
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

G
ra

du
at

e
th

es
is

Jardar Hollås
Petter Jørgensen
Charlotte Larsen
Tryggvi T. Zabelberg

Automated Security Testing with
MITRE Caldera and Azure Pipelines

Graduate thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia-Chun Lin
May 2023

Jardar Hollås
Petter Jørgensen
Charlotte Larsen
Tryggvi T. Zabelberg

Automated Security Testing with
MITRE Caldera and Azure Pipelines

Graduate thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia-Chun Lin
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Preface

We would like to thank the SOC team at Sopra Steria, comprising Kristoffer, Truls,
Joakim, and Mikael, for entrusting us with the project task and providing us with
the opportunity to work on this project. We are grateful for their collaboration,
expertise, and continuous support throughout the entire process. Additionally, we
would like to express our appreciation to our supervisor, Jia-Chun Lin, for her
guidance, encouragement, and valuable insights that greatly contributed to the
success of our project. We are honored to have had the privilege to work with
such a dedicated team and are grateful for the knowledge and experience gained
through this endeavor.

iii

SAMMENDRAG

Tittel : Automated Security Testing with MITRE Caldera and
Azure Pipelines

Dato: 21.05.2023

Deltaker(e) : Jardar Hollås
 Petter Jørgensen
 Charlotte Larsen
 Tryggvi T. Zabelberg
Veileder(e) : Jia-Chun Lin

Evt.
oppdragsgiver :

Sopra Steria

Stikkord/nøkkel
ord (3-5 stk) :

Cybersikkerhet, Pipelines, MITRE Caldera, Azure DevOps Pipelines,
Sikkerhetstesting

Antall sider/ord : 79/15127 Antall vedlegg : 6 Publiseringsavtale inngått : Åpen
Sammendrag
Sopra Steria er et ledende teknologi- og konsulentfirma, kjent for sine digitale tjenester. SOC-teamet
til Sopra Steria ønsket å automatisere sikkerhetstesting for å forbedre og effektivisere testprosessene
deres. Den foreslåtte løsningen måtte bruke et rammeverk for cybersikkerhet med åpen kildekode,
som også kunne integreres i deres deteksjonslab. Etter en grundig undersøkelse bestemte vi oss for
det rammeverket som stemte best med våre krav. Dette var MITRE Caldera, designet for automatisk
emulering av trusselaktører. Vi konfigurerte agenter og brukte APIer levert av Caldera for å
automatisere sikkerhetstestingen. Sikkerhetstestmiljøet som tester utføres i, implementeres med
IaC-verktøyet Terraform på skyplattformen Microsoft Azure. Løsningen vi utviklet inkluderer to
Pipelines, en som automatisk oppretter et testmiljø og en som gir muligheten til å kjøre ulike
sikkerhetstester innenfor det. Dette dokumentet dekker først bakgrunnsteori rundt sikkerhetstesting
og skytjenester. Vi fortsetter med en gjennomgang av våre satte krav, deretter design og
implementering av systemet vårt. Etterfulgt er en detaljert evaluering av systemet vårt og en
diskusjon av utviklingsprosessen, potensielle alternativer og til slutt videre arbeid for å gi en
helhetlig løsning på problemstillingen.

ABSTRACT

Title : Automated Security Testing with MITRE Caldera and
Azure Pipelines

Date: 21.05.2023

Participants : Jardar Hollås
 Petter Jørgensen
 Charlotte Larsen
 Tryggvi T. Zabelberg
Supervisor(s) : Jia-Chun Lin

Employer : Sopra Steria

Keywords : Cybersecurity, Pipelines, MITRE Caldera, Azure DevOps Pipelines, Security

Testing
(3-5)
Number of pages/words : 79/15127 Number of appendix : 6 Availability : Open
Abstract
Sopra Steria is a prominent technology and consulting firm, renowned for its digital services. The
SOC team of Sopra Steria requested an automated security testing solution to enhance and
streamline their testing processes. The proposed solution had to use an open-source cybersecurity
framework, which also could be integrated into their detection lab environment. After a thorough
investigation, we settled on the framework that aligned best with our requirements. That was MITRE
Caldera, designed for automatic adversary emulation. We configured agents and utilized APIs
provided by Caldera to create a solution for automated security testing. The Security Testing
Environment in which tests are executed, is implemented with the IaC tool Terraform on the cloud
platform Microsoft Azure. The system we developed includes two Pipelines, which provide the
automatic construction of a testing environment and the ability to run various security tests within
it. This thesis initially covers background theory around security testing and cloud computing. We
continue with our specific requirements, design, and implementation. Following is a detailed
evaluation of our system and a discussion of the development process, potential alternatives, and
further work to provide a comprehensive solution to the problem statement.

Contents

Abstract . i
Sammendrag . ii
Preface . iii
Contents . iv
Figures . vi
Tables . vii
Code Listings . viii
Glossary . ix
1 Introduction . 1

1.1 Background . 1
1.2 Project Goals . 2
1.3 Limitations . 2
1.4 Project Group . 3
1.5 Thesis Structure . 4

2 Background . 5
2.1 Cloud Computing . 5
2.2 Security and Penetration Testing . 7
2.3 MITRE ATT&CK . 9
2.4 Cybersecurity Frameworks . 10
2.5 Automation tools . 12

3 Related Work . 14
4 System Design . 16

4.1 Requirements . 16
4.2 System Architecture . 19

4.2.1 Security Testing Environment Deployment Pipeline 20
4.2.2 Adversary Operations Pipeline 22

4.3 Use Cases . 24
5 Development Process . 27

5.1 Development Model . 27
5.2 Phases and Timeline . 28
5.3 Documentation . 30
5.4 Routines . 31

6 Implementation . 33

iv

Contents v

6.1 Automation . 33
6.1.1 Defining Infrastructure as Code with Terraform 34
6.1.2 Integrating IaC model into an Azure Pipeline 41

6.2 Security Testing . 50
6.2.1 Security Testing Script . 50

7 Evaluation . 55
7.1 Test Case . 55
7.2 Requirements and Confidence Level . 63

8 Discussion . 70
8.1 The Project Task . 70
8.2 Evaluating Security Frameworks . 72

9 Closing Remarks . 76
9.1 Learning Outcome . 76
9.2 Conclusion . 77
9.3 Further work . 78

9.3.1 Overall System . 78
9.3.2 MITRE Caldera . 78
9.3.3 Infrastructure Deployment . 79

Bibliography . 80
A Contract . 86
B Project Wiki . 93
C Project Owner Evaluation - E-mail . 98
D All Meeting Notes . 102
E Project Plan . 141
F Additional Listings . 160

Figures

1.1 Internal Penetration Testing vs. External Penetration Testing 3

2.1 The infrastructure of server virtualization 6
2.2 Illustration of Penetration Testing . 8
2.3 Example of MITRE ATT&CK Matrix . 10
2.4 API Facilitating Communication . 13

4.1 The System Architecture on a high-level 19
4.2 Security Testing Environment Deployment Pipeline diagram 21
4.3 Adversary Operations Pipeline diagram 22
4.4 Example of structure in the result report 23
4.5 Use Cases . 24

5.1 Project phases . 28
5.2 Azure DevOps Kanban . 30

6.1 IaC Model . 34
6.2 Data Flow from Terraform Perspective 40
6.3 Data Flow from Pipeline Perspective 42
6.4 Illustration of the implemented Security Testing Environment 50
6.5 Sequence diagram of the security testing script 51

7.1 Azure DevOps Web GUI . 56
7.2 Navigation to pipelines . 56
7.3 Running the STEDP . 57
7.4 Pipeline stage status . 58
7.5 Deployed infrastructure . 58
7.6 Caldera agent status in web interface 59
7.7 Configuring the adversary profile ID value for the AOP 60
7.8 Currently running operation . 61
7.9 Sample output, from ability "Current user" 62
7.10 Solution Stored in Azure DevOps Repository 66

vi

Tables

4.1 Functional Requirements . 17
4.2 Non-Functional Requirements . 18
4.3 Use Case 1 . 25
4.4 Use Case 2 . 25
4.5 Use Case 3 . 26

7.1 The definition of confidence level in this thesis 63
7.2 Evaluation Results for the Functional Requirements 68
7.3 Evaluation Results for the Non-Functional Requirements 68

vii

Code Listings

1 A look at the providers.tf file . 35
2 The first part of the main.tf file is dedicated to referencing existing

resources . 36
3 main.tf part 2: specifies configurations for the Caldera container . . 38
4 main.tf part 3: A module is included 39
5 Preamble for the STEDP file . 41
6 Stage 1: DOWNLOAD . 43
7 Stage 2: VALIDATE . 44
8 Stage 3: Plan . 45
9 Stage 4: Deploy . 47
10 Stage 5: Agent Installation . 48
11 AOP implementation . 49
12 API call to initiate and run an operation 52
13 API call to get the report when the operation is finished 53
14 Do-while-loop to make sure operation is finished 54
15 Filtering and saving the operation results into a file 54

16 Sample report-snippet after successful operation 62

17 Agent-Configuration.ps1 . 161
18 CalderaAgentSetup.ps1 . 162
19 1-network-interface.tf . 162
20 2-virtual-machine.tf . 163
21 Module outputs.tf . 164
22 Module variables.tf . 164

viii

Glossary

AOP Adversary Operations Pipeline responsible for executing security tests in
form of a pre-existing Adversary Profile selected by the user. 19, 22, 23,
49, 50, 60, 61, 66

API Application Programming Interface. A set of rules and protocols that enables
software applications to communicate and share data with each other. i, ii,
13, 14, 22, 34, 50–53, 65, 76

Atomic Atomic, in the context of security testing is a style of testing that focuses
on the smallest unit of software, as in atoms. Rather than complex composed
tests. 11

Attack payload In cybersecurity, a payload is the malicious code or instructions
delivered to a target system to exploit a vulnerability or achieve a specific
goal. 15

Blue Teaming A defensive cybersecurity group responsible for identifying and
mitigating threats, as well as enhancing an organization’s overall security
measures. 8

Caldera Web Interface The included graphical user interface of the MITRE Cal-
dera framework, used to configure and manage tests graphically. 59, 61,
78

CLI Command Line Interface, such as PowerShell or the Windows CMD. 41, 43,
76

cmdlet A cmdlet is a lightweight, single-function command in PowerShell that
performs a specific action or task. 52, 53

container Often known as a Docker container. A lightweight, standalone execut-
able package that includes everything needed to run an application, includ-
ing code, runtime, system tools, libraries, and settings. Can be thought of
as a lightweight virtual machine. viii, 12, 38, 40, 64

CPU Central Processing Unit. The main processor of a computer, that runs the
machine’s Operating system and applications [1]. 5

ix

Glossary x

GUI Graphical User Interface. An interface that allows users to interact with elec-
tronic devices through graphical icons and audio indicators. 14, 25, 26, 42,
55, 76

IaC Infrastructure as Code. i, ii, 12, 33, 34

image A configuration file that includes all the dependencies, configurations, and
instructions needed to create a (docker) container based on that image. 64,
78

Kanban Framework used to implement agile and DevOps software development.
Work items are represented visually on a kanban board, allowing team
members to see the state of every piece of work at any time [2]. 6, 27,
28, 30

MSSP Managed Security Service Provider. An organization that provides out-
sourced monitoring and management of security devices and systems [3].
1

NSM Nasjonal Sikkerhetsmyndighet / Norwegian National Security Authority.
The Norwegian government agency responsible for overseeing security ser-
vices within the country. 1

OT Operational Technology. Hardware and software that detects or causes a change,
through direct monitoring and/or control of industrial equipment, assets,
processes, and events [4]. 1, 72

PowerShell A command-line shell and scripting language developed by Microsoft
for automating tasks and managing Windows-based systems. 11, 13, 20, 22,
23, 48, 50, 52

Purple Teaming A collaborative approach that combines both red and blue team
efforts, focusing on improving an organization’s cybersecurity through con-
tinuous testing and defense enhancements. 8

RAT Remote Access Tool is a type of software that enables a local user to connect
to and access a remote computer, server or network [5]. 11, 73

Red Teaming A simulated cyber attack conducted by an authorized group to eval-
uate and improve an organization’s security posture. 8

Scrum An agile project management framework that helps teams structure and
manage their work through a set of values, principles, and practices [6]. 6,
27, 28

Code Listings xi

SG Security groups delineate areas where different security measures can be ap-
plied [7]. 15

SOC Security Operations Center. An in-house or outsourced team of IT security
professionals that monitors an organization’s entire IT infrastructure in or-
der to detect and address cybersecurity events [8]. i, ii, 1

STEDP Security Testing Environment Deployment Pipeline responsible for setting
up and configuring the Security Testing Environment. 19, 20, 40–42, 45, 48,
49, 55, 57–59, 64

Terraform A popular open-source Infrastructure-as-Code tool used for automat-
ing and managing IT infrastructure. i, ii, 2, 12, 20, 28, 34, 35, 37–41, 43,
44, 46, 76, 79

TTPs Tactics Techniques and Procedures. The specific methods, techniques, and
strategies used by cybersecurity adversaries during an attack. A term coined
by MITRE. 9, 66, 74, 76

vanilla A product or service that is basic and has no special features [9]. 65

Virtual Private Network A virtual private network or VPN is a secure tunnel that
allows remote users to access a private network over the internet. 78

VM Virtual Machine. A software-based emulation of a physical computer, allow-
ing multiple operating systems to run concurrently on a single host machine.
5, 12, 15, 17, 19, 20, 22, 23, 39, 42, 48–50, 52, 59, 62, 76, 78

Chapter 1

Introduction

This chapter introduces the background of the project. It also describes the goals,
limitations, and stakeholders involved in the project.

1.1 Background

Our client Sopra Steria is a prominent technology and consulting firm and is
renowned for its digital services, software development, and consulting expert-
ise [10]. They offer a wide range of security services through their Security Op-
erations Center (SOC), which operates as a Managed Security Service Provider
(MSSP). In the Nordic cybersecurity market, they offer consultancy, operational
technology (OT), and application security services through their Cybersecurity
Centre [11]. Sopra Steria is one of the qualified organizations in the Norwegian
National Security Authority’s (NSM) quality assurance program for incident re-
sponse [12].

One of the challenges the SOC team of Sopra Steria faces is the need for efficient
testing and simulation of threats to increase security. Currently, all testing in their
detection lab is done manually, which can be time-consuming and prone to human
error. To address this issue, Sopra Steria wants to automate parts of the testing pro-
cess by implementing a solution that enables the simulation and emulation of at-
tacks on test clients in their lab environment. The goal is to build a comprehensive
solution that can be installed in their current detection lab, with documentation
for installation and configuration of the chosen framework. The solution should
also allow for automatic installation and testing through Azure DevOps Pipelines.
Azure DevOps Pipelines is a tool integrated into the Azure Cloud platform made
to assist in the automatic building and installation of software [13]. The project
aims to evaluate possible open-source frameworks for the automated emulation
of adversaries and provide a summary of the pros and cons of each.

1

Chapter 1: Introduction 2

1.2 Project Goals

The objective of this project is to develop a technical solution that can simulate
and emulate attacks against one or multiple test clients in a network and provide
a comprehensive report of the process. The solution is intended to streamline the
security testing process of the SOC team of Sopra Steria and will be installed in
their detection lab environment. It is designed for employees who have a technical
background and are responsible for security testing. Our project will be made
with the intention of laying the groundwork for the project owners to be able to
understand how to use, integrate and potentially build upon our solution in the
future.

The main goal is to automate the testing process and to evaluate the most appro-
priate open-source security frameworks for this purpose. Additionally, the project
will provide a collection of tests mapped directly to the MITRE ATT&CK security
framework matrix for categorizing cybersecurity incidents [14]. Automatic de-
ployment and testing using Azure DevOps Pipelines is a key element as well. De-
tailed documentation on the installation and configuration of the solution will
also be provided.

1.3 Limitations

The final product of this project will be an Azure Git Repository, stored in Azure
DevOps. It consists of the necessary elements needed to run simulation tests with
MITRE Caldera, including the setup and configuration of the test environment
using Terraform, the deployment of a Caldera server, and its agents onto its target
virtual machine for testing. When the tests are finished, a report detailing the
operation will be generated.

When executing various simulation tests, it is presumed that we possess internal
access to the target environment. Therefore, the acquisition of access from outside
the network or environment is not within the scope of our project.

Figure 1.1 exemplifies the main difference between internal and external penetra-
tion testing. Internal penetration testing is when the penetration tester has access
to the network or environment of the target. When doing an internal penetration
test, the goal is to determine how much damage an attacker can cause behind the
firewall and outer defenses of an organization. In comparison, the penetration
tester does not have access to the target’s network or environment when perform-
ing external penetration testing. The goal of external penetration testing is to
measure the security of the organization’s firewall and external security measures
[15].

Chapter 1: Introduction 3

Figure 1.1: Internal Penetration Testing vs. External Penetration Testing

The solution runs in the detection lab of Sopra Steria. Their detection lab is set
up with proper rules and configuration for the security solutions Defender for
Cloud and Sentinel. These are highly configurable security tools integrated into
the Azure Cloud platforms, including the detection lab. Setting up and configuring
these security solutions on a higher level than the base configuration will not be
a priority during our project.

When starting the project work, we were uncertain if we would be capable of
making our own program and security tests. Thus, we initially assumed that we
would focus on using and integrating tests included in recognized cybersecurity
frameworks such as MITRE Caldera and Metasploit. We consider this to be the
most appropriate way of meeting the requirements of our project while minim-
izing the risk associated with developing our own tests. Our goal is therefore to
integrate and efficiently use these tests and frameworks in the detection lab for
automation.

Chapter 4.1 describes the specific requirements for this project. Requirement NF7
specifically, requires us to evaluate different open-source cybersecurity frame-
works. However, there are numerous frameworks available online that offer a
wide range of options within cybersecurity. Considering this, we decided to focus
our research on well-known open-source frameworks that strictly fit our require-
ments. This is discussed further in Chapter 8.2.

1.4 Project Group

Our clients, also referred to as the project owners, are Truls Dahlsveen, Joakim
Fauskrud, Kristoffer Pettersen, and Mikael Vagnes from Sopra Steria. Jia-Chun Lin,
associate professor at NTNU in Gjøvik, is the supervisor for the project group.

Chapter 1: Introduction 4

The project group, consists of four members: Petter Jørgensen, Jardar Hollås, Tryg-
gvi T. Zabelberg, and Charlotte Larsen. We are all students in the bachelor’s pro-
gram Digital Infrastructure and Cyber Security [16] at NTNU in Gjøvik. We have
taken relevant courses in computer science fields about infrastructure, network-
ing, cybersecurity, penetration testing, scripting, automation, and more. Some of
us have also worked as software engineers and security analysts. The diverse back-
grounds and skill sets of the members in the group will provide an enriched devel-
opment environment and enhance the overall quality of the end product.

Throughout the project we have made use of experience obtained through vari-
ous subjects provided by our study program, an online course recommended by
the project owners, and experience several of the group members have attained
through part-time- or summer jobs. ‘Intermediate Purple Teaming’ is an online
learning path provided by AttackIQ Academy [17]. This course was recommen-
ded by the project owners and equipped us with an introduction to the concepts
of red, blue, and purple teaming, attack simulation, and more. The NTNU course
‘INFT2504 - Cloud services as a business‘ provided an introduction to Microsoft
Azure and how to navigate it and its many sub-services and features.

1.5 Thesis Structure
• Chapter 1 - Introduction: Description of the background, project goals,

limitations, and structure of the thesis.
• Chapter 2 - Background: Explanation of concepts relevant to our project.
• Chapter 3 - Related Work: Discussion of research or academic work we

have taken inspiration from or otherwise made use of.
• Chapter 4 - System Design: Description of the system architecture and

design, including requirements and use cases.
• Chapter 5 - Development Process: Explanation of how the development

process took place, including routines, work methods and meetings.
• Chapter 6 - Implementation: Covers the specific implementation of our

project and its code.
• Chapter 7 - Evaluation: Evaluation of each requirement against our actual

solution, including a test case and feedback from our client.
• Chapter 8 - Discussion: Discussion about various decisions made through-

out the project, and a thorough review of cybersecurity frameworks.
• Chapter 9 - Closing Remarks: Conclusion, learning outcome and suggested

further work.

Chapter 2

Background

In this chapter, we will explore fundamental concepts of cloud computing, pen-
etration testing, and automation. Furthermore, we will present an overview of
open-source cybersecurity frameworks relevant to our work.

2.1 Cloud Computing

Cloud computing is the delivery of different computing services which can be
accessed on-demand over the Internet. These include services such as servers,
databases, software, analytics, and more [18]. The foundation of cloud computing
is a process called virtualization; a process that utilizes the hardware of a physical
computer together with software, to create multiple virtual computers, commonly
known as virtual machines (VM). Each of these VMs run their own Operating
System (OS) and have the same functions as a normal computer [19].

Figure 2.11 is an example of how the virtualization infrastructure for a server can
look like. The hardware is the physical server components, such as the Central
Processing Unit (CPU), memory, network, and disk drives [20]. The Hypervisor is
the software used to allocate resources between the VMs and the physical com-
puter. It ensures that the different VMs have access to the physical resources they
need and that they do not interfere with each other’s memory space [19]. Each
VM is made up of virtual hardware, a guest OS, and application. Where virtual
hardware is the allocated resources for the VM and guest OS is the OS that the
VM is running [21].

1An overview of types of virtualization in cloud computing, https://www.znetlive.com/blog/
virtualization-in-cloud-computing/

5

https://www.znetlive.com/blog/virtualization-in-cloud-computing/
https://www.znetlive.com/blog/virtualization-in-cloud-computing/

Chapter 2: Background 6

Figure 2.1: The infrastructure of server virtualization

Microsoft Azure

In this project, we have used Microsoft Azure to deploy and run the necessary
infrastructure needed to perform automated security testing. Azure is a cloud
computing platform and service offered by Microsoft. It provides a wide range
of cloud-based services and allows businesses to build, deploy, and manage ap-
plications and services through Microsoft-managed data centers. Azure supports
various programming languages and provides monitoring of applications, as well
as security, to ensure data protection [22].

One of the more important Azure components that we used during the project is
Azure DevOps. It is a cloud-based platform within Microsoft Azure that offers a
variety of features for the development, storage, deployment, and maintenance
of software. In our project we primarily use Azure DevOps for storage of pro-
ject files, in ’Repos’, and to host our Pipelines. The DevOps environment of an
organization is commonly split into multiple projects, with each project having
access to the features Azure DevOps offers. Within Azure DevOps is the feature
Boards, which enables the project group to follow popular development models
like Scrum or Kanban; Repos (short for Repositories), a Git-style tool for stor-
ing and version-controlling code and files; Pipelines, allowing for deployment
to various production environments such as Azure Cloud or other Cloud service
providers [23].

Chapter 2: Background 7

2.2 Security and Penetration Testing

Security testing is a process that assists organizations in identifying vulnerabilit-
ies and flaws in their security systems. It entails a variety of techniques such as
vulnerability scanning, code review, and penetration testing [24]. Among these,
penetration testing is a commonly used approach to simulate or emulate an attack
on a system and find flaws in a safe and controlled manner [15].

Penetration testing is conducted by ethical hackers who attempt to breach an or-
ganization’s security safeguards in a controlled setting. This can assist enterprises
in detecting vulnerabilities before bad actors exploit them. Furthermore, the in-
sights gathered through penetration testing can give useful information about an
organization’s overall security posture. This may be used to patch vulnerabilities
and increase security defenses, therefore protecting sensitive data and preventing
data breaches [15].

Figure 2.2 illustrates this process. An ethical hacker executes an attack on a net-
work or computer and tries to avoid or suspend its defenses or antivirus. If suc-
ceeded, the ethical hacker can potentially insert a harmless virus and extract in-
formation from the target. This information can then be documented and used
to improve the defenses. If the attack fails, it could indicate that the defenses are
effective against that type of attack. The attacker can then change their methods
and try other attack vectors. Using logs, and monitoring both the attacking and
defending systems, an organization can learn about and improve its defenses in
collaboration with the ethical hacker.

Chapter 2: Background 8

Figure 2.2: Illustration of Penetration Testing

Red Teaming and Blue Teaming

Red teaming and blue teaming, are terms originating from military training oper-
ations where reds represent attackers and blues represent defenders [25]. Com-
bining red teaming and blue teaming is a collaborative and observational cyberse-
curity practice that simulates targeted network and system attacks. The attackers
on the red team use a variety of tactics to hack the system, while the defenders
on the blue team focus on detecting and defending against attacks. The process of
using both red and blue teaming is called Purple Teaming, which is any method,
process, or activity that leverages collaboration between the red and blue aspects
of organizational security [26]. It can be an efficient method of completing a com-
prehensive security posture assessment, allowing the organization to identify and
fix vulnerabilities. Red and blue teaming should be used by organizations that
want to always maintain a consistent cyber threat landscape. This approach can
be used by organizations to proactively identify and deal with weaknesses, as well
as identify the overall security posture, thereby protecting their valuable assets
from cyber threats and adversaries.

Chapter 2: Background 9

2.3 MITRE ATT&CK

MITRE ATT&CK [14] is a security framework for recognizing and categorizing
attackers and the Tactics, Techniques, and Procedures (TTPs) they use in cyber-
attacks. The framework consists of a matrix that details numerous strategies and
approaches utilized by attackers at each stage of an attack. Each tactic and tech-
nique is assigned a unique identification to facilitate tracking and categorization.
Specific tools and methodology, including solutions or countermeasures, are also
provided here, which has made it a widely adopted tool in the cybersecurity in-
dustry [27].

The MITRE ATT&CK framework is maintained by the MITRE Corporation [28],
a not-for-profit organization dedicated to advancing scientific and technological
knowledge in a variety of domains, including cybersecurity [29].

MITRE ATT&CK Matrix

The MITRE ATT&CK Enterprise Matrix, part of the ATT&CK framework, maps
the TTPs of adversaries onto an interactive matrix [30] as shown in Figure 2.3
2. The first row contains tactics such as Reconnaissance, Resource Development,
and Initial Access. The columns beneath these highlight some common techniques
within these tactics. Inside these techniques, we can also find specific procedures
which describe a practical way of carrying out that technique, including relevant
tools and code.

2An overview of the MITRE ATT&CK Matrix, https://attack.mitre.org/matrices/enterpri
se/

https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/

Chapter 2: Background 10

Figure 2.3: Example of MITRE ATT&CK Matrix

2.4 Cybersecurity Frameworks

Cybersecurity frameworks are structured approaches used to identify, evaluate
and manage cybersecurity risks [31]. They provide a common language for dis-
cussing and analyzing cyber threats and are especially useful when comparing ad-
versary behavior across the cybersecurity landscape. Frameworks such as MITRE
ATT&CK help us identify and make use of recognized approaches to test and de-
fend against a multitude of known threats. Others provide specific, easy-to-use
software, step-by-step methods, or code examples which assist in the automation
of security testing.

Open-source refers to the characteristic that a framework or software is free to use,
modify, and distribute, and its source code is publicly available [32]. This provides
transparency and enables the community to collaborate on development, making
it a valuable resource for building custom security automation workflows and
improving cybersecurity defenses. Because of the above benefits and the require-
ment from our client mentioned in Chapter 4.1, our final solution will incorporate
open-source frameworks and software.

Chapter 2: Background 11

There is a vast amount of options when considering open-source cybersecurity
frameworks. As mentioned in Chapter 1.3, we will not be able to cover all frame-
works in the field. A selection of relevant frameworks and their background can
be seen below. Further frameworks and a detailed discussion of each are provided
in Chapter 8.2.

Atomic Red Team

Atomic Red Team is an open-source framework that contains a collection of tests
aimed to imitate real-world attacks and detect security weaknesses. Atomic refers
to atoms, which in this context means to focus on the smallest unit of software
tests rather than complex, composed tests. These tests are mapped directly to the
MITRE ATT&CK framework and enable the user to assess the security posture of
an organization and find vulnerabilities that need to be fixed [33]. Specifically, it
provides us with useful PowerShell code and scripts we can run to test security
solutions on different platforms.

