
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Ba
ch

el
or

’s
th

es
is

Johannes Aas
Sondre Jørgensen
Sang Ngoc Nguyen

Monitoring of Telephony
Infrastructure for Receival of
Emergency Calls

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Ernst Gunnar Gran
May 2023

Johannes Aas
Sondre Jørgensen
Sang Ngoc Nguyen

Monitoring of Telephony Infrastructure
for Receival of Emergency Calls

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Ernst Gunnar Gran
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Monitoring of Telephony Infrastructure for
Receival of Emergency Calls

Johannes Aas, Sondre Jørgensen and Sang Ngoc Nguyen

2023/05/21

Abstract

Helsetjenestens driftsorganisasjon for nødnett HF (HDO) provides services that real-
ize the Norwegian Emergency Reporting Service called "Nødnett". Monitoring
traffic and performance is a crucial part of ensuring the critical infrastructure op-
eration. The Norwegian emergency call network consists of a number of different
components. HDO wanted to expand their ability to efficiently monitor a partic-
ular piece of hardware component that exists within their network called SBC
EDGE. This thesis will cover the development of a so-called Prometheus exporter,
a tool that collects data and helps convert them into metrics that HDO can use in
their emergency call network monitoring system. This will contribute to monit-
oring trends and performance and provide information that will help secure the
robustness of this infrastructure.

The thesis starts with an introduction to the project and then the background
information necessary to understand it. Afterwards, the requirements of the de-
veloped product, methodology used for developing it, its design choices, imple-
mentation, its collected data, and usage will be presented. Finally, the decisions
made throughout the project and security aspects related to the product will be
discussed, followed by a conclusion of the project.

iii

Sammendrag

Helsetjenestens driftsorganisasjon for nødnett HF (HDO) leverer tjenester som real-
iserer den nasjonale medisinske nødmeldetjenesten som heter "Nødnett". Monitor-
ering av nettverkstrafikk og ytelse er en viktig del av prosessen for å drive denne
kritiske infrastrukturen. Nødnettet består av flere komponenter og HDO ønsket å
utvide deres muligheter til å monitorere et spesifikt komponent av deres nettverk
kalt SBC EDGE. Denne rapport vil ta for seg utviklingen av en såkalt Prometheus
exporter, et verktøy som henter data og konverterer disse til metrikker som HDO
kan integrere som en del av deres monitoreringssystemer. Å monitorere trender,
ytelse og informasjon vil bidra med å sikre robustheten av deres infrastruktur.

Rapporten starter med en introduksjon av prosjektet og bakgrunnsinformas-
jonen som er nødvendig for å forstå den. Etterpå vil kravspesifikasjon av produk-
tet, metoden brukt for å utvikle den, dens designvalg, implementasjon, data som
blir samlet og bruksanvisning bli diskutert. Til slutt diskuteres beslutninger tatt
underveis i prosjektet og sikkerhetsutfordringer knyttet til produktet som har blitt
utviklet, etterfulgt av en konklusjon av prosjektet.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
Glossary . xix
1 Introduction . 1

1.1 Project Background . 1
1.2 Task Description . 2
1.3 Project Goals . 3
1.4 Constraints . 3
1.5 Project Scope . 4
1.6 Target Audience . 4
1.7 Delimitations . 5
1.8 Organization . 5

1.8.1 The Project Group . 5
1.8.2 Roles and Responsibilities . 5

1.9 Structure of the Report . 6
2 Background . 9

2.1 Theory and Technologies . 9
2.1.1 Event Monitoring . 9
2.1.2 Time Series Database (TSDB) 11
2.1.3 Containers . 11
2.1.4 REST API . 13

2.2 Software . 15
2.2.1 Prometheus . 15
2.2.2 Grafana . 18
2.2.3 Docker . 20
2.2.4 The Go Programming Language 21
2.2.5 The API of the SBCs . 23

3 Requirements . 25
3.1 Non-Functional Requirements . 25

vii

viii Johannes, Sondre and Sang: HDO Monitoring

3.2 Functional Requirements . 26
4 Methodology . 29

4.1 Choice of Programming Language . 29
4.2 Tools Used for Development . 30
4.3 Usage of a Development Model . 30
4.4 Development and Testing . 31

5 Design . 33
5.1 Overview . 33
5.2 Where the Exporter Fits Inside HDOs Infrastructure 35

5.2.1 Data Groupings and Collectors 36
5.2.2 Docker . 36
5.2.3 Temporary Storage of Certain Data 36

5.3 Design of the Exporter . 37
5.3.1 Collector Design . 38

6 Implementation . 41
6.1 Terms and Standards . 41

6.1.1 Terms . 41
6.2 Usage of Pointers . 42

6.2.1 Error Handling . 42
6.3 The Go Prometheus Package . 43

6.3.1 The Describe Interface . 43
6.3.2 The Collect Interface . 43

6.4 Implementation of Code . 44
6.4.1 The HTTP Package . 45
6.4.2 Config Package . 47
6.4.3 Database Package . 49
6.4.4 Utils Package . 52
6.4.5 Main Package . 53

6.5 Collector Package . 54
6.5.1 HTTP Handler and Probe Interface 54
6.5.2 Collectors . 55
6.5.3 System Collector . 59
6.5.4 Routingentry Collector . 59
6.5.5 Comprehensive Changes to the Implementation 60

7 Collected Data . 63
7.1 Availability . 63
7.2 Why is the Data Collected? . 63
7.3 Data Groups Used by the Exporter . 64

8 Usage . 67
8.1 Configuration of the Exporter . 67
8.2 Installation and Deployment . 68

8.2.1 Deployment of the Exporter as a Docker Image 68
8.2.2 Installation and Deployment Without Docker 69

8.3 Monitoring Metrics Produced by the Exporter 70

Contents ix

9 Discussion . 71
9.1 Technical Discussion . 71

9.1.1 Preexisting Security Measures 71
9.1.2 API Authentication . 72
9.1.3 Security of the Code . 73
9.1.4 Using the Exporter as Open Source 73
9.1.5 Issues That Were Revealed During Testing 74

9.2 Project Execution . 75
9.2.1 Communication . 75
9.2.2 Working Process . 75
9.2.3 Planning . 75
9.2.4 Meetings . 75
9.2.5 Time Tracking . 76
9.2.6 Report . 77
9.2.7 Development Model . 77

10 Conclusion . 79
10.1 What Has the Group Achieved? . 79
10.2 Further Work . 79

10.2.1 Potential Improvements . 79
10.2.2 Ways to Improve the Implementation 80

Bibliography . 81
A Data Collected . 87
B Metrics Output . 93
C Standard Agreement and Confidentiality Agreement 121
D The Project Plan . 131
E Task Description . 149
F Repository . 155
G Minutes of Meeting . 161
H Time Tracking . 205

Figures

1.1 Data Flow and Exporter Function Inside of HDO’s Infrastructure . . 2

2.1 The Process of Event Monitoring . 10
2.2 Container Example . 12
2.3 Container Orchestration . 13
2.4 REST API Example . 14
2.5 Multi Target Exporter . 16
2.6 Interaction Between a Prometheus Server and Exporter 18
2.7 Grafana Dashboards . 19
2.8 SBC API . 23

5.1 Exporter Tasks . 34
5.2 Data Flow and Exporter Function in HDO’s Infrastructure 35
5.3 Design of the Exporter . 37
5.4 Collector Design . 39

6.1 The Processes of the Collectors . 44
6.2 The Authentication and Data Collection Process 46
6.3 Expiration of Data . 53
6.4 Implementation Overview . 56
6.5 The First Version of the Implementation 60
6.6 The Current Implementation Version 61

7.1 HDO’s Two Test SBCs Inside of Prometheus 64
7.2 CPU Usage Inside of Prometheus . 64

xi

Tables

6.1 The Structure of the Table Storing Routing Data 50

xiii

Code Listings

2.1 An example of a function in Go. 22

6.1 The describe interface in the Prometheus Go package. 43
6.2 The collect interface in the Prometheus Go package. 44
6.3 The function for connecting to an SBC. 45
6.4 The function for retrieving a session cookie before expiration. . . . 45
6.5 The function for retrieving API data. 47
6.6 Example of a struct used by the collectors. 47
6.7 Describing the configuration file. 47
6.8 Reading the configuration file. 48
6.9 Returning SBC hosts’ configuration used by the collectors. 48
6.10 Retrieving session cookie from database. 49
6.11 Inserting session cookies into the database. 49
6.12 Storing routingtables and entries into the database. 50
6.13 Retrieving routing data from the database. 51
6.14 Fetching chassis information from either an SBC or database. 52
6.15 The function Expired(). 53
6.16 The main function. 54
6.17 The function Probehandler(). 54
6.18 Interface Probe and Prometheus interfaces. 55
6.19 The Linecard collector. 57

8.1 Layout of the configuration file. 68

xv

Acronyms

HDO Helsetjenestens driftsorganisasjon for nødnett HF. iii, v, xi, 1–6, 10, 25–27,
30–33, 35, 36, 51, 57, 59, 60, 63, 64, 70–74, 79, 80, 149

NTNU Norwegian University of Science and Technology. 4–6

API Application Programming Interface. xix, 5, 13, 23, 27, 31, 33, 36–38, 42, 47,
49, 51, 56, 57, 59, 64, 70, 72–74, 87

CPU Central Processing Unit. 64, 73, 74, 80

DIGSEC Digital Infrastructure and Cyber Security. 5

DoS Denial-of-Service. 72

HTTP Hypertext Transfer Protocol. xix, 13–15, 18, 23, 31, 36–38, 42, 44, 45, 47,
49, 52–55, 67

IP Internet Protocol. 2, 26, 35, 45, 49, 50, 52, 59, 73

ISDN Integrated Services Digital Network. 2, 35

JSON JavaScript Object Notation. 14

PHP PHP: Hypertext Preprocessor. xix, 27, 36–38, 45, 52, 60

REST API Representational State Transfer Application Programming Interface.
xix, 1–3, 5, 13, 14, 23, 25, 31, 33, 36, 63, 72, 73

SBC Session Border Controller. iii, v, xix, 1–5, 17, 23, 25, 26, 31–33, 35–38, 42,
45, 49, 51, 52, 54, 56, 57, 59–61, 63, 64, 66, 69, 72–74, 79, 80

SIP Session Initiation Protocol. 2, 35

SQL Structured Query Language. 49, 72

TLS Transport Layer Security. 73

xvii

xviii Johannes, Sondre and Sang: HDO Monitoring

TSDB Time Series Database. 11, 15

URI Uniform Resource Identifier. 14

URL Uniform Resource Locator. 22, 23, 36, 42, 43

VPN Virtual Private Network. 71

XML Extensible Markup Language. 23, 33, 38, 47, 56, 57

ZTA Zero Trust Architecture. 71

Glossary

PHP Session Cookie When connecting to an SBCs REST API through HTTP, it
returns a PHP session cookie that is required when fetching data from the
API. 27, 36–38, 45, 52, 60

Prometheus Collector A Prometheus collector, also called a probe, is in this pro-
ject intended to describe each component within the exporter responsible
for collecting a specific set of data and format them into metrics. In the case
of this bachelor’s thesis one collector is for instance responsible for collect-
ing system resource usage data from all the SBCs. 26, 27, 36, 42, 43, 59,
64

Prometheus Exporter A Prometheus exporter is a scripted program that func-
tions as a custom data collector, collecting data from a specific source and
formatting it into metrics readable by Prometheus. 25–27, 43

Prometheus Server Used in this project to refer to the server or servers that col-
lect and store data from one or more Prometheus exporters. 25, 43

Ribbon Communications The manufacturer [1] of the SBCs, its REST API and
associated documentation. This documentation is not accessible without be-
ing a customer of Ribbon Communications, but it contains more than 1000
pages of information about data that can be collected and how to use the
API. 3, 25, 45

Scrape A scrape in Prometheus terms, is each time a Prometheus server or other
processes sends a HTTP-request to an exporter to collect data from this ex-
porter.. 25, 35, 42, 43, 59

xix

Chapter 1

Introduction

This chapter will introduce the background of the project, the task at hand, the
goals of the project, constraints, scope, delimitations, organization, and thesis
structure.

1.1 Project Background

Helsetjenestens driftsorganisasjon for nødnett HF (HDO) [2] is a Norwegian or-
ganization responsible for delivering various services that realize the Norwegian
Emergency Reporting Service called "Nødnett" [3]. HDO’s goal is to deliver secure,
reliable, and user-friendly services for emergency networks in all municipalities
of Norway.

In recent years, HDO has rebuilt its infrastructure to accommodate for the
Norwegian emergency calls and created solutions to analyze and uncover errors
within the network in real time. This network consists of a number of components
and monitoring solutions which are a crucial part of operating this infrastructure.
The focus of this project is on a particular hardware component, the so-called
Session Border Controller (SBC) [4]. SBCs are an essential part of HDO’s infra-
structure for handling emergency calls. A SBC is essentially a router that protects
communication between two parties over networks [5]. HDO wish to use an ex-
isting Representational State Transfer Application Programming Interface (REST
API) that can communicate with these SBCs. This REST API can be utilized to
retrieve various useful data regarding the traffic that this component handles, as
well as performance data. Collecting and monitoring these data can prove useful
for monitoring trends, more efficiently uncovering potential errors, and prevent-
ing errors or performance problems in advance. They wish to do so by collecting
data from the SBCs with this REST API, by using a combination of different tech-
nologies such as container technology such as Docker [6] and open-source tools
used for monitoring and storing data such as Grafana [7], Prometheus [8] and
Loki [9].

1

2 Johannes, Sondre and Sang: HDO Monitoring

As of January 2023, HDO has not utilized this REST API, which is available on
the SBCs. Therefore, HDO wish to make use of this REST API by collecting data
to be used to monitor both the trends in emergency calls and the performance
trends of these SBCs.

1.2 Task Description

The task of this project is to integrate an additional solution to HDO’s infrastruc-
ture called an exporter. HDO already have such an exporter for their SBC CORE
network, but not their SBC EDGE network as shown in figure 1.1. Furthermore,
the figure illustrates HDO’s infrastructure for receiving emergency calls. The SBC
CORE is the main network used for handling emergency calls and uses Internet
Protocol (IP)/Session Initiation Protocol (SIP) for communication. The SBC EDGE
converts from IP/SIP to Integrated Services Digital Network (ISDN), which is what
emergency receptions use to communicate.

Figure 1.1: This figure shows the flow of data and the exporters function within
HDO’s infrastructure. The dotted lines illustrates the exporter HDO wish to be
built.

Chapter 1: Introduction 3

They want to use the exporter to collect data from the SBCs about its call data
and performance data. They wish to do so using the existing REST API provided
by Ribbon Communications, the manufacturer of the SBCs, and feed these data
to Prometheus. These data have to be stored in such a way that allows them to be
used by employees at HDO to monitor and alert trends in a monitoring application
called Grafana. The solution must be able to be deployed on a virtual machine in-
side a Docker container. In addition, the solution must be able to collect data from
multiple SBCs at the same time and be configurable in a way that allows the user
to specify which SBCs it will run on, and more.

1.3 Project Goals

This section will outline the group goals for this project in terms of effect, result,
and learning goals.

Effect Goals

By developing the exporter, the goal in terms of effect is to utilize the existing REST
API to make emergency call data and SBC performance data more accessible.
This will make monitoring trends in the emergency call network easier and more
efficient.

Result Goals

The exporter will assist the HDO employees in identifying potential faults in the
SBCs, so they can address the issues proactively and prevent potential downtime
or quality loss. Being able to uncover faults or errors in the network using the
exporter will allow employees at HDO to respond to issues sooner, which will
facilitate results in improved reliability and quality of emergency calls.

Learning Goals

After working on this project, the group’s learning goal is to gain knowledge of
how to secure and operate social critical infrastructure and how to contribute to
Norway’s emergency preparedness by making emergency call data more accessible
and monitorable. The group also wishes to acquire more knowledge of tools used
to develop, operate, and uncover trends in applications and infrastructure.

1.4 Constraints

Time Constraints

The time constraints for the project range from the first school day after the Christ-
mas holidays of 2022 (11th of January 2023) and last until the projects deadline

4 Johannes, Sondre and Sang: HDO Monitoring

(22nd of May 2023). The project report has to be delivered before the 22nd of
May 2023.

Technological Constraints

The product that is going to be developed has several technological constraints.
First, the solution should be able to run inside a Docker container. Additionally,
the solution should be configurable to allow users to choose which SBCs to collect
data from. Data collection from multiple SBCs at the same time is also required.

1.5 Project Scope

This project covers multiple subject areas; such as technological infrastructure,
which includes programming and using technologies such as Prometheus and
Docker, but also understanding the complex network that handles emergency
calls.

1.6 Target Audience

This project consists of both a report and a product that the employer can use as
part of their own infrastructure. However, this project could be of interest to other
people as well.

Norwegian University of Science and Technology (NTNU)

The report for the project will be of interest to other students and academic pur-
poses.

Employer

This project report will be of interest to our employer HDO, not to mention their
particular interest in the product that the group has developed for them, as it
improves their ability to monitor their infrastructure.

Third Parties

These SBCs are widely used in leading cloud-based services. Services such as Mi-
crosoft Teams, Zoom Phone, Ring Central, Cisco, Genesys, Five9, Nice CXone,
Talkdesk, Mida, AnyWhere365, and others are known to use these SBCs [4].
Therefore, service providers such as these might find the product both interesting
and useful.

Chapter 1: Introduction 5

1.7 Delimitations

The project will be limited to the creation of a product to monitor data collec-
ted from the SBC REST API. This product creates a system for collecting data
from emergency call data and SBC performance data and storing the data in Pro-
metheus to monitor future potential events related to errors or weaknesses within
HDO’s infrastructure regarding the SBCs. The group is explicitly going to work
with collecting data from the SBC REST API. The solution could be developed to
collect data from other APIs as well, but the decision not to was made because
it is not an integral part of making the solution work for the API specified in the
task description (see Appendix E).

1.8 Organization

This section describes the project group and other parties involved in this project.

1.8.1 The Project Group

The project group consists of three students from NTNU in Gjøvik who are fol-
lowing the Bachelor’s degree program Digital Infrastructure and Cyber Security
(DIGSEC) [10]. The group has a broad coverage of knowledge from all mandat-
ory courses the group has taken as part of the study plan. The group’s knowledge
is not specialized in any way; the group only has general knowledge of different
technological concepts with limited experience working on larger projects such as
this one. However, the most relevant knowledge for this specific project would be
container technology using Docker and general basic programming.

1.8.2 Roles and Responsibilities

During the making of the project plan (see Appendix D) in the early stages of Janu-
ary 2023, the group chose to delegate every group member their own respective
roles and responsibilities. Every group member is responsible for developing the
product and writing the project report. In addition, we have a few special roles
that we delegated to the members of the group.

Group leader

The group leader for the project was decided by the group members to be Jo-
hannes Aas. He is responsible for delegating tasks to all members and for making
sure the project is moving forward and progressing.

Contact person

The contact person is responsible for communication between the group, the su-
pervisor and the employer. For this project that person is Sondre Jørgensen.

6 Johannes, Sondre and Sang: HDO Monitoring

Secretary

The secretary for the project is Sang Nguyen, he is responsible for making the
minutes of the meetings and preparing questions and topics of discussion for meet-
ings with the supervisor and employer.

Supervisor

The supervisor for the group project is Ernst Gunnar Gran, who is an associate
professor working in the Department of Information Security and Communication
Technology [11] at NTNU. His responsibility is to provide guidance and feedback
throughout the project period.

Employers

The employer contact person for the project is Stig Atle Haugen, who works as
Operations Engineer ICT at HDO. His responsibility is to decide the requirements
for the product that the group will develop. Additionally, Stig Atle Haugen gave
the group advice and feedback on the development of the product. Haugen should
be contacted for assistance in case of any technological issues with respect to
the servers or virtual machines provided by Helsetjenestens driftsorganisasjon for
nødnett HF (HDO).

1.9 Structure of the Report

The project report consists of 10 chapters in total. The chapters should be read
successively, starting from Chapter 1 and ending in Chapter 10. In addition to
these chapters, the report also includes a list of figures, tables, glossaries, and
acronyms prior to chapter one, and references and appendixes after chapter 10.
The following sections give a brief description of each chapter.

Chapter 1 - Introduction

The introduction provides a brief description of the background of the project. It
also includes the task description, project goals, organization, constraints, delim-
itations, target audience, and thesis structure.

Chapter 2 - Background

The background section has been divided into two sections, Theory and Technolo-
gies and Software. The purpose of this chapter is to provide the background know-
ledge necessary to understand the content presented in the subsequent chapters.

Chapter 1: Introduction 7

Chapter 3 - Requirements

This chapter will describe the requirements that were established for the product.
The chapter consists of two sections; non-functional and functional requirements.

Chapter 4 - Methodology

This chapter will discuss the programming language chosen to develop the ex-
porter, the tools used to do so, and how development and testing were carried
out.

Chapter 5 - Design

The design chapter describes the overall design of the product, including its main
components and the inner workings of the architecture.

Chapter 6 - Implementation

This chapter will discuss the code for implementation, the choice of features, and
the details of the architecture that has been developed. Additionally, we will dis-
cuss why it was decided to change the implementation to an overall better and
more scalable version.

Chapter 7 - Collected Data

This chapter will discuss the availability of the data that are collected, why they
are collected, and what kind of value they create.

Chapter 8 - Usage

This chapter explains how to install, configure, and run the exporter with or
without Docker.

Chapter 9 - Discussion

This chapter will discuss the security aspects related to the product that has been
developed and some technical difficulties discovered during testing and how they
were addressed. Additionally, different aspects of the project related to the process
of creating the product and thesis will be discussed.

Chapter 10 - Conclusion

This chapter concludes the report and discusses what the group has been able to
achieve. Furthermore, it will discuss further work related to the final result and
the possible improvements that can be made to the product.

Chapter 2

Background

The background section has been divided into two sections, Theory and Technolo-
gies, and Software. The purpose of this chapter is to provide the background know-
ledge necessary to understand the content presented in the subsequent chapters.

2.1 Theory and Technologies

The first section of the background will explain different concepts related to both
the product developed by the group and the bachelor thesis you are currently
reading.

2.1.1 Event Monitoring

To better understand the report and the product, it is essential to understand the
concept of event monitoring. Event monitoring in computer science involves the
tracking and evaluation of events that occur within a system [12]. Event mon-
itoring is frequently used in computer networks to identify and address security
concerns, performance difficulties, and other potential issues. By doing this, the
system administrator can address problems before they cause problems for the
entire system. Events such as these can occur when certain values exceed or fall
below a certain threshold.

One way of conducting event monitoring is to use log files to record events as
they occur in real time. There are different software and hardware parts of a sys-
tem that can be used to produce log files for event monitoring, such as operating
systems, network devices, and applications. After these logs have been produced,
they may be examined by a user (often described as a subscriber) to look for trends
and abnormalities that may point to potential issues or concerns.

9

10 Johannes, Sondre and Sang: HDO Monitoring

Another way of monitoring events is by using specialized software tools cre-
ated especially for this purpose. An example of such a tool is Prometheus [8]. We
will learn more about this tool later in the technologies section of the background
chapter. These specialized tools are able to perform tasks such as real-time mon-
itoring of network traffic, system performance, and other important indicators.

Figure 2.1 shows the basic process of practicing event monitoring. It starts
with a user tracking various events through the two aforementioned methods of
logs or special software. Afterwards, the user reviews and evaluates these events
to find potential issues. The final step of the process is to address the potential
issues gathered from the previous evaluation step.

Figure 2.1: This figure illustrates the basic process of event monitoring.

In addition, these tools can also send warnings to the user when certain thresholds
are reached or suspicious activity is discovered. An example of this is when the
temperature of a CPU exceeds a certain threshold. Lastly, these warnings may be
utilized to start automated responses called alerts to notify operators so that they
can address the issue manually.

In addition to detecting and responding to problems, event monitoring can
also help users improve system performance and optimize resource usage. This
can be achieved by collecting and tracking key values such as CPU usage, net-
work bandwidth, and disk I/O. By doing this, system administrators can identify
bottlenecks and other issues that may impact performance and take the necessary
steps to address them.

In summary, event monitoring is the act of tracking and evaluating event oc-
currences within a system. It may be used to improve the security, performance,
and reliability of computer systems. The two main ways of doing this are by us-
ing specialized tools such as Prometheus or by using log files to record events in
real time. Therefore, it is a very important concept for people operating critical
systems such as our employers HDO, because it allows them to ensure that their
systems are running optimally by monitoring the system and addressing potential
issues.

Chapter 2: Background 11

2.1.2 Time Series Database (TSDB)

To understand how event monitoring is achieved, first we must talk about an es-
sential concept that is used for this. The concept is called a Time Series Database
(TSDB) and it is a specialized type of database that is designed both to store and
to handle timestamped data [13].

Timestamped data are types of data that have a time and a date attached that
indicate when that data was generated. The TSDBs are commonly used to store
data that change over time, such as performance data and financial data. For this
reason, TSDBs are frequently a part of applications or systems where data needs
to be analyzed in real time, such as in a monitoring system. Examples of applic-
ations that use TSDBs are Prometheus [8], MongoDB [14], Graphite [15] and
InfluxDB [16], among others.

One of the key characteristics of a TSDB is the ability to handle large volumes
of data efficiently. This means that they are well suited for tasks such as when
one needs to monitor large amounts of data from a large system. Compared to a
traditional database, TSDBs are much better suited for handling and storing large
amounts of data [17]. This is because time series databases are optimized for this
task and have been purpose-made for storing and querying time-stamped data in
real time.

Another key feature of a TSDB is the ability to handle data with high velo-
city [18]. High-velocity data is data that arrives at a high frequency, such as sensor
data, performance data, log data, or financial market data. TSDBs typically use
specialized algorithms to handle the high volume and velocity of data.

In addition to efficient data storage and retrieval, time series databases also
offer advanced and efficient querying and analysis capabilities. Some of the com-
monly used query operations in time series databases include aggregation, filter-
ing, and grouping. The queries can be used to extract valuable insights from the
data for analysis in real time.

In conclusion, TSDBs are specialized databases that are designed to store,
handle, and retrieve time-stamped data. They are able to handle large volumes
of high-velocity data efficiently. Lastly, they are well suited for tasks such as mon-
itoring and analysis, thanks to the advanced and efficient querying operations
available when working with them.

2.1.3 Containers

Containerization is a technology that has been developed to make the deploy-
ment and management of software applications easier and more efficient [19].
A container is known as a lightweight and portable package that consists of an

12 Johannes, Sondre and Sang: HDO Monitoring

application and its dependencies that have been encapsulated together into one
unit that runs on a container engine on the host operating system.

Figure 2.2 shows the basic components of a containerized application. A con-
tainer encapsulates applications and software dependencies. These two compon-
ents then run on top of a container engine that runs on top of a host operating
system that finally runs on some hardware.

Figure 2.2: This figure shows an example of a container.

The use of containers has several benefits, including increased efficiency, scalab-
ility, and portability [20]. These containers can be easily deployed and run on any
machine that supports containerization technology, such as Docker [21]. By en-
capsulating the application and its dependencies into one unit, containers can
provide a consistent and reproducible environment for running the application
regardless of the underlying operating system or hardware. This makes it much
easier to deploy applications across different environments, such as development,
testing, and production.

Another advantage of containers is that they are lightweight and consume
minimal resources compared to virtual machines [22]. This allows multiple con-
tainers to be run on a single machine without causing significant performance
overhead. This enables applications to be scaled up or down quickly and easily to
meet changing demands.

Yet another advantage of containerization is the ability to isolate applications
from each other. Each container runs in its own isolated environment, with its
own resources and network connections, reducing the risk of conflicts between
different applications. This also reduces the risks of one application causing dam-
age to another if one of them gets infected with some kind of virus.

Chapter 2: Background 13

Containerization can be used together with container orchestration tools [23],
such as Kubernetes [24], to manage the deployment, scaling, and monitoring of
containerized applications. These tools provide a way to automate many of the
tasks associated with managing containers, making it easier to deploy and scale
applications across large, distributed environments.

Figure 2.3 illustrates the orchestration of multiple containers. Multiple con-
tainers may run on a physical or virtual machine, called a worker node. All of
the worker nodes part of a container orchestration are connected to a node that
manages these worker nodes, this node is called the master node.

Figure 2.3: Example of orchestration of multiple containers.

In conclusion, containerization is a powerful technology that provides a light-
weight and efficient way to deploy and manage software applications. Its ability to
provide portability, scalability, and isolation makes it an essential tool for software
development and deployment.

2.1.4 REST API

Representational State Transfer Application Programming Interface (REST API)
is a widely used software architectural style to design web-based software sys-
tems [25]. It is based on the HTTP protocol and works with the interaction between
the client and the server applications. An API that uses the REST architecture is
often described as a RESTful API. RESTful APIs provide a standardized way of
accessing and manipulating resources over the Internet. For this reason, they are

14 Johannes, Sondre and Sang: HDO Monitoring

often used to build modular and scalable web applications.

Figure 2.4 shows a client and a server communicating using a REST API. In
this figure, a client sends different requests to the server using the different HTTP
methods that the REST API provides to the server. The information sent to the
server will then perform different tasks, depending on the type of HTTP method
used. For example, if a user uses the GET method, then they are requesting to
receive some type of data from the server. The client uses the JavaScript Object
Notation (JSON) format to use the HTTP methods in the REST API. Communica-
tion between the server and REST API uses HTTP.

Figure 2.4: This figure illustrates an example of a system with an integrated REST
API solution for manipulating and accessing resources.

The main design principles of the REST architecture are statelessness, uni-
form interface, caching, layered system, and client-server communication [25].
A stateless system means that each request from the client must contain all the
necessary information to complete the request, without relying on any previous
state or context from the server. This allows for scalability, because it means that
the server can process requests independently and without any dependencies on
previous requests.

Uniform interface is a second key principle of RESTful architectures. It defines
a consistent way to access and manipulate resources. This includes using HTTP
operations such as GET, POST, PUT, and DELETE, among others, to represent dif-
ferent operations on resources. RESTful architectures also use Uniform Resource
Identifier (URI) to identify resources [25]. This provides a standardized and pre-
dictable way for clients to interact with the API, making it easier to understand
and use.

Chapter 2: Background 15

Caching is another important principle of RESTful architectures. It allows the
client to store and reuse the responses. This can improve performance and reduce
the load on the server, since the client can retrieve cached responses instead of
requesting them from the server every time.

The layered system architecture is another key principle of REST. It allows the
separation of responsibilities between different components of the system. This
can improve scalability, as different layers can be added or removed without af-
fecting other layers. Additionally, this can also improve security by adding layers
of protection between the client and the server.

Lastly, the client-server architecture is a very important principle of RESTful
architectures. It separates the responsibilities of the client and the server applic-
ations. This allows for decoupling of the presentation and logic layers, making it
easier to maintain and update the system over time.

In summary, a REST API is a software architectural style for building web-
based software systems. Its key design principles include statelessness, uniform
interface, caching, layered system, and client-server architecture. This architec-
tural style of software provides a standardized and scalable way of accessing and
manipulating resources on the Web.

2.2 Software

This chapter will go into detail about the specific software that has been used to
develop the product.

2.2.1 Prometheus

Prometheus is an open source monitoring system that was developed by Sound-
Cloud in 2012 [8]. It is a system that is used to track and collect information from
different applications and systems. By doing this, Prometheus is able to provide
users with valuable information about the functionality and status of a system that
a user is currently monitoring.

Prometheus functions as a TSDB that collects and stores metric data from
various targets [26]. It uses a pull-based model, where clients, called exporters,
expose metrics over Hypertext Transfer Protocol (HTTP) [8] and are periodically
scraped by Prometheus. The targets of Prometheus may be any application or
service that exposes different values in a compatible format.

16 Johannes, Sondre and Sang: HDO Monitoring

Figure 2.5 shows an example of a Prometheus exporter that pulls metrics from
various targets and sends them to a Prometheus server where they are stored. A
more detailed explanation of how this works will be given later in this subsection.

