A Review of Fennoscandian Stictochironomus (Diptera: Chironomidae), with the description of a species new to science

Master's thesis in Systematics and Biodiversity (NABiS)
Supervisor: Torbjørn Ekrem
Co-supervisor: Elisabeth Stur
May 2023

Norwegian University of Science and Technology

Ingvill Reistad

A Review of Fennoscandian Stictochironomus (Diptera: Chironomidae), with the description of a species new to science

Master's thesis in Systematics and Biodiversity (NABiS)
Supervisor: Torbjørn Ekrem
Co-supervisor: Elisabeth Stur
May 2023
Norwegian University of Science and Technology
NTNU University Museum
Department of Natural History

- NTNU

Norwegian University of Science and Technology

Abstract

Chironomidae is one of the most abundant and species rich families of freshwater insects. The genus Stictochironomus Kieffer, 1919, belongs to the widely distributed subfamily Chironominae and currently has six named species recorded from Fennoscandia. However, the DNA barcode data of Stictochironomus specimens collected in Norway and Finland indicate eight different genetic lineages, excluding Stictochironomus crassiforceps. In this study, the Fennoscandian species of the genus Stictochironomus are reviewed in an integrative framework, where species boundaries were examined using molecular and morphological data. Phylogenies derived from sequences of the mitochondrial COI, nuclear protein coding AATS1, and PGD DNA markers, as well as the Generalized Mixed Yule Coalescent (GMYC) method, and morphological characters were used to support the delimitation of eight Fennoscandian species. One of these species is new to science and an additional two probably new to science. In this thesis, I describe the species known from Fennoscandia and provide an illustrated identification key to Fennoscandian Stictochironomus. To avoid creating a nomen nudum, the new species is not formally named. A lectotype for Stictochironomus rosenschoeldi is selected to stabilize future nomenclature of this species.

Sammendrag

Chironomidae, eller fjærmygg på norsk, er en av de mest artsrike og utbredte familiene av ferskvannsinsekter i verden. Under slekten Stictochironomus Kieffer, 1919 finnes det seks beskrevne arter i Fennoskandia, men DNA barcode data tyder på at det finnes åtte forskjellige arter her, utenom arten Stictochironomus crassiforceps. I dette studiet har slekten Stictochironomus blitt revaluert i et integrativt rammeverk, og artsgrenser har blitt testet med molekylære og morfologiske analyser. Fylogenier basert på den mitokondrielle markøren COI, de to nukleære proteinkodende markørene PGD og AATS1, 'Generalized Mixed Yule Coalescent' (GMYC) metoden og morfologiske karakterer ble brukt til å støtte opp avgrensningen av åtte arter av Stictochironomus i Fennoskandia. I denne avhandlingen breskrives alle artene som er kjent fra Fennsokandia, inkludert minst en ny art og to mulige nye arter for vitenskapen. En illustrert artsnøkkel ble laget. For å unngå opprettelsen av et nomen nudum har ikke den nye arten fått et offisielt navn enda. En lectotype for Stictochironomus rosenschoeldi har blitt valgt ut for å stabilisere framtidig nomenklatur for denne arten.

Acknowledgements

This master's thesis was written at the Norwegian University of Science and Technology (NTNU) University Museum, department of Natural History. I want to thank my supervisors, Torbjørn Ekrem and Elisabeth Stur for guiding me through this project with their vast practical and theoretical knowledge of chironomids and taxonomy. I also want to give a special thanks Marko Mutanen, senior curator at the University of Oulu for loaning me twelve specimens of Stictochironomus from Finland, and Mohsen Falahati and Aina Mærk Aspaas for giving and advice in the molecular and microscope labs. Finally, I want to thank my fellow students and friends who have provided both emotional support, amazing problem solving skills and theoretical insight during this year.

Table of contents

Introduction 1
Chironomidae 1
Stictochironomus Kieffer, 1919 2
Species concepts and species delimitation 4
Aims and hypothesis 5
Material and methods 6
Fieldwork 6
Measurements of morphological characters 7
Illustrations 8
DNA extraction and PCR 9
Sequence editing and alignment 10
Species delimitation 11
Results 12
Phylogenetic trees 12
Delimitation 16
Morphology 16
Stictochironomus maculipennis (Meigen, 1818) 17
Stictochironomus sp. pictulus I 19
Stictochironomus sp. pictulus II 21
Stictochironomus psilopterus (Edwards, 1935) 23
Stictochironomus rosenschoeldi (Zetterstedt, 1838) 25
Stictochironomus sp. 2TE 27
Stictochironomus sp. sticticus Norway 29
Stictochironomus sp. 3TE 30
Other species 32
Key to male adults of the Fennoscandian Stictochironomus species 34
Discussion 35
Phylogenetic trees 35
Delimitation - GMYC 36
Morphology 37
Future priorities 39
Conclusion 39
References 40
Appendices 44

List of figures

Figure 1 - A photography of a specimen of the species Stictochironomus rosenschoeldi (Zetterstedt, 1838) collected in Finnmark, Norway. Scalebar 2 mm .2

Figure 2 - Fieldwork in Finnmark: catching Stictochironomus adults with an insect net by Nordvivatnet. 6
Figure 3 - Measurements of length of wing veins $\mathrm{Cu}, \mathrm{M}, \mathrm{R}_{1}, \mathrm{R}_{2+3}$ and R_{4+5}. The specimen depicted has the BOLD specimen ID: Finnmark108 and has been identified as Stictochironomus sp. 2 TE Scalebar 2 mm . . 7
Figure 4 - Measurements of the hypopygium. Length of A) tergite IX, B) gonostylus, C) gonocoxite, D) anal point, E) phallapodeme F) transverse sternapodeme and G) inferior volsella. The specimen depicted has the BOLD specimen ID: Finnmark108 and has been identified as Stictochironomus sp. 2TE. Scalebar $300 \mu \mathrm{~m}$.8

Figure 5 - Consensus tree from Maximum Likelihood analysis (RAxML) of the concatenated dataset created in CRIPES with default settings, including the DNA markers COI, PGD and AATSl. Branch labels are showing bootstrap values. Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance. All genetic clusters are indicated in the sidebar. 14 Figure 6 - Majority rule consensus tree from MrBayes analysis of the concatenated dataset created in CIPRES with default settings, including the DNA markers COI, PGD and AATSI. Branch labels are showing branch lengths (the mean of the posterior probability density) higher or equal to 70. Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance. All genetic clusters are indicated in the sidebar.
Figure 7 - Hypopygium of Stictochironomus maculipennis, the specimen depicted is BOLD specimen ID: TDR-CH95. Scalebar $200 \mu \mathrm{~m}$ 18
Figure 8 - Hypopygium of Stictochironomus pictulus, the specimen depicted is BOLD specimen ID: ZMUO.024720. Cluster Stictochironomus sp. pictulus I. Scalebar $200 \mu \mathrm{~m}$. 20
Figure 9 - Hypopygium of Stictochironomus pictulus, the specimen depicted is BOLD specimen ID: ZMUO.025173. Cluster Stictochironomus sp. pictulus II. Scalebar $200 \mu \mathrm{~m}$. 22
Figure 10 - Hypopygium of Stictochironomus psilopterus, the specimen depicted is BOLD specimen ID: BJ196. Scalebar $200 \mu \mathrm{~m}$. 24
Figure 11 - Hypopygium of Stictochironomus rosenschoeldi, the specimen depicted is BOLD specimen ID: Finnmark527. Scalebar $200 \mu \mathrm{~m}$. 26
Figure 12 - Hypopygium of Stictochironomus sp. 2TE, the specimen depicted is BOLD specimenID: Finnmark108. Scalebar $200 \mu \mathrm{~m}$.28
Figure 13 - Hypopygium of Stictochironomus sp. 3TE, the specimen depicted is BOLD specimen ID: ZMUO.024598. Scalebar $200 \mu \mathrm{~m}$ 31
Figure 14 - Illustrations showing variance of superior volsella in S. pictulus. Specimens A) BOLDspecimen ID: ZUMO. 024720 and B) BOLD specimen ID: ZUMO.024721 fall within the clusterStictochironomus sp. pictulus I and specimens C) BOLD specimen ID: ZUMO. 025172 and D)BOLD specimen ID: ZUMO. 025173 fall within the cluster Stictochironomus sp. pictulus II. Forsize see figure of hypopygium.33
Figure 15 - Illustrations showing variance of superior volsella in S. maculipennis. Specimens A)BOLD specimen ID: AT568, B) BOLD specimen ID: TRD-CH95, C) BOLD specimen ID: TRD-CH32l. For size see figure of hypopygium.33

List of tables

Table 1 - Primers used for DNA amplification.. 9

Introduction

Chironomidae

Chironomidae is the most abundant and species rich family of aquatic insects, with more than 6000 species described worldwide (Ashe \& O'Connor, 2009, 2012), and over 1200 species described in Europe (Sæther \& Spies, 2010). The estimated number of species worldwide is 15000 (Armitage et al., 1995), suggesting that less than half the species diversity in the world has been described. Adaptations to extreme environments of temperature, salinity, depth and pH has allowed them to inhabit every continent of the Earth. This makes chironomids the most widely distributed family of free-living holometabolous insects, ranging all the way from Ellesmere Island in the north to the mainland of Antarctica in the south (Armitage et al., 1995). Nevertheless, most people are unaware that this large family even exists, perhaps with the exception of avid fly fishers that use lures representing chironomid pupa when fishing in freshwater. In English, chironomids are called non-biting midges or lake flies, which are fitting names that describes parts of their ecology and life history.

All holometabolous insects have a complete metamorphosis with four life stages: egg, larva, pupa, and imago. Chironomids spend the majority of their lives as larvae, and this life stage can last from a few weeks up to several years (Butler, 1982; LindegaardPetersen, 1971). Most larvae live in aquatic environments of any form, from glacial rivers high up in mountains to the seashores, and some species are even marine. However, some species have a semi aquatic larval stage in moss and other humid substrates, and a few species are even fully terrestrial living in soil, dung and fungi (Armitage et al., 1995; Cranston et al., 1989; Oliver, 1971). The larvae feed on algae, algae-detritus, detritus, and some are even carnivorous. After four larval instars they start forming a pupa. This process can be triggered by daylength, temperature and other external factors. The pupal stage is very brief and only lasts up to a few days before the chironomid emerges as an imago. The adults usually live a few weeks, and their only goal is to reproduce and lay eggs (Oliver, 1971). They often form swarms near the body of water in which they emerged, as a part of their mating behavior.

Sometimes there is an enormous number of chironomids emerging at once, forming such dense swarms that they become a nuisance to humans. Recorded incidents include chironomid swarms so dense they fly into the ears, nose and eyes, making it hard to breathe and really uncomfortable to be outdoors (Grodhaus, 1963). In Japan there has been cases of dead chironomids covering roads in a slimy fishy smelling layer making it dangerous to drive. The abundance and species richness of chironomids is not only a bad thing. They play a crucial role in the ecosystem as consumers of organic matter in aquatic environments, and as a major food source for other consumers in both aquatic and terrestrial food webs (Armitage et al., 1995). Chironomids have been used in
freshwater biomonitoring and as water quality indicators for over a hundred years (Cranston et al., 1989). Being present on every continent, they are useful for tracking biogeographic trends and processes (Porinchu \& MacDonald, 2003). In order to protect and manage ecosystems and wildlife it is crucial that as much as possible is known about the species composition of the ecosystem, their abundance and ecology. Mapping species diversity is thus, in some way, beneficial to everyone.

Stictochironomus Kieffer, 1919

Figure 1 - A photography of a specimen of the species Stictochironomus rosenschoeldi (Zetterstedt, 1838) collected in Finnmark, Norway. Scalebar 2 mm .

The genus Stictochironomus (Figure 1) belongs to the subfamily Chironominae and shares the typical characteristics of this group. The adults are quite large, with a wing length of 2.5-4.7 mm. The body is light brown to dark brown. There is dark spot on the wing membrane surrounding RM, and some species have a pattern of an additional 4-5 spots on the wing. The legs sometimes have alternating light and dark bands of rings, fore tibia has scale, otherwise fused tibial combs with l-2 spurs. The thorax has a conical scutal tubercle. Stictochironomus is one of few genera within the subfamily Chironominae that has movable gonostyli. Characters on the wing, thorax and male genitalia are useful for species identification of adult specimens (Cranston et al., 1989).

The pupae are quite large, $7-10 \mathrm{~mm}$ long. Stictochironomus can be identified within the tribus Chironomini by the combination of these characters: they have a plumose thoracic horn together with anterior horn, on tergite II-VI there are transverse bands of shagreen, the anal combs are robust and longitudinal, there is a lack of dorsal setae on the anal lobes, the frontal setae are long and robust, and the cephalic tubercles are well developed. Stictochironomus pupae are very similar to those of Tribelos, but they differ in that Tribelos have 1 very long dorsal seta on each anal lobe, the frontal setae are short and slender, and they have 5 LS setae on segment VIII, not 4 like Stictochironomus (Pinder \& Reiss, 1986).

The larvae are large, up to 14 mm long. They are red and have 2 pairs of separate eyes. In addition the following combination of characters can be used to identify Stictochironomus larvae: antennas are 6-segmented with alternate Lauterborn organs; the dorsal tooth of the mandible and all of the mental teeth are dark; the 4 median teeth of the mentum are much higher than the 6 pairs of lateral teeth; and the central pair is much more slender and lower than the outer pair. Larvae living in sand often have strongly worn mouthparts and it can be difficult to use these characters for identification (Epler et al., 2013).

Stictochironomus species are considered aquatic, as their immature stages (eggs and larvae) can be found in profundal soft sediments and littoral sand of oligotrophic to mesotrophic lakes, and in sandy sediments of streams and slow flowing rivers (Cranston et al., 1989; Epler et al., 2013). Adults do not usually migrate far from the body of water from which they emerged and can often be found in vegetation near the shore (Figure 2) (Armitage et al., 1995; Cranston et al., 1989; de Jong et al., 2014; Stur \& Ekrem, 2020). Stictochironomus can be found in every geographic region except Antarctica and South America, but the known diversity is highest in North America, Europe South Africa, and Japan. Worldwide there are currently about 50 described species (Thompson et al., 1999), six of which can be found in Fennoscandia (Schnell \& Aagaard, 1996; Stur \& Ekrem, 2020; Sæther \& Spies, 2010): Stictochironomus crassiforceps (Kieffer, 1921), Stictochironomus maculipennis (Meigen, 1818), Stictochironomus pictulus (Meigen, 1830), Stictochironomus psilopterus (Edwards, 1935), Stictochironomus rosenschoeldi (Zetterstedt, 1838) and Stictochironomus sticticus (Fabricius, 1781).

Although Kieffer (1919) described the genus Stictochironomus in 1919, several of the species had already been described and were classified first within Tipula and later Chironomus (Fabricius, 1781; Meigen, 1818; Meigen, 1830). The identity of within Stictochironomus has not always been unambiguous. There has especially been some confusion regarding S. sticticus and S. pictulus. Fabricius (1781:407) described Tipula stictica (S. sticticus) as a species with dark thorax, light bands on the abdomen and a single dark spot in the middle of the wing. In 1818, Meigen (1818:37) published a description of a specimen he had received from Hoffmann and identified it as Chironomus sticticus (Fabricius, 1781). Hoffmann had labelled the specimen as ch. pictulus but had never published a description nor the name. Meigen described the wing pattern of the specimen as having three gray spots in addition to the central black spot. He noticed that the wing pattern was different from Fabricius' description of Tipula stictica sensu Fabricius (1781:407) and assumed that Fabricius might have overlooked this detail. Some years later, Meigen (1830:244) realized that he had misidentified Hoffmann's specimen as Chironomus sticticus (Fabricius, 1781), and that it was a separate species. Meigen named Hoffmann's specimen pictulus. In the same publication Meigen corrected a spelling mistake (Chir. strictus) and synonymized Chironomus histrio with Chironomus sticticus (Fabricius, 1781).

Species concepts and species delimitation

Species are one of the fundamental units in biology (Dobzhansky, 1982; Mayr, 1999), but the question of what ultimately defines a species has long been one of the most controversial topics in biology. The issue of species delimitation has been confused with the definition of species as a concept (De Queiroz, 2007). There are at least 26 recognized species concepts (Wilkins, 2006), however none of these singlehandedly work as a universal definition across all phyla. Together, all of the definitions conform to a primary concept that is now universally accepted: species is a metapopulation evolving along a single lineage. In order to delimit species using the primary concept there is a need for operational or secondary species criteria (De Queiroz, 2007). These secondary species concepts rely on different criteria depending on the different concepts, each having advantages and disadvantages that should be considered in the light of the taxonomic group in question. Keeping this in mind, an integrative approach to species delimitation will arguably take advantages of different criteria and possibly reduce the disadvantages of single species concepts. Integrative taxonomy aims to integrate data from multiple perspectives in order to delimit the units of life's diversity (Dayrat, 2005; Garraffoni et al., 2019). In this study, the morphological and phylogenetic species concepts are used.

