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A B S T R A C T   

Probiotics are reported to improve the nutrition, immunity, and health of fish. Nuclease can hydrolyze nucleic 
acids of probiotics to produce nucleotides. The present study investigated the effect of stabilized fermentation 
product of nuclease-treated Lactobacillus rhamnosus GCC-3 (GCC-3 NT) on growth, non-specific immunity, liver 
health, and gut microbiota of zebrafish (Danio rerio). Compared to the high-fat diet (HFD) group, GCC-3 NT did 
not affect the growth performance of zebrafish. However, GCC-3 NT treatment can significantly increase the 
lysozyme activity and the total antioxidant capacity of body surface mucus. In addition, dietary GCC-3 NT 
significantly reduced the content of hepatic triglycerides (TAG) in zebrafish while significantly increased the 
expression of acyl-coenzyme A oxidases 3 (ACOX3) and proliferator-activated receptor γ coactivator 1α (PGC1α) 
compared with the HFD group. The 16S rRNA gene sequencing showed that GCC-3 NT reduced the relative 
abundance of Actinobacteria while increased Firmicutes at the phylum level. The relative abundance of Rho
dococcus was significantly decreased and Lactobacillus and Staphylococcus abundance were significantly increased 
in the GCC-3 NT group compared to the HFD group. Furthermore, PCoA analysis showed GCC-3 NT diet had a 
significant effect on the autochthonous microbiota compared to the HFD diet. Together, our results showed that 
nuclease-treated L. rhamnosus fermentation product can improve the immunity, liver health and gut microbiota 
of zebrafish, suggesting that it can be potentially used as a functional feed additive for aquaculture.   

1. Introduction 

Excessive fat accumulation in the liver of aquatic animals has 
become one of the main problems affecting the healthy development of 
aquaculture (Tocher, 2003; Cheng et al., 2017). Lipid deposition impairs 
the quality and flavor of fish muscles while wasting feed resources (Li 
et al., 2012; Jia et al., 2020). In addition, the immune system and health 
of fish can be compromised by the excessive deposition of body fat, 
which ultimately results in significant economic losses for the aquacul
ture industry (Kirpich et al., 2015; Zhang et al., 2018). Therefore, it is 
crucial to find safe and effective regulatory solutions to decrease the 
impacts of high-fat diets. 

Probiotics have been used in aquafeed to improve growth perfor
mance, immunity, disease resistance, and gut microbiota of aquatic 
animals (Ringø et al., 2020). Among many probiotic species, Lactoba
cillus species attract more and more attention as the beneficial effect on 
the growth, immune system and health of fish (Doan et al., 2021). 
Lactobacillus rhamnosus strains derived from the human intestine have 
been used as probiotics for humans (Tuomola and Salminen, 1998; 
Ouwehand et al., 2000). Consistent with the results in mammals, dietary 
addition of L. rhamnosus strains can improve fish health (Zhang et al., 
2016; Klopper et al., 2018; Sewaka et al., 2019). For instance, dietary 
L. rhamnosus ATCC 53103 enhanced immune parameters in rainbow 
trout (Oncorhynchus mykiss) (Nikoskelainen et al., 2003). In red sea 
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bream (Pagrus major), L. rhamnosus ATCC 53103 can be used as a feed 
additive to increase the growth performance and enhance immunity 
when compared to the control group (Dawood et al., 2016). In addition, 
supplementation of L. rhamnosus ATCC 53103 improved innate immu
nity and reduced gut damage in Nile tilapia (Oreochromis niloticus) after 
Aeromonas hydrophila infection (Ngamkala et al., 2020). In our previous 
study, dietary L. rhamnosus GCC-3 fermentation product improved the 
gut and liver health as well as the resistance of tilapia against Aeromonas 
infection. Importantly, the liver triglycerides of fish were reduced (Zhou 
et al., 2022). 