MITRE Caldera

The Atomic Red Team tests can be run on their own but are also easily integrated
into other tools such as MITRE Caldera. MITRE Caldera is an open-source, highly
customizable security framework designed to emulate the behaviors of threat act-
ors and simulate cyberattacks to test the defenses of an organization [34]. Caldera
emulates various adversarial activities with remote access tools (RAT) installed
on infected machines that are controlled by a master [35]. It is built with connec-
tions to the MITRE ATT&CK framework and offers a suite of tools to create and
execute cyberattacks, gather and analyze data, and generate reports. The Atomic
Red Team tests can be implemented and used as part of our solution through
plugin functionality provided by MITRE Caldera [36]. A Caldera operation is a
function in which a collection of Atomic Red Team tests or other tests can be
run in sequential order, and where a report of the results is generated afterward
[37]. These operations can be custom-built, or based on built-in adversary profiles
which mimic real attacks from known adversaries, which is where our focus is. The
official documentation of MITRE Caldera defines adversary profiles as "groups of
abilities, representing the tactics, techniques, and procedures (TTPs) available to a
threat actor. Adversary profiles are used when running an operation to determine
which abilities will be executed" [38].

Metasploit

Further relevant frameworks include Metasploit, which is a penetration testing
framework developed by Rapid7 [39]. It is designed to help security profession-
als and ethical hackers discover and exploit vulnerabilities in target systems, to
identify and patch security flaws before attackers can exploit them. Metasploit can

Chapter 2: Background 12

also be integrated with MITRE Caldera to expand the number of available security
tests significantly [40].

2.5 Automation tools

Automating cybersecurity tasks can significantly enhance the security posture of
an organization by reducing workload, improving accuracy, and allowing teams
to focus on more strategic tasks. Automation tools are software programs that fa-
cilitate the efficient and streamlined execution of tasks. From routine tasks such
as identifying threats to complex operations such as incident response and vulner-
ability management, automation tools come in various forms. These range from
basic scripts to advanced systems that employ machine learning and artificial in-
telligence [41].

Terraform

As part of our efforts to automate our cybersecurity processes, we have utilized
Terraform, an Infrastructure as Code (IaC) tool developed by HashiCorp [42].
Terraform is used for managing cloud infrastructure resources as it is compatible
with all major cloud service providers, including Amazon Web Services, Microsoft
Azure, and Google Cloud Platform. The declarative syntax language of Terraform
allows us to specify the desired end state for infrastructure resources, while the
platform-specific methods such as Azure handle the steps required to achieve that
desired state.

Pipeline

A Pipeline [13] is a set of automated processes organized into steps or stages.
Pipelines are used for continuous integration (CI) and continuous delivery (CD)
of software. It is commonly used to allow developers to verify the compatibil-
ity of new code after pushing changes to a repository and then to deploy these
changes to the production environment. A typical Pipeline may have the follow-
ing stages:

1. Build: During this stage the Pipeline environment will be prepared and de-
ployed onto a ’Build Agent’. A Build Agent is a VM or container specialized
for executing the Pipeline operation. The agent will download and compile
the source repository before continuing to the next defined phase.

2. Test: A Pipeline will commonly have a phase where it uses various testing
techniques to verify that the newly pushed code does not cause unforeseen
issues. In other words, to make sure that the new code is properly integrated
into the existing solution.

3. Release: After verifying the new code in a testing environment, the Pipeline
may also automatically deploy the new code to production.

Chapter 2: Background 13

4. Monitor: Some advanced Pipelines may continuously monitor the function-
ality of the Production environment. In case of a sudden failure, the Pipeline
might attempt to restart the production environment automatically, or even
revert to a previous safe version if necessary.

Coding and Scripting

To clarify any discrepancies, we distinguish between the two traditionally sim-
ilar terms coding and scripting. Coding is the process of writing instructions in a
programming language to build software from scratch [43]. In contrast, scripting
involves writing sequences of instructions or commands that are executed by a
computer program to automate particular processes or tasks [44]. While coding
involves creating complete software applications, scripting is focused on automat-
ing repetitive tasks such as installing or configuring software (or executing secur-
ity tests) and is a key element of our project. A popular cross-platform scripting
language used for automation is PowerShell [45]. It has many use cases, with in-
stallation and configuration of software being one which is relevant for us.

API

An Application Programming Interface (API), is a set of defined rules that enable
different applications to communicate with each other. IBM defines it as an inter-
mediary layer that processes data transfers between systems, letting companies
open their application data and functionality to external third-party developers,
business partners, and internal departments within their companies [46]. It can be
thought of as a translator that takes in code from the external client in a language
the client understands and translates it into a language the server application un-
derstands. As illustrated in Figure 2.4, the API acts as an intermediary between
the client and server applications. In our solution, we use REST APIs. A REST API
is an API that conforms to the design principles of the REST, or "representational
state transfer" architectural style [47]. This is an industry-acknowledged standard
for designing APIs.

Figure 2.4: API Facilitating Communication

Chapter 3

Related Work

In this chapter, we will examine existing literature and research that is relevant
to our project. These works include topics related to cybersecurity, automated
red teaming, and the usage of MITRE Caldera, among others. By analyzing and
understanding the findings and approaches of these works, we aim to contribute
to the development and improvement of our own project.

In an NTNU master thesis, "Automated Red Teams in Maritime Cybersecurity Ex-
ercises" [48], Solli A.L. applied the Atomic Red Team framework to run automated
security tests against a maritime testbed environment. The author describes test-
beds as any system that is designed to replicate the essence of a real system. This
was used to replicate a maritime environment for testing purposes for the pro-
ject. The tests were created with the intention of being used in a red team versus
blue team cybersecurity exercise between students. Applying MITRE Caldera for
security testing was explored in the thesis, however, it was decided against due
to it being regarded as too complex for their use case. Detailed attack scenarios
made up of tests from the Atomic Red Team framework were used in the master
thesis to present a realistic attack scenario to the blue team in the cybersecurity
exercises. The blue team were the exercise participants with the responsibility of
protecting the aforementioned testbeds. In the thesis, the author chose to only use
the Atomic Red Team library when conducting tests.

In contrast, we decided to use the cybersecurity framework, MITRE Caldera. The
Caldera framework integrates tests from the Atomic Red Team library, however, it
encompasses further functionality beyond these tests. It enables agent-server func-
tionality which allows us to execute tests from a server against a target host. When
completed, results from these tests are gathered on the server. This is all accessible
through MITRE Caldera’s web Graphical User Interface (GUI) or API.

In M. Nachaat’s research article [49]MITRE Caldera was used to showcase meth-
ods of bypassing the built-in Windows security measures, such as Windows De-
fender Antivirus and Firewall, using the initial access tactic [50]. This tactic, as

14

Chapter 3: Related Work 15

defined in MITRE ATT&CK refers to the method used by hackers to gain access to
a system or network by exploiting a vulnerability or misconfiguration. The Attack
payload remained undetected and showed how hackers can exploit vulnerabilit-
ies to evade security measures. However, the study had some limitations. First off,
it only explored the initial access tactic for bypassing security. No further tactics
were tested, and their relevancy for us is therefore lower. Another limitation of
the article was that the reverse shell back from the victim device was only pos-
sible through the command used if the CALDERA platform was deployed. Despite
this, the study provided valuable insights into how hackers can bypass Microsoft
Windows Security using MITRE Caldera.

In a research paper written by Seongmo An et al. [51], the application of auto-
mated cloud security is explored with the proposed tool CloudSafe. The solution is
described by the authors as a combination of various tools and frameworks inten-
ded to automate the security assessment process in the cloud. The research paper
highlights the separation of privilege [52] between different stakeholders as a sig-
nificant challenge when developing security solutions in the cloud. The issue was
cited as being related to the difficulty in implementing the tools due to them not
having enough privileges to access necessary information. In response to this, the
use of Security Groups (SGs) was proposed to solve the problem. In short, while
it may vary between different cloud providers, Security Groups are a mechanism
used to segment access and rights to different resources in a cloud environment
[7]. Using this, the authors delegated the necessary access to the various tools and
frameworks to ensure they worked as intended. Furthermore, the paper mentions
that the overall goal of CloudSafe is to generate reports which could be used to
understand the security posture of the cloud infrastructure.

CloudSafe, the proposed solution put forward in the aforementioned research pa-
per is similar to the solution we are developing in that they both work on securing
assets in the cloud and both generate reports with the results of their operations.
The key difference between CloudSafe and our solution is the focus area, where
CloudSafe measures the overall security posture of the cloud infrastructure, while
our solution measures the security of individual VMs in a cloud environment. An-
other difference worth mentioning regards access to the tools and frameworks
in the cloud. Although both our solution and CloudSafe use Security Groups to
function correctly, it caused less of an issue for our project due to the number and
scale of tools and frameworks being smaller in our project.

Chapter 4

System Design

This chapter introduces the infrastructure, design, and requirements for the main
components of our solution. As specified below in Requirement NF6 from Table
4.2, our solution must be developed, and all resources be hosted, in the Azure
Environment of Sopra Steria. In the following sections, we will go over the re-
quirements, the system architecture, and the use cases for our project.

4.1 Requirements

The requirements are divided into functional and non-functional sections describ-
ing how each part relates to each aspect of our solution. Functional requirements
outline the system’s core capabilities and processes, indicating what the technical
system specifically is meant to do when used. Non-functional requirements fo-
cus on quality, usability, and other aspects outside of purely technical abilities.
This ensures that it operates efficiently according to our client’s needs and that
the additional external requirements are met, such as documentation and eval-
uation [53]. Tables 4.1 and 4.2 below go into the details of the functional and
non-functional requirements for the project.

16

Chapter 4: System Design 17

Table 4.1: Functional Requirements

No. Requirement Description

F1
Automatic Deployment of Infrastructure via Azure DevOps Pipelines
One of the main requirements of the project was the automatic deploy-
ment of infrastructure using Azure DevOps pipelines. This implies the
creation of VMs and the installation and configuration of necessary
software should be performed using Azure DevOps pipelines.

F2
The system should be able to autonomously perform security tests
within the detection lab
The solution should be able to perform security tests within Sopra
Steria’s detection lab independently. When configured, the solution
has to be able to run security tests against the project owner’s
selected targets without any manual interference by the user.

F3
Users should be able to define the tests or adversary profiles that the
system executes
When completed the users of the solution, the security testers, should
be able to define and select what tests they want to execute.
Furthermore, they need to have the ability to select what adversary
profile the system should execute.

Chapter 4: System Design 18

Table 4.2: Non-Functional Requirements

No. Requirement Description

NF1
Open-Source solution; non-copyrighted and customizable
The solution needs to be open-source in order to make sure that it
can easily be modified, adapted and shared by its users.

NF2
Documentation for security tests should be mapped to MITRE
ATT&CK
The security tests should be mapped to the MITRE ATT&CK
cybersecurity framework ensuring that test results
are easy to share, understand and compare.

NF3
Documentation for installation
A short and concise description explaining how to use the solution.
Needs to be written in the Azure DevOps Wiki.

NF4
The code for the solution must be stored in an Azure DevOps
Repository made for the purpose
Code and other related files used for the project need to be stored
in the projects Azure DevOps repository.

NF5
The Pipeline must be hosted in Azure DevOps Pipelines
The Pipelines, which are responsible for executing tests, deploying,
and configuring infrastructure, have to be hosted and created
using the Pipelines module of Azure DevOps.

NF6
The Infrastructure for the solution must be deployed to the
Sopra Steria Azure Cloud Environment
When the solutions infrastructure is deployed, it has to be deployed
in Sopra Steria’s Azure Cloud development environment.

NF7
Evaluation of frameworks for automatic cybersecurity testing
The most compatible cybersecurity framework should be used
for developing the solution. Therefore it is important that an
evaluation of different frameworks takes place.

’

Chapter 4: System Design 19

4.2 System Architecture

This section covers the system architecture for our solution. The system is made up
of three main components, two of them being Azure DevOps Pipelines and the last
one being the Security Testing Environment. The first pipeline, the Security Testing
Environment Deployment Pipeline (STEDP) is responsible for orchestrating and
configuring the last component, the Security Testing Environment. Which means
it creates and configures the testing environment. Lastly, there is the Adversary
Operations Pipeline (AOP). It is used for running security tests on the VM inside
the created environment. We will go over the operations inside the two pipelines
in the following subsections.

Figure 4.1 illustrates the high-level system architecture of our solution. The numbered
arrows in the figure indicate the sequence in which the actions must be executed.
Detailed descriptions of these actions can be found in the list below:

1. Executing the STEDP
The user starts the STEDP from inside the Azure environment of Sopra
Steria.

2. STEDP sets up the Security Testing Environment
STEDP configures and initiates the Security Testing Environment.

3. Executing the AOP
As soon as the Security Testing Environment is operational, the user can
start the AOP from inside the Azure environment of Sopra Steria.

4. The AOP operates inside the Security Testing Envrionment
AOP runs a collection of security tests defined by the user, on the VM inside
the Security Testing Environment.

Figure 4.1: The System Architecture on a high-level

Chapter 4: System Design 20

4.2.1 Security Testing Environment Deployment Pipeline

The STEDP is the first pipeline the user executes and is made up of five stages:
Download, Validate, Plan, Deploy, and Agent Installation. The pipeline is in charge
of configuring and initiating the Security Testing Environment. It also configures
communication between the components deployed inside the environment. Figure
4.2 illustrates how the STEDP operates. The description for the actions can be seen
in the list below:

1. Executing the STEDP
The user starts the STEDP from inside the Azure environment of Sopra
Steria.

2. Download stage
STEDP downloads configuration files from an Azure DevOps repository.

3. Validate, Plan, and Deploy stage
STEDP starts by initializing and validating Terraform. Dependencies needed
for executing the code are installed, then validated in order to make sure
that everything will work properly. The currently running environment is
then compared against the configuration files to identify any disparities.
This guarantees that the environment receives the same components as spe-
cified in the configuration file during the deployment to the environment.

4. Setting up the Security Testing Environment
STEDP uses Terraform to deploy the Security Testing Environment.

5. Agent Installation stage
After the Security Testing Environment is operational, the STEDP runs a
PowerShell script on the VMs inside the environment.

6. Communication between VMs
The VMs become Caldera agents that communicate with the Attacker, which
is also the Caldera Server that monitors the security tests.

Chapter 4: System Design 21

Figure 4.2: Security Testing Environment Deployment Pipeline diagram

Chapter 4: System Design 22

4.2.2 Adversary Operations Pipeline

The AOP is relatively uncomplicated with only one stage, Adversary Operation
Execution. The AOP is used to run the different security tests on the VMs inside the
Security Testing Environment. It executes a PowerShell script that utilizes MITRE
Caldera APIs to perform the security tests and collect the result data. Figure 4.3
shows how the AOP operates. It is worth noting that the Caldera Server mentioned
in the descriptions is the Attacker in the figure, the descriptions of the actions can
be seen in the list below:

1. Executing the AOP
The user starts the AOP from inside the Azure environment of Sopra Steria.

2. Adversary Operation Execution stage
AOP runs a PowerShell script on the Operation configuration VM inside the
Security Testing Environment.

3. Defining the security tests being run
The Operation configuration VM updates the Caldera Server with which
adversary operation it should be running.

4. Executing security tests
The Caldera Server executes the security tests on the Defender VM inside
the Security Testing Environment.

5. Generate a test report
The Caldera Server generates a report containing information about the
security tests and saves it on the Operation configuration VM.

Figure 4.3: Adversary Operations Pipeline diagram

Chapter 4: System Design 23

Security test report

The AOP saves a report containing the security test results on the VM inside the
Security Testing Environment. This report contains all the information from the
different tests and is written in JSON format [54]. The PowerShell script in the
AOP writes out the report two times, first a full report and then a filtered report.
This was to check the success of filtering the results and to make the report easier
to read. We designed the filtered report to contain most of the important results
of the tests themselves. In the end, the report includes the name of the operation,
when it started, when it finished, the adversary profile it ran, any skipped abilit-
ies, and the security test results. Figure 4.4 1 illustrates an example of how the
structure of the data can look like in the result report.

Figure 4.4: Example of structure in the result report

1Sample Operation Report, https://caldera.readthedocs.io/en/latest/Operation-Resul
ts.html?#sample-operation-report

https://caldera.readthedocs.io/en/latest/Operation-Results.html?#sample-operation-report
https://caldera.readthedocs.io/en/latest/Operation-Results.html?#sample-operation-report

Chapter 4: System Design 24

4.3 Use Cases

Figure 4.5 is a visual representation of the use cases related to the execution of
the build pipeline for deploying infrastructure and the test pipeline for running
security tests. The diagram illustrates how a user can initiate both processes while
having the flexibility to define specific tests to be run, thereby providing a com-
prehensive overview of the seamless interaction between the user, the deployment
of infrastructure, and the execution of customized security tests. The user is the
security tester who will be utilizing our solution.

Figure 4.5: Use Cases

Chapter 4: System Design 25

In Table 4.3, we outline Use Case 1, which focuses on the execution of the build
pipeline. This highlights the steps and properties related to the pipeline for de-
ploying the necessary infrastructure for security testing.

Table 4.3: Use Case 1

Use Case Execute build pipeline
Goal in Context Deploy infrastructure
Requirements F1

Actors Security Tester
Precondition Actor has access to Azure DevOps

Trigger User clicks the appropriate ‘run pipeline’ GUI button
Description

1. User signs into Azure DevOps
2. User clicks appropriate button

Table 4.4 presents Use Case 2, which defines the specific tests to be run during the
testing process. This use case demonstrates how users can customize the security
tests or adversary profiles to be executed.

Table 4.4: Use Case 2

Use Case Define what adversary profiles to run
Goal in Context Manually set tests to be run
Requirements F3

Actors Security Tester
Precondition Actor has access to Azure DevOps

Trigger User defines what adversary profiles or tests are run in specified
file

Description
1. User signs into Azure DevOps
2. User edits relevant files, adding or removing IDs for desired

tests or adversary profiles

Chapter 4: System Design 26

In Table 4.5, we describe Use Case 3, which deals with the execution of the test
pipeline. This use case showcases the procedure a user follows to initiate the
defined set of tests on the deployed environment.

Table 4.5: Use Case 3

Use Case Execute test pipeline
Goal in Context Execute defined set of tests on deployed environment
Requirements F2

Actors Security Tester
Precondition Actor has access to Azure DevOps, infrastructure has been de-

ployed and tests to run have been defined
Trigger User clicks the appropriate ‘run pipeline’ GUI button

Description
1. User signs into Azure DevOps
2. User clicks appropriate button

Chapter 5

Development Process

This chapter covers the development process for our project. Including the choices
made for work methods, documentation, and routines. It is based on the initial
planning documented in our Project Plan which is found in Appendix E, but has
been subject to change throughout the process to ensure better adaptability.

5.1 Development Model

The choice of a development model for a software project like ours is crucial to
meet our requirements and ensure an efficient workflow. When deciding which
development model to use, we took several factors into consideration. The scope
and topic of the project meant that we would have to spend a lot of time on
research and learning to use new systems. Therefore we wanted to use a model
that was quick and easy to use. Furthermore, it was important that it could easily
be implemented to form a desired workflow suited for our team.

We mainly considered the Scrum, Waterfall, and Kanban development models.
First, we considered the Scrum development model. This is a model that some of
our team members are familiar with. Qualities of this model include working close
together in teams, a process for gathering feedback, and setting goals with sprint
planning. Scrum is a popular model which allows for flexibility and continuous
improvement [6]. The second option was the waterfall model, which is sequential,
meaning that when one phase ends the next one starts. The model does not allow
you to go back to the previous phase after ending it [55]. This lowers the flexibility
to a degree, and we decided that this would be too restrictive, due to the need for
overlapping phases where we work on multiple phases at one time in our project.
Lastly, the Kanban development model. All team members are familiar with and
had used this model before. In this model, larger tasks are divided into smaller
subtasks and placed on a Kanban board to provide a clear overview [2]. Tasks are
allocated to distinct segments on the board, based on their status, the task owner,

27

Chapter 5: Development Process 28

and whether they require attention, are in progress, or have been completed. A
significant advantage of using the Kanban model was its seamless integration into
the Azure DevOps development platform [56]. In the end, the choice was between
the Scrum and Kanban models, where we decided to go with the Kanban model
due to its ease of implementation into our development workflow.

5.2 Phases and Timeline

The team started out our work by dividing the project into five distinct phases, to
help organize our process. 1. Planning, 2. Familiarization and Research, 3. Project
Implementation and First Draft, 4. Writing and Finalizing, and 5. Presentation.
Figure 5.1 displays a simplified diagram of how many weeks each phase was es-
timated to take. These phases allowed us to effectively structure our work, en-
suring a methodical and comprehensive approach to meeting the project goals of
our project. We generally followed and stuck to these phases but made room for
flexibility and overlapping when required. The following sections will provide an
overview of each phase and its key focus elements.

Figure 5.1: Project phases

Phase 1: Planning

In the planning phase, our main goal was to establish a strong foundation for the
project by developing a project plan and contract, ensuring that all stakeholders
were aligned on objectives, roles, and expectations. This phase also involved com-
pleting relevant courses and familiarizing ourselves with key tools and platforms
for our process. The finished Project Plan can be found in Appendix E.

Phase 2: Familiarization and Research

During the familiarization and research phase, we aimed to gain a deep under-
standing of the tools, technologies, and methodologies relevant to our project.
We familiarized ourselves with the Azure DevOps environment and conducted
an initial proof-of-concept (PoC) security test. This phase also included research
into automation strategies, security testing frameworks, and assessing the current
threat environment relevant to our project. We also received some sample code
from our clients that showed an example of how to deploy infrastructure resources
to their Azure environment using Pipelines and Terraform, which helped us get
an idea of how we might do the same for our solution.

Chapter 5: Development Process 29

Phase 3: Project Implementation and First Draft

In the project implementation phase, we focused on developing a working solu-
tion by integrating selected frameworks, automating deployment and execution of
security tests, and thus creating a Minimum Viable Product (MVP). Azure DevOps
and Pipelines are keywords here. We also ran a multitude of security tests using
MITRE Caldera and Atomic Red Team, and worked on implementing the Metas-
ploit framework into our product. Overall, this phase involved extensive testing,
coding, and documentation of our progress and findings.

Phase 4: Writing and Finalizing

During the writing and finalizing phase, our primary objective was to write our
thesis and thoroughly document our work, including the methodologies, tools,
and frameworks used in the project. We focused on quality control to ensure
that our writing and documentation were accurate, comprehensive, and well-
organized, allowing for easy review and understanding for any stakeholders.

Phase 5: Presentation

The presentation phase is the final phase, where we will prepare a thorough
presentation that summarizes the objectives, methods, findings, and outcomes
of our project.

Chapter 5: Development Process 30

5.3 Documentation

Working on a project spanning over a longer period of time meant that it was im-
portant to choose the right tools for documentation. Since the project was quite
technical, it was important for us to use tools that had solid version control and
online accessibility. If an error occurred it would be useful to be able to revert to
an older working version of the code to figure out what caused the error. From
the start of the project, we knew that we would both work together in-person and
online, which meant that having a stable online collaboration platform was ne-
cessary. In the sections below we discuss some of these tools and methods utilized
throughout our process.

Kanban boards

We used the digital Kanban board Azure Boards, which is provided as a feature of
Azure DevOps to manage our project tasks and keep track of progress [56]. This
allowed us to easily visualize our workflow, prioritize tasks, and quickly identify
and resolve any bottlenecks.

Figure 5.21 illustrates an Azure DevOps kanban board where users can collaborate
and manage tasks together.

Figure 5.2: Azure DevOps Kanban

Gantt chart

A Gantt chart was made in order to map out the project timeline and ensure that all
tasks were completed on schedule. This chart followed our phases and estimated
development process, including tasks and milestones for each phase. This helped
us to stay organized and plan our workload effectively and also allowed us to

1Start using your Kanban board, https://learn.microsoft.com/en-us/azure/devops/board
s/boards/kanban-quickstart?view=azure-devops

https://learn.microsoft.com/en-us/azure/devops/boards/boards/kanban-quickstart?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/boards/boards/kanban-quickstart?view=azure-devops

Chapter 5: Development Process 31

identify any potential scheduling conflicts in advance. The actual Gantt chart used
can be found as part of our Project Plan in Appendix E.

Collaborative tools

The use of collaborative tools like Google Docs, Azure Git Repositories, and Over-
leaf Latex assisted in facilitating communication and collaboration among team
members. An internal Discord [57] channel was used for team-only communica-
tion and digital work sessions. Microsoft Teams [58] assisted in communication
between the project group, owners, and supervisor. These tools allowed us to work
more efficiently and effectively and ensured that everyone had access to the most
up-to-date project information over the Internet.

5.4 Routines

Establishing set routines enables us to attain well-defined milestones, accomplish
goals effectively, and establish a structured approach for conducting meetings.
It is crucial to foster a shared comprehension of these aspects among the team
members, our supervisor, and the project owners to ensure seamless coordination
throughout the project. The following sections provide an overview of the routines
we implemented to guide our project’s progress.

Milestones and Goals

We set clear milestones and goals at the beginning of the project and regularly
checked our progress against these markers. This helped us to stay focused and
motivated and ensured that we were always working towards specific objectives.
These were specifically tracked in our Gantt chart.

Physical and Digital meetings

We used a combination of physical and digital meetings to communicate and work
with team members, supervisors, and clients. This allowed us to maintain a strong
sense of collaboration and ensure that everyone was on the same page, regardless
of their location. Internal work meetings were held multiple times every week
within the project group, to ensure continuous progress.

Supervisor meetings

We scheduled regular weekly meetings with our supervisor to discuss project pro-
gress and receive feedback. This allowed us to stay on track and make any neces-
sary adjustments to our approach and also helped us to build a stronger working
relationship with our supervisor. The full informal notes from these meetings can
be found in Appendix D.

Chapter 5: Development Process 32

Client meetings

Bi-weekly meetings were held between the project group and our client to ensure
that their needs and requirements were being met throughout the development
process. This helped us to maintain a strong sense of alignment with the goals of
our client and allowed us to make any necessary adjustments to our approach in
real-time.

Chapter 6

Implementation

The objective of this project, as stated in Chapter 1.2, is to develop an automated
system for conducting security tests. In this chapter, we will elaborate on the im-
plementation of the two key aspects of this goal: security testing and automa-
tion, ensuring compliance with the requirements outlined in Chapter 4.1. Addi-
tionally, we will look into the details of the solution’s components, discussing the
different technologies, tools, and frameworks used.

6.1 Automation

The issue of automation in our project is a problem in two parts. The first part
of this problem is to automate the process that deploys the testing environment,
while the second problem is to automate the security testing process. In our solu-
tion, each of these problems is solved by integrating the tasks that make up each
process into pipelines.

Before the deployment process could be integrated into a pipeline, the process
itself had to be designed as robustly as possible. We achieved this by designing
the process according to the concept of Infrastructure as Code (IaC). According to
official Microsoft documentation [59], the core idea of IaC is to define Infrastruc-
ture using an ’IaC model’. An IaC model is a collection of human-readable files,
preferably using a declarative definition syntax, to collectively define deployable
infrastructure.

33

Chapter 6: Implementation 34

6.1.1 Defining Infrastructure as Code with Terraform

Our IaC model is designed using Terraform. In Figure 6.1 we illustrate the hier-
archical relationship of the files that make up our IaC model. The model is centered
around the ’main.tf’ file, which then references data or imports module configur-
ations from other files when necessary. Note however that there is no relation
between the ’providers.tf’ file and other files. This is because the ’providers.tf’ file
is not part of the IaC model. Instead, it declares which plugins are required for
the model in order for it to interact with the APIs and services that are necessary
to apply the model to the target environment. This file is read during the initializ-
ation process of Terraform, and the specified dependencies are then installed on
the host that is applying the Terraform model.

