
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Fredrik Lønnemo
Nora Hønnåshagen Hansen

Innovative presentation of open data

Bachelor’s thesis in Bachelor in Programming

Bachelor’s thesis in Bachelor in Programming
Supervisor: Mariusz Nowostawski
May 2023

Fredrik Lønnemo
Nora Hønnåshagen Hansen

Innovative presentation of open data

Bachelor’s thesis in Bachelor in Programming

Bachelor’s thesis in Bachelor in Programming
Supervisor: Mariusz Nowostawski
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Innovative presentation of open data

Fredrik Lønnemo
Nora Hønnåshagen Hansen

CC-BY 2023/05/22

Abstract

This thesis describes the process behind designing and implementing a regula-
tion plan overlay for a 3D map. The project focuses on the front end and user
experience of visualizing data in a 3D map. The project uses Three.js, and is a
continuation of the wxs.three.js project by Sverre Iversen, and developed further
by Gjøvik Municipality.

We have implemented user controls for height and opacity adjustments within
the solution, added regulation plan overlays using custom shaders, and adjusted
the map size using a Frustum. The final result is a web solution using HTML, CSS,
and JavaScript. The product provides data visualization and is available through
the municipality’s website.

Gjøvik municipality provides services for viewing data, such as regulation plans,
using interactive map interfaces. They began the development of a 3D map useful
for municipal workers to see the terrain and regulation plans together, easing the
construction planning process. The task was to continue developing this project
and extend its initial state. The municipality plan to continue the development of
this project, either internally or as a future bachelor for the next year’s students.

iii

Sammendrag

Denne oppgaven beskriver prosessen bak designet og implementeringen av re-
guleringsplan-lag for et 3D kart. Prosjektet fokuserer på frontenden og bruker-
opplevelsen av å visualisere data i et 3D kart. Prosjektet bruker Three.js, og er en
fortsettelse av wxs.three.js prosjektet laget av Sverre Iversen, og videreutviklet av
Gjøvik Kommune.

Vi har implementert brukerkontroller for å endre høyde og opasitet innenfor løs-
ningen, lagt til reguleringsplan overlegg ved bruk av tilpassede teksturalgoritmer,
og endret størrelsen på kartet ved bruk av et Frustum. Det endelige resultatet er
en web løsning som bruker HTML, CSS og JavaScript. Produktet tilbyr visualiser-
ing av data og er tilgjengelig gjennom kommunen’s nettside.

Gjøvik kommune tilbyr tjenester for å vise data, som for eksempel regulerings-
planer, ved bruk av interactive kartgrensesnitt. De begynte utviklingen av et 3D
kart til hjelp for kommunens ansatte for å se terreng og regulerinsplaner sam-
men, som letter prosessen av å planlegge konstruksjon. Oppgaven var å fortsette
utviklingen av dette prosjektet og utvide dets opprinnelige tilstand. Kommunen
planlegger å fortsette utviklingen av dette prosjektet, enten internt eller som en
framtidig bachelor for neste års studenter.

v

Preface

We would like to thank everyone involved in this project. Thanks to our supervisor,
Mariusz Nowostawski, for helping us by giving advice and feedback. Thanks to
our client, Municipality of Gjøvik, for allowing us to work on this exciting project.
Thanks to our contact people Pål Godard and Geir Karsrud, for being actively
engaged in the project’s progress. And thanks to all the user testers, who took
time out of their day to help give feedback on the solution.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Acronyms . xvii
Glossary . xix
1 Introduction . 1

1.1 Background . 1
1.1.1 Domain . 2
1.1.2 Delimitations . 3
1.1.3 Task description . 3

1.2 Target audience . 3
1.2.1 Thesis . 3
1.2.2 Product . 3

1.3 Group background . 3
1.3.1 Academic background . 3
1.3.2 Motivations . 4

1.4 Constraints . 4
1.4.1 Time constraints . 4
1.4.2 Software, hardware constraints 4

1.5 Project goals . 5
1.5.1 Result goals . 5
1.5.2 Effect goals . 5
1.5.3 Learning goals . 5

1.6 Group organization . 6
1.7 Thesis structure . 6

2 Theory - User Experience . 9
2.1 Domain . 9
2.2 Purpose . 9
2.3 What is User Experience? . 9

2.3.1 User Experience vs. User Interface 9
2.3.2 Achieving a Positive User Experience 11

ix

x Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

2.3.3 Using testing data to improve product 12
3 Requirements . 13

3.1 Use case . 13
3.1.1 Actors . 14
3.1.2 User Stories . 14

3.2 Backlog . 14
3.3 Performance . 15
3.4 Functional . 15
3.5 Operational . 15
3.6 Security . 16
3.7 UI . 16

4 Development process . 17
4.1 Project characteristics . 17
4.2 Software development model . 17
4.3 Project management tools . 19
4.4 Version control and code organization 19
4.5 Gantt diagram . 19

4.5.1 Planning phase . 19
4.5.2 Front end design . 20
4.5.3 Front end development . 20
4.5.4 Back end development . 21
4.5.5 User testing . 21
4.5.6 Changes based on user feedback 21

4.6 Meetings . 21
4.6.1 Group meetings . 21
4.6.2 Supervisor meetings . 22
4.6.3 Client meetings . 22

5 Graphical user interface . 23
5.1 Initial Design . 23
5.2 Design Changes . 24

5.2.1 Camera Controls . 24
5.2.2 User Interface Changes . 24
5.2.3 Changes Based on User Feedback 25
5.2.4 Final Design . 28

6 Technical design . 31
6.1 System architecture . 31
6.2 Architecture Alternative . 33
6.3 Front end . 33
6.4 Back end . 34

7 Implementation . 37
7.1 Already implemented . 37

7.1.1 wxs.three.js . 37
7.1.2 Modifications by the municipality 38

7.2 Dependencies . 38

Contents xi

7.3 3D Map . 39
7.4 Lighting . 42
7.5 User Interface . 42
7.6 Loading Message and Error Message 44
7.7 Caching . 44
7.8 Code Metrics . 45

7.8.1 Code and languages . 45
7.8.2 Issues and merge requests . 45
7.8.3 Time usage . 45

8 Quality Assurance . 49
8.1 Testing . 49
8.2 User feedback . 49

8.2.1 During development . 51
8.2.2 Feedback from client . 51
8.2.3 User Feedback . 51

9 Deployment . 55
9.1 SkyHigh . 55
9.2 Gjøvik Kommune’s website . 55

10 Evaluation . 57
10.1 Development process . 57
10.2 Quality of what was achieved . 57
10.3 Project and Code . 58
10.4 Stakeholder . 58
10.5 User studies . 58
10.6 Project plan . 59

11 Conclusion . 61
Bibliography . 63
A Additional Material . 65

A.1 User Test Results . 65

Figures

1.1 Group Organization diagram. 7

2.1 UX Honeycomb . 10

3.1 Use Case diagram. Made in Diagrams.net. 13

4.1 Gantt chart . 20

5.1 The Initial User Interface. 23
5.2 Interface with buttons added. 25
5.3 No zoom buttons on mobile layout. 26
5.4 Updated layout. 26
5.5 The layouts of widely used map services. The top four images show

how a map may be designed for desktop use, while the bottom
image shows a layout design for mobile devices. 27

5.6 The menu is added to the upper left corner, and the rendering dis-
tance is shortened. 28

5.7 Final UI layout. 29

6.1 Overall system architecture. 31
6.2 Detailed system architecture. 32
6.3 Example tiles from the Norwegian Mapping Authority. 34

7.1 This banner will be displayed on the page when an error prevents
the map from loading. 45

7.2 Code written in this project, divided by language. 46

A.1 User testing results. 66

xiii

Tables

1.1 Relevant courses . 4

8.1 The action list used to perform manual tests 50
8.2 Answers about what made certain actions more difficult. 53
8.3 General feedback from the testers. 54

A.1 Answers about what made certain actions more difficult. 65
A.2 General feedback from the testers. 67

xv

Acronyms

NTNU Norwegian University of Science and Technology. 3, 19

xvii

Glossary

API Application Programming Interface, a type of software serving functionality
to another. 3, 4, 25, 61

BBOX Bounding Box, an area defined by two longitudes and two latitudes. 35,
38, 51

CSS Cascading Style Sheets, coding language used for customising and adding
style to web pages. iii, v, xix, 5, 24, 32, 33, 38, 42–45

FPS Frames Per Second, a measurement of the amount of rendered images dis-
played on a screen per second. 49

Frustum The portion of a pyramid that remains after its top part has been cut off
by a plane parallel to its base. In 3D programming, it is used to determine
what is in the camera’s view. iii, v, 41, 47, 51

GeoTIFF A format extension allowing for georeference and geocoding data to be
embedded into raster images in TIFF format [1]. 2, 34, 37

Github An Internet hosting service for software development and version control
using Git. 37

GLSL OpenGL Shader Language, a coding language commonly used when writing
shaders for graphics programming. 25, 39

GPU Graphics Processing Unit, the component in a computer or mobile device
responsible for the rendering of graphics to the screen. 32

HDF Hierarchical Data Format, a data model, file format and I/O library designed
for storing, exchanging, managing and archiving complex data including
scientific, engineering, and remote sensing data [2]. 2

HTML HyperText Markup Language, a coding language developed for web de-
velopment. iii, v, xix, 5, 24, 31–33, 35, 42–45, 52

JavaScript Scripting language used for web development alongside HTML and
CSS. iii, v, 4, 5, 32–34, 42, 45, 47

xix

xx Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

JPEG Joint Photographic Experts Group, a raster image file format using lossy
compression at adjustably degrees. 2, 34

Latitude A coordinate on the north-south position. 38

Longitude A coordinate on the east-west position. 38

Mesh In 3D programming, it is a 3D object made up of vertices and faces. 38, 39

MVP Minimum Viable Product, an early prototype of a product. 11

NetCDF Network Common Data Form, a set of interfaces for array-oriented data
access and a freely-distributed collection of data access libraries for multiple
coding languages [3]. 2

npm Node Package Manager. Package manager for the JavaScript language. 58

OpenGL Open Graphics Library, a cross-language, cross-platform application pro-
gramming interface for rendering 2D and 3D vector graphics. 39

OpenLayers An open-source JavaScript library for displaying maps in web browsers.
4, 6, 20, 23, 34, 38, 45, 61

OpenStack Open-source cloud computing platform. 55

OrbitControls Three.js library used to control a camera. 24

PNG Portable Network Graphics, a raster image file format supporting lossless
compression. 2, 34, 38, 40

Raycaster An object within 3D programming which casts a ray from the mouse
pointer or the middle of the screen straight forward, and is used to find the
closest object from this point. 41

Responsive Design Mode A feature in many development web browsers which
allows developers to see what a website looks like on a mobile device while
using a computer. 52

RESTful REpresentational State Transfer, an architectural style for an application
program interface (API) that uses HTTP requests to access and use data. 61

Scene In 3D programming, a scene is a group of objects, lights, settings, etc.
making up a 3D environment. 24, 38, 41, 42

SkyHiGh Cloud-native security platform. 52, 55

SRS Spatial Reference System, a framework used to measure locations as coordin-
ates. 35, 38

Tables xxi

Three.js JavaScript library for 3D graphics rendering using WebGL. iii, v, 4, 5,
20, 23–25, 32–34, 37, 39, 41, 43–45, 47, 58, 61, 62

TIFF Tag Image File Format, raster image file format used o store raster graphics
and image information. xix, 2, 37

Topo4 Topographic coloring of maps which are color-coded; Blue for water, green
for forest, white for open terrain, black for roads, etc. . 16, 34, 38–40

TrackballControls Three.js library used to control a camera. 24, 34, 52, 61

UI User Interface, the layout and frontend of a software product. xiii, 2, 6, 9, 11,
16, 19, 20, 23–26, 28, 29, 40, 42, 43, 47, 51, 57–59, 61

Unity A cross-platform game engine suitable for creating 3D graphics, capable of
creating builds for WebGL and thus web browsers. 33

URL Uniform Resource Locator, an address used to locate content on the World
Wide Web. 34, 35, 38, 44, 47, 51

UX User Experience, the overall experience of a software product. xiii, 2, 6, 9, 10,
12, 16, 49

Vanilla JavaScript Term commonly used to refer to plain JavaScript without frame-
works. 32

WCS Web Coverage Service, standard protocol for serving data used for analyzing
and rendering. 2, 4, 6, 16, 20, 34, 37, 38, 45, 62

WebGL JavaScript API for 2D and 3D graphics rendering in web browsers. xxi, 5,
15, 23, 32, 33, 39

WMS Web Map Service, standard protocol for serving map images. 2, 16, 25, 45

WMTS Web Map Tile Service, standard protocol for serving map images as sets
of tiles. 2, 4, 6, 20, 34, 37, 38, 45, 62

Chapter 1

Introduction

As of May 2023, the web solution can be found online via Gjøvik Regionen here.

