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Abstract 

When exploring new environments, animals form spatial memories that are updated 

with experience and retrieved upon re-exposure to the same environment. Coordinated 

alternation of synaptic strength in the parahippocampal-hippocampal circuitry spatial cells 

is thought to provide a central neural substrate for this cognitive faculty. These structural 

changes in neuronal motifs are suggested to rely on the regulation of gene transcription 

for protein synthesis by coordination of DNA methylation and demethylation. The reported 

role of the DNA glycosylase, TDG, in demethylation suggests a possible involvement of 

TDG in long-term memory formation, as this type of memory is dependent on 

transcriptional regulation. This study investigates the potential effect of TDG-mediated 

DNA demethylation in hippocampal-dependent spatial memory. More specifically, this 

study aims to examine the potential impact of TDG on the proportional arrangement of 

CA1 spatial cells and the functional plasticity of CA1 place cells in a conditional Tdg 

knockout mouse model. This was assessed by the following procedures. (I) I constructed 

microdrives wired with four intracranial tetrodes, composing 16 electrodes. These were 

implanted in the mouse hippocampus. (II) Then I performed in vivo electrophysiological 

recording of cells in the hippocampal area CA1 in freely exploring mice. I recorded the 

activity of hippocampal cells in four animals (two control and two TDG-depleted). Place 

cells were subjected to in vivo global remapping and short-term and long-term stability 

experiments. (III) I sorted cells from all recorded mice by the Tint cluster cutting and 

analysis software. (IV) Lastly, I performed population analysis to identify spatial cells and 

analyzed the global remapping and stability capabilities of place cells. My results suggested 

that CA1 from the conditional Tdg knockout mice had a higher proportion of place cells but 

fewer speed cells than the control mice. TDG-depleted place cells displayed lower spatial 

information rate and firing rate on average, but the same amount of information content 

compared to the control cells. Furthermore, the TDG-depleted cells had lower specificity in 

terms of place field peak firing rate, but the number of place fields per cell and field size 

was invariable across genotypes. No deviances from normality were observed in global 

remapping capabilities, but the conditional Tdg knockout cells were more unstable both 

with 50 min and 24 h inter-trial intervals. These results suggest that the functionality of 

TDG-depleted CA1 place cells may deviate from the functionality of cells without TDG 

depletion. Cells from more animals ought to be included and evaluated to make a robust 

conclusion. 
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Sammendrag 
 

Når dyr utforsker nye omgivelser, dannes det romlige minner som oppdateres med 

erfaring og hentes frem igjen ved gjeneksponering for det samme miljøet. Koordinert 

modifikasjon av synaptisk styrke mellom de parahippocampale-hippocampale kretsenes 

spatiale celler antas å gi et sentralnevralt substrat for dette kognitive fakultetet. Disse 

strukturelle endringene i nevrale komposisjoner antydes å være avhengig av regulering av 

gentraskripsjon for proteinsyntese gjennom koordinering mellom DNA-metylering og 

demetylering. Den rapporterte rollen til DNA-glykosylasen, TDG, i demetylering insinuerer 

en mulig involvering av TDG i dannelse av langtidshukommelse, da denne typen 

hukommelse er avhengig av transkripsjonsregulering. Denne studien undersøker den 

potensielle effekten av TDG-mediert DNA-demetylering på hippocampus-avhengig spatial 

hukommelse. Mer spesifikt har denne studien som mål å undersøke den mulige 

innvirkningen av TDG på den proporsjonale fordelingen av plassceller i CA1 og deres 

funksjonelle plastisitet i en betinget Tdg knockout musemodell. Dette ble evaluert gjennom 

følgende prosedyrer. (I) Jeg konstruerte mikrodrivere med fire intrakranielle tetroder, som 

til sammen komponerte 16 elektroder. Disse ble implantert i musens hippocampus. (II) 

Deretter utførte jeg in vivo elektrofysiologisk opptak av celler i hippocampusområdet, CA1, 

hos fritt utforskende mus. Jeg registrerte aktiviteten til hippocampale celler i fire dyr (to 

kontroller og to TDG-reduserte). Spatiale celler ble underlagt in vivo global remapping og 

korttids og langtids stabilitetseksperimenter. (III) Jeg sorterte celler fra alle registrerte 

mus ved hjelp av klusterklippe- og analyseprogramvaren, Tint. (IV) Til slutt utførte jeg 

populasjonsanalyse for å identifisere spatiale celler og analyserte globale remapping- og 

stabilitetskapasiteten til plassceller. Resultatene mine impliserte at CA1 hos de betingede 

Tdg knockout-musene hadde en høyere andel plassceller, men færre hastighetsceller enn 

kontrollmusene. TDG-reduserte stedsceller viste lavere gjennomsnittlig romlig 

informasjonsrate og fyringsrate, men samme mengde informasjonsinnhold sammenlignet 

med kontrollcellene. Videre hadde TDG-reduserte celler lavere spesifisitet når det gjelder 

plassfeltenes toppfyringsrate, men antall stedsfelt per celle og feltstørrelse var konstant 

på tvers av genotyper. Ingen avvik fra normalitet ble observert i globale remapping-evner, 

men de betingede Tdg-knockout-cellene var mer ustabile både med 50 min og 24 timers 

mellomforsøksintervaller. Disse resultatene tyder på at funksjonaliteten til TDG-reduserte 

CA1-plassceller kan avvike fra funksjonaliteten til celler med normale mengder TDG. Celler 

fra flere mus bør inkluderes og evalueres for å kunne trekke en solid konklusjon. 
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1 Introduction 

A characteristic feature of human cognition is the capacity to reconstruct perceptual 

experiences into mental representations, which allows for the ability to envision past events 

(Tulving, 1985) as well as to strategize for future scenarios (Schacter et al., 2007). The 

ability to retain and retrieve these cognitive constructs is referred to as episodic memory. 

Episodic memory is defined as the capacity to store and recall events within a 

spatiotemporal context (Sugar & Moser, 2019). The neural code supporting representations 

of episodic memories should meet certain requirements, including information about the 

position of the agent, the spatial component of an event. This ability depends upon 

delicately altered intrinsic and extrinsic neural compositions with direct correlates to the 

hippocampal formation and its neighboring structures. Spatial correlates of this anatomical 

area and the activity of individual neurons have been extensively reported in rodents 

(O'Keefe & Dostrovsky, 1971; Taube et al., 1990; Hafting et al., 2005) as well as in humans 

(Ekstrom et al., 2003; Chai & Jacobs, 2010). The genetic expression of the neural 

environment seems to contribute to this fine-tuned architecture of experience-dependent 

alternations in synaptic strength, known as synaptic plasticity (Poon, Tse & Lim, 2020). 

Plastic changes in neuronal motifs are suggested to rely on the regulation of gene 

transcription for protein synthesis by precise coordination of DNA methylation and 

demethylation (Yu et al. 2011). The evident role of Thymine DNA Glycosylase (TDG) in 

initiating active demethylation is by recognizing and excising 5-methylcytosine (5mC) from 

DNA (Bochtler et al., 2016). This essential removal of the outward projecting methyl group 

acting as a steric interference for transcription suggests a potential contribution of TDG in 

formation of long-term spatial memory reliant on transcriptional regulation. Understanding 

epigenetic adaptive modifications in gene expression could thus be fundamental for 

comprehending the genetic basis of behavior and cognitive abilities. This project aims to 

assess the role of DNA demethylation mediated by TDG in hippocampal-dependent spatial 

reference memory. 

In this introduction, I will first give an overview of the parahippocampal-hippocampal 

network, mainly focusing on the CA1, followed by an elaboration of the several spatial cells 

located in this brain region. This section will focus on the functionality of place cell. 

Thereafter, I will introduce the synaptic alternations known to provide the neural substrate 

of spatial memory, mainly addressing homosynaptic long-term potentiation (LTP). An 

outline of the epigenetic mechanisms of DNA methylation and demethylation and its 

suggested function in spatial memory will then be described. Finally, the main objectives 

and research questions of this project will be presented. 
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1.1 The Hippocampus – Anatomical Overview 

The parahippocampal-hippocampal network is a complex formation of brain regions in 

the medial temporal lobe (Figure 1). The region is thought to be involved in the formation 

and retrieval of memories, particularly those related to spatial and contextual information 

(Tatu & Vuillier, 2014). The network composes two main structures: the parahippocampal 

cortex and the hippocampus (Figure 1A). The defining distinctions between the two 

anatomical structures are the number of present cortical layers and the overall principles 

of neural connectivity. The parahippocampal-hippocampal circuitry is extensively studied 

in rodents, but the structures appear highly evolutionary conserved across mammalian 

species (Witter et al., 2006).  

 

1.1.1 Anatomy of the Hippocampal Formation 

The hippocampal formation of the mouse is an elongated convex structure located 

in the temporal lobes of the brain. The structure extends from the septal nuclei of the basal 

forebrain rostro-dorsally, around the diencephalon, and into the temporal brain regions 

caudoventrally (Figure 1; Witter, 2012). This long axis, with its dorsal pole situated dorsally 

and rostrally, is referred to as the dorsoventral or radial axis, and its orthogonal axis is the 

transverse axis (Figure 1C). The hippocampal formation comprises several structures, such 

as the hippocampus proper (HP), the dentate gyrus (DG), and the subiculum (Figure 1B; 

Tatu & Vuillier, 2014; Knierim, 2015; Donkelaar et al., 2018).  

The HP forms a medially oriented curve at its most rostral tip (Dekeyzer et al., 

2017). This distinctive curved shape is commonly termed 'Cornu ammonis' (CA) (Knierim, 

2015). This general layout holds over the full range of mammalian species. From a sagittal 

section, the HP is subdivided into three zones designated CA1-3 (Figure 1B). The borders 

of these fields can be reliably established based on chemoarchitectural features (Lein et 

al., 2004; Thompson et al., 2008). The CA1, the largest of the three areas, is bordered 

laterally by the presubiculum and medially by the CA2. Area CA2 is situated towards the 

DG and delimited laterally by the CA1 and medially by the CA3. Finally, the CA3 is directed 

towards the DG hilus and is bordered by the CA2 medially. The subiculum is situated 

between the HP and the entorhinal cortex (EC) (Witter, 2006). And lastly, the DG, a narrow 

crenated band of grey matter, is located between the fimbria hippocampi and the 

parahippocampal gyrus (Witter, 2006). 

 

1.2.2 Anatomy of the Parahippocampal Formation 

The parahippocampal composition forms the most ventral and caudal portion of the 

cortical mantle, wrapping around the hippocampal formation’s most caudal and ventral 

parts (Figure 1A; Witter, 2012). In the mouse, this cortical region composes the 

ventroposterior convexity of the cerebral hemisphere (Witter, 2012). The parahippocampal 
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region comprises the perirhinal, entorhinal, and postrhinal cortices, as well as the 

presubiculum and parasubiculum (Figure 1A; Andersen et al., 2006). Of these, is the EC 

the region with the most connections with the hippocampal formation, in addition to 

forming robust connections with other parahippocampal sub-regions (Witter, 2012). 

 

 
Figure 1. The anatomy of the mouse parahippocampal-hippocampal formation. A| A 
horizontal cross-section view of the rodent hippocampal formation (consisting of the dentate gyrus 
(DG; dark brown), CA3 (medium brown), CA2 (not indicated), CA1 (orange), and the subiculum 
(Sub; yellow)) and the parahippocampal region (consisting of the presubiculum (PrS; medium blue) 
and parasubiculum (PaS; dark blue), the entorhinal cortex, which has a lateral medial (mEA; light 
green) and lateral (lEA; grey) aspect, and the postrhinal cortex (POR; dark green). B| A sagittal 
cross-section of the hippocampal formation, with subareas indicated (including CA2). Dotted lines 
indicate the distinctions of layered topography in the specific subregions (DG: sm, stratum 
moleculare; sg, stratum granulosum; hilus; CA3, CA2, CA1: so, stratum oriens; sp, stratum 
pyramidale; sl, stratum lucidum (exclusively in CA3); sr, stratum radiatum; slm, stratum lacunose-
molecular; Sub: so; sp; sm). C| The red square indicates the position of the hippocampal formation 
in the mouse brain with three axes designated: the longitudinal axis, the transverse axis and the 
radial axis (superficial-to-deep/dorsal-to-ventral), perpendicular to the transverse axis. The lower 
left icon indicates the anatomical rotation of the sectional schemes (D-V; dorsal-ventral, A-P; 
anterior-posterior). The figure was made in BioRender. 

 
1.1.3 Connectivity of the Parahippocampal-Hippocampal Region 

The anatomical connectivity and intrinsic neural properties found in the 

parahippocampal-hippocampal system give rise to well-organized patterns of ensemble 

activity consisting of different parallel circuits. Based on the spatial distribution of sensory 
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cortical inputs, it is hypothesized that these parallel circuits carry different types of 

information of importance in episodic memory (Witter et al., 2000). These distinct 

pathways terminate in different regions of the hippocampal formation, both along the 

longitudinal axis of all subfields and the transverse axis of CA1 and the subiculum (Witter 

et al., 2000). The anatomy of the parahippocampal-hippocampal network is specifically 

adapted to its critical role in memory consolidation and spatial navigation. Its complex 

structure represents a delicate balance of cells and connections necessary for these 

functions. 

 

1.1.3.1 The EC-Hippocampal Formation Circuitry 

The EC is commonly assigned the main input and output structure of the 

hippocampal formation. The EC receives projections from numerous cortical structures, 

constituting a structure with eminent convergence of sensory input. The EC shares 

bidirectional connections with the CA1 of the HP and the subiculum and unidirectional 

projections innervating all other regions of the hippocampal formation (Figure 2; Witter et 

al., 2017). The collected EC-hippocampal circuitry is thought to act as an integrator of 

high-order multimodal signals (Li et al., 2020). The classical view of the information flow 

in this circuitry is referred to as the trisynaptic pathway. In this feedforward pathway 

neocortical information is converged in the EC before being transferred via the perforant 

path onto the DG. From there, DG neurons make connections with neurons in the CA3, 

followed by the CA1, and finally, the signal is conducted back to the EC via the subiculum 

(Witter, 2018; Chrobak et al., 2000). 

The present view of the information flow in this circuitry supports a functional 

separation between the lateral EC (lEC) and the medial EC (mEC) (Figure 2). The mEC is 

thought to process spatial information (Hardcastle et al., 2017). Whereas the lEC operates 

on other types of information, such as time (Tsao et al., 2018; Montchal et al., 2019) and 

olfaction (Li et al., 2017; Xu & Wilson, 2012). Recent findings indicate recurrent interaction 

between the two information paths and suggest information integration between the two 

(Nilssen et al., 2019). Recent evidence supports the notion that CA1 pyramidal cells form 

two distinct sublayers along the radial axis (Mizuseki et al., 2011; Cembrowski et al., 2016; 

Valero et al., 2015). These cells also vary along the transverse axis with regard to the 

input received from the EC. mEC appears to provide spatial information to the pyramidal 

CA1 cells situated in the deep CA1, and the lEC transmitting non-spatial information to the 

more superficial CA1 pyramidal cells (Masurkar et al., 2017). 

  

1.1.3.2 CA1 input and output 

The CA1 displays a more intricate input- and output architecture than previously 

suggested. Accumulating evidence supports bidirectional connectivity between the CA1 and 
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the subiculum and EC (Figure 2; Nilssen et al., 2019; Naber et al., 2001). Furthermore, 

the subnetwork of the CA1 is considered the main output seat of the hippocampus and 

transmits information to the cortex as well as other non-cortical regions (Goode et al., 

2020). The layers of the CA1 composes a range of different cell types with distinctive 

connections. The primary output of the CA1 within the hippocampus is directed toward the 

striatum. This projection exhibits topographical organization in its targets, forming a 

column in the transverse axis (Witter, 2012). The CA1 receives intrahippocampal input 

from both ipsilateral and contralateral CA3 regions, known as the Schaffer collaterals, as 

well as smaller input from the subiculum (Figure 2). In addition, various cortical and 

subcortical sources provide input to the CA1, mainly via the EC. The CA1 also receives 

input from regions such as the ventral tegmental area, locus coerulus, lateral 

supramamilary region, and the raphe complex. CA1 projections target several 

extrahippocampal regions, including the retrosplenial cortex, nucleus accumbens, ventral 

taenia, anterior olfactory nucleus, hypothalamus, and amygdaloid region (Witter, 2012). 

Although the hippocampus is connected to several other brain regions, the connections 

that originate within the hippocampus are the most predominant (Andersen et al., 2006). 

 

Figure 2. Information flow in the EC-hippocampal network. Integrative 
scheme of the traditional trisynaptic (MEC/LEC à(Perforant path)à DG à(Mossy 
fibers)à CA3 à (Schaffer collaterals) CA1) and monosynsaptic (EC à CA1) 
pathways as well as the updated glutamatergic connections including the CA2, 
Subiculum, recurrent DG and CA3 connections and several revers’ projections. 
The figure was made in BioRender. 
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1.1.4 Hippocampal Neuroanatomy 

The internal hippocampal formation consists of a distinctive three-layered 

appearance (Mercer & Thomson, 2017). The organization of cell types in the hippocampal 

formation can be guided by the division of sublayers in the distinct regions (Figure 1B). 

The sublayers of the HP recognized by the anatomical organization of neural cells and the 

laminar organization are generally similar for all CA subfields (Witter et al., 2000). The 

pyramidal cell layer of the HP is called the stratum pyramidal, mostly composed of 

excitatory pyramidal neurons. The stratum oriens, located deep to the pyramidal layer, is 

a relatively cell-free layer, but one can locate a few inhibitory basket-cell interneurons and 

pyramidal axons, recurrent axon collaterals and commissural fibers. Located just above 

the pyramidal cell layer in the CA3 field, but not in CA2 or CA1, is a narrow noncellular 

zone, termed the stratum lucidum, containing the mossy fiber axons originating in the DG. 

At stratum lucidums distal end, the mossy fibers bend ventrally, indicating the CA3/CA2 

border. Superficial to stratum lucidum in CA3, immediately above the pyramidal cell layer 

in CA2 and CA1, is stratum radiatum. This layer comprises apical pyramidal dendrites and 

some stellate cells, making up a big portion of the CA3-CA3 connections and the CA3-CA1 

Schaffer collaterals. Finally, the stratum lacunosum-moleculare layer is composed of both 

pyramidal axons and interneurons. This is the most superficial layer and is where the 

perforant pathway fibers from the EC pass through and terminate (Figure 1B; Mercer & 

Thomson, 2017; Parmar et al., 2018; Mazher & Hassan, 2021). 

The subicular structure holds the typical three-layered cytoarchitectonic features 

with other HP subfields (Figure 1B). The pyramidal cell layer of the subiculum displays a 

significantly thicker neural architecture than that of the HP. Finally, the DG is composed of 

three layers superficial to deep, the layers are: (I) the molecular layer, stratum moleculare, 

mainly containing neural bodies and granule dendrites; (II) the intermediate granular layer, 

stratum granulosum, is arranged by granule cells, considered the main cells of the DG; and 

(III) the polymorphic layer or the hilus, mainly comprising interneurons (Figure 1B). 

1.1.4.1 Cell Types in CA1 

The CA1 region is mainly composed of pyramidal cells, which are smaller in size 

compared to those found in other sub-regions (Mizuseki et al., 2011). Typically, these cells 

have one basal dendritic tree extending into stratum oriens and one or two apical dendrites 

extending to the hippocampal fissure. Reports aiming to unveil gene expression patterns 

of pyramidal cells have revealed that the population in the CA1 is heterogeneous 

(Cembrowski et al., 2016). The most substantial heterogeneity is observed along the 

longitudinal axis. This heterogeneity is reflected in the differential projection originating 

from the EC. The lEC selectively targets cells in the distal CA1, while the mEC projects to 

the proximal CA1 (Mizuseki et al., 2011; Cembrowski et al., 2016; Valero et al., 2015; 
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Witter, 2018). Calcium imaging supports this observation, by implicating differences in 

firing properties along the radial axis of the CA1 (Danielson et al., 2016). 

In addition to excitatory pyramidal cells, heterogeneous populations of gamma-

amino-butyric acid (GABA) secreting interneurons can be found in all layers of the CA1. In 

mice, the number of these GABAergic neurons located in the CA1, increases substantially, 

aligning the radial axis (Jinno & Kosaka, 2006). Among these are a population of pyramidal 

basket cells with cell bodies located in the pyramidal cell layer (Jinno & Kosaka, 2006). 

These cells reside proximity to the pyramidal cells, and their axons extend transversely 

and innervate pyramidal cells (Meyer et al., 2002). Chandelier cells, another type of 

interneuron present in the CA1, does also innervate pyramidal cells via synapses that 

terminate on the initial pyramidal axon segment. 

 
1.1.4.2 Electrophysiological and Functional Properties of CA1 Pyramidal Cells 

The electrophysiological properties of pyramidal cells in the CA1 are not consistent 

along the longitudinal hippocampal axis (Figure 1C). In one study, a ventrodorsally linear 

increase in input resistance and resting membrane potential was reported (Malik et al., 

2016). Another study showed results indicating that pyramidal cells of the ventral CA1 

were more excitable than those of the dorsal CA1 (Milior et al., 2016). The same study 

concluded that LTP, a form of synaptic plasticity elaborated in a later section, was the most 

pronounced in dorsal parts of the hippocampus. Taken together, these findings suggest 

that pyramidal neurons in the ventral aspects of the CA1 are extensively more likely to be 

active than their dorsal equivalents. 

 

1.2 Spatial Selective Cells in the Hippocampal Formation 

A number of excitatory cells in the hippocampal formation exhibit spatial selectivity, 

meaning that their activity pattern is tuned to specific features related to the subject’s 

location in the environment. These functional distinctive cell types contribute to the 

rodent's positional brain system (Kropff & Treves, 2008; Sargolini et al., 2006; Solstad et 

al., 2008) and related patterns of activity in other species, such as humans (Doeller et 

al., 2010; Jacobs et al., 2010; Reagh & Yassa, 2014). The first spatial tuned cells to be 

discovered was the place cell, located in the hippocampus. Typically, these cells display 

periodical activity in a single or a few areas within a given environment, referred to as the 

corresponding ‘place field’, and are hypothesized to support formation of a cognitive map 

of immediate space (O’Keefe & Nadel, 1978). The theory of cognitive maps suggests the 

presence of a complex internalized model of space enabling encoding, storage, and 

decoding of information related to the relative locations and other central qualities 

associated with a given spatial environment (Tolman, 1948). Place cells operate in 

conjunction with other types of spatial selective cells and non-spatial selective cells found 
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in the hippocampal and parahippocampal formation to provide a complete picture of the 

organism's location and orientation in space (Stefanini et al., 2020). These include grid 

cells, head direction (HD) cells, boundary cells, object-vector cells, and speed cells. Grid 

cells are commonly found in the EC and exhibit a distinctive firing pattern, creating a 

hexagonal grid-like pattern in response to the position of an animal within an environment, 

providing the subject with navigation opportunities and metrics of the space (Hafting et 

al., 2005). The specific grid pattern of each cell remains consistent as the animal moves 

across various environments. 