The morphological species concept as adapted by Cronquist (1978) is defined as "the smallest groups that are constantly and determinedly distinctive and distinguishable by average means." Morphological characters have been used to delimit species ever since Linnaeus first started describing and naming species. Delimiting species by this definition includes qualitative
comparisons and quantitative measurements of diagnostic features. In the case of Chironomidae, all you need to study and describe species is experience, literature, and a microscope. Sometimes, however, the level of expertise needed to distinguish species morphologically is not possible to reach without years of practice, which can be problematic (Aldhebiani, 2018). Other problems is that the morphological species concept is not able to distinguish cryptic species, geographic variation among populations or polymorphism within populations.

With the access to better and cheaper technology for DNA extraction and sequencing, delimiting species with genetic characters is quickly becoming a common method. With a morphologically difficult taxon like Chironomids, studying the molecular data is an effective way to reveal species diversity that is hidden morphologically. The phylogenetic species concept is defined by Cracraft (1989) as "an irreducible cluster of organisms diagnosably distinct from other such clusters, and within which there is a parental pattern of ancestry and descent". Numerous statistical methods have been developed to analyze molecular data and delimit species with different assumptions and parameters. A problem though, is how to choose which genetic character to use as different markers have different qualities and substitution rates. This problem can be avoided by using several different markers and multiple delimitation methods to verify the results. One method commonly used is the Generalized Mixed Yule-Coalescent (GMYC) (Pons et al., 2006), which delimits species with a maximum likelihood approach by fitting withinand between-species branching models to reconstructed gene trees. This method, however, tends to overestimate the number of operational taxonomic units (OUTs). Another approach, used in the Barcode of Life Data Systems (BOLD), involves the delimiting of barcode clusters through comparing genetic similarity between sequences followed by analyses of genetic distances to neighboring clusters in an iterative manner. The clusters are given unique names (Barcode Identification Numbers, BINs) and are regarded as proxies for species (Ratnasingham \& Herbert, 2007). For chironomids BINs are found to overestimate divergence at the species-level (Ekrem et al., 2018).

The DNA barcoded Norwegian, Swedish and Finnish specimens of Stictochironomus have been assigned nine Barcode Index Numbers (BINs) in BOLD. These BINS form eight well separate clades, and three of these clades could potentially represent new species to science as they so far could not be associated with described taxa. To clarify the status of these lineages, original descriptions and type specimens of known species must be consulted, and the morphological and molecular characteristics described and analyzed.

Aims and hypothesis

The aim of this study is to review the species of the genus Stictochironomus found in Norway and make a cohesive conclusion as to which species exist here now. The main hypothesis is that the genetic clusters observed in the COI DNA barcode data of the interim name Stictochironomus sp. 2TE, as well as one of the two clusters identified and
S. sticticus / Stictochironomus sp. 3TE, and one of the two clusters identified as S. pictulus represent distinct species that are new to science.

Through analyses of morphological and molecular characters, diversity at the species level was assessed in an integrative approach. The delimitation method applied to the genetic markers was GMYC. Literature and selected types were reviewed to determine whether these species are to be described as their own species or fit into one of the preexisting species. In addition, I have made an illustrated identification key to the Fennoscandian species of Stictochironomus.

Material and methods

Fieldwork

Chironomids were collected from and by lakes in Trøndelag during May 2022 and in Vestre Jakobselv and Vadsø in Finnmark during early June 2022. The adult specimens were collected using sweep-nets in vegetation near lakes or ponds and stored in 85% ethanol as shown in Figure 2. Larvae were collected from soft, profundal sediments with nets by kick sampling, and sieved through different sized meshes (first 5 mm and last $250 \mu \mathrm{~m}$) to separate larvae and pupae from the sediment. Some of the larvae and pupa were kept in small containers and brought to the laboratory for emergence. This method allows for comparing all the different life stages between species and increases the confidence in species identification and species delimitation. The rest of the larvae and pupae were fixed in 96% ethanol. All samples were labelled appropriately and kept cool in a fridge at a constant temperature until further studied. Borrowed fresh material was collected in various localities in Finland during May-July 2015 with Malaise traps.

Figure 2 - Fieldwork in Finnmark: catching Stictochironomus adults with an insect net by Nordvivatnet.

Measurements of morphological characters

The descriptions of each species' morphology is adapted from the Holarctic keys of Wiederholm (Cranston et al., 1989; Epler et al., 2013; Pinder \& Reiss, 1986).

The specimens from Finland, specimens stored in alcohol at NTNU University Museum and a selection of collected specimens from Finnmark were mounted on microscopy slides following standard procedures as described in Cranston et al. (1989). See (Supplementary table Bl) to view specimens included in the study. The specimens were dissected by separating the antennae, head, wings, legs, abdomen and thorax from each other. Potassium hydroxide ($5-10 \%$ solution) was used to remove soft insides of the head and abdomen, leaving only the exoskeleton. The antennae and wings, legs, head, and abdomen were embedded in drops of Euparal and carefully arranged before applying the cover slips. The thorax was stored in 96% alcohol until DNA was extracted, and then mounted together with the rest of the specimen.

The slide mounted specimens were examined and identified using a Leica compound microscope (LEICA DM6000B) and measured using the Leica Application Suite X (LAS X). The morphological analysis included quantitative measurements and qualitative comparisons of diagnostic characters. An overview of the result can be viewed in Table 1. The terminology of morphology used in this study follow Sæther (1980). Characters on the wing and hypopygium were measured respectively according to Figure 3 and Figure 4. The rest of the characters were measured according to Soponis (1977).

Figure 3 - Measurements of length of wing veins $C u, M, R_{1}, R_{2+3}$ and R_{4+5}. The specimen depicted has the BOLD specimen ID: Finnmark108 and has been identified as Stictochironomus sp. 2TE Scalebar 2 mm .
Characters measured and counted on the wings were the length of wing vein R, R_{1}, R_{2+3}, $\mathrm{R}_{4+5}, \mathrm{M}, \mathrm{Cu}$ (Figure 3), total length of the wing from arculus to tip, the width of the wing, number of setae on wing vein $R, R_{1}, R_{2+3}, R_{4+5}, M, C u, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$, An and false vein, squama and brachiolum.

Figure 4 - Measurements of the hypopygium. Length of A) tergite IX, B) gonostylus, C) gonocoxite, D) anal point, E) phallapodeme F) transverse sternapodeme and G) inferior volsella. The specimen depicted has the BOLD specimen ID: Finnmark108 and has been identified as Stictochironomus sp. 2TE. Scalebar $300 \mu \mathrm{~m}$.

On the hypopygium, the lengths of tergite IX, gonostylus, gonocoxite, anal point, phallapodeme, transverse sternapodeme and inferior volsella were measured (Figure 4). The number of setae on superior volsella and median volsella was counted, and the shape of superior volsella was recorded. On the head, the length of flagellomeres and the longest antennal setae, width of head, pedicel, distance between the eyes, and length of the palpomeres was measured (Soponis, 1977).

Characters measured on the legs were length of femur, tibia, tarsus l-5 on the foreleg, midleg and hindleg. On the foreleg, the tibial spur was measured (Soponis, 1977). On all three legs, bristle ratio, LR (tarsusl/tibia), BV (femur + tibia + tarsus 1 / sum tarsus 2-5) and SV (femur + tibia / tarsus 1) was calculated. On the thorax, the number of dorsocentrals, scutellars and prealars were counted.

Illustrations

Illustrations of the hypopygium of a specimen from each genetic cluster was made by studying the microscope slides through a microscope with a camera lucid. In addition, detail drawing were made of the superior volsella of all the S. pictulus specimens. First a sketch was made with a graphite pencil on a piece of A3 sized paper, then a detailed
illustration was made with a felt tip pen on tracing paper. The illustration was scanned and retouched in GNU Image Manipulation Program (GIMP) v2.10.32.

DNA extraction and PCR

The COI DNA barcode sequences from some of the borrowed mounted specimens were previously barcoded and obtained through BOLD (Ratnasingham \& Herbert, 2007), see Supplementary Table B1. The DNA was extracted from the specimens non-destructively using the Qiagen DNeasy Blood and Tissue Kit, following the recommended protocol for animal tissue samples. Thorax and sometimes abdomen were air-dried on a piece of paper before being placed in a 1.5 mL centrifuge tube with $180 \mu \mathrm{~L}$ buffer ATL and $20 \mu \mathrm{~L}$ proteinase K. The tubes were vortexed thoroughly before being placed in a rotating incubator at $56^{\circ} \mathrm{C}$ for lysis overnight for approximately 15 hours. When the lysis was complete, $200 \mu \mathrm{~L}$ Buffer AL and $200 \mu \mathrm{~L}$ molecular grade ethanol (100\%) was added. The tubes were vortexed in between each step. The buffer mixture was pipetted into a DNeasy Mini spin column with a 2 mL collection tube. The thorax was washed two times with water and then stored in a tube with 96% alcohol until mounted with the rest of the specimen. The spin column was washed first with $500 \mu \mathrm{~L}$ buffer AWl then with 500 $\mu \mathrm{L}$ buffer AW2. Centrifuged at 6000 xg (8000 rpm) for 1 minute between each step, and $20,000 \mathrm{xg}(14,000 \mathrm{rpm})$ for 3 minutes at the last step to dry the membrane. The spin column was placed in a new $1,5 \mathrm{~mL}$ lo-bind Eppendorf tube, $100 \mu \mathrm{~L}$ Buffer AE was added onto the membrane, incubated for 1 minute then centrifuged at 6000 xg (8000 rpm) for 1 minute to elute. The final flow through containing DNA was stored in a refrigerator.

The genetic markers targeted for DNA amplification was the mitochondrial COI, and the three nuclear markers CAD1, AATS1 and PGD using mostly previously published primers (Table 1). These markers have been used successfully on chironomids in the past (Cranston et al., 2012; Lin et al., 2018).

Table 1 - Primers used for DNA amplification.

Gene segment	Oligo name	Oligo sequence (5'-3')	Reference
Cytochrome c oxidase subunit I	LCO1490	GGTCAACAAATCATAAAGATATTGG	Folmer et al. (1994)
(COI)	HCO2198	TAAACTTCAGGGTGACCAAAAAATCA	Folmer et al. (1994)
Carbamoyl phosphate synthetase 1	$54 F$	GTNGTNTTYCARACNGGNATGGT	Moulton and Wiegmann (2004)
(CAD1)	405R	GCNGTRTGYTCNGGRTGRAAYTG	Moulton and Wiegmann (2004)
Alanyl- tRNA synthetase 1	A1-92F	TAYCAYCAYACNTTYTTYGARATG	Regier et al. (2008)
(AATS1)	A1-244R	ATNCCRCARTCNATRTGYTT	Su et al. (2008)
6- phosphogluconate dehydrogenase	PGD-2F	GATATHGARTAYGGNGAYATGCA	Regier et al. (2008)
(PGD)	PGD-3R	TRTGIGCNCCRAARTARTC	B. Cassel unpublished

For COI, AATS1 and only a few of the PGD and CAD1, using the Qiagen Multiplex PCR master mix yielded good results. The PCR reactions were prepared in volume of $25 \mu \mathrm{~L}$, containing $12,5 \mu \mathrm{~L}$ Qiagen Multiplex PCR Master Mix (2 x), $2,5 \mu \mathrm{~L} 2 \mu \mathrm{M}$ primer mix, $8 \mu \mathrm{~L}$ water (ddH2O) and $2 \mu \mathrm{~L}$ DNA. Fragments of COI were amplified with an initial
denaturation step of $95^{\circ} \mathrm{C}$ for 3 min , followed by 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 48^{\circ} \mathrm{C}$ for 30 $\mathrm{s}, 72^{\circ} \mathrm{C}$ for 1 min , and extension at $72^{\circ} \mathrm{C}$ for 7 min . Fragments of AATSl, CADl and PGD were amplified with a three-step touchdown program with an initial denaturation step of $98^{\circ} \mathrm{C}$ for 10 s , then $94^{\circ} \mathrm{C}$ for 1 min followed by 5 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 52^{\circ} \mathrm{C}$ for 30 s , $72^{\circ} \mathrm{C}$ for 2 min , then 7 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 51^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 2 min and 37 cycles (sometimes lowered to 30 cycles) of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 45^{\circ} \mathrm{C}$ for $20 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 2 min 30 s and one final extension at $72^{\circ} \mathrm{C}$ for 3 min .

It was challenging to get good results from all the specimens of the segments CADl and PGD using the Multiplex PCR master mix. Therefore, a number of DNA concentrations and thermocycling programs were tested on these specimens using Takara ExTaq hot start version.

The PCR reactions that yielded the best results for CAD1 were prepared in volume of 25 $\mu \mathrm{L}$, containing $2,5 \mu \mathrm{~L}$ buffer, $2,0 \mu \mathrm{~L} \mathrm{dNTPs}, 1,0 \mu \mathrm{~L} 10 \mu \mathrm{M}$ primerl, $1,0 \mu \mathrm{~L} 10 \mu \mathrm{M}$ primer2, $14,3 \mu \mathrm{~L}$ water (ddH2O), 0,2 $\mu \mathrm{L}$ Takara ExTaq hot start version and 4,0 $\mu \mathrm{L}$ DNA. CAD1 was amplified with a three-step touchdown program with an initial denaturation step of $98^{\circ} \mathrm{C}$ for 10 s , followed by 5 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 57^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min 30 s , then 5 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 53^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min 30 s and 35 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 45^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 1 min 30 s and one final extension at $72^{\circ} \mathrm{C}$ for 10 min .

For PGD, the PCR reactions that yielded the best results were prepared in volume of 25 $\mu \mathrm{L}$, containing $2,5 \mu \mathrm{~L}$ buffer, $2,0 \mu \mathrm{~L} \mathrm{dNTPs}, 1,0 \mu \mathrm{~L} 10 \mu \mathrm{M}$ primerl, $1,0 \mu \mathrm{~L} 10 \mu \mathrm{M}$ primer2, $16,3 \mu \mathrm{~L}$ water (ddH2O), $0,2 \mu \mathrm{~L}$ Takara and $2,0 \mu \mathrm{~L}$ DNA. PGD was amplified with a threestep touchdown program with an initial denaturation step of $98^{\circ} \mathrm{C}$ for 10 s , then $94^{\circ} \mathrm{C}$ for 1 min , followed by 5 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 52^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 2 min , then 7 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 51^{\circ} \mathrm{C}$ for $1 \mathrm{~min} \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 2 min and 30 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 45^{\circ} \mathrm{C}$ for $20 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 2 min 30 s and one final extension at $72^{\circ} \mathrm{C}$ for 3 min .

The amplified DNA was visualized by electrophoresis on a 2% agarose gel using SYBR Safe DNA Gel Stain for fluorescence under blue light, and 6x tri track loading buffer with the amplified DNA in the wells. Amplified DNA was stored in a freezer.

Before sequencing, the amplified DNA were purified using $1 \mu \mathrm{~L}$ ExoSAP-IT (Applied Biosystems) and incubated in a PCR machine at $37^{\circ} \mathrm{C}$ for 15 min and $80^{\circ} \mathrm{C}$ for 15 min , removing excess primers and unincorporated nucleotides enzymatically. The Amplified DNA were sent to Eurofins Genomics using the PlateSeq Kit DNA together with the recommended volume of prepared primers for bi-directional Sanger sequencing. The sequences were added to the BOLD database.

Sequence editing and alignment

Sequences were first edited and assembled using the Staden package (Bonfield et al. 1995). However, not all sequences were successfully aligned to create a consensus for the forward and reverse read, especially for the markers CAD1 and PGD. Many of these
sequences were of good enough quality to be edited and assembled using Geneious software v.8.1.9, but some sequences had too poor quality and were discarded. All the successfully assembled consensus sequences were examined, aligned and further corrected using MEGA 11 (Kumar et al., 2018) while viewing chromatograms in Geneious. The identity of the specimens collected in Finnmark were verified by blasting the NCBI GenBank through MEGA 11. The outgroup was selected to be two specimens of the chironomid genus Sergentia and one specimen of the genus Microtendipes (Supplementary Table B1). Sergentia is closely related to Stictochironomus, and Microtendipes is not as closely related but like the other two genera it is also within the tribe Chironomini (Cranston et al., 2012). A specimen of the genus Protanypus was also sequenced. However, Protanypus is of a different subfamily: Diamesinae, and the branches leading from Protanypus were so long it made the rest of the tree illegible. The Protanypus sequence was discarded. COI sequences of the previously barcoded Fennoscandian species, sequences from the species S. unguiculatus from Canada and S. sticticus and S. akizukii from Japan were retrieved from BOLD and integrated with the COI sequences that were amplified for this study (Supplementary Table BI).

The sequences were aligned using ClustalW with a gap opening penalty of 15 and gap extension penalty of 6.66 . The reliability of alignments were tested by translating to amino acid level and checking for stop codons. The alignment was trimmed at the ends by removing primers and superfluous bases.

