it.”
(2018), [Online]. Available: https : / / www . freecodecamp . org / news /
what-is-git-and-how-to-use-it-c341b049ae61/ (visited on 05/15/2023).

[50] Moodle. “Environment - max input vars.” (2021), [Online]. Available: https:
//docs.moodle.org/402/en/Environment_-_max_input_vars (visited on
05/03/2023).

[51] Moodle. “Security Recommendations.” (2023), [Online]. Available: https:
//docs.moodle.org/402/en/index.php?title=Security_recommendations&
oldid=83534 (visited on 04/27/2023).

[52] Moodle. “Moodledata directory.” (2010), [Online]. Available: https://
docs.moodle.org/19/en/index.php?title=Moodledata_directory&
oldid=77966 (visited on 04/27/2023).

[53] Influxdata. “Dashboards.” (2023), [Online]. Available: https://www.influxdata.
com/products/influxdb-templates/gallery/ (visited on 04/25/2023).

https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://www.ntnu.no/wiki/display/skyhigh/Openstack+at+NTNU
https://www.ntnu.no/wiki/display/skyhigh/Openstack+at+NTNU
https://www.openstack.org/software/
https://www.openstack.org/software/
https://www.ibm.com/topics/docker?mhsrc=ibmsearch_a&mhq=docker
https://www.ibm.com/topics/docker?mhsrc=ibmsearch_a&mhq=docker
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.ibm.com/cloud/blog/docker-swarm-vs-kubernetes-a-comparison?mhsrc=ibmsearch_a&mhq=docker%5C%20swarm
https://www.ibm.com/cloud/blog/docker-swarm-vs-kubernetes-a-comparison?mhsrc=ibmsearch_a&mhq=docker%5C%20swarm
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://k6.io/
https://en.wikipedia.org/w/index.php?title=OpenLDAP&oldid=1139266868
https://en.wikipedia.org/w/index.php?title=OpenLDAP&oldid=1139266868
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://docs.moodle.org/402/en/Environment_-_max_input_vars
https://docs.moodle.org/402/en/Environment_-_max_input_vars
https://docs.moodle.org/402/en/index.php?title=Security_recommendations&oldid=83534
https://docs.moodle.org/402/en/index.php?title=Security_recommendations&oldid=83534
https://docs.moodle.org/402/en/index.php?title=Security_recommendations&oldid=83534
https://docs.moodle.org/19/en/index.php?title=Moodledata_directory&oldid=77966
https://docs.moodle.org/19/en/index.php?title=Moodledata_directory&oldid=77966
https://docs.moodle.org/19/en/index.php?title=Moodledata_directory&oldid=77966
https://www.influxdata.com/products/influxdb-templates/gallery/
https://www.influxdata.com/products/influxdb-templates/gallery/

Bibliography 91

[54] Russ Savage. “Linux System Monitoring Template.” (2020), [Online]. Avail-
able: https://github.com/influxdata/community-templates/tree/
master/linux_system (visited on 05/14/2023).

[55] Docker Inc. “httpd.” (2023), [Online]. Available: https://hub.docker.
com/_/httpd (visited on 05/21/2023).

[56] Moodle. “github moodle/moodle.” (2023), [Online]. Available: https://
github.com/moodle/moodle (visited on 05/21/2023).

[57] Docker Inc. “haproxy.” (2023), [Online]. Available: https://hub.docker.
com/_/haproxy (visited on 05/21/2023).

[58] Moodle. “Test course generator.” (2021), [Online]. Available: https://
docs.moodle.org/39/en/Test_course_generator (visited on 05/06/2023).

[59] Moodle. “About Moodle FAQ.” (2020), [Online]. Available: https://docs.
moodle.org/401/en/About_Moodle_FAQ#What_is_Moodle.3F (visited on
04/13/2023).

[60] InfluxData Inc. “InfluxDB 1.x.” (2023), [Online]. Available: https://www.
influxdata.com/time-series-platform/ (visited on 05/15/2023).

[61] Marko Anastasov. “What is a CI/CD pipeline?” (2022), [Online]. Available:
https://semaphoreci.com/blog/cicd-pipeline (visited on 05/20/2023).

[62] Philippe Bournhonesque. “HashiCorp Consul: Because Dynamic Workloads
Call for Dynamic Service Networking.” (), [Online]. Available: https://
www.devoteam.com/expert-view/hashicorp-consul-because-dynamic-
workloads-call-for-dynamic-service-networking/ (visited on 05/20/2023).

[63] Richard B. “NGINX vs Apache – Choosing the Best Web Server in 2023.”
(2022), [Online]. Available: https://www.hostinger.com/tutorials/
nginx-vs-apache-what-to-use/ (visited on 05/19/2023).

[64] Mohammad Ali Maddah-Ali and Urs Niesen, “Fundamental Limits of Caching,”
English, IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014, ISSN: 0018-9448. DOI: 10.1109/TIT.2014.2306938.

[65] Shivang. “What is Grafana and what is it used for?” (), [Online]. Avail-
able: https://scaleyourapp.com/what- is- grafana- why- use- it-
everything-you-should-know-about-it/ (visited on 05/20/2023).

[66] Prateek Khushalani, Kubernetes Application Developer, eng. Apress Berkeley,
CA, 2022, ISBN: 978-1-4842-8031-7.

[67] David Gonzalez, “Docker Swarm and Kubernetes - Clustering Infrastruc-
ture,” eng, in Implementing Modern DevOps, United Kingdom: Packt Pub-
lishing, Limited, 2017, ISBN: 1786466872.

https://github.com/influxdata/community-templates/tree/master/linux_system
https://github.com/influxdata/community-templates/tree/master/linux_system
https://hub.docker.com/_/httpd
https://hub.docker.com/_/httpd
https://github.com/moodle/moodle
https://github.com/moodle/moodle
https://hub.docker.com/_/haproxy
https://hub.docker.com/_/haproxy
https://docs.moodle.org/39/en/Test_course_generator
https://docs.moodle.org/39/en/Test_course_generator
https://docs.moodle.org/401/en/About_Moodle_FAQ#What_is_Moodle.3F
https://docs.moodle.org/401/en/About_Moodle_FAQ#What_is_Moodle.3F
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://semaphoreci.com/blog/cicd-pipeline
https://www.devoteam.com/expert-view/hashicorp-consul-because-dynamic-workloads-call-for-dynamic-service-networking/
https://www.devoteam.com/expert-view/hashicorp-consul-because-dynamic-workloads-call-for-dynamic-service-networking/
https://www.devoteam.com/expert-view/hashicorp-consul-because-dynamic-workloads-call-for-dynamic-service-networking/
https://www.hostinger.com/tutorials/nginx-vs-apache-what-to-use/
https://www.hostinger.com/tutorials/nginx-vs-apache-what-to-use/
https://doi.org/10.1109/TIT.2014.2306938
https://scaleyourapp.com/what-is-grafana-why-use-it-everything-you-should-know-about-it/
https://scaleyourapp.com/what-is-grafana-why-use-it-everything-you-should-know-about-it/

Appendix A

Progress plan

The progress plan throughout the project is summed up in our Gantt chart, which
is appended in the following appendix. In this project management tool there is
an overview on all the different phases throughout the project.

93

94 Chapter A: Progress plan

Cre
B

ach
e

lo
r

En
ter C

o
m

p
an

y N
am

e in
 cell B

2
.

O
ran

ge - O
p

p
sett o

g d
rift av e-læ

rin
gsp

lattfo
rm

En
ter th

e n
am

e o
f th

e P
ro

ject Lead
 in

 cell B
3

. En
ter th

e P
ro

ject Start d
ate in

 cell E3
. P

ro
ject Start: lab

el is in
 cell C

3
.

To
m

 A
rn

e B
ran

d
vo

ld

A
lexan

d
er D

am
h

au
g

B
en

jam
in

 H
o

lh
jem

K
risto

ffer Lie
The

1

C
9

10
1

1
1

2
1

3
1

4
1

5
1

6
17

1
8

1
9

20
2

1
2

2
23

2
4

2
5

26
2

7
2

8
2

9
3

0
3

1
1

2
3

4
5

6
7

8
9

10
1

1
1

2
13

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
1

2
3

4
5

6
7

8
9

1
0

11
12

1
3

1
4

1
5

1
6

1
7

18
19

2
0

21
2

2
2

3
2

4
25

2
6

27
28

29
3

0
1

2
3

4
5

6
7

8
9

1
0

1
1

12
13

1
4

1
5

1
6

17
18

1
9

2
0

2
1

22
23

2
4

2
5

2
6

27
28

2
9

3
0

3
1

1
2

3
4

5
6

7
8

9
1

0
1

1
This

TA
SK

P
R

O
G

R
ESS

STA
R

T
EN

D
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
Cell

P
h

ase
 1

 P
ro

je
ct p

lan
n

in
g

Cell
Estab

lish
 co

n
tact w

ith
 clien

t
1

0
0

 %
0

9
.0

1
.2

0
2

3
0

9
.0

1
.2

0
2

3
Row

Fill o
u

t an
d

 sign
 p

ro
ject agreem

en
t

1
0

0
 %

0
9

.0
1

.2
0

2
3

1
3

.0
1

.2
0

2
3

G
ro

u
p

 o
rgan

izatio
n

1
0

0
 %

0
9

.0
1

.2
0

2
3

3
1

.0
1

.2
0

2
3

In
itial setu

p
 o

f file sto
rage an

d
 m

o
re

1
0

0
 %

1
1

.0
1

.2
0

2
3

2
7

.0
1

.2
0

2
3

W
rite an

d
 d

eliver p
ro

ject p
lan

1
0

0
 %

1
6

.0
1

.2
0

2
3

3
1

.0
1

.2
0

2
3

The
P

h
ase

 2
 R

e
se

arch
, d

e
ve

lo
p

m
e

n
t an

d
 te

stin
g

Start research
in

g th
e tech

n
o

lo
gies

1
0

0
 %

2
3

.0
1

.2
0

2
3

1
2

.0
2

.2
0

2
3

In
itial setu

p
 fo

r d
evelo

p
m

en
t

1
0

0
 %

0
1

.0
2

.2
0

2
3

0
7

.0
2

.2
0

2
3

D
iscu

ss p
ro

d
u

ct o
u

tlin
e w

ith
 clien

t/su
p

erviso
r

1
0

0
 %

0
1

.0
2

.2
0

2
3

1
4

.0
2

.2
0

2
3

In
frastru

ctu
re d

evelo
p

em
en

t an
d

 testin
g

1
0

0
 %

1
2

.0
2

.2
0

2
3

2
6

.0
2

.2
0

2
3

M
o

o
d

le setu
p

 an
d

 co
n

figu
ratio

n
1

0
0

 %
2

2
.0

2
.2

0
2

3
0

9
.0

3
.2

0
2

3

TIC
K

 stack setu
p

 an
d

 co
n

figu
ratio

n
1

0
0

 %
2

7
.0

2
.2

0
2

3
1

9
.0

3
.2

0
2

3

Sam
p

le p
h

ase title b
lo

ck
P

h
ase

 3
 Im

p
ro

ve
m

e
n

ts an
d

 te
ch

n
ical d

o
cu

m
e

n
tatio

n

In
frastru

ctu
re im

p
ro

vem
en

ts
3

0
 %

1
6

.0
3

.2
0

2
3

2
6

.0
3

.2
0

2
3

TIC
K

 stack im
p

ro
vem

en
ts

7
0

 %
2

1
.0

3
.2

0
2

3
2

8
.0

3
.2

0
2

3

Secu
rity im

p
ro

vem
en

ts
1

0
 %

1
3

.0
3

.2
0

2
3

0
2

.0
4

.2
0

2
3

G
ath

er tech
n

ical d
o

cu
m

en
tatio

n
1

0
0

 %
2

0
.0

3
.2

0
2

3
0

9
.0

4
.2

0
2

3

Sam
p

le p
h

ase title b
lo

ck
P

h
ase

 4
 W

ritin
g re

p
o

rt an
d

 fin
ish

in
g u

p

P
u

b
lish

 p
ro

d
u

ct to
 p

ro
d

u
ctio

n
1

0
0

 %
0

3
.0

4
.2

0
2

3
2

3
.0

4
.2

0
2

3

Fin
ish

 w
ritin

g rep
o

rt
1

0
0

 %
1

7
.0

4
.2

0
2

3
1

6
.0

5
.2

0
2

3

Q
u

ality co
n

tro
l o

f d
o

cu
m

en
tatio

n
8

0
 %

2
4

.0
4

.2
0

2
3

2
1

.0
5

.2
0

2
3

Fin
al d

elivery o
f rep

o
rt an

d
 fin

ish
ed

 p
ro

d
u

ct
1

0
0

 %
1

8
.0

5
.2

0
2

3
2

1
.0

5
.2

0
2

3

P
rep

are p
resen

tatio
n

 o
f th

e p
ro

ject
0

 %
2

3
.0

5
.2

0
2

3
0

6
.0

6
.2

0
2

3
This

2
7

.0
3

.2
0

2
3

0
3

.0
4

.2
0

2
3

1
5

.0
5

.2
0

2
3

2
2

.0
5

.2
0

2
3

1
0

.0
4

.2
0

2
3

1
7

.0
4

.2
0

2
3

2
4

.0
4

.2
0

2
3

0
1

.0
5

.2
0

2
3

0
8

.0
5

.2
0

2
3

2
9

.0
5

.2
0

2
3

0
5

.0
6

.2
0

2
3

P
ro

ject Start:

D
isp

lay W
eek:

0
6

.0
2

.2
0

2
3

1
3

.0
2

.2
0

2
3

2
0

.0
2

.2
0

2
3

2
7

.0
2

.2
0

2
3

0
9

.0
1

.2
0

2
3

0
9

.0
1

.2
0

2
3

1
6

.0
1

.2
0

2
3

2
3

.0
1

.2
0

2
3

3
0

.0
1

.2
0

2
3

0
6

.0
3

.2
0

2
3

1
3

.0
3

.2
0

2
3

2
0

.0
3

.2
0

2
3

Appendix B

Documentation

This appendix contains the technical documentation on every solution produced
in the project. The documentation consists of the architecture that we consider to
be a possible solution for developing the Moodle platform. Along with the archi-
tectures, there are additional components documented as well. These additional
components are TI-Stack, LDAP server, and other documentation such as Open-
Stack GUI configuration. The documentation is available in the following pub-
lic Git-repo: https://gitlab.com/dcsg2900_2023_orange/bachelor_orange/-/
tree/main.

95

https://gitlab.com/dcsg2900_2023_orange/bachelor_orange/-/tree/main
https://gitlab.com/dcsg2900_2023_orange/bachelor_orange/-/tree/main

96 Chapter B: Documentation

B.1 Architectures

B.1.1 Single server setup

single_instance.md 5/21/2023

1 / 5

How to manually configure and run Moodle using the
LAMP method.
Author: Alexander Damhaug, Date: 04.02.2023

Following document is a thorough documentation on how to sucessfully run the Moodle Service on a Ubuntu
Server 22.04 LTS (Jammy Jellyfish amd64) Virtual Machine. It is a simplification of Linode's solution, and
includes both the installation of a LAMP Stack (Virtual Machine with: Linux, Apache, MySQL, and PhP) And a
manual on how to sucessfully run Moodle on the stack.

NOTE: This is the simplest form of running a Moodle platform, and it's purpose is to build a learning curve on
understanding the service, and should not be used as a solution itself.

The Sources of this documentation:

Install a LAMP Stack on Ubuntu 22.04: https://www.linode.com/docs/guides/how-to-install-a-lamp-
stack-on-ubuntu-22-04/
Install Moodle on Ubuntu 22.04: https://www.linode.com/docs/guides/how-to-install-moodle-on-
ubuntu-22-04/

Prerequisite
Following steps is expected to be preconfigured:

Virtual machine with Ubuntu 22.04 image (manager)
Terraform installed
On-prem cloud solution with OpenStack as opensource IaaS tool
Existing virtual network, where manager is a part of

See: 1_doc_openstack_setup.md in 5_doc_other_components

Setting up the environment
1. Create a directory and move into the empty environment

mkdir moodle_Infra
cd moodle_Infra

2. Clone the repo with the terraform code: Use own access token below with minimum read-repo rights

git clone https://private-token:<access-token>@<link-to-gitlab>

3. Copy the directory with the terraform code used and navigate into the dir

single_instance.md 5/21/2023

2 / 5

cp -r bachelor_orange/code/1_code_single_instance/ .
cd 1_code_single_instance/

4. Modify the following variables in the terraform file on main.tf to fit your environment in OpenStack
keypair
network
security_groups

Run the terraform code and configure the remaining steps

terraform init
terraform plan
terraform apply

How to install LAMP (Linux, Apache, MySQL, PhP)
1. Update the ubuntu packages using apt

sudo apt update && sudo apt upgrade

2. Install apache server using apt

sudo apt install apache2

3. Install MySQL web server using apt

sudo apt install mysql-server

4. Install PHP, along with php modules compatibale with Apache and MySQL using apt

sudo apt install php libapache2-mod-php php-mysql

How to install Moodle on Ubuntu 22.04
1. Ensure Ubuntu system is up to date

sudo apt update && sudo apt upgrade

single_instance.md 5/21/2023

3 / 5

2. Confirm release of PHP

php -v

3. Install the remaining php packages using apt

sudo apt-get install graphviz aspell ghostscript clamav php-pspell php-curl php-gd
php-intl php-mysql php-xml php-xmlrpc php-ldap php-zip php-soap php-mbstring git

4. Remove ; and change setting max_input_vars to atleast 5000 and restart the web server

sudo nano /etc/php/8.1/apache2/php.ini
sudo service apache2 restart

5. Move to /opt directory, and clone the Moodle Git repo

cd /opt
sudo git clone git://git.moodle.org/moodle.git

6. Change to the Moodle directory and list the branches in the Moodle repository. Review the list choose
the latest stable release

cd moodle
sudo git branch -a

7. Track, and choose the desired git-branch

sudo git branch --track MOODLE_401_STABLE origin/MOODLE_401_STABLE
sudo git checkout MOODLE_401_STABLE

8. Copy the contents of the Moodle repo to the running Apache service, and change the moderation of
the moodle directory

sudo cp -R /opt/moodle /var/www/html/
sudo chmod -R 0777 /var/www/html/moodle

NOTE: For security reasons, consider changing the directory permissions

single_instance.md 5/21/2023

4 / 5

9. Create the /var/www/moodledata directory and change owner and permissions

sudo mkdir /var/www/moodledata
sudo chown -R www-data /var/www/moodledata
sudo chmod -R 0777 /var/www/moodledata

How to configure the MySQL Server for Moodle
1. Create a password generated for the admin user

sudo apt install pwgen

pw=$(pwgen -s 24 1)
sudo bash -c "echo $pw >> password.txt"
pw=""
sudo chmod 600 password.txt

2. Log into mySQL using root privileges and create a password

sudo mysql -u root -p

3. Create a database for Moodle

CREATE DATABASE moodle DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

4. Create a Moodle MySQL user, and grant them permissions for the database.

CREATE USER 'admin'@'localhost' IDENTIFIED BY '$(cat passord.txt)';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY TABLES,DROP,INDEX,ALTER
ON moodle.* TO 'admin'@'localhost';

5. Exit database

quit

How to configure the Moodle service to finish installation GUI
1. Go in the browser and put the following in the URL: <floating_IP>/moodle

2. Finish the installation, by following the steps provided in the browser

single_instance.md 5/21/2023

5 / 5

Choose Language -> Next -> Confirm paths -> Choose database driver: Improved MySQL
database driver -> Database settings:

Database host: Localhost
Database name: Moodle
Database user: admin
Database password: <generated-password>

Review the licensing agreement and continue

3. Moodle verifies installations, Ensure all server checks indicate ok. If the installation is successful,
Moodle displays the message Your server environment meets all minimum requirements
select Continue

4. Moodle will now install every service it provides in the background, this may take some time, so just be
patient.

5. Press continue and configure the main administrator account which will have complete control over
the platform.

Username: <username>
Password: <Password>
First Name: <first_name>
Last Name: <last_name>
Email Address: <Email_Address>
City/Town: <City/Town>
Country: <Country>
Timezone: <Timezone>
Description: <Description>

1. Installation of home web page

Full site name: <site_name>
Short name for site: <short_name>
Support Email: <support_email>
Noreply address: <noreply_address>

Now you have a fully working Moodle platform!

