
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Ba
ch

el
or

’s
th

es
is

Anniken Arildset
Celina Heimdal Brynildsen
Sebastian Hestsveen
Thea Urne

Securing the Software Development
Life Cycle

Bachelor’s thesis in Digital Infrastructure and Cybersecurity
Supervisor: Filip Holik
May 2023

Anniken Arildset
Celina Heimdal Brynildsen
Sebastian Hestsveen
Thea Urne

Securing the Software Development
Life Cycle

Bachelor’s thesis in Digital Infrastructure and Cybersecurity
Supervisor: Filip Holik
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Department of Information Security and
Communication Technology

DCSG2900 - Bachelor Thesis Bachelor of Science
in Digital Infrastructure and Cyber Security

Securing the Software Development
Life Cycle

Author:

Anniken Arildset, Celina Heimdal Brynildsen, Sebastian Hestsveen, Thea

Urne

May, 2023

Abstract

Title: Securing the Software Development Life Cycle

Date: 22.05.2023

Participants: Anniken Arildset

Celina Brynildsen

Sebastian Hestsveen

Thea Urne

Supervisor: Filip Holik, Visiting Researcher/Research Assistant,

Department of Information Security and Communication Technology

Employer: Astri Marie Ravnaas, Norges Bank Investment Management (NBIM)

Keywords: AWS, DevSecOps, GitHub, Information Security, Infrastructure as Code,

SDLC

Pages: 86

Attachments: 8

Availability: Open

Abstract: This research aims to address the importance of securing systems and

applications by focusing on implementing security testing and integrating

tools into a development pipeline. The report provides a proof of concept

for building a secure pipeline, emphasizing best practices and security

tools to detect vulnerabilities early in the Software Development Life

Cycle (SDLC). The findings and recommendations can contribute to the

industry’s understanding of securing the SDLC and mitigating threats.

ii

iii

Sammendrag

Tittel: Securing the Software Development Life Cycle

Dato: 22.05.2023

Deltakere: Anniken Arildset

Celina Brynildsen

Sebastian Hestsveen

Thea Urne

Veileder: Filip Holik, Forsker/Vitenskapelig assistent,

Institutt for informasjonssikkerhet og kommunikasjonsteknologi

Oppdragsgiver: Astri Marie Ravnaas, Norges Bank Investment Management (NBIM)

Nøkkelord: AWS, DevSecOps, GitHub, Informasjonssikkerhet, Infrastruktur som kode,

SDLC

Antall sider: 86

Antall vedlegg: 8

Tilgjenlighet: Åpen

Sammendrag: Denne rapporten fokuserer p̊a å adressere viktigheten av å sikre systemer

og applikasjoner ved å fokusere p̊a implementering av sikkerhetstesting og

integrering av verktøy i en utviklingspipeline. Rapporten gir et proof of

concept for å bygge en sikker pipeline, og legger vekt p̊a beste praksis og

sikkerhetsverktøy for å oppdage s̊arbarheter tidlig i Software Development

Life Cycle (SDLC). Funnene og anbefalingene kan bidra til industriens

forst̊aelse av å sikre SDLC og redusere trusler.

iv

Preface

We want to thank our supervisor, Filip Holik, for all help and guidance we received

during the project period.

Next, we would like to thank all professors who have helped us answer questions that

arose during the project.

We also want to thank family members who took the time to read our thesis and

provide us with feedback.

Lastly, we thank our NBIM contact persons, Stian Hagbø Olsen, Stian Kristoffersen,

and Astri Marie Ravnaas for their excellent guidance and valuable feedback. They

assisted with various issues and were frequently used for guidance whenever questions

or problems arose.

v

Table of Contents

List of Figures xiv

List of Tables xvi

List of Code xvii

1 Introduction 2

1.1 Background . 2

1.1.1 Problem area . 3

1.2 Scope limitations . 3

1.3 Target group . 4

1.4 Goals . 4

1.4.1 Performance goals . 4

1.4.2 Result goals . 4

1.5 The group’s academic background . 4

1.5.1 Knowledge that had to be acquired 5

1.5.1.1 Why this task was chosen 5

1.6 Framework . 6

1.6.1 Timeframe . 6

1.6.2 Other . 6

1.7 Methodology . 6

1.8 Research methods . 6

1.8.1 Interviews/meetings . 7

1.8.2 Literature study . 7

1.9 Software utilized for writing . 7

vi

vii

1.10 GitHub organization . 7

1.11 Thesis structure . 8

1.11.1 Chapters . 8

2 Theory 10

2.1 Introduction . 10

2.2 Software Development Life Cycle . 10

2.2.1 Planning . 11

2.2.2 Implementation . 11

2.2.3 Testing . 11

2.2.4 Deployment . 12

2.2.5 Maintenance . 12

2.3 Functional testing vs. security testing 13

2.4 Application security testing . 14

2.4.1 Box testing . 14

2.4.1.1 Black box testing . 14

2.4.1.2 White box testing . 14

2.4.1.3 Grey box testing . 15

2.4.2 SAST . 15

2.4.3 DAST . 16

2.4.4 SCA . 17

2.4.5 Comparison of SAST, DAST, and SCA 19

2.5 The significance of software security testing 20

2.6 OWASP Top 10 . 20

2.7 Vulnerability risk rating . 21

2.7.1 Common Vulnerability Scoring System (CVSS) 21

2.7.2 Common Vulnerabilities and Exposures (CVE) 21

2.7.3 Common Weakness Enumeration (CWE) 22

2.7.4 OWASP Risk Rating Methodology 22

2.8 Amazon Web Services . 23

2.9 GitHub . 24

3 Pipeline security 26

3.1 Introduction . 26

viii

3.2 Security in the pipeline . 27

3.2.1 Code scanning . 27

3.2.2 Scan dependencies and open source libraries 27

3.2.3 Secret scanning . 28

3.2.4 Dynamic scanning . 29

3.2.5 Manual security testing . 29

3.3 Security of the pipeline . 30

3.3.1 Branch Protection . 30

3.3.2 Access Control . 31

3.4 Security in maintenance . 32

3.5 Finished pipeline . 34

3.6 Frameworks . 35

3.6.1 Introduction . 35

3.6.2 Supply-chain Levels for Software Artifacts 35

3.6.3 Secure Software Development Framework 36

4 Analysis of security tools for the pipeline 39

4.1 Introduction . 39

4.2 GitHub security Tools . 39

4.2.1 CodeQL . 39

4.2.1.1 CodeQL: advantages and disadvantages 40

4.2.2 Dependabot . 41

4.2.2.1 Dependabot: advantages and disadvantages 41

4.2.3 Secret Scanner . 42

4.2.3.1 Secret Scanner: advantages and disadvantages 43

4.3 OWASP ZAP . 44

4.3.1 OWASP ZAP: advantages and disadvantages 44

4.3.2 Branch Protection . 45

4.3.2.1 Require a pull request before merging 45

4.3.2.2 Require status checks before merging 45

4.3.2.3 Require conversation resolution before merging 45

4.3.2.4 Require signed commits 46

4.3.2.5 Require deployments to succeed before merging . . . 46

4.3.2.6 Lock branch . 46

ix

4.3.2.7 Do not allow bypassing the above settings 46

4.3.2.8 Restrict who can push to matching branches 46

4.3.3 Branch protection: advantages and disadvantages 47

4.4 Amazon Web Services Tools . 47

4.4.1 AWS CodePipeline . 47

4.4.2 AWS CodeBuild . 48

4.4.3 AWS CodeDeploy . 49

4.4.4 Amazon S3 buckets . 49

4.4.5 Amazon EC2 . 49

5 Building a secure end-to-end pipeline 51

5.1 Introduction . 51

5.2 Code used in the pipeline . 52

5.3 Pushing to GitHub . 53

5.4 Managing security in GitHub . 54

5.5 Retrieving the source code in AWS . 56

5.6 Storing artifacts . 57

5.7 Build stage . 58

5.8 Deployment to testing . 60

5.8.1 Setting up CodeDeploy . 60

5.8.2 Setting up for testing . 61

5.9 Deployment to production . 64

6 Discussion 67

6.1 Introduction . 67

6.2 Implementation of the SDLC . 67

6.3 Chosen branch protection rules . 68

6.4 The different tools chosen . 69

6.4.1 Why OWASP ZAP was chosen 69

6.4.2 Why tools integrated into GitHub were chosen 69

6.4.3 The group’s experience with CodeQL 70

6.4.4 The group’s experience with Dependabot 70

6.4.5 The group’s experience with Secret Scanning 71

6.4.6 The group’s experience with OWASP ZAP 71

x

6.5 Automation . 71

6.6 The Use of Security Framework . 72

6.6.1 SLSA . 73

6.6.2 SSDF . 74

6.6.3 Usefulness of the framework . 76

6.7 Revising the thesis angle . 77

6.8 Expectations compared to reality . 77

6.8.1 Practical work . 77

6.8.2 Research . 77

6.9 Critique of the thesis . 78

6.9.1 Not using frameworks from the beginning 78

6.9.2 Defining the scope . 78

7 Conclusion 80

7.1 Introduction . 80

7.2 The Work Process . 80

7.2.1 Meetings . 80

7.2.2 Scrum . 81

7.2.3 Coordinated schedule . 81

7.2.4 Draft Submissions . 81

7.2.5 Gantt Chart . 82

7.2.6 Distribution of Work . 83

7.2.7 Goals . 84

7.3 Further Work . 85

7.4 Conclusion . 86

Bibliography 87

A Results of OWASP ZAP scan 96

A.1 ZAP scan CLI output . 97

A.2 ZAP scan PDF report . 101

B Project Plan 116

B.1 Introduction . 116

B.2 Goals and restrictions . 117

xi

B.2.1 Background . 117

B.2.2 Project goals . 117

B.2.2.1 Performance goals . 118

B.2.2.2 Result goals . 118

B.2.2.3 Learning goals . 118

B.2.3 Framework . 118

B.2.3.1 Time frame . 118

B.3 Scope . 120

B.3.1 Problem . 120

B.3.2 Problem delimitation . 120

B.4 Project organization . 121

B.4.1 Roles and area of responsibility 121

B.4.2 Routines . 122

B.4.3 Group rules . 123

B.5 Planning, follow-up and reporting . 124

B.5.1 Project Management Methodology 124

B.5.2 Scrum . 124

B.5.3 Follow-up . 125

B.6 Organization of quality assurance . 126

B.6.1 Documentation . 126

B.6.2 Plan for testing and inspection 126

B.6.3 Risk analysis . 126

B.7 Plan for execution . 129

B.7.1 Gantt chart . 129

B.8 Signature . 130

C Timetables 131

C.1 Timetable - Anniken . 132

C.2 Timetable - Celina . 134

C.3 Timetable - Sebastian . 136

C.4 Timetable - Thea . 138

D Meeting minutes from meetings with the supervisor 140

D.1 25 January 2023 . 141

xii

D.2 1 February 2023 . 142

D.3 15 February 2023 . 143

D.4 22 February 2023 . 144

D.5 1 March 2023 . 145

D.6 10 March 2023 . 146

D.7 22 March 2023 . 147

D.8 29 March 2023 . 148

D.9 12 April 2023 . 149

D.10 19 April 2023 . 150

D.11 26 April 2023 . 151

D.12 3 May 2023 . 152

D.13 10 May 2023 . 153

D.14 16 May 2023 . 154

E Meeting minutes from meetings with stakeholder 155

E.1 12 January 2023 . 156

E.2 26 January 2023 . 157

E.3 16 February 2023 . 158

E.4 1 March 2023 . 159

E.5 9 March 2023 . 160

E.6 16 March 2023 . 161

E.7 22 March 2023 . 162

E.8 30 March 2023 . 163

E.9 13 April 2023 . 164

E.10 21 April 2023 . 165

E.11 27 April 2023 . 166

E.12 4 May 2023 . 167

E.13 9 May 2023 . 169

E.14 16 May 2023 . 171

F Meeting minutes from meetings with others 173

F.1 6 February 2023 . 174

F.2 13 February 2023 . 175

G Standard agreement 176

xiii

H Thesis description 183

List of Figures

2.1 DevSecOps Life Cycle . 12

2.2 Where SAST can be performed in SDLC 16

2.3 Where DAST can be performed in SDLC 17

2.4 Where SCA can be performed in SDLC 18

2.5 Comparison of SCA, DAST, and SAST 19

2.6 CVSS v3 Ratings . 21

2.7 The likelihood and impact levels . 23

2.8 Severity level based on impact and likelihood 23

3.1 Pipeline without any security measures 26

3.2 Pipeline with implemented SAST scan 27

3.3 Pipeline with implemented SCA scan 28

3.4 Pipeline with implemented secret scan 29

3.5 Pipeline with implemented DAST scan and pentesting 30

3.6 Pipeline with implemented branch protection rules 31

3.7 Pipeline with implemented access control 32

3.8 Pipeline with all security measures implemented 34

3.9 SLSA levels for the Build track . 35

4.1 AWS pipeline process . 48

4.2 AWS CodeBuild process . 48

4.3 AWS CodeDeploy process . 49

5.1 Pipeline in AWS . 52

5.2 Required signed commits . 53

xiv

xv

5.3 Pushing the source code to Git . 53

5.4 Critical alert from CodeQL . 55

5.5 Critical alert from Dependabot . 55

5.6 Alert from secret scanner . 56

5.7 Committing the source code to AWS 57

5.8 Storing the artifacts in an S3 Bucket 58

5.9 CodePipeline using CodeBuild . 59

5.10 Deployment to testing . 61

5.11 Manual approval before deploying the application 64

5.12 Finished pipeline created in AWS . 65

7.1 Original Gantt Chart . 83

7.2 Updated Gantt Chart . 83

List of Tables

4.1 Advantages and disadvantages of CodeQL 40

4.2 Advantages and disadvantages of Dependabot 41

4.3 Advantages and disadvantages of GitHub´s Secret Scanner 43

4.4 Advantages and disadvantages of OWASP ZAP 44

4.5 Advantages and disadvantages of GitHub’s Branch Protection 47

B.1 Risk matrix . 127

B.2 Scenario 1 . 127

B.3 Scenario 2 . 127

B.4 Scenario 3 . 128

B.5 Scenario 4 . 128

B.6 Scenario 5 . 128

xvi

Code Listings

5.1 Custom trigger for CodeQL alerts . 54

5.2 Creation of a connection between AWS and GitHub 56

5.3 Creation of an S3 Bucket . 57

5.4 Permissions to CodePipeline . 58

5.5 Creation of a build environment . 59

5.6 Creation of the deployment group . 60

5.7 Creation of an application for the deployment 61

5.8 Allocation of IP adresses . 62

5.9 The output of an OWASP ZAP baseline scan 63

A.1 OWASP ZAP baseline scan . 97

xvii

Acronyms

Amazon EC2 Amazon Elastic Compute Cloud. 49, 61, 62

Amazon SNS Amazon Simple Notification Service. 64

AMIs Amazon Machine Images. 49

API Application Programming Interface. 40, 56, 71

AWS Amazon Web Services. xiv, xv, 3, 5, 23, 32–34, 44, 47–49, 51, 52, 56–58, 64, 65,

68, 69, 74, 75, 77, 82, 84, 85, 120

CI/CD Continuous integration and continuous deployment. 11

CLI Command-Line Interface. 54, 85

CVE Common Vulnerabilities and Exposures. 21, 41, 55

CVSS Common Vulnerability Scoring System. xiv, 21

CWE Common Weakness Enumeration. 21, 22, 55

DAST Dynamic Application Security Testing. xiv, 4, 5, 16, 17, 19, 21, 29, 30, 44, 62,

67, 69–71, 75, 76, 84–86, 96

DevSecOps Development, Security, and Operations. xiv, 6, 12

GPG GNU Privacy Guard. 46, 53

IaaS Infrastucture as a Service. 23

NBIM Norwegian Bank Investment Management. 2–4, 117, 118, 120, 125

xviii

xix

NIST National Institute of Standards and Technology. 31, 36

NVD National Vulnerability Database. 21, 41

OWASP Open Worldwide Application Security Project. xvi, 20–22, 29, 44, 52, 61,

62, 69–71, 96

PaaS Platform as a Service. 23

SAST Static Application Security Testing. xiv, 4, 5, 15–17, 19, 21, 27–29, 39, 69–71,

75, 76, 84–86

SCA Software Composition Analysis. xiv, 4, 5, 17–19, 21, 28, 29, 41, 69, 70, 75, 76,

84–86

SDLC Software Development Life Cycle. xiv, 2–7, 10, 11, 13–18, 20, 26, 27, 33, 35,

39, 67, 74, 84–86, 117, 118, 120

SLSA Supply-chain Levels for Software Artifacts. xiv, 35, 36, 73, 76

SSDF Secure software development framework. 36, 74, 76

SSH Secure Shell. 46, 53

VPC Virtual Private Cloud. 62

YAML Yet Another Markup Language. 54

ZAP Zed Attack Proxy. xvi, 29, 44, 61, 62, 69, 71, 96

Glossary

Appspec An Application specification file, or appspec file, is a YAML or JSON

formatted file used by CodeDeploy containing instructions on how to deploy and

configure the application. 61

Artifact An artifact is any software package that is used as a building block for

applications. 28, 49, 57

Buffer-overflow Buffer overflow happens when the size of data surpasses the storage

capacity of a memory buffer, leading to potential system vulnerabilities. 15

Buildspec Buildsec is a collection of build commands and related settings in a YAML

format that CodeBuild uses to run a build. 48, 59

Compute platform The environment where software is executed. This could be

either the operating system or physical hardware. 49, 60

Cross-site scripting Cross-site scripting attacks, commonly referred to as XSS

attacks, represent a form of injection where malevolent scripts are inserted into

websites that are otherwise deemed secure and trustworthy. 15, 29, 33, 52

DDoS attack A DDoS (Distributed Denial of Service) attack floods a target website

or online service with traffic from multiple systems, overwhelming its capacity

and rendering it unavailable to legitimate users. 33

Denial-of-service attack describes the ultimate goal of a class of cyber attacks

designed to render a service inaccessible. The DoS attacks that most people have

heard about are those launched against high profile websites, since these are

frequently reported by the media. 27

xx

xxi

Dependencies A dependency refers to an external software component that an

application relies on to ensure its proper functioning. 17, 27, 28

Front-end The frontend is everything a user sees and interacts with when they click

on a link or type in a web address. The web address is also known as at URL, or

Uniform Resource Locator, and it tells what webpage should load and appear in

the browser. 52

GUI Stands for: Graphical User Interface and it is a graphics-based operating system

interface that uses icons, menus and a mouse to navigate around. 5, 53

Idempotent Idempotence, in programming and mathematics, is a property of some

operations such that no matter how many times you execute them, you achieve

the same result. 72

Infrastructure as Code Infrastructure as Code (IaC) is the practice of automat-

ing the provisioning and management of IT infrastructure using a high-level

programming language or configuration files. 5, 51, 71, 72, 77

Man-in-the-middle attack A man-in-the-middle (MiTM) attack is a type of cyber

attack in which the attacker secretly intercepts and relays messages between two

parties who believe they are communicating directly with each other. 28

Pipeline A pipeline is a systematic process that guides the development of software

by seamlessly progressing through the stages of building, testing, and deploying

code. xiv, 11, 16, 26, 27, 30, 39, 47, 48, 51, 56, 57, 69, 72, 74, 76, 77, 82, 84–86

Provenance Set of metadata providing information about how the outputs were gen-

erated, which includes identifying the platform used and any external parameters

involved in the process. 36, 73

Shift-left Shift left is the practice of performing testing, quality assurance, and

performance evaluation early in the development process, typically prior to

coding. 3

xxii

SQL-injection SQL injections are a type of web security vulnerability that enables

attackers to manipulate the queries executed by an application on its database.

15, 29, 33, 52

Chapter 1

Introduction

1.1 Background

Norwegian Bank Investment Management, from now on referred to as NBIM, is a

division within the central bank responsible for overseeing the Government Pension

Fund of Norway, which has a worth of 14,000 billion Norwegian kroner [1]. Due to

its significant value, the fund is a major target for potential malicious actors. It

faces an average of three severe cyber attacks daily, totalling around 100,000 at-

tacks each year. Out of these, more than 1,000 are considered significant threats [2].

Therefore, it is crucial for NBIM, as well as other organizations, to ensure the se-

curity of their systems and applications before deploying them into their cloud services.

Software Development Life Cycle (SDLC) describes how software applications are built

- from planning through implementation and running in production. It also includes

ensuring security at the different stages of software development. In order to accom-

modate frequent deployments to production, it is essential to automate the security

testing by building it into the deployment pipeline. Security testing can further benefit

from shift-left, where testing is done as early as possible in the pipeline. Implementing

a strong and secure software development life cycle is essential to prevent attacks from

hackers and other malicious actors on the application.

2

Chapter 1: Introduction 3

Securing the SDLC is a large and actively developed area with much industry interest.

Demonstrating the integration and practical application of various tools and methods

can benefit both NBIM and other organizations.

1.1.1 Problem area

The technology industry is in constant development. With this development comes a

rapidly expanding threat landscape. How developers approach IT and security must

accompany this rapid development to secure systems and applications from malicious

actors. Securing the Software Development Life Cycle has become a common topic in

the tech industry, and many resources are available to help organizations implement best

practices and adequate security measures. However, finding the appropriate resources

can take time, and automating the complete distribution process and automated

testing using multiple tools can be time-consuming. Therefore, NBIM is looking for

proof of concepts for building a secure pipeline using best practices and implementing

multiple security tools to scan for security misconfigurations and vulnerabilities at

crucial pipeline stages.

1.2 Scope limitations

The thesis covers all phases of the Software Development Life Cycle, and gives an

overview of each phase and the importance of securing them. The phases consist of

planning, implementation, testing, deployment, and maintenance. However, due to

the scope, only the last four phases will be the main priority for testing purposes and

building a secure pipeline from GitHub to AWS. The group has also decided not to

focus on shift-left testing within the life cycle, as the focus is on the later phases.

As a part of the thesis, the group utilized AWS as it was required to use. How-

ever, considering the vastness of the AWS platform, the group chose not to explore

the tools available within AWS extensively. Instead, the group opted to use the tools

necessary at that time and were relatively simple to implement rather than focusing

too much on the tools one could use to build the pipeline.

Chapter 1: Introduction 4

1.3 Target group

The thesis has multiple target groups. The primary target group is NBIM, the stake-

holder for this thesis, for whom the group will produce a comprehensive report on

the task assigned to them. However, this report has the potential to benefit other

organizations, and therefore, another target group is any organization that utilizes the

SDLC and aims to improve its security.

1.4 Goals

1.4.1 Performance goals

- P1: Collaborate effectively with team members to ensure the timely completion

of tasks.

- P2: Successfully integrating security tools (e.g., SAST, DAST, SCA) into the

SDLC pipeline.

- P3: Implement an automated pipeline using Terraform to build, test, and deploy

applications.

1.4.2 Result goals

- R1: Develop a secure and automated pipeline for the SDLC process using

Terraform.

- R2: Produce a report summarizing the project results and recommendations for

improving the SDLC pipeline security.

1.5 The group’s academic background

The group is in the third and final year of a bachelor’s degree program in Digital

Infrastructure and Cyber Security at NTNU Gjøvik. Throughout the studies, the group

has covered various courses such as risk management, ethical hacking, cyber security

and teamwork. These subjects have equipped the group with relevant knowledge for

their thesis work.

Chapter 1: Introduction 5

1.5.1 Knowledge that had to be acquired

The group had to acquire various new aspects of software development for the thesis,

as it was not covered extensively in their studies. These aspects include topics like

SDLC, Static Application Security Testing, Dynamic Application Security Testing

and Software Composition Analysis, and more. Due to the inclusion of the practical

parts in the thesis, like testing insecure code, the group had to learn about building a

pipeline and integrating various security tools to ensure a secure development. As a

significant part of the main scope focused on tools integrated into GitHub and Amazon

Web Services, the group had to acquaint themselves with these tools and the various

features of GitHub. Despite the group’s experience with GitHub from previous courses,

numerous features were still unfamiliar. In contrast, AWS was unfamiliar, and the

group had no prior knowledge. However, the group had used similar cloud services

like Microsoft Azure in previous courses.

In addition, the group had to familiarize themselves with Terraform and use it to

establish the automated pipeline. Using Terraform instead of working solely in the

GUI was based on several reasons to use infrastructure as code over manual configur-

ation. For instance, automation could enhance efficiency and decrease errors in the

development process.

1.5.1.1 Why this task was chosen

The group chose this task because of the shared interest in the Software Development

Life Cycle. SDLC is complex and contains multiple stages, and ensuring its security can

be considered important in today’s digital landscape. By looking at tools integrated

in Github and AWS, the group aimed to understand better how to use these tools to

identify and mitigate potential security risks at the different stages of the SDLC.

