
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Theodor Alexander Holme, Torjei Emil Reime, Ola
Sagberg

Setup and Management of an E-
Learning Platform

Bachelor’s thesis in Digital Infrastructure and Cybersecurity
Supervisor: Olav Skundberg
May 2023

Theodor Alexander Holme, Torjei Emil Reime, Ola
Sagberg

Setup and Management of an E-
Learning Platform

Bachelor’s thesis in Digital Infrastructure and Cybersecurity
Supervisor: Olav Skundberg
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Setup and Management of an E-Learning Platform

Theodor Alexander Holme, Torjei Emil Reime, Ola Sagberg

CC-BY 2023-05-22

Abstract

In this thesis, we explore the complexities with scaling, securing, and maintaining
an e-learning platform, using Moodle as a case study. We identify potential bot-
tlenecks when scaling and discuss the trade-offs between cost, performance, and
complexity in different architectures. The study also examines redundancy and
security considerations, highlighting the importance of thorough documentation,
diligent monitoring, and the need for a tailored approach based on the size and
requirements of the institution. The thesis concludes with recommendations for
various scenarios, including user size and security concerns, along with potential
future research areas.

The thesis serves as a practical guide for organisations aiming to implement a
scalable, secure, and efficiently maintained e-learning platform.

Our findings suggest that a monolithic LAMP (Linux Apache MySQL PHP)
stack is suitable for fixed user size and minimal security concerns. For growing
user bases or heightened security needs, LAMP or LNMP (Linux Nginx MySQL
PHP) microservice stacks are recommended. We also propose that with proper
implementation, a highly available or redundant, distributed LAMP or LNMP stack
can perform comparably to non-redundant counterparts.

iii

Sammendrag

I denne avhandlingen utforsker vi kompleksitetene ved skalering, sikring og ved-
likehold av en e-læringsplattform, med Moodle som case-studie. Vi identifiserer
potensielle flaskehalser ved skalering og diskuterer avveiningene mellom kostnad,
ytelse og kompleksitet i ulike arkitekturer. Studien undersøker også redundans og
sikkerhetsvurderinger, fremhever viktigheten av grundig dokumentasjon, grundig
overvåking og behovet for en skreddersydd tilnærming basert på størrelsen og
kravene til institusjonen. Avhandlingen konkluderer med anbefalinger for ulike
scenarier, inkludert brukerstørrelse og sikkerhetsvurderinger, sammen med po-
tensielle fremtidige forskningsområder.

Avhandlingen fungerer som en praktisk veiledning for organisasjoner som øn-
sker å implementere en skalerbar, sikker og effektivt vedlikeholdt e-læringsplattform.

Våre funn tyder på at en monolittisk LAMP- (Linux Apache MySQL PHP) stakk
er egnet for fast brukerstørrelse og minimale sikkerhetsbekymringer. For voksende
brukerbaser eller økte sikkerhetsbehov anbefales LAMP- eller LNMP- (Linux Nginx
MySQL PHP) mikrotjeneste-stakker. Vi foreslår også at med riktig implementer-
ing kan en høyt tilgjengelig eller redundant, distribuert LAMP- eller LNMP-stakk
prestere sammenlignbart med ikke-redundante motparter.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
Glossary . xxi
1 Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Thesis topic . 2

1.3.1 Research questions (RQ) . 2
1.3.2 Partner organisation . 3

1.4 Scope and delimitation . 4
1.4.1 Scope . 4
1.4.2 Delimitation . 4

1.5 Thesis outline . 4
2 Theory . 7

2.1 General definitions and concepts . 7
2.1.1 Virtualisation . 7
2.1.2 Infrastructure as Code . 8
2.1.3 Containerisation . 8
2.1.4 Database . 9
2.1.5 Web server . 9
2.1.6 File storage . 9
2.1.7 Bastion/Entrypoint . 10

2.2 Scalability . 10
2.2.1 Vertical scaling . 11
2.2.2 Horizontal scaling . 11
2.2.3 Autoscaling . 11

2.3 Availability . 11
2.3.1 Redundancy . 11
2.3.2 Load balancing . 12

vii

viii T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

2.3.3 Backup . 12
2.3.4 High availability . 13

2.4 Monitoring . 15
2.4.1 TICK stack . 15

2.5 Security . 16
2.5.1 Securing Moodle . 17
2.5.2 Securing TICK stack . 18

3 Method . 19
3.1 Research methodology . 19
3.2 Analysis criteria . 20

3.2.1 Scalability . 20
3.2.2 Availability . 21
3.2.3 Security . 21
3.2.4 Monitoring and documentation 22

3.3 Outline of Stacks for Data Collection 23
3.3.1 Monolithic LAMP from Moodle Documentation 23
3.3.2 Microservice LAMP . 24
3.3.3 Microservice LNMP . 25
3.3.4 Microservice LAMP (MariaDB) 26
3.3.5 Microservice LAPP (PostgreSQL) 26
3.3.6 Microservice LAMP Redundant 26

3.4 Data collection . 27
3.5 Data analysis . 28
3.6 Reliability and validity of the results 30

4 Results . 31
4.1 Monolithic Stack . 31

4.1.1 Moodle docs LAMP . 31
4.2 Microservice Stacks . 36

4.2.1 LAMP . 36
4.2.2 LNMP . 41
4.2.3 LAMP (MariaDB) . 42
4.2.4 LAPP (PostgreSQL) . 45
4.2.5 Redundant LAMP . 47

5 Discussion . 51
5.1 Scalability . 51

5.1.1 Cost . 51
5.1.2 Performance . 52

5.2 Availability . 55
5.2.1 Cost . 55
5.2.2 Redundancy . 55

5.3 Security evaluation . 56
5.3.1 Monolithic . 57
5.3.2 Microservice . 57
5.3.3 Redundant . 58

Contents ix

5.3.4 Comparison . 58
5.4 Monitoring . 59

5.4.1 Monitoring and Documentation 59
5.5 Reliability and validity of the results 63

6 Conclusion . 65
6.1 Conclusion . 65

6.1.1 What bottlenecks occur when scaling the e-learning platform? 65
6.1.2 What considerations must be made to ensure redundancy

for the e-learning platform? . 65
6.1.3 How to secure the e-learning platform from unauthorised

access and other vulnerabilities? 66
6.1.4 What should be documented and monitored to maintain

and service the e-learning platform? 66
6.1.5 What are sensible choices of services and technologies for

implementing a scalable and secure e-learning platform? . . 67
6.2 Future work . 67

Bibliography . 69
A Code Appendix . 75

A.1 Monolithic Shell Setup Code . 75

Figures

2.1 The execution drivers and kernel features used by Docker (docker.com/docker-
execdriver-diagram.png) . 8

2.2 Traffic distribution with canary releases [29] 14
2.3 Canary deployment with Nginx with three user groups [30] 14
2.4 Flow diagram of the TICK-stack components [32] 15

3.1 Figure of monolithic LAMP configuration 24
3.2 Figure of microservice LAMP configuration 25
3.3 Figure of redundant microservice LAMP configuration including

LDAP server running FreeIPA to illustrate potential SSO method . . 27

4.1 Figure of monolithic LAMP stack small size test course creation time 32
4.2 Figure of monolithic LAMP stack medium size test course creation

time . 34
4.3 Figure of microservice LAMP stack small size test course creation

time . 37
4.4 Figure of microservice LAMP stack medium size test course creation

time . 39
4.5 Figure of microservice LNMP stack medium size test course creation

time . 41
4.6 Figure of microservice LAMP (MariaDB) stack medium size test

course creation time . 43
4.7 Figure of microservice LAPP stack medium size test course creation

time . 45
4.8 Figure of redundant LAMP stack medium size test course creation

time . 48

5.1 Figure of bar chart of VM-setups Estimated Cost Comparison by
Provider . 52

5.2 Graph of performance comparison on the medium size test 53
5.3 Graph of error percentage on the medium size test for all stacks . . 53
5.4 Graph of performance comparison on the small size test 54
5.5 Screengrab of InfluxDB dashboard for Monolithic Medium test course

creation and test . 59

xi

https://www.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png
https://www.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png

xii T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

5.6 Graph of performance comparison on the medium size test for all
stacks . 63

Tables

3.1 Monolithic LAMP Virtual Machine Specifications 24
3.2 LAMP Microservices Virtual Machines Specifications 25
3.3 Redundant LAMP Microservices Virtual Machines Specifications . . 27

4.1 Monolithic LAMP Virtual Machine Specifications 31
4.2 Monolithic LAMP Cost Estimate . 32
4.3 Monolithic LAMP JMeter Small Summary (30 users, 5 loops) 33
4.4 Monolithic LAMP JMeter Small Aggregate (30 users, 5 loops) 33
4.5 Monolithic LAMP JMeter Medium Summary (100 users, 5 loops) . . 34
4.6 Monolithic LAMP JMeter Medium Aggregate (100 users, 5 loops) . 35
4.7 LAMP Microservies Virtual Machines Specifications 36
4.8 Microservice LAMP Cost Estimate . 36
4.9 Microservice LAMP Cost Estimate . 37
4.10 Microservice LAMP Cost Estimate . 37
4.11 Microservice LAMP JMeter Small Summary (30 users, 5 loops) . . . 38
4.12 Microservice LAMP JMeter Small Aggregate (30 users, 5 loops) . . . 38
4.13 Microservice LAMP JMeter Medium Summary (100 users, 5 loops) 39
4.14 Microservice LAMP JMeter Medium Aggregate (100 users, 5 loops) 40
4.15 Microservice LNMP JMeter Medium Summary (100 users, 5 loops) 41
4.16 Microservice LNMP JMeter Medium Aggregate (100 users, 5 loops) 42
4.17 Microservice LAMP (MariaDB) JMeter Medium Summary (100 users,

5 loops) . 43
4.18 Microservice LAMP (MariaDB) JMeter Medium Aggregate (100 users,

5 loops) . 44
4.19 Microservice LAPP JMeter Medium Summary (100 users, 5 loops) . 45
4.20 Microservice LAPP JMeter Medium Aggregate (100 users, 5 loops) . 46
4.21 Redundant AWS Microservice LAMP Cost Estimate 47
4.22 Redundant GCP Microservice LAMP Cost Estimate 47
4.23 Redundant Azure Microservice LAMP Cost Estimate 48
4.24 Redundant LAMP JMeter Medium Summary (100 users, 5 loops) . 48
4.25 Redundant LAMP JMeter Medium Aggregate (100 users, 5 loops) . 49

xiii

Code Listings

5.1 Bash shell script snippet from haproxy_reverse.sh 62

A.1 Shell script for LAMP Monolithic stack automated setup and con-
figuration . 76

xv

Acronyms

AWS Amazon Web Services. xiii, 31, 47, 51, 52, 60

CA Certificate Authority. xxi, 9, 56

CD Continuous Delivery. 8

CI Continuous Integration. 8

CIA Confidentiality, Integrity & Availability. 17

CLI Command Line Interface. 60

CPU Central Processing Unit. 11, 20, 21, 32, 59, 62, 67, 68

csv Comma separated value. 28

DB Database. 1

DBMS Database Management System. xxi, 9

ETL Extract, Transform & Load. 16

GCP Google Cloud Platform. xiii, 31, 47, 51, 52

GDPR General Data Protection Regulation. 1

HOT Heat Orchestration Template. 23, 61

HTTP Hypertext Transfer Protocol. 18, 28, 29

HTTPS Hypertext Transfer Protocol Secure. 22, 28, 56, 57, 66

IaaS Infrastructure as a Service. 61

IaC Infrastructure as Code. 8, 61

IIS Internet Information Services. 9

IP Internet Protocol. 12, 28

xvii

xviii T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

ISP Internet Service Provider. 11

jmx JMeter test plan. 28

LAMP Linux Apache MariaDB PHP. xi, xiii, 43, 44, 52, 54

LAMP Linux Apache MySQL PHP. iii, v, xi, xiii, 19, 23–27, 31–40, 42–45, 47–49,
51–55, 60, 61, 65, 67

LAPP Linux Apache PostgreSQL PHP. xi, xiii, 19, 45, 46, 52, 63

LDAP Lightweight Directory Access Protocol. xi, 26, 27, 68

LMS Learning Management System. 1, 2, 4, 20, 30, 60

LNMP Linux Nginx MySQL PHP. iii, v, xi, xiii, 19, 41, 42, 52, 67

MITM Man-in-the-middle. 22

NTFS New Technology File System. 10

NTNU Norwegian University of Science and Technology. 1, 56, 60

OS Operating System. 8–10, 18, 21

PHP Hypertext Preprocessor. 17, 18, 23, 24, 56

PSU Power Supply Unit. 12

RAM Random Access Memory. 20, 21, 32, 68

SPOF Single Point of Failure. 11, 13, 57

SQL Structured Query Language. 9, 22

SSH Secure Shell Protocol. 22

SSL Secure Sockets Layer. 22, 56, 57

SSO Single Sign-On. xi, 26, 27, 68

TDD Test-Driven Development. 8

TI Telegraf, InfluxDB. 4, 62

TICK Telegraf, InfluxDB, Chronograf, Kapacitor. xi, 4, 15, 18

TLS Transport Layer Security. xxi, 9, 18, 25

Tables xix

VCS Version Control System. 8

VM Virtual Machine. 21, 22, 24, 26, 31, 41, 42, 47, 52, 54, 55, 63, 67, 68

XSS Cross-site scripting. 22

Glossary

Application Programming Interface An API is a set of rules and protocols that
allows different software applications to communicate with each other, en-
abling developers to access and use functionalities provided by another soft-
ware or service. 16

Certificate Authority A Certificate Authority (CA) is an entity that stores, signs,
and issues digital certificates [1] . 9

Database management system A Database Management System (DBMS) is a
collection of programs that manages the database structure and controls
access to the data stored in the database [2, p. 8]. 9

General Data Protection Regulation The General Data Protection Regulation is
a EU law on data protection and privacy in the EU and the EEA[3] . xvii

Lightweight Directory Access Protocol The Lightweight Directory Access Pro-
tocol is an open, vendor-neutral, industry standard application protocol for
accessing and maintaining distributed directory information services over a
network[4]. xviii

Load balancer A load balancer distributes incoming traffic between nodes with
the purpose of maximizing throughput, minimizing response time and pre-
venting single-resource overload. 12

Metadata Metadata is data about data, and provides a description of the data
characteristics and the set of relationships that link the data found within
the database [2, p. 8]. 9

Transport Layer Security A Transport Layer Security (TLS) is a cryptographic
protocol designed to provide communications security over a computer net-
work [5] . xviii, xxi, 9

xxi

Chapter 1

Introduction

1.1 Background

There are multiple choices of platforms within the field of e-learning, also known
as a Learning Management System (LMS), such as Blackboard Learn, Canvas LMS,
TalentLMS, Moodle LMS and 360Learning. Most of the e-learning platforms that
are in large use are proprietary and cloud-based, which limits the ease of use as
an internal platform and its customisation, especially in regards to choices for
the infrastructure stack used to host the platform. From this it is clearly a lot of
different choices when it comes to provider of a LMS.

Orange Business Services see the need for a LMS for internal use, and have
found the Open Source platform Moodle as an appropriate solution. Moodle as a
LMS has been implemented in different scenarios and use-cases such as Stack at
NTNU and as the Virtual Learning Environment at University of Greenwich1.

Moodle’s documentation provides recommendations on which technologies
to use and how to implement the platform. However, the actual implementation
and choice of technology are ultimately left to the system administrator[6]. Cer-
tain technologies, such as Oracle DB as a database, are highlighted in the docu-
mentation due to limited support and are therefore not recommended for use[7].
The documentation also includes a page on server clusters and a link to a high-
availability implementation featuring specific technology choices. The challenge
with these pages is that they do not justify the choice of technology, leaving it
unclear whether these choices are optimal[8].

There are a handful of research papers on Moodle, but they mostly pertain to
the usage of Moodle for learning, and not setup and maintenance of the infrastruc-
ture [9–11]. There are some papers on the security of Moodle [12–15], however
they mostly research the security of Moodle as an isolated application instead of
the underlying infrastructure or application of GDPR. Therefore, we aim for our
paper to contribute with thoughts around the underlying infrastructure when im-
plementing a LMS or become a foundation for future research.

1See: Page on Moodle at IT and Library services at University of Greenwich https://www.gre.
ac.uk/it-and-library/teach/moodle

1

https://www.gre.ac.uk/it-and-library/teach/moodle
https://www.gre.ac.uk/it-and-library/teach/moodle

2 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

1.2 Motivation

As technology advances, topics such as scalable infrastructure, redundancy, secur-
ity and monitoring will become increasingly crucial for businesses. Understanding
the most efficient ways of implementing these technologies could be vital for stay-
ing competitive, as well as for ensuring a continuous operation in the future. By
addressing a range of research questions in-depth, we aim to provide valuable
insights and findings that could serve as a foundation for further research or im-
plementation of similar technologies.

Our motivation for writing this thesis comes from our enthusiasm for examin-
ing emerging technologies in the context of digital infrastructure and e-learning
platforms. We find it rewarding to delve into the latest technological advance-
ments and explore their potential applications and impacts on various aspects of
business operations. By documenting our findings in this thesis, we intend to make
it easier for others to replicate a given infrastructure.

1.3 Thesis topic

There exists an overwhelming amount of technologies and approaches for imple-
menting digital services, each with its own trade-offs. Businesses have distinct
criteria and requirements for operations, which necessitates making informed
choices concerning scalability, availability, security, and monitoring. Navigating
this vast landscape of technologies and evaluating the available options can be
a challenge for any business, both big and small. Identifying the most suitable
choices that fulfils an organisation’s specific needs and requirements is a critical
aspect of successful technology adoption, and it is therefore the basis of our thesis
topic.

The choice of thesis topic is based around the assignment presented by Orange
Business Services. The platform must be able to meet the needs of the business in
regards to factors like scalability, availability, security and monitoring. Identifying
services and technologies for the LMS implementation that covers these criteria
is the basis for our thesis. Based on this, we have defined our thesis topic as the
following:

What are sensible choices of services and technologies for implementing a scalable
and secure e-learning platform?

1.3.1 Research questions (RQ)

From this thesis topic, we have derived four research questions, each of them ad-
dressing the crucial factors of scalability, availability, security, and monitoring.
While the thesis topic explicitly mentions scalability and security, we consider
availability and monitoring as closely related aspects that are essential to the
implementation of a successful e-learning platform. Therefore, including these
factors in our research questions is well justified.