Species delimitation

Phylogenetic analysis were conducted using Maximum Likelihood in the software Randomized Axelerated Maximum Likelihood (RAxML) (Stamatakis, 2014) with default settings, and Bayesian approaches in the software MrBayes (Ronquist et al., 2012) though CIPRES (Miller et al., 2010). A concatenated dataset of all successful sequences was generated in MEGA 11. One phylogenetic tree of the concatenated dataset was created with RAxML, and one with MrBayes and edited in FigTree v.l.4.4. All bootstrap values less than 85 and values within highly supported branches within clades were removed in the concatenated RAxML tree. Probability values lower than 70 were removed from branches of the MrBayes tree.
The Generalized Mixed Yule-Coalescent (GMYC) was used for species delimitation analyses. An ultrametric tree was created using the software BEAST v.2.4.7 (Bouckaert et al., 2014). The high-performance library BEAGLE v.4.0.0 (Ayres et al., 2012; Suchard \& Rambaut, 2009) was installed to perform the core calculations. The sequence file (NEXUS format) was imported into BEAUTi. Substitution model was decided by running the sequence file in the software jModels2 v.2.1.8) (Darriba et al., 2012; Guindon \& Gascuel, 2003). The additional package standard substitution models v.l.0.1 (SSM) package (Bouckaert \& Xie, 2017) was downloaded. The best substitution models were TMP2uF+G for COI; TIM2+G for PGD; and TIM3+G for AATS1. The settings for
generating XML files in BEAUTi were the best substitution model for each marker, gamma category count 4 and shape 1.0 , strict clock model, coalescent constant population (Kingman, 1982) and 10000000 chain lengths for Markov chain Monte Carlo (MCMC). The XML files were imported to beast and run three separate times for each marker with a random seed and permission to overwrite files. The Effective Sample Size (ESS) values were checked with the program TRACER (Rambaut et al., 2018). The three .log and .trees files for each marker were combined using the program LogCombiner by resampling states at the lower frequency of 3000 and converting numbers from scientific to decimal notation. A consensus tree was created by constructing a maximum clade credibilty (MCC) tree using the program TreeAnnotator. The consensus trees were inspected in FigTree v.l.4.4. GMYC was run in R studio (R Core Team, 2019) with the packages splits (Ezard et al., 2021) and ape (Paradis, 2019).

Results

DNA was extracted and sequenced from a total of 35 specimens: 31 specimens of Stictochironomus, one Microtendipes and two Sergentia specimens as outgroup. The last specimen proved to be of the genus Protanypus, and since this genus is not closely related to Stictochironomus it was removed from the outgroup and alignments. The markers COI and AATS1 amplified successfully for all specimens, and PGD amplified successfully for 23 specimens. The specimens removed from the PGD alignment because of bad signals were S. maculipennis TRD-CH95 and Finnmark202, Stictochironomus sp. 2TE Finnmark385, and S. rosenschoeldi Finnmark527, ZUMO.024303, NORIR02, NORIR06 and NORIR1l. The sequences of the marker CADl were of such low and variable quality that it was not possible to extract long enough segments that were useful for species delimitation analysis nor phylogenetic analyses. In the final alignment of COI there were 70 sequences with a total length of 654 base pairs (bp), 230 variable sites and 203 parsimony informative sites. The PGD alignment included 23 sequences with a maximum length of 757 bp , as many of the sequences had to be trimmed down to ensure high quality. There were 292 variable sites, and 162 parsimony informative sites. The AATS1 alignment included 31 sequences with a length of 259 to $403 \mathrm{bp}, 145$ variable sites and 104 parsimony informative sites.

Phylogenetic trees

The results from all the phylogenetic analyses (both the individual marker RAxML trees of COI (Supplementary Figure A1), PGD (Supplementary Figure A2) and AATS1 (Supplementary Figure A3), and the concatenated RAxML (Figure 5) and MrBayes (Figure 6)) show that the specimens are always assigned into the same genetic clades: maculipennis, Stictochironomus sp. pictulus I, Stictochiromous sp. pictulus II, S. psilopterus, S. rosenschoeldi, Stictochironomus sp. sticticus Norway, Stictochironomus
sp. 3TE and Stictochironomus sp. 2TE. The genetic distance and the relationships between the clusters varies depending on the marker and method used. However, common for all the trees is that S. rosenschoeldi is the most genetically divergent from the outgroup.

The RAxML tree constructed from the concatenated dataset (Figure 5) shows that all the clades are very well supported by high bootstrap values, as the majority of the branches leading to the clades have a bootstrap value of 100 . The genetic distance between the clades is large. Within the clades, the genetic distance is low, except for within Stictochironomus sp. pictulus I. The PGD sequences of the two Stictochironomus sp. pictulus I specimens were not the best quality, which might explain the large intraspecific difference in the tree (Supplementary Figure A2).

The MrBayes tree constructed from the concatenated dataset (Figure 6) assign the specimens to well supported clades. However, there is a unresolved group of S. maculipennis, Stictochironomus sp. pictulus Japan, Stictochironomus sp. 3TE and Stictochironomus sp. pictulus II.

Figure 5 - Consensus tree from Maximum Likelihood analysis (RAxML) of the concatenated dataset created in CRIPES with default settings, including the DNA markers COI, PGD and AATS1. Branch labels are showing bootstrap values. Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance. All genetic clusters are indicated in the sidebar.

0.02

Figure 6 - Majority rule consensus tree from MrBayes analysis of the concatenated dataset created in CIPRES with default settings, including the DNA markers COI, PGD and AATS1. Branch labels are showing branch lengths (the mean of the posterior probability density) higher or equal to 70 . Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance. All genetic clusters are indicated in the sidebar.

Delimitation

The complete dataset of all the COI sequences were divided into 13 BINs in BOLD, and the sequences from the Fennoscandian specimens were divided into nine BINs. This correlates well with the concatenated ML tree where the sequences can be grouped into eight Fennoscandian clades and 12 clades in total. The ninth or thirteenth BIN was assigned to S. rosenschoeldi, dividing the species into two BINs.

The sequences are divided into the same clades for both the markers COI and AATS1. For the COI marker, GMYC delimits 11 clusters and 12 ML entities. The last entity is S. akizukii, which is only one specimen and could not be divided into a clade (Supplementary Figure A4). Eight of the clades are the Fennoscandian clades, and the other three are clades of specimens from outside of Fennoscandia. For the AATS1 marker, GMYC delimits six clusters and eight ML entities (Supplementary Figure A5). The two ML entities that were not assigned a clade are the two sequences from the specimens Stictochironomus sp. 2TE. and Stictochironomus sp. sticticus Norway, meaning GMYC also assigned the AATSl sequences to the eight Fennoscandian clades. For the PGD marker, GMYC delimits only five clusters, and 14 ML entities. The high number of ML entities is largely caused by the S. rosenschoeldi sequences not being delimited into the same single clade, instead they are delimited into two separate clades and five additional ML entities. The two sequences of S. psilopterus and the two sequences of Stictochironomus sp. pi I were also not delimited into the same cluster. However, looking at the GMYC tree of the PGD sequences, the clades are delimited monophyletically into six of the Fennoscandian species (the sequences of Stictochironomus sp. pictulus II and Stictochironomus sp. sticticus Norway were removed from the PGD alignment and are therefore missing in the analysis) (Supplementary Figure A6).

Morphology

The morphological analysis show that there is a unique combination of diagnostic characters for all the previously described species, and for Stictochironomus sp. 2TE. For the two S. pictulus clades and the two S. sticticus clades, there were some morphological differences, but not enough to make a unique combination of diagnostic characters.

Material examined: 3 đ̂̉; lô, TRD-CH321, collected in Norway, Sør-Trøndelag, 63.429 10.379, 17.07.2014 by Stur, E.; 1 ${ }^{\text {® }}$, TRD-CH95, collected in Norway, Sør-Trøndelag, 63.425 10.282, 27.05.2014 Ekrem, T. et al., 1 ${ }^{\text {®ै, }}$, ATNA568, collected in Norway, Hedemark, 61.74614 10.74618, 30.06.-07.07.2008 by Hoffstad, T.

Description

Size: body length $6.72-7.56 \mathrm{~mm}$, wing length $3.43-3.82 \mathrm{~mm}$, wing width $0.86-1.09 \mathrm{~mm}$.
Coloration: Antenna brown. Head light brown. Flagellum brown. Maxillary light brown. Scutum color dark brown dorsal, light brown ventral. Scutellum brown, dark brown on edges. Postnotum dark brown to brown, lighter posteriorly ventral. Legs distinctly marked. Foreleg: femur dark brown with brown to light brown ring distally (sometimes absent) and fading to brown proximally; tibia brown to dark brown proximally and distally, middle brown to light brown with faint to distinct darker ring; tarsus 1 brown distally fading to light brown proximally ($1 / 4$ to $1 / 6$) or dark brown distally ($1 / 6$), darker area around middle half and light brown proximally; tarsus 2-5 brown. Midleg: pattern like foreleg, but more distinct than both fore and midleg. Hindleg: pattern like foreleg but more distinct. Wing with distinct pattern: brownish spot around RM, grayish spots present around wing vein $\mathrm{An}, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$, and M , in anal cell, and grayish pigmentation on the membrane along $\mathrm{M}, \mathrm{R}_{1}, \mathrm{R}_{2+3}$ and R_{4+5} and the rim of the wing near Cu_{1}. Abdominal tergites light brown with darker central line on tergite II-VI.

Head. Antennal ratio 2,187-2,474. Frontal tubercles absent. Temporals 18-20 (2). Palp 5segmented. First to fifth segment lengths $(\mu \mathrm{m})$: 46-60; 106-127; 181-203; 187-192; 239276. Clypeus with 34-41 setae. Thorax. Acrostichals 2-4 (2). Dorsocentrals 16, originating from large pits, arranged in 1 row. Prealars 7-10. Supraalars absent. Scutellars 25-46. Wing. Squamals 22-34. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu slightly proximal to RM . Cu_{2} ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs. Fore tibia with an apical rounded scale bearing 2-3 strong setae. Middle and hind tibial combs fused with $1-2$ spurs. Mid and hindleg bearded, hind leg strongest and longest setae. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 6-9. Hypopygium like Figure 7. Anal point long and straight. Gonocoxite long and narrow. Gonostylus long, about half the length of gonocoxite. Superior volsella almost straight with right angled hook apically to crescent shape with obtuse angled hook apically (Figure 15), with 5-6 basal setae and 1 short lateral seta. Inferior volsella slightly boomerang shaped (angled inwards), pubescent on entire surface with an apical long strong setae, and recurved strong setae.

1 female imago (ATNA569) and 1 larva (TRD-CH113) known, but not measured.

Comments: Stictochironomus maculipennis is very similar to S. pictulus in coloration and patterns. However S. maculipennis has larger spots on the wings and slightly darker coloration on the wings and legs, and there is always a third band in the middle of fore tibia, whereas the third band is often absent in S. pictulus. The shape of superior volsella is also different (See Figure 14 and Figure 15).

Figure 7 - Hypopygium of Stictochironomus maculipennis, the specimen depicted is BOLD specimen ID: TDR-CH95. Scalebar $200 \mu \mathrm{~m}$.

Material examined: 2 §ิ龴 , ZMUO. 024720 and ZMUO. 024721 collected in Finland, Varsinais-Suomi, 60.41 23.034, 17.05.2015 by Paasivirta, L.

Description

Size: body length $6.10-6.19 \mathrm{~mm}$, wing length $2.80-2.93 \mathrm{~mm}$, wing width not measurable.
Coloration: Antenna missing from both specimens. Head brown. Maxillary brown. Scutum color brown. Scutellum light brown. Postnotum brown. Legs distinctly marked. Foreleg: femur brown with light brown ring distally and proximal end light brown; tibia light brown and fading brown proximally and distally; tarsi brown. Midleg: pattern like foreleg, except tibia also has third brown ring in the middle. Hindleg: pattern like midleg but more distinct. Wing markings faint but clear. Brownish spot around RM. Grayish spots present in anal cell, m_{3+4}, and r_{4+5}, and around wing vein An, and grayish pigmentation on the membrane along wing vein M, R_{1} and R_{2+3}. Abdominal tergites brown with slightly darker areas along the middle.

Head. Frontal tubercles absent. Temporals 16-18 . Palp 5-segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 49-59; 77-82; 158 (1); 146-160; 199 (1). Clypeus with 23-26 setae. Thorax. Acrostichals 6-10. Dorsocentrals 12-13 originating from large pits, arranged in 1 row. Prealars 5. Supraalars absent. Scutellars 13-19. Wings. Squamals 20-22. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu slightly proximal to $\mathrm{RM} . \mathrm{Cu}_{2}$ ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs. Fore tibia with an apical rounded scale bearing 1-2 strong setae. Middle and hind tibial combs fused with 1-2 spurs. Mid and hind tibia and tarsi bearded, hind leg strongest and longest setae. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 4-8. Hypopygium like Figure 8. Anal point long and straight. Gonocoxite long and slightly peanut shaped. Gonostylus about half the length of gonocoxite. Superior volsella bulky with acutely angled hook, with 4 basal setae and 1 long lateral seta. Inferior volsella long and slightly bent outward, with 1 long seta apically, and recurved setae.

No larvae, pupa nor female imagines known or measured.
Comments: The two species that are perhaps the most difficult to tell apart are Stictochironomus sp. pictulus I and Stictochironomus sp. pictulus II. The diagnostic character that separate them is the number of setae on the thorax: Stictochironomus sp. pictulus I has around 12 dorsocentrals, 5 prealars, and 13-19 scutellars, whereas Stictochironomus sp. pictulus II has 20-26 dorsocentrals, 6 prealars and 34-37 scutellars. Furthermore, Stictochironomus sp. pictulus I is very similar to S. maculipennis in coloration and patterns. Stictochironomus sp. pictulus I has smaller spots on the wings and lighter coloration on the body, and the third band in the middle of the fore tibia is often absent. The shape of superior volsella is also different (See Figure 14 and Figure 15)

Figure 8 - Hypopygium of Stictochironomus pictulus, the specimen depicted is BOLD specimen ID: ZMUO.024720. Cluster Stictochironomus sp. pictulus I. Scalebar $200 \mu \mathrm{~m}$.

Material examined: $2 \delta^{\lambda} 0^{\lambda}$, ZMUO.025172, ZUMO. 025173 collected in Finland, , Satakunta 61.606 21.626 04.07.2015 by Paasivirta, L.

Description

Size: body length $7.21-7.80 \mathrm{~mm}$, wing length $3.52-3.65 \mathrm{~mm}$, wing width $0.82-0.90 \mathrm{~mm}$.
Coloration: Antenna light brown. Head brown. Flagellum light brown. Maxillary brown. Scutum dark brown. Scutellum brown. Postnotum dark brown, lighter ventral posteriorly. Legs distinctly marked. Foreleg: proximal half of femur light brown to gradually brown, distal half dark brown with a light brown ring; $1 / 3$ of proximal end and $1 / 6$ of distal end of tibia dark brown, middle light brown with brown ring in the center, or middle ring absent; tarsus 1 light brown with brown area in middle and $1 / 10$ of distal end dark brown; tarsi 2-5 brown. Midleg pattern similar to foreleg: femur brown to dark brown with light brown proximal end and light brown ring near distal end; tibia light brown with dark brown areas on both ends and middle; tarsi 1-2 light brown and dark brown distally; tarsi 3-5 brown. Hindleg pattern very similar to midleg, only with broader markings. Wing markings faint but clear. Brownish spot around RM. Grayish spots present in anal cell, m_{3+4}, and r_{4+5}, and around wing vein An, and grayish pigmentation on the membrane along wing vein M, R_{1} and R_{2+3}. Abdominal tergites brown.

Head. Antennal ratio 2,358. Frontal tubercles absent. Temporals 20-22. Palp 5segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 47-57; 108 (1); 186-194; 210 (1); 318 (1). Clypeus with 26-28 setae. Thorax. Acrostichals 13-17 . Dorsocentrals 20-26 originating from large pits, arranged in 1 row. Prealars 8 . Supraalars absent. Scutellars 34-37. Wings. Squamals 36-42. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu slightly proximal to $\mathrm{RM} . \mathrm{Cu}_{2}$ ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs. Fore tibia with an apical rounded scale bearing 1-3 strong setae. Middle and hind tibial combs fused with 1-2 spurs. Middle and hind legs bearded. Leg proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 5-6. Hypopygium like Figure 9. Anal point long and straight. Gonocoxite long and slender. Gonostylus slender and half the length of gonocoxite. Superior volsella shaped acutely angled like hook (Figure 14C) and D)), with 4-5 basal setae and 1 medium long lateral seta. Inferior volsella slightly boomerang shaped with medium long distal seta, and medium long setae.

No larvae, pupa nor female imagines known or measured.
Comments: The two species that are perhaps the most difficult to tell apart are Stictochironomus sp. pictulus II and Stictochironomus sp. pictulus I. The diagnostic character that separate them is the number of setae on the thorax: Stictochironomus sp. pictulus II has 20-26 dorsocentrals, 6 prealars and 34-37 scutellars, whereas Stictochironomus sp. pictulus I has around 12 dorsocentrals, 5 prealars, and 13-19 scutellars. Stictochironomus sp. pictulus II is very similar to S. maculipennis in coloration
and patterns. Stictochironomus sp. pictulus II has smaller spots on the wings and lighter coloration on the body, and the third band in the middle of the fore tibia is often absent. The shape of superior volsella is also different (See Figure 14 and Figure 15).

