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Abstract
Our understanding of material properties is critical to our modern life. This com-
prehension has historically been found through physical experiments on materials and
their macrostructures, but is difficult to achieve for the microstructures of the material.
The last forty years computational simulations have been increasingly used to test the
macrostructural properties of materials. As better computers have become available, the
simulations have also become cheaper and less time-consuming. With better computers
it has become possible to simulate the fairly expensive process of straining structures on
a much smaller scale. The Crystal Plasticity Finite Element Method has risen as a good
substitute for experimental data on the microstructure of materials. Its computations are
fairly expensive and so sees limited use, but has become important for our understanding
of the impact of micro-deformations on material failure.

Today Abaqus is one of the most widely used finite element commercial programs that
are able to call crystal plasticity material models via user-defined subroutines. It is closed
source, and have a relatively high cost. Free, open source alternatives have appeared the
last years, and those bring with them obvious advantages. Free software is more avail-
able to the public, less-economically powerful institutions and companies, and can be of
assistance to a bigger user pool. Open source means that the code the software runs on
is available for the users to see, learn from, and improve upon. It can be adjusted by
individuals for their specific cases, and also be merged into the software if found to be an
improvement. Such software has the possibility of becoming shared projects across fields
and institutions. FEpX is a finite element software package for polycrystal plasticity that
is both free and open source. Comparing Abaqus to FEpX can be useful for discovering
advantages and drawbacks with both programs.
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Oppsummering
V̊ar forst̊aelse av materialegenskaper er kritisk for v̊art moderne liv. Denne forst̊aelsen
har historisk blitt laget gjennom fysiske eksperimenter p̊a materialer og deres makrostruk-
tur, men den er vanskelig å oppn̊a for materialets mikrostruktur. De siste førti årene har
komputersimuleringer blitt brukt i økende grad for å teste materialers makrostrukturelle
egenskaper. Mens bedre komputere har blitt tilgjengelig har disse simuleringene blitt
mindre intensive og tidsforbruket har g̊att ned. Med bedre komputere har det blitt
mulig å simulere den intensive prosessen å anstrenge strukturer p̊a mye midre skala.
Krystallplastisk finite-element metoder har dukket opp som et godt alternativ til eksper-
imentell data p̊a mikrostrukturen til materialer. Komputasjonene er ganske intensive,
s̊a den ser begrenset bruk, men har blitt viktig for v̊ar forst̊aelse av innvirkningen av
mikrodeformasjoner p̊a materialskade.

I dag er Abaqus et av de mest brukte kommersielle programmene for finite-element
metoder som kan kalle krystallplastisk materialmodeller via brukerdefinerte subrutiner.
Den er closed-source, og har en relativt høy pris. Gratis open-source alternativer ek-
sisterer, og de bringer med seg åpenbare fordeler. Gratis software er mer tilgjenelig for
folk flest, mindre økonomisk stekre institusjoner og bedrifter, og kan bli brukt av en
større brukermengde. Open-source betyr at koden softwaren kjører p̊a er tilgjengelig for
brukeren å se, lære fra, og forbedre. Den kan bli justert av individer for deres spesifikke
tilfeller og kan bli tatt inn i softwaren om det blir oppdaget at den er en forbedring. Slik
software har muligheten til å bli delte prosjekter mellom forskjellige felter og instutisjoner.
FEpX er en finite-element software pakke for polykrystalplastiskitet som er b̊ade gratis
og open-source. Å sammenlikne Abaqus og FEpX kan være nyttig for å oppdage fordeler
og ulemper med begge programmene.
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Chapter 1

Introduction

1.1 Motivation
Polycrystalline materials have always been important to create products in everyday life.
As knowledge about their properties and behavior have become better understood, better
materials have become available. Through experiments, the texture of the material, in
other words the size, quantity and orientation of its grains, have been found to have a
big impact on the material’s mechanical properties [2]. Simulating deformations on such
polycrystalline structures have become an important source of data about the behavior
of such materials under stress [13].

It has long been known long that the plastic deformation in a loaded crystalline ma-
terial is highly dependent on grain structure, grain orientations, morphology, presence of
constitutive particles, and others features that may be present in the microstructure [2].
Mechanical properties are dependent on the way plasticity takes place in the material,
which usually leads to a directional dependency, hence, the plastic anisotropy. To a large
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extent, this is dictated by the texture [13]. A very heterogeneous nature of the plastic
deformation has also been confirmed experimentally[4] [https://doi.org/10.1007/s11340-
012-9685-2]. Micro-deformations may lead to material failure at lower strains than ex-
pected and reduce the life-span of critical parts. This is especially true for smaller com-
ponents, as they have fewer grains. Fewer grains means the properties of the material
are more dependent on the properties of the grains that make up the material. Through
experiments and simulations, the areas of such components that are especially exposed
for deformation can be found.

One of the most important methods for simulating strain and stress fields in microstruc-
tures is the Crystal Plasticity Finite-Element Method. To this day it has seen relatively
little use in industrial context, as it is both resource and time consuming. By increasing
the coarseness of the mesh describing the structure, and simplifying the grain structure
this ”price” can be reduced. Large computational time reduction can be achieved by
applying very efficient spectral solver instead of the finite element method [12]. When
only the material texture and the global plastic properties of a polycrystalline aggregate
are of interest, as e.g. plastic anisotropy, yield surfaces, formability, so-called mean field
crystal plasticity models are computationally much cheaper alternatives (see e.g. [9],
[KIA ZHANG 2015 PAPER], [ALAMEL TYPE 3 PAPPER]). Mean-field models are of
a statistical nature and do not bear any detailed spatial information of a given 3D mi-
crostrucutre, and thus provide no full-field results. In this thesis, the exploitation of the
full-field Crystal Plasticity Finite-Element Method is in focus.

Abaqus is one such program capable of running such methods. Abaqus itself is a fi-
nite element software to solve a boundary value problem of a component, to which e.g. a
static or a dynamic load is applied [15]. Via Fortran-based subroutines, Abaqus provides
very important interfaces for programming large variety of fully user-defined phenomena,
which are then built and recompiled together. Specifically, using a so called user-defined
material subroutine (UMAT/VUMAT) allows to bridge crystal plasticity material models
with the finite element method in Abaqus. Recently, Manik et al. [8] has implemented a
robust and efficient algorithm for the crystal plasticity via a UMAT in the Abaqus/Stan-
dard software. Unfortunately, Abaqus has a subscription fee, which makes it unavailable
for some users, and increases the threshold for others to start making use of it. Apart
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from the user-defined subroutines, it is a closed source software, stopping the public from
seeing how it implements its finite-element method for solving the global equilibrium sys-
tem of equations, and preventing experimental changes and alternative algorithms from
being implemented into it. The ability to do so could help increase the effectiveness of
the program, and discover better ways of performing the simulations. For example, one
of the desired options to have a user-friendly access to is remeshing. As modeling of the
solid mechanics is done using a deforming mesh, there are limits to how much the mesh
can deform before it becomes too distored, causing the finite element method to give
wrong results or the whole calculation to terminate.

Testing an alternative open-source software package that are also capable of perform-
ing the Crystal Plasticity Finite-Element Method is therefore something that should be
tried. Today, several open-source software implementing crystal plasticity into a finite el-
ement method are available, Moose, WARP3D, PRISMS, FEpX [3]. DAMASK software
[12] is of another kind, as it employs a spectral method using the Fast Fourier transfor-
mation, instead of the finite element method. Due to this, it can be several orders of
magnitude faster.

In this work, FEpX [3] was chosen to be further explored and compared as an finite
elements method-driven alternative to Abaqus, due to the following reasons:

1. It is an implicit finite element code, similarly as Abaqus/Standard, so the compar-
ison can be performed

2. It is programmed in Fortran 90, which can make it relatively easy to try to imple-
ment the user-material subroutine developed by Manik et al. [8]

3. It has a close link to NEPER, an open-source software for both grain morphology
and mesh generation, as well as used for post-processing of the FEpX results.
Hence, possibly a well-integrated and on-the-fly remeshing could be achieved, which
is lacking in Abaqus when user-defined material subroutines are applied and is
necessary for simulating rolling textures up to medium and high strains

4. It has relative large user-base and large number of scientific publications, where
FEpX is employed
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5. It has well-organize web page and seemingly well-described documentation with
tutorials, which can contribute to a steep learning curve

FEpX is a free, open-source program which allows the users to tweak and adjust
its algorithm as needed. An experienced researcher may also find use of the program
by substituting parts of its algorithm with their own. To do this however, an overview
and understanding of the code-base is needed. This thesis will strive to create such an
overview of FEpX, and see if a its finite-element methods for crystal plasticity can feasi-
bly be interfaced with alternative methods for crystal plasticity, as [8].