1.1 Background

Our bachelor thesis is a task provided by the Municipality of Gjøvik. Our primary
contact person was Pål Godard, as well as Geir Karsrud.

The municipality is responsible for providing services for its inhabitants within
multiple fields, including education, health, culture, and traffic [4]. Additionally,
another field they have responsibilities in is construction work. With its big range
of responsibilities, the municipality has a wide range of data collected in differ-
ent fields, including; pedestrian and cyclist counters, recycling percentages, water
temperatures, air quality, etc. The initial project proposal was very open, revolving
around using any of this data and finding a way to present them to the municip-
ality’s inhabitants.

However, a new proposal emerged after the initial project proposal was sent to
the university, and we were given it. Geir Karsrud, an employee within the muni-
cipality, had begun work on a 3D map of the region based on the open-source
wxs.three.js project [5]. The municipality currently has a 2D map available
where one may view additional information, such as regulation plans. Viewing
such plans is an integral part of construction work, as they provide construction
workers with important info regarding what an area may be used for and what
may be built there. The 2D solution they currently have worked well. However, it
does not represent an entirely accurate picture of real life, as levels in the terrain,
like hills and valleys, may bring challenges or change how the work should be
planned out and accomplished.

The 3D map solution in development was thought to be a possible aid to help
combat these challenges by using data to construct a map capable of accurately
representing different levels in terrain, giving construction workers the ability to

1

https://geodata.gjovikregionen.com/geoserver/www/GI3DNTNU/GI2020.html?X=591041&Y=6740572

2 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

see this information and negating the need to travel to the areas in question to
make decisions. The map in progress had the terrains and topography texture set;
however, due to time constraints, Geiur Karsrud could not finish the project him-
self and shared the in-progress code for anyone wanting to continue development.
Our contact person Pål Godard saw this as an excellent opportunity and presen-
ted the project for our consideration. We found the proposal interesting, and after
considering the different possible scopes, we settled on working with the map as
we found the scope interesting.

1.1.1 Domain

This section will provide some needed details to help understand the concepts
used in this thesis.

WMS Web Mapping Service and WMTS Wep Mapping Tile Service

WMTS is a protocol used to serve map data in the form of pre-rendered images
in formats such as PNG, JPEG, TIFF etc. It is similar to WMS, with the difference
between the two being WMS serving the data as one image rendered on the server
side and WMTS serving the data as sets of image tiles cached on the client side.
The benefit of WMTS over WMS is the reduced waiting time, as with WMS the
entire image must be rendered as a whole before being served, whereas WMTS
serves the individual tiles as they have been loaded, with the process being faster
as a result of their smaller size.

WCS Web Coverage Service

WCS is a standard issued by the Open Geospatial Consortium or OGC. A WCS
service, in contrast to the static images provided by WMTS, provides data that
can be used for analysis and modeling, referred to as coverages [6]. Data provided
through these services include; GeoTIFF, NetCDF, HDF, etc. This data can be used
for multiple purposes, for example, by using values from an endpoint to create 3D
objects.

User Experience

User experience (UX) is the experience a product gives its users and how it af-
fects their views on the company or developers behind the product. This topic is
explained in greater detail in chapter 2.

User Interface

User Interface (UI) refers to the layout and appearance of a product and how it
can affect the overall UX. This is talked about in greater detail in chapter 2.

Chapter 1: Introduction 3

1.1.2 Delimitations

Our project focuses on the visualization of open data, and it is not within our
scope to ensure the data is correct as it is fetched from government-distributed
APIs. While the data fetched covers the entire country of Norway, only the area
containing the municipality will be focused on, and the quality of other regions’
representation is not a responsibility.

1.1.3 Task description

The initial work on the 3D map done by the municipality was incomplete. The
task, therefore, was to further develop the 3D map of Gjøvik Municipality to be
presentable and to add a visualization of area plans which can be brought up by
clicking a building with a mouse or touch controls on mobile devices. This is the
minimum scope, where additional tasks such as visualizing other open data from
the municipality are possible additions.

1.2 Target audience

1.2.1 Thesis

This thesis’ target audience consists of reviewers tasked with grading the thesis,
students interested in reading about our work, and the client. The product is open
for further development, and this thesis will serve as documentation aiding that
process.

1.2.2 Product

The primary target audience is internal employees working for Gjøvik Municip-
ality, primarily construction workers, thus focusing on optimizing the product for
desktop computers. However, as the product will be available for anyone to use
via Gjøvik Municipality’s website, a secondary target audience is the general pub-
lic of the municipality and possibly the rest of the country. To satisfy the wider
demographic, the project will be given a responsive design making it just as easy
to use on mobile devices such as phones and tablets.

1.3 Group background

1.3.1 Academic background

Both group members on the team are students in the Bachelor in Programming
programme at the Norwegian University of Science and Technology in Gjøvik.
Through this programme, we acquired knowledge in many areas of programming,
including web development and general software development. Of the many courses
we have taken, the most relevant to this project are shown in 1.1 on page 4.

4 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

IDG1362
Introduction to User-Centered
Design

Creating user tests, design of user inter-
face based on usability

PROG2004
Software Development

The process of developing a software
product

PROG2053
Web Technologies

Development for web

PROG2002
Graphics Programming

Working with 3D computer graphics

PROG2005
Cloud Technologies

Fetching and using data from APIs

Table 1.1: Relevant courses

Although we have been through web development in our study program, we do
not have much experience working with map services and creating 3D maps from
map information. The initial source code we were given used libraries such as
Three.js, a JavaScript library for creating and displaying 3D graphics for web, and
OpenLayers, a library for creating and maps, and map protocols such as WCS and
WMTS.

1.3.2 Motivations

After reviewing the possible project proposals, we landed on this one for the most
part due to the openness of the scope. This gives us more creative freedom to
choose a scope we are more interested in, and we can work with the client to find
an exciting scope we both want to work on.

1.4 Constraints

The following constraints will affect our project.

1.4.1 Time constraints

Time is a constraint, as we have been given one semester to complete the project.
The flexibility of the scope is an advantage here, as we have our base goal to
which we can add more features. Should we find less time available than first
anticipated, we can focus on completing the minimum goal.

1.4.2 Software, hardware constraints

Our end-users should use modern web browsers. Software and hardware are con-
stantly moving forward, so the type of devices and web browsers are of a wide

Chapter 1: Introduction 5

variety. If a user uses an older web browser version than expected, there is a risk
the product will not be able to run on it as support for WebGL is required to display
the 3D map. Listed below are the minimum required browser versions.

• Google Chrome 9+
• Safari 5.1+
• Microsoft Edge 12+
• Firefox 4+
• Internet Explorer 11+
• Samsung Internet 4+
• Opera 15+

The project relies heavily on 3D graphics, which may result in poor performance
on low-end hardware. Although focused on computer performance, the project is
also expected to run on mobile devices and tablets. Approximate computer hard-
ware specifications are found in section 3.3.

1.5 Project goals

Detailed in this section are the goals we wish the finished project should fulfill
now and in the future.

1.5.1 Result goals

We want to achieve a fully functional 3D map of the municipality of Gjøvik, with
the possibility of seeing regulation plans. The layout design should be responsive,
meaning it changes to fit any device type. It should be compatible with the most
popular web browsers to ensure that many people can access it and work well on
different device types.

1.5.2 Effect goals

The solution should positively affect construction work by making regulation plans
readily available and easy to find. It should help shorten the time required to plan
construction by showing regulation plans and different terrain levels all in one
program, negating the need to travel to the area in question just to be able to
consider these aspects.

1.5.3 Learning goals

This project is an excellent opportunity to enhance our knowledge in web devel-
opment, where we will primarily be using HTML, CSS, and JavaScript. We will
also get the opportunity to learn new things, namely both graphics programming
for the web using Three.js and WebGL, and working with mapping services such

6 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

as WMTS and WCS, and the library for creating maps in web development, Open-
Layers. As most of our projects during our bachelor’s have been for creating pro-
grams from scratch, this project will give us experience in reading existing code
and understanding it to continue developing it.

1.6 Group organization

Both group members have the role of developer, which entails working on devel-
oping the product and documentation. Other parts are delegated as well, such as;

Group

Group leader, appointed to Fredrik Lønnemo. In addition to the leader role, Fre-
drik is a developer responsible for the back end and server-side aspects.

Nora Hønnåshagen Hansen is a developer on the team responsible for the UI
design and development of the front end.

Supervisor

Mariusz Nowostawski is our appointed supervisor, giving advice and feedback on
our progress throughout the project.

Gjøvik Municipality

Pål Godard is our contact person representing the client.

Geir Karsrud is the original developer of the project working for the municipality
and acts as a secondary contact person for advice and feedback.

1.7 Thesis structure

The thesis is divided into chapters as described here;

• 1. Introduction - An introduction to the thesis.
• 2. Theory - Theory related to UX, an important aspect of our project.
• 3. Requirements - Different requirements related to the project.
• 4. Development Process - Details about the development process.
• 5. Graphical User Interface - Detailed explanation of the design of the user

interface.
• 6. Technical Design - Details about the technical design.
• 7. Implementation - Detailing what we have implemented.

Chapter 1: Introduction 7

Figure 1.1: Group Organization diagram.

• 8. Quality Assurance - Details about the testing process, both on code and
users.
• 9. Deployment - Details about the deployment of the project during devel-

opment and after.
• 10. Evaluation - Evaluation of the final product and the process.
• 11. Conclusion - Concluding words and future developments.

Chapter 2

Theory - User Experience

A big part of developing a product is ensuring a good User Experience, UX. This
chapter will discuss what UX is, its differences from UI, and what makes it import-
ant in the software development process.

2.1 Domain

The domain being discussed in this chapter is UX. We’ve chosen this topic as it is
a vital part of our project, aiming to achieve a user-friendly product as possible,
as well as being a vital part of most software development projects. All projects
where we are developing a product for a market will need a good UX.

2.2 Purpose

The purpose of this chapter will be to research and understand the core aspects of
UX and what makes it an essential part of development. A good UX can be quite
difficult to achieve, depending on the broadness of the target audience. Designing
a good product for a small segment of people is easier than a large segment with
more significant variations.

2.3 What is User Experience?

2.3.1 User Experience vs. User Interface

The terms UI and UX are often used interchangeably; however, they are funda-
mentally different.
UI largely entails a product’s overall look and design. It focuses on making a visu-
ally pleasing product through color, layout design, branding, etc. The look of the
UI may negatively or positively influence the UX.
UX includes the UI design but also covers other important areas that should be
satisfied to create an enjoyable experience, leading to a positive impression of the

9

10 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

brand. Key elements needed to be fulfilled to achieve a positive UX are described
by Peter Morville in the UX Honeycomb shown in Figure 2.1 [7].
These elements include;

• Useful
Ask yourself, "Is this product useful?". The users need to find a use for the
product to succeed. This element is subjective, as products may be useful to
one person but not another.
• Usable

Usability is important but not sufficient on its own. If the users are unable
to use the product, they will not see a reason to give it a chance, and it will
fail.
• Desirable

Make a product desirable through images, branding, identity, etc.
• Findable

Users should be able to find what they need as easily as possible. Using too
much time to find what they need can be off-putting and feel like a waste
of time for the users.
• Accessible

Making the product accessible for people with disabilities is important, as
they make up a good portion of the world’s population [8].
• Credible

The design can potentially influence users’ trust and belief in us and the
content we offer.
• Valuable

The product should provide value. If not for profit, it should bring value to
its mission.

Figure 2.1: The UX Honeycomb graph created by Peter Morville.

Chapter 2: Theory - User Experience 11

2.3.2 Achieving a Positive User Experience

As developers, it is easy to get used to the layout and experience of our product,
making us less suitable for judging the quality of its experience as an end-user.
Some developers may simply rely on a gut feeling, which can result in a UI, which
is confusing to navigate and less appealing for the end-users. Thus it is important
to seek feedback from actors outside the software development team, with mem-
bers of the product’s target audience being ideal.

There are multiple possible methods of gathering user feedback, and we will now
describe some of them.

The Guerilla testing method
The Guerilla is a testing method in which you bring a prototype to a public space,
such as a shopping mall or a cafe, and seek out people to receive feedback from
in exchange for a small gift. This test is better suited for the early stages of devel-
opment when a prototype or MVP is ready and can be presented.

Surveys
A survey consists of a form containing questions, which can be, for example, sent
to the users and other testers or posted publicly online for anyone to particip-
ate. However, this could result in many answers at the cost of the quality of the
answers. With surveys, it becomes difficult, if possible, to observe the users’ in-
teractions with the product directly, and one can only rely on the honesty of their
written answers. Additionally, the quality of the answers themselves may vary;
some users may take the survey very seriously, taking their time and giving well-
thought-out answers, while some may rush through it and give lackluster answers.
Still, surveys are an easy way of getting many users’ opinions if one can see past
the issue with quality.