Figure 9 - Hypopygium of Stictochironomus pictulus, the specimen depicted is BOLD specimen ID: ZMUO.025173. Cluster Stictochironomus sp. pictulus II. Scalebar $200 \mu \mathrm{~m}$.

Stictochironomus psilopterus (Edwards, 1935)
 07.-20.07.2009 by Olsen, P. H., Finstad, A. G., Ekrem, T.

Description

Size: body length not possible to measure, wing length 4.55-4.94 mm, wing width 1.11 (1) mm .

Coloration: Antenna missing from both specimens. Head brown. Flagellum (MISSING). Maxillary light brown. Scutum color, dark brown. Scutellum dark brown. Postnotum dark brown. Legs dark brown. Wing with brownish spot around RM , veins $\mathrm{An}, \mathrm{Cu}, \mathrm{Cu}_{1}$, Cu_{2} and M_{1+2} transparent, $\mathrm{Sc}, \mathrm{M}, \mathrm{RM}, \mathrm{R}, \mathrm{R}_{1}, \mathrm{R}_{2+3}, \mathrm{R}_{4+5}$ pigmented brownish. Abdominal tergites brown to dark brown.

Head. Frontal tubercles absent. Temporals 20-25. Palp 5-segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 54-64; 90-95; 203-212; 215 (1); 276 (1). Clypeus with 47-57 setae. Thorax. Acrostichals 6(1). Dorsocentrals 31-36 originating from large pits, arranged in 2 rows posteriorly tapering to 1 row anteriorly. Prealars 12-16. Supraalars absent. Scutellars 64-66. Wings. Squamals 25-50. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu about same level as RM . Cu_{2} ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs. Fore tibia with an apical rounded scale bearing $1-3$ strong setae. Middle and hind tibial combs fused with 1 spur. Middle legs, hind legs and fore femur bearded. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 8. Hypopygium like Figure 10. Anal point long and straight. Gonocoxite slightly peanut shaped. Gonostylus long and thinner apically. Superior volsella crescent shaped, evenly curved basally to apically, with 4-5 basal setae and 1 short lateral seta. Inferior volsella slightly bent, even thickness with recurved strong setae.

4 larvae known (BJ150, BJ218, BJ85, BJ98), but not measured.
Comments: Stictochironomus psilopterus is on overall appearance similar to S. sticticus and Stictochironomus sp. 2TE, however, the wings of S. psilopterus are unmistakable: the veins $\mathrm{An}, \mathrm{Cu}, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$ and are M_{1+2} transparent, $\mathrm{Sc}, \mathrm{M}, \mathrm{RM}, \mathrm{R}, \mathrm{R}_{\mathrm{l}}, \mathrm{R}_{2+3}, \mathrm{R}_{4+5}$ are pigmented brownish.

Figure 10 - Hypopygium of Stictochironomus psilopterus, the specimen depicted is BOLD specimen ID: BJ196. Scalebar $200 \mu \mathrm{~m}$.

Designated lectotype: C. assimilis, Zett. collected in Lycksele, Sweden. 1990. Specimen number 7. MZLU 00182197.

Material examined: 9 27.01012, 17.06.2010, collected by Ekrem, T. \& Stur, E.; 1 ${ }^{\lambda}$, Finnmark653, collected in Norway, Finnmark, 70.44099 26.80499, 17.06.2010 by Ekrem, T. \& Stur, E.; 2 ${ }^{\text {® }}$, ZMUO. 024303 and ZUMO. 024304 collected in Finland, Varsinais-Suomi, 60.314 23.29, 28.06.2015 by Paasivirta, L.; 2§, ZMUO. 024596 and ZUMO. 024597, collected in Finland, Varsinais-Suomi, 61.07 25.055, 09.05.2015 by Paasivirta, L.; 2 ${ }^{7}$, NORIR01 and NORIR04, collected in Norway, Sør-Trøndelag, 63.24068 10,436460, 18.05.2022 by Ekrem, T. \& Stur, E.; 1 ${ }^{\wedge}$, NORIR10 collected in Norway, Finnmark, 70.13477 29,011310, 11.06.2022 by Reistad, I.

Description

Size: body length $5.35-6.39 \mathrm{~mm}$, wing length 2.61-3.12 mm, wing width $0.65-0.69 \mathrm{~mm}$.
Coloration: Antenna. Head dark brown. Flagellum brown. Maxillary brown. Scutum dark brown. Scutellum brown. Postnotum dark brown. Legs brown. Wing with brownish spot on membrane surrounding RM, sometimes absent and brownish pigmentation on wing veins, often milky pigmentation on whole membrane. Abdominal tergites brown.

Morphology: Head. Antennal ratio 2,389-2,55 (6). Frontal tubercles absent. Temporals 12-20. Palp 5-segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 39-61; 76-106; 155-184 (6); 141-184 (7); 173-237 (5). Clypeus with 21-33 setae. Thorax. Acrostichals 6-12. Dorsocentrals 17-26 originating from large pits, arranged in 1-2 rows, or 1 row sometimes with two setae side by side. Prealars 6-10. Supraalars absent. Scutellars 23-29. Wing. Squamals 8-31. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu about same level as RM . Cu_{2} ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs Fore tibia with an apical rounded scale bearing 3 strong setae. Middle and hind tibial combs fused with 1-2 spurs. Mid and hind legs and fore femur bearded. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 5-14. Hypopygium like Figure 11. Anal point long and straight. Gonocoxite long and slender. Gonostylus about half the length of gonocoxite. Superior volsella almost straight and thickest around the midpoint, with 3-6 basal setae and 1 long lateral seta. Inferior volsella long and slightly bent, with an apical long seta, and recurved setae.

No larvae, pupa nor female imagines known or measured.
Comments: Stictochironomus rosenschoeldi is not easily confused with the other species. It is smaller than all the other species, the total body length of 5.86 mm is on average 0.6 mm shorter than the next smallest species that look similar morphologically (Stictochironomus sp. 2TE). The wings of S. rosenschoeldi often has a milky color, which has not commonly been observed in the other Fennoscandian species. The superior
volsella are almost straight, while the other species mostly have hook or crescent shaped superior volsella.

Figure 11 - Hypopygium of Stictochironomus rosenschoeldi, the specimen depicted is BOLD specimen ID: Finnmark527. Scalebar $200 \mu \mathrm{~m}$.

Material examined: 2ổ; 1才, Finnmark108, collected in Norway, Finnmark, 70.32152 31.03407, 18.06.2010 by Ekrem, T. \& Stur, E.; 1 ${ }^{\wedge}$, Finnmark385, collected in Norway, Finnmark, 69.84383 26.07607, 16.06.2010 by Ekrem, T. \& Stur, E.

Diagnosis

Size: body length $6.43(1) \mathrm{mm}$, wing length $3.39-3.67 \mathrm{~mm}$, wing width $0.89-0.87 \mathrm{~mm}$.
Coloration: Antenna brown. Head brown. Flagellum dark brown. Maxillary palp brown/light brown. Scutum brown. Scutellum light brown. Postnotum brown. Legs brown with light brown ring between trochanter and femur. Wing with brownish spot on membrane surrounding RM and brownish pigmentation on $\mathrm{Sc}, \mathrm{R}, \mathrm{R}_{1}, \mathrm{R}_{2+3}, \mathrm{R}_{4+5}$ and M , while vein $\mathrm{An}, \mathrm{Cu}, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$ and M_{1+2} are almost transparent. Abdominal tergites light brown with darker central line on tergite II-VI.

Morphology: Head. Antennal ratio 3.01-3.65. Frontal tubercles absent. Temporals 15-18. Palp 5-segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 59-65; 103-108; 203-229; 194195; 257-292. Clypeus with 30-32 setae. Thorax. Acrostichals 8. Dorsocentrals 42-43 (43), originating from large pits, arranged in three rows posteriorly tapering to two rows anteriorly. Prealars 19-20. Supraalars absent. Scutellars 59 (1). Wing. Squamals 30-40. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu about same level as RM . Cu_{2} ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Wings. Fore tibia with an apical rounded scale bearing 1-2 strong setae. Middle and hind tibial combs fused with 1 spur. Mid and hind legs bearded, fore femur bearded, hind leg strongest and longest setae. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 12-15. Hypopygium like Figure 12. Anal point long and straight. Gonocoxite long and narrow. Gonostylus long, about half the length of gonocoxite with very fine microtrichia. Superior volsella long and curved, blunt apically, with 5-8 (7) basal setae and 1-2 short lateral setae. Inferior volsella almost straight and narrowing apically, pubescent on entire surface with an apical long strong setae that is sometimes clefted, and strong recurved setae.

Pupa known by two individuals (Finnmark781, Finnmark782), but not measured.
Differential diagnosis: The species is morphologically most similar to S. sticticus (Fabricius, 1781) in coloration, wing pattern, and the general shape of the hypopygium. However, Stictochironomus sp. 2TE has over 40 dorsocentrals arranged in 2-3 rows, whereas S. sticticus has 18-30 dorsocentrals arranged in 1-2 rows. In addition, the gonostylus and gonocoxite of Stictochironomus sp. 2TE is slenderer, and the superior volsella is blunter apically.

Figure 12 - Hypopygium of Stictochironomus sp. 2TE, the specimen depicted is BOLD specimen ID: Filnnmarkl08. Scalebar $200 \mu \mathrm{~m}$.

Material examined: 2 ở; 1 ${ }^{\text {h }}$, Finnmark202, collected in Norway, Finnmark, 69.8306 25.1856, 03.09.2010 by Andersen, A.; 1ỏ, TRD-CH281, collected in Norway, SørTrøndelag, $63.2744410 .56131,14 .-28.08 .2014$ by Stur, E. et al.

Description

Size: body length $7.08-7.32 \mathrm{~mm}$, wing length $3.67-3.69 \mathrm{~mm}$, wing width $0.98-0.92 \mathrm{~mm}$.
Coloration: Antenna brown. Head dark brown. Flagellum brown. Maxillary dark brown. Scutum dark brown. Scutellum dark brown. Postnotum dark brown. Legs dark brown. Wing with brownish spot on membrane surrounding RM and brownish pigmentation on wing veins. Abdominal tergites brown with darker line down center.

Morphology: Head. Antennal ratio 2,579-2,882. Frontal tubercles absent. Temporals 1723. Palp 5-segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 66-70; 89-98; 181-191; 191202; 308 (1). Clypeus with 15-18 setae. Thorax. Acrostichals 4-6. Dorsocentrals 18-26 originating from large pits, arranged in 1 row, with some setae side by side. Prealars 8-9. Supraalars absent. Scutellars 34-40. Wings. Squamals 16-22. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu about same level as RM . Cu_{2} ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs. Fore tibia with an apical rounded scale bearing 2 strong setae. Middle and hind tibial combs fused with 1-2 spurs. Mid and hind legs and fore femur bearded. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Setae on tergite X 6. Hypopygium like Figure 13. Anal point long and straight. Gonocoxite long and straight. Gonostylus long and rounded, about half the length of gonocoxite. Superior volsella hook to crescent shape with a sharp point apically, with 6 basal setae and 1 long lateral seta. Inferior volsella long and straight with an apical long setae and recurved setae.
$1 \delta^{\lambda}$ known (To49), but not measured.
Comments: Stictochironomus sp. sticticus Norway can be confused with Stictochironomus sp. 2TE, as they are quite similar overall. They can easily be separated by looking at setae on the thorax: Stictochironomus sp. sticticus Norway has 18-26 dorsocentrals arranged mostly in one row, 8 prealars and 34-40 scutellars, whereas Stictochironomus sp. 2TE has more than 40 dorsocentrals arranged in three rows, 20 prealars and about 60 scutellars. Stictochironomus sp. sticticus Norway is morphologically indistinguishable from Stictochironomus sp. 3TE, except that some specimens of Stictochironomus sp. 3TE has a faint pattern on the legs and Stictochironomus sp. sticticus Norway do not.
 Varsinais-Suomi, 60.243 24.021, 01.05.2015 by Paasivirta, L.; 2 ${ }^{\top}$, ZMUO. 024599 and ZMUO.024598, collected in Finland, Varsinais-Suomi, 61.07 25.055, 09.05.2015 by Paasivirta, L.; lô, Finnmark 5l, collected in Norway, Finnmark 69.21029 23.76200, 12.06.2010 by Ekrem, T. \& Stur, E.

Size: body length $7.52-8.22 \mathrm{~mm}$, wing length $3.62-3.95 \mathrm{~mm}$, wing width $0.88-1.03 \mathrm{~mm}$.
Coloration: Antenna brown. Head dark brown. Flagellum brown. Maxillary brown. Scutum dark brown. Scutellum dark brown. Postnotum dark brown. Legs faint markings. Foreleg: femur light brown on proximal end, otherwise dark brown. Midleg: femur dark brown; tibia dark brown with two brown bands; tarsi brown. Hindleg: markings like foreleg. Wing with brownish spot on membrane surrounding RM and brownish pigmentation on wing veins. Abdominal tergites brown with dark brown stripe down middle (very distinct).

Morphology: Head. Antennal ratio 3,449 (1). Frontal tubercles absent. Temporals 23. Palp 5-segmented. First to fifth segment lengths ($\mu \mathrm{m}$): 58-64; 81-102; 152-201 (4); 21-203; 190-293 (4). Clypeus with 24-47 setae. Thorax. Acrostichals not able to count. Dorsocentrals 18-30 originating from large pits, arranged in 1 row, sometimes with two setae side by side. Prealars 10-15. Supraalars absent. Scutellars 40-53. Wing. Squamals 23-40. Anal lobe well developed. R_{2+3} running separately from both R_{1} and R_{4+5} and ending closer to R_{1}. FCu about same level as RM . Cu_{2} ending well proximal to the end of R_{4+5}. An ending almost on the rim of the wing. Legs. Fore tibia with an apical rounded scale bearing 3 strong setae. Middle and hind tibial combs fused with $1-2$ spurs. Mid and hind legs bearded. Leg segment lengths and proportions given in Supplementary Table B2 and B3. Hypopygium. Hypopygium. Setae on tergite X 3-7. Hypopygium like Figure 13. Anal point long and straight. Gonocoxite long and robust. Gonostylus long and robust, about half the length of gonocoxite. Superior volsella hook to crescent shape with a sharp point apically, with $4-8$ basal setae and 1 long lateral seta. Inferior volsella slightly bent, with an apical seta slightly longer than the other recurved setae.

No larvae, pupa nor female imagines known or measured.
Comments: Stictochironomus sp. 3TE can be confused with Stictochironomus sp. 2TE, as they are quite similar overall. They can easily be separated by looking at setae on the thorax: Stictochironomus sp. sticticus Norway has 18-30 dorsocentrals arranged mostly in one row, 10-15 prealars and 40-53 scutellars, whereas Stictochironomus sp. 2TE has more than 40 dorsocentrals arranged in three rows, 20 prealars and about 60 scutellars. Stictochironomus sp. sticticus Norway is morphologically indistinguishable from Stictochironomus sp. 3TE, except that some specimens of Stictochironomus sp. 3TE has a faint pattern on the legs and Stictochironomus sp. sticticus Norway do not.

Figure 13 - Hypopygium of Stictochironomus sp. 3TE, the specimen depicted is BOLD specimen ID: ZMUO.024598. Scalebar $200 \mu \mathrm{~m}$.

Other species

Stictochironomus labeculatus (Goethghebuer 1938:58) has been classified as a nomen dubium. Coloration. Thorax and head borwn. Wings have spot on membrane surrounding $R M$, veins $S c, M, R M, R, R_{1}, R_{2+3}, R_{4+5}$ pigmented brownish, veins $A n, C u$, $\mathrm{Cu}_{1}, \mathrm{Cu}_{2}$ and M_{1+2} faintly pigmented. Legs distinct pattern. Fore leg: femur brown $1 / 8$ distally. Tibia brown $2 / 5$ proximally and $1 / 8$ distally. Tarsus 1 fading to brown distally. Tarsi 2-5 brown. Mid leg: light brownish yellow. Femur brown 1/8 distally, tibia brown 1/8 proximally and $1 / 8$ distally, tarsus 1 brown $1 / 6$ distally, tarsus $2-5$ brown. Hind leg: femur $1 / 8$ brown distally, tibia brown $1 / 6$ proximally and brown $1 / 8$ distally, tarsus 1 brown 1/6 distally, tarsus 2-3 fading to brown distally, tarsus 4-5 brown. Morphology. Head 18 temporals. Thorax. Acrostichals 8. Dorsocentrals 18-23. Hypopygium. Setae on tergite X 8 . Superior volsella slender and almost straight with a little nub apically.