Chapter 1: Introduction 6

1.6 Framework

1.6.1 Timeframe

The task completion deadline runs from the 11th of January, 2023, to the 22nd of May,

2023. It was agreed early on that the first draft would be submitted to the supervisor

3rd of April to allow the supervisor enough time to read through the thesis and give

feedback. Then, the group decided to submit the final draft to the supervisor on the

1st of May, which would give a month between the first draft and the final draft to

work.

1.6.2 Other

The stakeholder requested a comprehensive report that did not specifically focus on

their systems, as they were unable to provide access to their systems or development

environment for the group. Therefore, the group had a significant amount of freedom

in determining the scope and specific limitations of the thesis.

1.7 Methodology

The group adopted a DevSecOps approach as a working method during the project,

which includes incorporating security into the DevOps process at all stages of the SDLC.

Despite focusing solely on the last four phases of the SDLC, the team maintained a

DevSecOps mindset, viewing security as an essential component of the entire process

rather than a separate phase.

1.8 Research methods

The group used different methods to gain knowledge that was needed to fulfill the

requirements that were given. Below are some of the research methods used to gain

knowledge about the topic.

Chapter 1: Introduction 7

1.8.1 Interviews/meetings

At the beginning of the project, the group conducted interviews with various lecturers

at NTNU Gjøvik to collect information on relevant subjects. By getting insights

from software security experts, the group acquired a fresh perspective on the topic,

supplementing the knowledge gained through literature studies. Additionally, the

group prepared a list of pre-determined questions to address any uncertainties about

specific areas that remained unclear based on prior research.

1.8.2 Literature study

The literature study was done by researching online for relevant information about

the topics, which helped the group add suitable material for the theory chapter. In

addition, the study provided the essential knowledge required to address secure SDLC

practices, which formed the basis for delivering appropriate recommendations.

1.9 Software utilized for writing

This section contains an overview of software utilized in the process of writing the

thesis.

• ChatGPT: Primarily used for rephrasing when uncertain how to formulate the

message.

• Grammarly Premium: For correct grammar, consistency and precise wording.

• Overleaf: Cooperative LaTeX editor used for writing the thesis.

1.10 GitHub organization

As part of the thesis, the group created a GitHub organization containing different

repositories, including all the code utilized for creating an automated pipeline and

various security tools and a backup of our thesis.

https://github.com/orgs/DCSG2900-Bachelor-thesis/repositories

https://github.com/orgs/DCSG2900-Bachelor-thesis/repositories

Chapter 1: Introduction 8

1.11 Thesis structure

When reading the thesis, some things can be helpful to note. First, there are clickable

links that make the navigation to chapters, sections, acronyms, figures, tables, and

sources go as seamlessly as possible. The language used throughout the thesis is

English. The same goes for all meeting notes and other relevant appendixes.

1.11.1 Chapters

• Chapter 1 - (Introduction): Contains an introduction to the thesis.

• Chapter 2 - (Theory): Contains theory that the group considers important to

have some knowledge about to understand the thesis as a whole.

• Chapter 3 - (Pipeline security): Contains an overview of what to implement

to secure data sent through the pipeline and what to include to secure the

pipeline.

• Chapter 4 - (Analysis of security tools for the pipeline): Contains an

overview of the different tools the group has implemented into their pipeline,

with an analysis of these tools.

• Chapter 5 - (End-to-end pipeline): Contains the steps done for pipeline

automation and implementation of chosen security tools.

• Chapter 6 - (Discussion): Contains an in-depth discussion of choices made

throughout the thesis.

• Chapter 7 - (Conclusion): Contains an overview of the work process and a

conclusion to the group’s findings.

Chapter 2

Theory

2.1 Introduction

This chapter provides an explanation of different types of concepts that is essential to

understand before reading the rest of the thesis. It covers various forms of software

testing, multiple techniques of security testing, and other relevant information deemed

necessary to understand the thesis.

2.2 Software Development Life Cycle

Software Development Life Cycle can be defined as ”structured process that enables the

production of high-quality, low-cost software, in shortest possible production time. The

goal of the SDLC is to produce superior software that meets and exceeds all customer

expectations and demands”[3]. SDLC consists of several phases providing a software

development testing and deployment framework. The Software Development Life Cycle

is an iterative process, where each life cycle phase can undergo multiple iterations and

be repeated, with each iteration building upon the previous one [4]. This iterative

method allows continuous improvement and refinement, producing a final product

that meets or exceeds customer needs and expectations. Using this approach, software

development teams may ensure that their product is of the greatest quality while still

being completed in a reasonable time and cost. Below are the five phases that fulfill

the SDLC.

10

Chapter 2: Theory 11

2.2.1 Planning

Planning is the first phase of the SDLC [5]. During this phase, the team determines the

project’s goals and objectives. The team should discuss resources, costs, and time and

create a timeline for the work during this phase. Additionally, the team should develop

a project plan where they identify, prioritize, and assign tasks and resources necessary

to construct the structure. This stage is repeated when changes or new features are

presented [6]. In a CI/CD pipeline, the team receives feedback and includes it in a

new planning phase.

2.2.2 Implementation

In the implementation phase, the actual development of the software takes place [7].

The software design is translated into code using programming languages. Once the

team completes and reviews the code, they initiate the build process and conduct

several security scans. The implementation phase is considered important since this is

the phase that involves the actual development of the software and the preparation of

the software for deployment into the environment.

2.2.3 Testing

In the testing phase, the development team verifies that the software fulfils functional,

performance, security, and quality criteria established in earlier stages of the SDLC

[8]. The software undergoes both manual user testing and automated testing to detect

and correct possible defects. During testing, the development team confirms that the

software fits the user’s requirements.

Chapter 2: Theory 12

2.2.4 Deployment

In the deployment phase, releasing the software into the environment can be considered

the main priority [9]. During this phase, the deployment team works with the develop-

ment team and stakeholders to arrange the software’s release to guarantee a seamless

process. The plan also includes creating the deployment timeline, selecting a method

for the deployment, and defining the software’s environment. Initially, the deployment

procedure of an application may take a long time. However, after the application has

been deployed for the first time, future changes may be delivered more quickly since

the same configuration is reused, resulting in significantly reduced deployment time.

2.2.5 Maintenance

In the maintenance phase, the software is monitored to ensure it functions according

to its intended design [10]. The team does any refactoring and upgrades if it is needed.

Software monitoring can be done differently depending on how the maintenance phase

has been set up. However, the most common way of monitoring is usually through

real-time reporting or ad-hoc reporting systems

Figure 2.1: DevSecOps Life Cycle
[11]

Chapter 2: Theory 13

2.3 Functional testing vs. security testing

Software testing is an extensive area, and each test varies according to its purpose or

process. The primary goal of software testing is to verify the quality of software systems

through planned and structured testing under controlled conditions [12]. Functional

testing emphasizes the software’s behavior and that the software is working as expected.

The functional test cases are based on the software requirements specified by the

stakeholder. Several functional testing methodologies, such as unit and integration

testing, can be conducted.

Unit testing involves testing small code components, known as units, to determ-

ine if the units behave as expected[13]. These tests are typically executed early in the

SDLC to identify bugs early on and save time in the rest of the process. The unit

testing aims to run tests on all possible components in an isolated test environment to

confirm if the code operates as anticipated. On the other hand, integration testing

evaluates how the previously tested components perform when integrated into a more

extensive system and communicate across various components.

Security testing wants to break the software to uncover vulnerabilities and verify

its security features [14]. The testing aims to identify all possible weaknesses that

attackers might exploit. The tests are performed from the attacker’s point of view.

These tests can be done manually or by software tools called automated security

testing tools. The goal of evaluating security functionalities is to verify if protective

measures like authentication are functioning as expected. Security testing will also

try to simulate attacks on the software and determine its capability to defend against

them. White box testing, black box testing, and grey box testing are some examples

of security testing methods. This topic is described more in section 2.4.1.

Chapter 2: Theory 14

2.4 Application security testing

Application Security Testing can be described as a “process of making applications

more resistant to security threats by identifying security weaknesses and vulnerabilities

in source code” [15].

2.4.1 Box testing

Below are some of the different security tools that can be used to make applications

more resistant to security threats and which will be used in securing the SDLC. The

various testing tools utilize a type of testing technique called “box testing”.

2.4.1.1 Black box testing

Black box testing is a testing technique that primarily focuses on the functionality

and behavior of an application without any knowledge of its internal structure and

processes [16]. Therefore, the tester can treat the application as a black box, where

only the inputs and outputs are visible, and the internal workings remain unknown.

The technique makes it a practical approach to test the functionality of an application,

as the tester verifies whether the input produces the expected output without any

knowledge of the underlying code or design. As a result, black box testing is often used

as a form of functionality testing [17]. If the software produces the expected output

for the given input, the tester considers it to have passed the black box test.

2.4.1.2 White box testing

White box testing focuses on the application from within. During such tests, the

tester will examine the source code and infrastructure [18]. The testing covers paths,

statements, and branches, among other things. A white box tester looks for security

holes by testing the code and therefore requires to know programming and IT. The

tester performs security testing, like testing for memory leaks, and functional testing,

like unit tests. White box testing can be pretty complex, and when running such tests

on a large amount of code, it can take days or even weeks to test.

Chapter 2: Theory 15

2.4.1.3 Grey box testing

Grey box testing is a method that limits the user’s knowledge of the different compon-

ents being tested [19]. It combines white box testing and black box testing, where the

user can access internal code or design without enough access to run a full white box

test.

2.4.2 SAST

Static Application Security Testing (SAST) is a type of white-box testing that ana-

lyzes the source code of an application to identify security vulnerabilities within the

code [20]. This testing method usually occurs during the development phase of the

Software Development Life Cycle. The primary purpose of this method is to identify

and remediate security issues before the application is deployed.

SAST tools scan source code for known security threats, such as cross-site scripting,

SQL-injection, and buffer-overflow. SAST tools also warn about any security weak-

nesses that may lie in the code that can potentially be exploited. After the tool has

gone through the code, it generates a report that contains the different vulnerabilities

that it has identified. In addition, the report includes a more in-depth description of

the vulnerability and remediation on how to fix it.

One of the advantages of SAST is that it gives detailed information about the source

of the vulnerability, which gives the developer a better understanding of how to fix

the issue.

There are, however, some limitations to SAST tools. For example, it can only detect

vulnerabilities in the source code, meaning it cannot detect vulnerabilities that result

from the interaction between different components of an application. In addition,

SAST tools often generate numerous false positives since they analyze source code

without considering the entire code context [21].

Chapter 2: Theory 16

SAST scans should be implemented as early in the SDLC as possible to prevent

vulnerabilities from being present throughout the pipeline [22]. Figure 2.1 suggests

that the SAST scan should be done before building the code in the implementation

phase. It is also possible to run this test during the testing phase, as shown in Figure

2.2.

Figure 2.2: Where SAST can be performed in SDLC

2.4.3 DAST

Dynamic Application Security Testing (DAST) uses a black box testing technique

that evaluates the security of an application by performing security assessments of a

running instance of the application [23]. Unlike SAST, which analyzes the source code

of an application, DAST evaluates the application as its being used. The evaluation

includes the interaction of different components and the runtime environment.

DAST simulates real-world attacks, which is done by sending malicious requests

and inputs to the application it is testing and then monitoring the responses. In the

end, the tool generates a report that includes the identified vulnerabilities, including a

more in-depth description and remediation on how to fix the issue.

An advantage with DAST is that it can identify security issues that are not detect-

able through SAST. These security issues can, for example, be interactions between

different components. Another advantage is that with DAST, it can identify different

vulnerabilities that get triggered, for example, when the application is under heavy

load or when specific inputs are received.

Chapter 2: Theory 17

However, there are some limitations with DAST as well. One is that it can only

detect vulnerabilities present in the deployed version of the application and cannot

give an in-depth description of vulnerabilities in the source code. Additionally, DAST

may generate false positive. Though the tools generates less false positives compared

to SAST, eliminating these alerts require more advanced analysis and verification

technologies [24].

In Figure 2.3, DAST is suggested to perform in the testing and maintenance phase

since the scan is done on a running application and is, therefore, past the imple-

mentation stage. The test should be done before deployment to prevent a vulnerable

application from going public. Scans should also be done after it is deployed [25], in

the maintenance phase, since vulnerabilities may occur after deployment and must be

identified to prevent potential problems.

Figure 2.3: Where DAST can be performed in SDLC

2.4.4 SCA

Software Composition Analysis (SCA) is a type of grey box testing that analyzes the

dependencies of a software application to identify and manage potential security risks

[26]. The main objective of the SCA is to identify third-party components that may

contain security vulnerabilities.

SCA scans the application’s code to identify all of its dependencies, including the

different versions of the components used. It then cross-references these dependencies

to different databases with known vulnerabilities and generates a report containing

any potential risk. Compared to the other tests, the report also includes an in-depth

Chapter 2: Theory 18

description of the vulnerability and a recommendation to update the components to

newer versions or replace these.

An advantage with SCA is that it can quickly identify risks that may be introduced

from third-party components. It is relatively common that modern applications rely

on many different dependencies, making SCA useful. It can provide a comprehensive

view of the security risks associated with an application and help developers make

informed decisions about the security of the developed applications.

However, SCA may give some false positives that can occur because the developer has

an extensive library in the code. In addition, it can trigger because of a dependency

that is never used and is, therefore, impossible to exploit.

SCA scans are done at an early stage in modern software development [26]. Shown in

Figure 2.1 it is performed in the build stage. Therefore, Figure 2.4 suggests SCA scans

to be performed in the implementation phase. The scan is also suggested in the testing

and maintenance phases. The testing phase is an alternative or an addition to the

implementation phase. The maintenance phase should include checks, as dependencies

may become vulnerable after deployment.

Figure 2.4: Where SCA can be performed in SDLC

Chapter 2: Theory 19

2.4.5 Comparison of SAST, DAST, and SCA

Upon reviewing the different security application tests, similarities between SAST,

DAST, and SCA were discovered. Table 2.5 shows commonalities and differences,

which indicates that a combination of the different testing mechanisms can enhance

the testing process of the application.

Note: The distinction between the exclamation marks and the checkmarks lies in the
meaning of them. The exclamation marks indicate that the criteria are considered

negative, while the checkmarks signify that the criteria are positive.

Figure 2.5: Comparison of SCA, DAST, and SAST
Adapted from: [27]

Chapter 2: Theory 20

2.5 The significance of software security testing

Security testing plays a critical role in the Software Development Life Cycle, as it

is employed to identify potential security vulnerabilities in the system and prevent

real-world attacks [14]. It is a process where the system’s security is evaluated, and its

possible security weaknesses and vulnerability risks are identified.

According to IBM’s report, in 2022, the cost of a data breach was estimated to

be USD 4.35 million [28]. Investing in cyber security measures can save money for a

company in the event of a cyber attack. The report states that companies that have

implemented zero trust security measures saved about USD 1 million in breach costs

on average compared to those that have not. To repair a vulnerability in the planning

phase costs an average of USD 500 [29]. Starting software testing early in the SDLC

reduces costs and saves time. As mentioned in section 2.3, various types of testing

should be executed on an application, including testing of both the written code and

the libraries that are integrated and being used.

2.6 OWASP Top 10

Open Worldwide Application Security Project (OWASP) serves as a standard reference

document for web application security and for developers to raise their knowledge

of potential security threats. The document contains a prioritized and exemplified

list with recommendations for fixing ten critical security flaws commonly seen in web

applications. The function of this document is to educate readers on the most common

security risks that may occur. Developers and security professionals may use this

knowledge and implement it into their security policies, reducing the frequency of

these threats in their applications.

Chapter 2: Theory 21

2.7 Vulnerability risk rating

Discovered vulnerabilities can be rated by standardized systems like CVSS, CVE,

CWE, and OWASP Risk Rating Methodology. These databases are frequently used

in application security testing, particularly in SCA scans, to uncover code patterns

that may indicate a common vulnerability within the code. While they may also be

utilized in DAST and SAST scans, they are most commonly used in SCA scans.

2.7.1 Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System, known as CVSS, is ”a Security Content

Automation Protocol (SCAP) specification for communicating the characteristics of

vulnerabilities and measuring their relative severity”[30]. The system gives vulner-

abilities a numeric score based on their severity. The scores can be translated into

low, medium, high, and critical to assist organizations in evaluating and ranking their

vulnerabilities. CVSS is currently at version 3.1 [31].

Figure 2.6: CVSS v3 Ratings
Adapted from: [32]

2.7.2 Common Vulnerabilities and Exposures (CVE)

Common Vulnerabilities and Exposures1, known as CVE, is, according to their web-

site,”a list of records each containing an identification number, a description, and at

least one public reference for publicly known cyber security vulnerabilities”[33]. The

CVE program aims to determine, describe, and categorize cybersecurity vulnerabilities

made public. All discovered vulnerabilities will be put into records and sent to National

Vulnerability Database (NVD)2, which is a list of vulnerabilities maintained by the

United States government.

1Available at: https://www.cve.org/
2Available at: https://nvd.nist.gov

https://www.cve.org/

Chapter 2: Theory 22

2.7.3 Common Weakness Enumeration (CWE)

Common Weakness Enumeration3, known as CWE, is ”a community-developed list of

common software and hardware weakness types that have security ramifications”[34].

It serves as a consistent benchmark for security solutions that address vulnerabilities

and as a baseline for identifying, mitigating, and preventing weaknesses. CWE ’s goal

is to provide instructions for those who have control over and maintain source code to

stop the vulnerabilities at the source.

2.7.4 OWASP Risk Rating Methodology

OWASP Risk Rating Methodology contains a formula that calculates a risk score for

each vulnerability based on likelihood and impact [35]. Multiple factors make up both

likelihood and impact.

Factors composing the estimation of likelihood are separated into different groups

related to the threat actor and the vulnerability. The set of factors related to the threat

actor is skill level, motive, opportunity, and size. The factors related to the vulnerability

are the ease of discovery, ease of exploit, awareness, and intrusion detection. Each

factor will have different options and receive a likelihood rating from 0-9.

Factors composing the estimation of impact are divided into technical and busi-

ness impacts. The technical impact is broken down into confidentiality, integrity,

availability, and accountability. Further, the business impact is divided into financial

damage, reputation damage, non-compliance, and privacy violation. All of the factors

will receive an impact rating from 0-9.

Combining the likelihood and impact ratings produces an overall risk severity level,

which can be classified as low, medium, or high, as shown in figure 2.7, to determine

its severity. These levels can be further combined to determine the final severity of the

risk, as illustrated in figure 2.8.

3Available at: https://cwe.mitre.org/

https://cwe.mitre.org/

Chapter 2: Theory 23

Figure 2.7: The likelihood and impact levels

Figure 2.8: Severity level based on impact and likelihood

2.8 Amazon Web Services

Amazon Web Services4, known as AWS, is a cloud computing platform offered by

Amazon [36]. It offers a range of services from Infrastucture as a Service (IaaS) to

Platform as a Service (PaaS), which allows users to run their applications and keep their

data in the cloud. By utilising the pay-as-you-go cloud computing model, customers

can easily adjust their resources without investing in physical infrastructure.

4Available at: https://aws.amazon.com/

https://aws.amazon.com/

Chapter 2: Theory 24

2.9 GitHub

GitHub5 is a web-based software development platform where developers can col-

laborate and store open and closed-source projects [37]. The developers can manage

their projects in repositories and track bugs and issues. It offers collaboration tools,

including pull requests, code reviews, and project management functionalities. Git is a

version control system utilized to manage and monitor file versioning. GitHub employs

this technology as the basis for its service. The version control allows developers to

work on code simultaneously, track changes, and merge contributions from multiple

contributors.

5Available at: https://github.com/

https://github.com/

Chapter 3

Pipeline security

3.1 Introduction

pipeline security is a large part of securing software development, from source code

to production deployment. Pipeline security is categorized into two aspects - security

in the pipeline and security of the pipeline [38]. In many ways implementing both

security in the pipeline and of the pipeline will increase the overall security. Further,

the group looks closer into essential security measures within these two.

Figure 3.1 displays a pipeline without any security measures implemented. The initial

four stages in the pipeline are considered the implementation phase in the SDLC.

Furthermore, the security testing stage in the pipeline is considered the testing phase,

the deployment stage is the deployment phase, and so on. The following chapter

presents the different measures that is added to the pipeline. In the end, a complete

and secure pipeline is achieved.

Figure 3.1: Pipeline without any security measures

26

Chapter 3: Pipeline security 27

3.2 Security in the pipeline

Security in the pipeline ensures the code’s utmost safety from various security threats.

The pipeline actively incorporates security measures and implements strict controls.

The pipeline commonly consists of multiple phases like code development, testing,

and deployment, all of which may be susceptible to various security threats, like

unauthorized access, data breaches, malware, and denial-of-service attacks. Therefore,

security in the pipeline is crucial to secure the integrity and confidentiality of software

applications and data. The pipeline can use the following tools below to enhance its

security. For examples of the specific tools, see chapter 4.

3.2.1 Code scanning

According to Microsoft’s best practices for secure SDLC [39], a SAST tool should

be included in the pipeline. A SAST tool can be, for example, code scanning. Code

scanning is a security measure that analyses code with the help of a tool to find security

vulnerabilities and coding errors. Code scanning serves as a preventive measure against

developers introducing new issues. In Figure 3.2, the SAST scan is set to be in GitHub

[20]. By doing this scan there, it is done at the earliest stage possible, before the code

is moved forward in the pipeline, eliminating vulnerabilities as soon as possible.

Figure 3.2: Pipeline with implemented SAST scan

3.2.2 Scan dependencies and open source libraries

Dependencies can be divided into two parts: direct and transitive [40]. A direct de-

pendency is a directly referenced software component in an application. A transitive

is a functional software component necessary for an application’s direct dependencies.

These dependencies may have their own set of direct and indirect dependencies, res-

ulting in a recursive tree of transitive dependencies affecting the application. This

means that the dependencies used in the code may be linked to numerous additional

dependents, creating a large supply chain. To secure these supply chains, in addition

Chapter 3: Pipeline security 28

to vulnerability scanning, the company can create a clear policy for evaluating and

managing dependencies, including criteria for selecting secure and trustworthy libraries

and frameworks. They should also limit unnecessary or outdated dependencies, as

these can increase the attack surface and create unnecessary risk.

All dependencies, open-source libraries, and third-party artifacts that have been

utilized should be validated [41]. To validate a file’s integrity, compare the signature of

an artifact to the signature generated by the artifact provider. This comparison helps

detect any unauthorized alterations, tampering, or corruption of dependencies that

may occur due to a man-in-the-middle attack or a compromise of the artifact repository.

If any third-party software is used in the application, conducting an SCA scan with

appropriate tools is crucial to detect any vulnerable open-source software implemented.

The SCA is used in conjunction with the SAST tool in Figure 3.3. Similarly to SAST,

it is done in GitHub to patch the vulnerable dependencies early in the implementation

phase [26].

Figure 3.3: Pipeline with implemented SCA scan

3.2.3 Secret scanning

To prevent or identify accidental exposure of “secrets”, like access tokens, SSH keys,

or other credentials, secret scanning should be executed on the repository where the

source code is stored [42]. Such secrets can give unwanted access to, for example,

accounts, software, or cloud providers. With access to secrets like cloud credentials, a

threat actor could, among other harmful attacks, scale up the use of various costly

resources, costing a company much more than what they have budgeted for [43].

According to GitGuardian’s early report on secret leaks [44], they detected 10 million

secrets leaked in 2022, which is an increase of 67% from 2021. According to the report,

1 out of every 10 GitHub authors has accidentally shared a secret in their repository,

Chapter 3: Pipeline security 29

highlighting a growing problem with leaked confidential information. Developers can

use secret scanning tools to search for vulnerabilities and receive alerts regarding

potential security risks.

In Figure 3.4, it is recommended to perform secret scanning together with SAST and

SCA for the same reason, explained in sections 3.2.1 and 3.2.2.

Figure 3.4: Pipeline with implemented secret scan

3.2.4 Dynamic scanning

In software best practices, it is recommended to run multiple tests and scans to identify

bugs and errors - where one of these tests is Dynamic Application Security Testing

(DAST) [41]. This scanning method tries to penetrate the application, attempting to

identify its vulnerabilities and weaknesses. A specialized tool for DAST scan, such as

OWASP ZAP, can be implemented to identify security risks like cross-site scripting,

SQL-injection or path traversal [45].

3.2.5 Manual security testing

Even though DAST can be used to identify potential vulnerabilities, certain types of

threats may go undetected [46]. For this reason, the company should engage a red

team, a group of experts capable of performing penetration testing (pentesting). A

penetration test will provide a more realistic test, as it simulates a real-world attack,

detects more complex vulnerabilities, and provide a more comprehensive view of an

application’s security posture. In addition, a penetration test can verify the results of

a DAST scan by assessing whether a vulnerability can be exploited and the extent of

the damage it could cause.