Common observations in these cells’ spatial dimensions reveal features such as 

pinpointed, bell-shaped tuning curves (O'Keefe, 1976), invariances (Muller et al., 1994), 

and recurringly repeating activity (Fyhn et al., 2004; Hafting et al., 2005). Combinations 

of these features along different spatial dimensions are also commonly observed (Sargolini 

et al., 2006; Krupic et al., 2012). As for example, speed cells are commonly invariant to 

location (Burgess et al., 2005), and place cells are often invariant to the movement speed 

of the subject (Muller et al., 1994). 

Overall, the activity of distinct spatial selective cells is important for the ability to 

perceive and navigate in space, and compose a central part of the brain's spatial 

representation system. 

 

1.2.1 Place Cells 

Place cells display characteristic functional properties in response to locomotory 

input, including stability, specificity, and remapping of place fields. Spatial specificity 

indicates the place fields' focality and multiplicity, and frequency of fields in a constant 

environment. Remapping occurs when an animal moves to a novel environment, and the 

configuration of place fields is rearranged accordingly. Stability pertains to the temporal 

consistency of the place fields when the animal returns to a familiar environment. Place 

cell functionality is reported to vary along the hippocampal axis. Along the radial axis of 

the hippocampus, it appears that deeper neurons have a higher probability of having place 

cell characteristics than neurons found more superficial (Mizuseki et al., 2011). 

 

1.2.1.1 Specificity 

The firing patterns of place cells are highly environmentally specific. Generally, 

these cells display a single place field each, but CA1, CA3, and DG place cells can exhibit 

multiple irregularly spaced fields (Park et al., 2011). The probability of multiple fields per 

cell increases in notion with the expansion of the recording enclosure (Park et al., 2011). 

It has been proposed that the specificity of the place field might relate to the developmental 

level of the neuron itself, with increased specificity in later developmental stages 

(Neunuebel & Knierim, 2012). 
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In 2014, Alme et al. recorded CA3 place cells in rats in 11 different recording boxes 

with a total of 55 comparisons of place maps in each subject. The representations showed 

a high correlation in repeated tests within the same room, but they remained orthogonally 

related across all different room combinations with minimal overlap in active cell samples 

across environments. While a small proportion of cells were active in multiple rooms, the 

firing locations of these cells were completely uncorrelated (Alme et al., 2014). This 

demonstrates high independent specificity of place cells in this hippocampal region, thus 

facilitating for high storage capacity. 

The size of the place field is variable between the place cells but stable in an 

unchanged environment. Generally, the size of the field is larger at the ventral hippocampal 

pole compared to the ones at the dorsal pole. This ventral-dorsal increasement is close to 

linear (Kjelstrup et al., 2008). Place field size has been investigated using a cation channel 

knockout mouse model, as this specific hyperpolarization-activated cyclic nucleotide-gated 

channel 1 (HCN1) is highly expressed in grid cells and CA1 place cells. The results indicated 

that the knockout mice displayed a substantial increase in field size in the CA1, whereas 

CA3 was only moderately affected (Hussaini et al., 2011). The pronounced size variability 

might suggest that CA1 place cells are more reliant on local circuitry than information 

transfer from EC grid (Hussaini et al., 2011). Davoudi and Foster (2019) utilized a genetic 

approach to inhibit the release of vesicles from CA3 terminals, which correlated to an 

increase in place field size in the CA1. Optic flow, related to path integration, also affects 

place field size. Lu and Bilkey (2010) observed a decrease in place field size, when 

experimentally increasing the optic flow information perceived by the rat. Additionally, the 

number and quality of local cues available may impact place field size, considering the 

observation of negative correlation between the number of cues presented to the animal 

and related place field size (Sharif et al., 2021). 

Although the peak firing rate within place fields is typically stable in invariant 

environments, experimental manipulations of place field size seem not to affect peak firing 

rate (Hussaini et al., 2011). Supporting this, when Lu and Bilkey (2010) introduced 

increased optic flow information, the decrease in place field size did not correlate with 

changes in firing rate. Thus, the peak firing rate remains independent of place field size. 

Furthermore, Davoudi and Foster (2019) discovered that when disrupting signals from CA3 

place cells, the place field peak firing rate of CA1 place cells was not affected. 

   

1.2.1.2 Remapping 

Although place cell activity remains stable in familiar surroundings, it is not rigid. 

The activity can change in response to alterations in environmental cues, defined by shifts 

in the cells’ preferred firing location, this phenomenon is known as remapping (Muller and 

Kubie, 1987). Remapping of place fields happens both on a local and a global scale (Muller 
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and Kubie, 1987; Latuske et al., 2018). Local scale, or partial, remapping refers to the 

remapping of a subset of place cells. Global remapping denotes a total remapping of the 

whole place cell population. Rate remapping, on the other hand, is modulation of firing rate 

of the place cells in response to sensory input via the EC (Rennó-Costa et al., 2010). 

The role of the mEC in remapping of place fields has been thoroughly studied. A 

recent lesion study showed that place cells retained the ability to remap across changing 

environments, despite experimental impairment of the mEC (Schlesiger et al., 2018). 

Another recent study using an Alzheimer-prone mouse model, in which mEC cells 

deteriorate at a higher rate than place cells, reported that the remapping ability of the 

place cells was preserved in the absents of mEC input (Jun et al., 2020). On the other 

hand, it has been observed that global remapping in hippocampal place cells correlates 

with grid field reorientation in the mEC, indicating that place cell input originating from 

mEC grid cells, which might have a role in modulating remapping (Fyhn et al., 2007). 

Furthermore, when isolating the effects on CA1 place cells, Rueckemann et al. (2016) 

discovered that ontogenical inactivation of the mEC initiated partial remapping in CA1 cells. 

Adding to that, Kanter et al. (2017) reported correlation between activation of mEC 

neurons and remapping in CA1. 

As both activation and inactivation of mEC neurons resulted in remapping, but 

disruption of the mEC-CA1 input pathway did not affect remapping, this might illustrate 

that mEC signaling assists in place cell stabilizing. The mEC-CA1 interaction might act as 

a synchronizer of the mEC input to the hippocampal place cells. This enables remapping of 

place cells in response to large changes in neural activity patterns of the mEC. A modeling 

study performed by Rennó-Costa and Tort (2017) supports this by demonstrating that mEC 

activity enhanced the place cell’s ability to retain stability in activity patterns when 

encountering unstable sensory input and filter out potentially inferring noise. The model 

supports place cell remapping as a foundation for grid realignment, consistent with Fyhn 

et al.'s (2007) observations. Additionally, the researchers predict the involvement of the 

mEC-hippocampus circuit in the creation of cognitive maps. 

 

1.2.1.3 Stability 

Specific place cell tuning has been observed to remain stable over long periods of 

time. A recent study performed by Kinsky et al. (2018) demonstrated that when animals 

navigate in familiar contexts, the hippocampal spatial map display coherent rotations 

persistent over time. Place fields have been reported to persist stably for up to 153 days 

(Thompson & Best, 1990), thus supporting the idea of long-term stability in these cells. 

Differentially located place cells in the hippocampal subregions display varying long-

term stability. The nature of emergence of place field specificity, when introduced to a new 

environment, appear to be region-specific. Dong et al. (2021) carried out 2-photon calcium 
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imaging in mice while moving in novel virtual environments. The trial-to-trial dynamics of 

CA1 and CA3 place cells in long-term stability paradigm were compared. Place cells in CA1 

emerged more rapidly but tended to shift more backward, as well as displaying more 

remapping between environments, compared to CA3 place cells, which emerged more 

gradually but showed more stable long-term dynamics. Suggesting that the emergence of 

place representation in CA1 is not merely a result of direct information transfer from CA3. 

In the CA1, place field stability seems to exhibit sublayer specificity. In a study by 

Danielson et al. (2016), it was demonstrated that the stability of spatial representations 

varied significantly across the radial axis of the CA1. Deeper situated place cells exhibited 

higher stability during a goal-oriented exploration task than during regular exploration, 

compared to more superficial cells. Thus, suggesting that deeper situated CA1 place cells 

encode the salient features of a specific environment, whereas the more superficial cells 

encode a more stable spatial representation. 

Recent studies have produced results demonstrating that perturbation of input 

regions to the CA1 disrupts typical place cell stability. Lesions to the mEC in rats, along 

with deprivation of available sensory stimuli, obliging the rats to rely on self-motion cues, 

showed a reduction in place cell stability (Jacob et al., 2020). Furthermore, blocking the 

mEC HCN1 channels, a channel associated with the regulation of synaptic integration and 

the generation of grid cell firing patterns, caused an increase in grid scale but spared the 

ability to convey spatial signals. These observations were correlated with a disruption in 

long-term stability of place fields. Furthermore, the reunions and rhomboid nuclei of the 

ventral thalamus midline have been indicated to correlate to place cell stability (Cholvin et 

al., 2018). Lesions to this area triggered extensive and long-lasting disruption of CA1 field 

stability. 

 

 

1.2.2 Head Direction, Speed, Boundary, and Conjunctive Cells 

Cells respondent to sensorimotor information related to the animal’s path is found 

in all parts of the hippocampus. The hippocampal spatial cells are tuned to multiple different 

features relevant to the location of the animal in the environment. The succeeding section 

will elaborate on the following cells: head direction (HD), speed, boundary, and conjunctive 

cells. 

HD cells respond to the animal's perceived directional heading with respect to its 

environment (Taube et al., 1990). These neurons fire at a stable rate above baseline when 

the animal's head is oriented toward the cell's preferred firing direction. HD cells are usually 

found outside of the hippocampus, but the information transmission from the mEC carries 

parts of the HD information (Winter & Taube, 2014). A limited number of robust HD cells 

have also been observed in the internal hippocampus (Lautgeb et al., 2000). 
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Cells tuned to speed measures, known as speed cells, are correlated with the pace 

of the animal. These cells display higher firing frequencies when the animal moves at a 

higher rate. They are present in both the mEC and the hippocampus (Ye et al., 2018). 

Boundary cells (also known as border cells or boundary vector cells) respond to 

environmental boundaries at specific distances and directions from the animal. 

Computational models of hippocampal place cell firing patterns predicted the existence of 

"boundary vector cells" (O'Keefe and Burgess, 1996; Burgess et al., 2000; Hartley et al., 

2000). Cells fulfilling this description have later been observed in the hippocampus (Lever 

et al., 2009). 

A portion of spatial selective cells also shows conjunctive spatial correlates. For 

example, many HD cells also respond specifically to the location of the animal. This is also 

seen in other cells, such as speed cells and boundary cells. Conjunctive cells potentially 

play an integrative role in the hippocampal network, where spatial representations are 

refreshed by path integration signals (Moser et al., 2017). 

   

1.3 Spatial Memory and Synaptic Plasticity 

 A striking feature of synapses in the central nervous system, particularly those in 

the hippocampal circuit, is the phenomenon of activity-dependent synaptic plasticity. The 

process allows the strength of synapses to be regulated for prolonged periods of time 

through various patterns of synaptic activity (Basu & Siegelbaum, 2015). This process can 

be either homosynaptic, meaning that the strength of synaptic communication at the same 

synapses that were activated is altered, or heterosynaptic, in which activity in one synaptic 

pathway affects the function of another pathway. Although substantial correlative evidence 

linking plasticity to hippocampal-dependent memory formation has been collected, the 

precise role of plasticity mechanisms in learning and memory formation remains 

indefinable (Kolb & Gibb, 2014; Abraham et al., 2019). The complexity likely emanates 

from the existence of a multitude of different forms of plasticity, differing in their induction 

activity pattern, molecular mechanisms for induction and expression, and the duration of 

the plastic alternation. Some of the eminent types of microscale plasticity reported from 

this region include LTP (Whitlock et al. 2006), long-term depression (LTD; Di Prisco et al. 

2014), spike-timing-dependent plasticity (STDP; Nishiyama et al., 2000), homeostatic 

plasticity (Kim & Tsien, 2008) and meta-plasticity (Crestani et al., 2019). The following 

section will assess homosynaptic LTP. 

 

1.3.1 Homosynaptic Long-Term Potentiation and the Microscale Physiology of 

Associative Memory 

Spatial cells depend upon synaptic alternations to form short- and long-term spatial 

representations. Donald Hebb (1949) formulated the initial theoretical proposal addressing 
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the importance of homosynaptic activity-dependent plasticity as a mechanism for 

developing neural assemblies. 

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or 

both cells such that A’s efficiency, as one of the cells firing B, is increased.” (Hebb, 

1949). 

This synaptic learning rule is thought to account for the wiring of neuronal assemblies with 

shared tuning properties. Additionally, Hebbian plasticity is well suited for the formation of 

neural ensembles encoding a given memory, such as representations of space. LTP is the 

most classical example of a Hebbian synaptic learning rule. Bliss and Lomo (1973) were 

the first to induce artificial LTP in the perforant path inputs to the DG of the rabbit. They 

observed that a brief and intense tetanic stimulation generated a durable increase in the 

potency of excitatory synaptic transmission from the perforant path to DG, persisting for 

hours to days. Since then, LTP has been demonstrated at nearly all hippocampal synaptic 

transmission sites. 

LTP, in accordance with Hebb’s rules, appears at most synapses in the hippocampus. 

The process requires strong synaptic activity, adequate to drive postsynaptic spike firing 

(Figure 3; Bliss et al. 2014). Several properties of LTP make it a suitable mechanism for 

learning and memory formation. LTP induction is rapid and can be long-lasting. Also, it is 

very specific in which synapses get strengthened (Figure 3). There is also a prominent 

difference in the time frame and length of synaptic efficacy changes across various forms 

of synaptic plasticity. LTP can account for both short and long timeframes of synaptic 

alternations, with distinct molecular mechanisms regulating them (Pastalkova et al., 2006). 

Short-LTP, accounting for the temporal synaptic alternations taking place within the first 

two hours after synaptic activity, relies on the insertion of new receptors in already existing 

synapses. Long-LTP relies on the synthesis of new synapses between the pre- and post-

synaptic neuron after adequate synaptic activity and can last for years, accounting for long-

term memory formation (Baltaci et al., 2019). Theoretical studies support the idea that 

expression of different temporal phases of LTP aid to maintain stable long-term memory 

traces while new memories are being formed through changes in synaptic function (Fusi et 

al. 2005). 

The induction of LTP depends on the glutamatergic receptors N-metyl-D-aspartat 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), and metabotropic 

glutamate receptor 5 (mGluR5). Activity-dependent Hebbian LTP is characterized by 

features determined by the properties of NMDARs. The activity of these receptors is 

essential for inducing LTP at several synapses, including the Schaffer collateral-CA1 

synapses (Collingridge et al. 1983). NMDA is selectively permeable to Ca2+, which initiates 

an intracellular signaling cascade when entering the cell. The cascade leads to the insertion 
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of additional AMPA receptors into the synapse, in the early phase of LTP, or activation of 

transcription factors and associated protein synthesis to create additional synapses, in the 

late phase of LTP (Baltaci et al., 2019). The insertion of AMPA receptors and additional 

synapses strengthens the connection between the cells. mGluR5 regulates the intracellular 

Ca2+ levels, thus having a mediating role in LTP induction (Bikbaev et al., 2008). 

 

 
Figure 3. Specificity of homosynaptic LTP in the schaffer collateral pathway. Scheme 
showing the Hebbian synaptic learning rule of homosynaptic specificity emerges in the CA1 
microcircuit from temporally patterned activity of synaptic inputs (CA3-CA1 Schaffer 
collateral inputs) and the postsynaptic CA1 pyramidal neuron. The active pathway 1 is 
strengthened, whereas the inactive pathway 2 is not strengthened through LTP. The figure 
was made in BioRender. 

 

1.3.2 Synaptic Plasticity in CA1 Spatial Cells 

Place cells and other spatial cells are reliant on activity-dependent synaptic plasticity 

to rapidly encode, update, and retrieve patterns of population activity representing specific 

spatial information (Figure 3). Morris et al. (1986) provided the first evidential link between 

LTP and spatial memory by pharmacologically blocking NMDARs and demonstrating that 

this inhibits formation of spatial reference memory, assessed by the Morris Water Maze 

(MWM). The NMDAR blockade did not prevent the animal from finding a way out of the 

water when the platform was visible, reflecting behavior independent of the hippocampus. 

Thus, limiting the effects of the blockade to spatial memory. Furthermore, place field 

stability across two recording sessions separated by 24 h was reduced after 

pharmacological blockade of NMDARs (Kentros et al., 1998). 

Genetic evidence correlating LTP in the CA1 region with spatial learning has been 

provided by studies also utilizing manipulation of NMDAR function. Mice with an NMDAR 
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subunit (NR1) depletion in the CA1 express loss of tetanus-induced LTP at the Schaffer 

collateral-CA1 pathway, as well as profound deficits in the MWM task (Tsien et al. 1996). 

However, deletion of NR1 restricted to CA1 and DG showed no effects on spatial reference 

memory behavior of mice, whereas performance in spatial working memory tasks was 

significantly impaired (Bannerman et al. 2012). These mice did indeed display difficulties 

in relearning a new location of the platform in the MWM after initial training. These results 

suggest that NMDAR-dependent LTP in the hippocampus is critical for resolving divergence 

between stored information and the current sensory context, instead of encoding of paired 

associative memories (Bannerman et al. 2014). 

In vivo extracellular recording experiments in rodents during learning behaviors 

have presented important evidence in linking hippocampal microscale plasticity to learning. 

In a study conducted by Whitlock et al. (2006), it was discovered that a single instance of 

inhibitory avoidance learning resulted in an amplification of synaptic responses when 

electrically stimulating the Schaffer collateral-CA1 pyramidal neuron inputs. Additionally, 

the behavioral changes brought about by the learning process exhibited similar alterations 

in AMPA receptor phosphorylation and membrane trafficking as those induced by tetanic 

stimulation that leads to LTP. Place cells rely on synaptic protein synthesis, much like LTP, 

in place field formation and long-term place field stability. Formation of new CA1 place 

fields can occur rapidly in an environment through LTP, in which initiation of spiking by 

dendritic Ca2+ plateau potentials triggers an increase in weights of excitatory synaptic 

inputs (Bittner et al., 2015; Grienberger et al., 2017). In 2004, Agnihotri et al. conducted 

a study in which they administered protein synthesis inhibitors via injection into the CA1 

region while simultaneously recording the activity of place cells in that area. The results 

showed that the intervention did not have an impact on the short-term stability of place 

fields, but their long-term stability was significantly disrupted. Notably, the intervention 

showed no effects in the retrieval of pre-existing spatial representations, indicating that 

protein synthesis is crucial in spatial memory encoding, but not in retrieval. 

Non-Hebbian plasticity as an underlying mechanism for place field formations in the 

CA1 is supported by the conductance of in vitro, in vivo, and supplementary modeling data. 

Bittner et al. (2017) performed intracellular recordings in CA1 pyramidal cells and 

discovered that induction of single strong Ca2+ plateau potential in the neuronal dendrites 

paired with spatial stimuli was adequate to generate place cells. This observation suggests 

that alternations in synapse strength might be critical in the formation of place fields. In 

addition to plastic changes at the excitatory synapses onto CA1 pyramidal neurons, several 

studies have documented that synapses between pyramidal cells and inhibitory 

interneurons also undergo activity-dependent plastic changes. One of the most significant 

forms of activity-dependent plasticity at inhibitory synaptic transmission is mediated by 

the endocannabinoid-signaling pathway (Castillo et al. 2012; Younts and Castillo 2014). 
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While some experimental paradigms suggest that endocannabinoids also contribute to LTD 

and LTP at excitatory Schaffer collateral synapses (Ohno-Shosaku et al. 2002; Peterfi et 

al. 2012), their primary effect is to suppress inhibition onto pyramidal cells. these 

observations indicate that formation of place cell spatial functionality depends upon the 

signaling in the local circuitry. 

Given the number of input connections the CA1 receives from other subregions of 

the hippocampal formation, spatial representations in the CA1 could simply be obtained 

from upstream input (Solstad et al., 2006; Neher et al., 2017; Mankin et al., 2015). 

However, given the diverse forms of synaptic plasticity that have been observed at the 

CA1 synapses (Magee & Grienberger, 2020; Buchanan & Mellor, 2010), the complexity of 

CA1 dendritic computations (Sheffield & Dombeck, 2019; Sheffield et al., 2017), and the 

variability in CA1 interneurons (Pedrosa & Clopath, 2020), it is unlikely that CA1 activity 

dynamics are purely inherited. The findings of Dong et al. (2021) support this by illustrating 

that place fields of CA1 emerge more rapidly than the ones in CA3 and show less stable 

dynamics. Thus, supporting those alternations in synaptic weight in the local CA1 circuitry 

is of importance for the formation of spatial cell functionality. 

 

1.4 Epigenetic Gene Regulation 

Traditional neuroscience has largely been focused on understanding how learning 

and memory manifest at a cellular and molecular level. In the last decade, there has 

been a shift towards exploring the epigenetic mechanisms that underlie the changes in 

gene activity responsible for memory formation and maintenance. Epigenetic gene 

regulation involves physical marking of DNA or associated proteins to induce enduring 

modifications in gene activity (Yu et al., 2011). Although all cells in an organism 

fundamentally share the same genetic information, cell type, and function differ greatly 

due to quantitative and qualitative differences in gene expression (Chi & Bernstein, 2009; 

Kaminsky et al., 2009). Epigenetics refers to processes that can cause stable changes in 

cell function and specificity through regulating gene expression, without causing changes 

to the DNA sequence itself. Epigenetic mechanisms, such as DNA methylation, have been 

shown to play an important role in learning and memory (Rumbaugh & Miller, 2011; 

Poon et al., 2020). 