102 Chapter B: Documentation

B.1.2 3-Layer architecture

3_layer.md 5/21/2023

1 / 4

How to configure a complete infrastructure with the
moodle-platform using terraform
Author: Alexander Damhaug, Date: 28.02.2023

Following document is a thorough documentation on how to successfully run the Moodle platform on a
complete self-provisioned infrastructure with a separate load-balancer, database and an optional amount of
web-servers for configuration. In this document, we use the Ubuntu Server 22.04 LTS (Jammy Jellyfish amd64)
Virtual Machine for the compute resource.

NOTE: This documentation, uses preconfigured "terraform code and bash script" for provisioning the
infrastructure and the Moodle platform itself.

Sources:

How to implement sticky sessions with haproxy: https://www.haproxy.com/blog/enable-sticky-sessions-
in-haproxy/
How to cluster multiple servers: https://severalnines.com/blog/clustering-moodle-multiple-servers-
high-availability-and-scalability/
ChatGPT - specifically: Bash script-syntax
Lecture from DCSG2003, Uke 10: "Nettverkslagring"
Lecture from DCSG2003, Uke 3: "Arkitekturer og lastbalansering"

Prerequisite
Following steps is expected to be preconfigured:

Virtual machine with Ubuntu 22.04 image (manager)
Terraform installed
On-prem cloud solution with OpenStack as opensource IaaS tool
Existing virtual network, where manager is a part of

See: 1_doc_openstack_setup.md

Setting up the environment
1. Create a directory and move into the empty environment

mkdir moodle_Infra
cd moodle_Infra

2. Clone the research repo with the terraform code: Use own access token with read-repo rights

git clone https://private-token:<access-token>@<link-to-gitlab>

3_layer.md 5/21/2023

2 / 4

3. Copy the directory with the terraform code used and navigate into the dir

cp -r bachelor_orange/code/1_code_single_instance/ .
cd 1_code_single_instance/

4. Modify the following variables in the terraform files in the module folder to fit your environment in
OpenStack

instance_count (Amount of webservers)
instance_name
instance_flavor
instance_key_pair (Manager public key)
network (Same as manager)
security_groups

database -> variables.tf
loadbalancer -> variables.tf
webservers -> variables.tf

5. Make sure to also modify the loadbalancer startup script with the correct repo location

loadbalancer -> startupscript.sh

Run the terraform code and configure the remaining steps

terraform init
terraform plan
terraform apply

NOTE: This configuration can take several minutes, be patient!

Configure Gluster FS between the webservers

NOTE: Replace <"server1-x"> section with the ip-addresses of applicable webserver

On every server

1. Open a secure connection between all the provisioned webservers through ssh from main. Change the
hostname to web1-x to differentiate the webservers

ssh <ip-address>
sudo hostname <webX>
sudo su

3_layer.md 5/21/2023

3 / 4

On one server (server1)

1. Run the following command(s), but only use the ip-addresses of the remaining webservers

gluster peer probe <server2>
gluster peer probe <server3>
...
gluster peer probe <serverX>

NOTE: If 'gluster' not found is the output, the startup installation is not finished yet, wait some minutes and try
again. Check the status.txt: cat ~/status.txt

2. Check if every webserver is within the same cluster

gluster peer status

3. Create and run the volume (Change number to amount of webservers provisioned)

gluster volume create moodle replica 2 <server1>:/moodle_brick
<server2>:/moodle_brick <server3>:/moodle_brick force

gluster volume start moodle

On every server

1. Mount the the volume on the existing moodledata directory: serverX is the ip-address of the server you
are running the command on

mount -t glusterfs <serverX>:moodle /var/www/moodledata

2. Check if the mount was successful

df -h

On one server

1. Change the owner and permissions for the /moodledata directory

3_layer.md 5/21/2023

4 / 4

sudo chown -R www-data /var/www/moodledata
sudo chmod -R 0777 /var/www/moodledata

Configure the config.php, start CLI installation, and finish configuration in GUI

Go back to manager, and retrieve the config-file in the research-repo

cp /home/ubuntu/moodle_Infra/research/config/config.php .

Modify the config.php to your specification, in our solution you only need to change the following
arguments:

$CFG->dbhost = '<DB_ip-address>';
$CFG->wwwroot = 'http://<LB_floating-IP>/moodle';

Create config.php file under /var/www/html/moodle directory in every webserver and copy the config
contents earlier and paste it in the same config.php file

ssh <ip-address>
sudo su
nano /var/www/html/moodle/config.php
^U

On Server1: Change the password below to the Admin password generated for Moodle in the
startupscript, and run the command to start the installation process: (Can take several minutes to finish
installation)

php /var/www/html/moodle/admin/cli/install_database.php --agree-license --
adminpass=<generated_password>

Copy the floating-IP and paste it in the browser
Log in as the admin you've just created, and finish and update the profile
Finish the site settings configuration and save changes

Now you have a fully working Moodle platform on a provisioned
infrastructure, with Load-Balancing!

Chapter B: Documentation 107

B.1.3 Docker

Docker initial setup

README.md 5/22/2023

1 / 2

Docker
This document goes through the setup and configuration of docker to set up moodle

Short description:
The docker architecture is set up to run multiple containers with the self-made docker image.

Prerequisite:
Following steps is expected to be preconfigured:

Virtual machine with Ubuntu 22.04 image (manager)
Terraform installed
On-prem cloud solution with OpenStack as opensource IaaS tool
Connection to the openstack provider.
Existing virtual network, where manager is a part of

See /doc/5_doc_other_components/1_doc_openstack_setup.md for manual prosess to set up these
prerequisite.

Use terraform to set the infrastructure.
Clone down the needed code in the folder ‘/code/3_code_docker/infra_code/’

git clone https://private-token:<access-token>@<link-to-gitlab>

cp -r ./bachelor_orange/3_code_docker/docker_code .

Edit these variables before you apply the code:

/modules/<module_name>/variables.tf

 instance_key_pair
 network
 security_groups

/modules/docker/startupscript.sh

 docker registry ip

Modules (database, docker and docker_loadbalancer)

Apply the code

README.md 5/22/2023

2 / 2

Terraform init
terraform apply

This code sets up three servers in openstack. These are a docker instance, a database and a loadbalancer for
docker containers. Software is installed with startup scripts.

After a few minutes the three instances are created. Both the database and loadbalancer does the software
configuration for you.

If you have prebuilt images pushed to the private registry, follow this guide docker_registry.md. To build your
own images localy, see this guide docker_build.md. Continue on the newly created docker instance.

110 Chapter B: Documentation

Docker registry

docker_registry.md 5/22/2023

1 / 1

Using images from private docker registry
This document guides you trough how to use images stored on a private docker registry server.

Before running: Edit dbhost to database IP and www-root to "http://balancer-floating-ip/moodle" in
bachelor_orange/config/config.php and push changes. Ensure that the database type is set to mysqli

Pull images:

sudo docker pull <registry_IP>:5000/moodle_install_db_script
sudo docker pull <registry_IP>:5000/moodle_www

Running the containers:

If the db is new, make sure the moodle database is created and run the install database container:

sudo docker run -P <registry_IP>:5000/moodle_install_db_script:latest

Note that this may take some time to run trough the database initialzation.

Start the webserver container:

To start webserver container run

sudo docker run -d -p 22222:80 -v moodledata:/moodledata
10.212.170.44:5000/moodle:latest
sudo docker run -d -p 33333:80 -v moodledata:/moodledata
10.212.170.44:5000/moodle:latest
sudo docker run -d -p 44444:80 -v moodledata:/moodledata
10.212.170.44:5000/moodle:latest

Remember to open for ports/portrange used for containers in sec-group.

You can now visit the running service at http:///moodle

112 Chapter B: Documentation

Docker build

docker_build.md 5/22/2023

1 / 2

Setup to build images on a docker instance:
In home directory: clone bachelor_orange repo

git clone https://private-token:<access-token>@<link-to-gitlab>

Copy the files to your location

cp -r ./bachelor_orange/3_code_docker/docker_code .

Go into the folder:

cd docker_code/

Clone the moodle code from moodle github:

git clone -b MOODLE_401_STABLE git://git.moodle.org/moodle.git

Build the two images needed, moodle_www:

cd docker_www

sudo docker build -t moodle_www:<version-tag> -f Dockerfile ..

And detabase_script image:

cd ../docker_moodle_db-setup

sudo docker build -t moodle_www:<version-tag> -f Dockerfile ..

How to run
Before running: Edit dbhost to database ip and www-root to "http://balancer-floating-ip/moodle" in
bachelor_orange/config/config.php and push changes. Ensure that the database type is set to mysqli

Running the containers:

docker_build.md 5/22/2023

2 / 2

If the db is new, make sure the moodle database is created and run the install database container:

sudo docker run -P moodle_install_db_script:latest

Note that this may take some time to run trough the database initialzation.

Start the webserver container:

To start webserver container run

sudo docker run -d -p 22222:80 -v moodledata:/moodledata moodle:latest
sudo docker run -d -p 33333:80 -v moodledata:/moodledata moodle_www:latest
sudo docker run -d -p 44444:80 -v moodledata:/moodledata moodle_www:latest

Remember to open for ports/portrange used for containers in sec-group.

You can now visit the running service at http:///moodle

Chapter B: Documentation 115

B.1.4 Docker swarm

docker_swarm.md 5/21/2023

1 / 7

This document goes through the setup and
configuration of docker swarm running Moodle.
Author: Kristoffer Lie, Date: 08.05.2023

Short description:
The docker swarm architecture is a combination of all our previous infrastructures and knowledge. Docker
swarm is a container orchestration tool that allows us to run up redundant amount of services that all runs the
same docker image. Docker itself handles what container runs where and load balancing internal.

Following steps in the documentation:

1. 3 ubuntu instances
2. Installed and setup MariaDB cluster
3. Set up shared network folder using glusterFS
4. Install and setup docker, including docker swarm
5. Run database container (install DB)
6. Set up openstack loadbalancer (web and db)
7. Deploy the stack

Prerequisite:
Following steps is expected to be preconfigured:

Virtual machine with Ubuntu 22.04 image (manager)
Terraform installed
On-prem cloud solution with OpenStack as opensource IaaS tool
Existing virtual network, where manager is a part of

Use terraform to set up the three servers:
The code needed is stored in the folder ‘/code/4_code_docker_swarm’. This sets up three servers in openstack.
Software is installed with a startup script.

Edit these variables befor you apply the code:`

/modules/server/variables.tf

 instance_key_pair
 network
 security_groups

/modules/server/startupscript.sh

 docker registry ip on line (at the end)

docker_swarm.md 5/21/2023

2 / 7

Apply the code

Terraform init
terraform apply

Note that you need terraform installed and connect to the openstack provider.

Note down the ip addresses for each serves:

server1: <ipadd>
server2: <ipadd>
server3: <ipadd>

Configure the db-servers

On every DB server

1. Open a secure connection between all the provisioned servers through ssh from main.

ssh <ip-address>
sudo su

2. Configure local DNS to map the ip-addresses of the 3 DB-servers in /etc/hosts 'db1-db2-db3'

serverX: nano /etc/hosts:

<server1> db1
<server2> db2
<server3> db3

3. Ping domain-names to assure connectivity on the network ping dbX

4. Copy the contents of the following DB-cluster configuration file

Source: - MariaDB cluster setup:

[mysqld]
Cluster node configurations
wsrep_cluster_address="gcomm://db1,db2,db3"
Make sure this is corresponds to hostname:
wsrep_node_address="dbx"
innodb_buffer_pool_size=600M

Mandatory settings to enable Galera

docker_swarm.md 5/21/2023

3 / 7

wsrep_on=ON
wsrep_provider=/usr/lib/galera/libgalera_smm.so
binlog_format=ROW
default-storage-engine=InnoDB
innodb_autoinc_lock_mode=2
innodb_doublewrite=1
query_cache_size=0
bind-address=0.0.0.0

Galera synchronization configuration
wsrep_sst_method=rsync

6. Create and modify cluster.cnf to the servers specification, so it can join the cluster. Change the
following argument "dbx" to db1-3 on the respective server you are on. server1: nano
/etc/mysql/conf.d/cluster.cnf:

wsrep_node_address="db1"

server2: nano /etc/mysql/conf.d/cluster.cnf:

wsrep_node_address="db2"

server3: nano /etc/mysql/conf.d/cluster.cnf:

wsrep_node_address="db3"

On one DB-server (server1)

1. Start server1 in bootstrap mode, this server will be the master of this database-cluster:
galera_new_cluster

On the remaining servers

1. Start their database and confirm connectivity to the cluster. Complete synchronization can take a few
minutes.

service mysql restart
service mysql status

2. Check cluster size

mysql -u root -p"" -e "SHOW STATUS LIKE 'wsrep_cluster_size'"

docker_swarm.md 5/21/2023

4 / 7

One DB-server:

1. Create the Moodle database, the admin user with the generated password and restart the DB

pw=$(pwgen -s 24 1)
sudo bash -c "echo $pw >> password.txt"
sudo chmod 600 password.txt

sudo mysql -u root -p"" -e "CREATE DATABASE moodle DEFAULT CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;"

sudo mysql -u root -p"" -e "CREATE USER 'admin'@'%' IDENTIFIED BY ‘$pw’;"

sudo mysql -u root -p"" -e "GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE
TEMPORARY TABLES,DROP,INDEX,ALTER ON moodle.* TO 'admin'@'%';"

sudo sed -i 's/#bind-address.*/bind-address = 0.0.0.0/'
/etc/mysql/mariadb.conf.d/60-galera.cnf

sudo systemctl restart mysql

pw=""

2. Connect to another server in the cluster and check if the database is available

mysql -u root -p"" -e "SHOW DATABASES"

Set up glusterFS

Probe the the servers from server1

gluster peer probe <server2_ip>
gluster peer probe <server3_ip>

Create the gluster volume

gluster volume create moodle replica 3 <server1>:/moodle_brick
<server2>:/moodle_brick <server3>:/moodle_brick force

docker_swarm.md 5/21/2023

5 / 7

Start the volume:

gluster volume start moodle

Mount the volume on each server:

mount -t glusterfs <serverx_ip>:moodle /moodledata

Verify connection by creating a file on server1:

touch /moodledata/I_AM_MOUNTED

On server2 and server3:

ls /moodledata

give the proper access to moodledata:

sudo chown -R www-data /moodledata
sudo chmod -R 0777 /moodledata

You should now have a shared network folder mounted on /moodledata

Create a loadbalancer in GUI for HTTP

Create a loadbalancer in openstack GUI.

Update the floating IP of wwwroot in config.php in the gitlab repo. Set the dbhost to be server1 private IP.

Set up the database:

First, we need to pull down the image from our local docker registry.

To allow http pull, add this registry:

echo "{
\"insecure-registries\" : [\"http://<registry_ip>:5000\"]
}" >> /etc/docker/daemon.json

sudo systemctl restart docker

docker_swarm.md 5/21/2023

6 / 7

Pull and run the install database installation script:

sudo docker pull <registry_ip>:5000/moodle_install_db_script

sudo docker run -P <registro_ip>:5000/moodle_install_db_script:latest

Set up the swarm:

Initialize the swarm on server1

docker swarm init

Take note of the join command outputted and paste it in the remaining servers.

Get the docker-compose file and start the moodle service!

Get the docker compose file and haproxy config in the /code/config folder:

curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-
api>/config/docker_compose.yaml" >> docker_compose.yaml

curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-
api>/config/haproxy.cfg" >> haproxy.cfg

Start the moodle service!

In order for the LB container to work, edit the dbhost to 'getenv("MOODLE_DB_HOST")' before you start up
the stack.

Pull down the web service image:

sudo docker pull <registry_ip>:5000/moodle_www_krisern

Run the stack

sudo docker stack deploy -c docker_compose.yaml moodle

Use the set_premissions_moodledata.sh to set the preferd premissions on dataroot (/moodledata).

 curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-api>" >>
set_premissions_moodledata.sh

docker_swarm.md 5/21/2023

7 / 7

make the file executable, and run the set premissions script:

./set_premissions_moodledata.sh /moodledata

Chapter B: Documentation 123

B.2 Additional infrastructure

B.2.1 TI-Stack

2_monitoring_setup.md 5/19/2023

1 / 3

Set up monitoring of services (linux monitoring):
@ Author Kristoffer Lie

First, we need to provision a influxdb server, witch is done using terraform.

Get the code:

git clone https://private-token:@

Extract the folder needed and move into it:

cp -r code/5_code_other_components/monitoring/ .

cd monitoring.

Some of the variables in variables.tf should be changed:

instance_key_pair,
network1
network_pool
security_groups
instance_flavor

nano variables.tf

Running terraform init followed by terraform apply will provision a instance with influxdb installed and
started, together with a floating IP to access the servcer.

Head to the server floating ip and port 8086 to get started:

http://<floating_ip>:8086

Log in with the cridentials provided in the startupscript.

Add a template dashboard:
Head to the dashboard tab on the left --> create dashboard --> add template --> browse comunity
templates.

Choose the template you prefer, we use the linux system template:

https://github.com/influxdata/community-templates/tree/master/linux_system

2_monitoring_setup.md 5/19/2023

2 / 3

Copy the .yaml url into the influxdb site and click Lookup Template --> install template

If you head back to your dashboard you should now see a linux system dashboard.