Chapter 1: Introduction 3

The following research questions will be used throughout our thesis, and we
provide an explanation for the inclusion of each question:

RQ1: What bottlenecks occur when scaling the e-learning platform?
As e-learning platforms experience an increasing number of users and re-

sources, it is essential to identify and address potential bottlenecks that could
impact the system’s performance and stability. Understanding these bottlenecks
will guide the selection of suitable technologies and services that ensure the plat-
form can handle the growing demand.

RQ2: What considerations must be made to ensure redundancy for the
e-learning platform?

Availability is a critical aspect of any digital service, especially in e-learning
platforms where users rely on uninterrupted access to resources and activities.
This research question explores the necessary considerations to ensure that the
platform remains accessible and resilient in the face of component failures or other
disruptions.

RQ3: How to secure the e-learning platform from unauthorised access
and other vulnerabilities?

Security is a top priority for any online service, and e-learning platforms are no
exception. With the rising number of cyber threats, it is crucial to ensure that the
platform is protected from unauthorised access and vulnerabilities. This research
question focuses on identifying the best practices and technologies to safeguard
the e-learning platform from potential security risks.

RQ4: What should be documented and monitored to maintain and service
the e-learning platform?

Effective monitoring and documentation play a significant role in ensuring
the smooth operation and maintenance of an e-learning platform. This research
question aims to identify the critical aspects that need to be documented and mon-
itored to facilitate efficient system management, troubleshoot issues, and optimise
performance.

By answering these research questions, we aim to provide a comprehensive
understanding of the essential factors to consider when implementing a scalable
and secure e-learning platform.

1.3.2 Partner organisation

This project was conducted in cooperation with Orange Business Services AS,
formerly known as Basefarm2 AS before the 12th of September 2022. Orange
Business Services is a global and local cloud services provider. In addition, they
work with digitising older IT-solutions to modern cloud based solutions through
consulting. As a company in growth, Orange Business Services have seen an in-
creased need for a dedicated learning platform for internal training of technicians.

2See: https://cloud.orange-business.com/no/basefarm-er-blitt-orange-business-services/

https://cloud.orange-business.com/no/basefarm-er-blitt-orange-business-services/

4 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

1.4 Scope and delimitation

1.4.1 Scope

The project is focused on the implementation of Moodle as an infrastructure. The
choice of relevant technologies based on theory and analysis is essential for finding
the most efficient infrastructure solution. The project delves into technologies that
could affect the small- and medium scale deployment of Moodle, such as web
servers, databases, load balancing, monitoring, backup and security.

Furthermore, we explore the various ways to automate the set up process of
infrastructures, and how to test their performance.

1.4.2 Delimitation

Due to our resources tied to the project, all virtualisation will happen within NTNU
Gjøvik3’s OpenStack implementation, SkyHiGh4. Therefore, we will discuss differ-
ences between virtualisation platforms only in theory.

We have little control over the network layer on this platform, so the network
will primarily be covered in theory and in discussions.

The e-learning platform we will be using throughout the project is Moodle LMS
as that was a part of the specifications set out by the project commissioner, Orange
Business Services. Delving into other potential platforms would not only take too
much time, but it would also not make it possible to test out as many different
technologies and configurations as needed to answer our research questions.

Additionally, every Moodle implementation requires both an operating system
and the use of PHP. In this context, we will focus exclusively on Linux as the
operating system. This decision is driven by Linux’s open-source nature and its
status as a standard within development platforms. Since Moodle is coded in PHP,
it is essential to utilise web servers that offer PHP support.

Furthermore, Orange Business Services encouraged us to explore and utilise
the TICK-stack for monitoring as this was previously a bachelor project they is-
sued5.

Lastly, we will limit ourselves to the use of TICK or TI stack, and will therefore
not explore other monitoring or data visualisation solutions such as Prometheus
with Grafana or Splunk.

1.5 Thesis outline

Chapter 1: Introduction In the introduction we will provide the background,
topic, research questions and scope for our report.

3See: https://www.ntnu.no/gjovik
4See: https://www.ntnu.no/wiki/display/skyhigh
5See: previous bachelor thesis for Orange Business Services, TICK-stack by Adrian Lund-Lange

and Vetle Tangen Moen, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2617774

https://www.ntnu.no/gjovik
https://www.ntnu.no/wiki/display/skyhigh
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2617774

Chapter 1: Introduction 5

Chapter 2: Theory Covers the theory behind the technologies we use and serves
as an introduction to the different technologies.

Chapter 3: Method Lays out our analysis criteria, infrastructure setups and cov-
ers the steps we take to conduct our research.

Chapter 4: Results Covers the performance, cost and reliability results we gathered
from our tests.

Chapter 5: Discussion Covers a reflection and general discussion of our results
in regards to both theory and method, in order to see what the result say and what
we interpret from them.

Chapter 6: Conclusion Concludes our research and findings, aims to answer
the thesis- and research questions, and share our thoughts on future work that
can build upon our paper.

Chapter 2

Theory

This chapter discusses the theoretical groundwork for deciding the relevant tech-
nologies used in our infrastructure solutions. The chapter begins with essential
definitions and concepts, including descriptions of technologies used in our solu-
tions. We also summarise the central topics presented in our research questions;
including Scalability, Security, Availability and Monitoring.

2.1 General definitions and concepts

2.1.1 Virtualisation

Virtualisation creates a simulated, or virtual, computing environment as opposed
to a physical environment [16]. This allows for multiple virtual instances to run on
a single physical machine, and maximises resource utilisation and reduces hard-
ware costs, as fewer physical machines are required to host a larger number of
virtual instances. Virtualisation enables resources to be easily allocated or de-
allocated as needed, providing flexibility and scalability to the IT infrastructure.
Additionally, virtualisation technology facilitates the use of cloud based comput-
ing, allowing organisations to access computing resources on demand over the
internet.

As the concept of virtual memory started to emerge, it allowed the program-
mer to free themselves from physical memory constraints of the past. Conversely,
the emergence of virtual machines gave users the illusion of a dedicated machine.
In reality, users were sharing a single real machine with other users, creating a
layer of abstraction between the users and the underlying processors [17, p. 686-
687]. Virtual machines allow the continued use of existing applications running
under the control of different operating systems on a new platform. As several sys-
tems can be supported simultaneously and isolated from each other, this creates
a level of fault isolation, where a failure in one virtual machine does not affect
other instances [17, p. 686-687].

7

8 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

2.1.2 Infrastructure as Code

Infrastructure as Code (IaC) is an approach of managing and automating infra-
structure through definition files and thorough validation [18, p. 5]. This approach
to infrastructure automation minimises the need for physical hardware config-
uration; conversely, consistency and repeatable routines are emphasised. Infra-
structure as Code introduces key tools normally used in data management and
software development. This includes a Version Control System (VCS), automated
testing libraries, Test-Driven Development (TDD), Continuous Integration (CI),
and Continuous Delivery (CD) [18, p. 5].

2.1.3 Containerisation

The next step from virtualisation is a more application focused and centred ap-
proach to IT, a more containerised way of looking at the world of applications,
where applications have their run time environments packaged together with the
application data and deployed as a containerised object [19, p. 313]. Containers
are in many ways lightweight or reduced virtual machines. They no longer rely on
an entire machine being simulated and by extension it is not fully possible to run
an entire OS as a container. This also has its draw backs: They will be less feature
heavy since most containers rely on calls to the underlying OS to function.

Figure 2.1: The execution drivers and kernel features used by Docker
(docker.com/docker-execdriver-diagram.png)

Until we got Docker, one of the most popular framework for containers, they
were considered unwieldy and less than optimal solutions. Docker itself relies on
already existing technology that exists in Linux’s kernel for containerisation and

https://www.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png

Chapter 2: Theory 9

looking at figure 2.1 one can see how drivers and kernel features as utilised by
docker [19, p.313-314]. Another popular framework which started as an orches-
trator built on top of Docker is Kubernetes.

2.1.4 Database

Databases can be defined as a shared, integrated computer structure that stores
a collection of end-user data, as well as Metadata [2, p. 8]. Through the usage of
databases, this collection of data can be stored, accessed, managed and updated
through the use of a Database management system.

The data can be used in a variety of applications, ranging from small-scale per-
sonal projects to large enterprise-level systems. There are a wide range of database
management systems that fit the needs of both small- and large businesses. For
example, open source DBMS such as MySQL and PostgreSQL are free and easier to
use than large-scale vendor DBMS products as they stick to the basic fundamental
database principles [2, p. 12]. Likewise, a more robust, durable and expensive
solution would be to use Microsoft SQL server or Oracle. In conclusion, it is im-
portant to chose a DBMS that supports the scale and functionality of a specific
project.

2.1.5 Web server

Web servers are pieces of software that are usually run on servers to provide a
framework and method to serve clients with content, such as HTML-based web
pages, over the internet by way of requests via HTTP [17, p. 227-230]. Most mod-
ern web servers lets you encrypt connections through the use of Transport Layer
Security (TLS) where you use a tool such as Let’s Encrypt, which is a nonprofit Cer-
tificate Authority (CA), to provide the necessary certificate for the TLS encryption
[20].

Some examples of modern web servers are Microsoft Internet Information Ser-
vices (IIS), Apache2 and Nginx. Of these Microsoft IIS is created by Microsoft for
running on Windows OS, server or client, while Apache2 and Nginx are open-
source servers that run on most OSes be it Windows, Linux-based or Mac. In terms
of popularity Nginx is currently the most popular web server, trailed by Apache
and followed after that by Cloudflare server, with the market share of Nginx some-
where between 26%− 35% according to statistics on W3Techs and Netcraft [21,
22].

2.1.6 File storage

File storage is in general the process of storing files on a device be that a server,
computer or external media like a DVD. In regards to the topics discussed in this
thesis file storage more relates to the storage of files and media in a central re-
pository on a server or multiple servers where it can be accessed either directly or

10 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

by an application. This storage uses a file system to define how the data is stored
and if it has any form of encryption inherent to itself [23].

Further file storage can be expanded to go across multiple devices or servers
creating a file cluster. Some file systems have clustering as an inherent property
whilst most require some form of third-party application or method to be connec-
ted as a cluster. There are also some differences when it comes to a file system
functioning on or with different OSes as they might have some form of propriet-
ary way of being implemented. An example of a proprietary file system would be
New Technology File System (NTFS) that was first introduced in Windows NT as
a replacement for the FAT file system used on earlier Windows systems built on
DOS, such as Windows 95 [24, p. 163-197].

The alternative to using a proprietary system would be an open source system,
which would be the standard case when working with a open source OS such as a
Linux-based OS. An example of an open source file system that would be regularly
found on Linux-based OSes would be EXT4 which is the newest iteration of a series
of journaling file systems for Linux [25].

2.1.7 Bastion/Entrypoint

A bastion host is defined by R. Shirey as: "A strongly protected computer that is in
a network protected by a firewall (or is part of a firewall) and is the only host (or
one of only a few) in the network that can be directly accessed from networks on the
other side of the firewall." [26, p. 33]. The primary objective of a bastion setup is to
safeguard sensitive resources from unauthorised access, which is accomplished by
enforcing controlled access to the network or system. As such, bastion setups are
utilised in a variety of applications and other use-cases, including the protection
of internal networks from external threats, and controlling access to cloud-based
resources. A bastion can be configured to provide a variety of security features,
such as multi-factor authentication, encryption, and intrusion detection.

2.2 Scalability

Scalability refers to the ability of an IT infrastructure to accommodate growth or
increased demand without experiencing performance degradation or downtime.
In other words: scalability is an indicator of how well a system can handle in-
creased load after modification or addition of components [27, p. 83]. A scalable
infrastructure can handle increased traffic, users, or applications, and can be eas-
ily expanded to meet changing business requirements. Scalability can be achieved
through the use of technologies such as load balancing, clustering, and virtualisa-
tion. In general, there are two ways of scaling a system: vertically, and horizontally
[27, p. 83].

Chapter 2: Theory 11

2.2.1 Vertical scaling

Vertical scaling, or scaling up, is when you add resources to a single component in
a system, for example additional CPUs or memory to a server [27, p. 83]. Vertical
scaling is usually done when a quick fix is needed to handle a performance issue,
or when spikes in workload is not satisfied by the current performance levels of a
system [28]. If the additional resources are not needed long term, it is sensible to
scale down for the sake of cost saving.

2.2.2 Horizontal scaling

In contrast to vertical scaling, where resources are added to a single component,
horizontal scaling focuses on adding additional components to the infrastructure.
As a result, the complexity and upper limit of the infrastructure capacity increases
[27, p. 83]. With horizontal scaling, data is partitioned such that each partition
can be scaled to fit the needs of the infrastructure, therefore avoiding the physical
hardware limits of vertical scaling. In theory, this results in a system that can be
scaled almost without any limit [28].

2.2.3 Autoscaling

Autoscaling is the process of automatically and dynamically matching resources
to meet the performance requirements of a system, so that performance levels can
be continuously maintained [28]. Autoscaling removes the need for a system op-
erator to make frequent decisions about adding resources to increase performance
when needed, or removing unused resources to reduce costs when additional per-
formance is no longer needed. Autoscaling is most frequently used when scaling
horizontally, because adding or removing resources can be done without applic-
ation downtime. Contrary to this, autoscaling vertically would make the system
temporarily unavailable while it is being redeployed [28].

2.3 Availability

In today’s day and age, highly integrated systems are expected to have low down-
time. Outages are quickly noticed and may have business-impacting consequences.
However, 100% availability is not possible [27, p. 50]. Therefore, we want to get
as close as possible to perfect availability. This can be accomplished by employ-
ing multiple different techniques such as running backups of data and creating
redundancy in power, networking and web servers.

2.3.1 Redundancy

Redundancy is the duplication of critical components in a single system, to avoid a
SPOF [27, p. 61-64]. For instance, a company that wants high availability through
redundancy may utilise two independent power lines, independent ISPs, on-premise

12 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

power generator, double or triple PSU servers and similar measures to duplic-
ate infrastructure. For some large companies such as Google, Microsoft, Apple or
Amazon it may be necessary to have large data centres on different continents
in order to account for local disasters, such as power outages, typhoons or earth-
quakes, impacting their operations.

2.3.2 Load balancing

A Load balancer can be utilised to spread incoming traffic across multiple web
servers to equalise the load. In addition, it can analyse information about the web
traffic source to identify if the traffic should be redirected to a specific place. For
instance, if the load balancer notices incoming traffic from a known IP address it
can route the traffic to an intranet that is reserved for employees. Furthermore,
new capabilities and updates can be tested through the use of canary releases
which sends a small portion of users over to a testing environment with new fea-
tures to gather data on a smaller size of customers to gather data and identify
bugs and issues.

2.3.3 Backup

Backups refer to the process of creating and storing duplicate copies of data or
information that can be used to restore or recover the original data in case of
data loss or damage. The purpose of backups is to protect against accidental or
deliberate data loss, such as due to hardware failures, software errors, hacking,
or natural disasters [17, p. 448].

Backups can be performed in different ways, such as full backups (where all
data is copied), incremental backups (where only changes made since the last
backup are copied), or differential backups (where only changes made since the
last full backup are copied) [17, p. 450-452]. Backups can be stored in various
media, such as external hard drives, cloud storage, or tape backups.

Backups are important for several reasons, including:

• Disaster recovery: Backups enable organisations and individuals to recover
from data loss due to natural disasters, cyber-attacks, hardware failures, or
human errors.
• Business continuity: Backups help ensure that critical data is available and

accessible, which is essential for the smooth functioning of business opera-
tions.
• Compliance: Many industries are required by law to keep backups of their

data, such as healthcare organisations, financial institutions, and govern-
ment agencies.
• Reassurance: Backups provide reassurance to individuals and organisations

by offering a sense of security, knowing that their valuable data is safe-
guarded and can be recovered in the event of data loss.

Chapter 2: Theory 13

2.3.4 High availability

High availability is a term to describe a system or infrastructure that is designed
to minimise downtime and ensure that services and applications are accessible
to users at all times. This is achieved through implementing redundancy, fault
tolerance, and fail-over mechanisms that help eliminate Single Point of Failure
and ensure service continuity. By having high availability, critical business applic-
ations and services are always available to users, which is essential for business
operations and customer satisfaction. In addition, high availability infrastructure
is often designed to be scalable, which means that additional resources can be
added without disrupting the existing infrastructure or services [17, p. 588-591].

High availability is important for minimising downtime and associated costs,
including lost revenue, productivity, and customer loyalty. It is also often used
as part of a disaster recovery strategy to ensure that services can be quickly and
seamlessly recovered in the event of a disaster or outage. In addition, high avail-
ability provides peace of mind to both individuals and organisations, knowing that
their critical data and services are always available and can be recovered quickly
in the event of an issue. Overall, high availability is crucial for maintaining busi-
ness continuity, minimising downtime and costs, and providing a positive user
experience.

Canary releases

Canary releases or canary deployment is a popular software development practice
that allows teams to test new features or changes on a small subset of users before
rolling them out to the entire user base [29]. This approach provides valuable
feedback on the performance, functionality, and user satisfaction of new features
or changes, which helps ensure that they meet user needs and are bug-free. A
simple visualisation of how canary releases function can be seen in figure 2.2.

The success of canary releases largely depends on the selection of users for the
initial test group. Teams should consider selecting users who are representative
of the broader user base and who are willing to provide feedback on the new
feature or change. The feedback gathered during the canary release can be used
to fine-tune the new feature or change before it is rolled out to a wider audience.

Furthermore, to ensure that canary releases are efficient, teams can introduce
additional testing environments and testers. For instance, a development team can
create multiple testing environments to ensure that the new feature or change is
tested in a variety of conditions. Additionally, testers can be brought on board to
provide valuable feedback on the new feature or change, which can help improve
the quality of the product. This can be seen in figure 2.3.

14 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Figure 2.2: Traffic distribution with canary releases [29]

Figure 2.3: Canary deployment with Nginx with three user groups [30]

Chapter 2: Theory 15

2.4 Monitoring

Monitoring refers to the continuous and automated collection, analysis, and re-
porting of performance metrics and other relevant data from various system com-
ponents, applications, and services. The main purpose of monitoring is to detect
and diagnose any potential issues or anomalies in real-time or near real-time, al-
lowing IT teams to respond promptly and proactively before they turn into critical
problems.