 

1.4.1 DNA Methylation 

DNA methylation refers to the process of adding a methyl group from the cofactor 

S-adenosyl-methionine (SAM) to the 5th carbon of the cytosine (C) residue to form 5mC 

(Figure 4) (Duan and Lu, 2020; Lubin, 2011). Primary, this takes place on a C positioned 

preceding guanine (G), forming CpG dinucleotides. Areas rich in CpG nucleotides are 

referred to as CpG islands and are characteristically hypomethylated (Qazi et al., 2018; 
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Zusso et al., 2018). Both the initial catalysis and the maintenance of C methylation depend 

on DNA methyltransferases (DNMTs) (Duan and Lu, 2020). DNMT3A and DNMT3B regulate 

the de novo methylation of CpG sites. DNMT1 is involved in maintenance of previously 

established methylation patterns (Figure 4) (Bali, Im, & Kenny, 2011). The addition of an 

outward projecting methyl group acts as a steric interference, preventing the binding of 

RNA polymerase (Landgrave-Gomez et al., 2015). The hypermethylation of a promoter 

region is often associated with the suppression of gene expression and more indirectly an 

increase in heterochromatin formation. Expression of downstream proteins associated with 

the specific gene is thereby repressed (Landgrave-Gomez, Mercado-Gomez, Guevara- 

Guzman, 2015).  

 

1.4.2 DNA Demethylation 

Despite DNA methylation’s role in long-term gene silencing, studies over the last 

decades have revealed that this epigenetic mark is not as stable as previously assumed 

(Bochtler et al., 2017). Regardless of chemical and genetic stability, 5mC can be converted 

back to an unmodified state, a process called DNA demethylation (Bochtler et al., 2016). 

This process can happen both passively and actively. Passive DNA demethylation refers to 

replication-dependent dilution of 5mC resulting from the absence of functional DNA 

methylation maintenance machinery, for example, DNMT1 (Figure 4; He et al., 2017; Inoue 

& Zhang 2011). Active DNA demethylation involves the enzymatic removal of methyl 

groups (Figure 4). Among the proposed mechanisms for active demethylation, the 

hypothesizes suggesting the base excision repair (BER) pathway appears to be the most 

evident (Xue et al., 2022.; Müller et al., 2014.; Cortellino et al., 2011). These include the 

following pathways: (I) the spontaneous deamination demethylation pathway, and (II) the 

oxidation-mediated demethylation pathway (Moore, Le & Fan, 2013).  

(I) The Deamination-Based Demethylation Pathway. Activation-induced deaminase 

(AID) spontaneously deaminates 5mC to thymine (T) by simple hydrolysis, resulting in the 

mispairing of T and G (Bochtler et al., 2017). The process of recognizing and removing 

mispairing is carried out by TDG, which specifically targets mismatches and creates an 

abasic site. This site is then repaired by downstream factors involved in the BER pathway 

(Schuermann et al., 2016). BER is the primary mechanism for correcting small base lesions 

resulting from processes such as oxidation, deamination, or alkylation (Krokan & Bjørås, 

2013). Marking the initial stage of BER, a DNA glycosylase enzyme recognizes and removes 

damaged or mismatched nucleotide bases, forming an abasic site. This site is then repaired 

by apurinic/apyrimidinic endonuclease I (APE I), generating a 3'OH group at the damage 

site. Subsequently, DNA polymerase account for repair synthesis and nick sealing 

completed by a DNA ligase (Krokan & Bjørås, 2013; Schuermann et al., 2016. The process 
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of BER ensures the accurate substitution of the missing nucleotide and replaces the initial 

5mC with a non-modified C. 

(II) The Oxidation-Mediated Demethylation Pathway. Biochemical and genetic 

studies suggest a central role of TET in DNA oxidative demethylation (Tahiliani et al., 2009; 

Dawlaty et al., 2014). TETs oxidize methyl groups and act on modified C. 5mC is converted 

into 5-hydroxymethylcytosine (5hmC), 5hmC to 5-formylcytosine (5fC), and 5fC to 5-

carboxylcytosine (5caC) (Tahiliani et al., 2009; Kriaucionis & Heintz 2009; Ito et al., 2011). 

5hmC can be depleted passively through DNA replication or actively transformed into C by 

undergoing successive oxidation by TET and TDG-initiated BER. TDG-initiated BER can 

effectively recognize and eliminate both the oxidized substrates, 5fC and 5caC (Maiti & 

Drohat, 2011). Previous studies have demonstrated that TDG depletion in embryonic stem 

T-cells and cells correlates with the accumulation of TDG-recognized substrata 5caC and 

5fC (Schwarz et al., 2020; Onodera et al., 2021). Altogether, TDG’s role in the 

deamination-based and oxidative DNA demethylation pathways, suggests an important 

role of TDG in the dynamic regulation of methylation patterns, and thus transcriptional 

regulation, through its function in demethylation. 
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Figure 4. The cycle of DNA methylation and demethylation. De novo methylation (blue) by 
DNMT3A and DNMT3B converting Cytosine (C) to 5-methylcytosine (5mC). Methylation maintenance 
(purple) of 5mC requires DNMT1. Demethylation (red) of 5mC occurs either by passive mechanisms 
(red dotted lines) or by actively (red solid lines) by TET-facilitated conversion of 5mC into 5-
hydroxymethylcytosine (5hmC), from 5hmC to 5-formylcytosine (5fC), and from 5fC to 5-
carboxylcytosine (5caC), followed by TDG-BER coupled conversion of 5caC to C or by replication-
dependent TDG and BER processes converting 5fC to C. The figure was made in BioRender, by 
modifying an existing template. 

 

1.4.3 Thymine DNA Glycosylase – Gene and Function 

The human TDG gene is situated on chromosome 12q23.3, comprising a coding 

sequence of 3,551 bp, consisting of 10 exons, encoding a full-length protein (NCBI Gene 

ID: 6996). The mouse counterpart of this gene, Tdg, which is orthologous to the human 

TDG, is located at 10 C1; 10 39.72 cM (NCBI gene ID: 21665). TDG shows general nuclear 

expression in humans, but its expression patterns in the brain are not reported. However, 

The Human Protein Atlas reports TDG to display low regional expression specificity, with 

predominantly robust expression in neurons (Uhlén et al., 2015). 

TDG was originally discovered for its function in repair of TxG mismatches. The 

coded protein belongs to the uracil DNA glycosylase (UDG) superfamily of DNA repair 

enzymes (Cortázar et al., 2007). TDG plays a crucial role in initiating the BER pathway by 

recognizing and removing erroneous T×G and U×G mispairs, arising due to spontaneous 

C and 5mC deamination (Smet-Nocca et al., 2008). Specifically, TDG hydrolyzes the N-

glycosidic bond of T and U when mispaired with G, excising the mispaired base and creating 

a non-destructive DNA lesion (abasic site), which inhibits further DNA polymerase activity 

and potentially error-prone synthesis (Steinacher & Schär, 2005). In addition, TDG was 

the first enzyme found to be capable of excising 5fC and 5caC, implying its prominent 
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function in DNA demethylation (Maiti & Drohat, 2011; He et al., 2011; Bochtler et al., 

2016). Moreover, TDG interacts directly with transcription factors. Studies have shown that 

TDG interacts with the CREB binding protein, a coactivator responsible for triggering 

transcription activation by chromatin remodeling (Malfatti et al., 2021). In this way, the 

enzyme regulates gene expression not only indirectly through regulating the methylation 

patterns and chromatin remodeling factors but also directly through the interaction with 

transcription factors. 

 Compared to other DNA glycosylases, TDG appears to have a unique function in 

embryonic development, playing a crucial role in the regulation of developmental genes 

(Cortázar et al., 2011). Studies have demonstrated that mouse embryos lacking TDG do 

not survive past E11.5. Furthermore, mouse embryonic fibroblasts derived from TDG-

deficient embryos exhibit histone modification imbalance, abnormal CpG methylation, and 

impaired gene regulation in the affected gene promoters (Cortázar et al., 2011). The 

collective body of evidence supporting the involvement of TDG in active DNA demethylation 

underscores the functional role of TDG in connecting DNA repair, epigenetic DNA 

modifications, and gene expression regulation. 

 

1.4.4 DNA Methylation and Demethylation in Learning and Memory  

One might ask how DNA modification in the nucleus, which has a cell-wide impact, 

could be involved in forming and maintaining a very specific spatial memory. A single 

neuron shares thousands of synapses with numerous other neurons, thus, it is reasonable 

to assume that one neuron contributes to multiple different memory formations through 

diverse synapses. If so, unaided genetic CpG methylation cannot differentially influence 

every respective synapse of a neuron without synapse-specific changes. A possible 

mechanism for storing multiple memories in a single neural population is a balance 

between methylation and demethylation activity (Miller et al., 2010). Following a learning 

experience, the profile of synaptic weights or intrinsic properties of the participating 

neurons would undergo adjustments (Figure 5). In order to preserve this modified network 

of connections, neurons must hold certain levels of their gene products. The gene products 

can be systematically balanced at the transcriptional level by specific DNA methylation 

patterns at the respective regulatory genetic element. 

The interplay between upregulation and downregulation of genes by active DNA 

methylation and demethylation pathways in memory formation and maintenance has been 

identified in multiple brain circuits (Miller and Sweatt 2007; Feng et al. 2010; Miller et al. 

2010; Day et al. 2013; Kaas et al. 2013; Rudenko et al. 2013). Thereby, suggesting a 

conserved functional role of balanced regulation gene expression in neuronal information 

storage across a variety of neural classes (Figure 5). 
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Figure 5. DNA methylation in learning and memory. Upper: a neuron (central blue circle) shares 
connections with other neurons (peripheral blue circles). Lower: Every circle represents a CpG site 
in a regulatory element of the gene sequence. Methylated CpGs are indicated by filled black circles 
and unmethylated CpGs by white circles. When an animal experiences something unfamiliar 
("Memory formation” state), some of the present connections are activated (red dashed lines). 
Memory formation requires a temporary series of gene upregulation or downregulation, which may 
be facilitated by DNA methylation and demethylation modifications over time. The transcription of 
memory suppressor genes (Gene B) is downregulated by DNA methylation, while genes inducing 
plasticity (Gene A) are upregulated by demethylation. After memory consolidation, the gene’s 
methylation states are restored to baseline. In the "Memory maintenance” state the neurons exhibit 
altered connection strengths, compared to the connection profile in the “Before learning” state (upper 
panel). The gene expression profile in the neurons are different after learning, in order to maintain 
the modified connection strength combinations. The figure is adapted, including some modifications 
done in BioRender, from Yu et al. (2011). 

 
1.4.4.1 DNA Methylation and Memory 

In 2020, Poon et al. provided a detailed account of the functions performed by major 

enzymes (MeCP2, DNMT3a, and DNA demethylases) central in carrying out the DNA 

methylations or demethylations recognized as the basis of memory formation. To my 

knowledge, the distinct role of TDG in memory has not yet been assessed, but in the 

following some of the current data connecting DNA methylation and demethylation to 

hippocampal-dependent learning and memory will pe presented. 

Fear conditioning, an associative memory task where a context is paired with 

aversive stimuli, has long been utilized to investigate the relationship amongst DNA 

methylation and memory. Early on, Miller and Sweatt (2007) discovered that after fear 

conditioning, rats showed upregulated levels of DNMT3a and DNMT3b gene expression in 

the hippocampus. Following fear conditioning, animals typically show greater levels of 

freezing behavior even in the absence of aversive stimulation in the given context. 

However, the administration of DNMT inhibitors zebularine or 5-aza-2'-deoxycytidine right 



 31 

after fear conditioning resulted in decreased learning measured in reduction of freezing 

behavior. When these treated rats were trained again 24 hours later, they performed just 

as well as the non-treated rats. This supports that DNMTs have a central role in learning. 

A more recent study assessing widespread genomic alternations also found a correlation 

between DNA methylation and hippocampal-dependent learning (Duke et al., 2017). The 

study reported coordinated increasing DNA methylation changes in CA1 from 1 h to 24 h 

after fear conditioning. These results indicate the importance of dynamic alterations in 

methylation status in forms of long-term hippocampal-dependent memory formation. 

Since stability and persistency are defining features of memory, the role of 

methylation in memory maintenance has been assessed. Miller et al. (2011) reported that 

when inducing persistent, gene-specific hypermethylation in the rat cortex employing a 

single hippocampus-dependent contextual fear conditioning, followed by pharmacological 

inhibition of methylation after 30 days, remote memory was impaired. This supports that 

the adult brain relies on DNA methylation in maintaining memories over long periods of 

time. 

The indirect role of TDG in transcription of memory-associated genes has been 

reported in a series of studies. For example, did Levenson et al. (2006) find that when 

employing general DNMT inhibitors, DNA methylation in the adult brain was altered, as 

well as the DNA methylation profile of the plasticity-promoting genes brain-derived 

neurotrophic factor (BDNF) and reelin. Furthermore, mechanisms of DNA modification 

underlying synaptic plasticity in the hippocampus is central in linking TDG to neural 

memory correlates. LTP and LTD in Schaffer collateral-CA1 synapses have been assessed 

in the context of methylation. In 2010, Feng et al. generated a mouse model with a double 

conditional knockout (DKO) for DNMT3a and DNMT1 genes. The mice had was reported to 

have significantly weakened hippocampal LTP, as well as being more susceptible to LTD 

induction, than wild type mice. The DNMT3a/DNMT1 DKO mice also showed impaired MWM 

performance. Single knockout mice (SKO) for either DNMT3a or DNMT1 executed the task 

as expected. Furthermore, the DKO mice showed impaired memory consolidation after fear 

conditioning. Suggesting that DNMT3a and DNMT1, and thus methylation, play important 

roles in synaptic memory regulation in the hippocampus. 

 

1.4.4.2 DNA Demethylation and Memory 

DNA methylation might be necessary for inhibiting transcription of genes related to 

memory formation. Thus, DNA demethylation might support activation of gene expression 

associated with neural plasticity correlates for learning and memory (Figure 5). Sweatt and 

Miller (2007) observed that reelin, involved in LTP induction, showed a reduced methylation 

profile and increased reelin expression in the hippocampus in fear-conditioned rats 

compared to control rats. Furthermore, the plasticity-promoting gene, BDNF, is less 
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methylated and show increased transcription in animals after being presented with learning 

conditions (Day & Sweatt, 2010). These findings illustrates the importance of 

demethylation of memory-associated genes in memory formation. 

The demethylation enzyme TET1 has been investigated in relation to hippocampal 

memory formation. Kaas et al. (2014) utilized a viral-mediated approach to overexpress 

the TET1 enzyme in the hippocampus to test regulation of 5hmC level through 

demethylation and its potential involvement in neural plasticity. The data showed that Tet1 

acts as a regulatory gene for neural activity and that its overexpression correlates with 

changes in global adapted C levels. In addition, using an adeno-associated virus-mediated 

method to overexpress the catalytic domain of Tet1 or the catalytically inactive mutant 

variant (Tet1m), specifically in the hippocampus, it was discovered that the active Tet1 

facilitated hydroxylation of 5mC, leading to active demethylation in vivo. Overexpression 

of Tet1 or Tet1m resulted in an increase in the expression of numerous immediate early 

genes related to memory, and a specific impairment in the long-term contextual fear 

memory was observed.  

Furthermore, Rudenko et al. (2015) discovered that Tet1 knockout mice (Tet1KO) 

exhibited significantly lower levels of multiple neuronal activity-regulated genes, including 

Npas4, c-Fos, and Arci, compared to control mice. The Tet1KO model showed atypical 

hippocampal LTD. Further analysis indicated that the promoter region of Npas4, enclosing 

numerous CpG dinucleotides, was hypermethylated both in naïve Tet1KO mice and after 

memory extinction training. This may account for the impairing transcriptional programs 

underlying memory processes. 

Overall, these studies indicate that the dynamic nature of DNA methylation and 

demethylation might be essential for hippocampal-dependent memory formation as it is 

involved in controlling the expression of genes related to synaptic plasticity. The role of 

TDG in spatial memory formation is still elusive, and more research is needed to fully 

understand the complete role of DNA glycosylases in memory. Based on experimental 

evidence of DNA methylation and demethylation in learning and memory and the 

established role of TDG in active DNA demethylation, it is plausible to assume that this 

enzyme may be involved in epigenetic modifications critical for the formation and 

maintenance of spatial learning and reference memory. It is, therefore, of interest to 

investigate the role of TDG in spatial learning and memory. 

 

1.5 Aims and Research Questions 

The main aim of this study is to elucidate whether TDG has an impact on the functional 

plasticity of place cells in the hippocampal CA1 area. This is examined by assessing the 

following set of research questions. 

I. Whether TDG impacts the distributive proportion of place cells in CA1. 
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II. Whether TDG has an impact on the spatial specificity of CA1 place cells. 

III. Whether TDG has an impact on the spatial global remapping of CA1 place cells.  

IV. Whether TDG has an impact on the spatial stability of CA1 place cells. 

 

2. Materials and Methods 

2.1 Animal Work 

2.1.1 Animal Work and Ethical Statements 

All animal work performed in relation to this project were carried out in compliance 

with the Animal Welfare Act and the guidelines directed by the Norwegian Food Safety 

Authority (Mattilsynet). The experimental procedures were approved in 

“forsøksdyrforvaltningens tilsyns- og søknadssystem” (FOTS). For details, see FOTS 

application 24310. All animal work was executed in concession with the principles of the 

three Rs (replacement, reduction, and refinement; Russell and Burch, 1959), for example, 

by reducing the number of subjects by extracting as much data as ethically contemplated 

from each animal. The use of research animals was considered inevitable in this research 

context. As to my knowledge, there was a lack of sufficient data on the effects of TDG on 

the hippocampal memory system to simulate comprehensive experiments, to my current 

knowledge. 

Housing, handling, and experimentation involving animals took place in an approved 

animal facility, the Comparative Medicine Core Facility (CoMed) at St. Olavs Hospital. The 

mice were housed in a specific pathogen-free unit (SPF) with a 12 h reversed light/dark 

cycle (light 18:00-06:00), with 55-65% relative humidity and 23 ± 2°C. The animals were 

housed individually in ventilated cages with enriched environments and free access to food 

(Ssniff) and water. Physical health and well-being were assessed daily. 

 

2.1.2 Mouse Model 

The transgenic mouse model used in these experiments was developed from the 

initial female CamKIIα-Cre mice (Schwarz et al., 2020) from the Jackson laboratory (T29-

1, stock #005359) by a colleague in the research group. The mouse model was developed 

by a CamKIIα promoter to achieve a conditional knockout of Tdg. This promoter exclusively 

regulates the gene expression in excitatory neurons, mainly in the pyramidal layer of the 

hippocampal area CA1 (Wang et al., 2013). The establishment of an adult Cre/loxP 

recombination pattern appears by p29 (Eagle et al., 2016). Upon introduction of Cre-

recombinase, the miniTdg gene and the GFP stop codon, were excised. The transgenic 

mouse model (CamKIIα-Tdg-/-) used in this study contains a loxP flanked miniTdg and 

enhanced GFP (eGFP) sequence following a LoxP-STOP-LoxP cassette. Additionally, the 

mouse model contains a CamKIIa promoter controlling Cre expression in hippocampal 
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neurons at p29 (Eagle et a., 2016). This enables a conditional knockout of the flanked 

miniTdg gene in adult animals. Another second-generation genetic outcome, without Cre-

recombinase, was used as controls (miniTdg+/+, Wt-Tdg-/-, and CamKIIα-Cre-/-). All 

included mice were adult (3-6 mnd.) males. 

 

2.1.3 Genotyping 

Initial genotyping of mice was verified by Polymerase chain reaction (PCR), using 

genomic DNA from ear biopsies. The mouse ear samples were firstly lysed with lysis buffer 

(10 mM Tris, 1M KCl, 0,4% NP-40/lgepal CA630 Sigma, 0,1% Tween20) and protein kinase 

K (10 mg/ml), and secondly incubated at 60°C overnight. The samples were then heated 

at 95°C for 30 min following 14000rpm centrifugation for 20 min. Preparations (diluted 

1:10 in ddH2O) were subsequently combined with ddH2O, Taq 2x Master Mix (10x PCR 

buffer, 5U/µl paq5000, 2.5 mM dNTPs, 50 mM MgCl2), and 0,5 µm of each primer pair, 

depending on strain analyzed. The total volume of the solution was 10 µl. A list of primers 

is presented in Appendix C. The PRC parameters were set to 3 min at 95°C before 42 cycles 

comprising 30 sec at 95°C, 30 sec at 64°C, and 30 sec at 72°C, followed by a 5-minute 

extension at 72°C before samples were confined at 4°C ∞. PCR products were 

subsequently separated using 2% (w/v) agarose gel electrophoresis, arranged with 

agarose (BioNordika LE Agarose), 0,001% SybrSafe (Thermoficher/Invitrogen), and TAE 

buffer (Tris base, Glacial Acetic Acid, 0,5 EDTA). A 100bp DNA ladder was used to 

determine the PCR product size. The PCR reaction supplemented with 6x DNA loading dye 

(New England Biolabs) was loaded into the gel and run at 120V electrophoresis for 40min. 

Results were visualized by UV exposure image acquisition using a ChemiDocäMP system 

(BIORAD). 

 

2.2 Electrophysiology 

2.2.1 Microdrives 

MDR-xx Microdrives from Axona (Axona Ltd.) were wired with 4 tetrodes, each 

consisting of 4 platinum and 10% iridium alloy wire electrodes (California Fine Wire Co., 

USA) making a 4x4 electrode composition. The coiled connections between the drive wires 

and the electrodes were coated with electrically conductive silver paint (Electrolube) and 

insulated with nail polish (HM; Figure 6). The tetrodes were cut to a length of between 5 

and 7 mm and subsequently plated with platinum (Neuralynx) using electrolysis, generated 

with a 10 MHz pulse generator (Thurlby Tandar Instruments), and amplified by Axona 

DasqUSB stimulus isolator (Axona Ltd.). The impedance was adjusted to approximately Z 

= 200kΩ, measured by a multimeter (Escort Instrument Corporation) using a 1k Hz 

measuring frequency. Short-circuits were controlled for by measuring the resistance 

between each pin on the connector of the drive with a multimeter (Fluke). 
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2.2.2 Surgical Electrode Implantation 

 Prior to implantation of tetrodes, animals were deeply anaesthetized (isoflurane 1,5-

2%, O2 2%). Local analgesia was administered with a subcutaneous injection of Marcain 

(0,04 ml/20 g) and systemic analgesia via intraperitoneally injection of Temgesic (0,03 

mg/ml) and Metacam (0,5 mg/m). Anaesthesia was upheld by sustained administered 

isoflurane (0.6% in pure O2) throughout the surgery. Anaesthesia depth was controlled by 

monitoring respiratory rate. The mouse was fixed with a stereotaxic instrument and kept 

on a heating pad at 37 °C, to avoid hypothermia during the surgerical procedure. The eyes 

were protected by Viscotears eye gel (BAUSCH+LOMB). A 2 cm incision was made, 

exposing the skull, before excess skin and debris covering the area were removed. Two 

cranial boreholes were drilled, for the grounding screw and for tetrode insertion, following 

stereotactic coordinates relative to the bregma: AP[Bregma]: 0.2 mm, ML: 0.5 mm and 

AP[Bregma]: -2 mm, ML: -1.8 mm, respectively. The hole for the tetrodes were covered 

with a saline-soaked haemostatic gelatine sponge (ETHICON), as the surface of the cranial 

bones were scratched with a 19G needle and coated with histoacryl (B|BRAUN). After 

removing the sponge, small parts of the dura mater were removed to allow penetration of 

the tetrodes. The tetrodes implanted at the relative coordinates: AP[Bregma]: -2 mm, ML: 

-1.8 mm, DV: -0.8 mm. The cannula sleeve was lowered and covered with a layer of sponge 

to protect the exposed tetrodes (Figure 6). The revealed skull was subsequently covered 

with dental acrylic, which served as a fundament for the microdrive. After surgery, the 

animals were administered Metacam (2 mg/kg) and Baytril (2 mg/kg) for two days and 

monitored daily until euthanasia. 