Prometheus serverPrometheus exporter

HTTP request

Metrics

Target

Target

Target

Pulll metrics

Figure 2.5: This figure shows an example of a Prometheus exporter that collects
metric data from various targets.

Additionally, Prometheus supports a flexible query language called PromQL [8],
which allows users to write queries to extract and analyze data from the time-
series database. PromQL supports a wide range of operations, including aggreg-
ation, arithmetic, and filtering. This makes it a powerful tool that can be used to
analyze data.

Prometheus also includes a number of other features, such as alerting, graph-
ing, and dashboarding. The alerting system allows users to define rules that trig-
ger alerts when certain conditions are met, for example, when a metric exceeds a
threshold or when a service goes down. The graphing and dashboarding features
enable users to visualize and explore the data in real-time. This helps to identify
trends, patterns, and anomalies.

Metrics in Prometheus

A core component of Prometheus is metrics. Examples of metrics may include val-
ues like CPU use, memory consumption, request delay, error rate, etc. They are
numerical values that describe some element of a system or application [27]. In
most cases, metrics are gathered periodically as part of a so called scrape and kept
as time-series data. They are saved as a data point that consists of a timestamp
and a value. Counters, gauges, histograms, and summaries are the four types of
metrics that Prometheus provides. Different aspects of a system’s behavior are
captured by each kind of measure. Each metric will be described in the following
paragraphs.

Chapter 2: Background 17

The first metric that Prometheus provides is called a counter. A counter is a
metric that represents a monotonically increasing value. A monotonically increas-
ing value is a value that either stays at a constant value or increases; they may not
decrease. Examples of counters may include the number of requests processed or
the number of errors encountered. For this reason, counters are typically used to
measure the rate of events over time. Counters may only go up, however, they
may decrease to a value of zero if the Prometheus server restarts.

The second metric that Prometheus provides is called a gauge. A gauge is a
metric that represents a value that can increase or decrease. An example of a
gauge value is the CPU utilization of a system or the number of active connec-
tions at any one time on a SBC. The gauges do not depend on each other, and
this means that their values can change independently of each other. Gauges are
therefore frequently used to assess a system’s or application’s current status.

The third metric that Prometheus provides is called a histogram. A histogram
is a metric that represents the distribution of multiple values over time. These
can, for example, be request latency or response size. They are typically used to
measure the distribution of events over time. Histograms are divided into sections
called buckets, which represent ranges of values. The different buckets have their
own counts of data points that fall within its range.

The fourth and final metric provided by Prometheus is called a summary. Sum-
maries calculate percentiles based on a sliding time window. They are commonly
used to measure the distribution of events over time similarly to histograms. How-
ever, a key difference between a summary and a histogram is that a summary
provides a more accurate representation of the distribution of values. Another
difference is that summaries are more computationally expensive compared to
histograms, they are more accurate, as they have to calculate percentiles based
on a sliding time window.

Prometheus Exporter

A Prometheus exporter, the main subject of this Bachelor’s thesis, is a custom made
application that fetches and defines data from one or more sources and provides
them to a Prometheus server, where they can be stored and used for monitor-
ing [28]. There is a wide range of open-source Prometheus exporters available
that can be used to monitor specific sources of data. A common example is a node
exporter, which collects system resource data for a host.

Prometheus exporters are applications that can serve its data through either
a push mechanism to the Prometheus server, or through a pull mechanism. Ex-
porters that work with pull mechanisms is the most common way for exporters to

18 Johannes, Sondre and Sang: HDO Monitoring

serve Prometheus metrics. It works in such a way that whenever a HTTP request
is made to the exporter, the exporter runs its collectors and, as a result, returns
metrics.

The Prometheus server illustrated in Figure 2.6 is responsible for making these
HTTP requests, which are called scrapes. The time between the scrape intervals
is defined in the Prometheus server configuration file. Whenever a scrape is ex-
ecuted, the exporter runs its collect routines, collecting new data, and provides
them to the Prometheus server through HTTP. A Prometheus server can request
metrics from multiple exporters simultaneously, but each exporter instance should
only serve data to one server. This is to avoid data corruption caused by more than
one scrape occurring at the same time.

Prometheus serverPrometheus exporter

HTTP request

Returning metrics

Figure 2.6: This figure shows an example of a Prometheus server making a HTTP
request to a Prometheus exporter, that returns metrics to the Prometheus server.

2.2.2 Grafana

Grafana is an open source data visualization and monitoring tool that enables
users to query, visualize, alert, and understand metrics [29]. It provides a user-
friendly interface to visualize time series data from multiple data sources such as
MySQL [30], Graphite [15], InfluxDB [16], Prometheus [8], Elasticsearch [31],
and more. Grafana provides a simple and intuitive interface that allows users to
create custom dashboards and panels that display data in a variety of formats,
including graphs, tables, and gauges. A Grafana set-up with different dashboards
that display various data in various formats is shown in Figure 2.7.

Chapter 2: Background 19

Figure 2.7: This figure shows an example of Grafana with different dashboards.

One of the key features of Grafana is the support for multiple sources of data,
such as popular databases like MySQL, PostgreSQL, InfluxDB, and Prometheus.
This allows users to collect data from multiple sources and put it into a single
dashboard, providing a full view of their systems and applications. Grafana also
supports a variety of data collection methods, like pull-based metrics collection
through the use of plugins.

Another key benefit of Grafana is its ease of use. The platform provides a
simple and intuitive interface that allows users to quickly create custom dash-
boards and panels. This makes it a great tool for both technical and non-technical
users who need to monitor and analyze data. Additionally, Grafana’s support for
a wide range of data sources and collection methods makes it a flexible and ver-
satile platform that can be used in a variety of environments.

Grafana’s architecture is designed to be highly modular and extensible. The
platform consists of a core engine that provides basic functionality such as data
collection and visualization. Additionally, it provides a plugin system that allows
users to extend the functionality of the platform with custom plugins.

20 Johannes, Sondre and Sang: HDO Monitoring

In summary, Grafana is a powerful and flexible platform for monitoring and
data visualization. It supports a wide range of data sources and collection meth-
ods, as well as its ease of use and extensibility. It can be used in a small-scale
development environment or a large-scale production environment because of its
great scalability. Grafana also provides a powerful and intuitive solution for mon-
itoring and analyzing data, allowing users to create and customize dashboards
and panels.

2.2.3 Docker

Docker is a popular platform used for containerization [32]. As described earlier,
containerization is the process of creating self-contained, isolated environments
that can run applications with all their dependencies. Docker allows developers
to package their applications and dependencies into a single unit, called a con-
tainer. Then, these containers can easily be shared and deployed across different
environments.

This technology has become very popular due to its ability to simplify applic-
ation development, deployment, and scaling. It is frequently used to build and
deploy microservice-based architectures [33], as it enables developers to break
down complex applications into smaller, more manageable components. By using
containers, developers can isolate each microservice and deploy it independently,
making it easier to scale and maintain the overall application.

Docker provides a standardized way to package, distribute, and run applica-
tions. This helps to eliminate compatibility issues and reduces the time and com-
plexity required to deploy and manage applications. Docker containers are de-
signed to be self-contained and portable. This means that they can run on any
infrastructure that supports Docker, for example, on a developer’s laptop, a vir-
tual machine, or a cloud-based server.

To help us understand the Docker platform better, there are a few components
that we need to mention; the Docker engine, Docker Hub, and Docker Compose.
The Docker Engine is the core component that creates, runs, and manages Docker
containers. The Docker Hub is a cloud-based registry that allows developers to
store, share, and manage Docker images, while Docker Compose is a tool that al-
lows developers to define and run multi-container Docker applications.

A huge benefit of using Docker is that it helps developers achieve consistency
in their development, testing, and production environments. Docker containers
provide a consistent runtime environment, which means that applications will
run in the same way on any machine that supports Docker. This consistency elim-
inates the need for developers to worry about the compatibility issues that are
caused by different operating systems, libraries, software versions, and such.

Chapter 2: Background 21

Another benefit of Docker is its scalability. Docker containers are lightweight,
portable, and allow for clustering of multiple Docker containers called swarms.
That means that applications may easily be scaled up or down as needed de-
pending on the workload required. This means that applications can be deployed
quickly and efficiently, without the need for additional hardware or infrastructure.

A third benefit of Docker is that it also helps improve the security of applica-
tions. Containers are isolated between applications and the host system. This re-
duces the chance of any vulnerabilities in one container affecting other containers
or the host system [34]. Furthermore, Docker provides several security features,
such as image signing, container access control, and secure image transfer, which
can help protect applications from potential security threats.

In summary, Docker is a powerful platform that is used for containerization.
Docker is often used to build and create microservice-based architectures because
of its ability to break large components into smaller pieces and thus reduce com-
plexity. The three main components of Docker are called Docker Hub, Docker
Compose, and the Docker Engine. There are many benefits associated with Docker,
including consistency, scalability, and security.

2.2.4 The Go Programming Language

The Go programming language is often referred to as both Go and Golang [35]. It
is a programming language that was created in order to improve older program-
ming languages such as C++ and Java. Golang maintains many useful features
of the other older programming languages, such as high performance, readability,
static typing, runtime, and usability [36].

One feature of the Go programming language is its concurrency support. The
Go programming language was designed in such a way that it could take full ad-
vantage of modern hardware. The two essential parts of the concurrency support
in Go are called goroutines and channels.

Goroutines can be viewed as lightweight threads for execution of code in Go.
The goroutines make it possible to execute concurrent programming by allow-
ing functions to execute code concurrently within the same shared address space.
Compared to traditional threads, goroutines are more cheap when it comes to the
amount of system memory required to create them. A program can therefore con-
sist of hundreds, if not more goroutines. These gorutines can communicate with
each other using something called a channel, which is another essential part of
the concurrency support in Go.

22 Johannes, Sondre and Sang: HDO Monitoring

A channel in Go is a means by which data can be sent concurrently from one
goroutine to another, making it an efficient way of handling data. A channel dif-
fers from the traditional array data structure because an array is normally filled
with all the necessary data before it is retrieved. Arrays in most languages have
custom ways in which you can iterate through them to find a desired data member
or a number of data members. Using for loops is also a way of iterating which is
efficient and often the usual way of iterating in many languages. Channels, how-
ever, are not meant to be used in this manner. As soon as a channel in one routine
receives a data member, it is immediately received by the other routine with which
it interacts.

Another feature of the Go programming language is the addition of a garbage
collection system. It uses a system that manages allocation of deacollection of
memory allocations, this is also known as collecting garbage. This garbage col-
lection system runs concurrently with the program, meaning that garbage will be
collected while the program is running to make sure it runs as smooth as possible
in terms of memory usage.

In the Go language, packages are both a way of organizing code and a way
of making them available as open source for other projects. They contain expor-
ted functions, which means functions that can be used inside other projects. As
mentioned, they can also be used by entirely other Go projects if these packages
are open source and are defined as a web URL to its git repository. An example of
this is the Go sqlite3 package; this package’s project name is "github.com/mattn/
go-sqlite3". In order to use this package, one only has to import this URL into
their Go file, and one’s code is then able to download it during run time.

Another function of Go is that it is possible for a function to return multiple
variables. As shown in Code Listing 2.1, an example from our solution, the vari-
ables "ipaddress" and "phpsessid" are parameters, meaning they are input vari-
ables for the code within the function. The return variables in this example are
"chassisType", "serialNumber", and "err".

Code listing 2.1: An example of a function in Go.

1 func GetChassisLabels(ipaddress string, phpsessid string) (chassisType string,
2 serialNumber string, err error) {}

The return variables can either be named or unnamed, meaning you can choose
to give them names or only use its datatype.

In summary, Go is a programming language that was developed by Google to
take advantage of the concurrency capabilities of newer processor architectures.
It has two essential parts of its concurrency support, called goroutines and chan-
nels. A goroutine is a lightweight thread that is used for execution of code. These

github.com/mattn/go-sqlite3
github.com/mattn/go-sqlite3

Chapter 2: Background 23

goroutines are able to communicate with each other through channels. As soon as
a channel in one routine receives data, that routine may send those data imme-
diately to another routine. It uses a system for managing memory allocation and
deallocation, called a garbage collector. Finally, it uses packages, which is a way
of organizing code and sharing it with others to use in their projects.

2.2.5 The API of the SBCs

The SBCs comes with a REST API that our group was to use when developing the
product. In essence, it has the functionality of providing its operators with a wide
range of data ranging from call statistics, system resource usage, and data related
to networking. These data include both historical statistics as well as real time
statistics. The API is issued through HTTP which means that any technology that
supports this protocol can request data from the API. The URL of the API determ-
ines what data types are received. An example of API usage is seen in Figure 2.8.
The figure shows how a process requests system data from the API and receives
them as XML data [37]. Further examples of API data are attached to this thesis
as Appendix A.

Host

Process

Request to API

SBC

Returning data

Output from the API

<?xml version="1.0"?>
 <root>
<status>
<http_code>200</http_code>
</status>
<historicalstatistics id="1"
href="https://SBC-IP-address/rest/system/historicalstatistics/1">
<rt_CPULoadAverage15m>7</rt_CPULoadAverage15m>
<rt_CPULoadAverage1m>0</rt_CPULoadAverage1m>
<rt_CPULoadAverage5m>5</rt_CPULoadAverage5m>
<rt_CPUUptime>1059443</rt_CPUUptime>
<rt_CPUUsage>6</rt_CPUUsage>
<rt_FDUsage>1412</rt_FDUsage>
<rt_LoggingPartUsage>0</rt_LoggingPartUsage>
<rt_MemoryUsage>36</rt_MemoryUsage>
<rt_TmpPartUsage>0</rt_TmpPartUsage>
</historicalstatistics>
</root>

Figure 2.8: The API of the SBCs.

Chapter 3

Requirements

The requirements for the Prometheus Exporter is defined according to the em-
ployer at HDO. This laid the foundation for how the group decided to implement
the exporter and which metrics to include in it. There have been small modific-
ations and additional features to the exporter agreed upon by the employer, as
all solutions and requirements were not entirely clear from the beginning of this
project. The requirements are divided into Non-functional and Functional require-
ments, the former serving as a description of the overall purpose of the system laid
out by HDO, and the latter being more technical in nature.

3.1 Non-Functional Requirements

HDO already had a pre-existing Prometheus Server and a variety of Prometheus
Exporters in use that were monitoring most areas of their infrastructure. However,
they had not implemented an Prometheus Exporter for monitoring their SBC Edge
components which plays a crucial role in handling incoming emergency calls. They
wanted this Prometheus Exporter partly because they experienced issues with re-
gard to the quality and stability of many of these calls. These routers consist of a
total of 36 units and provide the aforementioned REST API, which provides a vast
amount of data necessary to view metrics regarding everything from system work-
load to phone call quality and more. However, it is nearly impossible to interpret
and monitor all these data, as SBCs from Ribbon Communications did not provide
a proficient monitoring solution. Therefore, HDO needed an additional Prometh-
eus Exporter to collect and provide data to their Prometheus Server, monitoring
the SBCs, as well as using their preexisting Prometheus Server system to alert dur-
ing certain events. The exporter needed to be reliable in such a way that it could
potentially run for months before restarting it. It should also be maintainable and
portable, utilizing a Docker container that could be quickly shipped and deployed
on various hosts. HDO also needed the product to be efficient so that the Scrape
interval could be set to 15 seconds.

25

26 Johannes, Sondre and Sang: HDO Monitoring

3.2 Functional Requirements

The functional requirements are shown as a list of technical details HDO wanted
implemented in the exporter. Defining these requirements was an ongoing process
through communication with HDO.

• Configuration file
HDO wanted a configuration file written in the YAML file format, in order
for HDO to define the Prometheus Exporter as declarative code. This file
should define the attributes of all hosts from which the data were collected.
The file should contain a list of hosts, values should contain name, IP ad-
dress, username, password and a list of Prometheus Collectors that are to
be excluded for a host.

• Included Data Groups The Prometheus Exporter should consist of groups
of metrics that belong together as the same metric affiliation. These data
groups are discussed in Section 7.3. The data groups HDO wanted to include
were the following:

◦ Disk Partition
This data group contains statistics of the resource usage of each disk
partition

◦ Routing entry
This data group contains information about routing table statistics.

◦ Linecard
This data group contains information about each line card.

◦ System
This data group contains information about the utilization of the sys-
tem resource by the SBC.

◦ System Call
This data group gives, among other information, information about
the success rate of all calls.

◦ Ethernet port
This data group contains ethernet port statistics which are specific to
this technology

• Labels
Each metric contains labels defining them in an accurate manner. HDO
wanted each metric to contain at least the following labels: "hostip" (IP ad-
dress), "hostname", description of each metric, SBC type and serial number.

Chapter 3: Requirements 27

• Repeated and Complex API Call Routines Some Prometheus Collectors
required multiple API calls for collecting data to the same hosts before the
final data could be collected. "Routingentry" is an example of such a col-
lector, where it is necessary to fetch the number of routing tables existing
for the host, following the number of routing entries for each table, and
then retrieve metrics associated with each entry. HDO wanted all metrics
associated with each routing entry.

• Docker The Prometheus Exporter should reside within a Docker container
for easier maintainability, shipment, and deployment. The Prometheus Ex-
porter should work so that it can be possible to deploy multiple containers
containing multiple hosts as their collect targets.

• Error Handling The employer at HDO wanted to use a form of error hand-
ling called Prometheus up, which is specific to Prometheus.

• Temporary Storage of Certain Data Certain data were to be temporarily
stored to reuse them. This included PHP Session Cookies, which expire after
10 minutes of authentication to a router with a username and password. It
also includes data related to the routing entry collector. These data were
to be stored for 24 hours because the frequency with which these data can
change may be several weeks. The group was free to choose the storage
method.

Chapter 4

Methodology

This chapter will discuss the programming language chosen to develop the ex-
porter, the tools that were used to do so, and how development and testing were
carried out.

4.1 Choice of Programming Language

For the writing of the Prometheus exporter, the group had to decide on a pro-
gramming language to use for its development. After doing some research and
discussion, the group decided to use the Go programming language, also referred
to as Golang.

The first reason for choosing the Go programming language is its perform-
ance [38]. The product the group has developed handles a large volume of data.
As described in Chapter 2, Golang excels in concurrency support with the use of
channels and goroutines. This gives it an advantage when working with a lot of
data.

Another reason for choosing Golang is because it is a well-documented pro-
gramming language with many useful resources [39]. One of the packages that
Golang supports is the Prometheus package, which is useful for programming ap-
plications for Prometheus, such as an Prometheus exporter [40].

A third reason for choosing Golang is that its syntax is relatively simple to learn
because of its similarity to other programming languages such as PHP [41]. This
also makes it easier for other people who have experience working with similar
programming languages to understand the code written in it.

It has a large community of developers who work to develop the programming
language and help other users [42]. One may look for help in the various available
media, such as GitHub [43], Stack Overflow [44], forums, documentation, etc.

29

30 Johannes, Sondre and Sang: HDO Monitoring

In conclusion, one of the reasons why the group chose the Go programming
language for exporter development is because of its performance. Additionally, the
group chose it because it is well documented and because it provides many useful
resources, such as a helpful community for issues one may face. Lastly, the group
also chose it because of its relatively simple syntax similar to other programming
languages.

4.2 Tools Used for Development

It was decided to use git [45] for its common development features such as ver-
sion control, the ability to revert back to earlier versions of the code when difficult
problems arise, and the ability to create new branches when it is necessary to keep
different versions.

After studying a number of open source exporters and online tutorials for cre-
ating exporters, it was decided to use CURL [46] to view the output produced by
the exporter. This output should be analyzed to see whether correct data had been
produced.

4.3 Usage of a Development Model

When working with the project plan before development had started, it was de-
cided to use Scrum [47] as our development model. Each iteration (sprint) of
planning and development was to last one week. The beginning of each week
should have a meeting to discuss what had been done during the previous sprint
and what would be developed during the next.

However, this plan was not fully followed because some aspects of develop-
ment were more time consuming, whilst others were faster to complete. Instead,
we had regular meetings with our employer at HDO discussing both current status,
changes to be made, and what additional features our employer wished to be de-
veloped. The time between each meeting with the employer was about two to
three weeks.

Chapter 4: Methodology 31

4.4 Development and Testing

There were several difficulties in developing and testing the application due to
several factors. The SBC test boxes that HDO provided were only available from
within their server infrastructure, which meant that they had to be tested on the
Ubuntu server [48] virtual machines, which was also provided. Developing on vir-
tual machines was out of the question because Ubuntu servers do not have desktop
functionality and applications such as Virtual Studio Code and its utilities. Devel-
oping the exporter in this way would have considerably lowered productivity.

Therefore, the code was developed on local computers, which meant that git
had to be used in an unusual and impractical manner. Whenever new code was
to be tested, we uploaded it from our local computer (git push), and downloaded
it from the server (git pull). The first tests were rarely correct, and as you can
imagine, the number of git commits was tremendous, eventually exceeding 1000
commits for the whole project. To preserve basic git functionality, such as being
able to revert to previous versions, it was decided to include the word "test" for
all the commits related to testing.

In order to start developing the exporter, it was found necessary to start off
with developing small starting points such as a main method with smaller func-
tions that would give us a proof of concept of certain tasks. The first functions
were decided to only validate concepts that revealed whether it was possible to
produce a simple output from the REST API. These first functions were tested with
different API endpoints before any Prometheus logic was included in the code.

In the beginning of the development process some inspiration was taken from
the open source git repositories "Fortigate exporter" [49] and "prometheus-nginx-
exporter" [50]. The official Go documentation [39] was used to learn the Go lan-
guage and all the packages needed. The code was written in Virtual Studio Code
due to its features such as displaying errors, listing possible methods for packages,
and due to previous experiences using it.

Test functions were used to a great extent during development in order to test
the proficiency of components in isolation before integrating them with the overall
code. The review of text strings or other data was used extensively to analyze the
validity of its output. For example, the development of certain database functions
was integrated with code that compares timestamps with the current time. This
comparison should determine whether data should be retrieved from the database
or whether to retrieve new data over HTTP (discussed in Section 5.4). In these
cases, strings were used to reveal whether, in fact, the data had been retrieved
over HTTP or from the database.

32 Johannes, Sondre and Sang: HDO Monitoring

Testing during development was found to be convenient and more efficient
without the need for HDO’s Prometheus systems, because metrics could be viewed
using CURL [46]. Two SBC hosts were provided for testing that were not in use
by HDO. The output revealed whether the exporters produced the correct labels
and data. For example, labels such as chassis type, serial number and disk names
were good indicators that data had been successfully retrieved by the SBCs. Dur-
ing the development of the most difficult collector, the "routingentry" collector, it
was necessary to insert text strings into the code to reveal which routing tables
and routing entries that had been retrieved from the SBCs. These were then com-
pared with the labels from the metrics output to see whether all of this data had
been joined.

This test process worked well in general, except for the aspect of not having
HDO thoroughly testing our product on their Prometheus systems. This happened
at a very late stage of the development process. All tests that were made up to this
point were only done internally by the group without access to HDO’s Prometheus
systems or any other Prometheus servers. This resulted in HDO’s tests revealing
significant improvement potential (discussed in Section 6.5.5, although they also
revealed that the product was proficient and viable in most ways.

Chapter 5

Design

The design chapter describes the overall design of the exporter, including its main
components and the inner workings of the architecture.

5.1 Overview

The purpose of the exporter is to collect and provide Prometheus metrics from
the SBC Edge components that handle emergency calls. To understand the over-
all design, we must first understand exactly where the exporter fits into the infra-
structure, between the hardware it collects data from, to a readable dashboards
for employees at HDO.

Whenever Prometheus pulls metrics, it triggers the exporter to run its collector
routines. It makes Application Programming Interface (API) requests to the SBCs
using its already existing REST API as shown in Figure 5.1. The REST API will then
return the requested data in a Extensible Markup Language (XML) [37] format.
The exporter then processes and stores these received data and provides them to
Prometheus. Prometheus can then provide Grafana metrics that can be rendered
into visualizations such as graphs and dashboards. This is a continuous process,
as Prometheus routinely requests data.

We can divide the exporter’s job into two main tasks. First, it needs to re-
quest and receive data using the REST API. The exporter will do so by running
its routines to collect data. Furthermore, it needs to transform metrics from re-
trieved data into a format that can be ingested by Prometheus, including categor-
izing these metrics with accurate labels to make the data readable and useful for
employees at HDO.

33

34 Johannes, Sondre and Sang: HDO Monitoring

Figure 5.1: The main tasks of the exporter simplified.

Chapter 5: Design 35

5.2 Where the Exporter Fits Inside HDOs Infrastructure

Figure 5.2 illustrates HDO’s infrastructure for receiving emergency calls. SBC CORE
is the main network used for handling emergency calls and uses Internet Protocol
(IP)/Session Initiation Protocol (SIP) for communication, the SBC EDGE converts
from IP/SIP to Integrated Services Digital Network (ISDN), which is what emer-
gency receptions use for communication. HDO also has preexisting Prometheus
systems that they already use to monitor the SBC CORE network as well as other
parts of their infrastructure. Their Prometheus systems work in interaction with
several exporters that are responsible for collecting its own set of metrics. The ex-
porter discussed in this thesis is responsible for collecting data from the SBC EDGE
routers as an addition to their preexisting Prometheus systems. On the Prometh-
eus server’s side, the configuration will be set to determine how often a Scrape
is executed. The exporter in question only starts collecting data on each scrape
request it receives from the server and returns the finalized metrics to the Pro-
metheus server.

Figure 5.2: This figure shows the flow of data and the exporters function within
HDO’s infrastructure. The dotted lines illustrates where the developed exporter
fits inside of HDO’s infrastructure.

36 Johannes, Sondre and Sang: HDO Monitoring

5.2.1 Data Groupings and Collectors

HDO wanted an option to exclude certain data groups. Therefore, it was natural
to design the exporter in such a way that data types belonging together inside
the API, also were defined together in each Prometheus Collector of the exporter.
This project refers to a Prometheus Collector as the code that collects metrics from
a specific data group on a host and defines them as Prometheus metrics. This
way of grouping metrics within the exporter is convenient because it allows HDO
to exclude their own defined data affiliations for specific SBC hosts, if needed.
These metric groups are also defined by the SBC documentation [51]. For ex-
ample, one data group contains data concerning system call statistics, having met-
rics such as ’rt_NumCallAttempts’, ’rt_NumCallSucceeded’ and ’rt_NumCallFailed’.
This particular group of data is collected using HTTP requests to the API’s URL;
’https://ipaddress/rest/systemcallstats’.

5.2.2 Docker

The original concept was to use a small number of Docker containers containing
multiple SBC targets in its configuration. However, as issues arose concerning
performance in speed for scenarios where more than two hosts were configured,
the option of splitting the deployment of the solution into a greater number of
containers, having only one or two SBC hosts was later considered. This possible
scenario did not affect the development of the exporter in any way, because one
container does not affect another.

5.2.3 Temporary Storage of Certain Data

During the development of the exporter, issues arose about the efficiency of each
scrape. Many of the performance issues were associated with the large number
of REST API calls that were being made to each SBCs. To eliminate some of the
traffic to each SBC, it was decided to use Sqlite3 [52] to store the required au-
thentication identifier, which is a PHP Session Cookie for each host.

More technically, to get data from a host, you would have to send a HTTP POST
request containing a username and password, and as a result retrieve a session
cookie to retrieve the intended data. As this session only lasted for 10 minutes,
it was decided to store each session cookie for 9 minutes within the database so
that it could be used multiple times instead of requesting a new cookie for each
API call. This resulted in a scrape being shortened from 13 seconds to 10 seconds
when using six collectors and two hosts.

To further decrease the time spent for each scrape, other data that had to be
fetched were also saved, this will be discussed in our database implementation.
The implementation of the database is discussed in Section 6.4.3.

Chapter 5: Design 37

5.3 Design of the Exporter

Each process that occurs in the exporter shown in Figure 5.3, will be discussed in
this section. The numbers in parentheses refer to the numbers in the figure. The
figure shows three main components, which are the exporter, a Prometheus server
2.2.1 that requests data, and the SBCs they are collecting data from.

Prometheus
server

Edge exporter

Collectors

Database

Metrics

Data

HTTP
request Initialize

HTTP handler

Main method

Fetch data

SBCs

1

7

643

2

5

Collectors
Collectors

Figure 5.3: Design of the exporter.

• A PHP Session Cookie is required to fetch data from the API of the SBCs as
described in Section 2.2.5. To obtain one, one would need to make a HTTP
POST request with a username and password attached. Afterward, a PHP
session cookie can be retrieved from the response header. When starting the
exporter, the main method gathers all SBC configuration and fetches PHP
Session Cookies and chassis information from the SBC hosts (1), which is
then inserted into the database (2).

• The exporter is then in the mode where no operation is executed, it is only
waiting for incoming HTTP-requests from any host. Each time the HTTP
handler receives a scrape (3), it initializes the Collectors to start collecting
data (4). A HTTP handler is a process that responds and connects to a HTTP
request. The response in this case is to initialize the collectors and return
their metrics on completion.

38 Johannes, Sondre and Sang: HDO Monitoring

• After initialization, each collector then queries the database for reusable
data, such as PHP Session Cookie and chassis information, that it needs to
collect data from the SBCs (5). Section 5.3.1 discusses when data from the
database are being used.

• The collectors start collecting data from the SBCs (6) and sometimes up-
dates the database with certain data.

• The collectors then convert the data into metrics and sends it to the Pro-
metheus server (7) via the HTTP handler. Section 5.3.1 explains in more
detail what processes occur in each collector, and Section 6.5 explains the
implementation of its code.

5.3.1 Collector Design

Figure 5.4 gives an overview of the processes that occur for each of the collectors
implemented. Numbers are used in parentheses to refer to each process in the
figure. Chapter 6 discusses each step in the collector more thoroughly and how
each of the components is implemented. Most components of the collectors are
implemented as packages, which describes how code has been structured. We will
go through the steps of each event in the collector in the same order as provided.
The numbers in parentheses are references to the processes shown in Figure 5.4.

• (1) The collector starts by fetching the configuration of each SBC target
defined in the config.yml file.

• Each collector looks for PHP Session Cookies in the database and compares
its timestamp with the current time and uses these session cookies to fetch
data from the SBCs if the timestamps have not expired (2).

• Whenever a session cookie has expired, the HTTP-package is used to authen-
ticate to the SBCs, fetching new PHP Session Cookies (3). (4) The database
is then updated with recently recovered PHP Session Cookies.

In the case of three of the collectors, other reusable data are also queried
and stored in the database, see Section 6.4.3. Some of these data expire
after a duration, which the user can configure in the product’s configura-
tion file.

• (5) The API data containing its original XML format are filtered and conver-
ted to variables that will be used as metrics.

• (6) These variables are then formatted as Prometheus metrics or as their
labels. Labels such as "hostip", "hostname", and additional labels are then
added. In Chapter 6, further details of how these collectors register each

Chapter 5: Design 39

metric will be discussed.

Collector

HTTP
package

Config-package

Php
session
cookie

Reusable data

SQL Databases

Database package

metrics

XML-data
converted to

variables

SBC SBC SBC

Prometheus
metrics

1
2, 4

3

5

6

Figure 5.4: Each collector consist of these processes.

Chapter 6

Implementation

This chapter will discuss the code for the implementation, the choice of features,
and the details of the architecture that has been developed. Additionally, we will
discuss the decision to change the implementation to an overall improved and
more scalable version.

6.1 Terms and Standards

This section describes some standards and terms used to discuss the implementa-
tion of code.

Firstly, when discussing a function that is not listed as a code listing, only the
function name is included with parenthesis at the end, indicating that it is a func-
tion. An example of such a function is GetChassisLabels(). Many of these functions
are not listed for various reasons. The main reason being that they are database
related functions with functionality that are similar across data types, such as in-
serting and retrieving data, checking if tables exist and so forth.

Sometimes, all the code contained within a function is not included. The
reason behind this is that it would be unproductive to discuss every detail of our
code, as sometimes the purpose is to see the overall picture. In these cases, we in-
stead use the same standards as in the Go documentation [39] which is to include
the name of the function and its parameters and return values.