Stictochironomus stackelbergi (Goetghebuer, 1938: 56) has been classified as a nomen dubium. Coloration. Thorax, head and legs light brown. Wings have spot on membrane surrounding RM. Morphology. Head 12-19 temporals. Thorax. Dorsocentrals 11, arranged in 1 row. Prealars 5. Hypopygium. Setae on tergite X3. Superior volsella slender and hook shaped.

Figure 14 - Illustrations showing variance of superior volsella in S. pictulus. Specimens A) BOLD specimen ID: ZUMO. 024720 and B) BOLD specimen ID: ZUMO. 024721 fall within the cluster Stictochironomus sp. pictulus I and specimens C) BOLD specimen ID: ZUMO. 025172 and D) BOLD specimen ID: ZUMO. 025173 fall within the cluster Stictochironomus sp. pictulus II. For size see figure of hypopygium.

Figure 15 - Illustrations showing variance of superior volsella in S. maculipennis. Specimens A) BOLD specimen ID: AT568, B) BOLD specimen ID: TRD-CH95, C) BOLD specimen ID: TRD-CH321. For size see figure of hypopygium.

Key to male adults of the Fennoscandian Stictochironomus species

The characters for S. crassiforceps are written as according to Cranston et al. (1989). Point 2 in the key is largely adapted from Pinder (1978), otherwise I have observed an measured all the characters myself.

1 Inferior volsella short and medially curved, median anal tergite setae absent, reduced antenna Stictochironomus crassiforceps

- Inferior volsella long and slender, median anal tergite setae present, antennae fully plumose. .2

2 Wing membrane has several greyish spots around the apical end of veins and one brownish spot around RM .3

- A single brownish spot is present around RM, or else RM and adjacent veins pigmented brownish, and wing otherwise unmarked .5

3 Wing markings distinct. Grayish spots present around wing vein $\mathrm{An}, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$, and M , in anal cell, and grayish pigmentation on the membrane along $\mathrm{M}, \mathrm{R}_{1}, \mathrm{R}_{2+3}$ and R_{4+5} and the rim of the wing near Cu_{1}. Leg markings brownish to yellowish to sometimes light, always with third band in the middle of fore tibia. Superior volsella almost straight with right angled hook apically to crescent shape with obtuse angled hook apically (Figure 15). Hypopygium in Figure 7
S. maculipennis

- Wing markings faint but clear. Grayish spots present in anal cell, m_{3+4}, and r_{4+5}, and around wing vein An , and grayish pigmentation on the membrane along wing vein M, R_{1} and R_{2+3}. Leg markings distinct brownish to light, third band in the middle of fore tibia often absent. Superior volsella crescent shape with acute angled hook apically or very bulky crescent shape (Figure 14)

4 Thorax with 12-13 dorsocentrals, 5 prealars and 13-19 scutellars. Wing vein R with 19-21 setae, R_{1} with about 10 setae and squama with 20-22 setae. Superior volsella like Figure 14 A and B. Hypopygium in Figure 8

Stictochironomus sp. pictulus I

- Thorax with 20-26 dorsocentrals, 8 prealars and 34-37 scutellars. Wing vein R with 2630 setae, R_{1} with 16-25 setae and squama with 36-40 setae. Superior volsella like Figure 14 C and D. Hypopygium in Figure 9 Stictochironomus sp. pictulus II

5 Wing veins $\mathrm{An}, \mathrm{Cu}, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$ and M_{1+2} transparent and hard to see. Wing vein $\mathrm{Sc}, \mathrm{M}, \mathrm{RM}$, $\mathrm{R}, \mathrm{R}_{1}, \mathrm{R}_{2+3}, \mathrm{R}_{4+5}$ pigmented brownish. Hypopygium in Figure $10 \ldots \ldots$. . . S. psilopterus

- All wing veins pigmented brownish

6
6 Superior volsella almost straight, with obtuse angled hook. Wing membrane often milky white. Cross-vein RM and neighboring veins brownish, brownish on membrane around RM sometimes absent. Hypopygium in Figure 11
S. rosenschoeldi

- Superior volsella with acute angled hook. Wing membrane clear. Brownish spot on RM and surrounding membrane

7 Thorax has 18-30 dorsocentrals in 2 rows tapering to 1 posteriorly, and 8-15 prealars. Hypopygium in Figure 13
S. sticticus

- Thorax has more than 40 dorsocentrals in 3 rows tapering to 2 posteriorly, and ca. 20 prealars. Hypopygium in Figure 12

Stictochironomus sp. 2TE

Discussion

Phylogenetic trees

This study was initiated since available barcodes within the genus in BOLD showed larger divergence between putative species than was currently known from Fennoscandia. My phylogenetic analyses using the protein coding nuclear markers PGD and AATS1 resulted in the same groups as seen in the phylogeny using COI-barcodes: there are eight genetic clusters of Stictochironomus in Fennoscandia. The purpose of the phylogenetic analyses in this study was to examine species boundaries within the genus. Thus, while the concatenated ML tree has many well supported branches in the lower parts of the tree, the limited taxonomic sampling makes the result not trustworthy as a proper reconstruction of the phylogenetic relationships between species in Stictochironomus. With regard to species delimitation, three new species are genetically distinct from each other and from the previously described species. Results from the concatenated ML tree (Figure 5) show that the two S. pictulus clades are not sister taxa, and neither are the two S. sticticus clades, even though morphologically adult males of these two species pair are the most similar to each other within the genus.

Some of the specimens were already barcoded and mounted on microscope slides (marked in white and dark green in Supplementary Table Bl), and it was therefore not possible to extract DNA for molecular analysis of the genetic markers PGD. And AATSI. The new species Stictochironomus sp. 2TE and the potential new species Stictochironomus sp. sticticus Norway was thus only represented with one sequence in the phylogeny of AATS1, but the since the PGD sequences was of too low quality, these species were not represented in the phylogeny of PGD. Inclusion of more sequences from these two species could have revealed a different topology in the concatenated tree than what was revealed with the limited number of sequences from the nuclear markers. The fourth marker, CAD1 have been used successfully in previous studies of chironomids (Lin et al., 2018), but did not work very well on Stictochironomus. There are many steps in the extraction and amplification of DNA, and a lot could go wrong. To get better quality sequences it might be worth manipulating the PCR steps to make PGD work better, or test other markers, such as CAD4. In the AATS1 tree, the two clades are not
sister taxa, but still closely related. With only two sequences included outside of COI, the clades have not been supported by more molecular evidence.

Another species that was not included in any of the phylogenetic analyses was S. crassiforceps. Stictochironomus crassiforceps has been recorded in Sweden and Finland historically, and could possibly exist in Norway as well. According to GBIF (2022) there are eight occurrences in Finland after 2003, but these specimens were only observed and not preserved. There are five preserved specimens from Russia, but I do not have access to the specimens or any photographs of the specimens. There are no recent recordings of S. crassiforceps in Sweden or Norway. I do not have access to any barcoded sequences through BOLD and could therefore not include it in the phylogenetic analyses. As this study aimed to review all the species of Stictochironomus in Fennoscandia, it would have been optimal to include S. crassiforceps as well. Since all the other species form well supported clades, it is unlikely that S. crassiforceps would affect the whole phylogeny in a way that changes the delimitation of the other species. It would be interesting to see if all specimens of S. crassiforceps would be assigned to the same clade, or if it would be divided into several clades like the S, pictulus and S. sticticus species. Including S. crassiforceps in the study could have revealed even more hidden diversity within the genus.

Similar studies have been done on other genera within Chironominae where seemingly identical morphological species showed great genetic variation. After studying the morphology thoroughly, a unique combination of diagnostic characters were revealed and the new species could be described and named (Anderson et al., 2013). Molecular analysis of COI is an effective way to reveal hidden species diversity in morphologically similar species. However, species specific genetic markers can with benefit be applied in the analysis to solidify the results.

Delimitation - GMYC

The GMYC result from the COI and AATS1 markers show the same delimitation as the concatenated ML tree, that there are eight species of Stictochironomus in Fennoscandia. The shape of the line-through-time plot (Supplementary Figure A4 and A5) indicate that the separation between intraspecific and interspecific branching evens with a steep increase and towards the end. The red line shows where the separation was set (Song et al., 2018). In many studies, GMYC tends to oversplit species (Pentinsaari et al., 2017; Tänzler et al., 2012), but in this case the GMYC analysis divided the sequences into the same clusters as the phylogenetic analysis.

For the PGD marker, the results from the GMYC were not as clear. The shape of the PGD line-through-time plot (Supplementary Figure A6) is almost linear, meaning the GMYC analysis could not separate between interspecific and intraspecific branching events. Despite PGD having the longest sequence lengths, it has the least variation between base pairs of all the markers. Some of the sequences were also overall of worse quality than
the AATSl and COI sequences. This could have played a part in why so few clades were delimited.

Morphology

The species that have been described previously are all well established and have a unique combination of diagnostic characters. These species include S. maculipennis, S. psilopterus and S. rosenschoeldi. Characters that proved the most useful for distinguishing the new species were number setae on the thorax (dorsocentrals, prealars and scutellars), and the shape of the hypopygium and superior volsella.

The new species Stictochironomus sp. 2TE (sp. 2TE) also have a unique combination of diagnostic characters. The number of dorsocentrals is over 42-43, which is much higher than in the other species. Only S. psilopterus comes close with a maximum number of 36 dorsocentrals. In addition, the arrangement of dorsocentrals in sp. 2TE is unique in that they form three lines, tapering to two lines anteriorly. The number of prealars is higher than the other species; sp. 2TE has an average of 19,5 and the next species in line is S, psilopterus which has 14 prealars on average. S. psilopterus has more scutellars than sp. 2TE, 65 and 59 respectively. In short, the thorax of sp. 2TE is much hairier than the rest of the species, except for S. psilopterus. These two species can easily be separated by looking at the pigmentation on the wing veins. The number of setae on the tergite X is 13,5 which is about twice that of the other species. Some of the setae on the hypopygium are clefted. However, only one of the specimens have this trait, and it appear irregularly in other species as well. This trait exist more widely in other genera within Chironomini (Cranston et al., 1989), and it does not appear to be a good diagnostic character.

Even though I did not have access to any specimens of S. crassiforceps and could only refer to descriptions in literature and a drawing of its hypopygium, it is enough to conclude that none of the new species is a S. crassiforceps. The hypopygium of S. crassiforceps is unmistakable (Cranston et al., 1989). The illustration of hypopygium from the type specimen (Goetghebuer, 1932) seems to be the same as in (Cranston et al., 1989). No literature does, however, describe S. crassiforceps in great detail. Kieffer (1922) described the wing as being "finely dotted". Solely based on this literature, it is not possible to know if the wing of S. crassiforceps looks more like the wing of S. maculipennis and S. sticticus, or if it only has the single spot on RM.

All the potential new species were compared morphologically to specimens of the two nomina dubia Stictochironomus labeculatus (Goetghebuer, 1938) and S. stackelbergi (Goetghebuer, 1938). The combination of characters on these two species are unique and not similar to the Stictochironomus species found in Fennoscandia.

The two S. pictulus clusters Stictochironomus sp. pictulus I and Stictochironomus sp. pictulus II were difficult to tell apart on overall morphology, and telling S. pictulus apart from S. maculipennis is difficult unless one has both species in hand for comparisons.

The spots on the wing are larger in S. maculipennis than in S. pictulus, and in some specimens S. maculipennis appears to have five spots excluding the one on RM, whereas S. pictulus always has four spots excluding the one on RM. The pattern on the legs differ in some specimens as well: S. pictulus has a faint third band on the fore tibia, and stronger bands on mid and hind tibia. This third band is sometimes absent in S. maculipennis. After assessing the two S. pictulus specimens from Sweden, it is clear to me that these have been misidentified and are actually S. maculipennis.

There is a unique combination of a few diagnostic characters between Stictochironomus sp. pictulus I and Stictochironomus sp. pictulus II. Most notable is the difference in setae on the thorax: Stictochironomus sp. pictulus I has 12-13 dorsocentrals, 5 prealars, 16 scutellars, whereas Stictochironomus sp. pictulus II has 20-26 dorsocentrals, 8 prealars and 34-37 scutellars. The shape of the superior volsella is different (Figure 14): Stictochironomus sp. pictulus I is bulkier and is narrower proximally than Stictochironomus sp. pictulus II. There are some problems worth assigning. Firstly, the morphological differences could be a result of environmental factors. The specimens of the Stictochironomus sp. pictulus I cluster were collected mid-May, whereas the specimens of the Stictochironomus sp. pictulus II cluster were collected in early July. Both Stictochironomus sp. pictulus II specimens are significantly larger and has more setae than the Stictochironomus sp. pictulus I specimens. Temperature and availability to food can affect the size of the adult specimens, and thus the number of setae that can fit on the body. Second, the Stictochironomus sp. pictulus I specimens were in bad condition. Several leg segments and the antennae were missing, and it was impossible to depict the pattern on the wing. The color on the whole body appeared to be faded, but this could also be that the species is much lighter overall than the other species. Third, only two specimens were collected from each cluster, which is not much to base an average morphological analysis on. Lastly, after consulting literature I have not been able to identify which of the clusters is the new species and which is S. pictulus. In the end, it appears that the morphological differences are significant, but I recommend collecting and measuring more specimens in the future to solidify the new species, and to decide which one is the new species and which one is S. pictulus. Describing the diversity in a way that makes it stable over time requires support by diagnostic morphological characters and genetic characters, or in other words integrative taxonomy.

The last two clusters, Stictochironomus sp. sticticus Norway and Stictochironomus sp. 3TE do not show distinct morphological differences enough of the measurements or observations to call it a unique combination of diagnostic characters. The range of the measurements are greater than in any of the other species. The one notable difference is that sp. 3 TE has a faint pattern on the legs and Stictochironomus sp. sticticus Norway does not. These two clusters could potentially be a case of cryptic species and would need further studies to find morphological differences.

Future priorities

The scope of my thesis was not wide enough to include all life stages. However, in the case of the S. sticticus clades, investigating the morphology of the other life stages could reveal if these are two cryptic species or not. I collected and kept some larvae in a small box to have them form a pupa and finally emerge as adults to easily collect all the life stages. Unfortunately, none of the specimens were Stictochironomus. The goal of the fieldwork was to get as much experience as possible while also collecting Stictochironomus specimens. The location and date for collection were selected based on previous findings of Stictochironomus. There could of course be Stictochironomus in locations not recorded previously, but since this study is not a study on distribution and biogeography, I chose a few locations to try and find some fresh specimens. I only found adult male and female specimens of S. rosenschoeldi in Trøndelag and Finnmark. The field days did not line up with the emergence of the adults. Catching chironomids is easy, because once you start looking they are everywhere. It is not so easy to catch a specific species.

Two hundred and fifty years after the first chironomids were being described, studying, identifying, and describing species is still a challenge. Even experts in the field struggle sometimes. It takes a long time to properly learn what distinguishing characters to look for both between genera and within a genus. Chironomids are small, very fragile and can easily break if preserved on an insect needle. Even though mounting them on microscope slides is much more time consuming, it is a better method for both long time preservation and to study their morphology. Many species are known only from male imagines (Andersen et al., 2013), and even though many scientists are working to include other life stages there is still a long way to go. On the other hand we want to describe the biological diversity as fast as possible so that knowledge can be used in other fields of biology, so there is a fine balance to be found.

Conclusion

In Fennoscandia there are eight species of Stictochironomus, three of which are new to science. All the species of Stictochironomus were highly supported by molecular delimitation methods. The new species Stictochironomus sp. 2TE possesses a unique combination of diagnostic characters, and can thus be described as new to science. The two other species were not possible to delimit morphologically simply from adult male specimens. In order to understand which of the morphologically similar species are the described species S. sticticus and S. pictulus and which are the two new species, I recommend collecting and measuring more specimens, preferably of all life stages. The original hypothesis of there being three undescribed species in Fennoscandia has been confirmed, although more sampling and morphological measurements are needed in order to solidify the two last species.

References

Aldhebiani, A. Y. (2018). Species concept and speciation. Saudi J Biol Sci, 25(3), 437-440. https://doi.org/10.1016/j.sjbs.2017.04.013
Andersen, T., Ekrem, T., \& Cranston, P. S. (2013). 1. The larvae of Holarctic Chironomidae (Diptera) - Introduction. In T. Andersen, Cranston, P. S. \& Epler, J. H. (Sci. eds) (Ed.), The larvae of Chironomidae (Diptera) of the Holarctic region. - Keys and diagnoses. Part 1. Larvae (Vol. 66, pp. 7-12). Insect Systematics \& Evolution, Supplement.