Figure 6. Illustration of implanted Microdrive. Illustration of a fully 
constructed microdrive implanted in a scull. The figure was obtained from 
the AXONA Ltd. MDR-xx Microdrive User Guide (Axona Ltd.). 
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2.2.3 Electrophysiological Recording 

Extracellular in vivo electrophysiology was performed to assess spatial cell properties 

of CamKIIα-Tdg-/- mice. The screening for cells began approximately one week after 

implantation surgery. All recordings were performed in a soundproof, dimly lit room with 

the recording set-up elevated on a table enclosed by lightproof curtains. Recordings took 

place during the dark cycle, starting at least a week after the mice were introduced to the 

reversed light cycle. The main recording box (50Lx50Wx30H) had black walls with a white 

cue card on one of the walls and was placed on a black antistatic mat. To reduce olfactory 

cues, equipment exposed to the animals was cleaned with lemon-scented soap and water 

between trials. A counterbalanced cable was suspended above the recording box 

connecting the headstage (Axona Ltd.) to the microdrive. The signal was amplified (100x 

amp) in a preamplifier (Axona Ltd.) a system unit (Axona Ltd.) and recorded in DacqUSB 

(Axona Ltd.). 

Raw unit activity was monitored for each channel and filtered with a bandpass filter 

(300-7000 Hz). Gain and threshold were based on individual channel signal for each trial. 

Reference channels for each distinct trial were selected based on signal and channel 

activity. A Bessel lowpass filter was applied to the EEG signal rejecting frequencies over 

1000 Hz and reference channels were set to channels with high spiking frequency. 

 Points were stored when signals exceeded the given threshold (a presumptive 

spike), and each spike event was labelled with relative time and the position of the animal. 

A video camera (CBC co., Ltd.) was fixed above the recording box and monitored subject 

location during unit recording. To enable HD recording and path tracking the headstage 

was mounted with two LEDs. Locations were converted into x, y coordinates by the tracking 

system (Axona Ltd.).  

The tetrodes were initially advanced by >50 µm daily and recordings were performed 

in time intervals of 10 min. When hippocampal ripples and sharp waves appeared, tetrode 

advancements decreased to 25 µm increments to monitor new CA1 cells. When place cells 

were isolated, recordings were performed in 20 min time intervals. Crumbs of a chocolate 

flavored cereal (Weetabix) were spread out in the box to motivate the mice to move. 

 

2.2.4 Analysis of Place Cell Activity 

Initial analysis of cell activity to determine the identity of cells were performed 

offline in a cluster-cutting program (Tint, Axona Ltd.). Collected waveforms were displayed 

as clusters, plotting each spike’s peak amplitude on one electrode against each of the other 

three. The clusters were separated by hand, based on manual cut derived parameters or 

by implementing an automatic clustering algorithm provided by the software (see e.g. in 

Figure 10A-C). 
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To determination place field and cell activity correlates, the captured recoding area 

was divided into a 64x64 grid. Each spike point was located at the center of a square bin. 

Place fields was defined as regions of location specific firing related to clearly isolated cell 

clusters and were only analyzed if the specific firing pattern was stable over several trials 

in the same condition. 

 

2.2.5 Remapping and Stability Testing 

To enter the remapping and stability recoding analysis, a screened cell had to hold 

the properties of a stable place cell, that is, a completely isolated cluster with firings 

restricted to one or several localized regions of the given environment. Subsequently after 

recognition of a place cell, remapping and short-term stability experiments were 

performed. The paradigm consisted of recordings in two open field boxes, henceforth 

referred to as box A and B. Box A was the same as the one used for the initial unit 

recordings and box B had corresponding properties, but white walls and a black cue card 

placed on a different wall. The mice were recorded for 20 min in box A, followed by 20 min 

of recording in box B for two succeeding trials, before a 20-minute recording in box A 

(Figure 7A.). Cell remapping recordings were alternated in two-trial blocks, in box B, to 

confirm remapping and check that apparent activity patterns were not due to electrode 

movement. In between trials the mouse was held in its housing cage for 3 min. Long-term 

stability was assessed with a recording interval for 20 min in box A, 24 h after the second 

recoding in box A (Figure 7B). All concurrent trials were performed at the same tetrode 

depth and with identical software set-up. 
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Figure 7. Experimental design of the remapping and stability paradigm. A| Open field area 
used for the global remapping and short-term stability experiments. A Arenas (A1, A2) are indicated 
with black walls and a proximal white cue card and B arenas (B1, B2) with white walls and a proximal 
black cue card, monitoring remapping with identical intertrial intervals (3 min) between A and B 
environments. Stability is monitored using same boxes (A1 and A2 or B1 and B2). B| Open field area 
used for long-term stability testing between A0 and A1 with 24 h intertrial interval. The figure was 
made in BioRender. 
 

2.3 Perfusion 

Animals were perfused with 0.9% saline before the brain was extracted for further 

experimental analyses. During the procedure mice were firstly anaesthetized with 

isoflurane and subsequently intraperitoneally administered pentobarbital (100 mg/ml, 0.01 

ml/g; Norges Apotekerforening). Evaluation of paw and tail pain reflexes indicated 

appropriate anaesthetic depth. The mouse was then fixed in a supine position and a 

thoracic incision aligning the midline, opening the anterior chest wall was made, exposing 

the sternum. Afterwards, the sternum and surrounding ribcage were cut, creating an open 

chest cavity to uncover the heart. Descending aorta was subsequently clamped shut using 

a hemostatic clamp, before puncturing the right atrium. Successively, 60 ml of 0.9% saline 

solution was gradually injected with a needle (18G) attached to a three-way stopcock 

(Braun), into the left heart ventricle. 

For the mice with implanted microdrives, the head was decapitated after perfusion 

and suspended in 4% paraformaldehyde/PBS solution for at least 24 h. The tetrodes were 

elevated out of the brain tissue, and all external tissue and cranial bones were removed 
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ventral to dorsal, following extraction of the brain which was fixed in 4% paraformaldehyde 

(PFA) in PBS. 

 

2.4 Cryo-Sectioning 

 After perfusion, the right hemisphere was fixed in 4% paraformaldehyde (PFA)/PBS 

for at least 48 h. The tissue was then frozen with aerosol freezing spray (PRF 101/502 ML 

GREEN NFL) before being cut into sagittal sections (30 µm), using a cryostat (CryoStar 

NX40, Thermo Fischer) with object and chamber temperature at -20°C. The tissue was 

cryogenically conserved during the procedure. Medial and lateral sections were mounted 

directly on to histological glass slides and stored at -20°C. 

 

2.5 Histology and Axioscan Microscopy 

Mounted brain sections were stained using a modified cresyl violet procedure a week 

after cutting. The slices were firstly soaked in distilled water for 2 min, before dehydrated 

them by sequentially dipping the mounted slices 10 times up and down in ethanol solutions 

(70% - 80% - 90% - 100%), made of diluting absolute ethanol (VWR Chemicals) and 

distilled water. Subsequently, the slices were placed pure xylene (Sigma-Aldrich) for 2 min 

before being rehydrated in ethanol solutions (100% - 90% - 80% - 70%) sequentially, and 

places in differentiation solution (0.5% acetic acid and 70% ethanol) for 5 min. Afterwards, 

the slices were cleaned in distilled water, before they were stained in cresyl violet solution 

(30 ml of a stock solution (0.2 g cresyl violet-acetate (Sigma-Aldrich) in 150 ml distilled 

water and 300ml pH 3.5 buffer solution (282 ml of 0.1 M acetic acid (Sigma- Aldrich)) and 

18 ml of 0.1 M sodium acetate (Sigma-Aldrich)) for 8 min. The slices were rinsed by 

alternating dripping them into water and differentiation solution until appropriate color 

contrasts. The slides were then dehydrated in ethanol solutions (70% - 80% - 90% - 

100%) subsequently and placed in xylene for 10 min. finally the mounted slices were 

sealed with cover glass, using Eukitt mounting oil. 

 

2.6 Statistical Analysis 

All data was organized in Microsoft Excel. The pre-processing of cell physiology data 

was performed in MATLAB (Mathworks) emplying the Behavioural Neurology Toolbox (BNT) 

toolbox, developed at the Kavli Institute of Systems Neuroscience (NTNU). The pre-

processing of cell physiology data was performed by a fellow colleague in the research 

group. Using the BNT toolbox, spatial information content, spatial information rate, 

average firing rate, Pearson correlation coefficient of within-session spatial stability, HD 

scores, speed scores, place field size, place field peak firing, number of fields for each cell, 

rate maps, shuffling, and Pearson correlation coefficient of rate maps between sessions 
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was extracted. All statistical analyses were performed in SPSS Statistics (IBM). Plots was 

created in GraphPad Prism 9 and SPSS Statistics (IBM). 

 

2.9 Key Resources 

 

Table 1. Summary of used resources 

RESOURCE SOURCE  IDENTIFIER  

Chemicals   

Acetic acid Sigma-Aldrich  CAS 64-19-7  

Cresyl Violet 

Acetate  

Sigma-Aldrich  CAS 10510-54-0  

Ethanol absolute VWR Chemicals  CAS 64-17-5  

Eukitt Mounting 

Medium  

Sigma-Aldrich  CAS 25608-33-7  

PBS  VWR Chemicals  E404-100TABS 

Sodium acetate Sigma-Aldrich CAS 6131-90-4 

Xylene Sigma-Aldrich  REACH 01-2119488216-32-XXXX  

Mouse models   

CamKIIα-Tdg-/- Bred by the research 

group 

 

LoxP-miniTdg Bred by the research 

group 

 

Surgical 

materials 

  

Eye Gel   https://www.medicines.org.uk/emc/pr 

oduct/2310/smpc  

Haemostatic gel 

sponge  

Ethicon  https://www.jnjmedtech.com/en- 

EMEA/product/spongostan-absorbable- 

haemostatic-gelatin-sponge  

Histoacryl  B|Braun  https://www.bbraun.com/en/products/ 

b/histoacryl.html  

MELIODENT Rapid 

repair liquid 

Kulzer GmbH  https://www.kulzer.com/int2/en/prod 

ucts/meliodent-rr.html  

MELIODENT Rapid 

repair powder 

Kulzer GmbH  https://www.kulzer.com/int2/en/prod 

ucts/meliodent-rr.html  

Saline 0.9%  B|Braun  https://www.bbraun.com/en/products/ 

b0/nacl-0-9-b-braun.html  
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Drugs   

Baytril  Bayer Animal Health 

GmbH  

https://www.felleskatalogen.no/medisi n-

vet/baytril-vet-bayer-animal-health- 

gmbh-546731  

Isoflurane  Baxter  ATC N01A B06  

Marcain  Aspen Pharma  https://www.felleskatalogen.no/medisi 

n/pasienter/pil-marcain-aspen-561225  

Metacam  Boehringer Ingelheim  https://www.boehringer- 

ingelheim.com/animal- health/livestock-

products/metacam  

Pentobarbital NAF  Norges 

Apotekerforening  

ATC QN51AA01  

Temgesic  Indivior  https://www.felleskatalogen.no/medisi 

n/temgesic-indivior-564488  

Software   

ANY-maze  Stoelting Co.  https://www.any-maze.com/  

BioRender  BioRender  https://biorender.com/  

dacqUSB Axona Ltd. https://www.axona.com  

Excel v.2201  Microsoft  https://www.microsoft.com/en/  

MATLAB R2021a  Mathworks  https://se.mathworks.com/  

Tint graphical 

clustering 

software 

Axona Ltd. https://www.axona.com  

GraphPad Prism 9   

SPSS Statistics 

(IBM). 

  

Hardware   

Axioscan Zeiss  https://www.zeiss.com/  

dacqUSB Preamp  Axona  https://www.axona.com  

dacqUSB System 

Unit  

Axona  https://www.axona.com  

Elc-131d LCR 

meter  

Escort Instruments 

Co. 

 

GANZ CCD color 

camera  

CBC Co. Ltd   

Headstage Axona  https://www.axona.com  
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MDR-xx 

Microdrives  

Axona  https://www.axona.com  

Platinum and 10% 

iridium alloy wire 

California Fine Wire 

Co.  

https://calfinewire.com/  

Pulse Generator 

TGP110 10MHz 

Thurlby Tandar 

Instruments  

https://www.ttid.co.uk/pulse- 

generators/aim-tti/tgp110  

Stimulus isolator Axona  https://www.axona.com  

Other   

Cold spray  Taerosol  101 Cold spray Green Non-flammable - 

Taerosol  

Platinum plating 

solution  

Neuralynx  https://neuralynx.com/hardware/plati 

num-black-plating-solution  

Silver Conductive 

paint  

Electrolube  https://electrolube.com/  

V1536  Ssniff  https://www.ssniff.com/index.php?pci 

d=9&pdid=15  

Wheetos Choco  Weetabix  https://weetabix.no/our- 

products/weetos/weetos/  

 

3 Results 

To evaluate whether TDG is associated with the spatial representational system in 

the mouse hippocampal area CA1, a series of analyses of the electrophysiological recording 

data was conducted. The following section will report the results derived from data 

collected by electrophysiological recordings. 

 

3.1 Verification of genotype 

The mouse model, CamKIIα-Tdg-/- was used to investigate the effect of TDG in 

spatial cell properties of the hippocampal CA1. This particular mouse strain has a 

conditional Tdg knockout (KO) specifically affecting excitatory neurons, mainly 

concentrated in the CA1, but also other hippocampal subareas. The model was generated 

by a fellow associate in the research group, derivate from the Tg(CamKIIα-Cre)T29 mice 

strain from the Jackson laboratory (T29-1, stock #005359)  (Schwarz et al., 2020). The 

resulting offsprings used as the CamKIIα-Tdg-/- (knockout) mouse model had genetic 

markers for miniTdg+/+, Wt-Tdg-/-, and CamKIIα-Cre+/-. The model used as controls (LoxP-

miniTdg) had the genetic information of miniTdg+/+, Wt-Tdg-/-, and CamKIIα-Cre-/-. Specific 

genotypical markers were confirmed with PCR and gel electrophoresis. Of the mice used 

for electrophysiological recordings, 4 were confirmed to have genetic markers for the 
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CamKIIα-Tdg-/- strain, and 4 were confirmed to have markers for the control strain (LoxP-

miniTdg). Of these, cells from 2 control mice and 2 CamKIIα-Tdg-/- mice were included in 

the following electrophysiological data analysis. 

 

3.1 Microdrives 

In total, 10 MDR-xx Microdrives (Axona Ltd.) were successfully wired (e.g. in Figure 

8), and 8 of these were implanted and used for electrophysiological recording. Among the 

mice implanted with drives (n = 8), 1 was terminated due to issues with the electrical 

signal. 4 of the mice (n = 4) with microdrive implants were included in the current analysis. 

The tetrodes wired to the drives used in the mice included in the analysis (n = 4) were 5-

6 µm in length. No short circuits between electrodes were detected and all channels had 

good electrical conductance, with impedance (resistance) varying from Z = 120 kΩ to Z = 

280 kΩ in each electrode in each included drive. The resistance of each electrode was 

justified to be approximately the same value. Larger resistance differences were seen 

between tetrodes (for exact resistance measurements, see Appendix A). Over the course 

of recording, one of the drives implanted in the mice included in the following analysis (n 

= 4) acquired an impaired electrode (drive 2, channel C; see Appendix A). This drive was 

implanted in a control mouse. 

 

 
3.2 Determining Tetrode Trajectory 

Scanning of stained brain slices was performed successfully, but a formal 

confirmatory analysis of tetrode trajectory and location was not conducted due to time 

constraints.  

 

Figure 8. Microdrive. Picture of a 
completed microdrive. 
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3.3 Cell Physiology 

In order to examine the effects of TDG on the quantity and functional features of 

cells in the hippocampus, I recorded the activity of CA1 neurons in mice (n = 4 control and 

n = 4 CamKIIα-Tdg-/- mice) when exploring in an open-field environment (50x50 cm).  Due 

to time constraints, cells from 4 of the implanted mice (n = 8) were included in the analysis. 

Of these, 2 were control mice and 2 were CamKIIa-Tdg-/- mice. The normal distribution of 

all samples was investigated using a Shapiro-Wilk test (if N < 50) or a Kolmogorov-Smirnov 

test (if N > 50). Arithmetic mean (M) and standard deviation (SD) are reported for all 

tests. 

 

3.3.1 Cell Clustering 

In order to separate and cluster spikes from different cells in the recorded animals, 

I used the offline graphical clustering software Tint (Axona Ltd). The recorded data points, 

each point representing a single spike, were distributed across a two-dimensional feature 

space (Figure 9A). I sorted the spikes into clusters based on various parameters, including 

the distance between the peak and the trough of the waveform, voltage as a function of 

time, amplitude of the peak and trough, time of peak and trough, or I used principal 

components derived from a principal components analysis (PCA) performed by Tint in 

particularly challenging feature space distributions. See Figure 9 for an example of the 

clustering procedure. 

Using the feature space, I manually grouped the data points into cell clusters. These 

clusters were subsequently examined for divergence in waveforms and cleaned for 

potential noise and spikes belonging to other cells (Figure 9B). The temporal characteristics 

of the electrical activity were also examined based on an autocorrelation of a given 

clustered cell (Figure 9C). The absolute refractory period of 2 ms, during which a given 

neuron cannot fire another action potential, was taken into consideration. A cell cluster 

including spikes occurring less than 2 ms apart, required more cleaning. An example of the 

waveforms obtained through the clustering process is presented in Figure 9B. Following 

spike sorting, a rate map, a trajectory map, and a polar map of each cell’s activity were 

generated in Tint (Figure 9D). These maps provided a visual indication of whether the cell 

was spatially tuned. In total, 254 cells from the two control mice and 252 cells from the 

two CamKIIα-Tdg-/- mice were clustered for further analysis. 
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3.3.2 Cell Type Classification and Distribution 

A total number of 506 recorded CA1 cells from 2 control mice and 2 CamKIIα-Tdg-

/- mice were included in this analysis. 50.2% (n = 254) of these belonged to the mice of 

the control group and 49,8% (n = 252) belonged to the mice of the CamKIIα-Tdg-/- group. 

A series of different variables were used as inclusion criteria for each category of cells. 

Included CA1 cells from control and CamKIIα-Tdg-/- groups were analyzed as separate 

populations. A summary of statistics for the classification and distribution of cell types is 

presented in Table 2. Parameters used for classification of cell types are presented in 

Appendix G. 

 

3.3.2.1 Place Cells 

Information metrics for spatial coding by neuronal spikes were studied to identify 

place cells. Place cells were classified by first calculating the spatial information content, a 

C 

B 

Figure 9. Cell clustering and initial 
analysis of place cells. A| 2D feature 
space with example of manual clustering of 
data points representing spikes. B| Wave 
forms from each clustered cell. C| Example 
of autocorrelation of a single cell. x-axis, 
time in sec; y-axis, Hz. D| Left: Trajectory 
map representing the animal’s movement 
path. Blue dots represent spikes of the 
given cell within the recording area. Right: 
Rate map representing the activity of the 
given cell within the recording area. 
Representing a clear place field in the 
upper right corner.  

A 

D 
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measure of the amount of information about the animal’s location that is carried out by 

the firing properties of the cell. This calculation was based on the information theoretic 

approach formulated by Skaggs, McNaughton, and Gothard (1992). The information 

content equation is: 

 

 
 

I = the information content in bits per spike for each cell 

x = the bin number 

P(x) = the probability for the mouse being at bin x 

𝜆(𝑥) = the mean firing rate when the mouse is at x 

𝜆 = the total mean firing rate of the cell. 

Afterward, the data was shuffled by randomly redistributing the spikes of a cell across the 

path of the animal. Each shuffle iteration was completed 100 times. For shuffled and 

observed values of the spatial information content, see Appendix E. Then, the cell activity 

in which the animal was moving less than 2 cm/sec and above 100 cm/sec, the cells with 

fewer than 100 spikes, the cells with firing rates lower than 0.1 Hz and higher than 7 Hz, 

and the cells without a clear place field were filtered out. The remaining cells passing a 

95th percentile cut-off criteria for spatial information content were categorized as place 

cells. Rate maps of the place cells were calculated by adding up the spikes correlating with 

each location within the A1 recording arena divided by the amount of time the mouse spent 

in the given location. Locations were binned in 2.5 cm bins. The maps were subsequently 

smoothed by a Gaussian distribution in each bin center. A total of 59 (11.66% of the total 

cell number) cells were classified as place cells, of these, 33.9% (n = 20, 7.87% of the 

total cell number in this condition) belonged to the control group and 66.10% (n = 39, 

15.48% of the total cell number in this condition) to the CamKIIα-Tdg-/- group, as shown 

in Table 2 (Figure 10A). I conducted a Pearson Chi-Square test to examine the difference 

between the number of place cells in the control group (M = .08, SD = .27) and in the 

CamKIIα-Tdg-/- group (M = .15, SD = 36). Results indicated a significant difference in the 

proportion of place cells between the groups, X2(1, N = 506) = 7.10, p = .008. 