6.1.1 Terms

This subsection will cover some of the terms used when discussing code in this
chapter.

41

42 Johannes, Sondre and Sang: HDO Monitoring

Session Cookies

In order to fetch data from the API of the SBCs as described in Section 2.2.5,
one would need to perform a HTTP POST request with a username and password
attached. Afterwards, a PHP session cookie would be received from the response
header which is required to collect data from the API.

Collector

In our implementation, a Prometheus Collector contains the code that collects
metrics from a specific data grouping on each host and defines them as Prometh-
eus metrics.

HTTP Handler

A HTTP handler [53] is a process that responds to a HTTP request. In this im-
plementation, the response is to initialize the collectors and return metrics upon
completion.

Interface

The Go programming language provides something called interfaces [54]. An
interface is a set of methods that can be applied to data, without knowing the
underlying data structure. The Prometheus Go package described in Section 6.3
provides mandatory interfaces.

6.2 Usage of Pointers

For the code developed for the product, pointers were not implemented in all cases
where it was possible. The reason behind this is due to time constraints [55].
The main drawback of omitting the usage of pointers in Go is the efficiency of
running the code, because the data retrieved multiple times are then copied to
new locations in memory during run time [56].

6.2.1 Error Handling

For error handling, the plan was to use a type of error handling specific to Pro-
metheus called Prometheus up [57]. However, this was difficult to implement in
integration with the entire system that had been developed up to that point. The
reason behind this was because this type of error handling (Prometheus up) res-
ulted in all other metrics being removed from the Scrape result as well, although
the error may have affected only one host or Prometheus Collector.

One solution could have been to serve metrics from separate URLs for each
Prometheus Collector and host. However, it was decided not to, as it would be

Chapter 6: Implementation 43

more convenient for all parties to serve all metrics on the same URL. Keeping this
implementation meant that all metrics would have the same timestamps in Pro-
metheus, as well as easier usage of the Prometheus Exporter.

Instead, an alternative solution was devised, to instead return a gauge metric
to the Prometheus Server revealing the cause of the error and its affected hosts
and Prometheus Collectors. The employers agreed to the solution because they
already have similar approaches for other exporters in use. However, after some
back and forth, they wished for a slightly different solution. Instead, every scrape
should have a gauge metric that only reveals whether the Scrape was successful
or not, with no explanation for its cause. This is because in Prometheus, a metric
having different labels would also be displayed as different metrics. These values
would be 1 or 0 as shown in the sample below.

scrape_status{hostip="10.233.230.11",hostname="host2"} 1
scrape_status{hostip="10.233.234.11",hostname="host1"} 0

6.3 The Go Prometheus Package

The product utilizes the Go Prometheus package [40] to a great extent. This pack-
age contains useful resources for developing Prometheus programs. In order to use
the Go Prometheus package, the two interfaces that are going to be discussed;
Collect and Describe, are mandatory. Failure to include these interfaces causes
the package to give an error. In these interfaces, channels are used to insert data
defined by the developer and to arrange it in such a way that they can be converted
to Prometheus metrics by the Prometheus Go package behind the scenes.

6.3.1 The Describe Interface

The describe interface shown in Code Listing 6.1 takes predefined metric descrip-
tions and sends them through the channel used by the Prometheus module. The
channel is meant to receive definitions of metrics, which means variables such as
the name of the metric, the description, and a list of labels for each metric.

Code listing 6.1: The describe interface in the Prometheus Go package.

1 func (collector *Metrics) Describe(c chan<- prometheus.Metric)

6.3.2 The Collect Interface

The collect interface shown in Code Listing 6.2 implements the collector. This
means that it contains code responsible for both collecting data and for giving the
metrics values and attributes that are sent through the channel.

44 Johannes, Sondre and Sang: HDO Monitoring

Code listing 6.2: The collect interface in the Prometheus Go package.

1 func (collector *Metrics) Collect(ch chan<- *prometheus.Desc)

6.4 Implementation of Code

The implemented code has been organized in such a way that code belonging
together in each implemented package is listed as such in this chapter. Packages
are used to organize the code. These packages include the main package, which
contains only the main function, the packages collector, database, HTTP, config
and utils.

Figure 6.1 again shows the architecture inside each collector in which most of
these packages interact. However, the figure does not contain all the components
of the exporter.

Collector

HTTP
package

Config-package

Php
session
cookie

Reusable data

SQL Databases

Database package

metrics

XML-data
converted to

variables

SBC SBC SBC

Prometheus
metrics

1
2, 4

3

5

6

Figure 6.1: Each collector consist of these processes.

Chapter 6: Implementation 45

6.4.1 The HTTP Package

This section will explain in more detail how the HTTP package interacts with
the database package to decide whether to use data from the database or to fetch
new data from the SBCs. For this project, it was decided to use Golang’s official net
package [58] and HTTP package both for authentication and data collection. The
development of this package also utilized the tool Curl-to-Go [59]which provided
a good starting point for the functions that were created. However, changes and
additional code were necessary to make it work. The curl commands that were
being translated were found in the Ribbon Communications documentation [51].

Authentication to the SBCs

The beginning of the function APISessionAuth() shown in Code Listing 6.3 calls
another function which attempts to fetch a PHP Session Cookie from the database
entry containing the provided IP address. This session cookie can be used for up
to 10 minutes before it expires.

Therefore, APISessionAuth() (Code Listing 6.3) uses the GetSqliteKeyIfNot-
Expired() function shown in Code Listing 6.4 to attempt to fetch the previous
session cookie from the database. This function is responsible for comparing the
string field "time" with the current time, using Golang’s time package [60].

Code listing 6.3: The function for connecting to an SBC.

1 func APISessionAuth(username string, password string, ipaddress string) string

Code listing 6.4: The function for retrieving a session cookie before expiration.

1 func GetSqliteKeyIfNotExpired(ipaddress string) (cookie string, err error) {

In Figure 6.2 you can see how the HTTP package interacts with the database,
which includes processes that involve authentication and fetching data regarding
the current collector.

• 1. APISessionAuth() (Code Listing 6.3) first tries to fetch a PHP Session
Cookie from the database
• 2 and 3. If the database have an entry with the given session cookie and it

has not expired, then APISessionAUth() returns this cookie.
• 4. If either of the above statements are not valid, the APISessionAuth() func-

tion authenticates to the SBC, fetching a new session cookie and inserting
it into the database.
• 5 and 6. The GetAPIData() function (Code Listing 6.5) uses this session

cookie to fetch any data needed by the current collector.

In Section 6.5, it is discussed how each collector converts these data into met-
rics.

46 Johannes, Sondre and Sang: HDO Monitoring

GetSqliteKeyIfNotExpired() GetAPIData()APISessionAuth()

SQL Database Collector

1,3

6

5

4

2

SBC

Figure 6.2: How each collector collects new data.

Chapter 6: Implementation 47

Requesting Data from SBCs

The getAPIData() function shown in Code Listing 6.5 uses Golang’s official cookie
management implementation in the net package, in order to request API data. A
cookie is added to the HTTP request using the httprequest.AddCookie() method.
As the response data arrive in a bytestream, we can use the package ioutil [61] to
read the data within the response body with the function ioutil.ReadAll().

The function finally returns a bytestream containing the response body. All
data fetched with this function, a function that every collector uses, are in the
XML file format. The argument "url" defines the API endpoint, meaning what data
to collect. However, the collectors contain the code responsible for parsing this
data into variables readable by Prometheus. As all API data resides in the XML
format, the implementation uses the Golang XML package [62] and its method
xml.unmarshall() with appropriately written structs to convert the XML data into
variables within the collector. An example of such a struct is shown in Code Listing
6.6.

Code listing 6.5: The function for retrieving API data.

1 func getAPIData(url string, phpsessid string) ([]byte, error)

Code listing 6.6: Example of a struct used by the collectors.

1 type lSBCdata struct {
2 XMLname xml.Name ‘xml:"root"‘
3 LinecardData LinecardData ‘xml:"linecard"‘
4 }
5 type LinecardData struct {
6 Href string ‘xml:"href,attr"‘
7 Rt_CardType int ‘xml:"rt_CardType"‘
8 Rt_Location int ‘xml:"rt_Location"‘
9 Rt_ServiceStatus int ‘xml:"rt_ServiceStatus"‘

10 Rt_Status int ‘xml:"rt_Status"‘
11 }

6.4.2 Config Package

The first struct in Code Listing 6.7 defines the YAML config file, which is the ex-
porter configuration that was discussed in chapter 5. The struct "IncludedHosts" is
meant to be returned to the collector that is using the configuration, for example,
every collector.

Code listing 6.7: Describing the configuration file.

1 type Config struct {
2 Hosts []Host
3 Authtimeout int ‘yaml:"authtimeout"‘
4

48 Johannes, Sondre and Sang: HDO Monitoring

5 }
6 type Host struct {
7 HostName string ‘yaml:"hostname"‘
8 Ipaddress string ‘yaml:"ipaddress"‘
9 Username string ‘yaml:"username"‘

10 Password string ‘yaml:"password"‘
11 Exclude []string ‘yaml:"exclude"‘
12 RoutingEntryTime float64 ‘yaml:"routing-database-hours"‘
13 }
14
15 type IncludedHosts struct {
16 Ip string
17 Hostname string
18 Username string
19 Password string
20 RoutingEntryTime float64
21 }

The function getConf() shown in Code Listing 6.8 retrieves a pointer to the
configuration by reading the configuration file using the packages ioutil [61] and
YAML [63]. It is a function that was found on Stack Overflow [64].

Code listing 6.8: Reading the configuration file.

1 func GetConf(c *Config) *Config

The GetIncludedHosts() function shown in Code Listing 6.9 is used by each
collector to get the configuration of all the hosts included for this collector. The col-
lector is identified with the collector names written in the config.yaml file. These
names have to match exactly, meaning that the collector names in the configur-
ation can not be misspelled. The function iterates through all hosts in the saved
configuration, and if they do not have the specified collector excluded, it appends
and returns a list of these hosts’ configuration.

Code listing 6.9: Returning SBC hosts’ configuration used by the collectors.

1 func GetIncludedHosts(collectorName string) []IncludedHosts {
2 cfg := GetConf(&Config{})
3 list := make([]IncludedHosts,0,8)
4 var excluded bool
5
6 for i := range cfg.Hosts {
7 for v := range cfg.Hosts[i].Exclude {
8 if (cfg.Hosts[i].Exclude[v] == collectorName) {
9 excluded = true

10 }
11 }
12 if !excluded {
13 list = append(list, IncludedHosts{
14 cfg.Hosts[i].Ipaddress,
15 cfg.Hosts[i].HostName,
16 cfg.Hosts[i].Username,
17 cfg.Hosts[i].Password,
18 cfg.Hosts[i].RoutingEntryTime})
19 }

Chapter 6: Implementation 49

20 }
21 return list
22 }

6.4.3 Database Package

The exporter uses a database to solve performance problems related to the ex-
tensive, but required, use of HTTP calls to each SBC. In total, the usage of a
database spared about 3-4 seconds on a scrape for all of the collectors with two
hosts included. The chosen database is included in the sqlite3 [65] package for
Golang [66]. An alternative to sqlite3 would be to write the data to a file format
such as YAML, but the group chose sqlite3 due to prior experience with Structured
Query Language (SQL) databases, but also because it is scalable and known to be
efficient and secure [67].

Stored Data

The database is used extensively to store data collected with one of the collectors
called the routing entry collector, session cookies, and chassis information.

Session Cookie Data

As mentioned when discussing "Authentication to the SBCs" in Section 6.4.1, the
session cookies that are retrieved after connecting to each SBC can be reused for
10 minutes. Therefore, it was decided to reuse them for this period of time. The
collectors were already implemented by including iteration over each SBC host,
and performing API calls against each of them. Therefore, it was decided to integ-
rate the database functions inside these "for loops". This meant that the functions
GetCookieDB() in Code Listing 6.10 and InsertAuth() in Code Listing 6.11 took
the host’s IP address within the current loop as parameters when either inserting
or retrieving data from the database. Other functions associated with authentica-
tion include Update(), RowExists(), and CreateAuthTable().

Code listing 6.10: Retrieving session cookie from database.

1 func GetCookieDB(db *sql.DB, ipaddress string) ([]*Cookie, error)

Code listing 6.11: Inserting session cookies into the database.

1 func InsertAuth(db *sql.DB, ipaddress string, phpsessid string, time string) error

Routing Entry Data

Routing entry data contains data gathered from the first two API calls made to a
host. It was decided to store routing tables, time, and a map of the routing table in

50 Johannes, Sondre and Sang: HDO Monitoring

an array of routing entries. This is because each routing table on the host contains
a number of routing entries, and the use of a map was necessary to find the correct
entries inside the routing entry collector. However, as was later discovered, it was
impossible to store arrays within the sqlite3 database. Therefore, it was decided
to arrange the database table so that each database entry was able to contain the
same routing tables while having different routing entries, arranged over multiple
database entries.

An example of the SQLite table structure for routing entries is shown in Table
6.1. As you can see, one routing table can contain many different routing entries.

Table 6.1: The Structure of the Table Storing Routing Data

IP table nr entry nr
ipaddress 2 1
ipaddress 2 2
ipaddress 2 3
ipaddress 5 1
ipaddress 5 2
ipaddress 5 3
ipaddress 5 4

As the collector already had loops iterating over each routing table, and there-
after loops for each routing entry, storing these data was done with the function
StoreRoutingEntries() shown in Code Listing 6.12. The function takes the IP ad-
dress, routing tables, and routing entries as parameters. As routing entries are
given as an array, the function iterates over each routing entry and writes rows to
the database, containing the given parameters.

Code listing 6.12: Storing routingtables and entries into the database.

1 func StoreRoutingEntries(db *sql.DB, ipaddress string, time string,
2 routingTable string, routingEntries []string) error

When fetching routing entry data from the database, storing this data structure
as a map was the most convenient way of integrating a database to the complic-
ated problems faced inside the "routingentry" collector. The map consists of one
table as the key and an array of routing entries as values. The function in Code
Listing 6.13 fetches routing tables and entries from the database and stores them
as a map, the last of which occurs on line 28. On line 33, the function extracts
the keys of the map which are the routing tables. The function returns a map of
routing tables and entries, an array of routing tables, its timestamp in string, and
a potential error.

Chapter 6: Implementation 51

The database functions associated with routing data also include the functions
CreateRoutingSqlite(), DeleteRoutingTables() and RoutingTablesExists().

Code listing 6.13: Retrieving routing data from the database.

1 type RoutingT struct {
2 Id int
3 Ipaddress string
4 Time string
5 RoutingTable string
6 RoutingEntry string
7 }
8
9 func GetRoutingData(db *sql.DB,ipaddress string) (map[string][]string,[]string,

string, error) {
10 row, err := db.Query("SELECT * FROM routingtables")
11 if err != nil {
12 log.Print(err)
13 return nil, nil,"", err
14 }
15 defer row.Close()
16
17 var time string
18 var routingEntries = make(map[string][]string)
19 var tables []string
20
21 for row.Next() {
22 r := &RoutingT{}
23 err := row.Scan(&r.Id, &r.Ipaddress,&r.Time,&r.RoutingTable, &r.

RoutingEntry)
24 if err != nil{
25 log.Print(err)
26 }
27 if (r.Ipaddress == ipaddress) {
28 routingEntries[r.RoutingTable] = append(routingEntries[r.RoutingTable],

r.RoutingEntry)
29 time = r.Time
30 }
31 }
32
33 for key, _ := range routingEntries {
34 tables = append(tables, key)
35 }
36 return routingEntries,tables,time,err
37 }

Chassis Data

The function responsible for fetching chassis data starts with an API call to each
of the SBCs, fetching its SBC type and serial number. The chassis type is either
SBC1000 or SBC2000, HDO wanted these as labels for each metric related to the
system resource collector. This is also stored in the database as long as the exporter
is running, as this data does not change over time.

52 Johannes, Sondre and Sang: HDO Monitoring

DButils

DButils is the name of a file that contains the initializeDB() function, which de-
letes any previous databases in the root directory and creates a new database and
all required tables. This function is executed inside the main function in order to
alleviate some of the workload on the first scrape, making it less time consuming.
It was decided to delete any previous instance of the database during run time as
the main program would only be restarted usually around once a month, mean-
ing the risk of potential errors with having previous data was greater than the
performance benefits of keeping them.

6.4.4 Utils Package

The utils package contains the functions GetChassisLabels() and Expired().

Chassis information

This package contains a function GetChassiLabels() shown in 6.14 to fetch chassis
information over HTTP, and calls functions from the database package that insert
and retrieve these data from the database.

The steps of this function are similar to both the collectors and the functions
that utilize the database; it checks if any data containing a specified IP address
already exist in the database. If it does, then retrieve these data; if not, then fetch
the new chassis information from the SBC, and insert it into the database. This in-
formation is added as labels to some of the metrics. It includes SBC type, SBC1000
or SBC2000, and serialnumber.

Code listing 6.14: Fetching chassis information from either an SBC or database.

1 func GetChassisLabels(ipaddress string, phpsessid string)
2 (chassisType string, serialNumber string, err error)

Comparing Timestamps From the Database

The function Expired() in Code Listing 6.15 is used by the "Routing entry" collector
to compare the timestamp of its data in the database to the current time. The
code that is responsible for fetching PHP Session Cookie from the database also
has a similar approach. It returns true if the data in the database have expired. In
the "Routing entry" collector, this function’s parameter "hours" is provided by the
time schedule specified in the configuration file. The parameter "previoustime" is
provided by the database because it is a timestamp when the previous data was
stored.
Figure 6.3 displays how the Expired() function works. Whenever the previous
time with the added time schedule (T3) is after the current time (T2), it returns

Chapter 6: Implementation 53

false, which means that it has not expired yet. As soon as the current time crosses
T3, it will return true, and therefore the previous data will have expired.

Code listing 6.15: The function Expired().

1
2 func Expired(hours float64, previoustime time.Time) bool{
3 //The code here is excluded, for the purpose of simplicity
4
5 return previoustime.Add(duration).Before(timeNowParsed)
6 }

Figure 6.3: Shows when data expires according to a given time schedule.

6.4.5 Main Package

The main package consists only of one file that contains only the main function
as shown in Code Listing 6.16. The main function starts off with calling the Ini-
tializeDB() function which creates a database and new tables. It also executes the
APISessionAuth() function as shown in Code Listing 6.3 and GetChassisLabels()
as shown in Code Listing 6.14 on each host, and inserts their returned data into
the database.

Finally, the main function continuously waits for HTTP requests (scrape). The
exporter starts collecting data whenever a request is sent to the exporter, which
is initiated by our HTTP handler called "Probehandler" as shown in Code Listing
6.17. The end of the main function indicates that metrics are to be collected from

54 Johannes, Sondre and Sang: HDO Monitoring

"http://host-IP:5123/metrics".

Code listing 6.16: The main function.

1
2 func main() {
3 //Creating database and tables
4 database.InitializeDB()
5
6 hosts := config.GetAllHosts()
7 for i := range hosts {
8 //Fetching sessioncookies and inserting them into the database
9 phpsessid, err := thishttp.APISessionAuth(hosts[i].Username, hosts[i].Password

, hosts[i].Ip)
10 if err!= nil {
11 log.Print(err)
12 continue
13 }
14 //Fetching SBC type and serialnumbers, and placing them in database
15 _, _, err = utils.GetChassisLabels(hosts[i].Ip, phpsessid)
16 if err!= nil {
17 log.Print(err)
18 continue
19 }
20 }
21
22 http.HandleFunc("/metrics", collector.ProbeHandler)
23
24 log.Fatal(http.ListenAndServe(":5123", nil))
25
26 log.Println("Edge exporter running, listening on 5123")
27 select {}
28 }

6.5 Collector Package

The Collector package is mainly responsible for collecting data from the SBCs via
their API and converting the data into Prometheus metrics.

6.5.1 HTTP Handler and Probe Interface

The exporter uses a custom HTTP handler as shown in Code Listing 6.17 that is re-
sponsible for initializing the Probe interface whenever a HTTP request is made to
the exporter. The Prometheus package registers Probe() as a collector and returns
its final data on completion.

Code listing 6.17: The function Probehandler().

1 func ProbeHandler(w http.ResponseWriter, r *http.Request) {
2 registry := prometheus.NewRegistry()
3 pc := &AllCollectors{}
4 registry.MustRegister(pc)
5 pc.Probe()
6

Chapter 6: Implementation 55

7 h := promhttp.HandlerFor(registry, promhttp.HandlerOpts{})
8 h.ServeHTTP(w, r)
9 }

The current implementation is based on an approach found in the open source
git repository "Fortigate exporter" [49]. In this implementation, all collectors
share one Collect interface, which reads metrics from data previously assigned to
the struct "AllCollectors", by the method Probe 6.18. Each collector adds metrics to
this struct. The required Describe interface is empty, because metrics descriptions
are now instead defined directly in each collector.

Code listing 6.18: Interface Probe and Prometheus interfaces.

1
2 type AllCollectors struct{
3 metrics []prometheus.Metric
4 }
5
6 func (m *AllCollectors) Probe() {
7 metrics := SystemCollector()
8 for i := range metrics {
9 m.metrics= append(m.metrics, metrics[i])

10 }
11 metrics = LinecardCollector2()
12 for i := range metrics {
13 m.metrics= append(m.metrics, metrics[i])
14 }
15 ...
16 ...
17 }
18 func (collector *AllCollectors) Collect(c chan<- prometheus.Metric) {
19 for _, m := range collector.metrics {
20 c <- m
21 }
22 }
23 func (collector *AllCollectors) Describe(ch chan<- *prometheus.Desc) {
24 }

As shown in Figure 6.4, each HTTP request to the exporter is handled by our
HTTP-handler which initializes each collector to start collecting metrics. These
metrics are appended to the "AllCollectors" struct sequentially. When the Probe()
function completes, the Collect interface uses this struct to send its metrics through
its channel handled by the Prometheus package behind the scenes. The Prometh-
eus package returns formatted Prometheus metrics back to the Prometheus server
via the HTTP handler.

6.5.2 Collectors

The code shown in Code Listing 6.19 is one of the collectors, the Linecard col-
lector, in the collector package. As you can see, it is quite large. This collector was
chosen as an example as it is one of the simpler ones to follow compared to the
rest of the collectors.

56 Johannes, Sondre and Sang: HDO Monitoring

func Probe()

type
AllCollectors

struct {}

HTTP-handler

Collector2

func Collect()
interface

Collector3

Collector4

Collector5

Collector6

Collector1

Prometheus
server

Figure 6.4: Shows the initialization of collectors and their flow of data.

The Linecard collector begins by describing the structure of the output gathered,
which is in the XML file format. The struct "LinecardData" from lines 12 to 18 de-
scribes the metrics to be read from the output.

The following is a walk through of the process of what is happening behind
each step within the collector called the Linecard collector as shown in Code List-
ing 6.19.

• The collector starts by gathering included hosts (targets) and their config-
urations for the current collector (line 21).

• It proceeds by defining variables containing Prometheus metric descriptions
(from line 26), which will later be used when defining each metric with val-
ues and labels.

• It then begins a loop through each host as we want to execute API calls on
them (line 37), fetching data from these SBC hosts.

• The loop then starts by fetching a PHP session cookie (line 39) using the
previously discussed APISessionAuth() function in Code Listing 6.3. In most
cases, the session cookie already resides inside the database, but if its timestamp
has expired, it fetches a new session cookie.

• Then, a similar process applies for the function utils.GetChassisLabels() (Code
Listing 6.14), which fetches the label "chassis type" (line 46). As this func-
tion is initialized in the main function the same way as APISessionAuth(),
these labels should already be residing inside the database. It will attempt

Chapter 6: Implementation 57

to fetch new labels if the database is empty.

• For this particular collector, the targets are fixed in terms of API endpoints,
meaning that the collector only has to execute an API call on IDs that are
the same for every SBCs, if they have the same SBC type.

As you can see from lines 71 to 74 in Code Listing 6.19, SBC1000 always
has the linecard IDs 7 and 8, while SBC2000 has the IDs 1 and 2. Therefore,
it uses "if tests" to determine which IDs to use. It was also decided to include
"else statements" in case the linecard IDs are not correct, meaning that there
has been an error over several steps.

• Now, the collector starts a loop over each linecard ID (line 62) and performs
an API call on each of them using GetAPIData() (line 64). As the data are
returned as a bytestream from this function, one may then use the official
XML package alongside the previously built structs to convert the data into
variables (lines 70-79).

• Finally, the collector creates metrics using the Prometheus package’s Must-
NewConstMetric() function (lines 81-82), specifying each individual met-
rics description, type of metric (always as a gauge, as requested by HDO),
its value, and its labels. Each of the metrics is appended to the metrics array,
which will be returned by the function.

Code listing 6.19: The Linecard collector.

1 package collector
2
3 import (
4 ... //Removed imports in this example for less space
5)
6
7 // /rest/linecard
8 type lSBCdata struct {
9 XMLname xml.Name ‘xml:"root"‘

10 LinecardData LinecardData ‘xml:"linecard"‘
11 }
12 type LinecardData struct {
13 Href string ‘xml:"href,attr"‘
14 Rt_CardType string ‘xml:"rt_CardType"‘
15 Rt_Location string ‘xml:"rt_Location"‘
16 Rt_ServiceStatus int ‘xml:"rt_ServiceStatus"‘
17 Rt_Status int ‘xml:"rt_Status"‘
18 }
19
20 func LinecardCollector2() (m []prometheus.Metric) {
21 hosts := config.GetIncludedHosts("linecard")//retrieving targets for this

collector
22 if (len(hosts) <= 0) {
23 log.Print("no hosts, linecard")
24 return nil

58 Johannes, Sondre and Sang: HDO Monitoring

25 }
26 var (// Declaring Prometheus descriptions used when defining metrics
27 Rt_ServiceStatus = prometheus.NewDesc("rt_ServiceStatus",
28 "The service status of the module.",
29 []string{"hostip", "hostname", "job","linecardID","rt_CardType","

rt_Location"}, nil,
30)
31 Rt_Status = prometheus.NewDesc("rt_Status",
32 "Indicates the hardware initialization state for this card.",
33 []string{"hostip", "hostname", "job","linecardID"}, nil,
34)
35)
36
37 for i := range hosts {
38
39 phpsessid,err := http.APISessionAuth(hosts[i].Username, hosts[i].Password,

hosts[i].Ip)
40 if err != nil {
41 log.Print("Error auth", hosts[i].Ip, err)
42 continue
43 }
44
45 //chassis labels from db or http
46 chassisType, _, err := utils.GetChassisLabels(hosts[i].Ip,phpsessid)
47 if err!= nil {
48 chassisType = "db chassisData failed"
49 log.Print(err)
50 }
51
52 var linecardID []string
53 // There are two linecard linecardIDs which are different for type of SBC

router
54 if (chassisType == "SBC1000") {
55 linecardID = []string {"7", "8"}
56 } else if (chassisType == "SBC2000") {
57 linecardID = []string {"1", "2"}
58 } else {
59 //Couldnt fetch chassis type from db or http: try next host
60 continue
61 }
62 for j := range linecardID {
63 url := "https://"+hosts[i].Ip+"/rest/linecard/"+linecardID[j]
64 _, data, err := http.GetAPIData(url, phpsessid)
65 if err != nil {
66 log.Print(err)
67 continue
68 }
69
70 lData := &lSBCdata{}
71 err = xml.Unmarshal(data, &lData) //Converting XML data to variables
72 if err!= nil {
73 log.Print("XML error linecard", err)
74 continue
75 }
76 labelCardType := lData.LinecardData.Rt_CardType
77 labelLocation := lData.LinecardData.Rt_Location
78 metricValue3 := float64(lData.LinecardData.Rt_ServiceStatus)
79 metricValue4 := float64(lData.LinecardData.Rt_Status)
80
81 m = append(m, prometheus.MustNewConstMetric(Rt_ServiceStatus, prometheus

Chapter 6: Implementation 59

.GaugeValue, metricValue3, hosts[i].Ip, hosts[i].Hostname, "
linecard",linecardID[j],labelCardType,labelLocation))

82 m = append(m, prometheus.MustNewConstMetric(Rt_Status, prometheus.
GaugeValue, metricValue4, hosts[i].Ip, hosts[i].Hostname, "linecard
",linecardID[j]))

83 }
84 }
85 return m
86 }

6.5.3 System Collector

The system collector collects data associated with the use of system resources on
the SBCs. The system collector’s layout is slightly different from the other collect-
ors in that it includes an error gauge. In all other collectors, as soon as an error
occurs in the code, it uses the "continue" statement in its current for loop. This
breaks from the current loop and begins the next step. As requested by HDO, the
system collector is meant to provide an error metric to their Prometheus server,
indicating if a Scrape is successful or not, represented as the values 1 or 0 respect-
ively.

This error metric is appended to the collector’s metric array, followed by a
continue statement, or if the Scrape was successful; at the end of the outer loop.
Each metric in the system collector also includes the labels; "SBC type" and "serial
number".

6.5.4 Routingentry Collector

Almost none of the collectors uses exactly the same approach. Some Prometheus
Collectors required multiple API calls to collect data on the same hosts before the
final data could be collected. "Routingentry" is an example of such a collector. In
this case, the API calls fetch data containing routing tables, and then runs API calls
on each of these tables, fetching all existing entries for each router.

HDO wanted all the data from these calls, which means that each metric would
contain the labels; host IP address, routing table number, routing table entry, and
the metric values for all of these metrics. As a result, the final number of metrics
for this collector could be several dozens depending on the number of hosts, rout-
ing tables, and entries.

The following is an example of what such a metric looks like in Prometheus:

rt_RoundTripDelay{hostip="10.233.230.11",
hostname="host2",job="routingentry",
routing_entry="2",routing_table="2"} 9999

As discussed under the Database package in Section 6.4.3, the data members
routing tables and routing entries are stored in the database for a number of hours

60 Johannes, Sondre and Sang: HDO Monitoring

specified by the user in the configuration file. For our employer HDO, they are
usually stored for 24 hours.

6.5.5 Comprehensive Changes to the Implementation

By the end of development, in early May, it was decided to change the implementa-
tion involving the collector package, in particular. It was realized halfway through
development that changing the structure of the code in several ways would be
highly preferable, although it was decided not to until the end of development.
The previous version had one Collect and Describe interface for each collector
(see Section Prometheus Package 6.3), as can be seen in Figure 6.5. The figure
shows a HTTP-handler provided by the Prometheus package, which initializes all
collectors concurrently. The new version moved the code previously residing in
each Collect interface into new functions. This means that logically, there is now
only one collector, having separate functions handling separate data groupings.
Nevertheless, for simplicity purposes, each of these functions was referred to as
collectors.

Text
Text
Collector

Prometheus
HTTP-handler

Initialize

Return data

Describe() Collect()

Figure 6.5: The first version of the implementation.

The previous version had the drawbacks of making it difficult to refactor or
add new code. The prospect of changing this implementation was ignored un-
til HDO discovered an efficiency and security issue after testing the product. It
was discovered that each time the exporter made a connection to an SBC, five to
six simultaneous but separate authentications took place instead of one per host,
causing unnecessary use of system resources by the SBCs. The cause of this prob-
lem was due to the fact that each exporter collector was running concurrently
by the Prometheus package and therefore previous database entries containing a
PHP Session Cookie did not exist, meaning that each collector would fetch a new
cookie instead.

Chapter 6: Implementation 61

The new version as shown in Figure 6.6, instead runs each collector sequen-
tially, continuously appending their metrics to the AllCollectors struct, before re-
turning it to our custom HTTP-handler called ProbeHandler() as shown in Code
listing 6.18. The run time of the code was not improved by the new version, but
the advantage was that the new version was more scalable because of the removal
of the rigid structure of the Collect interfaces. By running each collector sequen-
tially, the issue of several simultaneous connections to each SBC was also fixed.

func Probe()

type
AllCollectors

struct {}

HTTP-handler

Collector2

func Collect()
interface

Collector3

Collector4

Collector5

Collector6

Collector1

Prometheus
server

Figure 6.6: The current implementation version.