Generate a API token to be used to connect to the influxDB in the API token tab. Take note of the Token
generated and store it somewhere safe!

Setup telegraf to run (on evry host)
Note: inspierd by this site: https://serverfault.com/questions/1057001/telegraf-works-manually-but-not-the-
service-run-telegraf-in-background

Install telegraf:

sudo apt install telegraf

Verify that telegraf is installed:

telegraf version

Curl down the config files:

 curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-
api>"/bachelor_orange/config/env_telegraf >> env_telegraf

 curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-
api>"/bachelor_orange/config/linux_montr.conf >>
/var/www/html/moodle/linux_montr.conf

Fill out the env variables in the env_telegraf file to fit your influx setup and send it to telegraf

nano env_telegraf

sudo cp env_telegraf /etc/default/telegraf

Edit the hostname to match the instance.

nano linux_montr.conf

``

2_monitoring_setup.md 5/19/2023

3 / 3

Copy the telegraf configuration file to let telegraf service read from it:

sudo cp linux_montr.conf /etc/telegraf/telegraf.conf

Restart the telegraf service and check the status

sudo systemctl restart telegraf

sudo systemctl status telegraf

After 5 minutes, head to the linux system dashboard! Spesify the bucket and host.

Chapter B: Documentation 127

B.2.2 LDAP server

3_OpenLDAP.md 5/21/2023

1 / 4

OpenLDAP
OpenLDAP

Config/installation
Create users
Setup Moodle to use LDAP server
Configure cron job

Config/installation
Installation:

sudo apt install slapd ldap-utils -y

sudo dpkg-reconfigure slapd
- Omit OpenLDAP server configuration? No
- DNS domain name? orange.ba
- Organization name? Bachelor Orange
- Administrator password?
- Do you want the database to be removed when slapd is purged? No
- Move old database? Yes

Create users

Setting variable for generated passwords for user
sudo apt install pwgen

password=$(pwgen -s 24 1)
sudo bash -c "echo $password >> password.txt"
sudo chmod 600 password.txt

Create OU
sudo ldapadd -x -D cn=admin,dc=orange,dc=ba -W << EOF
dn: ou=People,dc=orange,dc=ba
objectClass: organizationalUnit
ou: People
EOF

Create users
sudo ldapadd -x -D cn=admin,dc=orange,dc=ba -W << EOF
dn: uid=User,ou=People,dc=orange,dc=ba
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: User
givenName: User
sn: User

3_OpenLDAP.md 5/21/2023

2 / 4

cn: User User
displayName: User User
mail: user@user.user
uidNumber: 1001
gidNumber: 1001
userPassword: $password
gecos: User User
loginShell: /bin/bash
homeDirectory: /home/user

dn: uid=User2,ou=People,dc=orange,dc=ba
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: User2
givenName: User2
sn: User
cn: User2 User
displayName: User2 User
mail: user2@user.user
uidNumber: 1002
gidNumber: 1001
userPassword: $password
gecos: User2 User
loginShell: /bin/bash
homeDirectory: /home/user2

dn: uid=User3,ou=People,dc=orange,dc=ba
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: User3
givenName: User3
sn: User
cn: User3 User
displayName: User3 User
mail: user3@user.user
uidNumber: 1003
gidNumber: 1001
userPassword: $password
gecos: User3 User
loginShell: /bin/bash
homeDirectory: /home/user3

dn: uid=User4,ou=People,dc=orange,dc=ba
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
uid: user4
givenName: User4
sn: User
cn: User4 User
displayName: User4 User
mail: user4@user.user

3_OpenLDAP.md 5/21/2023

3 / 4

uidNumber: 1004
gidNumber: 1001
userPassword: $password
gecos: User4 User
loginShell: /bin/bash
homeDirectory: /home/user4
EOF

Clearing password variable
password=""

This creates the following structure:

orange.ba
People

User
User2
User3
User4

User passwords are set using a saved password file. The file with the password is only accessible as root, and
the file is deleted as soon as it's not needed anymore.

Setup Moodle to use LDAP server
https://docs.moodle.org/401/en/LDAP_authentication#Enabling_LDAP_authentication

1. Go to Site administration -> Plugins -> Authentication -> Manage authentication and click the eye icon
opposite LDAP Server. When enabled, it will no longer be greyed out.

2. Click the settings link, configure as required (see information below), then click the 'Save changes'
button.

Configure the following settings:

Setting New value

auth_ldap | host_url ldap://10.212.174.170

auth_ldap | preventpassindb Yes

auth_ldap | bind_dn cn=admin,dc=orange,dc=ba

auth_ldap | bind_pw YOUR LDAP ADMIN PASSWORD

auth_ldap | user_type posixAccount (rfc2307)

auth_ldap | contexts ou=people,dc=orange,dc=ba

auth_ldap | field_map_firstname givenName

auth_ldap | field_map_lastname sn

auth_ldap | field_map_email mail

3_OpenLDAP.md 5/21/2023

4 / 4

Configure cron job
https://docs.moodle.org/401/en/LDAP_authentication#Enabling_the_LDAP_users_sync_job

1. Go to Site administration -> Server -> Scheduled tasks and click the gear icon on LDAP users sync job.
2. Select the desired frequency of running and enable the task by un-ticking the disabled checkbox.

Run the following command on the Moodle server to check if the cron jobs work:

sudo /usr/bin/php /var/www/html/moodle/admin/cli/cron.php

Next configure cron on the server to run the previous command automatically:

https://docs.moodle.org/36/en/Cron_with_Unix_or_Linux

sudo crontab -u www-data -e

Add this line:
*/1 * * * * /usr/bin/php /var/www/html/moodle/admin/cli/cron.php >/dev/null

132 Chapter B: Documentation

B.3 Other documentation

B.3.1 OpenStack GUI-Setup

1_doc_openstack_setup.md 5/16/2023

1 / 2

How to create a stack of components in Openstack.
Author: Alexander Damhaug, Date: 30.01.2023

Following document is a thorough documentation on how to successfully build a stack of components in GUI
for Openstack.

Create a Router
A router is a virtual component that connects multiple networks within the Openstack environment.
This allows the user to connect their virtual network with the gateway of the on-prem solution.
'ntnu-internal' refers to the standarized internal network in SkyHiGH (NTNU's on-prem cloud platform
that runs the Openstack software). An external user, typically has a similar option, with a different name.

Network -> Routers -> Create Router -> Router Name: "default" -> create
router ->
Set Gateway -> Select network -> ntnu-internal -> submit

Create a Network
In this step, you have to create your own private network, an environment your instances can launch on.

Network -> Networks -> Create Network -> Network Name: "default" -> Subnet
->
Subnet Name: "default" -> Network Address: 192.168.X.X/24 -> Create

Create Security Groups
A security group is essentially a simple firewall, to block or allow specific types of traffic or ip-addresses.

Security Group -> Name: "default" -> Create Security Group ->
Add rules -> Rule: HTTP, HTTPS, SSH -> Ingress -> Add

NOTE: Ensure that all ip protocols and any port range is open for traffic within the network

Create key pair / Import public key
Creating a public key for your openstack project is necessary to be able connect to instances created.

Compute -> Key Pairs -> Import Public Key -> Key Pair Name: "default"
 -> Key Type: SSH Key -> Browse: default.pub -> Import Public
Key

1_doc_openstack_setup.md 5/16/2023

2 / 2

Create Main Instance (Manager)
Use the latest available image.
Following section is an example of compute resources, that can be applied.

Instances -> Launch Instance ->
Instance Name: "Test_Manager"
Source: 'Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64'
Flavor: 'gx1.2c4r' (2 VCPUS, 4GB, 40 GB Total Disk)
Networks: "default"
Security Groups: "default" -> Security Groups -> Key Pair -> default -> Launch
Instance

Associate Floating IP
Associate a floating IP to the instance created, to reach it outside the network.

Instances -> "Test_Manager" -> Dropdown -> Associate Floating IP -> +
 -> Allocate IP -> Select a port: Test_Manager ->
Associate

SSH into the VM
Open a secure connection the instances created.

ssh -i .\default ubuntu@<floating_IP>

What's next?
Run Moodle: See Documentations -> doc/1_doc_single-instance/single_instance.md

NOTE: You can start at "How to install LAMP (Linux, Apache, MySQL, PhP)" if you've finished
1_doc_openstack_setup.md

Appendix C

Code

In this appendix all the code used to build the infrastructure components including
the semi-automated startup-scripts for the solutions are included. Similar to ap-
pendix B, all the following code are used in all the architectures considered to be
potential solutions for running the Moodle platform. The code of additional com-
ponents like TI-stack is also included. The code is available in the following pub-
lic Git-repo: https://gitlab.com/dcsg2900_2023_orange/bachelor_orange/-/
tree/main.

135

https://gitlab.com/dcsg2900_2023_orange/bachelor_orange/-/tree/main
https://gitlab.com/dcsg2900_2023_orange/bachelor_orange/-/tree/main

136 Chapter C: Code

C.1 Infrastructure 1: Single server setup
1_code_single_instance

main.tf

main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Configure the OpenStack Provider
13 provider "openstack" {
14 cloud = "openstack"
15 }
16

17

18 # Variables
19 variable "keypair" {
20 type = string
21 default = "default" # name of keypair created
22 }
23

24

25 variable "network" {
26 type = string
27 default = "default" # default network to be used
28 }
29

30 variable "security_groups" {
31 type = list(string)
32 default = ["default"] # Name of default security group
33 }
34

35 # Data sources
36 ## Get Image ID
37 data "openstack_images_image_v2" "image" {
38 name = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64" # Name of image

to be used
39 most_recent = true
40 }
41

42 ## Get flavor id
43 data "openstack_compute_flavor_v2" "flavor" {
44 name = "gx3.4c4r" # flavor to be used
45 }
46

47

Chapter C: Code 137

48 # Get a floating IP
49 resource "openstack_networking_floatingip_v2" "fip_1" {
50 pool = "ntnu-internal"
51 }
52

53 # Create a terraVM
54 resource "openstack_compute_instance_v2" "TerraVM_Alex" {
55 name = "single_instance"
56 image_id = data.openstack_images_image_v2.image.id
57 flavor_id = data.openstack_compute_flavor_v2.flavor.id
58 key_pair = var.keypair
59 security_groups = var.security_groups
60

61 network {
62 name = var.network
63 }
64

65 user_data = file(var.startup_script)
66 }
67

68 resource "openstack_compute_floatingip_associate_v2" "fip_1" {
69 floating_ip = "${openstack_networking_floatingip_v2.fip_1.address}"
70 instance_id = "${openstack_compute_instance_v2.TerraVM_Alex.id}"
71 }

Code listing C.1: Infrastructure 1: Single server setup

C.2 Infrastructure 2: 3-Layer Architecture
2_code_3_layer

modules
database

main.tf
startupscript.sh
variables.tf

loadbalancer
main.tf
startupscript.sh
variables.tf

webservers
main.tf
outputs.tf
startupscript.sh
variables.tf

main.tf

main.tf:

1 # Define required providers
2 terraform {

138 Chapter C: Code

3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Configure the OpenStack Provider
13 # Note that the clouds.yaml from openstack is located inside ‘‘.config/openstack/‘‘

folder
14 provider "openstack" {
15 cloud = "openstack"
16 }
17

18

19 module "database" {
20 source = "./modules/database/"
21 }
22

23

24 module "loadbalancer" {
25 source = "./modules/loadbalancer/"
26 depends_on = [module.database]
27 }

Code listing C.2: Infrastructure 2: 3-Layer Architecture - "main.tf"

/modules/database/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Create a ubuntu instance
13 resource "openstack_compute_instance_v2" "database" {
14 name = var.instance_name
15 image_name = var.instance_image
16 flavor_name = var.instance_flavor
17 key_pair = var.instance_key_pair
18 security_groups = var.security_groups
19

20 network {
21 name = var.network
22 }
23

24 user_data = file(var.startup_script)

Chapter C: Code 139

25 }

Code listing C.3: Infrastructure 2: 3-Layer Architecture - Database "main.tf"

/modules/database/variables.tf:

1

2 # The file contains variable declaration and some default values.
3 # This file together with main.tf and terraform.tfvars provision and instantiate a

infrastructure stack
4 # See teraform documentation for more details of syntax/code
5

6 # @ File variables.tf
7 # @ Author Alexander Damhaug, NTNU
8

9 # Define variables:
10 variable "instance_name" {
11 type = string
12 default = "database"
13 description = "Name of the instance"
14

15 }
16

17 variable "instance_image" {
18 type = string
19 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
20 description = "Image for the server"
21 }
22

23 variable "instance_flavor" {
24 type = string
25 default = "gx1.2c4r"
26 description = "Flavor for the server"
27 }
28

29 variable "instance_key_pair" {
30 type = string
31 default = "default"
32 description = "SSH key to be used to connect to the instance"
33 }
34

35 variable "startup_script" {
36 type = string
37 default = "./modules/database/startupscript.sh"
38 description = "startup script to be run on the instance"
39 }
40

41 variable "network" {
42 type = string
43 default = "default" # default network to be used
44 }
45

46 variable "security_groups" {
47 type = list(string)
48 default = ["default"] # Name of default security group

140 Chapter C: Code

49 }

Code listing C.4: Infrastructure 2: 3-Layer Architecture - Database "variables.tf"

/modules/database/startupscript.sh:

1 #!/bin/bash
2

3 echo "startupscript started" >>~/status.txt
4

5 # Update ubuntu packages
6 sudo apt update && sudo apt upgrade
7

8 # Install password generator
9 sudo apt install pwgen

10

11 # Install Mysql web server
12 sudo apt install mysql-server -y
13

14 echo "Installed mysql" >>~/status.txt
15

16 # Generate a random password only root can access
17 pw=$(pwgen -s 24 1)
18 sudo bash -c "echo $pw >> password.txt"
19 sudo chmod 600 password.txt
20

21

22

23 # log in to the database as root
24 sudo mysql -u root
25

26 sudo mysql -u root -p"" -e "CREATE DATABASE moodle DEFAULT CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;"

27 sudo mysql -u root -p"" -e "CREATE USER ’admin’@’%’ IDENTIFIED BY ’$pw’;" # Use
relevant the ip-address instead of %

28 sudo mysql -u root -p"" -e "GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE
TEMPORARY TABLES,DROP,INDEX,ALTER ON moodle.* TO ’admin’@’%’;"

29 sudo sed -i ’s/bind-address.*/bind-address = 0.0.0.0/’ /etc/mysql/mysql.conf.d/
mysqld.cnf

30 sudo systemctl restart mysql
31

32 pw=""
33

34 quit

Code listing C.5: Infrastructure 2: 3-Layer Architecture - Database
"startupscript.sh"

/modules/loadbalancer/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {

Chapter C: Code 141

6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Reference to the webserver module
13 module "webserver" {
14 source = "../webservers"
15 }
16

17 # Get a floating IP
18 resource "openstack_networking_floatingip_v2" "fip_1" {
19 pool = "ntnu-internal"
20 }
21

22 # Create a ubuntu instance
23 resource "openstack_compute_instance_v2" "loadbalancer" {
24 name = var.instance_name
25 image_name = var.instance_image
26 flavor_name = var.instance_flavor
27 key_pair = var.instance_key_pair
28 security_groups = var.security_groups
29

30 network {
31 name = var.network
32 }
33

34 user_data = "${data.template_file.script.rendered}"
35 depends_on = [module.webserver]
36 }
37

38 output "template_contents" {
39 value = data.template_file.script.rendered
40 }
41

42 data "template_file" "script" {
43 template = "${file(var.startup_script)}"
44 vars = {
45 IP = join(",", [for ip in module.webserver.instance_private_ip: ip])
46 }
47 }
48

49 # Connect Floating IP to instance
50 resource "openstack_compute_floatingip_associate_v2" "fip_1" {
51 floating_ip = "${openstack_networking_floatingip_v2.fip_1.address}"
52 instance_id = "${openstack_compute_instance_v2.loadbalancer.id}"
53 }

Code listing C.6: Infrastructure 2: 3-Layer Architecture - Loadbalancer "main.tf"

/modules/loadbalancer/variables.tf:

1

2 # The file contains variable declaration and some default values.