Anderson, A. M., Stur, E., \& Ekrem, T. (2013). Molecular and morphological methods reveal cryptic diversity and three new species of Nearctic Micropsectra (Diptera: Chironomidae). Freshwater Science, 32(3), 892-921.
Armitage, P. D., Cranston, P. S., \& Pinder, L. C. V. (1995). The Chironomidae: Biology and ecology of non-biting midges. Chapman \& Hall.
Ashe, P., \& O'Connor, J. P. (2009). A world catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae. Irish Biogeographical Society \& National Museum of Ireland: Dublin.
Ashe, P., \& O'Connor, J. P. (2012). A World Catalogue of Chironomidae (Diptera), Part 2, Orthocladiinae. Irish Biogeographical Society \& National Museum of Ireland: Dublin.
Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings, M. P., Rambaut, A., \& Suchard, M. A. (2012). BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 61(1), 170-173. https://doi.org/10.1093/sysbio/syr100
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., \& Drummond, A. J. (2014). BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Computational Biology, 10(4), el003537. https://doi.org/10.1371/journal.pcbi.1003537
Bouckaert, R., \& Xie, D. (2017). Standard nucleotide substitution models vl. 0.1. In.
Butler, M. G. (1982). A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae). Canadian Journal of Zoology, 60(1), 58-70. https://doi.org/10.1139/z82-008
Cracraft, J. (1989). Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. Speciation and its Consequences, 28, 59.
Cranston, P. S., Dillon, M. E., Pinder, L. C. V., \& Reiss, F. (1989). 10. The adult males of Chironominae (Diptera: Chironomidae) of the Holarctic region - Keys and diagnoses. In T. s. e. Wiederholm (Ed.), The adult males of the Chironomidae (Diptera) of the Holarctic region - Keys and diagnoses. Part 3. Adult males (Vol. 34, pp. 353-502). Entomological Scandinavia Supplement.
Cranston, P. S., Hardy, N. B., \& Morse, G. E. (2012). A dated molecular phylogeny for the Chironomidae (Diptera). Systematic Entomology, 37(1), 172-188. https://doi.org/https://doi.org/10.1111/j.1365-3113.2011.00603.x
Cranston, P. S., Oliver, D. R., \& O.A., S. (1989). (not finished) The adult males of Chironomidae of the Holarctic region - Keys and Diagnoses.
Cronquist, A. (1978). Once again, what is a species? Biosystematics in agriculture. Beltsville Symposia in Agr. Res.,
Darriba, D., Taboada, G. L., Doallo, R., \& Posada, D. (2012). ModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3), 407-417. https://doi.org/10.1111/j.1095-8312.2005.00503.x
de Jong, Y., Verbeek M, Michelsen V, Bjørn Pde P, Los W, Steeman F, Bailly N, B. C., Chylarecki P, Stloukal E, Hagedorn G, Wetzel FT, Glöckler F, Kroupa A, Korb G, Hoffmann A, Häuser C, Kohlbecker A, Müller A, Güntsch A, . . . L., P. (2014). (not finished) Fauna Europaea - all European animal species on the web. Biodiversity data journal(2), e4034. https://doi.org/10.3897/BDJ.2.e4034
De Queiroz, K. (2007). Species Concepts and Species Delimitation. Systematic Biology, 56(6), 879-886. https://doi.org/10.1080/10635150701701083
Dobzhansky, T. (1982). Genetics and the Origin of Species. Columbia university press.
Ekrem, T., Stur, E., Orton, M. G., \& Adamowicz, S. J. (2018). DNA barcode data reveal biogeographic trends in Arctic non-biting midges. Genome, 61(11), 787-796.
Epler, J. H., Ekrem, T., \& Cranston, P. S. (2013). 10. The larvae of Holarctic Chironominae (Diptera: Chironomidae) - Keys and diagnoses. In T. Andersen, Cranston, P. S. \& Epler, J. H. (Sci. eds) (Ed.), The larvae of Chironomidae (Diptera) of the Holarctic region. Keys and diagnoses. Part 1. Larvae (Vol. 66, pp. 387-556). Insect Systematics \& Evolution, Supplement.
Fabricius, J. C. (1781). Species insectorum: Exhibentes Differentias Specificas, Synonyma Avctorvm, Loca Natalia, Metamorphosin Adiectis Observationibvs, Descriptionibvs (Vol. 2). C. E. Bohnii.

Folmer, O., Black, M., Hoeh, W., Lutz, R., \& Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.
Garraffoni, A. R. S., Araújo, T. Q., Lourenço, A. P., Guidi, L., \& Balsamo, M. (2019). Integrative taxonomy of a new Redudasys species (Gastrotricha: Macrodasyida) sheds light on the invasion of fresh water habitats by macrodasyids. Scientific Reports, 9(1), 2067. https://doi.org/10.1038/s41598-018-38033-0
GBIF. Stictochironomus crassiforceps (Kieffer, 1922) in GBIF Secretariat (2022). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2023-05-29.
Goetghebuer, M. (1932). Chironomides Palearctiques (Dipteres) conserves au Musee d'Histoire Naturelle de Vienne. Annalen des Naturhistorischen Museums in Wien, 91-115.
Grodhaus, G. (1963). Chironomid midges as a nuisance II: The nature of the nuisance and remarks on its control. California Vector Views, 10(5), 27-37.
Guindon, S., \& Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696-704.
Kieffer, J. J. (1919). Chironomiden der nordlichen Polarregion. Entomologische Mitteilungen, 8, 40-48.
Kingman, J. F. C. (1982). The coalescent. Stochastic Processes and their Applications, 13(3), 235248. https://doi.org/https://doi.org/10.1016/0304-4149(82)90011-4

Kumar, S., Stecher, G., Li, M., Knyaz, C., \& Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35(6), 15471549. https://doi.org/10.1093/molbev/msy096

Lin, X. L., Stur, E., \& Ekrem, T. (2018). Molecular phylogeny and temporal diversification of Tanytarsus van der Wulp (Diptera: Chironomidae) support generic synonymies, a new classification and centre of origin. Systematic Entomology, 43(4), 659-677. https://doi.org/https://doi.org/10.1111/syen. 12292
Lindegaard-Petersen, C. (1971). An ecological investigation of the Chironomidae (Diptera) from a Danish lowland stream (Linding A). Archiv fur Hydrobiologie, 69, 465-507.
Mayr, E. (1999). Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press.

Meigen, J. W. (1818). Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten. (Vol. 1).
Meigen, J. W. (1830). Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten. (Vol. 6).
Miller, M. A., Pfeiffer, W., \& Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 gateway computing environments workshop (GCE),
Moulton, J. K., \& Wiegmann, B. M. (2004). Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution, 31(1), 363-378. https://doi.org/10.1016/S1055-7903(03)00284-7
Oliver, D. (1971). Life history of the Chironomidae. Annual review of entomology, 16(1), 211-230.
Paradis E, Schliep K (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. Package version 5.7.1. 35, 526-528. https://doi.org/10.1093/bioinformatics/bty633.
Pentinsaari, M., Vos, R., \& Mutanen, M. (2017). Algorithmic single-locus species delimitation: effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Molecular Ecology Resources, 17(3), 393-404. https://doi.org/https://doi.org/10.1111/1755-0998.12557
Pinder, L. C. V. (1978). A key to the adult males of the British Chironomidae (Diptera) the nonbiting midges. Vol I The Key (Vol. 37). Freshwater Biological Association Scientific Publication.
Pinder, L. C. V., \& Reiss, F. (1986). 10. The pupae of Chironominae (Diptera: Chironomidae) of the Holarctic region - Keys and diagnoses. In T. S. e. Wiederholm (Ed.), Chironomidae (Diptera) of the Holarctic region. - Keys and diagnoses. Part 2. Pupae (Vol. 28, pp. 299456). Entomological Scandinavia Supplement.

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., \& Vogler, A. P. (2006). Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Systematic Biology, 55(4), 595-609. https://doi.org/10.1080/10635150600852011
Porinchu, D. F., \& MacDonald, G. M. (2003). The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Progress in Physical Geography, 27(3), 378-422.
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., \& Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901-904.
Ratnasingham, S., \& Herbert, P., D. N. (2007). BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355-364. https://doi.org/https://doi.org/10.1111/j.1471-8286.2007.01678.x
Regier, J. C., Shultz, J. W., Ganley, A. R. D., Hussey, A., Shi, D., Ball, B., Zwick, A., Stajich, J. E., Cummings, M. P., Martin, J. W., \& Cunningham, C. W. (2008). Resolving Arthropod Phylogeny: Exploring Phylogenetic Signal within 41 kb of Protein-Coding Nuclear Gene Sequence. Systematic Biology, 57(6), 920-938. https://doi.org/10.1080/10635150802570791
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., \& Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029

R studio: R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.
Schnell, Ø. A., \& Aagaard, K. (1996). Chironomidae - Fjærmygg. In Limnofauna Norvegica, Katalog over norsk ferskvannsfauna (pp. 210-248). Tapir Forlag.
Song, C., Lin, X.-L., Wang, Q., \& Wang, X.-H. (2018). DNA barcodes successfully delimit morphospecies in a superdiverse insect genus. Zoologica Scripta, 47(3), 311-324. https://doi.org/https://doi.org/10.1111/zsc. 12284
Soponis, A. R. (1977). A revision of the Nearctic species of Orthocladius (Orthocladius) Van der Wulp (Diptera: Chironomidae). The Memoirs of the Entomological Society of Canada, 109(S102), 1-187. https://doi.org/10.4039/entm109102fv
SPLITS package: Thomas Ezard, Tomochika Fujisawa and Tim Barraclough (2021). splits: SPecies' LImits by Threshold Statistics. R package version 1.0-20/r56. URL https://R-Forge.R-project.org/projects/splits/
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Stur, E., \& Ekrem, T. (2020). The Chironomidae (Diptera) of Svalbard and Jan Mayen. Insects, 11(3).
Su, K. F.-Y., Kutty, N. S., \& Meier, R. (2008). Morphology versus molecules: the phylogenetic relationships of Sepsidae (Diptera: Cyclorrhapha) based on morphology and DNA sequence data from ten genes. Cladistics, 24(6), 902-916. https://doi.org/10.1111/j.10960031.2008.00222.x

Suchard, M. A., \& Rambaut, A. (2009). Many-core algorithms for statistical phylogenetics. Bioinformatics, 25(11), 1370-1376.
Sæther, O. A. (1980). Glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomol. Scand., 14, 1-51.
Sæther, O. A., \& Spies, M. (2010). Fauna Europaea: Chironomidae. Retrieved 1. May from www.faunaeur.org
Thompson, F. C., Evenhuis, N. L., \& Sabrosky, C. W. (1999). Stictochironomus http://diptera.org/
Tänzler, R., Sagata, K., Surbakti, S., Balke, M., \& Riedel, A. (2012). DNA Barcoding for Community Ecology - How to Tackle a Hyperdiverse, Mostly Undescribed Melanesian Fauna. PLOS ONE, 7(1), e28832. https://doi.org/10.1371/journal.pone. 0028832
Wilkins, J. (2006). Species, kinds, and evolution. Reports of the National Center for Science Education, 26(4), 36-45.
Zetterstedt, J. W. (1838). Sectio tertia. Diptera. Dipterologis Scandinaviae (Vol. vi +1,140).

Appendices

Appendix A:

0.03

Figure Al - COI tree from Maximum Likelihood analysis (RAxML) created in CIPRES with default settings. Branch labels are showing bootstrap values less than or equal to 85 . Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance.

Figure A2 - PGD tree from Maximum Likelihood analysis (RAxML) created in CIPRES with default settings. Branch labels are showing bootstrap values less than or equal to 85 . Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance.

0.06

Figure A3 - AATS1 tree from Maximum Likelihood analysis (RAxML) created in CRIPES with default settings. Branch labels are showing bootstrap values less than or equal to 85 . Tip are labelled with the morphological species identification, and specimen ID as labelled on microscope slides, or as retrieved from BOLD. Scalebar represents genetic distance.

Figure A4 - GMYC results of COI. Line-through-time plot, likelihood function plot, ultrametric tree, summary of results.

> summary(AATS1_GMYC)
Result of GMYC species delimitation

Figure A5 - GMYC results of AATS1. Line-through-time plot, likelihood function plot, ultrametric tree, summary of results.

Figure A6 - GMYC results of PGD. Line-through-time plot, likelihood function plot, ultrametric tree, summary of results.

Appendix B:

Table B1 - Specimens included in the study. The information in the table is the voucher information. All specimens were included in the COI phylogenetic analysis and the concatenated trees. Light blue specimens: larva, pupa and females, DNA was extracted and sequenced, but no morphological characters were measured. Dark green specimens: morphological characters were measured, but DNA extraction was not possible as the whole specimen had already been mounted. Green specimens: DNA was extracted and sequenced, and morphological characters were measured.