2.4.1 TICK stack

TICK stack, which stands for Telegraf, InfluxDB, Chronograf, and Kapacitor, is
a popular open-source monitoring platform that offers a comprehensive set of
tools and functionalities for data collection, storage, monitoring, visualisation,
and alerting[31]. The figure 2.4 presents an overview of the TICK components
and how they interact.

Figure 2.4: Flow diagram of the TICK-stack components [32]

Telegraf

Telegraf is a server-based agent for data collection, designed to gather data from
a variety of sources, including system- and application metrics, logs, and sensors

16 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

[33]. Telegrafs modular architecture supports a wide range of plugins to allow
data collection from various sources, including the following:

• Input - Metrics collection from systems, services and 3rd party s
• Process - Sanitizes data by transforming, decorating, and filtering metrics
• Aggregate - Creates aggregates, for example mean, minimum and max-

imum from collected metrics
• Output - Write to a variety of services, datastores, and message queries

Telegraf is used in conjunction with InfluxDB to collect and store time-series data
for the purposes of monitoring, analytics, and alerting [33].

InfluxDB

InfluxDB is a database for collecting, storing, processing and visualising time series
data, more specifically successive measurements from the same source to track
changes over time. Purpose-built from the ground up with a focus on performance;
InfluxDB is capable of handling a high amount of query load [34].

Chronograf

Chronograf is the open source web application of the stack, and is used to visu-
alize monitoring data and create automation and alerting rules. Key features of
Chronograph include: Infrastructure monitoring, data virtualisation, alert man-
agement, database management and query management [35].

Kapacitor

Kapacitor is an open source data processing framework that makes it easy to create
alerts, run Extract, Transform & Load (ETL) jobs and detect anomalies [36]. With
Kapacitor, you can use custom logic or user-defined functions to process alerts with
dynamic thresholds, match metrics for patterns, compute statistical anomalies,
and perform specific actions based on these alerts, like dynamic load rebalancing
[37].

2.5 Security

Security is a critical aspect of IT infrastructure, encompassing a range of measures
to protect systems, data, and networks from unauthorised access, theft, or dam-
age. Security measures can include access controls, authentication, encryption,
firewalls, intrusion detection and prevention systems, and security monitoring.
Security must be designed into the IT infrastructure from the ground up, and
must be continually reviewed and updated to ensure that both new and existing
threats are addressed.

In the field of cyber security; a set of fundamental attributes, namely the de-
sirable characteristics of a secure system, has been defined [38, p. 37]. Originally,

Chapter 2: Theory 17

the CIA triad consisting of confidentiality, integrity and availability were discussed
as core attributes of cyber security. Although the CIA triad is still relevant to this
day, the advancements in technology and evolution of security threats has led to
additional attributes being added retrospectively, namely authenticity and non-
repudiation.

• Confidentiality is about preventing unauthorised access to sensitive inform-
ation, such that only parties with sufficient authorisation can access certain
data[38, p. 37]. This includes protecting data at rest, in transit and in use.
Confidentiality can for example be achieved by making use of symmetric
and asymmetric encryption, access control, and data masking.
• Integrity means that the exchanged data must remain unchanged between

sender and receiver, neither by accident or by malicious intent[38, p. 38].
Integrity can for example be achieved by making use of digital signatures
or hashing.
• Availability refers to the balance of restrictions put on the system measured

against the utility of the system. In essence, availability is achieved when
resources and information are accessible in a timely and reliable manner
[38, p. 38]. Additionally, configuring the systems to withstand failures is
also a key component of availability. Availability can be achieved by making
use of load balancing, redundancy, and disaster recovery planning.
• Authenticity assures that the identities of the involved parties in an ex-

change are who they claim to be, ensuring that the cyber space actors matches
their claimed physical reality. [38, p. 38]. This includes protecting against
impersonation, spoofing and other types of identity fraud. A common tech-
nique used to establish authenticity is two-factor authentication.
• Non-repudiation relates to attributing actions to the actors who perform

them, including auditable logging of actions, so that the actors would find
it difficult to refute their actions or activities [38, p. 38]. Non-repudiation
helps protect against for example replay attacks and message tampering.

2.5.1 Securing Moodle

When it comes to the security of the Moodle application, it is imperative to con-
sider all the components included in the system. These components, namely the
operating system, web server, PHP, database server, and Moodle application, can
be exploited by malicious actors seeking unauthorised access to sensitive data
[12, p. 8]. Consequently, it is crucial to implement various robust security meas-
ures for each component in order to prevent security breaches and minimising
security risks in general.

By configuring the following basic elements, you can add crucial security to
one or more servers that run the various components:

• Firewall, by blocking access to all ports except the ones we want to expose
to the public [12, p. 24]

18 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

• Passwords, by making use of complex passwords to avoid dictionary attacks
[12, p. 28-29].
• Patching, to keep the OS and packages up to date to minimise the risk of

security threats [12, p. 27-28].
• Apache configuration, for example by configuring ServerTokens so that

HTTP request/response headers does not expose additional information
about what software it uses [12, p. 28-29].
• MySQL configuration, for example changing default password of super-

user, removing the sample database or restricting remote access to the data-
base [12, p. 32].
• PHP configuration, by enabling error logging, disabling exposure of PHP

information in server headers, and disabling errors displayed in the web
browser [12, p. 34].

2.5.2 Securing TICK stack

When securing TICK stack against potential threats, encryption should be enabled
to protect sensitive data in transit between clients and the TICK stack components.
With a TLS certificate, clients will be able to verify the authenticity of the InfluxDB
server [39]. Furthermore, enabling TLS, authentication and authorization on the
Kapacitor- and Chronograf server will add a further layer of security for the TICK
stack [40] [41]. Chronograf authentication and role-based access controls can also
easily be configured with for example OAuth 2.0 [41].

Chapter 3

Method

In this chapter, we delve into our research approach for this thesis. The process
begins with gathering relevant literature, which we use to establish analysis cri-
teria for collected data. Following this, we set up various infrastructure models,
ensuring we adjust only one component at a time. We will run performance tests
on all models, monitor and collect relevant data for our research, and analyse and
discuss these finding. Finally, we answer our research questions and conclude the
thesis topic.

Step-by-step method process

1. Literature and criteria for analysis
2. Setup of infrastructure models
3. Run performance tests and gather data
4. Experiment findings and analysis
5. Discuss findings and validity
6. Conclude

3.1 Research methodology

We will configure multiple setups of Moodle with varying combinations of web
servers, databases, load balancers and server architecture. The different stack
configurations to be explored include monolithic LAMP, microservice LAMP, mi-
croservice LNMP, microservice LAMP with MariaDB, microservice LAPP with Post-
greSQL, and a redundant microservice LAMP setup. Once these configurations are
in place, we will run stress tests and security tests to gather data on their perform-
ance, security, cost, and ease of setup and usage. While some metrics may not be
quantifiable, such as ease of use or setup, they can still be discussed and evaluated
in our overall analysis.

To conduct stress tests, we will simulate various levels of user activity, ranging
from light to heavy workloads, and measure the response times, throughput, and
resource utilisation for each configuration. For security evaluation, we will note

19

20 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

down the issues we encounter, list possible weaknesses, and highlight potential
measures that can be implemented to counteract the vulnerabilities.

3.2 Analysis criteria

In this section, we outline the criteria that we will use to evaluate the various
components that are part of the Moodle configurations we produce. We will have
a look at an outline for each of the research questions where some criteria will
come again in other questions whilst some are unique to a question.

3.2.1 Scalability

The first research question we have, as explained in section 1.3.1, is "What bot-
tlenecks occur when scaling the e-learning platform?". We will primarily look into
two criteria:

Firstly, we will investigate the cost of scaling the infrastructure up or down to
meet various demands. Secondly, we will focus on the observed performance at
different scales. We will examine how the various components and configurations
of Moodle LMS can handle increasing workloads, the components’ capacity for
horizontal and vertical scaling, as well as the efficiency of resource utilisation.

Cost

The cost of scalability often comes from expansion or upgrades of hardware. This
can come from increasing the number of CPUs, increasing RAM or increasing stor-
age space. Whether this be physical or virtual resources it still impacts the util-
isation of other resources. Therefore, if a service runs with a lot of overhead you
have unspent resources that might be better used elsewhere.

In addition, the costs associated with the choice of cloud hosting environment,
as well as external consulting services for initial setup, are factors that we explore.
We estimate and compare the associated costs. Would a higher initial or long-term
cost have a noticeable improvement in regards to performance and security?

Performance metrics

In regards to scalability, the performance metrics that we are primarily interested
in gathering are usage of CPU, RAM and storage. We want to track these compon-
ents and associated values over time to get a representative average and compare
resource usage under heavier load. Furthermore, the number of requests can be
used to identify heavy traffic in order to automatically scale the infrastructure
accordingly.

We recognise that network throughput might become a limiting factor when
scaling the infrastructure. In theory it’s possible to throttle the network through-
put and compare the results to non-throttled performance. However, we are not

Chapter 3: Method 21

in control of the underlying network infrastructure of SkyHiGh, so any network
impact between different hosts wouldn’t be affected. As we are not in control of
the underlying network we would have to artificially limit the network interfaces
in the OS of each VM we use.

3.2.2 Availability

The second research question from section 1.3.1 is "What considerations must be
made to ensure redundancy for the e-learning platform?". To answer this ques-
tion the criteria that needs to be looked at are the general cost to ensure this
redundancy, what impact it has on performance and its availability.

We will assess the ability of the selected configurations to provide high avail-
ability and minimise downtime, considering factors such as redundancy, fail-over
support, and load balancing.

Cost

The cost of ensuring availability is a critical factor to consider. Redundancy, which
involves creating backup systems or duplicating services, can significantly increase
the overall cost. For example, the increase in cost can depend on the number of
redundant components in the setup, as well as the chosen service provider for the
redundant setup. The trade-off between the desired level of redundancy and the
associated expenses must be considered.

Performance metrics

In regards to availability the performance metrics, we are interested in measuring
and logging up- and downtime, number of database requests and number of web
server requests. Furthermore, we are interested in finding threshold values for
our system so that alerts can be triggered and scaling can be automated in order
to maintain high availability. This might for instance be prolonged load at 90%
capacity for CPU, RAM or storage.

Redundancy

Redundancy leads to reliability in the case of a failure, however not all components
of an infrastructure has the same need for redundancy. Therefore, it is important
to investigate if the redundancy of a setup will lead to a sufficient return on invest-
ment. Alternatively, would a lower level of redundancy lead to more performance
without sacrificing the availability of the system?

3.2.3 Security

The third research question from section 1.3.1 is "How to secure the e-learning
platform from unauthorised access and other vulnerabilities?". We will not gather

22 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

data in order to answer this question, but we will discuss our experience with
setup, differences in safety measures between monolithic, distributed and redund-
ant stacks, and create a safety evaluation based on this.

Accessibility

Due to our bastion VM setup, there will only be a singe point of entry for accessing
the web servers, databases, and load balancers. The connections in-between the
Virtual Machines utilise SSH, where the storage of public and private key pairs
are integral for the systems security. Furthermore, password security is important
since services such as databases, InfluxDB and Moodle give complete adminis-
trator privileges. Moodle will only be reachable through the reverse proxy on Port
443 (SSL) and the reverse proxy has no other connections except for hardened
SSH connection from Bastion host.

Although we mention accessibility as an analysis criteria for the security of the
system, it is more a matter of explaining and evaluating the level of accessibility
we have chosen for our setup, as mentioned above. A stricter level of accessibility
would positively impact the security of the system at the cost of user experience.
Conversely, a lower level of accessibility would have the opposite effect.

Vulnerability

To assess the security of an implementation of Moodle and the surrounding infra-
structure, several approaches can be taken. One common method is to conduct
vulnerability scanning and penetration testing to identify weaknesses in the sys-
tem and potential attack vectors. This can include testing for common vulnerabil-
ities such as SQL injection, XSS scripting, and session hijacking, as well as testing
for more advanced attacks such as MITM attacks and HTTPS downgrade attacks.

Another approach is to conduct a code review of the Moodle codebase and
associated plugins, looking for any potential security flaws that may have been
introduced during development. This is beyond the scope of this bachelor, but
similar research has been done back in 2017. Their findings concluded that "By
analyzing all the results that were discovered during the security study of Moodle,
Moodle 2.6 is not secure as an out of the box product." [42]. There have since
been new updates to Moodle so some threats or attacks might have been patched,
however this emphasises the importance of keeping software up to date.

3.2.4 Monitoring and documentation

The final research question from section 1.3.1 is "What should be documented
and monitored to maintain and service the e-learning platform?". Here we will
be looking more closely at what documentation already exists, how good it is,
what should be added to make it better, and what can be automated in terms of
monitoring.

Chapter 3: Method 23

Ease of setup and use

Ease of setup and use will be split into two sections. Firstly, we will evaluate the
complexity of the initial setup process, including the installation and configura-
tion of necessary components. We will consider factors such as required technical
expertise, the need for manual intervention, and the availability of pre-built con-
figurations or templates. Secondly, we will assess the user experience and the sim-
plicity of managing the system, including configuration, deployment, and ongoing
administration. This will involve evaluating the intuitiveness of the availability of
documentation and the level of community support.

Automation

We will investigate the extent to which automation can be used to simplify and
streamline set up and management tasks in order to improve efficiency. We will
explore the availability of automated tools for tasks such as deployment, monitor-
ing, backups, and scaling. Since some technologies might sacrifice simplicity for
performance, automation can contribute to reducing the difficulty of setup and
other tasks whilst reaping the performance rewards. The technologies we will
utilise and look at are OpenStack Heat Orchestration Template (HOT), Ansible,
Puppet, Docker, Kubernetes and native shell scripts. Furthermore, we will look at
using these in a combination with each other.

All our scripts are gathered on a GitLab project and can be accessed through
this url https://gitlab.stud.idi.ntnu.no/obs-bachelor/obs-bachelor

3.3 Outline of Stacks for Data Collection

When answering the research questions, our research topic and implementing
our method we will be creating a multitude of different implementations using
different technologies and services, or stacks, which we can record data from and
detail our experience with. We will primarily change one component to keep a
consistent basis for comparison. We will implement one monolithic stack which
will act as a baseline. By changing one component at a time we can isolate the
differences in performance to the single change that was made. If we were to
change multiple components between the implementations it would be difficult
to attribute performance changes to one choice or technology.

3.3.1 Monolithic LAMP from Moodle Documentation

The most basic monolithic stack that we will be testing is derived from Moodle’s
own documentation and will serve as our baseline. This stack is based on the
standard LAMP structure, which utilises Linux as the operating system, Apache as
the web server, MySQL as the database provider, and PHP for running server-side
code. As discussed earlier in the delimitation chapter, the components Linux and
PHP will remain constant. Linux will not be changed, as it is generally the most

https://gitlab.stud.idi.ntnu.no/obs-bachelor/obs-bachelor

24 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

used operating system for web service stacks, and PHP will not be changed, as
Moodle is built using PHP and would require re-coding for deployment using an
alternative language, such as JavaScript or Python.

A monolithic implementation involves running all services together on the
same physical or Virtual Machine. This approach has its advantages, such as being
easier to set up and only requiring a single VM or computer. However, there are
also disadvantages, including the difficulty in upgrading a service or component
without restarting the entire system. Additionally, it may be challenging to modify
parts of the stack, as everything is integrated into one solution, as opposed to
having the abstraction that microservices provide.

Table 3.1: Monolithic LAMP Virtual Machine Specifications

VM vCPU vRAM [GB] Storage [GB]
monolithic 8 16 40

Figure 3.1: Figure of monolithic LAMP configuration

3.3.2 Microservice LAMP

This implementation adopts the same basic stack from the previous subsection
on monolithic stacks, but applies it as a microservice architecture rather than a
monolithic one. A general point to make when creating this basic LAMP stack
is that we use MySQL which is second most popular database, according to DB-
Engines, closely following Oracle Database which has been the most popular for
multiple years[43, 44].

Chapter 3: Method 25

To achieve this, we will have a reverse proxy as our first server. This server will
be the only one directly exposed to the internet on ports 443 and 80. Port 80 will
redirect to 443 to ensure secure connections running over TLS. We will be using
HAProxy for our reverse proxy as it implements this in the same way as the main
alternative, Nginx. Following this, we will have a web server running Apache2
and hosting the Moodle installation. These servers will be accessed by the reverse
proxy where it redirects the traffic internally over whatever port we choose to run
the Apache service on, but the default would be port 80. Lastly, there will be a
database server running MySQL.

Table 3.2: LAMP Microservices Virtual Machines Specifications

VMs vCPU vRAM [GB] Storage [GB]
web server 4 4 40
database 2 8 40

load balancer 2 4 40
bastion 2 4 40

Figure 3.2: Figure of microservice LAMP configuration

3.3.3 Microservice LNMP

In this implementation, we have exchanged the Apache web server for a Nginx
web server, which passed Apache as the most popular web server in 2019 and is
the most popular web server at the time of this writing[45]. This is to keep as
many variables as possible constant, while exploring the performance difference

26 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

between the web servers. Furthermore, we will look at the built-in security fea-
tures and also evaluate the ease of setup and use. This stack requires the same
amount of resources and will therefore use the same VM setup as the previous
stack 3.2 and the same infrastructure configuration 3.2.

3.3.4 Microservice LAMP (MariaDB)

In this implementation, we return to our baseline stack with Apache, but ex-
changed the MySQL database for a MariaDB database. This is done to explore
the differences between the database technologies, and highlight changes in per-
formance, security and simplicity of setup and use, while keeping other variables
unchanged. Although MySQL is still the most known database language by de-
velopers[46], it is on a slow downwards trend[44].

3.3.5 Microservice LAPP (PostgreSQL)

In this implementation, we again use the LAMP stack as our basis, but we substi-
tute the MySQL database for a PostgreSQL database. Similarly to MariaDB, Post-
greSQL is also on the rise[44] and was in 2022 ranked as the second most known
database technology in a survey from Stack Overflow only 3.26% behind[46].

3.3.6 Microservice LAMP Redundant

In this implementation, we make the basic LAMP stack redundant by including an-
other set of web servers and databases. Moreover, we are interested in finding the
differences in performance when doubling the working components. Conversely,
due to the increase of Virtual Machines, the infrastructure becomes more complex,
and we will examine how this impacts both security and setup complexity.