Usability tests
Usability tests are ideally performed in person but can also be conducted remotely,
for example, over digital platforms. In these tests, the user is given a set of specific
tasks to perform, where their actions and interactions can be observed. After the
user has completed the tasks, they may share their opinions in a post-test inter-
view or write them down in a form given to the developers. The advantage of
these tests is quality assurance. Testers may not always be truthful, even if unin-
tentionally. For example, a tester may claim to have had no issue finding a feature,
even if you observed their struggle, simply out of embarrassment. In such a case,
the credibility of the users’ answers can be questioned, and those answers that
reflect the user’s actions will be more valuable.

Unmoderated remote usability tests
With unmoderated remote usability tests, the user is given a set of tasks to per-

12 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

form on the product without a moderator. The session is recorded for review by
the team. When the user can use the product independently, it will feel more nat-
ural than in a moderated environment, leading to more "honest" behavior.

2.3.3 Using testing data to improve product

Once user testing has been conducted, it is time to use the data collected to im-
prove the UX. When analyzing the data, one can look for what feedback is the most
common. The most repeated answers will be more critical, while other, more spe-
cific ones will be down-prioritized. It is also important to consider the possibility
you have in achieving their request if possible. Some feedback and requests may
be repeated multiple times but are impossible to achieve in your specific product.

Chapter 3

Requirements

This chapter will discuss what this project should accomplish for the client and
users.

3.1 Use case

We created the Use Case diagram based on what the client wanted the program to
be able to do. The user in this diagram is a construction worker employed by the
municipality of Gjøvik, chosen as they are the main target audience in this project.
However, all actions in this diagram may be performed by anyone regardless of
status or occupation since the solution will be available to everyone.

Figure 3.1: Use Case diagram. Made in Diagrams.net.

13

14 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

3.1.1 Actors

Construction workers – construction workers working for the Municipality of
Gjøvik. The construction worker uses the 3D map to see a 3D visualization of
regulation plans in the terrain.

3.1.2 User Stories

Below are more detailed descriptions of the user stories.

User Story As a construction worker, I want to see a map of Gjøvik in 3D
Actor Construction worker
Goal See a map of Gjøvik in 3D
Description The user enters Gjøvik Regionen’s website. They click on the suit-

case icon and find the button saying 3D. The map is loaded, and
they view it.

User Story As a construction worker, I want to see regulation plans in Gjøvik
Actor Construction worker
Goal See regulation plans
Description The user enters the 3D map through Gjøvik Regionen. They then

click the burger icon in the upper left corner. They check the
checkbox next to the text label saying "Reguleringsplaner."

User Story As a construction worker, I want to see height differences more
clearly

Actor Construction worker
Goal Adjust the heights of the 3D map
Description The user enters the 3D map through Gjøvik Regionen. They then

click the burger icon in the upper left corner. They find the slider
under the text saying "Høydeoverdriving" and slide it further to
the right.

3.2 Backlog

We kept track of all tasks that needed to be done using Gitlab issues in our project
repository. Here we would make one new issue per task, where the person whose
responsibility it was to complete would be assigned to the task within the issue.
We could comment on these issues with information related to the progress or
others. Once the task is completed, its corresponding issue is closed.

Chapter 3: Requirements 15

User Story As a construction worker, I want to make the regulation plans
more visible

Actor Construction worker
Goal Make the regulation plans more visible
Description The user opens the 3D map through Gjøvik Regionen. They then

click the burger icon in the upper left. They find the slider under
the text saying "Opasitet" and slide further to the right.

3.3 Performance

Most modern computers and mobile devices can run the web solution. Being a pro-
ject heavily reliant on 3D graphics processed on the client side, it benefits from a
dedicated graphics card performance-wise. Additionally, more modern hardware
has proven to improve the experience.

We have worked out these possible minimum requirements for computers:
Graphics processor - Intel Iris Plus Graphics
Processor - 2,3GHz Four Core Intel Core i5
Memory - 8 GB 2133 MHz LPDDR3
OS Version - Windows 7+, OS X 10.6+

The version requirements for popular web browsers can be found in section 1.4.2.

3.4 Functional

The project should provide a 3D map covering the municipality of Gjøvik. It should
allow the user to see a map of the municipality in a new way by displaying heights
in the terrain, accurate to the real-world environment. The user should be able to
view regulation plans in the municipality on the map. The plans should be accur-
ately placed (no artefacts should be displaced). The map should be adjustable in
ways such as rotating it to see from different angles, changing the exaggeration
of heights of the terrain higher or lower, and seeing the regulation plans or un-
derlying map more clearly by adjusting the opacity of the plans, all with controls
readily available within the web interface.

3.5 Operational

The product should be deployed on Geoinnsyn by Gjøvik Municipality on their
servers, making it available for everyone through this web portal. It will be able
to run on all the popular web browsers running a version compatible with WebGL,
as listed in 1.4.2 and on desktop computers, tablets, and mobile devices running
one of the compatible web browsers. It should perform just as well on a computer
as a mobile device and on as low-end hardware as possible, as mentioned in 3.3.

16 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

The solution should get its map data from the Norwegian Mapping Authority,
which includes data about the heights with WCS and images of the Topo4 map
colors and regulation plans with WMS.

3.6 Security

Regarding the data the map is constructed with, security is not our primary re-
sponsibility as the government provides this and is thus expected to be correct.

The dependencies should be current to ensure potential security holes have been
patched. There should be no possibility of disruption in the loading of the depend-
encies.

3.7 UI

The UI should be intuitive and have both universal and responsive design. It
should be easy to navigate and find the desired functionality on all platforms by
avoiding cluttering and intruding on the layout. The UI should enhance the UX,
giving the user the best experience possible.

Chapter 4

Development process

In this chapter, we will go through the details of the overall process of this project,
how the initial plan was thought out, and how the actual process turned out.
We will review the software development model used, what project management
tools were utilized, look at the Gantt diagram, and talk about how we conducted
meetings with the group, the supervisor, and the client.

4.1 Project characteristics

Although we have been through software development in many projects during
our study programme, this project was of a much bigger size than what we have
done in previous courses.

Already from the beginning, we were aware that we would be working with librar-
ies and frameworks largely unfamiliar to us, concerning both the map technologies
and 3D graphics library in use, and should therefore keep in mind that there could
emerge a need to spend extra time studying these to gain a better understanding
of what we were to work with in the coming time.

4.2 Software development model

At the beginning of the project, we looked through multiple possible software
models we could utilize in this project and considered both benefits and draw-
backs. Most of the models we reviewed were better suited for projects where one
is developing a brand new product from scratch, where having a project which
is not complete is part of the process. Although a model of these characteristics
could be utilized, we wanted a model more fitting for developing further on a
project already started.

After reviewing the models, we settled for the incremental software development
model for this project. The biggest reason behind this is the model’s character-

17

18 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

istic, which entails having a functional base that is always in a working state. This
base project will then have new features and additions, making it more and more
fleshed out as the development process goes on. This way, the product can tech-
nically be released at any time, although how rich it is in features will depend on
how far it has been in development.

The characteristics of this model were the best fitting with our project being based
on working on the already in-development project provided by the municipality,
being the base. The initial project given was already being hosted on their website
and technically functioning; however, lacking features the client wished to have
added.

At the beginning of this project, we were given some starting features requested
by the client to work with. We created issues for each of these, giving us a great
number of tasks to choose from from the start. At the beginning of each sprint,
we would review the issues at hand, judging their weight and each team member
would take on one of the most important ones. In some instances, other less im-
portant issues could be prioritized if they were expected to take a short time to
implement. When a team member has finished their task early on in the sprint,
they would inform the other member of the progress and take on additional tasks
by picking the next most important one again.

In the next sprint, we could show off the progress made during the past week.
If the task has not been completed, the current process would be shown, and we
could give each other feedback. In some cases, if much time spent on a task had
shown little or no progress over time, the task would be put on hold, and the
group member would move on to another task to ensure progress is still being
made on the project, and then being able to move back to the task at a later time.

As our supervisor meetings were on the same days as our sprint meetings, we
would also be able to discuss the feedback given during this meeting and take in
the suggestions given in these meetings. On days when we also had a meeting
with our client, the feedback from these would also be discussed, and any further
requests given by them would be added as issues and, if critical, would become
the focus of the upcoming sprint. This allowed us to go into detail about the feed-
back and the time to come.

In addition to weekly sprints, we would keep in touch regularly through our
chosen communication platform Discord, where we would give each other up-
dates about progress made or when important decisions regarding the task being
worked on have been made, for example, once someone has moved from one task
to another. This would help keep each other always informed on the current state
and progress of the project.

Chapter 4: Development process 19

4.3 Project management tools

We used a shared folder in Google Drive to share documents to be worked on
together and keep backups of these. This contained documents such as meeting
minutes, surveys and their results, diagrams, and other images.

Other resources, such as useful links and resources, were shared in dedicated text
channels in the group Discord server for easy access. In addition, digital meetings
and other communications were largely held in Discord with the group, as well
as meetings with the supervisor, should these meetings need to be held digitally.
Meetings with the client were held in Microsoft Teams.

4.4 Version control and code organization

For version control of the code, we used NTNU in Gjøvik’s Gitlab instance, where
we kept a repository to which the project’s source code was stored and changes to
it were committed. Minor changes with little impact on the code could be pushed
to the main branch directly without worries, while significant changes and feature
additions are pushed to a new branch until it is ready for merging. This ensures the
main branch is always functioning and prevents a new feature from introducing
unwanted problems or bugs, which could take too much time trying to fix without
a backup. Whenever a group member has finished a new addition and is ready to
merge it with the main branch, a merge request is made, which the other group
member has to approve before it can be merged. Once merged to the main branch,
the newly merged branch is deleted, and the associated issue or issues are closed.

4.5 Gantt diagram

In the Gantt diagram in figure 4.1, you can see how we initially planned the
semester work to look while creating the project plan at the beginning of the
year. As you can see, we had it set up based on the possibility of adding multiple
data visualizations in our project with multiple back ends. However, the actual
development process of the project turned out differently than we had initially
planned.

4.5.1 Planning phase

During this phase, we set up our project plan for the semester. With the open
nature of the task description, we spent much of this time defining and narrowing
down our project scope to be more specific and to find out what aspects we would
prioritize and which we could make optional. We ended up settling for one main
goal to complete, being the further development of the 3D map itself and making it
more complete by adding the regulation plans and other UI elements, with adding

20 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

Figure 4.1: Gantt chart.

additional visualizations to it being optional and could be discarded if the time
constraints showed this not to be possible.

4.5.2 Front end design

Originally, this phase was planned to be dedicated to the design of the front end.
However, as we quickly realized, this phase would instead be dedicated to read-
ing, studying, and understanding the source code we had been given, as well as
researching and learning about the frameworks and libraries in use, including the
WCS and WMTS services.

As neither of us had used the Three.js and OpenLayers libraries before working
on this project, we decided to dedicate time to looking at the documentation of
these, in addition to studying how these were used in the project itself, to make
working with them an easier process in the long run.

4.5.3 Front end development

The front-end development process mainly consisted of making adjustments to the
visual aspects of the project, including the 3D map and UI elements. We would
take one piece of the design at a time, starting with work on the UI elements first,
then moving on to the basic shape of the map, and then the additional features

Chapter 4: Development process 21

requested by the client, like the regulation map and further adjustments to the
map. We would take care of issues in the GitLab first, then receive new additions
from the client during meetings.

4.5.4 Back end development

The pre-existing code’s back end was not much developed, as most of it worked
with map-specific technologies unfamiliar to us, so a lot of time was spent figuring
out how this worked. For delivering the website to users, we used Apache because
Fredrik had previous experience with deploying on it in DCSG2003 Robust and
scalable services. Caching was implemented on the test-server, to aid performance,
but does not feature in the final product as the municipality will host the project
themselves and have explicitly stated they will prefer a simple "plug and play"
approach where minimal configuration has to be done to the server.

4.5.5 User testing

Some user feedback was given on request sporadically during development, spe-
cifically when developing the design layout. Our client contact person would ar-
range user tests with the internal employees of the municipality. Once we had
implemented a sufficient amount of features as we had wanted, we sent the code
to our client, who would host the project on their internal servers and ask employ-
ees to test it out. Other user testers not employed in the municipality, representing
the general public, were also asked to test the project. More details about the user
testing are described in section 8.2.

4.5.6 Changes based on user feedback

This period was dedicated to reviewing the feedback given by the client. We sent
the project to our client first and quickly received some feedback to address. We
then spent a week fixing some important things before sending an updated version
of the code to the client, which was then hosted, and a survey we created was sent
to workers within the municipality. More details about the user tests are described
in section 8.2.

4.6 Meetings

All meetings were held on Thursdays. Weekly meetings were held with the super-
visor and group, and meetings with the client were held every other week.

4.6.1 Group meetings

Internal group meetings were held on Thursdays, where we would discuss what
had been done and determine the focus areas of the upcoming sprint. These were
largely held online through our chosen communication platform Discord.