Chapter 3: Pipeline security 30

Figure 3.5 shows that the DAST scan and penetration test are positioned later

in the pipeline because they require a running application to be executed [25]. These

tests cannot be performed earlier but must be conducted before the application is

deployed.

Figure 3.5: Pipeline with implemented DAST scan and pentesting

3.3 Security of the pipeline

Security of the pipeline refers to the measures taken to protect the pipeline and the

underlying infrastructure and network involved in processing the code that passes

through it. To ensure the pipeline ’s security, it is limited to performing its intended

functions and stops unauthorized access to restricted resources.

3.3.1 Branch Protection

Branch protection ensures that specific criteria are met before code can be merged

[47]. This feature allows users to create branch protection rules that enforce specific

workflows for one or multiple branches, such as mandating an approving review or

passing status checks for all pull requests merged into the protected branch. Access to

this feature of GitHub is available for all users.

Enforcing branch protection makes introducing errors and vulnerabilities into the

secured branch less likely. In addition, branch protection creates a more precise devel-

opment process by providing guidelines and requirements for making changes in the

code. This helps ensure that all team members are aligned towards the same goal and

working together effectively.

Chapter 3: Pipeline security 31

Figure 3.6: Pipeline with implemented branch protection rules

3.3.2 Access Control

Access control is crucial to regulating individuals’ access to specific resources such as

GitHub [48]. It involves implementing measures to determine the appropriate level of

access for each individual while following the “least privilege” principle. As specified

by NIST [49], this principle entails designing a security architecture, granting each

entity only the minimum system resources and authorizations needed to perform its

function.

In GitHub, permissions control access, which refers to the capability to execute

specific tasks. In addition, team members can have specific roles assigned to them

and specific permissions can be granted to individuals and groups. By following these

measures, organizations can effectively manage access control and reduce risks associ-

ated with unauthorized access to critical resources.

Secure authentication is a crucial aspect of maintaining system security [50]. It

involves implementing measures to ensure that only authorized users can access a

system and that their access is limited to the specific resources needed to perform their

duties. Conditional access policies can help organizations improve their authentication

process [51]. By specifying specific rules and conditions, the system can determine

the appropriate times, locations, and methods for users to gain access. For example,

an organization might require multi-factor authentication for all users accessing the

system outside the corporate network. In addition, they might limit access to specific

applications or data based on the user’s role or location.

Chapter 3: Pipeline security 32

Conditional access is an essential part of an organization’s overall security plan. It

provides effective system access management, lowering the risk of unwanted access

or data breaches and ensuring regulatory compliance. Furthermore, applying this

access control to all system components at every pipeline stage is advisable for optimal

security, as shown in Figure 3.7. As a result, necessary and consistent access control

implementation is crucial.

Figure 3.7: Pipeline with implemented access control

3.4 Security in maintenance

Once the deployment process is complete, the application is transferred to the cloud

environment in Amazon Web Services [52]. It is essential at this stage to keep the

security up to date to ensure that the application and data are protected. AWS offers

a range of best practices organizations can follow to decrease risks associated with

cloud computing and ensure that the AWS environment is secure.

After successfully completing the deployment process, it is important to ensure infra-

structure security and performance. To solve security problems and offer new features

to the system, regular maintenance and upgrades are required. Furthermore, frequent

backups and disaster recovery testing are required to protect data and applications.

Maintaining and testing the system on a regular basis helps prevent downtime and

improve system dependability.

Chapter 3: Pipeline security 33

It is critical to monitor cloud-based applications continuously in order to discover

issues or potential risks This includes identifying errors, performance problems, safety

weaknesses, and other relevant issues. AWS provides specific monitoring tools, such as

AWS Cloudtrail1 and AWS X-ray2.

During the development phases, various security tests, such as security scans and

penetration testing, should be done to discover possible vulnerabilities and resolve

them before release. However, it is just as critical to do post-deployment testing to

ensure that any additional vulnerabilities are found and resolved as soon as possible.

Regular security scans and penetration testing can lower the danger of exploitation

significantly. By running these tests regularly, a company can keep track of any poten-

tial security issues and take preventive measures to mitigate them.

To ensure that the application is protected, it is recommended that the organiz-

ation implement a web application firewall like AWS WAF3, to prevent malicious

application attacks such as SQL-injection, cross-site scripting and other attacks. AWS’s

WAF service offers a managed set of protective rules, allowing customized rules and

access control lists based on the company’s needs and risk models. This makes it

possible to provide web application security with more customization and specification.

Additionally, it is important to take steps to prevent DDoS attack which can be done

using AWS Shield4.

Maintaining security is crucial during the maintenance phase of the SDLC, which

starts after the application has been deployed. It is critical to keep up with regular

maintenance and testing during this phase and take proactive measures to mitigate

any issues that may arise. Organizations can identify and address potential security

vulnerabilities beforehand to prevent them from becoming significant issues. This is

particularly crucial when deploying applications to the cloud due to the complex and

ever-changing security environment.

1Available at: https://aws.amazon.com/cloudtrail/
2Available at: https://aws.amazon.com/xray/
3Available at: https://aws.amazon.com/waf/
4Available at: https://aws.amazon.com/shield/

https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/xray/
https://aws.amazon.com/waf/
https://aws.amazon.com/shield/

Chapter 3: Pipeline security 34

Best practices such as regular security audits, vulnerability scans, and patches can

ensure the application remains secure and protected against potential threats. Mon-

itoring for unusual or suspicious activity can also aid in detecting and preventing

security breaches. Organizations can help ensure their AWS applications’ continued

reliability and security by prioritizing security throughout the maintenance phase.

3.5 Finished pipeline

Figure 3.8 illustrates a finished pipeline after all security measures are included. This

also includes maintenance.

Figure 3.8: Pipeline with all security measures implemented

Chapter 3: Pipeline security 35

3.6 Frameworks

3.6.1 Introduction

A framework is “a supporting structure around which something can be built” [53], and

can be used in connection with securing the SDLC. Frameworks outlined in this chapter

are not intended to be rigid regulations but rather valuable recommendations for

software developers to enhance security measures. By implementing these suggestions,

developers can confidently improve the security of their software.

3.6.2 Supply-chain Levels for Software Artifacts

Supply-chain Levels for Software Artifacts (SLSA)5 is a framework for securing the

software supply chain created by Google in collaboration with OpenSSF6 [54]. The

framework is made into a common vocabulary checklist for developers to evaluate the

security of the software they are creating. SLSA is organized into tracks and levels.

The levels refer to the increasing security guarantee of the supply chain, the highest

level being level 3. The levels are split further into tracks. Tracks are certain aspects

of the supply chain, for example, the Build track, which currently is SLSAs only track.

Figure 3.9: SLSA levels for the Build track
[55]

Currently, there are three levels split into one track. To achieve the different build

levels, the developers have to do the following:

5Available at: https://slsa.dev/
6Available at: https://openssf.org/

https://slsa.dev/
https://openssf.org/

Chapter 3: Pipeline security 36

To achieve SLSA Build Level 1, the developers must use a consistent build process,

which can quickly be adopted. Additionally, it is essential to generate provenance

automatically on the build platform, which describes how the artifact was built. This

includes information on the entity responsible for building the package, the specific

build process used, and the top-level inputs utilized during the build process.

In order to reach SLSA Level 2, all Level 1 requirements must be in place. Fur-

ther, the build has to be run on a platform that signs the provenance. Finally, this

provenance’s authenticity must also be verified.

Similarly to Level 2, all previous level requirements must be achieved to get to

SLSA Level 3. In addition, the build platform needs to be able to secure the secrets

used for signing provenance and prevent any interference between runs from the same

project.

3.6.3 Secure Software Development Framework

Secure software development framework (SSDF)7 is a framework consisting of practices

for a secure software development, created by National Institute of Standards and

Technology (NIST) [56]. The organization should integrate the SSDF into their already

existing software development practices. SSDF does not specify how each practice

should be implemented. It emphasizes the outcome of the practices rather than how to

perform them. Organizations in any sector or community can use the SSDF, regardless

of their size or level of cyber security competence. This framework is intended to be user-

friendly and adaptable, making it appropriate for a wide range of businesses with varied

levels of cyber security knowledge. Organizations can use the SSDF to adopt secure

software development practices and reduce the risk of potential security vulnerabilities.

The framework does not introduce new practices or define new terminology. However,

it presents a set of high-level practices based on known standards, guidelines, and

documents relevant to secure software development practices.

7Available at: https://csrc.nist.gov/Projects/ssdf

https://csrc.nist.gov/Projects/ssdf

Chapter 3: Pipeline security 37

The benefits of describing the practices at a high level include that they can be used

by organizations in every industry and community, despite their size or level of cyber

security knowledge. It can also help companies that buy and use software understand

the secure software development methods used by their suppliers. All the practices are

described in the framework8.

There are four groups into which the practices are divided:

• Prepare the Organization (PO): “Organizations should ensure that their

people, processes, and technology are prepared to perform secure software devel-

opment at the organization level. Many organizations will find some PO practices

to also apply to subsets of their software development, like individual development

groups or projects.”[56]

• Protect the Software (PS): “Organizations should protect all components of

their software from tampering and unauthorized access.”[56]

• Produce Well-Secured Software (PW): “Organizations should produce

well-secured software with minimal security vulnerabilities in its releases.”[56]

• Respond to Vulnerabilities (RV): “Organizations should identify residual

vulnerabilities in their software releases and respond appropriately to address

those vulnerabilities and prevent similar ones from occurring in the future.”[56]

Each practice definition has the following components:

• Practice: Name of the practice with a unique identifier, with a description.

• Task: One or more steps may be required to carry out a procedure.

• Notional Implementation Examples: A selection of tools, procedures, or

approaches is presented that may aid in the execution of tasks. It should be noted

that these examples are not exhaustive, and their use is not obligatory. In addition,

some examples may not be relevant to specific companies or circumstances.

• References: References towards established secure development practice docu-

mentation and their mappings to specific tasks. Not all references will be relevant

in all cases of software development.

8Latest version: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

Chapter 4

Analysis of security tools for

the pipeline

4.1 Introduction

The following chapter presents tools that can be utilized as the security tools implemen-

ted in the pipeline presented in Chapter 3. Additionally, advantages and disadvantages

are presented.

4.2 GitHub security Tools

Below are the GitHub tools that can be utilized to conduct a wide range of application

security testing on the code sent through the pipeline.

4.2.1 CodeQL

GitHub has an in-built code scanning tool called CodeQL that allows the users to

analyze the code in the GitHub repository to find vulnerabilities and errors in the code

[57]. This tool can be used as the SAST tool in the pipeline. Microsoft’s best practice for

secure SDLC, which argues using approved tools, has listed CodeQL as a recommended

tool [39]. The results of these analyzes are shown as code-scanning alerts in GitHub.

This feature helps identify existing issues and prevents new ones from being introduced.

39

Chapter 4: Analysis of security tools for the pipeline 40

CodeQL can be scheduled to run on chosen days or occurrences of events. For example,

rather than scanning each branch individually, it is possible to set up a trigger that

will initiate the code scan only when the code is pushed to the main branch or when a

pull request is made. Limiting the triggers helps to reduce the amount of time and

resources required to perform the scans. Also, it minimizes the risk of vulnerabilities

or errors being introduced into the production environment.

Any issues found during the scanning process are displayed as alerts within the

repository, allowing developers to divide the different issues easily between team mem-

bers [58]. Once a user fixes the code that triggered the alert, it is automatically closed.

Additionally, users can monitor the results of code scanning across their repositories

or organization using webhooks and the code scanning API.

4.2.1.1 CodeQL: advantages and disadvantages

These advantages and disadvantages combine the personal experiences and information

found during research.

Advantages Disadvantages

- Customize triggers: Teams can
decide when to trigger the
scanning. This is usually when an
event occurs, such as pull
requests

- Suitable for projects: The scan
can be configured so that it
tailors the different needs

- Auto-build: When code
scanning runs, it automatically
uploads the vulnerabilities it
found to the repository’s security
tab

- Precision: The precision can
depend on the code. If the code
requires a specific type of
customization, then the precision
of the default setup for CodeQL
will not necessarily be suitable

- Language support: Only
supports a smaller set of
languages

Table 4.1: Advantages and disadvantages of CodeQL

Chapter 4: Analysis of security tools for the pipeline 41

4.2.2 Dependabot

Dependabot is an in-built GitHub tool that helps developers keep their project de-

pendencies up-to-date and is an example of an SCA tool that can be used in the

implementation phase [59].

Dependencies can be updated over time as new versions are released. Therefore,

developers must keep the dependencies up-to-date to ensure the project stays secure.

However, keeping track of all updates that come and manually running these updates

can be time-consuming and error-prone. Dependabot automates checking for new

versions of the dependencies used in the code and then creates a pull request to update

them. The user can then review the updates and see if it is necessary to make any

changes. Dependabot can also automatically resolve any conflict that may arise when

updating dependencies.

Dependabot uses the “GitHub Advisory Database” to check for vulnerable data

[60]. This database covers a lot of public vulnerabilities, and it uses multiple sources,

like Common Vulnerabilities and Exposures, explained in 2.7.2, National Vulnerability

Database, and several others.

4.2.2.1 Dependabot: advantages and disadvantages

These advantages and disadvantages combine the personal experiences and information

found during research [61].

Advantages Disadvantages

- Automated: It automates
dependency updates, saving time
and reducing manual errors

- Support: It supports a wide
range of languages and package
managers

- Change-logs: It provides
detailed change-logs and release
notes

- Merge conflict: Can create
merge conflicts with other
changes

- False-positives: May generate
many false positives, which can
be time-consuming to rectify.
Getting false positives requires
users to manually review each
issue to determine whether a
change is necessary.

Table 4.2: Advantages and disadvantages of Dependabot

Chapter 4: Analysis of security tools for the pipeline 42

4.2.3 Secret Scanner

To prevent fraudulent use of accidentally committed secrets, GitHub’s secret scanner

scans repositories and archived repositories for known secrets [42]. Secret Scanner is

provided in two forms:

- Secret Scanning alerts for partners

When a repository is made public, or changes have been pushed to a public

repository on GitHub, the code is automatically scanned for any secrets that

match the patterns of GitHub’s partners. The Secret Scanner also scans for

credentials in the public package registry, like the npm registry1. GitHub notifies

the associated service provider when the scanner detects a secret. The provider

will validate the secret and decide what the course of action will be, for example,

revoking the secret or creating an issue. The specific action will depend on the

level of risk involved.

- Secret Scanning alerts for users

Secret Scanning alerts for users are free for all public repositories. By enabling

secret scanning for a repository, the scanner will look for patterns in the code

that could match secrets by different service providers. Once the scan is complete,

GitHub sends an email alert to the enterprise and the owners of the organizations.

However, if a secret has been compromised, GitHub generates an alert for secret

scanning.

1Available at: https://www.npmjs.com/

Chapter 4: Analysis of security tools for the pipeline 43

4.2.3.1 Secret Scanner: advantages and disadvantages

These advantages and disadvantages combine the personal experiences and information

found during research.

Advantages Disadvantages

- Free: GitHub has given public
access to this feature

- Convenience: As projects
become more complex and it
becomes harder to keep track of
all the secrets stored in the
repository, Secret Scanner will
help detect these faster

- Secure: Secrets can be easily
missed when writing large
amounts of code. Enabling Secret
Scanning can potentially increase
the security

- False positives: Secret Scanning
cannot always determine if the
secret is legitimate or not, which
occasionally can occur in false
positives

- Limited Coverage: It can be
limited and does not always
detect all secrets created
manually, such as personal
passwords

Table 4.3: Advantages and disadvantages of GitHub´s Secret Scanner
[62]

Chapter 4: Analysis of security tools for the pipeline 44

4.3 OWASP ZAP

OWASP Zed Attack Proxy (OWASP ZAP)2 is an open-source web application security

scanner [63]. It is free and maintained by volunteers worldwide under the Open

Worldwide Application Security Project. ZAP is a DAST tool and is designed to

test web application security. The tool offers functionality for many people - from

developers to experienced testers. It is available in versions that are compatible with

major operating systems, as well as Docker3, which means that users are not limited

to a specific operating system when using the tool.

4.3.1 OWASP ZAP: advantages and disadvantages

The following advantages and disadvantages combine the personal experiences and

information found during research [64].

Advantages Disadvantages

- Configuration: Easy to
configure with AWS

- Many approaches available:
There are multiple application
security testing approaches
available that can help discover
potential vulnerabilities

- Documentation: The
documentation could be improved
and is, for some, difficult to
understand

- Restricted features: Compared
to other tools, the automated
scanning features are restricted

Table 4.4: Advantages and disadvantages of OWASP ZAP

2Available at: https://www.zaproxy.org/
3Available at: https://www.docker.com/

https://www.zaproxy.org/

Chapter 4: Analysis of security tools for the pipeline 45

4.3.2 Branch Protection

Branch protection is a feature of GitHub that enforces different rules and requirements

for specific branches in the repository [65]. The purpose of branch protection is to

maintain the code’s security, which is done by ensuring that all changes done to the

branch have gone through the proper steps before being merged into the main branch.

Below are the different branch protection features that can be enabled in GitHub.

4.3.2.1 Require a pull request before merging

Administrators of the repository can add rules to the repository which restrict pull

requests to have a specific number of people approving the changes before merging

to a protected branch. Administrators can allow code owners and users with written

permissions to approve.

Under this type of protection, the “Four Eyes Principle” is applied. Since this type of

protection requires that at least two people approve the merge, including the person

doing the changes. This principle can be considered a controlling mechanism that

improves the quality of the outcome, minimize risk errors, and prevents malicious

actions by a single individual.

4.3.2.2 Require status checks before merging

Maintaining high code quality is essential when multiple users collaborate within

a shared repository. By enabling the “require status checks to pass before merging”

feature, repository administrators can establish specific criteria that must be met

before code is merged, such as requiring code approval from at least one team member.

4.3.2.3 Require conversation resolution before merging

When working together on the same repository, it is essential to have clear commu-

nication and collaboration. A way to secure this is to enable “require conversation

resolution before merging”. Enabling this rule allows all discussions regarding, for

example, issues or pull requests that need to be properly resolved before any merging

happens.

Chapter 4: Analysis of security tools for the pipeline 46

4.3.2.4 Require signed commits

Enabling require “signed commits” can be considered a security measure that ensures

that changes in the code have not been tampered with. To be able to have secured

signed commit, all commits pushed to the repository must be signed with a GNU

Privacy Guard (GPG) key or an Secure Shell (SSH) key.

4.3.2.5 Require deployments to succeed before merging

“Require deployments to succeed before merging” enables users to enforce the passing of

various required checks, such as pre-merge checks or automated tests, before allowing

a pull request to be merged into the main branch.

4.3.2.6 Lock branch

Lock branch allows users to lock a branch in a repository, preventing changes from

being made to the branch. This rule can be helpful if there are situations where the

branch needs to be protected from unauthorized changes or to be deleted.

4.3.2.7 Do not allow bypassing the above settings

This feature stops users from bypassing required checks and restrictions in a repository.

For example, if an administrator enables a rule that all pull requests must pass reviews

and checks before merging, the feature prompts users to comply before making changes

to the branch.

4.3.2.8 Restrict who can push to matching branches

This branch protection can be enabled for public repositories owned by a GitHub

Free organization and organizations using GitHub Team or GitHub Enterprise Cloud.

When enabled, only specific users or teams with specific permissions are allowed to

push any changes to the protected branch.

Chapter 4: Analysis of security tools for the pipeline 47

4.3.3 Branch protection: advantages and disadvantages

These advantages and disadvantages combine the personal experiences and information

found during research.

Advantages Disadvantages

- Code changes: It prevents
unauthorized code changes,
ensuring only authorized users
can make changes to a particular
branch

- Code quality: It can help
enforce code review and approval
of code, specifying the code’s
quality

- Collaboration: By restricting
certain actions within different
branches, users can work on
different aspects of the project
without compromising others’
work

- Create bottlenecks: If only a
few individuals are authorized to
make changes, it can create
bottlenecks and delays in
approving different issues

- Workflow: Branch protections
can quickly ruin workflows if
something always needs approval
before moving on

Table 4.5: Advantages and disadvantages of GitHub’s Branch Protection

4.4 Amazon Web Services Tools

The following are the AWS tools that can be utilized in creating and deploying a web

application. A range of different tools are available, but only the selected tools listed

below will be utilized in the deployment process detailed in Chapter 5.

4.4.1 AWS CodePipeline

AWS CodePipeline is a “...fully managed continuous delivery service that helps you

automate your release pipeline. It allows users to build, test, and deploy code into a

test production environment...” [66].

Chapter 4: Analysis of security tools for the pipeline 48

CodePipeline automates the entire pipeline, including the build, test, and deploy phases,

and triggers these processes whenever changes are detected in the repository. When a

developer pushes changes to the repository, CodePipeline automatically detects them

and initiates the process by building them. If any tests are configured, CodePipeline

also runs these tests [67].

Figure 4.1: AWS pipeline process
Adapted from: [68]

4.4.2 AWS CodeBuild

AWS CodeBuild is described as a “...fully managed continuous integration service that

compiles source code, runs tests, and produces ready-to-deploy software packages.” [69].

AWS CodeBuild downloads the source code provided to it into a build environment

and then uses a buildspec, which defines how the built project should be executed [70].

Figure 4.2: AWS CodeBuild process
Adapted from: [69]

Chapter 4: Analysis of security tools for the pipeline 49

4.4.3 AWS CodeDeploy

AWS CodeDeploy is explained as “...a fully managed deployment service that automates

software deployments to various compute services, such as Amazon Elastic Compute

Cloud (EC2), AWS Lambda and more...” [71]. AWS CodeDeploy helps developers avoid

downtime during deployment. It also handles the updating phase of the applications.

CodeDeploy can deploy code that runs on a server and is stored in, for example,

GitHub repositories or in an AWS S3 Bucket. In order to use CodeDeploy, developers

are not required to make any adjustments to their existing code [72].

Figure 4.3: AWS CodeDeploy process
Adapted from: [72]

4.4.4 Amazon S3 buckets

Amazon S3 buckets are simple, cloud-based storage resources [73]. S3 buckets are

designed to provide users with scalable, durable, and highly available storage, which

can be used to store different types of data. Such data can be documents, artifacts,

and source code.

4.4.5 Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) offers a compute platform, with virtual

computing environments, also known as instances [74]. Amazon EC2 offers various

instance types to meet computing needs. The instance type determines the instances’

CPU, memory, storage, and networking capacity. The instances are launched from

Amazon Machine Images (AMIs). AMIs are templates that contain the necessary

software configurations and operating system to run the server [75].

Chapter 5

Building a secure end-to-end

pipeline

5.1 Introduction

This chapter has a walk-through on one of many ways to set up a secure pipeline. The

pipeline starts with a source code, which will be explained further, and pushes the

code to GitHub and further to AWS. Within these steps are the security measures

and scans discussed previously. Some of these steps are automated using Terraform1,

which is an infrastructure as code tool using HashiCorp Configuration Language as

the programming language [76]. Terraform AWS Documentation2 has been used to set

up the different steps.

Figure 5.1 illustrates the pipeline in AWS, showing its structure and connection.

The model is built as the different steps in the pipeline are presented.

1Available at: https://www.terraform.io/
2Available at: https://registry.terraform.io/providers/hashicorp/aws/latest

51

https://www.terraform.io/
https://registry.terraform.io/providers/hashicorp/aws/latest

Chapter 5: Building a secure end-to-end pipeline 52

Figure 5.1: Pipeline in AWS

5.2 Code used in the pipeline

For testing, the group decided on using OWASP Juice Shop3, which is a deliberately

vulnerable web application that is designed to help developers and others learn

about web application security concepts. The code is designed to simulate a real-

world application by having common vulnerabilities within the code. The intention

is to encourage users to find and exploit these vulnerabilities and increase users’

understanding of web application security [77]. The code in the OWASP Juice Shop is

open source code on GitHub and is written in TypeScript, which uses a Node.js server

and Angular. Angular is a TypeScript-based application framework for Front-end [78].

The code contains different vulnerabilities, including SQL-injections, and cross-site

scripting. According to its website, it has registered 101 vulnerabilities in the code.

3Code available at: https://github.com/juice-shop/juice-shop

https://github.com/juice-shop/juice-shop

Chapter 5: Building a secure end-to-end pipeline 53

5.3 Pushing to GitHub

Security measures must be in place when the source code is ready to be pushed to

GitHub. One of the previously mentioned measurements is branch protection. Branch

protection rules are easy to enable in GitHub. Enabling the rules are done for each

repository. GitHub has different branch protection rules that can be enabled, which

are explained in Section 4.3.2. Enabling the rules can be done in GUI or automated

using Terraform, as shown in in the GitHub repository 4.