Furthermore, the stability of place fields was calculated by correlating the rate maps 

between the first half (10 min) and the second half (10 min) of the recording session, 

defined as within-session stability. Normal place cells are expected to have a high 

correlation (between ± .50 and ± 1.00) between the two halves (Kunath et al., 2021). The 
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total amount of place cells (N = 59) had a moderate within-session spatial stability score 

of .34, with a standard deviation of .30. A Mann-Whitney U test was performed as the 

distributions were not normal. The test revealed that there was not a significant difference 

between the control group (n = 20, M = .32, SD = .33) and the CamKIIα-Tdg-/- group (n 

= 39, M = .34, SD = .29), U = 401.00, p = .860. 40% (n = 8) of the cells from the control 

group and 30,77% (n = 12) of the cells from the CamKIIα-Tdg-/- group had strong within-

session spatial stability scores (r > .50; Figure 10B). A one-way ANOVA was performed 

and significant differences between the control cells displaying high within-session stability 

score (n = 8, M = .71, SD = .12), control cells with low-moderate within-session stability 

score (n = 12, M = .07, SD =.05), CamKIIα-Tdg-/- cells with high within-session stability 

score (n = 12, M = .71, SD = 12), and cells with low-moderate within-session stability 

score (n = 27, M = .18, SD = .16) was detected, F(3, 55) = 79.86, p < .001. A Tuckey 

HSD post hoc test identified significant differences between control cells with high and low-

moderate within-session stability correlation scores, p < .001, between CamKIIα-Tdg-/- 

cells with high and low-moderate scores, p < .001, and between control cells with low-

moderate scores and CamKIIα-Tdg-/- cells with high scores, p < .001. Between the control 

cells with low-moderate within-session stability scores and the CamKIIα-Tdg-/- cells with 

low-moderate scores, the difference was also significant, in which the CamKIIα-Tdg-/- cells 

displayed lower mean correlation, but higher within-group variability, p = .011. A 

significant difference was not detected between the control cells with high within-session 

stability scores and the CamKIIα-Tdg-/- with high scores, but the variability for the 

CamKIIα-Tdg-/- group was higher than the control group, p = 1.000. A small deviation from 

normality was observed in one of the groups, but this was not adequate to warrant a non-

parametric test. Examples of place cell rate maps, smoothed rate maps, and trajectory 

maps are presented in Appendix F. 
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In summary, significantly more place cells were recorded and clustered from the 

CamKIIα-Tdg-/- mice than from the control mice. Cells from both groups displayed 

moderate within-session stability, slightly deviating from what is expected from normal 

place cells. Both cell groups had a higher proportion of cells with low-moderate within-

session stability than high stability. The CamKIIα-Tdg-/- cells had significantly lower 

stability scores in the low-moderate correlation interval than the control cells. 

 

3.3.2.2 Other Spatial Cells 

To categorize HD cells, the direction of the mouse head from the relative angle of 

the headstage LEDs was calculated. To compute the HD score, the HD of the animal as a 

function of the cell spike was binned into 120 3-degree bins. The mean length of the neural 

activity vector modulated by head direction was calculated as the head direction score. 

This score provides an indication of how accurately the spikes are tuned to the preferred 

angle of the cell. Then, the HD scores were shuffled in the same manner as the information 

content shuffling. A 95th percentile cut-off was added to the shuffled data. Cells passing 

this cut-off were classified as HD cells. For shuffled and observed values for the HD scores, 

see Appendix E. A total of 40 (7.91% of the total cell number) cells were classified as HD 

cells, of these, 40% (n = 16) belonged to the control group (M = .06, SD = .24), and 60% 

(n = 24) to the CamKIIα-Tdg-/- group (M = .10, SD = .29), as shown in Table 2. A Pearson 

Chi-Square test showed no significant difference in the amount of HD cells between the 

Figure 10. Place cell distributions as a function of information content and within-session stability. A| 
Distributions of the randomly shuffled spatial information scores for the entire cell sample recorded in control and 
CamKIIα-Tdg-/- CA1. The 95th and the 99th percentile of the shuffled distribution are indicated by the red and 
green dotted lines. The 95th percentile was used as a threshold to define place cells. The figure was made in 
MATLAB. B| Distributions of the place cells in the control group (blue) and the CamKIIα-Tdg-/- group as a function 
of within-session correlation. The figure was made in SPSS. 
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genotypes, X²(1, N = 506) = 1.81, p = .179. The distribution of HD cells is presented in 

Table 2. For examples of polar maps, see Appendix F. 

Classification of speed cells was performed by first calculating the speed score by 

binning the recorded speed from 5 to 100 cm/s to 2 cm/s bins. Then, the bins were 

correlated with the firing data. The data was then shuffled in an identical manner as the 

information content and the HD score. A 95th percentile cut-off was applied to classify the 

speed cells. For shuffled and observed values for the speed scores, see Appendix E. A total 

of 143 (28.26% of the total cell number) cells were classified as speed cells, of these 

75.52% (n = 108) belonged to the control group and 24.48% (n = 35) to the CamKIIα-

Tdg-/- group, as shown in Table 2. A Pearson Chi-Square test detected a significant 

difference between the amount of speed cells in the control group (M = .43, SD = .50) and 

in the CamKIIα-Tdg-/- group (M = .14, SD = 35), X2(1, N = 506) = 51.15, p < .001. The 

distribution of speed cells is presented in Table 2. 

Boundary cells were classified using a border score, calculated in accordance with the 

method used by Solstad et al. (2008). A flawless border score (+1) reflected a thin line 

(1 px, bin) lying along and fully covering one of the bordering walls of the firing map. The 

data was then shuffled in an identical manner as for the information content, the HD 

score and the speed score. A total of 68 (13.44% of the total cell number) cells were 

classified as boundary cells, of these, 41.18% (n = 28) belonged to the control group (M 

= .11, SD = .31) and 58.82% (n = 40) to the CamKIIα-Tdg-/- group (M = .16, SD = .37), 

as shown in Table 2. A Pearson Chi-Square test revealed that the difference in proportion 

was not significant X2(1, N = 506) = 2.56, p = .110. The distribution of boundary cells is 

presented in Table 2. 

To be classified as a conjunctive cell, the cell had to be categorized as a place cell 

as well as fulfill the criteria of one or multiple other cell groups. A total of 1 (0.2% of the 

total cell number) cells were classified as place and boundary conjunctive cells, belonging 

to the CamKIIα-Tdg-/- group (0.40% of the total cell number in this condition). A total of 

16 (3.16% of the total cell number) cells were classified as place and HD conjunctive cells, 

of these, 25% (n = 4, 1.57% of the total cell number in this condition) belonged to the 

control group and 75% (n = 14, 5.56% of the total cell number in this condition) to the 

CamKIIα-Tdg-/- group. A total of 5 (0.99% of the total cell number) cells were classified as 

place and speed conjunctive cells, of these 40% (n = 3, 1.18% of the total cell number in 

this condition) belonged to the control group and 60% (n = 2, 0.79% of the total cell 

number in this condition) to the CamKIIα-Tdg-/- group. A total of 1 (0.02% of the total cell 

number) cells were classified as place, HD, and speed conjunctive cells. This cell (n = 1, 

0.40% of the total cell number in this condition) belonged to the CamKIIα-Tdg-/- group. A 

total of 2 (0.4% of the total cell number) cells were classified as place, boundary, and HD 

conjunctive cells, of these, 50% (n = 1, 0.40% of the total cell number in this condition) 
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belonged to the control group and 50% (n = 1, 0.40% of the total cell number in this 

condition) to the CamKIIα-Tdg-/- group. A total of 0 cells were classified as place, boundary, 

and speed conjunctive cells. The distribution of conjunctive cells is presented in Table 2. 

Overall, the cells were classified into 10 categories. The CamKIIα-Tdg-/- genotype 

group had significantly more place cells, but fewer speed cells than the control group. 

These findings are of particular importance. The following section will present findings 

related to the functional properties of the reported place cells. 
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3.3.3 Functional Properties of Place Cells 

To explore potential differences in the mutual information carried out by the place 

cells of the two groups, a series of inferential tests were conducted based on the measures 

of the spatial information content, the spatial information rate, and the speed filtered 

average firing rate of the place cells. The following analysis only includes cells classified as 

place cells (N = 59) at an earlier stage of analysis. A Shapiro-Wilk test was performed to 

control for normal distributions of the samples. For relevant statistics, see Appendix B. 

An independent samples t-test reported that there was not a significant difference 

in mean spatial information content (bits/spike) between the CamKIIα-Tdg-/- group (n = 

38, M = 1.22, SD = .52) and the control group (n = 20, M = 1.10, SD = .54), t(56) = -

.78, p = .439 (Figure 11A). A single outlier was identified using Tuckey’s method and 

removed from the CamKIIα-Tdg-/- group, resulting in a normal distribution, confirmed by 

a Shapiro-Wilk test. 

Further, I calculated the spatial information rate, a measure of how much 

information about the animal’s location the cell transmits per second (Skaggs et al., 1992). 

The mean spatial information rate is a measure of the amount of information about the 

animal’s location that is carried out by the activity of the cell as a function of time. This 

measure is closely related to the spatial information content. The spatial information rate 

was calculated using the following equation: 

 
I = the information rate in bits per second for each cell 

x = the animal's location in space 

p(x) = the probability for the mouse being at x 

𝜆(𝑥) = the mean firing rate when the mouse is at x 

∫x 𝜆(𝑥)𝑝(𝑥)𝑑𝑥 = the total mean firing rate of the cell 

 

The mean spatial information rate (bits/sec) was higher and more variable for the control 

group (n = 20, M = .29, SD = .38) compared to the CamKIIα-Tdg-/- group (n = 39, M = 

.09, SD = .12), presented in Table 3. An independent samples t-test confirmed that the 

difference was significant between the genotypes t(2082) = 2.25, p = .035 (Figure 11B). 

For relevant statistics, see Table 3. 

To examine the average firing rate of the cells, a speed filter of 2 cm/s was applied, 

excluding cell firing from when the mouse was standing still. A significant difference in the 

mean firing rate between the control group (n = 20, M = .26, SD = .34) and the CamKIIα-
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Tdg-/- group (n = 39, M = .10, SD = .10) was detected using an independent samples t-

test, t(20.66) = 2.09, p = .050. (Figure 11C). For relevant statistics, see Table 3. 

In summary, the mean spatial information rate and the average firing rate were 

higher and more variable for the control group than for the CamKIIα-Tdg-/- group. This 

might be an indication that mutual information carried by the place cells of the CamKIIα-

Tdg-/- is lower than expected from a normal population. The spatial information carried out 

per spike was similar for the two groups, which is incompatible with what is observed for 

the spatial information carried out per second for the two groups. 

 
Figure 11. Boxplot presenting different measures of the mutual information of place cells. 
A| Spatial information content (bits/spike) of the control group (grey) and the CamKIIα-Tdg-/- group 
(blue). B| Spatial information rate (bits/sec) of the control group (grey) and the CamKIIα-Tdg-/- 
group (blue). C| Speed filtered average firing rate of the control group (grey) and the CamKIIα-Tdg-

/- group (blue). Single samples as represented by dots, in the color of their respective group. Results 
are presented as arithmetic mean and standard deviation. * = p < .05; ** = p < .01; *** = p < 
.001. The figure was made in GraphPad Prism. 

 

3.1.4.1 Specificity 

To assess the specificity of place cells between the two genotype groups, I used the 

number of cells with multiple fields, the average size of the place fields, and the peak firing 

rate within the fields were analyzed as measurements. A Shapiro-Wilk test was performed 

to control for normal distributions of the samples. 

The number of cells with more than one place field was counted. A Pearson Chi-

Square test revealed that the proportional difference in cells with multiple place fields (n 

= 2, 12% of place cells in this condition) from the CamKIIα-Tdg-/- group (M = .05, SD = 

.22) and the proportion of cells with multiple place fields (n = 2, 10.0% of place cells in 
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this condition) from the control group (M = .10, SD = .31) was not significant, X2(1, N = 

59) = .50, p = .481. For relevant statistics, see Appendix B. 

An independent samples t-test revealed that there was no significant difference in 

the mean place field size (mm2) between all place fields (n = 22) from cells in the control 

group (M = 106.53, SD = 182.56) and all place fields (n = 41) from cells the CamKIIα-

Tdg-/- group (M = 110.53, SD = 150.06), t(36.47) = 1.10, p = .278 (Figure 12A). The 

control group cells displayed n = 13 fields categorized as small of size (< 150; M = 35.11, 

SD = 54.89, 4 medium (150 ≤ x ≤ 300; M = 201.60, SD = 35.87) sized fields, 3 large 

sized (300 ≤ x ≤ 450; M = 406.27, SD = 22.56) fields, and 4 very large fields (> 450; M 

= 525.05, SD = 26.52). The CamKIIα-Tdg-/- cells exhibited 26 small fields (M = 1154, SD 

= 40.76), 7 medium fields (M = 197.57, SD = 43.40), 7 large fields (M = 333.94, SD = 

59.50), and 1 very large field (525 mm2; Figure 13A). Intervals are defined based on the 

distribution of the two genotype place cell samples. A non-parametric test was used to 

investigate the differences in the rank total field size intervals, as deviations from normality 

were detected with a Shapiro-Wilk test. An independent-samples Kruskal-Wallis test 

confirmed that there were differences in field size distribution across the intervals, H(7) = 

55.05, p < .001. An all-pairwise post hoc test was performed to compare the average rank 

field sizes. Only relevant comparisons are reported. Adjusted significance values are 

indicated in Figure 13B, for complete compartment statistics, see Appendix B. No 

significant differences were detected between the equivalent field size intervals for the 

control group and the CamKIIα-Tdg-/- group, p > .050. Statistically significant differences 

were observed between the group of small CamKIIα-Tdg-/- fields and the groups of 

medium, p < .001, large, p < .001 and very large, p = .012, CamKIIα-Tdg-/- fields. No 

significant differences were detected between the medium CamKIIα-Tdg-/- fields and the 

large CamKIIα-Tdg-/- and very large CamKIIα-Tdg-/- fields, p > .050. This was also true for 

the large CamKIIα-Tdg-/- and the very large CamKIIα-Tdg-/- field intervals, p > .050. 

Furthermore, the differences in rank field size between the interval group of small control 

fields and the medium control, p = .015, and large control fields, p < .001, were all 

significant. This was not true for the difference in rank field size for the medium control 

and very large control fields, p = .284. Differences between medium control fields and 

large and very large control fields and between large control fields and very large control 

fields were non-significant p > .050. 

The place fields of the control group cells displayed a higher mean and variability in 

peak firing rates than the CamKIIα-Tdg-/- group cells. The difference in mean place field 

peak firing rates (Hz) was significant between the place cells (n = 22) of the control group 

(M = 3.03, SD = 4.06) and the place cells (n = 41) of the CamKIIα-Tdg-/- group (M = .98, 

SD = 1.56), estimated with an independent samples t-test, t(24.36) = 2.29, p = .031 

(Figure 12B). For relevant statistics, see Appendix B. 
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In summary, the CamKIIα-Tdg-/- group of place cells displayed a lower mean and 

variability in peak firing rates than the control group. This might indicate impaired spatial 

specificity of the CamKIIα-Tdg-/- mice, given the correct location of tetrodes in all mice. 

The place fields from both groups were mainly concentrated within the range of 0 ≤ x ≤ 

150, categorized as small. The number of fields gradually decreased in notion with the 

increasing size, this was similar for both groups. 

 

Figure 12. Boxplot presenting the specificity of the spatial representations of place cells. 
A| place field size of the control group (grey) and the CamKIIα-Tdg-/- group (blue). B| Place field 
peak firing rate of the control group (grey) and the CamKIIα-Tdg-/- group (blue). Single samples as 
represented by dots, in the color of their respective group. Results are presented as arithmetic mean 
and standard deviation. * = p < .05; ** = p < .01; *** = p < .001. The figure was made in GraphPad 
Prism. 

 

Figure 13. Violin plot of place field size sample distributions and pairwise field size 
interval comparison. A| Violin plot illustrating the distribution of place fields as a function of four 
150 mm2 intervals (small, medium, large, very large) between the place field control group (grey) 
and the place field CamKIIα-Tdg-/- group (blue). Red dotted lines indicate the distinctions between 
intervals. Black dotted lines indicate median and quartiles in each group. The figure was made in 
GraphPad Prism. B| Line chart showing pairwise comparison of average rank place field size 
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(mm^2) from each group categorized in 150 mm^2 (0-600) intervals from control group and the 
CamKIIα-Tdg-/- group. Each node shows the sample average rank of the interval group. Alpha 
levels is presented in Adj. Sig., adjusted by a Bonferroni test (blue lines indicate p > .050, red lines 
indicate p > .050; se Appendix B for test statistics). The figure was made in SPSS. Small = < 150, 
medium = 150 ≤ x ≤ 300, large = 300 ≤ x ≤ 450, very large = > 450. 

 

 
 

3.1.4.2 Remapping  

To investigate the global remapping capabilities of the place cells between the 

genotypes, a correlation analysis of rate maps between the two boxes in the two global 

remapping conditions (A1 and B1 (A1B1), and B2 and A2 (B2A2); Figure 7A) was 

conducted. In order to calculate the correlations between the rate maps, each map was 

binned to 2 cm bins. The summed value of the bins for each value of the y-axis was 

subsequently correlated. Subsequently, an average total Pearson correlation coefficient 

for the whole map was calculated by the y-axis iterations. Then, I calculated descriptive 

and inferential statistics from the computed correlation coefficients. Assuming that the 

cells display normal global remapping, correlation coefficients close to 0 are expected. 

The mice from the control group took part in 21 recording sessions with remapping and 

stability-testing, collectively. The mice from the CamKIIα-Tdg-/- group took part in 20 

recording sessions with remapping and stability-testing, collectively. A total of 27 place 

cells were analyzed for the A1B1 condition, of these 37,04% (n = 10) belonged to the 
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control group and 62,96% (n = 17) belonged to the CamKIIα-Tdg-/- group. A total of 24 

place cells were analyzed for the B2A2 condition, of these 41,67% (n = 10) belonged to 

the control group and 58,33% (n = 14) belonged to the CamKIIα-Tdg-/- group. An 

example of a single-cell remapping from both genotypes is presented in Figure 16. 

In the A1 to B1 condition place cells from both the control group, r = -.10, and the 

CamKIIα-Tdg-/- group, r = .06, showed a notably weak negative correlation between the 

A1 and the B1 condition. An independent samples t-test was performed to evaluate the 

difference in rate map correlation coefficient means (A1B1; Figure 7A) between the 

control group (n = 10, M = -.10, SD = .17) and the CamKIIα-Tdg-/- group (n = 17, M = 

.06, SD = .29). The results indicated that there was not a significant difference between 

the genotypes, t(26) = -1.65, p = .110 (Figure 14A). A Shapiro-Wilk test showed a small 

deviation from normal distribution in the control group for the A1B1 condition, but this 

was not adequate to warrant a non-parametric test. For relevant statistics, see Appendix 

B. 

In the B2 to A2 condition, like the A1 to B1 condition both the control group, r = -

.16, and the CamKIIα-Tdg-/- group, r = .15, showed a weak correlation between the A1 

and the B1 condition. An independent samples t-test was performed to evaluate 

difference in rate map correlation coefficient means (B2A2; Figure 7A) between the 

control group (n = 10, M = -.16, SD = .15) and the CamKIIα-Tdg-/- group (n = 14, M = 

.15, SD = .29). The results indicated that there was a significant difference between the 

genotypes, t(22) = -3.11, p = .005 (Figure 14B). A Shapiro-Wilk test showed a normal 

distribution for both samples in the B2A2 condition. For relevant statistics, see Appendix 

B. 

In summary, both place cell groups from the control mice and CamKIIα-Tdg-/- 

mice showed normal global remapping in both remapping conditions. There were no 

statistically significant differences in performance between the genotype groups in the 

A1B1 condition, but the CamKIIα-Tdg-/- cells displayed predominantly higher mean 

stability in the B2A2 condition than the control cells. However, the correlation was weak. 
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Figure 14. Boxplot presenting results of place cells from two global remapping conditions. 
A| Global remapping in the A1B1 condition of the control group (grey) and the CamKIIα-Tdg-/- group 
(blue). B| Global remapping in the B2A2 condition of the control group (grey) and the CamKIIα-Tdg-

/- group (blue). Single samples as represented by dots, in the color of their respective group. Results 
are presented as arithmetic mean and standard deviation. * = p < .05; ** = p < .01; *** = p < 
.001. The figure was made in GraphPad Prism. 

 

3.1.4.3 Short-Term Stability 

To investigate the short-term stability of the place cell spatial representations, a 

similar analysis of rate maps was performed as for the global remapping condition. In 

total, 27 cells were included in the short-term stability testing, in which 48,14% (n = 13) 

belonged to the control group and 51,85% (n = 14) belonged to the CamKIIα-Tdg-/- 

group. The correlation coefficients between the A1 and A2 rate maps (Figure 7A) were 

compared to investigate the short-term stability performance of the two genotypes. 

Strong correlations between the maps indicate normal short-term stability. An example 

of a single-cell short-term stability from both genotypes is presented in Figure 16. 

A moderate positive mean correlation between the A1 and A2 (A1A2; Figure 7A) 

rate maps was detected for the control group cells r = .39. The positive correlation 

between A1 and A2 rate maps was low for the CamKIIα-Tdg-/- group, r = .07. An 

independent samples t-test was performed to evaluate difference in rate map correlation 

coefficient between the control group (n = 13, M = .39, SD = .42) and the CamKIIα-Tdg-

/- group (n = 14, M = .07, SD = .27). The difference was significant between the 

genotypes, t(31) = 2.68, p = .012 (Figure 15A). A Shapiro-Wilk test controlled for 

normally distributed samples. For relevant statistics, see Appendix B. 

In summary, the control group cells displayed moderate short-term stability, 

whereas the cells of the CamKIIα-Tdg-/- mice displayed weak stability. A significant 

difference between the groups in place cell short-term stability was detected. The control 
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group display slightly lower short-term stability scores than what is expected from 

normal place cells. 

 

3.1.4.4 Long-Term Stability 
To investigate the long-term stability of the place cell spatial representations, a 

similar analysis of rate map correlation coefficients was performed as for the short-term 

stability and the global remapping condition. In total, 30 cells were included in the long-

term stability condition, of these, 43,33% (n = 13) were from the control group and 

56,67% (n = 17) were from the CamKIIα-Tdg-/- group. The correlation coefficients 

between the A0 and A1 conditions (A0A1; Figure 7B) was compared. If the cells display 

normal long-term stability, we can expect to see strong correlations between the rate 

maps. An example of a single-cell long-term stability from both genotypes is presented in 

Figure 16. 