22 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

4.6.2 Supervisor meetings

We held physical meetings on campus with our supervisor weekly on Thursdays.
We would start the meetings by showing off the project in its current state, fol-
lowed by our supervisor giving feedback and coming up with suggestions.

4.6.3 Client meetings

We set up the possibility of meeting with the client every two weeks, depending
on whether each party found it necessary. These meetings were held on Microsoft
Teams. We would use these meetings to show off the progress made on the project,
and they were given the opportunity to give feedback. In addition, we communic-
ated with the original developer of the 3D map Geir Karsrud who would, from the
23rd of March, join our client meetings and to whom we could ask for advice and
clarifications if needed.

Chapter 5

Graphical user interface

This section will discuss UI development process.

5.1 Initial Design

The 3D map of the project are created using the Three.js library, a high-level cross-
browser library for creating 3D graphics in web browsers, using WebGL.

The user interface of the initial code we were given can be seen in Figure 5.1a. It
consisted of a square-shaped map centered on the screen, a small button in the
upper right reading "3D" for reloading the map geometry. Moving the map around
to where no part of the map was located in the center of the screen would cause
additional tiles of the map to be loaded in that location. A semi-transparent mini-
map was situated in the lower right corner, which moves into the screen and gains
opacity on mouse hover, shown in Figure 5.1b. Unlike the 3D map, the mini-map
is made using the OpenLayers library.

(a) The map is centered in the middle
on an empty background.

(b) The mini-map in the lower right
corner pops into the screen when
hovered over.

Figure 5.1: The Initial User Interface.

23

24 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

5.2 Design Changes

5.2.1 Camera Controls

TrackballControls are used for controlling the camera in the Three.js Scene. This
allows the user to move the map infinitely in all directions using a mouse on com-
puters and touch gestures on mobile devices or other devices with a touch screen.
The amount of freedom in the movement resulted in users having the ability to
turn the map all the way around, viewing the backside. This could be avoided by
changing the camera controls to OrbitControls, with which we could limit rota-
tion on the x-axis and y-axis. However, one feature the Municipality needs is the
ability to turn the map on the z-axis, which could not be accomplished with the
OrbitControls library as it keeps a constant up-vector. Thus camera controls were
switched back to TrackballControls.

5.2.2 User Interface Changes

The UI of the initial project was very simple, with few controls available, the only
button added being used to reload the 3D geometry. We started out by adding
essential button controls, such as for zooming. The buttons were added using
HTML tags with CSS styling. The original design of these buttons made them big
in size and placed them in a blue-colored container in the upper left corner, as
shown in Figure 5.2a. The initial size of the map created much unwanted empty
space on the screen, so the map was changed to fill out the entire screen from the
beginning.

During the design development, we sought feedback on the layout from ex-
ternal actors who had no connection to the project. Some feedback was given
regarding the buttons’ placement, as some found it more natural to place these in
one of the bottom corners.

To gather more inspiration, we looked at various successful web mapping plat-
forms such as Google Maps [9], Apple Maps [10], and Kommunekart [11], whose
UIs can be seen in Figure 5.5 . Common design traits found were; small conjoined
zoom buttons, often with rounded edges and in white or dark grey color, depend-
ing on whether the device was using light or dark mode, placed in one of the lower
corners of the screen. Additionally, the map takes up most of the view, with few
elements obstructing the view. Maps with many features leave these hidden in a
collapsible menu.

Based on these traits, we changed the button design to be smaller and white, with
a slight blue hue when hovering over it with the mouse and darker blue when it
is clicked, to make it clear to the user that the actions are being performed. To
avoid obstructing too much of the map with the buttons, the buttons’ color was
given some transparency but is still opaque enough to be visible and easy to find.

Chapter 5: Graphical user interface 25

(a) Initial look of the UI buttons.

(b) Close-up of the button layout.

Figure 5.2: Interface with buttons added.

Although all the desktop maps we viewed had optional buttons for zooming in
or out of the map, the mobile versions most often omitted these buttons in favor
of touch gestures. We adopted this feature by not displaying the buttons if the site
detects it is being run on a mobile device, keeping as much as possible of the small
screens obstruction-free, shown in figure 5.3.

One of the main features requested by the Municipality was the ability to visu-
alize regulation plans on the map as an overlay. The plans were fetched from the
Norwegian Mapping Authority’s WMS APIs and loaded as a texture for the 3D-
Map. We combined the topographic map with the regulation plan map 50/50 us-
ing a custom shader written in GLSL to display both map textures simultaneously.
Both the topographic and combined map textures were loaded into the 3D object,
with only one being shown on the map at the time. A collapsible menu was added
in the upper left corner where the regulation plans could be toggled on and off.

5.2.3 Changes Based on User Feedback

After meetings with the Municipality, we received feedback on the UI.

They suggested adding a message in the map which would display while the map
is loading to give the user some indication of whether or not the map has finished
loading. Using a LoadingManager from the Three.js library, a message is displayed
while the textures are being loaded, with a counter showing progress.

26 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

Figure 5.3: No zoom buttons on mobile layout.

(a) Updated look of the UI buttons.

(b) Close-up of the updated button layout.

Figure 5.4: Updated layout.

Chapter 5: Graphical user interface 27

(a) Google Maps desktop layout (b) Apple Maps desktop layout

(c) Google Earth desktop layout (d) Kommunekart desktop layout

(e) Google Maps mobile layout

Figure 5.5: The layouts of widely used map services. The top four images show
how a map may be designed for desktop use, while the bottom image shows a
layout design for mobile devices.

28 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

The client also requested the ability to adjust features in the browser, such as
height exaggeration in the 3D geometry and the opacity of the overlay. Using
ranges, these were added to the menu for easy access.

Figure 5.6: The menu is added to the upper left corner, and the rendering distance
is shortened.

5.2.4 Final Design

In Figure 5.7a, you can see the final layout of the UI as it was delivered.

Chapter 5: Graphical user interface 29

(a) The final layout of the UI.

(b) Close-up of the menu.
(c) Close-up of the final layout of the
buttons.

(d) The final UI on mobile.

Figure 5.7: Final UI layout.

Chapter 6

Technical design

In this chapter, we will describe the overall system architecture, what alternatives
we considered during the planning phase, and go into detail about the front end
and back end.

6.1 System architecture

In Figure 6.1, you can see a simple diagram of the overall design of the res-
ulting system architecture. The project is accessible through the Municipality’s
Geoinnsyin portal, which loads the HTML entry point, which leads the user to the
3D map, which fetches data from the Norwegian Mapping Authority’s endpoints.

Figure 6.1: Overall system architecture.

31

32 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

Although using only one web page, the architecture can be characterized as a
Multi-Page web application as it is structured in a way that does not use techno-
logies used by common Single-Page web applications. The languages used in the
solution are HTML, used to construct the basic page layout and loading JavaScript
files, CSS to add styling to the HTML elements, and Vanilla JavaScript, which is
used for the fetching of data and creation of the 3D map using various libraries.

The processing of the 3D geometry and rendering is done on the client side due
to the nature of the Three.js library, which is built on WebGL, a graphics library
for web browsers allowing for rendering without the need for the user to install
additional plugins but in turn, performs its processing on the end-user’s GPU, or
graphics processing unit. As a result, most of the architecture is focused on the
front end of the solution, with the back end aspects referring to anything the user
cannot see, such as the fetching of data from the Norwegian Mapping Authority’s
endpoints and processing of these. In 6.2, you can see a more detailed system
architecture diagram showcasing the program’s structure.

Figure 6.2: Detailed system architecture.

Chapter 6: Technical design 33

6.2 Architecture Alternative

While considering how to continue work on this project, we looked at alternat-
ive architectures different from the one already established. As mentioned in the
previous section, the project was developed using Three.js to create 3D graphics.
Besides this, there exist other alternatives useful for achieving similar results. We
will in this section discuss the alternative we considered.

A different possibility we found was to convert the project to using Unity with
WebGL rather than Three.js. Our client showed us a similar project called 3D Am-
sterdam during one of our initial meetings, which web solution can be found here,
with its code repository found here. Unlike the project in progress by the muni-
cipality, this project uses Unity for its 3D graphics processing.

While using Three.js would let us simply pick up where the last development had
stopped and continue work right away, had we chosen to use Unity, we found we
would need to rewrite the entire project from scratch for the other engine. How
Three.js and Unity work and are developed are fundamentally different. Three.js
is a 3D engine specifically used for web development, where everything needs to
be coded by the developer, but it is well suited for web development and integ-
rates gracefully with web applications, being able to run right on the web page
using JavaScript. In contrast, Unity is a game engine that, while most commonly
used for developing desktop applications and video games, can also build pro-
grams for web pages using extensions for building for WebGL. However, unlike
Three.js, which can be loaded right into the web browser, the Unity application
must be compiled before being uploaded to the web application. It takes, in gen-
eral, longer to load than Three.js, and often is bigger in size once compiled.

Ultimately, we chose not to go with this model as we were gonna be develop-
ing a project already using Three.js. We would need to read and understand the
Three.js code regardless, as understanding what the program was accomplishing
would be necessary to convert the project to use Unity, especially finding out how
to use the data from the Norwegian Mapping Authority in Unity. To spend time
doing this and then converting this code to Unity would be very time-consuming
and leave little time to develop the map solution further, so we decided to continue
the development using Three.js.

6.3 Front end

The source code we were given was written in HTML, CSS, and JavaScript. Three
HTML files make up the entry point to the 3D map, styled with CSS within each

https://3d.amsterdam.nl/#1050,63,-961,12,1143,55,56,00,344,51,0,00
https://github.com/Amsterdam/3DAmsterdam

34 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

file. The solution is entered through GI2020.html, which loads 3Dklient.html with
parameters in the URL as an <iframe> element. 3Dklient processes and loads the
mini-map using OpenLayers, and loads the wxs.three.html file with the paramet-
ers in the URL as well, also as an <iframe> element. Within the wxs.three.html
file, the local JavaScript files are loaded, as well as the libraries used in the solu-
tion, including both Three.js and the camera controls, TrackballControls. As cam-
era control libraries are not included in the Three.js library, these need to be loaded
separately.

The 3D map is created using the Three.js library, which is used to define all the
elements of the 3D scene and display them. The 3D map receives data from the
back end to form the 3D objects, as section 6.4 explains. This includes WMTS im-
ages in both PNG format for the Topo4 images, and JPEG for the regulation plan
images, and WCS for the height information.

6.4 Back end

This project’s front end and back end are tightly tied together. In this section, we
will discuss the parts of our project which are not directly visible to the user. The
data is as mentioned in section 6.1 fetched from the Depth DTM WCS endpoint,
Topographic Map 4 cache endpoint and Zoning plans WMS endpoint. In figure
6.3, you can see a pair of tiles as the endpoints deliver them. The GeoTIFF tiles
fetched from the WCS can be opened as they have the .tif file extension. However,
their appearance is simply pure white, as the data embedded in the file is not vis-
ible in the image itself.

(a) Tile from the topo4 layer. (b) Tile from the regulation_plan layer.

Figure 6.3: Example tiles from the Norwegian Mapping Authority.

When entering via Geoinnsyn, X coordinates, and Y coordinates are passed as URL

https://kartkatalog.geonorge.no/metadata/dybde-dtm-wcs/564f9422-fa97-4520-b49d-cfd1350dafd7
https://kartkatalog.geonorge.no/metadata/topografisk-norgeskart-4-cache/8f381180-1a47-4453-bee7-9a3d64843efa
https://kartkatalog.geonorge.no/metadata/org/title/04dde63c-c690-432b-9d2e-ec6f1c9aa9f7

Chapter 6: Technical design 35

parameters to the HTML files, which are turned into BBOX coordinates, which are
used when calling the Norwegian Mapping Authority’s endpoints, in addition to a
SRS code, a Spatial Reference System code, given in the URL. The SRS code is used
when measuring coordinates, which is necessary to ensure the BBOX coordinates
correspond with the location in the world that should be shown.

Chapter 7

Implementation

This chapter will go into more detail about the methods used to achieve the res-
ulting solution.

7.1 Already implemented

As this project is one where we have further developed an existing project, we will
talk about the parts of this project we did not implement in this section.

7.1.1 wxs.three.js

The original code the project is based on is the open-source project wxs.three.js
[5]. This project was developed by Sverre Iversen, Atle Frenvik Sveen, Carsten
Mielke, and Jarle Pedersen. The repository can be found on Github here. It is a
3D solution for visualizing data from the Norwegian Mapping Authority.

This project works as the base of the web solution, where the functionality for
creating the map itself is created. As explained in chapter 6, the project calls the
Norwegian Mapping Authority’s WCS depth endpoint for getting the heights of the
terrains and calls their WMTS endpoints for textures. The 3D map in this project
is made using THREE.PlaneGeometry objects from the Three.js library. These are,
by default, flat square objects whose shape can be manipulated, which is changed
to have the form of heights in the terrain as seen on the map.