Nucleic acids of the probiotic bacterium are polymers made up of 
nucleotides and can be hydrolyzed by nuclease to produce nucleotides 
(Gite et al., 1992; Koval and Dohnálek, 2018). Nucleotides, as potential 
function feed additives in aquaculture, have been shown to enhance 
growth, improve gut health, modulate innate and adaptive immune 
responses, as well as increase stress tolerance capacity in many fish 
species, such as channel catfish (Ictalurus punctatus), rainbow trout, 
turbot (Scophthalmus maximus), stripped catfish (Pangasius sutchi), Nile 
tilapia, red sea bream, common carp (Cyprinus carpio), Atlantic salmon 
(Salmo salar) (Hossain et al., 2020). In our previous study, we also found 
that the supplementation of nucleotides improved growth and reduced 
hepatic steatosis in zebrafish (Ran et al., 2021). Zebrafish (Danio rerio) 
has been used as a model for fish feed, microbiota, gut immunity, and 
liver health (López Nadal et al., 2020). Here, we investigated the 
beneficial effects of nuclease-treated L. rhamnosus GCC-3 fermentation 
product in zebrafish. The results showed that nuclease-treated 
L. rhamnosus fermentation product can be used as a feed supplement 
to improve fish health. 

2. Materials and methods 

2.1. Bacteria culture and nuclease treatment 

Lactobacillus rhamnosus GCC-3 with the preserved number China 
General Microbiological Culture Collection Center (CGMCC) No. 21821 
was cultured in lactic acid bacteria culture (MRS) medium (Oxoid, 
Basingstoke, UK) at 37 ℃ overnight. The stabilized fermentation prod
uct of GCC-3 was obtained by adding 3 % CaCO3 (1 M) after 48 h of 
shake flask fermentation according to the previously described method 
(Zhou et al., 2022). Then, the stabilized fermentation product was mixed 
with fine bran at 1:1 and dried at room temperature. The concentration 
of GCC-3 in the dried fermentation product was 9.6 × 108 CFU/g. 

On the one hand, part of GCC-3 was directly mixed with fine bran in a 
ratio of 1:1, dried at room temperature and added to the feed as GCC-3 
treatment. On the other hand, the fermentation product was treated 
with 3 % nuclease (Nanning Pangbode Bioengineering, Guangxi, China) 
(Xie et al., 2022). After mixing, they were incubated at 30 ℃ for 48 h, 
and the nucleotide concentration was measured at 24 h, which was 
36.388 mg/g (24.948 mg/g without nuclease). Drying at room tem
perature, they were added to the feed as GCC-3 nuclease treatment 
group (namely GCC-3 NT). 

2.2. Experimental diets and animal feeding 

The experimental formula for a high-fat diet for zebrafish was 
designed according to Zhang et al. (2019) (The feed formula was shown 
in Table 1). Based on the high-fat diet, 10 % GCC-3 % and 10 % 
nuclease-treated GCC-3 fermentation products were added to replace 
rice husk meal respectively. Dietary crude protein, crude fat, ash, and 
moisture are shown in Table 1. In feed preparation, the amount of each 
raw material is first accurately calculated and weighed, and then 
expanded step by step according to the order of mixing small raw ma
terials and then mixing large raw materials. All the mixed raw materials 
were mixed with a proper amount of water to make feed, which was 
dried in a constant temperature oven at 90 ℃ for 90 min. 

The animals used in the experiment were 2-month-old zebrafish (TU 

strain), which were cultured in the zebrafish circulation system and the 
breeding conditions referred to China Zebrafish Resource Center 
(CZRC). The fish were fed 6 % of their body weight every day (09:00 and 
16:00) for 3 weeks. A total of four kinds of diets were fed in this 
experiment, and 4 biological replicates were set up in each group. There 
were 20 fish in each tank. All zebrafish were cultured in a recirculating 
system with a 12 h/12 light/dark cycle. The water temperature varied 
from 28.0 ℃ to 28.5 ℃, pH 7.0–7.5, and the dissolved oxygen was 
higher than 6 mg/L. 