A moderate positive correlation between the A0 and A1 rate maps was detected 

for the control group, r = .33, and a weak positive correlation for the CamKIIα-Tdg-/- 

group, r = .04. An independent samples t-test was performed to evaluate difference in 

rate map correlation coefficient (A0A1; Figure 7B) between the control group (n = 10, M 

= .33, SD = .44) and the CamKIIα-Tdg-/- group (n = 14, M = .04, SD = .23). The results 

indicated a significant difference between the genotypes, in which the CamKIIα-Tdg-/- 

displayed lower stability scores and less variability, t(22) = 2.20, p = .039 (Figure 15B). 

Outliers was detected with a Tukey's test and removed. A Shapiro-Wilk test showed 

normal distribution in both groups. For relevant statistics, see Appendix B. 

In summary, cells from both genotypes displayed abnormal long-term stability 

capabilities. No differences below alpha levels (.05) were detected, but the CamKIIα-Tdg-

/- cells had lower stability scores than the control group cells. Of note, the spatial stability 

of place cells in my control group was much weaker than what is known for wild-type 

place cells. 
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Figure 15. Boxplot presenting results of place cells from two stability conditions. A| short-
term stability of the control group (grey) and the CamKIIα-Tdg-/- group (blue). B| Long-term stability 
of the control group (grey) and the CamKIIα-Tdg-/- group (blue). Single samples as represented by 
dots, in the color of their respective group. Results are presented as arithmetic mean and standard 
deviation. * = p < .05; ** = p < .01; *** = p < .001. The figure was made in GraphPad Prism. 
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Figure 16. Rate maps from CamKIIα-Tdg-/- cells control cells from each trial in the remapping 
and stability paradigm. A| Global remapping and stability experimental design. The figure was made in 
BioRender. B| Smoothed rate maps from an example place cell from each group in corresponding recoding 
arena presented in A. Upper: Control cell. Lower: CamKIIα-Tdg-/- cell. Figure was made in MATLAB. 
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4 Discussion 

The findings of this study comprise electrophysiological data aiming to elucidate 

whether TDG impacts the proportion of spatial cells and the specific functional properties 

of place cells in the CA1 of the hippocampus. The findings indicate that TDG does impact 

some features of the functional plasticity of place cells in the CA1. Furthermore, one of the 

main findings suggests that TDG could have a role in forming and maintaining the stability 

of spatial representation in the place cells. 

Knowledge about the functional correlates of TDG depletion in spatial cells can provide 

further insight into the epigenetic mechanisms governing functional plasticity in the spatial 

navigation system. Additionally, assessment of the molecular correlates of CA1 excitatory 

cell TDG depletion can provide a more comprehensive understanding of spatial cognition 

in general. A notable limitation of this study is the small and heterogenous sample size. 

Hence, the accumulation of more data might significantly change the results. The following 

section will first deliberate on the results obtained from electrophysiological data, aiming 

to assess the functional properties of TDG-depleted spatial cells. Secondly, results 

regarding place cell properties will be discussed in the context of TDG regulation of gene 

expression before providing an assessment of the main shortcomings in this research 

project and consequential considerations for future perspectives will be presented. 

 

4.1 Mouse Model 

The mouse model used in the current study had hippocampal-specific conditional 

knockout of Tdg. This transgenic mouse model was developed using a time and tissue-

specific promotor, CamKIIα, which mainly control gene expression in excitatory neurons 

(Wang et al., 2013). Primarily, CamKIIα targets the pyramidal layer of the CA1 area. 

Introduction of Cre allows excision of genes flanked by LoxP sites. Hence the TDG enzyme 

will mainly be depleted in the anatomical area of interest, containing the spatial cells which 

are foremost located in the pyramidal layer of the CA1. Furthermore, the knockout is 

restricted to excitatory neurons, being the regional spatial cells. Given exact knockout of 

Tdg, precise anatomical and morphological experimental regulation of gene expression in 

the mouse brain is highly beneficial when assessing spatial memory, and the following 

results are thus reinforced. However, the indispensability of the CamKIIα promoter's 

specificity in regulating Cre expression is central in achieving a precise conditional Tdg 

knockout. Leakage in Cre expression can occur, which could lead to extensive 

recombination. An inadvertent germline deletion of floxed genes in Cre-mouse lines could 

lead to heritable transmission of the knockout allele across subsequent generations, 

resulting in a persistent absence of the targeted genes in the offspring (Hardeland et al., 

2001). As the promotor is mainly active in CA1, other hippocampal structures only undergo 

partial Tdg knockout. The partial depletion of TDG could affect hippocampal spatial 
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representation, by, for example altering navigation-specific functions grounded in the 

hippocampal circuitry. 

Conversely, as the hippocampus holds strong empirical correlates with spatial memory, 

and the CA1 place cells are extensively studied and highly accessible, assessment of these 

exact cells would provide grounding observations for future investigation. Specific 

alternation of gene expression allows for the investigation of the effects of structure- and 

cell-specific methylation and demethylation patterns on spatial memory, while at the same 

time not altering behavior and cell functionality associated with other anatomical 

structures, that otherwise could lead to confounding effects. The genotyping of the mice 

used in this study was performed twice, both before and after in vivo experimentation, 

providing dual validation of the gen pattern of the mice used for neural recording. 

 

 4.2 Cell Physiology 

Cells from the CA1 of 4 mice were clustered and included in the analysis. The low 

number of mice used in recording may limit the current findings. The low sample size 

increases the chance of insufficient statistical power, inflated false discovery rate and effect 

size estimation, and might reduce the reproducibility of the results. Too small a sample 

may prevent the findings from being inferred. For example, a small behavioral difference 

or abnormal genetic expression in one of the 4 experimental subjects could have a greater 

effect on the outcome variable of the respective place cells, compared to the case of an 

appropriate sample size. Finally, when the total number of cells recorded from each of the 

animals varies, the data from certain animals may be weighted more heavily than the data 

from others. 

A total number of 506 recorded cells were clustered. Some possible issues with the 

process of clustering are present. If a given cell cluster contains spikes originating from a 

different cell, the validity of the cells' features is compromised. Moreover, if a cluster lacks 

spikes from the targeted cell, the validity is also reduced. It is also probable that some 

place cells were overlooked due to infrequent firing in one environment compared to 

another, leading to a small number of data points in the clustering feature space of the A1 

recording area. This could be a result of spatial cell remapping and becomes an issue when 

initially clustering and determining spatial tuning of cells recorded in a single environment. 

Alme et al. (2014) found that CA3 place cells are not necessarily active in multiple 

environments, which could be the case for the observations of CA1 place cells. This 

underpins a limitation of the respective recording design. To address these issues 

concerning cell categorization, a possible solution could be the involvement of two or more 

independent experimenters in data clustering, followed by examining the internal 

consistency of the clustered data points. An impaired channel in one of the drives implanted 

in a control mouse proposed a notable challenge for the manual clustering process. 
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Furthermore, PCA was used to cluster distributions in the feature space that were 

particularly challenging. As PCA is known to be sensitive to outliers, PCA may not provide 

accurate results, and the clusters based on principal components may be easily affected 

by noise. To handle these issues, one could use more robust computational techniques to 

eliminate outliers or noise. Given that the cells are correctly clustered, the size of the cell 

sample are notably low compared to what is typically seen in the neural recording literature 

and what might have been appropriate according to a power analysis. In a low cell sample 

size, individual differences and outliers will have prominent effects on the observed 

outcomes. 

 

4.2.1 Cell Classification and Proportion 

The cells were classified into 10 groups, including place cells, HD cells, speed cells, 

boundary cells, and various conjunctive cells (Table 2). In the populations of recorded place 

cells, HD cells and boundary cells were not distributed differently across the CamKIIα-Tdg-

/- mice and the control mice. The distribution of identified speed cells on the other hand 

was prominently higher in the control mice, while the fraction of place cells was higher in 

the CamKIIα-Tdg-/- mice. To my knowledge, the relationship between spatial cell 

distribution and TDG has not been examined previously. 

The classification of place cells was performed using the mutual information equation 

developed in accordance with information theory. The calculated information outcome will 

be influenced by several parameters used to preprocess the data, such as the defined bin 

size and data smoothing, which can affect the detection of place cells. Selecting an 

inappropriate bin size or smoothing parameter can lead to false positives or false negatives. 

The method of calculating mutual information to detect place cells will also be sensitive to 

the data point sample size in each cluster. In the case of this study, this limitation is 

controlled for by setting the threshold for number of spikes in a cluster to 100 spikes, in 

accordance with previous research (Kunath et al., 2021). This could lead to neglection of 

some cells, particularly those that display low firing rates in the A1 environment (Figure 

7A), but at the same time controlling for the sensitivity of the mutual information 

classification method. The fact that the average within-session stability of the total amount 

of cells was moderate and that there were no differences between the genotypes in the 

number of cells displaying low or moderate correlation across the session halves (Figure 

10B), points to clustering errors. Moreover, not all place cells displayed place fields, but 

did still hold information content above threshold (P95; Figure 10A). The quantity of 

recorded cells in the control group categorized as place cells but lacking important place 

cell characteristics, such as strong within-session stability and place fields, might imply 

that the filtering parameters were inadequate in their level of stringency. Including spatial 

within-session stability as a filter could potentially resolve this issue. 



 64 

 It is possible that the population of speed cells is different between the two genotypes, 

and there is in fact a smaller proportion of speed-selective cells present in the CA1 of TDG-

depleted mice. The low sample size disputes this result. The observed speed cell 

distribution as an effect of genotype might also be due to disruptions in the amount of 

speed information being encoded by the CamKIIα-Tdg-/- cells. In that case, the definite 

quantity of pyramidal neurons with speed cell properties could be the same for both 

genotypes, but the spatial information carried out by the cells would be impeded, and not 

succeed the 95th percentile cut-off for being classified as speed cells. This observation 

could also point to the sparse firing of speed cells in TDG-depleted mice, thus resulting in 

low detected numbers of these cells in the conditional knockout mice compared to control 

mice. 

The low number of conjunctive cells observed in both genotypes is consistent with what 

is typically observed in normal spatial cells. Spatial cells have been found to predominantly 

display invariant spatial tuning (Muller et al., 1994; Burgess et al., 2005). This is for 

example, true for the speed cells, found to mainly be invariant to both the HD and the 

location of the animal (Burgess et al., 2005). 

The classification and determined distribution of spatial cells in the CA1 of the two 

district genotypic groups might be influenced by the small sample of mice included in this 

study. The trajectory and placement of tetrodes in the brain of the mice will have 

considerable effects on the outcome. The significantly large proportion of speed cells in the 

control group compared to the CamKIIα-Tdg-/- group might give an indication that the 

tetrode of one or both control mice was misplaced and located externally of the structure 

of interest. Speed cells are present in both the mEC and the hippocampus (Ye et al., 2018), 

making it difficult to determine the location of the recording without a definite tetrode 

position analysis. An examination of the scanned brain slices from each mouse would 

provide the opportunity to control for this possible determinant error. Furthermore, 

pyramidal cells in the ventral parts of the CA1 are more likely to be active compared to 

more dorsal parts of the CA1 (Malik et al., 2016; Milor et al., 2016). Moreover, the deeper 

neurons are more likely to display place cell characteristics (Mizuseki et al., 2011). 

Differentiated placement of tetrodes across the genotypes could also account for the 

observed difference in place cell proportion. 

 

4.2.2 Functional Properties of Place Cells 

To my knowledge, this is the first time the spatial representations of CA1 place cells 

have been investigated in a mouse model with hippocampus-restricted Tdg knockout. 

Similar numbers of place cells were recorded in control and CamKIIα-Tdg-/- CA1. In the 

place cell populations of the two groups, there was found a predominant difference in the 

spatial information rate and filtered average firing rate, in which the CamKIIα-Tdg-/- cells 
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carried out less information about spatial location than the control cells (Figure 11B-C). 

This result suggests that there is a difference in the mutual information carried by the place 

cells across the genotypes. The outcome of this analysis could also be inferred by the low 

within-session stability observed in the place cells. However, if this is the case, equal effects 

would be observed for the control group as well as for the CamKIIα-Tdg-/-, as the within-

session stability was invariant between the groups. 

However, no significant difference was observed in terms of the spatial information 

content. The two cell populations held spatial representations for approximately the same 

amount of information about the animal’s position in terms of information content (Figure 

11A). As the information content of the cell is closely related to information rate of the cell, 

and these are expected to correlate positively in normal place cells (Souza et al., 2018), 

the results are overall inconsistent. These results might be affected by potential errors in 

cluster cutting and effects caused by the sample size. 

Disregarding evident methodological shortcomings, the observations of place cell 

spatial information does point to the impact of TDG on CA1 place cell spatial functionality, 

in terms of filtered average firing rate and information rate. 

 

4.2.3 Specificity 

A series of analyses were conducted to examine the relationship between TDG and 

place cell spatial specificity. The spatial specificity was invariable between the groups in 

the quantity of cells with multiple place fields and the mean size of the place fields, whereas 

the CamKIIα-Tdg-/- cells had a lower place field peak firing rate than the control cells.  

The fraction of place cells with multiple place fields as a function of genotype, implies 

that TDG does not impact the specificity of place cells in terms of cells developing more or 

less place fields than expected from Tdg-intact cells. Furthermore, as the integration of 

information in the CA1 seems intact, this might give an indication that the scale of the 

hippocampal spatial representation is unaffected by the TDG depletion. Previously, Park et 

al. (2011) and Fenton et al. (2008) observed that expansion of the recording area was 

related to increasement in the number of fields. The results of the current study might 

have been different in a larger and more representative environment. Assessment of place 

cell ability to increase place field number in relation to space expansion could be of interest 

for future research. 

Furthermore, no apparent differences in place field size as an effect of TDG depletion 

was detected (Figure 12A). Consistent with the findings concerning the relation between 

genotype and the number of cells with multiple fields, discussed in the preceding 

paragraph, this finding strengthens the notion of an intact spatial representational scale in 

the TDG-depleted CA1. 
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The observed invariance in place field size implies preserved structural connections 

between the CA1 and adjacent areas. Given that there is no difference in place field size 

between the two genotypes, this might imply that the schaffer collateral pathway from the 

CA3 cells to the CA1 is not impaired by the TDG depletion. In the case of inhibition of the 

CA3 vesicle release, previous findings have indicated that this disruption leads to increased 

place field size in the CA1 (Davoudi & Foster, 2019). Whereas, in accordance with Hussaini 

et al. (2011), this specific result will not exclude the possibility that synapses between the 

CA1, and the EC are disrupted. Hippocampal place cells are thought to integrate input from 

the mEC dorsoventral grid scale, but previous findings indicate that CA1 place cells are 

more reliant on their local circuitry than input from the EC grid cells (Hussaini et al., 2011). 

The invariance in place field size for the two genotypes, will thus not have a disturbing 

effect on the CA1 input connections from the mEC. The amount of optic flow and number 

of cues presented to rodents has been found to correlate with the place field size. This 

pattern is similar to the correlation between the size of the recording area and the number 

of place fields, as discussed in the previous paragraph. The outcome of the current analysis 

might have been different in a more stimulating and representative environment. 

Differences in tetrode location among the small subject sample could account for the 

invariances in place field size and single cell field number. As the place cell representational 

scale increases along the longitudinal hippocampal axis hippocampus (Kjelstrup et al., 

2008), the observed results could be due to a difference in recording location on the 

longitudinal axis. Thus, recording of cells from different locations on the hippocampal 

representational scale could account for invalid results. 

Furthermore, there was no observable difference in the frequency of small (< 150 

mm2), medium (150 ≤ x ≤ 300), large (300 ≤ x ≤ 450), and very large (> 450) place 

fields across the CamKIIα-Tdg-/- and the control cells (Figure 13). However, both the 

CamKIIα-Tdg-/- and the control place cells had a larger fraction of small place fields, 

compared to the other size intervals (Figure 13B). Features of the recording enclosure 

could account for this tendency to display small place fields, as cumulative stimulation in 

a given environment correlates with the observed place fields size (Lu & Bilkey, 2010; 

Sharif et al., 2021). The observed quantity of small fields compared to larger fields might 

also be influenced by the modest sample size and clustering errors, as many of the fields 

appear closer to 0 mm2. The modest within-session stability supports this assumption. To 

explore this issue, it could be feasible to review the correlation between low firing rates 

and small fields. 

The peak place field firing rate was observed to be lower and more variable for the 

TDG-depleted cells than the control cells (Figure 12B). The place field peak firing rate is 

not necessarily related to the field size (Hussaini et al., 2011; Davoudi & Foster, 2019; Lu 

& Bilkey, 2010), thus, the possibility of one being affected by experimentally alternating 
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demethylation enzymes and not the others are likely. This promotes the possibility that 

TDG might be related to certain spatial representational properties of place cells. 

In summary, no effects of genotype were observed for the information content carried 

out by the place cells, the number of cells with multiple place fields, or the average place 

field size displayed by the cells. However, disregarding the small sample size and possible 

clustering issues, certain general functional properties (spatial information rate, average 

firing rate, and place field peak firing rate) of cells from the CamKIIα-Tdg-/- group display 

deviations from normality. 

 

4.2.4 Global Remapping 

An investigation of the effect of TDG on the global remapping capacities of CA1 place 

cells was performed with distinct results. The global remapping capabilities of the two 

current place cell populations were significantly invariant, and the TDG-depleted mice 

remapped as normal between the two environments (Figure 14). 

The control cells performed as expected from normal place cells (Latuske et al., 2018), 

implying that the remapping condition itself is reliable. This will depend on potential 

clustering issues. If the cell in the second condition is clustered differently than the original 

cell from the first condition, or if it is a different cell altogether, this would lead to a false 

global remapping result, as there would be low to no correlation between them. Given that 

the clustering is correct, and the test is reliable, the TDG-depleted cells maintain intact 

global remapping compared to the control cells. This result is consistent with what we 

expect in terms of plasticity in place cells deficient in TDG, as its main effect would be 

related to gene expression for protein synthesis in long-term plasticity alternation. This will 

be further elaborated on in a later section. As the respective remapping paradigm is 

performed in a time frame associated with short-term plasticity, the results could have 

been different for a long-term conditioned remapping paradigm aimed at assessing 

synaptic strengthening by protein synthesis. 

The remapping capabilities in the hippocampal cells can also be influenced by activity 

in the mEC, according to the finding of Kanter et al. (2017), who observed that activation 

of mEC cells correlated with remapping in CA1. The mEC is suggested to function as a noise 

reducer and place cell synchronizer (Rennó-Costa & Tort, 2017; Fyhn et al., 2007). The 

results of my project showed that TDG-depleted hippocampal cells holds intact global 

remapping. Hence the function of the mEC could be preserved. Thus, potentially implying 

that TDG does not have a functional effect on the local circuitry of the mEC or in one of the 

mEC input pathways to the hippocampus. On the other hand, it is of importance to note 

that the result does not exclude the possibility of a significant effect between CA1-specific 

TDG depletion and the mEC activity and hippocampal connections. In more recent studies 

hippocampal place cell remapping has been observed to be intact in the instance of 



 68 

experimental mEC impairment (Schleiger et al., 2018; Jun et al., 2020). Given this 

conclusion, alternations in the signals from the mEC input could account for the observed 

effects in the Tdg knockout cells of the CA1 as well. As the mEC might act as a remapping 

modulator (Rennó-Costa & Tort, 2017; Fyhn et al., 2007) rather than a direct executive 

structure, the two proposals do not exclude each other. The role of the mEC in TDG-

depleted place cell performance is thus elusive. 

Intact remapping capabilities might be related to the conserved ability of the cells to 

carry spatial information content and spatial specificity. Intact remapping capabilities 

indicate that the population of cells representing the different spaces are unique. If a subset 

of place cells does not remap when exposed to a novel environment, it is possible that 

certain aspects of the given memory template are encoded into the incorrect memory 

substrate. This could lead to the interference of memory fragments. From the perspective 

of cognitive map theory, this could be the mistakenly encoding of memory coordinates 

onto the wrong map, leading to the disorganization of the spatial content on the map. The 

TDG-depleted place cells seem to withhold the ability to map novel environments. 

However, as will be discussed in a later section, the spatial representation of the given 

environment does not remain stable over time. 

The observation of invariance between genotypes in remapping capabilities might be 

an effect of heterogeneous and low sample size, as discussed for previously presented 

variables. It is a possibility that the findings could be attributed to an inaccuracy within the 

experimental setup. However, if there indeed was a determinant issue with the 

experimental setup, it should have affected the results observed in both groups since they 

were subjected to identical experimental conditions and analyses. 

Furthermore, it should be noted that there was an irregular level of familiarity between 

the two recording enclosures used in this study. The mice were recorded more times in 

area A, which was the enclosure used in most of the experiments, whereas area B was 

only used for remapping conditions. This discrepancy in recording time corresponds to the 

notion that the cells had the most opportunities to consolidate their neural representations 

of the space in arena A, which may have resulted in stronger spatial associative learning.  

 

4.2.5 Stability 

Results from the two stability conditions showed that the CamKIIα-Tdg-/- place cells 

have significantly lower mean positive correlation between exposure to equivalent 

environments with 50 min and 24 h inter-trial intervals, compared to the control cells 

(Figure 15). The mean correlation was weak for the TDG-depleted cells and moderate for 

the control cells in both conditions. Despite the observation that CA1 place cells tend to be 

less stable than place cells of other hippocampal regions (Dong et al., 2021), the control 

cell stability deviates substantially from what is expected from normal place cells and is 
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largely inconsistent with previous observations (Thompson & Best, 1990; Kinsky et al., 

2018). This observation might imply weak test reliability, and could thus point to 

methodological errors, such as a small sample size or inaccuracies in the performance of 

the experimental procedure. Issues with clustering and spike sorting will potentially 

influence the results considerably. So will a potentially insufficient sample size, both in 

terms of mouse subjects in each group and cell number. The samples did have a slight 

deviation from normal distribution, but a non-parametric test was not implemented, this 

could have had a modulatory effect on the results. 

In the investigation of place cell stability, the CamKIIα-Tdg-/- cells displayed weaker 

short-term and long-term stability compared to the control cells. During the experiment, 

it was observed that CamKIIα-Tdg-/- place cells consistently remapped to the novel 

environment similarly to control cells, suggesting their ability to generate new maps was 

intact. However, in the familiar environment, a higher proportion of CamKIIα-Tdg-/- place 

cells continued to remap across different trials separated by either 50 min or 24 h, 

indicating impaired short- and long-term spatial stability. Of note, within each recording 

session, the place fields were found to be unstable and lacking coherence. This implies that 

the place cells did not reliably maintain their spatial maps once they were selected and 

might justify the observed abnormality in control cell performance. 