As mentioned above, FEpX is dependent on another program, Neper [10], to create user-
defined polycrystal structures using Voronoi tesselations, generate meshes, also with the
possibility for export in Abaqus. NEPER is also used for post-processing of the results
from FEpX, generation and visualization of pole figures, and figures of the representative
volume element showing large variety of field results. Gaining an understanding of this
software is therefore necessary to be able to use FEpX in any meaningful way.

It is, however, important to test FEpX’s ability to run different simulation cases to de-
termine, how well it can perform, and map any potential limitations of the software. If it
is to be used as an alternative to Abaqus, users should be aware of any such limitations.
User interaction friendliness, performance, simulation results, and possible limitations
and pitfalls are all very important aspects when comparing FEpX to Abaqus and will be
addressed in this thesis.

1.2 Objectives
The scope of the thesis is defined in this section. The questions and objectives listed will
be revisited in Chapter 6.

• What is the code-structure of FEpX, and how easy is it to substitute it with other
algorithms for crystal plasticity?

• What are the advantages of using FEpX compared to Abaqus?

• What are the limitations of FEpX?

4



To answer these questions, the given objectives will be fulfilled.

1. Create a overview of the FEpX code-base.

2. Understand how Neper works, and use it to create tessellations and meshes for
FEpX and Abaqus.

3. Use FEpX to simulate different standard cases and try to find any advantages or
limitations with the program.

4. Run similar simulations on FEpX and Abaqus and compare the results.

5. See how FEpX handles simulations of a plane-strain compression. Which strains
can be achieved before the mesh get distorted and hinder further progress of the
simulation?

1.3 Contributions
This thesis contributes to the field of material simulations, and more specifically Finite-
Element Crystal Plasticity Methods. The following points are introduced in this paper:

• Use of Neper to generate polycrystal structures, and meshing them.

• An overview of the code-base of FEpX.

• Several material deformation tests using FEpX.

• A comparison of similar simulations run on both FEpX and Abaqus.

By creating an overview of the code-base of FEpX, it is easier to see which parts and
modulations are responsible for which logic. This overview makes it simpler to do changes
and updates at the correct areas of the code. To substitute other algorithms in place for
the native ones, it is important to know where the substitutions should connect to the
native code, and what variables are expected in and out.

By testing FEpX in different simulation scenarios, advantages and limitations of FEpX
have been found. Since FEpX is thightly bound to Neper, its ability to generate poly-
crystal structures and meshes have also been tested. How the features of FEpX impact
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the user experience will be described in this thesis.

To see if FEpX is to be used as a substitute or replacement for Abaqus, their per-
formance and results have been compared. By running similar simulation cases on the
two programs, a rudimentary comparison has been made.

1.4 Outline
The thesis is divided into six chapters. Chapter 1 introduces the motivation, objective,
and contributions of the thesis, and Chapter 2 describes the relevant theory. Chapter
3 explains the software used and their function, while Chapter 4 contains the recipe
for installing them. After that is a section about the simulations, their parameters and
the files used. In Chapter 5 The results of the different simulations are presented and
compared, and later discussed. Lastly Chapter 6 concludes the thesis and brings up
possible future work to expand upon what has been performed in this thesis.
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Chapter 2

Theory

2.1 Texture
Texture is the statistical orientation of the polycrystalline structures in a material. Most
materials like metals, ceramics, and minerals are made up of grains, or crystallites, with
their specific crystal structure. Orientation in this context is the relation between the
atomic planes of the crystal structure and a fixed reference. The orientation of these
compared to the sample affect many of the material’s properties. The grain direction
in almost all materials are not random, but have a predisposition for some orientations.
These orientations may affect the material properties by up to 50% [5]. It is therefore
highly important to understand and predict the effect of crystallite orientation in mate-
rial technology.
The understanding of texture dives into how changing the texture affects the material’s
properties, but also how changes in the material may affect the texture. This can be done
by measuring the orientations of a physical material before and after it is exposed for
stress. The ways to analyse the texture of materials have until recently been focusing on
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Figure 1: Elastic (Young’s) modulus E of single-crystalline iron as a function of crystal
direction. Clearly, the values strongly differ from the well-known bulk modulus of 210
GPa (dotted line), which is only obtained in isotropic, that is, texture-free material.
Image borrowed from [5]

the macrotexture, by using x-ray or neutron diffraction. With transmission and scanning
electron microscopes, it has become possible to analyse individual orientations related
to the microstructure of the material. These orientations of individual grains affecting
smaller parts of the material, instead of the material as a whole, is called microtexture.
By understanding the effects of microtexture, cracks, fatigue and failure in vulnerable
parts of the material can be better prevented.

As analysing the orientation of individual grains in a material can quickly become ex-
pensive and cumbersome, alternative ways to understand the microtexture have been
created. Today there are several different modulation programs where properties of a
microstructure can be simulated before, during, and after being exposed to a force [5].

2.1.1 Pole Figure

When talking about the importance of knowing the orientation of grains, it is also vital to
be able to easily show their orientation distribution. To describe a 3D vector in a crystal,
it can be imagined as a point on a reference sphere. That is a sphere with standard
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radius of 1 encompassing the crystal. Any 3D vector in the circle will move towards a
point on the sphere surface, and so all vectors on the crystal can be presented as points,
or poles, on the sphere. If the sphere is instead attached to an external reference, for
example the sample, the crystallographic orientation of the crystals in the sample can
be presented in this fashion. The position of the pole on the sphere is dependent on
two angles. Angle α which determines the distance from the north pole, in other words
its ”latitude”, and angle β which determines the pole’s rotation around the sphere, its
”longitude”. Mark that the crystals can still rotate around its ”pole” and so it still has
one degree of freedom.

Figure 2: A reference sphere with a hexagonal crystal inside. The orientation of the
basal plane (0001) is described on the sphere with the angles α and β. As the crystal can
rotate around the pole, to get an unambiguous orientation, the pole position of another
plane (101̄0) is needed. Image borrowed from [5]

A 3D sphere is not the best way to present data, and so the representation of the 3D
orientation information is projected onto a 2D plane. This is called a stereographic
projection, where the sphere is projected on its equatorial plane. The strength of such a
projection is that equal angles between lines on the sphere surface will still be equal after
being projected on the plane. The 2D projection of the reference sphere creates a circle
named a pole figure. When creating a pole figure it is important to reference it to the
sample’s orientation. For rolling symmetry the reference directions of the sample are the
sheet normal direction ND, the rolling direction RD, and the transverse direction TD.
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The pole figures relation to these directions vary, but often the north pole, or the center
of the pole figure, is set as the ND, while RD is set where β is 0◦. Other deformation
modes will require other references, but a 3D coordinate system is required.

Figure 3: An example of a pole figure created with Neper. Each dot is a the orientation
of a grain in a structure also generated in Neper.

The crystal coordinate system CC given by the crystal axes {c1c2c3} is projected into
the specimen coordinate system CS given by the specimen axes {s1s2s3}. The relation
between the two coordinate systems can be expressed as

CC = gCS (1)

A vector parallel to the pole of one of the crystal frames (XY Z) can be expressed in the
CS coordinate system as

R = s1 sin(α) cos(β) + s2 sin(α) sin(β) + s3 cos(α) (2)

and in the CC coordinate system as

R = 1
N

(c1X + c2Y + c3Z) (3)
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where N =
√

X2 + Y 2 + Z2 to normalize the vector R. Scalar multiplication of Equation
2 and Equation 3 by the s vectors in relation to Equation 1 gives

sin(α) cos(β)
sin(α) sin(β)

cos(α)

 = 1
N


g11 g21 g31

g12 g22 g32

g13 g23 g33



X

Y

Z

 (4)

Equation 4 gives nine equivalent expressions to find the angles α and β for a pole from
the orientation matrix g.

As described earlier, one pole is not enough to unambiguously determine the orienta-
tion of a crystal. In Figure 2, the crystal can sill rotate around its own pole, so another
poles is needed. To completely derive the orientation matrix g in Equation 4 two or three
poles may be needed, depending on the crystal or pole symmetry [5].

2.1.2 The Orientation Distribution Function

When projecting the 3D orientation distribution on a 2D projection plane some informa-
tion about the system will be lost. It is therefor often impossible to recreate the texture
with only a pole figure, without some uncertainty. Poles of different orientations may
overlap on the figure, linking certain volumes to their orientations hard. The intensities
of the poles may also not clearly link them to the orientations they are describing. Lastly
pole figures from experiments rarely record their entire range, and so limits the ability
to fully describe the texture further.

These uncertainties can be reduced by using an orientation distribution function ODF,
which allows quantitative evaluations of the texture. An ODF is a probability density
functions for grain orientations. In a microstructure with grain orientations expressed
through the euler angles ϕ1, Φ, ϕ2, has a sample volume V , and dV is the volume of all
crystallites with the orientation g in the angular element dg. The ODF of this structure
can be defined as f(g) in the given equations:

dV

V
= f(g)dg (5)

12



dg = 1
8π2 sin(Φ)dϕ1dΦdϕ2 (6)∮

f(g)dg = 1 (7)

The pole figure is defined mathematically as the volume fraction dV/V of crystals that
have their direction h parallel to the sample direction y:

dV

V
= 1

4π
Ph(y)dy (8)

where y = {α, β} and dy = sin(α)dαdβ. α and β are the pole figure angles discussed in
section 2.1.1. This definition bases the pole figure on directions h = h1h2h3 in the direct
crystal lattice, while experimental pole figures are often based on the crystal direction h

in the reciprocal crystal lattice. This is not a big difference for cubic crystal structures,
but for other structures it must be accounted for.