Chapter 7

Collected Data

The SBC Edge REST API contains a large number of endpoints; this chapter will
discuss the availability of the data that are collected, why they are collected and
what kind of value they create. The list of data can be found in Appendix A.

7.1 Availability

The data that are collected from SBCs are available from the Ribbon SBC Edge
REST API that the employer provided to the group. Data that may be collected
through this REST API should always be available when the SBCs are in operation.
In the case of HDO, these SBCs are always running, making sure that emergency
calls reach and communicate with the correct reception. Therefore, the availability
of the data that can be collected from the SBCs through the REST API is high.

7.2 Why is the Data Collected?

The main goal of collecting the data from these SBC targets is to monitor them
and find trends that may indicate potential hardware problems or other issues,
such as call quality. Figure 7.1 shows the two SBCs targets inside of Prometh-
eus ready to provide metrics to the Prometheus server through the exporter. As
mentioned above, the goal of monitoring is to address issues before they arise.
Whenever HDO discovers issues with the SBCs at this point, it is impossible for
them to know the causes because the data are usually only stored for one hour
on the SBCs. Therefore, data collection has the potential to create value for HDO
if the data collected helps operators at HDO address issues that otherwise would
cause problems in the network.

63

64 Johannes, Sondre and Sang: HDO Monitoring

Figure 7.1: This figure illustrates two test SBCs inside of Prometheus as targets.
It is very small and difficult to see, so you may have to zoom in to get a better
picture.

An example of such data would be the CPU utilization as shown in Figure 7.2.
High CPU usage can indicate that the router is struggling to handle the amount of
data traffic on the network, which can result in degraded network performance,
including dropped calls, poor call quality, or slow data transfer rates. If HDO’s
operators catch the trend of high CPU usage and address the issue before it be-
comes an issue for emergency calls, then the value that collecting data creates is
immense.

Figure 7.2: This figure illustrates the CPU usage of the two aforementioned SBCs.
It is very small and difficult to see, so you may have to zoom in to get a better
picture.

7.3 Data Groups Used by the Exporter

This section discusses the data groups defined by the SBC API documentation [51],
and these data groups are also defined as such in each Prometheus Collector of the
exporter. All quoted text is taken from the SBC API documentation, and examples
of metrics are from its usage in the exporter.

Chapter 7: Collected Data 65

System call

This data group gives, among other information, information about the success
rate of all calls. Examples of metrics:

• "rt_NumCallFailed": "Total number of failed calls system wide since system
came up."
• "rt_NumCallAttempts": "Total number of call attempts system wide since

system came up."
• "rt_NumCallUnAnswered": "Number of unanswered calls system wide since

system came up."

Disk Partition

This data group contains statistics of the resource usage of each disk partition.
Examples of metrics:

• "rt_CurrentUsage": "Amount of memory used by this partition, expressed
as percentage"
• "rt_MemoryAvailable": "Amount of memory in bytes, available for use in

the file system."
• "rt_PartitionType": "Identifies the user-friendly physical device holding the

partition."

Ethernetport

This data group contains ethernet port statistics that are specific to this technology.
Examples of metrics:

• "rt_ifInOverSizedPkts": "Displays the number of Oversized Packet errors
detected on this port."
• "rt_ifInUnknwnProto": "Displays the number of Unknown Protocol errors

detected on this port."
• "rt_ifOutBroadcastPkts": "Displays the number of transmitted broadcast

packets on this port."

Linecard

This data group contains information about each line card. Examples of metrics:

• "rt_ServiceStatus": "The service status of the module."
• "rt_Status": "Indicates the hardware initialization state for this card."

66 Johannes, Sondre and Sang: HDO Monitoring

Routingentry

This data group contains information about the routing table statistics. Examples
of metrics:

• "rt_RuleUsage": "Displays the number of times this call route has been se-
lected for a call."
• "rt_RoundTripDelay": "Displays the average round trip delay for this call

route."
• "rt_QualityFailed": "Displays if this call route is currently passing or failing

the associated quality metrics. If true, then the rule is failing, if false, then
it is passing."

System

This data group contains information about the utilization of the system resource
by the SBC. Examples of metrics:

• "rt_CPUUsage": "Average percent usage of the CPU."
• "r_MemoryUsage": "Average percent usage of system memory."
• "rt_CPULoadAverage1m": "Average number of processes over the last one

minute waiting to run because CPU is busy."

Chapter 8

Usage

This chapter explains how to install, configure, and run the exporter either using
or not using Docker. After the product is installed, configured, and started, metrics
can then be gathered from:

exporter-hostip:5123/metrics

The first step is to either download the source code from the Git reposit-
ory [68], or download a Docker image from Docker Hub as described in Section
8.2.1. This setup presumes that the Docker engine is already installed.

8.1 Configuration of the Exporter

The exporter requires configuration in the "config.yml" file, which is located in the
root folder of the source code. In the config as shown in Code Listing 8.1 you can
see the layout of a config.yml file that contains 3 hosts with dummy data. It is
required to use a hostname, ipaddress, username, and password. You can choose
which collectors you want to exclude for each host by adding them to the list
"exclude" as shown below the last host. The name of the collectors has to match
exactly as spelled in this example shown in Code Listing 8.1.

"Authtimeout" is the maximum time chosen to attempt authentication to a
host. It is usually not reachable if the duration is more than 1-2 seconds.

"routing-database-hours" is the duration for which the data related to the
routingentry collector are stored within the database.

Fetching new data through HTTP takes several extra seconds per scrape. Met-
rics are never stored, only data such as routing tables and their routing entries. It
is recommended not to configure too many hosts per Docker instance because of
performance issues.

67

68 Johannes, Sondre and Sang: HDO Monitoring

Code listing 8.1: Layout of the configuration file.

1 ---
2 authtimeout: 3 #all hosts will have max 3 sec timout
3 hosts:
4 − hostname: Host1
5 ipaddress: 11.111.111.11
6 username: Username1
7 password: Password1
8 routing−database−hours: 24 #For routingentry collector, data is

stored in the database for 24 hours for this host.
9 − hostname: Host2

10 ipaddress: 11.111.111.12
11 username: Username2
12 password: Password2
13 routing−database−hours: 24
14 exclude: # Collectors that are excluded for this host
15 - diskpartition
16 - linecard
17 − hostname: Host3
18 ipaddress: 11.111.111.13
19 username: Username3
20 password: Password3
21 routing−database−hours: 24
22 exclude:
23 - routingentry
24 - system
25 - diskpartition
26 - systemcallstats
27 - linecard
28 - ethernetport

8.2 Installation and Deployment

This section walks you through the installation and deployment of the exporter.

8.2.1 Deployment of the Exporter as a Docker Image

There are two alternatives to deploy the exporter as a Docker image. You can run
the docker file provided in the source code, or download a Docker image from the
Docker Hub [69].

Chapter 8: Usage 69

Deployment Running the Provided Docker File

Navigate to the source code directory and build the Docker image by running the
command:

sudo docker build -t edge_exporter .

Initialize a container instance:

sudo docker run -p 5123:5123 edge_exporter

Deployment of the Docker Image from Docker Hub

Download the Docker image from the groups repository from Docker Hub [69]

docker pull sondrjor/edge_exporter:latest

When pulling the Docker image from Docker Hub you have to configure and
run an external config.yml file:

sudo docker run -v path/to/your/config.yml:/usr/src/exporter/config.yml
sondrjor/edge_exporter

8.2.2 Installation and Deployment Without Docker

The exporter is developed and tested for the official Ubuntu server image [48].

Download Golang using the official download page: "install golang", and re-
member to reboot. To start the exporter and download all necessary packages,
navigate to the edge_exporter directory and run "go install".

Run or Test the Exporter

Use "go build ." or "go run ." from the main directory of the code, then use curl
localhost:5123/metrics in another shell window to view metrics data from the
SBCs.

70 Johannes, Sondre and Sang: HDO Monitoring

Installation of Go on HDO’s Virtual Machines

Because of security measures, root folders are not accessible on HDO’s VMs, there-
fore it is needed to install Go to the home directory.

• Download the latest version of Go to home directory, from Go’s official web-
site [70]
• Unzip the file with tar
• Run the following commands:

export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

If starting Go gives you a message that it has not yet been installed, create a
start script that executes the line source .bashrc from the home directory.

8.3 Monitoring Metrics Produced by the Exporter

In this bachelor’s thesis the group has delimited from discussing the usage of Pro-
metheus and Grafana, because our employer HDO already has an existing Pro-
metheus and Grafana solution in use. However, for cases where the product is go-
ing to be used as open source by other parties than HDO, it will be discussed how
to install and deploy these technologies using either Grafana cloud or Grafana hos-
ted locally, both with Docker compose. This setup assumes that Docker is already
installed. Section 9.1.4 discusses security concerns that should be addressed when
using this setup.

• Grafana Hosted Locally Navigate to the following directory of the source
code:

edge_exporter/Other/Grafana-Prometheus/grafanalocal/

This directory contains the configuration files used for Grafana hosted loc-
ally. Execute the command sudo docker-compose up -d. The Grafana dash-
board can then be found at hostip:9090
• Grafana Cloud Navigate to the following directory of the source code:

edge_exporter/Other/Grafana-Prometheus/grafanacloud/

This directory contains the configuration files used for Grafana Cloud. Fol-
low the setup of how to create a Grafana API key [71], and insert the user-
name and API key under variable basic-auth: in the prometheus.yml config
file. Execute the command sudo docker-compose up -d. The Grafana dash-
board can then be found at hostip:9090

Chapter 9

Discussion

This chapter will discuss the security aspects related to the product that has been
developed and some technical difficulties discovered after testing by HDO and
how they were addressed. Additionally, different aspects of the project related to
the process of creating the product and thesis will be discussed.

9.1 Technical Discussion

The technical discussion section of the discussion chapter will discuss security con-
cerns related to the product. It will also discuss some of the technical difficulties
that the product might face in the future.

9.1.1 Preexisting Security Measures

As mentioned in the introduction, HDO is responsible for delivering services that
realize the Norwegian emergency call network. This is critical infrastructure and
security is a high priority. The entire network is closed off from the public Internet
and can be accessed by connecting to a Virtual Private Network (VPN). To connect
to the network, one must also go through a two-factor authentication system. Fur-
thermore, HDO follows the zero trust security model, also known as Zero Trust
Architecture (ZTA) [72], which means that no device is trusted by default. All
ports in the network are closed off by default and need to be opened by an ad-
ministrator to allow access. Another feature of HDO’s network is that everything is
microsegmented. This is the act of dividing the network into segments, separating
workload and applying network rules to it, in HDO’s case of zero trust. All data
flowing through HDO’s network are also securely transferred in encrypted chan-
nels. In addition to all these security measures, HDO uses a firewall to prevent
devices from accessing the rest of the network.

71

72 Johannes, Sondre and Sang: HDO Monitoring

9.1.2 API Authentication

One notable security concern regarding the product was how to handle authen-
tication information, specifically API authentication. In order to make use of the
SBC’s integrated API, a username and password is required. As requested by the
employer, this information is to be included in the product’s configuration file.
This means that the inclusion of the username and password in the configuration
file is required for the exporter to successfully retrieve data using the SBC Edge
REST API. These passwords are not hashed and are therefore written in plain text
as part of the configuration.

This is obviously a security concern that the group acknowledges, which was
also discussed and passed on to HDO. However, this configuration feature was
requested, and because there were no simple solutions or workarounds to this
problem, the risk remains. A possible risk is that someone will use SQL injec-
tion [73] to perform malicious activity, such as destroying a database or adding
false information to a database, if they get access to the REST API. A common way
to solve this problem is to use API tokens for authentication. However, the REST
API that is available on the SBCs provided does not have a solution to authentic-
ate with the API tokens, which would have been the better solution. An argument
can be made against the use of API tokens, because all traffic in HDO’s network is
transferred over encrypted channels. Additionally, authenticating to the SBCs like
how it is being done now is a simple solution, and implementing a solution with
API tokens would require even more development, which would take more time
and add more complexity.

But what potential risk does this problem pose? The potential danger would be
if someone accesses HDO’s private network, and furthermore accesses an instance
of the exporter, retrieving the username and password from the configuration file.
With this information, the attacker is able to delete the configuration file render-
ing the exporter useless until fixed. Another possibility is to gain access to these
SBCs and perform a DoS attack and potentially crash one of these SBCs. Our em-
ployer at HDO managed to crash these SBCs while testing as a result of too many
requests sent to them.

However, the amount of harm one can cause in relation to this information is
limited to the use of the HDO Edge REST API that the exporter was monitoring.
In this hypothetical scenario, someone was able to access HDO’s internal network,
bypassing several security measures to access instances of the exporter. The po-
tential harm related to this API authentication is rather insignificant compared to
the potential harm that such access would already allow. Meaning that access at
this level, necessary to access the exporter, is a much greater threat than access
to the API authentication. However, this does not suggest that security related to
the exporter and its stored API authentication should not be taken seriously and

Chapter 9: Discussion 73

ideally passwords should always be hashed according to best practice, in order
to limit access. Additionally, the SBCs should all have different passwords and
usernames to prevent damage caused by reuse of login credentials for the SBCs.

9.1.3 Security of the Code

As mentioned above when discussing API authentication in subsection 9.1.2, the
employer at HDO managed to crash one of these SBCs as a result of too many
requests via its REST API. This would certainly be classified as a weakness of our
code, being able to crash these SBCs. The employer mentioned that peak CPU
usage of the SBC was very high at one point. This might have caused the SBC to
crash. A possible solution to this issue is to exclude some of the collectors. This
would reduce the number of requests, and as a result the SBCs might not crash.
However, this also means that some of the metrics will not be collected and will
not be monitored. Another measure is to increase the scrape interval in the con-
figuration to reduce the overall usage, thus reducing the strain of the CPU.

According to Snyk Advisor, an open source advisor that evaluates whether a
package is safe to use or not [74], many of the packages that were used for the im-
plementation are safe to use. This includes Go packages such as Prometheus [75],
sqlite [76], yaml [77], ioutil [78] and net [79]. Whether Snyk Advisor is trust-
worthy or not is difficult to say because of the lack of relevant research on this
topic. However, the group could not find any reports or articles that discussed any
security concerns of the packages used that have not been fixed already.

9.1.4 Using the Exporter as Open Source

The use of the product is similar in nature when used by other parties than HDO.
As HDO already has Prometheus systems in use, we decided to delimit from dis-
cussing Prometheus and Grafana monitoring systems in greater detail. If other
corporations wish to use the product to monitor their SBC routers, they will have
to integrate it with a Prometheus and Grafana monitoring solution on their own
terms. As a starting point and possible solution to deploy Grafana, such a solution
is provided in Section 8.3. Here we discuss how to monitor metrics with Prometh-
eus and Grafana when the product is being used as open source.

The option of using "Grafana Cloud" [80] however, has some significant secur-
ity risks because the ports and IP traffic are not encrypted. As information such as
SBC IP addresses, authentication details and sensitive data concerning networking
infrastructure flows through the Internet. When using this monitoring solution in
integration with the exporter, it is highly recommended to implement additional
security measures such as Transport Layer Security (TLS) in Prometheus [81].

The option of using Grafana hosted locally with docker is only secure if the
solution resides within a secure infrastructure because the ports are not secured

74 Johannes, Sondre and Sang: HDO Monitoring

by default in this option either.

Other parties than HDO that wishes to use the exporter may find that the
product may not be suited to their needs, which is understandable because it has
been developed in cooperation with HDO and therefore is specifically tailored
to their needs and suggestions. However, the product to some degree provides
customization to what type of data that one decides to collect (see Section 8.1.
As it is open source, anyone can also further develop the source code to fit their
needs.

9.1.5 Issues That Were Revealed During Testing

After some testing of the product by HDO on their SBC hosts and Prometheus
server, some technical issues were revealed.

HDO had initially overestimated the capacity of the SBCs to handle the load
the exporter would place on them. This was not an issue with the exporter’s per-
formance, but rather the demands HDO needed the exporter to pose on the SBCs in
terms of requesting data. As the amount of data to be monitored was quite large,
it resulted in the SBC’s CPU usage to increase by up to 40% in some cases. To
handle this issue, it was decided to increase the scrape intervals from 15 seconds
to 1 minute. The employers are also considering the possibility of excluding cer-
tain collectors that are deemed less important, such as disk partition, in order to
reduce the workload.

The first tests revealed that the exporter authenticated to the SBCs up to six
times in a matter of seconds, although it should have only been once per 9 minutes.
This issue was the reason for our decision to change the overall architecture of
the exporter, as discussed in Section 6.5.5.

The run time of the exporter turned out to be quite large, which is mainly due
to all the API calls that were made to the SBCs. For example, the "routingentry"
collector had to make in most cases several dozens API calls to the SBCs to fetch
all the data that HDO wanted. As a result, this collector alone took six seconds to
complete. It was decided to try to improve this issue and the use of a database
was implemented to do so, as described in Section 6.4.3. This was considered a
good solution that was able to save several seconds.

Chapter 9: Discussion 75

9.2 Project Execution

The project execution section of the discussion chapter will go through the com-
munication between group members, supervisor, and employer. Additionally, it
will further discuss the working process between group members, project plan-
ning, meetings between group members, supervisor and employer, time tracking,
report writing, and the development model.

9.2.1 Communication

Communication between group members, supervisor and employer happened over
two main applications. Most of the communication between the groups’ members
took place over Discord. However, before the Discord server for the group was es-
tablished in the middle of January, all communication was done through Microsoft
Teams. Communication between group members, supervisor, and employer oc-
curred mainly via Microsoft Teams. However, some of the communication also
happened via email.

9.2.2 Working Process

Prior to the first introductory lecture on the Bachelor’s thesis, the members of the
group had very little to no experience working together. Additionally, none of the
group members knew each other on a personal level. After the first lecture the
group had their first meeting and began creating a project plan, contact their su-
pervisor, plan how the group would work in the future with regards to meetings,
and lastly they delegated each member of the group their respective role.

At first, the meetings and teamwork went relatively smoothly. However, to-
wards the end of January, the momentum of the group decreased and the com-
munication within the group could have been better. The group also decided to
have only one person work on the development of the product, while the others
worked on the report. In hindsight, we should not have made this decision, as it
worsened communication within the group by separating members.

9.2.3 Planning

The initial planning of the project was carried out mainly in the first month of
the project in January as part of the project plan. In the project plan, the group
planned how they would work on the project, milestones, meetings, tools that
they would use, risks and more (see Appendix D).

9.2.4 Meetings

During the creation of the project plan, the group initially planned to have two
physical meetings every week. In these meetings, the group would both work on

76 Johannes, Sondre and Sang: HDO Monitoring

the project together and discuss the work that had been done the previous week.
Additionally, the group would plan the work that was to be done for the current
week of the meeting. One of these meetings was planned to take place after the
meeting with the supervisor on Thursdays, and the other on a different day of the
week.

The group managed to maintain the schedule for the first month. However,
after the first month, the group had fewer weekly meetings. As a result of the
lack of meetings between group members, the quality and speed of the workflow
seemed to be a little less than desired. Looking back, a greater amount of effort
in the planning phase would have been beneficial. A well-planned and structured
project would have helped with many of the issues that the group faced during
the execution of both the development of the project and the writing of the report.

Weekly meetings with the supervisor were priceless in terms of help and guid-
ance. Not only did the supervisor help with technical difficulties related to the
development of the product, but they also helped the group a lot with the project
report by giving suggestions and commenting on what could be improved. Finally,
they also helped the group with internal communication problems.

9.2.5 Time Tracking

After some back and forth discussion at the early stages of the project in January,
the group decided to fill in a shard Microsoft Excel document as their method
of tracking time spent working on the bachelor’s thesis. This document can be
found in Appendix H The main reason the group chose this tool was because of its
simplicity. Another reason for ending up using Excel was because of the group’s
inexperience using other time tracking tools. Furthermore, these tools seemed un-
necessarily cumbersome to use for the group.

Looking back at this decision and having gathered some valuable insight from
the experience of other groups who used other time tracking tools. It might have
been a better idea to use a different method or tool to track time other than Excel,
despite them being more complex to use. One of the tools that some other groups
used is called Toggl Track [82], which tracks time spent in real time. This helped
push the members to work for the amount of hours they had planned.

The experience that the group received from using Excel as a tracking time
solution was that it was quite inaccurate. The reason the group experienced the
use of Excel for time tracking as inaccurate is due to human errors related to time
tracking. These human errors include, but are not limited to, simply forgetting
how long they spent on working or forgetting to log hours completely. This often
resulted in an inaccurate representation of the amount of hours logged.

Chapter 9: Discussion 77

9.2.6 Report

The group began writing the project report in the middle of February. At first, the
writing of the report was slow, as only one of the group members was working on
it. The supervisor suggested that the group send him three completed chapters be-
fore Easter break. About two weeks before this deadline, the group only had one
chapter finished and about half a chapter in the works. During the next weeks,
the pace picked up as the developer of the product changed focus and assisted on
the project report. The last member of the project also began contributing to the
project report at this time.

Due to the decision to divide the responsibilities with respect to the develop-
ment of the product and the writing of the report, the writing often halted. Many
chapters of the report required knowledge about the product being developed.
Having only one member developing it and having the most knowledge about it
left the other group members with little of the necessary knowledge required to
write some of these chapters.

In hindsight, the group should have had at least two of the members develop
the product. This would probably have resulted in a better written report thanks
to more people being able to write and help other members write some of the
chapters. Having two developers might also have resulted in the product being
finished ahead of schedule, meaning more time for writing the report.

9.2.7 Development Model

During the writing of the project plan, the group discussed which development
model they would use to develop the product and write the project plan. The
group ended up agreeing on using the Scrum model.

However, the use of the Scrum development model throughout the project was
quite limited. This was mainly due to the fact that the group lacked a sufficient
number of meetings to properly follow the scrum model. Additionally, the group
did not assign Scrum roles and responsibilities. This led to a messy and unstruc-
tured use of the Scrum development model. However, the little use of Scrum was
perceived as useful to structure tasks for the week and to discuss what had been
done the week before.

The group also originally planned to use a CI/CD pipeline for the development
of the product. However, the development of the exporter was proven to be a
greater task than anticipated, and the group decided to prioritize the development
of the exporter without an integrated CI/CD pipeline. The group felt that the
addition of the CI/CD pipeline would take a long time to integrate and decided not
to prioritize it and instead focused on spending time developing a better product.

Chapter 10

Conclusion

This chapter concludes the report and discusses what the group has been able to
achieve. Furthermore, it will discuss further work related to the project and the
possible improvements that can be made to the product.

10.1 What Has the Group Achieved?

As a result of working on this project, the group has achieved a working monitor-
ing solution that HDO can add to their current repertoire of monitoring solutions.
The monitoring solution that the group has created is called a Prometheus ex-
porter and will be used by HDO to monitor the SBCs in their infrastructure to
find potential faults and address them before they cause issues with the quality
of emergency calls. In addition, the group has learned a lot about working as a
group.

10.2 Further Work

There are some improvements that could be made for the exporter to make it
more efficient and convenient for HDO. These will be discussed in this section.

10.2.1 Potential Improvements

During development of the exporter, it was discovered that data can be stored in
memory as long as the program is running. It is even possible for different func-
tions to interact with the same data stored here. However, in the first architecture
version, the group failed to implement this for reasons that we do not fully un-
derstand. As soon as each of the Collect interfaces was completed, all data stored
in memory were removed. There may have been two reasons for this;

79

80 Johannes, Sondre and Sang: HDO Monitoring

1. It may have been necessary to use interfaces for this to be possible. In the
new architecture, the exporter successfully stored Prometheus metrics in
memory, which means that the group now knows a possible solution to store
other data here as well.

2. Another possible cause is that Prometheus by default deletes all data after
a scrape is executed, which means that utilizing memory storage would not
be possible.

Therefore, the group used a database in all cases of reusing data, which had
both its benefits and drawbacks. The benefits being the scalability of the product
and saving work for the memory as a large amount of data was being used, which
comes with the risks of memory thrashing [83] on smaller systems.

The drawbacks of using a database in our implementation is that each collector
is opening the database to insert or retrieve data, meaning that the database was
being opened and queried six times during each scrape, instead of once. This
causes the exporter to use more disk and CPU. This is because all 6 collectors
shared this implementation. Some performance gain could possibly be achieved
by replacing the database with more memory allocation or moving the database
logic into the Probe() function shown in the Code Listing 6.18.

10.2.2 Ways to Improve the Implementation

With the new custom function "Probehandler" shown in Code Listing 6.17 and its
integration with the function "Probe", it is now possible to remove much of the
duplicated code in the Collectors into this function. This includes the retrieval of
hosts, session cookies, and all database-related functions. Data related to these
elements can now be given as parameters and return values to the collectors in-
stead, which is something to consider for further work.

During the end of development, HDO mentioned the possibility of renaming
all metrics to be more concise, because the Prometheus systems they use contain
metrics from a large number of different exporters. This means, among other as-
pects, that searching for metrics produced by our exporters would return a very
large list of different metrics, making it difficult to separate these metrics from
others.

As mentioned in Chapter 4, there were performance issues with regards to the
SBCs handling the demand of each scrape. HDO mentioned a possibility to change
the "disk partition" collector to instead collect from a smaller number of disks as
this collector was particularly demanding.

Bibliography

[1] Ribbon Communications, Ip optical networking and communication | rib-
bon, [Online; accessed 17-May-2023]. [Online]. Available: https://ribboncommunications.
com/.

[2] Helsetjenestens driftsorganisasjon for nødnett HF, Helsetjenestens driftsor-
ganisasjon for nødnett, [Online; accessed 17-May-2023]. [Online]. Avail-
able: https://www.hdo.no.

[3] Direktoratet for samfunnssikkerhet og beredskap, Hva er nødnett? [Online;
accessed 17-May-2023]. [Online]. Available: https://www.nodnett.no/
om-nodnett/hva-er-nodnett/.

[4] Ribbon Communications, Session border controllers for service providers,
[Online; accessed 17-May-2023]. [Online]. Available: https://ribboncommunications.
com/products/service-provider-products/session-border-controllers-
service-providers.

[5] Wikipedia contributors, Session border controller — Wikipedia, the free en-
cyclopedia, [Online; accessed 1-May-2023], 2023. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Session_border_controller&
oldid=1140919721.

[6] Docker, Use containers to build, share and run your applications, [Online;
accessed 17-May-2023]. [Online]. Available: https://www.docker.com/
resources/what-container/.

[7] Grafana, Grafana | query, visualize, alterting observability platform, [On-
line; accessed 17-May-2023]. [Online]. Available: https://grafana.com/
grafana/.

[8] Prometheus Authors, Overview, [Online; accessed 16-April-2023], 2023.
[Online]. Available: https://prometheus.io/docs/introduction/overview.

[9] Grafana, Grafana loki, [Online; accessed 17-May-2023]. [Online]. Avail-
able: https://grafana.com/oss/loki/.

[10] NTNU, Digital infrastruktur og cybersikkerhet, [Online; accessed 17-May-
2023]. [Online]. Available: https://www.ntnu.no/studier/bdigsec.

[11] NTNU, Department of information security and communication technology,
[Online; accessed 17-May-2023]. [Online]. Available: https://www.ntnu.
edu/iik.

81

https://ribboncommunications.com/
https://ribboncommunications.com/
https://www.hdo.no
https://www.nodnett.no/om-nodnett/hva-er-nodnett/
https://www.nodnett.no/om-nodnett/hva-er-nodnett/
https://ribboncommunications.com/products/service-provider-products/session-border-controllers-service-providers
https://ribboncommunications.com/products/service-provider-products/session-border-controllers-service-providers
https://ribboncommunications.com/products/service-provider-products/session-border-controllers-service-providers
https://en.wikipedia.org/w/index.php?title=Session_border_controller&oldid=1140919721
https://en.wikipedia.org/w/index.php?title=Session_border_controller&oldid=1140919721
https://en.wikipedia.org/w/index.php?title=Session_border_controller&oldid=1140919721
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://grafana.com/grafana/
https://grafana.com/grafana/
https://prometheus.io/docs/introduction/overview
https://grafana.com/oss/loki/
https://www.ntnu.no/studier/bdigsec
https://www.ntnu.edu/iik
https://www.ntnu.edu/iik

82 Johannes, Sondre and Sang: HDO Monitoring

[12] Wikipedia contributors, Event monitoring — Wikipedia, the free encyclope-
dia, [Online; accessed 03-April-2023], 2023. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Event_monitoring&oldid=
1136480691.

[13] Paul Dix, Why time series matters for metrics, real-time analytics and sensor
data, [Online; accessed 13-April-2023], 2021. [Online]. Available: https:
//get.influxdata.com/rs/972-GDU-533/images/why%20time%20series.
pdf.

[14] MongoDB, What is mongodb? [Online; accessed 17-May-2023]. [Online].
Available: https://www.mongodb.com/what-is-mongodb.

[15] Graphite, Overview, [Online; accessed 17-May-2023]. [Online]. Available:
https://graphiteapp.org/#overview.

[16] InfluxData, Introducing influxdb 3.0, [Online; accessed 17-May-2023]. [On-
line]. Available: https://www.influxdata.com/products/influxdb-
overview/.

[17] D. Namiot, ‘Time series databases.,’ DAMDID/RCDL, vol. 1536, pp. 132–
137, 2015.

[18] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza and K.
Veeraraghavan, ‘Gorilla: A fast, scalable, in-memory time series database,’
Proc. VLDB Endow., vol. 8, no. 12, pp. 1816–1827, 2015, ISSN: 2150-8097.
DOI: 10.14778/2824032.2824078. [Online]. Available: https://doi.org/
10.14778/2824032.2824078.

[19] IBM, What is containerization? [Online; accessed 13-April-2023]. [Online].
Available: https://www.ibm.com/topics/containerization.

[20] Axigen, 5 benefits of containerization — limitless computing speed and agil-
ity, [Online; accessed 13-April-2023], 2021. [Online]. Available: https://
www.axigen.com/articles/benefits-of-containerization_117.html.

[21] J. Turnbull, The Docker Book: Containerization is the new virtualization.
James Turnbull, 2014.

[22] A. M. Potdar, D. Narayan, S. Kengond and M. M. Mulla, ‘Performance evalu-
ation of docker container and virtual machine,’ Procedia Computer Science,
vol. 171, pp. 1419–1428, 2020.

[23] IBM, What is container orchestration? [Online; accessed 14-April-2023].
[Online]. Available: https://www.ibm.com/topics/container-orchestration.

[24] Kubernetes, Overview, [Online; accessed 14-April-2023], 2023. [Online].
Available: https://kubernetes.io/docs/concepts/overview.

[25] M. Masse, REST API design rulebook: designing consistent RESTful web service
interfaces. " O’Reilly Media, Inc.", 2011.

https://en.wikipedia.org/w/index.php?title=Event_monitoring&oldid=1136480691
https://en.wikipedia.org/w/index.php?title=Event_monitoring&oldid=1136480691
https://en.wikipedia.org/w/index.php?title=Event_monitoring&oldid=1136480691
https://get.influxdata.com/rs/972-GDU-533/images/why%20time%20series.pdf
https://get.influxdata.com/rs/972-GDU-533/images/why%20time%20series.pdf
https://get.influxdata.com/rs/972-GDU-533/images/why%20time%20series.pdf
https://www.mongodb.com/what-is-mongodb
https://graphiteapp.org/#overview
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078
https://www.ibm.com/topics/containerization
https://www.axigen.com/articles/benefits-of-containerization_117.html
https://www.axigen.com/articles/benefits-of-containerization_117.html
https://www.ibm.com/topics/container-orchestration
https://kubernetes.io/docs/concepts/overview

Bibliography 83

[26] Prometheus Authors, Understanding and using the multi-target exporter pat-
tern, [Online; accessed 17-May-2023]. [Online]. Available: https://prometheus.
io/docs/guides/multi-target-exporter/.

[27] Prometheus Authors, Metric types, [Online; accessed 17-May-2023]. [On-
line]. Available: https://prometheus.io/docs/concepts/metric_types/.