The depth endpoint serves data about heights in the terrain in multiple formats,
where this project takes use of the data found in GeoTIFF format, an extension
of the TIFF file format modified to contain georeferencing and geocoding data.
The height data in the GeoTIFF files are parsed using the TIFFParser found in the
tiff.js library. The heights in a THREE.PlaneGeometry object is changed to be equal
to the values found in the GeoTIFF, which ensures the 3D aspect of the map is
achieved.

37

https://github.com/jarped/wxs.threejs

38 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

The textures used to paint the map are fetched from the Norwegian Mapping
Authority’s WMTS endpoints, which serve multiple possible image formats. This
project uses the images in the PNG format, a widely used image format benefit-
ing from lossless compression resulting in high-quality images. When creating the
THREE.PlaneGeometry objects, a material must be created to give the Mesh color
or texture. In this project, the developers made use of THREE.MeshBasicMaterial
to color the map, a type of material that will always be visible even if there is no
light source in the 3D Scene. This material is given a texture from the WMTS en-
dpoint in PNG format and combined with the height data from the WCS to create
the 3D map we can see in the project.

Information about the depth WCS endpoint can be found on the Norwegian Map-
ping Authority’s website here, and information about the Topo4 and regulation
plan WMTS endpoint can be found here.

7.1.2 Modifications by the municipality

Modifications were made by Geir Karsrud, who worked on making the wxs.three.js
project centered on Gjøvik and making it suitable for use by the municipality. Geir
created the GI2020.html file, which acts as the entry point for the 3D solution,
which would be opened through their Geoinnsyn site. The URL used by Geoinnsyn
to enter the web solution contains query data: an X-coordinate, a Y-coordinate, an
SRS code, and a multiplier for the heights. The X and Y-coordinates are used to
calculate the BBOX, or bounding box, which is an area in a map defined by two
Latitudes and two Longitudes, done by taking the x-coordinate and creating two
new x values; one by adding 2000 to the x-coordinate, and one by subtracting
2000. The same process is done to the y-coordinate. The BBOX and SRS values
are used in the calls to the Norwegian Mapping Authority’s endpoints, while the
multiplier exaggerates the height differences in the 3D map, with 2 being the de-
fault value sent in the URL.

Geir Karsrud also created the 3Dklient.html file, a client in which the mini-map
is created using OpenLayers. The map was initialized and loaded multiple layers
from endpoints provided by the Norwegian Mapping Authority. Using CSS styling,
the mini-map was loaded in the lower right corner, partially hidden off-screen,
with some transparency set, and would move further into the screen and gain full
opacity when hovered over with the mouse pointer. The mini-map loaded multiple
layers from the Norwegian Mapping Authority, which could be switched between
using controls within the mini-map.

7.2 Dependencies

The original source code given had multiple dependencies, most of which were
older than the newest available versions. One of the first things we did was up-

https://kartkatalog.geonorge.no/metadata/dybde-dtm-wcs/564f9422-fa97-4520-b49d-cfd1350dafd7
https://kartkatalog.geonorge.no/metadata/topografisk-norgeskart-4-cache/8f381180-1a47-4453-bee7-9a3d64843efa

Chapter 7: Implementation 39

date the Three.js library to the most recent version as of January 2023. After the
library had been updated, we needed to make changes to the existing code, which
was still using deprecated functions related to loading and creating textures, and
replaced these with the currently supported functions. The dependencies were
also switched from being loaded from online sources to being stored locally in
the repository to improve security. Doing this reduces the risk of attacks such as
spoofing, as loading dependencies from online sources may result in the connec-
tion rerouting to a different or potentially hostile source.

7.3 3D Map

The map images are loaded onto the 3D Meshes as using THREE.MeshBasicMaterial,
as mentioned in 7.1.1. A Mesh in Three.js can natively only show one texture ma-
terial at a time, whereas the map originally only showed the Topo4 texture. One of
the main requests from the municipality was the visualisation of regulation plans
on the map. When researching possible ways of displaying the regulation plans on
the map as an overlay on top of the Topo4 texture, we found two possible options
for consideration;

One of the options considered was to create two identical 3D map objects. One
would be given the normal Topo4 texture and be displayed at full opacity, and a
second identical map object would be given the regulation plan texture. The map
object with the regulation plan texture could then be placed slightly above the
Topo4 textured object and have some transparency set to it, making the colors
from both objects visible at the same time, as well as avoiding any obstruction of
the information contained in the Topo4 map texture, which already displays some
information such as location names. However, we considered the performance is-
sues this would introduce, as the number of tiles rendered on-screen would be
doubled due to needing to display two objects instead of only one. As a result,
we came to the conclusion that the performance cost would be too great on an
already graphics-heavy project and looked to the other option.

The second option we considered and ultimately ended up implementing was
using custom shaders to combine the two textures into one before assigning it as
material to the 3D map Mesh. As Three.js is based on WebGL, which is a low-level
graphics language for creating and displaying graphics in web browsers, we had
the possibility to create a custom shader for this purpose using the GLSL shader
language, a language made specifically for writing shaders in 3D programming
with a syntax similar to that of the C/C++ languages. This shader language is
used also in OpenGL, another low-level graphics language used for creating 3D
graphics for desktop applications, which we had experience using from the Graph-
ics Programming course.

This shader would take the Topo4 images and regulation plan images, both of

40 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

PNG format, as texture uniforms, which were mixed using the mix() function in
the fragment shader, which takes three values; The first two being two different
values to interpolate, and the third being the weight between them. The regu-
lation plan images consisting of only the regulation plans filled the empty space
between these with a pure white color, which showed up on the mixed texture,
making the map around the regulation plans look faded. To combat this, a check
of the pixels was added, which, if the color was found to be pure white, was re-
placed with the corresponding pixel color on the Topo4 texture. The fragment
shader used to achieve this can be seen in 7.1.

Code listing 7.1: The fragment shader used to mix textures into one.

varying vec2 vUv;
uniform sampler2D u_texture;
uniform sampler2D u_overlay;
uniform float u_opacity;
void main() {
vec4 color1 = texture2D(u_texture, vUv);
vec4 color2 = texture2D(u_overlay, vUv);

if (color2.r == 1.0 && color2.g == 1.0 && color2.b == 1.0) {
color2.rgb = color1.rgb;

}

gl_FragColor = mix(color1, color2, u_opacity);
}

The last value in the mix() function, determining the amount the second texture
should be mixed with the first texture, was originally set to a hard-coded value of
0.5, making each texture appear 50/50. A useful feature requested by the client
was the ability to change the opacity within the program. To do this, we set the
last value of the mix function to a uniform with a default value of 0.5, which gives
us th ability to change it dynamically. We created a slider with the <range> tag
in the map’s UI, which would call a function from the wxs.three.js file oninput.
The reason we are using oninput rather than onchange, is the latter will only send
the values to the function once the user stops moving the nob and lets go of it,
while oninput keeps sending the value while the nob is still being moved. The
scale change function gets the range element by ID and reads the current value of
the slider somewhere between 0 and 10, divides it by 10 to get a decimal number
less than 1, and sets the value of the opacity uniform to be this value.

Each 3D object is given the two created textures, the normal Topo4 and the mixed
texture, in an array, with the texture at index 0 being the one displayed on the
map, with the Topo4 texture being the default. When toggling the regulation plans
to be on, the locations of the textures are swapped by placing the mixed texture
in index 0. Although a possibility could be to have the texture with no overlay
simply be the mixed texture with the mix value set to 0, we wanted the project to
have the possibility of adding other overlays in the future by adding these to the
array of textures and giving the ability to switch between these.

Chapter 7: Implementation 41

The source code we were given used a Raycaster object to determine whether
or not a tile has been processed and, if so, should be loaded. It was used to cast
a ray, which, if hitting a tile belonging to the backgroundGroup, which consists of
tiles that are not currently on-screen, would call the function for processing tiles
and placing them in the foregroundGroup matrix containing tiles that have been
processed and are now visible to the user. As the original map object was one
small square, the user would have to use their mouse or touch gestures to drag
the map around the screen, forcing it to load more tiles if they wanted more of
the map to be loaded on the screen.

As mentioned in chapter 5, the map was changed from a small centered square
to filling out the screen better. To start with, we would use a check of the screen
aspect ratio and increase the number of tiles loaded at the beginning depending
on the screen size, where a wide aspect ratio would load extra tiles horizontally,
and a tall aspect ratio would load extra tiles vertically. However, we had no way
of loading additional tiles when the map was moved, so moving the map would
reveal the empty backside. The original project already had the raycaster function
implemented which would load new tiles where the ray hit, so we wanted to see
if we could do this over the entire screen instead of just one point.

After looking into the Three.js documentation, we discovered we could achieve
this by creating a Frustum object from the Three.js library, an object used to de-
tect what elements are on-screen, commonly used to elegantly exclude objects
on-screen from rendering. We used this to detect if a tile belonging to the back-
groundGroup has entered the view of the camera and is within the view of the
screen, in which case it should be processed and added to the foregroundGroup
matrix once the process is finished. The Frustum object is given the same size as
the Scene’s camera object when created, meaning only the tiles currently in view
are rendered at the time. Thus, tiles that have been processed and lay within the
foregroundGroup matrix will not be rendered once their position is outside the
screen and outside of the Frustum.

During development, we were given feedback from our client, who could not run
the solution properly due to performance issues. To combat this, we moved the
far-plane, or the back, of the PerspectiveCamera object used by the Scene closer to
the near-plane, or the front, changing from its original distance value of 5000000
down to only 10000. Since the Frustum size is set to the size of the camera, the
number of tiles within the Frustum at once was drastically reduced, and new tiles
stopped loading much earlier than before, where the far-plane position was so
great the tiles did not stop loading. We found this to be the best solution, as it
did not hinder the experience, with the tiles loading further towards the far plane
not in focus and would be too far away to see the information on. Fewer tiles
on-screen once greatly helped reduce the performance issues, and the users need

42 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

not worry when tilting the map, as tilting would lead to the biggest number of tile
loads.

The option to edit the exaggeration of heights was achieved by manipulating the
scale.z values of the map tile objects, multiplying their heights equally. The default
value already set by the original developers was 2.0.

7.4 Lighting

We looked at implementing different lighting in the Scene to create shadows.
While the 3D aspect is more visible when tilting the map, the heights are not as
obvious when the camera is pointed straight down onto the map. Adding a light
source able to cast shadows could make terrain differences easier to see and give
some realism to the map.

The Scene already had AmbientLight added, which lights up all objects equally,
although unnecessary as the type of material used in the 3D objects, MeshBasicMa-
terial, will appear evenly lit regardless of lights in the Scene, in addition to not
being affected by shadows. Thus, before looking into the lighting, we changed
the material used to MeshStandardMaterial, which can cast and receive shadows.
We experimented with dimming the ambient light and adding different types of
additional lights to the Scene, for example, DirectionalLight, where all light hits
the objects in the same direction specified, and PointLight, in which light is cast in
all directions from a specified point.

Both of these lights can be used to cast shadows on the 3D object, which could
make the heights more obvious. However, casting shadows comes at the cost of
performance, as calculating the shadows is costly. We were already seeing how
poorly the 3D map was performing at the time, and with the shadows on top of
that, it most certainly would worsen performance. Therefore, as it was not neces-
sary as much as a cosmetic addition, the idea was scrapped, and the project would
keep being lit by AmbientLight only.

7.5 User Interface

In chapter 5, you can see the changes and additions we have made to the solu-
tion’s UI. The collapsible menu in the top left corner was created using a <input
type="checkbox"> HTML element for the icon, which makes it easy to create a col-
lapsible menu using only CSS, avoiding the need to use JavaScript functions. With
this method, we could create a menu <div> element and change its properties
depending on whether the checkbox has been checked or not, using the :checked
pseudo-class on the checkbox, which activates when the checkbox with the spe-
cified ID has been checked. By default, the menu is hidden outside the screen by

Chapter 7: Implementation 43

setting its margin-left property to be -500px moving it in its entirety to the left as
it has a width of just 200px. Its opacity is set to 0, this is to achieve a slight fade
in effect when the menu enters the screen and fade out when leaving the screen.
When the checkbox is checked, these properties are changed to margin-left: 5px;
and opacity: 1;. This, combined with the transition: 0.2s element, makes the menu
slide into the screen when the checkbox element is checked.

The menu icon itself is created as a <label> element for the checkbox, with the
checkbox itself being hidden from view. A checkbox can be checked by clicking its
label, which is useful for creating custom-looking menu icons since the original
checkbox can be hidden entirely without removing its functionality. We could then
use custom-made images as menu icons, one of a burger menu and one of an X,
and again have these change depending on the checkbox :checked pseudo-class.
The menu icon, when displaying a burger menu icon, is slightly transparent and
gains opacity when displaying the X to make it clear that the menu is active.

Within the menu in the top left corner, we added a slider for adjusting the height
exaggeration using a HTML <input type="range"> tag, as mentioned in chapter
5. The minimum value was set to 0.1, and the maximum value was set to 10.0.
When the nob of this slider is moved, the current value is sent to the function
using the oninput property, which takes this value, and changes the scale.z value
of all tiles to be this value. The user may reset the value back to 2.0 by clicking
the reset button next to the slider.