Figure 6.1: IaC Model

Chapter 6: Implementation 35

1 terraform {
2 required_version = ">=0.12"
3

4 required_providers {
5 azurerm = {
6 source = "hashicorp/azurerm"
7 version = "~>3.0"
8 }
9 docker = {

10 source = "kreuzwerker/docker"
11 version = "3.0.1"
12 }
13 }
14 }
15 provider "azurerm" {
16 features {}
17 }

Listing 1: A look at the providers.tf file

The providers file shown above in Listing 1 specifies the required plugins using the
required_providers block. The providers block indicates that the AzureRM, short
for Azure Resource Manager plugin provided by Hashicorp, and the ’Docker’ plu-
gin provided by Kreuzwerker are required for the Terraform model to be applied
correctly. The providers block is used to create a provider instance that contains
the options and credentials required to manage resources in the target environ-
ment. This block can be used to override the configurations inherited from the
host that applies the model, but this is not needed for our solution, so the config-
uration block is empty.

Chapter 6: Implementation 36

Infrastructure as Code, model implementation

1 ##
2 ## Reference existing Resources
3 ##
4

5 # Resource Groups
6 data "azurerm_resource_group" "rg_main" {
7 name = var.resource_group_name
8 }
9 data "azurerm_resource_group" "rg_network_spoke" {

10 name = var.resource_group_spoke_name
11 }
12

13 # Networking
14 data "azurerm_virtual_network" "devops_spoke_vnet" {
15 name = var.network_name
16 resource_group_name = data.azurerm_resource_group.rg_network_spoke.name
17 }
18 data "azurerm_subnet" "spoke-snet-managed-env" {
19 virtual_network_name = data.azurerm_virtual_network.devops_spoke_vnet.name
20 name = var.subnet_managed_env
21 resource_group_name = data.azurerm_resource_group.rg_network_spoke.name
22 }
23 data "azurerm_subnet" "spoke-snet-container-services" {
24 virtual_network_name = data.azurerm_virtual_network.devops_spoke_vnet.name
25 name = var.subnet_container_services
26 resource_group_name = data.azurerm_resource_group.rg_network_spoke.name
27 }
28 data "azurerm_network_security_group" "nsg" {
29 name = var.network_security_group_name
30 resource_group_name = data.azurerm_resource_group.rg_network_spoke.name
31 }
32

33 # Application security group
34 data "azurerm_application_security_group" "asg" {
35 name = var.asg_name
36 resource_group_name = data.azurerm_resource_group.rg_main.name
37 }
38

39 # Container image registry
40 data "azurerm_container_registry" "reg" {
41 name = var.registry_name
42 resource_group_name = data.azurerm_resource_group.rg_main.name
43 }

Listing 2: The first part of the main.tf file is dedicated to referencing existing
resources

Chapter 6: Implementation 37

Listing 2 includes a section of code from the ’main.tf’ file, which is the centerpiece
of our IaC model. Non-Functional Requirement 6 listed in Table 4.2 stipulates
that our solution must deploy any necessary infrastructure to an already existing
cloud environment owned by Sopra Steria. This environment already has a basic
architecture containing Resource Groups, a Virtual Network, and various security
groups and configurations.

Since we are deploying to an already existing environment, the first section of
the main.tf file is dedicated to referencing existing resources and declaring them
as data sources. Data associated with these resources can be used later in the
model by referencing the data sources directly. A data source is declared using
the syntax:

data "<resource_type>" "<data_source_name>" {
<attribute_name> = <attribute_value>

}

Where<resource_type> is the type of infrastructure resource that the data source
represents, <data_source_name> is a unique identifier used to reference the
data source later. Finally <attribute_name> and <attribute_value> specify the
name and value for the attribute that is used to identify the target resource. There
can be several attributes used to identify a target resource, in which case Terra-
form will search for the resource that matches all of the specified values.

Lines 13-17 in Listing 2, is an example of a data source declaration of a azurerm
_virtual_network resource. This data source represents an existing Azure virtual
network in the cloud environment our solution deploys to. The specific virtual net-
work we are referencing is identified by finding the target resource that has match-
ing values for the two specified attributes ’name’ and resource_group_name. The
name attribute must be equal to the variable network_name from the variable.tf
file. The second desired value for the attribute resource_group_name is set equal
to the ’name’ attribute of another data source, namely the Azure Resource Group
rg_network_spoke.

Chapter 6: Implementation 38

1 # Create container group
2 resource "azurerm_container_group" "terraform_caldera_group" {
3 name = "${var.prefix}-Caldera"
4 location = var.location
5 resource_group_name = data.azurerm_resource_group.rg_main.name
6 ip_address_type = "Private"
7 subnet_ids = [data.azurerm_subnet.spoke-snet-container-services.id]
8 os_type = "Linux"
9

10 image_registry_credential{
11 username = var.registry_username
12 password = var.registry_secret
13 server = data.azurerm_container_registry.reg.login_server
14 }
15

16 container{
17 name = "caldera-container"
18 image = "${data.azurerm_container_registry.reg.login_server}/caldera"
19 cpu = "1.0"
20 memory = "1.5"
21 ports {
22 port = 80
23 protocol = "TCP"
24 }
25 ports {
26 port = 8888
27 protocol = "TCP"
28 }
29 }
30

31 depends_on = [
32 data.azurerm_container_registry.reg
33]
34 }

Listing 3: main.tf part 2: specifies configurations for the Caldera container

Listing 3 shows the code that defines an Azure Container Group. The basic con-
figurations for the group are set in the initial resource block (lines 3-8). Most of
these configurations are either passed to Terraform as environment variables, or
the required data is fetched from a previously declared data source. Also note the
image_registry_credential block, which defines the credentials required to au-
thenticate with an Azure Container Registry. This is the location in our project’s
Azure Environment that stores our container image. If connection or authentic-
ation to this registry fails, the creation process will abort. The ’container’ block
defines the single container that operates in this Container Group. This is the
’Attacker’ shown in various figures from Chapter 4. The container runs MITRE
Caldera as a service accessible on a locally hosted web server open to web traffic
on port 8888. The image for this container is fetched from the aforementioned
Azure Container Registry.

Chapter 6: Implementation 39

1 # Create VM
2 module "VM-Windows10" {
3 source = "./modules/VM-Windows10"
4

5 resource_group_name = data.azurerm_resource_group.rg_main.name
6 location = var.location
7 vm_image = {
8 publisher = "MicrosoftWindowsDesktop"
9 offer = "windows-10"

10 sku = var.m_vmw10_vm_image_sku
11 version = "latest"
12 }
13 vm_size = var.m_vmw10_vm_size
14 prefix = var.prefix
15 subnet_id = data.azurerm_subnet.spoke-snet-managed-env.id
16 nsg_id = data.azurerm_network_security_group.nsg.id
17 asg_id = data.azurerm_application_security_group.asg.id
18 admin_username = var.m_vmw10_admin_username
19 admin_password = var.m_vmw10_admin_password
20 }

Listing 4: main.tf part 3: A module is included

The final part of the ’main.tf’ file can be seen above in Listing 4. This file defines
a VM by importing resources from a Terraform module named ’VM-Windows10’.
A Terraform module is a self-contained package of configuration files along with
any dependent resources [60]. In this case, the VM-Windows 10 module contains
definitions for a VM, and an associated Network Interface, as well as default con-
figurations for the two. The code within this module defines resources to be cre-
ated in a similar manner to how the container is defined in Listing 3. The exact
code can be viewed in Appendix F in Listings 19-22. Implementation-specific data,
such as the login credentials for the Admin account on the VM, are passed to this
module using environment variables.

Environment data, Ingress- and Egress points

In our solution, a large portion of configuration values are specified using vari-
ables. This can be seen in the provided code examples wherever an attribute value
is set to var.<variable_name>. These variables are declared in the variables.tf
files, according to the syntax shown below:

variable "<variable_name>" {
description = "<description>"
sensitive = <true/false>
default = <variable_value>

}

The ’default’ attribute is the content of the variable, while ’sensitive’ determines
whether the variable can be output by Terraform. The ’sensitive’ option allows

Chapter 6: Implementation 40

us to secure passwords or other sensitive information from being outputted as
plain text. Note that the ’default’ attributes are not set for any of our variables.
These values are instead passed to Terraform from Azure Pipelines as environment
variables, Figure 6.2 illustrates how this works in general terms, while the exact
details will be explained in further detail in Section 6.1.2.

Figure 6.2: Data Flow from Terraform Perspective

As illustrated in the figure above, the ’variable.tf’ and ’output.tf’ files are also used
to send and receive data between layers internal to the Terraform model. The VM-
Windows10 module has a file of its own where variables are declared. Data for
these variables are passed from ’main.tf’ when the module is first included in the
Terraform model. This is shown in Listing 4, where the module variables are set
in lines 5-19.

Also, note the outputs.tf files. These files are responsible for passing data from
Terraform to the runtime environment. In our solution, the STEDP needs to know
the IP address of the Caldera container after it has been deployed. This IP ad-
dress is allocated dynamically and can change between deployments. Therefore,
Terraform outputs this data after the creation process is complete, as shown be-
low.

1 output "container_instance_ip" {
2 value = azurerm_container_group.terraform_caldera_group.ip_address
3 }

Chapter 6: Implementation 41

6.1.2 Integrating IaC model into an Azure Pipeline

The Terraform model that has been discussed so far can be thought of as the
’blueprint’ for the environment to be deployed. According to our requirements
as mentioned in Chapter 4.1, this blueprint must now be integrated into Azure
Pipelines. Terraform alone is not fully ’automatic’. The user has to manage authen-
tication to the target environment, and several commands must be run manually
through a CLI to apply the model. Finally, Terraform cannot make all the neces-
sary post-deployment configurations that our solution requires. By integrating our
Terraform model into a pipeline, all of these tasks are handled as a single pro-
cess.

STEDP Implementation, Preamble and data flow

The Security Testing Environment Deployment Pipeline (STEDP) is the center-
piece of our solution to automated infrastructure deployment. The pipeline works
by encapsulating all tasks that make up the deployment process as individual
stages within the pipeline. The pipeline allows for simple logic such as establish-
ing dependencies between stages. For example, if one stage is a producer of data
that is then consumed in a later stage, pipelines allow this dependent relationship
to be specified. If the first stage fails, any dependent stages will be aborted. This
way we can ensure the integrity of the deployment process.

1 trigger: none
2

3 name: Infrastructure-Deployment
4 resources:
5 repositories:
6 - repository: Bachelor
7 type: git
8 name: Bachelor Project
9 ref: main

10 pool:
11 vmImage: ubuntu-latest
12

13 variables:
14 - group: 'Pipeline Environment Variables'
15 - group: 'Terraform Environment Variables'
16 - group: 'Pipeline Credentials'
17 - name: environment
18 value: 'Bachelor'
19 - name: LocalRepo
20 value: '$(Build.Repository.LocalPath)'

Listing 5: Preamble for the STEDP file

The first part of Listing 5 is a preamble that specifies various configurations, and
defines and imports variables. The resources block (lines 5-9) defines our pro-
ject repository as an available resource for the build agent which is configured

Chapter 6: Implementation 42

to run on a VM with the ’ubuntu-latest’ image. The variables block (lines 13-20)
defines variables and imports variable groups from our repository’s pipeline lib-
rary. Variable groups are imported when the line corresponding to a given variable
group is read during run-time. The two primary variable groups are the Pipeline
Environment Variables and the Terraform Environment Variables groups. It is
not strictly necessary for these two groups to be separate, however, for the sake
of good order, the variables have been separated into these two groups based on
where the data they represent is consumed. The variables contained in these vari-
able groups are generally defined in plain text. They can be edited in the Azure
DevOps GUI to change certain configurations of the infrastructure to be deployed,
tasks to be executed, or to match changes made to the target environment. The
final group that can be seen above, the Credentials variable group, is a notable
exception to this. This group imports its values as encrypted secrets from an Azure
Key Vault located in our Azure Cloud Environment.

Figure 6.3: Data Flow from Pipeline Perspective

The data flow shown in Figure 6.2 can be expanded to also illustrate how data
flows from the perspective of the pipeline environment at large, which results
in Figure 6.3. As seen in the figure the pipeline also passes data on to a Remote
Script. This script is stored on an Azure Storage Account located within our project
environment.

STEDP implementation, stages

The general purpose of each stage in the STEDP is discussed briefly in Chapter
4.2.1. In this section, the actual code behind these stages will be shown and ex-
plained.

Chapter 6: Implementation 43

1 - stage: 'DOWNLOAD'
2 jobs:
3 - deployment: 'DOWNLOAD_FILES'
4 displayName: 'DOWNLOAD FILES'
5 environment: $(environment)
6 strategy:
7 runOnce:
8 deploy:
9 steps:

10 - checkout: Bachelor
11 - task: PublishBuildArtifacts@1
12 inputs:
13 PathtoPublish: '$(LocalRepo)/Terraform'
14 ArtifactName: 'drop'
15 publishLocation: 'Container'

Listing 6: Stage 1: DOWNLOAD

The code for the DOWNLOAD stage can be seen above in Listing 6. A stage di-
vide further into jobs, which again divide into steps. This stage contains only one
’deployment’ type job named DOWNLOAD_FILES that executes with a ’runOnce’
strategy. The first step checkout: Bachelor is a built-in task in Azure Pipelines that
moves the process into our Repository. The second step is a ’task’ named Publish-
BuildArtifacts@1. This task publishes the Terraform folder from our repository
as an artifact, allowing it to be shared in-between stages. ’Tasks’ are named func-
tions provided by Azure Pipelines to perform a wide array of operations. Official
documentation for every task is accessible on Microsoft’s Websites [61]. Also, note
the number behind the ’@’. This number represents the version of the task being
used, which ensures that newly released versions of a task that could potentially
be incompatible are not automatically used.

Listing 7 shows the VALIDATE stage contains one job and four steps. The first three
steps, TerraformInstaller@0 (line 12-14), CopyFiles@2 (line 15-19), and Terra-
formTaskV2@2 (line 19-29), are necessary for ensuring that the Terraform soft-
ware, the model configuration files, and any dependencies are present on the build
agent and correctly configured. As will be seen later, these steps are present at the
beginning of every stage that uses Terraform. The TerraformInstaller@0 task,
checks and installs the latest version of Terraform if needed. CopyFiles@2 fetches
a fresh copy of the Terraform build artifact created in the ’DOWNLOAD’ stage and
places it in the current stage’s working directory. Lastly, the TerraformTaskV2@2
allows the pipeline to execute Terraform CLI commands using the ’command’ in-
put to determine which command to run. In this case, ’init’ is provided as the input,
meaning that the command ’Terraform init’ will be executed. This command sets
up the necessary back-end configuration explained at the beginning of Section
6.1.1.

Chapter 6: Implementation 44

1 - stage: 'VALIDATE'
2 dependsOn:
3 - 'DOWNLOAD'
4 jobs:
5 - deployment: 'Terraform_VALIDATE'
6 displayName: 'Terraform VALIDATE'
7 environment: $(environment)
8 strategy:
9 runOnce:

10 deploy:
11 steps:
12 - task: TerraformInstaller@0
13 inputs:
14 terraformVersion: '0.14.10'
15 - task: CopyFiles@2
16 inputs:
17 SourceFolder: '$(Agent.BuildDirectory)/drop'
18 Contents: '**'
19 TargetFolder: '$(System.DefaultWorkingDirectory)/terraform/'
20 - task: TerraformTaskV2@2
21 inputs:
22 provider: 'azurerm'
23 command: 'init'
24 backendServiceArm: $(backendServiceArm)
25 backendAzureRmResourceGroupName: $(ResourceGroupName)
26 backendAzureRmStorageAccount: $(backendAzureRmStorageAccount)
27 backendAzureRmContainerName: $(backendAzureRmContainerName)
28 backendAzureRmKey: $(backendAzureRmKey)
29 workingDirectory: '$(System.DefaultWorkingDirectory)/terraform/'
30 - task: TerraformTaskV2@2
31 inputs:
32 provider: 'azurerm'
33 command: 'validate'

Listing 7: Stage 2: VALIDATE

The three tasks discussed in the previous paragraph prepare the run-time environ-
ment for the real purpose of this stage, which is to validate the Terraform model.
This is done using another TerraformTaskV2 task, this time with ’validate’ as the
command input (lines 30-33). This command ensures that configurations are syn-
tactically correct and that all required variables are properly defined. If there are
any issues, the validation process will output the error message to the pipeline,
which will then abort. In lines 22-29, we also see several examples of how environ-
ment variables that have been imported from the aforementioned variable groups
are referenced. The syntax of such a variable is simply ’$(<variable_name>)’.
These statements are then expanded into the value of the corresponding variable
when read during run-time.

Chapter 6: Implementation 45

1 - stage: 'PLAN'
2 dependsOn:
3 - 'DOWNLOAD'
4 - 'VALIDATE'
5 jobs:
6 - deployment: 'Terraform_PLAN'
7 displayName: 'Terraform PLAN'
8 environment: $(environment)
9 strategy:

10 runOnce:
11 deploy:
12 steps:
13 # - task: TerraformInstaller@0
14 # - task: CopyFiles@2
15 # - task: TerraformTaskV2@2 (init)
16 - task: TerraformTaskV2@2
17 inputs:
18 provider: 'azurerm'
19 command: 'plan'
20 commandOptions: >-
21 -var="resource_group_name=$(ResourceGroupName)"
22 -var="resource_group_spoke_name=$(ResourceGroupSpokeName)"
23 -var="location=$(infrastructureLocation)"
24 -var="network_name=$(virtualNetworkName)"
25 -var="subnet_managed_env=$(SubNetworkNameVM)"
26 -var="subnet_container_services=$(SubNetworkNameContainer)"
27 -var="network_security_group_name=$(nsgName)"
28 -var="asg_name=$(asgName)"
29 -var="prefix=$(name_prefix)"
30 -var="registry_name=$(registryName)"
31 -var="registry_username=$(registryName)"
32 -var="registry_secret=$(caldera-secret)"
33 -var="m_vmw10_vm_image_sku=$(module_vm_image_sku)"
34 -var="m_vmw10_vm_size=$(module_vm_size)"
35 -var="m_vmw10_admin_username=$(module_admin_username)"
36 -var="m_vmw10_admin_password=$(module-admin-secret)"
37 -lock=false
38 environmentServiceNameAzureRM: $(backendServiceArm)
39 workingDirectory: '$(System.DefaultWorkingDirectory)/terraform/'

Listing 8: Stage 3: Plan

Listing 8 shows code for the PLAN stage of the STEDP. First note the three steps
for the tasks TerraformInstaller@0, CopyFiles@2, and TerraformTaskV2@2 us-
ing command-input ’init’ in Lines 13-15. In the code in our repository, these tasks
are present and implemented identically to the ones seen in Listing 7, where they
also serve the same purpose. In Listing 8 these tasks are represented as comments
using only their names, only to save space in this listing. These tasks must be ex-
ecuted in this stage as well because configurations made to the working directory
by these processes do not carry over between stages. The purpose of the PLAN
stage is to generate a plan for what changes must be made to the target environ-

Chapter 6: Implementation 46

ment in order for it to match the configurations specified in the Terraform model.
This is done using the TerraformTaskV2@2 task with ’plan’ as the command in-
put (lines 16-39). The desired changes are output to the pipeline, which can help
with auditing in the event of an error. This stage also provides another layer of
validation by checking the target environment for conflicts such as missing or du-
plicate resources. Also note the commandOptions, where values for environment
variables are passed to Terraform as illustrated in Figure 6.2 and Figure 6.3.

The primary functions of the DEPLOY stage seen in Listing 9 are defined similarly
to what is done in the PLAN stage. As can be seen above the DEPLOY stage is
identical until line 25, the only exception being that the command input to Terra-
formTaskV2@2 is ’apply’ instead of ’plan’. The difference is that the ’apply’ com-
mand implements required changes instead of just outputting a readable plan.
From line 25 onwards, there are several tasks dedicated to ’catching’ data that
have been outputted by Terraform (lines 25-31). This is a part of the relationship
between sending and receiving data illustrated in Figure 6.2 and 6.3.

Chapter 6: Implementation 47

1 - stage: 'DEPLOY'
2 dependsOn:
3 - 'DOWNLOAD'
4 - 'VALIDATE'
5 - 'PLAN'
6 jobs:
7 - deployment: 'Terraform_DEPLOY'
8 displayName: 'Terraform DEPLOY'
9 environment: $(environment)

10 strategy:
11 runOnce:
12 deploy:
13 steps:
14 # - task: TerraformInstaller@0
15 # - task: CopyFiles@2
16 # - task: TerraformTaskV2@2 (init)
17 - task: TerraformTaskV2@2
18 inputs:
19 provider: 'azurerm'
20 command: 'apply'
21 commandOptions: >-
22 # same variables as 'PLAN' stage
23 environmentServiceNameAzureRM: $(backendServiceArm)
24 workingDirectory: '$(System.DefaultWorkingDirectory)/terraform/'
25 - powershell: |
26 $terraformOutput = Get-Content `
27 "$(terraformApply.jsonOutputVariablesPath)" | ConvertFrom-Json
28 Write-Host "##vso[task.setvariable variable= `
29 container_ip_address;isoutput=true]" `
30 $terraformOutput.container_instance_ip.value
31 name: setOutputVariables
32 - job: 'PassOutputToStage'
33 dependsOn: 'Terraform_DEPLOY'
34 variables:
35 - name: out_container_ip_address
36 value: $[dependencies.Terraform_DEPLOY.outputs`
37 ['Terraform_DEPLOY.setOutputVariables.container_ip_address']]
38 steps:
39 - powershell: |
40 Write-Host "##vso[task.setvariable variable=`
41 container_ip_address;isoutput=true] $(out_container_ip_address)"
42 name: terraformOutput

Listing 9: Stage 4: Deploy

Chapter 6: Implementation 48

Finally, AGENT INSTALLATION shown in Listing 10 is the last stage of the STEDP.
As mentioned this stage receives data from the DEPLOY stage, which is done
in lines 8-10. From here, the stage checks out our project repository before ex-
ecuting the script named Agent-Configuration.ps1 that contains a single Power-
Shell command, Set-AzVMExtension. The Set-AzVMExtension command allows us
to make configurations directly onto a VM. In this case by executing the Cal-
deraAgentSetup.ps1 script, which is stored as a remote resource in our Azure
environment. Both of these scripts can be viewed in Appendix F. The CalderaA-
gentSetup.ps1 script installs a Caldera agent which runs as a process on the VM
and handles the execution of security tests. This is explained in further detail in
Section 6.2.

1 - stage: 'AGENT_INSTALLATION'
2 dependsOn: 'DEPLOY'
3 jobs:
4 - deployment: 'Azure_AGENT_INSTALLATION'
5 displayName: 'Azure AGENT INSTALLATION'
6 environment: $(environment)
7 variables:
8 - name: tf_out_container_ip_address
9 value: $[stageDependencies.DEPLOY.PassOutputToStage.outputs`

10 ['terraformOutput.container_ip_address']]
11 - name: tf_out_vm_name
12 value: "$(name_prefix)-w10"
13 strategy:
14 runOnce:
15 deploy:
16 steps:
17 - checkout: Bachelor
18 - task: AzurePowerShell@5
19 inputs:
20 azureSubscription: '$(backendServiceArm)'
21 ScriptType: 'FilePath'
22 ScriptPath: '$(LocalRepo)/Scripts/Agent-Configuration.ps1'
23 azurePowerShellVersion: 'LatestVersion'
24 pwsh: true
25 env:
26 DEPLOY_RG: $(ResourceGroupName)
27 CONTAINERIP: $(tf_out_container_ip_address)
28 VM_NAME: $(tf_out_vm_name)

Listing 10: Stage 5: Agent Installation

Chapter 6: Implementation 49

AOP Implementation

The AOP is as described in Chapter 4.2.2, responsible for configuring and execut-
ing security tests using the infrastructure resources deployed by the STEDP. Here
we will briefly describe how the AOP integrates the process of security testing.
The in-depth details surrounding the implementation of the security testing pro-
cess itself, as well as the environment they are performed in will be explained in
Section 6.2.

The AOP starts with a preamble mostly identical to the STEDP which was shown in
Listing 5. The only difference in the preamble is that the AOP imports an additional
variable group named Adversary Operation Variables, which contains a variable
determining what sort of security tests are executed. Line 21 of Listing 11 shows
this variable being referenced and passed on to the Security Testing Script, which
is discussed in Section 6.2.1. The AOP as seen below only has a single stage. This
is because the sole purpose of this pipeline is to initiate and pass data to a remote
script executed on the VM that is the target for security tests. This is done using
the same Set-AzVMExtension method as for the AGENT INSTALLATION stage of
the STEDP shown in Listing 10.

1 #
2 # Preamble
3 #
4 - stage: 'ADVERSARY_OPERATION'
5 jobs:
6 - deployment: 'ADVERSARY_OPERATION_EXEC'
7 displayName: 'ADVERSARY OPERATION EXECUTION'
8 environment: $(environment)
9 strategy:

10 runOnce:
11 deploy:
12 steps:
13 - checkout: Bachelor
14 - task: AzurePowerShell@5
15 inputs:
16 azureSubscription: '$(backendServiceArm)'
17 ScriptType: 'FilePath'
18 ScriptPath: '$(LocalRepo)/Scripts/Execute-AdversaryOperation.ps1'
19 azurePowerShellVersion: 'LatestVersion'
20 pwsh: true
21 env:
22 DEPLOY_RG: $(ResourceGroupName)
23 VM_NAME: "$(name_prefix)-w10"
24 ADVERSARY_PROFILE: $(AdversaryProfileID)

Listing 11: AOP implementation

Chapter 6: Implementation 50

6.2 Security Testing

A significant aspect of our project revolves around automating security tests to the
greatest extent possible. This was solved by implementing MITRE Caldera and us-
ing the AOP. One difference between the system design and our implementation is
the number of VMs inside the Security Testing Environment. We decided to com-
bine the Operation configuration VM and the Defender VM mentioned in Chapter
4.2.2. Implementing one VM made testing simpler and made the deployment of
resources more cost-efficient.

Figure 6.4 illustrates the implemented Security Testing Environment. The VM will
be both the defender and the Caldera agent, while the Attacker is still the Caldera
server. In the following subsection, we will go over our implementation involving
the security testing script used in the AOP.

Figure 6.4: Illustration of the implemented Security Testing Environment

6.2.1 Security Testing Script

The security testing script is a PowerShell script that has been designed to auto-
mate the process of security testing. The script utilizes two APIs: one API to initiate
and commence a security operation, and another API to retrieve a report detail-
ing the results of the operation. Once the operation has been completed and the
report has been generated, the script applies filters to the report and saves the
filtered report onto the desktop of the VM.

Figure 6.5 provides a graphical representation of the security script. The sequence
diagram demonstrates how the script utilizes the two APIs: first to initiate and run
a security operation, and second to retrieve a report detailing the operation res-
ults. The "makeOperation" and "getReport" lines going from the VM to the Caldera
Server represent the APIs. The script continues to call the "getReport" API until the
security operation has finished. Finally, once the operation is complete, the script
saves the report onto the VM.

Chapter 6: Implementation 51

Figure 6.5: Sequence diagram of the security testing script

Listing 12 shows the first API call of the security testing script. The first step is to
construct the request body for the API. This is accomplished by creating a vari-
able that holds a hash table, which is subsequently converted to a JSON-formatted
string. The hash table contains four keys: "index", "name", "adversary_id" and
"auto_close". The MITRE Caldera /api/rest is the API endpoint used and is a REST
API that allows for interaction with the core components of Caldera. Since this API
can interact with every part of Caldera, the "index" key is used to direct requests to
their corresponding object types [62]. We specify that "index" = "operations" to
initiate a new operation, which we name "testoperation". The "adversary_id" spe-
cifies which adversary profile we intend to execute, and it is a variable containing
identification towards one of Caldera’s pre-made adversary profiles. Lastly, the
"auto_close" is an operation value that makes the operation close automatically
when it has no further tasks to perform.