[28] Prometheus Authors, Exporters and integrations, [Online; accessed 16-April-
2023], 2023. [Online]. Available: https://prometheus.io/docs/instrumenting/
exporters.

[29] Shivang Sarawagi, What is grafana? why use it? everything you should know
about it, [Online; accessed 16-April-2023]. [Online]. Available: https://
scaleyourapp.com/what-is-grafana-why-use-it-everything-you-
should-know-about-it/.

[30] MySQL Authors, What is mysql? [Online; accessed 17-May-2023]. [Online].
Available: https://dev.mysql.com/doc/refman/8.0/en/what- is-
mysql.html.

[31] Elastisearch Authors, What is elasticsearch? [Online; accessed 17-May-2023].
[Online]. Available: https://www.elastic.co/what-is/elasticsearch.

[32] Docker Authors, Docker overview, [Online; accessed 17-May-2023]. [On-
line]. Available: https://docs.docker.com/get-started/overview/.

[33] Microsoft Authors, Microservice architecture style, [Online; accessed 16-April-
2023], 2023. [Online]. Available: https://learn.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices.

[34] IBM, What is containerization? [Online; accessed 18-April-2023]. [Online].
Available: https://www.ibm.com/topics/containerization.

[35] Go, Golang, [Online; accessed 16-May-2023], 2023. [Online]. Available:
https://go.dev/.

[36] Wikipedia contributors, Go (programming language) — Wikipedia, the free
encyclopedia, [Online; accessed 16-May-2023], 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Go_(programming_
language)&oldid=1153277087.

[37] Wikipedia contributors, Xml — Wikipedia, the free encyclopedia, [Online; ac-
cessed 14-May-2023], 2023. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=XML&oldid=1155412116.

[38] Tuan Nguyen, Golang performance comparison | why is go fast? [Online; ac-
cessed 30-April-2023]. [Online]. Available: https://www.golinuxcloud.
com/golang-performance/.

[39] Go, Documentation, [Online; accessed 30-April-2023]. [Online]. Available:
https://go.dev/doc/.

https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/guides/multi-target-exporter/
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/instrumenting/exporters
https://prometheus.io/docs/instrumenting/exporters
https://scaleyourapp.com/what-is-grafana-why-use-it-everything-you-should-know-about-it/
https://scaleyourapp.com/what-is-grafana-why-use-it-everything-you-should-know-about-it/
https://scaleyourapp.com/what-is-grafana-why-use-it-everything-you-should-know-about-it/
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://www.elastic.co/what-is/elasticsearch
https://docs.docker.com/get-started/overview/
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://www.ibm.com/topics/containerization
https://go.dev/
https://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=1153277087
https://en.wikipedia.org/w/index.php?title=Go_(programming_language)&oldid=1153277087
https://en.wikipedia.org/w/index.php?title=XML&oldid=1155412116
https://en.wikipedia.org/w/index.php?title=XML&oldid=1155412116
https://www.golinuxcloud.com/golang-performance/
https://www.golinuxcloud.com/golang-performance/
https://go.dev/doc/

84 Johannes, Sondre and Sang: HDO Monitoring

[40] Go, Prometheus, [Online; accessed 28-April-2023]. [Online]. Available: https:
//pkg.go.dev/github.com/prometheus/client_golang/prometheus#
pkg-index.

[41] Anan Hossain, Go vs php syntax comparison, [Online; accessed 30-April-
2023], 2019. [Online]. Available: https://engineering.carsguide.com.
au/go-vs-php-syntax-comparison-c1465380b8ff.

[42] Go, Help, [Online; accessed 30-April-2023]. [Online]. Available: https:
//go.dev/help.

[43] GitHub Authors, Github: Let’s build from here, [Online; accessed 17-May-
2023]. [Online]. Available: https://github.com/.

[44] Stack Overflow Authors, Stack overflow - where developers learn share &
build careers, [Online; accessed 17-May-2023]. [Online]. Available: https:
//stackoverflow.com/.

[45] Git, Reference, [Online; accessed 05-May-2023], 2023. [Online]. Available:
https://git-scm.com/docs.

[46] CURL, Curl, [Online; accessed 10-May-2023], 2023. [Online]. Available:
https://curl.se/.

[47] Scrum, Scrum, [Online; accessed 10-May-2023], 2023. [Online]. Available:
https://www.scrum.org/resources/what-scrum-module.

[48] Ubuntu, Get ubuntu server, [Online; accessed 30-April-2023], 2023. [On-
line]. Available: https://ubuntu.com/download/server.

[49] Christian Svensson, Fortigate_exporter, [Online; accessed 28-April-2023].
[Online]. Available: https://github.com/bluecmd/fortigate_exporter/.

[50] Anton Putra, Nginx-exporter, [Online; accessed 10-May-2023], 2023. [On-
line]. Available: https://github.com/antonputra/tutorials/tree/
main/lessons/141/prometheus-nginx-exporter.

[51] R. Communications, Sbc edge rest api documentation 9.0, 2020.

[52] mattn, Go-sqlite3, [Online; accessed 15-May-2023]. [Online]. Available:
https://pkg.go.dev/github.com/mattn/go-sqlite3.

[53] Wikipedia contributors, Http handler — Wikipedia, the free encyclopedia,
[Online; accessed 20-May-2023], 2023. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=HTTP_handler&oldid=1137776466.

[54] Go, Interfaces, [Online; accessed 28-April-2023]. [Online]. Available: https:
//go.dev/tour/methods/9.

[55] Go, Pointer, [Online; accessed 28-April-2023]. [Online]. Available: https:
//pkg.go.dev/golang.org/x/tools/go/pointer.

[56] Anshul Agarwal, Pointers in golang, [Online; accessed 03-May-2023]. [On-
line]. Available: https://www.geeksforgeeks.org/pointers-in-golang/.

https://pkg.go.dev/github.com/prometheus/client_golang/prometheus#pkg-index
https://pkg.go.dev/github.com/prometheus/client_golang/prometheus#pkg-index
https://pkg.go.dev/github.com/prometheus/client_golang/prometheus#pkg-index
https://engineering.carsguide.com.au/go-vs-php-syntax-comparison-c1465380b8ff
https://engineering.carsguide.com.au/go-vs-php-syntax-comparison-c1465380b8ff
https://go.dev/help
https://go.dev/help
https://github.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://git-scm.com/docs
https://curl.se/
https://www.scrum.org/resources/what-scrum-module
https://ubuntu.com/download/server
https://github.com/bluecmd/fortigate_exporter/
https://github.com/antonputra/tutorials/tree/main/lessons/141/prometheus-nginx-exporter
https://github.com/antonputra/tutorials/tree/main/lessons/141/prometheus-nginx-exporter
https://pkg.go.dev/github.com/mattn/go-sqlite3
https://en.wikipedia.org/w/index.php?title=HTTP_handler&oldid=1137776466
https://en.wikipedia.org/w/index.php?title=HTTP_handler&oldid=1137776466
https://go.dev/tour/methods/9
https://go.dev/tour/methods/9
https://pkg.go.dev/golang.org/x/tools/go/pointer
https://pkg.go.dev/golang.org/x/tools/go/pointer
https://www.geeksforgeeks.org/pointers-in-golang/

Bibliography 85

[57] Prometheus, Writing exporters, [Online; accessed 15-May-2023]. [Online].
Available: https : / / prometheus . io / docs / instrumenting / writing _
exporters/.

[58] Go, Net package, [Online; accessed 3-May-2023]. [Online]. Available: https:
//pkg.go.dev/net.

[59] Matt Holt, Curl-to-go, [Online; accessed 28-April-2023]. [Online]. Avail-
able: https://mholt.github.io/curl-to-go.

[60] Go, Time package, [Online; accessed 3-May-2023]. [Online]. Available: https:
//pkg.go.dev/time.

[61] Go, Ioutil package, [Online; accessed 3-May-2023]. [Online]. Available:
https://pkg.go.dev/io/ioutil.

[62] Go, Xml package, [Online; accessed 3-May-2023]. [Online]. Available: https:
//pkg.go.dev/encoding/xml.

[63] Go, Yaml package, [Online; accessed 3-May-2023]. [Online]. Available: https:
//pkg.go.dev/gopkg.in/yaml.v2.

[64] qwertmax, How to read a yaml file, [Online; accessed 28-April-2023]. [On-
line]. Available: https://stackoverflow.com/questions/30947534/
how-to-read-a-yaml-file.

[65] SQLite Authors, What is sqlite? [Online; accessed 17-May-2023]. [Online].
Available: https://sqlite.org/index.html.

[66] Go, Sql package, [Online; accessed 3-May-2023]. [Online]. Available: https:
//pkg.go.dev/database/sql.

[67] SQLite, Defense against the dark arts, [Online; accessed 4-May-2023], 2022.
[Online]. Available: https://www.sqlite.org/security.html.

[68] Sondre Jørgensen, Edge_exporter, [Online; accessed 30-April-2023], 2023.
[Online]. Available: https://github.com/Sonjorg/edge_exporter.

[69] Sondre Jørgensen, Sondrjor/edge_exporter, [Online; accessed 30-April-2023],
2023. [Online]. Available: https://hub.docker.com/r/sondrjor/edge_
exporter.

[70] Go, Download and install, [Online; accessed 30-April-2023], 2023. [On-
line]. Available: https://go.dev/doc/install.

[71] Grafana, Create grafana cloud api keys, [Online; accessed 01-May-2023],
2023. [Online]. Available: https://grafana.com/docs/grafana-cloud/
reference/create-api-key/.

[72] Wikipedia contributors, Zero trust security model — Wikipedia, the free en-
cyclopedia, [Online; accessed 8-May-2023], 2023. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Zero_trust_security_
model&oldid=1152969199.

https://prometheus.io/docs/instrumenting/writing_exporters/
https://prometheus.io/docs/instrumenting/writing_exporters/
https://pkg.go.dev/net
https://pkg.go.dev/net
https://mholt.github.io/curl-to-go
https://pkg.go.dev/time
https://pkg.go.dev/time
https://pkg.go.dev/io/ioutil
https://pkg.go.dev/encoding/xml
https://pkg.go.dev/encoding/xml
https://pkg.go.dev/gopkg.in/yaml.v2
https://pkg.go.dev/gopkg.in/yaml.v2
https://stackoverflow.com/questions/30947534/how-to-read-a-yaml-file
https://stackoverflow.com/questions/30947534/how-to-read-a-yaml-file
https://sqlite.org/index.html
https://pkg.go.dev/database/sql
https://pkg.go.dev/database/sql
https://www.sqlite.org/security.html
https://github.com/Sonjorg/edge_exporter
https://hub.docker.com/r/sondrjor/edge_exporter
https://hub.docker.com/r/sondrjor/edge_exporter
https://go.dev/doc/install
https://grafana.com/docs/grafana-cloud/reference/create-api-key/
https://grafana.com/docs/grafana-cloud/reference/create-api-key/
https://en.wikipedia.org/w/index.php?title=Zero_trust_security_model&oldid=1152969199
https://en.wikipedia.org/w/index.php?title=Zero_trust_security_model&oldid=1152969199
https://en.wikipedia.org/w/index.php?title=Zero_trust_security_model&oldid=1152969199

86 Johannes, Sondre and Sang: HDO Monitoring

[73] Wikipedia contributors, Sql injection — Wikipedia, the free encyclopedia,
[Online; accessed 17-May-2023], 2023. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=SQL_injection&oldid=1154592887.

[74] Snyk Advisor Authors, Snyk open source avisor | snyk, [Online; accessed
9-May-2023], 2023. [Online]. Available: https://snyk.io/advisor/
golang.

[75] Snyk Advisor Authors, Prometheus, [Online; accessed 17-May-2023]. [On-
line]. Available: https://snyk.io/advisor/golang/github.com/takattila/
prometheus.

[76] Snyk Advisor Authors, Sqlite, [Online; accessed 17-May-2023]. [Online].
Available: https://snyk.io/advisor/golang/modernc.org/sqlite.

[77] Snyk Advisor Authors, Yaml, [Online; accessed 17-May-2023]. [Online].
Available: https://snyk.io/advisor/golang/gopkg.in/yaml.v3.

[78] Snyk Advisor Authors, Ioutil, [Online; accessed 17-May-2023]. [Online].
Available: https://snyk.io/advisor/golang/github.com/whosonfirst/
go-ioutil.

[79] Snyk Advisor Authors, Net, [Online; accessed 17-May-2023]. [Online]. Avail-
able: https://snyk.io/advisor/golang/github.com/libp2p/go-
libp2p-net.

[80] Grafana, Your observability platform, managed as a service, [Online; ac-
cessed 19-May-2023], 2023. [Online]. Available: https://grafana.com/
products/cloud/.

[81] Prometheus Authors, Https and authentication, [Online; accessed 4-May-
2023], 2023. [Online]. Available: https://prometheus.io/docs/prometheus/
latest/configuration/https/.

[82] Toggl Authors, Simple time tracking to save you time and money. [Online;
accessed 17-May-2023]. [Online]. Available: https://toggl.com/track/.

[83] Wikipedia contributors, Thrashing (computer science) — Wikipedia, the free
encyclopedia, [Online; accessed 28-April-2023], 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Thrashing_(computer_
science)&oldid=1135385898.

https://en.wikipedia.org/w/index.php?title=SQL_injection&oldid=1154592887
https://en.wikipedia.org/w/index.php?title=SQL_injection&oldid=1154592887
https://snyk.io/advisor/golang
https://snyk.io/advisor/golang
https://snyk.io/advisor/golang/github.com/takattila/prometheus
https://snyk.io/advisor/golang/github.com/takattila/prometheus
https://snyk.io/advisor/golang/modernc.org/sqlite
https://snyk.io/advisor/golang/gopkg.in/yaml.v3
https://snyk.io/advisor/golang/github.com/whosonfirst/go-ioutil
https://snyk.io/advisor/golang/github.com/whosonfirst/go-ioutil
https://snyk.io/advisor/golang/github.com/libp2p/go-libp2p-net
https://snyk.io/advisor/golang/github.com/libp2p/go-libp2p-net
https://grafana.com/products/cloud/
https://grafana.com/products/cloud/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://prometheus.io/docs/prometheus/latest/configuration/https/
https://toggl.com/track/
https://en.wikipedia.org/w/index.php?title=Thrashing_(computer_science)&oldid=1135385898
https://en.wikipedia.org/w/index.php?title=Thrashing_(computer_science)&oldid=1135385898

Appendix A

Data Collected

This appendix includes a list of the data that are collected with their respective
API endpoint.

87

Collectors and Metrics

List of Collectors, the API endpoints they use and metrics they support:

System Call Stats Collector

Endpoints:

 REST API Method: GET /rest/systemcallstats

Metrics:

 Rt_NumCallAttempts - Total number of call attempts system wide since system came up.

 Rt_NumCallSucceeded - Total number of successful calls system wide since system came
up.

 Rt_NumCallFailed - Total number of failed calls system wide since system came up.

 Rt_NumCallCurrentlyUp - Number of currently connected calls system wide.

 Rt_NumCallAbandonedNoTrunk - Number of rejected calls due to no channel available
system wide since system came up.

 Rt_NumCallUnAnswered - Number of unanswered calls system wide since system came
up.

Diskpartition Collector

API endpoints:

 REST API Method: GET /rest/diskpartition - retrieves disk identifier

 REST API Method: GET /rest/diskpartition/{identifier}

Metrics:

 Rt_CurrentUsage - Amount of memory used by this partition, expressed as percentage

 Rt_MaximumSize - Specifies the maximum amount of memory, in bytes available in this
partition.

 Rt_MemoryAvailable - Amount of memory in bytes, available for use in the filesystem.

 Rt_MemoryUsed - Amount of memory in bytes, used by the existing files in the
filesystem

 Rt_PartitionName - The name of the disk partition.

 Rt_PartitionType - Identifies the user-friendly physical device holding the partition.

Ethernetport Collector

API endpoints:

 REST API Method: GET /rest/ethernetport - retrieve ethernetport identifier

 REST API Method: GET /rest/ethernetport/{identifier}/historicalstatistics

Metrics:

 IfRedundancy - No information found in the Ribbon SBC Edge REST API
Documentation 9.0

 IfRedundantPort - No information found in the Ribbon SBC Edge REST API
Documentation 9.0

 Rt_ifInBroadcastPkts - Displays the number of received broadcast packets on this port.

 Rt_ifInDiscards - Displays the number of discard errors detected on this port.

 Rt_ifInErrors - Displays the number of errors detected on this port.

 Rt_ifInFCSErrors - Displays the number of discard Frame Check Sequence errors
detected on this port.

 Rt_ifInFragmentedPkts - Displays the number of Fragmented Packet errors detected on
this port

 Rt_ifInMulticastPkts - Displays the number of received multicast packets on this port.

 Rt_ifInOctets - Displays the number of received octets on this port.

 Rt_ifInOverSizedPkts - Displays the number of Oversized Packet errors detected on this
port.

 Rt_ifInUcastPkts - Displays the number of received unicast packets on this port.

 Rt_ifInUndersizedPkts - Displays the number of Undersized Packet errors detected on
this port

 Rt_ifInUnknwnProto - Displays the number of Unknown Protocol errors detected on this
port.

 Rt_ifInterfaceIndex - No information found in the Ribbon SBC Edge REST API
Documentation 9.0

 Rt_ifLastChange - The value of sysUpTime at the time the interface entered its current
operational state.

 Rt_ifMtu - The size of the largest packet which can be sent/received on the interface.

 Rt_ifOperatorStatus - The operational status of the interface - 0: IF_OPER_UP or 1:
IF_OPER_DOWN

 Rt_ifOutBroadcastPkts - Displays the number of transmitted broadcast packets on this
port.

 Rt_ifOutDeferredTransmissions - Displays the number of Deferred Transmission errors
detected on this port.

 Rt_ifOutDiscards - Displays the number of discard errors detected on this port.

 Rt_ifOutErrors - Displays the number of errors detected on this port.

 Rt_ifOutLateCollissions - Displays the number of Late Collision errors detected on this
port.

 Rt_ifOutMulticastPkts - Displays the number of transmitted multicast packets on this
port.

 Rt_ifOutOctets - Displays the number of transmitted octets on this port.

 Rt_ifOutUcastPkts - Displays the number of transmitted unicast packets on this port.

 Rt_ifSpeed - An estimate of the interface's current bandwidth in bits per second

 Rt_redundancyRole - When redundancy is configured for "Failover", indicates if it's role
is "Primary" or "Secondary".

 Rt_redundancyState - When redundancy is configured for "Failover", indicates if it's state
is "Online" or "Backup".

Linecard Collector

API endpoints:

 REST API Method: GET /rest/linecard/{identifier}

Metrics:

 Rt_CardType - The type of hardware module.

 Rt_Location - The hardware module's location within the SBC.

 Rt_ServiceStatus - The service status of the module.

 Rt_Status - Indicates the hardware initialization state for this card.

 Routing Entry Collector

 API endpoints:

 REST API Method: GET /rest/routingtable REST API Method: GET
/rest/routingtable/[routingtable]/routingentry REST API Method: GET

 /rest/routingtable/[routingtable]/routingentry/[routingentry]historicalstatistics/1

 Metrics:

 Rt_RuleUsage - Displays the number of times this call route has been selected for a call.

 Rt_ASR - Displays the Answer-Seizure Ratio for this call route. (ASR is calculated by
dividing the number of call attempts answered by the number of call

 attempts.)

 Rt_RoundTripDelay - Displays the average round trip delay for this call route.

 Rt_Jitter - Displays the average jitter for this call route.

 Rt_MOS - Displays the Mean Opinion Score (MOS) for this call route.

 Rt_QualityFailed - Displays if this call route is currently passing or failing the associated
quality metrics. If true then the rule is failing, if false then it is passing.

System Collector

API endpoints:

 REST API Method: GET /rest/system/historicalstatistics/1

Metrics:

 Rt_CPUUsage - Average percent usage of the CPU.

 Rt_MemoryUsage - Average percent usage of system memory.

 Rt_CPUUptime - The total duration in seconds, that the system CPU has been UP and
running.

 Rt_FDUsage - Number of file descriptors used by the system.

 Rt_CPULoadAverage1m - Average number of processes over the last one minute waiting
to run because CPU is busy.

 Rt_CPULoadAverage5m - Average number of processes over the last five minutes
waiting to run because CPU is busy.

 Rt_CPULoadAverage15m - Average number of processes over the last fifteen minutes
waiting to run because CPU is busy.

 Rt_TmpPartUsage - Percentage of the temporary partition used.

 Rt_LoggingPartUsage - Percentage of the logging partition used. This is applicable only
for the SBC2000.

Appendix B

Metrics Output

This Appendix includes all produced metrics from two hosts running the exporter
on one scrape. The format is in Prometheus metrics, where the first value is the
name, the data inside the curly brackets are labels, and the number at the end is
its value. The data after each field "HELP", are the descriptions of each metric.

93

HELP Rt_LoggingPartUsage Percentage of the logging partition used. This is applicable only for the
SBC2000.

TYPE Rt_LoggingPartUsage gauge

Rt_LoggingPartUsage{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_numb
er="S4022521210078"} 0

Rt_LoggingPartUsage{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_numb
er="S4022521360374"} 0

HELP Rt_TmpPartUsage Percentage of the temporary partition used.

TYPE Rt_TmpPartUsage gauge

Rt_TmpPartUsage{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_number=
"S4022521210078"} 0

Rt_TmpPartUsage{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_number=
"S4022521360374"} 0

HELP ifRedundancy ethernetport

TYPE ifRedundancy gauge

ifRedundancy{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifName
="Ethernet 1",job="ethernetport"} 0

ifRedundancy{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifName
="Ethernet 1",job="ethernetport"} 0

ifRedundancy{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 2

ifRedundancy{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 2

ifRedundancy{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 2

ifRedundancy{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 2

HELP ifRedundantPort ethernetport

TYPE ifRedundantPort gauge

ifRedundantPort{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifN
ame="Ethernet 2",job="ethernetport"} 3

ifRedundantPort{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifN
ame="Ethernet 2",job="ethernetport"} 3

ifRedundantPort{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifN
ame="Ethernet 3",job="ethernetport"} 2

ifRedundantPort{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifN
ame="Ethernet 3",job="ethernetport"} 2

HELP rt_ASR Displays the Answer-Seizure Ratio for this call route. (ASR is calculated by dividing the
number of call attempts answered by the number of call attempts.)

TYPE rt_ASR gauge

rt_ASR{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="2"} 0

rt_ASR{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="4"} 100

rt_ASR{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="2"} 0

rt_ASR{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="4"} 0

rt_ASR{hostip="10.233.230.11",hostname="host2",routing_entry="3",routing_table="2"} 0

rt_ASR{hostip="10.233.230.11",hostname="host2",routing_entry="4",routing_table="2"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="4"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="6"} 100

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="8"} 80

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="4"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="6"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="8"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="4"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="6"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="8"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="2"} 62

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="4"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="5"} 90

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="7"} 90

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="9"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="2"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="4"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="5"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="7"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="9"} 0

rt_ASR{hostip="10.233.234.11",hostname="host1",routing_entry="6",routing_table="4"} 0

HELP rt_CPULoadAverage15m Average number of processes over the last fifteen minutes waiting to
run because CPU is busy.

TYPE rt_CPULoadAverage15m gauge

rt_CPULoadAverage15m{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_nu
mber="S4022521210078"} 11

rt_CPULoadAverage15m{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_nu
mber="S4022521360374"} 11

HELP rt_CPULoadAverage1m Average number of processes over the last one minute waiting to run
because CPU is busy.

TYPE rt_CPULoadAverage1m gauge

rt_CPULoadAverage1m{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_nu
mber="S4022521210078"} 12

rt_CPULoadAverage1m{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_nu
mber="S4022521360374"} 9

HELP rt_CPULoadAverage5m Average number of processes over the last five minutes waiting to run
because CPU is busy.

TYPE rt_CPULoadAverage5m gauge

rt_CPULoadAverage5m{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_nu
mber="S4022521210078"} 10

rt_CPULoadAverage5m{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_nu
mber="S4022521360374"} 10

HELP rt_CPUUptime The total duration in seconds, that the system CPU has been UP and running.

TYPE rt_CPUUptime gauge

rt_CPUUptime{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_number="S4
022521210078"} 7.45501e+06

rt_CPUUptime{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_number="S4
022521360374"} 810307

HELP rt_CPUUsage Average percent usage of the CPU.

TYPE rt_CPUUsage gauge

rt_CPUUsage{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_number="S40
22521210078"} 15

rt_CPUUsage{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_number="S40
22521360374"} 16

HELP rt_CurrentUsage Amount of memory used by this partition, expressed as percentage

TYPE rt_CurrentUsage gauge

rt_CurrentUsage{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.230.11",hostna
me="host2"} 97

rt_CurrentUsage{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.234.11",hostna
me="host1"} 97

rt_CurrentUsage{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.230.11",hostname=
"host2"} 4

rt_CurrentUsage{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.234.11",hostname=
"host1"} 4

rt_CurrentUsage{disk_partition_id="2",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 3

rt_CurrentUsage{disk_partition_id="2",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 3

rt_CurrentUsage{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.230.11",h
ostname="host2"} 10

rt_CurrentUsage{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.234.11",h
ostname="host1"} 10

rt_CurrentUsage{disk_partition_id="4",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 0

rt_CurrentUsage{disk_partition_id="4",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 0

rt_CurrentUsage{disk_partition_id="5",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 17

rt_CurrentUsage{disk_partition_id="5",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 26

rt_CurrentUsage{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.230.11",hostn
ame="host2"} 4

rt_CurrentUsage{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.234.11",hostn
ame="host1"} 4

rt_CurrentUsage{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.230.11",hostn
ame="host2"} 41

rt_CurrentUsage{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.234.11",hostn
ame="host1"} 44

HELP rt_FDUsage Number of file descriptors used by the system.

TYPE rt_FDUsage gauge

rt_FDUsage{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_number="S402
2521210078"} 1420

rt_FDUsage{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_number="S402
2521360374"} 1479

HELP rt_Jitter Displays the average jitter for this call route.

TYPE rt_Jitter gauge

rt_Jitter{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="2"} 0

rt_Jitter{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="4"} 0

rt_Jitter{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="2"} 0

rt_Jitter{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="4"} 3000

rt_Jitter{hostip="10.233.230.11",hostname="host2",routing_entry="3",routing_table="2"} 3000

rt_Jitter{hostip="10.233.230.11",hostname="host2",routing_entry="4",routing_table="2"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="4"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="6"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="8"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="4"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="6"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="8"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="4"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="6"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="8"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="2"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="4"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="5"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="7"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="9"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="2"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="4"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="5"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="7"} 0

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="9"} 3000

rt_Jitter{hostip="10.233.234.11",hostname="host1",routing_entry="6",routing_table="4"} 3000

HELP rt_MOS Displays the Mean Opinion Score (MOS) for this call route.

TYPE rt_MOS gauge

rt_MOS{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="2"} 50

rt_MOS{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="4"} 41

rt_MOS{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="2"} 50

rt_MOS{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="4"} 0

rt_MOS{hostip="10.233.230.11",hostname="host2",routing_entry="3",routing_table="2"} 0

rt_MOS{hostip="10.233.230.11",hostname="host2",routing_entry="4",routing_table="2"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="4"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="6"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="8"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="4"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="6"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="8"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="4"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="6"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="8"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="2"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="4"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="5"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="7"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="9"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="2"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="4"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="5"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="7"} 50

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="9"} 0

rt_MOS{hostip="10.233.234.11",hostname="host1",routing_entry="6",routing_table="4"} 0

HELP rt_MaximumSize Specifies the maximum amount of memory, in bytes available in this partition.

TYPE rt_MaximumSize gauge

rt_MaximumSize{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.230.11",hostna
me="host2"} 3.0408704e+07

rt_MaximumSize{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.234.11",hostna
me="host1"} 3.0408704e+07

rt_MaximumSize{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.230.11",hostname
="host2"} 524288

rt_MaximumSize{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.234.11",hostname
="host1"} 524288

rt_MaximumSize{disk_partition_id="2",disk_partition_name="none",hostip="10.233.230.11",hostname=
"host2"} 1.2582912e+07

rt_MaximumSize{disk_partition_id="2",disk_partition_name="none",hostip="10.233.234.11",hostname=
"host1"} 1.2582912e+07

rt_MaximumSize{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.230.11",
hostname="host2"} 5.767168e+06

rt_MaximumSize{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.234.11",
hostname="host1"} 5.767168e+06

rt_MaximumSize{disk_partition_id="4",disk_partition_name="none",hostip="10.233.230.11",hostname=
"host2"} 3.3554432e+07

rt_MaximumSize{disk_partition_id="4",disk_partition_name="none",hostip="10.233.234.11",hostname=
"host1"} 3.3554432e+07

rt_MaximumSize{disk_partition_id="5",disk_partition_name="none",hostip="10.233.230.11",hostname=
"host2"} 1.048576e+06

rt_MaximumSize{disk_partition_id="5",disk_partition_name="none",hostip="10.233.234.11",hostname=
"host1"} 1.048576e+06

rt_MaximumSize{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.230.11",host
name="host2"} 3.11809024e+08

rt_MaximumSize{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.234.11",host
name="host1"} 3.11809024e+08

rt_MaximumSize{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.230.11",host
name="host2"} 1.472360448e+09

rt_MaximumSize{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.234.11",host
name="host1"} 1.472360448e+09

HELP rt_MemoryAvailable Amount of memory in bytes, available for use in the filesystem.

TYPE rt_MemoryAvailable gauge

rt_MemoryAvailable{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.230.11",hos
tname="host2"} 839680

rt_MemoryAvailable{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.234.11",hos
tname="host1"} 811008

rt_MemoryAvailable{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.230.11",hostna
me="host2"} 503808

rt_MemoryAvailable{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.234.11",hostna
me="host1"} 503808

rt_MemoryAvailable{disk_partition_id="2",disk_partition_name="none",hostip="10.233.230.11",hostna
me="host2"} 1.2230656e+07

rt_MemoryAvailable{disk_partition_id="2",disk_partition_name="none",hostip="10.233.234.11",hostna
me="host1"} 1.222656e+07

rt_MemoryAvailable{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.230.
11",hostname="host2"} 5.193728e+06

rt_MemoryAvailable{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.234.
11",hostname="host1"} 5.173248e+06

rt_MemoryAvailable{disk_partition_id="4",disk_partition_name="none",hostip="10.233.230.11",hostna
me="host2"} 3.3554432e+07

rt_MemoryAvailable{disk_partition_id="4",disk_partition_name="none",hostip="10.233.234.11",hostna
me="host1"} 3.3554432e+07

rt_MemoryAvailable{disk_partition_id="5",disk_partition_name="none",hostip="10.233.230.11",hostna
me="host2"} 872448

rt_MemoryAvailable{disk_partition_id="5",disk_partition_name="none",hostip="10.233.234.11",hostna
me="host1"} 774144

rt_MemoryAvailable{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.230.11",h
ostname="host2"} 2.85174784e+08

rt_MemoryAvailable{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.234.11",h
ostname="host1"} 2.85174784e+08

rt_MemoryAvailable{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.230.11",h
ostname="host2"} 8.2307072e+08

rt_MemoryAvailable{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.234.11",h
ostname="host1"} 7.83679488e+08

HELP rt_MemoryUsage Average percent usage of system memory.