Further, the commit signature has to be configured. For signing commits in Git-

Hub, either SSH or GPG keys can be used. The keys need to be generated and

connected to the user’s GitHub account. GitHub provides documentation5 on how to

create GPG and SSH keys, as well as how to connect these keys to a GitHub account.

(a) Required passphrase when com-
mitting to GitHub

(b) Verified commit

Figure 5.2: Required signed commits

Figure 5.3: Pushing the source code to Git

4Code for enabling branch protection rules available at: https://github.com/
DCSG2900-Bachelor-thesis/Enable Branch Protection.git

5Instructions on making GPG or SSH keys available at https://docs.github.com/en/authentication/
managing-commit-signature-verification/signing-commits

https://github.com/DCSG2900-Bachelor-thesis/Enable_Branch_Protection.git
https://github.com/DCSG2900-Bachelor-thesis/Enable_Branch_Protection.git
https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits
https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits

Chapter 5: Building a secure end-to-end pipeline 54

5.4 Managing security in GitHub

When the source code is securely pushed to its belonging branch and is being merged

into the main branch, CodeQL needs to scan the code for vulnerabilities. This is done

by setting up CodeQL6 and customizing the trigger for the code scan.

Setting up CodeQL is done by adding the CodeQL YAML file to the workflow,

which contains the configuration settings for running the analysis. Adding the pull

request and push events to the workflow file customizes the trigger for the analysis,

causing the analysis to run automatically whenever a pull request or push is made to

the specified branch [79]. The branch specified in Code 5.1 is the main branch.

on:

push:

branches: [main]

pull_request:

branches: [main]

Code 5.1: Custom trigger for CodeQL alerts

An example on how to enable CodeQL from the CLI is shown in the GitHub repository

7.

Other security tools in GitHub are Dependabot8 and Secret Scanner9. These are

also enabled in the security settings. Alternatively, Dependabot can be enabled from

the CLI 10. After being enabled, all these tools automatically scan the code for

vulnerabilities and secrets.

6Instructions on enabling CodeQL available at https://docs.github.com/en/
code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/
configuring-code-scanning-for-a-repository

7Instructions on how to enable CodeQL from cli: https://github.com/DCSG2900-Bachelor-thesis/
Enable CodeQL

8Instructions on how to enable Dependabot available at: https://docs.github.com/en/code-security/
dependabot/dependabot-security-updates/configuring-dependabot-security-updates

9Instructions on how to enable Secret Scanner available at: https://docs.github.com/en/
code-security/secret-scanning/configuring-secret-scanning-for-your-repositories

10Instructions on how to enable dependabot from cli: https://github.com/DCSG2900-Bachelor-thesis/
Enable dependabot

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning-for-a-repository
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning-for-a-repository
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning-for-a-repository
https://github.com/DCSG2900-Bachelor-thesis/Enable_CodeQL
https://github.com/DCSG2900-Bachelor-thesis/Enable_CodeQL
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/configuring-dependabot-security-updates
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/configuring-dependabot-security-updates
https://docs.github.com/en/code-security/secret-scanning/configuring-secret-scanning-for-your-repositories
https://docs.github.com/en/code-security/secret-scanning/configuring-secret-scanning-for-your-repositories
https://github.com/DCSG2900-Bachelor-thesis/Enable_dependabot
https://github.com/DCSG2900-Bachelor-thesis/Enable_dependabot

Chapter 5: Building a secure end-to-end pipeline 55

Figure 5.4: Critical alert from CodeQL

An example of code scanning alerts using CodeQL is the critical alert shown in Figure

5.4, notifying the user of a hard-coded credential. The alert is shown in a pull request

from a branch to the main branch. The code scanning alerts refer to CWE weaknesses,

which are explained further in Section 2.7.3.

Figure 5.5: Critical alert from Dependabot

Figure 5.5 shows one of the critical alerts from Dependabot in the Juice-Shop repository.

It shows a vulnerability in the dependency version used, following a suggestion on

a patched version. Dependabot, similarly to CodeQL, refers to CWE weaknesses.

Additionally, it refers to a CVE ID, which is explained further in Section 2.7.2.

Chapter 5: Building a secure end-to-end pipeline 56

Figure 5.6: Alert from secret scanner
[80]

The GitHub Secret Scanner did not detect any secrets in the Juice-Shop repository.

Therefore, Figure 5.6 is taken from GitHub’s demonstration of the secret scanner [80].

The alert warns the user about an API key that matches the pattern of their partner

Twilio.

5.5 Retrieving the source code in AWS

When the source code is pushed to the main branch in the GitHub repository, the source

code can be built in AWS. For this to be done, a connection between the AWS and the

GitHub account needs to be made. The connection can be made using AWS CodeStar

Connections11. The connection is used by AWS CodePipeline to automatically trigger

the pipeline in response to any changes made to the GitHub repository. A connection

can be created on the AWS website or by using Terraform to create a connection

resource with GitHub as the provider.

resource"aws_codestarconnections_connection""code-connection"{

name = "code-connection"

provider_type = "GitHub"

}

Code 5.2: Creation of a connection between AWS and GitHub

11A tool that enables CodePipeline to connect to third-party repositories [81].

Chapter 5: Building a secure end-to-end pipeline 57

After successfully creating the connection resource, it is necessary to perform a manual

verification process in AWS. This step is crucial because it is impossible to pass secrets

through AWS to GitHub login, as the connection opens a third-party login page that

AWS does not control.

Figure 5.7: Committing the source code to AWS

5.6 Storing artifacts

To store artifacts generated during the different stages of the pipeline, an S3 bucket

is created. The bucket is created as a resource with optional variables. One crucial

aspect to consider is the need for unique bucket names within the server area, as AWS

uses this to differentiate between buckets owned by different users. The name can be

configured, like in Code 5.3, or the name variable can be excluded, and AWS will

configure the name themselves.

resource "aws_s3_bucket" "codepipeline_artifact" {

bucket = "artifact-bucket-unique-name"

}

Code 5.3: Creation of an S3 Bucket

Granting access to the bucket is necessary for each stage in the pipeline to retrieve

the previous stage’s artifacts from the S3 bucket. Therefore, access rights need to be

granted separately for each stage in the pipeline. Code 5.4 grants the CodePipeline

access to S3 rules, like access to the bucket itself.

Chapter 5: Building a secure end-to-end pipeline 58

statement {

sid = ""

actions = [

"s3:GetObject",

"s3:PutObject",

]

resources = [

"${aws_s3_bucket.codepipeline_artifact.arn}/*"

]

effect = "Allow"

}

Code 5.4: Permissions to CodePipeline

Figure 5.8: Storing the artifacts in an S3 Bucket

5.7 Build stage

In the build stage, CodePipeline uses CodeBuild to compile the source code into a

working website [82]. For the CodeBuild to run, the operating system, image, compute

type and compute environment must be specified. In this example, the environment

type is set to be AWS’s own Linux container.

Chapter 5: Building a secure end-to-end pipeline 59

The compute type refers to the amount of memory, CPUs, and disk space needed,

which in Code 5.5 is set to be the least amount of hardware resources. The combination

of these variables is called a “build environment”.

environment {

compute_type = "BUILD_GENERAL1_SMALL"

image = "aws/codebuild/standard:6.0"

type = "LINUX_CONTAINER"

image_pull_credentials_type = "CODEBUILD"

}

Code 5.5: Creation of a build environment

Further, CodeBuild downloads the source code from the S3 bucket, which was added

from the previous stage. With the source code, a buildspec file needs to be specified

to run the build.

Figure 5.9: CodePipeline using CodeBuild

Chapter 5: Building a secure end-to-end pipeline 60

5.8 Deployment to testing

5.8.1 Setting up CodeDeploy

In order to configure CodeDeploy, the user must create an application and a deployment

group. The deployment group contains settings and configurations used during the

deployment. In Code 5.6, the settings specify a preset configuration. Such configuration

is a set of rules and conditions, like the compute platform and conditions for failure

[83]. The deployment group also specifies which preconfigured instance to use for the

deployment12.

resource "aws_codedeploy_deployment_group" "deploy_group" {

deployment_group_name = var.deploy_group_name

deployment_config_name = aws_codedeploy_deployment_config.

deployment_config.id

app_name = "deployment"

service_role_arn = aws_iam_role.codedeploy-role.arn

ec2_tag_filter {

key = "Name"

type = "KEY_AND_VALUE"

value = "test_instance"

}

}

Code 5.6: Creation of the deployment group

12Setting up an instance is available at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
EC2 GetStarted.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html

Chapter 5: Building a secure end-to-end pipeline 61

As seen in Code 5.6, the deployment group specifies the application. The application

is “a name or container used by CodeDeploy to ensure the correct revision, deploy-

ment configuration, and deployment group are referenced during a deployment” [84].

Therefore, to configure the application, it is only necessary to provide a name for it,

as shown in Code 5.7.

resource "aws_codedeploy_app" "codedeploy" {

name = var.codedeploy_app_name

}

Code 5.7: Creation of an application for the deployment

The deployment itself deploys the given revision, which typically consists of the source

code for an application. In addition, an appspec file is added to the revision.

5.8.2 Setting up for testing

This stage utilizes two Amazon EC2 instances: one for OWASP ZAP and the other for

the application itself. Setting the scan and the application on separate instances makes

it easier to manage them individually. This setup also allows for code to be reused

when deploying the application into production. However, both instances utilize the

same S3 bucket, but the files are separated into two different directories so they do

not interfere with each other.

Figure 5.10: Deployment to testing

Chapter 5: Building a secure end-to-end pipeline 62

For OWASP ZAP to be able to scan the application, the instances need to communicate.

To enable communication between the Amazon EC2 instances within the Virtual

Private Cloud (VPC), individual network interfaces have been allocated to each

instance with a single IP address. This method guarantees that both instances can

find each other because the IP address will always be the same.

resource "aws_network_interface" "interface_network1" {

subnet_id = aws_subnet.my_subnet.id

private_ips = ["172.16.10.100"]

}

resource "aws_network_interface" "interface_network2" {

subnet_id = aws_subnet.my_subnet.id

private_ips = ["172.16.10.101"]

}

Code 5.8: Allocation of IP adresses

The security tests are conducted by setting up a docker container on the Amazon

EC2 instance created for OWASP ZAP, which runs one of the automated standard

tests predefined by the DAST tool. In addition, the container uses the “weekly stable

image” of OWASP ZAP13. Although these tests are typically customized to suit

an application’s specific requirements, the predefined tests are satisfactory for this

demonstration. Once the container is launched, the scan is directed towards the other

instance in the VPC, and the output obtained is shown in Code 5.9 (full output in

Appendix A). In addition OWASP ZAP gives a full human-readable report in HTML

format, shown in Appendix A.1.

13Available at https://hub.docker.com/r/owasp/zap2docker-stable/

https://hub.docker.com/r/owasp/zap2docker-stable/

Chapter 5: Building a secure end-to-end pipeline 63

WARN-NEW: Timestamp Disclosure - Unix [10096] x 1

http://172.16.10.100:3000/main.js (200 OK)

WARN-NEW: Cross-Domain Misconfiguration [10098] x 11

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/assets/public/favicon_js.ico (200 OK)

http://172.16.10.100:3000/ftp (200 OK)

http://172.16.10.100:3000/ftp/acquisitions.md (200 OK)

http://172.16.10.100:3000/main.js (200 OK)

WARN-NEW: Modern Web Application [10109] x 13

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/home/build/routes/fileServer.js:16:13

↪→ (200 OK)

http://172.16.10.100:3000/home/build/routes/fileServer.js:32:18

↪→ (200 OK)

http://172.16.10.100:3000/home/build/routes/runtime.js (200 OK)

http://172.16.10.100:3000/home/node_modules/express/lib/router/

↪→ index.js:280:10 (200 OK)

WARN-NEW: Dangerous JS Functions [10110] x 2

http://172.16.10.100:3000/main.js (200 OK)

http://172.16.10.100:3000/vendor.js (200 OK)

FAIL-NEW: 0 FAIL-INPROG: 0 WARN-NEW: 9 WARN-INPROG: 0 INFO: 0 IGNORE:

↪→ 0 PASS: 51

Code 5.9: The output of an OWASP ZAP baseline scan

Chapter 5: Building a secure end-to-end pipeline 64

5.9 Deployment to production

In the production stage, CodePipeline utilizes CodeDeploy, as described in Section 5.8.

Before the code gets moved to production, it must be accepted by manual approval by

a user in AWS. The purpose of this step is to allow for a review of the results from the

automated security tests, to ensure that no faulty code is deployed. When new code

or changes have gone through testing, a notification will occur in the Amazon SNS

topic14 that is created. Someone then has to approve the code waiting to be moved to

production.

Figure 5.11: Manual approval before deploying the application

14Amazon Simple Notification Service (Amazon SNS) provides message delivery to a topic. A topic
is the communication channel the users can subscribe to [85].

Chapter 5: Building a secure end-to-end pipeline 65

After the manual approval process is completed, the code will be deployed to production

in a similar manner to the process described in Section 5.8. Figure 5.12 illustrates the

flow of the pipeline after completing all the necessary steps.15

Figure 5.12: Finished pipeline created in AWS

15Complete code available at: https://github.com/DCSG2900-Bachelor-thesis/CodePipeline

https://github.com/DCSG2900-Bachelor-thesis/CodePipeline

Chapter 6

Discussion

6.1 Introduction

This chapter details the reasons behind the group’s decision-making process during

the pipeline construction. It also covers any modifications made to the project and

highlights any limitations encountered.

6.2 Implementation of the SDLC

Throughout the thesis, the group created a report and code, and while doing so, they

chose to explore the implementation of the SDLC approach.

During the planning phase, the group focused on gathering requirements for the

thesis and developing a project plan. Initially, the group created a plan for using

third-party tools for the scans and set an estimate of the costs. However, the plan of

using third-party tools was later discarded, except for the DAST tool. The project

plan included a Gantt chart outlining the expected task timeframe. Additionally, the

group utilized Jira1 to create a Kanban board for task assignments. The group created

several models to prepare for pipeline implementation that detailed its structure,

including security scans. The group also became familiar with the software and tools

that would be utilized for the pipeline.

1Available at https://www.atlassian.com/software/jira

67

https://www.atlassian.com/software/jira

Chapter 6: Discussion 68

In the implementation phase, the group began the development of the pipeline while

simultaneously working on the thesis. The coding process for the pipeline involved

repeatedly implementing code and testing its functionality. For instance, the group

implemented the code for AWS CodeBuild and tested whether the service was created

in accordance with the code. As a result, the implementation and testing phases were

carried out iteratively.

The result was ultimately merged into a GitHub repository and documented in

the thesis. However, as the product is not an application and is not intended for direct

use in the future but rather as a demonstration, plans have yet to be made for its

maintenance.

6.3 Chosen branch protection rules

When deciding which branch protection rules to implement, it is essential that securing

the branch is relatively manageable for the workflow. Several possible protection rules

to enable are described in section 4.3.2. Enabling all rules at once may do more harm

than good, every pull request and commit must go through several steps, making the

workflow less efficient. Therefore, selecting only the most valuable rules will benefit

the development.

Enabling “Require a pull request before merging” is based on the “Four Eyes Principle”,

which is described more in detail in section 3.3 [86]. By enabling this rule, the risk of

unwanted code being merged into the basecode is lower, without disrupting the work

of all developers since only two need to look through the code.

Another implemented branch rule requires signed commits. Signed commits require

some pre-configurations, but once that is done, all the developers must enter a pass-

phrase, and the commit is verified. Implementing required signed commits ensures the

integrity of the code while the workflow is undisturbed.

Chapter 6: Discussion 69

6.4 The different tools chosen

After evaluating multiple tools for securing the pipeline, the group has given recom-

mendations regarding the various scans. Although the group mainly decided to use

integrated tools within GitHub, the decision was primarily based on their suitability

for the given task and Erik Hjelmås’ recommendation (see the meeting in Appendix

F.1). It is important to note that this does not necessarily imply that others should

adopt the same tools. Conducting such tests is essential in application development,

and selecting tools for carrying out these tests should be based on specific requirements.

Therefore, it is necessary to explore the various tools available for different tests and

assess whether they meet one’s particular needs. The tools selected by the group are

examples of what can be used.

6.4.1 Why OWASP ZAP was chosen

In the course of researching security tools, an evaluation was made of the three tool

types: SAST, DAST, and SCA. As neither GitHub nor AWS provides a DAST tool, a

third-party tool had to be used. Among these, the OWASP ZAP appeared as the most

widely used web application scanner globally [87]. Also, AWS referenced the DAST

tool in an example pipeline using open source tools [38]. This tool is convenient due to

its user-friendly interface and straightforward setup process, suitable for individuals

of all skill levels. Furthermore, it is open-source and available to all users without

additional costs. Its integration into AWS pipelines was found to be a simple and

uncomplicated process.

6.4.2 Why tools integrated into GitHub were chosen

Initially, the thesis aimed to investigate third-party tools, like Snyk and Mend, which

could be integrated into GitHub and run scans on the code pushed to the repository.

Then, however, it was decided to look into integrated tools in GitHub. The goal was to

explore the potential benefits of using pre-integrated tools to create a secure pipeline

and give priority to overall functionality rather than choosing individual tools.

Chapter 6: Discussion 70

6.4.3 The group’s experience with CodeQL

As mentioned in section 4.2.1, the group used CodeQL as their SAST tool. CodeQL is

set as default when enabling code scanning, simplifying the setup process by requiring

fewer steps than other code scanning tools. Furthermore, using the tool in this project

was uncomplicated since the only customisation was the trigger, explained in Section

5.4. However, the group did not explore any further customisation and is therefore not

familiar with the level of complication this brings.

CodeQL, in collaboration with Dependabot, found all 101 vulnerabilities reported in

the vulnerable-by-design web application OWASP Juice Shop. However, Juice Shop

is a widely used repository, which might be why CodeQL and Dependabot managed

to find all the vulnerabilities. The group could have considered testing additional

repositories for known vulnerabilities to conduct a more comprehensive evaluation

of the tool. However, due to the scope limitations, the group decided not to conduct

further research on this topic.

Overall, the group found the tool intuitive and appreciated its practicality in providing

detailed explanations and concrete examples of patches when detecting errors.

6.4.4 The group’s experience with Dependabot

The group utilized Dependabot as an SCA tool, which was relatively straightforward

to configure. Similarly to both Dynamic Application Security Testing and Static

Application Security Testing, the group conducted an SCA scan on the Juice Shop

repository.

Dependabot excels in providing comprehensive explanations of vulnerabilities and

suggesting recommendations for resolving them. For instance, if an outdated depend-

ency version is detected, Dependabot advises on the appropriate version to update to.

Furthermore, in cases where an update is unavailable, Dependabot suggests that an

alternative dependency should be utilized. However, it does not offer specific alternative

dependencies for replacement. Nonetheless, the group found this feature beneficial as

it provides guidance for maintaining security.

Chapter 6: Discussion 71

6.4.5 The group’s experience with Secret Scanning

The group also looked into Secret Scanning. While Secret Scanning does not fall

strictly under the category of application security testing, the group recognized its

value in scanning code for sensitive information such as tokens and API keys.

Considering that SAST tools primarily focus on scanning code for vulnerabilities

that attackers can exploit, the group found it valuable to utilize an additional scanner

that specifically checks for secrets.

Similar to Dependabot, configuring Secret Scanning was also a simple process, requir-

ing only a few steps to enable. Due to the ease of use and the value it brings, explained

in Section 3.2.3, the group considered the tool as highly beneficial.

6.4.6 The group’s experience with OWASP ZAP

The group selected OWASP ZAP as their DAST tool and found it straightforward

to set up. However, instead of customizing their scans, the group relied on pre-made

functions due to the lack of extensive documentation on scan customization. Creating

customized scans would have been complex and time-consuming, leading to the decision

to utilize the pre-existing functions.

Once OWASP ZAP was successfully installed and configured with basic settings,

the group faced challenges in comprehending the output results and extracting the

output from the docker container.

6.5 Automation

Automation is using infrastructure as code to perform tasks instead of doing them

manually [88]. Implementing automation in the organization’s systems can eliminate

the need for many developers to manage all the different infrastructure elements the

organization may have. Furthermore, there are numerous advantages to replacing

manual work with automation. It can reduce costs by replacing the manual work of

IT professionals with automated processes.

Chapter 6: Discussion 72

Automation can also speed up development by automating repetitive tasks like testing,

building, and deploying code, allowing developers to work on more complex jobs [89]. In

addition, it can improve security by reducing the risk of human errors or by automating

security testing that can help speed up the detection, verification, and escalation of

security issues without requiring manual involvement. The group’s decision to use

Terraform and construct a pipeline with infrastructure as code is mostly based on the

abovementioned benefits. Furthermore, the group attempted to automate as many

processes as possible to remove the need for manual involvement during deployment

and testing.

Despite the numerous benefits of automating the development processes, the im-

plementation can be time-consuming and require a complex setup. However, once

completed, the setup would be significantly less complicated and require less time.

One significant benefit of automating the development process is the ability to reuse

the automated configuration across several projects [90]. Automating the process once

may be reused in various settings, allowing numerous projects to benefit from the

same improved pipeline.

A goal should be to create an idempotent process that assures the pipeline’s output is

consistent every time it is built [91]. Adopting idempotence as a practice in DevOps

is an approach during application development that ensures a high-quality experi-

ence for both users and software teams. Idempotence eliminates the requirement for

post-deployment cleanup, lowering the likelihood of errors.

6.6 The Use of Security Framework

This section concerns incorporating the two frameworks mentioned in Section 3.6 into

the thesis, even though it was not initially considered. By examining the principles and

requirements of these frameworks, valuable perspectives and insights can be discovered.

In addition, by comparing the work with frameworks, one can identify areas where

improvement is possible and any missing components.

Chapter 6: Discussion 73

6.6.1 SLSA

The group tried to implement the SLSA framework in the practical part of this project

to enhance the integrity of the code we developed. This led the group to attempt to

work through the different levels and requirements mentioned in the section 3.6.2.

SLSA Level 1, requirement 1: “Software producer follows a consistent build process

so that others can form expectations about what a “correct” build looks like.” [55]

This requirement was achieved by creating instructions in the README.md file

describing how to build and execute the code in the GitHub project2.

SLSA Level 1, requirement 2: “Build platform automatically generates provenance

describing how the artifact was built, including: what entity built the package, what

build process they used, and what the top-level input to the build were.” [55]

This requirement was not achieved because the group encountered difficulties when

trying to find a suitable solution to generate provenance. A sentiment shared by Kelsey

Hightower in his talk at Strange Loop 2022 [92] highlighting the primary issue with

the SLSA framework’s high complexity. This complexity was also encountered by the

group while searching for a solution.

SLSA Level 1, requirement 3: “Software producer distributes provenance to con-

sumers, preferably using a convention determined by the package ecosystem.” [55]

Due to the identical issue encountered in Requirement 2, the group was unable

to accomplish Requirement 3.

To conclude, the group could not find a suitable solution for generating provenance.

As a result, they were unable to advance to the next level, since all the requirements

from the previous level must be fulfilled.

2Available at: https://github.com/DCSG2900-Bachelor-thesis/CodePipline/blob/main/README.md

https://github.com/DCSG2900-Bachelor-thesis/CodePipline/blob/main/README.md

Chapter 6: Discussion 74

6.6.2 SSDF

While numerous models, such as waterfall, spiral, and agile, exist for the Software

Development Life Cycle, only a few prioritize security, therefore, is it necessary to

integrate security into the SDLC models. Utilizing a security-focused framework, such

as the SSDF, as a reference can serve as a starting point for enhancing the security of

the SDLC.

In SSDF documentation, elaborated in section 3.6.3, includes various practices covering

different security aspects that can be implemented into the development process. While

the SSDF is a suitable framework for secure software development, the group did

not explicitly consider it while developing and designing the pipeline in the thesis.

However, the group believes that the practical work in the thesis aligns with many of

the practices and principles of the SSDF. The group reviewed some examples of the

practices they believed to be suitable and their implementation methods. The group

has decided to review the practices category-wise, with each practice being assigned

to a specific category.

Prepare the Organization (PO): Implement Supporting Toolchains (PO.3): “Use

automation to reduce human effort and improve the accuracy, reproducibility, usability,

and comprehensiveness of security practices throughout the SDLC, as well as provide a

way to document and demonstrate the use of these practices. Toolchains and tools may

be used at different levels of the organization, such as organization-wide or project-

specific, and may address a particular part of the SDLC, like a build pipeline.”[56]

This practice recommends selecting the right tools for the toolchain, following the

recommended security practices, and utilizing tools to generate artifacts. In order to

accomplish this, the group used various security tools to run different security tests, all

of which comply with best practices for supply chain security. One of the key security

practices the group has implemented is to use code-based configuration by automating

the pipeline with Terraform. The automation of the pipeline not only ensures that

the pipeline is efficient and practical but also promotes consistency and reduces the

likelihood of errors. In AWS, the implementation of this practice is shown by the fact

that each stage of the pipeline generates an artifact stored in an S3 bucket.