Chapter 6: Implementation 52

1 # Create request body
2 $body = @{
3 index = "operations"
4 name = "testoperation"
5 adversary_id = $adversaryid
6 auto_close = 1
7 } | ConvertTo-Json
8

9 # Make PUT request
10 $Response = Invoke-RestMethod `
11 -Method Put `
12 -Uri "http://$containerip`:8888/api/rest" `
13 -Headers @{"accept"="application/json"; "key"="ADMIN123"} `
14 -Body $body

Listing 12: API call to initiate and run an operation

After constructing the request body, the script proceeds with the API request using
PowerShell’s Invoke-RestMethod cmdlet. This is a cmdlet designed to send HTTP
requests to REST APIs [63]. In this particular instance, the cmdlet is used with four
parameters: "Method", "Uri", "Headers", and "Body". By specifying the "Method"
parameter as PUT, we inform the Caldera Server that a new operation is being
initiated. The "Uri" parameter represents the URL, which consists of the IP address
to the Caldera Server and the specific API that is being used. Within the "Uri", we
have a $containerip variable, which contains the IP address of the Caldera Server.
This variable is defined at the start of the script by reading the IP from a file located
on the VM, where the IP is output during the infrastructure creation process. The
"headers" parameter takes a hash table that contains information regarding the
accepted objects and the key header. Caldera requires a key header to be passed
along with the request whenever you send requests to any IP address [62]. The
default value of this key for Caldera is "ADMIN123" [64]. Lastly, we have the
"Body" parameter, which simply takes the $body variable mentioned previously
and sends it along with the request.

Listing 13 shows the second API used in the security testing script. The first step is
to retrieve the operation ID. This is accomplished by assigning the value of the ’id’
property from the $Response variable to a new variable named $id. Next, a "head-
ers" body is created as a hash table containing three keys: "accept", "Content-Type",
and "key". The "accept" and "Content-Type" are both set to "application/json",
which makes it possible to accept and send JSON-formatted data. Lastly, the "key"
is the default key header for MITRE Caldera. This "headers" body is then as-
signed to a variable named $headers. The script then makes use of the Invoke-
RestMethod cmdlet to send a POST request to the REST API. The "Method" para-
meter is set to POST. The "Uri" parameter is combined of the $containerip variable,
which holds the IP address of the Caldera server, and with the API /api/v2/opera-
tions/$id/report. The "Headers" parameter is set to the previously created $head-

Chapter 6: Implementation 53

ers variable. Lastly, the "Body" parameter is set to "enable_agent_output" with a
value of true. This informs the Caldera Server to include agent output in the op-
eration report. Lastly, we assigned the entire Invoke-RestMethod to a $result vari-
able.

1 # Get operation ID
2 $id = $Response.id
3

4 # Create headers body
5 $headers = @{
6 "accept" = "application/json"
7 "Content-Type" = "application/json"
8 "key" = "ADMIN123"
9 }

10

11 # Make initial POST request
12 $result = Invoke-RestMethod `
13 -Method Post `
14 -Uri "http://$containerip`:8888/api/v2/operations/$id/report" `
15 -Headers $headers `
16 -Body '{
17 "enable_agent_output": true
18 }'
19 $result

Listing 13: API call to get the report when the operation is finished

A small problem with the report API, is that it can be called even if the opera-
tion is not yet finished, which can lead to a report with no information. In order
to ensure that the operation report retrieved contains complete information, a
loop was implemented in the script. The loop continually checks for the "finish"
variable inside the report API until it is not null, indicating that the operation is
complete. The loop is shown in Listing 14, and it utilizes the do-while structure.
Within the loop, the Invoke-RestMethod cmdlet is called together with the /ap-
i/v2/operations/$id/report, using the same parameters as previously. Following
the API call, the script is put to sleep for 60 seconds using the Start-Sleep cmd-
let. This prevents the script from making unnecessary requests for the operation
report while the operation is still in progress.

Chapter 6: Implementation 54

1 # Loop until $result.finish is not null
2 do {
3 $result = Invoke-RestMethod `
4 -Method Post `
5 -Uri "http://$containerip`:8888/api/v2/operations/$id/report" `
6 -Headers $headers `
7 -Body '{
8 "enable_agent_output": true
9 }'

10 Start-Sleep -Seconds 60
11 } while ($result.finish -eq $null)

Listing 14: Do-while-loop to make sure operation is finished

After ensuring we got a complete report containing all the security test informa-
tion, we had to write out the report in a file. First, the "paw" for the Caldera agent
must be retrieved, which is a unique identifier for a Caldera agent [65]. This iden-
tifier is stored in the variable $paw. The $paw variable is then used to access the
different security tests run on the Caldera agent, and the relevant information is
filtered and stored in the $specific_steps variable. Listing 15 shows the code for
filtering the report. The information from the entire operation is also filtered and
saved into the $specific_result_json variable. Finally, the output from the filtering
is written to a file located on the Caldera agent at the path specified by the variable
$path2.

1 # Get $paw id for the agent
2 $paw = $result.host_group.paw
3 $specific_steps = $result.steps.$paw.steps |
4 Select-Object name, description, ability_id, command, status, attack, output
5

6 # Convert the filtered result to JSON
7 $specific_result_json = $result |
8 Select-Object name, start, finish, adversary, skipped_abilities, @{
9 Name="steps";

10 Expression={ $specific_steps }
11 } | ConvertTo-Json -Depth 10
12

13 # Write the filtered result to a file
14 $path2 = "C:\Users\badmin\Desktop\filtered_report.txt"
15 $specific_result_json | Out-File -FilePath $path2

Listing 15: Filtering and saving the operation results into a file

Chapter 7

Evaluation

This chapter is devoted to evaluating our solution and determining whether it
meets the requirements outlined in Chapter 4.1. We will examine how well our
implementation matches the desired outcomes and discuss any discrepancies we
have encountered. A full test case will be rehearsed thoroughly and evaluated
alongside our subjective impressions. By doing this, we can determine the strengths
and weaknesses of our implementation in a real scenario. Each functional and
non-functional requirement will be discussed with an evaluation of how well our
system satisfies them, and areas for improvement. This provides the reader with
a better understanding of the effectiveness of our solution in regard to meeting
the specified requirements. Lastly, feedback from the project owners evaluating
the degree to which our solution met the project requirements will be show-
cased.

7.1 Test Case

The purpose of this test case is to demonstrate how our system performs when
used in the intended way, in a real-world scenario, from start to end. We will
set up the system to run with sample inputs and present the results along with
relevant illustrations and observations. This walk-through is done according to
the steps and documentation provided in our wiki. It will act as an example of
how the system should be used, in its easiest form. The wiki is available for users
with access to our Azure Git Repository but is also accessible in the Appendix
B.

To get started, we open up the Azure DevOps web GUI and log in to an account
with access to the SOC environment. As shown in Figure 7.1, we can find and
enter the Git repository for our system, where we want to run the STEDP.

55

Chapter 7: Evaluation 56

Figure 7.1: Azure DevOps Web GUI

After entering the repository, we can navigate to the pipelines in our system through
the menu on the left. This is shown below, in Figure 7.2.

Figure 7.2: Navigation to pipelines

Chapter 7: Evaluation 57

From here, we get an overview of the existing pipelines in our solution. It shows
the status of the previous run and provides a simple clickable interface in which
we can run the pipelines. We proceed by choosing the pipeline we want to run,
which is the STEDP for infrastructure deployment since we are doing the initial
setup. We do not have to change any variables or configure stages, as the default
configuration should be sufficient in most cases.

Figure 7.3: Running the STEDP

Chapter 7: Evaluation 58

We then run the pipeline and are prompted with a status page as shown in Figure
7.4 below, which displays the progress of each stage. Recall that these stages are
explained in Chapter 4.2.1. The execution will usually take 10-20 minutes. This
is mentioned in our Wiki, which is available in Appendix B.

Figure 7.4: Pipeline stage status

Upon completion of the STEDP, the Security Testing Environment is deployed to
the detection lab of Sopra Steria. We confirm this by checking the existing virtual
machines and container instances in the Azure environment, as shown in Figure
7.5 below.

Figure 7.5: Deployed infrastructure

Chapter 7: Evaluation 59

The last stage of the STEDP should set up a MITRE Caldera agent onto the virtual
machine, which allows the Caldera container instance to execute security tests on
said VM. We can confirm this is installed and functional by accessing the MITRE
Caldera Web Interface. This is done by connecting to the VM through a remote
desktop and opening a web browser with the URL to the Caldera container. This
URL is by default the IP address of the container, followed by 8888. Accessing this
successfully allows us to see the deployed agent with the id "hfrxtz". It is deployed
to the virtual machine "bcProj-w10" with the status alive and trusted as seen in
the following Figure, 7.6.

Figure 7.6: Caldera agent status in web interface

Chapter 7: Evaluation 60

The resulting infrastructure we just examined should allow us to run security
tests and produce a report through the second pipeline, the Adversary Operation
Pipeline (AOP). The AOP makes use of the deployed Caldera agent and runs a set
of security tests based on the linked adversary ID. This ID can be configured in
the Azure DevOps web interface by navigating to Pipelines > Library > Adversary
Operation Variables, and then changing the value of AdversaryProfileID under
Variables, as shown in red in Figure 7.7. The ID is by default set to a profile which
is recommended by us as an initial collection of tests to confirm the security testing
is functional. The profile is called "Check (discovery)" and runs a set of initial tests
which extract basic system information.

Figure 7.7: Configuring the adversary profile ID value for the AOP

Chapter 7: Evaluation 61

We proceed by going back to the pipeline overview, choosing the AOP. As with the
previous pipeline, we engage the pipeline and are provided with a status page. The
duration of the run depends on the chosen adversary profile and the types of tests.
From the Azure web interface we can see that the pipeline is running, but to access
detailed progress information we need to enter the Caldera Web Interface again.
Inside the web interface, under operations, we can choose the operation which
by default is called "testoperation". We can then see each test being run as part of
the operation, along with detailed information about them in Figure 7.8.

Figure 7.8: Currently running operation

Chapter 7: Evaluation 62

For each completed test, we can click on "View Output" to get the actual result from
running said test. An example output is provided in Figure 7.9, which confirms
that the current user on this defending VM is "badmin".

Figure 7.9: Sample output, from ability "Current user"

After successful execution, a text file report is produced and placed on the desktop
of the defending VM. This file contains some of the same information accessible
from the Caldera web interface, but in a complete form that can be filtered to
our liking. The following is a snippet of this text report, to highlight some of the
available information that can be worked with.

1 "ability_id": "bd527b63-9f9e-46e0-9816-b8434d2b8989",
2 "command": "whoami",
3 "plaintext_command": "whoami",
4 "delegated": "2023-05-11T14:01:57Z",
5 "run": "2023-05-11T14:02:16Z",
6 "status": 0,
7 "platform": "windows",
8 "executor": "psh",
9 "pid": 3896,

10 "description": "Obtain user from current session",
11 "name": "Current User",
12 "attack": {
13 "tactic": "discovery",
14 "technique_name": "System Owner/User Discovery",
15 "technique_id": "T1033"
16 },
17 "output": {
18 "stdout": "bcproj-w10\\badmin",
19 "stderr": ""

Listing 16: Sample report-snippet after successful operation

Chapter 7: Evaluation 63

7.2 Requirements and Confidence Level

In order to evaluate how well our solution meets the requirements of the project,
we use confidence level as a measurement. This is a simplified, subjective way of
evaluating how assured we are in our solution meeting a requirement. The table
below defines what different confidence levels entail in the intervals of 0, 25, 50,
75, and 100 percent.

Table 7.1: The definition of confidence level in this thesis

Confidence Level

100%
We are certain that the
requirement has been
met completely

75%

The main parts of the
requirement have been
met, but there is room
for improvement

50%
Some of the requirement has
been fulfilled, but there is
a lot of room for improvement

25%
There is still a lot to do in
order to fulfill the requirement

0%
No progression has been
made to meet the requirement

Chapter 7: Evaluation 64

Functional Requirements

F1: The system should be able to automatically deploy infrastructure using
Azure DevOps Pipelines.

This implies that the deployment process should be streamlined, efficient, and
require minimal manual intervention.

Our solution largely satisfies Requirement F1 of automatic deployment of the test-
ing infrastructure via Azure DevOps Pipelines. It provides the capability to deploy
a container instance based on a MITRE Caldera container image, a virtual machine
intended to be used as the target for attacks, and a Caldera agent connected to
this virtual machine. The infrastructure is deployed by running the STEDP, which
is initiated by clicking a button in the Azure web interface. This functionality is the
main and crucial part of this requirement and is fulfilled. However, we note that
the current implementation only includes one container, one virtual machine, and
an agent, all running in one specific version and a rather static state. The Caldera
container image is based on a manually built image, instead of a continuously up-
dated official one as that could not be found. The flexibility and robustness could
therefore be determined as low, as some changes or updates could potentially
break the solution. Since these aspects are considered of secondary importance,
they do not compromise the ability of the system to fulfill the requirement cur-
rently. Therefore, we evaluate Requirement F1 as met with a confidence level of
90%.

F2: The system should be able to autonomously perform security tests within
the detection lab.

This requirement aims to eliminate the need for manual intervention in the test-
ing process and ensure that the system can perform efficient cybersecurity evalu-
ations.

We meet this requirement by providing a testing pipeline that automatically runs
a predefined set of security tests within the detection lab which generates a re-
port. The pipeline can be started with the click of a button, and once initiated, all
necessary security tests are executed without requiring manual intervention. Ad-
ditionally, our solution offers users the ability to define what collection of tests or
adversary profiles are executed by simply changing the ID value for the adversary
profile. While the default configuration runs a basic set of tests based on an ad-
versary, the solution could be expanded upon to include custom tests outside of
what is included in MITRE Caldera. After running the tests, a report outlining the
results is generated. The report shows whether the security tests were successful,
and the outputs or responses if applicable. It still needs manual review and does
not suggest improvements or fixes on its own. Overall, the testing pipeline does
autonomously perform security tests in the detection lab, but the set of tests and
the report generated could be improved and expanded upon. We can conclude
that our solution meets Requirement F2 with a confidence level of 70%.

Chapter 7: Evaluation 65

F3: Users should be able to define the tests or adversary profiles that the
system executes.

This requirement provides flexibility and customization options for users, allow-
ing them to tailor the testing process according to their specific needs and require-
ments.

The solution aims to fulfill this requirement by allowing users to specify an ad-
versary identity before running the security testing pipeline, which determines
what tests are run. This is achieved through the use of an environment variable
that can be easily modified in the Azure web interface. It is worth noting that the
adversary identities used are based on MITRE ATT&CK adversary IDs, and limits
the available options to those included in vanilla MITRE Caldera. The customiza-
tion of the tests beyond the standard profiles provided requires additional know-
ledge and customization inside of MITRE Caldera, which can be done through its
web interface or API but is not a formal component of our system. While this may
present some limitations, the ability to specify which tests to run still fulfills the
functional requirement with a confidence level of 80%.

Non-Functional Requirements

NF1: The solution should be open-source, non-copyrighted, and customiz-
able.

This requirement ensures that the solution can be easily modified, adapted, and
shared by users without any legal or copyright issues.

The system meets Requirement NF1 entirely, as it uses only open-source software
and frameworks that are entirely free to modify and use according to our needs.
The MITRE Caldera and MITRE ATT&CK frameworks and tools for deployment
such as Docker, and coding used directly in our solution all comply with this re-
quirement. We have made use of non-open-source tools in our development pro-
cess, but these tools are not directly part of our solution. Therefore, we consider
this requirement to be completely fulfilled, with our solution meeting this require-
ment with a confidence level of 100%.

NF2: Documentation for security tests should be mapped to MITRE ATT&CK.

This requirement ensures that the testing process is based on a widely recognized
and accepted framework, making it easier to compare and share results with oth-
ers in the cybersecurity field.

All security tests in the solution are integrated parts of MITRE Caldera and are
directly mapped to adversaries and tests in MITRE ATT&CK. This strong integra-
tion between the different components in the solution ensures that documenta-
tion for security tests is properly mapped to MITRE ATT&CK. Moreover, the fact
that MITRE Caldera is developed and published by the MITRE Corporation adds

Chapter 7: Evaluation 66

to the reliability of this fulfillment. We consider this requirement fulfilled with a
confidence level of 100%.

NF3: The installation process for the solution should be well-documented,
providing clear instructions and guidelines for users to follow.

The documentation, which we refer to as the Project Wiki can be found as a part
of our Azure Git Repository or in Appendix B. Our solution meets the Requirement
NF3 by providing clear and concise documentation that includes step-by-step in-
structions for the installation process, as requested by our client. Users can easily
follow these instructions to set up the system without any ambiguity. This is fol-
lowed by an overview of some TTPs linked to their relevant MITRE ATT&CK pages,
from a selection of the available adversary profiles. On the contrary, while the
current documentation primarily covers the basic installation and usage, future
improvements could expand the documentation to encompass additional usage
scenarios and customization options within the Caldera platform. The resulting
text file report from the AOP could also use more explanation for its use cases. We
still consider this requirement fulfilled with a confidence level of 100%.

NF4: The code for the solution must be stored in an Azure DevOps Repository
created for the purpose.

This requirement ensures that the codebase is managed and version-controlled
effectively, enabling collaboration and easy tracking of changes.

The code for our solution is entirely stored within a dedicated Azure DevOps Git
repository made specifically for our solution as illustrated in Figure 7.10. This
ensures that the code and related materials are properly organized as planned.
As such, we are confident that this requirement is fully satisfied with a level of
100%.

Figure 7.10: Solution Stored in Azure DevOps Repository

Chapter 7: Evaluation 67

NF5: The pipeline for the solution must be hosted in Azure DevOps Pipelines.

This requirement ensures that the pipeline is securely hosted and easily accessible
to authorized users, facilitating efficient deployment and testing processes.

The pipelines for our solution are entirely configured and run within Azure De-
vOps Pipelines, as planned. This requirement is considered fulfilled with a confid-
ence level of 100%.

NF6: The infrastructure for the solution must be deployed to the Sopra Steria
Azure Cloud Environment.

This requirement ensures that the solution is hosted on a secure and reliable cloud
infrastructure of our client, providing a stable and scalable environment for testing
and evaluation purposes.

The solution was continuously developed and tested within the detection lab of
our client. This resulted in a successful system deployed and compatible with the
Azure cloud environment of Sopra Steria, which meets the Requirement NF6.
However, the compatibility and functionality of the solution in other environments
is currently unknown, if our client were to need this. We consider this requirement
to be fulfilled with a confidence level of 100%.

NF7: Evaluation of frameworks for automatic cybersecurity testing.

This is to ensure we are using a reasonable, acknowledged framework suited for
our use. There is a multitude of opportunities here, and making a decent choice
and attesting to it is therefore crucial.

The evaluation of cybersecurity frameworks for automatic security testing is a dis-
tinct part of the project and is accorded a dedicated section within the Discussion
Chapter, under 8.2. Although not a direct practical component of the developed
solution, it has been a significant focus of the research effort and our thesis. The
team has thoroughly evaluated and assessed multiple frameworks for their com-
patibility with the proposed system. This aspect has been taken into consideration
consistently throughout the development and research process. This requirement
has thus been fulfilled and is documented in the relevant section of the thesis.
There are some options that we did not cover, but for our purpose and scope, we
consider this requirement to be fulfilled with a confidence level of 100%.

Chapter 7: Evaluation 68

Requirement Evaluation Results

Below are the summarized results of our subjective evaluation of the functional
and non-functional requirements of the project.

Table 7.2: Evaluation Results for the Functional Requirements

No. Requirement Description
Confidence

Level

F1
Automatic deployment of infrastructure via
Azure DevOps Pipeline

90%

F2

The ability of the system to autonomously perform
security tests within the detection lab, eliminating
manual intervention and promoting efficient
cybersecurity evaluations

70%

F3
Users should be able to define what tests or
adversary profiles are executed

80%

Table 7.3: Evaluation Results for the Non-Functional Requirements

No. Requirement Description
Confidence

Level

NF1
Open-Source solution; non-copyrighted
and customizable

100%

NF2
Documentation for security tests should be mapped
to MITRE ATT&CK

100%

NF3 Documentation for installation 100%

NF4
The code for the solution must be stored in an
Azure DevOps repository made for the purpose

100%

NF5
The Pipeline must be hosted in
Azure DevOps Pipelines

100%

NF6
The Infrastructure for the solution must be deployed
to the Sopra Steria Azure Cloud Environment

100%

NF7
Evaluation of frameworks for automatic
cybersecurity testing

100%

Chapter 7: Evaluation 69

Project Owner Feedback

We reached out to the project owner, Sopra Steria, to provide a counter to the
possible biases we as a group had regarding the evaluation of our own project
requirements. As a basis for evaluation, they were given a brief explanation of
confidence levels and were provided access to our project files and thesis. The
overall goal was to make them examine each functional and non-functional re-
quirement, and then evaluate how well the project met those requirements with
written feedback and confidence level scores.

Please see Appendix C for detailed feedback from the project owner. In summary,
Sopra Steria thought their requirements might have been too simple, and that we
may have been evaluating ourselves too harshly. They gave all but one require-
ment a confidence level of 100%. Requirement F2, concerning the ability of the
system to autonomously perform security tests, got a confidence level of 95%. This
was because they thought the solution could have been a little more user-friendly.
Running security tests could have been more automated, and reports could have
been easier to retrieve, but the feedback was otherwise positive. Overall, the pro-
ject owners expressed satisfaction with our solution and its adherence to the set
requirements.

Chapter 8

Discussion

This chapter serves as a comprehensive discussion of the work and decisions made
throughout the project, including both successes and challenges encountered.
There will also be a detailed account of mistakes made, along with an analysis
of the unexpected changes in the plans that occurred during the project. Through
this discussion, we aim to provide valuable insights, our subjective opinions, and
lessons learned that can inform and improve future projects. It also aims to discuss
alternatives and justify the choice of frameworks and tools. This discussion is of
significance due to the research-heavy nature of our project, and Requirement NF7
in Chapter 4.2 being a formal requirement desired by the project owners.

8.1 The Project Task

At the start of our project, we had several discussions with the project owners to
define the scope and objectives of our work. The main task was to evaluate differ-
ent cybersecurity frameworks for security testing in a detection lab and propose
a solution that met the specific requirements for the solution. The requirements
stated that the solution should be open-source, easily customizable, and provide
integration with the existing security solutions within Sopra Steria. We were given
a high degree of freedom in our approach to the task, which allowed us to ex-
plore various options and make informed decisions based on our research and
testing.

Said freedom allowed us to evaluate and make decisions that suited our use but
also made it difficult to make conclusive decisions regarding the direction to take.
This, combined with us being moderately unfamiliar with the options in the field,
led to us spending a significant amount of time researching and discussing frame-
works, tools, and solutions.

70

Chapter 8: Discussion 71

Direction and Consequences

As we embarked on our project, intending to explore possibilities through an ini-
tial prototype, it gradually evolved into our primary focus and eventually became
the ultimate solution. This final product effectively addresses the key requirements
outlined in the original task, albeit with less emphasis on additional or innovative
features. Depending on the perspective of the evaluator, one could perceive this
approach as reliable and predictable, leveraging established methods and tech-
niques, or perhaps unremarkable in its conventional implementation. However,
we argue that by adhering to proven and recognized approaches, we mitigate the
risks associated with our limited expertise and time constraints.

With a clear understanding of the project objectives and a set direction, our sub-
sequent efforts were dedicated to identifying the most suitable tools and frame-
works to meet the specified requirements.

Meeting the Requirements

The requirements were primarily based on the guidelines outlined in our original
project task. We also fine-tuned these requirements to align them with our desired
outcome for the product. These changes reflect findings and decisions made in
the research phase. The project owners were supportive of our efforts to make
independent choices in this regard. The requirements, which have been discussed
in Chapter 4.1, describe what our solution and to an extent thesis should do and
cover in detail. These have also been evaluated against our system, in Chapter 7
under 7.2.

To meet these requirements, we engaged in the task of researching frameworks,
as specified in Requirement NF7, to explore the available options and make bet-
ter, informed decisions. The main objective of Requirement NF7 was to identify
a cybersecurity framework that would be capable of conducting comprehensive
testing of endpoint security products in a controlled environment. Further, the
framework should easily integrate with other tools and allow for customization
to meet specific project requirements. This would lay the foundation for a frame-
work that would effectively meet our project objectives by providing the essential
qualities of flexibility, reliability, and robustness. With this in mind, we then turned
our attention to evaluating the available options, including specific security tools
that were not considered frameworks.

Security Tools

In our research phase, we discovered that there were few viable options available
in the area that met our requirements from scratch. Our focus was on finding a
framework for general automatic security testing against Windows machines, in-
stead of specific targeting of a software program or web application. There are
some key differences separating security frameworks developed for networking,

Chapter 8: Discussion 72

web, and operational technology (OT), or comprehensive ones for adversary emu-
lation against operating systems, which we desired. While there is a multitude of
tools available to assist in security testing within each of these fields, our require-
ments made that pool smaller.

In our work, we considered and explored some great security tools we already had
experience with. Including BurpSuite for advanced web exploitation [66], Nessus
for external vulnerability scanning [67], or many of the tools integrated into the
Kali Linux distribution designed for digital forensics and penetration testing [68].
However, there were certain problems with most of these tools. Firstly, some of
them are not open-source. Our requirements clearly state that all directly used
frameworks in our solution have to be open-source, free of copyright, and highly
customizable. Secondly, some use cases are too specific. BurpSuite, as mentioned,
is great for web exploitation and penetration testing but is not a fully-fledged
framework for adversary emulation. Lastly, the relevance of some of these tools
was limited. Nessus completes a thorough external scan and provides recommen-
ded actions to fix vulnerabilities. This does not fit into our internal focus where
we assume initial access to be already possessed, and external security to be out
of scope. These tools and others could potentially provide valuable forensics in-
formation, but we were mainly in need of an automated adversary emulation
framework.

8.2 Evaluating Security Frameworks

This section contributes to aligning with Requirement NF7 in 4.2 to evaluate secur-
ity testing frameworks. When exploring potential frameworks for our project, we
considered several options. Worth noting are MITRE Caldera, Stratus Red Team,
Infection Monkey, Leonidas, and PurpleSharp. Each of these offers unique fea-
tures and capabilities tailored to specific aspects of red team testing or adversary
emulation.

Caldera, developed by MITRE, was an immediate candidate as an automated ad-
versary emulation platform. It was mentioned in the project task and was assigned
the role as the safe option to fall back on in case no better alternative was found.
This comprehensive framework offers a wide range of features for conducting red
team testing and adversary simulations [69]. Its maturity, support from the cy-
bersecurity community, and alignment with industry standards combined with it
being suggested by our client made it a strong contender.

Stratus Red Team stood out as a framework specifically designed for emulating
offensive attack techniques in cloud environments. Its granular and self-contained
approach allows for precise simulations in the cloud, providing valuable insights
into potential vulnerabilities [70]. It is mapped to the MITRE ATT&CK framework,
but its focus on cloud-native environments meant it did not align with the inten-
ded scope of our project.

Chapter 8: Discussion 73

Infection Monkey, on the other hand, focuses on automated penetration testing.
This tool allows organizations to simulate various attack scenarios, helping assess
the security of their networks and identify potential weaknesses. It is mainly used
for automated detection of data center boundaries and internal server security
[71]. Recall that in Chapter 4.1 on requirements, specifically Requirement F2,
which states that "The system should be able to autonomously perform security
tests within the detection lab". We determine "within the detection lab" to not
align with the broad and technically different term "cloud environments", which
therefore disqualifies Infection Monkey.

Leonidas is an automated attack simulation framework specifically designed for
cloud environments [72]. Similar to our conclusion on the use of Infection Mon-
key, Leonidas’ focus on broader cloud environments means it does not entirely
align with our requirements.

PurpleSharp, an adversary simulation tool, executes adversary techniques in mon-
itored Windows environments [73]. It is not widely used, only briefly mentioned
in a single scholarly article that we could find which states that "PurpleSharp real-
izes emulation with two RATs installed on a tested system that is synchronized by
an external agent. Some of these tools are dependant on agents and all of them
emulate attacks incoherently, which makes the emulation less realistic and lim-
ited." [35]. While relevant and mostly fitting for our requirements, we did not
consider prioritizing it over MITRE Caldera, due to its limited community support
and acknowledgment.