142 Chapter C: Code

3 # This file together with main.tf and terraform.tfvars provision and instantiate a
infrastructure stack

4 # See teraform documentation for more details of syntax/code
5

6 # @ File variables.tf
7 # @ Author Alexander Damhaug, NTNU
8

9 # Define variables:
10

11

12 variable "instance_name" {
13 type = string
14 default = "loadbalancer"
15 description = "Name of the instance"
16 }
17

18 variable "instance_image" {
19 type = string
20 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
21 description = "Image for the server"
22 }
23

24 variable "instance_flavor" {
25 type = string
26 default = "gx1.2c4r"
27 description = "Flavor for the server"
28 }
29

30 variable "instance_key_pair" {
31 type = string
32 default = "default"
33 description = "SSH key to be used to connect to the instance"
34 }
35

36 variable "startup_script" {
37 type = string
38 default = "./modules/loadbalancer/startupscript.sh"
39 description = "startup script to be run on the instance"
40 }
41

42 variable "network" {
43 type = string
44 default = "default" # default network to be used
45 }
46

47 variable "security_groups" {
48 type = list(string)
49 default = ["default"] # Name of default security group
50 }

Code listing C.7: Infrastructure 2: 3-Layer Architecture - Loadbalancer
"variables.tf"

/modules/loadbalancer/startupscript.sh:

Chapter C: Code 143

1 #!/bin/bash
2

3 # Retrieve the IP-addresses of the webservers
4 echo ${IP} | tr ’,’ ’\n’ >>~/ipaddresses.txt
5 IP_ADDRESSES=($(cat ~/ipaddresses.txt))
6

7 echo "startupscript started" >>~/status.txt
8

9 # pull the loadbalancing script from working directory
10 cd ~/
11 curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-api>" >> ~/
12

13 echo "Curled haproxy script" >>~/status.txt
14

15 # Run the host configuration script
16 ~/bachelor-orange/code/scripts/hosts.sh
17

18 # Run the haproxy script
19 ~/bachelor-orange/code/scripts/haproxy.sh
20

21 echo "Script sucessfully ran" >>~/status.txt

Code listing C.8: Infrastructure 2: 3-Layer Architecture - Loadbalancer
"startupscript.sh"

/modules/webservers/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Create a ubuntu instance
13 resource "openstack_compute_instance_v2" "webserver" {
14 count = var.instance_count
15 name = var.instance_name
16 image_name = var.instance_image
17 flavor_name = var.instance_flavor
18 key_pair = var.instance_key_pair
19 security_groups = var.security_groups
20

21 network {
22 name = var.network
23 }
24

25 user_data = file(var.startup_script)
26 }

144 Chapter C: Code

Code listing C.9: Infrastructure 2: 3-Layer Architecture - Webservers "main.tf"

/modules/webservers/outputs.tf:

1 # main.tf
2

3 output "instance_private_ip" {
4 value = openstack_compute_instance_v2.webserver.*.access_ip_v4
5 }

Code listing C.10: Infrastructure 2: 3-Layer Architecture - Webservers "outputs.tf"

/modules/webservers/variables.tf:

1

2 # The file contains variable declaration and some default values.
3 # This file together with main.tf and terraform.tfvars provision and instantiate a

infrastructure stack
4 # See teraform documentation for more details of syntax/code
5

6 # @ File variables.tf
7 # @ Author Alexander, NTNU
8

9 # Define variables:
10

11 variable "instance_count" {
12 type = number
13 default = 3
14 }
15

16 variable "instance_name" {
17 type = string
18 default = "webserver"
19 description = "Name of the instance"
20 }
21

22 variable "instance_image" {
23 type = string
24 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
25 description = "Image for the server"
26 }
27

28 variable "instance_flavor" {
29 type = string
30 default = "gx1.2c4r"
31 description = "Flavor for the server"
32 }
33

34 variable "instance_key_pair" {
35 type = string
36 default = "default"
37 description = "SSH key to be used to connect to the instance"
38 }

Chapter C: Code 145

39

40 variable "startup_script" {
41 type = string
42 default = "./modules/webservers/startupscript.sh"
43 description = "startup script to be run on the instance"
44 }
45

46 variable "network" {
47 type = string
48 default = "default" # default network to be used
49 }
50

51 variable "security_groups" {
52 type = list(string)
53 default = ["default"] # Name of default security group
54 }

Code listing C.11: Infrastructure 2: 3-Layer Architecture - Webservers
"variables.tf"

/modules/webservers/startupscript.sh:

1 #!/bin/bash
2

3 echo "startupscript started" >>~/status.txt
4

5 # Update ubuntu packages
6 sudo apt update && sudo apt upgrade
7

8 # install apache
9 sudo apt install apache2 -y

10

11 echo "Installed apache2" >>~/status.txt
12

13 # Install php with some modules:
14 sudo apt install php libapache2-mod-php php-mysql -y
15

16 # Install the remaining php packages using apt
17 sudo apt-get install graphviz aspell ghostscript clamav php-pspell php-curl php-gd

php-intl php-mysql php-xml php-xmlrpc php-ldap php-zip php-soap php-mbstring
git -y

18 echo "Installed php" >>~/status.txt
19

20 # Change max_input_vars to 5000 for the installation capabilities, in both GUI and
CLI

21 echo "max_input_vars = 5000" >> /etc/php/8.1/cli/php.ini
22 echo "max_input_vars = 5000" >> /etc/php/8.1/apache2/php.ini
23

24 # restart apache:
25 sudo service apache2 restart
26 echo "Apache sucsessfully started" >>~/status.txt
27

28 # Move to /opt directory, and clone the Moodle Git repo
29 cd /opt
30 sudo git clone git://git.moodle.org/moodle.git

146 Chapter C: Code

31

32 # Change to the Moodle directory and list the branches in the Moodle repository.
Review the list choose the latest stable release

33 cd moodle
34 sudo git branch -a
35

36 # Track, and choose the desired git-branch
37 sudo git branch --track MOODLE_401_STABLE origin/MOODLE_401_STABLE
38 sudo git checkout MOODLE_401_STABLE
39

40 # Copy the contents of the Moodle repo to the running Apache service, and change
the moderation of the moodle directory

41 sudo cp -R /opt/moodle /var/www/html/
42 sudo chmod -R 0777 /var/www/html/moodle
43 sudo mkdir /var/www/moodledata/
44

45 # Create the /var/www/moodledata directory and change owner and permissions
46 sudo chown -R www-data /var/www/moodledata
47 sudo chmod -R 0777 /var/www/moodledata
48

49 # Installing gluster FS
50

51 apt-get -y install glusterfs-server glusterfs-client
52 systemctl enable glusterd
53 systemctl start glusterd
54 echo "GlusterFS sucsessfully installed and started" >>~/status.txt
55

56 mkdir /moodle_brick

Code listing C.12: Infrastructure 2: 3-Layer Architecture - Webservers
"startupscript.sh"

Chapter C: Code 147

C.3 Infrastructure 3: Docker
3_code_docker

docker_code
docker_moodle_db-setup

Dockerfile
README.md
install_database_php_script.sh

docker_www
Dockerfile
README.md
init.sh

infra_code
modules

database
main.tf
startupscript.sh
variables.tf

docker
main.tf
outputs.tf
startupscript.sh
variables.tf

docker_loadbalancer
main.tf
startupscript.sh
variables.tf

main.tf

C.3.1 docker_code

docker_code/docker_moodle_db-setup/Dockerfile:

1 FROM ubuntu:22.04
2 #MAINTAINER TomArne
3 ENV DEBIAN_FRONTEND=noninteractive
4

5 RUN mkdir /moodledata
6 RUN chmod 777 /moodledata
7

8 RUN apt update
9 RUN apt install -y php-mbstring php-curl php-zip php-gd php-intl

10 RUN apt install -y apache2 libapache2-mod-php
11 RUN apt install -y php-xml php-mysql php-cli
12 RUN apt install -y git curl
13 RUN apt install -y php-ldap
14

148 Chapter C: Code

15 RUN rm -rf /var/www/html/*
16 COPY ../moodle/ /var/www/html/moodle
17

18

19 RUN echo "max_input_vars = 5000" >> /etc/php/8.1/cli/php.ini
20

21 COPY docker_moodle_db-setup/install_database_php_script.sh /
22 EXPOSE 80
23 ENTRYPOINT ["/install_database_php_script.sh"]

Code listing C.13: Infrastructure 3: Docker - db-setup "Dockerfile"

docker_code/docker_moodle_db-setup/install_database_php_script.sh:

1 #!/bin/bash -x
2

3 curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-api> >> /var/
www/html/moodle/config.php"

4

5 # Change --adminpass to the password created for the Admin user
6 /usr/bin/php /var/www/html/moodle/admin/cli/install_database.php --agree-license --

adminpass=’<your_generated_password>’

Code listing C.14: Infrastructure 3: Docker - db-setup
"install_database_php_script.sh"

docker_code/docker_moodle_db-setup/README.md:

1 sudo docker build -t moodle_install_db_script:version-tag -f Dockerfile ..

Code listing C.15: Infrastructure 3: Docker - db-setup "README.md"

docker_code/docker_www/Dockerfile:

1 FROM ubuntu:22.04
2 ENV DEBIAN_FRONTEND=noninteractive
3

4 RUN mkdir /moodledata
5 RUN chmod 777 /moodledata
6

7 RUN apt update
8 RUN apt install -y php-mbstring php-curl php-zip php-gd php-intl
9 RUN apt install -y apache2 libapache2-mod-php

10 RUN apt install -y php-xml php-mysql php-cli
11 RUN apt install -y git curl
12 RUN apt install -y git curl
13 RUN apt install -y php-ldap
14

15 RUN rm -rf /var/www/html/*
16 COPY moodle /var/www/html/moodle
17

Chapter C: Code 149

18 RUN echo "max_input_vars = 5000" >> /etc/php/8.1/cli/php.ini
19

20 COPY docker_www/init.sh /
21 EXPOSE 80
22 ENTRYPOINT ["/init.sh"]

Code listing C.16: Infrastructure 3: Docker - www-setup "Dockerfile"

docker_code/docker_www/init.sh:

1 #!/bin/bash -x
2

3 # get the php config file from repostory
4 curl --header "PRIVATE-TOKEN: <access-token>" "<link-to-gitlab-file-api>" >> /var/

www/html/moodle/config.php
5

6

7 # Run crontab
8 /usr/bin/php /var/www/html/moodle/admin/cli/cron.php
9

10 echo "*/1 * * * * /usr/bin/php /var/www/html/moodle/admin/cli/cron.php >/dev/null"
| crontab -u root -

11

12 #/usr/bin/php /var/www/html/moodle/admin/cli/install_database.php
13 /usr/sbin/apache2ctl -D FOREGROUND -k start

Code listing C.17: Infrastructure 3: Docker - www-setup "init.sh"

docker_code/docker_www/README.md:

1 sudo docker build -t moodle_www:version-tag -f Dockerfile ..

Code listing C.18: Infrastructure 3: Docker - www-setup "README.md"

C.3.2 docker_Infra

Infra_code/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Configure the OpenStack Provider

150 Chapter C: Code

13 # Note that the clouds.yaml from openstack is located inside ‘‘.config/openstack/‘‘
folder

14 provider "openstack" {
15 cloud = "openstack"
16 }
17 # initialize the database module
18 module "database" {
19 source = "./modules/database/"
20 }
21 # initialize the loadbalancer module
22 module "loadbalancer" {
23 source = "./modules/docker_loadbalancer/"
24 }

Code listing C.19: Infrastructure 3: Docker - "main.tf"

Infra_code/modules/database/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Create a ubuntu instance
13 resource "openstack_compute_instance_v2" "database" {
14 name = var.instance_name
15 image_name = var.instance_image
16 flavor_name = var.instance_flavor
17 key_pair = var.instance_key_pair
18 security_groups = var.security_groups
19

20 network {
21 name = var.network
22 }
23 # script to be run upon creation
24 user_data = file(var.startup_script)
25 }

Code listing C.20: Infrastructure 3: Docker - Database "main.tf"

Infra_code/modules/database/startupscript.sh:

1 #!/bin/bash
2

3 # inspierd by: https://www.linode.com/docs/guides/how-to-install-a-lamp-stack-on-
ubuntu-22-04/

Chapter C: Code 151

4 echo "startupscript started" >>~/status.txt
5

6 # Update ubuntu packages
7 sudo apt update && sudo apt upgrade
8

9 # Install Mysql web server
10 sudo apt install mysql-server -y
11

12 echo "Installed mysql" >>~/status.txt
13

14 # Generate a random password only root can access
15 pw=$(pwgen -s 24 1)
16 sudo bash -c "echo $pw >> password.txt"
17 sudo chmod 600 password.txt
18

19 # log in to the database as root
20 sudo mysql -u root
21

22 sudo mysql -u root -p"" -e "CREATE DATABASE moodle DEFAULT CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;"

23 sudo mysql -u root -p"" -e "CREATE USER ’admin’@’%’ IDENTIFIED BY ’$pw’;" #Remember
to change password!

24 sudo mysql -u root -p"" -e "GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE
TEMPORARY TABLES,DROP,INDEX,ALTER ON moodle.* TO ’admin’@’%’;"

25 sudo sed -i ’s/bind-address.*/bind-address = 0.0.0.0/’ /etc/mysql/mysql.conf.d/
mysqld.cnf

26 sudo systemctl restart mysql
27

28 quit
29

30 pw=""

Code listing C.21: Infrastructure 3: Docker - Database "startupscript.sh"

Infra_code/modules/database/variables.tf:

1

2 # The file contains variable declaration and some default values.
3 # This file together with main.tf and terraform.tfvars provision and instantiate a

infrastructure stack
4 # See teraform documentation for more details of syntax/code
5

6 # @ File variables.tf
7 # @ Author Alexander Damhaug, NTNU
8

9 # Define variables:
10 variable "instance_name" {
11 type = string
12 default = "database"
13 description = "Name of the instance"
14

15 }
16

152 Chapter C: Code

17 variable "instance_image" {
18 type = string
19 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
20 description = "Image for the server"
21 }
22

23 variable "instance_flavor" {
24 type = string
25 default = "gx1.2c2r"
26 description = "Flavor for the server"
27 }
28

29 variable "instance_key_pair" {
30 type = string
31 default = "default"
32 description = "SSH key to be used to connect to the instance"
33 }
34

35 variable "startup_script" {
36 type = string
37 default = "./modules/database/startupscript.sh"
38 description = "startup script to be run on the instance"
39 }
40

41 variable "network" {
42 type = string
43 default = "default" # default network to be used
44 }
45

46 variable "security_groups" {
47 type = list(string)
48 default = ["default"] # Name of default security group
49 }

Code listing C.22: Infrastructure 3: Docker - Database "variables.tf"

Infra_code/modules/docker/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Create a ubuntu instance
13 resource "openstack_compute_instance_v2" "docker" {
14 name = var.instance_name
15 image_name = var.instance_image

Chapter C: Code 153

16 flavor_name = var.instance_flavor
17 key_pair = var.instance_key_pair
18 security_groups = var.security_groups
19

20 network {
21 name = var.network
22 }
23 # Script to run at creation
24 user_data = file(var.startup_script)
25 }

Code listing C.23: Infrastructure 3: Docker - Server "main.tf"

Infra_code/modules/docker/outputs.tf:

1 # main.tf
2

3 output "instance_private_ip" {
4 value = openstack_compute_instance_v2.docker.*.access_ip_v4
5 }

Code listing C.24: Infrastructure 3: Docker - Server "outputs.tf"

Infra_code/modules/docker/startupscript.sh:

1 #!/bin/bash
2

3 echo "startupscript started" >>~/status.txt
4

5 # Update ubuntu packages
6 sudo apt update && sudo apt upgrade
7

8 # Install docker and dependencies from https://docs.docker.com/engine/install/
ubuntu/

9 sudo apt-get install -y \
10 ca-certificates \
11 curl \
12 gnupg \
13 lsb-release
14

15 sudo mkdir -m 0755 -p /etc/apt/keyrings
16 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /

etc/apt/keyrings/docker.gpg
17

18 echo \
19 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg]

https://download.docker.com/linux/ubuntu \
20 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/

null
21

22 sudo apt-get update
23 sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin

docker-compose-plugin

154 Chapter C: Code

24

25 echo "Installed docker and dependencies" >>~/status.txt
26

27 sudo service docker start
28

29 # Allow pull from http docker registry
30 echo "{
31 \"insecure-registries\" : [\"http://<registry_ip>:5000\"]
32 }" >> /etc/docker/daemon.json
33

34 sudo service docker restart
35

36 # Create the moodledata directory
37 mkdir /moodledata
38 sudo chown -R www-data //moodledata
39 sudo chmod -R 0777 /moodledata
40

41 # note, the accsess to the moodledata directory and moodle folder should be
restricted and follow Moodle’s security recomendations:

42 # https://docs.moodle.org/402/en/Security_recommendations
43

44 echo "startupscript done" >>~/status.txt

Code listing C.25: Infrastructure 3: Docker - Server "startupscript.sh"

Infra_code/modules/docker/variables.tf:

1 # The file contains variable declaration and some default values.
2 # This file together with main.tf and terraform.tfvars provision and instantiate a

infrastructure stack
3 # See teraform documentation for more details of syntax/code
4

5 # @ File variables.tf
6 # @ Author Alexander, NTNU
7

8 # Define variables:
9

10 variable "instance_name" {
11 type = string
12 default = "docker"
13 description = "Name of the instance"
14 }
15

16 variable "instance_image" {
17 type = string
18 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
19 description = "Image for the server"
20 }
21

22 variable "instance_flavor" {
23 type = string
24 default = "gx1.2c2r"
25 description = "Flavor for the server"

Chapter C: Code 155

26 }
27

28 variable "instance_key_pair" {
29 type = string
30 default = "default"
31 description = "SSH key to be used to connect to the instance"
32 }
33

34 variable "startup_script" {
35 type = string
36 default = "./modules/docker/startupscript.sh"
37 description = "startup script to be run on the instance"
38 }
39

40 variable "network" {
41 type = string
42 default = "default" # default network to be used
43 description = "default network to be used"
44 }
45

46 variable "security_groups" {
47 type = list(string)
48 default = ["default"] # Name of default security group
49 }

Code listing C.26: Infrastructure 3: Docker - Server "variables.tf"

Infra_code/modules/docker_loadbalancer/main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Reference to the docker module
13 module "docker" {
14 source = "../docker"
15 }
16

17 # Get a floating IP
18 resource "openstack_networking_floatingip_v2" "fip_1" {
19 pool = "ntnu-internal"
20 }
21

22 # Create a ubuntu instance
23 resource "openstack_compute_instance_v2" "docker_loadbalancer" {
24 name = var.instance_name

156 Chapter C: Code

25 image_name = var.instance_image
26 flavor_name = var.instance_flavor
27 key_pair = var.instance_key_pair
28 security_groups = var.security_groups
29

30 network {
31 name = var.network
32 }
33

34 user_data = "${data.template_file.script.rendered}"
35 depends_on = [module.docker]
36 }
37

38 output "template_contents" {
39 value = data.template_file.script.rendered
40 }
41

42 data "template_file" "script" {
43 template = "${file(var.startup_script)}"
44 vars = {
45 IP = join(",", [for ip in module.docker.instance_private_ip: ip])
46 }
47 }
48

49 # Connect Floating IP to instance
50 resource "openstack_compute_floatingip_associate_v2" "fip_1" {
51 floating_ip = "${openstack_networking_floatingip_v2.fip_1.address}"
52 instance_id = "${openstack_compute_instance_v2.docker_loadbalancer.id}"
53 }

Code listing C.27: Infrastructure 3: Docker - Loadbalancer "main.tf"

Infra_code/modules/docker_loadbalancer/startupscript.sh:

1 #!/bin/bash
2

3 # Retrieve the IP-addresses of the webservers
4 echo ${IP} | tr ’,’ ’\n’ >>~/ipaddresses.txt
5 IP_ADDRESSES=($(cat ~/ipaddresses.txt))
6

7 echo "startupscript started" >>~/status.txt
8

9 # clone working directory
10 cd ~/
11 git clone https://private-token:<access-token>@<link-to-gitlab>
12

13 echo "cloned git-repo" >>~/status.txt
14

15 # Run the host configuration script
16 ~/bachelor_orange/code/scripts/hosts.sh
17

18 # Run the haproxy script
19 ~/bachelor_orange/code/scripts/docker_haproxy.sh

Chapter C: Code 157

20

21

22 echo "Script sucessfully ran" >>~/status.txt

Code listing C.28: Infrastructure 3: Docker - Loadbalancer "startupscript.sh

Infra_code/modules/docker_loadbalancer/variables.tf:

1 # The file contains variable declaration and some default values.
2 # This file together with main.tf and terraform.tfvars provision and instantiate a

infrastructure stack
3 # See teraform documentation for more details of syntax/code
4

5 # @ File variables.tf
6 # @ Author Alexander Damhaug, NTNU
7

8 # Define variables:
9

10

11 variable "instance_name" {
12 type = string
13 default = "docker_Loadbalancer"
14 description = "Name of the instance"
15 }
16

17 variable "instance_image" {
18 type = string
19 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
20 description = "Image for the server"
21 }
22

23 variable "instance_flavor" {
24 type = string
25 default = "gx1.2c2r"
26 description = "Flavor for the server"
27 }
28

29 variable "instance_key_pair" {
30 type = string
31 default = "default"
32 description = "SSH key to be used to connect to the instance"
33 }
34