We hypothesise that this implementation will work better under heavy load
since the load balancer can work in a round-robin fashion to equalise the load
between the web servers. However this comes at a financial and resource cost
which we will explore further in the discussion chapter.

As we want to implement a SSO, we developed a diagram representing the
redundant microservice stack, as seen in figure 3.3. This combined illustration is
essential as we could potentially utilise this redundant stack to deploy the SSO,
employing LDAP via FreeIPA.

Chapter 3: Method 27

Table 3.3: Redundant LAMP Microservices Virtual Machines Specifications

VMs vCPU vRAM [GB] Storage [GB]
web server 1 4 4 40
web server 2 4 4 40
database 1 2 8 40
database 2 2 8 40

load balancer 2 4 40
bastion 2 4 40

Figure 3.3: Figure of redundant microservice LAMP configuration including LDAP
server running FreeIPA to illustrate potential SSO method

3.4 Data collection

We follow the Moodle documentation for tests with JMeter [47]. Within the Moodle
admin pages under the developer tab there is a Make test course page [48]. From
here there are several options of sizes of the test course ranging from extra small
(XS) to extra extra large (XXL). For our purposes the most relevant and interest-
ing sizes are the small (S) and medium (M) sizes. The small course size simulates
30 users and runs through each section 5 times per user, resulting in 150 calls.
In addition it fills up the cache and primes the system by running the first test an
additional round in the beginning. The Medium course size simulates 100 simul-
taneous users for 5 rounds and is similar to a typical course at a large institution.
This is useful for testing performance under normal conditions [48].

28 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

With a test course created, we have to create a test plan. For that we use
the JMeter test plan generator within Moodle [49]. It can be found in the Site
Administration block under the Development tab by clicking on the Make JMeter
test plan page. From here we select our test course and decide the size of the test
plan. This choice decides the number of queries run and simulated users. This
choice ranges from extra small (XS) to extra extra large (XXL), however for our
purposes small (S) or medium (M) suffices. Furthermore, we want to check the
"update users password" checkbox in order to generate new passwords for the
simulated users. This will generate an additional csv file with the new passwords
which will be added into JMeter when running the tests.

After the JMeter test plan generator has completer we are left with two files a
"testplan_xxx_xxx.jmx" and a "users_xxx_xxx.csv" file. To start JMeter make sure
you have Java installed and run the ApacheJMeter.jar file from within the bin
folder. This will open the JMeter GUI. Then you go to file and click open and
locate the jmx file generated from Moodle. When that is done you will get content
in the left side menu. From here you want to open up the Warm-up site, click on
the default site request and enter the protocol as HTTP or HTTPS, and server name
or IP. Then you want to select the generated users csv file under "csv users data".
You want to repeat this step for the Moodle Test. The final step before you run is
to add Listeners by right clicking on the Test Plan, going to Add and selecting the
Aggregate and Summary Report. Then you just press the green play icon on the
top toolbar and the test will run. You can monitor the results as they are running
by clicking the aggregate or summary report in the left side menu [47].

3.5 Data analysis

In order to analyse the data we need an understanding of the information we
gather. From the summary test in JMeter we get the following fields:

• Label
• # Samples
• Average
• Min
• Max
• Std. Dev.
• Error %
• Throughput
• Received KB/sec
• Sent KB/sec
• Avg. Bytes

And from the aggregate test we get these fields:

• Label
• # Samples
• Average

Chapter 3: Method 29

• Median
• 90% Line
• 95% Line
• 99% Line
• Min
• Max
• Error %
• Throughput
• Received KB/sec
• Sent KB/sec

As we can see the fields "Label,# Samples,Average,Min,Max,Error %,Through-
put,Received KB/sec,Sent KB/sec" overlap between the tests and since both tests
run in parallel the overlapping fields give the same results.

Label consists of the names of the simulated actions that are run during the
tests. These are the following labels present in both the summary and aggregate
tests:

• Frontpage not logged
• View login page
• Login
• Frontpage logged
• View course
• Logout
• View a page activity
• View course again
• View a forum activity
• View a forum discussion
• Fill a form to reply a forum discussion
• Send the forum discussion reply
• View course once more
• View course participants
• TOTAL

Most of these actions are quite straight forward, the first actions have to do
with the process of loading the login screen and logging in. When logged in it goes
through the actions that become available like viewing courses, forum activities,
creating a forum reply, sending said forum reply and viewing the course again
after it has been loaded once since some of it might be cached.

The not so obvious TOTAL field is a label for the data columns, it operates
differently depending on the data. It sums the # of Samples, It gives an average of
the average values, it gives a median of the median values, it sums the throughput,
it averages the Error %, it shows the min and max values, it gives the average
standard deviation and averages the 90/95/99% lines.

The # Samples field gives us the number of HTTP requests for each action.
This number is usually the number of users∗ rounds, but in order to fill the cache

30 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

and engage the system, JMeter runs a warmup round on the first 6 actions making
the number equal to users ∗ (rounds+ 1).

The average provides a general idea of the typical value, the median represents
the middle value, the min represents the smallest value, and the max represents
the largest value in the dataset.

The 90/95/99% Line provides information about the distribution of data by
indicating the value below which a certain percentage of the data falls. The stand-
ard deviation quantifies the variability or spread of data points from the mean,
giving insights into the overall dispersion of the dataset.

Error % indicates the percentage of failed requests, throughput measures the
rate of work processing, Received/Sent KB/sec represent the data transfer rates,
and Avg. Bytes gives insights into the average size of data units or payloads in the
system.

With a better understanding of the data we will gather we want to analyse the
data. This will be done by comparing values, representing the data visually and by
contextualising the data. We will visualise the data through Microsoft Excel and
highlight key values.

3.6 Reliability and validity of the results

To ensure that our results are generated in a reliable and valid manner, we will
use reputable technologies like JMeter for testing, which is widely adopted by
industry professionals. To account for potential sources of error, we will consider
the impact of testing software on system resources and conduct multiple tests
to average out results and minimise the effect of outliers. Furthermore, we will
adhere to best practices to ensure that our results are easily reproducible and
comparable to existing benchmarks and theories.

There are some factors outside our control that will affect the results, such as
running this on SkyHiGh instead of on bare metal. Other factors that affect the
results that is outside of our control is the use of a network we do not control so
data going to or from the servers can not be closely regulated.

By following this methodology, we aim to provide a comprehensive and reli-
able comparison of various Moodle LMS and monitoring configurations, enabling
organisations to make informed decisions when implementing these solutions.

Chapter 4

Results

In this chapter we are going to present the cost estimates and performance results
from our tests and visualise our findings. In places where the results are equivalent
we will acknowledge this and move on. For instance, since some of the stacks build
upon each other and require the same resources the associated costs stay the same.

JMeter provides two types of test results: Summary and Aggregate Reports.
Both reports display test statistics such as response time and error rate, with results
measured in milliseconds. The TOTAL field in these reports provides additional
statistics such as a calculated average, median, and the extremal points such as
maximum and minimum.

In addition, these tests can be simulated for a specified amount of users. For
the monolithic LAMP stack and microservice LAMP stack, we have chosen to run
both the small- and medium tests, which simulates 30 and 100 consecutive users
respectively. For the other stacks, we found it sensible to only run the medium
tests.

4.1 Monolithic Stack

4.1.1 Moodle docs LAMP

Cost estimate

Based on the previously mentioned monolithic setup specifications:

Table 4.1: Monolithic LAMP Virtual Machine Specifications

VM vCPU vRAM [GB] Storage [GB]
monolithic 8 16 40

It is not possible to match the exact Monolithic LAMP virtual machine spe-
cifications with available virtual machines in AWS, GCP and Azure. Therefore, we
approximate the most similar Virtual Machines (VMs) available in the cloud to

31

32 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

the mentioned specifications, emphasising the amount of vCPU’s over vRAM and
storage.

Table 4.2: Monolithic LAMP Cost Estimate

Provider Instance Storage [GB] Estimated monthly cost [USD]
AWS: EC2 c6g.2xlarge 40 EBS $213 [50]

GCP: Compute Engine e2-standard-8 40 Persistent Disk $220 [51]
Azure: Virtual Machine A8 v2 80 Temporary storage $680 [52]

Additionally, setting up a monolithic Moodle environment may require pro-
fessional assistance in the form of consultants. This would depend on what kind
of expertise already exists within the organisation. For Orange Business Services,
setup and installation of a Monolithic Moodle environment could be handled by
their internal operations team. However, a local school or university wishing to
set up Moodle for the first time would require external assistance.

The cost of a consultant can vary widely depending on their experience, re-
gion, and scope of work, but a reasonable estimate would be between $75 to
$150 per hour. The number of hours required would depend on the complexity of
the setup. For this approximation, we can assume it would take 20 hours to set up
the monolithic infrastructure and Moodle installation. Therefore, the estimated
consulting- and setup costs are between $1,500 to $3,000 (one-time cost) 1

Performance results

Figure 4.1: Figure of monolithic LAMP stack small size test course creation time

1Based on wages for Moodle and infrastructure consultants from upwork: https://www.upwork.
com/search/profiles/?q=moodle

https://www.upwork.com/search/profiles/?q=moodle
https://www.upwork.com/search/profiles/?q=moodle

Chapter 4: Results 33

Table 4.3: Monolithic LAMP JMeter Small Summary (30 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 180 278 249
2 View login page 180 116 17

3 Login 180 1080 289
4 Frontpage logged 180 419 45
5 View course 180 382 81
6 Logout 180 352 46
7 View a page activity 150 334 44
8 View course again 150 334 68
9 View a forum activity 150 497 48
10 View a forum discussion 150 503 181
11 Fill a form to reply a forum discussion 150 510 74
12 Send the forum discussion reply 150 277 45
13 View course once more 150 338 38
14 View course participants 150 314 37
15 TOTAL 2280 412 254

Table 4.4: Monolithic LAMP JMeter Small Aggregate (30 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 923 1302 185 1503 0.19
2 0.0% 140 189 112 235 0.19

3 0.0% 1762 1963 972 2016 0.18
4 0.0% 494 515 420 522 0.19
5 0.0% 521 736 364 873 0.19
6 0.0% 437 459 353 481 0.17
7 0.0% 396 425 332 566 0.17
8 0.0% 399 805 324 839 0.17
9 0.0% 578 625 495 631 0.17
10 0.0% 830 921 467 922 0.17
11 0.0% 628 637 506 696 0.17
12 0.0% 349 378 276 429 0.17
13 0.0% 399 428 340 429 0.17
14 0.0% 376 424 310 449 0.17
15 0.0% 952 1544 354 2016 2.00

34 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Figure 4.2: Figure of monolithic LAMP stack medium size test course creation
time

Table 4.5: Monolithic LAMP JMeter Medium Summary (100 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 600 226 46
2 View login page 600 116 12

3 Login 600 1036 234
4 Frontpage logged 600 427 46
5 View course 600 442 94
6 Logout 600 365 37
7 View a page activity 500 316 82
8 View course again 500 403 86
9 View a forum activity 500 504 113
10 View a forum discussion 500 957 452
11 Fill a form to reply a forum discussion 500 729 266
12 Send the forum discussion reply 500 325 38
13 View course once more 500 339 70
14 View course participants 500 342 41
15 TOTAL 7600 464 304

Chapter 4: Results 35

Table 4.6: Monolithic LAMP JMeter Medium Aggregate (100 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 264 285 223 1217 0.19
2 0.0% 137 151 115 198 0.19

3 0.0% 1648 1843 954 2106 0.18
4 0.0% 507 613 419 728 0.18
5 0.0% 656 786 417 1087 0.18
6 0.0% 421 528 359 603 0.16
7 0.0% 458 630 292 1153 0.17
8 0.0% 526 723 387 1347 0.17
9 0.0% 654 870 472 1495 0.17
10 0.0% 1666 2185 895 2870 0.17
11 0.0% 1214 1374 665 1454 0.17
12 0.0% 392 471 320 601 0.17
13 0.0% 415 566 328 1324 0.17
14 0.0% 397 491 338 828 0.17
15 0.0% 1051 1611 374 2870 2.00

This performance summary contains the results of JMeter stress tests conducted
on a Moodle e-learning platform running on a monolithic LAMP stack. The me-
dium test simulates 100 consecutive users and their interactions with the platform,
such as viewing the front page, logging in, viewing courses and activities, parti-
cipating in forums, and logging out. Meanwhile, the small test simulates the same
interactions, although only for 30 consecutive users. The datasets provide insight
into the performance of the platform under load, specifically focusing on the aver-
age and max response times (in milliseconds), and the standard deviation values.
The number of samples, average response time and standard deviation values are
presented in the summary tables 4.3 and 4.5. Additionally, the datasets contains
error percentages, 95 and 99 percentiles, median and max response times, as well
as throughput for each interaction. These values are found in the aggregate tables
4.4 and 4.6.

There are several notable performance indicators worth considering in these
datasets. For instance, the "course creation" time shows a significant difference
between the small test and medium test. As illustrated in figures 4.1 and 4.2, the
course creation time in the small test, depicted in Figure 4.1, is considerably faster
at 50.7 seconds compared to the 235.7 seconds recorded in the medium test, as
shown in Figure 4.2.

When looking at the medium test 4.5, the average response time (in milli-
seconds) for each interaction ranges from 116ms for viewing the login page to
1036ms for logging in, indicating that the login process takes the longest time
to complete. This can also be observed in the small test 4.3, only with a slightly
higher average on logging in at 1080ms.

The maximum response times for interactions are noticeable higher for the

36 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

medium test compared to the small test, as seen in the tables 4.4 and 4.6. These
values are also reflected in the standard deviation values, which measure the vari-
ability of response times. In this case, the highest standard deviation is observed
in the "View a forum discussion" interaction, suggesting that the response times
for this interaction are less consistent compared to others.

The error percentage column in the datasets indicates that there were no errors
encountered during the tests, which is a positive sign for the stability of Moodle
running on a monolithic LAMP infrastructure. Throughput, which is measured in
requests per second, is a useful metric for evaluating the platform’s capacity to
handle user requests. In both the small- and medium tests, the overall throughput
was approximately 2.00 requests per second in total.

4.2 Microservice Stacks

4.2.1 LAMP

Cost estimate

Based on the previously mentioned microservices setup specifications:

Table 4.7: LAMP Microservies Virtual Machines Specifications

VMs vCPU vRAM [GB] Storage [GB]
web server 4 4 40
database 2 8 40

load balancer 2 4 40
bastion 2 4 40

Table 4.8: Microservice LAMP Cost Estimate

Provider Service Instance Estimated monthly cost [USD]
AWS Web server c6g.xlarge $106
AWS Database t4g.large $50
AWS Load balancer t4g.medium $25
AWS Bastion t4g.medium $25
AWS Storage 4 x 40GB EBS $13

- - - $219 [50]

Chapter 4: Results 37

Table 4.9: Microservice LAMP Cost Estimate

Provider Service Instance Estimated monthly cost [USD]
GCP Web server e2-highcpu-4 $80
GCP Database e2-standard-2 $54
GCP Load balancer e2-medium $27
GCP Bastion e2-medium $27
GCP Storage 4 x 40GB Persistent Disk $18

- - - $206 [51]

Table 4.10: Microservice LAMP Cost Estimate

Provider Service Instance Estimated monthly cost [USD]
Azure Web server A4 v2 $282
Azure Database D2as $161
Azure Load balancer D2ls v5 $156
Azure Bastion D2ls v5 $156
Azure Storage 4 x 64GB Premium SSD $64

- - - $819 [52]

A microservice infrastructure would also require help from external consult-
ants. We are assuming the same price as before, between $75 to $150 per hour.
We estimate roughly 40 hours to set up the microservice infrastructure, doubling
the estimate of the monolithic setup. Consequently, the estimated consulting- and
setup costs are between $3,000 to $6,000 (one-time cost).

Performance results

Figure 4.3: Figure of microservice LAMP stack small size test course creation time

38 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Table 4.11: Microservice LAMP JMeter Small Summary (30 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 180 186 16
2 View login page 180 118 9

3 Login 180 1057 225
4 Frontpage logged 180 409 37
5 View course 180 334 61
6 Logout 180 383 47
7 View a page activity 150 325 36
8 View course again 150 262 17
9 View a forum activity 150 477 40
10 View a forum discussion 150 461 176
11 Fill a form to reply a forum discussion 150 485 62
12 Send the forum discussion reply 150 300 35
13 View course once more 150 301 31
14 View course participants 150 295 41
15 TOTAL 2280 387 237

Table 4.12: Microservice LAMP JMeter Small Aggregate (30 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 217 228 183 276 0.19
2 0.0% 135 148 117 155 0.19

3 0.0% 1581 1680 971 1859 0.18
4 0.0% 477 495 400 538 0.19
5 0.0% 479 518 314 569 0.19
6 0.0% 466 487 377 504 0.17
7 0.0% 383 399 324 401 0.17
8 0.0% 296 326 260 351 0.17
9 0.0% 564 586 467 592 0.17
10 0.0% 776 876 435 876 0.17
11 0.0% 590 614 476 668 0.17
12 0.0% 358 371 296 390 0.17
13 0.0% 356 397 291 451 0.17
14 0.0% 354 419 283 570 0.17
15 0.0% 948 1451 331 1859 2.00

Chapter 4: Results 39

Figure 4.4: Figure of microservice LAMP stack medium size test course creation
time

Table 4.13: Microservice LAMP JMeter Medium Summary (100 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 600 234 27
2 View login page 600 116 11

3 Login 600 1115 359
4 Frontpage logged 600 500 111
5 View course 600 1811 2804
6 Logout 600 367 143
7 View a page activity 500 372 150
8 View course again 500 839 224
9 View a forum activity 500 1018 239
10 View a forum discussion 500 1127 514
11 Fill a form to reply a forum discussion 500 943 375
12 Send the forum discussion reply 500 388 147
13 View course once more 500 771 224
14 View course participants 500 468 131
15 TOTAL 7600 717 939

40 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Table 4.14: Microservice LAMP JMeter Medium Aggregate (100 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 265 306 233 642 0.19
2 0.0% 135 153 114 181 0.19

3 0.0% 1921 2150 985 2774 0.18
4 0.0% 640 741 472 1584 0.18
5 9.2% 10280 10391 750 10482 0.18
6 9.2% 527 672 375 1479 0.16
7 0.0% 512 1334 331 1550 0.17
8 0.0% 1235 1662 757 2066 0.17
9 0.0% 1406 1882 917 2377 0.17
10 0.0% 1955 2380 1124 2777 0.17
11 0.0% 1595 1818 926 2381 0.17
12 0.0% 519 1317 358 1405 0.17
13 0.0% 1124 1650 682 2232 0.17
14 0.0% 595 1419 452 1569 0.17
15 1.4% 1542 2381 530 10482 2.00

This performance summary highlights key findings from the JMeter stress tests
conducted on a Moodle e-learning platform using a LAMP microservices architec-
ture. Just like with the monolithic LAMP setup, we simulate 100 consecutive users
for the medium test, and 30 users for the small test.