Pole figures are often normalized so that pole densities can be described as compared
to median random density. Pole figure data is therefore normalized with this equation:

1
4π

∮
Ph(y)dy = 1 (9)

Figure 4 is a visual representation of how a pole represented by a direction y in a pole
figure Ph(y) fits with a region in the ODF f(g) that contains all rotations with angle γ

about this direction y. Said in another way, all rotations with angle γ in the ODF will
show up with direction y on the pole figure. As an equation it is described as:

Ph(y) = 1
2π

∫ 2π

γ=0
f(g)dγ (10)

where y = {α, β} and g = {ϕ1, Φ, ϕ2}. The factor 1/2π comes from the normalization
conditions from Equation 6 and Equation 9. Equation 10 is known as the fundamental
equation of ODF computation, and is needed to calculate the ODF. The ODF can’t be
solved by a single pole figure, and several pole figures are needed to get the missing
information. There are no analytical solutions to inversed pole figures, but some mathe-
matical attempts have been proposed [5].
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Figure 4: Representation of the fundamental equation of pole figure inversion in a 100
pole figure. Image borrowed from [5]

Figure 5: Schematic picture of a β-fiber - A typical texture of cold rolled aluminium.
Image borrowed from

[6]
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2.2 Crystal Plasticity Finite-Element Model
The Crystal Plasticity Finite-Element Models are approaches made to simulate both
microstructures and macrostructures under stress. More specifically, they are used to
make microstructure-based mechanical predictions, and engineering design and perfor-
mance simulations for anisotropic materials. A more technical term is ”continuum-based
variational formulations for describing the elastic-plastic deformations of anisotropic het-
erogeneous crystalline matter”. As can be discerned from this description, the models
use continuous equations to simulate both elastic and plastic deformations on materials
made up of crystalline structures. The applications for such models are many, and across
diverse fields. A short list can count applications like microbeam bending, multiscale
predicitions of rolling textures, damage prediction on micro- and macrostructures, re-
crystallization, and more.

Crystal properties like shape change, texture, strength, strain hardening, and deformation-
induced surface roughening are not independent of orientation [13]. In other words crys-
tals are mechanically anistropic, which means their mechanical parameters are tensor
qualities.

The origin of the instant strain-rate sensitivity is that the critical shear stress de-
pends on the shear rate of its slip system. The viscoplastic power law is given as [KILDE
Overview .42. Texture Development and Strain-Hardening in Rate Dependent Polycrys-
tals R. J. Asaro and A. Needleman]

τcα = τ 0
α

(
|γ̇α|
γ̇0

) 1
m

(11)
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Chapter 3

Methods

3.1 Neper
Neper [10] is a program that allows the generation of polycrystals, and create meshes. It
may also be used to process the results from simulations, and make visualizations. The
software package is free and open source, and was created by Romain Quey at CNRS and
Mines Saint-Etienne. The meshes it creates can be used by finite-element simulations
programs like FEpX or Abaqus. After the simulations, Neper can process the results and
visualize them.

To use Neper it can be freely downloaded from GitHub, but it can only run on Linux-like
systems. As it is written in C and C++, compilation can be done using CMake. The
software has some dependencies that are needed depending on what you want to create.
GMSH is for example required for meshing jobs, while Asymptote is used for creating
pole diagrams.
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When using Neper, simply enter command lines into a command window, or have the
commands run through a shell script. The program will automatically use as many
threads as are available, but efficiency drops after 16.

Neper is divided into four main modules: Generation, Meshing, Simulation, and Vi-
sualization.

The Generation-Module is used for creating tessellations from polycrystals it generates.
There is a great variety for how the tessellations can be generated. These can be standard
tessellations, tessellations generated from grain cell properties, or multiscale tessellations.
An especially helpful feature is that the tessellations can be regularized, where smaller
parts of it like edges and faces are removed and absorbed into the bigger overarching
features. This can greatly simplify the meshes created from the tessellation, and make
simulations on the mesh easier. The module also allows periodicity, and different types
of orientation descriptors of the grain crystals.

The Meshing-Module creates meshes of the polycrystals described in the tessellation-
file. It may also create meshes from other mesh-files, called re-meshing. The meshing
process can create two different mesh types; free meshes that follow the boundaries of the
crystals, and mapped meshes that generate square or cubic elements which are indepen-
dent of the grain structure. Meshes created from this module can be of many different
types, but the ones used in this thesis are msh-files for use by FEpX, and inp-files that
are needed by Abaqus.

Simulation-Module is the smallest module and is tightly connected to the FEpX soft-
ware. This module processes the results from FEpX and collects the raw data into a
directory where it can be used by other processes. For example the Visualization module
to create diagrams or pictures of the results, or it can be used to re-mesh the material
after the simulation.

For visualizing tessellations, meshes or simulation results, there is the Visualization-
Module. The module can take internal data, data from external files or a simulation
directory, and create PNG-images or VTK-files. By changing the input parameters,
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highly different output can be created.

Figure 6: Example of a meshed tessellation cube created in Neper. It has 17445 grains,
its morphology comes from grain-growth, and regularization is on. For the meshing, the
characteristic length is 10, which means the mesh is as coarse as the program allows.
This can be seen by how the mesh coarness varies by the grain size.

3.1.1 Generation-Module

The Generation-Module, accessed by writing -T, generates the tessellations of structures
that can be used by other programs for simulations. The tessellations can be created
in 2D or 3D, and in three different shapes; cubic, cylindrical or spherical, all with finite
dimensions. Tessellations with non-convex domains may be created by cutting a tessella-
tion with geometric structures like spheres, cylinders, squares, etc, and by adjusting the
dimensions of both the tessellation and the cutting parts. The number of crystals can
either be set from input, or be calculated internally based on grain growth.

When generating the tessellations, their morphological cell properties can be selected
as an input parameter. These can be Voronoi which is the default setting, grain growth
like those found in metals, or using custom parameters to design their size, sphericity,
centroid, shape distribution and individual cell shapes. Other global properties like cell

19



aspect ratio and columnar axis, may be set as well. Cell groups can also be established,
where the different phases of a multiphased material is linked to each group.

The cells of a tessellation can be divided into subdivisions. These multiscale tessel-
lations can be used to describe complicated microstructures, like lamellars or internal
crystal structures. The internal tesselaltions can again have their own internal tessel-
lations and so on. Meshing of these multiscale tessellations works the same way as a
standard tessellation.

To avoid boundary effect, or reduce the size of the representative volume element, peri-
odicity along the faces of the tessellation can be induced. This can be a full periodicity,
where the top face matches the bottom face, the left face matches the right face, and
the innermost face matches the outermost face. Semi-periodicity can also be done, where
only one pair, or two pairs of faces match.

The orientation of the different crystals can be set to a certain degree. They can ei-
ther be set to random, which is the default setting where the orientation of the cells is
distributed randomly according to a uniform distribution. The other setting is uniform,
where the orientations are distributed uniformly and there will be no local orientation
clusters. If setting the orientations uniformly, the crystal symmetry must also be stated.
The orientation of the cells in the tess-file is described with rodrigues-vectors by default,
but other orientation descriptions are also supported. This includes euler-bunge, euler-
kocks, euler-roe, rotmat, axis-angle, and quaternions.

Importantly the tessellations can be regularized for optimizing meshes, and in turn sim-
ulations on them. Small crystals or sides with tiny edges or faces have little impact on
the cell morphologies, but can complicate the mesh by representing strong constraints on
it. More nodes and elements are needed in the mesh to describe small edges and faces
in the tessellation. This in turn means the simulations on the mesh will work harder,
and increases the chances it will fail when one of those elements are strained too much.
By regularizing the tessellation, small edges and faces are removed, which simplifies the
mesh, and any simulations running on the mesh will be easier as well.
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3.1.2 Meshing-Module

By writing -M the meshing module can be accessed. This creates a mesh based on either
an already existing, mesh, a tesselation, or another collection of data which simulates a
material. These meshes are very useful for simulations of materials, as the behaviour of
the material can be translated into data around the nodes and elements in the meshes.
The finer the mesh, the more nodes and elements it contains, and the more data can be
created and processed by the simulation.

3.1.3 Simulation-Module

After a simulation has run successfully by another program, the Simulation module can
be used to convert the data. This data is then moved into a separate folder and converted
into a file-type that Neper can use to visualize the data. This is data about the nodes and
elements in the mesh, where each file can describe, for example, the position of the node
after each step of the simulation, the stress at the nodes location, the plastic equivalent
elasticity, etc.