Chapter 6: Discussion 75

Protect Software (PS): Protect All Forms of Code from Unauthorized Access

and Tampering (PS.1): “Help prevent unauthorized changes to code, both inadvertent

and intentional, which could circumvent or negate the intended security characteristics

of the software. For code that is not intended to be publicly accessible, this helps prevent

theft of the software and may make it more difficult or time-consuming for attackers

to find vulnerabilities in the software.”[56]

This practice focuses on maintaining the integrity and availability of code, as well

as proper storage of all code forms. To keep track of the modifications to the code,

the group utilizes GitHub’s version control and the artifacts generated in AWS if

necessary. The group also uses signed commits to ensure code integrity. To follow the

“least privilege” principle, the group decided to give each member access based on their

assigned tasks. Therefore, the code repository was accessible in read-only to the two

members responsible for writing the report. In comparison, the other two members,

responsible for practical work, were granted full access.

Produce Well-Secured Software (PW): Review and/or Analyze Human-Readable

Code to Identify Vulnerabilities and Verify Compliance with Security Requirements

(PW.7): “Help identify vulnerabilities so that they can be corrected before the software

is released to prevent exploitation. Using automated methods lowers the effort and

resources needed to detect vulnerabilities. Human-readable code includes source code,

scripts, and any other form of code that an organization deems human-readable.”[56]

This practice covers code security and provides guidelines for evaluating the source

code used or written. The evaluation can be done through manual code review or

automated tools. The goal is to identify and correct vulnerabilities before releasing

the software to prevent exploitation. The group has incorporated various automated

security scans throughout the pipeline, such as SCA, SAST, and DAST.

Chapter 6: Discussion 76

Respond to Vulnerabilities (RV): Identify and Confirm Vulnerabilities on an

Ongoing Basis (RV.1): “Help ensure that vulnerabilities are identified more quickly so

that they can be remediated more quickly in accordance with risk, reducing the window

of opportunity for attackers.”[56]

This practice includes doing frequent vulnerability scans, threat assessments, and

penetration testing, as well as monitoring and analyzing system logs and network traffic

for indications of possible security problems. Various automated security scans, such

as SCA, SAST, and DAST, have been implemented throughout the pipeline. These

scans help detect potential vulnerabilities and security concerns in the code. Apart

from the scans, the group also reflected on the option of application monitoring. This

involves conducting assessments post-deployment to ensure the application remains

secure and no new vulnerabilities have emerged.

6.6.3 Usefulness of the framework

Both the SLSA and SSDF frameworks may give helpful recommendations to developers

trying to improve the security of their products. However, while SLSA has the potential

to encourage good code heritage and increase security in more significant open-source

projects with larger user bases, its complexity may not be justified in smaller projects.

SSDF, on the other hand, provides a flexible way to apply security measures, making

it a helpful guide for deciding which measures to deploy. Furthermore, the SSDF may

be used by developers to assess the security level of their project without needing an

extra step in the development process. Ultimately, the project’s unique demands and

scope will determine the decision on which framework to use, or whether to use a

framework at all.

In retrospect, as the group reflects on the project, they acknowledge that it would have

been beneficial to implement the SSDF from the beginning of the project. The group

finds it well-suited for smaller projects with a precise scope, providing clear guidelines

and making it easier to follow a structured approach. In addition, incorporating the

SSDF framework from the start would have facilitated smoother project execution

and ensured that the group had specific guidelines tailored to their needs, allowing for

a more efficient and focused development process.

Chapter 6: Discussion 77

6.7 Revising the thesis angle

When writing the project plan, the group initially planned on writing a thesis based

on testing security tools and comparing the results. The main focus would be on the

tools and testing as many as possible. The group found it challenging to create a

unique thesis due to previous theses with similar topics.

After a meeting with the group’s professor Erik Hjelmås (F.1), discussing this is-

sue, the group found an alternative approach for the thesis based on a report from

Usenix [93] shown to the group. The new approach involved incorporating more

practical work with infrastructure as code and focusing on utilizing tools already

integrated into GitHub and AWS, and implementing best practice security measures.

This approach of the thesis seemed to be more aimed at professional life and what

kind of research was needed today.

6.8 Expectations compared to reality

6.8.1 Practical work

As mentioned in Section 1.5.1, the group needed to learn more about infrastructure

as code, especially Terraform. During this process, the group faced more issues than

anticipated while building the pipeline with Terraform, AWS and GitHub. The group

had some experience with Microsoft Azure from previous courses and thought that

AWS was more similar to Azure than it is. Additionally, AWS provides a wide range of

services that targets the same or similar issues. The process of selecting these services

and integrating them has posed a more significant challenge than initially anticipated.

6.8.2 Research

The group struggled to find proper academic research for their thesis. Therefore,

the majority of their resources came from websites or blog posts. To establish the

credibility of these sources, the group either confirmed the author’s or company’s

credibility or cross-referenced the information with additional sources to confirm its

accuracy.

Chapter 6: Discussion 78

6.9 Critique of the thesis

6.9.1 Not using frameworks from the beginning

The group did not look deeper into following a framework as the scope contained no

specifications. However, when the group discovered different frameworks, the group

decided that it was too late to integrate them into the work. Doing so would have

required a significant amount of work, and since the group was too far into the thesis,

it was decided not to look into it—many requirements for the different frameworks

needed to be achieved before the thesis was started. Furthermore, many tasks must

be completed if the group were to integrate the framework later in the thesis, which

would have added more complexity.

6.9.2 Defining the scope

At first, the group needed help understanding the stakeholder’s scope and requirements,

which caused a delay in starting the thesis. The group was given some flexibility in

defining the scope but needed help to learn the topic entirely. As a result, they spent

extra time and effort researching and consulting with professors to gain a better

understanding. This helped them define the scope more accurately and align their

work accordingly.

Chapter 7

Conclusion

7.1 Introduction

This chapter includes a discussion of the work done, the techniques employed to achieve

the intended outcomes, and several constructive suggestions to enhance the quality of

the thesis.

7.2 The Work Process

7.2.1 Meetings

The team held meetings with their supervisor, Filip Holik, every week. Although

the meetings were typically scheduled for Wednesdays, they had to be postponed

or canceled on occasions due to various circumstances. Meeting Minutes with the

supervisor can be found in Appendix D.

During the early stages of the project, the team met with the stakeholder every

other week. However, as the project progressed, both parties agreed that weekly

meetings would be beneficial. In addition, as the demand for help grew, the group

required more regular assistance. Meeting Minutes with the stakeholder can be found

in Appendix E.

80

Chapter 7: Conclusion 81

7.2.2 Scrum

Throughout the thesis, the group followed the Scrum framework of agile project man-

agement, which required breaking the project into sprints lasting two to four weeks.

Daily stand-up meetings were held to keep everyone informed, during which members

delivered progress reports on the thesis and discussed plans for the day, including each

member’s allocated chores. While the group aimed to meet daily, this was sometimes

difficult to achieve as some members had work obligations besides their studies.

Despite this, the team had sprint planning and retrospective sessions every two

weeks to review progress and establish goals for the next two weeks. During the

retrospective meetings, the team engaged in self-reflection by asking questions such as

“What should we keep/stop doing?”, “What should we do more/less of?” to identify

improvement areas for the next sprint cycle. During the sprint planning meetings, on

the other hand, the group evaluated completed tasks and discussed what needed to be

done before the next sprint period.

Following the Scrum framework helped promote good communication and team-

work among group members. Furthermore, the Kanban board was integrated into the

Scrum Framework and proved to be quite helpful in tracking tasks that were ongoing,

completed, or yet to be started.

7.2.3 Coordinated schedule

In order to better coordinate their busy schedules, group members with different

commitments, such as work and student associations, decided to implement a scheduling

method. Doing this allowed them to quickly determine each other’s availability and

schedule meetings more efficiently. To achieve this, the team utilized the calendar

feature within their Teams channel to schedule their activities and workdays.

7.2.4 Draft Submissions

The team set specified deadlines for producing multiple drafts at the start of the project.

This approach tried to maintain constant development while avoiding last-minute

delays. For instance, the group set an April 3rd target for their first draft, which they

could meet. As a result, both the supervisor and the stakeholder received the first

Chapter 7: Conclusion 82

draft on time. After a few days, the team got feedback and proceeded with their work

accordingly.

Additionally, the group established a deadline for the final draft. Setting the final draft

deadline on the 1st of May, three weeks before the submission date of the 22nd of May,

gave the stakeholders and supervisor sufficient time to review the thesis thoroughly.

It is essential to mention that the group followed the plan comprehensively, allowing

them to send in multiple drafts for review and refinement before the final submission.

7.2.5 Gantt Chart

Since the group decided to change the scope during the project period, the original

Gantt chart could not be followed.

The research on tools was initially considered time-consuming, but with the changes

made, this activity became a minor part of the thesis than anticipated. As a result,

it took less time than what was first estimated. Furthermore, the “Testing tools”

activity was removed since the team wanted to focus less on testing tools and more on

integrating testing of the various tools into the pipeline-building process.

In the Gantt chart from the project plan, there was no time set for the pipeline

configuration because this part of the scope had not yet been decided. However, the

AWS pipeline configuration was included on the new chart, and getting familiar with

AWS services and setting up the pipeline was expected to take less time than it did.

The documentation for AWS and Terraform is extensive, but navigating it can be

overwhelming. With many different services and features offered by AWS, the group

had to determine the best fit for their needs. In addition, building the pipeline required

a significant amount of functionality to be in place for additional features to work

correctly. Therefore, setting up the complete pipeline took an extended amount of time.

However, the group followed the scheduled deadlines for the various draft submissions.

Consequently, the initial draft was submitted on April 3rd in week 13, but after discus-

sions with the supervisor (see meeting minutes in Appendix D.12), it was requested to

be rescheduled to May 5th in week 18, resulting in additional work being accomplished

within those two days.

Chapter 7: Conclusion 83

Figure 7.1: Original Gantt Chart

Figure 7.2: Updated Gantt Chart

7.2.6 Distribution of Work

The group decided to divide the work into two parts at the start of the thesis to

ensure that the thesis progressed continuously. The first part is practical, and the

second is report writing. The responsibilities were assigned based on each group

member’s strength and what they most desired to do. As a result, every group member

contributed to the thesis, and everyone worked together to complete the report on

time.

Chapter 7: Conclusion 84

7.2.7 Goals

P1: Collaborate effectively with team members to ensure the timely completion of tasks

was achieved. As stated previously, the group incorporated a Kanban board into the

Scrum framework allowing for the assignment and tracking of tasks. Additionally,

the group utilized various communication platforms, such as Discord and Teams, to

ensure effective communication among the group members. Using communication tools

already integrated into each member’s daily workflow was essential, and these two

platforms proved to be the most effective for the group’s needs.

P2: Successfully integrating security tools (e.g., SAST, DAST, SCA) into the SDLC

pipeline was achieved. The group found tools that could be integrated into the pipeline

between GitHub and AWS to secure the application code being sent through.

P3: Implement an automated pipeline using Terraform to build, test, and deploy

applications was achieved. The group created Terraform code that automated the

pipeline from the build to the deployment.

R1: Develop a secure and automated pipeline for the SDLC process using Terra-

form, is partially achieved. The group has made significant progress towards achieving

a secure pipeline. The group successfully developed a mostly automated and imple-

mented restricted access management measures to enhance pipeline security. However,

it is important to acknowledge that a complete assurance of a 100% secure cannot be

claimed at this moment in time and will therefore be a part of further work. The is

therefore considered to be secure to a certain level, with potential for improvement.

Furthermore, the group encountered difficulties in automating the activation of the

secret scanner as they were unable to find a method to accomplish this. Nonetheless,

the group considered the automation to be unnecessary as it only involved the simple

action of pressing a button.

R2: Produce a report summarizing the project results and recommendations for im-

proving the SDLC pipeline security, was accomplished. The resulting report provides

numerous essential and effective practices that can be implemented to improve security

in the SDLC, and the goal was achieved within the requirements given.

Chapter 7: Conclusion 85

7.3 Further Work

For further work, the thesis could be strengthened by performing a broader analysis of

various security tools that perform SAST, DAST, and SCA scans - where the selected

tools are based on these analyses. During these analyses, an assessment can also be

made of which requirements must be met for a tool to be selected.

Including earlier phases in the thesis would have been beneficial to acquire a more

thorough grasp of the entire Software Development Life Cycle and adhere to the

shift-left methodology, which emphasizes early testing to find vulnerabilities earlier.

Despite successfully automating most of the pipeline, the group encountered challenges

in automating Secret Scanning in GitHub. The lack of documentation on enabling it

through CLI or Terraform code limited the progress. Consequently, the group priorit-

ized other tasks and allocated more time to this aspect in future work. The ultimate

goal remains to achieve a fully automated pipeline.

Maintaining code integrity throughout the pipeline is crucial for a secure system

and is, therefore, a part of further work as the group did not manage to sign artifacts.

To achieve this, multiple stages should implement the sign and verify process, where

artifacts are signed at one stage and then verified at subsequent stages. This reduces

the risk of any unauthorized modifications or tampering, which increases the integrity

of the data throughout the pipeline.

In addition, to increase code integrity, modifications should not be allowed directly

in AWS and the pipeline itself. By implementing this approach, all modifications

will be processed through GitHub. Through the commit history, version control is

automatically incorporated, and with the utilization of branch protection rules, every

code is subject to review.

Chapter 7: Conclusion 86

7.4 Conclusion

The group is pleased to state that they have completed their thesis project, meeting

the requirements set by their stakeholder while staying within the project’s scope. The

input from the stakeholders was critical in determining the group’s objectives and

requirements, resulting in a successful outcome that met the expectations of everyone

involved.

After careful consideration, the group recommends implementing SAST, SCA, and

secret scanning during the implementation phase of the Software Development Life

Cycle. Additionally, they advise incorporating DAST and manual testing during the

testing phase. After deploying the software to production, it is crucial to include secur-

ity measures during the maintenance phase, such as monitoring and security testing

through DAST and SCA scans. To ensure optimal security, it is also recommended

to secure the pipeline itself by implementing access control at each stage, branch

protection, and commit signing in GitHub. The selection of specific security tools and

protection rules should be based on the software’s requirements and specifications,

with the key aspect being the successful implementation of security measures.

The group hopes that the stakeholder and other organizations reading this thesis will

significantly benefit from the thesis, and they highly recommend considering imple-

menting some of their recommendations in their daily work. The group is proud of

their accomplishments and hopes this work will encourage more secure development.

Bibliography

[1] NBIM. Homepage. 2023. url: https://www.nbim.no/. (Last accessed: 10.05.2023).

[2] NTB. Oljefondet utsettes for tre alvorlige dataangrep daglig. 2022. url: https:

//www.digi.no/artikler/oljefondet-utsettes-for-tre-alvorlige-dataangrep-daglig/

521643. (Last accessed: 17.01.2023).

[3] Synposys. Software Development Lifecycle. 2023. url: https://www.synopsys.

com/glossary/what-is-sdlc.html. (Last accessed: 09.02.2023).

[4] W3schools. SDLC Iterative Model. url: https://www.w3schools.in/sdlc/iterative-

model. (Last accessed: 11.05.2023).

[5] Micro Focus. What Is the SDLC ? url: https://www.microfocus.com/en-us/what-

is/sdlc. (Last accessed: 13.04.2023).

[6] Sachin R. Doddaguni et al. Understanding SDLC using CI/CD pipeline. 2020.

url: https://www.ijsce.org/wp-content/uploads/papers/v9i6/F3405039620.pdf.

(Last accessed: 09.05.2023).

[7] Michigan Tech. Testing Phase in SDLC. 2016. url: https://www.mtu.edu/

it/security/policies-procedures-guidelines/information-security-program/system-

development-lifecycle/. (Last accessed: 21.02.2023).

[8] Noel Ramson. Testing Phase in SDLC. 2021. url: https://study.com/academy/

lesson/testing-phase-in-sdlc.html. (Last accessed: 21.02.2023).

[9] Noel Ramson. Deployment Phase in SDLC. 2021. url: https://study.com/

academy/lesson/deployment-phase-in-sdlc.html. (Last accessed: 21.02.2023).

[10] Crystal Chilman. Understanding the Maintenance Phase of the SDLC. 2023. url:

https://study.com/learn/lesson/maintenance-phase-sdlc-overview-outcomes.html.

(Last accessed: 21.02.2023).

87

https://www.nbim.no/
https://www.digi.no/artikler/oljefondet-utsettes-for-tre-alvorlige-dataangrep-daglig/521643
https://www.digi.no/artikler/oljefondet-utsettes-for-tre-alvorlige-dataangrep-daglig/521643
https://www.digi.no/artikler/oljefondet-utsettes-for-tre-alvorlige-dataangrep-daglig/521643
https://www.synopsys.com/glossary/what-is-sdlc.html
https://www.synopsys.com/glossary/what-is-sdlc.html
https://www.w3schools.in/sdlc/iterative-model
https://www.w3schools.in/sdlc/iterative-model
https://www.microfocus.com/en-us/what-is/sdlc
https://www.microfocus.com/en-us/what-is/sdlc
https://www.ijsce.org/wp-content/uploads/papers/v9i6/F3405039620.pdf
https://www.mtu.edu/it/security/policies-procedures-guidelines/information-security-program/system-development-lifecycle/
https://www.mtu.edu/it/security/policies-procedures-guidelines/information-security-program/system-development-lifecycle/
https://www.mtu.edu/it/security/policies-procedures-guidelines/information-security-program/system-development-lifecycle/
https://study.com/academy/lesson/testing-phase-in-sdlc.html
https://study.com/academy/lesson/testing-phase-in-sdlc.html
https://study.com/academy/lesson/deployment-phase-in-sdlc.html
https://study.com/academy/lesson/deployment-phase-in-sdlc.html
https://study.com/learn/lesson/maintenance-phase-sdlc-overview-outcomes.html

[11] Micro Focus. What is DevSecOps? url: https ://www.microfocus .com/en-

us/what-is/devsecops. (Last accessed: 04.05.2023).

[12] Lu Luo. Software Testing Techniques. 2001. url: https://ignite.org.pk/wp-

content/uploads/2018/12/1388051766 rfp1 Software-testing-techniques.pdf. (Last

accessed: 24.02.2023).

[13] Kaur Brar Hanmeet and Jai Kaur Puneet. Differentiating Integration Testing and

unit testing. 2015. url: https://ieeexplore.ieee.org/abstract/document/7100358.

(Last accessed: 27.02.2023).

[14] Ankit Pahuaja. What is Security Testing and Why is it important? 2022. url:

https://www.getastra.com/blog/security-audit/what-is-security-testing/. (Last

accessed: 22.02.2023).

[15] Imperva. Application Security Testing. 2022. url: https : / / www . imperva .

com/learn/application - security/application - security - testing/. (Last accessed:

28.03.2023).

[16] Thomas Hamilton. What is BLACK Box Testing? Techniques, Types & Example.

2023. url: https://www.guru99.com/black-box- testing.html. (Last accessed:

06.02.2023).

[17] Shubham G. Black Box Testing: An Important Functional testing Technique. 2022.

url: https://www.linkedin.com/pulse/black-box-testing-important-functional-

technique-shubham-gupta?trk=articles directory?. (Last accessed: 02.05.2023).

[18] Thomas Hamilton. White Box Testing – What is, Techniques, Example & Types.

2023. url: https://www.guru99.com/white-box-testing.html. (Last accessed:

09.02.2023).

[19] JavaTPoint. GreyBox Testing. 2021. url: https://www.javatpoint.com/grey-box-

testing. (Last accessed: 13.04.2023).

[20] Synopsys. Static Application Security Testing. 2023. url: https://www.synopsys.

com/glossary/what-is-sast.html. (Last accessed: 11.05.2023).

[21] Snyk. Static Application Security Testing (SAST). url: https : / / snyk . io /

learn/application- security/static- application- security- testing/. (Last accessed:

19.05.2023).

88

https://www.microfocus.com/en-us/what-is/devsecops
https://www.microfocus.com/en-us/what-is/devsecops
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://ignite.org.pk/wp-content/uploads/2018/12/1388051766_rfp1_Software-testing-techniques.pdf
https://ieeexplore.ieee.org/abstract/document/7100358
https://www.getastra.com/blog/security-audit/what-is-security-testing/
https://www.imperva.com/learn/application-security/application-security-testing/
https://www.imperva.com/learn/application-security/application-security-testing/
https://www.guru99.com/black-box-testing.html
https://www.linkedin.com/pulse/black-box-testing-important-functional-technique-shubham-gupta?trk=articles_directory?
https://www.linkedin.com/pulse/black-box-testing-important-functional-technique-shubham-gupta?trk=articles_directory?
https://www.guru99.com/white-box-testing.html
https://www.javatpoint.com/grey-box-testing
https://www.javatpoint.com/grey-box-testing
https://www.synopsys.com/glossary/what-is-sast.html
https://www.synopsys.com/glossary/what-is-sast.html
https://snyk.io/learn/application-security/static-application-security-testing/
https://snyk.io/learn/application-security/static-application-security-testing/

[22] Adam Murray. SAST – All About Static Application Security Testing. 2022. url:

https://www.mend.io/resources/blog/sast-static-application-security-testing/.

(Last accessed: 12.05.2023).

[23] Synopsys. Dast. 2023. url: https://www.synopsys.com/glossary/what-is-dast.html.

(Last accessed: 06.02.2023).

[24] Invicti. False Positives in Web Application Security – Facing the Challenge. url:

https://www.invicti.com/white-papers/false-positives- in-application-security-

whitepaper/. (Last accessed: 19.05.2023).

[25] Rebecca Warren. How to Add Application Security Tests to Your CI/CD Pipeline.

2020. url: https://www.stackhawk.com/blog/how-to-automate-appsec-testing-in-

cicd/. (Last accessed: 11.05.2023).

[26] Synopsys. Software Composition Analysis. 2023. url: https://www.synopsys.com/

glossary/what-is-software-composition-analysis.html. (Last accessed: 11.05.2023).

[27] Adam Murray. Application Security Testing: Security Scanning Vs. Runtime

Protection. 2023. url: https://www.mend.io/resources/blog/ast-application-

security-testing/. (Last accessed: 08.03.2023).

[28] IBM. Cost of a Data Breach Report 2022. 2022. url: https://www.ibm.com/

downloads/cas/3R8N1DZJ. (Last accessed: 22.02.2023).

[29] Contributor. The Cost of Not Building with Security in Mind. 2016. url: https://

devops.com/cost-not-building-software-security-mind. (Last accessed: 22.02.2023).

[30] Johnson.A et al. Guide for Security-Focused Configuration Management of In-

formation Systems. 2011. url: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-128.pdf. (Last accessed: 28.02.2023).

[31] FIRST. Common Vulnerability Scoring System SIG. url: https://www.first.org/

cvss/. (Last accessed: 28.02.2023).

[32] NIST. Vulnerability Metrics. url: https://nvd.nist.gov/vuln-metrics/cvss. (Last

accessed: 01.03.2023).

[33] CVE. Frequently Asked Questions(FAQs). url: https://www.cve.org/ResourcesSupport/

FAQs#pc introcve nvd relationship. (Last accessed: 01.03.2023).

[34] CWE. About CWE. 2022. (Last accessed: 01.03.2023).

89

https://www.mend.io/resources/blog/sast-static-application-security-testing/
https://www.synopsys.com/glossary/what-is-dast.html
https://www.invicti.com/white-papers/false-positives-in-application-security-whitepaper/
https://www.invicti.com/white-papers/false-positives-in-application-security-whitepaper/
https://www.stackhawk.com/blog/how-to-automate-appsec-testing-in-cicd/
https://www.stackhawk.com/blog/how-to-automate-appsec-testing-in-cicd/
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.mend.io/resources/blog/ast-application-security-testing/
https://www.mend.io/resources/blog/ast-application-security-testing/
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://www.ibm.com/downloads/cas/3R8N1DZJ
https://devops.com/cost-not-building-software-security-mind
https://devops.com/cost-not-building-software-security-mind
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-128.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-128.pdf
https://www.first.org/cvss/
https://www.first.org/cvss/
https://nvd.nist.gov/vuln-metrics/cvss
https://www.cve.org/ResourcesSupport/FAQs#pc_introcve_nvd_relationship
https://www.cve.org/ResourcesSupport/FAQs#pc_introcve_nvd_relationship

[35] Jeff Williams. OWASP Risk Rating Methodology. 2023. url: https://owasp.org/

www-community/OWASP Risk Rating Methodology. (Last accessed: 06.03.2023).