35 variable "startup_script" {
36 type = string
37 default = "./modules/docker_loadbalancer/startupscript.sh"
38 description = "startup script to be run on the instance"
39 }
40

41 variable "network" {
42 type = string
43 default = "default" # default network to be used
44 }

158 Chapter C: Code

45

46 variable "security_groups" {
47 type = list(string)
48 default = ["default"] # Name of default security group
49 }

Code listing C.29: Infrastructure 3: Docker - Loadbalancer "variables.tf

C.4 Infrastructure 4: Docker Swarm
4_code_docker_swarm

modules
servers

main.tf
outputs.tf
startupscript.sh
variables.tf

main.tf

main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Configure the OpenStack Provider
13 # Note that the clouds.yaml from openstack is located inside ‘‘.config/openstack/‘‘

folder
14 provider "openstack" {
15 cloud = "openstack"
16 }
17

18 module "servers" {
19 source = "./modules/servers/"
20 }

Code listing C.30: Infrastructure 4: Docker Swarm - "main.tf"

modules/servers/main.tf:

1 # Define required providers
2 terraform {

Chapter C: Code 159

3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Create a ubuntu instance
13 resource "openstack_compute_instance_v2" "server" {
14 count = length(var.instance_name)
15 name = var.instance_name[count.index]
16 image_name = var.instance_image
17 flavor_name = var.instance_flavor
18 key_pair = var.instance_key_pair
19 security_groups = var.security_groups
20

21 network {
22 name = var.network
23 }
24 # Startup script
25 user_data = file(var.startup_script)
26 }

Code listing C.31: Infrastructure 4: Docker Swarm - Servers "main.tf"

modules/servers/outputs.tf:

1 # main.tf
2

3 output "instance_private_ip" {
4 value = openstack_compute_instance_v2.server.*.access_ip_v4
5 }

Code listing C.32: Infrastructure 4: Docker Swarm - Servers "outputs.tf"

modules/servers/startupscript.sh:

1 #!/bin/bash
2

3 # @author: Kristofer Lie, date: 19.04.2023
4 echo "startupscript started" >>~/status.txt
5

6 # Update ubuntu packages
7 sudo apt update && sudo apt upgrade
8

9 # use NTP to syncronise the internal server clocks
10 sudo apt-get install -y ntpdate
11 sudo ntpdate -b ntp.justervesenet.no
12

13 # Use crontab to frequently update the clock to follow NTP to assure accurate
syncronisation

160 Chapter C: Code

14 echo "*/10 * * * * root ntpdate -b ntp.justervesenet.no" >> /etc/crontab
15

16

17 # Install MariaDB Galera Cluster
18 sudo apt-get install mariadb-server mariadb-client galera-4 -y
19 echo "Installed mariadb-cluster galera" >>~/status.txt
20

21

22 # Install gluster FS
23 apt-get -y install glusterfs-server glusterfs-client
24 systemctl enable glusterd
25 systemctl start glusterd
26 echo "GlusterFS sucsessfully installed and started" >>~/status.txt
27

28 # Create folders to be used in gluster:
29 mkdir /moodle_brick
30 mkdir /moodledata
31

32 # From docker docks: https://docs.docker.com/engine/install/ubuntu/
33 # Install docker:
34 sudo apt-get update
35 sudo apt-get install -y \
36 ca-certificates \
37 curl \
38 gnupg \
39 lsb-release
40

41 sudo mkdir -m 0755 -p /etc/apt/keyrings
42 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /

etc/apt/keyrings/docker.gpg
43

44 echo \
45 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg]

https://download.docker.com/linux/ubuntu \
46 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/

null
47

48 sudo apt-get update
49 sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin

docker-compose-plugin

Code listing C.33: Infrastructure 4: Docker Swarm - Servers "startupscript.sh"

modules/servers/variables.tf:

1 # The file contains variable declaration and some default values.
2 # This file together with main.tf and terraform.tfvars provision and instantiate a

infrastructure stack
3 # See teraform documentation for more details of syntax/code
4

5 # @ File variables.tf
6 # @ Author Alexander, NTNU
7

Chapter C: Code 161

8 # Define variables:
9

10 variable "instance_name" {
11 type = list(string)
12 default = ["server1", "server2", "server3"]
13 description = "Name of the instance"
14 }
15

16 variable "instance_image" {
17 type = string
18 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
19 description = "Image for the server"
20 }
21

22 variable "instance_flavor" {
23 type = string
24 default = "gx1.2c4r"
25 description = "Flavor for the server"
26 }
27

28 variable "instance_key_pair" {
29 type = string
30 default = "default"
31 description = "SSH key to be used to connect to the instance"
32 }
33

34 variable "startup_script" {
35 type = string
36 default = "./modules/servers/startupscript.sh"
37 description = "startup script to be run on the instance"
38 }
39

40 variable "network" {
41 type = string
42 default = "default" # default network to be used
43 }
44

45 variable "security_groups" {
46 type = list(string)
47 default = ["default"] # Name of default security group
48 }

Code listing C.34: Infrastructure 4: Docker Swarm - Servers "variables.tf"

C.5 Additional Component 1 - Monitoring
5_code_other_components

Monitoring
main.tf
startupscript.sh
variables.tf

162 Chapter C: Code

main.tf:

1 # Define required providers
2 terraform {
3 required_version = ">= 0.14.0"
4 required_providers {
5 openstack = {
6 source = "terraform-provider-openstack/openstack"
7 version = "~> 1.48.0"
8 }
9 }

10 }
11

12 # Configure the OpenStack Provider
13 # Note that the clouds.yaml from openstack is located inside ‘‘.config/openstack/‘‘

folder
14 provider "openstack" {
15 cloud = "openstack"
16 }
17

18

19

20 ### influxdb instance ###
21 resource "openstack_compute_instance_v2" "influxdb" {
22 name = var.instance_name
23 image_name = var.instance_image
24 flavor_name = var.instance_flavor
25 key_pair = var.instance_key_pair
26 security_groups = var.security_groups
27

28 network {
29 name = var.network1
30 }
31

32 user_data = file(var.startup_script)
33 }
34

35

36

37

38 # Get a floating IP
39 resource "openstack_networking_floatingip_v2" "fip_1" {
40 pool = var.network_pool_ntnu
41 }
42

43

44 # Connect Floating IP to instance
45 resource "openstack_compute_floatingip_associate_v2" "fip_1" {
46 floating_ip = "${openstack_networking_floatingip_v2.fip_1.address}"
47 instance_id = "${openstack_compute_instance_v2.influxdb.id}"
48 }
49

50

51

52 #output ip influxdb

Chapter C: Code 163

53 output "influxdb_IP" {
54 value = openstack_compute_instance_v2.influxdb.network[0].fixed_ip_v4
55 }
56 #output ip influxdb
57 output "influxdb_floating_IP" {
58 value = openstack_networking_floatingip_v2.fip_1.address
59 }

Code listing C.35: Additional Component 1 - Monitoring

startupscript.sh:

1 #!/bin/bash
2

3 apt-get update
4 echo "Startupscript started" >> /home/ubuntu/status.txt
5

6

7 # Install influxdb, from: https://portal.influxdata.com/downloads/
8 wget -q https://repos.influxdata.com/influxdata-archive_compat.key
9

10 echo ’393e8779c89ac8d958f81f942f9ad7fb82a25e133faddaf92e15b16e6ac9ce4c influxdata-
archive_compat.key’ | sha256sum -c && cat influxdata-archive_compat.key | gpg
--dearmor | sudo tee /etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg > /
dev/null

11

12 echo ’deb [signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg] https://
repos.influxdata.com/debian stable main’ | sudo tee /etc/apt/sources.list.d/
influxdata.list

13

14 apt-get update && sudo apt-get install influxdb2 -y
15

16 #start influxdb:
17 systemctl start influxdb
18

19

20 rm influxdata-archive_compat.key
21

22 echo "Influxdb installed and started" >> /home/ubuntu/status.txt
23

24

25 echo "check status with: sudo systemctl status influxdb" >> /home/ubuntu/status.txt
26

27 # create default user, org and bucket:
28 influx setup -u orange -p Orange2023& -b bucket -o Orange -r 0 -f # These should be

env. variables.
29

30 echo "setup of influx compleate!" >> /home/ubuntu/status.txt

Code listing C.36: Additional Component 1 - Monitoring

variables.tf:

1

2 # The file contains variable declaration and some default values.

164 Chapter C: Code

3 # This file together with main.tf and terraform.tfvars provision and instantiate a
infrastructure stack

4 # See teraform documentation for more details of syntax/code
5

6 # @ File variables.tf
7 # @ Author Kristoffer Lie, NTNU
8

9

10 variable "network_pool" {
11 type = string
12

13 default = "default"
14

15 description = "Public/floating netowrk pool"
16

17 }
18

19 variable "instance_key_pair" {
20 type = string
21 default = "default"
22 description = "SSH key to be used to connect to the instance"
23 }
24

25 variable "network1" {
26 type = string
27 default = "default" # default network to be used
28 }
29

30 variable "security_groups" {
31 type = list(string)
32 default = ["default"] # Name of default security group
33 }
34

35

36 variable "instance_image" {
37 type = string
38 default = "Ubuntu Server 22.04 LTS (Jammy Jellyfish) amd64"
39 description = "Image for the server"
40 }
41

42 variable "instance_flavor" {
43 type = string
44 default = "gx3.4c4r"
45 description = "Flavor for the server"
46 }
47

48 #### Influxdb ####
49

50 # Define variables:
51 variable "instance_name" {
52 type = string
53 default = "influxdb"
54 description = "Name of the instance"
55

Chapter C: Code 165

56 }
57

58 variable "startup_script" {
59 type = string
60 default = "./startupscript.sh"
61 description = "startup script to be run on the instance"
62 }

Code listing C.37: Additional Component 1 - Monitoring

Appendix D

Testing result summaries

In this appendix, all the documents and reports from testing the different archi-
tectures with k6 are included. The reports are executive summaries of the the test
results for the different architectures under load.

167

168 Chapter D: Testing result summaries

D.1 Single instance

kristo11@stud.ntnu.no Executive Summary Report

EXECUTIVE SUMMARY - PASS

KS

Status:

Created:

Started by:

VUs:

Duration:

Load zones:

PASS

19 May 2023 at 20:52

kristo11@stud.ntnu.no

100 VUs

11 min 30 sec Max Throughput

reqs/s

HTTP Failures

reqs

Avg Response Time

ms

95% Response Time

ms

SUMMARY

The test was configured to run up to for 11 minutes 30 seconds. A total of were made with a max throughput of . The sections below
give a more detailed breakdown.

PERFORMANCE OVERVIEW
The average response time of the system being tested was and were made at an average request rate of .

TEST OVERVIEW
RESPONSE TIME
The maximum response time was at . The average response time at the same point in time was , with 95% of requests taking less than

.

THROUGHPUT
The test had an overall average request rate of peaking at while running .

BANDWIDTH
The amount of data sent peaked at , sending of data. Data received had its peak at with being received.

Executive summary report for test 1

https://app.k6.io/runs/1773658

54 0 1231 6079

100 VUs 25 220 requests 54 reqs/s

1 231 ms 25 220 requests 37 requests per second

12 189 ms 85 VUs 2 562 ms 10 015
ms

37 reqs/s 54 reqs/s 96 VUs

15 VUs 45.4 KB/s 15 VUs 848 KB/s

https://app.k6.io/runs/1773658

VUs Response time Request rate

VUs Avg. response time 90% response time 95% response time 99% response time Max response time

VUs Requests per second

This report summarizes a test run of the test "Single_instance 100VUs". It was performed on May 19, 2023 and is considered to be successful.

Single_instance 100VUs

kristo11@stud.ntnu.no Executive Summary Report

SLOWEST REQUESTS
There were requests to unique URLs, with different responses received. The slowest response had an average response time of .

URL METHOD STATUS COUNT MIN 95% 99% MAX

GET 200 3880 389 ms 4 905 ms 8 319 ms 9 791 ms 12 189 ms

GET 200 1940 234 ms 3 360 ms 5 887 ms 7 039 ms 8 650 ms

GET 200 1940 137 ms 1 207 ms 2 095 ms 2 505 ms 3 192 ms

GET 200 1940 85 ms 741 ms 1 335 ms 1 684 ms 2 145 ms

GET 200 1940 14 ms 188 ms 369 ms 471 ms 664 ms

GET 200 1940 12 ms 152 ms 325 ms 411 ms 591 ms

GET 200 1940 8 ms 124 ms 255 ms 326 ms 415 ms

GET 200 1940 9 ms 122 ms 265 ms 357 ms 477 ms

GET 303 1940 34 ms 117 ms 225 ms 308 ms 449 ms

GET 200 1940 8 ms 113 ms 232 ms 285 ms 376 ms

Executive summary report for test 2

https://app.k6.io/runs/1773658

12 25 220 4 905 ms

AVG

http://10.212.172.53/moodle/course/view.php?id=2

http://10.212.172.53/moodle/mod/forum/view.php?id=307

http://10.212.172.53/moodle/mod/forum/discuss.php?d=89

http://10.212.172.53/moodle/

http://10.212.172.53/moodle/lib/ajax/service-nologin.php?info=core_output_load_template_with_dependencies,core_output_load_template_with_dependencies,core_output_load_template_with_dependencies&cachekey=1683484071&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core%22%2C%22template%22%3A%22modal_save_cancel%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A1%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core%22%2C%22template%22%3A%22modal_cancel%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A2%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core%22%2C%22template%22%3A%22local%2Fmodal%2Falert%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%5D

http://10.212.172.53/moodle/pluginfile.php/315/mod_resource/content/0/resource1.txt

http://10.212.172.53/moodle/lib/ajax/service-nologin.php?info=core_output_load_template_with_dependencies&cachekey=1683484071&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core_courseformat%22%2C%22template%22%3A%22local%2Fcourseindex%2Fcmcompletion%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%5D

http://10.212.172.53/moodle/lib/ajax/service-nologin.php?info=core_output_load_template_with_dependencies&cachekey=1683484071&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core_courseformat%22%2C%22template%22%3A%22local%2Fcourseindex%2Fcourseindex%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%5D

http://10.212.172.53/moodle/mod/resource/view.php?id=301

http://10.212.172.53/moodle/lib/ajax/service-nologin.php?info=core_get_string,core_get_string,core_get_string,core_get_string&cachekey=1683484071&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_get_string%22%2C%22args%22%3A%7B%22stringid%22%3A%22movecoursesection%22%2C%22stringparams%22%3A%5B%5D%2C%22component%22%3A%22core%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A1%2C%22methodname%22%3A%22core_get_string%22%2C%22args%22%3A%7B%22stringid%22%3A%22movecoursemodule%22%2C%22stringparams%22%3A%5B%5D%2C%22component%22%3A%22core%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A2%2C%22methodname%22%3A%22core_get_string%22%2C%22args%22%3A%7B%22stringid%22%3A%22confirm%22%2C%22stringparams%22%3A%5B%5D%2C%22component%22%3A%22core%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A3%2C%22methodname%22%3A%22core_get_string%22%2C%22args%22%3A%7B%22stringid%22%3A%22delete%22%2C%22stringparams%22%3A%5B%5D%2C%22component%22%3A%22core%22%2C%22lang%22%3A%22en%22%7D%7D%5D

https://app.k6.io/runs/1773658

VUs Data sent Data received

VOCABULARY

ABOUT k6 CLOUD
k6 helps engineering teams prevent system failures and quickly deliver best-of-class applications. Our cutting-edge load testing platform brings cross-functional teams together to
prevent reliability and scalability issues so that every application performs well. Developers, operations, and QA teams use our tools to automate testing and test earlier in the
development process to bring high-quality products to market faster.

For more than 20 years, we have consulted businesses about load testing. We have spent the past 12 years developing state-of-the-art load and performance testing tools. 6,000+
customers — including Grafana, Microsoft, Carvana, and Olo — run millions of k6 tests every month. For more information, visit .https://k6.io

VUs
A Virtual User is a simulation of a real user making requests to the system. Multiple VUs are
executed concurrently to simulate traffic to the website or API.

Response Time
The time from sending the request, processing it on the server side, to the time the client
received the first byte.

Throughput
The amount of transactions the system under test can process, showing the capacity of the
website or application.

Latency
The time that data sent or received spends on the wire, i.e. from the start of data being
transmitted until all the data has been sent.

Checks
A check is an assertion that the system under test behaves correctly, e.g. that it returns the
correct status code. They do not halt the execution of the test, but acts as a pass/fail
metric.

Thresholds
Thresholds are a pass/fail criteria used to specify the performance expectations of the
system under test.

172 Chapter D: Testing result summaries

D.2 3 layer

kristo11@stud.ntnu.no Executive Summary Report

EXECUTIVE SUMMARY - 3 layer PASS

KS

Status:

Created:

Started by:

VUs:

Duration:

Load zones:

PASS

19 May 2023 at 22:22

kristo11@stud.ntnu.no

100 VUs

11 min 30 sec Max Throughput

reqs/s

HTTP Failures

reqs

Avg Response Time

ms

95% Response Time

ms

SUMMARY
This report summarizes a test run of the test "3 layer". It was performed on May 19, 2023 and is considered to be successful.

The test was configured to run up to for 11 minutes 30 seconds. A total of were made with a max throughput of . The sections below give
a more detailed breakdown.

PERFORMANCE OVERVIEW
The average response time of the system being tested was and were made at an average request rate of .

TEST OVERVIEW
RESPONSE TIME
The maximum response time was at . The average response time at the same point in time was , with 95% of requests taking less than

.

THROUGHPUT
The test had an overall average request rate of peaking at while running .

BANDWIDTH
The amount of data sent peaked at , sending of data. Data received had its peak at with being received.

Executive summary report for test 1

https://app.k6.io/runs/1773732

25 4 012 1797 1306

100 VUs 8 272 requests 25 reqs/s

1 798 ms 8 272 requests 12 requests per second

50 015 ms 64 VUs 42 429 ms 50 015
ms

12 reqs/s 25 reqs/s 92 VUs

38 VUs 28.6 KB/s 38 VUs 49.9 KB/s

https://app.k6.io/runs/1773732

VUs Response time Request rate

VUs Avg. response time 90% response time 95% response time 99% response time Max response time

VUs Requests per second

kristo11@stud.ntnu.no Executive Summary Report

SLOWEST REQUESTS
There were requests to unique URLs, with different responses received. The slowest response had an average response time of .