TYPE rt_MemoryUsage gauge

rt_MemoryUsage{chassis_type="SBC1000",hostip="10.233.230.11",hostname="host2",serial_number="
S4022521210078"} 38

rt_MemoryUsage{chassis_type="SBC1000",hostip="10.233.234.11",hostname="host1",serial_number="
S4022521360374"} 39

HELP rt_MemoryUsed Amount of memory in bytes, used by the existing files in the filesystem

TYPE rt_MemoryUsed gauge

rt_MemoryUsed{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.230.11",hostna
me="host2"} 2.9569024e+07

rt_MemoryUsed{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.234.11",hostna
me="host1"} 2.9597696e+07

rt_MemoryUsed{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.230.11",hostname=
"host2"} 20480

rt_MemoryUsed{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.234.11",hostname=
"host1"} 20480

rt_MemoryUsed{disk_partition_id="2",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 352256

rt_MemoryUsed{disk_partition_id="2",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 356352

rt_MemoryUsed{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.230.11",h
ostname="host2"} 573440

rt_MemoryUsed{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.234.11",h
ostname="host1"} 593920

rt_MemoryUsed{disk_partition_id="4",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 0

rt_MemoryUsed{disk_partition_id="4",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 0

rt_MemoryUsed{disk_partition_id="5",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 176128

rt_MemoryUsed{disk_partition_id="5",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 274432

rt_MemoryUsed{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.230.11",hostn
ame="host2"} 1.0535936e+07

rt_MemoryUsed{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.234.11",hostn
ame="host1"} 1.0535936e+07

rt_MemoryUsed{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.230.11",hostn
ame="host2"} 5.74496768e+08

rt_MemoryUsed{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.234.11",hostn
ame="host1"} 6.13888e+08

HELP rt_NumCallAbandonedNoTrunk Number of rejected calls due to no channel available system
wide since system came up.

TYPE rt_NumCallAbandonedNoTrunk gauge

rt_NumCallAbandonedNoTrunk{hostip="10.233.230.11",hostname="host2"} 0

rt_NumCallAbandonedNoTrunk{hostip="10.233.234.11",hostname="host1"} 0

HELP rt_NumCallAttempts Total number of call attempts system wide since system came up.

TYPE rt_NumCallAttempts gauge

rt_NumCallAttempts{hostip="10.233.230.11",hostname="host2"} 17

rt_NumCallAttempts{hostip="10.233.234.11",hostname="host1"} 175

HELP rt_NumCallCurrentlyUp Number of currently connected calls system wide.

TYPE rt_NumCallCurrentlyUp gauge

rt_NumCallCurrentlyUp{hostip="10.233.230.11",hostname="host2"} 0

rt_NumCallCurrentlyUp{hostip="10.233.234.11",hostname="host1"} 0

HELP rt_NumCallFailed Total number of failed calls system wide since system came up.

TYPE rt_NumCallFailed gauge

rt_NumCallFailed{hostip="10.233.230.11",hostname="host2"} 0

rt_NumCallFailed{hostip="10.233.234.11",hostname="host1"} 3

HELP rt_NumCallSucceeded Total number of successful calls system wide since system came up.

TYPE rt_NumCallSucceeded gauge

rt_NumCallSucceeded{hostip="10.233.230.11",hostname="host2"} 13

rt_NumCallSucceeded{hostip="10.233.234.11",hostname="host1"} 84

HELP rt_NumCallUnAnswered Number of unanswered calls system wide since system came up.

TYPE rt_NumCallUnAnswered gauge

rt_NumCallUnAnswered{hostip="10.233.230.11",hostname="host2"} 14

rt_NumCallUnAnswered{hostip="10.233.234.11",hostname="host1"} 88

HELP rt_PartitionType Identifies the user-friendly physical device holding the partition.

TYPE rt_PartitionType gauge

rt_PartitionType{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.230.11",hostna
me="host2"} 8

rt_PartitionType{disk_partition_id="0",disk_partition_name="/dev/root",hostip="10.233.234.11",hostna
me="host1"} 8

rt_PartitionType{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.230.11",hostname=
"host2"} 7

rt_PartitionType{disk_partition_id="1",disk_partition_name="tmpfs",hostip="10.233.234.11",hostname=
"host1"} 7

rt_PartitionType{disk_partition_id="2",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 2

rt_PartitionType{disk_partition_id="2",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 2

rt_PartitionType{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.230.11",h
ostname="host2"} 0

rt_PartitionType{disk_partition_id="3",disk_partition_name="/dev/mtdblock5",hostip="10.233.234.11",h
ostname="host1"} 0

rt_PartitionType{disk_partition_id="4",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 5

rt_PartitionType{disk_partition_id="4",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 5

rt_PartitionType{disk_partition_id="5",disk_partition_name="none",hostip="10.233.230.11",hostname="
host2"} 6

rt_PartitionType{disk_partition_id="5",disk_partition_name="none",hostip="10.233.234.11",hostname="
host1"} 6

rt_PartitionType{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.230.11",hostn
ame="host2"} 3

rt_PartitionType{disk_partition_id="6",disk_partition_name="/dev/eusb2",hostip="10.233.234.11",hostn
ame="host1"} 3

rt_PartitionType{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.230.11",hostn
ame="host2"} 1

rt_PartitionType{disk_partition_id="7",disk_partition_name="/dev/eusb3",hostip="10.233.234.11",hostn
ame="host1"} 1

HELP rt_QualityFailed Displays if this call route is currently passing or failing the associated quality
metrics. If true then the rule is failing, if false then it is passing.

TYPE rt_QualityFailed gauge

rt_QualityFailed{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="2"} 0

rt_QualityFailed{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="2"} 0

rt_QualityFailed{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.230.11",hostname="host2",routing_entry="3",routing_table="2"} 0

rt_QualityFailed{hostip="10.233.230.11",hostname="host2",routing_entry="4",routing_table="2"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="6"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="8"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="6"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="8"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="6"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="8"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="2"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="5"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="7"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="9"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="2"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="4"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="5"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="7"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="9"} 0

rt_QualityFailed{hostip="10.233.234.11",hostname="host1",routing_entry="6",routing_table="4"} 0

HELP rt_RoundTripDelay Displays the average round trip delay for this call route.

TYPE rt_RoundTripDelay gauge

rt_RoundTripDelay{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="2"} 0

rt_RoundTripDelay{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="4"} 0

rt_RoundTripDelay{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="2"} 0

rt_RoundTripDelay{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="4"}
9999

rt_RoundTripDelay{hostip="10.233.230.11",hostname="host2",routing_entry="3",routing_table="2"}
9999

rt_RoundTripDelay{hostip="10.233.230.11",hostname="host2",routing_entry="4",routing_table="2"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="4"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="6"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="8"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="4"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="6"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="8"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="4"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="6"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="8"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="2"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="4"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="5"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="7"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="9"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="2"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="4"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="5"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="7"} 0

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="9"}
9999

rt_RoundTripDelay{hostip="10.233.234.11",hostname="host1",routing_entry="6",routing_table="4"}
9999

HELP rt_RuleUsage Displays the number of times this call route has been selected for a call.

TYPE rt_RuleUsage gauge

rt_RuleUsage{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="2"} 0

rt_RuleUsage{hostip="10.233.230.11",hostname="host2",routing_entry="1",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="2"} 0

rt_RuleUsage{hostip="10.233.230.11",hostname="host2",routing_entry="2",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.230.11",hostname="host2",routing_entry="3",routing_table="2"} 0

rt_RuleUsage{hostip="10.233.230.11",hostname="host2",routing_entry="4",routing_table="2"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="6"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="1",routing_table="8"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="6"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="2",routing_table="8"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="6"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="3",routing_table="8"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="2"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="5"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="7"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="4",routing_table="9"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="2"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="4"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="5"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="7"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="5",routing_table="9"} 0

rt_RuleUsage{hostip="10.233.234.11",hostname="host1",routing_entry="6",routing_table="4"} 0

HELP rt_ServiceStatus The service status of the module.

TYPE rt_ServiceStatus gauge

rt_ServiceStatus{hostip="10.233.230.11",hostname="host2",job="linecard",linecardID="7",rt_CardType
="26",rt_Location="21"} 1

rt_ServiceStatus{hostip="10.233.230.11",hostname="host2",job="linecard",linecardID="8",rt_CardType
="26",rt_Location="22"} 1

rt_ServiceStatus{hostip="10.233.234.11",hostname="host1",job="linecard",linecardID="7",rt_CardType
="26",rt_Location="21"} 1

rt_ServiceStatus{hostip="10.233.234.11",hostname="host1",job="linecard",linecardID="8",rt_CardType
="26",rt_Location="22"} 1

HELP rt_Status Indicates the hardware initialization state for this card.

TYPE rt_Status gauge

rt_Status{hostip="10.233.230.11",hostname="host2",job="linecard",linecardID="7"} 4

rt_Status{hostip="10.233.230.11",hostname="host2",job="linecard",linecardID="8"} 4

rt_Status{hostip="10.233.234.11",hostname="host1",job="linecard",linecardID="7"} 4

rt_Status{hostip="10.233.234.11",hostname="host1",job="linecard",linecardID="8"} 4

HELP rt_ifInBroadcastPkts Displays the number of received broadcast packets on this port.

TYPE rt_ifInBroadcastPkts gauge

rt_ifInBroadcastPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",i
fName="Ethernet 1",job="ethernetport"} 249389

rt_ifInBroadcastPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",i
fName="Ethernet 1",job="ethernetport"} 13546

rt_ifInBroadcastPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0
",ifName="Ethernet 2",job="ethernetport"} 249034

rt_ifInBroadcastPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0
",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInBroadcastPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1
",ifName="Ethernet 3",job="ethernetport"} 3

rt_ifInBroadcastPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1
",ifName="Ethernet 3",job="ethernetport"} 0

HELP rt_ifInDiscards Displays the number of discard errors detected on this port.

TYPE rt_ifInDiscards gauge

rt_ifInDiscards{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNam
e="Ethernet 1",job="ethernetport"} 0

rt_ifInDiscards{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNam
e="Ethernet 1",job="ethernetport"} 0

rt_ifInDiscards{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 0

rt_ifInDiscards{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 0

rt_ifInDiscards{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 1

rt_ifInDiscards{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 6

HELP rt_ifInErrors Displays the number of errors detected on this port.

TYPE rt_ifInErrors gauge

rt_ifInErrors{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifName=
"Ethernet 1",job="ethernetport"} 0

rt_ifInErrors{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifName=
"Ethernet 1",job="ethernetport"} 0

rt_ifInErrors{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifNam
e="Ethernet 2",job="ethernetport"} 0

rt_ifInErrors{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifNam
e="Ethernet 2",job="ethernetport"} 0

rt_ifInErrors{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifNam
e="Ethernet 3",job="ethernetport"} 1

rt_ifInErrors{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifNam
e="Ethernet 3",job="ethernetport"} 6

HELP rt_ifInFCSErrors Displays the number of discard Frame Check Sequence errors detected on this
port.

TYPE rt_ifInFCSErrors gauge

rt_ifInFCSErrors{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 0

rt_ifInFCSErrors{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 0

rt_ifInFCSErrors{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",if
Name="Ethernet 2",job="ethernetport"} 0

rt_ifInFCSErrors{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",if
Name="Ethernet 2",job="ethernetport"} 0

rt_ifInFCSErrors{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",if
Name="Ethernet 3",job="ethernetport"} 0

rt_ifInFCSErrors{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",if
Name="Ethernet 3",job="ethernetport"} 0

HELP rt_ifInFragmentedPkts Displays the number of Fragmented Packet errors detected on this port

TYPE rt_ifInFragmentedPkts gauge

rt_ifInFragmentedPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT
",ifName="Ethernet 1",job="ethernetport"} 0

rt_ifInFragmentedPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT
",ifName="Ethernet 1",job="ethernetport"} 0

rt_ifInFragmentedPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInFragmentedPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInFragmentedPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 0

rt_ifInFragmentedPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 3

HELP rt_ifInMulticastPkts Displays the number of received multicast packets on this port.

TYPE rt_ifInMulticastPkts gauge

rt_ifInMulticastPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",if
Name="Ethernet 1",job="ethernetport"} 3.570987e+06

rt_ifInMulticastPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",if
Name="Ethernet 1",job="ethernetport"} 1.198147e+06

rt_ifInMulticastPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0"
,ifName="Ethernet 2",job="ethernetport"} 3.959414e+06

rt_ifInMulticastPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0"
,ifName="Ethernet 2",job="ethernetport"} 1.649113e+06

rt_ifInMulticastPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1"
,ifName="Ethernet 3",job="ethernetport"} 2

rt_ifInMulticastPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1"
,ifName="Ethernet 3",job="ethernetport"} 11

HELP rt_ifInOctets Displays the number of received octets on this port.

TYPE rt_ifInOctets gauge

rt_ifInOctets{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifName
="Ethernet 1",job="ethernetport"} 1.431542685e+09

rt_ifInOctets{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifName
="Ethernet 1",job="ethernetport"} 4.4678806e+08

rt_ifInOctets{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifNam
e="Ethernet 2",job="ethernetport"} 1.327937704e+09

rt_ifInOctets{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifNam
e="Ethernet 2",job="ethernetport"} 4.81174993e+08

rt_ifInOctets{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifNam
e="Ethernet 3",job="ethernetport"} 320

rt_ifInOctets{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifNam
e="Ethernet 3",job="ethernetport"} 776

HELP rt_ifInOverSizedPkts Displays the number of Oversized Packet errors detected on this port.

TYPE rt_ifInOverSizedPkts gauge

rt_ifInOverSizedPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",
ifName="Ethernet 1",job="ethernetport"} 0

rt_ifInOverSizedPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",
ifName="Ethernet 1",job="ethernetport"} 0

rt_ifInOverSizedPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0
",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInOverSizedPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0
",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInOverSizedPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1
",ifName="Ethernet 3",job="ethernetport"} 0

rt_ifInOverSizedPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1
",ifName="Ethernet 3",job="ethernetport"} 0

HELP rt_ifInUcastPkts Displays the number of received unicast packets on this port.

TYPE rt_ifInUcastPkts gauge

rt_ifInUcastPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 1.1375715e+07

rt_ifInUcastPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 3.911751e+06

rt_ifInUcastPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifN
ame="Ethernet 2",job="ethernetport"} 6.7576e+06

rt_ifInUcastPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifN
ame="Ethernet 2",job="ethernetport"} 2.722781e+06

rt_ifInUcastPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifN
ame="Ethernet 3",job="ethernetport"} 5

rt_ifInUcastPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifN
ame="Ethernet 3",job="ethernetport"} 11

HELP rt_ifInUndersizedPkts Displays the number of Undersized Packet errors detected on this port.

TYPE rt_ifInUndersizedPkts gauge

rt_ifInUndersizedPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT"
,ifName="Ethernet 1",job="ethernetport"} 0

rt_ifInUndersizedPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT"
,ifName="Ethernet 1",job="ethernetport"} 0

rt_ifInUndersizedPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInUndersizedPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInUndersizedPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 0

rt_ifInUndersizedPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 1

HELP rt_ifInUnknwnProto Displays the number of Unknown Protocol errors detected on this port.

TYPE rt_ifInUnknwnProto gauge

rt_ifInUnknwnProto{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",i
fName="Ethernet 1",job="ethernetport"} 0

rt_ifInUnknwnProto{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",i
fName="Ethernet 1",job="ethernetport"} 0

rt_ifInUnknwnProto{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0"
,ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInUnknwnProto{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0"
,ifName="Ethernet 2",job="ethernetport"} 0

rt_ifInUnknwnProto{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1"
,ifName="Ethernet 3",job="ethernetport"} 0

rt_ifInUnknwnProto{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1"
,ifName="Ethernet 3",job="ethernetport"} 0

HELP rt_ifInterfaceIndex ethernetport

TYPE rt_ifInterfaceIndex gauge

rt_ifInterfaceIndex{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",if
Name="Ethernet 1",job="ethernetport"} 11

rt_ifInterfaceIndex{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",if
Name="Ethernet 1",job="ethernetport"} 11

rt_ifInterfaceIndex{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",i
fName="Ethernet 2",job="ethernetport"} 12

rt_ifInterfaceIndex{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",i
fName="Ethernet 2",job="ethernetport"} 12

rt_ifInterfaceIndex{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",i
fName="Ethernet 3",job="ethernetport"} 15

rt_ifInterfaceIndex{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",i
fName="Ethernet 3",job="ethernetport"} 15

HELP rt_ifLastChange The value of sysUpTime at the time the interface entered its current operational
state.

TYPE rt_ifLastChange gauge

rt_ifLastChange{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 0

rt_ifLastChange{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 0

rt_ifLastChange{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifN
ame="Ethernet 2",job="ethernetport"} 0

rt_ifLastChange{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifN
ame="Ethernet 2",job="ethernetport"} 0

rt_ifLastChange{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifN
ame="Ethernet 3",job="ethernetport"} 0

rt_ifLastChange{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifN
ame="Ethernet 3",job="ethernetport"} 0

HELP rt_ifMtu The size of the largest packet which can be sent/received on the interface.

TYPE rt_ifMtu gauge

rt_ifMtu{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifName="Et
hernet 1",job="ethernetport"} 1500

rt_ifMtu{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifName="Et
hernet 1",job="ethernetport"} 1500

rt_ifMtu{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifName="E
thernet 2",job="ethernetport"} 1500

rt_ifMtu{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifName="E
thernet 2",job="ethernetport"} 1500

rt_ifMtu{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifName="E
thernet 3",job="ethernetport"} 1500

rt_ifMtu{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifName="E
thernet 3",job="ethernetport"} 1500

HELP rt_ifOperatorStatus The operational status of the interface - 0 = IF_OPER_UP or 1 =
IF_OPER_DOWN.

TYPE rt_ifOperatorStatus gauge

rt_ifOperatorStatus{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",if
Name="Ethernet 1",job="ethernetport"} 0

rt_ifOperatorStatus{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",if
Name="Ethernet 1",job="ethernetport"} 0

rt_ifOperatorStatus{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",i
fName="Ethernet 2",job="ethernetport"} 0

rt_ifOperatorStatus{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",i
fName="Ethernet 2",job="ethernetport"} 0

rt_ifOperatorStatus{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",i
fName="Ethernet 3",job="ethernetport"} 0

rt_ifOperatorStatus{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",i
fName="Ethernet 3",job="ethernetport"} 0

HELP rt_ifOutBroadcastPkts Displays the number of transmitted broadcast packets on this port.

TYPE rt_ifOutBroadcastPkts gauge

rt_ifOutBroadcastPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT
",ifName="Ethernet 1",job="ethernetport"} 124257

rt_ifOutBroadcastPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT
",ifName="Ethernet 1",job="ethernetport"} 13505

rt_ifOutBroadcastPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 124441

rt_ifOutBroadcastPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 13505

rt_ifOutBroadcastPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 43

rt_ifOutBroadcastPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 42

HELP rt_ifOutDeferredTransmissions Displays the number of Deferred Transmission errors detected on
this port.

TYPE rt_ifOutDeferredTransmissions gauge

rt_ifOutDeferredTransmissions{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias=
"MGMT",ifName="Ethernet 1",job="ethernetport"} 0

rt_ifOutDeferredTransmissions{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias=
"MGMT",ifName="Ethernet 1",job="ethernetport"} 0

rt_ifOutDeferredTransmissions{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias=
"MEDIA0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifOutDeferredTransmissions{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias=
"MEDIA0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifOutDeferredTransmissions{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias=
"MEDIA1",ifName="Ethernet 3",job="ethernetport"} 0

rt_ifOutDeferredTransmissions{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias=
"MEDIA1",ifName="Ethernet 3",job="ethernetport"} 0

HELP rt_ifOutDiscards Displays the number of discard errors detected on this port.

TYPE rt_ifOutDiscards gauge

rt_ifOutDiscards{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 0

rt_ifOutDiscards{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNa
me="Ethernet 1",job="ethernetport"} 0

rt_ifOutDiscards{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",if
Name="Ethernet 2",job="ethernetport"} 0

rt_ifOutDiscards{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",if
Name="Ethernet 2",job="ethernetport"} 0

rt_ifOutDiscards{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",if
Name="Ethernet 3",job="ethernetport"} 0

rt_ifOutDiscards{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",if
Name="Ethernet 3",job="ethernetport"} 0

HELP rt_ifOutErrors Displays the number of errors detected on this port.

TYPE rt_ifOutErrors gauge

rt_ifOutErrors{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNam
e="Ethernet 1",job="ethernetport"} 0

rt_ifOutErrors{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNam
e="Ethernet 1",job="ethernetport"} 0

rt_ifOutErrors{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 0

rt_ifOutErrors{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 0

rt_ifOutErrors{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 0

rt_ifOutErrors{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 0

HELP rt_ifOutLateCollissions Displays the number of Late Collision errors detected on this port.

TYPE rt_ifOutLateCollissions gauge

rt_ifOutLateCollissions{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGM
T",ifName="Ethernet 1",job="ethernetport"} 0

rt_ifOutLateCollissions{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGM
T",ifName="Ethernet 1",job="ethernetport"} 0

rt_ifOutLateCollissions{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDI
A0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifOutLateCollissions{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDI
A0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifOutLateCollissions{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDI
A1",ifName="Ethernet 3",job="ethernetport"} 0

rt_ifOutLateCollissions{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDI
A1",ifName="Ethernet 3",job="ethernetport"} 0

HELP rt_ifOutMulticastPkts Displays the number of transmitted multicast packets on this port.

TYPE rt_ifOutMulticastPkts gauge

rt_ifOutMulticastPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT"
,ifName="Ethernet 1",job="ethernetport"} 0

rt_ifOutMulticastPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT"
,ifName="Ethernet 1",job="ethernetport"} 0

rt_ifOutMulticastPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifOutMulticastPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
0",ifName="Ethernet 2",job="ethernetport"} 0

rt_ifOutMulticastPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 28

rt_ifOutMulticastPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA
1",ifName="Ethernet 3",job="ethernetport"} 82

HELP rt_ifOutOctets Displays the number of transmitted octets on this port.

TYPE rt_ifOutOctets gauge

rt_ifOutOctets{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifNam
e="Ethernet 1",job="ethernetport"} 2.17152525e+09

rt_ifOutOctets{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifNam
e="Ethernet 1",job="ethernetport"} 8.19801378e+08

rt_ifOutOctets{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 9.78217974e+08

rt_ifOutOctets{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifNa
me="Ethernet 2",job="ethernetport"} 3.91589683e+08

rt_ifOutOctets{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 28027

rt_ifOutOctets{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifNa
me="Ethernet 3",job="ethernetport"} 17412

HELP rt_ifOutUcastPkts Displays the number of transmitted unicast packets on this port.

TYPE rt_ifOutUcastPkts gauge

rt_ifOutUcastPkts{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifN
ame="Ethernet 1",job="ethernetport"} 9.092624e+06

rt_ifOutUcastPkts{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifN
ame="Ethernet 1",job="ethernetport"} 3.184242e+06

rt_ifOutUcastPkts{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",if
Name="Ethernet 2",job="ethernetport"} 2.412616e+06

rt_ifOutUcastPkts{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",if
Name="Ethernet 2",job="ethernetport"} 1.08696e+06

rt_ifOutUcastPkts{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",if
Name="Ethernet 3",job="ethernetport"} 114

rt_ifOutUcastPkts{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",if
Name="Ethernet 3",job="ethernetport"} 135

HELP rt_ifSpeed An estimate of the interface's current bandwidth in bits per second.

TYPE rt_ifSpeed gauge

rt_ifSpeed{ethernetportID="23",hostip="10.233.230.11",hostname="host2",ifAlias="MGMT",ifName="
Ethernet 1",job="ethernetport"} 2

rt_ifSpeed{ethernetportID="23",hostip="10.233.234.11",hostname="host1",ifAlias="MGMT",ifName="
Ethernet 1",job="ethernetport"} 2

rt_ifSpeed{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",ifName=
"Ethernet 2",job="ethernetport"} 2

rt_ifSpeed{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",ifName=
"Ethernet 2",job="ethernetport"} 2

rt_ifSpeed{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",ifName=
"Ethernet 3",job="ethernetport"} 2

rt_ifSpeed{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",ifName=
"Ethernet 3",job="ethernetport"} 2

HELP rt_redundancyRole When redundancy is configured for 'Failover', indicates if it's role is 'Primary'
or 'Secondary'.

TYPE rt_redundancyRole gauge

rt_redundancyRole{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",i
fName="Ethernet 2",job="ethernetport"} 0

rt_redundancyRole{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",i
fName="Ethernet 2",job="ethernetport"} 0

rt_redundancyRole{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",i
fName="Ethernet 3",job="ethernetport"} 1

rt_redundancyRole{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",i
fName="Ethernet 3",job="ethernetport"} 1

HELP rt_redundancyState When redundancy is configured for 'Failover', indicates if it's state is 'Online'
or 'Backup'.

TYPE rt_redundancyState gauge

rt_redundancyState{ethernetportID="24",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA0",
ifName="Ethernet 2",job="ethernetport"} 0

rt_redundancyState{ethernetportID="24",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA0",
ifName="Ethernet 2",job="ethernetport"} 0

rt_redundancyState{ethernetportID="29",hostip="10.233.230.11",hostname="host2",ifAlias="MEDIA1",
ifName="Ethernet 3",job="ethernetport"} 1

rt_redundancyState{ethernetportID="29",hostip="10.233.234.11",hostname="host1",ifAlias="MEDIA1",
ifName="Ethernet 3",job="ethernetport"} 1

HELP scrape_status /rest/system/

TYPE scrape_status gauge

scrape_status{hostip="10.233.230.11",hostname="host2"} 1

scrape_status{hostip="10.233.234.11",hostname="host1"} 1

Appendix C

Standard Agreement and
Confidentiality Agreement

This appendix includes a signed version of the Standard Agreement and Confid-
entiality Agreement.

121

Appendix D

The Project Plan

This appendix includes a signed version of the Standard Agreement and the Con-
fidentiality Agreement.

131

1

DCSG2900 – Bachelor Thesis

Project Plan – Group 119

Johannes Hansen Aas

Sang Ngoc Nguyen

Sondre Jørgensen

January 2023

2

Table of Contents
Table of Contents ... 2

1. Background and Goals ... 3

1.1. Result Goals ... 3

1.2. Effect Goals .. 3

1.3. Learning Goals ... 3

1.4. Resource Needs ... 4

2. Scope .. 4

2.1. Task Description ... 4

2.2. Delimitations .. 6

3. Project organization ... 6

3.1. Routines and Group Rules ... 7

4. Planning, follow-up and reporting ... 8

4.1. Description of How the group will follow the development model .. 8

4.2. Plan for status meetings and decision moments in the period ... 9

5. Organization of quality assurance ... 9

5.1. Plan for inspections and testing .. 10

5.2. Risk Analysis ... 10

5.3. Risk Assessment ... 11

5.4. Measures ... 12

6. Plan for project execution ... 13

6.1. Activities, Milestones and Decision Moments .. 13

7. Bibliography ... 15

3

1. Background and Goals
HDO (The health service’ operation-organization for emergency network) delivers services for realizing

the Norwegian emergency reporting service called “Nødnett”. It aims to deliver efficient, reliable and

user-friendly services for the emergency network in all municipalities of Norway. During the recent years

HDO has rebuilt their infrastructure for the Norwegian emergency call numbers and created solutions

for analyzing and uncovering errors within the core of the infrastructure in real-time (Haugen, 2022).

HDO wishes to expand its collection of data from emergency calls and Session Border Controllers, by

utilizing an already existing API that communicates with these SBCs that are a part of their

infrastructure. They wish to do so by collecting data from a REST API, using container technology and

open-source tools like Grafana, Prometheus and Loki. As of January 2023, HDO does not utilize the API

on the SBCs for anything, therefore they want the group to make use of this API to collect and analyze

data for monitoring of both trends on emergency calls and performance trends of these SBCs. To

achieve this HDO wants the group to make a program that can collect data from the API and put the

collected data into Prometheus. In addition to that, this program called an exporter must run in D The

socker.

Prometheus is a technology used for monitoring and altering by collecting and storing numeric

measurements called metrics.

1.1. Result Goals

The goal for this project is to deliver a monitoring system to HDO that continuously gathers and

visualizes data from their edge routers, which their employees can use to monitor their networks. This

system should be able to be deployed on any virtual machine in HDO’s network, it should be secure, and

it should be easy to set up and use. There should also be provided a user manual for the system that

describes both how to deploy and use it.

1.2. Effect Goals

The product being developed in this project aims to make emergency call data more accessible and will

potentially make monitoring trends in the call network easier. The effect of our product aims to make

useful use of the already existing API to uncover trends in both call data and performance data from

these SBCs to avoid unnecessary downtime of these SBCs and keep the quality of the emergency calls to

a maximum.

1.3. Learning Goals

Through this project, the group's goal is to gain insight in how to secure and operate social critical

infrastructure and contribute to Norway’s emergency preparedness, by making emergency call data

4

more accessible. We will also acquire knowledge about tools used to develop, operate and detect

events in applications and infrastructure, which are widely used in Site reliability engineering

(SRE)/DevOps.

1.4. Resource Needs

This project will require:

1. A test environment consisting of Linux servers to run docker containers on. This will be provided

by HDO.

2. Access to the Ribbon Session Border Controller 1000/2000. This is the hardware that contains

various data from emergency calls.

3. The SBC Edge 9.0.x REST API

4. There might be a need for one of Grafana’s paid plans.

2. Scope
This project will cover multiple subject areas; such as building infrastructure, which includes

programming and utilizing technologies like Prometheus and Docker, but also understanding the

complex network that handles emergency calls. We will also work with DevOps practices such as CI/CD

pipeline.

2.1. Task Description

HDO wants to utilize the existing SBC Edge REST API that comes standard with the equipment in their

infrastructure by making a system for monitoring data collected from this infrastructure, as well as

notifying its users during specific events. Our task is to create a centralized monitoring system based on

the technologies Prometheus and Grafana and utilizing docker containers for packaging each technology

(Haugen, 2022).

The system should be developed using the following technologies and tools:

- Prometheus

Prometheus is an open-source technology for pulling data from a wide array of sources and formats and

processing and storing this data. Prometheus also has functionality like generating alerts when certain

user defined thresholds are met, and more. Prometheus utilizes exporters, which are plugins developed

for pulling and filtering data from a unique source. This exporter ensures that the data is converted into

a format readable by Prometheus’ database system.

- Golang

5

Using a programming language is necessary for this project because the system to be developed is

unique, meaning it does not have any documentation on Prometheus’ official website. Because

Prometheus is open source and has many contributions from the community, it is often possible to

create a monitoring system using these prebuilt exporters. For this project however, there needs to be

developed a custom exporter for Prometheus written in a programming language such as Golang, as

there are no available exporters online for HDO’s routing equipment (SBCs).

Golang (Go) is a programming language developed by google which has benefits over older languages,

such as CPU concurrency, efficiency in both compile time and run time. There are several programming

languages that can be used for writing Prometheus exporters. This group has chosen Go because of its

large support on its internet community, which may aid in the development process.

- Grafana

While Prometheus collects and stores data, Grafana is a tool for monitoring data from several different

sources, where Prometheus is only one example of such a source. Grafana visualizes data using

dashboards that can be customized by the user.

- Docker

In the case for this project, Docker will simplify the process of deploying a stack consisting of containers

for each technology, using prebuilt images downloaded from docker’s official pages. This is

implemented using a docker-compose file and settings files for each container. Docker has benefits such

as efficiency and ease of deployment and maintaining code, less reliant on software dependencies, and

better security.

Overview

This monitoring system will help to uncover errors and bottlenecks within HDO’s infrastructure and

ensure the overall quality of the emergency network. They want this system to be implemented by using

opens source tools like Prometheus, Grafana, Loki and Docker. The development should also utilize a

CI/CD pipeline. In figure 1, we see the flow of data from HDO’s edge routers through the parts that will

make up the project. The Data will first be fetched, then processed and stored on a virtual machine in

HDO’s network. The monitoring software with visualized data on it should be able to be accessed using

this virtual machine’s ip-address and the software’s port number.

6

Figure 1: The flow of data from HDO’s edge routers to visualizing it with Grafana.

2.2. Delimitations

Our solution will be limited to creating a product for monitoring data gathered from the SBC Edge REST

API, and with this product creates a system for alerting specific users during events related to errors or

weaknesses within HDO’s infrastructure. We are explicitly going to work on collecting data from the

Ribbon SBC Edge REST API. We could create our solution to be able to collect data from other APIs as

well, but we have chosen not to because it is not an integral part of making our solution work for the API

specified in the task description, which is the SBC Edge REST API.