Choosing Caldera

Given the options and considerations, we also contemplated the possibility of
developing our own testing program or tests, potentially based on the Atomic
Red Team framework. This option would have provided us with greater flexibil-
ity and control over the testing process. However, after considering our expertise
and available time, we decided to stick with the somewhat safe and fully-fledged
solution provided by MITRE Caldera. The decision was based on several factors.
Firstly, Caldera is a proven framework with a high level of maturity and support
from the cybersecurity community. Its alignment with industry standards and its
comprehensive feature set made it a reliable choice for our red team testing re-
quirements. Additionally, Caldera offered the necessary customization options and
integration capabilities we needed to meet our project objectives. Developing our
own testing program or tests, although potentially innovative, would have re-
quired significant time and resources to ensure its effectiveness and reliability. By
choosing Caldera, we were able to leverage a well-established and widely-used
framework, providing us with a solid foundation for our security testing. This de-
cision allowed us to focus on conducting deployment and comprehensive testing
in an automated manner while minimizing the risks associated with developing
our own solution.

Chapter 8: Discussion 74

Limitations and Potential Extensions

While MITRE Caldera proved to be a reliable and robust framework for our needs,
we acknowledge the potential limitations and future opportunities for our solu-
tion.

One limitation lies in the usefulness of the generated reports. Although Caldera
provides comprehensive reports with detailed information about the tests con-
ducted and the results obtained, interpreting and utilizing this information effect-
ively requires a strong understanding of the underlying concepts and techniques
involved. Without sufficient knowledge and expertise, the value of the report may
be diminished, limiting its practicality for less experienced users or those lacking
in-depth knowledge of red teaming and adversary emulation. The report does not
provide a simple suggested plan of action, which would increase user-friendliness.
It is important to consider the level of expertise required to effectively utilize the
report and provide appropriate training or documentation to ensure its maximum
utility.

Another limitation of our solution is its relatively inflexible nature. While it al-
lows for easy switching between predefined adversary profiles, making changes
to the target machine or incorporating it into an existing environment without
running our deployment pipeline can be challenging. The current implementa-
tion assumes a specific environment and configuration, making it less adaptable
to diverse setups. Enhancements in this area could involve developing more flex-
ible deployment options that allow for seamless integration with existing environ-
ments, providing users with greater control and customization possibilities.

To overcome these limitations and further expand the capabilities of our solu-
tion, several potential extensions can be explored. One avenue for improvement
is through the integration of plugins for MITRE Caldera, which it allows for and
explains in its official documentation [40]. By creating plugins that integrate addi-
tional tools and functionalities, we can enhance the range of available and useful
tests. For example, integrating Metasploit, a popular penetration testing frame-
work [39] through Caldera’s plugins [74] is an option we experimented with. It
would significantly expand the number of attack vectors and techniques that can
be simulated, providing a more comprehensive evaluation of the security posture
of the target system. This integration would enable users to leverage the extens-
ive capabilities of Metasploit alongside Caldera, increasing the effectiveness and
coverage of our testing scenarios.

In addition to plugin development, future work could focus on expanding the
repository of predefined adversary profiles within Caldera. By continuously re-
searching and incorporating new TTPs, the framework can remain up to date
with the evolving threat landscape. This could either be done by the developers
of MITRE Caldera, and then by us through keeping the software up to date, or
we could manually create adversary profiles or operations. This would ensure

Chapter 8: Discussion 75

that the security tests conducted using Caldera reflect the latest adversarial tech-
niques, providing a more realistic and relevant assessment of the target system’s
defenses.

Chapter 9

Closing Remarks

In this chapter, we shall discuss the learning outcomes derived from the project.
Subsequently, we will collectively arrive at a conclusion and explore ideas for
further work that could improve the solution in the future.

9.1 Learning Outcome

Throughout the duration of this project, we dedicated a significant amount of
effort to working with MITRE Caldera, as it was chosen as the framework for our
solution. We learned how to configure the VMs as Caldera agents, by utilizing both
the GUI and the CLI. Additionally, we thoroughly explored the use of various APIs
within Caldera to facilitate the automation of the security testing processes.

Prior to undertaking this project, our team possessed limited experience in con-
ducting security tests. Through our work with the project, we actively acquired
knowledge regarding the diverse TTPs used by malicious actors. By utilizing the
MITRE ATT&CK framework we gained firsthand experience in establishing con-
nections between TTPs and the corresponding security tests.

In our solution, we incorporated the use of Terraform in conjunction with Mi-
crosoft Azure to establish and deploy the Security Testing Environment. Initially,
we needed to acquire the knowledge of constructing various resources within
Azure to successfully implement our solution. Fortunately, our client provided us
with code examples that served as guidance throughout the learning process. With
their support, we were able to learn how to effectively utilize Terraform and Azure,
to set up the required infrastructure for our Security Testing Environment.

As a team, we have learned how important it is with good communication and
open dialogue. We are a team of four, with a mix of prior working relationships.
Two of us had previously collaborated, as had the other two. However, working
together as a complete team was a new experience for all of us. This situation

76

Chapter 9: Closing Remarks 77

provided us with an opportunity to learn how we worked as a team, discovering
effective work methods and communication skills.

A few members of our team had little experience with writing in Overleaf LaTeX
[75]. The thesis writing in itself required more time than first assumed. How-
ever, this experience taught us a valuable lesson in terms of the importance of not
postponing thesis writing until the final stages, but rather engaging in continuous
writing throughout the project.

9.2 Conclusion

The primary objectives of our project revolved around automating the detection
lab testing process for Sopra Steria and evaluating open-source security frame-
works. A considerable portion of our project time was dedicated to researching
various frameworks suitable for our purposes. However, we soon discovered that
the framework recommended by the project owners, MITRE Caldera, aligned ex-
ceptionally well with our requirements. This made us look deeper into under-
standing the implementation and utilization of MITRE Caldera, ensuring we knew
how to utilize its capabilities.

In order to meet the project requirements, we made the decision to implement two
distinct pipelines: one for constructing the testing environment and another for
executing the security tests. The separation made for easier execution of different
security tests without the need to set up a new environment for each test. However,
this approach slightly reduced the level of automation, since it required manual
utilization of two pipelines instead of one pipeline. Nonetheless, this decision was
made with the project owners, so they could easier execute the different security
tests.

To ensure usability for the project owners, we developed a wiki within the Azure
repository. This documentation serves as a guide for utilizing our solution, with
a focus on the usage of the two pipelines. The wiki provides step-by-step instruc-
tions, enabling effective utilization of the pipelines. Additionally, we included a
few examples of various tests that could be executed.

In conclusion, our solution successfully meets the set project requirements, even
though the requirements might have been too narrow in scope as suggested by our
clients in their evaluation of our project. While alternative approaches for our solu-
tion could have been considered, time constraints, limited familiarity with MITRE
Caldera, and a lack of extensive experience in security testing posed challenges.
However, as a team, we are satisfied with the implementation of our solution.
Despite the challenges encountered, we have managed to deliver a solution that
addresses the project’s objectives and provides a reliable framework for automat-
ing and conducting security tests.

Chapter 9: Closing Remarks 78

9.3 Further work

Throughout our project, we have gained valuable insights and ideas that could not
be fully realized within our given time frame. These ideas pave the way for poten-
tial further work, offering exciting opportunities for those interested in expanding
our solution. In this section, we will briefly discuss some of these ideas, providing
a glimpse into the possibilities for extending and improving them.

9.3.1 Overall System

Considering the overall system and our direction, there are some key aspects that
could use more research and work to ensure a complete solution. For example, the
interaction between the system and the detection lab environment, particularly
how the Azure and Windows security measures respond to our system and tests.
Understanding how the system integrates with these components and performs
in the presence of various security measures, including antivirus software needs
further exploration.

The actual security tests used in our solution seem comprehensive to the best of
our knowledge but should be revised in detail and perhaps expanded upon. The
information in the results gathered by the execution of these tests also requires
further revision. It could be that some of the results provide information that is
either incorrect or simply not useful enough. We have confirmed the results we
could in our testing and laid our trust in the MITRE organization for the remaining
parts, including mapping to the MITRE ATT&CK matrix. Researching and confirm-
ing details beyond what is provided in our thesis would be beneficial in order to
validate the effectiveness of the solution.

9.3.2 MITRE Caldera

The possibilities for improvements with regard to our use of MITRE Caldera are
many. One aspect is enabling access to the Caldera web server from outside of
the relevant VM. The setup currently requires the user to access the Caldera Web
Interface from within the VM, which is inconvenient. Finding a way to access
this interface from any machine, possibly through a Virtual Private Network with
appropriate network rules, could make this easier.

Another area that could benefit from improvement is the static nature of the Cal-
dera image. The current image is built by us, remains static, and does not incor-
porate updates or new features. Updating the image periodically or finding a way
to enable automatic updates would ensure that users have access to the latest
features and security enhancements. This limitation exists due to us not finding a
publicly hosted image that remains maintained. MITRE used to update an image
on Docker Hub about two years ago which would simplify a fix, but it has since
been abandoned [76].

Chapter 9: Closing Remarks 79

As for extensions of the framework features and security tests, this is broadly
covered in the Discussion Chapter, under 8.2. Elements to add to this could be:
Exploring the additional existing features of Caldera, fetching and providing the
report in a reasonable format and place, and providing a plan of action to improve
found vulnerabilities.

9.3.3 Infrastructure Deployment

In general, we believe that our solution effectively solves the problem of automatic
deployment of infrastructure. However, one issue is the manual cleanup of infra-
structure resources that no longer serve a purpose. The cleanup process could be
automated by implementing a ’destruction pipeline.’ This pipeline would reverse
the implementation of our Terraform model by deleting any resources the model is
configured to create. This would allow users to clean up unneeded resources with
a single action instead of deleting each resource manually. It is worth mentioning
that our solution currently only creates two resources, making a manual deletion
relatively simple. Because of this, we were unable to prioritize the development
of a destruction pipeline within the time limit of our project.

Bibliography

[1] arm, Control processing unit (cpu). [Online]. Available: https://www.arm
.com/glossary/cpu.

[2] Atlassian, What is kanban? [Online]. Available: https://www.atlassian
.com/agile/kanban.

[3] Gartner, Managed security service provider (mssp). [Online]. Available: htt
ps://www.gartner.com/en/information-technology/glossary/mssp-m
anaged-security-service-provider.

[4] Gartner, Operational technology (ot). [Online]. Available: https://www.ga
rtner.com/en/information-technology/glossary/operational-techn
ology-ot.

[5] Blumira, Remote access tool (rat). [Online]. Available: https://www.blumi
ra.com/glossary/remote-access-tool-rat/.

[6] Atlassian, What is scrum? [Online]. Available: https://www.atlassian.c
om/agile/scrum.

[7] Arcitura, Cloud-based security groups. [Online]. Available: https://patte
rns.arcitura.com/cloud-computing-patterns/mechanisms/cloud_bas
ed_security_groups.

[8] IBM, What is a security operations center (soc). [Online]. Available: https:
//www.ibm.com/topics/security-operations-center.

[9] Cambridge Dictionary, Vanilla - adjective. [Online]. Available: https://di
ctionary.cambridge.org/dictionary/english/vanilla.

[10] Sopra Steria, About us. [Online]. Available: https://www.soprasteria.c
om/about-us, (accessed: 24.03.2023).

[11] Sopra Steria, Sikkerhetstjenester. [Online]. Available: https://www.sopras
teria.no/dette-kan-vi/fagomrader/sikkerhetstjenester, (accessed:
24.03.2023).

[12] NSM. ‘Kvalitetsordning for leverandører som håndterer ikt-hendelser.’ (Nov.
2022), [Online]. Available: https://nsm.no/fagomrader/sikkerhetssty
ring/leverandorforhold/kvalitetsordning-for-leverandorer-som-h
andterer-ikt-hendelser.

80

https://www.arm.com/glossary/cpu
https://www.arm.com/glossary/cpu
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://www.gartner.com/en/information-technology/glossary/mssp-managed-security-service-provider
https://www.gartner.com/en/information-technology/glossary/mssp-managed-security-service-provider
https://www.gartner.com/en/information-technology/glossary/mssp-managed-security-service-provider
https://www.gartner.com/en/information-technology/glossary/operational-technology-ot
https://www.gartner.com/en/information-technology/glossary/operational-technology-ot
https://www.gartner.com/en/information-technology/glossary/operational-technology-ot
https://www.blumira.com/glossary/remote-access-tool-rat/
https://www.blumira.com/glossary/remote-access-tool-rat/
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://patterns.arcitura.com/cloud-computing-patterns/mechanisms/cloud_based_security_groups
https://patterns.arcitura.com/cloud-computing-patterns/mechanisms/cloud_based_security_groups
https://patterns.arcitura.com/cloud-computing-patterns/mechanisms/cloud_based_security_groups
https://www.ibm.com/topics/security-operations-center
https://www.ibm.com/topics/security-operations-center
https://dictionary.cambridge.org/dictionary/english/vanilla
https://dictionary.cambridge.org/dictionary/english/vanilla
https://www.soprasteria.com/about-us
https://www.soprasteria.com/about-us
https://www.soprasteria.no/dette-kan-vi/fagomrader/sikkerhetstjenester
https://www.soprasteria.no/dette-kan-vi/fagomrader/sikkerhetstjenester
https://nsm.no/fagomrader/sikkerhetsstyring/leverandorforhold/kvalitetsordning-for-leverandorer-som-handterer-ikt-hendelser
https://nsm.no/fagomrader/sikkerhetsstyring/leverandorforhold/kvalitetsordning-for-leverandorer-som-handterer-ikt-hendelser
https://nsm.no/fagomrader/sikkerhetsstyring/leverandorforhold/kvalitetsordning-for-leverandorer-som-handterer-ikt-hendelser

Bibliography 81

[13] Microsoft, What is azure pipelines? [Online]. Available: https://learn.mi
crosoft.com/en-us/azure/devops/pipelines/get-started/what-is-a
zure-pipelines?view=azure-devops.

[14] MITRE, Att&ck matrix for enterprise. [Online]. Available: https://attack
.mitre.org/, (accessed: 16.02.2023).

[15] Cloudflare, What is penetration testing? [Online]. Available: https://www
.cloudflare.com/learning/security/glossary/what-is-penetration
-testing/.

[16] NTNU, Digital infrastruktur og cybersikkerhet. [Online]. Available: https:
//www.ntnu.no/studier/bdigsec.

[17] AttackIQ, Intermediate purple teaming. [Online]. Available: https://www.a
cademy.attackiq.com/learning-path/intermediate-purple-teaming.

[18] Microsoft, What is cloud computing? [Online]. Available: https://azure.m
icrosoft.com/en-in/resources/cloud-computing-dictionary/what-i
s-cloud-computing.

[19] IBM, What is virtualization? [Online]. Available: https://www.ibm.com/t
opics/virtualization.

[20] Citrix, What is hardware virtualization? [Online]. Available: https://www
.citrix.com/solutions/vdi-and-daas/what-is-hardware-virtualiza
tion.html.

[21] IBM, What are virtual machines (vms)? [Online]. Available: https://www
.ibm.com/topics/virtual-machines.

[22] Microsoft. ‘How does azure work?’ (Feb. 2023), [Online]. Available: http
s://learn.microsoft.com/en-us/azure/cloud-adoption-framework/g
et-started/what-is-azure.

[23] Microsoft, Azure devops. [Online]. Available: https://azure.microsoft.c
om/en-us/products/devops.

[24] CrowdStrike. ‘What is security testing?’ (Dec. 2022), [Online]. Available:
https://www.crowdstrike.com/cybersecurity-101/security-testing
/.

[25] R. Mejia, ‘Red team versus blue team: How to run an effective simulation,’
CSO Online-Security and Risk, 2008. [Online]. Available: http://aldeili
s.net/mumbai/0682.pdf.

[26] J. Oakley, ‘Purple teaming. in: Professional red teaming,’ Apress, Berkeley,
CA, p. 105, 2019. [Online]. Available: https://doi.org/10.1007/978-1-
4842-4309-1_8.

[27] E. P. Shanto Roy, C. Noakes, A. Laszka, S. Panda and G. Loukas, ‘Sok: The
mitre att&ck framework in research and practice,’ Apress, Berkeley, CA, p. 8,
2023. [Online]. Available: https://arxiv.org/abs/2304.07411.

https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://attack.mitre.org/
https://attack.mitre.org/
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.ntnu.no/studier/bdigsec
https://www.ntnu.no/studier/bdigsec
https://www.academy.attackiq.com/learning-path/intermediate-purple-teaming
https://www.academy.attackiq.com/learning-path/intermediate-purple-teaming
https://azure.microsoft.com/en-in/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-in/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-in/resources/cloud-computing-dictionary/what-is-cloud-computing
https://www.ibm.com/topics/virtualization
https://www.ibm.com/topics/virtualization
https://www.citrix.com/solutions/vdi-and-daas/what-is-hardware-virtualization.html
https://www.citrix.com/solutions/vdi-and-daas/what-is-hardware-virtualization.html
https://www.citrix.com/solutions/vdi-and-daas/what-is-hardware-virtualization.html
https://www.ibm.com/topics/virtual-machines
https://www.ibm.com/topics/virtual-machines
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/get-started/what-is-azure
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/get-started/what-is-azure
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/get-started/what-is-azure
https://azure.microsoft.com/en-us/products/devops
https://azure.microsoft.com/en-us/products/devops
https://www.crowdstrike.com/cybersecurity-101/security-testing/
https://www.crowdstrike.com/cybersecurity-101/security-testing/
http://aldeilis.net/mumbai/0682.pdf
http://aldeilis.net/mumbai/0682.pdf
https://doi.org/10.1007/978-1-4842-4309-1_8
https://doi.org/10.1007/978-1-4842-4309-1_8
https://arxiv.org/abs/2304.07411

Bibliography 82

[28] Okta. ‘Defining & understanding the mitre att&ck framework.’ (May 2022),
[Online]. Available: https://www.okta.com/identity-101/mitre-attac
k/.

[29] Mitre, Who we are. [Online]. Available: https://www.mitre.org/who-we-
are.

[30] MITRE Corporation, Enterprise matrix. [Online]. Available: https://atta
ck.mitre.org/matrices/enterprise/.

[31] N. Poggi. ‘Cybersecurity frameworks 101 - the complete guide.’ (Jun. 2022),
[Online]. Available: https://web.archive.org/web/20221204142314/ht
tps://preyproject.com/blog/cybersecurity-frameworks-101.

[32] RedHat. ‘What is open source?’ (Oct. 2019), [Online]. Available: https:
//www.redhat.com/en/topics/open-source/what-is-open-source.

[33] Faqs. [Online]. Available: https://github.com/redcanaryco/atomic-re
d-team/wiki/FAQs.

[34] Caldera. [Online]. Available: https://github.com/mitre/caldera.

[35] J. Pružinec, Q. A. Nguyen, A. Baldwin, J. Griffin and Y. Liu, ‘Kubo: A frame-
work for automated efficacy testing of anti-virus behavioral detection with
procedure-based malware emulation,’ in Proceedings of the 13th Interna-
tional Workshop on Automating Test Case Design, Selection and Evaluation,
New York, NY, USA: Association for Computing Machinery, 2022, p. 39,
ISBN: 9781450394529. DOI: 10.1145/3548659.3561307. [Online]. Avail-
able: https://doi.org/10.1145/3548659.3561307.

[36] W. Booth, Caldera documentation - plugin library, atomic, 2023. [Online].
Available: https://caldera.readthedocs.io/en/latest/Plugin-libra
ry.html?highlight=atomic+red+team#atomic.

[37] W. Booth, Caldera - learning the terminology, 2023. [Online]. Available: ht
tps://caldera.readthedocs.io/en/latest/Learning-the-terminolog
y.html?highlight=adversary%5C%20profile#operations.

[38] W. Booth, Caldera - learning the terminology, 2023. [Online]. Available: ht
tps://caldera.readthedocs.io/en/latest/Learning-the-terminolog
y.html?highlight=adversary%5C%20profile#abilities-and-adversar
ies.

[39] Metasploit, The world’s most used penetration testing framework. [Online].
Available: https://www.metasploit.com/.

[40] W. Booth, Caldera documentation - plugin library, atomic, 2023. [Online].
Available: https://caldera.readthedocs.io/en/latest/Plugin-libra
ry.html.

[41] Splunk, What is security automation? [Online]. Available: https://www.s
plunk.com/en_us/data-insider/what-is-security-automation.html.

https://www.okta.com/identity-101/mitre-attack/
https://www.okta.com/identity-101/mitre-attack/
https://www.mitre.org/who-we-are
https://www.mitre.org/who-we-are
https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/matrices/enterprise/
https://web.archive.org/web/20221204142314/https://preyproject.com/blog/cybersecurity-frameworks-101
https://web.archive.org/web/20221204142314/https://preyproject.com/blog/cybersecurity-frameworks-101
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://github.com/redcanaryco/atomic-red-team/wiki/FAQs
https://github.com/redcanaryco/atomic-red-team/wiki/FAQs
https://github.com/mitre/caldera
https://doi.org/10.1145/3548659.3561307
https://doi.org/10.1145/3548659.3561307
https://caldera.readthedocs.io/en/latest/Plugin-library.html?highlight=atomic+red+team#atomic
https://caldera.readthedocs.io/en/latest/Plugin-library.html?highlight=atomic+red+team#atomic
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#operations
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#operations
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#operations
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#abilities-and-adversaries
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#abilities-and-adversaries
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#abilities-and-adversaries
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=adversary%5C%20profile#abilities-and-adversaries
https://www.metasploit.com/
https://caldera.readthedocs.io/en/latest/Plugin-library.html
https://caldera.readthedocs.io/en/latest/Plugin-library.html
https://www.splunk.com/en_us/data-insider/what-is-security-automation.html
https://www.splunk.com/en_us/data-insider/what-is-security-automation.html

Bibliography 83

[42] Hashicorp, What is terraform? [Online]. Available: https://developer.h
ashicorp.com/terraform/intro.

[43] D. Lemonaki, What is coding? computer coding definition. [Online]. Avail-
able: https://www.freecodecamp.org/news/what-is-coding/.

[44] Oxford English Dictionary, Scripting n. [Online]. Available: https://www
.oed.com/view/Entry/173567#eid23814948.

[45] Microsoft, What is powershell? [Online]. Available: https://learn.micro
soft.com/en-us/powershell/scripting/overview.

[46] IBM, What is an api? [Online]. Available: https://www.ibm.com/topics
/api.

[47] IBM, What is a rest api? [Online]. Available: https://www.ibm.com/topic
s/rest-apis.

[48] A. L. Solli, ‘Automated red teams in maritime cybersecurity exercises,’ NTNU
Open, 2022. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlu
i/handle/11250/3006990.

[49] M. Nachaat, ‘Study of bypassing microsoft windows security using the mitre
caldera framework,’ Rabdan Academy, Abu Dhabi, 2022. [Online]. Avail-
able: https://f1000research.com/articles/11-422/v3.

[50] MITRE, Agents. [Online]. Available: https://attack.mitre.org/tactics
/TA0001/.

[51] T. E. Seongmo An, J. S. Park, J. B. Hong, A. Nhlabatsi, N. Fetais, K. Khan and
D. S. Kim, ‘Cloudsafe: A tool for an automated security analysis for cloud
computing,’ Institute of Electrical and Electronics Engineers (IEEE), 2014.
[Online]. Available: https://ieeexplore.ieee.org/document/8887392.

[52] A. Wolter, Security: Separation of privilege. [Online]. Available: https://t
echcommunity.microsoft.com/t5/azure-sql-blog/security-separati
on-of-privilege/ba-p/2393637.

[53] M. Glinz, ‘On non-functional requirements,’ in 15th IEEE International Re-
quirements Engineering Conference (RE 2007), 2007, pp. 21–26. DOI: 10.1
109/RE.2007.45.

[54] MITRE, Operation results. [Online]. Available: https://caldera.readthe
docs.io/en/latest/Operation-Results.html?#sample-operation-rep
ort.

[55] E. Conrad, ‘Waterfall model - an overview,’ 2011. [Online]. Available: htt
ps://www.sciencedirect.com/topics/computer-science/waterfall-m
odel.

[56] Microsoft, About boards and kanban. [Online]. Available: https://learn
.microsoft.com/en-us/azure/devops/boards/boards/kanban-overvie
w?view=azure-devops.

[57] D. Inc., Discord. [Online]. Available: https://discord.com/.

https://developer.hashicorp.com/terraform/intro
https://developer.hashicorp.com/terraform/intro
https://www.freecodecamp.org/news/what-is-coding/
https://www.oed.com/view/Entry/173567#eid23814948
https://www.oed.com/view/Entry/173567#eid23814948
https://learn.microsoft.com/en-us/powershell/scripting/overview
https://learn.microsoft.com/en-us/powershell/scripting/overview
https://www.ibm.com/topics/api
https://www.ibm.com/topics/api
https://www.ibm.com/topics/rest-apis
https://www.ibm.com/topics/rest-apis
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3006990
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3006990
https://f1000research.com/articles/11-422/v3
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001/
https://ieeexplore.ieee.org/document/8887392
https://techcommunity.microsoft.com/t5/azure-sql-blog/security-separation-of-privilege/ba-p/2393637
https://techcommunity.microsoft.com/t5/azure-sql-blog/security-separation-of-privilege/ba-p/2393637
https://techcommunity.microsoft.com/t5/azure-sql-blog/security-separation-of-privilege/ba-p/2393637
https://doi.org/10.1109/RE.2007.45
https://doi.org/10.1109/RE.2007.45
https://caldera.readthedocs.io/en/latest/Operation-Results.html?#sample-operation-report
https://caldera.readthedocs.io/en/latest/Operation-Results.html?#sample-operation-report
https://caldera.readthedocs.io/en/latest/Operation-Results.html?#sample-operation-report
https://www.sciencedirect.com/topics/computer-science/waterfall-model
https://www.sciencedirect.com/topics/computer-science/waterfall-model
https://www.sciencedirect.com/topics/computer-science/waterfall-model
https://learn.microsoft.com/en-us/azure/devops/boards/boards/kanban-overview?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/boards/boards/kanban-overview?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/boards/boards/kanban-overview?view=azure-devops
https://discord.com/

Bibliography 84

[58] Microsoft, Get more done with microsoft teams. [Online]. Available: https:
//www.microsoft.com/en-us/microsoft-teams/group-chat-software.

[59] Microsoft, What is infrastructure as code (iac). [Online]. Available: https:
//learn.microsoft.com/en-us/devops/deliver/what-is-infrastruct
ure-as-code.

[60] HashiCorp, Modules. [Online]. Available: https://developer.hashicorp
.com/terraform/language/modules.

[61] Microsoft, Azure pipelines task reference. [Online]. Available: https://lea
rn.microsoft.com/en-us/azure/devops/pipelines/tasks/reference
/?view=azure-pipelines.

[62] MITRE, The rest api. [Online]. Available: https://caldera.readthedocs
.io/en/latest/The-REST-API.html.

[63] Microsoft, Invoke-restmethod. [Online]. Available: https://learn.micros
oft.com/en-us/powershell/module/microsoft.powershell.utility/i
nvoke-restmethod?view=powershell-7.3.

[64] MITRE, Server configuration. [Online]. Available: https://caldera.readt
hedocs.io/en/latest/Server-Configuration.html?highlight=ADMIN1
23#configuration-file.

[65] MITRE, Agents. [Online]. Available: https://caldera.readthedocs.io/e
n/latest/Learning-the-terminology.html?highlight=paw#agents.

[66] P. Corporation, Burp suite - application security testing software, 2023. [On-
line]. Available: https://portswigger.net/burp.

[67] T. Inc., Nessus vulnerability assessment tool, 2023. [Online]. Available: htt
ps://www.tenable.com/products/nessus.

[68] K. Team, Penetration testing and ethical hacking linux distribution, May 2023.
[Online]. Available: https://www.kali.org/.

[69] Caldera. [Online]. Available: https://caldera.mitre.org/.

[70] D. Inc., Home, 2023. [Online]. Available: https://stratus-red-team.cl
oud/.