The alternative zoom buttons were, as mentioned in chapter 5, created using
HTML <input type="button"> tags. The styling of these buttons was, as with the
other UI elements mentioned so far, applied using CSS. To give the rounded look,
the border-radius properties were set to 10px in the outer corners of each but-
ton. Making the buttons clearer when hovered over was achieved using the :hover
pseudo-class, and making the buttons appear bluer when clicked was achieved us-
ing the :active pseudo-class. The zoom buttons, when clicked, will call a function
defined in the wxs.three.js file to change the camera’s position. This is accom-
plished by using the built-in function in the Three.js library for translating posi-
tions on the z-axis, translateZ, which performs this action using a value specified
by the developer. The function is called in this project, given a value of -500 when
zooming in and 500 when zooming out. To prevent the camera from zooming in
too far, the camera’s position on the z-axis is checked every time the user attempts
to zoom in, and if it is less or equal to 500, the function does not proceed.

44 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

7.6 Loading Message and Error Message

With the larger amount of tiles being loaded on screen, it became less clear when
the solution finished loading all tiles, and the user may be unsure if the program
is still loading or, worse case, has become stuck. Geir Karsrud suggested display-
ing a message to the user to inform them if the program is still loading. We used
a LoadingManager object from the Three.js library to achieve this. This object al-
lows programmers to define behavior to execute while the desired textures; start
loading, are loading, and once the loading process has ended.

We created a HTML <div> containing the loading message, consisting of an im-
age of a spinning circle, a common element of loading messages, and text. This
element would not be shown while nothing is loading by setting its default CSS dis-
play property to being hidden and changing this property to inline-block to display
it when loading is happening. The LoadingManager reports three values; The cur-
rent URL from which the texture is being loaded, the number of currently loaded
textures, and the total textures. To make the loading message more informative
to the user, the number of loaded textures and the total amount of textures were
included in the message. The message itself would then be: Loading <Amount
loaded>/<Total amount>.

In addition to letting the user know the map has finished loading, during the
development of the map, we found that there was no information displayed to
the user if an error had occurred preventing the map from initializing. We im-
plemented a simple error check function in its own separate file to help keep the
program sufficiently informative for the user. This could be given two parameters,
obj and msg; obj being an object or value of any kind, and msg either a message
index or a specific error message. The function checks if obj is a null value, making
it a tool for ensuring an error message is shown when an important value required
by the program is null. If the given object or value is found to be null, an error
message is displayed to the user, as shown in figure 7.1. In cases where a critical
error may occur but is unrelated to a value being null, the function can be called
by simply giving it null as a value in place of obj, which forces the function to
display an error message. The msg can be either a string or a number. If a string
is passed, it will be displayed as an error message. Alternatively, it is possible to
predefine error messages in the error.js file where the function is located, and the
function can be called with a number representing the message index in an array
of messages.

7.7 Caching

As the program relies on a lot of external geographic data, which does not change
frequently, caching is highly desirable. The initial plan was to implement a server-
side service that would primarily store cached data but could theoretically do some

Chapter 7: Implementation 45

Figure 7.1: This banner will be displayed on the page when an error prevents the
map from loading.

data-processing, as that is currently all client-side. However, this would require
major rewrites and increase the complexity of the project, leading to possibly more
bugs that are harder to track down. We ended up using Apache’s built-in caching
module, which, unfortunately we later learned the municipality will not use, nor
will they use an equivalent in their own server-hosting software.

7.8 Code Metrics

This section will show some stats about the code itself, including how many new
lines were written and how many were edited, how much time was spent on
certain tasks, and some details about the issues and merge requests.

7.8.1 Code and languages

Approximately 446 new lines of code were written for this project, including com-
ments. These consist of 78 lines of HTML, 142 lines of CSS, and 244 lines of JavaS-
cript, as shown in 7.2a. In addition to these, 34 existing lines of code were edited.
Of these, 7 were HTML, 8 were CSS, and 10 were JavaScript, as shown in 7.2b.

7.8.2 Issues and merge requests

In total, 15 issues were closed during this project. Some additional issues were
made, which were optional if time allowed. 8 merge requests were made and
merged with a total of 54 commits, and all were approved by the other group
member.

7.8.3 Time usage

The amount of time spent on each task has varied a lot due to their scope in gen-
eral and unforeseen delayers such as bugs. In this subsection we will show some
examples of how much time certain features took to implement.

As mentioned earlier in section 4.5.2, much time was spent in the beginning
on studying the code and its libraries, including OpenLayers, Three.js, and the
protocols used; WMS, WMTS, and WCS. During this project, Nora spent around

46 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

(a) Distribution of new code lines per language. Created with meta-chart.com.

(b) Distribution of edited code lines per language. Created with meta-chart.com.

Figure 7.2: Code written in this project, divided by language.

Chapter 7: Implementation 47

22.5 hours doing this to gain a better understanding of the project, Fredrik spent
around 30 hours. Most of this was at the beginning of the project, with some of it
also happening during the rest of the semester as new unknown aspects popped
up. Also, during this time, some time was spent refreshing web development, such
as JavaScript programming.

One of the features that took the most time to implement was the addition of
the regulation plan overlay. This process took approximately 22 hours, including
finding the correct endpoint, fetching the tiles and loading them onto the map,
and creating the custom shaders. Loading the map from the endpoint itself took
some time to figure out, with finding the right way the URL should be formatted.
Once the plans could be fetched, the next step was finding the best way to show
them on the map object, as explained in section 7.3.

Due to us being inexperienced with the Three.js library, finding a way to load
more tiles took some time, as we spent some time researching how to detect the
edges of the screen before finding out about the Frustum object, which luckily
was quick to implement once discovered. Limiting the number of tiles to improve
performance was a quick task, taking only two hours. Lighting was worked on for
three hours before being scrapped.

Designing the UI and implementing it took approximately 16 hours. We spent
time first implementing basic elements of the UI and making constant design ad-
justments over the course of these hours. Implementing the zoom buttons took
around four and a half hours, and adding and styling the error codes took around
seven and a half hours. During the UI design, around 1 hour was spent studying
similar web solutions, which are shown in figure 5.5. Editing the GI2020.html file
and 3Dklient.html file to work together took around eight and a half hours.

Chapter 8

Quality Assurance

This chapter will detail the methods we have used to ensure the quality of our
project.

8.1 Testing

This section details the steps we have taken toward ensuring the quality of the
code itself.

This project, mainly centered around graphical and other visual aspects, proved
challenging to create proper automated tests for. To ensure core functionality still
worked as it should during the development of the code, a workaround for the
lack of automated tests was to create a comprehensive list of basic tasks, such as
button clicks, scrolling the wheel on a computer mouse while using the map, etc.,
which are all tasks the user will perform while using the software.

In this list, the tasks listed are coupled with a description of the expected out-
come next to an empty field where we may fill in the actual outcome if it should
differ. When performing these tests, we could compare the actual result with what
is expected and troubleshoot the code should the actual result differ. While not as
fast as automated tests are, this way, we could quickly verify each core function
in an orderly manner. The full list used for manual testing can be found in table
8.1.

For performance, we would utilize built-in FPS meters in our web browsers.
While not perfect, it can indicate how well the program is performing and during
what events the performance drops most.

8.2 User feedback

This section will detail the steps we performed to ensure the quality of the UX.

49

50 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

Task no. Task Expected outcome Actual outcome

1 Open map
The map loads, with Gjøvik
in center

Functional

2 Click [+] The camera zooms in on map Functional
3 Click [-] The camera zooms out of map Functional
4 Click [Reload] The map reloads Functional

5
Click on map with the
right mouse button, drag
towards the right

The map moves to the left Functional

6
Click the map with the
left mouse button, drag
upwards

The map is tilted backwards Functional

7
Move the mouse pointer
to the lower right corner

The mini-map pops into the
screen

Functional

8
Click the burger menu
icon in the upper left
corner

The menu enter the screen Functional

9
Click the checkbox
next to the text reading
"Reguleringsplaner"

Regulation plans are shown
on the 3D map

Functional

10

Drag the nob on the
slider for
"Høydeoverdriving"
to the right

The hills on the map are taller Functional

11
Drag the nob on the
slider for "Opasitet"
to the right

The regulation plans are more
opaque

Functional

12
Click the spiral arrow
next to the sliders

Nob and map property returns
to default value

Functional

Table 8.1: The action list used to perform manual tests

Chapter 8: Quality Assurance 51

8.2.1 During development

While designing the layout of the basic UI, we regularly seek feedback from ex-
ternal actors with no connection to the project. While the construction workers
of the municipality are our primary target audience, seeking this feedback would
help universalize the design of the layout, given it would be available to everyone.
The feedback received here was generally not regarding the regulation plans, as
this was found not to be a priority by most people outside of the construction
profession.

8.2.2 Feedback from client

To ensure the project was satisfactory for our target audience, once we had imple-
mented most of the features requested by the client, we sent the project over to
Geir Karsrud, who put the files on their servers for hosting. However, we quickly
received feedback we needed to look into before we could perform user tests. The
first feedback we received was they had difficulties running the project, as the
number of tiles led to severe performance issues. The then-current version of the
project would load tiles infinitely when tilted, which led to the web browsers inev-
itably crashing. As there was no need to render tiles too far back to see, to combat
the performance issues, the far-plane of the camera Frustum was moved closer to
the screen, changing from a value of 5000000 down to 10000. This greatly im-
proved the workload, as the number of tiles on-screen was reduced.

During development, we worked with the 3Dklient.html file in mind as the entry
point. After we had sent the project, we were informed about the GI2020.html
file being preferred as the entry point. This file would take in x-coordinates and
y-coordinates through the URL, which would convert these values to BBOX co-
ordinates for use in the wxs.three.html file. Based on this new information, we
modified the 3Dklient.html file, which up until this point had worked with hard-
coded coordinates as a starting point, and changed it to take in the values through
the URL and work with these instead, with default values being used should no
values be passed through the URL.

8.2.3 User Feedback

We sent a survey of basic tasks to perform on the map to our secondary con-
tact person Geir, who sent it to construction workers within the municipality. This
survey asked them to perform tasks similar to those in our manual testing list.
they were then free to add comments they had regarding the map layout. They
were also asked to name the type of device they had utilized and their choice of
web browser, as these details could impact their experience. With the construc-
tion workers and general public as target audiences, we sent the survey to some
actors outside the municipality employees. The answers we received from both

52 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

these audiences differed, giving valuable insight.

The answers given by the construction workers were mostly positive. Most of the
tasks were reported as easy to perform, with few exceptions. One of the testers
reported they could not rotate the map, stating they could not find buttons for do-
ing so. In the map, the rotation is meant to be performed by dragging the map in
certain directions. However, as dedicated buttons exist for zooming, we see how
this could lead to confusion, as it could be assumed that buttons for rotating the
map should exist. This could be fixed by implementing such buttons or adding
instructions on controlling the map within the solution itself. Besides the rotation
feedback, one tester reported turning on regulation plans as OK rather than easy.
However, no further comments on that task were given. It could be assumed that
the menu icon is slightly too hidden, and the toggle location for the regulation
plans is not very obvious. Of all these testers, all performed the tasks on a com-
puter.

The results from the testers from the general public were quite different, as most
of these reported difficulty performing a larger number of tasks. Few of the test-
ers could toggle the regulation plans, and some had difficulties moving the map.
Most of these testers used a mobile device, which indicates flaws in the design
across device types. We found that even though development browsers showed
equal sizes to the buttons on desktop screens and in Responsive Design Mode, as
well as our own SkyHiGh deployment, once the finished solution was deployed to
the Municipality’s website, the website was shown as a down-scaled version of the
desktop version, making the buttons appear much smaller than planned. Usually,
to combat this, a line is added to the HTML code reading <meta name="viewport"
content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-
scale=1.0">, which is commonly used in websites which are optimized for use
on mobile devices, as it prevents the website from displaying as a down-scaled
version of the desktop layout. This line was added to the 3Dklient.html file. How-
ever, it is not present in the GI2020.html, which could be the reason for this issue.

Users on mobile devices also found some difficulty moving the map. However,
rather than having trouble rotating the map, they found it difficult to move it.
Moving the map with TrackballControls is performed using three fingers, which
may be a touch gesture not many casual mobile users are familiar with. A pos-
sible solution could be to add instructions on the movement of the map on mobile
devices. Another comment we received was some users tried to zoom in on dif-
ferent parts of the map using touch gestures. However, the map only zoomed in
on the center regardless of what part of the screen the gesture was performed. Al-
though most of the testers could run and test the program, some users with older
phones still found issues regarding performance and ran into crashes due to the
heavy load.