[36] Nick Barney. Amazon Web Services (AWS). 2022. url: https://www.techtarget.

com/searchaws/definition/Amazon-Web-Services. (Last accessed: 09.02.2023).

[37] Jamie Juviler. What Is GitHub? (And What Is It Used For?) 2022. url: https:

//blog.hubspot.com/website/what-is-github-used-for. (Last accessed: 09.02.2023).

[38] Srinivas Manepalli. Building end-to-end AWS DevSecOps CI/CD pipeline with

open source SCA, SAST and DAST tools. 2021. url: https://aws.amazon.com/

blogs/devops/building-end-to-end-aws-devsecops-ci-cd-pipeline-with-open-source-

sca-sast-and-dast-tools/. (Last accessed: 05.05.2023).

[39] Microsoft. What are the Microsoft SDL practices? 2023. url: https://www.

microsoft.com/en-us/securityengineering/sdl/practices. (Last accessed: 01.05.2023).

[40] Google. Dependency management. 2023. url: https://cloud.google.com/software-

supply-chain-security/docs/dependencies. (Last accessed: 25.04.2023).

[41] Cloud Native Computing Foundation. Software Supply Chain Best Practices.

2021. url: https://github.com/cncf/tag-security/blob/main/supply-chain-security/

supply-chain-security-paper/CNCF SSCP v1.pdf. (Last accessed: 09.03.2023).

[42] Github. About code scanning. 2023. url: https://docs.github.com/en/enterprise-

cloud@latest/code-security/secret-scanning/about-secret-scanning#about-secret-

scanning. (Last accessed: 21.02.2023).

[43] C.J. May. Thinking Like a Hacker: Stealing Secrets with a Malicious GitHub

Action. 2022. url: https://blog.gitguardian.com/thinking-like-a-hacker-stealing-

secrets-with-a-malicious-github-action/. (Last accessed: 01.05.2023).

[44] GitGuardian. The State of Secret Sprawl 2023. 2023. url: https : / / www .

gitguardian.com/files/the-state-of-secrets-sprawl-report-2023. (Last accessed:

01.05.2023).

[45] Adam Murray. Dynamic Application Security Testing: DAST Basics. 2021. url:

https://www.mend.io/resources/blog/dast-dynamic-application-security-testing/.

(Last accessed: 10.03.2023).

[46] Laura Paine. Defense in Depth: Why You Need DAST, SAST, SCA, and Pen

Testing. 2020. url: https://www.veracode.com/blog/managing-appsec/defense-

depth-why-you-need-dast-sast-sca-and-pen-testing. (Last accessed: 10.03.2023).

90

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://www.techtarget.com/searchaws/definition/Amazon-Web-Services
https://www.techtarget.com/searchaws/definition/Amazon-Web-Services
https://blog.hubspot.com/website/what-is-github-used-for
https://blog.hubspot.com/website/what-is-github-used-for
https://aws.amazon.com/blogs/devops/building-end-to-end-aws-devsecops-ci-cd-pipeline-with-open-source-sca-sast-and-dast-tools/
https://aws.amazon.com/blogs/devops/building-end-to-end-aws-devsecops-ci-cd-pipeline-with-open-source-sca-sast-and-dast-tools/
https://aws.amazon.com/blogs/devops/building-end-to-end-aws-devsecops-ci-cd-pipeline-with-open-source-sca-sast-and-dast-tools/
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://cloud.google.com/software-supply-chain-security/docs/dependencies
https://cloud.google.com/software-supply-chain-security/docs/dependencies
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://docs.github.com/en/enterprise-cloud@latest/code-security/secret-scanning/about-secret-scanning#about-secret-scanning
https://docs.github.com/en/enterprise-cloud@latest/code-security/secret-scanning/about-secret-scanning#about-secret-scanning
https://docs.github.com/en/enterprise-cloud@latest/code-security/secret-scanning/about-secret-scanning#about-secret-scanning
https://blog.gitguardian.com/thinking-like-a-hacker-stealing-secrets-with-a-malicious-github-action/
https://blog.gitguardian.com/thinking-like-a-hacker-stealing-secrets-with-a-malicious-github-action/
https://www.gitguardian.com/files/the-state-of-secrets-sprawl-report-2023
https://www.gitguardian.com/files/the-state-of-secrets-sprawl-report-2023
https://www.mend.io/resources/blog/dast-dynamic-application-security-testing/
https://www.veracode.com/blog/managing-appsec/defense-depth-why-you-need-dast-sast-sca-and-pen-testing
https://www.veracode.com/blog/managing-appsec/defense-depth-why-you-need-dast-sast-sca-and-pen-testing

[47] Github. Managing a branch protection rule. 2023. url: https://docs.github.

com/en / repositories / configuring - branches - and - merges - in - your - repository /

managing-protected-branches/managing-a-branch-protection-rule. (Last accessed:

10.05.2023).

[48] GitHub. Access permissions on GitHub. url: https://docs.github.com/en/get-

started/learning- about- github/access- permissions- on- github. (Last accessed:

13.03.2023).

[49] NIST. least privilege. url: https://csrc.nist.gov/glossary/term/least privilege.

(Last accessed: 13.03.2023).

[50] International Organization for Standardization and International Electrotechnical

Commission. NS-EN ISO/IEC 27002:2022. 2022. url: https://www.standard.

no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1450114.

(Last accessed: 15.05.2023).

[51] Microsoft. What is Conditional Access? 2023. url: https :// learn.microsoft .

com/en-us/azure/active-directory/conditional-access/overview. (Last accessed:

15.05.2023).

[52] Nathan Getty, Shaun McCullough and Dave Shackleford. AppSec/DevSecOps

Best Practices in AWS. 2019. url: https ://d1.awsstatic .com/Marketplace/

solutions-center/downloads/AppSec-DevSecOps-AWS-SANS-eBook.pdf. (Last

accessed: 01.04.2023).

[53] Cambridge University Press & Assessment. Framework. 2023. url: https://

dictionary.cambridge.org/dictionary/english/framework. (Last accessed: 02.05.2023).

[54] SLSA. About SLSA. 2023. url: https://slsa.dev/. (Last accessed: 25.04.2023).

[55] SLSA. Security levels. 2023. url: https ://slsa .dev/spec/v1.0/ levels. (Last

accessed: 25.04.2023).

[56] Murugiah Souppaya, Karen Scarfone and Donna Dodson. Secure Software De-

velopment Framework (SSDF) Version 1.1:Recommendations for Mitigating the

Risk of Software Vulnerabilities. 2022. url: https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-218.pdf. (Last accessed: 27.04.2023).

91

https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/get-started/learning-about-github/access-permissions-on-github
https://docs.github.com/en/get-started/learning-about-github/access-permissions-on-github
https://csrc.nist.gov/glossary/term/least_privilege
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1450114
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=1450114
https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://d1.awsstatic.com/Marketplace/solutions-center/downloads/AppSec-DevSecOps-AWS-SANS-eBook.pdf
https://d1.awsstatic.com/Marketplace/solutions-center/downloads/AppSec-DevSecOps-AWS-SANS-eBook.pdf
https://dictionary.cambridge.org/dictionary/english/framework
https://dictionary.cambridge.org/dictionary/english/framework
https://slsa.dev/
https://slsa.dev/spec/v1.0/levels
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

[57] Github. About code scanning with CodeQL. 2023. url: https://docs.github.

com/en/code- security/code- scanning/automatically- scanning- your- code- for-

vulnerabilities - and - errors/about - code - scanning - with - codeql. (Last accessed:

08.03.2023).

[58] Github. About code scanning. 2023. url: https://docs.github.com/en/code-

security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-

errors/about-code-scanning. (Last accessed: 21.02.2023).

[59] Badsah. One important feature that Dependabot is missing. 2022. url: https:

//badshah.io/important-dependabot-feature/. (Last accessed: 21.02.2023).

[60] Github. Kepping your supplychain up to date with Dependabot. 2023. url: https:

//docs.github.com/en/code-security/dependabot. (Last accessed: 21.02.2023).

[61] Stackshare. Dependabot. 2023. url: https://stackshare.io/dependabot. (Last

accessed: 20.04.2023).

[62] Regi Publico. The Pros and Cons of Secret Detection. 2023. url: https ://

globalriskcommunity.com/profiles/blogs/the-pros-and-cons-of-secret-detection.

(Last accessed: 05.05.2023).

[63] zaproxy. Getting started. url: https://www.zaproxy.org/getting-started/. (Last

accessed: 13.03.2023).

[64] Ivan Homola. OWASP Zap: 8 Core Features (Pros & Cons). 2023. url: https:

//www.codiga.io/blog/owasp-zap/. (Last accessed: 19.04.2023).

[65] Github. About protected branches. 2023. url: https://docs.github.com/en/

repositories/configuring-branches-and-merges- in-your- repository/defining- the-

mergeability-of-pull- requests/about-protected-branches#require-pull- request-

reviews-before-merging. (Last accessed: 09.03.2023).

[66] SumoLogic. AWS CodePipeline - definition & overview. 2023. url: https://www.

sumologic.com/glossary/aws-codepipeline/. (Last accessed: 27.02.2023).

[67] Educative. What is AWS CodePipeline. 2023. url: https://www.educative.io/

answers/what-is-the-aws-codepipeline. (Last accessed: 27.02.2023).

[68] AWS. AWS CodePipeline. 2023. url: https://aws.amazon.com/codepipeline/.

(Last accessed: 27.02.2023).

92

https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning
https://badshah.io/important-dependabot-feature/
https://badshah.io/important-dependabot-feature/
https://docs.github.com/en/code-security/dependabot
https://docs.github.com/en/code-security/dependabot
https://stackshare.io/dependabot
https://globalriskcommunity.com/profiles/blogs/the-pros-and-cons-of-secret-detection
https://globalriskcommunity.com/profiles/blogs/the-pros-and-cons-of-secret-detection
https://www.zaproxy.org/getting-started/
https://www.codiga.io/blog/owasp-zap/
https://www.codiga.io/blog/owasp-zap/
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-pull-request-reviews-before-merging
https://www.sumologic.com/glossary/aws-codepipeline/
https://www.sumologic.com/glossary/aws-codepipeline/
https://www.educative.io/answers/what-is-the-aws-codepipeline
https://www.educative.io/answers/what-is-the-aws-codepipeline
https://aws.amazon.com/codepipeline/

[69] AWS. AWS CodeBuild. 2023. url: https://aws.amazon.com/codebuild/. (Last

accessed: 01.03.2023).

[70] AWS. A Build specification reference for CodeBuild. 2023. url: https://docs.

aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html. (Last accessed:

01.03.2023).

[71] AWS. AWS CodeDeploy. 2023. url: https://aws.amazon.com/codedeploy/. (Last

accessed: 01.03.2023).

[72] AWS.What is CodeDeploy? 2023. url: https://docs.aws.amazon.com/codedeploy/

latest/userguide/welcome.html. (Last accessed: 06.03.2023).

[73] AWS. What is Amazon S3? 2023. url: https://docs.aws.amazon.com/AmazonS3/

latest/userguide/Welcome.html. (Last accessed: 06.03.2023).

[74] Amazon Web Services. What is Amazon EC2? 2023. url: https : / / docs .

aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html. (Last accessed:

20.04.2023).

[75] Amazon Web Services. Instances and AMIs. 2023. url: https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/ec2-instances-and-amis.html. (Last accessed:

11.05.2023).

[76] Hashicorp. Configuration Syntax. 2023. url: https://developer.hashicorp.com/

terraform/language/syntax/configuration. (Last accessed: 16.05.2023).

[77] Björn Kimminich. Why the Juice Shop exists. 2022. url: https://pwning.owasp-

juice.shop/introduction/motivation.html. (Last accessed: 14.03.2023).

[78] Björn Kimminich. Codebase 101. 2022. url: https://pwning.owasp-juice.shop/

part3/codebase.html. (Last accessed: 15.03.2023).

[79] GitHub. Customizing code scanning. 2023. url: https://docs.github.com/en/code-

security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-

errors/customizing-code-scanning. (Last accessed: 28.04.2023).

[80] GitHub. Find Hard Coded Secrets in Your Code - GitHub Checkout. 2020. url:

https://www.youtube.com/watch?v=aoL7pDrXt74.

[81] Amazon Web Services. AWS CodeStar Connections. 2023. url: https://docs.

aws.amazon.com/codestar-connections/latest/APIReference/Welcome.html. (Last

accessed: 01.05.2023).

93

https://aws.amazon.com/codebuild/
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://aws.amazon.com/codedeploy/
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instances-and-amis.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instances-and-amis.html
https://developer.hashicorp.com/terraform/language/syntax/configuration
https://developer.hashicorp.com/terraform/language/syntax/configuration
https://pwning.owasp-juice.shop/introduction/motivation.html
https://pwning.owasp-juice.shop/introduction/motivation.html
https://pwning.owasp-juice.shop/part3/codebase.html
https://pwning.owasp-juice.shop/part3/codebase.html
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/customizing-code-scanning
https://www.youtube.com/watch?v=aoL7pDrXt74
https://docs.aws.amazon.com/codestar-connections/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/codestar-connections/latest/APIReference/Welcome.html

[82] Amazon Web Services. AWS CodeBuild concepts. 2023. url: https ://docs .

aws .amazon.com/codebuild/ latest/userguide/concepts .html. (Last accessed:

26.04.2023).

[83] Amazon Web Services. Working with deployment configurations in CodeDeploy.

2023. url: https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-

configurations.html. (Last accessed: 09.05.2023).

[84] Amazon Web Services. Working with applications in CodeDeploy. 2023. url:

https://docs.aws.amazon.com/codedeploy/latest/userguide/applications.html.

(Last accessed: 09.05.2023).

[85] Amazon Web Services. What is Amazon SNS? 2023. url: https://docs.aws.

amazon.com/sns/latest/dg/welcome.html. (Last accessed: 01.05.2023).

[86] Wiebe de Roos. The four-eyes principle: what’s important in a DevOps world.

2020. url: https://amazic.com/the-four-eyes-principle-whats- important- in-a-

devops-world/. (Last accessed: 21.03.2023).

[87] zaproxy.OWASP ZAP. url: https://www.zaproxy.org. (Last accessed: 16.05.2023).

[88] Red Hat. What is Infrastructure as Code (IaC)? 2022. url: https://www.redhat.

com/en/topics/automation/what-is-infrastructure-as-code-iac. (Last accessed:

21.04.2023).

[89] Red Hat. The automated enterprise. 2022. url: https://www.redhat.com/rhdc/

managed-files/ma-automated-enterprise-e-book- f31879-202209-en.pdf. (Last

accessed: 21.04.2023).

[90] GitLab. What is pipeline as code? url: https://about.gitlab.com/topics/ci-

cd/pipeline-as-code/. (Last accessed: 11.05.2023).

[91] Jonathan Johnson. What Is Idempotence? 2020. url: https://www.bmc.com/

blogs/idempotence/. (Last accessed: 21.04.2023).

[92] Kelsey Hightower. The Secure Software Supply Chain by Kelsey Hightower

(Strange Loop 2022). 2022. url: https ://www.youtube .com/watch?v=JC-

xCXcyNXI&ab channel=StrangeLoopConference. (Last accessed: 16.05.2023).

[93] Hala Assal and Sonia Chiasson. Security in the Software Development Lifecycle.

2018. url: https://www.usenix.org/system/files/conference/soups2018/soups2018-

assal.pdf. (Last accessed: 20.04.2023).

94

https://docs.aws.amazon.com/codebuild/latest/userguide/concepts.html
https://docs.aws.amazon.com/codebuild/latest/userguide/concepts.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/applications.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://amazic.com/the-four-eyes-principle-whats-important-in-a-devops-world/
https://amazic.com/the-four-eyes-principle-whats-important-in-a-devops-world/
https://www.zaproxy.org
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/rhdc/managed-files/ma-automated-enterprise-e-book-f31879-202209-en.pdf
https://www.redhat.com/rhdc/managed-files/ma-automated-enterprise-e-book-f31879-202209-en.pdf
https://about.gitlab.com/topics/ci-cd/pipeline-as-code/
https://about.gitlab.com/topics/ci-cd/pipeline-as-code/
https://www.bmc.com/blogs/idempotence/
https://www.bmc.com/blogs/idempotence/
https://www.youtube.com/watch?v=JC-xCXcyNXI&ab_channel=StrangeLoopConference
https://www.youtube.com/watch?v=JC-xCXcyNXI&ab_channel=StrangeLoopConference
https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf

[94] divyanshu gupta1. Software Development Life Cycle (SDLC). 2021. url: https:

//www.geeksforgeeks.org/software-development-life-cycle-sdlc/. (Last accessed:

17.01.2023).

[95] Digite. What Is Scrum Methodology? & Scrum Project Management. 2023. url:

https://www.digite.com/agile/scrum-methodology/. (Last accessed: 25.01.2023).

[96] Dave West. Agile scrum roles and responsibilities. 2023. url: https://www.

atlassian.com/agile/scrum/roles. (Last accessed: 25.01.2023).

[97] NTNU. Overleaf. 2023. url: https://i.ntnu.no/wiki/-/wiki/Norsk/Overleaf. (Last

accessed: 17.01.2023).

[98] NTNU. Matrix for risk assessments at NTNU. 2013. url: https://www.ntnu.

no/hms/retningslinjer/HMSRV2604 Risikomatrise 100209.pdf. (Last accessed:

17.01.2023).

95

https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.geeksforgeeks.org/software-development-life-cycle-sdlc/
https://www.digite.com/agile/scrum-methodology/
https://www.atlassian.com/agile/scrum/roles
https://www.atlassian.com/agile/scrum/roles
https://i.ntnu.no/wiki/-/wiki/Norsk/Overleaf
https://www.ntnu.no/hms/retningslinjer/HMSRV2604_Risikomatrise_100209.pdf
https://www.ntnu.no/hms/retningslinjer/HMSRV2604_Risikomatrise_100209.pdf

Appendix A

Results of OWASP ZAP scan

This appendix includes all the output from the DAST scan using OWASP ZAP.

96

A.1 ZAP scan CLI output

Using the Automation Framework

Total of 112 URLs

PASS: Vulnerable JS Library (Powered by Retire.js) [10003]

PASS: In Page Banner Information Leak [10009]

PASS: Cookie No HttpOnly Flag [10010]

PASS: Cookie Without Secure Flag [10011]

PASS: Re-examine Cache-control Directives [10015]

PASS: Content-Type Header Missing [10019]

PASS: Anti-clickjacking Header [10020]

PASS: X-Content-Type-Options Header Missing [10021]

PASS: Information Disclosure - Debug Error Messages [10023]

PASS: Information Disclosure - Sensitive Information in URL [10024]

PASS: Information Disclosure - Sensitive Information in HTTP Referrer

↪→ Header [10025]

PASS: HTTP Parameter Override [10026]

PASS: Open Redirect [10028]

PASS: Cookie Poisoning [10029]

PASS: User Controllable Charset [10030]

PASS: User Controllable HTML Element Attribute (Potential XSS) [10031]

PASS: Viewstate [10032]

PASS: Directory Browsing [10033]

PASS: Heartbleed OpenSSL Vulnerability (Indicative) [10034]

PASS: Strict-Transport-Security Header [10035]

PASS: HTTP Server Response Header [10036]

PASS: Server Leaks Information via "X-Powered-By" HTTP Response Header

↪→ Field(s) [10037]

PASS: X-Backend-Server Header Information Leak [10039]

PASS: Secure Pages Include Mixed Content [10040]

PASS: HTTP to HTTPS Insecure Transition in Form Post [10041]

PASS: HTTPS to HTTP Insecure Transition in Form Post [10042]

PASS: User Controllable JavaScript Event (XSS) [10043]

97

PASS: Big Redirect Detected (Potential Sensitive Information Leak)

↪→ [10044]

PASS: Retrieved from Cache [10050]

PASS: X-ChromeLogger-Data (XCOLD) Header Information Leak [10052]

PASS: Cookie without SameSite Attribute [10054]

PASS: CSP [10055]

PASS: X-Debug-Token Information Leak [10056]

PASS: Username Hash Found [10057]

PASS: X-AspNet-Version Response Header [10061]

PASS: PII Disclosure [10062]

PASS: Hash Disclosure [10097]

PASS: Weak Authentication Method [10105]

PASS: Reverse Tabnabbing [10108]

PASS: Absence of Anti-CSRF Tokens [10202]

PASS: Private IP Disclosure [2]

PASS: Session ID in URL Rewrite [3]

PASS: Script Passive Scan Rules [50001]

PASS: Stats Passive Scan Rule [50003]

PASS: Insecure JSF ViewState [90001]

PASS: Java Serialization Object [90002]

PASS: Sub Resource Integrity Attribute Missing [90003]

PASS: Charset Mismatch [90011]

PASS: Application Error Disclosure [90022]

PASS: WSDL File Detection [90030]

PASS: Loosely Scoped Cookie [90033]

WARN-NEW: Cross-Domain JavaScript Source File Inclusion [10017] x 10

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/home/build/routes/fileServer.js:16:13

↪→ (200 OK)

http://172.16.10.100:3000/home/build/routes/fileServer.js:16:13

↪→ (200 OK)

98

http://172.16.10.100:3000/home/build/routes/fileServer.js:32:18

↪→ (200 OK)

WARN-NEW: Information Disclosure - Suspicious Comments [10027] x 2

http://172.16.10.100:3000/main.js (200 OK)

http://172.16.10.100:3000/vendor.js (200 OK)

WARN-NEW: Content Security Policy (CSP) Header Not Set [10038] x 11

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/ftp (200 OK)

http://172.16.10.100:3000/ftp/coupons_2013.md.bak (403

↪→ Forbidden)

http://172.16.10.100:3000/ftp/eastere.gg (403 Forbidden)

http://172.16.10.100:3000/ftp/encrypt.pyc (403 Forbidden)

WARN-NEW: Non-Storable Content [10049] x 11

http://172.16.10.100:3000/ftp/eastere.gg (403 Forbidden)

http://172.16.10.100:3000/robots.txt (200 OK)

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/assets/public/favicon_js.ico (200 OK)

http://172.16.10.100:3000/ftp/acquisitions.md (200 OK)

WARN-NEW: Deprecated Feature Policy Header Set [10063] x 11

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/ftp (200 OK)

http://172.16.10.100:3000/ftp/coupons_2013.md.bak (403

↪→ Forbidden)

http://172.16.10.100:3000/ftp/eastere.gg (403 Forbidden)

http://172.16.10.100:3000/ftp/encrypt.pyc (403 Forbidden)

WARN-NEW: Timestamp Disclosure - Unix [10096] x 1

http://172.16.10.100:3000/main.js (200 OK)

WARN-NEW: Cross-Domain Misconfiguration [10098] x 11

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/assets/public/favicon_js.ico (200 OK)

http://172.16.10.100:3000/ftp (200 OK)

http://172.16.10.100:3000/ftp/acquisitions.md (200 OK)

http://172.16.10.100:3000/main.js (200 OK)

99

WARN-NEW: Modern Web Application [10109] x 13

http://172.16.10.100:3000/ (200 OK)

http://172.16.10.100:3000/home/build/routes/fileServer.js:16:13

↪→ (200 OK)

http://172.16.10.100:3000/home/build/routes/fileServer.js:32:18

↪→ (200 OK)

http://172.16.10.100:3000/home/build/routes/runtime.js (200 OK)

http://172.16.10.100:3000/home/node_modules/express/lib/router/

↪→ index.js:280:10 (200 OK)

WARN-NEW: Dangerous JS Functions [10110] x 2

http://172.16.10.100:3000/main.js (200 OK)

http://172.16.10.100:3000/vendor.js (200 OK)

FAIL-NEW: 0 FAIL-INPROG: 0 WARN-NEW: 9 WARN-INPROG: 0 INFO: 0 IGNORE:

↪→ 0 PASS: 51

Code A.1: OWASP ZAP baseline scan

100

A.2 ZAP scan PDF report

101

 ZAP Scanning Report

Site: http://172.16.10.100:3000

Generated on Thu, 18 May 2023 17:11:02

Summary of Alerts

Risk Level Number of Alerts

High 0

Medium 2

Low 4

Informational 4

False Positives: 0

Alerts

Name Risk Level
Number of
Instances

Content Security Policy (CSP) Header Not Set Medium 11

Cross-Domain Misconfiguration Medium 11

Cross-Domain JavaScript Source File Inclusion Low 10

Dangerous JS Functions Low 2

Deprecated Feature Policy Header Set Low 12

Timestamp Disclosure - Unix Low 1

Information Disclosure - Suspicious Comments Informational 2

Modern Web Application Informational 11

Storable and Cacheable Content Informational 2

Storable but Non-Cacheable Content Informational 10

Alert Detail

Medium Content Security Policy (CSP) Header Not Set

Description

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate
certain types of attacks, including Cross Site Scripting (XSS) and data injection attacks.
These attacks are used for everything from data theft to site defacement or distribution of
malware. CSP provides a set of standard HTTP headers that allow website owners to
declare approved sources of content that browsers should be allowed to load on that page —
covered types are JavaScript, CSS, HTML frames, fonts, images and embeddable objects
such as Java applets, ActiveX, audioand video files.