[71] L. Chen, A. Xu, X. Kuang, H. Lv, H. Yang, Y. Yang and B. Li, ‘Detecting
advanced attacks based on linux logs,’ in 2020 IEEE 6th Intl Conference
on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on
High Performance and Smart Computing, (HPSC) and IEEE Intl Conference
on Intelligent Data and Security (IDS), 2020, p. 61. DOI: 10.1109/BigData
Security-HPSC-IDS49724.2020.00022.

[72] WithSecureLabs, Github - withsecurelabs/leonidas. [Online]. Available: htt
ps://github.com/WithSecureLabs/leonidas.

[73] M. Velazco, Purplesharp. [Online]. Available: https://www.purplesharp
.com/en/latest/.

https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://developer.hashicorp.com/terraform/language/modules
https://developer.hashicorp.com/terraform/language/modules
https://learn.microsoft.com/en-us/azure/devops/pipelines/tasks/reference/?view=azure-pipelines
https://learn.microsoft.com/en-us/azure/devops/pipelines/tasks/reference/?view=azure-pipelines
https://learn.microsoft.com/en-us/azure/devops/pipelines/tasks/reference/?view=azure-pipelines
https://caldera.readthedocs.io/en/latest/The-REST-API.html
https://caldera.readthedocs.io/en/latest/The-REST-API.html
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-restmethod?view=powershell-7.3
https://caldera.readthedocs.io/en/latest/Server-Configuration.html?highlight=ADMIN123#configuration-file
https://caldera.readthedocs.io/en/latest/Server-Configuration.html?highlight=ADMIN123#configuration-file
https://caldera.readthedocs.io/en/latest/Server-Configuration.html?highlight=ADMIN123#configuration-file
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=paw#agents
https://caldera.readthedocs.io/en/latest/Learning-the-terminology.html?highlight=paw#agents
https://portswigger.net/burp
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://www.kali.org/
https://caldera.mitre.org/
https://stratus-red-team.cloud/
https://stratus-red-team.cloud/
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00022
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00022
https://github.com/WithSecureLabs/leonidas
https://github.com/WithSecureLabs/leonidas
https://www.purplesharp.com/en/latest/
https://www.purplesharp.com/en/latest/

Bibliography 85

[74] Metasploit, Integrating metasploit. [Online]. Available: https://caldera
.readthedocs.io/en/latest/Plugin-library.html#metasploit-integ
ration.

[75] Overleaf latex. [Online]. Available: https://www.overleaf.com/.

[76] MITRE, Mitre caldera on docker hub. [Online]. Available: https://hub.do
cker.com/r/mitre/caldera.

https://caldera.readthedocs.io/en/latest/Plugin-library.html#metasploit-integration
https://caldera.readthedocs.io/en/latest/Plugin-library.html#metasploit-integration
https://caldera.readthedocs.io/en/latest/Plugin-library.html#metasploit-integration
https://www.overleaf.com/
https://hub.docker.com/r/mitre/caldera
https://hub.docker.com/r/mitre/caldera

Appendix A

Contract

Attached is our working contract, signed by the project group, project owners and
the supervisor.

86

Appendix B

Project Wiki

Attached is our Project Wiki, as seen in our Azure DevOps Repository when logged
into the Azure Environment of our client.

93

5/20/23, 1:13 PM Project Wiki - Overview

https://dev.azure.com/sopra-steria-soc-dev/Bachelor Project/_wiki/wikis/Bachelor-Project.wiki/1/Project-Wiki 1/4

Last updated by | Petter Jørgensen | May 20, 2023 at 1:12 PM GMT+2
Project Wiki

Step by step usage

Prerequisites

1. Ensure that the bcProj-w10 VM and bcProj-Caldera Container does not already exist. If you wish to
deploy multiple VM/Container pairs, this can be done by editing the 'name_prefix' variable located in
the Terraform Environment variable group. You may then change the Prefix to match the desired target
before running the Adversary Operations Pipeline. In most scenarios however, the simplest solution is
to delete existing infrastructure before deploying more.

Infrastructure Deployment

1. Select the Infrastructure Deployment Pipeline.
2. Click the 'Run Pipeline' button and then 'Run'. If you wish to run the pipeline on another branch than

main, you can select another branch in the drop-down menu. The source branch for 'Resources' might
also have to be changed.

3. Wait for the Pipeline to finish running. This will usually take 10-20 minutes.

Note: The username and password for the VM to be deployed can be changed by editing the
'module_admin_username' variable in the Terraform Environment variable group, and by replacing the
'module-admin-secret' secret located in Azure Key Vault Caldera-Registry . If the password is changed, the
new secret must be named the same, and it must then be re-imported into the Pipeline-Credentials variable
group.

Security Testing

1. Define which adversary profile to run. This is done by setting the value of the 'AdversaryProfileID'
variable equal to the ID of the desired adversary profile. The 'AdversaryProfileID' variable is located in
the 'Adversary Operation Variables' variable group within the Pipeline Library. A sample of the available
adversary profiles along with their documentation can be found at the bottom of this wiki.

2. Now select the Adversary Operation Pipeline.
3. Click 'Run Pipeline'. The time it takes for the Pipeline to finish running varies depending on the

Adversary Profile selected.
4. You can find the test results in a text file on the VM's desktop.

Access VM or Caldera GUI

Caldera has a GUI accessible from a web-browser on the Virtual Machine. It can be accessed using the
following steps:

1. RDP to the VM. IP can be found in Azure . Default login credentials are: Username - 'badmin',
Password - 'Administrator123'

2. Open a web-browser. Type '<container-ip>:8888' into the web-browser. You can find the IP for the
container in Azure .

3. Login using the credentials: Username - 'admin', Password - 'admin'.

Sample Adversary Profiles

5/20/23, 1:13 PM Project Wiki - Overview

https://dev.azure.com/sopra-steria-soc-dev/Bachelor Project/_wiki/wikis/Bachelor-Project.wiki/1/Project-Wiki 2/4

Below is a sample of adversary profiles that can be executed using the Adversary Operation Pipeline. Note
that there are many more alternatives to choose from, all of which can be found by looking at the available
adversaries in the Caldera GUI.
NB: The 'Windows Executor' attribute determines whether this procedure is capable of being executed on a
Windows host. If 'no', then the Technique is skipped.

Check
Caldera Adversary Profile ID: 01d77744-2515-401a-a497-d9f7241aac3c
Tactics: Discovery

Techniques:

Tactic Technique
ID Technique Name Procedure Windows

Executor

Discovery T1033 System Owner/User
Discovery Current User yes

Discovery T1083 File and Directory
Discovery

Print Working
Directory yes

Discovery T1083 File and Directory
Discovery List Directory yes

Discovery T1057 Process Discovery View Processes yes

Discovery T1016 System Network
Configuration Discovery

Network Interface
Configuration yes

Discovery T1518 Software Discovery Check Go no

Discovery T1518 Software Discovery Check Chrome no

Discovery T1518 Software Discovery Check Python yes

Discovery (discovery)
Caldera Adversary Profile ID: 0f4c3c67-845e-49a0-927e-90ed33c044e0
Tactics: Discovery

Techniques:

5/20/23, 1:13 PM Project Wiki - Overview

https://dev.azure.com/sopra-steria-soc-dev/Bachelor Project/_wiki/wikis/Bachelor-Project.wiki/1/Project-Wiki 3/4

Tactic Technique
ID Technique Name Procedure Windows

Executor

Discovery T1033 System Owner/User
Discovery Identify active user yes

Discovery T1087.001

Account Discovery: Local
Account Find local users no

Discovery T1087.001

Account Discovery: Local
Account Identify local users yes

Discovery T1016 System Network
Configuration Discovery Snag broadcast IP no

Discovery T1057 Process Discovery Find user
processes yes

Discovery T1135 Network Share Discovery View admin shares yes

Discovery T1018 Remote System Discovery Discover domain
controller yes

Discovery T1069.001

Permission Groups Discovery:
Local Groups

Permission Groups
Discovery yes

Discovery T1518.001

Software Discovery: Security
Software Discovery Identify Firewalls yes

Discovery T1018 Remote System Discovery Discover Mail
Server yes

Discovery T1217 Browser Bookmark Discovery Get Chrome
Bookmarks no

Nosy Neighbor
Caldera Adversary Profile ID: 0b73bf34-fc5b-48f7-9194-dce993b915b1
Tactics: Defense Evasion , Discovery , Impact

Techniques:

5/20/23, 1:13 PM Project Wiki - Overview

https://dev.azure.com/sopra-steria-soc-dev/Bachelor Project/_wiki/wikis/Bachelor-Project.wiki/1/Project-Wiki 4/4

Tactic Technique
ID Technique Name Procedure Windows

Executor

Defense
Evasion

T1070.003

Indicator Removal on Host:
Clear Command History Avoid logs yes

Discovery T1033 System Owner/User Discovery Identify active
user yes

Discovery T1018 Remote System Discovery Collect ARP
details yes

Discovery T1057 Process Discovery System
processes yes

Discovery T1016 System Network Configuration
Discovery

Scan WIFI
networks yes

Discovery T1016 System Network Configuration
Discovery Preferred WIFI yes

Impact T1499 Endpoint Denial of Service Disrupt WIFI yes

Windows worm 2
Caldera Adversary Profile ID: 725226e0-45b8-4432-84ee-144d3f37ff8d
Tactics: Discovery , Lateral Movement

Techniques:

Tactic Technique
ID Technique Name Procedure Windows

Executor

Discovery T1018 Remote System Discovery Collect ARP
details yes

Discovery T1018 Remote System Discovery Reverse nslookup
IP yes

Lateral
Movement T1570 Lateral Tool Transfer Copy 54ndc47

(WinRM and SCP) yes

Lateral
Movement

T1021.006

Remote Services: Windows
Remote Management

Start Agent
(WinRM) yes

Appendix C

Project Owner Evaluation -
E-mail

Attached are the e-mails sent between the project group and the project owners,
with the client’s evaluation of our solution. In Norwegian.

98

From: Jardar Hollås <jardarh@stud.ntnu.no>

To:
Petter Jørgensen <pettejor@stud.ntnu.no>; Charlotte Larsen
<charllar@stud.ntnu.no>; Tryggvi Thordarson Zabelberg
<tryggviz@stud.ntnu.no>

Subject: FW: Evaluering av bacheloroppgave
Date: 16.05.2023 14:12:43 (+02:00)

From: THORSTAD DAHLSVEEN Truls <truls.dahlsveen@soprasteria.com>
Sent: Tuesday, May 16, 2023 4:10 PM
To: Jardar Hollås <jardarh@stud.ntnu.no>
Cc: FAUSKRUD Joakim <joakim.fauskrud@soprasteria.com>; PETTERSEN Kristoffer
<kristoffer.pettersen@soprasteria.com>
Subject: Re: Evaluering av bacheloroppgave

Hei. Her kommer svar på krav fra alle tre:

Generelt sett har dere vært ganske strenge, og at kravene kanskje er litt for enkle (det kan vi ta kritikk for).
Løsningen oppfyller slik vi ser generelt alle krav og selv om det er mye forbedringspotensialer føler vi det
kommer utenfor de definerte kravene.

F1 - Basert på tabell 4.1 mener vi denne er 100% oppfylt. Det var ikke et av kravene at løsningen skal ta
høyde for fremtidige oppdateringer, eller støtte mer infrastruktur enn nødvendig. Kravet er også bare at
løsningen skal sette opp infrastruktur, ikke håndtere sletting og nyoppsett.
F2 - Kravet var at vi skulle kunne kjøre tester autonomt inne i deteksjonslabben. Testen må startes manuelt,
men det er ikke hensiktsmessig å kjøre det automatisk slik det er tiltenkt. Det kunne vært mer
brukervennlige måter å hente ut rapporten på, f.eks at den returneres i pipeline, men bortsett fra det leser
vi kravet som oppfylt til 95%.
F3 - Brukere kan slik som systemet er satt opp i dag starte tester som kjøres. Dette kravet anser vi som
oppfylt 100%.

NF1 - 100%
NF2 - 100%
NF3 - 100%, vi sa også at vi ville ha så kort og konsis dokumentasjon som mulig og dette er oppfylt på en
god måte.
NF4 - 100%
NF5 - 100%
NF6 - 100%
NF7 - 100%, diskuterte alle løsninger vi foreslo og flere.

"Recondite" er vel eneste vi stusset litt på av ordbruk, ironisk nok ⚴⚵⚶⚷⚸

- Joakim, Kristoffer og Truls

From: Jardar Hollås <jardarh@stud.ntnu.no>
Sent: Friday, May 12, 2023 10:35
To: THORSTAD DAHLSVEEN Truls <truls.dahlsveen@soprasteria.com>
Subject: FW: Evaluering av bacheloroppgave

From: Jardar Hollås
Sent: Thursday, May 11, 2023 4:55 PM

To: Petter Jørgensen <pettejor@stud.ntnu.no>
Subject: Evaluering av bacheloroppgave

Hei

Ref møte torsdag 11.05. Vi ønsker gjerne å motta noe evaluering av hvor godt vi har oppfyllt kravene som
er satt for prosjektet.
Om dere går gjennom hvert krav og vurderer individuelt, eller om dere skriver en generell helhetlig
vurdering er opp til dere. Vi er fornøyde med alt vi får som kan gjøre vår vurdering litt mer objektiv :)
Håper at Wikien vår kan være til god hjelp i hvordan løsningen vår kan brukes. Det er også beskrevet et
Test-Case i første del av kapittel 8 hvor vi går gjennom et eksempelbruk av løsningen.

Dette er kravene som de er definert i kapittel 4 av oppgaven vår. Merk at ‘functional requirements’ er det
som er viktigst å få tilbakemelding på, da de fleste ‘non-functional requirements’
er relativt simple, og kan bare være enten er 100% eller 0%. F.eks:

Krav Confidence
Level

Beskrivelse

NF5 100% Alle Pipelines er i sin helhet lokalisert i Azure Devops

No. Functional Requirement Desription
F1 Automatic Deployment of Infrastructure via Azure DevOps Pipelines

One of the main requirements of the project was the automatic deployment of
infrastructure using Azure DevOps pipelines. This implies the creation of VMs and the
installation and configuration of necessary software should be performed using Azure
DevOps pipelines.

F2 The system should be able to autonomously perform security tests
within the detection lab
The solution should be able to perform security tests within Sopra Steria’s detection lab
independently. Meaning that when configured, the solution has to be able to run security
tests against the project owner’s selected targets without any manual interference by the
user.

F3 Users should be able to define the tests or adversary profiles that the
system executes
When completed, the users of the solution, the security testers, should be able to define and
select what tests they want to execute. Furthermore, they will need to have the ability to
select what adversary profile the system should execute.

No. Non-functional Requirement Desription
NF1 Open-Source solution; non-copyrighted and customizable

The solution needs to be open-source in order to make sure that it can easily be modified,
adapted and shared by its users.

NF2 Documentation for security tests should be mapped to MITRE
ATT&CK
The security tests should be mapped to the well-known MITRE ATT&CK cybersecurity
framework to make sure that test results are easy to share, understand and compare

NF3 Documentation for installation
A short and concise description explaining how to use the solution. Needs to be written in
the Azure DevOps Wiki

NF4 The code for the solution must be stored in an Azure DevOps
repository made for the purpose
Code and other related files used for the project need to be stored in the projects Azure
DevOps repository

NF5 The Pipeline must be hosted in Azure DevOps Pipelines

The Pipelines, which are responsible for executing tests, deploying, and configuring
infrastructure, have to be hosted and created using the Pipelines module of Azure DevOps.

NF6 The Infrastructure for the solution must be deployed to the
Sopra Steria Azure Cloud Environment
When the solutions infrastructure is deployed, it has to be deployed in Sopra Steria’s own
Azure Cloud development environment.

NF7 Evaluation of frameworks for automatic cybersecurity testing
The most compatible cybersecurity framework should be used for developing the solution.
Therefore it is important that an evaluation of different frameworks takes place.

I vår egen evaluering gir vi en prosent-rangering til hvert krav iht. følgende definisjon, med en kort
begrunnelse.

Mvh
Jardar Hollås

C2 - Restricted use

Appendix D

All Meeting Notes

Attached is all of our informal meeting notes and drafts, including from internal
work sessions, weekly supervisor meetings and bi-weekly status meetings with
our client. Most of them in Norwegian.

102

Bi-weekly status meeting with client
07.12.22

Første møte.

Om oppdragsgiverne:

Truls Dahlsveen: Sec-engineering, driver med sikkerhetsovervåkning for mange kunder.

Ruller ut deteksjon og sørger for at kundene er trygge. De sørger for å konfigurere at ting

kan pushes ut automatisk. Designer og pusher ut løsninger - i tillegg et annet team som

driver med sikkerhetspatching.

Kristoffer Pettersen: automatisering osv, fikk ikke med meg

Joakim Fauskrud: Jobber i socken, engineering, har jobbet med Truls og Kristoffer og

Mikael. Konfigurerer og automatiserer i det daglige. Gikk på Gjøvik før.

Mikael Vagnes: Jobber som security engineer, ganske ny, automatisering. MS Cloud

erfaring. Jobbet med Azure, migrering av ressurser og M365 og litt overalt.

Om oppgaven:

Utrulling via azure devops, eller github actions. +De sitter i en sock, bruker Microsoft

Sentinel.

Ønsker å koble inn datakilder inn i "Data connectors i Microsoft Sentinel", ønsker å gjøre søk

på loggene de tar inn. Søker på Indicators of Compromise IoC'er. Ønsker å gjøre deteksjon

på det her. For emulering av trusselaktører har de ikke verifiseringsverktøy eller alarmer for,

bacheloroppgaven skal: sette opp et miljø, sårbart eller et som ligner på et kunders miljø, så

kjør automatiske tester mot den og se om det plukkes opp. Må lage deteksjoner som

oppdager problemene. Flyten skal være: man har en pipeline, en yaml fil, når den kjører så

kjører den tasks, skal kunne bygge inn et bibliotek av tasks, så kan man kjøre de sekvensielt

i en pipeline, så skal det være lett å skrive nye tester og pakke inn i et repository som kjører

mot det man vil.

Kunne kjøre tester mot et miljø, og plugge inn nye tester fort. Og dokumentasjon. Noe

tverrfaglig, pipelines, devops, automatisering, de har skyplattform i Azure som vi kan låne for

utvikling. Så er det Azure Devops eller AWS eller Github Actions.

Use Case Senter.

Alt av analyseregler ligger som kode. Deteksjonsregler, så har de pipelines som genererer

dokumentasjon for hva den gjør. Lager fila så blir dokumentasjon automatisk laget. Blir

mappet opp mot MITRE taktikker osv.

Har en development tenant som vi kan legges til i.

Kan kjøre på egne servere. Kan evt kjøre mot deteksjonslaben deres. Kan velge ferdige

rammeverk, så kan man lage egne tester til de rammeverkene: atomic red team, MITRE

Caldera.

Viktigst at vi får noen VM'er, start et miljø, se på rammeverk.

De kan sette opp noen VM'er vi kan få tilgang til.

Om vi setter opp en Azure Organisasjon som er privat, kan vi få en Service

Connection/principal, så har vi tilganger til å pushe kode til vm'er osv. Vanligvis vil teste mot

Windows 10 og 11. Kan velge å kjøre Terraform via azure subscription som så kjører noen

steg (kode/tester?), så kan vi prøve å kjøre kommandoer fra azure direkte mot vm'ene, eller

fra en vm mot en annen vm.

Vi skal teste deres tjenester,

academy.attackIQ.com purple teaming learning path.

Socken er blått team som forsvarer (oppdragsgiverne), så skal vi (bachelorgruppa) være red

team som skal angripe, så skal vi samarbeide som purple for å se hva de plukker opp, så

skal det forbedres, så skal vi prøve igjen senere og se om det ble bedre. Vi, det røde teamet,

skal kjøre tester som kjører ting kontinuerlig, i stedet for å kjøre en og en.

Vi skal drive med "foundations of breach and attack simulations". Plugg inn verktøyet mot et

image til et firma (f.eks. Standard windows 10 maskin), og se hva man plukker opp og ikke.

Kan implementere ganske fort, men å lage flere tester er viktig for at verktøyet skal bli bra. Vi

velger litt hvor vi legger trykket.

Se på de som går på MITRE attack og MITRE attack simulation, slik at vi vet hvordan vi kan

bruke disse til proaktivt sikkerhetsarbeid.

Beste tips om BA oppgave: hvis man skriver veldig mye, prøv å vær så nærme antall ord

som mulig. Jo bedre man kan det, jo bedre kan man forklare det kortfattet.

Kan vise hvordan det funker under presentasjon. Dokumentasjon skal kokes ned til:

"hvordan reproduserer vi dette?".

De kan lage eget prosjekt i devops hvor vi blir gjester, så er det scopet til kun et prosjekt, så

kan vi invitere de inn som brukere i dev-tenanten også, så kan vi få en egen ressursgrupe

der og.

https://azure.microsoft.com/en-us/free/students/

Helst skriv oppgaven på engelsk.

Anbefaler bruk av chatgpt og copilot.

Foreløpig plan: sette seg inn i AttackIQ kurs, ordne tilgang til azure og vm'er (kanskje free

trial), finn ut og velg rammeverk.

Weekly supervisor meeting with supervisor
10.01.23

To-do list:

● Prosjektavtale. Mal på BB. Signert mellom oss og Sopra. Bare 1. Last opp til team-

mappe. Frist 31. Januar

● Forbered en prosjektplan: Outline over hvordan vi skal gjøre ting, så får vi en

template senere. Får tidligere prosjektplaner fra andre. Skal approves kun av

supervisor Kelly. Last opp til team-mappe. Frist 31. Januar

● Første utkast av bachelor-thesis/prosjektrapport. Skal ha informasjon klart i hvert

kapittel. Last opp til team-mappe. In English. Frist 31. mars

● Bacheloroppgave. Frist 12:00 lunsjtid 20. mai. Lastes opp på BB. Ikke last opp siste

dag.

● 7-9. Juni, presentasjon: Bachelorpresentasjon på engelsk. Presenter resultat,

metodikk osv.

● Avtale møte med oppdragsgiver. Diskuter arbeidsavtale og utforme problemstilling

To know list:

● Vi må lede og jobbe på prosjektet.

● Aktivt hold kontakt med oppdragsgiver og etabler god kommunikasjon med dem

● MS Teams som kommunikasjonskanal mellom oss og Kelly. Skru på alle

notifications/varsler

● 30-minutters ukentlig møte.

● E-mail til Kelly med ukentlig status-report dagen før:

● Tildel roller, fordel arbeidsmengde mellom alle cirka likt.

● Begynn skriving så snart som mulig. Vi får karakter fra to sensorer, en intern og en

ekstern. Kelly har ingen påvirkning på dette. Vi må jobbe "hardere" for å få bedre enn

C, og bevise at vi har gjort mye research. Av Kellys grupper, har: 1 fått A, mange fått

B, 1 fått C, og ingen dårligere - som er et godt tegn.

● Alltid sjekk BB

● Tidligere oppgaver: https://ntnuopen.ntnu.no/ntnu-

xmlui/handle/11250/227496/browse?type=type&value=Bachelor+thesis

Karakterer gis basert på "general impression". Ingeniør/profesjonell innsikt, teoretisk innsikt,

implementering/prosess

Weekly supervisor meeting with supervisor
17.01.23

Meeting time (after supervision meeting)

Evalutaion criteria

- functional requirements

- non-functional requirements

--- Petter:

Bra at vi gjør kurs. Kelly støtter.

Første hovedkrav: Sett opp møter med Sopra.

Brukte en del tid på å forklare oppgaven til henne.

Spør Sopra hvordan de synes vi burde evaluere oss selv, hva er et velykket angrep eller ei?

Hvor fort. Hvor mye. Prøv å tenke hva som kan brukes senere for å evaluere systemet.

Separer kravene inn i kategorier. Effektivitet, automatisering,

Hvor mange oppgaver er der? Dokumenter disse tingene. Spesielt i gantt-chartet, spør

oppdragsgiver hvor lang tid hver del tar. Er estimatene realistiske, burde vi endre rekkefølge

eller prioritet? Mest teknisk hjelp fra oppdragsgiver. Gannt-skjema til Kelly.

Hvor mye tid vi bruker på hver del må være realistisk.

Finn ut så mye som mulig på møtet med dem.

— Tryggvi:

 - What kind of attacks should we implement? Who are their customers? What kind of threat

agents go against them.

 - How are we going to evaluate the performance? Automated reporting? How do we get the

detection reporting and misses in one document.

 - Issues with how realistic the outcomes of a lab would be? Would not be the same as in

production.

 - Is the goal to test different detection solutions?

 - What is their criteria for detection. (How long should a tool take to detect an attack?)

 - Documentation might be very important to them since they might have to maintain the

project after we finish.

 - What is the scope of their project?

 - Risks?

 - What they want us to test? (network)

 - Do they want us to emulate, simulate e.g.?

 - What kind of attacks do they want us to focus on.

 Find what functional/non-functional requirements that we can use to measure success.

 - Functional requirements?

 - Non-functional requirements?

 - E.g. efficiency

 - We should create a Gantt chart and base it on how we perceive it to be.

Bi-weekly status meeting with client
19.01.23

Spørsmål til oppdragsgiver:

- Hva begynner vi med?

- Tilgang til testingmiljø, kontoer osv.

Send e-postene vi vil bruke til innlogging, inn i Azure tenant hvor vi får

rettigheter.

- Har de en test vi kan ta utgangspunkt i, for å fokusere på å få i gang

testingen?

- Evalueringskriterier. Hvordan vurderer vi om testing/arbeidet vårt ble vellykket eller

ei?

Kommer an på. Spesifikt på endepunkter/servere er enklest. Baser seg på

MITRE. Ta i rekkefølge, få tilgang, execute osv. Assumed breach, start inne i

nettverket på en VM (antar at trusselaktøren har fotfeste inne). Hva kan man få

til med en vanlig bruker? Får i hovedsak 1 VM som vi skal teste mot. Så skal

det (kanskje) testes mot deres deteksjonslab. Hovedsakelig anta at vi starter på

et kompromittert endepunkt. Sentinel 1(?) eller Defender endpoint.

Vi burde kanskje ta i bruk kontroll endepunkt som ikke har så mye

sikkerhetsprogramvare på seg. Gjør det lettere å måle hvor effektiv testingen vi

gjør er.

- Hva tester vi mot egentlig? Kan de demonstrere testing som ligner på det vi skal

gjøre?

Får intro med tilgang / etterpå?

- Kan de dele opp oppgaven i noen hoved-deler, som de ser det?

(Tenk; planlegging, oppsett av infrastruktur, design av tester, testing,

evaluering/rapportskrivning)

- Hvor lang tid cirka tror de hver del av arbeidet tar

Opp til oss. Kan begrense oss til spesifikke MITRE sub-teknikker, eller gå for

en trusselaktør (en APT) og at vi skal emulere deres killchain. 7-8 tester f.eks.

- Kontrakt

- Punkt 5: bruksrett eller opphavsrett (bruksrett)

- Punkt 8: oppgavens offentlighet (offentlig)

- Eventuell taushetserklæring? (ingen taushetserklæring)

- (Bi)-ukentlige møter? Når? Frekvens? Hvor mye tid har de disponibel

Greit med bi-weekly, litt opp til oss.

En egen resource group som heter “bachelor-project”, er en egen service

principal som kan brukes som har tilgang inn. I tillegg er det en gruppe som

har tilgang og kan gjøre ting i ressursgruppa. Cost cap på ressurser på 2.5k i

mnd. Scheduled stop som stopper 18:30, må si i fra om vi trenger det etter

dette. Blir lagt bak en vpn. Veldig enkel windows vm som vi kan kjøre tester

lokalt på. Og en azure devops som heter sopra steria soc dev, som vi kan lage

pipelines og repo i og det vi vil. Og en service connection, en service principal

i azure som gjør at vi kan kjøre/lage starter pipeline. Kjøre i context av service

tenanten. Kan kjøre kommandoer på azure vm’er via remote. Skal ha tilgang til

å sette opp VM’er. App som heter Azure VPN som vi laster ned og bruker. Send

e-poster, så får vi teste om det funker.