3.1.4 Visualization-Module

Both before and after a simulation, it can be useful to visualize the data to make sure it
looks like it is supposed to. The Visualization module can create a PNG from tesselation-
files, mesh-files, tesselation- and mesh-files combined, the folder of simulation results
created from the Simulation module, and many other inputs. It has a wide variety of
settings to control the output of the picture, like camera distance and angle, rotation of
the material, size of the picture, etc. When visualizing data from a finished simulation,
it can show the data as a color scheme on the material, with a scale picture, and allows
customization of the scale parameters. The module can also create other visualizations,
like Pole Figures, and 2D-images.

3.2 FEpX
FEpX [3] is a software package created to solve finite-element polycrystal plasticity meth-
ods on Linux-like operating systems. Its development started in the late 1990’s, by Paul
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Dawson and the Deformation Process Laboratory at Cornell University. Later develop-
ment was lead by Matthew Kasemer and the Advanced Computational Materials En-
gineering Laboratory at the University of Alabama. It models both global and local
mechanical behaviour in finite polycrystalline solid structures as aggregates of grains.
Every grain of the structure is made up of elements, which behavior is determined by the
local behavior of that volume of the crystal. The element behaviors it models are:

• Movement and rotations resolving finite strains.

• Anisotropic elasticity from crystal symmetry.

• Anisotropic plasticity from slip confined to dominant slip systems.

• Change in state variables for crystal lattice orientations and slip system strengths.

3.2.1 Code Structure

The FEpX algorithms are written in Fortran 90. It’s a programming language used
for over sixty years in computationally intensive areas like numerical weather predic-
tion, finite element analysis, computational fluid dynamics, geophysics, computationally
physics, crystallography, and computationally chemistry [7]. In Fortran, the code is dis-
tributed in different files called modules, where each module has its own responsibilities.
Each module can itself contain subroutines that can be called upon from either inside
the same module, or other modules depending on its accessibility.
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Figure 7: An overview over the driver modules. The triaxial driver and the uniaxial
driver gets called depending on what kind of simulation is running, and they in turn
make calls to the necessary subroutines in the utilities driver.

In FEpX, all simulations are divided into either triaxial or uniaxial simulations. As
such, all calls to lower end subroutines can be traced back to two drivers. The triaxial
driver driver triaxcsr mod.f90 and the uniaxial driver driver uniaxial control mod.f90, as
can be seen in Figure 7. They in turn make calls to the utilities driver driver utilities mod.f90
to access necessary subroutines.
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Figure 8: Here it can be seen how the utilities driver starts the calculations for different
variables and states, but the module needs to call upon subroutines in other modules for
more specific calculations.

The utilities driver contains the subroutines needed to calculate different variables as
the simulation iterates through the time steps. This is where calculations for different
variables are started. Variables like mesh dimensions, mesh elemental properties like
stress/strain, mesh surface areas, macroscopic load, velocities, and crystal states start
their calculation process here. The calculating subroutines often need to call upon other
modules for the more specific calculations however, as putting all the necessary algo-
rithms in just the driver module would make unnecessarily messy. As can be seen in
Figure 8, the utilities driver is itself reliant on more specialized modules like the surface
module surface mod.f90, and the polycrystal elastic-viscoplastic response module poly-
crystal response evps mod.f90.
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Figure 9: The calculations for elastic-viscoplastic response for polycrystals is reliant on
stress solve modules. When handling the deviatoric state it iterates over 15 integration
points per element. The viscoplastic stress is solved for the first integration point, while
the elastic-viscoplastic stress is solved for all points afterwards.

The module handling elastic-viscoplastic response for polycrystals is itself divided
into two states it needs to solve for each element. The deviatoric state and the vol-
umetric state. For both states it iterates over 15 integration points. For the devia-
toric state the stress must be solved by using the viscoplastic stress solving module
stress solve vp mod.f90 for the first integration point, and then by using the elastic-
viscoplastic stress solving module stress solve evps mod.f90 for all superseding points.
Figure 9 shows a simple overview of the subroutines of the elastic-viscoplastic response
for polycrystals module, and their dependencies.
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Figure 10: Here it can be seen how the stress solving modules solve for each integration
point by calling upon their own specialized subroutines. Only one subroutine in the
modules are public and can be called by other modules, while all the other subroutines
exist as internal helping subroutines.

The stress solving modules do not make use of any other modules, excluding the
generic matrix operations module matrix operations mod.f90, and one call to the kine-
matics module kinematics mod.f90. They are relatively self contained modules that solve
the viscoplastic and elastic-viscoplastic stress for integration points in the elements of
the mesh. In the viscoplastic stress solve module the input is first restructured to fit the
internal subroutines. It then solves for the stress by using nonlinear viscoplastic crystal
stress equations repeatedly until it converges on a solution. Lastly the stress solution is
rescaled to better fit the expected output. The elastic-viscoplastic stress solving module
is much simpler, but is dependent on the solution found in the other module to work
properly. In Figure 10 an overview of the interconnected subroutines in the two modules
can be observed.
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Figure 11: Overview of the kinematics module, its subroutines, and the other module
subroutines calling them.

Lastly, Figure 11 shows the kinematics module kinematics mod.f90 and its different
subroutines. A wide variety of modules makes use of its subroutines; both the driver
modules and a more generic stress solving module require kinematics subroutines for
calculations.

3.2.2 Running FEpX

To run a simulation with FEpX, simply write the following command in the command
window:

fepx

If more than one core is wanted, with OpenMPI installed the following command can be
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used instead to run FEpX with several cores:

mpirun -np <NUMBER_OF_CORES> fepx

3.2.3 Input Files

The behavior of the simulation, and the model to be simulated should be stated in input
files existing in the same directory as where the command is run. At least two files
are required to run the simulation, but other optional files may be included. The first
necessary file is a mesh file named simulation.msh created by Neper, that describes the
polycrystalline structure that is to be simulated. At the moment only meshes made by
2nd order 10-node tetrahedral elements are supported [11]. The other file needed is a
configuration file named simulation.config that describes the material being simulated,
and how it should be simulated. The file is divided into four areas:

• Optional Input May relate to specific deformation modes or control standard
simulation behavior.

• Material Parameters List of parameters describing the material. Typically in-
cludes stiffness tensor, rate sensitivity exponent, fixed-rate strain rate scaling coef-
ficient, fixed-state hardening rate scaling coefficient, initial slip system saturation
strength, initial slip system strength, and non-linear Voce hardening exponent.

• Deformation History Describes the deformation mode capable of reproducing
various mechanical loading configurations. Can contain any number of steps, where
each step defines the strain or load target that is to be reached.

• Boundary Condition Either defines a simple standard boundary condition avail-
able, or points towards another externally defined boundary conditions file simula-
tion.bcs. It aslo states the strain rate value in units of [1/s].

• Printing Results List of all output data from the simulation that should be saved
as nodal output in output-files.

Other optional files that can be included are:
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• Orientation assignment file simulation.ori that describes the orientation of the
nodes, overriding the values usually found in the mesh-file

• Crystallographic phase assignment simulation.phase which contains phase assign-
ments overriding those in the mesh-file

• Defined boundary conditions simulation.bcs containing a list of node id’s, the co-
ordination index (X, Y, or Z), and the node’s condition velocity in that direction.
Such a file is used in the rolling simulation performed in this thesis. A simple C#
script for creating such a file with rolling boundary conditions can be found in
Appendix A.1.

3.2.4 Output Files

When a simulation is finished, FEpX creates a small post.report file with the necessary
information for post-processing the raw data. The raw data is divided into one file per
data type per core. Only data specifically asked for in the Printing Results section of the
simulation.config file is printed. The output data can be divided into four categories:

• Nodal output that calculates and writes variables for each node in the mesh

• Elemental output that calculates and writes variables for each element in the mesh

• Restart output containing all variables needed to restart the simulation after a
specific load step

• Miscellaneous output describing macroscopic forces and simulation statistics

For post-processing the raw data, the Simulation module of Neper is used. The processed
data becomes more readable, and also available for the Visualization module of Neper.
This module can then be used to create images and figures based on that data.
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Chapter 4

Setup

4.1 Simulation Goals

4.2 Linux Machine Setup
Most of the programs that were used in this thesis require a Linux-like operating system
to be run on. For testing and getting to know the software, a PC running Ubuntu 22.04.1
LTS was chosen. Ubuntu is a free, modern, open-source operating system on Linux, and
capable of running both Neper and FEpX. The setup of these programs is written in
more detail in the following sections.

4.2.1 Neper Setup

Neper needs to be run on a Linux-like system, so the operating system chosen for testing
and getting to know the software was Ubuntu 22.04.1 LTS. As many other programs,
Neper is reliant on other software to work properly. Some of these are needed before
installation, so when doing the setup, it is recommended to install Neper last.
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Both OpenMP, and pthread library are required, but can’t be installed. They are
features of the compiler, so make sure the operating system contains them.