URL METHOD STATUS COUNT MIN 95% 99% MAX

GET 504 158 50 002 ms 50 015 ms 50 015 ms 50 015 ms 50 015 ms

GET 504 39 50 004 ms 50 008 ms 50 008 ms 50 008 ms 50 008 ms

GET 504 74 50 003 ms 50 008 ms 50 008 ms 50 008 ms 50 008 ms

GET 200 3 41 205 ms 46 938 ms 49 800 ms 49 800 ms 49 800 ms

GET 303 77 1 359 ms 2 261 ms 3 007 ms 3 328 ms 3 840 ms

GET 200 62 629 ms 1 243 ms 1 765 ms 1 939 ms 2 021 ms

GET 200 824 22 ms 157 ms 980 ms 1 479 ms 2 002 ms

GET 200 823 27 ms 157 ms 910 ms 1 290 ms 1 825 ms

GET 200 823 24 ms 150 ms 819 ms 1 291 ms 1 541 ms

GET 200 824 29 ms 125 ms 545 ms 760 ms 1 149 ms

Executive summary report for test 2

https://app.k6.io/runs/1773732

16 8 272 50 015 ms

AVG

http://10.212.175.203/moodle/course/view.php?id=2

http://10.212.175.203/moodle/mod/page/view.php?id=131

http://10.212.175.203/moodle/

http://10.212.175.203/moodle/

http://10.212.175.203/moodle/mod/resource/view.php?id=301

http://10.212.175.203/moodle/pluginfile.php/315/mod_resource/content/0/resource1.txt

http://10.212.175.203/moodle/lib/ajax/service-nologin.php?info=core_output_load_template_with_dependencies,core_output_load_template_with_dependencies,core_output_load_template_with_dependencies&cachekey=1683481061&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core%22%2C%22template%22%3A%22modal_save_cancel%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A1%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core%22%2C%22template%22%3A%22modal_cancel%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%2C%7B%22index%22%3A2%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core%22%2C%22template%22%3A%22local%2Fmodal%2Falert%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%5D

http://10.212.175.203/moodle/lib/ajax/service-nologin.php?info=core_output_load_template_with_dependencies&cachekey=1683481061&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core_courseformat%22%2C%22template%22%3A%22local%2Fcourseindex%2Fcmcompletion%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%5D

http://10.212.175.203/moodle/lib/ajax/service-nologin.php?info=core_output_load_template_with_dependencies&cachekey=1683481061&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_output_load_template_with_dependencies%22%2C%22args%22%3A%7B%22component%22%3A%22core_courseformat%22%2C%22template%22%3A%22local%2Fcourseindex%2Fcourseindex%22%2C%22themename%22%3A%22boost%22%2C%22lang%22%3A%22en%22%7D%7D%5D

http://10.212.175.203/moodle/lib/ajax/service-nologin.php?info=core_get_string&cachekey=1683481378&args=%5B%7B%22index%22%3A0%2C%22methodname%22%3A%22core_get_string%22%2C%22args%22%3A%7B%22stringid%22%3A%22changesmadereallygoaway%22%2C%22stringparams%22%3A%5B%5D%2C%22component%22%3A%22moodle%22%2C%22lang%22%3A%22en%22%7D%7D%5D

https://app.k6.io/runs/1773732

VUs Data sent Data received

VOCABULARY

ABOUT k6 CLOUD
k6 helps engineering teams prevent system failures and quickly deliver best-of-class applications. Our cutting-edge load testing platform brings cross-functional teams together to
prevent reliability and scalability issues so that every application performs well. Developers, operations, and QA teams use our tools to automate testing and test earlier in the
development process to bring high-quality products to market faster.

For more than 20 years, we have consulted businesses about load testing. We have spent the past 12 years developing state-of-the-art load and performance testing tools. 6,000+
customers — including Grafana, Microsoft, Carvana, and Olo — run millions of k6 tests every month. For more information, visit .https://k6.io

VUs
A Virtual User is a simulation of a real user making requests to the system. Multiple VUs are
executed concurrently to simulate traffic to the website or API.

Response Time
The time from sending the request, processing it on the server side, to the time the client
received the first byte.

Throughput
The amount of transactions the system under test can process, showing the capacity of the
website or application.

Latency
The time that data sent or received spends on the wire, i.e. from the start of data being
transmitted until all the data has been sent.

Checks
A check is an assertion that the system under test behaves correctly, e.g. that it returns the
correct status code. They do not halt the execution of the test, but acts as a pass/fail
metric.

Thresholds
Thresholds are a pass/fail criteria used to specify the performance expectations of the
system under test.

176 Chapter D: Testing result summaries

D.3 Docker

kristo11@stud.ntnu.no Executive Summary Report

EXECUTIVE SUMMARY - PASS

KS

Status:

Created:

Started by:

VUs:

Duration:

Load zones:

PASS

19 May 2023 at 21:41

kristo11@stud.ntnu.no

100 VUs

11 min 30 sec Max Throughput

reqs/s

HTTP Failures

reqs

Avg Response Time

ms

95% Response Time

ms

SUMMARY

The test was configured to run up to for 11 minutes 30 seconds. A total of were made with a max throughput of . The sections below
give a more detailed breakdown.

PERFORMANCE OVERVIEW
The average response time of the system being tested was and were made at an average request rate of .

TEST OVERVIEW
RESPONSE TIME
The maximum response time was at . The average response time at the same point in time was , with 95% of requests taking less than .

THROUGHPUT
The test had an overall average request rate of peaking at while running .

BANDWIDTH
The amount of data sent peaked at , sending of data. Data received had its peak at with being received.

Executive summary report for test 1

https://app.k6.io/runs/1773703

36 0 1393 4927

100 VUs 20 825 requests 36 reqs/s

1 393 ms 20 825 requests 31 requests per second

7 989 ms 97 VUs 2 001 ms 6 274 ms

31 reqs/s 36 reqs/s 89 VUs

3 VUs 21.9 KB/s 3 VUs 798 KB/s

https://app.k6.io/runs/1773703

VUs Response time Request rate

VUs Avg. response time 90% response time 95% response time 99% response time Max response time

VUs Requests per second

This report summarizes a test run of the test "Docker 100VUs". It was performed on May 19, 2023 and is considered to be successful.

Docker 100VUs

kristo11@stud.ntnu.no Executive Summary Report

SLOWEST REQUESTS
There were requests to unique URLs, with different responses received. The slowest response had an average response time of .

URL METHOD STATUS COUNT MIN 95% 99% MAX

GET 200 2975 493 ms 3 970 ms 6 399 ms 6 951 ms 7 989 ms

GET 200 2975 342 ms 2 842 ms 4 767 ms 5 183 ms 5 848 ms

GET 200 2975 182 ms 1 133 ms 1 895 ms 2 175 ms 2 665 ms

GET 200 5950 103 ms 726 ms 1 199 ms 1 375 ms 1 631 ms

GET 303 2975 83 ms 231 ms 343 ms 406 ms 551 ms

GET 200 2975 23 ms 125 ms 228 ms 298 ms 441 ms

Executive summary report for test 2

https://app.k6.io/runs/1773703

6 20 825 3 970 ms

AVG

http://10.212.170.7/moodle/course/view.php?id=2

http://10.212.170.7/moodle/mod/forum/view.php?id=307

http://10.212.170.7/moodle/mod/forum/discuss.php?d=80

http://10.212.170.7/moodle/

http://10.212.170.7/moodle/mod/resource/view.php?id=301

http://10.212.170.7/moodle/pluginfile.php/315/mod_resource/content/0/resource1.txt

https://app.k6.io/runs/1773703

VUs Data sent Data received

VOCABULARY

ABOUT k6 CLOUD
k6 helps engineering teams prevent system failures and quickly deliver best-of-class applications. Our cutting-edge load testing platform brings cross-functional teams together to
prevent reliability and scalability issues so that every application performs well. Developers, operations, and QA teams use our tools to automate testing and test earlier in the
development process to bring high-quality products to market faster.

For more than 20 years, we have consulted businesses about load testing. We have spent the past 12 years developing state-of-the-art load and performance testing tools. 6,000+
customers — including Grafana, Microsoft, Carvana, and Olo — run millions of k6 tests every month. For more information, visit .https://k6.io

VUs
A Virtual User is a simulation of a real user making requests to the system. Multiple VUs are
executed concurrently to simulate traffic to the website or API.

Response Time
The time from sending the request, processing it on the server side, to the time the client
received the first byte.

Throughput
The amount of transactions the system under test can process, showing the capacity of the
website or application.

Latency
The time that data sent or received spends on the wire, i.e. from the start of data being
transmitted until all the data has been sent.

Checks
A check is an assertion that the system under test behaves correctly, e.g. that it returns the
correct status code. They do not halt the execution of the test, but acts as a pass/fail
metric.

Thresholds
Thresholds are a pass/fail criteria used to specify the performance expectations of the
system under test.

180 Chapter D: Testing result summaries

D.4 Docker Swarm

kristo11@stud.ntnu.no Executive Summary Report

EXECUTIVE SUMMARY - Docker Swarm 50VUs PASS

KS

Status:

Created:

Started by:

VUs:

Duration:

Load zones:

PASS

8 May 2023 at 09:45

kristo11@stud.ntnu.no

50 VUs

11 min 30 sec Max Throughput

reqs/s

HTTP Failures

reqs

Avg Response Time

ms

95% Response Time

ms

SUMMARY
This report summarizes a test run of the test "Docker Swarm 50VUs". It was performed on May 8, 2023 and is considered to be successful.

The test was configured to run up to for 11 minutes 30 seconds. A total of were made with a max throughput of . The sections below give a
more detailed breakdown.

PERFORMANCE OVERVIEW
The average response time of the system being tested was and were made at an average request rate of .

TEST OVERVIEW
RESPONSE TIME
The maximum response time was at . The average response time at the same point in time was , with 95% of requests taking less than

.

THROUGHPUT
The test had an overall average request rate of peaking at while running .

BANDWIDTH
The amount of data sent peaked at , sending of data. Data received had its peak at with being received.

Executive summary report for test 1

https://app.k6.io/runs/1758151

4 357 31642 50020

50 VUs 687 requests 4 reqs/s

31 642 ms 687 requests 1 requests per second

50 021 ms 34 VUs 25 485 ms 46 347
ms

1 reqs/s 4 reqs/s 28 VUs

25 VUs 9.76 KB/s 33 VUs 33.4 KB/s

https://app.k6.io/runs/1758151

VUs Response time Request rate

VUs Avg. response time 90% response time 95% response time 99% response time Max response time

VUs Requests per second

kristo11@stud.ntnu.no Executive Summary Report

SLOWEST REQUESTS
There were requests to unique URLs, with different responses received. The slowest response had an average response time of .

URL METHOD STATUS COUNT MIN 95% 99% MAX

GET 504 66 50 004 ms 50 015 ms 50 015 ms 50 015 ms 50 015 ms

GET 504 91 50 003 ms 50 014 ms 50 014 ms 50 014 ms 50 014 ms

GET 504 108 50 004 ms 50 010 ms 50 010 ms 50 010 ms 50 010 ms

GET 504 91 50 003 ms 50 009 ms 50 009 ms 50 009 ms 50 009 ms

GET 200 6 36 307 ms 43 098 ms 46 870 ms 47 286 ms 47 390 ms

GET 200 15 34 757 ms 41 344 ms 49 349 ms 49 720 ms 49 813 ms

GET 200 18 17 620 ms 38 817 ms 48 629 ms 49 742 ms 50 021 ms

GET 200 77 2 226 ms 28 798 ms 46 949 ms 47 585 ms 47 585 ms

GET 500 1 966 ms 966 ms 966 ms 966 ms 966 ms

GET 303 107 347 ms 876 ms 1 133 ms 1 204 ms 1 248 ms

Executive summary report for test 2

https://app.k6.io/runs/1758151

11 687 50 015 ms

AVG

http://10.212.169.172/moodle/mod/forum/discuss.php?d=255

http://10.212.169.172/moodle/course/view.php?id=3

http://10.212.169.172/moodle/

http://10.212.169.172/moodle/mod/forum/view.php?id=921

http://10.212.169.172/moodle/mod/forum/view.php?id=921

http://10.212.169.172/moodle/mod/forum/discuss.php?d=255

http://10.212.169.172/moodle/course/view.php?id=3

http://10.212.169.172/moodle/

http://10.212.169.172/moodle/

http://10.212.169.172/moodle/mod/resource/view.php?id=903

https://app.k6.io/runs/1758151

VUs Data sent Data received

VOCABULARY

ABOUT k6 CLOUD
k6 helps engineering teams prevent system failures and quickly deliver best-of-class applications. Our cutting-edge load testing platform brings cross-functional teams together to
prevent reliability and scalability issues so that every application performs well. Developers, operations, and QA teams use our tools to automate testing and test earlier in the
development process to bring high-quality products to market faster.

For more than 20 years, we have consulted businesses about load testing. We have spent the past 12 years developing state-of-the-art load and performance testing tools. 6,000+
customers — including Grafana, Microsoft, Carvana, and Olo — run millions of k6 tests every month. For more information, visit .https://k6.io

VUs
A Virtual User is a simulation of a real user making requests to the system. Multiple VUs are
executed concurrently to simulate traffic to the website or API.

Response Time
The time from sending the request, processing it on the server side, to the time the client
received the first byte.

Throughput
The amount of transactions the system under test can process, showing the capacity of the
website or application.

Latency
The time that data sent or received spends on the wire, i.e. from the start of data being
transmitted until all the data has been sent.

Checks
A check is an assertion that the system under test behaves correctly, e.g. that it returns the
correct status code. They do not halt the execution of the test, but acts as a pass/fail
metric.

Thresholds
Thresholds are a pass/fail criteria used to specify the performance expectations of the
system under test.

Appendix E

Project plan

In this appendix the project plan written in the planning phase of the project is in-
cluded. All the planning prior to the project start, including goals and limitations,
scope, and project organization is described.

185

DCSG2900 - Bachelor thesis, Bachelor in digital
infrastructure and cybersecurity

Project plan

Authors:
Tom Arne Brandvold
Alexander Damhaug

Kristoffer Lie
Benjamin Holhjem

Date: 01.02.2023

Table of Contents

List of Figures ii

List of Tables ii

1 Goals and limitations 1

1.1 Background . 1

1.2 Project goals . 1

1.3 Limitations . 2

2 Scope 3

2.1 Problem area . 3

2.2 Problem delimitation . 3

2.3 Problem statement . 3

3 Project organization 5

3.1 Roles and responsibilities . 5

3.2 Routines and group rules . 5

4 Planning, follow-up and reporting 7

4.1 Main division of the project . 7

4.2 Plan for status meetings and decision points . 7

5 Organization of quality assurance 8

5.1 Documentation, storage, and source code . 8

5.2 Plan for development and testing . 8

5.3 Tools . 8

5.4 Risk analysis . 9

5.4.1 Values . 9

5.4.2 Risks . 10

5.5 Risk management plan . 10

6 Execution plan 12

6.1 Gantt chart . 12

6.2 Milestones and decision points . 13

References 14

i

List of Figures

1 Gantt chart . 12

List of Tables

1 Values in the risk analysis . 9

2 Probability . 10

3 Impact . 10

4 Risks documented before actions are taken . 10

5 Risk matrix before actions . 10

6 Actions to be taken . 11

7 Risks after actions are taken . 11

8 Risk matrix after actions . 11

9 Milestones . 13

ii

1 Goals and limitations

1.1 Background

Orange Business Services is a local and global managed service provider, providing cloud services,
digital workplace and data-driven solutions. They consist of over 28 500 employees globally with
over 2 600 cloud experts and over 70 data-centers on 5 continents. The previous company Basefarm
was bought by the french telecom provider Orange in 2018, and now exists as Digital Services
Europe, a division of Orange Business Services covering the Nordic region, where this project was
initiated [5].

Orange Business Services is growing and seeing a raising demand for a dedicated learning platform
for training their technicians. The ultimate goal of this project is to setup and configure the
infrastructure required to host Moodle (a free and open-source learning management system [6]).
The underlying infrastructure must meet the company’s requirements for uptime, security and
capacity.

1.2 Project goals

Result goals

1. The main goal of the project is to setup a robust, scalable and secure infrastructure that is
able to host Moodle for use as an internal learning platform for Orange Business Services.

2. Another goal is to develop documentation at a quality that makes the further job for Orange
Business Services easier when they want to implement our solution.

Business goals

3. The business goals of the project is that implementing our solution should greatly reduce the
time and resources needed to train technicians.

4. Our work should also make it easier for Orange Business Services to implement our solution,
and reduce the resources needed to get the learning platform up and running.

5. Our solution should also be modifiable by Orange Business Services so that they can make the
necessary changes to get the platform ready for implementation and use in their workplace.

Learning outcome

6. The learning outcome of the project is to take a deeper dive into setting up and configuring
a robust and scalable infrastructure, and at the same time make sure that the infrastructure
is secure.

7. We are going to learn a lot about Moodle, and web-hosting in general. And also Terraform,
Tick Stack and other tools and services we will touch on during the project work.

8. Together with the technical learning outcomes we will also get real life experience with a
bigger project, and the collaboration within a group and with the client. This opportunity
allows us to develop good routines for best practices on how to plan, manage and collaborate
on a project like this.

9. In the end we will hopefully also have gotten new insights that will help us reflect on our
work during the project, and see if we could have improved something or done something in
a different way.

1

1.3 Limitations

Technical limitations

1. Our product should be easily deployable by Orange Business Services

2. Our infrastructure should be based on sensible choices of services and technologies

3. The platform should be secured against unauthorized access, and tested for known vulner-
abilities

4. The web server should be configured with redundancy and load balancing

5. The service and underlying infrastructure must be monitored using TICK stack

6. Necessary maintenance tasks and their affect on uptime should be documented

7. All choice of services and technologies should be justified, and configuration should be doc-
umented

Formal limitations

8. The project deadline is 22.05.23

2

2 Scope

2.1 Problem area

Orange Business Services AS, is seeking to integrate the training platform ”Moodle” onto their
infrastructure, to train technicians. The training platform needs to uphold the company’s demands
on uptime, security and capacity of a large amount of users.

To make this infrastructure platform, our focus is on writing Infrastructure as Code(IaC) and follow
known best practices, including Kief Morris ”Infrastructure as code ”core practices [3]. Choices
on which technologies and supported services will be justified, and all configurations made, will be
thoroughly documented so the solution can be put in operation in a production-environment later.

2.2 Problem delimitation

The task given by Orange Business Service AS is fairly broad so it’s important to set delimitation
to our work. We work with the principle KISS (Keep it simple stupid). It’s translated to work
iterative with small and simple pieces, so it’s easy to go back to previous versions when needed.

It is Orange Business Services AS that are responsible for the logical and technical content on
Moodle. The project should however facilitate the use by integrating necessary plugins. Our work
will be ran and tested on NTNU’s onprem cloud solution SkyHiGh (running Openstack). This will
distinguish from the client’s preferred cloud platform.

Since SkyHiGh, is ran through NTNU’s internal network and secured with a VPN, there will not
be possible for external users to access the service. Since it isn’t Orange Business Services AS
need to have direct access with our solution, the service will be limited to only be accessed from
NTNU’s internal network.