Weekly supervisor meeting with supervisor
24.01.23

Introduction, talked about status report, showed off the parts of the project plan. Then gantt

chart - she asked about phase 2 (why/what it was), we explained.

Kelly told us to start writing on the draft at least from the start of march. We will use the

Gantt chart to assess our progress. Kelly asked about requirements; we should assess what

requirements are suggested by us or the client, and decide what is required and what is

optional.

● Separate into functional and non-functional requirements. Make a clear separation

between core requirements and optional requirements. Bullet points

● She will sign the “standardavtale”, she got a link

Discussed further plans: risk analysis is fine, though maybe turn the risk table into a list/text

format.

Technical plan is important. System plan with architecture, show the entire process like a

flow chart for each component with each feature. What does it do? Take a look at 6.1 in the

other group’s project plan. And figure 4.1, a user and how the user uses the system. How

one component goes to another one. Make a flowchart/use case.

Weekly supervisor meeting with supervisor
31.01.23

Project plan looks fine. Approved by Kelly. Only needed some context to the figures.

Write down what to test. Get some concrete ideas after the meeting with the client. Detail

print, and present it to her.

Maybe come up with plans or things to do before the meeting with Sopra, to ask for

suggestions or thoughts about it from sopra.

Ble et veldig kort møte. Hun skal se over prosjektplanen og gi kommentarer.

Bi-weekly status meeting with client
02.02.23

- Pipelines til bruk av automasjon / deployering?

 TERRAFORM: sett opp infra / ansible: ? / customscriptextention

- set-azurevmcustomscriptextention

- Hvordan få rdp-tilgang til vm’ene?

VM login info: badmin / Administrator123

- Showcase av en enkel test, fra deres side?

Forhold oss til

Notater:

Én windows server, en domain controller, mange windows klienter og et par linux servere.

VM’er i Azure, Defender i MS Defender, SentinelOne i M365 Defender.

Sentinel -> Data connectors -> SentinelOne. To måter å hente security data, Azure

Monitoring Agent og MS Defender. SentinelOne i Linux.

Vi skal kjøre tester som atomic red team fra en eller annen klient, f.eks. dl-w10..N.

MS Sentinel -> Analytics, filtrer etter windows security events. Marker de og lag regel.

Dev-tenant = sopra-steria-soc-dev.

Last ned RDP-fil, logg inn på “badmin” (?). får innlogg-info på teams?

Bachelor project resource groupen. For å ha en side man sender data til setter man opp Log

Analytics workspace

Gir oss et sted å sende logger til. MS Sentinel oppå dette igjen. Create data collection rules.

Installerer en agent som skal hente logger. Extensions and applications. Defender for

endpoints, defender for cloud, bør få recommendations derfra, settings -> defender plans.

For oss: I første omgang er det 1 VM. Den er kobla til Sentinel -> Logs. Der renner det inn i

en egen tabell kalt WindowsEvent elns, så kan vi gå inn i data connectors og “connected”.

Sentinel og defender for cloud kan kobles sammen.

Begynn med oppsett av VM’en, kjør tester,

VM login info: badmin / Administrator123

Ansible, scriptextension i Azure,

Bachelor project -> pipelines -> azure-pipelines.yml. Se høyre side “tasks”.

De har laget to pipelines, en som lager og en som ødelegger detection laben.

Validerer, planlegger og deployer hvis det går gjennom.

DetectionLab.yaml lager dette oppsettet, som er det som eksisterer i dag, altså

dagens detectionlab som vi skal angripe/teste mot:

Kan sette opp alt i azure i terraform. For å bruke ressurser i terraform må man referere til

dem i .tf-koden. Har delt opp i moduler, en modul per kategori (DC, Linux, W10, WServ).

Main.tf er den vi faktisk kjører (sier hvor vi henter mer kode fra), samler sammen ting.

I terraform, for å sette opp et miljø:

1. Setter opp nettverk, 2. setter opp VM, (masse in-depth greier som vi går gjennom

senere).

Kjør et script i en fil, pek mot en vm, kjør via pipelines.

VM extensions, custom script extension azure. Kan kjøre script direkte på VM’en.

SPN appreg? Azure subscription er satt opp i pipeline som er der. Service principal, azure

powershell, skal være i orden.

Arbeidsøkt
03.02.23

Har fått RDP og SSH-tilgang til den ene vm’en. Fikk installert og kjørt Atomic Red Team

(framework for enkel kjøring av tester som er mappet mot MITRE). Disse fungerte, og én av

dem ble oppdaget og logget i Microsoft Defender for Cloud -> Security alerts i Azure. Resten

kommer opp ved manuelt søk i loggene, under log monitoring, men gir ikke samme type

varsel.

Kjørte cirka 5 tester, og kun den ene T1218.010 ga utslag under security alert. De andre er

kanskje ikke kritiske nok, eller blir stoppet på et lavere nivå (lokalt av defender på vm’en, før

den blir oppdaget av defender for cloud??)? Har heller ikke access til å “Take action” i azure.

Arbeidsøkt
09.02.23

Alle har rdp-tilgang og får til å kjøre AtomicRedTeam-tester. Gjort research/testing, (vill

klikking rundt omkring) i MS Sentinel og Defender for Cloud.

Brukte Atomic Red Team sin nettside, for å finne forskjellige tester som kunne bli kjørt:

https://atomicredteam.io/atomics/

Invoke-AtomicTest T1110.003 | Password Spraying

https://atomicredteam.io/credential-access/T1110.003/

For å se i logs:

- SecurityEvent | where CommandLine contains "T1110.003"

invoke-AtomicTest T1218.001

For å se i logs:

- SecurityEvent | where CommandLine contains "T1218.001"

invoke-AtomicTest T1082 | System Information Discovery

Fikk ingen logs

- SecurityEvent | where CommandLine contains "T1547.010"

Invoke-AtomicTest T1547.010 | Port Monitors

T1564.006 | Run Virtual Instance

Fikk ingen logs

- SecurityEvent | where CommandLine contains "T1564.006"

T1204.002 | Malicious File

For å se i logs:

- SecurityEvent | where CommandLine contains "T1204.002"

Dokumentere Azure og Sentinel oppsett…

Microsoft Defender for Cloud: https://learn.microsoft.com/en-us/azure/defender-for-

cloud/defender-for-cloud-introduction

Anti-Malware testfile EICAR was detected and stopped locally by MS Defender on the VM. It

was detected as a security incident in Sentinel after ~20 minutes. Potentially unwanted

program test was detected but failed to stop:

https://portal.azure.com/#asset/Microsoft_Azure_Security_Insights/Incident/subscriptions/02

d3f4e0-67c3-4fe4-a771-3cdc5685cca9/resourceGroups/rs-bachelor-

project/providers/Microsoft.OperationalInsights/workspaces/rs-bachelor-project-

law/providers/Microsoft.SecurityInsights/Incidents/f076e336-3d06-4be6-8462-3a9a434ffbac

Near-Real-Time (NRT) regler (under Sentinel -> Analytics -> Create NRT) kan

rapportere/varsle om incidents raskt, og hente dem ut fra loggene via en query.

Arbeidsøkt
13.02.23

Undersøkt MITRE Caldera og fått til å kjøre dette lokalt. Forsøkte å få opp en web app via

en container instance i Azure, men fikk ikke koblet til denne (hjelp), hadde ikke authorization

til å starte en tilsvarende “Container App”.

Det ble laget en “Research” mappe på Google docs. Startet med å finne linker og info om de

forskjellige rammeverkene, og info om Azure. Må starte å tenke på dokumentasjon av disse

rammeverkene, og fordeler/ulemper med dem. \o/

Weekly supervisor meeting with supervisor
14.02.23

Kelly wants fewer meetings. We should only have meetings when we have something to

show.

Need to decide on what we should do, define “work scope”.

- Tests against one VM or entire network.

- Framework decision and discussion, benefits/cons.

(Sopra Steria would like documentation about configuration and installation for the chosen

framework)

Bi-weekly status meeting with client
16.02.23

Sentinel & MS Defender for Cloud

- Hvorfor samles ikke lignende alarmer inn i en incident i Sentinel?

- Forskjellen på de to (som de ser det); defender for cloud

Sentinel er opp til deg selv, du må lage alarmer selv og konfigurere det. Vi skal lage

alarmer. Er ikke nødvendigvis en del av oppgaven å passe på at sentinel plukker opp

alt (bestem en %, lag regler som plukker opp mer enn av standard). Vi skal vise at

det funker fordi det plukkes opp(?).

Man kan legge til flere tester, se om de plukkes opp eller ikke, så kan vi endre reglene

basert på det. Man skal enkelt kunne legge til flere tester osv. Forbedre deteksjon; kjør en

del tester for å se hva man har deteksjon på og ikke, en del av det er å automatisk kjøre

tester (flere og flere), så er det opp til oss hvilken del av økosystemet vi fokuserer på.

Hub-and-spoke arkitektur, nettverket

- Application Security Group - legge den til begge enhetene så skal de kunne snakke

med hverandre.

Har dere noen krav og spesifikasjoner når det kommer til hvor lang tid det skal gå før

ondsinnet aktivitet skal kunne plukkes opp av deteksjonssystem?

Hvilken type tester bør vi kjøre?

MITRE Caldera, spør om deres forståelse av hvordan vi kan utnytte det?

Kjører Caldera på en container med public ip som er reachable fra utsiden (egen PC) men

får connection refused på virtual machine som har privat ip. Får “no access” når vi prøver å

endre/se på subnet som vm’en er på.

Sentinel bi-directional sync med Defender for Cloud. Er dette nødvendig eller ikke?

Informasjonsflyt? Defender for Cloud Agent -> Defender for Cloud -> Sentinel?

Arbeidsøkt
22.02.23

Ting som må/kan automatiseres:

- Deployering av container med kjørende Caldera, og deployering av Caldera Agent på

en valgt/ny VM, med rett IP til containeren

- Agent må ha exception i Windows Defender (splunkd.exe, evt. Mappa der den ligger

C:\Users\Public). Gjøres manuelt under Virus & threat protection -> Virus & threat

protection settings section -> Manage settings -> Scroll til Exclusions -> Add or

remove exclusions

- Agent må kjøres på nytt ved restart av VM, eller legges til i on-startup

- Eksempel API-call, fra postman på VM til Caldera-container som henter aktive

agents:

GET -> http://10.1.128.5:8888/api/v2/agents

Authorization -> API Key.

key: key

Value: ADMIN123

 La body være tom. Bør få respons

- Defender på maskinen oppdager noen ting som kjøres pga en operation trigget av

Caldera, selv om vi har gitt en exception for agenten

For rapporten:

- Dokumentere ulike rammeverk, og vurdere hvilken som burde bli brukt (Caldera?)

- Vet ikke hvor god kilde men fant en liten liste med open source rammeverk:

https://fourcore.io/blogs/top-10-open-source-adversary-emulation-tools

https://pentestit.com/adversary-emulation-tools-list/

https://www.csoonline.com/article/3268545/4-open-source-mitre-attandck-

test-tools-compared.html

https://cybersecuritynews.com/cyber-attack-simulation-tools/

https://securitygladiators.com/security/software/best-cyber-attack-simulation-

tools/

- Vurdere:

- Caldera

- Atomic Red Team

- Metasploit

- Metta?

- Red team Automation?

- Infection Monkey?

Krav var helst at de testene vi bruker innenfor rammeverket skal bli knyttet opp mot MITRE

ATT&CK. Sikkert greit med et rammeverk hvor MITRE ATT&CK er integrert.

Caldera:

https://caldera.mitre.org/

https://github.com/mitre/caldera

https://www.mitre.org/ourimpact/intellectual-property/caldera

● Designed to easily automate adversary emulation, assist manual red-teams, and

automate incident response.

○ Autonomous Adversary Emulation

○ Autonomous Incident Response

○ Manual Red-Team Engagements

● CALDERA leverages the ATT&CK model to identify and replicate adversary

behaviors as if a real intrusion is occurring.

Atomic Red Team:

https://atomicredteam.io/atomic-red-team/

https://github.com/redcanaryco/atomic-red-team

● Open-source library of tests that security teams can use to simulate adversarial

activity in their environments.

● Execute atomic tests directly from the command line.

Metasploit:

https://www.metasploit.com/

● “Metasploit helps security teams do more than just verify vulnerabilities, manage

security assessments, and improve security awareness; it empowers and arms

defenders to always stay one step (or two) ahead of the game.”

Metta:

https://github.com/uber-common/metta

https://medium.com/uber-security-privacy/uber-security-metta-open-source-a8a49613b4a

● Information security preparedness tool

● Uses Redis/Celery, python, and vagrant with virtualbox to do adversarial simulation.

Red Team Automation:

https://github.com/endgameinc/RTA

● Framework of scripts designed to allow blue teams to test their detection capabilities

against malicious tradecraft, modeled after MITRE ATT&CK.

Infection Monkey:

https://github.com/guardicore/monkey

● The Infection Monkey is comprised of two parts:

○ Monkey - A tool which infects other machines and propagates to them.

○ Monkey Island - A dedicated server to control and visualize the Infection

Monkey's progress inside the data center.

Weekly supervisor meeting with

supervisor
28.02.23

Skrivekurs 6. mars 10:00-11:00 med Kelly for alle hun er supervisor for.

Skal produktet vårt være fullstendig automatisert? Command-line basert? Skal brukeren

kunne velge tester? En samling med tester?

Testene skal sannsynligvis bli kjørt sekvensielt.

Sjekk google scholar og finn litteratur om rammeverk for sikkerhetstesting (for skrivingen).

Hvilket format og hvilken informasjon ønsker de (brukerne) å få ut av programmet vårt?

● Finn lignende rammeverk, sammenlign med Caldera. Nevn disse verktøyene og

diskuter rundt dem.

Lage en enkel visualisering om nettverks-oppbygningen.

- Vise den til Kelly

- Kan ha den med i rapporten for å forklare oppgaven.

Bi-weekly status meeting with client
02.03.23

App registration azure (legg inn i devops, så får pipeline tilgang).

Azure script extension for å kjøre powershell scripts. Når man kjører azure powershell

module, sign in,

Arbeidsøkt
08.03.23

Group meeting in Cisco-lab. Discussed and started writing an outline for the first draft.

Inspected other Bachelor’s theses for inspiration, and used supervisor’s notes. Filled in

keywords for each chapter, and started writing drafts for chapter 1 and 2. Research on how

long each part should be, and planning the writing for the coming days/weeks.

Potential expansions of the program, or limitations, based on how long we get:

- Including metasploit framework testing. Preferably through Caldera

- Including custom scripts/ps1 files, maybe after deployment, like how we deploy the

agents

Arbeidsøkt
16.03.23

Continued writing on the first draft. Have a decent draft for the structure, and for most sub-

sections under section 1. Discussed API usage,

Weekly supervisor meeting with supervisor
21.03.23

Spørsmål til Kelly

- Hva skal være med i en “first draft”?

- Har hun krav til den?

- Må den godkjennes?

- Hvor lang bør den være?

Ingen veldig spesifikke krav. Gjør det beste vi kan, jo mer vi leverer - jo mer

kommentarer/tilbakemelding får vi

Code Listing

- Should have source code that we are using for the project. Might be better to just

refer to the Git repo here. It is OK to have the code listing chapter at its current place,

and should NOT be placed at the end of the thesis.

Background

- What should be put in this chapter? How much detail should be included here about

the project. Short introduction of 1-2 lines of Cloud computing. Explain how Azure

relates to the project.

Write the bachelor with the assumption that the readers have a technical background. We do

not have to explain every basic concept.

Glossary should be right before introduction.

Bi-weekly status meeting with client
22.03.23

Forrige ble utsatt pga. Sykdom.

- Spør om hvordan vi kan få tilgang til webservern (caldera gui) fra utsiden av

nettverket.

Er det vpn’en sin skyld?

Vi skal vise fram fullstendig automatisk deployering, så får de komme med

input.

Også fått på plass Metasploit.

- Separat pipeline for testing, slik at vi kan deployere 1 gang, men kjøre

testene flere ganger.

- Selv-lagde tester er utenfor “scope”, holder oss til de som allerede er

inkludert i caldera + (metasploit)

Weekly supervisor meeting with supervisor
28.03.23

Questions for Kelly about first draft:

- How should figures be numbered? After the exact section they’re in, or just the

chapter?

- The way we are doing it now is OK.

- Where do we get the standard frontpage?

- New frontpage will be appended to our bachelor project when we upload.

- How should illustrations look? Are colors allowed?

- Important that figures are not decoration, they have to serve a purpose.

- Should we use footers, for urls etc.? Frode said it would be a good idea, I think..

- No more than 3 URLs in footnotes.

- Should table captions be centered above the table?

- Correct to have captions for tables above the table. For figures they should be

under the figure.

- Is the current thesis name too general? Should it be more specific?

- Consider changing title

- Glossary should have one descriptive sentence of the term, not just what it stands

for.

Extra notes:

● No supervisor meeting next week, easter break.

● We could send the first draft the 10th of April, since Kelly won’t have the opportunity

to review it before then.

Bi-Weekly Meeting with client
13.04.23

Quick status update with Sopra Steria:

1. Update to what we have been doing since the last meeting and what we are going to

do forward.

- Scripts that setup infrastructure are working, but tests are not currently

running.

2. We were offered help on project writing by Sopra Steria.

Arbeidsøkt
18.04.23

Endre tittel til å omfatte mer hva vi gjør (MITRE ATTACK / Caldera)

Introduction. Ellers lite.

Weekly supervisor meeting with supervisor
25.04.23

Related work 3.1 is good. In 3.2 just introduce it with their last name.

Bi-weekly status meeting with client
27/28.04.23

Prosjektoppgaver som gjenstår

- Hente ut rapport

- Log analytics?

- Destruct Pipeline

- Generell refinement

- Caldera image for øyeblikket statisk

- Mulig implementasjon av Metasploit med flere tester..?

- Fokus på skriving fremover. Kan ta med et kapittel hvor vi skriver hva som skal

gjøres videre. "Videre arbeid”.

- Presentasjon av alt vi har gjort, sånn at de kan bruke det. Ta det etter vi er ferdige

med skriving.

- Skriv én liten wiki-side i repoet som forklarer hvordan det funker

Foreslått gjennomgang i morgen. Lavterskel. Opp mot en time gjennomgang.

Kommentarer: Ser bra ut. Hold wikien kort, skal helst ikke være mye. Fokuser på skriving og

gjør ferdig oppgaven.

Dele tilgang til bacheloroppgave med Sopra Steria? Overleaf lenke

https://www.overleaf.com/read/mphnpyggnfvy

^leselenke.

Weekly supervisor meeting with

supervisor
02.05.23

What goes into chapter 5 vs. what goes into chapter 7. We now have a system architecture

illustration.

Kelly: implementation should be; how we did the solution, how the script works, how the

versions/software works, how we do this automation. We can mention it in chapter 5 and

explain it there, but in chapter 7 we explain how we implement/use it.

In chp 5, can we visualize: what are the components inside this and this part, inside e.g. the

pipeline. Show how the pipeline looks. We need a specific/clear name to describe what

“infrastructure” means. The purpose should be embedded into the name, security testing

environment deployment pipeline. S.T.E.D.P. use an abbreviation or other name that

accurately describes what it does.

Change the illustration to make it clear what order things run in. We need a better name for

the container instance, maybe attacker.

Say in the implementation chapter, because of this and that we decided to do it into a single

virtual machine - describe why it is like it is? Why is the attacker on a container? Can a vm

be exchanged for another one? Give a number to each arrow in the figure. Keep the user

and pc close.

Spent some time explaining our solution to Kelly, it was confusing for her.

Implementation details, and how we did this and that should be in chp 7. Features and

logical design/functions, and overview of architecture should be in chp 5.

Weekly supervisor meeting with

supervisor
09.05.23

Notes: Include reference that explains declarative syntax? (Terraform chapt 2, 7)

Make the code in the thesis smaller? Keep our focus on actual writing. We cannot have too

much code, there is no page limit. But we need an explanation of what it is for, why it is

there. Describe from the user’s perspective. The description in chapter 5 maybe has to be

more clear? We need a leading paragraph before all the figures in chp 5 and expand what is

going on, and explain for each step what the actions mean. Add a leading sentence before

the action descriptions, that summarizes..- Move the actions above the figure, same for all

figures.

She does not know if our evaluation is good enough. We have a confidence level, yes, but

only from our perspective. Maybe get input from our client? Confidence level from ourselves,

and from our client. Move the summarizing table of evaluation to the end of chp 8. Our own

evaluation vs. our client’s evaluation.

Mention all the requirements to the client, then they can provide an overall opinion/feedback

on our tool. And we can have another section in chp 8 about that. Then specify that the first

part is our own evaluation.

Subsection at the end of chp 8 with “evaluation from our client”.

Do a live presentation of our solution in our presentation. We firstly describe the architecture,

then each component, then the solution presentation, then the evaluation/confidence level

tables etc.

Further work: list up all possibilities in bullet points, choose and suggest a few of them

directed towards our client. Discuss them. Do not need to write a lot in closing remarks. 3

pages maybe.

For the implementation we can show the deep details, the corresponding interface (show

mitre caldera gui!), show the report

Test case inside evaluation. Detailed showcase of our tool and how it can be used, including

report generated, tests used, etc. Then detailed description of the requirements, maybe

reference back to the test case. Discuss how the test case can be done, then do it, then

show it (results).

Consider comparing to similar tools, not necessarily using just Caldera.

Keep the related work as one section, no title for each related work - but we can categorize

into different sections with headlines if they are different enough.

Author’s last name + “et al”, and a paragraph describing an approach from a related work.

Bi-weekly status meeting with client
11.05.23

Avtalte å sende en e-post med spørsmål om requirements, slik at de kan fylle ut, og vi kan

bruke det i teksten. Ellers lite. Ser bra ut.

Weekly supervisor meeting with supervisor
16.05.23

1. General status. We did good.

2. Scroll through the test case and get feedback

3. Do we have enough in chp. 5?

4. Check new entry in related work

15 min presentasjon, 10 min spørsmål?

20 min presentasjon, QA 5 min?

Ble evaluation requirement om Wiki skrevet ferdig? I

Check for capitalization errors, Chapter should be capitalized.

Should a reference for a figure have them same? For example -> Figure 3.1?

Table names chapter 8:

Evaluation Results (Non-functional Requirements) -> Evaluation Results for Non-functional

Requirements

Combine chapter 4 & 5

First section about requirements, then show architecture, then show the use cases.

Keep more or less the same size for each chapter. Combine and be flexible.

Remove subsection title when we only discuss one work there.

Add citation for article

Remove bulletspoints in avoding ms defender part

Final look befeore submitting with Kell 19.May (friday) -> send a message reminding of thiss

First draft feedback from supervisor

The draft is quite good, it can be better.

Text marked in red is improvements that have been made already.

Text marked in green is general feedback that is not important to change anything about.

1. The title can be better, too generic title. Add what the important features are. Add who the targets for the

testing are.

2. Glossary is very good.

3. Introduction with leading paragraph is good.

4. OT != Operational Security

5. Sopra Steria's SOC Team -> Sopra Steria. The SOC team of Sopra Steria. More formal to type it like

that. but background info is good, about sopra etc.

6. Multiple test clients in a network, providing -> Multiple test clients in a network and provide

7. Streamline Sopra Steria's security testing process, and it will be**

8. It is designed for employees -> The solution is designed for employees

9. The solution is designed for employees who have the techincal background and who are responsible

for security testing.

10. We can't ensure that the users will have an understanding... -> less strong language here

11. Include a collection tests of tests -> provide a collection of tests.

12. automation using Azure DevOps pipelines, which is (explain what Azure DevOps pipelines are, since it

is the first place where we use it.

13. (git) repository -> git repository. It is quite common and known.

14. Do not start the sentence with meaning. Run simulation tests with MITRE Caldlera, including the setup

and configuration ...

15. the deployment of a Caldera server -> the deployment of a Caldera server,

16. When the tests are finished -> When the tests are finished,

17. it is presumed that we possess initial access. What does this mean? It is unclear? When explaining the

concepts in a high-level way, be specific

18. therefore, the aquisition of access -> therefore the aquisition of the access

19. Internal vs Network testing. Use rectangle straight lines for network lines instead of dashed lines.

20. It is unclear what the Caldera Server and Caldera Agent is. Explain what the Caldera Agent and Server

is.

21. Rename it to Target Computer and Attacker/Pentester in the diagram.

22. When ready, the solution -> The solution will be executed in Sopra Steria's. This is unclear.

23. security frameworks like MITRE -> security frameworks such as MITRE. Like is informal, such as is

more formal.

24. 'Intermediate Purple Teaming', an online learning path sentence is incomplete.

25. No bullet points are needed when we write about our experience, just include it in the text.

26. Thesis structure: Related work: Here we will mention "any". Any is too strong of a word here.

27. Thesis structure: Evaluation: and evaluates the feedback -> and evaluates our product/solution.

28. Furthermore, it will include -> Furthermore, we will present an overview of various open-source

cybersecurity frameworks.

29. Delve is not the right word. Wrong use of this word.

30. We have to explain the virtualization figure better. Maybe improve it.

31. Remove the subheading ‘Azure Cloud’.

32. In this subsection we will talk about ... (ref: Azure Cloud). It is important to guide the readers.We have to

talk about what we are going through.

33. Azure was used as our network infrastructure -> explain why. It was chosen for us by our customer.

This sentence needs to be fixed.

34. Interface of Azure (main layout of Azure) is too specific when we are explaining Azure on a high-level. It

is not representative of what we were talking about.

35. Azure DevOps part. What features are we talking about. It is unclear when we are writing about it.

Mention some of the relevant ones.

36. Some of the features Azure DevOps are ... -> Some of the features offered by Azure DevOps could be

37. Board, which enable a team to follow popular development models like Scrum or Kanban; Repos (short

for Repositories).

38. The Pipelines feature allows -> Pipelines allowing for the deployment.

39. It is unclear how we are going to use Azure DevOps. We have to explain it. In addition we are going to

use DevOps ...

40. We can combine Azure Cloud and Azure DevOps sections. Feels like reading a dictionary.

41. Security & Penetration Testing, lacks an original source. We have to cite where we took this from. It is

not common sense.

42. Cite penetration testing.

43. No subsection about Red & Blue Team. Do not use subsections when there is only one of them.

44. Red & Blue Team -> Red Team & Blue Team. It is important for us to use the same terms all the time.

45. where reds are attackers -> where reds represent attackers.

46. simulates targeted network or system attacks -> simulates targeted network and system attacks

47. Missing reference for purple teaming. Cite a book or research paper.

48. allowing them to identify and fix vulnerabilities. Who is them?

49. Do not cite Wikipedia as it can be altered by editors.

50. Ethical hackers figure. Each figure and table cant stand alone. They have to have a corresponding

description. The figure is too big. It is too wide.

51. MITRE ATT&CK no reference. We need to add a reference.

52. and categorizing attackers' or tactics.

53. details the numerous strategies -> details numerous strategies

54. are also provided here, which makes it an efficient tool. Is it true that it is an efficient tool. If we believe it

is effiecent, we have to to say that we believe that.

55. No need to use subbsection MITRE attack, just continue.

56. We do not have to write out tactics, techniques and procedures for the second time.

57. Explain the MITRE ATT&CK matrix illustration more.

58. Frameworks title is unclear. Cybersecurity Frameworks is better.

59. Frameworks we need a source here.

60. Frameworks like MITRE ATT&CK help us identify -> Frameworks like MITRE ATT&CK help identify

61. We will only be using open-source -> Because of these benefits, we adopted

62. We have to introduce the frameworks that we are going to talk about.

63. executions of tasks i* -> executions of tasks. We need references on Automation tools.

64. Gaps between subsections and sections. We have to make it a better transition between them. Guide

the readers.

65. More citiation.

66. while the steps required for getting there. Getting there is unclear.