Species	Sample ID	Life stage	Country, region	Latitude	Longitude	Collection Date	Collectors
Microtendipes sp.	NORIR03	M	Norway, Sør-Trøndelag	63.24068	10.43646	18.05.2022	Ekrem, T. \& Stur, E.
Sergentia sp.	NORIR08	M	Norway, Sør-Trøndelag	63.24376	10.16053	18.05.2022	Ekrem, T. \& Stur, E.
Sergentia sp. 3TE	NORIR13	M	Norway, Finnmark	70.13477	29.01131	11.06.2022	Reistad, I.
S. akizukii	Kuna-CH08	F	South Kuril Islands	44.4846	146.097	18.05.2015	Przhiboro, A.
S. maculipennis	ATNA568	M	Norway, Hedemark	61.74614	10.74618	30.06.-07.07.2008	Hoffstad, T.
S. maculipennis	ATNA569	F	Norway, Hedemark	61.74614	10.74618	30.06.-07.07.2008	Hoffstad, T.
S. maculipennis	TRD-CH113	L	Norway, Sør-Trøndelag	63.27444	10.56131	19.06.2014	Kjærstad, G.
S. pictulus	NHRS- BYWS000001113	M	Sweden, Östergötland	58.5322	14.9813	30.07.2012	Brodin, Y.
S. pictulus	NHRS- BYWS000001114	M	Sweden, Östergötland	58.5322	14.9813	30.07.2012	Brodin, Y.
S. maculipennis	TRD-CH321	M	Norway, Sør-Trøndelag	63.4290	10.379	03.-17.07.2014	Stur, E.
S. maculipennis	TRD-CH322	M	Norway, Sør-Trøndelag	63.429	10.379	17.07.2014	Stur, E.
S. maculipennis	TRD-CH95	M	Norway, Sør-Trøndelag	63.425	10.282	27.05.2014	Ekrem, T. et al.
S. pictulus	AB838702	?	Japan	-	-	-	Mined from GenBank, NCBI
S. pictulus	AB838703	?	Japan	-	-	-	Mined from GenBank, NCBI
S. pictulus	LC462293	?	Japan	-	-	29.05.2014	Mined from GenBank, NCBI
S. pictulus	NIESD0343	M	Japan, Omihachiman	35.189	136.08	07.05.2011	Ueno, R.
S. pictulus	NIESD0344	M	Japan, Omihachiman	35.189	136.08	07.05.2011	Ueno, R.
S. pictulus	NIESD0345	M	Japan, Omihachiman	35.189	136.08	07.05.2011	Ueno, R.
S. pictulus	ZMUO.024720	M	Finland, Varsinais-Suomi	60.41	23.034	17.05.2015	Paasivirta, L.
S. pictulus	ZMUO. 024721	M	Finland, Varsinais-Suomi	60.41	23.034	17.05.2015	Paasivirta, L.
S. pictulus	ZMUO. 025172	M	Finland, Satakunta	61.606	21.626	04.07.2015	Paasivirta, L.
S. pictulus	ZMUO. 025173	M	Finland, Satakunta	61.606	21.626	04.07.2015	Paasivirta, L.
S. psilopterus	BJ150	L	Norway, Bjørnøya	74.5007	18.9798	22.07.2009	Ekrem, T.
S. psilopterus	BJ196	M	Norway, Bjørnøуa	74.47443	19.06310	07.-20.07.2009	Olsen, P. H., Finstad, A. G., Ekrem, T.
S. psilopterus	BJ198	M	Norway, Bjørnøya	74.47443	19.06310	07.-20.07.2009	Olsen, P. H., Finstad, A. G., Ekrem, T.
S. psilopterus	BJ218	L	Norway, Bjørnøуa	74.4707	19.037	21.07.2009	Ekrem, T.
S. psilopterus	BJ85	L	Norway, Bjørnøya	74.47074	19.03700	21.07.2009	Ekrem, T.
S. psilopterus	BJ98	L	Norway, Bjørnøya	74.47074	19.03700	21.07.2009	Ekrem, T.
S. rosenschoeldi	Finnmark527	M	Norway, Finnmark	70.45214	27.01012	17.06.2010	Ekrem, T. \& Stur, E.
S. rosenschoeldi	Finnmark653	M	Norway, Finnmark	70.44099	26.80499	17.06.2010	Ekrem, T. \& Stur, E.
S. rosenschoeldi	ZMUO. 024303	M	Finland, Varsinais-Suomi	60.314	23.29	28.06.2015	Paasivirta, L.
S. rosenschoeldi	ZMUO. 024304	M	Finland, Varsinais-Suomi	60.314	23.29	28.06.2015	Paasivirta, L.
S. rosenschoeldi	ZMUO. 024596	M	Finland, Varsinais-Suomi	61.07	25.055	09.05.2015	Paasivirta, L.
S. rosenschoeldi	ZMUO. 024597	M	Finland, Varsinais-Suomi	61.07	25.055	09.05.2015	Paasivirta, L.
S. rosenschoeldi	NORIR01	M	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. rosenschoeldi	NORIR02	F	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. rosenschoeldi	NORIR04	M	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. rosenschoeldi	NORIR05	M	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. rosenschoeldi	NORIR06	F	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. rosenschoeldi	NORIR07	M	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. rosenschoeldi	NORIR10	M	Norway, Finnmark	70.13477	29,011310	11.06.2022	Reistad, I.
S. rosenschoeldi	NORIR11	M	Norway, Finnmark	70.13477	29,011310	11.06.2022	Reistad, I.
S. rosenschoeldi	NORIR12	F	Norway, Finnmark	70.13477	29,011310	11.06.2022	Reistad, I.
S. rosenschoeldi	NORIR14	M	Norway, Sør-Trøndelag	63.24068	10,436460	18.05.2022	Ekrem, T. \& Stur, E.
S. sticticus	Finnmark202	M	Norway, Finnmark	69.8306	25.1856	03.09.2010	Andersen, A.
S. sticticus	NIESD0333	M	Japan, Tsukuba	36.047	140.115	11.11.2010	Ueno, R.
S. sticticus	NIESD0334	M	Japan, Tsukuba	36.047	140.115	16.11.2010	Ueno, R.
S. sticticus	NIESD0561	M	Japan, Mihomura	36.006	140.375	21.11.2012	Takamura, K.
S. sticticus	NIESD0564	M	Japan, Mihomura	36.006	140.375	21.11.2012	Takamura, K.
S. sticticus	To49	M	Norway, Sogn og Fjordane	60.8274	7.48962	21.07.2001	Ekrem, T.
S. sticticus	TRD-CH281	M	Norway, Sør-Trøndelag	63.27444	10.56131	14.-28.08.2014	Stur, E. et al.
Stictochironomus sp. 3TE	Finnmark51	M	Norway, Finnmark	69.21029	23.76200	12.06.2010	Ekrem, T. \& Stur, E.
S. sticticus	ZMUO.024315	M	Finland, Varsinais-Suomi	60.243	24.021	01.05.2015	Paasivirta, L.
S. sticticus	ZMUO. 024316	M	Finland, Varsinais-Suomi	60.243	24.021	01.05.2015	Paasivirta, L.
S. sticticus	ZMUO. 024598	M	Finland, Varsinais-Suomi	61.07	25.055	09.05.2015	Paasivirta, L.
S. sticticus	ZMUO. 024599	M	Finland, Varsinais-Suomi	61.07	25.055	09.05.2015	Paasivirta, L.
Stictochironomus sp. 2TE	Finnmark108	M	Norway, Finnmark	70.32152	31.03407	18.06 .2010	Ekrem, T. \& Stur, E.
Stictochironomus sp. 2TE	Finnmark385	M	Norway, Finnmark	69.84383	26.07607	16.06.2010	Ekrem, T. \& Stur, E.
Stictochironomus sp. 2TE	Finnmark781	P	Norway, Finnmark	70.32152	31.03407	18.06.2010	Halvorsen, G. A.
Stictochironomus sp. 2TE	Finnmark782	P	Norway, Finnmark	70.20469	24.9065	15.06.2010	Halvorsen, G. A.
S. unguiculatus	10PROBE-20434	L	Canada, Churchill	58.759	-93.952	11.08.2010	Witt, J.
S. unguiculatus	10PROBE-08810	F	Canada, Churchill	58.7541	-93.9974	12.06 .2010	Wang, J.
S. unguiculatus	10PROBE-20328	L	Canada, Churchill	58.6631	-94.1662	09.08.2010	Witt, J.
S. unguiculatus	10PROBE-20333	L	Canada, Churchill	58.6631	-94.1662	09.08.2010	Witt, J.
S. unguiculatus	10PROBE-20464	L	Canada, Churchill	58.728	-93.792	10.08.2010	Witt, J.
S. unguiculatus	10PROBE-20345	L	Canada, Churchill	58.6631	-94.1662	09.08.2010	Witt, J.
S. unguiculatus	10PROBE-20351	L	Canada, Churchill	58.728	-93.792	10.08 .2010	Witt, J.
S. unguiculatus	10PROBE-14846	M	Canada, Churchill	58.6309	-93.796	17.07 .2010	Wang, J.
S. unguiculatus	10PROBE-20489	L	Canada, Churchill	58.728	-93.792	10.08.2010	Witt, J.
S. unguiculatus	10PROBE-20367	L	Canada, Churchill	58.6631	-94.1662	09.08.2010	Witt, J.
S. unguiculatus	10PROBE-20368	L	Canada, Churchill	58.728	-93.792	10.08 .2010	Witt, J.
S. unguiculatus	10PROBE-20386	L	Canada, Churchill	58.759	-93.952	11.08 .2010	Witt, J.
S. unguiculatus	10PROBE-20407	L	Canada, Churchill	58.759	-93.952	11.08 .2010	Witt, J.
S. unguiculatus	10PROBE-20418	L	Canada, Churchill	58.6631	-94.1662	09.08.2010	Witt, J.

Table B2 - The average value of measured characters of all genetic clusters. Wing. VR: length of vein Cu / M. Terminology: Head. AR: antennal ratio, terminal flagellomere/the rest of the flagellomere. Legs. BR: bristle ratio, longest antenna seta/width of tarsomere 1 . LR: leg ratio, tarsomere 1/tibia. BV: Beinverhältnisse, (femur + tibia + tarsomere 1)/sum of tarsomere 2-5. SV: (femur + tibia)/tarsus 1 . Hypopygium. HR: hypopygium ratio, gonocoxite / gonostylus. SVo: superior volsella. * Acrostichals were sometimes difficult to see, and measurements might not be accurate.

Species	Stictochironomus maculipennis	Stictochironomus sp. pictulus I	Stictochironomus sp. pictulus II	Stictochironomus psilopterus	Stictochironomus rosenschoeldi	Stictochironomus sp. sticticus Norway	Stictochironomus sp. 3TE	Stictochironomus sp. 2TE
BIN	ACD4514	ADA9115	ADE9888	AAG9507	AEM3172, AAV3350	AAP3558	AAM9673	AAM6830
Characters								
Total length	7065,0	6143,0	7509,5	-	5856,0	7201,0	7816,0	6426,0
TL/WL	1,973	2,145	2,096	-	2,008	1,956	2,104	1,822
Wing								
Total wing length	3580,7	2863,5	3582,0	4743,5	2916,8	3680,0	3714,2	3527,5
Wing width	967,7	-	891,0	1109,0	669,5	920,0	960,5	880,0
R1	991,3	796,0	1036,5	1412,5	844,0	1093,5	1021,6	1099,5
R2+3	1398,0	1081,5	1394,5	1839,0	1131,8	1488,0	1455,6	1439,5
R4+5	1878,7	1494,0	1873,0	2435,5	1539,9	1942,5	1919,6	1889,5
Cu	1457,7	1211,0	1435,0	1999,0	1243,2	1515,0	1521,0	1433,5
M (Ar to RM)	1536,0	1220,5	1549,5	2057,5	1260,9	1566,5	1590,0	1437,5
VR	0,948	0,980	0,926	0,972	0,983	0,967	0,982	0,997
R	22,3	20,0	28,0	17,5	19,7	18,5	13,5	21,0
R1	16,7	10,0	20,5	9,0	12,6	9,0	13,2	3,0
R2+3	0	0	1,0	3,5	0	1,0	0,0	0,0
R4+5	16,0	24,5	27,0	0,0	18,9	15,5	5,5	4,0
M	0	0	3,0	0,0	0	0	0,0	0,0
Cu	0	2,0	6,5	0,0	0	0	0,0	0,0
Cu1	0	2,0	1,0	0,0	0	0	0,0	0,0
Cu2	0	0	1,0	0,0	0	0,5	0,0	0,0
An	0	0	1,0	0,0	0	0	0,0	0,0
False vein	0	0	0	0,0	0	0	0,0	0,0
Squama	26,3	21,0	39,0	37,5	21,6	19,0	31,0	35,0
Brachiolum	3,0	2,0	2,0	4,0	3,0	3,0	3,4	4,0
Head								
Pedicel	235,3	198,5	233,5	241,0	197,4	253,0	271,3	284,0
Terminal flagellomere	1096	-	1132,0	-	942,3	1235,0	1221,0	1229,5
AR	2,3	-	2,358	-	2,471	2,731	3,449	3,374
Longest antennal seta	993,3	-	975,0	-	854,8	1001,0	1207,0	1115,5
Palpomere 1	52,7	54,0	52,0	59,0	53,6	68	61,0	62,0
Palpomere 2	113,7	79,5	108,0	92,5	85,8	93,5	95,0	105,5
Palpomere 3	189,3	158,0	190,0	207,5	171,0	186	179,3	216,0
Palpomere 4	190,3	153,0	210,0	215,0	160,6	196,5	157,4	194,5
Palpomere 5	256,7	199,0	318,0	276,0	203,2	308,0	249,0	274,5
Temporals	19,0	17,0	21,0	22,5	16,5	20,0	24,7	16,5
Clypeal setae	36,3	24,5	27,0	52,0	26,0	16,5	36,3	31,0
Distance between eyes	144,5	138,5	165,5	183,0	143,4	175,0	357,5	-
Head width	776,5	634,5	855,0	862,0	658,5	809,5	688,0	788,0
Foreleg								
Femur	1317,3	1037,0	1341,0	1460,5	1065,2	1330,0	1311,5	1228,0
Tibia	1419,7	1052,5	1526,0	1652,5	1108,9	1392,5	1435,8	1372,5
Setae on scale	2,8	1,5	2,0	2,0	3,0	2,0	3,0	1,5
Tarsus 1	1539,0	1045,0	1713,5	-	1115,9	1480	1432,5	1341,0
BR	2,770	1,211	2,621	-	3,090	3,413	4,225	5,864
Tarsus 2	860,7	667,0	910,5	-	703,3	890,5	888,0	931,0
Tarsus 3	634,3	544,0	717,0	-	631,9	714,5	559,5	787,0
Tarsus 4	483,3	438,0	582,5	-	402,3	511,0	380,0	463,0
Tarsus 5	284,0	207,0	321,0	-	212,7	244,5	239,0	255,0
LR	1,084	1,031	1,123	-	1,011	1,104	1,022	0,956
BV	1,893	1,662	1,810	-	1,696	1,781	2,026	1,630
SV	1,779	1,952	1,673	-	1,959	1,844	1,871	1,961
Mideg								
Femur	1487,0	1205,0	1574,5	1813,5	1204,4	1538,0	1504,6	1403,0
Tibia	1427,3	1110,5	1525,5	1790,5	1178,4	1462,0	1463,6	1423,0
Tarsus1	790,7	629,0	868,5	1080,0	655,4	855,0	841,4	1038,5
BR	3,218	2,583	3,418	5,113	3,709	4,466	4,290	3,874
Tarsus 2	486,7	373,5	515,5	625,0	399,0	514,5	524,3	721,0
Tarsus 3	350,0	284,0	382,5	477,0	313,6	392,0	355,0	567,5
Tarsus 4	226,7	178,5	245,0	320,0	203,9	259,5	212,3	331,0
Tarsus 5	171,7	146,5	180,0	224,0	159,4	188,5	181,0	202,5
LR	0,554	0,566	0,569	0,592	0,558	0,585	0,575	0,739
BV	3,004	2,997	2,999	2,877	2,815	2,846	3,000	2,198
SV	3,689	3,683	3,576	3,385	3,623	3,510	3,530	2,821
Hindleg								
Femur	1682,7	1269,0	1850,5	2048,5	1375,9	1739,5	1736,6	1698,0
Tibia	1667,7	1268,5	1758,0	2166,0	1363,4	1705,5	1731,8	1757,0
Tarsus 1	1173,7	896,5	1291,0	-	975,3	1241,0	1260,6	1249,0
BR	4,588	4,128	3,738	-	4,8	4,893	4,659	5,187
Tarsus 2	702,0	540,5	715,0	-	586,6	738,5	775,8	777,0
Tarsus 3	554,7	435,0	587,0	-	483,6	592,5	552,6	649,0
Tarsus 4	306,7	261,0	356,0	-	286,3	343,0	293,8	345,0
Tarsus 5	204,3	159,5	216,0	-	189,1	208,5	213,8	219,5
LR	0,703	0,706	0,712	-	0,7	0,728	0,729	0,711
BV	2,562	2,460	2,667	-	2,4	2,490	2,592	2,366
SV	2,854	2,837	2,871	-	2,8	2,776	2,754	2,773
Thorax								

Dorsocentrals	16,0	12,5	23,0	33,5	21,3	22,0	24,0	42,5
Prealars	8,3	5,0	8,0	14,0	8,3	8,5	11,8	19,5
Scutellars	34,7	16,0	35,5	65,0	26,4	37,0	45,0	59,0
Acrostichals*	3,0	15,0	15,0	6,0	9,6	5,0	8,0	8,0
Hypopygium								
Tergite IX	264,0	200,5	247,5	310,5	212,4	281,5	287,6	302,0
Gonostylus	199,3	152,0	198,0	268,0	155,4	218,0	205,8	220,5
Gonocoxite	402,7	301,5	390,0	465,5	333,9	411,0	434,4	425,0
HR	2,020	1,984	1,969	1,738	2,165	1,886	2,111	1,926
Anal point	102,0	84,0	115,5	136,5	94,0	115,0	131,4	120,0
Phallapodeme	128,0	107,5	148,5	165,0	119,6	124,5	150,4	150,0
Transverse sternapodeme	87,7	61,5	69,5	124,0	65,8	95,0	93,8	82,0
Inferior volsella	201,3	147,5	180,5	231,5	152,5	190,0	212,8	219,0
SVo dorsal setae	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
SVo median setae	5,3	4,0	4,5	4,5	4,2	6,0	5,4	5,5
Setae on tergite X	7	6	5,5	8,0	8,4	6,0	5,4	13,5
Qualitative characters								
Superior volsella shape	Variable, in general almost straight with right angle hook	Very bulky stubby almost no hook obtuse	Somewhat bulky, hook acute	Even crescent shape but very blunt apically	Almost straight, often with a neat sharp hook apically	Even or bulky crescent shaped hook	Almost straight to crescent shaped hook	Long thin crescent shaped hook
Dorsocentrals arrangement	1 row	1 row	1 row	3-2 rows	1 row, sometimes two setae in row	1 row, sometimes two setae in row	1 row, sometimes two setae in row	2-1 rows

Table B3 - Measurements of characters of all the specimens. Wing. VR: length of vein Cu / M. Terminology: Head. AR: antennal ratio, terminal flagellomere/the rest of the flagellomere. Legs. BR: bristle ratio, longest antenna seta/width of tarsomere 1. LR: leg ratio, tarsomere 1/tibia. BV: Beinverhältnisse, (femur + tibia + tarsomere 1)/sum of tarsomere 2-5. SV: (femur + tibia)/tarsus 1. Hypopygium. HR: hypopygium ratio, gonocoxite / gonostylus. SVo: superior volsella.