All fish were anesthetized with tricaine methanesulfonate (MS222) 
before sampling. At the end of the feeding trial, fish were weighed and 
the results were got with the following calculations. Weight gain (WG, 
%) = [100 % × (final body weight (g) - initial body weight (g))/initial 
body weight]; feed conversion ratio (FCR) = food intake (g)/weight gain 
of fish (g); survival rate (%) = (number of fish at the end of the exper
iment/number of fish at the start of the experiment) × 100 %. The liver 
was collected at 24 h after the last feeding for analysis of triglycerides 
content and gene expression. Body surface mucus was collected at 24 h 
after the last feeding for analysis of total antioxidant capacity and 
lysozyme activity. The gut content was collected at 4 ~ 6 h under aseptic 
conditions after the last feeding. The gut content samples from 6 fish 
were pooled as a replicate to analyze the gut microbiota of zebrafish. 

2.3. Detection of triglycerides (TAG) content 

TAG in the liver of zebrafish was detected using a TAG kit (Beyotime 
Biotechnology, Shanghai, China). This determination method referred 
to the manufacturer’s instructions and previously described (Zhang 
et al., 2019). 

2.4. Real-time quantitative PCR (RT-qPCR) 

The RNA of zebrafish gut and liver tissue was extracted following the 
procedures from our previously published paper (Zhang et al., 2019). 

Table 1 
Ingredients and proximate composition of diets for zebrafish.  

Ingredient (g / kg diet) Control HFD GCC-3 GCC-3NT 

Fish meal  450.00  450.00  450.00  450.00 
Flour  250.00  200.00  200.00  200.00 
Soybean meal  180.00  196.00  196.00  196.00 
Soybean oil  12.00  100.00  100.00  100.00 
Choline chloride  2.00  2.00  2.00  2.00 
Monocalcium phosphate  20.00  20.00  20.00  20.00 
VC phosphate  1.00  1.00  1.00  1.00 
Bentonite  61.00  7.00  7.00  7.00 
Mixture  10.00  10.00  10.00  10.00 
Rice husk meal  10.00  10.00  0  0 
Vitamin premixa  2.00  2.00  2.00  2.00 
Mineral premixb  2.00  2.00  2.00  2.00 
GCC-3  0  0  100.00  0 
Nuclease-treated GCC-3  0  0  0  100.00 
Total  1000.00  1000.00  1000.00  1000.00 
Crude protein (%, WW)  43.25  43.86  43.42  43.15 
Crude fat (%, WW)  7.76  18.23  18.14  18.06 
Crude ash  13.81  13.83  14.07  14.11 
Moisture (%)  2.41  2.47  2.09  2.37 
Crude protein (%, DW)  44.32  44.98  44.35  44.20 
Crude fat (%, DW)  7.95  18.70  18.53  18.50 

Note: WW and DW represent the wet weight and dry weight, respectively. 
a Containing the following (g/kg vitamin premix): thiamine, 0.438; riboflavin, 

0.632; pyridoxine⋅HCl, 0.908; d-pantothenic acid, 1.724; nicotinic acid, 4.583; 
biotin, 0.211; folic acid, 0.549; vitamin B-12, 0.001; inositol, 21.053; menadione 
sodium bisulfite, 0.889; retinyl acetate, 0.677; cholecalciferol, 0.116; dl- 
α-tocopherol-acetate, 12.632. 

b Containing the following (g/kg mineral premix): CoCl2⋅6H2O, 0.074; 
CuSO4⋅5H2O, 2.5; FeSO4⋅7H2O, 73.2; NaCl, 40.0; MgSO4⋅7H2O, 284.0; 
MnSO4⋅H2O, 6.50; KI, 0.68; Na2SeO3, 0.10; ZnSO4⋅7H2O, 131.93; Cellulose, 
501.09. 
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RT-qPCR analysis was performed on a continuous fluorescence detector 
480 system (LichtCycler® 480 Real-Time PCR System, Roche) using 
SYBR Green Supermix (Tiangen, China). All primers in the study were 
listed in Table 2. Data were analyzed by 2− ΔΔCT method using RPS11 as 
the reference. 