There is no direct need for manual pen-testing, so the focus will not be directed to this. Although
if we at a later time decide that there is more work that can be done, we will put manual pen-
testing into consideration. When it comes to the different technologies we can choose from, the
necessary choices will be taken after consideration throughout working with the project using the
KISS model. Technologies like docker/Kubernetes, Terraform/ubuntu and other technologies will
be determined after necessity.

2.3 Problem statement

The purpose with this assignment is to implement Moodle on a complete infrastructure platform
with full resource access to manage the service. These are the following, requirements:

1. There will be configured a platform with full infrastructure based on reasonable choices of
services and technologies

2. The platform must be secured against unauthorized users, and it is expected to run security
tests on common vulnerabilities continuously.

3. The web-server and database, must be configured with redundancy and load-balancing to
ensure up-time.

4. Simulated problems will also be tested, to make sure the system is able to be shielded from
failure, or potential attacks

5. TICK Stack will be configured to monitor any operation issues that may appear.

6. Necessary operation tasks, and how it will affect the service’s up-time will be documented.

3

7. Choice of services and technologies shall be justified, and all configurations shall be docu-
mented thoroughly, so the solution can be later used in production in an environment at a
later time.

It’s summed up by this problem statement:

Develop and configure a complete Moodle for infrastructure that ensures reliability, scalability
and security using modern cloud technologies.

4

3 Project organization

For this project to be a success, it is important that the project is well organized. In this section
we will look at how the group will look like in terms of its members different roles and the respons-
ibilities related to those roles. We will also have a look at the routines and rules that should apply
to the group.

3.1 Roles and responsibilities

To ensure productivity, efficiency and good communication for the group it may be beneficial to
set a few roles for the group members.

Such roles may include:

• Group leader: Kristoffer

• Assisting Leader: Alexander

• Quality manager: Benjamin, Alexander

• Meeting coordinator: Tom Arne

• Responsible for compliance with deadlines: Kristoffer

The group leader: Will be responsible for the overall functionality of the group and can step in
if there happens to be some form of conflict within the group. The group leader delegates work
between group members if necessary. They will usually take lead in group meetings between Orange
Business Services and our supervisor, but should get assistance from the other group members.

The Assisting Leader: Takes over responsibility from the group leader in case of absence, but
will also assist the leader in decision making, conflict resolution, and work delegation if necessary.

The quality manager: Will make sure documents and work provided by the group is within
specified requirements as well as the work holding the expected standard of quality for such project.

The meeting coordinator: Will assure that the group stay up to date with each other as well
as other interests within the project. They will be responsible for the arrangement of internal
meetings as needed throughout the project. They will also make sure that meetings held by the
group will have a meeting leader and referent for the given meeting.

The responsible for compliance with deadlines: Will make sure that work on tasks will be
started and finished in due time to get the task completed within the deadline. They will also assist
the meeting coordinator in making sure meetings are planned and announced in time as needed.

3.2 Routines and group rules

Routines

• Core hours (11-15)

• Weekly meetings with supervisor

• Meetings with Orange every two weeks or as needed

• Log hours worked

• Diary

Group rules

5

§ 1. Everyone should be available during core hours (11-15) Monday - Friday.

§ 2. The rest of the expected work hours can be freely distributed before/after core hours, unless
there is an agreed collaborative session.

§ 3. Everyone should attend all planned meetings unless otherwise agreed upon in advance.

§ 4. If a group member will not be able to attend a planned meeting or work session, the group
should be informed in due time, so that if necessary the meeting can be rescheduled.

§ 5. Tasks will be delegated as we go and the delegation will be agreed upon by the whole group.

§ 6. Workload will ideally split equally between group members. If a task require less work than
expected the member should try to help with other tasks.

§ 7. Specific tasks will be delegated using the Trello-board, and will give the group a core overview
on a specific tasks progression.

§ 8. If the group or any of its members are not satisfied with the efforts of a specific member, they
are required to communicate this early on with this person, in order to address and resolve
the issue(s) at hand.

§ 9. Communication is always key to progression! Lack of communication leads to misunder-
standing, which creates an unhealthy work environment, which can alter the quality of the
project significantly. It is in every group-members best interest to manage situations where
this might happen as we all are in this together.

Procedures for serious issues or violations of the rules

§ 10. If there is a lack of consensus in the group this should be attempted to be solved over a
group meeting. If there is still a disagreement, the group leader gets the final say. If a group
member is still unsatisfied, that individual must contact the supervisor (Erik) to consult on
a resolvement in the group.

§ 11. For repeated violations, the group will firstly give an oral warning. If problems keep occurring,
we will move onto written warnings which will be documented. If the following steps are
unable to resolve the issue, § 12. will apply.

§ 12. If rules are not followed to the extend of disturbing the workflow for the rest of the group,
the supervisor (Erik) should be involved.

6

4 Planning, follow-up and reporting

4.1 Main division of the project

Our project is a combination of infrastructure development and science. Our goal is to develop a
secure, reliable and scalable infrastructure, based on our research and testing.

For this purpose, we will try to follow the agile framework called kanban. As a kanban board, we
use Trello, where all tasks are placed . This process allows shortened cycles, and hopefully decrease
the bottlenecks encountered by limiting the amount of ”work in progress” [1]. Our modifications
to kanban board are the following:

1. Specified own name of ”workflow column” to be:

(a) Todo

(b) In progress

(c) Need help

(d) Open for improvement

(e) To control and revision

(f) Done

2. Our backlog is represented in the two columns ”need help” and ”Open for improvement”

3. The delivery point is the handover of technical documentation/product to Orange Business
Services AS.

4. We will deviate from kanbans CI/CD by having a bigger focus on well written documentation.

4.2 Plan for status meetings and decision points

We divide our meetings in three: Meetings with Orange Service AS, Supervisor Erik Hjelm̊as and
the group members. Client’s meeting (Orange) will happens every odd week to discuss status of
the project and challenges encountered. We have the possibility to book a meeting within short
notice when needed. Meetings with the supervisor is set weekly, with the possibility to cancel if
we have nothing to go over. The group members are available in ”core time” between 11.00 and
15.00 on weekdays. In this core time every group member is available for discussions, meetings
and other happenings throughout this project, like preparation for meetings with Orange Service
AS. We will use the agile technique called ”Pair programming”, where two people works together
on a topic [2].

When a decision (technical or non-technical) is encountered, the one who encounters it reads up
on the ”problem at stake”. When ready, he calls for a meeting in the core time and discusses the
findings with rest of the group This discussion should be well documented, containing both pros
and cons. If we can not agree within the group, our supervisor will have a saying.

7

5 Organization of quality assurance

5.1 Documentation, storage, and source code

Documentation on design and implementation that mainly focus on our solution itself, will be stored
in GitLab. Here we will focus on version control, and continuously deliver updates and integration’s
consecutively throughout the project when needed. Source code, supporting the implementation
will also be stored in GitLab, and will be managed equally with the documentation.

Beside the documentation and source code, we will also work on more thoroughly reports and
documents, that goes more in depth on the scientific part of our solution. For example the main
report. Here we will answer different research questions, regarding the project and everything we’ve
done. We will also have documentations regarding meetings between, supervisor/client, interviews
with persons of interest, agreements with client/group-members on the project, project plan, and
other potential reports regarding the administrative part of the project. This data will be stored
on SharePoint.

5.2 Plan for development and testing

When it comes to the actual development for the solution, we will plan as we go depending on
our achievements. As a fundamental standing point, we will develop a few instances and run
the service on the machines and get that to work. Since we are provided the resources needed
for the development through NTNU’s SkyHiGh’s onprem solution, we should be quite flexible for
building the infrastructure for the project. We will use git for storing any developed solutions, and
provide documentations for consecutively milestones hit. The documentations will be written in
Markdown, and automation script will be created for working solutions.

Testing will be done continuously beside the actual development of the product, both for error-
handling, but also for optimization and reliability. We will continuously deliver and integrate our
solution, to create a good product when finished. Git will also be essential, for testing, and version
control.

5.3 Tools

When it comes to a project as large as this, we must use lots of different tools, to assure we are
able to deliver a good product for our client. This is not only tools directed for our solution, but
administrative tools that assure that we are able to work as efficiently as possible, and don’t fall
behind schedule on our work, or miss out on crucial issues that needs to be resolved.

Administrative tools

For the administrative tools, that helps us coordinate our resources, stay up to date with our work,
or meetings with people of interests, will be specified in the following bullet list:

1. Discord: Digital communication platform for formal meetings between the group members,
or chat-rooms for discussions/planning regarding the project. It’s also used for live voice-
communication when working on the project itself.

2. Slack: Similar to discord, but only used for contacting the client with consecutive issues or
questions at hand.

3. Trello: A digital Kanban board like framework tool, to give us an efficient overview on what
needs to be done. It shows who is responsible for a specific issue, and reminds us to implement
the agile issues at hand.

4. Teams: A formal voice communication platform, used for having meetings with our client.

8

5. Signal: A messaging app, for communicating with group members

6. E-Mail: Used for communicating with Client/Supervisor, etc.

7. Excel (time sheet): Used for documenting a group member’s time spent on any type work
they’ve done related to the project.

Development tools

The tools used for developing the solution, and/or supported material for the project, is listed
here:

1. Overleaf: A technical tool used to write comprehensive documents in LaTeX e.g project
plan/main report.

2. Word: Similar to Overleaf, but is used for smaller and less, complex documents e.g project
agreement.

3. Visual Studio Code: Mainly used for developing the solution itself, like documentation, source
code, design and implementation. Here it is common for us to use languages like Markdown
for documentation, and e.g bash for development.

4. Openstack: Infrastructure as a Service tool used for running instances needed for the project.

5. GitLab: Used for storing source code, and documentation of design and implementation of
the solution.

6. OneDrive: Storage for any produced documents regarding the project that won’t be published
on GitLab.

7. ChatGPT: A highly advanced Artificial Intelligence chat-bot that can assist us with specific
parts of the project, e.g code errors etc.

5.4 Risk analysis

This section will first identify the risks we may encounter during this project, then analyze the
findings. Based on an assessment of each risk, we set the appropriate actions to reduce/manage
the critical risks. To accomplish this, we follow NTNU’s ROS assessment [4].

5.4.1 Values

The values in table 5.1 are based on what we as a group see as values during this project. All
group members contribute with their knowledge and work. Our supervisor has knowledge of the
process and will guide us in the right path. Orange Business Services AS is providing us with
two technicians that will be useful for technical desertions/problems encountered. Documentation
and source code is a critical part of our project delivery. Securing this is important for the final
delivery.

Values Assessment
Group members 4
Supervisor/client 3
Documentation 3
Source code 3

Table 1: Values in the risk analysis

9

5.4.2 Risks

In order to place impact and probability on risks, we have clarified different severity’s of these
measurements.

Grade Values Elaboration
4 Very likely Happens every week
3 Probable Happens every other week
2 Less likely Once a month
1 Unlikely Twice or less

Table 2: Probability

Grade Values Description
4 Severe Events that critically compromise the progression of the project
3 Moderate Events that hold up the progress of the project
2 Low Events that has some affect on the progress of the project
1 Insignificant Events that do not have noticeable affect on the process

Table 3: Impact

Table 4 shows the risk we think we may encounter during this project without any actions taken.
Each risk has been given a probability and a impact, witch combined shows a total score. The
actions to be takes is focused on the most critical risks at a score of 9 and 8.

No Risks Probability Impact Total score
1 Disagreements within group Very likely Low 8
2 Unclear tasks Less likely Moderate 6
3 Bad communication within group Probable Low 6
4 Lose communication with client/supervisor Less likely moderate 6
5 Absent group member Less likely Severe 8
6 Important technology can’t be integrated Probable Low 6
7 Lose source code and/or documentation Probable Moderate 9
8 Delay in planed activities Probable Moderate 9

Table 4: Risks documented before actions are taken

Very likely 1
Probable 6 3, 7, 8
Less likely 2, 4 5
Unlikely

Insignificant Low Moderate Severe

Probability

Impact

Table 5: Risk matrix before actions

5.5 Risk management plan

Based on the identifying and analysis done in section 5.4 Risk analysis, we have made a series of
actions to be taken (see table 6).

10

No Action Risk it affects
1 Clearly defined group rules 1, 3, 4
2 Weekly meetings (Supervisor, client, group) 1, 2, 3, 4, 5, 6, 8
3 Use Kanban and Trello board 2, 8
4 Keep important documents in SharePoint 7
5 Use a Version Control System (GIT) 7

Table 6: Actions to be taken

The actions in table 6 affects all risks in a beneficial way. With clearly defined rules together with
weekly meetings, we lower the probability of risks related to the group. These meetings helps us
ensure continuous communication with our supervisor/client. The use of Kanban and Trello makes
it easier to know what’s our work in progress and track how other’s doing. Using a VCS like GIT
together with SharePoint ensures that our work is saved in the cloud and gives us the possibility
to roll back to a earlier versions.

No Risks Probability Impact Total score
1 Disagreements within group Probable Low 6
2 Unclear tasks Less likely Insignificant 2
3 Bad communication within group Less likely Low 4
4 Lose communication with client/supervisor Unlikely Low 2
5 Absent group member Less likely Moderate 6
6 Important technology can’t be integrated Probable Insignificant 3
7 Lose source code and/or documentation Unlikely Moderate 3
8 Delay in planed activities Less likely Low 4

Table 7: Risks after actions are taken

Very likely
Probable 6 1
Less likely 2 3, 8 5
Unlikely 4 7

Insignificant Low Moderate Severe

Probability

Impact

Table 8: Risk matrix after actions

After our actions are implemented, all the risks found are acceptable to us (see table 8).

11

6 Execution plan

6.1 Gantt chart

Bachelor
O

range - O
ppsett og drift av e-læ

ringsplattform
Tom

 Arne Brandvold
Alexander D

am
haug

Benjam
in H

olhjem
Kristoffer Lie

1

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
1

2
3

4
5

6
7

8
9

10
11

TA
SK

PRO
G

RESS
STA

RT
EN

D
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s
m

t
o

t
f

l
s

m
t

o
t

f
l

s

Phase 1 Project planning

Establish contact w
ith client

100 %
09.01.2023

09.01.2023

Fill out and sign project agreem
ent

100 %
09.01.2023

13.01.2023

G
roup organization

75 %
09.01.2023

31.01.2023

Initial setup of file storage and m
ore

75 %
11.01.2023

27.01.2023

W
rite and deliver project plan

75 %
16.01.2023

31.01.2023

Phase 2 Research, developm
ent and testing

Start researching the technologies
15 %

23.01.2023
12.02.2023

Initial setup for developm
ent

0 %
01.02.2023

07.02.2023

D
iscuss product outline w

ith client/supervisor
0 %

01.02.2023
14.02.2023

Infrastructure developem
ent and testing

0 %
12.02.2023

26.02.2023

M
oodle setup and configuration

0 %
22.02.2023

09.03.2023

TICK stack setup and configuration
0 %

27.02.2023
19.03.2023

Phase 3 Im
provem

ents and technical docum
entation

Infrastructure im
provem

ents
0 %

16.03.2023
26.03.2023

TICK stack im
provem

ents
0 %

21.03.2023
28.03.2023

Security im
provem

ents
0 %

13.03.2023
02.04.2023

G
ather technical docum

entation
0 %

20.03.2023
09.04.2023

Phase 4 W
riting report and finishing up

Publish product to production
0 %

03.04.2023
23.04.2023

Finish w
riting report

0 %
17.04.2023

16.05.2023

Q
uality control of docum

entation
0 %

24.04.2023
21.05.2023

Final delivery of report and finished product
0 %

18.05.2023
22.05.2023

Prepare presentation of the project
0 %

23.05.2023
06.06.2023

29.05.2023
05.06.2023

Project Start:

D
isplay W

eek:
06.02.2023

13.02.2023
20.02.2023

27.02.2023

09.01.2023

09.01.2023
16.01.2023

23.01.2023
30.01.2023

06.03.2023
13.03.2023

20.03.2023
27.03.2023

03.04.2023
15.05.2023

22.05.2023
10.04.2023

17.04.2023
24.04.2023

01.05.2023
08.05.2023

Figure 1: Gantt chart

12

6.2 Milestones and decision points

The Gantt chart above shows the progress of this project. While our milestones is set at specific
dates, these milestones represents when we expect/want parts of the project to be done. By
checking the milestones regularly, it’s possible to control if we were on schedule or not. The
milestones set only covers the solution work, but throughout this project, we will simultaneously
document our findings, our working solutions, and write the main report.

No Milestone Date
1 Deliver Project plan 31.01.2023
2 Start research 01.02.2023
3 Start development and testing 12.02.2023
4 Our first MVP 24.02.2023
5 Start working on improvements 13.03.2023
6 Set the outline of the final report 01.04.2023
7 Publish to production 23.04.2023
8 Final delivery 22.05.2023

Table 9: Milestones

13

References

[1] Atlassian. Kanban: How the kanban methodology applies to software development. 2023. url:
https://www.atlassian.com/agile/kanban (visited on 18/01/2023).

[2] Alexander S. Gillis. pair programming. 2021. url: https://www.techtarget.com/searchsoftwarequality/
definition/Pair-programming (visited on 18/01/2023).

[3] Kief Morris. Infrastructure as Code: Dynamic Systems for the Cloud Age. O’reilly, 2020. isbn:
9781098114671.

[4] NTNU. Informasjonssikkerhet - risikovurdering. 2023. url: https://i.ntnu.no/wiki/- /wiki/
Norsk/Informasjonssikkerhet+-+risikovurdering (visited on 23/01/2023).

[5] Orange Business Services. Om oss. url: https://cloud.orange-business.com/no/om-oss-no/
(visited on 23/01/2023).

[6] Wikipedia contributors. Moodle — Wikipedia, The Free Encyclopedia. 2023. url: https://en.
wikipedia.org/w/index.php?title=Moodle&oldid=1134790859 (visited on 23/01/2023).

14

Appendix F

Contract

This appendix contains the standard agreement between the group and the client.
The contract specifies copyright and ownership of the results developed in the
bachelor’s project.

203

Appendix G

Meeting minutes

This appendix contains extracts of meeting minutes from group meetings, super-
visor meetings and client meetings held during the work on the bachelor’s project.