The datasets reveal varying response times for each interaction. The slowest
interaction for the medium test 4.13, "View course," had an average response time
of 1811ms, which is a noticeable outlier. In the small test 4.11, the same interac-
tion only averages 334ms, making "Login" at 1057ms the highest average value.
The total average value of the medium test is 717ms, nearly double that of the
small test at 387ms. In regards to course creation times, the small test 4.3 is no-
ticeably faster at 55 seconds compared to the 268.3 seconds of the medium test
4.4.

The standard deviation values are much higher for the medium test 4.13, at
939.46, compared to the small test 4.11, at 237.20. This indicates that the medium
test response times are more varied and less consistent. This is also reflected in
the median and max response times. The median values give a clearer picture of
the central tendency, such as 682ms for "View course once more" and 985ms for
"Login". Additionally, maximum response times highlight the worst-case scenarios
experienced during the test, with notable examples like 10482ms for "View course"
and 2777ms for "View a forum discussion". It is worth noting that these values can
in some cases be outliers that pull the average in one direction.

Notably, some errors were encountered during the medium test, specifically in
the "View course" and "Logout" interactions, both with error percentages of 9.2%,
so investigating the root causes of these errors would be crucial for maintaining
platform stability and reliability. The errors could help explain why the max re-

Chapter 4: Results 41

sponse time value of "View course" is much higher than the other values in the
medium test.

4.2.2 LNMP

Cost estimate

Since the LNMP stack requires the same number of VMs at the same resource
level, the cost will be kept unaltered. We will therefore refer to the previous cost
tables 4.8. We assume that the consulting costs would be similar since Nginx is a
standard web server technology that does not require highly specialised expertise.

Performance results

Figure 4.5: Figure of microservice LNMP stack medium size test course creation
time

Table 4.15: Microservice LNMP JMeter Medium Summary (100 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 600 186 15
2 View login page 600 120 93

3 Login 600 1075 445
4 Frontpage logged 600 478 215
5 View course 600 2049 3231
6 Logout 600 1379 3401
7 View a page activity 500 363 144
8 View course again 500 911 356
9 View a forum activity 500 1062 314
10 View a forum discussion 500 1202 608
11 Fill a form to reply a forum discussion 500 932 383
12 Send the forum discussion reply 500 354 113
13 View course once more 500 864 274
14 View course participants 500 455 136
15 TOTAL 7600 822 1447

42 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Table 4.16: Microservice LNMP JMeter Medium Aggregate (100 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 206 222 185 384 0.19
2 0.0% 129 157 110 1138 0.19

3 0.0% 1666 2102 963 8046 0.18
4 0.0% 663 1454 426 3585 0.18
5 2.3% 11234 14330 948 14806 0.18
6 4.0% 10798 17354 325 19849 0.16
7 0.0% 527 1278 314 1408 0.17
8 0.0% 1470 1882 774 4053 0.17
9 0.0% 1613 2032 947 2578 0.17
10 0.0% 2319 2750 1177 3116 0.17
11 0.0% 1528 2088 877 2670 0.17
12 0.0% 479 608 319 1327 0.17
13 0.0% 1368 1883 817 2059 0.17
14 0.0% 649 1050 415 1479 0.17
15 0.5% 1634 10049 524 19849 2.00

This performance summary highlights key findings from the JMeter stress tests
conducted on a Moodle e-learning platform using a LNMP microservices architec-
ture. Unlike the previous stacks, where we tested for both 30 and 100 users, we
are only focusing on the medium tests for 100 consecutive users moving forward.
This is done to simplify the results for direct comparisons between stacks.

In the test summary table 4.15, the "View course" interaction exhibited the
longest average response time at 2049ms, whereas the shortest average response
time of 120ms was observed in the "View login page" interaction. The "Logout"
interaction demonstrated the greatest variability in response times, as shown by
its high standard deviation value. The course creation time of the medium test
mas measured at 434.4 seconds according to figure 4.5.

According to the test aggregate table 4.16, errors were detected in both the
"View course" and "Logout" interactions, with error percentages of 2.3% and 4.0%
respectively. These errors could help explain why the max response times, and
therefore other values as well, are much higher than the values of other inter-
actions. In addition, the maximum response times column showed a 8046ms re-
sponse time for "Login.", which is a sizeable outlier, especially considering there
were no errors detected for this interaction.

4.2.3 LAMP (MariaDB)

Cost estimate

The LAMP stack with MariaDB requires the same number of VMs at the same
resource level as the previous stacks. Therefore, the cost here will also be kept

Chapter 4: Results 43

unaltered. See the previous cost tables 4.8. Furthermore, we assume that the con-
sulting costs do not differ from the cost of a microservice LAMP stack of Moodle
since MariaDB does not require additional work compared to MySQL.

Performance results

Figure 4.6: Figure of microservice LAMP (MariaDB) stack medium size test
course creation time

Table 4.17: Microservice LAMP (MariaDB) JMeter Medium Summary (100 users,
5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 600 221 62
2 View login page 600 112 15

3 Login 600 1269 734
4 Frontpage logged 600 606 398
5 View course 600 3688 8459
6 Logout 600 348 177
7 View a page activity 500 412 207
8 View course again 500 895 274
9 View a forum activity 500 1198 369
10 View a forum discussion 500 1289 644
11 Fill a form to reply a forum discussion 500 1182 468
12 Send the forum discussion reply 500 318 231
13 View course once more 500 859 248
14 View course participants 500 424 155
15 TOTAL 7600 926 2567

44 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Table 4.18: Microservice LAMP (MariaDB) JMeter Medium Aggregate (100 users,
5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 238 254 220 1245 0.19
2 0.0% 124 138 111 429 0.19

3 0.0% 1964 5210 1076 7858 0.18
4 0.0% 757 1664 533 6288 0.18
5 0.0% 30303 34803 824 35245 0.18
6 0.0% 390 1354 320 1871 0.16
7 0.0% 542 1411 359 1605 0.17
8 0.0% 1400 1807 788 2668 0.17
9 0.0% 2067 2567 1085 4343 0.17
10 0.0% 2349 3032 1176 4394 0.17
11 0.0% 1971 2511 1113 4903 0.17
12 0.0% 447 1321 258 3367 0.17
13 0.0% 1202 1890 767 2454 0.17
14 0.0% 531 1388 397 1431 0.17
15 0.0% 1682 4394 574 35245 2.00

This performance summary highlights key findings from the JMeter stress tests
conducted on a Moodle e-learning platform using a LAMP microservices architec-
ture, with MariaDB as the database instead of MySQL. The tests were conducted
simulating 100 consecutive users to provide a medium load test.

Course creation time for the medium test was recorded at 393 seconds accord-
ing to figure 4.6.

As shown in Table 4.17, the response times for each interaction varied signific-
antly, with average values between 112ms and 3688ms for the "View login page"
and "View course" interactions respectively. The "View course" interaction also had
the highest maximum response time at 35245ms and the highest standard devi-
ation of 8459ms, both substantial outliers compared to other response times. The
total average response time for all interactions was 926ms, with a standard devi-
ation of 2567ms.

Table 4.18 provides a more detailed view of the distribution of response times.
When looking closer at the "View course" interaction, we can see it had the highest
95% Line and 99% Line values, indicating that 95% and 99% of the response
times for this interaction were less than or equal to these values respectively. This
interaction also had the highest median response time.

It was expected that the high values of the "View course interaction" could
have been caused by errors in the test, just like in previous stacks. However, no
errors were reported during the test.

Chapter 4: Results 45

4.2.4 LAPP (PostgreSQL)

Cost estimate

The infrastructure required for LAPP is identical to the previous stacks, therefore
the cost of cloud resources remains the same. See the previous cost tables 4.8. In
addition, we assume that the consulting costs remain the same as the microservice
LAMP stack of Moodle since PostgreSQL does not require much more setup.

Performance results

Figure 4.7: Figure of microservice LAPP stack medium size test course creation
time

Table 4.19: Microservice LAPP JMeter Medium Summary (100 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 600 329 81
2 View login page 600 192 102

3 Login 600 1407 246
4 Frontpage logged 600 717 152
5 View course 600 2014 2828
6 Logout 600 461 195
7 View a page activity 500 516 235
8 View course again 500 1006 341
9 View a forum activity 500 1244 327
10 View a forum discussion 500 1432 639
11 Fill a form to reply a forum discussion 500 1362 529
12 Send the forum discussion reply 500 416 179
13 View course once more 500 963 255
14 View course participants 500 567 191
15 TOTAL 7600 898 995

46 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Table 4.20: Microservice LAPP JMeter Medium Aggregate (100 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 421 437 314 1314 0.19
2 0.0% 199 288 182 1206 0.19

3 0.0% 1854 2306 1310 2831 0.18
4 0.0% 864 1692 690 1885 0.18
5 9.5% 10452 10541 976 10744 0.18
6 9.5% 592 799 483 2504 0.16
7 0.0% 665 1531 468 3547 0.17
8 0.0% 1732 2441 885 3525 0.17
9 0.0% 2041 2336 1129 4263 0.17
10 0.0% 2440 3097 1330 3977 0.17
11 0.0% 2187 2999 1242 4603 0.17
12 0.0% 529 1382 363 1550 0.17
13 0.0% 1352 1795 864 3993 0.17
14 0.0% 658 1548 526 1581 0.17
15 1.5% 1854 3105 707 10744 2.00

This performance summary highlights key findings from the JMeter stress tests
conducted on a Moodle e-learning platform using a LAPP microservices architec-
ture, with PostgreSQL as the database instead of MySQL. The tests were conducted
simulating 100 consecutive users to provide a medium load test.

As illustrated in the summary table 4.19, the interaction "View course" was
again a standout, exhibiting the highest average response time of 2014ms and a
standard deviation of 2828ms. On the other hand, the "View login page" interac-
tion showed the lowest average response time, which was 192ms. The total aver-
age response time across all interactions was 898ms, with a standard deviation of
995ms.

Table 4.20 provides more detailed statistics about the results. As usual, the
"View course" interaction stands out, with a max value of 10744ms. Both the "View
a forum activity" and "Fill a form to reply a forum discussion" max values were on
the high side, measuring at 4263ms and 4603ms respectively. When looking at the
95% and 99% lines for the "View course" interaction, 95% of requests completed
within 10452ms, and 99% of requests completed within 10541ms.

As previously observed in other stacks, there were errors detected in both the
"View course" and "Logout" interactions, with error percentages at 9.5% for both
interactions. Course creation time for the medium test was recorded at 486.7
seconds, as shown in figure 4.7.

Chapter 4: Results 47

4.2.5 Redundant LAMP

Cost estimate

A redundant microservice infrastructure would be more complex and require more
VMs. Based on the same consulting cost of $75 to $150 and expect the setup to be
more time intensive, it would be logical to estimate around 60 hours of consulting
work. Accordingly, the estimated consulting- and setup costs would be between
$4,500 to $9,000 (one-time cost).

Considering that the redundant setup would require an increase in VMs, we
have recalculated the costs for each provider, factoring in one additional web
server and database in the monthly cost.

Table 4.21: Redundant AWS Microservice LAMP Cost Estimate

Provider Service Instance Estimated monthly cost [USD]
AWS Web server 1 c6g.xlarge $106
AWS Web server 2 c6g.xlarge $106
AWS Database 1 t4g.large $50
AWS Database 2 t4g.large $50
AWS Load balancer t4g.medium $25
AWS Bastion t4g.medium $25
AWS Storage 6 x 40GB EBS $19

- - - $381 [50]

Table 4.22: Redundant GCP Microservice LAMP Cost Estimate

Provider Service Instance Estimated monthly cost [USD]
GCP Web server 1 e2-highcpu-4 $80
GCP Web server 2 e2-highcpu-4 $80
GCP Database 1 e2-standard-2 $54
GCP Database 2 e2-standard-2 $54
GCP Load balancer e2-medium $27
GCP Bastion e2-medium $27
GCP Storage 6 x 40GB Persistent Disk $27

- - - $349 [51]

48 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Table 4.23: Redundant Azure Microservice LAMP Cost Estimate

Provider Service Instance Estimated monthly cost [USD]
Azure Web server 1 A4 v2 $282
Azure Web server 2 A4 v2 $282
Azure Database 1 D2as $161
Azure Database 2 D2as $161
Azure Load balancer D2ls v5 $156
Azure Bastion D2ls v5 $156
Azure Storage 6 x 64GB Premium SSD $96

- - - $1294 [52]

Performance results

Figure 4.8: Figure of redundant LAMP stack medium size test course creation
time

Table 4.24: Redundant LAMP JMeter Medium Summary (100 users, 5 loops)

Label (all measurements in ms) # Samples Average Std Dev
1 Frontpage not logged 600 54022 57441
2 View login page 600 307 108

3 Login 600 52271 53251
4 Frontpage logged 600 55891 51487
5 View course 600 90243 54536
6 Logout 600 70669 57697
7 View a page activity 500 111521 47836
8 View course again 500 140999 46374
9 View a forum activity 500 167879 55840
10 View a forum discussion 500 207369 105304
11 Fill a form to reply a forum discussion 500 210005 103252
12 Send the forum discussion reply 500 3524 16163
13 View course once more 500 141934 68441
14 View course participants 500 107081 63326
15 TOTAL 7600 97263 88146

Chapter 4: Results 49

Table 4.25: Redundant LAMP JMeter Medium Aggregate (100 users, 5 loops)

Error % 95% Line 99% Line Median Max Throughput [KB/s]
1 0.0% 163375 192393 36392 241471 0.09
2 0.0% 460 529 309 1074 0.09

3 0.0% 147641 188258 33983 210838 0.08
4 0.0% 139489 183029 59991 216679 0.08
5 0.0% 174108 207344 100126 250174 0.08
6 0.0% 173281 197707 72717 230222 0.07
7 0.0% 181138 223291 114072 249146 0.07
8 0.0% 213244 238890 142695 259531 0.07
9 0.0% 252451 273919 172068 304337 0.07
10 4.2% 416070 464923 209312 489972 0.07
11 2.6% 422238 459721 217130 473571 0.06
12 2.6% 1895 112369 1076 145461 0.06
13 0.0% 239854 269715 155522 319092 0.06
14 0.0% 203342 226208 114844 237223 0.06
15 0.6% 250437 364275 93543 489972 0.88

This performance summary highlights key findings from the JMeter stress tests
conducted on a Moodle e-learning platform using a LAMP microservices archi-
tecture with added redundancy, doubling the working components of the archi-
tecture. The tests were conducted simulating 100 consecutive users to provide a
medium load test.

The redundant LAMP microservice architecture demonstrated significantly slower
performance compared to the previous configurations. A look at the summary
table 4.24 shows notably high average response times across all operations, ran-
ging from 307ms for the "View login page" interaction, to 210005ms for the "Fill a
form to reply a forum discussion" interaction. The substantially higher values are
also reflected in the total average and standard deviation, measuring in at 97263
ms and 88146ms respectively.

The Aggregate table 4.25 reveals that the 95% and 99% lines are high for
most interactions, with the exception of "View login page". The "Send the forum
discussion reply" interaction also measures a much lower 95% line, at 1895ms,
compared to its 99% line, at 112369ms. The "View a forum discussion" interaction
measures the highest max response time value, at a substantial 489972ms.

There were also some errors detected during testing. More specifically, the
"View a forum discussion" operation showed a high error rate of 4.2%. Other er-
rors include the "Fill a form to reply to a forum discussion" and "Send the forum
discussion reply" interactions, with error rates of 2.6%.

The course creation time was recorded at 571.3 seconds, as shown in Figure
4.8.

Chapter 5

Discussion

5.1 Scalability

5.1.1 Cost

In order to provide a comprehensive understanding of the cost of deploying Moodle
in different environments, we will analyse and discuss the results obtained from
the cost estimates for various infrastructure setups and providers, as presented in
Tables 4.2, 4.8, 4.9, 4.10, 4.21, 4.22, and 4.23.

Firstly, the monolithic LAMP stack, as a baseline, offers a straightforward and
simple setup, with the lowest initial consulting costs. Its estimated monthly costs
are approximately $213 for AWS, $220 for GCP, and $680 for Azure, as shown
in Table 4.2. While it has the advantage of being easy to set up and manage, the
monolithic architecture lacks flexibility and scalability, which may be an issue for
growing institutions or those with varying workloads.

As a more distributed and resilient architecture, the microservice LAMP stack
provide better fault tolerance and can be scaled independently based on individual
service needs. Microservices offers more flexibility and scalability, but its increased
complexity leads to higher consulting costs. The estimated monthly costs for this
setup are roughly $219 for AWS, $206 for GCP, and $819 for Azure, as presented
in Tables 4.8, 4.9, and 4.10. Interestingly, the monthly costs for AWS and GCP are
very similar, or in some cases even lower, than the monthly cost of a Monolithic
setup at the same providers. There are many possible explanations for this: mi-
croservice architecture could for example utilise resources in a better way than its
monolithic counterpart, leading to cost savings. Additionally, inaccuracies in our
estimates relating to instance types and required specifications might affect the
results.

Figure 5.1 presents an estimated cost comparison of the various architectures
across the different providers we have examined. As noted earlier, the monthly
costs for both AWS and GCP appear to be significantly lower than those of Azure,
regardless of the architecture in question.

51

52 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Figure 5.1: Figure of bar chart of VM-setups Estimated Cost Comparison by Pro-
vider

The alternative setups, including LNMP, LAMP with MariaDB, and LAPP with
PostgreSQL, have similar costs to their LAMP counterparts, since the number of
VMs and resources required are the same. The choice of web server or database
technology would primarily depend on the organisation’s preferences, technical
expertise, and specific requirements.