2.5. Detection of total antioxidant capacity and lysozyme activity 

Under aseptic conditions, body surface mucus from 5 fish was pooled 
as a replicate with tweezers and then put into 100 μl phosphate-buffered 
saline (PBS). Total antioxidant capacity (T-AOC) and lysozyme activity 
in body surface mucus were determined using the T-AOC assay kit 
(Cominbio, Suzhou, China) and the lysozyme activity assay kit (Beyo
time Biotechnology, Shanghai, China), respectively. 

2.6. 16S rRNA-based analyses of gut microbiota 

Gut content samples of zebrafish were collected from each treatment 
group 4–6 h post the last feeding. Gut content from 6 fish in each tank 
was pooled as a replicate. The composition of gut microbiota was 
analyzed as the previously published protocol (Zhang et al., 2019). In 
brief, the V3-V4 regions of the 16 S rRNA genes were amplified with the 
primers 338 F (ACTCCTACGGGAGGCAGCAG), 806R (GGAC
TACHVGGGTWTCTAAT). After the construction of the libraries, the 
paired-end 250-nucleotide reads were obtained using the Illumina Miseq 
platform. Using the DADA2 plugin, raw sequences were trimmed, 
quality filtered, denoised, merged, chimera, and dereplicated (DeSantis 
et al., 2006). 

2.7. Statistical analysis 

All results in this paper from four independent experiments were 
expressed as the mean ± standard error (SEMs). GraphPad Prism version 
8.0 software was used to analyze data. The differences between the two 
groups were examined by the Student’s t-test. The significant difference 
was set at *P < 0.05. 

3. Results 

3.1. Effects of L. rhamnosus fermentation product on the growth 
performance and feed utilization of zebrafish 

After 3-week feeding, the effects of nuclease-treated and untreated 
L. rhamnosus fermentation products on the growth performance of 
zebrafish were evaluated, and the result was presented in Fig. 1. 
Compared with the HFD group, the weight gain showed an increasing 
trend in the GCC-3 group (Fig. 1B, P = 0.06). Accordingly, the feed 
conversion ratio showed a decreasing tendency in the GCC-3 group 
compared with the HFD group (Fig. 1C, P = 0.06). In terms of survival 
rate, there was no difference in the four groups (Fig. 1D). 

3.2. Effects of L. rhamnosus fermentation product on the non-specific 
immunity of zebrafish 

The effects of nuclease-treated and untreated L. rhamnosus fermen
tation product on lysozyme activity and total antioxidant capacity of 

zebrafish were evaluated (Fig. 2). Compared with the control group, the 
results showed that the high-fat diet can increase the lysozyme activity 
(Fig. 2A, P < 0.01), and compared with the HFD group, GCC-3 NT 
treatment can further increase the lysozyme activity of body surface 
mucus (Fig. 2A, P < 0.01). Furthermore, total antioxidant capacity was 
increased in both GCC-3 and GCC-3 NT groups compared with HFD 
group (Fig. 2B, P < 0.05 and P < 0.05, respectively). 

3.3. Effects of L. rhamnosus fermentation product on the liver health of 
zebrafish 

As can be seen in Fig. 3A and B, the TAG content of zebrafish liver 
was significantly reduced in the GCC-3 and GCC-3 NT groups compared 
with the HFD group (P < 0.05). In addition, the expression of genes 
involved in lipid metabolism was detected in the liver. In comparison to 
the HFD group, the expression of lipid synthesis related genes including 
fatty acid synthase (FAS) and peroxisome proliferator-activated receptor 
gamma (PPARγ) had a reduced trend in the GCC-3 group (Fig. 3C, D, 
P = 0.08 and P = 0.07, respectively). The expression of lipolysis related 
genes including acyl-coenzyme A oxidases 3 (ACOX3) and proliferator- 
activated receptor γ coactivator 1α (PGC1α) was not affected by GCC-3 
(Fig. 3E, F, P > 0.05), while the expression of ACOX3 and PGC1α was 
significantly up-regulated in the GCC-3 NT group compared with the 
HFD group (Fig. 3E, F, P < 0.05). 