According to Prometheus' documentation, to create a perfect result, a solution containing a substantial

number of metrics (in the hundreds) will require a lot of work whereas to create an unperfect solution

with fewer metrics is a lot easier (Prometheus, 2023). The goal will be to create a Prometheus exporter

that collects all metrics from the SBC API and associated measurements for HDO’s infrastructure,

depending on the needs of our employer. However, the difficulty level will play a role in how many

metrics we have time to include.

3. Project organization
The roles and responsibilities in this project are as follows:

Team members:

7

- Project leader: Johannes Aas

- Secretary: Sang Ngoc Nguyen

- Contact person: Sondre Jørgensen

Project supervisor: Ernst Gunnar Gran, NTNU

HDO via: Stig Atle Haugen, HDO

3.1. Routines and Group Rules

Time logging

All group members will log hours spent working on the project, containing date, time spent, and a brief

description of the work. This will be done on an Excel spreadsheet. Every team member is expected to

work around 30 hours per week.

Meetings

Attending meetings is mandatory for all group members. If a team member falls ill or cannot attend

meetings or work activities, the group members must be notified in advance.

General rule

If we face any internal issues in the group, our first step is to discuss the issue internally with all group

members. Disagreeing on how we should do a task is an example of an internal issue the group could

face. Deciding on how we will do that task will be done democratically with voting where the majority

will decide. If the issue persists, then we will ask a third party such as the supervisor or client to help us

decide what to do.

Work hours

We have decided that if one or more group members have a considerably lower number of hours

worked, then we should be able to demand that they work more to “catch up” on the work that needs

to be completed from that point on until the amount of work done is more equally distributed between

the members.

8

4. Planning, follow-up and reporting
For the choice of development model for our project, we had many options to choose from. The three

main candidates for the development model that we felt were best suited were Kanban, Scrum and

Lean. After a lot of discussion, we decided to go with the “Scrum” software development model.

The reason that we have chosen to go with Scrum is because we feel like that Scrum was the best suited

development model for our project in terms of our goals and how we plan to achieve them. Scrum

allows us some flexibility in terms of adapting based on feedback and needs that we observe while

working on the product between the sprints. While Scrum doesn’t allow for as much flexibility in terms

of changes to requirements and scope compared to a development model like Kanban, we still chose to

go with Scrum because we felt that it is beneficial to have some sort of structure and a plan to our

project (Lucidchart, n.d.).

We feel that software development models such as the Waterfall method are too strict when it comes

to progress and therefore chose to exclude them. We think that the probability of changes to the

requirements or scope happening is quite low, so we didn’t mind less flexibility and the overall

structured feel of Scrum. We also discussed Kanban but felt that it was too free and could end up

leading to a messy and unstructured implementation to our project. Therefore, we concluded that

Scrum was a good middle ground between a structured and a flexible software development model that

fit the group the best.

Another possibility was to use the Lean Agile development model. It mostly suits our needs in terms of

producing an MVP (Minimum Viable Product) and adapting our project based on feedback. However, it

does not consider other matters such as meetings and documentation of our work (Blake, 2021). Hence,

we chose not to go with the Lean development model.

4.1. Description of How the group will follow the development model

We plan to use Scrum by structuring the project into 1-week sprints with one stand-up meeting each

week where we review our progress and how things are going. For example, if a member has finished

their work for the sprint, they may assist others with their work. Before each sprint we will do a sprint

review where we review the progress that we have made during the last sprints. We will also have a

session before each sprint where we will plan our next sprint so that we have a plan that we can follow

so that we don’t work without a goal or direction.

9

4.2. Plan for status meetings and decision moments in the period

We plan to hold meetings every Monday at 12:00. In this meeting, we will discuss topics such as what

the plan is for the next week and what we have worked on the previous week as part of the pre-Scrum

meetings. These regular meetings are a mix of planning and working and are planned to last for about 4

hours but could be longer or shorter depending on our needs.

Meetings with our supervisor are planned to take place every Thursday between 10:30 and 11:00, and

meetings with our client are planned to be allocated dynamically. The plan is to have them every other

week, either physically at HDO’s workplace or online on Teams if a physical meeting is not required for

the meeting’s purpose. The meetings with the supervisor are planned to take place physically but can

also be online if needed. In the meetings with the supervisor and client, we plan to discuss issues that

we have faced, questions that we may have and ask for feedback and advice on our work so far.

5. Organization of quality assurance
We plan to use several tools for organizing our project, these include:

SharePoint

We plan to use SharePoint for storing and working with all shared files not containing code. We

considered using google drive but concluded that SharePoint allows for more space to be stored, as a

license is paid for by NTNU. Files within our SharePoint site include an excel sheet for work hours,

documentation, and other resources.

Microsoft Teams

This is where we will arrange all online meetings if we are unable to meet physically. These meetings

include both the ones within our group as well as meetings with our employer at HDO and our

supervisor.

Microsoft Excel

We will use Excel for time tracking.

Discord

Discord will be used for all online discussions, including planning sessions, general discussions and

sharing small notes and resources.

10

Git

All group members have experience in working with Git and we all understand its key features. Git

simplifies the process of cooperating on the same code as well as coding individually by using version

control, merging of code from multiple developers and resetting the local code environment to the last

stable version and more.

We have a shared understanding of how we want to use Git. We should commit (upload) smaller pieces

with understandable and logical comments whenever a new component is ready. This is to ensure

better version control with easier debugging as the entire system could fail even if the error resides only

within a smaller part. All code should work integrated with the entire system before it is pushed to the

main branch in Git unless it is agreed to for each case. This is to ensure the quality of the code and

because working with multiple errors in the code removes the principle of proof of concept, meaning it

will be impossible to know when something is working if the system doesn’t work initially.

We will also use Git to keep track of tasks that need to be finished. For this we will use the issue feature

in Git to create issues that need to be worked on.

Overleaf

The bachelor thesis shall be written in latex using overleaf as it is quite common and highly

recommended for academic writing. This tool allows all team members to collaborate on the same

version and makes keeping track of changes easy.

5.1. Plan for inspections and testing

All code development in our project will be test-driven development, and all code should produce a

desired outcome before being pushed to our shared git repository. This means that whenever new code

is added, we should have a test to see whether this has had the desirable outcome. If a newly added

piece of code (component) is only tested in isolation, then we should perform an integration test to

ensure this component works on the entire system before pushing it to our Git repository.

Most of what we do in terms of developing the product shall be documented individually for each group

member. Some of this documentation is to be used indirectly for the bachelor thesis, for example, to

write the user manual for the system. However, it is also to allow the other group members to learn

from it and for us to remember what we have done.

5.2. Risk Analysis

We have taken risk into account by listing several scenarios that may result in the failure of our delivery,

or an unsatisfactory result. By knowing in advance, the risk scenarios that can occur during the project

we can respond appropriately to prevent them from occurring or escalating. Having a predetermined

11

understanding of these risky events also allows us to create a set of rules more easily we can agree to

within our group and to remove prolonged disagreements if they occur.

5.3. Risk Assessment

We have listed several cases that may result in a failure of our delivery or an unsatisfactory result. These

include:

1. Lack of competence result in not being able to develop a satisfactory product

As neither of us have any experience working with the technologies we have at hand, the learning

process may take longer than expected or may not be sufficient for our project. We have considered this

risk as the most likely to occur and could have a very negative impact on our project. In order to combat

this risk, it is important that all group members work sufficiently, structured and search for help when

difficult problems arise.

2. Unexpected errors in the system without finding the cause

Unexpected errors that are highly demanding are common during software development and in worst

case scenario it may take longer than a week to solve.

3. HDO’s servers fail

If there are problems with the resources delivered by HDO that are essential for doing our work, then

this could be critical to developing the product as it depends on data from their services. One way of

solving this is to create dummy data for the exporter and a mock component instead of the SBC Edge

REST API provided by HDO’s infrastructure.

4. One or more of our group members get sick for prolonged periods of time

This can have serious consequences if the other group members lack the skills and time to replace his

effort.

5. One or more of our group members are not working sufficiently

As stated in the rules we have decided that if one or more group members have a considerably lower

number of hours worked, then we should be able to demand that they work more hours from that point

on until the numbers are more equally distributed between the members.

12

6. Our employer at HDO is unable to help us with a critical problem

Our employer may get sick or unable to help us sufficiently as he has stated he will have a lot of work

this spring.

7. The work on writing the bachelor thesis has been neglected as all the time has been spent on

developing the product.

This may occur if developing the product has been highly demanding. It is important to distribute the

time according to the plan and adjust when needed.

In this diagram we assess the risk scenarios based on their probability and consequence of occurring.

Combining their consequences and probability gives four degrees of dangers; green, yellow, orange and

red. The commas are separation of different risk scenarios.

Probability

Consequence

 Insignificant Small Serious Critical

Very high

probability

High

probability

 1

Unlikely 4, 5 2, 7

Very unlikely 6 3

Figure 2: Assessment of each risk scenarios

5.4. Measures

We have a set of rules (3.2 Routines and group rules) that determine how a risk scenario should be

solved and the group have a common understanding of certain measures that may help us. These

measures and rules include:

• Regular group meetings that attempt to solve the issues.

• A democratic process that works as final decisions for issues concerning the overall work. For

example, if there are disagreements on the details of the product then the majority decides.

However, this does not mean we should not have discussions about the issues. It is beneficial to

hear all opinions thoroughly before deciding.

• Communications with supervisor in case of major disagreements or other problems for our

group.

• Regular meetings with our supervisor and our client at HDO will help in solving issues.

13

6. Plan for project execution

Figure 3: Gantt-diagram for scheduling time working with the project as a whole

6.1. Activities, Milestones and Decision Moments

Milestone 1:

For our first milestone we plan to finish the project plan, finish signing the confidentiality- and standard

agreement.

Milestone 2:

For our second milestone we plan to finish necessary research to create a proof of concept for the

exporter.

Milestone 3:

For our third milestone we plan to start development of the actual product, make a CI/CD pipeline and

finish the MVP.

14

Milestone 4:

For our fourth milestone we plan to create a user manual for the exporter and to start on our first draft

of the project report/bachelor thesis. Before easter break we will finish 3 chapters of the first draft and

send it to our supervisor Ernst.

Milestone 5:

For our fifth milestone we plan to finalize the project report/bachelor thesis to be delivered.

15

7. Bibliography
Ribbon Communications (n.d.) SBC 1000/2000 API Home. Available at:

https://support.sonus.net/display/UXAPIDOC/ (Accessed: 26 January 2023).

Ribbon Communications (n.d.) REST API User's Guide. Available at:

https://support.sonus.net/display/UXDOC90/REST+API+User%27s+Guide (Accessed: 26 January 2023)

Lucidchart (n.d.) Agile vs. Waterfall vs. Kanban vs. Scrum: What’s the Difference?. Available at:

https://www.lucidchart.com/blog/agile-vs-waterfall-vs-kanban-vs-scrum (Accessed: 26 January 2023)

Haugen, SA (2022) Monitoring of telephone infrastructure for reception of emergency calls. Description

of bachelor thesis by HDO. (Accessed: 31 October 2022)

Prometheus (n.d.) Instrumentation. Available at:

https://prometheus.io/docs/practices/instrumentation/ (Accessed 13 January 2023)

Hjelmås, E. (2022) DCSG2900 - Bachelor Thesis Bachelor of Science in Digital Infrastructure and Cyber

Security. Available at: https://www.ntnu.edu/studies/courses/DCSG2900#tab=omEmnet (Accessed: 26

January 2023)

Blake, S (2021) Understanding Lean Agile and the 5 Lean Principles. Available at:

https://www.easyagile.com/blog/lean-agile/ (Accessed: 26 January 2023)

Appendix E

Task Description

This appendix includes the task description by HDO.

149

Offentlig

Monitorering av
Telefoni infrastruktur
for mottak av
nødsamtaler

Offentlig

Helsetjenestens driftsorganisasjon for nødnett HF
(HDO)

Om

HDO skal bidra til å realisere de samlede målsetninger for den nasjonale medisinske
nødmeldetjenesten. Selskapet skal yte effektive og brukervennlige tjenester for brukere av
Nødnett i den akuttmedisinske kjeden i alle de regionale helseforetakene, i alle landets
kommuner, og for andre relevante samarbeidspartnere. Vår oppgave er å sørge for enhetlige
og stabile kommunikasjonsløsninger og fagsystemer, herunder teknisk utvikling, test,
implementering, drift og opplæring av brukere. HDO er organisert som en del av
spesialisthelsetjenesten og er eid av de 4 helseregionene.

HDO har over de siste årene bygget opp en ny og omfattende infrastruktur for håndtering av mottak
av telefoni 113 (nødanrop) og 116 117. Denne infrastrukturen består et stort antall komponenter som
til sammen utgjør et nasjonalt telefoni nettverk.

For de sentrale komponentene har HDO etablert en rekke løsninger for analyse og varsling for
hendelser i infrastrukturen. På grunn av kritikaliteten i løsningen er målet hele tiden å kunne avdekke
feil før de eskalerer, eller merkes. For å få til dette må HDO samle og analysere data fra ulike
komponenter i nettverket i sanntid.

Oppgaven

HDO ønsker nå å utvide innsamlingen av informasjon for alle kantelementer som er utplassert lokalt
på ulike lokasjoner i Norge.

For å realisere dette så ønsker oppdragsgiver å nyttiggjøre seg bedre de eksisterende REST API’er,
som infrastrukturen har. Oppdragsgiver har valgt å bygge løsningen for analyse og monitorering
basert på kontainer teknologi (Docker), og Open Source verktøy som: Prometheus, Loki, Grafana etc.
I tillegg kommer en rekke Prometheus exportere og andre elementer.

Hovedkomponenten for innsamling, analyse og varsling er Prometheus. Prometheus samler inn og
lagrer sine beregninger som tidsseriedata, det vil si at metrikkinformasjon lagres med tidsstemplet den
ble registrert på, sammen med valgfrie nøkkelverdi-par, kalt etiketter.

Igjennom oppgaven vil gruppen får innsikt i hva som kreves for å sikre og operere samfunnskritisk
infrastruktur, som er kritisk for beredskapen i Norge. De vil også tilegne seg kunnskap rundt verktøy
som benyttes for å kunne utvikle, drifte og detektere hendelser i applikasjoner og infrastruktur, som er
mye brukt i SRE/DevOps.

Oppdragsgiver vil stille med en test/utviklingsplattform for gjennomføring av oppgaven.

2

Offentlig

Oppgavens mål:

Hovedmålet med oppgaven er å lage en integrasjon mellom kantelementene og Prometheus for å
kunne lese ut data, via API’et. Videre må det sikres at dette lagres og struktureres slik at det kan
benyttes til overvåkning og trendvarsling i en driftsorganisasjon.

 Gruppen må i samarbeid med oppdragsgiver kartlegge og vurdere tilgjengeligheten på data
og hva som kan hentes ut fra kantelementene via API’et.
API’et er dokumentert fra leverandør.

 De må finne en metode for å lese ut data og få dette tilgjengeliggjort som metrikkinformasjon
for Prometheus.

 Løsningen må ha støtte for å konfigurere hvilke elementer som skal leses ut, og utlesing fra
flere kilder samtidig.

 Løsningen skal være en exporter for prometheus som bør kunne kjøres i docker.
 Det anbefales at det brukes en CI/CD pipeline, for utviklingen.
 Gruppen må selv etablere opp sitt eget test/utviklingsmiljø på tildelt kapasitet, med

Prometheus/Grafana og en CI/CD pipeline.

Kontaktpersoner i HDO

Stig Atle Haugen, Stig@hdo.no, +47 91 300 260

3

Appendix F

Repository

This appendix includes the repository for the project and its README file.

155

Chapter F: Repository 157

Link to the Repository

https://github.com/Sonjorg/edge_exporter

README File

https://github.com/Sonjorg/edge_exporter

5/21/23, 4:25 PM Readme

https://md2pdf.netlify.app 1/3

Readme

Prometheus exporter for Ribbon Communications SBC routers

Developed by Sondre Jørgensen in cooperation with Sang Ngoc Nguyen at NTNU: Norwegian
University of Science and Technology, sondre2409@gmail.com and 29sangu@gmail.com

Configuration of the exporter

The configuration is implemented in config.yml in the root folder of the source code.

authtimeout: 3 #all hosts will have max 3 sec timout
hosts:
- hostname: Host1
 ipaddress: 11.111.111.11
 username: Username1
 password: Password1
 routing-database-hours: 24 #For routingentry collector, data is stored
 #in the database for 24 hours for this host.
- hostname: Host2
 ipaddress: 11.111.111.12
 username: Username2
 password: Password2
 routing-database-hours: 24
- hostname: Host3
 ipaddress: 11.111.111.13
 username: Username3
 password: Password3
 routing-database-hours: 24
 exclude:
 - routingentry
 - system
 - diskpartition
 - systemcallstats
 - linecard
 - ethernetport
#Excluding the above collectors for this host

Above you can see the layout of a config.yml file having 3 hosts with dummy data.
It is required to use a hostname, ipaddress, username and password.
You can choose which collectors you want to exclude for each host by adding them to the list
"exclude" as shown below the last host. The name of the collectors have to match exactly as
spelled in this example.

5/21/23, 4:25 PM Readme

https://md2pdf.netlify.app 2/3

"Authtimeout" is the maximum chosen time to attempt authentication to a host. Usually it is not
reachable if the duration is more than 1-2 second.
"routing-database-hours" is the duration of which data related to the routingentry collector is
stored within the database. Fetching new data through http takes several extra seconds per
scrape. Metrics are never stored, only data such as routing tables and their routing entries.
It is recommended not to use too many hosts per docker instance because of performance
issues; a scrape on 2 hosts with no collectors excluded takes around 13 seconds on the first
scrape, and around 10 seconds on the following scrapes.

Deployment running docker

Run: sudo docker build -t edge_exporter . sudo docker run -p 5123:5123 edge_exporter

Or if you have an external config.yml file: sudo docker run -v
path/to/your/config.yml:/usr/src/exporter/config.yml sondrjor/edge_exporter

Metrics can be gathered from host:5123/metrics

Deployment of the SBCexporter on a linux server

The exporter is developed and tested for the official ubuntu server image found at
https://ubuntu.com/download/server.

Download golang using the official download page: install golang, and remember to reboot
To start the exporter and download all necessary packages, navigate to the SBCexporter directory
and run go install

To test go exporters:

go run . in the SBCexporter directory, then use curl localhost:9100/metrics in another windows
to view live metrics data that can be collected by prometheus

To test a specific file, for use

go run main.go However this will not make use of dependencies from other files

Installation of Go on HDO's VMs

As root folders are not accessible on HDO's VMs we need to install Go in home directory if docker
is not utilized

Download last version of Go to home directory, from Go's official website
Unzip the file with tar
Execute the commands: export GOPATH=$HOME/go export PATH=$PATH:$GOPATH/bin

If starting Go gives a message that its not yet installed, make a startup script that executes:
source .bashrc from home directory

5/21/23, 4:25 PM Readme

https://md2pdf.netlify.app 3/3

Grafana and prometheus setup with docker

Choose between grafana local or grafana cloud

Grafana local

This is a setup with grafana-docker hosted locally, following a similar approach as this tutorial:
https://www.youtube.com/watch?v=9TJx7QTrTyo&t=712s

The config for all docker images used, resides in the docker-compose.yml file

Deployment of grafana with docker

Use docker compose up -d in either directory edge_exporter\Other\Grafana-
Prometheus\grafanacloud or .../grafanalocal, respectively

test docker containers:

get ip address of grafana container

sudo docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' grafana

curl ip-address:3000

Restart all containers if changes are made to docker-compose.yml

docker-compose up -d --force-recreate

check status in log files for a container

sudo docker-compose logs -f container-name

Appendix G

Minutes of Meeting

This appendix includes the task minutes of meeting. The language in these is a
mixture of mostly English and some Norwegian.

161

Date December 7th 2022

Place Teams

Participants Johannes, Sondre, Sang and Stig Atle

Agenda First meeting with HDO

Summary The group discussed the task with the employer.

Meeting 0
søndag 15. januar 2023 02:06

 Minutes of Meeting Page 1

Date January 11th 2023

Place On campus

Participants Johannes, Sondre and Sang

Agenda First group meeting

Summary Plan the project report•
Need to contact supervisor•
Prepare the confidentiality agreement and standard agreement•
Have 2 physical meetings weekly•
Talked about grade ambitions•
Delegated roles:

Group leader: Johannes•
Secretary: Sang•
Contant person: Sondre•

•

Discussed time tracking•

Before next meeting
Read course description•
Make a calendar for meetings and other important events•
Read the project/task description•

•

Meeting 1
onsdag 11. januar 2023 16:24

 Minutes of Meeting Page 2

Date January 13th 2023

Place On campus

Participant
s

Johannes, Sondre and Sang

Agenda Discuss project plan

Summary Discussed how we will do time tracking•
Delegated writing tasks on the project plan•
Discuseed what to do before next meeting•
Discussed what programming language to use for creating the
exporter

•

Made a Gantt-diagram•
Discussed development model•

To do for before next meeting:
Reasearch CI/CD pipeline and Prometheus exportes•
Ask Ernst about how to Gantt-diagram looks•

•

Meeting 2
fredag 13. januar 2023 14:43

 Minutes of Meeting Page 3

Date January 15th 2023

Place On campus

Participants Johannes, Sondre and Sang

Agenda Discuss what we have worked on
What to do next
Work on the project plan

Summary Worked a little bit on the project plan•
Discussed regular meetings with our employer•

Meeting 3
søndag 15. januar 2023 02:20

 Minutes of Meeting Page 4

Date January 17th 2023

Place At HDO

Participants Johannes, Sondre, Sang and Stig Atle

Agenda Discuss the task•
Discuss agreements•
Discuss regular meetings with employer•
Discuss how to access the server•
Discuss test environment•

HDO Agenda
Signere avtaler•
Kort omvisning•
Åpen dialog

Gruppen presenterer tanker runt
prosjektgjennomføring (overordnet)

○

Dialog rundt praktisk organisering○

•

13.00 - 14.XX gjennomgang av oppgaven / arkitektur•
14.30: sjekk på at tilganger til horizon og servere fungerer
som de skal

•

14.50 oppsumering og avslutninger•

•

Summary Signed papers with employer (for VPN access,
taushetsærklering, standard agreement and confidentiality
agreement), will get username and password

•

HDO can allocate more servers if needed•
To access the ONE linux server we have to vpn and ssh•
3 clients for every student is provided•
Promethus and Docker on same server to avoid usage of ports
between servers

•

Will add Stig Atle to our bachelor Teams channel,
stigatle.haugen@hdo.no

•

Looked at the task
Ribbon communications REST API•
Find out which metrics are the most important to GET•
We will use VMware Horizon Client•

•

Discussed regular meetings every other week, dates are to be
determined because of Stig Atle's busy schedule. Meetings will
be planned beforehand with prepared questions. The meetings
will either be physically or digitally on Teams based on needs of
infomration and discussion.

•

Meeting 4
mandag 16. januar 2023 13:13

 Minutes of Meeting Page 5

Date January 19th 2023

Place On Campus

Participants Johannes, Sondre, Sang and Ernst

Agenda Talk about the project plan
Do we have to use LaTeX for the project plan?
Can we have meetings later?

Summary Discussed what we discussed on the meeting with Stig Atle on
January 17th 2023

•

Asked about the project plan, what is needed on the plan?
The task•
How we are going to solve it•

•

Will make group rules•
Asked for feedback on the project plan and received advice

Document while making the product•
Combine two first rows of the project plan•
A little low minimum work hours? But choose yourself.
(maybe 30?)

•

Gantt-diagram: Research: gain an understanding on the
whole picture of the task (techonologies, etc.)

•

Proof of concept: have a plan a design of the solution•
A wish from Ernst: before easter: send in an first draft with
the 3 first chapters of the project report

•

Don't spend time on writing the project report in
LaTeX/overleaf, because we have come so far already

•

•

For next meeting with Ernst:
Sign standard agreement•
Ask about CI/CD pipeline•

•

Work session
Worked on the project plan•

•

Meeting 5
mandag 16. januar 2023 13:13

 Minutes of Meeting Page 6

Date January 20th 2023

Place Teams

Participants Johannes, Sondre and Sang

Agenda Meeting about HDO remote access

Summary Discussed how to gain remote access to the VMs, try to set up
Prometheus and testing

•

Discussed test environment•

Meeting 6
mandag 16. januar 2023 13:14

 Minutes of Meeting Page 7

Date January 26th 2023

Place On Campus

Participants Johannes, Sang and Ernst

Agenda Feedback on the project plan•

Summary Will look at the project plan with us in the meeting•
Told Ernst that we got access to the testing envorinment, but
not to the API yet

•

Layout comment
Remove unneccesarry titles•

•

Clearer task description•
Ta med avgrensninger i scope (ting vi hadde tenkt til å gjøre,
men kommer ikke til å gjøre)

•

Last sentence in delimitations, find out if we are going to do that
or not

•

Ernst thinks that the minimum hours per week is low, should be
30 hours per week

•

Tools
Add something to delegate tasks•

•

Comment about sprints
Write down the tasks somewhere•

•

Add more to bibliography, references•
Add changes to milestones•
Change HDO's API to SBC Edge REST API•

Fix the projectplan and send it to Ernst before next morning in
teams (tag the channel in) or e-mail

•

Future meetings will now be every Thursday at 10:30•

Meeting 7
torsdag 26. januar 2023 08:35

 Minutes of Meeting Page 8

Date February 2nd 2023

Place On campus

Participants Johannes, Sondre, Sang and Ernst

Agenda Discuss feedback on the project plan

Summary Make the CI/CD pipeline early on to utilize it, but prioritize the
project

•

Collect all metrics from the API and then filter or filter from the
begining?

Write something about the plan for the solution•

•

Went through comments•
Effect goals, the result, not making the product, but to have the
product and the effect of HDO having the solution

•

Always refer to figures and refer first and then have the figur
after the reference

•

Avoid using personal pronouns•
Add user manual to result goals•
5.4 write about what the different measures attempt to solve•
Begin with the final report as early as we want•
Discuss if we are going to use AI for the project•
Avoid references to YouTube videos, have references to Git
code, try to refer the original source

•

Goal for the week
Fix the most importat things in project plan•
Set up LaTeX for the final report•
Learn Go•
Give Ernst access to the meeting notes, send him an e-mail
when it is ready

•

REST Authentication•

•

Meeting 8
torsdag 2. februar 2023 10:31

 Minutes of Meeting Page 9

Date February 9th 2023

Place On campus

Participant
s

Sondre and Sang and Ernst

Agenda Regular supervisor meeting

Summary Ernst has received the minutes of meeting from last week•
REST Authentication•
Sondre has learned about Go and is making a simple expoter•
Difficulties with learing Go syntax in the beggining, two variables•
Haven't started on the bachelor report•
Don't wait until the end to start on the report•
Start learning LaTeX/Overleaf in the near future•
Use the mal from the general chat in the supervisor chat•
Discuss work with Johannes•
Plan for the week, learn a little bit of LaTeX and work on the
exporter

•

Meeting 9
søndag 5. februar 2023 23:34

 Minutes of Meeting Page 10

Date February 16th 2023

Place On Campus

Participants Sang and Ernst

Agenda Regular supervisor meeting

Summary Discussed team members•
Contact Johannes to see if everything is alright•
Adjust the project plan accordring to the needs of the group•
Sondre has worked on the exporter and Sang has worked on the
bachelor thesis

•

Plan ahead:
Work on the project plan, Sang will help Sondre after the
proof of concept is finished

•
•

Bachelor report structure:
Introduction (high level and our task, about 4 pages), the
reader should know what the is and how we will solve it

•

Background/teori/liknede arbeid, gi informasjon om
teknologier vi bruker, hvordan helsenettet ser ut, gi ekstra
informasjon for at leseren skal skjønne løsningen, liknede
arbeid (løsninger som likner på vår)

•

Metode, hvordan løsningen er implimentert/test (noen få
sider), metodikken

•

Design av løsningen (overordnet), hvordan har vi designet
løsningen, hvordan fungerer løsningen, hvilke komontenter
består løsningen av?

•

Hvordan har løsningen blitt implimentert, løsningen vi har
lagd (kode), hvordan har vi lagd løsningen?

•

Testning av løsningen•
Utfordinger eller svakheter med løsninger, videre arbeid,
refleksjon

•

Vi blir vurdert på rapporten, så alt utenfor (koden) "finnes
ikke"

•

•

Meeting 10
onsdag 15. februar 2023 23:58

 Minutes of Meeting Page 11

Date February 21st 2023

Place Teams

Participants Sondre, Sang and Stig Atle

Agenda Statusmeeting

Summary Questions:
What kind of data is relevant to collect?•
Where to store the data?•

•

We have created a simple exporter that reads from an XML-file
and puts data into Prometheus

•

Does the data change often?
Depends on the data, will look further into that later on
another date

•

Look at what data is relevant to collect•

•

HDO can pull from GitHub•
We can get our own GitLab area if we need•
Check all boxes individually•
Have labels for each box•
One metric where we can see each individual box•
Storing data:

Store all data or store only selected data•
One curl query is better than multiple queries•
Stig Atle said do the easiest one (one query for all data)•
Query every 15 seconds (standard Prometheus)•

•

Metrics reset when they reset the system•
Make a sanity check to see if data has been reset•
Physical meeting next week where we will discuss collection of
data

•

Meeting 11
fredag 17. februar 2023 02:52

 Minutes of Meeting Page 12

Date February 23rd 2023

Place On Campus

Participants Johannes, Sondre, Sang and Ernst

Agenda Regular meeting with supervisor

Summary Issues with VM and internet access, asked Stig Atle to grant
access to internet on those VMs

•

Can't download Golang packs and etc. because of no internet
access on the VMs

•

Sang has written a little bit on the introduction on the report,
should not be more than 4-5 pages

•

Sondre thinks about chaning the exporter to read directly from
the API call instead of an XML-files

•

Johannes is back and will help Sang with the writing of the
bachelor report

•

About design, explain why we have chose the chosen design, and
maybe about why we chose the chosen design over other ones

•

Don't write about small bugs•
Best practices is relevant for the design chapter, keep secutiry in
mind

•

If we find difficulties with the design that we would like to
change, but change because of time constraints, we could write
about what we would do instead in a "futher work" chapter

•

It is important in the report to explain the design and why we
chose it

•

The solution can be open source, will discuss with Stig Atle•

Meeting 12
torsdag 23. februar 2023 10:36

 Minutes of Meeting Page 13

Date February 27th 2023

Place At HDO

Participants Johannes, Sondre, Sang and Stig Atle

Agenda Discuss exporter, metrics and design

Summary Should the solution be open source?
Yes it can•

•

Reached milestone during the weekend
Cookie session•
API calls with Go•

•

Stig Atle has uploaded the documentation for login on the SBCs•
He has made a document with relevant data to collect

Mostly integer values•
•

Some resources are more important than others and should be
prioritized

•

Runtime instead of historicalstatistics•
Have a config file where HDO can put in IP-adresses and
configure themselves

•

We need to find identifiers dynamically•
Example: Promehteus fortigate exporter, config file•
Make a parameter for scraping intervals•
Everything may be gauge, Stig Atle has not found anything that
are useful for counters because we can't know if anything has
been reset or not

•

Use names similar to the parameter names, such as
rt_CPUUsage = System CPU Usage

•

edge_{resourceName}_{typeOfData}•
We don't need to make alerts•
Open source: Stig Atle: the group decides•

Meeting 13
torsdag 23. februar 2023 10:39

 Minutes of Meeting Page 14

Date March 9th 2023

Place On Campus

Participants Johannes, Sang and Ernst

Agenda Regular meeting with supervisor

Summary Use "we" or "the group", use report/thesis
Use the group, avoid personal pronouns•
Avoid story, we did this and then this and then this•

•

Write in past tense or future tense
Rule of thumb: when writing about something the product
that has developed, use past tense: we have developed…,
the report is going to be read after the project has been
finished

•
•

Sondre has worked a lot on the exporter•
Sang has "finished" the introduction on the report•
Sondre has made a Docker file for testing•
What are we meant to write on the project
scope?/domain/fagområde

•

Johannes: group leader, needs to work, has not logged hours,
lack of communication

•

Futher work
Start on the background chapter•
Continue working on the exporter•

•

Johannes will work on writing on the report or program from now
on

•

The 3 chapters, be clear on which chapters are finished and the
ones that we know we are going to change

•

Read the text that people have written in the report•

Meeting 14
søndag 5. mars 2023 03:09

 Minutes of Meeting Page 15

Date March 23rd 2023

Place On Campus

Participants Sondre, Sang and Ernst

Agenda Regular meeting with supervisor and discuss situation with
Johannes

Summary Work on the Exporter is going well•
How much code should we comment?