URL http://172.16.10.100:3000/

Method GET

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

1 of 14 5/19/23, 09:11

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/ftp

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/ftp/coupons_2013.md.bak

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/ftp/eastere.gg

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/ftp/encrypt.pyc

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/ftp/package.json.bak

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/ftp/suspicious_errors.yml

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:280:10

Method GET

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

2 of 14 5/19/23, 09:11

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:328:13

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:365:14

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/sitemap.xml

Method GET

Paramet
er

Attack

Evidence

Instances 11

Solution
Ensure that your web server, application server, load balancer, etc. is configured to set the
Content-Security-Policy header.

Reference

https://developer.mozilla.org/en-US/docs/Web/Security
/CSP/Introducing_Content_Security_Policy
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
http://www.w3.org/TR/CSP/
http://w3c.github.io/webappsec/specs/content-security-policy/csp-specification.dev.html
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://caniuse.com/#feat=contentsecuritypolicy
http://content-security-policy.com/

CWE Id 693

WASC Id 15

Plugin Id 10038

Medium Cross-Domain Misconfiguration

Description
Web browser data loading may be possible, due to a Cross Origin Resource Sharing
(CORS) misconfiguration on the web server

URL http://172.16.10.100:3000/

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

3 of 14 5/19/23, 09:11

URL http://172.16.10.100:3000/assets/public/favicon_js.ico

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/ftp

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/ftp/acquisitions.md

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/main.js

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/polyfills.js

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/robots.txt

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/runtime.js

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/sitemap.xml

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

4 of 14 5/19/23, 09:11

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/styles.css

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

URL http://172.16.10.100:3000/vendor.js

Method GET

Paramet
er

Attack

Evidence Access-Control-Allow-Origin: *

Instances 11

Solution

Ensure that sensitive data is not available in an unauthenticated manner (using IP address
white-listing, for instance).

Configure the "Access-Control-Allow-Origin" HTTP header to a more restrictive set of
domains, or remove all CORS headers entirely, to allowthe web browser to enforce the Same
Origin Policy (SOP) in a more restrictive manner.

Reference
https://vulncat.fortify.com
/en/detail?id=desc.config.dotnet.html5_overly_permissive_cors_policy

CWE Id 264

WASC Id 14

Plugin Id 10098

Low Cross-Domain JavaScript Source File Inclusion

Description The page includes one or more script files from a third-party domain.

URL http://172.16.10.100:3000/

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js

Attack

Evidence <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js"></script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:280:10

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

5 of 14 5/19/23, 09:11

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:280:10

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js

Attack

Evidence <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js"></script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:328:13

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:328:13

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js

Attack

Evidence <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js"></script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:365:14

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:365:14

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js

Attack

Evidence <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js"></script>

URL http://172.16.10.100:3000/sitemap.xml

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

6 of 14 5/19/23, 09:11

URL http://172.16.10.100:3000/sitemap.xml

Method GET

Paramet
er

//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js

Attack

Evidence <script src="//cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js"></script>

Instances 10

Solution
Ensure JavaScript source files are loaded from only trusted sources, and the sources can't
be controlled by end users of the application.

Reference

CWE Id 829

WASC Id 15

Plugin Id 10017

Low Dangerous JS Functions

Description A dangerous JS function seems to be in use that would leave the site vulnerable.

URL http://172.16.10.100:3000/main.js

Method GET

Paramet
er

Attack

Evidence bypassSecurityTrustHtml

URL http://172.16.10.100:3000/vendor.js

Method GET

Paramet
er

Attack

Evidence bypassSecurityTrustHtml

Instances 2

Solution See the references for security advice on the use of these functions.

Reference https://angular.io/guide/security

CWE Id 749

WASC Id

Plugin Id 10110

Low Deprecated Feature Policy Header Set

Description The header has now been renamed to Permissions-Policy.

URL http://172.16.10.100:3000/

Method GET

Paramet
er

Attack

Evidence Feature-Policy

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

7 of 14 5/19/23, 09:11

URL http://172.16.10.100:3000/ftp

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/ftp/coupons_2013.md.bak

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/ftp/eastere.gg

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/ftp/encrypt.pyc

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/ftp/package.json.bak

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/ftp/suspicious_errors.yml

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/main.js

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/polyfills.js

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

8 of 14 5/19/23, 09:11

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/runtime.js

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/sitemap.xml

Method GET

Paramet
er

Attack

Evidence Feature-Policy

URL http://172.16.10.100:3000/vendor.js

Method GET

Paramet
er

Attack

Evidence Feature-Policy

Instances 12

Solution
Ensure that your web server, application server, load balancer, etc. is configured to set the
Permissions-Policy header instead of the Feature-Policyheader.

Reference
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy
https://scotthelme.co.uk/goodbye-feature-policy-and-hello-permissions-policy/

CWE Id 16

WASC Id 15

Plugin Id 10063

Low Timestamp Disclosure - Unix

Description A timestamp was disclosed by the application/web server - Unix

URL http://172.16.10.100:3000/main.js

Method GET

Paramet
er

Attack

Evidence 1734944650

Instances 1

Solution
Manually confirm that the timestamp data is not sensitive, and that the data cannot be
aggregated to disclose exploitable patterns.

Reference http://projects.webappsec.org/w/page/13246936/Information%20Leakage

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

9 of 14 5/19/23, 09:11

CWE Id 200

WASC Id 13

Plugin Id 10096

Informational Information Disclosure - Suspicious Comments

Description
The response appears to contain suspicious comments which may help an attacker. Note:
Matches made within script blocks or files are against the entire content not only comments.

URL http://172.16.10.100:3000/main.js

Method GET

Paramet
er

Attack

Evidence query

URL http://172.16.10.100:3000/vendor.js

Method GET

Paramet
er

Attack

Evidence query

Instances 2

Solution
Remove all comments that return information that may help an attacker and fix any
underlying problems they refer to.

Reference

CWE Id 200

WASC Id 13

Plugin Id 10027

Informational Modern Web Application

Description
The application appears to be a modern web application. If you need to explore it
automatically then the Ajax Spider may well be more effective than the standard one.

URL http://172.16.10.100:3000/

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/build/routes/fileServer.js:16:13

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/build/routes/fileServer.js:32:18

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

10 of 14 5/19/23, 09:11

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:280:10

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:328:13

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:365:14

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/index.js:376:14

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/layer.js:95:5

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/express/lib/router/styles.css

Method GET

Paramet
er

Attack

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

11 of 14 5/19/23, 09:11

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/home/node_modules/serve-index/index.js:145:39

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

URL http://172.16.10.100:3000/sitemap.xml

Method GET

Paramet
er

Attack

Evidence
<script src="//cdnjs.cloudflare.com/ajax/libs/cookieconsent2/3.1.0/cookieconsent.min.js">
</script>

Instances 11

Solution This is an informational alert and so no changes are required.

Reference

CWE Id

WASC Id

Plugin Id 10109

Informational Storable and Cacheable Content

Description

The response contents are storable by caching components such as proxy servers, and may
be retrieved directly from the cache, rather than from the origin server by the caching
servers, in response to similar requests from other users. If the response data is sensitive,
personal or user-specific, this may result in sensitive information being leaked. In
somecases, this may even result in a user gaining complete control of the session of another
user, depending on the configuration of the caching components in use in their environment.
This is primarily an issue where "shared" caching servers such as "proxy" caches are
configured on the local network. This configuration is typically found in corporate or
educational environments, for instance.

URL http://172.16.10.100:3000/ftp

Method GET

Paramet
er

Attack

Evidence

URL http://172.16.10.100:3000/robots.txt

Method GET

Paramet
er

Attack

Evidence

Instances 2

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

12 of 14 5/19/23, 09:11

Solution

Validate that the response does not contain sensitive, personal or user-specific information. If
it does, consider the use of the following HTTP response headers, to limit, or prevent the
content being stored and retrieved from the cache by another user:

Cache-Control: no-cache, no-store, must-revalidate, private

Pragma: no-cache

Expires: 0

This configuration directs both HTTP 1.0 and HTTP 1.1 compliant caching servers to not
store the response, and to not retrieve the response (without validation) from the cache, in
response to a similar request.

Reference
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7231
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html (obsoleted by rfc7234)

CWE Id 524

WASC Id 13

Plugin Id 10049

Informational Storable but Non-Cacheable Content

Description
The response contents are storable by caching components such as proxy servers, but will
not be retrieved directly from the cache, without validatingthe request upstream, in response
to similar requests from other users.

URL http://172.16.10.100:3000/

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/assets/public/favicon_js.ico

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/ftp/acquisitions.md

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/ftp/legal.md

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/main.js

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

13 of 14 5/19/23, 09:11

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/polyfills.js

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/runtime.js

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/sitemap.xml

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/styles.css

Method GET

Paramet
er

Attack

Evidence max-age=0

URL http://172.16.10.100:3000/vendor.js

Method GET

Paramet
er

Attack

Evidence max-age=0

Instances 10

Solution

Reference
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7231
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html (obsoleted by rfc7234)

CWE Id 524

WASC Id 13

Plugin Id 10049

ZAP Scanning Report file:///home/sebastian/Downloads/zap-scan-output.html

14 of 14 5/19/23, 09:11

Appendix B

Project Plan

B.1 Introduction

The group has together created a project plan that will be highly relevant throughout

the entire bachelor process. The report contains scope, goals, routines and roles as

well as other important topics that is well needed to be able to work properly towards

the end-goal. If the group gets lost along the way or something becomes unclear, this

project plan will work as a guideline on how the group is going to work together.

116

B.2 Goals and restrictions

B.2.1 Background

Norwegian Bank Investment Management, from now on referred to as NBIM, is a

division within the central bank responsible for overseeing the Government Pension

Fund of Norway, which has a worth of 13,000 billion Norwegian kroner [1]. Due to

its large value, the fund is a major target for potential malicious actors. It faces an

average of three severe cyber attacks per day, totaling around 100,000 attacks each

year. Out of these, more than 1,000 are considered significant threats [2]. Therefore,

it is crucial for NBIM, as well as other organizations, to ensure the security of their

systems and applications before deploying them into their cloud services.

Software Development Life Cycle (SDLC), describes how software applications are

built - from planning through implementation and running in production. It also

includes ensuring security at the different stages of software development. In order

to accommodate frequent deployments to production, it is important to automate

the security testing by building it into the deployment pipeline. The security testing

can further benefit from shift-left, where testing is done as early as possible in the

pipeline. Given that source code can be accessed by anyone, it is important to consider

potential vulnerabilities during the development process. Implementing a strong and

secure software development life cycle is essential to prevent attacks from hackers

and other malicious actors on your application [3]. Securing the SDLC is a large and

actively developed area with a lot of interest from the industry. Demonstrating the

integration and practical application of various tools and methods can be beneficial

for both NBIM and other organizations.

B.2.2 Project goals

Our project goals will be separated into three different categories; performance goals,

result goals and learning goals. Performance goals are the targets that the group

sets for themselves in the long-term, with the aim of achieving a desired level of

performance or outcome. Result goals are focused on the specific result or outcomes

that the group aims to achieve at the end of the project. These goals outline what the

final product will be and the value it will provide to the stakeholder. Learning goals

are the knowledge that is wished to acquire during the project, and what new skills

117

the group want to be left with, and after the project ends - the acquired knowledge

and skills are intended to be retained and used in the future.

B.2.2.1 Performance goals

• The group will be working towards achieving the best possible result, both for

the stakeholder and for themselves.

• The group will be as efficient as possible during the work-hours. Which are from

10-14. However, the remaining hours group members are allowed to work on

different aspects of the thesis were it is mandatory for a bit in-depth work, but

that is not crucial to have done at that very time.

• The group will work towards good cooperation, making the process pleasurable

for all individuals involved.

B.2.2.2 Result goals

• To finish a report which can be used for securing deployment of software for

companies, both NBIM and others.

• Achieve a grade that the group is satisfied with.

• To create a product the members can use in future work.

• Enhance efficiency for securing deployment of software for everyone involved in

developing software, regardless of previous knowledge.

B.2.2.3 Learning goals

• After finishing the thesis, the group hopes to have a better understanding about

SDLC and securing the different stages of this deployment cycle.

• Acquire knowledge that improves future work for the group members.

• To learn more about project management and working in teams.

B.2.3 Framework

B.2.3.1 Time frame

• The project plan has to be delivered and signed within the 31th of January 2023.

118

• The finished bachelor thesis is to be delivered by the 22nd of May 2023.

119

B.3 Scope

B.3.1 Problem

Create a report outlining how to best secure parts of the SDLC. We want to focus

on the deployment pipeline, from submitting new code to GitHub to deploying it to

Amazon Web Services. We will review different tools, as well as implementing a proof

of concept demonstrating how the different tools can be used together. The proof of

concept should demonstrate how we can maintain integrity of the code throughout

the pipeline, as well as scanning for security misconfigurations and vulnerabilities at

a key stage of the pipeline. The user experience and ability to scale an enterprise

environment should be taken into consideration.

B.3.2 Problem delimitation

The primary objective of tool evaluation is to assess the most widely utilized tools in

order to ensure applicability for a majority of users. The allocated budget provided

by stakeholders must be adhered to when procuring licenses and other necessary

technologies for the production of a comprehensive report.

In addition the group will focus primarily on step five (Product Testing and Integration)

and six (Deployment and Maintenance Of Product) of the SDLC, but if desired it can

be necessary to look at step four (Developing Product). This is because it seems the

most necessary to be exploring tools related to deployment pipelines, and thus will

not focus on the earlier stages of the SDLC since this is outside the scope and wishes

of NBIM. [92] [94]

120

B.4 Project organization

B.4.1 Roles and area of responsibility

Group leader

The group leader holds the responsibility for ensuring the participation and collabora-

tion of all group members in the completion of the project. In the event of interpersonal

conflicts within the group, it is the duty of the leader to mediate and resolve any issues

that may arise.

The group leader is: Thea Urne

Head of communication

The head of communication is responsible for all external communication, which

consist of all contact between external business and supervisor provided by Norwegian

University of Science and Technology Gjøvik.

The Head of Communication serves as the primary spokesperson during formal meet-

ings with stakeholder and supervisor, and is responsible for creating agendas for these

meetings. In contrast, informal and shorter meetings (5-15 minutes) will be conducted

as a collective effort, where all team members are given an opportunity to voice their

contributions.

The Head of Communication is: Celina Heimdal Brynildsen

Head of documentation

The Head of Documentation is responsible for making sure all documents are in place

and structured correctly. There will be documentations like meeting minutes, time

sheets, logs and reports, and it is therefore important for one to have full overview.

The head of documentation is: Anniken Arildset

Secretary

The secretary will be responsible for writing reports from meetings that the group will

have with external business and supervisor. The secretary will then add all reports to

121

a folder created in Teams, where the head of documentation will make sure that it

has been done correctly.

Secretary is: Thea Urne

Head of sources

The head of sources role will be divided between two people, where they will control

that sources are written properly and that the group follow the right structure.

The head of sources will be: Sebastian Hestsveen and Celina Heimdal Brynildsen

Head of quality assurance

The role of Head of Quality Assurance will be shared by two individuals, who will

conduct weekly reviews of all written materials to ensure that all typographical errors

have been corrected and the structure of the text adheres to the established guidelines

of the group.

The head of quality assurance will be: Anniken Arildset and Thea Urne.

B.4.2 Routines

• Meetings with the supervisor will be planned weekly.

• Every other Wednesday, the group will conduct the sprint retrospective.

• Meetings with the stakeholder will take place every other Thursday at 12pm.

However, if both the group and the stakeholder decides that a meeting isn’t

necessary, these meetings can be cancelled. These meetings will be the sprint

review.

• The group will have a meeting every Friday at 10am where the week will be

summarized, and the upcoming week will be planned. Every other week this will

be the sprint planning meeting. This is recommended to have in the beginning

of the week, though because of work, the group found the best solution to this

being Fridays.

122

• Hours will be registered in Excel and Word documents, each group member

needs to check that the lists are updated by the end of the week.

• It is expected that group members are available from 10-14 Wednesday, Thursday

and Friday. It is expected that group members are on campus during these hours,

but after that group members can sit wherever they want.

• It is expected that all group members work at least 30 hours a week unless there

is a valid reason for why they haven’t worked their hours.

• Teams, Discord and Outlook will be the groups primarily communications

platforms both internally and externally.

B.4.3 Group rules

• If a group member does not show up when expected they must buy a bag of

Gifflar each to the rest of the group members. If a group member show up after

30 minutes they must buy a bag of Gifflar, this will increase every thirty minutes,

meaning if they are 1,5 hours late they must buy three bags of Gifflar. This will

end at 1,5 hours, so if a group member is more than 1,5 hours late they only

need to buy three bags of Gifflar.

• If one of the group members is late, it is obligatory to report this to the rest of

the group beforehand, so that work sessions and meetings can be reorganized

related to this. It is expected that group members have a valid reason if they

cannot attend meetings and work sessions. The group members must notify the

group at least one day in advance for their absence to be valid. Acute sickness

can be notified the same day as a meeting or work sessions.

• The given task to each member has to be completed in time, if this is not possible,

the rest of the group must be notified in advance.

• If a conflict arises, the group will firstly try to handle it internally. If the group

does not see eye to eye, supervisor will be contacted.

• If discussions occurs were the group have to vote, and the alternatives have

equal amount of votes, the group leader will have an extra vote. Other than this

extraordinary event, all members of the group have equally one vote each.

123

B.5 Planning, follow-up and reporting

B.5.1 Project Management Methodology

The group discussed four types of development methodologies; Scrum, Kanban, Wa-

terfall and Scientific method. Each group member made a presentation about their

chosen methodology, and their strengths and weaknesses. After all group members had

their presentation, the group then decided to adopt Scrum as our project management

approach because it allows us to adapt and improve our work based on feedback

from supervisor and our stakeholder. It is an iterative methodology and has focus

on continuous improvement, unlike the waterfall method which does not allow for

adjustments once a stage is completed. Additionally, the group will be implementing a

Kanban board to provide a visual representation of the project’s progress and tasks.

An application in Teams will be used to create the Kanban board. Because Scrum is

being used, it is necessary to have daily stand-up meetings. These stand-up meetings

will also help keep team members informed and on track.

B.5.2 Scrum

Scrum is an agile methodology that allows for continuous improvement and adjust-

ments through the whole development process [95]. By having regular meetings within

the group and with the stakeholder, everyone involved is kept up to date on what is

done and what will be done in the future. The group will have short, daily meetings

lasting about 15 minutes. During these meetings, the participants will discuss what

was done the day before, what will be done today and any obstacles that may prevent

the members from finishing their tasks.

The work will be split into two week sprints. Every sprint will be planned in a

sprint planning meeting. After every sprint, there will be a sprint review with the

stakeholder. Sprint reviews will be an assessment of the work done according to the

product requirements. In addition to the sprint reviews, the group will have sprint

retrospectives. These meetings will be a discussion among the group members about

the efficiency and cooperation during the sprint. The members will assess improvements

for productivity and bettering the process for the next sprint.

124

During this process, there are three main Scrum roles: product owner, scrum master

and team. The product owner is responsible for knowing the customers and setting

product requirements. In this case, this will be the stakeholder. The scrum master is

responsible for making sure the Scrum method is done properly and that the sprints

are properly communicated to the product owner. The team consists of workers with

the appropriate knowledge and skills to complete the task [96].

• Product owner - NBIM

• Scrum master - Celina Heimdal Brynildsen

• Team - Anniken Arildset, Sebastian Hestsveen and Thea Urne

B.5.3 Follow-up

• The group will have follow-up meetings every Friday were it is expected that

everything that has been done that week and what needs to be done for the

week to come is the main agenda.

• The group will also have 15 minutes meetings every day so that all group members

will have the opportunity to share their ongoing work with group members and

ask for help if it is necessary.

• As a part of the Scrum methodology, the group will every other week have a

meeting with the stakeholder were it is expected to go through what the group

have done and give the stakeholder the opportunity to give feedback on what

has been done. After this, the group will then have a private meeting with each

other to go through the feedback that was received.

125

B.6 Organization of quality assurance

B.6.1 Documentation

All documentation, including but not limited to notes, time sheets and meeting minutes,

will be saved and shared through Teams. All members and the supervisor have access

to these through our shared channel. By using Teams to store documents, everyone

can easily see each other’s work and collaborate.

On the group’s Friday meetings, there will be taken a backup of all major reports,

like the project plan and bachelor thesis. This will be done by uploading the files

to Google Drive. It will also be taken daily backup of the reports, and these will be

uploaded to GitLab.

Smaller documentation, like notes, will mainly be done using Microsoft Word, al-

ternatively other tools Microsoft provide. The major report on the other hand, will be

written using Overleaf. Overleaf is an online LaTeX editor that allows all members to

co-write on the same document simultaneously [97].

B.6.2 Plan for testing and inspection

In the time of writing, the group does not have enough information regarding this

topic, and will therefore expand this topic in later on.

B.6.3 Risk analysis

The following presents a general risk analysis for our project, identifying potential

problems that may arise and assigning them a probability and consequence value. It

also includes measures to address issues that may come up. The analysis is divided into

three categories: green (acceptable risk), yellow (moderate risk), and red (unacceptable

risk).

126

C
on

se
q
u
en
ce

Catastrophic
Major 2 1
Moderate 3, 4, 5
Minor
Insignificant

Rare Unlikely Possible Likely Certain
Probability

Table B.1: Risk matrix
[98]

Risk scenario 1:
Risk scenario Stretching beyond scope
Description Due to poor planing and communication in the group, the group

have taken on too much and this leads to a larger scope. This leads
to that the group cannot deliver on the original task

Probability Possible
Consequence Major
Overall risk Very serious

Table B.2: Scenario 1
Measures:
By implementing proper oversight and developing a solid project plan will result in
minimizing potential harm. Additionally, before making any decisions to expand the
project, it is important to thoroughly assess the necessity of doing so in order to
prevent scope creep.

Risk scenario 2:
Risk scenario Loss of data
Description The group will lose important data or documents
Probability Unlikely
Consequence Major
Overall risk Moderate

Table B.3: Scenario 2
Measures:
To mitigate this risk, the group need to ensure that our data is stored in multiple
locations and devices. Regular backups should also be performed to these locations to
minimize loss in the event of an incident.

127

Risk scenario 3:
Risk scenario Group conflict
Description Group will disagree
Probability Unlikely
Consequence Moderate
Overall risk Moderate

Table B.4: Scenario 3
Measures:
Encourage open communication among group members and actively listen to each
other’s perspectives. Identify the root causes of the conflict and work to address them
directly. If the conflict cannot be resolved within the group, consider seeking
assistance from a neutral counselor.

Risk scenario 4:
Risk scenario Loss of contact with stakeholder
description For some reason we cannot reach the stakeholder and they do not

respond to us
Probability Unlikely
Consequence Moderate
Overall risk Moderate

Table B.5: Scenario 4
Measures:
Initially, the group would attempt to contact individuals through email. If this is
unsuccessful, Celina, one of the group members, will contact the stakeholder at work
since she works at NBIM. In the worst case the group could finish this task without
them since we don’t need access to their systems.

Risk scenario 5:
Risk scenario A group member gets sick
Description Due to a new pandemic or other circumstances, a group member may

become ill and unable to contribute to the group’s efforts, resulting in
the group having to redistribute the workload among fewer members.

Probability Unlikely
Consequence Moderate
Overall risk Moderate

Table B.6: Scenario 5
Measures:
It is difficult prevent someone from becoming sick, however our effective
documentation and god communication allow for continuation of work by others in
the event that a team member falls ill.

128

B.7 Plan for execution

B.7.1 Gantt chart

129

B.8 Signature

Approved:

Anniken Arildset

Approved:

Celina Heimdal Brynildsen

Approved:

Sebastian Hestsveen

Approved:

Thea Urne

130

Appendix C

Timetables

The following are the individual timetables for the group members.

131

C.1 Timetable - Anniken

132

133

C.2 Timetable - Celina

134

135

C.3 Timetable - Sebastian

136

137

C.4 Timetable - Thea

138

139

Appendix D

Meeting minutes from

meetings with the supervisor

140

D.1 25 January 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A123

Project plan

• Writing style: avoid including the reader

• Write about the group from one perspective

• To get better grade – put in extra work, for example practical work

• Add paragraph about Scrum

Other

• Waiting for NBIM to get the project agreement ready

– Will be signing digitally

141

D.2 1 February 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-10.40

Place: NTNU Campus Gjøvik, A132

Scientific articles – resources

• IEEE explore

• Springer link

• MDPI

What should we do now?