3.4. Effects of L. rhamnosus fermentation product on the gut microbiota 
of zebrafish 

There are 401 OTU shared by the four groups (Fig. 4A). The alpha- 
diversity analysis showed that the addition of GCC-3 and GCC-3 NT 
had no significant effect on alpha-diversity compared to the HFD group 
(Table 3). 

As shown in Fig. 4B and C, the addition of GCC-3 and GCC-3 NT 
significantly affected the composition of the gut microbiota of zebrafish 
compared to the HFD group. At the phylum level, GCC-3 and GCC-3 NT 
supplementation significantly reduced the relative abundance of Acti
nobacteria (Fig. 4B). In contrast, Firmicutes abundance was significantly 
increased in GCC-3 and GCC-3 NT groups (Fig. 4B). At the genus level, 
the relative abundance of Rhodococcus was significantly decreased 
versus the HFD group (Fig. 4C). Dietary GCC-3 and GCC-3 NT signifi
cantly increased Lactobacillus and Staphylococcus abundance compared 
to the HFD group (Fig. 4C). Moreover, PCoA analysis showed substantial 
differences among the HFD, GCC-3, and GCC-3 NT groups, indicating 
that GCC-3 and GCC-3 NT diets had significant effects on the autoch
thonous microbiota compared to the HFD control (Fig. 4D). 

4. Discussion 

In the present work, dietary supplementation of L. rhamnosus GCC-3 
fermentation product did not affect the growth performance but 
enhanced the non-specific immunity of zebrafish. In addition, the GCC-3 
diet reduced the liver TAG and improved the gut microbiota of zebrafish. 
Consistent with these results, Zhou et al. (2022) showed that the addi
tion of L. rhamnosus fermentation product can improve the gut and liver 
health as well as improve the gut microbiota of tilapia. Collectively, 
these studies suggest that the fermentation product of L. rhamnosus 

Table 2 
Primer sequences for qRT-PCR analysis.  

Gene Name Forward (5’ to 3’) Reverse (5’ to 3’) 

FAS GGAGCAGGCTGCCTCTGTGC TTGCGGCCTGTCCCACTCCT 
PPARγ CCTGTCCGGGAAGACCAGCG GTGCTCGTGGAGCGGCATGT 
ACOX3 TGGAAGGACATGATGCGCTTT AGGCTGCCGGGCAAAAA 
PGC1a CCCCTTTGCCCTGACCTGCCTGAG GAAGGACAGCTCTGATCACTGGCATTGG 
RPS11 ACAGAAATGCCCCTTCACTG GCCTCTTCTCAAAACGGTTG  
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could be used as a functional additive to improve fish health. In this 
study, nuclease was used to treat the fermentation product of 
L. rhamnosus to further improve the function of the fermentation prod
uct. Notably, the concentration of nucleotides in the fermentation 
product of L. rhamnosus was elevated by 45.85 % after the treatment of 
nuclease compared to the untreated L. rhamnosus GCC-3. A lot of studies 
showed that dietary nucleotides have a growth-promotion effect in fish 
(Peng et al., 2013; Xu et al., 2015; Hossain et al., 2017; Ran et al., 2021). 
However, the addition of GCC-3 NT didn’t influence the growth of 
zebrafish in the present work. This is consistent with previous reports on 
other fish species, such as channel catfish (Welker et al., 2011), Nile 

tilapia (Barros et al., 2013), hybrid tilapia (Oreochromis niloticus ♀ 
×Oreochromis aureus ♂) (Shiau et al., 2015) and juvenile turbot (Fuchs 
et al., 2015), in which the inclusion of nucleotides did not affect the 
growth of fish. The differences in the effects of nucleotides on fish 
growth may be attributed to fish species, fish age, the addition level, and 
duration of administration (Hossain et al., 2020). 