The CamKIIα-Tdg-/- cells remap as expected for wild-type cells between changing 

environments but do not display normal short- and long-term stability across familiar 

environments. It is plausible to assume that the observed discrepancy between the global 

remapping and stability is due to the fact that assessment of stability was performed using 

an environment frequently presented to the mice (box A). This could mean that the cells 

display more stability in their firing patterns because they are in a profoundly familiar 

environment, where the animal has stronger associations to specific environmental 

indicators, compared to the less frequently presented environment (box B). Thus, the 

stability between the more familiar environment (box A) may not necessarily translate to 

other environments, leading to spatial remapping when the mice are placed in a more 

novel environment (box B). Overall, the observation may suggest that the observed 

instability may be specific to the familiar environment in which the mice were tested and 

may not be generalizable to other environments. The reliability of the implemented short-

term stability test could also be assessed by comparing stability as a function of genotype 

between the B1 and B2 environments (Figure 7A). 

Normal place cell stability is found to vary substantially across the radial axis of CA1 

(Danielson et al., 2016). Thus, the location of the recording tetrode in the CA1 might 

influence results. More superficially situated CA1 neurons has previously been reported to 

encode the stable features, whereas deeper neurons encode the changing features of the 

environment. The tetrodes being located more superficially in CA1 in one or two of the 
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control mice compared to the CamKIIα-Tdg-/- mice, could account for the observed 

difference in correlations between familiar boxes in the two genotypes. Given a significant 

difference in placement of the tetrodes along the radial axis of the control and CamKIIα-

Tdg-/- mice, the small sample size would have a determinant influence. 

On the other hand, the difference in correlation was highly significant between the 

groups, with CamKIIα-Tdg-/- cells displaying notable weak correlations. TDG-depleted cells 

showed predominantly weaker spatial stability than in the TDG intact control cells. If the 

observation of TDG-depleted cells having impaired spatial stability is reliable, this result 

suggests that TDG is functionally related to CA1 place cell short- and long-term stability. 

Based on what is known about typical place cells, the CamKIIα-Tdg-/- cells display abnormal 

spatial stability. Normal place cells have been observed to display stable spatial 

representations for up to 153 days (Thompson & Best, 1990), and, more recently been 

observed to remain spatially coherent for up to 6 days, even in rotating arenas (Kinsky et 

al., 2018). These results highlight the ability of the hippocampus to retain consistent 

relationships between place cells across long timescales. Hence, the TDG-depleted cells 

stability deviates predominantly from what is evident for normal place cells, and TDG might 

have a role in altering the genetic expression in these cells, resulting in spatial instability. 

Considering the high significance of correlational differences in place-field maps 

between the CamKIIα-Tdg-/- cells and the control cells, the TDG-depleted mice show lower 

stability than the control cells. Alternations in stability over time have recently been 

suggested to rely on the mEC input. The impaired spatial stability in TDG-depleted cells 

could alternatively be a result of functional impairments in the mEC cell circuitry or in the 

direct or indirect input pathway from the mEC to the CA1. mEC lesions companied by 

sensory cue deprivation have been reported to correlate with reduction in typical place cell 

stability (Jacob et al., 2020). Impairments in normal mEC function, by HCN1 channel 

blockage, have been hypothesized to influence the ability of the mEC to convey spatial 

signals by observing correlated reduction in long-term spatial CA1 stability (Cholvin et al., 

2018). Impairments in other structures have also been associated with disruption in 

hippocampal place cell stability (Colvin et al. 2018) and might be an effector of the current 

finding. This suggests that the observed instability in TDG-depleted place cells might not 

exclusively be a result of alternations of CA1 cell properties but might be influenced by 

disruption in other brain structures. 

 

 4.3 TDG and Place Cell Functionality 

Place cells are among the most remarkable neuronal correlates for spatial cognition 

and have been extensively studied to comprehend hippocampus-dependent memory 

mechanisms. These cells are known to be selectively active in a particular location within 

a given environment and maintain their specific place tuning, or place field, for long periods 
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of time, suggesting their role in encoding short-term and long-term memories of learned 

environments and locations. Moreover, they collectively alter their firing patterns in 

response to environmental changes, allowing differentiation between dissimilarities and 

construction of new maps for novel environments. These excitatory neurons of the 

hippocampus rely on synaptic plasticity varying in time-dependency to structurally alter 

the neural circuitry functional properties. Regulation of methylation patterns causing 

genetic downregulation (Miller and Sweatt, 2007; Duke et al., 2017; Miller et al., 2011; 

Day & Sweatt, 2010) and upregulation (Kaas et al., 2014; Rudenko et al., 2015) is of 

importance in expression of genes related to synaptic plasticity. The evident role of TDG in 

genetic demethylation has been established in more recent years and provides plausibility 

to the hypothesis of TDG playing a role in memory. The extent and route of impact (direct 

or indirect effect) TDG has on synaptic plasticity have not yet been conclusively 

demonstrated, as potential confounding factors and secondary mechanisms may overlap 

or compensate for the functionality in neural correlates of memory. In this project, I 

investigated whether the CA1 place cells of conditional TDG-deficient mice were 

functionally normal by recording the activity of hippocampal neurons while the animals 

freely explored and mapped an open field environment. The observed functional 

impairments in CA1 place cell spatial tuning properties could thus be a result of impairment 

in protein synthesis processes facilitating synaptic plasticity between hippocampal cells. 

The results from the electrophysiological data analysis were somewhat contradicting. 

Some differences from normal cell function were observed in the TDG-depleted CA1 place 

cells. The CamKIIα-Tdg-/- place cell population displayed somewhat lower mutual spatial 

information and less specificity than expected from typical place cells. These observations 

could be an effect of transcriptional alternations through reduced demethylation and 

consequential structural changes in the CA1 circuitry. The TDG depletion appeared to 

influence certain aspects of the general electrophysiological properties of the CA1 place 

cells, such as information rate, average firing rate, and peak firing rate of place fields. 

However, the inconsistency in present results makes any definite assumptions of the direct 

or indirect relation to the knockout of Tdg unviable. 

Given current evidential grounding, neural correlates of long-term memory, such as 

late-phase LTP (Baltaci et al., 2019), rely on protein synthesis processes. Based on 

previous findings, one would expect TDG-depleted spatial selective place cells to primarily 

show impairments in long-term synaptic alternation (Duke et al., 2017). When the gene 

transcription pattern involved in place cell protein synthesis is altered by experimentally 

changing the expression of demethylation enzymes, in this case, TDG, this would 

reconstruct the expression of genes and thus alter the long-term capabilities of storing a 

memory through synaptic plasticity (Baltaci et al., 2019). The current finding is not fully 

consistent with this premise, as the short-term stability of TDG-depleted place cells was 
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impaired to the same extent as the long-term stability. Despite instability independent of 

time frame, the observations of significant long-term instability in CamKIIα-Tdg-/- cells are 

compatible with Duke et al. (2017) reports of coordinated increasing DNA methylation 

changes in CA1 in long-term learning and what is reasonable to expect from TDG-depleted 

cells. This interpretation discounts the weak stability test reliability and small sample size. 

However, place cell global remapping was found to be unaffected by the reduction of 

available TDG, being consistent with what was expected for the CamKIIα-Tdg-/- cells. 

Furthermore, as previously stated, the hippocampal formation is a highly 

interconnected structure (Figure 2), and the fact that Tdg is mainly knocked out in areas 

where the CamKIIα promotor is active, being the pyramidal CA1 layer supports the 

possibility that other spatially correlated areas compensate for the depletion of TDG in CA1 

place cells. The CA1 spatial cells rely on their connections to other parts of the hippocampal 

formation to compose their full spatial representation. In the case of incomplete 

hippocampal knockout of Tdg, intact functional properties of CA1 place cells could be a 

result of spatial input from other hippocampal areas completing the spatial representation 

and compensating for the loss of transcriptional regulation properties in the CA1 place cells. 

Thus, a complete TDG depletion in other regions associated with spatial memory could 

enhance the validity of the current results. 

 

4.4 Limitations and Future Perspectives 

The current research project has provided preliminary support for the role of TDG, a 

demethylation enzyme, in regulating gene transcription related to neuronal function in the 

spatial representational system. However, this study has several limitations. 

Firstly, a number of methodological shortcomings were present. The sample sizes of 

mouse subjects and recorded cells were lower than ideally preferred. Individual differences 

might affect the outcome significantly, which could reduce the effect of genotype. As more 

data is collected and available for analysis and additional experiments are planned, the 

research group will address this issue further. Moreover, several of the classified place cells 

did not display typical place cell characteristics. These methodological issues could justify 

the low test reliability observed in the place cell stability paradigm. Implementation of 

more strict filtering for categorizing different spatial cells, as well as closer verification of 

the manual clustering work before analyzing the data, would significantly advance future 

investigations. 

Secondly, this study tested the functional influence of place cells on the hippocampal 

representation of space, but the possibility that non-spatially tuned pyramidal cells and 

other cell types may also play a substantial role, as suggested by Stefanini et al. (2020), 

is present. Future studies utilizing a recording technique designed to investigate a greater 

number of cells concurrently would be of value. 
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Thirdly, my investigation was limited to a mouse model with conditional knockout of 

Tdg, and it is possible that the observed impaired functions of CA1 place cells were due to 

undetermined changes in the entire hippocampus or even in the whole brain networks 

following complete TDG depletion in mice. Moreover, it is essential to explore the 

consequential impact of a potential disturbance of the mEC. An examination of grid 

modules and their impact on the local CA1 circuitry could contribute to clarifying the grid 

cell’s role in shaping spatial representations in the hippocampus. The mEC and its 

hippocampal connections are believed to serve as an error-corrector and noise-reducing 

mechanism. Any disruption to this system may be associated with impairments in spatial 

functions observed in the TDG-depleted cells. 

Finally, TDG has been implicated in epigenetic mechanisms involving DNA modifications 

and genomic architecture, but this study did not explore the molecular interplay of TDG 

with epigenetic markers and transcription in hippocampal neurons. Electrophysiological 

methods are not sufficient to establish a detailed molecular mechanism of how TDG directly 

regulates synaptic function, which considerably should be an eminent aim for future 

research. 

 

5 Conclusion 

This study aimed to elucidate whether the functional specificity and plasticity of CA1 

place cells were affected in TDG-depleted hippocampal neurons.  To achieve this goal, I (I) 

wired microdrives to be implanted into the mouse hippocampus, (II) recorded the activity 

of hippocampal CA1 cell populations in four conditional Tdg knockout mice and four control 

mice, and (III) clustered and analyzed all recorded cell. Of the total 506 clustered cells, I 

identified 10 categories of spatial cells, in which place cells were further investigated. Some 

tendencies were observed, in disregard of the small sample size. Overall, the results 

showed that a larger proportion of place cells and a smaller proportion of speed cells were 

recorded in the conditional Tdg knockout mice, than in the control mice. Regarding the 

place cells, the average spatial information content was equally high in both genotypes, 

but within-session stability scores deviated from normality in both groups. TDG-depleted 

place cells displayed lower spatial information rate and firing rate on average compared to 

the control cells. This may be an indication of impairments in spatial functionality. To 

address the second research question, whether TDG impacts the spatial specificity of 

hippocampal place cells, I extracted information about the place fields of the place cells. 

The TDG-depleted cells displayed a higher place field peak firing rate, but the number of 

place fields per cell and field size was invariable across genotypes. The inconsistency in 

the results makes any conclusions about place cell specificity unreliable. To address the 

third research question, whether TDG impacts the spatial remapping of hippocampal place 

cells, I employed a remapping experiment where the mice were recorded while shifting 
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between a familiar and a novel environment twice. No deviances from normality were 

observed in global remapping capabilities, with low or negative stability scores for both 

groups, implying intact global remapping in TDG-depleted place cells. To investigate the 

fourth research question, whether TDG impacts the spatial stability of hippocampal place 

cells, I tested the mice in the same box with a short-term stability condition (50 min inter-

trial intervals) and a long-term condition (24 h inter-trial intervals). In both the short-term 

and the long-term conditions, the groups had low or moderate correlation coefficients 

between familiar environments, but the TDG-depleted cells were significantly more 

unstable compared to the control cells. This might suggest that both the groups had 

impaired stability, pointing to methodological errors, but that the Tdg knockout mice had 

less stability in CA1 place cell spatial representation. The inconsistency in the results makes 

any definite conclusions regarding place cell spatial stability unreliable. 
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7 Appendix 
 

Appendix A 

Table 4. Resistance of all channels from each microdrive used for neural 

recording. 

Drive Mouse genotype Electrode Recoding before 

plating (kΩ) 

Recording after plating 

(kΩ) 

1 LoxP-miniTdg A1 900 260 

A2 810 250 

A3 940 270 

A4 1100 250 

B1 850 250 

B2 1230 240 

B3 1050 260 

B4 800 230 

C1 900 200 

C2 850 240 

C3 1020 250 

C4 950 240 

D1 1100 130 

D2 840 140 

D3 940 130 

D4 850 150 

2 LoxP-miniTdg A1 630 270 

A2 560 240 

A3 700 240 

A4 650 230 

B1 990 270 

B2 650 270 

B3 740 230 

B4 980 260 

C1 920 180 

C2 890 150 

C3 710 170 

C4 1000 160 

D1 720 150 

D2 400 180 
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D3 1100 160 

D4 920 150 

3 CamKIIα-Tdg-/- A1 805 280 

A2 930 270 

A3 905 240 

A4 930 260 

B1 730 170 

B2 600 220 

B3 700 230 

B4 715 180 

C1 450 150 

C2 450 150 

C3 800 230 

C4 810 230 

D1 410 150 

D2 820 150 

D3 710 230 

D4 880 180 

4 CamKIIα-Tdg-/- A1 1000 250 

A2 680 210 

A3 800 200 

A4 700 250 

B1 750 170 

B2 910 180 

B3 780 240 

B4 700 200 

C1 950 180 

C2 750 190 

C3 800 220 

C4 850 230 

D1 500 200 

D2 580 200 

D3 960 250 

D4 1000 260 
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Appendix B 

Table 5. Descriptive and inferential statistics of place cell data. 

                                                    Control group            CamKIIα-Tdg-/- group 

 N M ± SD n M ± SD n t value* Mean 

difference 

Spatial information 

content (bits/spike) 

59 1.10 ± .54 20 1.28 ± .65 39 -1.05 .18 

Spatial information 

rate (bits/sec) 

59 .29 ± .38 20 .09 ± .12 39 2.25* .20 

Speed filtered 

average firing rate 

 

59 .26 ± .34 20 .10 ± .10 39 2.09* .16 

Proportion of cells 

with multiple fields 

 .05 ± .22  .10 ± 31  .70 .05 

Average size of the 

place fields (mm2; 

sample of place 

fields) 

53 106.53± 182.56 22 110.53 ± .06 41 1.10 4.00 

Peak firing rate 

within the place fields 

(Hz; sample of place 

fields) 

 

53 3.03 ± .06 22 .98 ± .56 41 2.29* 2.05 

Remapping A1B1 (r) 110 .04 ± .37 52 .19 ± .30 58 -.71 .05 

Remapping B2A2 (r) 

 

130 .08 ± .34 67 .11 ± .31 63 -.60 .03 

Short-term Stability 

A1A2 (r) 

114 .30 ± .40 56 11 ± .30 58 2.94** .19 

Long-term Stability 

A0A1 (r) 

 .22 ± 39 71 .21 ± .38 72 -.23 .01 

Note. r refers Pearson’s correlation coefficient 

Note. M = arithmetic mean, SD = standard deviation 

* p ≤ .05, ** p ≤ .01, *** p ≤ .001 
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Table 6. Pairwise comparison of size interval groups for camKIIα-Tdg-/- and 

control fields. 

Sample 1-Sample 2 Test 

Statistic 

Std. 

Error 

Std. Test 

Statistic 

Sig. Adj. Sig.a 

Small camKIIα-Tdg-/-  

- small control 

4.038 5.761 .701 .483 1.000 

Small camKIIα-Tdg-/- - medium 

camKIIα-Tdg-/- 

26.060 7.222 3.608 <.001 .009 

Small camKIIα-Tdg-/- -medium 

control 

27.596 9.109 3.029 .002 .069 

Small camKIIα-Tdg-/- -large ko 35.060 7.222 4.855 <.001 .000 

Small camKIIα-Tdg-/- -large 

control 

40.013 10.342 3.869 <.001 .003 

Small camKIIα-Tdg-/- - very large 

camKIIα-Tdg-/- 

-43.346 17.283 -2.508 .012 .340 

Small camKIIα-Tdg-/- - very large 

control 

-43.346 12.445 -3.483 <.001 .014 

Small cotrol-medium camKIIα-

Tdg-/- 

22.022 7.951 2.770 .006 .157 

Small cotrol-medium control 23.558 9.697 2.429 .015 .424 

Small cotrol-large camKIIα-Tdg-/- 31.022 7.951 3.902 <.001 .003 

Small cotrol-large control 35.974 10.863 3.312 <.001 .026 

Small cotrol- very large camKIIα-

Tdg-/- 

-39.308 17.601 -2.233 .026 .715 

Small cotrol- very large control -39.308 12.882 -3.051 .002 .064 

Medium camKIIα-Tdg-/- -medium 

control 

1.536 10.630 .144 .885 1.000 

Medium camKIIα-Tdg-/- -large 

camKIIα-Tdg-/- 

9.000 9.066 .993 .321 1.000 

Medium camKIIα-Tdg-/- -large 

control 

13.952 11.704 1.192 .233 1.000 

Medium camKIIα-Tdg-/- - very 

large camKIIα-Tdg-/- 

-17.286 18.131 -.953 .340 1.000 

Medium camKIIα-Tdg-/- - very 

large control 

-17.286 13.599 -1.271 .204 1.000 

Medium control-large camKIIα-

Tdg-/- 

7.464 10.630 .702 .483 1.000 
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Medium control-large control 12.417 12.954 .959 .338 1.000 

Medium control- very large 

camKIIα-Tdg-/- 

-15.750 18.962 -.831 .406 1.000 

Medium control- very large 

control 

-15.750 14.688 -1.072 .284 1.000 

Large camKIIα-Tdg-/- -large 

control 

4.952 11.704 .423 .672 1.000 

Large camKIIα-Tdg-/- - very large 

ko 

-8.286 18.131 -.457 .648 1.000 

Large camKIIα-Tdg-/- - very large 

control 

-8.286 13.599 -.609 .542 1.000 

Large control- very large 

camKIIα-Tdg-/- 

-3.333 19.584 -.170 .865 1.000 

Large control- very large control -3.333 15.483 -.215 .830 1.000 

Very large control- very large 

camKIIα-Tdg-/- 

.000 20.772 .000 1.000 1.000 

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. 

Asymptotic significances (2-sided tests) are displayed. The significance level is .050. 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 

 

 

Appendix C 

Table 7. Primers for genotyping 

Allele Primer Sequence Product 

size 

miniTdg Compl Forward AAATACTCTGAGTCCAAACCGGG 0.65 kb 

Tdg C Reverse TGGTGAATCCGATGCCGTACTTG 

CAG-gfp CAG-St-eGFP-Forward CTTCAGCCGCTACCCCGACCACA 0.5 kb 

CAG-St-eGFP-Reverse ATCGCGCTTCTCGTTGGGGTCTTT 

Tdg WT GT Tdg D Forward TTGCGTGGGAGTAACCGAGC 0.6 kb 

GT Tdg B Reverse GATGCACTCGGGAGACTTACAG 

CamKIIα-Cre JAX_10884_Forward GTTCTCCGTTTGCACTCAGG 0.3 kb 

JAX_oIMR8990_Reverse CAGGTTCTTGCGAACCTCAT 
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Figure 17. Real and shuffled cell distribution as a function of information 
content score, speed score, head direction score and (P95 and P99) 
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Appendix F 

CamKIIα-Tdg-/-: 
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Control: 
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Figure 27. A sample of rate maps, adaptive smoothed rate maps, trajectory maps and 
polar maps from camKIIα-Tdg-/- and control cells in A1. Examples of tree cells from camKIIα-
Tdg-/- mice (upper) and control mice (lower) presented in groups of four maps. Each group contains 
a rate map (upper left), an adaptive smoothed map (lower left), a trajectory map (upper right), 
and a polar map (lower right). 
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Appendix G 
Parameters used for classification of cell types 
 
% Percentile value for the head direction arc calculation. Arc is between two 
points with 
% values around globalPeak * (p.percentile / 100). Value is in percentage. 
p.percentile = 50; % [%] 
  
% Width of the line that marks the outline of the head direction rate map (polar 
plot). 
% Value is set in points. (1 point = 1/72 inch) 
% Default width is 0.5 points. 
p.hdMapLineWidth = 1; 
  
% Bin width for turning curves (head direction, moving direction rate maps). 
p.hdBinWidth = 3; % [degrees] 
  
% Smoothing size in bins for turning curves (head direction, trajectory, moving 
direction maps). 
% (0 = no smoothing) 
p.hdSmooth = 1; % [bins] 
  
% Head direction measurements are separated in 3 different groups: 
% 1) clockwise direction (CW). Samples with angular velocity v > 
p.hdTurnSpeedThreshold. 
% 2) counterclockwise direction (CCW). Samples with angular velocity v < -
p.hdTurnSpeedThreshold. 
% 3) still. Samples with abs(v) < p.hdStillSpeedThreshold. 
% If p.hdStillSpeedThreshold < abs(v) < p.hdTurnSpeedThreshold, then the sample is 
discarded. 
p.hdTurnSpeedThreshold = 90; % [degrees/sec] 
  
% See p.hdTurnSpeedThreshold. 
p.hdStillSpeedThreshold = 15; % [degrees/sec] 
  
% Format of the output images 
% format = 'bmp' (24 bit) 
% format = 'png' 
% format = 'eps' 
% format = 'jpg' 
% format = 'tiff' (24 bit) 
% format = 'fig' (Matlab figure) 
% format = 'pdf' 
p.imageFormat = 'jpg'; 
  
% DPI setting for stored images 
p.imageDpi = 600; 
  
% Number of time shifts during the time shift analysis. 
% Example. We have recording sampling rate 50 Hz = 20 msec. With 
% p.numTimeShifts == 5, we will include time from -5*20 msec up to 5*20 msec. 
p.numTimeShifts = 5; 
  
% Length of area at the left hand side of track that have to be cut off. 
p.leftCutOff = 0; % [cm] 
  
% Length of area at the right hand side of track that have to be cut off. 
p.rightCutOff = 0; % [cm] 
  