67. Coding & Scripting might be unnecessary

68. API figure is too big.

69. framework in order to run automated security -> to run

70. Not clear what not used in the exercises means.

71. In Audun Lundøy Solli -> In the thesis, the author chose to only use

72. Delete the first sentence of 3.2 -> just say the researchers.

73. Delete notes from 3.2.

74. Requirements needs citation.

75. Table 4.1 lists three functional requirements ...

76. 4.1 Requirement -> 4.1 Requirement Description in table

77. 4.1 instead of using no 1,2,3 use F1, F2, F3

78. 4.2 NF2, NF3, NF4

79. Explain a little bit about each requirement in the tables. Some of them are a little unclear. This can be

done in the table itself.

80. 4.1 Use Cases needs a description / leading paragraph.

81. Who is the user? Table 4.3? It should be the company, Sopra Steria, security tester.

82. Label below the user 4.1 use cases.

83. System Design - Chapter 5 needs a lot of improvement.

84. Overall architecture is missing in System Design. Make a flowchart or something.

85. It is really important that we explain each part of the system.

86. Automated infrastructure deployment is not good. We should have a common name for the architecture.

87. We have to have an umbrella name for the whole tool.

88. Cite source for Kanban Boards.

89. client meetings. real-time -> real time.

90. In implementation add some screenshots to show it.

Overall feedback:

1. NB: Double-check every single sentence, before we submit.

2. Explain illustration, tables and figures more.

3. Add references to EVERYTHING that is not common sense.

4. More leading paragraphs.

5. Like is informal, use other words for this for example ‘such as’ in text.

6. Missing sources to definitions to a lot of the entries in the glossary.

7. When referencing Chapter or Figure it is improtant to use capital letter before. e.g. Chapter 4

Appendix E

Project Plan

Attached is the formal project plan, as written at the start of our project.

141

Bachelor’s thesis Project Plan

Group 111
Sopra Steria: Automated Security Testing

Team Members:

Jardar Hollås

Petter Jørgensen

Charlotte Larsen

Tryggvi T. Zabelberg

Supervisor:

Jia-Chun Lin

1. OBJECTIVES AND SCOPE 3
1.1. Background 3
1.2. Project goals 3

2. SCOPE 4
2.1 Subject area 4
2.2 Task description 4
2.3 Limitations 5

3. PROJECT ORGANIZATION 6
3.1. Introduction 6
3.2. Responsibilities and roles 6
3.3. Routines and team rules 7

4. PLANNING, FOLLOW-UP AND REPORTING 8
4.1. Process framework and methodology 8
4.2. Plan for status meetings and decision points during the period 9

5. ORGANIZATION OF QUALITY ASSURANCE 10
5.1. Documentation, standards, configuration management, tools… 10
5.2. Plan for Inspections and Testing 10
5.3. Project risk analysis 11

5.3.1 Explanation of evaluation 11
5.3.2 Risk evaluation 12
5.3.3 Risk Matrix 13

6. IMPLEMENTATION PLAN 14
6.1 Gantt Chart 14
6.2 Project breakdown 15

6.1.1 Security test development 15
6.1.2 Automation 16

7. CONFIRMATION 17
7.1 Signatures 17

Bibliography 18

2

1. OBJECTIVES AND SCOPE

1.1. Background

Sopra Steria is a leading consultant firm focusing on digitalization [1]. Their Security
Operations Center (SOC) provides cybersecurity related services as a Managed Service
Provider (MSP). This includes proactive simulation and emulation of threats, security
testing, and automation of such processes.

1.2. Project goals

The goal for this project is to build a solution that allows for the simulation and/or
emulation of attacks against one or several test clients in a network, resulting in a
complete report of the process. The technical solution will be built in Azure and will be
designed to be installed in a detection lab environment. The goal is to automate parts of
the testing process and to assess which open-source frameworks are best suited for this
purpose. A summary of the advantages and disadvantages of each solution will also be
provided. Additionally, the project will include the creation and documentation of finished
tests that can be mapped to MITRE's ATT&CK matrix [2]. The project will also include
detailed documentation on the installation and configuration of the selected frameworks,
as well as the option to explore the automation of the solution through Azure DevOps
pipelines.

3

2. SCOPE

2.1 Subject area

In this project we are going to learn, use, and write about several different tools and
technologies necessary for building our solution. Some of the main topics we will explore,
research, and work with are:

- Creating and documenting tests mapped to open source security frameworks such as
MITRE ATT&CK

- Assessment and implementation of open-source frameworks for (automatic)
red-teaming

- Emulating TTPs (Tactics, Techniques and Procedures) of a threat actor against a test
environment

- Building a solution in Azure DevOps for automation of the testing process
- Research and documentation of relevant literature

2.2 Task description

The task is to build a solution that enables the client to achieve sufficient alert detection
through simulation and emulation of techniques, attacks and threat actors. This will be
achieved using a detection lab that the client has set up. The solution will be running in
Azure and deployed with Azure DevOps pipelines. Currently the client performs tests
manually, but wants to do parts of the testing automatically.

The client therefore specifies the following for our solution:

Core requirements:

- Evaluate possible frameworks for automatic red-teaming
- The framework should be open source
- A justification of choice for any frameworks we choose to use should be included

- Create and document functional security tests which can be used with this framework
- There should be documentation provided for each individual test, and the test should

be linked to MITRE ATT&CK

- Documentation for installation and configuration of any necessary framework or
software

4

Optional, but desired requirements:

- Automation of the solution
- Automatic installation / deployment of the solution via Azure DevOps pipelines
- Execution of security tests via Azure DevOps pipelines
- Documentation of automation, as well as an evaluation of the security of the

implementation

2.3 Limitations

In order to ensure we stick to our project plan, reduce impact or possibility of scope creep
and to reach our overall goals, it is important to establish clear and realistic limitations for
the project.

The following should be considered or could have an impact:

● Setting a specific timeframe for specific tasks, phases and the project as a whole
(ref. Fig 1. Gantt Chart), and following the schedule set beforehand

● Clearly defining the scope of the project and making sure that any new tasks or
objectives align with the overall project goals, and are doable within a reasonable
time frame

● Establishing a budget based on time spent and logging hours to ensure that the
project stays within its time limits

● Limiting the number of frameworks and scenarios to be evaluated and
implemented.

● Prioritizing and focusing on the most important tasks and objectives, rather than
trying to do everything at once

● Regularly reviewing and assessing the progress of the project to ensure that it is on
track and making necessary adjustments if needed

● By setting smart limitations and sticking to them, the team can ensure that the
project stays focused and on track, and ultimately deliver a successful solution that
meets the project's objectives.

● The team members' varying levels of experience might impact the time spent on
learning about project-relevant topics. In turn this can have an effect on the timeline
and capability of what we can complete during the project.

5

3. PROJECT ORGANIZATION

3.1. Introduction

This project agreement is based on joint objectives, role definitions, procedures and
methods for working together within the team. This agreement has been prepared and
agreed to by all team members. This is our common understanding of how the team
should handle issues and achieve our objectives.

3.2. Responsibilities and roles

The responsibilities and roles are used as a guideline for the general tasks related to the
project. These tasks include managing communication with the project supervisor
Jia-Chun Lin [5], planning meetings and more. During the project we are open to adjusting
and changing the roles when there is a need for it.

- Project Lead: Jardar
- Meeting organizer
- Point of Contact
- Track project progress

- Writing Coordinator: Petter
- Meeting minutes
- Weekly summary for supervisor
- Ensure writing consistency, quality and formatting

- Archivist: Tryggvi
- Project documentation
- Organize project documents and files

- Research Lead: Charlotte
- Planning how the research will be done
- Keep track of sources for later reference
- Ensure compliance with methodology

6

3.3. Routines and team rules

- Absence
It is the responsibility of a team member to inform the team incase of any absence
from planned meetings, or assigned work days. It’s expected that the notification of
absence is given ahead of time, so the team can adjust the workload.

- Meetings
Regular meetings with the team supervisor occur every Tuesday between 13:30 and
14:00. Unless otherwise specified these meetings take place digitally through
Microsoft Teams. Regular meetings with the project contacts at SopraSteria occur
bi-weekly at Thursdays 12:00.
Meetings will otherwise be organized by the team leader, who will also ensure that all
relevant parties are informed of and agree to the time/place of the meeting.

- Coordination and platforms
Internal meetings and study sessions will be held on a regular basis, either digitally
on the collaboration platform Discord or physically at the university campus. Discord
will be used as the main platform internally for discussion and coordination (of
meetings and otherwise). Meetings with the client and supervisor will be done
through using Microsoft Teams.

Google Drive will be used as a digital archive for early stage collaborative writing,
informal documents and drafts. Overleaf LaTeX is the planned platform for formal
writing and reporting for the bachelor’s thesis.

- Time logging
All members will log the time used on the project in a document dedicated to the
purpose located on Google Drive. This will include a general explanation of what
activities have been done, and approximately time used.
Time logging ensures that members contribute to the workload goal of approximately
30 hours per week.

- Non-compliance
Disagreements or non-compliance with the project agreement will be resolved
internally through discussion if possible. If the issue persists the team's supervisor
will be consulted for an alternative solution. Examples of non-compliance with the
agreement would be:

- Failing to attend any agreed upon meetings without notice or reasoning
- Refusing to communicate or collaborate

7

4. PLANNING, FOLLOW-UP AND REPORTING

4.1. Process framework and methodology

The team has chosen to divide the project into a series of phases, milestones, tasks and
sub-tasks to ensure efficiency and that a clear and organized work plan is established. To
support these objectives, our team has decided to mostly stick to the agile Kanban project
management model. Our system will be built in Azure, as specified in our requirements.
We will be utilizing Azure DevOps’ tools and features, including kanban boards for ease of
access, seamless integration and efficiency.

Usage of Azure Boards and backlogs will allow the project team to easily view the status
of any task, assign tasks to team members, and track the progress of the project as
individual tasks, or as a whole. This is also designed to work directly with Git [3], so we
can connect tasks directly to git code branches and commits, upon changes.

Azure (DevOps) is a cloud-based system that enables us to easily collaborate with each
other, provide real-time updates, and access project analytics and reports. Finally, the
system will be used to control access to resources, review project history and
performance, and obtain an accurate and comprehensive view of the project's progress.

Specific advantages with the Kanban model

- Easy-to-use tools available to us already in Azure DevOps (Boards)
- The Kanban methodology provides a visual structure to help teams stay

organized and on track.
- It offers flexibility and adaptability to quickly respond to changes in project scope

and timelines.
- Kanban encourages teams to focus on the current tasks first, which can help to

reduce scope creep.
- It’s easy to implement and use, so teams can start using it quickly without a steep

learning curve.
- Its visual nature makes it easier for teams to understand and discuss progress.
- It promotes collaboration and communication, creating a better team dynamic.
- It encourages continuous improvement and helps teams identify bottlenecks and

inefficiencies.

8

4.2. Plan for status meetings and decision points during the period

Weekly meetings with our supervisor will be held each Tuesday 13:30. During these
meetings we will go over the progress of the project, and discuss issues or complications
that might have occurred.

The team decides work days on a weekly basis, with Tuesday-Thursday usually being the
core work session days. The scheduling is flexible, to prevent clashes with work
schedules and other commitments. Decision points are agreed upon during meetings and
are chosen by the team collectively. When making decisions, we will discuss the progress
of the project and any new ideas or direction that the project might take. This allows for
the project to stay dynamic, agile and ensures everyone has a say.

9

5. ORGANIZATION OF QUALITY ASSURANCE

5.1. Documentation, standards, configuration management, tools…

Effective documentation, adherence to standards and proper management of source code
are crucial for the success of the project. Our team is committed to ensuring that all work,
including practical and technical work, is well-documented and that the necessary
documentation is easily accessible to all team members (e.g. in shared locations such as
on Google Drive). We will also maintain a time log to track progress after each work
session, take meeting minutes and notes of important decisions, and regularly update our
scheduling and Gantt charts.

In terms of standards, we will ensure that our code and scripts adhere to
the agreed-upon languages and documentation standards, including short and concise
commenting within the code itself. This will promote consistency, readability, and ease of
maintenance - both for the team, and for potential future maintainers. We will ensure that
our code is well-organized, commented, and accessible for the team and our client or
supervisor when required.

5.2. Plan for Inspections and Testing

To ensure consistency of quality there has to be clear points that we can adhere to when
we do inspection and testing throughout the project.

When inspecting test result data we have to be thorough on going over how the test was
executed, if it was tested correctly and how the test results match up to the clients
detection results.

Inspections:
- Check if tests were prevented, detected, or nothing happened
- Inspection of documentation and quality

- Was the test executed as planned?
- Did the right tests get executed?
- Were the tests ran against the right environment (e.g. operating system,

hardware, endpoint)
- Did we give the detection system enough time to respond to our tests?

- Validate test results. Did we receive correct testing results back? How do they match
up to their detection system? Check for False Positives in detection system results.

10

Testing:
- Map testing stages onto MITRE’s ATT&CK framework matrix.
- Follow MITRE’s ATT&CK framework.
- Manual testing -> Automatic (Azure DevOps Pipelines)
- Glassbox testing approach

5.3. Project risk analysis

The table below shows a collection of possible risks involved with the project work as a

whole, based on the team’s thoughts early in the project. The likelihood and impacts are

ranked from 1 to 5, where 1 is least likely/lowest impact and 5 is most likely/highest

impact.

5.3.1 Explanation of evaluation

Level Likelihood, freq. (P) Impact, significance

1 Very Unlikely

P<1/365

Less than once a year

Insignificant impact, does not

matter or can be fixed easily

2 Somewhat unlikely

P = 1/365 to 2/365

Once to twice a year

Low impact, might lead to slight

postponement

3 Likely

P = 3/365 to 12/365

Monthly

Medium impact, could lead to

longer delays and decrease of

quality in work

4 Very likely

P = 13/365 to 36/365

One to three times a month

Significant impact, leads to

lower quality work and possibly

worse grades

5 Almost certain

P>36/365

More than three times a month

Critical impact, will miss

important parts of the work and

could fail us the course

11

5.3.2 Risk evaluation

We have conducted a simple risk analysis to identify likelihood, consequences and
mitigating actions for possible risks that could impact the project quality. Below are a few
of the risks we could face.

ID: 1
Risk: Overwhelmed by work
Description: Too many tasks to do at once while a deadline is approaching
Likelihood: 4
Impact: 2
Action:Work continuously, divide fairly, do not skip weekly sessions

ID: 2
Risk: Sickness / dropout
Description: A team member could get sick or unable to continue working on the project,
leading to a loss of valuable skills and knowledge.
Likelihood: 2
Impact: 3
Action: Have a plan, stick to the rules agreed to beforehand, ask for help from other team
members or the supervisor, adjust expectations and deliverables, and ensure not to rely
solely on one team member for the success of the project.

ID: 3
Risk: Limited Experience
Description: Team members may have limited experience in specific subjects which
could lead to a higher need of introductory reading and learning.
Likelihood: 4
Impact: 2
Action: Watch lectures and tutorials, complete recommended courses, learn by working
on tasks and experimenting, and read online resources to gain knowledge and skills. Ask
the supervisor or client for help.

ID: 4
Risk: Data loss
Description: Data, documents or files that are crucial to the project could be lost,
potentially causing delays and difficulties in completing the project.
Likelihood: 1
Impact: 3
Action: We are using cloud-based storage for documents and files which are identified as
safe, and ensures integrated remote backups automatically. Further, we could create
multiple local backups of important data, and ensure that accounts and systems used for
storing data are secure.

12

ID: 5
Risk: Missing deadlines or meetings
Description: Failing to deliver on time or attend important meetings could have
consequences like failing the course, or otherwise impact project quality.
Likelihood: 1
Impact: 4
Action: Add events and deadlines to calendars, set up reminders, and work continuously
to stay on track and meet deadlines.

ID: 6
Risk: Misunderstandings
Description: Poor communication and lack of clarity on the vision for tasks could lead to
confusion and double-work among team members.
Likelihood: 3
Impact: 2
Action: Keep each other updated on the progress and goals of tasks, and ensure that
everyone is on the same page and collaborating with the same vision.

5.3.3 Risk Matrix

Based on the risks found in 5.2. We decided to visualize the risks by using the Risk Matrix
[4].

Impact 1 Impact 2 Impact 3 Impact 4 Impact 5

Likelihood 5

Likelihood 4 1, 3

Likelihood 3 6

Likelihood 2

Likelihood 1 4 5 2

Number in bold identifies the risk ID from the Risk evaluation

Green indicates acceptable risks

Yellow indicates risks where we should consider taking action

Red indicates unacceptable risks where actions need to be taken immediately.

13

6. IMPLEMENTATION PLAN

6.1 Gantt Chart

This gantt chart displays the schedule of our project, broken down into distinct phases. It
highlights the start and end dates, duration, and dependencies of each task within each
phase. The chart provides a clear overview of the project timeline and helps us plan and
coordinate the various tasks and activities involved. By using this tool, we can ensure that
we allocate resources effectively, avoid delays, and complete the project on time and
within our time budget. Note that the gantt chart is subject to change. An updated version
can be found here.

Figure 1: Gantt-chart

Milestones
- Project Plan: 31.01
- First draft: 31.03
- Final Thesis: 20.05
- Presentation: First half of June

14

6.2 Project breakdown

The following diagram visualizes the project's main areas of work and breaks them down
into smaller subsections. We decided to only include the more general parts of the
project, the parts that we know that we will work with and complete.

Figure 2: Project breakdown

6.1.1 Security test development

The most basic condition for our thesis is the capability of executing (software) security
tests, also known as penetration tests or pentests, on one host against another on the
same local network. The test being executed from a VM (Virtual Machine) can range from
simple recon tools executed with PowerShell, to more extensive testing provided by
open-source security testing frameworks like Atomic Red Team [6]. Figure 3 shows a
basic illustration of such a test.

15

Figure 3: External security test

Some testing will be impractical to execute from an external VM. A proper test of a
systems in depth defenses will also include tests that assume some level of system
compromise, and will therefore need to be executed internally on the target (see figure 4).
For example a security test attempting privilege escalation might be ran by an existing
system user, thereby assuming that an attacker already obtained initial access through
this user's credentials.

Figure 4: Internal security test

6.1.2 Automation

Automation of our solution is part of the optional requirements. As we progress with the
core functionality of our solution we will look for ways to automate the process as well. It
is not entirely clear at this stage exactly how or what tools we will use to achieve this. We
are however looking into the viability of using Azure Devops’ [7] Repos and Pipelines
features for accomplishing this.

16

7. CONFIRMATION

I acknowledge that I have reviewed the project plan and agree to its terms and conditions. I
am committed to following the outlined steps, my role and team responsibilities and the
timeline to ensure my contribution to a successful completion of the project.

7.1 Signatures

Jardar Hollås:

Date: 31.01.2023

Petter Jørgensen:

Date: 31.01.2023

Charlotte Larsen:

Date: 31.01.2023

Tryggvi T. Zabelberg:

Date: 31.01.2023

17

Bibliography

[1] About us | Sopra Steria - https://www.soprasteria.com/about-us

[2] MITRE ATT&CK Framework - https://attack.mitre.org/

[3] Git | Microsoft Azure -
https://azure.microsoft.com/en-us/products/devops/repos

[4] Risk Matrix -
https://www.uib.no/en/hms-portalen/142418/risk-matrix#risk-acceptance-
criteria

[5] Jia-Chun Lin - https://www.ntnu.edu/employees/jia-chun.lin

[6] Atomic Red Team - https://atomicredteam.io/learn-more/

[7] Azure DevOps Services -
https://azure.microsoft.com/en-us/products/devops

18

Appendix F

Additional Listings

160

Chapter F: Additional Listings 161

1 $resourceGroupName = $env:DEPLOY_RG
2 $location = "West Europe"
3 $vmName = $env:VM_NAME
4 $scriptName = "CalderaSetup"
5 $containerIP = $env:CONTAINERIP
6 $fileUri = @("https://rsbppipelinestorage.blob.core.windows.net/script/CalderaAgentSetup.ps1")
7

8 $settings = @{"fileUris" = $fileUri};
9 $protectedSettings = @{

10 "commandToExecute" = `
11 "powershell -ExecutionPolicy Unrestricted" + `
12 "-File CalderaAgentSetup.ps1" + `
13 "-containerip ${containerIP}"
14 };
15

16 Write-Host $vmName
17 Write-Host $containerIP
18

19 #run command
20 Set-AzVMExtension -ResourceGroupName $resourceGroupName `
21 -Location $location `
22 -VMName $vmName `
23 -Name $scriptName `
24 -Publisher "Microsoft.Compute" `
25 -ExtensionType "CustomScriptExtension" `
26 -TypeHandlerVersion "1.10" `
27 -Settings $settings `
28 -ProtectedSettings $protectedSettings;
29

30

31

32 <# For Pipeline
33

34 - stage: 'AGENT_INSTALLATION'
35 dependsOn: 'DEPLOY'
36 jobs:
37 - deployment: 'Azure_AGENT_INSTALLATION'
38 displayName: 'Azure AGENT INSTALLATION'
39 environment: $(environment)
40 strategy:
41 runOnce:
42 deploy:
43 steps:
44 - checkout: Bachelor
45 - task: AzurePowerShell@5
46 inputs:
47 azureSubscription: '$(azureSubscription)'
48 ScriptType: 'FilePath'
49 ScriptPath:'$(LocalRepo)/Scripts/Start-AzureCustomExtensionV2.ps1'
50 azurePowerShellVersion: 'LatestVersion'
51 pwsh: true
52 env:
53 CONTAINERIP: $(containerIP)
54 #>

Listing 17: Agent-Configuration.ps1

Chapter F: Additional Listings 162

1 param($containerip)
2 Start-Transcript -path C:\output.txt -append
3 $containerip | Out-File -FilePath C:\containerip.txt
4 $server="http://"+$containerip+":8888";
5 $url="$server/file/download";
6 Write-Host $url
7 $wc=New-Object System.Net.WebClient;
8 $wc.Headers.add("platform","windows");
9 $wc.Headers.add("file","sandcat.go");

10 $data=$wc.DownloadData($url);
11 get-process | ? {$_.modules.filename -like "C:\Users\Public\splunkd.exe"} | stop-process -f;
12 rm -force "C:\Users\Public\splunkd.exe" -ea ignore;
13 [io.file]::WriteAllBytes("C:\Users\Public\splunkd.exe",$data) | Out-Null;
14 Start-Process -FilePath C:\Users\Public\splunkd.exe -ArgumentList "-server $server -group red" -WindowStyle hidden;
15 Stop-Transcript

Listing 18: CalderaAgentSetup.ps1

1 resource "azurerm_network_interface" "primary" {
2 name = "${var.prefix}-w10-primary"
3 location = var.location
4 resource_group_name = var.resource_group_name
5 internal_dns_name_label = "${var.prefix}-w10"
6

7 ip_configuration {
8 name = "primary"
9 subnet_id = var.subnet_id

10 private_ip_address_allocation = "Dynamic"
11 }
12 }
13

14 resource "azurerm_network_interface_security_group_association" "spoke-nsg" {
15 network_interface_id = azurerm_network_interface.primary.id
16 network_security_group_id = var.nsg_id
17 }
18

19 resource "azurerm_network_interface_application_security_group_association" "lab-asg" {
20 network_interface_id = azurerm_network_interface.primary.id
21 application_security_group_id = var.asg_id
22 }

Listing 19: 1-network-interface.tf

Chapter F: Additional Listings 163

1 locals {
2 custom_data_content = "${file("${path.module}/files/winrm.ps1")}"
3 }
4

5 resource "azurerm_virtual_machine" "windows10" {
6 name = "${var.prefix}-w10"
7 location = var.location
8 resource_group_name = var.resource_group_name
9 network_interface_ids = [azurerm_network_interface.primary.id]

10 vm_size = var.vm_size
11 delete_os_disk_on_termination = true
12 delete_data_disks_on_termination = true
13

14 storage_image_reference {
15 publisher = var.vm_image.publisher
16 offer = var.vm_image.offer
17 sku = var.vm_image.sku
18 version = "latest"
19 }
20

21 storage_os_disk {
22 name = "${var.prefix}-w10-disk"
23 caching = "ReadWrite"
24 create_option = "FromImage"
25 managed_disk_type = "Standard_LRS"
26 }
27

28 os_profile {
29 computer_name = "${var.prefix}-w10"
30 admin_username = var.admin_username
31 admin_password = var.admin_password
32 custom_data = local.custom_data_content
33 }
34

35 os_profile_windows_config {
36 provision_vm_agent = true
37 enable_automatic_upgrades = false
38

39 # Imediatly logs onto VM upon creation
40 additional_unattend_config {
41 pass = "oobeSystem"
42 component = "Microsoft-Windows-Shell-Setup"
43 setting_name = "AutoLogon"
44 content = <AutoLogon><Password><Value>${var.admin_password}</Value>
45 </Password><Enabled>true</Enabled><LogonCount>1</LogonCount>
46 <Username>${var.admin_username}</Username></AutoLogon>
47

48 }
49

50 # Unattend config is to enable basic auth in WinRM, required for RDP to work
51 additional_unattend_config {
52 pass = "oobeSystem"
53 component = "Microsoft-Windows-Shell-Setup"
54 setting_name = "FirstLogonCommands"
55 content = "${file("${path.module}/files/FirstLogonCommands.xml")}"
56 }
57 winrm {
58 protocol = "HTTP"
59 }
60

61 }
62 }

Listing 20: 2-virtual-machine.tf

Chapter F: Additional Listings 164

1 ###
2 # Outputs
3 ###
4

5 output "vm_name" {
6 value = azurerm_virtual_machine.windows10.name
7 }

Listing 21: Module outputs.tf

1 variable "resource_group_name" {
2 description = "The name of the Resource Group where the Windows Client resources will be created"
3 }
4

5 variable "location" {
6 description = "The Azure Region in which the Resource Group exists"
7 default = "westeurope"
8 }
9

10 variable "vm_image" {
11 description = "The Windows image"
12 type = map(string)
13 }
14

15 variable "vm_size" {
16 description = "The VM size"
17 }
18

19 variable "prefix" {
20 description = "The name prefix used for infrastructure resources"
21 }
22

23 variable "subnet_id" {
24 description = "The Subnet ID which the Windows Client's NIC should be created in"
25

26 }
27

28 variable "nsg_id" {
29 description = "The Network Security Group ID which the Domain Controller's NIC should be created in"
30 }
31

32 variable "asg_id" {
33 description = "The Application Security Group ID which the Domain Controller's NIC should be created in"
34 }
35

36 variable "admin_username" {
37 description = "The username associated with the local administrator account on the virtual machine"
38 }
39 variable "admin_password" {
40 description = "The password associated with the local administrator account on the virtual machine"
41 sensitive = true
42 }

Listing 22: Module variables.tf

	1f8014068f87afaf2ba3f4127bc9cea214d59b75e4a96c2a59f34403a87f9553.pdf
	1f8014068f87afaf2ba3f4127bc9cea214d59b75e4a96c2a59f34403a87f9553.pdf
	Preface

	Microsoft Word - _Sammendrag_Abstract(1) (1).docx
	1f8014068f87afaf2ba3f4127bc9cea214d59b75e4a96c2a59f34403a87f9553.pdf
	Contents
	Figures
	Tables
	Code Listings
	Glossary
	Introduction
	Background
	Project Goals
	Limitations
	Project Group
	Thesis Structure

	Background
	Cloud Computing
	Security and Penetration Testing
	MITRE ATT&CK
	Cybersecurity Frameworks
	Automation tools

	Related Work
	System Design
	Requirements
	System Architecture
	Security Testing Environment Deployment Pipeline
	Adversary Operations Pipeline

	Use Cases

	Development Process
	Development Model
	Phases and Timeline
	Documentation
	Routines

	Implementation
	Automation
	Defining Infrastructure as Code with Terraform
	Integrating IaC model into an Azure Pipeline

	Security Testing
	Security Testing Script

	Evaluation
	Test Case
	Requirements and Confidence Level

	Discussion
	The Project Task
	Evaluating Security Frameworks

	Closing Remarks
	Learning Outcome
	Conclusion
	Further work
	Overall System
	MITRE Caldera
	Infrastructure Deployment

	Bibliography
	Contract
	Project Wiki
	Project Owner Evaluation - E-mail
	All Meeting Notes
	Project Plan
	Additional Listings