Lysozyme is an important innate defense parameter, which exists in 
the mucus, lymphoid tissue, serum, and other body fluids of most fish 
and plays a key role in resisting pathogens (Magnadottir et al., 2005; 
Zhuo et al., 2021). The antioxidant capacity of the body’s defense system 
can be evaluated by the total antioxidant capacity, which can represent 

Fig. 1. Effects of fermentation products of Lactobacillus rhamnosus treated with nuclease (GCC-3 NT) and untreated (GCC-3) on the growth performance of zebrafish. 
(A) Initial body weight (g), (B) Weight gain (%), (C) Feed conversion ratio, (D) Survival rate (%). Data represent the means ± SEM of each treatment (n = 4). 

Fig. 2. Effects of fermentation products of Lactobacillus rhamnosus treated with nuclease (GCC-3 NT) and untreated (GCC-3) on lysozyme activity and total anti
oxidant capacity in body surface mucus of zebrafish. (A) Zebrafish surface mucus lysozyme activity (n = 4). (B) Total antioxidant capacity of body surface mucus 
(n = 4). Data represent the means ± SEM. *, P < 0.05; **, P < 0.01. 
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and reflect the compensatory ability of the antioxidant enzyme system 
and non-enzymatic system of the body to external stimuli and the status 
of free radical metabolism of the body (Deng et al., 2013; Mohammadi 
et al., 2020). In the present study, dietary supplementation of GCC-3 NT 
significantly increased the lysozyme activity and total antioxidant ca
pacity in the body surface mucus of zebrafish. Similarly, dietary nucle
otides can enhance the non-specific immune responses by increasing the 
lysozyme activity in common carp (Sakai et al., 2010), red drum 
(Sciaenops ocellatus) (Cheng et al., 2011), and olive flounder (Para
lichthys olivaceus) (Song et al., 2012). Tie et al. (2021) demonstrated that 
the inclusion of nucleotides increased the antioxidant capacity of grass 

carp (Ctenopharyngodon idella) infected with Flavobacterium columnare. 
The antioxidant capacity-enhancing effects of nucleotides have also 
been reported in other fish species such as hybrid tilapia (Xu et al., 
2015), juvenile red sea bream (Hossain and Koshio, 2017), yellow cat
fish (Pelteobagrus fulvidraco) (Zhao et al., 2015) and Nile tilapia (Reda 
et al., 2018). Collectively, these results showed that dietary supple
mentation of GCC-3 NT strengthened the non-specific immunity of 
zebrafish and nucleotides may play a key role in the fermentation 
product of GCC-3 NT. 

High-fat feed leads to excessive lipid accumulation, which results in 
an increase in oxidative stress and injury in the liver, affecting the health 

Fig. 3. Effects of fermentation products of Lactobacillus rhamnosus treated with nuclease (GCC-3 NT) and untreated (GCC-3) on the expression of lipid metabolism in 
the liver of zebrafish. (A) Detection of zebrafish liver morphology by HE staining (n = 4). (B) Triglycerides (TAG) (n = 4). (C-F) Expression of lipid metabolism 
related genes (n = 4). Data represent the means ± SEM. *, P < 0.05; **, P < 0.01. 
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of fish (Zhou et al., 2022). Dietary nucleotides were reported to benefit 
liver function and reduce hepatic lipid deposition in mammals (Novak 
et al., 1994; Pérez et al., 2004; Cai et al., 2016). However, there are few 
studies about dietary nucleotides regulating hepatic lipid metabolism 
and deposition in fish. Interestingly, a recent study found nucleotides 
reduced the content of TAG in the liver of zebrafish (Ran et al., 2021). 
Consistent with this report, the current study found that the addition of 
GCC-3 NT significantly reduced the TAG content in the liver of zebrafish. 
Ran et al. (2021) found that dietary nucleotides decreased the 

Fig. 4. Effects of fermentation products of Lactobacillus rhamnosus treated with nuclease on the gut microbiota of zebrafish. (A) OUT analysis, relative abundance at 
the phylum (B) and the genus level (C), (D) Principal coordinates analysis (PCoA) of the gut microbiota (n = 5). 