% Bin width for firing rate maps 
p.binWidth = 2.5; % [cm] 
  
% Controls the colour-scaling of a rate map plot. You can use this parameter if you 
want to 
% plot several rate maps with the same colour scale. 
% 
% Format is p.rateMapScalling = [lower_end higher_end], where both values are given 
in Hz. 
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% When empty ([]) or NaN, then the plot is autoscaled: the lowest value of 
% the map is represented by dark blue and the highest value of the map is 
represented by brown. 
% Otherwise everything which is below or equal 'lower_end' value is represented by 
dark blue, 
% and 'higher_end' is represented by brown. It's possible to set only one value to 
NaN: 
% p.rateMapScalling = [NaN 15] will scale from the minimum value of the map up to 
15 Hz. 
% Default is p.rateMapScalling = [];, which means autoscale is used. 
p.rateMapScalling = []; % Hz 
  
% Smoothing size in bins for firing rate maps. (0 = no smoothing) 
p.smooth = 2; % [bins] 
  
% Determines how to deal with bins with no animal activity on the rate map. 
% 'on' means that these bins will be blank and white (nan values are used). 
% 'off' means that these bins will be 0 (results in deep blue colour). 
% See help of function analyses.map. 
p.rateMapShowBlanks = 'off'; 
  
% Low and high speed thresholds. Defines segments of path where animal moves 
slower/faster 
% than the threshold. Such segments are removed from the processing. Set it to zero 
(0) 
% to keep everything. Values are in centimetres per second. 
% Common values found in GridnessScript are [2.5 100] 
p.speedFilter = [2 100]; % [cm/s] 
  
% Number of bins for a rate map. Sometimes it is more desirable to create 
% rate maps in fixed number of bins, independently of bin width in 
% centimetres. The parameter numBins could be either a single value or a 
% two-element vector, i.e. [20 30]. If a single value is provided, then 
% the map is divided in equal number of bins along both axes. 
% !!! Most of the scripts doesn't use this value. Instead bin numbers is calculated 
% through p.binWidth. Check the script you are running if it uses p.numBins. !!! 
p.numBins = 20; % [20x20] for 2D maps 
  
% Threshold for how far a rat can move (150cm/s) in one sample 
p.distanceThreshold = 100; 
  
% Set the maximum time gap in the position data that should be interpolated. 
% If there are gaps with duration longer than this, then the samples will be left 
as NaN. 
p.maxInterpolationGap = 3; % [sec]% default 1 
  
% There could be outliers in tracked position samples. These are commonly several 
% values between longer list of NaNs. They lie far away from 'good' points, so 
% we discard everything that is further away than p.posStdThreshold*STD. If your 
% data is somehow truncated strangely, then try to increase this threshold. 
% Default value is 2.5 
p.posStdThreshold = 2.5; 
  
% This parameter is used during firing rate map calculation. Minimum time an animal 
% must spend in a bin, in order to include this bin in the resulting firing map. 
% In other words if an animal has spent less than p.binMinTime in a bin, the value 
% of this bin is set to NaN. Default value is 0, meaning that all bins matter. 
p.binMinTime = 0; 
  
% During light stimulation analysis we are interested in spikes that occur some 
% time before and after an event. This parameter defines this 'some time'. First 
% value is how much milliseconds we should look back. Second value is how much 
% milliseconds we should include after the event. 
% Default values are 50 ms before the event and 100 ms after the event. 
p.lightPulseOffset_ms = [50 100]; % [ms], millisecond 
  
% Duration of stimulation phase in seconds. In use only for certain scripts! 
% Example: There are light pulses of some frequency for total duration of 
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% stimulationDuration_sec == 5 seconds. 
% Default value is 5, but you should really adjust it to your experiment; 
p.stimulationDuration_sec = 5; 
  
% Alpha value for adaptive smoothing rate map calculation. Also in use for 
% the spatial information calculation. 
p.alphaValue = 10000; 
  
% Nx2 matrix of session name pairs that should be used for rate map cross-
correlation. 
% Session name for NeuraLynx data is the name of the folder where data is located. 
% Consider this example: 
%   You have data in folders (and they appear in exact same order in your input 
file) 
%       N:\wernle\LOOP_Project\18914\Recordings\050913_rec1\02. s1 To ends1 
%       N:\wernle\LOOP_Project\18914\Recordings\050913_rec1\04. s2 To ends2 
%       N:\wernle\LOOP_Project\18914\Recordings\050913_rec1\06. s3 To ends3 
%   which are referenced as A, B, C correspondingly. So you want to correlate 
%   A vs. C and B vs. C. Your parameter should be: 
%   p.correlationSessionNames = {'02. s1 To ends1' '06. s3 To ends3'; '04. s2 To 
ends2' '06. s3 To ends3'}; 
% You can divide long line into smaller ones by using ellipses (...). Example: 
% p.correlationSessionNames = {'02. s1 To ends1' '06. s3 To ends3'; ... 
% '04. s2 To ends2' '06. s3 To ends3'; ... 
% '02. s1 To ends1' '04. s2 To ends2'}; 
% DO NOT FORGET to divide pairs with ; character! 
p.correlationSessionNames = {}; 
  
% Number of bins that are used as 'a single' entity during the correlation of rate 
maps. 
% Example. We have two maps of size 20x20. If we do correlation with 
p.numCorrelationBins == 1, 
% then the result is a single value. However, for p.numCorrelationBins == 2, the 
result will be 
% an array with 20/2 = 10 elements. 
p.numCorrelationBins = 1; 
  
% Some scripts need to divide position data into smaller groups. This value 
specifies the time 
% duration of each group, so that position data is divided into groups of 
p.posSampleTime seconds. 
p.posSampleTime = 0.2; % [sec] 
  
% Some scripts need to divide position data into smaller number of group. This 
value specifies 
% number of these groups. For example, p.posNumGroups == 2 will result in division 
of position 
% data in to halves. It's better to divide into even number of groups, i.e. 
multiple of 2 
p.posNumGroups = 2; 
  
% Threshold that is used to define place field in a 2D firing map. 
% Value above threshold*peak belong to a field (default = 0.2). 
p.fieldThreshold2D = 0.2; 
  
% Minimum number of bins in a place field. Fields with fewer bins are not 
considered as place 
% fields. Remember to adjust this value when you change the bin width (default = 
9). 
p.fieldMinBins = 8; 
  
% Fields with peak value less than p.fieldMinPeak are considered spurious and 
ignored. 
% Default value is 1. If this value is zero, then all fields are processed. 
% Peak value is normally a rate, however, it's units are not necessary Hz. 
p.fieldMinPeak = 1; 
  
% Threshold type, see analyses.placefield1D. 
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% Default is '%' 
p.fieldThresholdType_1d = '%'; 
  
% Threshold value, see analyses.placefield1D. 
% Default is 0.2 
p.fieldThreshold_1d = 0.2; 
  
% Minimum number of row bins in a place field. See analyses.placefield1D. 
% Default is 3 
p.fieldMinRows_1d = 3; 
  
% Minimum number of spikes in a place field. See analyses.placefield1D. 
% Default is 0 
p.fieldMinSpikes_1d = 0; 
  
% Minimum number of bins between adjacent fields. See analyses.placefield1D. 
% Default is 0 
p.fieldMinDistance_1d = 0; 
  
% Cell array of Lineseries Properties which are passed to Matlab's plot function 
% when path plot is created. See Matlab's help (search for Lineseries Properties) 
% for a complete list of possible values. 
% Default values are: grey color and line width of 0.5 points. 
p.plotPath = {'Color', [0.5 0.5 0.5], 'LineWidth', 0.5}; 
  
% Cell array of Lineseries Properties which are passed to Matlab's plot function 
% in order to plot spikes. Here you can define the color of spikes, their shape 
% and size. 
% Defaults are: red point of size 15, no line between spikes 
p.plotSpikes = {'Marker', '.', 'Color', [1 0 0], 'MarkerSize', 15, 'LineStyle', 
'none'}; 
  
% Direction of increasing values along y-axis for plots. The value 
% could be either 'normal' or 'reverse'. 'Normal' means that values increase from 
% bottom to top, 'reverse' means that values decrease from bottom to top. 
% Default value is 'normal'. Set to 'reverse' if you want to flip your rate maps 
vertically. 
% This will also affect path plots. 
p.plotYDir = 'normal'; 
  
% Trajectory plot is normalized to make it smaller. This happens because trajectory 
% is often plotted on the same image as turning curve. Turning curve is normalized, 
% i.e. it's maximum value is 1. 
% Trajectory plot size is p.trajectoryNorm of 1. 
p.trajectoryNorm = 1/4; 
  
% Properties of a trajectory circular plot. Trajectory plot is a histogram of 
animal's 
% positions binned to degrees 0..360. 
% The parameter is a cell array if Lineseries Properties which are passed to 
Matlab's 
% plot function. See Matlab's help (search for Lineseries Properties) for a 
complete 
% list of possible values. 
% Default values are: blue color 
p.trajectoryPlot = {'Color', [0.28 0.6 0.75294]}; 
  
% If set to true, data in each group (see p.posNumGroups) is additionally filtered 
% by moving direction. Animal should move in all four quadrants of a circle during 
% a short period of time. Default is false. 
p.filterByMovement = false; 
  
% Value of the average firing rate filter. Each group of data (see p.posNumGroups) 
% is additionally filtered by firing rate. If average rate of a group is lower 
% than this value, then this group is skipped from the analysis. 
% Value of 0 means that the filter is not used. Value units are Hz. 
p.averageRateFilter = 0; % [Hz] 
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% Search width for the border score calculation. If map is not perfect, but 
contains NaN values 
% along borders, then the search for border pixels can have NaNs. To mitigate this, 
we check 
% searchWidth rows/columns near border and if the closest to the border pixel 
equals to NaN, 
% we search for first non-NaN value in searchWidth rows-columns. Default value is 
8. 
p.borderSearchWidth = 8; 
  
% Definition of walls along which the border score is calculated. Provided by a 
string which 
% contains characters that stand for walls: 
% T - top wall (we assume the bird-eye view on the arena) 
% R - right wall 
% B - bottom wall 
% L - left wall 
% Characters are case insensitive. Default value is 'TRBL' meaning that border 
% score is calculated along all walls. Any combination is possible, e.g. 
% 'R' to calculate along right wall, 'BL' to calculate along two walls, e.t.c. 
p.borderWalls = 'TRBL'; 
  
% Recordings are stored in folders that correspond to animal's name or number. 
% This function returns part of the stored data path, which is believed 
% to be animal's name. 
% Consider these example of sessions from an input file: 
% * (Axona)       C:\work\recordings\<animal_name>\07040501 
% * (Axona)       C:\work\recordings\<animal_name>\trials\07040501 
% * (NeuraLynx)   C:\work\recordings\Ivan\050913_rec1\02. s1 To ends1 
% * (NeuraLynx)   C:\work\recordings\Ivan\050913_rec2 
% To extract animal name from the first path, you have to set animalNameLevel to 1. 
% To extract animal name from the second path, you have to set animalNameLevel to 
2. 
% Third - 2, fourth - 1. 
% Some scripts always use animal name in their output even if p.animalNameLevel is 
set 
% to 0. These scripts treat value 0 as 1. 
p.animalNameLevel = 1; 
  
% This parameter controls whether an animal name should be added to the output 
folder or not. 
% Possible values are 'true' or 'false'. Default is false. 
% Animal name is extracted from the data path. For example, if you have data path 
like this 
% c:\work\recordings\hafting\120814 
% then the animal name is 'hafting'. 
p.addAnimalNameToOutput = true; 
  
% Normalized threshold value used to search for peaks on an autocorrelogram. 
% Ranges from 0 to 1, default value is 0.2. See also analyses.gridnessScore 
p.gridnessThreshold = 0.2; 
  
% Value of minimal difference of inner fields orientation (in degrees). If there 
are fields 
% that differ in orientation for less than this value, then only the closest to the 
centre field are left. 
% Default value is 15. See also analyses.gridnessScore 
p.gridnessMinOrientation = 15; 
  
% Number of iterations to do in the shuffling analysis. The shuffling is 
% done to calculate expected values. 
p.numShuffleIterations = 100; 
  
% Shuffling is performed by making a circular shift of spikes timestamps starting 
from a random point. 
% Circular shift happens on top of position data. p.shuffleCircOffset defines a 
valid interval for 
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% a starting point of the shift. If N is the time of last position sample and 
p.shuffleCircOffset == 20, 
% then a starting point will be a random number in interval [20 N-20]. Default 
value is 20. 
p.shuffleCircOffset = 20; % [sec] 
  
% Shuffling scramble mode. Set the way the spikes are scrambled when calculating 
the 
% expected values. 
% 'random'  Takes a real number of spikes of a cell and redistributes them randomly 
across 
%           the animal's path. Does it for each shuffle iteration. 
p.scrambleMode = 'random'; 
  
% Table that defines what values to shuffle. 
% Each line consists of 3 items: 
%   <entry name>        name of the shuffling entry which is used internally in the 
scripts. Do not change! 
%   <description>       Description string (column name) that will be in the 
resulting Excel file. 
%                       Could be changed, but not recommended. 
%   <shuffle flag>      TRUE or FALSE. If TRUE then shuffling of this variable will 
be performed. 
%                       Change to your needs. 
% By default all shuffling is set to FALSE. 
p.shuffleTable = {... 
    'doGridnessScore', 'Gridness score', false; ... 
    'doInformationContent', 'Information content [bits/spike]', true; ... 
    'doBorderScore', 'Border score', true; ... 
    'doHeadDirection', 'Head direction (mean vector length)', true; ... 
    'doSpeedScore', 'Speed score', true; ... 
    'doCoherence', 'Coherence (unsmoothed map)', true; ... 
    }; 
  
% List of percentile values that should be calculated on shuffled data. 
% Default value [95 99]. 
p.shufflePercentiles = [95 99]; 
  
p.shuffleNumBins = 50; 
  
% Flag that specifies whether to use dual criterion (<one variable> + information 
content) 
% on gridness score and border score distribution. Possible values: false or true. 
% Default is false. 
p.shuffleGridnessDualCriterion = false; 
  
% This parameter controls how rectangular rate maps are plotted. Rectangular rate 
maps have one 
% side shorter than the other side. If p.plotMapsSquare is set to true, then the 
map will be extended 
% to a square (based on the value of maximum side). Otherwise maps are plotted as 
is. 
% Default value is false. 
p.plotMapsSquare = false; 
  
% For analysis that uses EEG specifies what kind of EEG file to use. For example, 
Axona 
% outputs two files one with 250 Hz sampling, and another one with 4800 Hz. p.eegFs 
parameter 
% is used to select one of the file. You have two options: 
% 1. set eegFs to a desired Fs value in Hz. Example, p.eegFs = 300. Then, the 
closest match will be selected. 
% 2. set eegFs to a string 'best', then the eeg file with highest sampling will be 
used. 
% Default value is 'best'. 
p.eegFs = 'best'; 
  
% Argument for analyses.movingDirection function, [n1 n2]. 
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% The moving direction for current sample is calculated using the mean value of 
it's neighbours. 
% mdwindowPoints specifies how many points will be taken before the current sample 
(n1) and 
% how many after (n2). Default value is [1 1], which means that the moving 
direction for 
% sample i is determined by samples i-1 and i+1. Note that [1 1] gives you a 
histogram with 
% very sharp bins at [0 90 180 270] degrees. 
p.mdWindowPoints = [1 1]; 
  
% Argument for analyses.movingDirection function. 
% Moving direction can be calculated not for every position sample, but for every 
'mdStep' sample. 
% Default is 1. 
p.mdStep = 1; 
  
% Width of a bin for speed data binning. 
p.speedBinWidth = 2; % [cm/s] 
  
% Limits of values for speed data binning. This parameter is used along with 
p.speedBinWidth. 
% For example, if p.speedBinLimits = [0 50] and p.speedBinWidth = 2, then 
% the data is binned on range from 0 to 50 cm/s in 2 cm/s bins. 
% If value [0] is provided, then the limits is extracted from the data (min and max 
values). 
p.speedBinLimits = [5 100]; % [cm/s] 
  
% This parameter is used during speed rate map calculation. Minimum time an animal 
% must spend in a bin, in order to include this bin in the resulting speed map. 
% In other words if an animal has spent less than p.speedBinMinTime in a bin, the 
value 
% of this bin is set to NaN. Default value is 10, meaning that only bins in which 
% animal spent more than 10 seconds are included. 
% Value of 0 means that all bins matter. 
p.speedBinMinTime = 0; % [sec] 
  
% Line height for plots that use vertical lines (e.g. spike density on a linear 
track). 
% Could be any positive number, but practical value is somewhere between 0 and 1. 
% Default value is 0.2. 
p.lineHeight = 0.2; 
  
% Axis limits for speed plots. For example, in speed vs rate plot firing rate 
values lie 
% along y-axis and speed values lie along x-axis. y-axis limits are [0 
max(firingRate)+3]. 
% p.speedPlotLimits allows you to set fixed limit for x-axis. Default value ([]) 
uses autoscaling. 
% Otherwise, you should provide both min and max value: p.speedPlotLimits = [min 
max]. 
p.speedPlotLimits = [0 50]; 
  
% Experimental! Used during shuffling of gridness score. Number of expanding 
circles taken before 
% and after the radius which corresponds to gridness score for real data. Seems 
% that smaller values work better. At least one number must be > 0! 
p.gridShuffleRadii = [1 1]; 
  
% Defines the search zone around the border of a track. 
% The value should be given in range 0.5-1. It corresponds to 
% the percentage of the track length. For example, if track length is 100 cm 
% and borderThreshold is 0.6 (track is zero centred), then the function 
% will look for peaks in two zones: 30..50 cm and -30..-50 cm. Useful 
% if animal doesn't run until the very end of the track. 
% Default value is 0.6. 
p.runDetectionBorderThreshold = 0.6; % [perc] 
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% Sometimes animal doesn't immediately run back on the track, rather 
% stays at the end/beginning of the track for some time. If you don't 
% want to include such activities in the final left/right runs, then set 
% this property to 'on'. Otherwise set it to 'off'. Default value is 'on'. 
p.runDetectionOmitEdgeActivity = 'on'; 
  
% Value of a minimum run duration in seconds. If provided, then runs that are 
% shorter than this value, are discarded. Default value is 0, meaning all 
% runs are stored. 
p.runDetectionMinDuration = 0; % [sec] 
  
% Value of a minimum run length in cm. If provided, then runs that 
% are shorter than this value will be discarded. 
% Default value is 0, meaning that all runs are kept. 
p.runDetectionMinLength = 0; % [cm] 
  
% Type of the value in p.runDetectionThreshold. Can be either '%' or 'direct'. 
% '%' means that the p.runDetectionThreshold is given as percentage of track 
length. 
% 'direct' means that p.runDetectionThreshold has the same units as your positions 
(normally cm), 
% and it is the offset from track edges. 
% See examples in description of p.runDetectionThreshold. 
% Usage of 'direct' value might be helpfull if you have recordings on a linear 
track of different 
% lengths and you always want to remove exact amount of cm from your tracks. 
p.runDetectionThresholdType = '%'; 
  
% The detection of runs on linear track is based on peak detection of animal's 
% x-axis trajectory. This parameter controls the amount above surrounding data 
% for a peak to be identified. Larger values mean the algorithm is more selective 
% in finding peaks. Default value is 1, which will result in all peaks 
% identification (for example if animal stops, moves backwards a bit and then 
% goes forward again). Another possible value is [], which equals to (max(x0)-
min(x0))/4). 
% If your runs are detected incorrectly, you can try to modify this parameter. 
% Start by setting it to []. 
p.runDetectionSelectivity = 1; 
  
% The percentage of the total linear track length that will be ignored in each end 
% of the track. Animal activity at the end zones of the track will not be 
% included in the analyses. For example, if your linear track is 100 cm and 
% p.runDetectionThreshold = 5, then runs will be detected in range -95..95 cm. 
% Note! This parameter is different and independent of 
p.runDetectionBorderThreshold. 
% Valid range: 0 - 49. 
% Default value is 5. 
p.runDetectionThreshold = 5; % [perc] 
  
% One or several thresholds to separate grids in different modules based on their 
spacing. 
% It's primary purpose is to colour-code dots on plot that shows distribution of 
grid spacing 
% and distance. If 0, then no colour-coding is used. 
% If for example p.spacingModuleThresholds = [10], then all dots that have spacing 
0-10 cm will 
% have identical colour. Other dots (10+) will have a different colour. 
% If p.spacingModuleThresholds = [10 20], then three colours will be used. One for 
0-10 spacing, 
% another for 10-20, and another one for 20+. 
p.spacingModuleThresholds = [0]; % [cm] 
  
% This parameter is used during analysis of prospective firing of speed cells. 
% It defines the minimum and maximum offset for spikes. Spikes are shifted 
% backwards and forward. For each shift a correlation between firing rate 
% and speed is calculated. 
% Default value is [-400 400]. 
p.speedProspectiveLimit_ms = [-400 400]; 
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% This parameter is linked to p.speedProspectiveLimit_ms. It defines 
% the step size for spike shift. Spikes are shifted by values defined by vector: 
% 
p.speedProspectiveLimit_ms(1):p.speedProspectiveBinWidth_ms:p.speedProspectiveLimit
_ms(2) 
% Default value is 20. 
p.speedProspectiveBinWidth_ms = 20; 
  
% Controls the colour-scaling of a speed map plot. You can use this parameter if 
you want to 
% plot several speed maps with the same colour scale. 
% 
% Format is p.speedMapScalling = [lower_end higher_end], where both values are 
given in cm/s. 
% When empty ([]) or NaN, then the plot is autoscaled: the lowest value of 
% the map is represented by dark blue and the highest value of the map is 
represented by brown. 
% Otherwise everything which is below or equal 'lower_end' value is represented by 
dark blue, 
% and 'higher_end' is represented by brown. It's possible to set only one value to 
NaN: 
% p.speedMapScalling = [NaN 15] will scale from the minimum value of the map up to 
15 Hz. 
% Default is p.speedMapScalling = [];, which means autoscale is used. 
p.speedMapScalling = []; % cm/s 
  
% Width of the Gaussian smoothing kernel applied to during calculation of speed 
score(s). 
% Smoothing of instantaneous firing rate is affected by this value. 
% Default value is 400 ms. 
p.speedSmoothing_sec = 0.4; 
  
% Defines filter that is applied to position data. Possible values are: 
% 'off' - no filtering is done 
% 'mean' - median filter by Matlab function medfilt1. Default order is 15. 
% Default is 'mean'. 
p.posFilter = 'mean'; 
 
 
 