Since Neper is compiled in C and C++, it needs a C-Compiler. For this GCC (GNU
C Compiler) was used. It can be installed by using the following commands:

sudo apt update
sudo apt install build-essential
sudo apt install gfortran

It is not difficult to download and install 3rd-party packages on Linux-systems, includ-
ing many packages needed by Neper. Simply open a terminal and write the following
command:

sudo apt-get install {PACKAGE_NAME}

The packages that can be installed this way are:

• libgsl-dev

• libnlopt-dev

• libomp-dev

• libscotch-dev

• libpthread-stubs0-dev

Before installing the programs Neper uses, CMake should be installed, as it is needed in
the installation process of some of the other programs. CMake can be installed into your
current directory by using the following commands, which download it from GitHub and
runs the installation process:

git clone https://github.com/Kitware/CMake.git
cd cmake
./bootstrap
sudo make
sudo make install
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Gmsh is a program used by Neper for meshing. It has its own packages it needs to run,
which are given here. Their installation process is the same as for the Neper packages
listed above:

• libgmp3-dev

• libhdf5-serial-dev

• libfltk1.3-dev

• xorg openbox

• libpng-dev

• povray

• libblas-dev libblapack-dev

Gmsh requires OpenSSL, which can be installed using these commands:

git clone https://github.com/openssl/openssl.git
cd openssl
./configure
sudo make
sudo make install

Freetype is also needed, and can be acquired by writing these commands in the terminal
at the chosen designated directory:

git clone https://github.com/freetype/freetype.git
cd freetype
./configure
sudo make
sudo make install

Gmsh itself requires CMake to be installed. It should be done using these commands:

git clone https://gitlab.onelab.info/gmsh/gmsh.git
cd gmsh
mkdir build
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cd build
cmake ..
sudo make
sudo make install

Asymptote is a program needed by Neper for pole figure plots in the Visualization (-V)
module. To get it, the following commands may be used:

git clone https://github.com/vectorgraphics/asymptote.git
cd asymptote
sudo apt-get build-dep asymptote
./autogen.sh
./configure
sudo make all
sudo make install

When all dependencies have been successfully downloaded and installed, Neper itself can
be set up like this:

git clone https://github.com/neperfepx/neper.git
cd neper/src
mkdir build
cd build
cmake ..
sudo make
sudo make install

When this is done, Neper should be finished installed on the operating system. To check
if it’s working properly, write the following command:

make test

or simply:

ctest
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4.2.2 FEpX Setup

Compared to the Neper setup, setting up FEpX is fairly simple. As Gmsh and Neper,
it requires CMake for its installation process. The installation of CMake is noted in the
Neper section. Type in the given commands in the terminal at the directory where FEpX
is wanted:

git clone https://github.com/neperfepx/FEpX.git
cd FEpX/src
mkdir build
cd build
cmake ..
sudo make
sudo make install

After this, FEpX should be finished installing and ready for use. To test if it works as
intended, type in this command in the terminal, in any directory:

make test

alternatively:

ctest

4.3 IDUN Setup
All simulations were performed on the NTNU supercomputer IDUN [14]. To access IDUN
with a SSH connection outside the NTNU network, the VPN program Cisco AnyConnect
Secure Mobility Client v4.x can be used. The SSH connection itself can be handled by
WinSCP, which allows files to be handled, uploading and downloading files to a personal
computer, and writing commands in the correct directories. Figure 12 gives a good
overview of how to write a command with WinSCP.

The setup of Neper and FEpX on IDUN followed some of the same steps as the Linux
machine, but a few can be skipped, while other steps need to be added. In short;
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Figure 12: A command can be performed in the correct directory with WinSCP by
righ-clicking inside the folder space, then click Static Custom Commands and Enter...

installing 3rd-party packages is not needed, but some modules need to be loaded before
the installation process can start. Since the sudo command is not allowed, the installation
paths have to be set manually.

4.3.1 Neper Setup

Before any installations can be done, a CMake module needs to be loaded. This is done
by writing

module load {CMAKE_MODULE_NAME}

In this thesis, CMake/3.24.3-GCCcore-12.2.0 was used. With CMake available, the
installation of the dependencies can start. The installation process for OpenSSL is almost
the same as for a normal Linux machine. As the sudo command can’t be used, and the
/usr/local folder isn’t available, the path must be set manually. Start by creating a bin
folder in the users main directory. Then write the following commands in the terminal
in the designated directory:

git clone https://github.com/openssl/openssl.git
cd openssl
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./configure --prefix=/cluster/home/{USERNAME}/bin
make
make install

Freetype is installed much in the same way as OpenSSL is. Go to the directory where the
folder should be downloaded and type:

git clone https://github.com/freetype/freetype.git
cd freetype
./configure --prefix=/cluster/home/{USERNAME}/bin
make
make install

Gmsh works much the same way as well:

git clone https://gitlab.onelab.info/gmsh/gmsh.git
cd gmsh
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/cluster/home/{USERNAME}/bin ..
make
make install

Neper again uses the same method as Gmsh:

git clone https://github.com/neperfepx/neper.git
cd neper/src
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/cluster/home/{USERNAME}/bin ..
make
make install

With this done, Neper should be able to run normally by using its commands in the
IDUN terminal.
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4.3.2 FEpX Setup

FEpX, as Neper, is installed much the same way as on a normal Linux machine. It as
well needs a CMake module to be loaded, and that the installation path is set manually
during the installation process. Go in the terminal to the directory where FEpX should
be installed, and write the following commands:

git clone https://github.com/neperfepx/FEpX.git
cd FEpX/src
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=/cluster/home/{USERNAME}/bin ..
make
make install

4.4 Simulations setup
This section explains how the different simulations with FEpX can be done. Descriptions
of parameters, mesh creation and steps to be followed can be found here.

Since IDUN is a computer cluster shared between several teams, a way to queue in-
tensive operations is needed. IDUN solves this by using the cluster resource management
system called Simple Linux Utility Resource Management Slurm [16]. To queue a job
with Slurm, a slurm-file is needed. Following is a typical example of such a file:

#!/bin/sh
#SBATCH --partition=GPUQ
#SBATCH --account=SHARE-nv-ima
#SBATCH --time={hhh:mm:ss}
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=16
#SBATCH --mem=60G
#SBATCH --job-name="{JOB_NAME}"
#SBATCH --output=test.out
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#SBATCH --mail-user={USER_EMAIL}
#SBATCH --mail-type=ALL

WORKDIR=${SLURM_SUBMIT_DIR}
cd ${WORKDIR}

module load OpenMPI/4.1.4-GCC-11.3.0

mpirun --oversubscribe -np 16 fepx
neper -S -step 20 -o results .

Memory, number of cores needed, time until timeout, e-mail for updates, and a filename
for any output data are among the information included. Mark that before any commands
run, its important to load any necessary modules, in this case OpenMPI. The commands
in the file will then be performed in the order they’re listed.

4.4.1 Uniaxial Grip and Uniaxial Minimal Simulations

To run a simulation a mesh is necessary. By using Neper’s generation module, a tessel-
lation of a representative volume element can be generated. The meshing module can
then create meshes out of the tessellation which the simulations will run with. For both
the Uniaxial Grip simulation and the Uniaxial Minimal simulation the same meshes can
be used. The given Neper commands will generate the tessellation:

neper -T -n 50 -reg 1 -morpho gg -o {TESSELLATION_NAME}

This creates a cube made up of fifty grains. The grains are generated with grain growth
morphology, and since regularization is active, tiny edges and faces that can complicate
the meshes will be absorbed. The meshes can then be created using this Neper command:

neper -M {TESSELATION_NAME}.tess -order 2 -part 16 -rcl {RCL_VALUE} -o
{MESH_NAME}

The rcl value stands for relative characteristic lengths of the elements, and controls how
fine the finished mesh will become. A smaller value gives a finer mesh, while a larger value
gives a rougher mesh. The rcl values of the three meshes generated for these simulations
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Table 1: The different meshes and their rcl values

Mesh type rcl
Rough mesh 1.00
Average mesh 0.50

Fine mesh 0.25

can be seen in Table 1. The generated tessellation and the three meshes can be seen in
Figure 13.