Table 3 
Effects of Lactobacillus rhamnosus fermentation product on the diversity index of 
zebrafish gut microbiota.  

Parameters Control HFD GCC-3 GCC-3 NT 

Shannon 1.17 ± 0.13 1.19 ± 0.16 1.18 ± 0.11 1.12 ± 0.21 
Simpson 0.37 ± 0.05 0.39 ± 0.08 0.39 ± 0.06 0.41 ± 0.10 
ACE 14.08 ± 7.16 10.30 ± 8.09 12.33 ± 9.97 18.41 ± 2.28 
Chao 16.33 ± 2.16 15 ± 1.41 17.33 ± 3.44 17.58 ± 1.91  
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expression of genes involved in lipid synthesis while increased the 
expression of genes involved in fatty acid oxidation in zebrafish. In line 
with this result, in this study, the expression of lipolysis related genes in 
the GCC-3 NT group was also up-regulated compared with the HFD 
group. These findings suggest nucleotides in the fermentation product of 
GCC-3 NT contributed to the hepatic lipid-lowering effect in zebrafish. 

The fish gastrointestinal tract is colonized by complex gutmicrobiota 
(Wong and Rawls, 2012). Previous studies have shown that gut micro
biota has a close connection with the growth, nutritional status, and 
immune system of the host fish and is easily changed by the environ
ment, diet, stress, and development of fish (Sullam et al., 2012; Xiong 
et al., 2019). In this study, feeding fish with GCC-3 NT significantly 
changed the autochthonous microbiota, with a lower relative abundance 
of Actinobacteria and higher Firmicutes abundance at the phylum level 
compared to the HFD group. The phylum Firmicutes contains Lactic acid 
bacteria, Enterococcus, Clostridium butyricum, and Bacillus, most of which 
are probiotics to benefit fish health by improving the growth, immunity, 
and disease resistance (Wang et al., 2019). In contrast, few genera in 
Actinobacteria were reported to be probiotics in aquaculture (Wang 
et al., 2019). These results suggested that the inclusion of GCC-3 NT 
improved the gut microbiota of zebrafish. The effect of dietary nucleo
tides on gut microbiota of fish has been reported in previous studies. For 
example, Guo et al. (2017) found that dietary nucleotides significantly 
changed the gut microbiota, with a dominant phylum Proteobacteria in 
the control group and Fusobacteria in the nucleotides group, which 
reduced the energy expenditure to improve the growth of zebrafish. 
Mehdinejad et al. (2018) demonstrated that the supplementation of 
nucleotides contributed to the intestinal colonization of Pedicoccus 
acidilactici in goldfish (Carassius auratus). Therefore, we speculate that 
nucleotides play an important role in the fermentation product of GCC-3 
NT in benefiting the gut microbiota of zebrafish, which needs more 
investigation. 

5. Conclusions 

Collectively, the present results indicate that dietary GCC-3 NT 
fermentation product did not affect the growth performance of zebra
fish. However, the inclusion of GCC-3 NT enhanced the non-specific 
immunity of zebrafish. In addition, GCC-3 NT reduced lipid deposition 
by up-regulating the expression of lipogenesis genes in the liver. 
Moreover, the supplementation of GCC-3 NT improved gut microbiota 
versus the HFD group. Our findings demonstrate that nuclease-treated 
GCC-3 fermentation product could be considered a functional feed ad
ditive that improves fish health. 
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