Lastly, the redundant microservice LAMP stack is designed for enhanced fault
tolerance and resiliency. Its estimated monthly costs are approximately $381 for
AWS, $349 for GCP, and $1,294 for Azure, as illustrated in Tables 4.21, 4.22, and
4.23. However, its increased complexity results in higher initial consulting costs.
This setup may be most suitable for organisations that require high availability
and are willing to invest in the additional infrastructure and setup costs.

5.1.2 Performance

This section provides a detailed evaluation of the performance of Moodle deploy-
ment configurations under various stress loads. We will review and discuss the
results obtained from the JMeter stress tests conducted on six architectural setups:
monolithic LAMP, microservice LAMP, microservice LNMP, microservice LAMP
(MariaDB), microservices LAPP, and redundant microservice LAMP. We aim to
highlight key performance differences across the configurations and gain insights
that could help with the selection of an optimal setup. The tests were conducted
using the JMeter tool, with the load profile set to medium, simulating 100 consec-
utive users. Additionally, small tests were conducted on the monolithic LAMP and
microservice LAMP architectures, giving us test results with varied infrastructure

Chapter 5: Discussion 53

scaling.

The following graphs compares the stacks performances. For the sake of read-
ability, we are excluding the results from the redundant LAMP setup in some of
the graphs.

Figure 5.2: Graph of performance comparison on the medium size test

Figure 5.3: Graph of error percentage on the medium size test for all stacks

54 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Figure 5.4: Graph of performance comparison on the small size test

The monolithic LAMP configuration performed the best out of all the stacks
on the medium tests. When looking at the figure 5.2, we can see that the average,
standard deviation, and median values of monolithic LAMP are lower than other
configurations. This suggests that, purely performance wise, ignoring other bene-
fits from a distributed microservice architecture, a monolithic LAMP configuration
is the way to go. The low latency of having all the components of the configura-
tion localised in the same server, in combination with the lower capacity of VMs in
microservice architectures, most likely contributed to this performance disparity.

The LAMP microservice configuration performed well in the medium tests, al-
though it is outperformed by the monolithic LAMP stack in regards to average,
standard deviation, and median values. Most notably, the standard deviation val-
ues are much higher for the microservice stacks, suggesting that the response
times are more varied and less consistent in comparison to the monolithic archi-
tecture.

The small tests revealed the opposite, with the microservice LAMP stack out-
performing the monolithic, although only slightly. As seen in the small test com-
parison graph 5.4, the average, standard deviation, and median values of mi-
croservice LAMP are consistently lower than its counterpart. Despite the result,
it is important to note that the test data could be affected by a range of factors,
which we will discuss further in the reliability and validity section. Nevertheless,
the results suggests that the capacity of microservice VMs are not a bottleneck in
the small tests.

Regarding the presence of test errors, only the monolithic LAMP and MariaDB
LAMP stacks avoided errors altogether, suggesting that these stacks could handle
medium load without issues. For the remaining stacks, most errors were concen-

Chapter 5: Discussion 55

trated around the same interactions, namely the "View course" and "Logout" op-
erations. We theorise that this is due to the "View course" interaction being too
heavy in regards to system stress, causing errors that follows in to the next inter-
action on the table. Nevertheless, the presence of errors could negatively impact
the overall system reliability and performance.

Lastly, the redundant LAMP microservice configuration demonstrated drastic-
ally slower performance compared to the other setups, as seen in the tables 4.24
and 4.25.The average response times across all operations were significantly higher,
and a few interactions reported errors, although interestingly on interactions that
have not reported any previous errors. These performance results reveal that even
though redundancy can provide increased availability and resilience, it may also
result in slower response times under medium load conditions, possibly due to
the overhead of managing and synchronising the redundant components.

5.2 Availability

5.2.1 Cost

A highly available Moodle deployment requires a redundant infrastructure to min-
imise the impact of failures and reduce downtime. Implementing redundancy res-
ults in an increase in the number of VMs, leading to higher monthly costs, as
shown in Tables 4.21, 4.22, and 4.23. Additional costs for monitoring, backup,
and disaster recovery solutions could also be factored in, as these tools are crucial
for maintaining high availability.

Downtime can have significant financial consequences, such as lost productiv-
ity, revenue, and potential damage to an organisation’s reputation. The microservice
architecture, due to its inherent fault tolerance and distributed nature, can help
reduce the likelihood and duration of downtime. By isolating failures and allow-
ing for independent scaling and maintenance of services, thereby reducing the
amount of downtime in total, microservices could lead to lower overall costs in
the long run.

Institutions with a large user base or those that rely heavily on Moodle may
find that the investment in a highly available, redundant microservice LAMP stack
is justified to minimise downtime and ensure consistent access to course materials.
For smaller organisations or those using Moodle for training purposes, a simpler
monolithic LAMP setup may suffice, with occasional downtime being an accept-
able trade-off for lower infrastructure and maintenance costs.

5.2.2 Redundancy

As seen in our results including redundancy can become costly due to the in-
crease in VMs. The same goes for high-availability. Each instance of Moodle has
their own requirements, budget, system resources, user scale and position within

56 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

the business layer. So what setups of Moodle should have redundancy and high-
availability?

A university like NTNU which has tens of thousands of students who depend
on the Moodle solution for some courses should have a scalable, secure, reliable
and highly available setup. They could in practice schedule server updates dur-
ing the nighttime, however this might impact international students or students
working night shifts.

A small local school who uses Moodle for student or teacher training and
courses might opt for an easy setup and may not have the same need for high
availability. It would still be important that the solution is operational under ex-
pected load, but fewer demands might be imposed for up-time.

A company delivering Moodle as a Service will have to tailor their solution to
their client, but their core business layers in the performance and ease of their
solution compared to businesses doing it themselves.

A company planning to use Moodle as tool for training internally would again
have different needs. Since Moodle is not an integral part in their core business op-
erations their reputation or finances would not take an impact from the Moodle
service having down-time. However, it might result in employees having their
training delayed or inconvenienced, which might in turn further down the line
impact them financially. Therefore, for a small to medium sized business imple-
menting redundancy may be insightful or technically rewarding, but not neces-
sary. It is unlikely that the investment cost will be leveraged by the increase in
availability. However, building a solid foundation, with a microservice approach,
would allow for the company to scale up their Moodle implementation if they ever
need a larger scale or need to implement further redundancy on specific services.

5.3 Security evaluation

When looking at the security for Moodle, one of the first thing that needs to be
ensured and kept up to date is the web server running the Moodle PHP application
itself.

Another step that will generally apply to all implementations of Moodle, ex-
cept for some isolated and internal implementations, would be to ensure the use
of HTTPS with a proper certificate from either a service such as Let’s Encrypt or
a more commercial Certificate Authority (CA). This, along with keeping software
updated, are both recommendations made by Moodle in their documentation[53].
HTTPS or SSL can help prevent attackers from intercepting and modifying this
data, even if they have network access. For instance, confidential data could be in-
tercepted by programs like Wireshark, where unencrypted content can be viewed
in plain text.

Additional security considerations, which we implemented, include the use of
a Bastion host with rules on the network and/or servers that only permit connec-
tions over certain ports from this host, such as over SSH. This can help mitigate
many potential security issues as we can restrict outbound connections to ports

Chapter 5: Discussion 57

80 and 443. When using HTTPS correctly, there should be no need to allow con-
nections over port 80, ensuring all connections are encrypted.

5.3.1 Monolithic

The monolithic setup poses several risks, including being a Single Point of Failure
(SPOF) and being vulnerable to ransomware attacks. In addition, those who opt
for a monolithic setup may not be as IT-literate and when following a guide forget
to change default passwords or configurations, increasing their vulnerability to
attacks.

To mitigate these risks, it is crucial to implement proper security measures such
as regularly updating software and changing passwords. Additionally, having data
backed up on a secondary machine is essential since backing up data on the same
machine would still leave the data vulnerable to ransomware attacks, disasters,
system failures or data corruption.

Updating a monolithic setup can be challenging since all components are
tightly coupled, making it difficult to update individual components without ex-
periencing downtime. This issue can lead to businesses being hesitant to update
their monolithic applications, leaving them vulnerable to security risks and other
issues.

5.3.2 Microservice

All the security measures mentioned above are essential for a microservice stack.
Since a microservice architecture typically involves multiple small services work-
ing together to perform a larger function, it is crucial to ensure that each service
is secure and protected against potential vulnerabilities.

Backing up data is particularly important in a microservice architecture, where
data is spread across multiple services. In the event of a security breach or data
loss, having backups can help ensure that critical data is not lost. A load balan-
cer can also be especially important for a microservice architecture, where traffic
may be distributed unevenly across services. By distributing traffic evenly, a load
balancer can help ensure that all services are operating efficiently and effectively.

The principle of least privileges is also critical in a microservice architecture, as
each service may be handling different parts of an organisation’s data. By limiting
access, the risk of data loss or unauthorised access is minimised. Similarly, using
strong administrator passwords can help ensure that only authorised personnel
can make changes to the system.

Finally, even if a microservice architecture is running purely on an intranet,
using HTTPS or SSL is still essential, as discussed previously. In a microservice
architecture, services are likely to communicate with each other over a network,
and this communication may involve sensitive or confidential data. Overall, im-
plementing these security measures is critical for a secure and robust microservice
architecture.

58 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

5.3.3 Redundant

A redundant microservice setup offers both benefits and challenges in terms of
security measures. One of the main advantages of redundant services is that they
help maintain the availability of critical functions during service failures or secur-
ity breaches. This prevents data loss or system downtime, both of which can have
severe security consequences.

However, redundant services may also expand the attack surface of a system,
potentially raising the risk of security breaches. For instance, if a service in a re-
dundant setup becomes compromised, the attack might propagate more readily
to other redundant services. Moreover, managing redundant services introduces
complexity, necessitating supplementary security measures like load balancers or
redundancy protocols.

To address these challenges, it is important to adopt security practices tailored
for distributed systems. For instance, conducting regular data backups across all
redundant services can help safeguard data even during an attack. Additionally,
implementing load balancing is essential for ensuring that all redundant services
operate optimally without being overwhelmed, which could expose them to at-
tacks.

5.3.4 Comparison

In a monolithic architecture, security measures tend to be more straightforward,
as all components of an application are combined into a single codebase. Backing
up data and securing the single codebase can often be achieved through a single
backup and security solution. Similarly, load balancing may not be as critical, as
there are no separate services to balance traffic across.

In a microservice architecture, security measures must be more nuanced and
complex. Backing up data may require multiple backup solutions to ensure that
all data across all services is protected. Load balancing is critical to ensure that
traffic is distributed evenly across all services. The principle of least privileges is
also more challenging to implement, as there are multiple services, each with its
own set of access requirements and privileges.

A redundant microservice setup can help ensure system availability in the
event of a service failure or security breach. However, redundant services can
also increase the attack surface of a system, potentially increasing the risk of se-
curity breaches. Managing redundant services can be more complex, requiring
additional security measures such as load balancers or redundancy protocols.

In terms of results, a monolithic architecture has the advantage of being a
simpler and more contained system, making it potentially easier to secure. How-
ever, it also means that a single vulnerability can compromise the entire system. A
microservice architecture allows for greater flexibility and scalability, but requires
more complex security measures to ensure the security of each individual service.
A redundant microservice setup can help ensure system availability, but requires
additional security measures to ensure that all redundant services remain secure.

Chapter 5: Discussion 59

In summary, each architecture has its own unique security challenges and re-
quirements. It is important to consider the potential impact of each architecture
on security measures and take appropriate steps to ensure that the system re-
mains secure. This may require additional security measures specifically designed
for distributed systems or redundancy protocols.

5.4 Monitoring

In this section, we discuss the monitoring, automation and documentation for the
e-learning platform with a focus on maintenance, as highlighted by our results.
We will focus on the ease of setup and use, as well as the potential for automation
when managing the platform.

Figure 5.5: Screengrab of InfluxDB dashboard for Monolithic Medium test course
creation and test

5.4.1 Monitoring and Documentation

Monitoring When performing our testing using JMeter test plans we were going
to use the TI-stack to provide extra data for how these tests affected the CPU,
Memory, Requests to the web server and Queries on the database. However, we
didn’t realise that the way we implemented the Telegraf agent with fetching its
configuration by way of the InfluxDB server required the terminal window to stay
open when executing and the configuration was not saved locally. We managed to
gather some data during our initial baseline testing, which can be seen in figure
5.5, however this data has a time skip when the SSH timed out and stopped the
Telegraf agent and we didn’t start Telegraf correctly when running our tests on
the different microservice implementations.

Documentation The documentation that is already available on Moodle, through
their own documentation pages1, covers for the most part only setting up Moodle
in a monolithic manner, which is how we implemented our LAMP monolithic
stack, as we mentioned in section 3.3.1. When it comes to available documenta-
tion for implementing Moodle with using microservices or in a high availability or

1See https://docs.moodle.org/

https://docs.moodle.org/

60 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

redundant manner they have some links to external sources where other people
have done this but in a very singular manner. An example of this is the linked
guide for setting up a highly available Moodle instance by several9s, which only
talks about implementing it using a specific cluster management platform, Cluster-
Control[54]. This way of implementing Moodle clustered might be a good way of
doing it but it requires the reader to understand much of how to change different
aspects to work in their setup and it isn’t a official Moodle guide so there is no
immediate way to tell if it will work correctly or if there are special considerations
that you have to take during the setup. In addition, there exists Docker images for
Moodle as Bitnami LMS provided by VMware on docker hub which we have not
explored, but for those who know Docker this might be a fine choice[55].

Ease of Setup and Use

Ease of Setup From our experience and results after setting up the different im-
plementations we have looked there are some that were easier and some that were
harder to implement. Specifically the LAMP monolithic stack, section 3.3.1, was
much easier as it is covered directly in the Moodle documentation as mentioned
previously when talking about documentation. On the opposite end was the setup
of the redundant LAMP Microservice stack, as seen in section 3.3.6, where we fol-
lowed to some extent the guide we mentioned in previously as it was linked from
the Moodle documentation. Since we didn’t run the cluster management platform
that they used we had to make different choices and had to make our own choices
on different aspects, in addition to this it was very hard to automate so this was
done entirely manually.

User Experience and System Management The user experience and simpli-
city of managing the system varied somewhat between the different implement-
ations, being easiest on our test using Ansible to setup the LAMP microservice
stack. On a larger view when including considerations for the infrastructure and
platform used for this it varies widely between providers, where we used NTNU’s
OpenStack solution SkyHiGh. As it appears to be a somewhat default OpenStack
solution it was easy to find general OpenStack documentation on how to perform
different actions such as setting up an internal network, provision hosts or add ex-
tra storage volumes. If instead we had used a different self-hosted cloud platform,
say built entirely on VMware ESXi, the user experience and system management
on the lowest level would be quite different and most likely more challenging. An-
other alternative, as we have mentioned before, would be to host it on a platform
such as AWS that has an entirely different user experience again. Some of these
experiences could be alleviated and be the same if we instead used Terraform to
handle provisioning instead of "native" CLI belonging to the used platform.

Chapter 5: Discussion 61

Automation

Our investigation revealed that there are opportunities for automation in deploy-
ment, monitoring, backups, and scaling. The extent of automation depends on
whether the infrastructure is owned by the admins, you go for Infrastructure as
a Service (IaaS) or the cloud provider. Some technologies may trade simplicity
for performance, but automation can help reduce the complexity of setup and
management tasks while still reaping the performance benefits.

As we talked about in section 3.2.4 we would look at different choices for
automating different parts of deployment and monitoring. We looked first at using
HOT for provisioning and deployment with the use of bash scripts to automate the
setup of the servers, which can be seen for the LAMP Monostack in appendix A.1.
This provisioning could have been done instead with the use of Terraform as this
is more flexible and is platform agnostic, that is it can be used on any cloud or
data centre[56], whether Terraform or HOT is the better choice of provisioning
IaC is beyond the scope of this paper.

The next step was to look at using either Puppet or Ansible as alternatives to
using shell scripts with cloud-init for the configuration of the servers. The first
thing that can be noted here is that Puppet is much better suited for long-term
deployments and deployments that don’t expect rapid re-provisioning since it is
harder to grasp, can be daunting and more stable. However, as we were doing
exactly this as part of the first two research questions, Ansible is much better as
it works better with short-term or rapid re-provisioned systems and is easier to
grasp and understand[57]. Secondly Puppet requires the use of a puppet agent
service on the target hosts in addition to a puppet server service on the controller,
whereas Ansible only requires Ansible being installed on the controller.

Employing tools like Puppet and Ansible can automate and streamline the
majority of management tasks, such as software updates and Moodle updates.
As configuration management and patching in an organisation is so important
and can at times become hard, especially if working across multiple server, stacks
or environments. Implementing a tool such as Puppet or Ansible allows for con-
sistency in configurations, patch versioning and other maintenance tasks instead
of doing it manually or using a collection of shell scripts[58]. However, given
our main focus on accessibility and scalability the usage of these as management
tools is something that was not focused on and they were primarily examined for
deployment purposes.

As an alternative to managing the implementations directly on the server us-
ing Puppet or Ansible, we considered containerising Moodle with technologies
like Kubernetes or Docker. This approach would potentially simplify infrastructure
setup, offering greater flexibility in hosting options and possibly higher availabil-
ity, especially when using a provider that supports clustered Kubernetes or Docker
swarm. However, this exploration was primarily conducted through literature re-
view and not applied in practice. We concluded that this approach warrants fur-
ther investigation and presents an opportunity for future work.

62 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Lastly we looked at using the TI-stack as a monitoring tool to keep track of
CPU-usage, traffic and query execution while also looking at the possibility of
setting up InfluxDB to handle automated alerts if the data passed set limits. We
installed the Telegraf agent on each server, as can be seen in code 5.1, and then
used the configuration downloaded from the InfluxDB instance when running the
agent. An alternative way of doing this is to edit the configuration file for Telegraf
on the server such that the required plugins and endpoint is already there and the
agent can be run as a service.