The simulation.config file tells FEpX what kind of material that is tested, and how it
is to be deformed. The material parameters for both the grip and minimal simulations
can be found in Table 2 and Table 3. In the deformation history, the deformation is
controlled by uniaxial strain target, which means it is exposed to a constant strain rate
until a specific load of uniaxial strain state is met. All simulations were performed with
18 strain steps, with each increment increasing with 0.045, and 0.005 % target strain
every other increment:

Table 2: Single crystal elastic constants

Phase Type C11[MPa] C12[MPa] C44[MPa]
α FCC 245000 155000 62500

Table 3: Initial slip system strengths and other plasticity parameters

Phase m[-] γ̇0[1/s] h0[MPa] g0[MPa] gs0[MPa] n[-]
α 0.05 1 200 210 330 1
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Figure 13: In the top left corner the rough mesh with rcl=1.00 can be seen. In the top
right corner is the average mesh with rcl=0.50, and at the bottom is the fine mesh with
rcl=0.25.
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## Deformation History

def_control_by uniaxial_strain_target

number_of_strain_steps 18

target_strain 0.045 9 suppress_data
target_strain 0.05 1 print_data
target_strain 0.095 9 suppress_data
target_strain 0.1 1 print_data
target_strain 0.145 9 suppress_data
target_strain 0.15 1 print_data
target_strain 0.195 9 suppress_data
target_strain 0.2 1 print_data
target_strain 0.245 9 suppress_data
target_strain 0.25 1 print_data
target_strain 0.295 9 suppress_data
target_strain 0.3 1 print_data
target_strain 0.345 9 suppress_data
target_strain 0.35 1 print_data
target_strain 0.395 9 suppress_data
target_strain 0.4 1 print_data
target_strain 0.445 9 suppress_data
target_strain 0.45 1 print_data

To prevent too much unnecessary data from being printed, only the last increment to
every 5% strain target will be printed. The simulations are done when a strain of 45% is
reached.

The boundary conditions are the only difference between the uniaxial grip and uniaxial
minimal simulations. Both will have the same strain rate, 0.01, and the same loading
direction and loading face:
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## Boundary Conditions

boundary_conditions {uniaxial_grip/uniaxial_minimal}

loading_direction Z
loading_face Z_MAX

strain_rate 1e-2

The data that should be output and is needed for the results are:

• Coordinates

• Equivalent plastic strain

• Stress tensor

4.4.2 FEpX and Abaqus Simulations

The simulations to compare FEpX and Abaqus are similar to the uniaxial grip simulations
in the last section. The mesh is the same as the average mesh quality, which can be seen
in the top right corner of Figure 13. The material parameters are mostly the same,
with one small difference. Three simulations are done with both FEpX and Abaqus
with different rate sensitivity exponents (m). The different simulations and exponents
are listed in Table 4. The deformation history is simpler in these FEpX simulations
compared to those in the last section. There are less steps, and they stop at 40% strain
load. Instead more increments are needed to lower the time steps:

Table 4: The different rate sensitivity exponents used in the different simulations

Simulation m[-]
1 0.05
2 0.01
3 0.001
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## Deformation History

def_control_by uniaxial_strain_target

number_of_strain_steps 8

target_strain 0.05 200 print_data
target_strain 0.10 200 print_data
target_strain 0.15 200 print_data
target_strain 0.20 200 print_data
target_strain 0.25 200 print_data
target_strain 0.30 200 print_data
target_strain 0.35 200 print_data
target_strain 0.40 200 print_data

4.4.3 Rolling Simulations

The uniaxial rolling simulations work a little bit different than the other FEpX simula-
tions. As their boundary conditions are slightly more complicated a simulation.bcs file
is required to describe the boundaries. Their material properties are also different, to
better simulate a cold rolling of a AA1050 aluminium alloy. Two different tessellations
creating two different meshes will be simulated. A depiction of the simulation cubes can
be seen in Figure 14. The first cube and mesh will be created as the cube and mesh that
can be seen top left on Figure 13, but with 100 grains instead of 50. The other cube will
have 1000 grains, generated with centrodial morphology instead of grain growth. When
creating the mesh, the parameter absolute characteristic lengths cl is used instead of rcl,
and its value is set to 10. This is to make sure the mesh will be as rough as Neper allows,
to reduce the total number of nodes and elements. The Neper commands to create the
new mesh are:

neper -T -n 1000 -reg 1 -morpho centroidal -o {TESSELLATION_NAME}
neper -M {TESSELLATION_NAME}.tess -order 2 -part 16 -cl 10 -o {MESH_NAME}

The boundary conditions for a rolling simulation must be defined in an external file
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Figure 14: The two different tessellations and meshes for the rolling simulation. The
left cube has 100 grains with grain growth morphology and a rcl of 1.00. The right cube
has 1000 grains with centroidal morphology and a cl of 10.

for FEpX. In such a simulation, two faces must be kept static in he direction they are
facing. One other face must be kept static in its direction, while the opposite face is
given a velocity into the cube. One corner node must be kept completely static to
prevent rotations of the cube. To accomplish this condition for the relevant nodes in the
two meshes, a script was written to automate the process. The script can be found in
Appendix A.1. In it the nodes with a y-value lower than 0.001, and higher than 0.999 has
their y velocity set to 0. The nodes with z-values higher than 0.999 is given a z-velocity
of 0, while the nodes with a z lower than 0.001 needs to have a positive z-velocity of 0.01,
to make the compression happen. The node with an x, y, and z value lower than 0.001
has its velocity in all directions set to 0. Figure 15 shows a cube with these constraints.
The material properties for the simulation can be seen in Table 5 and Table 6.
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Figure 15: Boundary conditions for a rolling simulation. The y-velocity for the two
y-faces is set to 0. The z-velocity of the top face is also set to 0. The 0,0,0 corner node
is set to 0 in all directions. The bottom face is pushed up to create compression, while
the two x-faces are unconstrained.

Table 5: Single crystal elastic constants

Phase Type C11[MPa] C12[MPa] C44[MPa]
α FCC 106750 60410 28340

Table 6: Initial slip system strengths and other plasticity parameters

Phase m[-] γ̇0[1/s] h0[MPa] g0[MPa] gs0[MPa] n[-]
α 0.02 0.001 485 12.9 30 1
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Chapter 5

Results and Discussion

5.1 Results

5.1.1 Uniaxial Grip and Uniaxial Minimal Simulations

When running simulations in FEpX, it was discovered that a too high strain target would
distort the mesh too much, and the simulation would fail. This is more prevalent the
finer the mesh the simulation is using, but at higher strain targets all simulations would
fail. It was then decided to stop the simulations when a target of 45% was reached, as
that’s a load that even the simulation with the finest mesh can reach.

When a simulation is completed the simulation module of Neper is used to post-process
the data into a form that is more readable for both humans and the visualization module
of Neper. To get the images from the resulting post-processed data, a shell-script with
Neper and imagemagic commands was used. The shell-script can be viewed in Appendix
A.2.
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Table 7: Overview of the uniaxial grip and uniaxial minimum simulation times for the
different mesh qualities.

Type rcl[-] strain rate[1/s] dt[s] tmax[s] Simulation time[s]

Uniaxial grip
1 0.01 0.5 45 213

0.5 0.01 0.5 45 2135
0.25 0.01 0.5 45 80133

Uniaxial minimum
1 0.01 0.5 45 484

0.5 0.01 0.5 45 10795
0.25 0.01 0.5 45 182273

Figure 16 shows the equivalent plastic strain on the different quality meshes after the
uniaxial grip simulation has completed at 45% target strain. Figure 17 shows the stress33
values for the same meshes. In Figure 18 is the results of equivalent plastic strain after a
uniaxial minimal simulation has completed at the 45% strain target. The stress33 effect
after uniaxial minimal simulation has completed at the 45% strain target is visible in
Figure 19. Table 7 shows the simulation times.
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Figure 16: The equivalent plastic strain on three cubes with different mesh qualities
after a uniaxial grip simulation has completed at 45% strain target.
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Figure 17: The stress33 on three cubes with different mesh qualities after a uniaxial
grip simulation has completed at 45% strain target.
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Figure 18: The equivalent plastic strain on three cubes with different mesh qualities
after a uniaxial minimal simulation has completed at 45% strain target.
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Figure 19: The stress33 on three cubes with different mesh qualities after a uniaxial
minimal simulation has completed at 45% strain target.
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5.1.2 FEpX and Abaqus Simulations

Figure 20 depicts the equivalent plastic strain on the mesh with different rate sensitivity
exponents in the FEpX uniaxial grip simulations. In Figure 21 the results of the equiva-
lent stress from the same simulations can be seen. The grain structure of the cubes that
went through the Abaqus uniaxial grip simulations is in Figure 22. Figure 23 contains
the Abaqus equivalent plastic strain results, while Figure 24 has the von Mises stress.
The simulation times for the FEpX simulations are in Table 9.

The computational times performed on IDUN, on the same number of CPUS (16) as
the FEpX simulations are shown in the Table below.

Table 8: Overview of the FEpX uniaxial grip simulation times for the different rate
sensitivity exponents.

Type rcl[-] m[-] strain rate[1/s] dt[s] tmax[s] Simulation time[s]

Uniaxial grip
0.5 0.05 0.01 0.5 40 2226
0.5 0.01 0.01 0.25 40 4868
0.5 0.001 0.01 0.025 40 15782
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Figure 20: The equivalent plastic strain on three cubes with different rate sensitivity
exponents after a FEpX uniaxial grip simulation has completed at 40% strain target.
The top left has m=0.05, top right has m=0.01, and bottom has m=0.001.
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Figure 21: The equivalent on three cubes with different rate sensitivity exponents after
a FEpX uniaxial grip simulation has completed at 40% strain target. The top left has
m=0.05, top right has m=0.01, and bottom has m=0.001.
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Figure 22: The grain structure of three cubes with different rate sensitivity exponents
after an Abaqus uniaxial grip simulation has completed at 45% strain target. The left
has m=0.05, middle has m=0.01, and right has m=0.001.