Chapter 8: Quality Assurance 53

Out of all the feedback we received, most of the problems testers had seemed
related to map movement, as can be seen from the feedback received in figure
8.2. While 2D maps and their controls are common and more users have exper-
ience with this, when it comes to navigating maps in a 3D space, the movement
shows to introduce challenges. While most movement gestures on a computer
using a mouse are easier to figure out, mobile devices relying on the user find-
ing out how to use touch gestures to perform certain movements proved a bigger
challenge. While the main target audience is construction workers operating on
desktop computers, it can be a good idea to adjust the mobile design to make the
experience as universal as possible.

I felt like I was stuck at one point of the map, I could not move to another position
to zoom in and out there.
When I turned the map to get it horizontally, it over-rotated the map.
I did not think it was possible to move the map, but only having ability to zoom
as I was unable to move it.
It was difficult to move the map as I used a mobile device and expected to be
able to move it with 1 or 2 fingers. Needed to use 3 fingers to move it instead of
rotating. I still found it out relatively quick.
Could not move the map. I tried arrow keys, clicking and dragging with the mouse
and all visible buttons on the side.
There was a square in the lower right corner which did not load, I do not know
what +/- would to to the square. But it reloaded the map with new zoom.
After having tried it a bit more, I saw there was a picture in the corner which did
not load. I tried clicking and dragging this, and the map moved. But it was quite
uncontrollable.
Rotating the map felt very sensitive, anything more than a small swipe would
rotate the map around much more than desired.
Could not find the buttons to rotate the map.

Table 8.2: Answers about what made certain actions more difficult.

54 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

The button for regulation plans is easy to find, but quite small on mobile. The
menu itself should have been a bit bigger. Otherwise, everything was quite easy,
clear and user friendly
Four buttons do the same thing? Scrolling with a mouse, +/- in the corner, the
menu and +/- down in the lower left corner. The page takes a long time to load.
After messing around with it for a little, all I got was a black map, even after a
reload. But, I got back to the map eventually.
The map crashed a few times when trying to load too much, usually when the
map was on its side after rotating it took far.

Table 8.3: General feedback from the testers.

Chapter 9

Deployment

9.1 SkyHigh

During development, we deployed our project to an OpenStack instance, on NTNU’s
SkyHiGh installation, letting us test its behavior when running from a server. And
ensure the project ran on a non-development computer. We attempted to have the
deployment automatically update every time the main branch of our Gitlab repo
was updated. If it worked, GitLab would have simply sent a request to the server
on its internal network, triggering a script to run the command "git pull". Unfor-
tunately GitLab, due to security reasons, does not allow registering an internal
IP for webhooks. Ultimately we decided to manually update the deployment, as
updates were infrequent and it was quick to do manually.

9.2 Gjøvik Kommune’s website

The deployment of the final solution is taken care of by the municipality, who are
hosting it on their servers. The solution can be found via their Geoinnsyn portal
here, as of May 2023.

55

https://geodata.gjovikregionen.com/geoserver/www/GI3DNTNU/GI2020.html?X=591041&Y=6740572

Chapter 10

Evaluation

10.1 Development process

The development process was acceptable, although it could have been executed
better in some areas. For example, we developed the product by choosing issues
from our product backlog and doing them. What would have made this process
better would be setting more concrete deadlines, like finishing the UI by a cer-
tain date, finishing the 3D map by a certain date, etc. Additionally, although we
both kept it in mind throughout the project, we could have utilized the project
plan better. We also probably should have prioritized differently initially, as the
importance of the regulation plan overlay became apparent after our first meeting
with Geir Karsrud.

Even though the development process could be better, we are happy to have im-
plemented the highest-value requests we were given. The map has seen progress
from the state it originally was, with a UI more suitable for being publically avail-
able, and regulation plans being implemented as an overlay.

10.2 Quality of what was achieved

The quality of the project did not turn out as good as we would have hoped, as
the final project had issues with performance which should have been improved
to better the overall experience. One of the features we wanted to implement,
which was increasing fidelity when zooming in on the map, had to be scraped as
we saw we could not implement it in time. The endpoint for fetching regulation
plans seems to be rate limited, which results in black squares on the map, which
should have been fixed. Lastly, a last-minute bug prevented the mini-map from
loading as it should. We tried looking into it together with Geir Karsrud, but it
remains unfixed. It remains somewhat functional in that clicking and dragging on
the map does what it would normally do besides being invisible. This is something
that could be looked into by future developers.

57

58 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

Besides these downsides, we are quite happy with many aspects of the finished
product. The most important feature requested was the regulation plan overlay,
and while the endpoint is limited, the plans are functional and visible on the map.
The overall UI has also been improved, with the map fully loading on start and
including alternative controls, which may be helpful for those who find zooming
with a scroll wheel difficult, and an error message is displayed when the map
fails to load. We have also increased security by hosting the dependencies loc-
ally rather than loading them from a remote source and updating the outdated
Three.js dependency. However, we recommend switching to a package manager
like Npm.

10.3 Project and Code

The source code we were given was, in our opinion, poorly documented. There
were very few comments in the code itself, which led to us spending more time
than anticipated finding out how the code worked. While reading the code, we
decided to add some comments, mostly to keep track of the functionalities. Any
new functions made by us have been given comments in an effort to make the
development easier for future developers.

Although a function for this has not been made, the project has the ability to
be given more optional layers. The texture for the regulation plan overlay is given
to the shader as a uniform, meaning that it should be possible to load multiple
overlays as textures and change the uniform to others.

10.4 Stakeholder

We had good communication with our stakeholder, although ideally, we would
have wanted to meet with Geir Karsrud earlier in the process, as he provided
valuable feedback and advice, having worked on the same project earlier. Other
than that, we are happy with the collaboration. We implemented the core features
requested, and our contact persons seemed pleased with the result.

10.5 User studies

Although we did receive useful feedback, the user studies of this project could
have been conducted better. The number of results gathered from the main target
audience, construction workers employed in the municipality, was quite lacking.
Due to this, we sought testers from the secondary target audience, the general
public. Here, luckily, we received a larger number of detailed responses. We would
have liked to have sought out more feedback earlier, allowing us to work on the
feedback given, and while we were able to work on the feedback given by Geir

Chapter 10: Evaluation 59

Karsrud, the results of the user surveys were received late in the project. These
results can be found in the appendix, which may be of use for future developers
on this project.

10.6 Project plan

Looking back at the project plan, we find some deviations from how the semester
was originally planned out.

We made plans to potentially utilize the Jest framework to conduct unit testing.
However, this did not happen. We created manual tests for checking the 3D graph-
ics of the project, but no tests of other functionality were implemented, as we
should have. We considered using Flutter for UI development early in the project.
While we spent some time looking into it, we ultimately did not use it for this
project, as we did not see an elegant way of integrating the preexisting project
with it.

Chapter 11

Conclusion

The project’s development process could be improved. At the end, we succeeded
in implementing what we wanted and what the specification requirements were.
We prioritized the highest-value features and managed to deliver what the client
wanted the most.

The product, although not performing as well as we would want, contains the
features we wanted to implement by the project’s end. The UI looks much cleaner
and more user-friendly compared to the initial look.

As we had seen in the 3D Amsterdam example discussed in chapter 6, both the
client and the group showed interest in the possibility of displaying 3D objects,
such as buildings, as these would also be quite helpful for construction workers
in getting a better overview for construction planning. This should be possible by
utilizing additional endpoints provided by the Norwegian Mapping Authority.

The current map will get its location from the location it receives from Geoinnsyn.
As is a feature in many other mapping services, one could add functionality for
searching for specific addresses once inside the map. Such functionality does ex-
ist in the OpenLayers library, and it should then be possible to tie this together
with the 3D map by searching for an address with OpenLayers and using the re-
sponse to move the position of the camera to focus on that specific area on the 3D
map. Alternatively, the Norwegian Mapping Authority provides a RESTful API for
providing addresses, which could potentially be used to create a search function
and tie it to the mini-map.

As discussed in section 8.2, we received a lot of user feedback from our surveys,
which mostly concerned the movement of the map. The map uses TrackballCon-
trols. However, many camera control libraries have been made for Three.js, so
there is a possibility that a library more suitable for this project exists, maybe
even solving the current problems with navigating the map on mobile. If not, al-
ternatively, it is possible to create a new camera control library or make edits to

61

62 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

an existing one. If none of these options is doable, adding instructions on moving
the map to the users is also possible, be it within the program or as documentation.

The project has gotten essential features. But it still needs more development, this
could make a good task for a future bachelor group. Overall, we have acquired a
lot of knowledge about 3D graphics in web development and mapping services,
specifically working with the Three.js library, and WCS and WMTS protocols, and
we are happy with the final product.

Bibliography

[1] R. 1. GeoTIFF. ‘Geotiff, revision 1.0.’ (2020), [Online]. Available: https:
//www.loc.gov/preservation/digital/formats/fdd/fdd000279.shtml
(visited on 10/05/2023).

[2] NASA. ‘Hierarchical data format (hdf).’ (2023), [Online]. Available: https:
//www.earthdata.nasa.gov/technology/hierarchical-data-format-
hdf (visited on 10/05/2023).

[3] N. Snow and I. D. Center. ‘What is netcdf?’ (2023), [Online]. Available:
https://nsidc.org/data/user-resources/help-center/what-netcdf
(visited on 10/05/2023).

[4] L. Vårdal, J.-A. Overland and E. S. Zakariassen. ‘Kommunene.’ (2020), [On-
line]. Available: https://ndla.no/subject:1:470720f9-6b03-40cb-
ab58-e3e130803578/topic:1:3d26f57e-a8c9-45e5-bc57-2d31df53f969/
topic:1:27f37dfa-783e-4c3e-a52e-406ab0741b25/resource:ad4432c2-
4f71-4007-a512-613dafa6f61f (visited on 10/05/2023).

[5] A. F. Sveen, C. Mielke, J. Pedersen and S. Iversen. ‘Wxs.three.js.’ (2016),
[Online]. Available: https://github.com/jarped/wxs.threejs (visited
on 09/05/2023).

[6] A. Enterprise. ‘Wcs services.’ (2022), [Online]. Available: https://enterprise.
arcgis.com/en/server/latest/publish-services/linux/wcs-services.
htm (visited on 09/05/2023).

[7] Peter Morville. ‘User experience design.’ (2004), [Online]. Available: http:
//semanticstudios.com/user_experience_design/ (visited on 28/03/2023).

[8] World Health Organization. ‘Disability.’ (2023), [Online]. Available: https:
//www.who.int/news-room/fact-sheets/detail/disability-and-
health (visited on 28/03/2023).

[9] G. LLC. ‘Google maps.’ (2023), [Online]. Available: https://www.google.
com/maps/ (visited on 05/05/2023).

[10] A. Inc. ‘Apple maps.’ (2023), [Online]. Available: https://www.apple.
com/maps/ (visited on 05/05/2023).

[11] N. AS. ‘Kommunekart.’ (2023), [Online]. Available: https://kommunekart.
com/ (visited on 05/05/2023).

63

https://www.loc.gov/preservation/digital/formats/fdd/fdd000279.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000279.shtml
https://www.earthdata.nasa.gov/technology/hierarchical-data-format-hdf
https://www.earthdata.nasa.gov/technology/hierarchical-data-format-hdf
https://www.earthdata.nasa.gov/technology/hierarchical-data-format-hdf
https://nsidc.org/data/user-resources/help-center/what-netcdf
https://ndla.no/subject:1:470720f9-6b03-40cb-ab58-e3e130803578/topic:1:3d26f57e-a8c9-45e5-bc57-2d31df53f969/topic:1:27f37dfa-783e-4c3e-a52e-406ab0741b25/resource:ad4432c2-4f71-4007-a512-613dafa6f61f
https://ndla.no/subject:1:470720f9-6b03-40cb-ab58-e3e130803578/topic:1:3d26f57e-a8c9-45e5-bc57-2d31df53f969/topic:1:27f37dfa-783e-4c3e-a52e-406ab0741b25/resource:ad4432c2-4f71-4007-a512-613dafa6f61f
https://ndla.no/subject:1:470720f9-6b03-40cb-ab58-e3e130803578/topic:1:3d26f57e-a8c9-45e5-bc57-2d31df53f969/topic:1:27f37dfa-783e-4c3e-a52e-406ab0741b25/resource:ad4432c2-4f71-4007-a512-613dafa6f61f
https://ndla.no/subject:1:470720f9-6b03-40cb-ab58-e3e130803578/topic:1:3d26f57e-a8c9-45e5-bc57-2d31df53f969/topic:1:27f37dfa-783e-4c3e-a52e-406ab0741b25/resource:ad4432c2-4f71-4007-a512-613dafa6f61f
https://github.com/jarped/wxs.threejs
https://enterprise.arcgis.com/en/server/latest/publish-services/linux/wcs-services.htm
https://enterprise.arcgis.com/en/server/latest/publish-services/linux/wcs-services.htm
https://enterprise.arcgis.com/en/server/latest/publish-services/linux/wcs-services.htm
http://semanticstudios.com/user_experience_design/
http://semanticstudios.com/user_experience_design/
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.google.com/maps/
https://www.google.com/maps/
https://www.apple.com/maps/
https://www.apple.com/maps/
https://kommunekart.com/
https://kommunekart.com/

Appendix A

Additional Material

A.1 User Test Results

Følte jeg sto fast på et punkt på kartet, klarte ikke flytte meg til en annen posisjon
for å zoome inn og ut der. Skjønte ihvertfall ikke
Når jeg snudde på kartet å ville ha det i horisontal så overroterte kartet
trodde ikke det var mulig å flytte rundt på kartet, men at det bare hadde zoom
pga at jeg ikke fikk det ilt
Det var vanskelig å flytte på kartet da jeg brukte mobil fordi jeg forventet å kunne
flytte det ved hjelp av 1-2 fingre på skjermen. Måtte ha 3 fingre for å flytte det i
steden for å rotere. Fant likevel ut av det relativt raskt.
Fikk ikke til å flytte på kartet. Jeg prøvde piltaster, klikke og dra med musen og
alle synlige knapper på siden.
Det var en firkant nede i høyre hjørne som ikke lastet inn, jeg vet ikke hva +/-
skulle gjøre i forhold til forkanten. Men for meg reloadet de siden med ny zoom.
Etter å ha prøvd litt mer så jeg at det var et bilde i dette hjørnet som ikke lastet
inn. Jeg prøvde å klikke og dra på dette og kartet flyttet seg. Men dette var veldig
ukontrollerbart.
Rotating the map felt very sensitive, anything more than a small swipe would
rotate the map around much more than desired.
Fant ikke symbolet/tegnet som viser at kartet kan roteres.