Code listing 5.1: Bash shell script snippet from haproxy_reverse.sh

1 echo "Adding repositories, updating, installing and upgrading software..."
2 # influxdata-archive_compat.key GPG fingerprint:
3 # 9D53 9D90 D332 8DC7 D6C8 D3B9 D8FF 8E1F 7DF8 B07E
4 wget -q https://repos.influxdata.com/influxdata-archive_compat.key
5 echo ’393e8779c89ac8d958f81f942f9ad7fb82a25e133faddaf92e15b16e6ac9ce4c \
6 influxdata-archive_compat.key’ | sha256sum -c \
7 && cat influxdata-archive_compat.key | gpg --dearmor \
8 | sudo tee /etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg > /dev/null
9

10 echo ’deb [signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg]
\

11 https://repos.influxdata.com/debian stable main’ \
12 | sudo tee /etc/apt/sources.list.d/influxdata.list
13

14 apt-get update
15

16 apt-get -y install haproxy telegraf net-tools

Chapter 5: Discussion 63

5.5 Reliability and validity of the results

Figure 5.6: Graph of performance comparison on the medium size test for all
stacks

When it comes to the reliability and validity of data, it is important to mention
how the test results did not stay consistent throughout our testing of the various
stacks. For example, we noticed differences in results from tests of the same stacks.
This was especially noticeable for the LAPP configuration. By running the same
test on the same setup at different time intervals, reveals that the performance
differences could indicate that other users activity, caching and VM distribution
across different compute nodes on SkyHiGh, can drastically affect the results.

The test results for the redundant stack are much worse than anticipated, as
can be seen in figure 5.6 where the other stacks are near impossible to discern,
especially when compared to figure 5.2. We could not find a specific underlying
reason for the poor performance, so we can only speculate why this was the case.
However, we theorise that this might be due to how the redundant infrastructure
was set up and configured.

Chapter 6

Conclusion

6.1 Conclusion

6.1.1 What bottlenecks occur when scaling the e-learning platform?

As seen in the results and discussion chapters, scaling the e-learning platform
could introduce bottlenecks affecting both cost and performance. The monolithic
LAMP stack, while cost-effective and straightforward, lacks the scalability required
for expanding organisations, leading to potential bottlenecks as system demands
and cost increases.

On the other hand, microservice-based architectures offer superior scalability,
but at the expense of higher initial consulting costs and increased complexity.In
our case, the added complexity led to worse performance. Redundancy, while en-
hancing availability and resilience, also introduced severe performance bottle-
necks, evidenced by the drastically slower response times in the redundant LAMP
microservice configuration under medium load conditions.

In conclusion, performance bottlenecks emerge mainly due to the capacity
limitations of the virtual machines in microservice architectures, as observed in
the stress tests where the monolithic LAMP stack outperformed the microservice
LAMP stack. Error occurrences in several interactions for most microservice stacks
could also degrade system reliability and performance.

6.1.2 What considerations must be made to ensure redundancy for
the e-learning platform?

To ensure redundancy for the e-learning platform, it’s crucial to consider the plat-
form’s unique requirements, user scale, and its role in the organisation. Large-
scale institutions may benefit from a highly available, redundant microservice
LAMP stack to minimise downtime.

In order to ensure redundancy a duplication of working components or ser-
vices is required. Expanding the infrastructure comes at a financial and technical
cost.

65

66 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

During our implementation of a redundant microservice LAMP stack we did
not achieve the results we had expected. We experienced increased loading times
and reduced performance. The complexity of the resulting microservice stack was
such that the considerations for how to connect the parts and ensure redundancy
most likely led to this poorer performance.

On the other hand, smaller organisations or those using Moodle for training
might find a simpler monolithic LAMP setup sufficient, where occasional down-
time is an acceptable trade-off for lower costs. Businesses providing Moodle as a
Service should tailor their solution to client needs, balancing performance, cost,
and ease of use. For internal corporate use of Moodle, where the impact of down-
time is less critical, a microservice approach might offer a scalable base for future
growth and provide redundancy if needed.

6.1.3 How to secure the e-learning platform from unauthorised ac-
cess and other vulnerabilities?

To ensure security in an e-learning platform, we advise adhering to the security
recommendations outlined by Moodle Docs as a baseline. The attack surface and
number of potential attack vectors will depend on various factors including the
system’s size, complexity, utilised technologies, network configuration, and access
levels. However, one universal strategy is to keep software updated, follow strict
security routines, and maintain appropriate access levels.

We recommend implementing the principle of least privileges. This strategy
minimises potential damage, as each user has only the access they need to perform
their duties. This approach can be effectively integrated within a microservices
architecture, where the attack surface is already reduced by exposing only one
service - such as a reverse proxy or load balancer - to external networks.

The use of secure network protocols, such as HTTPS, is critical for protect-
ing data traffic from unauthorised access and interception. Avoiding default pass-
words and educating users about the risks of social engineering attacks further
contributes to the overall security of the system.

However, securing the e-learning platform from other vulnerabilities will al-
ways be an evolving task due to the continual emergence of new threats. This
challenge necessitates ongoing vigilance and regular system updates, as well as
the use of firewalls and the expertise of security professionals. While it’s impossible
to guarantee 100% security, staying current and closely monitoring the system will
help maintain a robust defence against potential vulnerabilities.

6.1.4 What should be documented and monitored to maintain and
service the e-learning platform?

To maintain and service the e-learning platform, comprehensive documentation
and diligent monitoring are crucial. Documentation should include a wide range
of topics such as setup procedures for Moodle deployments, both monolithic and

Chapter 6: Conclusion 67

microservices-based, and the potential use of containerisation technologies like
Kubernetes or Docker. It’s also important to detail the use of configuration man-
agement tools like Ansible and Puppet, emphasising their role in managing short-
term or rapidly re-provisioned systems.

On the monitoring side, it’s vital to consistently track performance metrics,
such as CPU usage, web server requests, and database queries. Tools like the TI-
stack can be instrumental for this purpose. Additionally, setting up automated
alerts for anomalies via InfluxDB is recommended to promptly address any issues.
Regularly assessing user experience across different implementations ensures con-
sistent performance and availability. It’s also important to monitor aspects like
other users’ activity, caching, and VM distribution, as these can impact perform-
ance results.

Overall, diligent documentation and monitoring combined with efficient use
of automation tools can significantly enhance the maintenance and servicing of
the e-learning platform.

6.1.5 What are sensible choices of services and technologies for im-
plementing a scalable and secure e-learning platform?

If you know your user size will stay consistent, want an easy setup that is well
documented, do not have major security concerns, and want a reliable and well
performing solution, then the monolithic LAMP stack would be our recommend-
ation. This is mainly due to the fact that it performed the best out of all stacks
during our testing, as seen in graph 5.2.

If you anticipate user growth necessitating scaling, prioritise security, are will-
ing to accept less documentation and undertake more necessary configuration, the
LAMP or LNMP microservice stacks may be for you. Although LAMP micro out-
performed LNMP micro on both average and standard deviation values, as seen in
graph 5.2, we believe some of this may be attributed to noise or other variables.
Therefore, a re-run of the tests are likely to give new results. Nginx is a widely
adapted web server and if you are comfortable with it and the options it provide,
it may serve as a better web server than Apache.

If you need a highly available or redundant setup, we would advise going for a
distributed LAMP or LNMP stack as mentioned above. However, you would need
to research how to properly implement it. Our redundant setup did unfortunately
not give us valid data to support the claim that a redundant setup performs well.
Despite this, we believe that it is still possible to create a good, highly available
and redundant clustered solution.

6.2 Future work

As we mentioned throughout the discussion we believe there are multiple areas
that would both require and be interesting to look at further such as, but not lim-
ited to, the following; monitoring for data collection, redundancy, containerisation

68 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

and LDAP.
Our research was limited to conducting small and medium JMeter tests on

small and medium test courses. However, it would be interesting to explore the
results from larger tests and courses. Furthermore, gathering data through test
with JMeter and gathering real-time monitoring data from the TI-stack would
give correlative data. Utilising TI plugins would give insight into all VMs CPU and
RAM usage and additional data from web servers or databases. The following
github page could act as a good starting point: https://github.com/influxdata/
community-templates/tree/master/apache_jmeter

We did not get the results we were expecting for our redundant implementa-
tion and view these results as invalid. It would therefore be interesting to explore
what results a properly set up redundant implementation would lead to.

Containerising Moodle using either Docker or Kubernetes could be an inter-
esting avenue of research. As it would be interesting to see the ease of contain-
erisation and explore the performance differences between virtual and physical
hardware.

For those that need or are looking for a SSO option or use LDAP we have the
start of a simple Ansible playbook for FreeIPA on the gitlab for the project, obs-
bachelor, it might be beneficial to also look at the experiment/freeipa branch.

https://github.com/influxdata/community-templates/tree/master/apache_jmeter
https://github.com/influxdata/community-templates/tree/master/apache_jmeter
https://gitlab.stud.iie.ntnu.no/obs-bachelor/obs-bachelor/-/tree/bachelor-thesis-final/ansible
https://gitlab.stud.iie.ntnu.no/obs-bachelor/obs-bachelor/-/tree/bachelor-thesis-final/ansible

Bibliography

[1] Wikipedia. (2023), [Online]. Available: https://en.wikipedia.org/
wiki/Certificate_authority (visited on 04/03/2023).

[2] C. Coronel, S. Morris and K. Crockett, Database Principles: Fundamentals
of Design, Implementation, and Management, 3rd ed. Cengage, 2020, ISBN:
978-1-47376-806-2.

[3] Wikipedia. ‘General data protection regulation.’ (2023), [Online]. Avail-
able: https://en.wikipedia.org/wiki/General_Data_Protection_
Regulation (visited on 10/04/2023).

[4] Wikipedia. ‘Lightweight directory access protocol.’ (2022), [Online]. Avail-
able: https://en.wikipedia.org/wiki/Lightweight_Directory_Access_
Protocol (visited on 20/05/2023).

[5] Wikipedia. ‘Transport layer security.’ (2023), [Online]. Available: https:
/ / en . wikipedia . org / wiki / Transport _ Layer _ Security (visited on
04/03/2023).

[6] Moodle Community. ‘Moodle docs - installation quick guide.’ (2022), [On-
line]. Available: https://docs.moodle.org/401/en/Installation_
quick_guide (visited on 23/01/2023).

[7] Moodle Community. ‘Moodle docs - oracle.’ (2017), [Online]. Available:
https://docs.moodle.org/401/en/Oracle (visited on 23/01/2023).

[8] Moodle Community. ‘Moodle docs - large installations.’ (2022), [Online].
Available: https://docs.moodle.org/401/en/Large_installations
(visited on 23/01/2023).

[9] A. Al-Ajlan and H. Zedan, ‘Why moodle,’ in 2008 12th IEEE International
Workshop on Future Trends of Distributed Computing Systems, 2008, pp. 58–
64. DOI: 10.1109/FTDCS.2008.22.

[10] T. Martín-Blas and A. Serrano-Fernández, ‘The role of new technologies in
the learning process: Moodle as a teaching tool in physics,’ Computers and
Education, vol. 52, no. 1, pp. 35–44, 2009, ISSN: 0360-1315. DOI: https://
doi.org/10.1016/j.compedu.2008.06.005. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S036013150800095X.

69

https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://docs.moodle.org/401/en/Installation_quick_guide
https://docs.moodle.org/401/en/Installation_quick_guide
https://docs.moodle.org/401/en/Oracle
https://docs.moodle.org/401/en/Large_installations
https://doi.org/10.1109/FTDCS.2008.22
https://doi.org/https://doi.org/10.1016/j.compedu.2008.06.005
https://doi.org/https://doi.org/10.1016/j.compedu.2008.06.005
https://www.sciencedirect.com/science/article/pii/S036013150800095X
https://www.sciencedirect.com/science/article/pii/S036013150800095X

70 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

[11] S. H. P. W. Gamage, J. R. Ayres and M. B. Behrend, ‘A systematic review
on trends in using moodle for teaching and learning,’ International Journal
of STEM Education, vol. 9, no. 1, p. 9, Jan. 2022, ISSN: 2196-7822. DOI:
10.1186/s40594-021-00323-x. [Online]. Available: https://doi.org/
10.1186/s40594-021-00323-x.

[12] D. Miletic, Moodle Security: Learn how to install and configure Moodle in the
most secure way possible. Packt Publishing, 2011, ISBN: 978-1-84951-264-0.

[13] S. Kumar and K. Dutta, ‘Investigation on security in lms moodle,’ Inter-
national Journal of Information Technology and Knowledge Management,
vol. 4, no. 1, pp. 233–238, 2011.

[14] J. C. G. Hernandez and M. A. L. Chavez, ‘Moodle security vulnerabilities,’
in 2008 5th International Conference on Electrical Engineering, Computing
Science and Automatic Control, 2008, pp. 352–357. DOI: 10.1109/ICEEE.
2008.4723399.

[15] D. Amo, M. Alier, F. J. García-Peñalvo, D. Fonseca and M. J. Casany, ‘Gdpr
security and confidentiality compliance in lms’ a problem analysis and en-
gineering solution proposal,’ in Proceedings of the Seventh International Con-
ference on Technological Ecosystems for Enhancing Multiculturality, ser. TEEM’19,
León, Spain: Association for Computing Machinery, 2019, pp. 253–259,
ISBN: 9781450371919. DOI: 10.1145/3362789.3362823. [Online]. Avail-
able: https://doi.org/10.1145/3362789.3362823.

[16] Microsoft. ‘What is virtualization - definition: Microsoft azure.’ (2023),
[Online]. Available: https://azure.microsoft.com/en-gb/resources/
cloud- computing- dictionary/what- is- virtualization/ (visited on
22/02/2023).

[17] R. J. Chevance, Server Architectures: Multiprocessors, Clusters, Parallel Sys-
tems, Web Servers, and Storage Solutions. Elsevier Digital Press, 2004, ISBN:
978-1-55558-333-0.

[18] K. Morris, Infrastructure as Code: Managing Servers in the Cloud, 1 (Early
Release). O’Reilly Media, 2015, ISBN: 978-1-49192-435-8.

[19] J. Arundel, K.-J. C. Hsu, N. Khare, H.-C. C. Lee, H. Saito and T. Uphill,
DevOps: Puppet, Docker, and Kubernetes: get hands-on recipes to automate
and manage Linux containers with the Docker 1.6 environment and jump-
start your Puppet development. Packt Publishing, 2017, ISBN: 978-1-78829-
761-5.

[20] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-López, J. A.
Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla, S. Schoen and B.
Warren, ‘Let’s encrypt: An automated certificate authority to encrypt the en-
tire web,’ CCS ’19, pp. 2473–2487, 2019. DOI: 10.1145/3319535.3363192.
[Online]. Available: https://doi.org/10.1145/3319535.3363192.

https://doi.org/10.1186/s40594-021-00323-x
https://doi.org/10.1186/s40594-021-00323-x
https://doi.org/10.1186/s40594-021-00323-x
https://doi.org/10.1109/ICEEE.2008.4723399
https://doi.org/10.1109/ICEEE.2008.4723399
https://doi.org/10.1145/3362789.3362823
https://doi.org/10.1145/3362789.3362823
https://azure.microsoft.com/en-gb/resources/cloud-computing-dictionary/what-is-virtualization/
https://azure.microsoft.com/en-gb/resources/cloud-computing-dictionary/what-is-virtualization/
https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1145/3319535.3363192

Bibliography 71

[21] W3Techs. ‘Usage statistics of web servers.’ (6th Mar. 2023), [Online]. Avail-
able: https://w3techs.com/technologies/overview/web_server (vis-
ited on 06/03/2023).

[22] Netcraft. ‘February 2023 web server survey.’ (28th Feb. 2023), [Online].
Available: https://news.netcraft.com/archives/2023/02/28/february-
2023-web-server-survey.html (visited on 06/03/2023).

[23] R. J. T. Morris and B. J. Truskowski, ‘The evolution of storage systems,’ Eng-
lish, IBM Systems Journal, vol. 42, no. 2, p. 205, 2003, Copyright - Copy-
right International Business Machines Corporation 2003; Last updated -
2022-10-20; CODEN - IBMSA7, ISSN: 0018-8670. [Online]. Available: https:
//www.proquest.com/scholarly-journals/evolution-storage-systems/
docview/222419839/se-2.

[24] X. Lin, Introductory Computer Forensics: A Hands-on Practical Approach.
Springer Cham, 2018, ISBN: 978-3-030-00580-1. DOI: 10.1007/978-3-
030-00581-8. [Online]. Available: https://doi.org/10.1007/978-3-
030-00581-8.

[25] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas and L. Vivier, ‘The
new ext4 filesystem: Current status and future plans,’ in Proceedings of the
Linux symposium, Citeseer, vol. 2, 2007, pp. 21–33.

[26] R. Shirey, ‘Internet security glossary,’ IETF, RFC 4949, version 2, Aug. 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4949.txt.

[27] S. Laan, IT Infrastructure Architecture: Infrastructure Building Blocks and
Concepts, 3rd ed. Lulu Press Inc., 2017, ISBN: 978-1-32691-297-0.

[28] Microsoft. ‘Scaling up vs scaling out.’ (2023), [Online]. Available: https://
azure.microsoft.com/en-gb/resources/cloud-computing-dictionary/
scaling-out-vs-scaling-up/ (visited on 27/02/2023).

[29] anappi. ‘Haproxy canary deployment.’ (16th Jan. 2018), [Online]. Avail-
able: https://db-blog.web.cern.ch/blog/antonio-nappi/2018-01-
haproxy-canary-deployment (visited on 06/03/2023).

[30] Conviva. (5th Aug. 2015), [Online]. Available: http://www.conviva.com/
canary-deployment-with-nginx (visited on 06/03/2023).

[31] Arch Linux. (2022), [Online]. Available: https://wiki.archlinux.org/
title/TICK_stack (visited on 04/03/2023).

[32] InfluxData. [Online]. Available: https://www.influxdata.com/wp-content/
uploads/Influx-1.0-Diagram_04.20.2020v2.png (visited on 04/03/2023).

[33] InfluxData. ‘Telegraf 1.25 documentation.’ (2023), [Online]. Available: https:
//docs.influxdata.com/telegraf/v1.25/ (visited on 04/03/2023).