Species	Stictochironomus maculipennis			Stictochironomus sp. pictulus I		Stictochironomus sp. pictulus II		Stictochironomus psilopterus		Stictochironomus rosenschoeldi					
$\underline{\text { z }}$	$\begin{gathered} \stackrel{\rightharpoonup}{N} \\ \stackrel{y}{\text { UN}} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{i} \\ & \stackrel{y}{4} \\ & \stackrel{U}{4} \end{aligned}$	$\begin{aligned} & \stackrel{~}{i n} \\ & \text { N } \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\overleftarrow{冖}} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\overleftarrow{K}} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$			$\begin{aligned} & \hat{0} \\ & \text { O} \\ & \text { O} \\ & \text { K } \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \text { O} \\ & \text { O} \\ & \text { K } \end{aligned}$	$\frac{N}{\underset{\sim}{N}}$	$\frac{N}{\underset{\sim}{N}}$	$\begin{aligned} & \text { ơn } \\ & \stackrel{N}{0} \\ & \stackrel{y}{4} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{N}{\mathrm{~N}} \\ & \underset{\gtrless}{2} \end{aligned}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{N}{2}}$
	\sum_{k}^{∞}		$\begin{aligned} & \text { i! 乌 } \\ & \stackrel{\text { r }}{1} \end{aligned}$	$\sum_{\substack{0}}^{\substack{N}} \underset{\sim}{N}$	$\sum_{\substack{N}}^{\underset{N}{N}} \underset{\sim}{N}$	$\sum_{N}^{\circ} \stackrel{N}{N}$	$\sum_{\substack{0}}^{\stackrel{N}{N}} \underset{\sim}{N}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\infty}{\sim}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { @ } \\ & \stackrel{\sim}{\Gamma} \end{aligned}$			$\begin{aligned} & 0 \stackrel{\circ}{\circ} \\ & \sum_{N}^{\circ} \stackrel{0}{N} \end{aligned}$			
Characters															
Total length	6718	7555	6922	6183	6103	7219	7800	-	-	6390	-	5755	-	5345	-
Wing															
Total wing length	3495	3819	3428	2926	2801	3649	3515	4549	4938	2921	2909	2894	2785	2607	2872
Wing width	950	1088	865	-	-	900	882	1109	-	-		-		652	
R1	1012	1035	927	809	783	1057	1016	1360	1465	812	819	889	822	770	806
R2+3	1418	1474	1302	1116	1047	1424	1365	1771	1907	1119	1061	1187	1130	1034	1085
R4+5	1826	2002	1808	1537	1451	1885	1861	2353	2518	1503	1553	1582	1520	1367	1449
Cu	1452	1592	1329	1211	-	1480	1390	1923	2075	-	1186	-	-	1118	1260
M (Ar to RM)	1523	1661	1424	1236	1205	1598	1501	1980	2135	1236	1293	-	-	1129	1272
VR	0,953	0,958	0,933	0,980	-	0,926	0,926	0,971	0,972	-	0,917			0,990	0,991
Setae on wing															
R	28	21	18	21	19	30	26	5	30	19	26	20		25	22
R1	21	16	13	10	10	25	16	0	18	16	20	21	6	10	15
R2+3	0	0	0	0	0	2	0	0	7	0	0	0	0	0	0
R4+5	27	8	13	24	25	27	27	0	0	35	28	40	13	12	9
M	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0
Cu	0	0	0	2	-	11	2	0	0	0	0	0	0	0	0
Cu1	0	0	0	2	-	2	0	0	0	0	0	0	0	0	0
Cu2	0	0	0	0	-	2	0	0	0	0	0	0	0	0	0
An	0	0	0	0	-	2	0	0	0	0	0	0	0	0	0
False vein	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0
Squama	22	34	23	20	22	36	42	25	50	23	31	30	9	18	16
Brachiolum	3	3	3	2	2	1	3	3	5	3	3	3	3	3	2
Head															
Pedicel	247	236	223	190	207	257	210		241	203	200	201	185	218	173
Terminal flagellomere	1081	1190	1017	-	-	1132	-	-	-	-	-	947	-	904	977
AR	2,295	2,474	2,187	-	-	2,358	-	-	-	-	-	2,434	-	2,546	2,389
Longest antennal seta	912	1028	1040	-	-	975	-	-	-	-	-	738	-	935	780
Palpomere 1	60	46	52	59	49	57	47	54	64	61	53	55	54	59	39
Palpomere 2	108	127	106	82	77	108	-	90	95	79	76	84	82	76	76
Palpomere 3	184	203	181	-	158	186	194	203	212	172	170	-	-	162	155
Palpomere 4	192	192	187	146	160	-	210	215	-	153	154	176	-	141	145
Palpomere 5	276	255	239	199	-	-	318	276	-	-	-	173	-	221	237
Temporals	-	20	18	18	16	20	22	25	20	12		18	-	16	
Clypeal setae	34	41	34	26	23	26	28	47	57	24	27	33	22	21	26
Distance between eyes	-	137	152	137	140	166	165	183	-	161	142	-	154	108	131
Head width	-	835	718	642	627	830	880	853	871	675	672	-	657	566	621
Foreleg															
Femur	1291	1426	1235	1048	1026	1373	1309	1423	1498	1063	1158	1036	994	1047	1016
Tibia	1401	1518	1340	1091	1014	1547	1505	1618	1687	1176	1219	1126	1056	897	1107
Setae on scale	2,5	3	3	1	2	1	3	1	3	3	-	3	-	3	
Tarsus 1	1550	1642	1425	-	1045	1746	1681	-	-	-	1147	1158	-	991	1021
BR	4,054	2,095	2,162	-	1,211	2,216	3,026	-	-	-	3,167	3,091	-	4,067	3,219
Tarsus 2	837	944	801	-	667	922	899	-	-	-	727	683	-	642	658
Tarsus 3	636	695	572	-	544	722	712	-	-	-	585	573	-	897	550
Tarsus 4	490	526	434	-	438	589	576	-	-	-	416	398	-	377	379
Tarsus 5	288	307	257	-	207	321	321	-	-	-	222	213	-	195	208
LR	1,106	1,082	1,063	-	1,031	1,129	1,117	-	-	-	0,941	1,028	-	1,105	0,922
BV	1,884	1,855	1,938	-	1,662	1,827	1,792	-	-	-	1,807	1,778	-	1,390	1,752
SV	1,737	1,793	1,807	-	1,952	1,672	1,674	-	-	-	2,072	1,867	-	1,962	2,079
Midleg															
Femur	1474	1591	1396	1221	1189	1605	1544	1795	1832	1247	1320	1200	1148	1043	1145
Tibia	1409	1512	1361	1125	1096	1553	1498	1757	1824	1215	1267	1215	1118	1056	1117
Tarsus1	778	855	739	649	609	916	821	-	1080	-	725	687	630	571	636
BR	3,385	3,222	3,047	3,631	1,535	3,488	3,348	-	5,113	-	5,049	4,156	3,206	3,297	3,625
Tarsus 2	469	536	455	383	364	526	505	-	625	-	416	385	379	378	385
Tarsus 3	347	380	323	287	281	396	369	-	477	-	332	299	292	292	304
Tarsus 4	223	247	210	187	170	251	239	-	320	-	216	208	189	189	193
Tarsus 5	178	189	148	149	144	182	178	-	224	-	165	155	149	151	153
LR	0,552	0,565	0,543	0,577	0,556	0,590	0,548	-	0,592	-	0,572	0,565	0,564	0,541	0,569
BV	3,008	2,928	3,077	2,977	3,018	3,007	2,992	-	2,877	-	2,934	2,963	2,870	2,644	2,800
SV	3,706	3,629	3,731	3,615	3,752	3,448	3,705	-	3,385	-	3,568	3,515	3,597	3,676	3,557
Hindleg															
Femur	1614	1844	1590	1233	1305	1894	1807	2002	2095	1426	1492	1393	1287	1236	1286
Tibia	1648	1742	1613	1297	1240	1813	1703	2100	2232	1401	1438	1347	1291	1230	1329
Tarsus 1	1139	1255	1127	939	854	1291	-	-	-	-	1053	-	951	884	920
BR	4,28	5,085	4,4	3,338	4,919	4,082	3,395	-	-	-	-	-	1,166	4,564	6,024
Tarsus 2	688	756	662	544	537	715	-	-	-	-	626	-	574	550	538
Tarsus 3	547	603	514	442	428	587	-	-	-	-	501	-	469	454	461

Tarsus 4	301	336	283	262	260	356	-	-	-	-	301	-	278	267	289
Tarsus 5	197	228	188	157	162	216	-	-	-	-	199	-	188	171	191
LR	0,691	0,720	0,699	0,724	0,689	0,712	-	-	-	-	0,732	-	0,737	0,719	0,692
BV	2,540	2,517	2,629	2,469	2,451	2,667	-	-	-	-	2,448	-	2,339	2,323	2,390
SV	2,864	2,857	2,842	2,694	2,980	2,871	-	-	-	-	2,783	-	2,711	2,790	2,842
Thorax															
Dorsocentrals	16	16	16	13	12	26	20	31	36	18	23	25	17	19	18
Prealars	8	7	10	5	5	8	8	12	16	8	6	7	$5 ?$	10	8
Scutellars	33	46	25	13	19	37	34	66	64	27	25	23	28	26	28
Acrostichals*	4	2	$?$	20	10	13	17	6	$?$	$?$	-	11	-	12	-
Hypopygium															
Tergite IX	253	287	252	207	194	261	234	310	311	238	227	217	214	182	173
Gonostylus	193	218	187	154	150	200	196	258	278	137	158	155	144	138	153
Gonocoxite	379	443	386	300	303	406	374	453	478	337	341	332	313	321	320
HR	1,964	2,032	2,06	1,948	2,02	2,030	1,908	1,756	1,719	2,460	2,158	2,142	2,174	2,326	2,092
Anal point	117	83	106	81	87	122	109	141	132	95	94	87	98	85	96
Phallapodeme	142	-	114	103	112	154	143	161	169	111	117	136	119	101	106
Transverse sternapodeme	87	95	81	56	67	66	73	92	156	60	58	77	68	47	54
Inferior volsella	217	203	184	140	155	191	170	232	231	-	161	154	158	171	146
SVo dorsal setae	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SVo median setae	5	5	6	4	4	5	4	4	5	3	3	5	4	4	4
Setae on tergite X	6	6	9	8	4	6	5	8	8	8	6	14	5	11	8

Table B3 - Continuation.

Species	Stictochironomus rosenschoeldi			Stictochironomus sp. sticticus Norway		Stictochironomus sp. 3TE					$\begin{gathered} \text { Stictochironomus } \\ \text { sp. } 2 \mathrm{TE} \end{gathered}$	
$\frac{\geqq}{\bar{\omega}}$		$$		$\begin{aligned} & \infty \\ & \stackrel{\sim}{0} \\ & \stackrel{\sim}{0} \\ & \stackrel{y}{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{0} \\ & \stackrel{\sim}{0} \\ & \stackrel{\alpha}{<} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \sum_{<}^{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\circ} \\ & \sum_{k}^{k} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{\circ}{\circ} \\ & \sum_{k}^{k} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Oen } \\ & \sum_{k}^{0} \end{aligned}$	
$\begin{aligned} & \text { 등 } \\ & \text { 틍 } \\ & \text { O} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \underset{\sim}{~} \\ & \frac{\alpha}{\bar{\alpha}} \\ & \stackrel{O}{Z} \end{aligned}$		$\begin{aligned} & \frac{o}{c} \\ & \frac{\underset{r}{r}}{0} \\ & \frac{0}{0} \end{aligned}$		$\begin{aligned} & \dot{\perp} \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\text { ¢ }}{\mid} \end{aligned}$							
Characters												
Total length	5934	-	-	7081	7321	7700	-	-	7522	8226	6426	
Wing												
Total wing length	3040	3100	3123	3693	3667	3714	3648	3618	3636	3955	3385	3670
Wing width	687	-	-	918	923	972	-	-	884	1025	890	870
R1	874	880	924	1069	1118	1084	998	972	1026	1028	1003	1196
R2+3	1182	1186	1202	1492	1484	1491	1381	1455	1478	1473	1297	1582
R4+5	1550	1673	1662	1951	1934	1974	1868	1886	1912	1958	1769	2010
Cu	1297	1271	1327	1500	1530	1568	1515	1474	1527	-	1401	1466
M (Ar to RM)	1293	1291	1312	1573	1560	1484	1588	1538	1595	1745	1395	1480
VR	1,003	0,985	1,011	0,954	0,981	1,057	0,954	0,958	0,957	-	1,004	0,991
Setae on wing												
R	17	9	0?	15	22	14	8	11	21	12?	23	19
R1	7	4	14	8	10	15	8	18	17	8	1	5
R2+3	0	0	0	0	2	0	0	0	0	0	0	0
R4+5	6	9	18	18	13	2	4	14	6	2	2	6
M	0	0	0	0	0	0	0	0	0	0	0	0
Cu	0	0	0	0	0	0	0	0	0	0	0	0
Cu1	0	0	0	0	0	0	0	0	0	0	0	0
Cu2	0	0	0	0	1	0	0	0	0	0	0	0
An	0	0	0	0	0	0	0	0	0	0	0	0
False vein	0	0	0	0	0	0	0	0	0	0	0	0
Squama	24	22	8	16	22	30	40	23	26	36	30	40
Brachiolum	4	3	3	3	3	3	4	3	3	4	4	4
Head												
Pedicel	214	184	199	252	254	-	234	-	237	343	295	273
Terminal flagellomere	916	918	992	1268	1202	-	-	-	-	1221	1196	1263
AR	2,482	2,550	2,425	2,882	2,579	-	-	-	-	3,449	3,098	3,650
Longest antennal seta	899	854	923	968	1034	-	-	-	-	1207	1060	1171
Palpomere 1	59	42	60	70	66	64	59	60	58	64	65	59
Palpomere 2	96	106	97	98	89	81	100	100	92	102	103	108
Palpomere 3	183	-	184	181	191	152	163	201	-	201	229	203
Palpomere 4	171	-	184	191	202	173	188	202	21	203	194	195
Palpomere 5	183	-	202	-	308	190	230	266	293	266	292	257
Temporals	20	-	-	17	23	28	-	-	23	23	15	18
Clypeal setae	25	26	30	15	18	39	47	-	24	35	30	32
Distance between eyes	146	-	162	177	173	209	173	-	854	194	-	-
Head width	651	716	710	763	856	905	810	-	191	846	788	-
Foreleg												
Femur	1076	1069	1128	1271	1389	1298	1301	1260	-	1387	1229	1227
Tibia	1129	1098	1172	1376	1409	1438	1470	1364	-	1471	1342	1403
Setae on scale	3	-	-	2	2	3	-	-	-	-	1	2
Tarsus 1	1175	1112	1207	1387	1573	1475	-	1390	-	-	-	1341
BR	2,686	2,943	2,457	2,902	3,923	4,314	-	4,137	-	-	-	5,864
Tarsus 2	741	705	767	850	931	944	-	832	-	-	-	931
Tarsus 3	611	578	629	673	756	581	-	538	-	-	-	787
Tarsus 4	421	406	419	471	551	388	-	372	-	-	-	463
Tarsus 5	224	217	210	245	244	-	-	239	-	-	-	255
LR	1,041	1,013	1,030	1,091	1,116	1,026	-	1,019	-	-	-	0,956
BV	1,693	1,720	1,732	1,802	1,761	-	-	2,026	-	-	-	1,630

SV	1,877	1,949	1,906	1,908	1,779	1,855	-	1,888	-	-	-	1,961
Midleg												
Femur	1254	1205	1278	1496	1580	1499	1478	1488	1500	1558	1298	1508
Tibia	1199	1164	1255	1417	1507	1464	1454	1417	1460	1523	1341	1505
Tarsus1	644	669	681	821	889	837	872	812	817	869	1203	874
BR	4,189	3,125	3,026	5,171	3,762	3,400	3,490	-	5,289	4,979	2,581	5,167
Tarsus 2	407	426	416	500	529	514	538	498	-	547	872	570
Tarsus 3	318	332	340	379	405	352	362	352		354	681	454
Tarsus 4	210	220	206	257	262	206	205	218	-	220	394	268
Tarsus 5	167	174	161	181	196	178	168	180		198	210	195
LR	0,537	0,575	0,543	0,579	0,590	0,572	0,600	0,573	0,560	0,571	0,897	0,581
BV	2,810	2,637	2,862	2,835	2,856	3,040	2,988	2,978		2,995	1,781	2,614
SV	3,809	3,541	3,720	3,548	3,472	3,540	3,362	3,578	3,623	3,545	2,194	3,447
Hindleg												
Femur	1409	1387	1467	1703	1776	1760	1699	1722	1697	1805	1704	1692
Tibia	1409	1359	1467	1678	1733	1767	1693	1678	1700	1821	1736	1778
Tarsus 1	976	1016	1027	1217	1265	1248	1316	1192	1276	1271	1184	1314
BR	4,644	6,940	5,396	4,846	4,940	4,193	4,300	-	5,036	5,105	5,055	5,319
Tarsus 2	593	590	635	708	769	786	767	734	786	806	759	795
Tarsus 3	492	499	509	567	618	514	550	546	557	596	612	686
Tarsus 4	283	297	289	337	349	292	280	289	300	308	326	364
Tarsus 5	196	196	183	210	207	219	209	204	-	223	205	234
LR	0,693	0,748	0,700	0,725	0,730	0,706	0,777	0,710	0,751	0,698	0,682	0,739
BV	2,426	2,378	2,451	2,524	2,457	2,637	2,607	2,590		2,533	2,431	2,301
SV	2,887	2,703	2,857	2,778	2,774	2,826	2,578	2,852	2,662	2,853	2,905	2,641
Thorax												
Dorsocentrals	23	26	23	18	26	25	18	22	25	30	42	43
Prealars	9	10	8	9	8	11	10	10	13	15	20	19
Scutellars	29	27	25	34	40	53	46	41	40	?	-	59
Acrostichals*	6	-	-	4	6	8	-	-	?	?	?	8
Hypopygium												
Tergite IX	194	238	229	264	299	287	275	261	289	326	302	302
Gonostylus	184	182	148	220	216	197	203	205	205	219	217	224
Gonocoxite	335	363	343	409	413	424	412	440	440	456	395	455
HR	1,821	1,995	2,318	1,859	1,912	2,152	2,030	2,146	2,146	2,082	1,820	2,031
Anal point	99	94	98	115	115	130	127	128	123	149	110	130
Phallapodeme	127	125	134	115	134	131	138	158	155	170	155	145
Transverse sternapodeme	75	73	80	85	105	90	97	106	81	95	70	94
Inferior volsella	156	176	98	203	177	182	218	214	229	221	212	226
SVo dorsal setae	1	1	1	1	1	1	1	1	1	1	1	1
SVo median setae	6	6	3	6	6	5	5	5	4	8	4	7
Setae on tergite X	9	7	8	6	6	5	7	3	5	7	12	15

- NTNU

Norwegian University of
Science and Technology