211

212 Chapter G: Meeting minutes

G.1 Client meetings

Deltakere:

Alexander Tilstede

Benjamin Tilstede Referent

Kristoffer Tilstede Møteleder

Tom Arne Tilstede

Truls Tilstede

Referat:
Info om at vi har satt litt bedre krav til infrastrukturene

Truls synes dette er bra○
Infrastrukturene høres fornuftige ut○
Viktig å se på problematikk med tidsbruk på automatisering og om det er nødvendig hele tida○

•

Performance er interessant
Øke kompleksiteten for å få hastighet opp, da mister man litt fordelene○

•

Godt i gang med problemløsning
Truls er imponert over at vi faktisk klarer å løse problemene som dukker opp○

•

LDAP
Ingen preferanse til AD eller openLDAP○
Litt mer mot openLDAP○
Kun ekstrapoeng å sette opp dette○
Veldig basic innlogging○
Litt overkill med full AD for kun en tjeneste○

•

TICK stack
Overvåke:

Hardware, bruk av disk ressurser
Cpu - men ikke fullt så nyttig om man ikke benytter det til skalering
Tjeneste

http på moodle forsida - se at den er oppe eller nede□
Moodle tjenesten på serversiden, systemd tjenesten□



Varsling om noe går ned
Hensiktsmessige alarmer□



○

TIG stack
Kan være bedre å se på i forhold til at det kan være noe lettere

○

•

Møte 020223 m/Orange
torsdag 2. mars 2023 13:04

Deltakere:

Alexander Tilstede

Benjamin Tilstede Referent

Kristoffer Tilstede Møteleder

Tom Arne Tilstede

Truls Tilstede

Referat:
Litt snakk rundt swarmen, og UDP åpninga

Ekspert hos Orange ville egentlig brukt Kubernetes i stedet for swarm○
Tida strakk ikke til for å få til Kubernetes○
Det er ingen problem fra Truls sin side, vi gjør det vi har fått tid til

Men kan nevne litt i rapporten at vi heller ville brukt Kubernetes
○

•

Krissærn viser testinga av arkitekturene
Viser frem forskjellen i responstid○
Truls synes responstid er relevant○
Truls har ikke så mye spesifikke parametere å gi oss i forhold til testing

Tilbake til JMeter???
Kan bruke noe av dokumentasjonen rundt JMeter og Moodle, og ta med det inn i
k6



○

•

Informert om status på rapporten
Hovedfokuset vårt ligger der nå○
Truls med tips til rapporten:

Orange ønsker løsning og funn vi har kommet frem til. Ønsker dette som vedlegg,
teknisk dokumentasjon



Lettere for Orange å se på tekniske vedlegg enn å replikere tekniske løsninger ved
å måtte lese hele rapporten



Burde snakke med Erik om dette, og spørre om det er greit at det er et vedlegg og
ikke er bakt inn i rapporten



Det vi har i git repoet nå ser bra ut

○

•

Tror vi bør bli bedre på å avsluƩe møter.. Det blir plutselig bare helt sƟlle og så må Truls
avsluƩe ᬒᬓᬔᬕᬖᬗᬘᬙᬚᬛᬜ

•

Møte 270423 m/Orange
torsdag 27. april 2023 14:00

Chapter G: Meeting minutes 215

G.2 Supervisor meetings

Deltakere:

Alexander Tilstede

Benjamin Tilstede Referent

Kristoffer Tilstede Møteleder

Tom Arne Tilstede

Erik Tilstede

Gruppas status:
Kommet igang med 2 nye arkitektuerer + Lastbalansering

Dog nye problemer stadig vis.○
•

Progresjon når deg gjelder helautomatisering•
Hatt møte med Eigil om Kubernetes•
Dine tanker om HELM chart?•
Bruke NB tech support!•
Manuelle private IP adresser?•

Referat:
Adressere hvor programvare kommer fra, i forhold til sikkerhet. Rapport.•
Ikke feil å hente inspirasjon fra kode hos uverifiserte kilder, men unngå å laste ned data fra
uverifiserte kilder

•

Se på om ansible kan bidra til at vi kan unngå startup skript•
Sikkerhetstesting av programvare•
Få konteinerne så små som mulig

Bruke image på konteinerne som kun har det nødvendige, slik at de blir kompakte
Alpine linux?

○
•

Lage figurer og begynne å strukturere rapporten - kanskje se på dette neste•
Rapport - erfaringer i forhold til fremdriftsplanen•

Møte med Erik 220223
onsdag 22. februar 2023 11:46

Deltakere:

Alexander Tilstede

Benjamin Tilstede Referent

Kristoffer Tilstede Møteleder

Tom Arne Tilstede

Erik Tilstede

Agenda:
Gå gjennom rapporten•

Referat:
Ikke sammenheng, må skrive ut hver vår kopi og lese gjennom så ser vi det•
Mangler litt referanser. Bruk referanselista til wikipedia - kiss en bok fra en amerikansk general•
Kutte noe i purpose, noe skrevet av gpt der 㐧㐨㐩㐪㐫㐬㐭㐮•
1.5 punktene er de samme som er definert tidligere - unødvendig. Kan formulere som
prosjektmål, effektmål og læringsmål (se i prosjektplanen om vi har det fra før)

•

Henvise til forprosjektet ihht verktøy, risiko, roller ++ (appendix B)•
Ikke "in the table under" men referer til figuren med nummer•
\clearpage - skyver resten av teksten over på neste side•
Ikke henvis til Erik i kap 2, bruke referanser til bøker eller vitenskapelige artikler. Wikipedia for
virtual machine ligger en referanse til ieee

•

Mangler en overskrift i kap 2•
Kutte første avsnitt i topic theory•
Kap 3: Holder kanskje med 1 skjermbilde. Beskriv tekstlig.•
Kap 3 virker litt rart. Sammenheng. Funksjonelle og ikke-funksjonelle krav (ytelse og sikkerhet,
men vi sier noe om hardware og software krav). Hva vi skal nå, hvilke krav skal vi oppnå etter
testing. Responstid skal være maks 5000 ms. Hente inn krav fra prosjektplanen. Liste med 7
punkt med krav burde kanskje vært operasjonelle krav.

•

Kap 4 mangler refleksjon, hvorfor brukte vi kanban og hvilke alternativer hadde vi.
Gjennomføringsmetode - literature survey, eksperimenter bruk av gpt (eller enklere bruk
av ai), dette er metoder.

○

Gpt må skrives så det fremkommer tydelig at vi får ut sannsynlig svar på den teksten vi
skriver inn. Kun statistisk ikke noen kunnskapsbase, svarer med ord som det er statisk
sannsynlig at er et svar på det man putter inn.

○

Ingen referanser i kapittelet○

•

Kap 5 mangler noe i forhold til det man eksakt skal teste. Hva vi skal teste burde stå i kravspec
kapittelet.

5.1 flytt til forrige kapittel○
Hva linux er trenger vi ikke forklare○
Blir plutselig veldig detaljert om moodle, brå overgang, bør se om vi kan omstrukturerer
det

○

Mangler henvisning til figurer i teksten○
Rettskrive noe○
Drøfte et sted hvorfor vi bruker terraform og alternativene (burde stå tidligere enn kap 5
kanskje)

○

Drøfte verktøy i alle arkitekturer først, så kommer arkitekturene. Man vil ikke lese
verktøyene brukt i mellom hver arkitektur, men vil ha mer sammenheng i arkitekturene.

Kort om alle relevante teknologier man trenger kjennskap til
Hver arkitektur, hvorfor vi har valgt den og hvordan den blir implementert, ved 

○

•

Møte med Erik 110523
torsdag 11. mai 2023 09:31

hjelp av disse verktøyene…
Skrive tall 1 til 10 med bokstaver (ikke 3-layer for det skal stå slik)○
Docker er kanskje litt for detaljert, men ikke noe stort poeng○
Hvilke avhengigheter har man, hvilke må kjøre i sekvens. Tabellen i docker sier ikke noe
om det. Avhengighetene mellom må komme tydeligere frem

○

Må ikke stå et eneste forslag til passord i rapporten, mulig løsning tok Tomærn bilde av
når Erik skrev det på tavla.

○

Liten bommert med ei pil på swarm figuren○
Skjermbilder uten mørk bakgrunn - prøve å bytte til hvit bakgrunn der det er mulig○
Leseflyt: plutselig kommer det mye k6 kode○

Kap 8 alle endringer og problemer vi har møtt må ikke fremstå som klaging. Henvis til
risikoanalysen og hvorfor vi ikke har det med i risikoanalysen. Må spesifisere helt spesifikt
hvorfor enkelte steder, hvorfor vi ikke hadde tid, og hvorfor vi ikke hadde planlagt mitigation
for et slikt problem. Også flytte noe fra further work til senere i rapporten.

•

Chapter G: Meeting minutes 219

G.3 Group meetings

Deltakere:

Alexander Tilstede

Benjamin Tilstede Referent

Kristoffer Tilstede Møteleder

Tom Arne Tilstede

Agenda:
Møterom-
Status-
Hva er vårt felles mål? -
Hvem jobber med hva? -
Plan for uka-
Hva må gjøres?-
Div

Git○
TICK stack○
Toggl○

-

Referat:
Har booka 3 uker fram. Neste uke blir det et møte på tirsdag, de to neste ukene er T117 reservert hver dag fra 08 til 15.-
Folk er litt stuck, Alexander og Kristoffer har kjørt seg litt fast. Alexander har fått til ip adresser og flere webservere, er stuck på
glusterfs, men vi burde se om vi kan unngå å bruke det. Tom Arne får ikke til db, så får heller ikke testa om ting funker på
docker. Benjamin hadde dårlig tid forrige uke, skal få sett på rapport og figurer. Kristoffer har fungerende lamp-stack på kub,
noe feil som må rettes.

-

Motivasjonen er litt laber hos noen, vi må prøve å få satt litt mer klare målsettinger og retningslinjer.-
Automatisering er ikke helt nødvendig, men ønskelig i konfigurasjon av infrastrukturen. Slik som Alex holder på nå er kanskje
ikke helt nødvendig, men det er viktige erfaringer i forhold til rapport og anbefaling av en type infrastruktur over en annen.

-

Må forholde oss enda mer til KISS, slik at vi ikke overkompliserer ting.-
Prioriteringene i Alex sitt hode:

Robust og skalerbar1.
Sikkerhet2.
Automatisering3.

-

Alle er enig om at vi må begrense automatisering nå og sørge for å få infrastrukturen robust og skalerbar.-
Mål: sette oppe en robust og skalerbar infrastruktur.

2 skalerbare infrastrukturer - Docker Swarm og Kubernetes○
(Ikke skalerbare infrastrukturer også)○
Veien mot målet inneholder også monolittisk infrastruktur og docker på en monolittisk infrastruktur.○
Krav til infrastrukturene:

(Monolittisk):
1 vm som kjører hele tjenesten, webserver og database.□
Allerede oppnådd.□



Ikke monolittisk infrastruktur med flere servere (klassisk infrastruktur):
Utvidelse av den monolittiske□
1 vm som kjører hver tjeneste, 1 eller flere vm-er for webserver og 1 for db + load balancer□
Alex har løsningen på denne, automatisering funker kanskje ikke helt□
Prøve å sette opp et delt volum for å slippe glusterfs, dette kan bidra til å få automatisert helt□
Lage god dokumentasjon□



Docker:
1 vm som kjører Docker, og så konteinere for tjenestene□
Kjøre databasen utenfor docker□
Konteinerisere webserverne□
LAMP stack med moodle□



Docker Swarm:
3, 5, 7 … vm-er med docker som kjører konteinere i swarm□
Glusterfs□
Database-cluster□



○

-

Møte 270223
mandag 27. februar 2023 11:54

Gjør som Kyrre, men bare med moodle□
Kubernetes:

Har master og noder□
Veldig likt docker swarm, pods i stedet for konteinere□
Kan kjøre opp docker image på pods□



Krav til dokumentasjon:
Ingenting er ferdig før dokumentasjonen også er ferdig
Alt bygger på hverandre, så det er viktig å dokumentere godt så andre kan forstå det
Passe på å ha forståelige filer
Hvis man benytter moduler i terraform så starter man i main og man kaller der alle andre funksjoner
Passe på at filnavn gir mening, ikke ha flere main.tf

○

Ting som må gjøres:
Alexander og Kristoffer fikser klassisk○
Kristoffer og Tom Arne ser på database og docker image○
Benjamin skriver rapport og lager figurer○
Vi må prøve å få til TICK stack snart, men da trenger vi infrastruktur å overvåke○

-

Fortsatt vanskelig å finne ting i git. Hvilket repo jobber folk i og hvordan skal vi jobbe i git. Noe å tenke på til neste møte.-
Vi må passe på å ha tid til TICK stack-
Alle må passe på å bruke toggl slik at vi får en så nøyaktig representasjon av dataen som mulig.-
Neste møte: tirsdag 07.03 kl 15-

Deltakere:

Alexander Tilstede

Benjamin Tilstede Referent

Kristoffer Tilstede Møteleder

Tom Arne Tilstede

Agenda:
Status/hvordan går det? •
Gå gjennom hvert kap.

Vurdere hva som kan forbedres/skal skrives○
•

Hvem skriver hva? (annsvarsområder)•
neste møte fredag kl. 11? •
felles betegninger

moodle platform, web service, e-learning platform/service etc.. ○
Webservice○

•

Referat:
Status: Implementation begynner å ta form, docker er brukbar, swarm må revideres. Begrensninger
på trial av k6, som ødelegger litt for testinga, så må finne en annen løsning der.

•

Fellesbetegnelser: Få orden på bruk av forskjellige ord, eks. software, service, platform•
Møte: fredag 11:15•

Rapportgjennomgang:
Kap 1. Background - må skrives bedre ut fra tilbakemelding fra Erik1.
Kap 2. Er for kort, det må skrives mer.

Mer på professional field, kan kanskje skrive mer om webtjenester, lms?, standarder og best
practices. IaaS og skytjenester burde være teori her.

a.

Topic theory kan ha mer underoverskrifter, litt lite oversiktlig med så mye tekst. Kan pushe
inn mer om konteinerisering, automatisering, sikkerhet, database, testing. Kan se på
forelesninga til Kyrre om arkitekturer og så om det er noen nyttige temaer der.

b.

2.

Kap 3. Må få inn de skjermbildene som mangler der. Noen kilder som mangler også.3.
Kap 4. Ser good ut foreløpig, får høre hva Erik sier om den.4.
Kap 5. Står masse x-er der, de må bort. Må skrive i nåtid og uten personlig pronomen. Mangler figur
for swarm. Burde kanskje være figur for db-cluster (ikke kritisk). Kan kutte eksperimentell
implementasjon, og kanskje putta den i kap 4 i stedet… Kanskje?

5.1.1 docker og docker swarm mangler + LDAP. Mer git enn gitlab..a.
5.1.2 Skal ikke være der, tar det i diskusjon i stedetb.
5.2.5 Mangler en del. Burde vært 5.3. Database-cluster er irrelevant for implementasjonen.
Kan se om vi kan flytte den et annet sted kanskje..(diskusjon?) Burde nok ikke fjernes, men
passer ikke inn der. Overskrifter i dette kapittelet må ryddes opp i.

c.

5.

Generelt kan vi prøve å lage litt tabeller og få inn noen flere figurer.

Arbeidsfordeling:
Dette forsøkes å gjøres ferdig innen fredag. På fredag går vi i gang med de neste kapitlene.

Hvem? Hva?

Kristoffer Kap. 2

Alexander Rettskrive på kap 5.

Møte 020523
tirsdag 2. mai 2023 10:27

Benjamin Kap. 1, 3 + figurer og LDAP i 5.1.1

Tom Arne Kap 5 - docker og docker swarm + docker i 5.1.1

Til møte med Erik:
Diskutere med Erik databasearkitektur (implementation) og eksperimentell implementasjon.

Appendix H

Timesheet

This appendix includes an export from the time tracking software used throughout
the project.

225

Summary Report
01.01.2023 – 31.12.2023

TOTAL HOURS: 1200:46:27

333:20:00

266:40:00

200:00:00

133:20:00

66:40:00

00 sec

115:50:00

260:13:02 268:30:13

231:57:59

324:15:13

Jan

2023

Feb

2023

Mar

2023

Apr

2023

May

2023

Jun

2023

Jul

2023

Aug

2023

Sep

2023

Oct

2023

Nov

2023

Dec

2023

8%

4%

5%

6%

13%

30%

34%

PROJECT DURATION

08 - Project report 403:39:04

06 - Development 362:35:10

05 - Research 150:22:43

01 - Group meeting 77:45:04

07 - Documentation 58:24:31

09 - Planning 48:22:18

Other projects 99:37:37

52%

1%1%1%1%1%1%1%
2%

2%
2%

3%

4%

6%

7%

14%
TIME ENTRY DURATION

Writing report 163:46:05

Without description 80:53:32

Project report 76:15:31

Group meeting 49:21:37

docker swarm debug 37:14:16

docker 29:57:59

Docker swarm 19:55:12

ti stack 18:12:41

planing my day/week 17:39:44

k6 testing 16:53:14

Worked with report 15:45:31

Worked with Report 13:52:27

Writing project plan 13:00:00

Writing Report 13:00:00

Meeting with supervisor 12:42:07

Other time entries 622:16:31

Page 1/18Bachelor workspace

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Problem area
	Delimitation
	Project definition

	Target audience
	Report
	Technical documentation and code

	Academic background
	Purpose
	Project goals
	Project limitations
	Roles
	Report structure
	Contents
	Report layout

	Theory
	Background and professional field
	Iron vs Cloud age
	Deployment Options (Public, Private, Hybrid)
	Cloud service models

	Topic theory
	Redundancy and Load Balancing
	Database and database clusters
	Scalability
	Automation
	Monitoring
	Containerization
	Security
	Open-source software

	Requirements specification
	Functional
	Operational

	Working method
	Working method
	Communication and meetings

	Application of working method
	Practical and experimental implementation

	Implementation
	Technologies, tools and software used
	Detailed description

	Additional components
	TI(CK)-Stack
	Testing
	LDAP server
	Docker Registry server

	Implementation of infrastructures and components
	Single server architecture
	3-Layer architecture
	Docker architecture
	Docker Swarm architecture

	Discussion
	Comparison of the infrastructure architectures
	Single server architecture
	3-Layer architecture
	Docker architecture
	Docker Swarm architecture

	Test results
	Architecture hardware resources
	k6 Test results
	Analysis of architecture performance and requirements

	Knowledge and technological familiarity's influence on choices and technologies

	Assignment critique
	Short overview of the assignment
	Critique of the assignment
	Student Performance
	Reflection on Learning

	Further work
	Implementation improvements
	Performance improvements
	Security improvements
	Monitoring
	Kubernetes

	Project evaluation
	Organization
	Work delegation
	Progress plan

	Conclusion
	Bibliography
	Progress plan
	Documentation
	Architectures
	Single server setup
	3-Layer architecture
	Docker
	Docker swarm

	Additional infrastructure
	TI-Stack
	LDAP server

	Other documentation
	OpenStack GUI-Setup

	Code
	Infrastructure 1: Single server setup
	Infrastructure 2: 3-Layer Architecture
	Infrastructure 3: Docker
	docker_code
	docker_Infra

	Infrastructure 4: Docker Swarm
	Additional Component 1 - Monitoring

	Testing result summaries
	Single instance
	3 layer
	Docker
	Docker Swarm

	Project plan
	Contract
	Meeting minutes
	Client meetings
	Supervisor meetings
	Group meetings

	Timesheet