[34] InfluxData. ‘Get started with influxdb oss 2.6.’ (2023), [Online]. Available:
https://docs.influxdata.com/influxdb/v2.6/ (visited on 04/03/2023).

https://w3techs.com/technologies/overview/web_server
https://news.netcraft.com/archives/2023/02/28/february-2023-web-server-survey.html
https://news.netcraft.com/archives/2023/02/28/february-2023-web-server-survey.html
https://www.proquest.com/scholarly-journals/evolution-storage-systems/docview/222419839/se-2
https://www.proquest.com/scholarly-journals/evolution-storage-systems/docview/222419839/se-2
https://www.proquest.com/scholarly-journals/evolution-storage-systems/docview/222419839/se-2
https://doi.org/10.1007/978-3-030-00581-8
https://doi.org/10.1007/978-3-030-00581-8
https://doi.org/10.1007/978-3-030-00581-8
https://doi.org/10.1007/978-3-030-00581-8
http://www.rfc-editor.org/rfc/rfc4949.txt
https://azure.microsoft.com/en-gb/resources/cloud-computing-dictionary/scaling-out-vs-scaling-up/
https://azure.microsoft.com/en-gb/resources/cloud-computing-dictionary/scaling-out-vs-scaling-up/
https://azure.microsoft.com/en-gb/resources/cloud-computing-dictionary/scaling-out-vs-scaling-up/
https://db-blog.web.cern.ch/blog/antonio-nappi/2018-01-haproxy-canary-deployment
https://db-blog.web.cern.ch/blog/antonio-nappi/2018-01-haproxy-canary-deployment
http://www.conviva.com/canary-deployment-with-nginx
http://www.conviva.com/canary-deployment-with-nginx
https://wiki.archlinux.org/title/TICK_stack
https://wiki.archlinux.org/title/TICK_stack
https://www.influxdata.com/wp-content/uploads/Influx-1.0-Diagram_04.20.2020v2.png
https://www.influxdata.com/wp-content/uploads/Influx-1.0-Diagram_04.20.2020v2.png
https://docs.influxdata.com/telegraf/v1.25/
https://docs.influxdata.com/telegraf/v1.25/
https://docs.influxdata.com/influxdb/v2.6/

72 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

[35] InfluxData. ‘Chronograf 1.10 documentation.’ (2023), [Online]. Available:
https://docs.influxdata.com/chronograf/v1.10/ (visited on 04/03/2023).

[36] InfluxData. ‘Kapacitor 1.6 documentation.’ (2023), [Online]. Available: https:
//docs.influxdata.com/kapacitor/v1.6/ (visited on 04/03/2023).

[37] InfluxData. ‘The tick stack.’ (2023), [Online]. Available: https://www.
influxdata.com/time-series-platform/ (visited on 04/03/2023).

[38] T. Edgar and D. Manz, Research Methods for Cyber Security, 1st ed. Syngress,
2017, ISBN: 978-0-12812-930-2.

[39] InfluxData. (2023), [Online]. Available: https://docs.influxdata.com/
influxdb/v2.6/security/enable-tls/ (visited on 09/03/2023).

[40] InfluxData. (2023), [Online]. Available: https://docs.influxdata.com/
kapacitor/v1.6/administration/security/ (visited on 09/03/2023).

[41] InfluxData. (2023), [Online]. Available: https://docs.influxdata.com/
chronograf/v1.10/administration/managing- security/ (visited on
09/03/2023).

[42] A. K. Mudiyanselage and L. Pan, ‘Security test moodle: A penetration testing
case study,’ International Journal of Computers and Applications, vol. 42,
no. 4, pp. 372–382, 2020. DOI: 10.1080/1206212X.2017.1396413. eprint:
https://doi.org/10.1080/1206212X.2017.1396413. [Online]. Available:
https://doi.org/10.1080/1206212X.2017.1396413.

[43] DB-Engines. ‘Db-engines ranking.’ (2023), [Online]. Available: https://
db-engines.com/en/ranking (visited on 12/05/2023).

[44] DB-Engines. ‘Db-engines ranking - trend popularity.’ (2023), [Online]. Avail-
able: https://db-engines.com/en/ranking_trend (visited on 12/05/2023).

[45] Netcraft. ‘April 2023 web server survey.’ (2023), [Online]. Available: https:
//news.netcraft.com/archives/category/web-server-survey/ (vis-
ited on 14/05/2023).

[46] Stack Overflow. ‘Stack overflow 2022 developer survey.’ (2022), [Online].
Available: https://survey.stackoverflow.co/2022/#section-most-
popular-technologies-databases (visited on 12/05/2023).

[47] Moodle. ‘Load testing moodle with jmeter.’ (2023), [Online]. Available:
https://docs.moodle.org/dev/Load_testing_Moodle_with_JMeter
(visited on 02/05/2023).

[48] Moodle. ‘Test course generator.’ (2023), [Online]. Available: https : / /
docs.moodle.org/402/en/Test_course_generator (visited on 06/05/2023).

[49] Moodle. ‘Jmeter test plan generator.’ (2023), [Online]. Available: https:
//docs.moodle.org/402/en/JMeter_test_plan_generator (visited on
06/05/2023).

[50] Amazon Web Services. ‘Aws pricing calculator.’ (2023), [Online]. Available:
https://calculator.aws/#/addService (visited on 01/05/2023).

https://docs.influxdata.com/chronograf/v1.10/
https://docs.influxdata.com/kapacitor/v1.6/
https://docs.influxdata.com/kapacitor/v1.6/
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/
https://docs.influxdata.com/influxdb/v2.6/security/enable-tls/
https://docs.influxdata.com/influxdb/v2.6/security/enable-tls/
https://docs.influxdata.com/kapacitor/v1.6/administration/security/
https://docs.influxdata.com/kapacitor/v1.6/administration/security/
https://docs.influxdata.com/chronograf/v1.10/administration/managing-security/
https://docs.influxdata.com/chronograf/v1.10/administration/managing-security/
https://doi.org/10.1080/1206212X.2017.1396413
https://doi.org/10.1080/1206212X.2017.1396413
https://doi.org/10.1080/1206212X.2017.1396413
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking_trend
https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-databases
https://survey.stackoverflow.co/2022/#section-most-popular-technologies-databases
https://docs.moodle.org/dev/Load_testing_Moodle_with_JMeter
https://docs.moodle.org/402/en/Test_course_generator
https://docs.moodle.org/402/en/Test_course_generator
https://docs.moodle.org/402/en/JMeter_test_plan_generator
https://docs.moodle.org/402/en/JMeter_test_plan_generator
https://calculator.aws/#/addService

Bibliography 73

[51] Google Cloud Platform. ‘Google cloud pricing calculator.’ (2023), [Online].
Available: https://cloud.google.com/products/calculator (visited on
01/05/2023).

[52] Microsoft Azure. ‘Azure pricing calculator.’ (2023), [Online]. Available:
https://azure.microsoft.com/en-us/pricing/calculator/ (visited
on 01/05/2023).

[53] Moodle Docs. ‘Security recommendations.’ (2021), [Online]. Available: https:
//docs.moodle.org/402/en/Security_recommendations (visited on
14/05/2023).

[54] A. Sharif. ‘Clustering moodle on multiple servers for high availability and
scalability.’ (2020), [Online]. Available: https : / / severalnines . com /
blog / clustering - moodle - multiple - servers - high - availability -
and-scalability/ (visited on 13/03/2023).

[55] VMware. ‘Bitnami docker image for moodle.’ (2023), [Online]. Available:
https://hub.docker.com/r/bitnami/moodle (visited on 14/05/2023).

[56] HashiCorp. ‘Terraform by hashicorp.’ (2023), [Online]. Available: https:
//www.terraform.io/ (visited on 13/05/2023).

[57] C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, ‘Devops,’ IEEE Software,
vol. 33, no. 3, pp. 94–100, 2016. DOI: 10.1109/MS.2016.68.

[58] S. Thakur, S. C. Gupta, N. Singh and S. Geddam, ‘Mitigating and patching
system vulnerabilities using ansible: A comparative study of various con-
figuration management tools for iaas cloud,’ in Information Systems Design
and Intelligent Applications, S. C. Satapathy, J. K. Mandal, S. K. Udgata and
V. Bhateja, Eds., New Delhi: Springer India, 2016, pp. 21–29, ISBN: 978-
81-322-2755-7.

https://cloud.google.com/products/calculator
https://azure.microsoft.com/en-us/pricing/calculator/
https://docs.moodle.org/402/en/Security_recommendations
https://docs.moodle.org/402/en/Security_recommendations
https://severalnines.com/blog/clustering-moodle-multiple-servers-high-availability-and-scalability/
https://severalnines.com/blog/clustering-moodle-multiple-servers-high-availability-and-scalability/
https://severalnines.com/blog/clustering-moodle-multiple-servers-high-availability-and-scalability/
https://hub.docker.com/r/bitnami/moodle
https://www.terraform.io/
https://www.terraform.io/
https://doi.org/10.1109/MS.2016.68

Appendix A

Code Appendix

The appended code files are strictly referenced within the thesis, for all our code
see our gitlab https://gitlab.stud.idi.ntnu.no/obs-bachelor/obs-bachelor.

A.1 Monolithic Shell Setup Code

75

https://gitlab.stud.idi.ntnu.no/obs-bachelor/obs-bachelor

76 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

Code listing A.1: Shell script for LAMP Monolithic stack automated setup and
configuration

1 #!/bin/bash
2

3 ## Variables
4

5 ENGINE=apache2 # nginx or apache2
6 DOMAIN=${PUBLIC_IP} #Set to ’public’ ip
7 DBTYPE=mysqli #’pgsql’, ’mariadb’, ’mysqli’, ’auroramysql’, ’sqlsrv’ or

’oci’
8 DBNAME=moodle
9 DBUSER=moodleuser

10 DATAROOT=/var/moodledata
11

12 DBHOST=127.0.0.1
13 DBPASS=MoodleP@ssword1
14

15 DBROOT=MoodleSuperSecure
16

17 ADMINPASS=P@ssword1
18 ADMINEMAIL=’admin@mail.com’
19 FSITENAME=’Moodle-site’
20 SSITENAME=’moodle’
21

22 ## Hosts file config
23

24 # Add manager to hosts file
25 echo "192.168.0.50 manager.lab manager" >> /etc/hosts
26 echo "192.168.0.60 influx.lab influx" >> /etc/hosts
27

28 # Set hostname
29 echo "$(hostname -I) $(hostname -s).lab $(hostname -s)" >> /etc/hosts
30 hostnamectl set-hostname $(hostname -s).lab
31

32 ## Ubuntu Config ##
33

34 sed -i ’s+// "\${distro_id}:\${distro_codename}-updates";+
"\${distro_id}:\${distro_codename}-updates";+’
/etc/apt/apt.conf.d/50unattended-upgrades

35 systemctl restart unattended-upgrades
36

37 ## Installations ##
38

39 echo "Adding repositories, updating, installing and upgrading software..."
40 # influxdata-archive_compat.key GPG fingerprint:
41 # 9D53 9D90 D332 8DC7 D6C8 D3B9 D8FF 8E1F 7DF8 B07E
42 wget -q https://repos.influxdata.com/influxdata-archive_compat.key
43 echo ’393e8779c89ac8d958f81f942f9ad7fb82a25e133faddaf92e15b16e6ac9ce4c

influxdata-archive_compat.key’ | sha256sum -c && cat
influxdata-archive_compat.key | gpg --dearmor | sudo tee

Chapter A: Code Appendix 77

/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg > /dev/null
44 echo ’deb [signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg]

https://repos.influxdata.com/debian stable main’ | sudo tee
/etc/apt/sources.list.d/influxdata.list

45 add-apt-repository ppa:ondrej/php
46 add-apt-repository ppa:ondrej/apache2
47

48 apt-get update
49

50 apt-get -y install git curl telegraf graphviz ghostscript clamav
php7.4-pspell php7.4-curl php7.4-gd php7.4-intl php7.4-xml
php7.4-xmlrpc php7.4-ldap php7.4-zip php7.4-soap php7.4-mbstring
apache2 libapache2-mod-php7.4 aspell php7.4 php7.4-mysqli mysql-server

51

52 #apt-get update # might be unneeded
53

54 #unattended-upgrade -d
55

56 ## PHP Config
57 echo "Changing PHP config"
58 sed -i "s:memory_limit = 128M:memory_limit = 256M:"

/etc/php/7.4/apache2/php.ini
59 sed -i "s:;cgi.fix_pathinfo = 1:cgi.fix_pathinfo = 0:"

/etc/php/7.4/apache2/php.ini
60 sed -i "s:upload_max_filesize = 2M:upload_max_filesize = 100M:"

/etc/php/7.4/apache2/php.ini
61 sed -i "s:max_execution_time = 30:max_execution_time = 360:"

/etc/php/7.4/apache2/php.ini
62 sed -i "s:;date.timezone =:date.timezone = Europe/Oslo:"

/etc/php/7.4/apache2/php.ini
63

64 ## MySQL setup and config
65 echo "Configuring MySQL"
66

67 mysql -e "ALTER USER ’root’@’localhost’ IDENTIFIED WITH
mysql_native_password BY ’${DBROOT}’;"

68 mysql -u root -p${DBROOT} -e "ALTER USER ’root’@’localhost’ IDENTIFIED
WITH auth_socket;"

69

70 mysql -u root -p${DBROOT} -e "CREATE DATABASE moodle DEFAULT CHARACTER SET
utf8mb4 COLLATE utf8mb4_unicode_ci;"

71 mysql -u root -p${DBROOT} -e "CREATE user ’${DBUSER}’@’localhost’
IDENTIFIED BY ’${DBPASS}’;"

72 mysql -u root -p${DBROOT} -e "GRANT
SELECT,INSERT,UPDATE,DELETE,CREATE,CREATE TEMPORARY
TABLES,DROP,INDEX,ALTER ON moodle.* TO ’${DBUSER}’@’localhost’;"

73

74 ## Moodle download and move ##
75 echo "Starting Moodle download"
76

78 T. Holme, T. E. Reime, O. Sagberg: Setup and Management of E-Learning Platform

77 cd /opt
78

79 git clone git://git.moodle.org/moodle.git
80

81 cd moodle
82

83 git branch --track MOODLE_401_STABLE origin/MOODLE_401_STABLE
84

85 git checkout MOODLE_401_STABLE
86

87 cp -R /opt/moodle /var/www/html/
88

89 mkdir /var/moodledata
90

91 ## Moodle config ##
92

93 echo "Changing Moodle config"
94 sed -i "s:\$CFG->dbtype = ’pgsql’;:\$CFG->dbtype = ’${DBTYPE}’;:"

/var/www/html/moodle/config-dist.php
95 sed -i "s:\$CFG->dbname = ’moodle’;:\$CFG->dbname = ’${DBNAME}’;:"

/var/www/html/moodle/config-dist.php
96 sed -i "s:\$CFG->dbuser = ’username’;:\$CFG->dbuser = ’${DBUSER}’;:"

/var/www/html/moodle/config-dist.php
97 sed -i "s:\$CFG->dbpass = ’password’;:\$CFG->dbpass = ’${DBPASS}’;:"

/var/www/html/moodle/config-dist.php
98 sed -i "s+\$CFG->wwwroot = ’http://example.com/moodle’;+\$CFG->wwwroot

= ’http://${DOMAIN}’;+" /var/www/html/moodle/config-dist.php
99 sed -i "s:\$CFG->dataroot = ’/home/example/moodledata’;:\$CFG->dataroot

= ’${DATAROOT}’;:" /var/www/html/moodle/config-dist.php
100 sed -i "s:// \$CFG->tool_generator_users_password =

’examplepassword’;:\$CFG->tool_generator_users_password = ’moodle’;:"
/var/www/html/moodle/config-dist.php #testing param

101

102 cp /var/www/html/moodle/config-dist.php /var/www/html/moodle/config.php
103

104 chown -R www-data:www-data /var/moodledata
105 chown -R www-data:www-data /var/www/html/moodle
106

107 ## Web server config
108

109 echo "Changing Apache2 DocumentRoot"
110 sed -i "s:DocumentRoot /var/www/html:DocumentRoot /var/www/html/moodle:"

/etc/apache2/sites-available/000-default.conf
111 sed -i "s:#Require ip 192.0.2.0/24:Require ip 192.168.0.0/24:"

/etc/apache2/mods-enabled/status.conf
112 #Require ip 192.0.2.0/24
113

114 service apache2 restart
115

116 ## Moodle install ##

Chapter A: Code Appendix 79

117

118 echo "Moodle installation starting"
119 /usr/bin/php /var/www/html/moodle/admin/cli/install_database.php

--agree-license --adminpass=${ADMINPASS} --adminemail=${ADMINEMAIL}
--fullname=${FSITENAME} --shortname=${SSITENAME}

120

121 ## Add cron ##
122

123 # Add a cron job for the www-data user to run Moodle’s cron script
124 (crontab -u www-data -l ; echo "*/1 * * * * php -q -f

/var/www/html/moodle/admin/cli/cron.php") | crontab -u www-data -
125

126 ## Reboot ##
127

128 #echo "Time to reboot"
129 #reboot

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Motivation
	Thesis topic
	Research questions (RQ)
	Partner organisation

	Scope and delimitation
	Scope
	Delimitation

	Thesis outline

	Theory
	General definitions and concepts
	Virtualisation
	Infrastructure as Code
	Containerisation
	Database
	Web server
	File storage
	Bastion/Entrypoint

	Scalability
	Vertical scaling
	Horizontal scaling
	Autoscaling

	Availability
	Redundancy
	Load balancing
	Backup
	High availability

	Monitoring
	TICK stack

	Security
	Securing Moodle
	Securing TICK stack

	Method
	Research methodology
	Analysis criteria
	Scalability
	Availability
	Security
	Monitoring and documentation

	Outline of Stacks for Data Collection
	Monolithic LAMP from Moodle Documentation
	Microservice LAMP
	Microservice LNMP
	Microservice LAMP (MariaDB)
	Microservice LAPP (PostgreSQL)
	Microservice LAMP Redundant

	Data collection
	Data analysis
	Reliability and validity of the results

	Results
	Monolithic Stack
	Moodle docs LAMP

	Microservice Stacks
	LAMP
	LNMP
	LAMP (MariaDB)
	LAPP (PostgreSQL)
	Redundant LAMP

	Discussion
	Scalability
	Cost
	Performance

	Availability
	Cost
	Redundancy

	Security evaluation
	Monolithic
	Microservice
	Redundant
	Comparison

	Monitoring
	Monitoring and Documentation

	Reliability and validity of the results

	Conclusion
	Conclusion
	What bottlenecks occur when scaling the e-learning platform?
	What considerations must be made to ensure redundancy for the e-learning platform?
	How to secure the e-learning platform from unauthorised access and other vulnerabilities?
	What should be documented and monitored to maintain and service the e-learning platform?
	What are sensible choices of services and technologies for implementing a scalable and secure e-learning platform?

	Future work

	Bibliography
	Code Appendix
	Monolithic Shell Setup Code