We should first comment on how the system works overall
(overordnet)

•

And then we can comment on the code that makes up each
component

•

Write about the technologies we use (SQLite, Golang, HTTP,
etc.)

•

Details about the programming language (Golang), routes,
channels etc.

Write about them and connect it to what we have made
as an example

○

•

•

The product is a prototype and therefore it's not so important to
do it in an elegant way, but we can write about other ways we
could have done things

•

Deliver some content to Ernst before easter (2 april), write what
will be changed and what is finished, the goal is to deliver 3
finished chapters

•

Find out what's going on with Johannes, contant him, call him on
Friday

•

If we can't contact him by the end of this week, then Ernst will
help

•

Have a chapter about the security about our product towards the
end of the report

•

Discuss what we can share and what we can't share with HDO
(in terms of sensitive information)

•

Meeting 15
mandag 20. mars 2023 16:45

 Minutes of Meeting Page 16

Date March 28th 2023

Place On Campus

Participants Johannes, Sang and Ernst

Agenda Meeting with supervisor about group issues

Summary Discussed the situatuon with Johannes•
The group should have meetings with each other more often to
delegate tasks and have status meetings

•

Make a plan for what he group will do in the future•
Have a meeting tomorrow where the group discusses the plan for
the future

•

Meeting 16
tirsdag 28. mars 2023 11:58

 Minutes of Meeting Page 17

Date March 29th 2023

Place On Discord

Participant
s

Sondre, Sang and Johannes

Agenda Discussion about the group issues

Summary Recap of the meeting with Ernst yesterday•
2 meetings per week, more towards the end if it is needed

Smaller meetings when it's needed•
Mondays and Thursdays•

•

Showcase of Sondre's code•
Make a file with tasks•
Drop pipeline•
Difference between design and implementation•
Requirements, as it they were at the start or as they are after
consultation

•

Meeting 17
onsdag 29. mars 2023 15:25

 Minutes of Meeting Page 18

Date March 30th 2023

Place On Campus

Participants Sondre, Sang, Johannes and Ernst

Agenda Regular meeting with supervisor and a short work session

Summary More regular meetings•
We have made a Kanban/to-do list•
Don't spend too much time on explaining the details about the
exporter, it may be time consuming

•

Sondre says that the exporter should be finished one week after
easter

•

He finished a collector yesterday, but is stuck on a collector
because of missing test data

•

If implementing all of the collectors will take too much time, then
the group can pick out a few collectors and make a proof of
concept of a few of them

•

Drop the pipeline, but the group can write a couple of sentences
of how they would've implemented the pipeline instead of
spending time implementing it (videre arbeid/discussion)

•

Avgrensning: si at vi ikke skal ta oss av hva hver metrikk betyr•
Requirements: requirements should'nt be changed, but groups
may adjust it to better fit with what they have made (should'nt do
this)

•

Background: what the reader needs to know to understand the
report/project

•

Eget kapittel: kartlegging av hvilke dataer som kan hente ut•
Skrive i design at vi diskuterte med oppdragsgiver om hvilke
dataer som skal hentes ut

•

After background: kravspesipikasjon•
The most important thing is to keep writing and get feedback
from Ernst

•

We should talk about the security of the product
Passwords in plaintext: write about diffrent ways we
would've done it, we can write it in the design or in a
different discussion/security chapter

•
•

Talk to Stig Atle about if it's okay that we write about the
plaintext password situation in the report

•

The product is a proof of concept, we don't have to make things
perfect for a production environment

•

Security: discuss what the strengths and weaknesses are of our
solution

•

Do research about the security of the technologies that we use•
Use we/the group, do what feels natural, but keep in mind that
"we" is not really scientifically "correct"

•

Meeting 18
onsdag 29. mars 2023 15:25

 Minutes of Meeting Page 19

"we" is not really scientifically "correct"
Try to understand Ernst's comments and agree on them before
changing things in our report

•

Write what we have polished and think is done and what's not
finished

•

References can be at the start of a section and be enough for the
whole section

•

Give the reader the option to read further material if they're
interested

•

 Minutes of Meeting Page 20

Date April 11th 2023

Place Teams

Participant
s

Sondre, Sang, Johannes and Stig Atle

Agenda Questions about the task

Summary Questions around the signaling groups and other questions about
the exporter

•

Next meeting on the 25th of April•

Meeting 19
tirsdag 11. april 2023 13:57

 Minutes of Meeting Page 21

Date April 13th 2023

Place On Campus

Participants Sang, Johannes and Ernst

Agenda Regular meetings with supervisor

Summary Questions
Find more primary sources?•
Preferably primary sources over wikipedia

What to do if you need to reference the same source more
than once?

•

Use a main reference early on, use references on special
påstands

Same source but on a different page?○
Don't do this, just the whole acrticle is enough

•

How to reference sources? BibTeX?•
Not very important, but BibTeX is good

How should we add links to the references?•
Check wikipedia and the websites on how to reference

Sang and Johannes will work on the comments this week and
next week we will work on the deisgn and implementation

•

Sondre will work on the exporter until the 20th of April•
Discussed what we have time to do and what we might drop with
Stig Atle

•

Meeting 20
onsdag 12. april 2023 23:06

 Minutes of Meeting Page 22

Date April 20th 2023

Place On Campus

Participants Sang, Johannes and Ernst

Agenda Regular meeting with supervisor

Summary Questions
Copyright rules

Make your own figures if possible○
Check if you are allowed to use it (copyright)○
Check Innsida for copyright rules○
Make it very clear that you have gotten it from
elsewhere: "from: …"/"inspired by"

○

•

HDO in english, use norwegian name or translate it?
Make it clear that it's a name, write it in cursive○
Ask HDO about it○
Should have it in english○

•

Related work, mention fortigate exporter, talk about what
makes our solution different?

Fortigate exporter is an implementation, not exactly
related work, related work would be more about a
general monitoring system (not exactly an exporter)

○

Move it to the background/design chapter instead of
having a seperate related work chapter, write just a few
pages (1-3) about the solution

○

Not nessecary to write about it if we haven't used it
that much

○

Ernst says it sounds like our solution vs. Fortigate
exporter fits better in the design chapter, we can write
about our solution and alternatives such as the
fortigate exporter, can also write about best practice
principles that we have chosen to follow

○

•

First chapter figure
Make a very simple figure that illustrates the concept in
a simple way, include the core network and the sbc
edges

○

Use a map over Norway and include sbc edges?○

•

Sources, have we done it right? When to use sources and
when to use footnotes

If we are unsure, then always use sources○
Use footnotes for things that are not exactly statement,
for example if we just mention something

○

If something is obvious, then we don't have to include a
source

○

•

Include readme file in the report?
Installation, VM/HDO can be included in a chapter

•

•

Meeting 21
mandag 17. april 2023 15:35

 Minutes of Meeting Page 23

Installation, VM/HDO can be included in a chapter
called something like "use"

○

Add the code as a zip with the report, but write the
report well so that the reader doesn't have to open up
the code to understand the project

○

Also ask HDO if they think it's okay to share
information about the code and their infrastructure

○

Packs implementasjon, seperate the implementation and
write about each function?

Sondre will not write about each function, but about
the most important ones

○

Make it readable and easy for the reader to read○
Move the section about Golang into chapter 2○

•

A common worry is to have to few pages, but it usually ends
up with being too much and difficult for the reader to read.
So write short and simple text.

•

Don't make drastic changes to our solution (database)•
Further plan: finish writing chapters and send it to Ernst for
review

•

Move the 1.1 figure to design?

 Minutes of Meeting Page 24

Date April 26th 2023

Place At HDO and Teams

Participants Sondre, Sang, Johannes and Stig Atle

Agenda Meeting with employer

Ask about the chapter 1 simple figure•
Ask about HDO name in english

Stig Atle will check some english documents for an official
english name for HDO

•

Use the norwegian name, they don't use an english name,
it's the juridical name for HDO

•

•

Security concerns
Passord i klartekst

Not optimal, could make a hash
The API does not support any other way of
authentication

It is atleast transfered over cryptated channels
The reward is small if they find something
The only thing they can do is to destroy one AMK
Don't have the same password on the same users

○

The SBC needs the password to work○
It is possible for someone to destroy stuff, but it is not
very likely and there are other things that are more
likely to be interesting for the attackers

○

Only thing they can do is to delete the config file, the
user is a local user on one SBC

○

•

Exporter kjører i HDO sine vm'er, er det trygt?•

Kan exportern spamme/overarbeide SBC-
ene/infrastrukturen?

Yes there is a possibility, Stig Atle has made the SBCs
crash before, they might crash with the exporter
because of very many HTTP calls

○

•

Hvordan ser infrastrukturen ut igjen? Hvordan henger SBC
sammen med kjernenettverket?

•

Noen tips på hva vi kan skive om med tanke på sikkerhet?
Vurdere sikkerheten rundt koden vår, Docker (vanlige
sårbarheter), vudere at eksporteren skal kjøre i et lukket
miljø (mikrosegmentert), alt er stengt by default,
brannmur, mye sikkerhet i nettverket, zero trust
nettverk, database?

○
•

•

Meeting 22
torsdag 20. april 2023 11:56

 Minutes of Meeting Page 25

Status update on the exporter, stopped working on the exporter to
write on the project, might have time to finish the exporter later

•

Make a document that describes which datas that are retrieved,
why they are retrieved and what value they bring

What data is retrieved from what URL•

•

Write about the already existing monitoring system and how the
exporter will be integrated with the current solution

Stig Atle will make a simple sketch about the infrastructure•

•

Stig Atle is not allowed to tell us where the SBC's are located in
Norway

•

Write about the YAML file in the report as an attachment•
Publish image and code on Docker Hub for easier deployment for
HDO

•

Send image to Stig Atle for testing, might need to fix tweak some
things (labels, etc.), he will give feedback

•

Make a gauge about success and fails when connecting to the
API

•

Make a check if the host is reached, if it fails then cancel the rest
of the requests

•

Drop the boot partition collector•

 Minutes of Meeting Page 26

Date April 26th 2023

Place Discord

Participants Sondre, Sang and Johannes

Agenda Status meeting

Summary Discusses content that Johannes could work on•

Meeting 23
onsdag 26. april 2023 19:55

 Minutes of Meeting Page 27

Date April 27th 2023

Place On Campus

Participants Sondre, Sang and Johannes

Agenda Discuss situation with Johannes•

Summary Made a list of what Johannes can work on•
Group has made a deadline for Johannes for Monday to prove
that he can contribute in a significant way

•

Ernst says that communication is very important now
Have meetings often (physical if possible) to discuss and
work together

•
•

Meeting 24
torsdag 27. april 2023 01:31

 Minutes of Meeting Page 28

Date April 27th 2023

Place Discord

Participants Sondre, Sang and Johannes

Agenda Group meeting•
Discuss work•

Summary Make a list of metrics that are collected•

Meeting 25
torsdag 27. april 2023 20:09

 Minutes of Meeting Page 29

Date May 2nd 2023

Place Discord

Participants Sondre, Sang and Johannes

Agenda Group meeting•
Discuss work•

Summary Discussed work•
Try to read implementation and send it to Ernst•

Meeting 26
fredag 28. april 2023 18:49

 Minutes of Meeting Page 30

Date May 3rd 2023

Place Discord

Participant
s

Sondre, Sang and Johannes

Agenda Regular group meeting

Summary Discussed API Tokens and hashing•
Discussed questions about some metrics•
Discussed how to divide the sections in chapter 4•
More psdeuocode in chapter 7?, it's very long and difficult to
understand

•

Meeting 27
tirsdag 2. mai 2023 20:08

 Minutes of Meeting Page 31

Date May 4th 2023

Place On Campus

Participants Sondre, Sang, Johannes and Ernst

Agenda Regular meeting with supervisor

Summary List of data, put it in the report or as vedlegg?•
List of data what format? List/etc.?•
How far have you come with the report?

About 70% finished•
•

Read each others text•
Make more figures in implementation for easier understanding•
Exchange reports with other groups to get some useful feedback•
What can we say about the availability of the data?•
Have the list of data as an attachment OR have a chapter about
data of each collector in terms of

Availability•
Why they are collected•
What value they bring•

•

Write about the metrics in terms of what type they are, try to
group them togehter?

•

Flytte "Data" til etter "Implementation"•
Skrive om hvilken rolle Edge boksene har, hvorfor er de koblet til
core, hvorfor går ikke samtalene rett fra core til AMK-ene?, hva
skjer hvis en ambulanse kommuniserer med en AMK?, bruker de
også Telenor?

•

Spørre Stig Atle om et møte for oppklaring om arkitekturen, hva
gjør SBC Core og hva gjør SBC Edge, hvorfor trenger vi begge?

•

Meeting 28
tirsdag 2. mai 2023 20:12

 Minutes of Meeting Page 32

Date May 5th 2023

Place Teams

Participants Sang, Sondre, Johannes and Stig Atle

Agenda Questions about the architechture and exporter

Summary What can we say about the availability of the data?
Hensive til dokumentasjonen av hvilke data som kan
hentes ut

•
•

Skrive om hvilken rolle Edge boksene har, hvorfor er de koblet
til core, hvorfor går ikke samtalene rett fra core til AMK-ene?,
hva skjer hvis en ambulanse kommuniserer med en AMK?,
bruker de også Telenor, spørre Stig Atle om et møte for
oppklaring om arkitekturen, hva gjør SBC Core og hva gjør SBC
Edge, hvorfor trenger vi begge?

SBC Core (6 stk totalt, interconnect, NNI, kobling til andre
nettverk Telia, Telenor, osv.) sender til riktig SBC
Edge/lokasjon

•

AMK snakker ikke SIP/IP, SBC Edge konverterer fra SIP/IP
til ISDN

•

Ambulanse (AMK) bruker radio, figuren Stig Atle ga oss
snakker i hovedsak om 113 og 116117

•

Sykehus ringer mellom seg og HDO er ikke involvert•

•

What value do these metrics bring?
CPU, memory is monitoring of hardware

The point is to check if the hardware is okay, or what
happend when an incident ocurred

○
•

Monitoring of other data is to find trends and acting before
an incident occurs

•

•

Has HDO tried the newest version of the exporter?
No, will test soon•

•

Write about what we can be done better in the further work
chapter

•

Problems with the CPU with the SBC Edges•

Fix introduction according to the new information and send it to
Ernst

•

SBC Core har en Prometheus exporter/script•

Meeting 29
torsdag 4. mai 2023 15:40

 Minutes of Meeting Page 33

Date May 8th 2023

Place Discord

Participant
s

Sondre, Sang and Johannes

Agenda Regular group meeting

Summary Questions
DDoS?

It's possible to connect to the SBC's and spam them with
traffic

○
•

Secuirty of code?
Port numbers may be hacked in some way○

•

SBC does not tolerate much load
Check development process○

•

Check package exploits•

•

Write about the two versions of the implementation•

Meeting 30
mandag 8. mai 2023 16:26

 Minutes of Meeting Page 34

Date May 11th 2023

Place On Campus and Teams

Participants Sondre, Sang, Johannes and Ernst

Agenda Regular meeting with supervisor

Summary Will read our report today after 3pm•
Can't read the report as detailed as back in easter•
The group will send Ernst and updated version before 3pm
today, for review

•

Sondre is worried about repeating himself in the report (3 times)
Do this? As described in x.x, y is z.•

•

Don't make the reader read the same thing again unnecessarily•
Misplaced figures: try [htbp]

Or move figures in the text so that they get placed where
we want

•
•

Johannes thinks that the code listings in the implementation are
too long

Sondre thinks that they are important for understanding
how the product works

•

Ernst suggests to break the code up and write about
sections of the code to avoid the reader losing the red
thread

•

Avoid too much code so that the reader questions why they
are there and what function they have

•

Avoid explaining every line in the code listings•
Add comments in the code to explain the main points•

•

The report should not be longer than 80 pages•
Try to make the report shorter instead of writing for the sake of
adding unneeded content

•

Meeting 31
torsdag 11. mai 2023 10:33

 Minutes of Meeting Page 35

Date May 15th 2023

Place Discord

Participants Sang and Johannes

Agenda Regular group meetings

Summary Gotten feedback from Ernst•
This week we will review the comments and finish the report.•
Prepare questions for Ernst on Thursday•
Change the sequence in the discussion chapter•

Meeting 32
mandag 15. mai 2023 15:33

 Minutes of Meeting Page 36

Date May 16th 2023

Place Discord

Participants Sang, Sondre and Johannes

Agenda Regular group meetings

Summary Divided workload•

Meeting 33
mandag 15. mai 2023 16:30

 Minutes of Meeting Page 37

Date May 18th 2023

Place Discord

Participants Sondre, Sang and Johannes

Agenda Group meeting

Summary Discussed how are we doing?•
Divided workload•
Fått svar fra Stig Atle om Grafana screenshots?

Not yet•
•

Sondre will fix Appendix B•
Fixed readme file•

Meeting 34
tirsdag 16. mai 2023 16:58

 Minutes of Meeting Page 38

Date May 19th 2023

Place Discord

Participant
s

Sang, Sondre and Johannes

Agenda Regular group meeting

Summary Ask about some comments•
Finish the report today, read thorugh everything on Saturday and
deliver

•

Answer from Stig Atle?
Yes, will add screenshots to the thesis•

•

Meeting 35
fredag 19. mai 2023 05:16

 Minutes of Meeting Page 39

Date 20th May 2023

Place Discord

Participants Sang, Sondre and Johannes

Agenda Group meeting

Summary Discussed what is left to finish•
Finishing up the thesis•

Meeting 36
lørdag 20. mai 2023 18:36

 Minutes of Meeting Page 40

Date 21th May 2023

Place Discord

Participants Sang, Sondre and Johannes

Agenda Group meeting

Summary Finishing up the thesis•

Meeting 37
søndag 21. mai 2023 00:04

 Minutes of Meeting Page 41

Appendix H

Time Tracking

This appendix includes the time tracking for the project.

205

Month Johannes Sang Sondre

January 36 59 45,5

February 14 69 75,5

March 27 83 111

April 80 107 108

May 81 96 57,5

Total 238 414 397,5

Time Tracking in Hours

Johannes

Date Hours Details

13.jan 5 Meeting and research

15.jan 3 Writing project plan

16.jan 4 Writing project plan

17.jan 3 Meeting with employer

19.jan 4 Meeting with supervisor and work session

20.jan 4 Working on project plan

26.jan 6 Meeting with HDO + research

27.jan 3 Research

30.jan 4 Research

02.feb 2 Meeting with Ernst + bachelor report

23.feb 2 Meeting with Ernst + group meeting

24.feb 4 Research + learning docker

27.feb 3 Meeting with Stig Atle

28.feb 3 learning Docker

02.mar 1 Meeting with Ernst

07.mar 3 Learning Go

08.mar 3 Learning and setting up Go

09.mar 3 Meeting with Ernst + research

10.mar 3 Setting up vm, testing exporter

11.mar 4 Reaserch + Bachelor report

28.mar 2 Meeting with Ernst + group meeting

29.mar 1 Group meeting

30.mar 3 2 meetings

31.mar 4 Bachelor report

02.apr 3 Bachelor report

03.apr 2 Bachelor report

06.apr 4 Bachelor report

11.apr 4 Meeting with HDO and bachelor report

13.apr 6 Meeting with Ernst and bachelor report

14.apr 5 Bachelor report

15.apr 5 Bachelor report

17.apr 3 Group meeting

18.apr 5 Bachelor report

19.apr 1 Bachelor report

20.apr 4 Meeting with Ernst + bachelor report

25.apr 6 Bachelor report

26.apr 2 Meeting with HDO + group meeting

27.apr 10 Meeting with Ernst + group meeting + bachelor report

28.apr 1 Bachelor report

29.apr 9 Bachelor report

30.apr 10 Bachelor report

01.mai 2 Bachelor report

02.mai 7 Group meeting + bachelor report

03.mai 7 Group meeting + bachelor report

04.mai 6 Meeting with supervisor + bachelor report

05.mai 7 Meeting with employer + bachelor report

08.mai 4 Meeting + bachelor report

11.mai 5 Meeting with supervisor + bachelor report

15.mai 4 Group meeting + bachelor report

16.mai 8 Group meeting + correcting the report

18.mai 9 Group meeting + correcting the report

19.mai 8 Group meeting + correcting the report

20.mai 8 Finishing up the thesis

21.mai 6 Finishing up the thesis

Sang

Date Hours Details

13.jan 5 Meeting and reading previous thesises

14.jan 4 Reading and writing projectplan

15.jan 3 Writing project plan and group meeting

16.jan 4 Writing project plan

17.jan 3 Meeting with employer

18.jan 2 Writing project plan

19.jan 4 Meeting with supervisor and work session

20.jan 3 Reading through the project plan for quality assurance

23.jan 2 Research

24.jan 2 Research and trying to access VMware

25.jan 6 Meeting with HDO and Prometheus

26.jan 6 Meeting with Ernst, project plan and Docker

27.jan 4 Docker, prometheus and dialogue with HDO

29.jan 2 Docker

30.jan 4 Docker, prometheus and dialogue with HDO

31.jan 5 Docker, prometheus, dialogue with HDO and REST API authentication

01.feb 5 REST API Authentication

02.feb 5 Meeting with Ernst, project plan and REST API Authentication

03.feb 3 Project Plan and REST API Authentication

04.feb 4 REST API Authentication and dialogue with HDO

05.feb 2 Testing with REST API

06.feb 5 Researching exporters

09.feb 3 Meeting with Ernst and studying LaTeX/Overleaf

10.feb 2 Starting on the bachelor report in Overleaf

12.feb 2 Bachelor report

13.feb 3 Studying LaTeX

14.feb 2 Bachelor report

15.feb 2 Research exporters and Go

16.feb 4 Meeting with Ernst and Bachelor report

17.feb 2 Bachelor report

19.feb 5 Bachelor report

20.feb 4 Bachelor report

21.feb 2 Meeting with Stig Atle and bachelor report

22.feb 3 Bachelor report

23.feb 2 Meeting with Ernst and group meeting

24.feb 2 Bachelor report

27.feb 3 Meeting with Stig Atle and bachelor report

28.feb 4 Bachelor report

01.mar 4 Bachelor report

03.mar 1 Bachelor report

05.mar 3 Bachelor report

06.mar 2 Bachelor report

07.mar 4 Bachelor report

08.mar 3 Bachelor report

09.mar 4 Meeting with Ernst and reading background material

10.mar 4 Bachelor report

14.mar 2 Reading background material

15.mar 2 Dialogue with Ernst and bachelor report

16.mar 6 Bachelor report

19.mar 4 Bachelor report

20.mar 3 Bachelor report

21.mar 3 Bachelor report

22.mar 5 Bachelor report

23.mar 2 Meeting with Ernst

24.mar 5 Bachelor report

26.mar 6 Bachelor report

27.mar 4 Bachelor report

28.mar 2 Meeting with Ernst

29.mar 2 Group meeting and bachelor report

30.mar 6 2 meetings, writing background

31.mar 6 Bachelor report

02.apr 3 Bachelor report

03.apr 8 Bachelor report

06.apr 1 Bachelor report

11.apr 5 Meeting with HDO and bachelor report

12.apr 3 Bachelor report

13.apr 8 Meeting with Ernst and Bachelor report

14.apr 7 Bachelor report

15.apr 1 Bachelor report

16.apr 7 Bachelor report

17.apr 4 Meeting and bachelor report

18.apr 4 Bachelor report (adding figures)

19.apr 4 Bachelor report (adding figures)

20.apr 4 Meeting with Ernst and bachelor report

21.apr 6 Bachelor report

23.apr 7 Bachelor report

24.apr 6 Bachelor report

25.apr 8 Bachelor report

26.apr 6 Meeting with HDO and bachelor report

27.apr 4 Meeting with Ernst, group meeting, bachelor report

28.apr 6 Bachelor report

30.apr 5 Bachelor report

01.mai 6 Bachelor report

02.mai 7 Group meeting and bachelor report

03.mai 7 Group meeting and bachelor report

04.mai 6 Meeting with supervisor and bachelor report

05.mai 7 Meeting with employer and bachelor report

07.mai 2 Bachelor report

08.mai 4 Group meeting and bachelor report

09.mai 2 Bachelor report

10.mai 3 Bachelor report

11.mai 3 Meeting with supervisor and bachelor report

15.mai 4 Group meeting and bachelor report

16.mai 8 Group meeting and correcting the report

17.mai 6 Correcting the report

18.mai 10 Correcting the report and group meeting

19.mai 8 Correcting bachelor report and group meeting

20.mai 7 Finishing up the thesis and group meeting

21.mai 6 Finishing up the thesis and group meeting

Sondre

Date Hours Details

12.jan 2 Research and some writing

13.jan 5 Meeting and research

15.jan 2 Writing project plan

16.jan 4 Writing project plan

17.jan 3 Meeting with employer

18.jan 1 Project plan

19.jan 4 Meeting with supervisor and work session

25.jan 5,5 Meeting with HDO and research

26.jan 5 Project plan and research

27.jan 3 Research and test of a simple prometheus setup

30.jan 6 Writing a new grafana template and research

31.jan 5 Debugging prometheus/docker, dialogue with HDO

01.feb 3,5 Studying go and api testing

02.feb 5 Meeting with Ernst, studying go and a tutorial

03.feb 1,5 Fixing a model

04.feb 4 Writing on project plan, testing API and studying exporters

06.feb 2,5 Studying go

07.feb 6,5 Studying go and exporters

08.feb 5 Scraping one metric from file to variables with regex

09.feb 4,5 Meeting with Ernst, writing on thesis and studying docker

10.feb 2 Made go file read from XML

12.feb 3 Authentication issues gitlab, migrated to github

15.feb 3 Setting up ubuntu vm on personal desktop for easier workflow

16.feb 7 Configuring ubuntu vm, working on exporter, dialogue with hdo

20.feb 6 Small exporter ready, studying prometheus and design options

21.feb 2 Meeting with Stig Atle and studying metric types

22.feb 4 Working on exporter, writing a test, awaiting response from atle

23.feb 3 Meeting with Ernst, working on exporter

25.feb 5 Wrote code making API call with golang

27.feb 7 Meeting with Stig Atle, studying config/yml package, working on systemexporter

28.feb 1 Writing lecture with Frode

01.mar 8,5 Completing first exporter and api call functions

03.mar 7 systemExporter, functions for designproblems, bachlor's thesis

04.mar 4,5 Writing on thesis, building a chart

05.mar 8 Minimum viable product ready, systemExporter collecting multiple hosts

06.mar 3 editing chart,coding

07.mar 4 Studying and adding config package, dockerfile

08.mar 4 Config, cleaning git, dialogue with hdo

09.mar 6 Errorhandling, testing, errhandling as gauge value

10.mar 3 Testing routingentry api, dialogue with stig atle and coding

11.mar 1 Successful test with multiple working ip

13.mar 6 Successful use of config file for auth and getip, started on new exporter

14.mar 5 Testing routingentry api, dialogue with stig atle and coding

15.mar 2 Working on routingentry exporter

16.mar 4,5 Routingentryexporter, studying docs

17.mar 4 coding and studying, improving functions

19.mar 2 coding and studying, improving functions

20.mar 10 Routing collector

21.mar 6 Successful sqlite use to compare time of auth and retrieve last cookie if in time

22.mar 8 Sqlite done, last exporters to go and cleaning up the code layout

23.mar 1 Meeting with Ernst,

27.mar 2,5 Writing a bit on background and design

29.mar 5 Group meeting, made a new collector, need help from atle for next collector

30.mar 4 2 meetings, working on requirements

31.mar 2 research security and docker

01.apr 7 hardware collector, trying to store more sqlite data

02.apr 6 Bachelor report

03.apr 6 Exporter work

04.apr 2 Exporter work

08.apr 6 Cleaned repository and implemented packages for cleaner structure

09.apr 1 Preparing for the meeting with stig

10.apr 7,5 Made database for routingentries and tables, additional 2 sek improvement

11.apr 2 Meeting with Stig Atle and working on exporter

12.apr 8 Chassis collector and dialogue with stig atle and fixing a stubborn bug

13.apr 3 New collector and drawing

15.apr 7 Ethernetport collector and fixing some bugs

16.apr 5 Improving exporter and finishing dockerfile

17.apr 7 Meeting, drawing, new collector, improving code

18.apr 2,5 Bachelor report

19.apr 3 Bachelor report and studying go

20.apr 5,5 Meeting and bachelorreport

21.apr 2 Bachelor report

24.apr 2 Bachelor report

25.apr 2,5 Bachelor report

26.apr 5 Meeting, developing, docker upload

27.apr 8,5 Meeting with Ernst and exporter, docker

28.apr 5,5 Exporter and bachelor report

30.apr 4 Bachelor report

02.mai 2 Group meeting

03.mai 2 Group meeting

04.mai 6 Meeting with Ernst and Bachelor report

05.mai 7,5 Meeting with HDO, bachelor report and improved exporter design

08.mai 4 Meeting and bachelor report

09.mai 3,5 Bachelor report

10.mai 2 Bachelor report

11.mai 1 Meeting with Ernst

12.mai 1,5 Tidying exporter

15.mai 5 Bachelor report

16.mai Group meeting

17.mai 6 Bachelor report

18.mai 2,5 Group meeting and bachelor report

19.mai 5 Bachelor report and group meeting

20.mai 5,5 Bachelor report and group meeting

21.mai 4 Bachelor report and group meeting

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Project Background
	Task Description
	Project Goals
	Constraints
	Project Scope
	Target Audience
	Delimitations
	Organization
	The Project Group
	Roles and Responsibilities

	Structure of the Report

	Background
	Theory and Technologies
	Event Monitoring
	Time Series Database (TSDB)
	Containers
	REST API

	Software
	Prometheus
	Grafana
	Docker
	The Go Programming Language
	The API of the SBCs

	Requirements
	Non-Functional Requirements
	Functional Requirements

	Methodology
	Choice of Programming Language
	Tools Used for Development
	Usage of a Development Model
	Development and Testing

	Design
	Overview
	Where the Exporter Fits Inside HDOs Infrastructure
	Data Groupings and Collectors
	Docker
	Temporary Storage of Certain Data

	Design of the Exporter
	Collector Design

	Implementation
	Terms and Standards
	Terms

	Usage of Pointers
	Error Handling

	The Go Prometheus Package
	The Describe Interface
	The Collect Interface

	Implementation of Code
	The HTTP Package
	Config Package
	Database Package
	Utils Package
	Main Package

	Collector Package
	HTTP Handler and Probe Interface
	Collectors
	System Collector
	Routingentry Collector
	Comprehensive Changes to the Implementation

	Collected Data
	Availability
	Why is the Data Collected?
	Data Groups Used by the Exporter

	Usage
	Configuration of the Exporter
	Installation and Deployment
	Deployment of the Exporter as a Docker Image
	Installation and Deployment Without Docker

	Monitoring Metrics Produced by the Exporter

	Discussion
	Technical Discussion
	Preexisting Security Measures
	API Authentication
	Security of the Code
	Using the Exporter as Open Source
	Issues That Were Revealed During Testing

	Project Execution
	Communication
	Working Process
	Planning
	Meetings
	Time Tracking
	Report
	Development Model

	Conclusion
	What Has the Group Achieved?
	Further Work
	Potential Improvements
	Ways to Improve the Implementation

	Bibliography
	Data Collected
	Metrics Output
	Standard Agreement and Confidentiality Agreement
	The Project Plan
	Task Description
	Repository
	Minutes of Meeting
	Time Tracking