Figure 23: The equivalent plastic strain on three cubes with different rate sensitivity
exponents after an Abaqus uniaxial grip simulation has completed at 45% strain target.
The left has m=0.05, middle has m=0.01, and right has m=0.001.
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Figure 24: The von Mises stress on three cubes with different rate sensitivity exponents
after an Abaqus uniaxial grip simulation has completed at 45% strain target. The left
has m=0.05, middle has m=0.01, and right has m=0.001.

Table 9: Overview of the Abaqus uniaxial grip simulation times for the different rate
sensitivity exponents.

Type rcl[-] m[-] strain rate[1/s] dt[s] tmax[s] Simulation time[s]

Uniaxial grip
0.5 0.05 0.01 0.5 45 1800
0.5 0.01 0.01 0.25 45 3300
0.5 0.001 0.01 0.025 45 25620
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5.1.3 Rolling Simulations

Figure 25 contains the equivalent plastic strain results after the uniaxial rolling simulation
on the 100 grain mesh. The results from the 1000 grain mesh can be seen in Figure
26. Both simulations stopped after reaching a strain target of 25% because of mesh
distortions. In Figure 27 is the density pole figure for the 100 grain tessellation, while
Figure 28 contains the density pole figure for the 1000 grain tessellation. The simulation
times for both simulations are in Table 10. The Figure 29 shows the corresponding ODF
of the texture after the deformation of the 1000 grain mesh at the 25% rolling reduction.

Table 10: Overview of the FEpX uniaxial rolling simulation times for the tessellation
and meshes.

Type grain number[-] strain rate[1/s] dt[s] tmax[s] Simulation time[s]

Uniaxial rolling 100 0.01 0.025 25 4174
1000 0.01 0.125 25 55645
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Figure 25: The equivalent plastic strain on a 100 grain mesh after a 25% strain uniaxial
rolling simulation has completed.
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Figure 26: The equivalent plastic strain on a 1000 grain mesh after a 25% strain uniaxial
rolling simulation has completed.

Figure 27: The orientation density pole figure of the 100 grain mesh after the simulation
has completed.
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Figure 28: The orientation density pole figure of the 1000 grain mesh after the simula-
tion has completed.

Figure 29: ODF of the 1000 grain mesh after deformation at the 25% rolling reduction.
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5.2 Discussion

5.2.1 Uniaxial Grip and Uniaxial Minimal Simulations

Abaqus performed simulation with the uniaxial grid boundary conditions by the factor
of 0.65 faster for the strain rate sensitivity m = 0.05, and by the factor of 0.8 faster for
m = 0.01. The results for m = 0.001 were timed faster by FEpX but since they are
incomplete, one cannot trust the total time measured.

From Figure 16, Figure 17, Figure 18, and Figure 19 it is visible that a finer mesh
with more elements create a more accurate and detailed result. As the simulation times
in Table 7 shows however, those simulations are much more computationally intensive,
and require much more time than simulations with meshes that have less elements. It is
therefore a trade-off between how good simulations that are wanted, and how much time
and resources that should be spent on them.

From table 7 it is also clear that uniaxial minimal simulations are more computationally
intensive than the uniaxial grip simulations. This could be because the uniaxial minimal
have less boundary conditions which gives the elements more room to move. Figure 18
and Figure 19 shows that the cube has become more distorted than it is in the uniax-
ial grip simulations. More node-movement seems to make the simulations more intensive.

FEpX is capable of running both uniaxial grip and uniaxial minimal boundary con-
ditions simulations, and with varying mesh quality. There is a clear correlation between
mesh element amount, and node movement on the total simulation time.

5.2.2 FEpX and Abaqus Simulations

Both FEpX and Abaqus seem capable of handling varying rate sensitivity exponents, but
FEpX’s results cannot be relied on if the exponent is too low. As is shown in Figure 20,
when the exponent is set to 0.001, it fails to compute any equivalent plastic strain. In
Figure 21 FEpX manages to calculate the equivalent stress, but it doesn’t follow the trend
of increasing stress with lower rate sensitivity exponent that can be seen with Abaqus in
Figure 24. The trend of increasing stress is visible for the FEpX simulations at m=0.05
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and m=0.01, but falls at m=0.001. Another sign the results at this rate sensitivity ex-
ponent is unreliable.

Abaqus also works better at higher strain targets. While Abaqus manages to simu-
late a strain up to 45%, FEpX at lower rate sensitivity exponents fails when the strain
reaches higher than 40%., but with remeshing it can reach higher strains [1]. If the strain
forces the nodes too far from each other it can reach a point where the calculations cannot
converg on a solution. With remeshing the nodes are redistributed at fitting distances,
and the simulation can continue to higher strains.

From these simulations it is clear that the FEpX results become unreliable at rate sensi-
tivity exponents lower than 0.01, at least at a value of 0.001. Abaqus in contrast shows
no issues of handling rate sensitivity exponents of that value. FEpX cannot handle too
high strain targets and fails sooner than Abaqus. With remeshing it may be able to
continue simulating higher strain targets.

Even though 25% rolling reduction is too little to develop pronounced β-fiber, that is
the signature of the cold rolled textures. Never the less weak β-fiber with a maximum
ntensity of 3.2 can be clearly observed from the picture in Figure 29.

5.2.3 Rolling Simulations

The rolling simulations seen in Figure 25 and Figure 26 had to stop at 25% strain. The
reason for the failure before a 30% strain could be reached is uncertain, but is most likely
because of the shear bands visible in the figures. At a top corner of both simulations
the mesh is clearly distorted to the point that the Finite-Element method is close to
breaking. Such shear bands are common when rolling, so the simulations are capable of
recreating natural phenomena seen in experimental data.

The density pole-figures in Figure 27 and Figure 28 show signs of a symmetry found
in the orientations of more complete rolling simulations. The fact that the rolling simu-
lations stopped at 25% strain is probably the reason that the pole-figures doesn’t show
more of the orientation density symmetry found in rolling simulations. With remeshing,
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a higher strain target could be attempted which should give a density pole-figure that
looks more like the theoretical figure.

As in the uniaxial grip and uniaxial minimal simulations, the total simulation times for
rolling simulations in Table 10 conveys the trade-off between more elements in the mesh,
and computational time. Figure 26 shows localization and shear bands more clearly than
Figure 25, but also requires over 10x more total simulation time.

FEpX is capable of running rolling simulations, but without remeshing they stop at a
low strain target of 25%. Pole-figures created from the resulting orientations show signs
of the density symmetry found in more complete rolling simulations. With remeshing
and a higher strain target a pole-figure with a density symmetry more like the theoretical
figure may be achieved.
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Chapter 6

Conclusions and Future Work

This thesis has created an overview of the FEpX code-base, and its algorithms. It
has created visual outline of what fortran modules and their subroutines that are being
used, and what modules call the different subroutines. Unfortunately FEpX has no easily
found access point where other algorithms can be plugged in. It was therefore found to
be unfeasible to switch the core of the FEpX algorithms with the umat crystal plasticity
code. It is technically possible, but will require extensive rewriting of both code-bases,
and probably several subroutine calls between them instead of just one contact point.
Such a configuration with the FEpX frontend and the umatCP is unforunately outside
the scope of this thesis.

Neper has been used for many aspects of this thesis. All the different modules of Neper
has been needed for parts of the simulations. The generation and meshing modules have
been used and explained for creating the meshes that have been simulated. The simula-
tion module is critical to post-process the raw data after the FePX simulations, and the
visualization module has created almost all the figures in the Section 5.
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FePX have been used to simulate two different simple boundary condition cases, and
one more complicated custom boundary condition. With these simulations FEpX is bet-
ter understood, and its advantages and limitations are found.

When comparing simulations of Abaqus and FepX, Abaqus was found to be faster, han-
dling cases better, and more user-friendly. This is to be expected as Abaqus is a paid for
product.

FEpX can handle plane-strain conditions, though only to 25% strain before it requires
remeshing. The results are promising though, and if another simulation can be attempted
in the future with remeshing, it would be interesting to see how far it could go.

What is the code-structure of FEpX, and how easy is it to substitute it with
other algorithms?

FEpX is coded in Fortran, but has a fairly complicated structure where new code cannot
easily be inserted. Different fortran modules have subroutines that call subroutines in
other modules in in a bit of a criss-cross pattern that makes it hard to substitute the
algorithms.

What are the advantages of using FEpX compared to Abaqus?