• Research

• Get the base knowledge

Other

• Next weeks meeting is cancelled

142

D.3 15 February 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A132

Dates for delivering drafts

• 1st draft - 3 April

• Final draft - 1 May

Discussion about the thesis

• Shift of approach

– More focus on securing the different steps of the pipeline

Other

• Group should look for templates for the thesis on blackboard

• Alternatively look at what other groups have included

143

D.4 22 February 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-10.50

Place: NTNU Campus Gjøvik, A132

Other

• Status check - group felt lost for a while, but it is better now

• Showed the supervisor our plan for the approach - approved

• Next meeting moved to 13.30 - after the meeting with NBIM

144

D.5 1 March 2023

Participants: Anniken, Celina, Filip and Sebastian

Time: 13.30-14.00

Place: NTNU Campus Gjøvik, A132

Other

• What the group learned from the crash course on writing a thesis

• Talked more to the stakeholder on what they want the group to do

Discussion about the thesis

• What type of chapters to include

• Read through parts of the thesis

• Talked on how the thesis should be structured

• We do not have to include all meeting minutes from the scrum meetings

145

D.6 10 March 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-11.10

Place: NTNU Campus Gjøvik, A155.4

Discussion about the thesis

• Group is doing well – have done a lot of work and is pleased with the result so

far

• Looked through some of the comments made in the thesis to clear up some

confusion

• Group wondered if it was ok to use blog posts as sources

– That’s ok if the source is reliable

• Discussed how to do citing in the thesis – group is used to “[..]”, but we should

look into that further

• Could look at including footnotes for websites to tools we write about, e.g. Snyk

• For the practical part of the project: group thought of making a use case of a

pipeline with implemented security tools, and works on automation of pipelines

with Terraform code

• When using CodeQL – show examples of critical, high, medium and low level

alerts

• Could be beneficial to look at another SAST tool (either from GitHub or a third

party)

Other

• Next meeting is cancelled

146

D.7 22 March 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-10.40

Place: NTNU Campus Gjøvik, A132

Discussion about the thesis

• Good idea to implement practical work - like how we have built a secure pipeline

• Things are a bit all over the place now - it will come together eventually

• We should describe the work pipeline

• Some sections are going to be removed - like Testing

• Should include a link to our GitHub - the most important parts should be

included as an appendix

• We should write about maintenance security

147

D.8 29 March 2023

Participants: Celina, Filip and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A132

Overall

• We went through all comments made in the overleaf document - added the

answers to the comments

• Delivering 1st draft 3 April - soon ready

• Cancel next week’s meeting

148

D.9 12 April 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-10.40

Place: NTNU Campus Gjøvik, A132

• Went thorugh the coments in the document

• He read through first draft - it was mostly good, some confusion about the

”Discussion” chapter

149

D.10 19 April 2023

Participants: Anniken, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A132

Discussion about the thesis

• We should include discussion on both the finds and our work in the same chapter,

but separate it into sections

• In the ”pipeline” chapter - remove snyk since we never used it, add a table for

pros and cons to OWASP Zap.

• Have started to include meeting minutes (notes from meetings written in Teams)

- taken inspiration from other theses

Other

• We are on time to be able to deliver final draft 1 May, if not we will deliver it at

least the same week

150

D.11 26 April 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A132

Discussion about the thesis

• We have a working practical prototype - we will add it to the deployment chapter

soon

• In the deployment chapter we will add models and explanations of what happens

through the pipeline – make it understandable

• For the presentation – maybe record the process and speed it up to demonstrate

• Thinking of connecting our own work to the practices we recommend and SDLC

etc

• Included frameworks – good idea, will read through and give us feedback on

where it should be

• Implement frameworks to our own work

• Footnotes are ugly, can’t fix it so it’s fine

• Write a subsection on why we chose integrated GitHub tools and AWS services

• Pros and cons for AWS services – add it for the different services, based mostly

on our own opinions, and try to find sources as well

•

Other

• 1st May is a holiday – will deliver final draft 2nd or 3rd May

151

D.12 3 May 2023

Participants: Anniken, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A132

Discussion about the thesis

• Went through some of the comments made in the document

• Not have “our” in the titles in Discussion

• Some rephrasing in Deployment

• Output from OWASP Zap - make into text

• When writing about meetings , reference the appendix

• For framework - write about SLSA and level we hit, what can be done for hitting

higher levels

• What is left - add the rest in all chapters, summary and conclusion, fine-tuning

the text

Other

• Delivered the final draft yesterday

• Filip will read through it on Sunday so if we want to deliver a newer version,

this can be done by the end of the week

152

D.13 10 May 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A132

Discussion about the thesis

• Went through some of the comments Filip had made in the final draft

– Change some of the checkmarks in the Table 2.5 to be something else -

looks like it is positive, but it is not

– Mention of AWS and GitHub in security of the pipeline, but it is not

supposed to mention any tools? We mention it because AWS and GitHub

are what is “required” of us to use and is presented as that earlier

– Some of the footnotes need rephrasing

• When using a source for the whole paragraph, should we include it at the end

of the first sentence or at the end of the last? Do whatever we want, just be

consistent.

• What code should we include in the appendix? The main code could be in the

appendix, smaller parts are in the repository. See what other theses have done

before

Discussion about the thesis

• Meeting next week moved to Tuesday because of 17th of May

153

D.14 16 May 2023

Participants: Anniken, Celina, Filip, Sebastian and Thea

Time: 10.30-11.00

Place: NTNU Campus Gjøvik, A221

Discussion about the thesis

• New title for chapter 5 - suggest “building a secure end-to-end pipeline” since

that is what we do

• We are removing the code in the appendix and will just link to the different

repositories in a footnote

– We have a GitHub organization with several repositories for different code

purposes

• Not necessary to link to the different CWEs from the alerts - also, refer to CVE

from the theory

• Dependabot refers to a ghsa id, refers to GitHub Advisory Database, refers

further to the same CVE id. Should we include? No, not necessary

• Framework in discussion: have an introduction on what we want to do with it.

Something in bold text in SLSA to be more consistent.

• Change “relevant hyperlink” to “code repository” or something

• Keywords in abstract in alphabetical order

• Rewrite some of the glossary entries, or add sources if it is directly taken from

somewhere

• Code when delivering – should we deliver the whole juice shop? We have made

some small changes.

– Only include the modified files, specify that it is the appspec file is our code

and needs to be added to the juice-shop. Explain in the README file.

154

Appendix E

Meeting minutes from

meetings with stakeholder

155

E.1 12 January 2023

Participants: Anniken, Astri, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.30

Place: Teams

• Went through standard agreement

– Celina will send them the agreement and confidentiality agreement from

NTNU

– NBIM will go through these and make necessary changes

• In our thesis, we will use GitHub, AWS and other public systems

• As a start, the group will get to know SDLC and AWS

• Set up an example of workflow, from beginning to end

• Group and NBIM will meet at the same time every other week to begin with

– Will see if more is necessary later

156

E.2 26 January 2023

Participants: Anniken, Celina, Sebastian, Stian and Stian

Time: 12.00-12.30

Place: Teams

Other

• General talk about the contract and how we are going to sign it.

• How they will cover expense for the project relating to software we are going to

use.

Discussion about the thesis

• We are only going to look at point four to six of SDLC

• Mabey think about signatures and artefacts in the code for validate the integrity.

• Only test with one code language

• Look into how many warnings that we need to put out in the pipeline (what is

user friendly)

• Have general tests.

157

E.3 16 February 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.30

Place: Teams

Discussion about the thesis

• Might want to include false positives, artifacts, signatures etc.

For next week

• Make a pipeline and some examples of how we want to do it for a better overview

Other

• Having some issues with AWS - will try to fix ourselves, if not we will contact

them to try to help us

158

E.4 1 March 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-13.00

Place: Teams

Discussion about the thesis

• Build upon earlier bachelor theses

• Scrap IAST and RAST

• We can get SAST and SCA scans from GitHub

• Look at GitHub Actions

• One cannot set up checks for signes code in AWS, but one can set up a point in

the pipeline

• Look into juice-shop (git repo)

• Dependabot does not support all languages, but should not be any less good

than others

• Look at other papers about tools and base it on this. There is a lot of similar

papers out there

Practical

• Get an end to end as fast as possible (Secret Scanning, Dependabot)

• Add scanning tools from AWS (container scanning)

• Implement CodeQL and SCA when we get the pipeline to work

• Nice to use what GitHub already offers to get GitHub Actions to run

• Set branch protection – look into this

• GPG keys in GitHub – look into this

Other

• We will send them updated sprint plan

• Set up weekly meetings

159

E.5 9 March 2023

Participants: Anniken, Astri, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.30

Place: Teams

Discussion about the thesis

• Look more into DAST tools – so far, we have no specific

• DDoS protection

• We have looked more at signatures – AWS artifact signing

– KMS cryptography

– Need to configure ourselves (?)

• Lambda – supports signings in bundles, not docker image

• Compare GPG vs SSH keys for signing - Security vs user friendliness

• Find a paper with test case of eg juice-shop to compare tools

• Start with test case soon – try the whole pipeline

• Look more into CodeQL in VScode

• Could look at push protection – might not be so user friendly?

• Can use their colour palette but not their logo

160

E.6 16 March 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.30

Place: Teams

Practical work in the thesis

• Write about the complexity of the work rather then a step-by-step user guide

• Maybe include terraform code for security in Git

Analysis of tools

• Point to other’s analysis of tools rather then doing it ourselves

• Might only end up with maximum of two tools each step - so might not be that

important to include

• Possible to discuss in the discussion chapter

Basic security

• Can briefly include basic security - such as access control and MFA

Other

• Stian will look at GPG vs SSH keys - we read GPG was better, but he had

heard otherwise

161

E.7 22 March 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.20

Place: Teams

GPG vs SSH

• No difference in the two in signing, more on key management, revoke, expire

time

• SSH own file for allowed and revoked keys

• We should consider if it is worth even comparing

162

E.8 30 March 2023

Participants: Celina, Stian, Stian and Thea

Time: 12.00-12.30

Place: Teams

Discussion about the thesis

• Unsure how to implement code in the thesis - talk to supervisor about it

• Code as appendix - write about it without necessarily showing it

• Consider if we should build the text with focus on first time users or for more

advanced users.

• One angle might be if there is too much implementation, or some is more difficult

to integrate, we could make a table where we rank based on user friendliness.

• Could look at the amount of notifications you receive - not so good if you get

spammed with notifications

• Talking about security in deployment - separate between deployment to testing

and deployment to production

• Security after deployment - becomes maintenance (maintain the security). Can

use different tools in AWS, like protect incoming traffic, monitoring etc. This is

a lot of work, but can be mentioned

• Important to check what we want to deploy is what has been deployed

163

E.9 13 April 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.30

Place: Teams

Discussion about the thesis

• Practical part is on track, expected to be done very soon

• Looking at different ways of targeting the pipeline

– Loop

– Applications

• More clear definition on what steps of the pipeline and security measures for the

different phases

• Back up the table of comparison of DAST, SAST and SCA with concrete

examples why we put it there.

164

E.10 21 April 2023

Participants: Anniken, Celina, Stian, Stian and Thea

Time: 12.00-12.40

Place: Teams

Discussion about the thesis

• Find a way to sign the artifacts in S3 buckets - AWS CodeArtifact (artifact

management)

• Figure out where to sign - need to look closer into what CodeDeploy actually

does

• Trying to automate CodeQL, Dependabot, and secret scanner

• Would be nice to automate everything (end-to-end)

• On track for the final draft to be finished - we are focusing on getting as much

text in as possible for the delivery

• They think the structure looks good so far

• Figures look better and more explanatory than before

• We are going to add the steps from the pipeline into the phases of the SDLC

• Sent them out GitHub repository for the Terraform code

• Could be better to use Lambda instead of EC2 - less complicated

• Nice with a screenshot of security alerts and a little explanation

• Could look into how many alerts for CodeQL vs the amount of known vulnerab-

ilities - check juice-shop and other code

165

E.11 27 April 2023

Participants: Anniken, Celina, Sebastian, Stian, and Stian

Time: 12.15-12.45

Place: Teams

Discussion about the thesis

• The practical part looks good (add in a future step that you don’t use*)

• Check options for signed artifacts

• Use the SHA-256 file with GPG and check if the hash is correct

• We can discuss the framework and how we meet/fail to meet the requirements

for the various levels

Other

• We will try to deliver the final draft on the 1st of May, and the stakeholder will

receive a PDF version of the draft so they can read through it

166

E.12 4 May 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 12.00-12.15

Place: Teams

De skal lese gjennom hele rapporten før helga Kan sette opp flere møter n̊a som

det nærmer seg

Discussion about the thesis

• Is it necessary to include the work process?

– Have seen from previous groups that it is normal to discuss the process

• Should get the overall picture to come better together

– Why things fit together

– What is important to focus on

• Should highlight the most important points at the end of the paragraphs

• For the figures - should be able to understand the figure without having read

the text

• Other than this, the report is coming together well

• We are struggling a bit with the deployment chapter

– Don’t know how advanced it should be - the level of knowledge the reader

has

– Have gotten conflicting messages from the supervisor from NTNU and

NBIM - one says it should be detailed, but the other says it should be a

brief explanation

• Should consider excluding open source as a pro/con - we say it is a bad thing,

but Stian has a more positive view on open source. Maybe better to not mention

it?

Other

• They will try to read through the whole report before the weekend

167

• We can set up more meetings if needed now that the deadline is approaching

168

E.13 9 May 2023

Participants: Anniken, Astri, Celina, Sebastian, Stian, Stian and Thea

Time: 14.00-14.50

Place: Teams

Discussion about the thesis - Structure

• The thesis is very fragmented - maybe add some discussion before?

• Big change - we followed standard structure

• Example: which tool we chose, how to implement it, what we thought of it, all

in one chapter?

• Out structure so far - introduce the theory, then present pipeline on a general

basis without any specific tools, then the tools we use, and then how to implement

it. Can read one without the other

• Talk about it with supervisor tomorrow

Discussion about the thesis - Framework

• Very detailed (reference to sections) - more curious on the overall assessment.

• More highlevel discussion about if it is useful - consider work vs. utility

• Would we use it if we could choose? Or is it just more work?

Discussion about the thesis - Conclusion

• Other theses have had personal and theoretical conclusion combined, that is why

we have it. Maybe a bit messy?

• Theoretical conclusion should maybe come after the theoretical discussion?

Discussion about the thesis - General

• Should discuss where the practical part ended compared to the theoretical part

• Signing in Git but is not verified in AWS?

• Verification should happen at every stage in the pipeline - not necessary where

everything runs in the same stage

169

• Access control in the pipeline model - will maybe look messy to include one box

for every stage. Maybe have a “global box” that refer to acccess control at every

stage

• SAST and DAST in the pipeline model - only suggestions on where to have it.

We only include it in one of the suggested stages

• SDLC phases - include that everything can be repeated. Takes time to set up

first time, but is automated when repeated

• Deployment in the SDLC - more focused on automation, first time setup, reuse

• Scope limitation - perceived as apologetic

• Maybe look into SAST and DAST in consideration to AI?

• Astri did not experience SAST as easy to set up. Requires a lot of tweaking, get

a lot of warnings

• We will set up Grammarly for help with academic writing

• Have sharpened the policies for the S3 bucket - no longer has access to everything

• Try to simplify the deploymetn chapter - only write about the necessary and

important things, maybe include more code than text for some parts? Hard

because there are so many components to set up for everything to work.

• Use footnotes more consistently

170

E.14 16 May 2023

Participants: Anniken, Celina, Sebastian, Stian, Stian and Thea

Time: 14.00-14.30

Place: Teams

Discussion about the thesis

• In the discussion, we have written that we are not making software, but the

process is same as SDLC - Distinction of iac and application code, not necessary.

The process of writing and developing, make it clear.

• Phrase idempotent – professor thinks it is ok, they are not used to it, but since

it is correct then its fine. Used in the context of iac

• Table comparison – supervisor told us to change symbol for negative checks. We

are leaving it as is. Specify “many false positives” for examples.

• Read write permissions for CodePipeline – deploy only need read access. Can

look at sharpening these permissions. Only add a comment, not spend too much

time on it

• The point of SDLC being iterative is fine

• Chapter 5 is better and easier to understand now

• Usefulness of the framework – added more feedback to it

• Most feedback now are small details

• We need to fix abstract – need to make a good first impression

• Some details in the project plan - duplicate section and some small comments

• Why some code in appendix and other not? We have decided to have all code in

GitHub, none in appendix.

• Change some of the captions of the figured – more explanatory

Other

• If we need feedback – contact them directly, don’t need next meeting since

delivery is on Monday

171

• If they have time, maybe give us feedback in writing on what they think of our

work, their view of the result and the process

• We can also give them feedback on what we think of the work with them - after

delivery

172

Appendix F

Meeting minutes from

meetings with others

Meeting minutes from meetings the group has had with other participants. These

include:

• Erik Hjelm̊as

• Laszlo Erdodi

173

F.1 6 February 2023

Participants: Anniken, Celina, Laszlo Erdodi, Sebastian and Thea

Time: 11.30-12.00

Place: Teams

Discussion on how to test code

• We should look at high level code and low-level code, because they have different

type of security flaws we can test

• We got recommended to look at different vulnerabilities databases and look at

the code that is attached to some of the vulnerabilities

• Not recommended to test PHP code

• We should use longer code bits because that is a more realistic test

• Useful links:

– https://joern.io/

– https://www.cvedetails.com/browse-by-date.php

174

F.2 13 February 2023

Participants: Anniken, Erik Hjelm̊as, Sebastian and Thea

Time: 09.30-10.00

Place: NTNU Campus Gjøvik, T540

Discussion about what to do for the thesis

• Group is feeling a little lost what to do and where to go on with the report -

hoping Erik had some input on what to include and what to focus on

• The group should ask the stakeholder what exactly they imagine getting tested

• Should maybe test large open source projects

• Should look into GitHub and AWS tools

• For the thesis, a suggestion is to go in depth on the tools GitHub and AWS

offers, make a secure pipeline, rather than comparing tools - these tools are

already state of the art

• Should start by making some models showing the flow of development, visualizing

all steps

• Start by coding − > docker containers − > etc.

• Should look into usinex SDLC Security report, and other reports from usinex

(quality assured)

• Look into what Microsoft says about best practice in securing the SDLC

175

Appendix G

Standard agreement

Standard agreement between the group, NTNU and NBIM.

176

Appendix H

Thesis description

Task description from NBIM.

183

Bachelor Thesis: Securing the Software Development Life Cycle

Company: Norges Bank Investment Management (NBIM)

Address: Bankplassen 2
P.O. Box 1179 Sentrum
NO-0107 Oslo, Norway

Contact person: Astri Marie Ravnaas, +47 91 69 07 85, astri.marie.ravnaas@nbim.no

Background

Securing the Software Development Lifecycle (SDLC) is about ensuring security at the different
stages of software development. This includes from planning through implementation and running
in production. In order to accommodate frequent deployments to production, it is important to
automate the security testing by building it into the deployment pipeline. The security testing can
further benefit from shift-left, where testing is done as early as possible in the pipeline. The user
experience is another important aspect. How to best secure the SDLC is a large and actively
developed area with a lot of interest from the industry. Systemizing the state of the art and
demonstrating how certain tools and techniques fit together will have value both to NBIM and other
organizations.

Goal

Create a report outlining how to best secure parts of the SDLC. We want to focus on the deployment
pipeline, from submitting new code to GitHub to deploying it to AWS. It should be based on
reviewing different tools, as well as implementing a proof of concept demonstrating how the
different tools can be used together. The proof of concept should demonstrate how we can maintain
integrity of the code throughout the pipeline, as well as scanning for security misconfiguration and
vulnerabilities at key stages of the pipeline. The user experience and ability to scale to an enterprise
environment should be taken into consideration.

Summary

 Use GitHub to host source code and AWS as deployment environment.

 Evaluate relevant security tools and create a proof of concept demonstrating how the tools
can be integrated together.

	List of Figures
	List of Tables
	List of Code
	Introduction
	Background
	Problem area

	Scope limitations
	Target group
	Goals
	Performance goals
	Result goals

	The group's academic background
	Knowledge that had to be acquired
	Why this task was chosen

	Framework
	Timeframe
	Other

	Methodology
	Research methods
	Interviews/meetings
	Literature study

	Software utilized for writing
	GitHub organization
	Thesis structure
	Chapters

	Theory
	Introduction
	Software Development Life Cycle
	Planning
	Implementation
	Testing
	Deployment
	Maintenance

	Functional testing vs. security testing
	Application security testing
	Box testing
	Black box testing
	White box testing
	Grey box testing

	SAST
	DAST
	SCA
	Comparison of SAST, DAST, and SCA

	The significance of software security testing
	OWASP Top 10
	Vulnerability risk rating
	Common Vulnerability Scoring System (CVSS)
	Common Vulnerabilities and Exposures (CVE)
	Common Weakness Enumeration (CWE)
	OWASP Risk Rating Methodology

	Amazon Web Services
	GitHub

	Pipeline security
	Introduction
	Security in the pipeline
	Code scanning
	Scan dependencies and open source libraries
	Secret scanning
	Dynamic scanning
	Manual security testing

	Security of the pipeline
	Branch Protection
	Access Control

	Security in maintenance
	Finished pipeline
	Frameworks
	Introduction
	Supply-chain Levels for Software Artifacts
	Secure Software Development Framework

	Analysis of security tools for the pipeline
	Introduction
	GitHub security Tools
	CodeQL
	CodeQL: advantages and disadvantages

	Dependabot
	Dependabot: advantages and disadvantages

	Secret Scanner
	Secret Scanner: advantages and disadvantages

	OWASP ZAP
	OWASP ZAP: advantages and disadvantages
	Branch Protection
	Require a pull request before merging
	Require status checks before merging
	Require conversation resolution before merging
	Require signed commits
	Require deployments to succeed before merging
	Lock branch
	Do not allow bypassing the above settings
	Restrict who can push to matching branches

	Branch protection: advantages and disadvantages

	Amazon Web Services Tools
	AWS CodePipeline
	AWS CodeBuild
	AWS CodeDeploy
	Amazon S3 buckets
	Amazon EC2

	Building a secure end-to-end pipeline
	Introduction
	Code used in the pipeline
	Pushing to GitHub
	Managing security in GitHub
	Retrieving the source code in AWS
	Storing artifacts
	Build stage
	Deployment to testing
	Setting up CodeDeploy
	Setting up for testing

	Deployment to production

	Discussion
	Introduction
	Implementation of the SDLC
	Chosen branch protection rules
	The different tools chosen
	Why OWASP ZAP was chosen
	Why tools integrated into GitHub were chosen
	The group's experience with CodeQL
	The group's experience with Dependabot
	The group's experience with Secret Scanning
	The group's experience with OWASP ZAP

	Automation
	The Use of Security Framework
	SLSA
	SSDF
	Usefulness of the framework

	Revising the thesis angle
	Expectations compared to reality
	Practical work
	Research

	Critique of the thesis
	Not using frameworks from the beginning
	Defining the scope

	Conclusion
	Introduction
	The Work Process
	Meetings
	Scrum
	Coordinated schedule
	Draft Submissions
	Gantt Chart
	Distribution of Work
	Goals

	Further Work
	Conclusion

	Bibliography
	Results of OWASP ZAP scan
	ZAP scan CLI output
	ZAP scan PDF report

	Project Plan
	Introduction
	Goals and restrictions
	Background
	Project goals
	Performance goals
	Result goals
	Learning goals

	Framework
	Time frame

	Scope
	Problem
	Problem delimitation

	Project organization
	Roles and area of responsibility
	Routines
	Group rules

	Planning, follow-up and reporting
	Project Management Methodology
	Scrum
	Follow-up

	Organization of quality assurance
	Documentation
	Plan for testing and inspection
	Risk analysis

	Plan for execution
	Gantt chart

	Signature

	Timetables
	Timetable - Anniken
	Timetable - Celina
	Timetable - Sebastian
	Timetable - Thea

	Meeting minutes from meetings with the supervisor
	25 January 2023
	1 February 2023
	15 February 2023
	22 February 2023
	1 March 2023
	10 March 2023
	22 March 2023
	29 March 2023
	12 April 2023
	19 April 2023
	26 April 2023
	3 May 2023
	10 May 2023
	16 May 2023

	Meeting minutes from meetings with stakeholder
	12 January 2023
	26 January 2023
	16 February 2023
	1 March 2023
	9 March 2023
	16 March 2023
	22 March 2023
	30 March 2023
	13 April 2023
	21 April 2023
	27 April 2023
	4 May 2023
	9 May 2023
	16 May 2023

	Meeting minutes from meetings with others
	6 February 2023
	13 February 2023

	Standard agreement
	Thesis description