FEpX is free, and open-source, but in other areas fall short compared to Abaqus. Abaqus
is more user-friendly, and handles higher strains, boundary conditions, and lower strain
sensitivity exponents better. It is farily complicated to insert own algorithms into FEpX,
but it is possible.
Does FEpX have any failings or limitations?

When testing FEpX some limitations where found. It is only capable of handling 2nd
order 10-node tetrahedral elements in the mesh-file. This may cause some complications
when comparing the simulations to other Finite-Element Polycrystal Plasticity programs,
or when testing other algorithms with the FEpX code-base.
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Neper that provides the tessellations and meshes for FEpX can create periodicity, but
these will be structures of whole grains, not a cubic volume that FEpX needs for its sim-
ulations. Without using another software to create a mesh with periodicity, and convert
it to a mesh-file FePX can read, periodicity is hard to simulate.

FEpX has a few built in boundary conditions, namely grip, symmetry, and minimal
[1], but any other conditions must be set by the user in a simulation.bcs file. This file
needs to contain all boundary nodes with conditions, which is not feasible to write by
hand. As FepX doesn’t contain a software to do this, a user create a program to do this
themselves. This is not very user-friendly, at least compared to Abaqus that can create
custom boundary conditions with a few clicks.

Another issue may appear if data from some steps in the deformation history are sup-
pressed. When post-processing out data from the simulation with Neper, any suppressed
steps are skipped, meaning the list of processed out-files are not in a clear order. For ex-
ample, if every other step is suppressed, the out-files will jump over steps in their names.
FePX is very intertwined with Neper, but Neper is incapable of handling out-data with
names that are not increments of 1. If there are 10 out-files with step values from 0 to 20,
and the visualization module is told there are 10 steps, it will stop at .step10, even if there
are more steps afterwards. If there is no file with the name .step10, though there are 10
out-files, it will stop the process. This issue can be worked around by manually changing
the name of all the out-files so they increment correctly, but it is not user-friendly.
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Appendix A

A.1 Boundary Conditions File Script

using System;

namespace boundary_conditions_writer
{

class Program
{

static void Main(string[] args)
{

IBoundaryConditionsHandler boundaryConditionsHandler = new
RollingBoundaryConditionsHandler();

string meshName = args.Length > 0 ? args[0] : "simulation";
MeshReader.ReadNodes(boundaryConditionsHandler, meshName);
BoundaryConditionsWriter.WriteBoundaryConditionsFile(boundaryConditionsHandler.BoundaryConditions);
Console.Write("Finished!");

}
}

}

namespace boundary_conditions_writer
{
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public static class MeshReader
{

public static void ReadNodes(IBoundaryConditionsHandler
boundaryConditionsWriter, string meshName)

{
string path = Environment.CurrentDirectory + $"\\{meshName}.msh";

bool hasReachedNodesNumber = false;
bool hasReachedNodes = false;
int totalNodesNumber = 0;
int i = 0;
foreach (string line in File.ReadLines(path))
{

if (line.Contains("Nodes"))
{

if (!hasReachedNodes)
{

hasReachedNodesNumber = true;
continue;

}
else

break;
}
if (hasReachedNodesNumber)
{

totalNodesNumber = Int32.Parse(line);
hasReachedNodesNumber = false;
hasReachedNodes = true;
continue;

}
if (!hasReachedNodes)

continue;

string[] args = line.Split(’ ’);
if (args.Length != 4)
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{
Console.Write("Error: Line does not have expected number of

arguments!");
continue;

}
boundaryConditionsWriter.CheckNode(ReadNode(args[0], args[1],

args[2], args[3]));
i++;

}

if (i != totalNodesNumber)
Console.Write($"Error: Number of read nodes: {i} not equal

total number of nodes: {totalNodesNumber}!");
}

public static Node ReadNode(string idString, string xString, string
yString, string zString)

{
int id = Int32.Parse(idString);
float x = float.Parse(xString);
float y = float.Parse(yString);
float z = float.Parse(zString);

return new Node(id, x, y ,z);
}

}
}

namespace boundary_conditions_writer
{

public class Node
{

public int ID;
public float X;
public float Y;
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public float Z;

public Node(int id, float x, float y, float z)
{

ID = id;
X = x;
Y = y;
Z = z;

}

public bool IsMinX()
=> X < 0.001f;

public bool IsMaxX()
=> X > 0.999f;

public bool IsMinY()
=> Y < 0.001f;

public bool IsMaxY()
=> Y > 0.999f;

public bool IsMinZ()
=> Z < 0.001f;

public bool IsMaxZ()
=> Z > 0.999f;

}
}

namespace boundary_conditions_writer
{

public interface IBoundaryConditionsHandler
{

List<string> BoundaryConditions { get; }
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void CheckNode(Node node);
}

}

namespace boundary_conditions_writer
{

public class RollingBoundaryConditionsHandler : IBoundaryConditionsHandler
{

public List<string> BoundaryConditions { get; private set; }

public RollingBoundaryConditionsHandler()
{

BoundaryConditions = new List<string>();
}

public void CheckNode(Node node)
{

int i = 0;
if (node.IsMinX())

i++;
else if (node.IsMaxX())

i++;
if (node.IsMinY())
{

BoundaryConditions.Add($"{node.ID} y 0");
i++;

}
else if (node.IsMaxY())
{

BoundaryConditions.Add($"{node.ID} y 0");
i++;

}
if (node.IsMinZ())
{

BoundaryConditions.Add($"{node.ID} z 1e-2");
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i++;
}
else if (node.IsMaxZ())
{

BoundaryConditions.Add($"{node.ID} z 0");
i++;

}

if (i == 3)
{

Console.Write($"Corner node found! ID: {node.ID}\n");
if (node.IsMinX() && node.IsMinY() && node.IsMinZ())

BoundaryConditions.Add($"{node.ID} x 0");
}

}
}

}

namespace boundary_conditions_writer
{

public static class BoundaryConditionsWriter
{

public static void WriteBoundaryConditionsFile(List<string>
boundaryConditions)

{
string path = Directory.GetCurrentDirectory() +

$"\\simulation.bcs";
using (StreamWriter writer = new StreamWriter(path))
{

foreach (string line in boundaryConditions)
writer.WriteLine(line);

}
}

}
}
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A.2 Neper and imagemagic Shell Script
The following shell-script was used to get images from the result folder after a completed
FEpX simulation. The Neper commands make images and scales into separate images,
and the imagemagic commands glue them together. The script takes two inputs; the
name of the images, and how many steps the simulation used. These are the same
amount of steps as are set in the FEpX simulation.config file under deformation history.

neper -V results -step $2 -datanodecoo coo -dataelt1drad 0.004
-dataelt3dedgerad 0.0015 -dataelt3dcol strain-pl-eq -dataelt3dcolscheme
jet -showelt1d all -dataeltscale
0.0:0.1:0.2:0.3:0.4:0.5:0.6:0.7:0.8:0.9:1.0 -dataeltscaletitle "Equivalent
Plastic Strain" -cameraangle 25 -imagesize 1600:1000 -print
$1_eqplstrain_front

convert $1_eqplstrain_front.png $1_eqplstrain_front-scale3d.png -gravity East
-composite $1_eqplstrain_front_wscale.png

neper -V results -step $2 -datanodecoo coo -dataelt1drad 0.004
-dataelt3dedgerad 0.0015 -dataelt3dcol strain-pl-eq -dataelt3dcolscheme
jet -showelt1d all -dataeltscale
0.0:0.1:0.2:0.3:0.4:0.5:0.6:0.7:0.8:0.9:1.0 -dataeltscaletitle "Equivalent
Plastic Strain" -cameraangle 25 -cameracoo
x-length*vx:y-length*vy:z+length*vz -imagesize 1600:1000 -print
$1_eqplstrain_back

convert $1_eqplstrain_back.png $1_eqplstrain_back-scale3d.png -gravity East
-composite $1_eqplstrain_back_wscale.png

neper -V results -step $2 -datanodecoo coo -dataelt1drad 0.004
-dataelt3dedgerad 0.0015 -dataelt3dcol stress33 -dataelt3dcolscheme jet
-dataeltscaletitle "Stress 33 (MPa)" -dataeltscale 0:1000 -showelt1d all
-cameraangle 25 -imagesize 1600:1000 -print $1_s33deform_front

convert $1_s33deform_front.png $1_s33deform_front-scale3d.png -gravity East
-composite $1_s33deform_front_wscale.png

neper -V results -step $2 -datanodecoo coo -dataelt1drad 0.004
-dataelt3dedgerad 0.0015 -dataelt3dcol stress33 -dataelt3dcolscheme jet
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-dataeltscaletitle "Stress 33 (MPa)" -dataeltscale 0:1000 -showelt1d all
-cameraangle 25 -cameracoo x-length*vx:y-length*vy:z+length*vz -imagesize
1600:1000 -print $1_s33deform_back

convert $1_s33deform_back.png $1_s33deform_back-scale3d.png -gravity East
-composite $1_s33deform_back_wscale.png
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