Table A.1: Answers about what made certain actions more difficult.

65

66 Lønnemo & Hønnåshagen Hansen: Innovative presentation of open data

(a) Difficulty of zooming on the map. (b) Difficulty of moving the map.

(c) Difficulty of rotating the map.
(d) Difficulty of showing regulation
plans on the map.

(e) Type of device used. (f) Web browser used.

Figure A.1: User testing results.

Chapter A: Additional Material 67

Vet ikke hva reguleringsplaner er :*-)
Knappen for reguleringsplaner er lett å finne, men blir svært liten på mobil. Selve
menyen burde ha vært litt større. Ellers var alt veldig lett, oversiktlig og bruker-
vennlig.
4 knapper som gjør det samme? scolling på mus, +/- i hjørnet, "menyen" og +/-
nede i venstre hjørne
Siden bruker veldig lang tid på å laste inn. Etter å ha tuklet litt med den får jeg
kun svart kart selv etter reload. Men jeg kom til slutt tilbake til kartet.
The map crashed a few times when trying to load too much, usually when the
map was on its side after rotating it took far.

Table A.2: General feedback from the testers.

Nora Hønnåshagen Hansen, Fredrik Lønnemo

Project plan

Innovative presentation of open data

Project plan
Supervisor: Mariusz Nowostawski
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

2

Project Plan

1.1 Background
Gjøvik municipality gathers data from several sources through different develop-
ment projects. Some of these experimental datasets are available as open data.
They do not have the time and resources themselves to create good visual pre-
sentations of these data sets, and would like students to create educational and
informative presentations of these datas for the relevant target audiences. An ex-
ample that is relevant is water temperatures and air quality readings.

Within Gjøvik municipality, work on creating a 3D map of the city has been
started, however it is not finished. This map would ideally give the user the
ability to view area plans by clicking on a building, and potentially other infor-
mation. They are interested in having this project further developed, by adding
the mentioned functionality, as well as improve upon the user interface.

1.2 Project goals
- Result goals
We aim to develop a solution that will visualize the town of Gjøvik in 3d and make
the viewing of data from the municipal government easier so municipal workers
can make decisions with clearer/more digestible information.
If time allows we will add visualization of some open data to give information to
citizens more easy
- Effect goals
Municipal workers spend less time on looking at maps and are able to reach deci-
sions faster. And more easily see who is affected when they draw up area plans
- Learning goals
Web-development and deployment, integration of data from the "kommune", man-
aging a larger project that spans months of work. Integrating UX feedback.

1.3 Framework
• The webservice should work on all web browsers with WebGL support, which

ensures compatibility with ThreeJS as well. Some examples of browsers with
WebGL support are the latest versions of Chrome, Firefox, Safari, and Edge

• The website should have independent design, meaning it can be viewed on
both computer screens as well as mobile phone screens, without the need to
develop two separate versions of the product

• The data used to make the 3D map will be fetched from the Norwegian
Mapping Authority’s APIs. The open-source library OpenLayers will be
used to display maps, and ThreeJS is used for creating 3D graphics.

• Additional data to be added, for example area plans or air quality, will be
fetched from the appropriate APIs hosting said data.

2.1. DOMAIN 3

• The map should cover the city of Gjøvik only

Scope

2.1 Domain
When developing a product which will be available to the public, in order to reach
as many of them as possible, it is important to create an independent design. To
achieve this, user centered design becomes essential, as a product which has a well
developed back end but an inconvenient front end will not be as successful. To
avoid a lacking user interface, one must take multiple aspects of design into con-
sideration such as user tests, accessibility, studying examples of good user centered
design, and reiterations based on user feedback.

The primary target audience of the project is the internal audience of Gjøvik mu-
nicipality, meaning employees who might use it for construction planning, among
other things. These will be primarily using desktop computers, however with the
growing prevalence of mobile devices, we will focus on keeping the design indepen-
dent. This way, employees in the municipality can use the map on a computer,
just as well as on a portable device such as a mobile phone or tablet. It will also
ensure reaching a wider audience, such as the general public of the city.

• Frontend web design using HTML, CSS and JavaScript

• Graphics for web, using ThreeJS

• UI design with Flutter

2.2 Delimitation
The data used to create the map will be obtained from external services, including
The Norwegian Mapping Authority’s endpoints. Other endpoints will be used
to collect the additional data to be displayed in the map, which may include
Nilu, The Norwegian Public Roads Administration, and internal data from Gjøvik
municipality. We will not be responsible for the accuracy of the data from the
mentioned APIs.

2.3 Case description
This project will be using the existing in progress map solution, and develop it
further. The main focus will be to achieve an intuitive user interface, and adding
the features as wished by the client. The map’s target audience is primarily
the internal employees of the municipality, who will mostly be using the solution
on desktops for purposes such as viewing area plans for construction work. The
solution will be deployed as a service on the web. Although it is primarily targeted

4

at the employees of Gjøvik municipality, it will be open for anyone to view and
use without the need for authentication.
The solution will use data from the Norwegian Mapping Authority to build the
map itself. To add more information to be viewed in the map, we will use the
APIs hosting the relevant data, these could include Nilu, Yr, and the Norwegian
Public Roads Administration.

Project Organization

3.1 Responsibilities and Roles

Group roles

Client
Pål Godard is our client contact person representing Gjøvik Municipality. We will
have meetings every other Thursday 12.00.
We will also with Geir Karsrud who developed the current 3d map solution and
is part of it’s intended audience

Supervisor
Mariusz Nowostawski is our designated supervisor. We will have weekly meetings
in person on Thursdays 13.00, with the possibility of digital meetings if needed.

Group Leader
Fredrik Lønnemo is the group leader, which entails having the responsibility of
making sure the project moves forward as it should, as well as solving internal
conflicts.
Fredrik will also act as a developer

Developer
Nora Hønnåshagen Hansen is a developer on the team, with the shared responsi-
bility of fulfilling tasks and documenting decisions made.

3.2 Routines and group rules
We will as a group hold weekly meetings, where we discuss what has been worked
on, as well as what tasks should be worked on the following week.

Group rules

• Each group member should log approximately 30 hours a week.

• All hours spent on the project should be logged, with descriptions telling
what these hours have been spent on

4.1. SOFTWARE DEVELOPMENT MODEL 5

• We will have at least one group meeting each week, with the possibility of
supplementing with more meetings if needed.

• If a group member is unable to attend a meeting, they are expected to notify
the other group member of this

• Should a group member be unable to attend a meeting in person, they should
alternatively attend the meeting digitally.

Planning, Follow up, and Reporting

4.1 Software Development Model

The model we have chosen to use for this project is the incremental sequential
model. This entails starting with the base we have been provided, in which we
will develop and add new additions piece by piece, with each piece being added to
the working product. We have chosen this model as our task’s scope is very open
and has the ability to be expanded where desired. As we have a core component
that needs to be functional (the 3d display of terrain and buildings) and then
features that would be good to have, but not necessary, using the incremental
sequential model is a good fit as it will let us discard, if necessary, or add on more
increments, if possible.

6

4.2 Plan for Status Meetings and Decision-Making

We will have progress meetings on Thursdays with our client, our supervisor, and
a group meeting, one after the other. After we have completed user testing, we will
have a meeting where we discuss the results and figure out what changes should
be made to the product.

Organization of Quality Assurance

5.1 Documentation, Standards, Configuration Man-
agement, Tools

5.1.1 Documentation

For this project we will be building upon pre-existing open-source code, and it
is desired that our end result also be available to the public. Therefore it is
important our project is well documented both with external documentation, and
documentation in the form of comments in the code itself. The project should also
be one that can be easily expanded further, making documentation important to
ensure the source code is easy for the potential developers to understand.

We will be using Git for version control. The code should be committed fre-
quently, with descriptive messages telling what changes have been made. The
project repository will contain a comprehensive README with information on
how to use the project.

5.1.2 Standards

All documentation and commenting will be done according to the relevant stan-
dards and best practices, in order to maintain tidy and easily readable code both
for the group member and future developers working on the code.

5.2. TESTING (PLAN FOR INSPECTIONS AND TESTING) 7

5.1.3 Tools
Name Type Usage

OverLeaf Collaborative cloud-
based LaTex editor

Writing documents,
project plan, final
report, and other deliv-
erables

TeamGantt Gantt chart maker Create the Gantt chart
SkyHigh Cloud service Hosting the solution on

the internal NTNU net-
work while in develop-
ment

Discord Communication plat-
form

Hosting online group
meetings and general
communication

Flutter Open-source UI soft-
ware development kit

Creating the indepen-
dent user interface for
the solution

Google Drive Cloud file storage Sharing and keeping
backups of documents

Visual Studio Code Source code editor Developing and editing
code

Sublime Text Text and source code
editor

Developing and editing
code

Firefox Developer Edition Web browser with addi-
tional developer tools

Local testing

Gitlab Version control system Working together on the
code and keeping track
of changes

5.2 Testing (Plan for inspections and Testing)
As this project will rely heavily on requests made to different APIs, we will utilize
testing methods such as mocking and stubbing. To do this we might utilize the
JavaScript testing framework Jest, which comes with built-in mocking functions
which can be overwritten to fit our needs. We aim for at least 50% test coverage,
we do not feel confident in aiming higher as a lot of the code will likely be focused
on graphical output which we find easier to test manually than programatically.

5.3 Risk analysis

Risks

8

Table 5.3.1: Risk Standard

Severity

Likelihood
Risk pad
Matrix

Insignificant Minor Moderate Major Severe

Almost
certain

Medium High Very high Very high Very high

Likely Medium High High Very high Very high
Possible Low Medium High High Very high
Unlikely Low Low Medium Medium High
Rare Low Low Low Low Medium

Number Description Likelihood/Consequence
1 Data endpoints become unavailable Unlikely/Major
2 Group member is absent due to illness/other reasons Possible/Moderate
3 Client is missing Rare/Moderate
4 Product not finished by deadline Possible/Major
5 Lose access to SkyHigh instance Unlikely/Minor
6 User testing cannot be completed Possible/Major
7 Source code lost Rare/Major
8 The web solution works well on only some devices. . . Possible/Major

6.1 Implementation Plan

6.1. IMPLEMENTATION PLAN 9

Number Mitigation plan

1 If the desired data cannot be fetched, we will seek out
the providers to find ways the data can still be

2

All group members will be informed on what work has
been done, to ensure they are able to pick up where the
absent group member left off. As the scope is very open,
adjustments can be made

3

We will keep regular contact with the client. If contact
is lost, the supervisor will be asked to help to get in
touch again. If necessary, we will ask for help from a
student counselor.

4
Both members will work regularly on the project from
the beginning. As the project is a very open one, the
scope can be adjusted to ensure the goal is reachable

5
If access to the SkyHigh server is lost, we will apply for
access again. Should our application be denied, we will
find an alternative cloud service.

6
If user testing cannot be completed in any circumstance,
alternatively we will have to look to other sources for
inspiration, such as studying cases of good design.

7 Regular commits will be made to the git repo, ensuring
that any data lost locally can be found remotely.

8 The product will be tested regularly on different device
types and sizes to avoid dependent design.

10

6.1.1 Gantt chart

Gantt chart

6.1. IMPLEMENTATION PLAN 11

6.1.2 Milestones

• 31. January: Project plan ready for delivery

• 31. January: Languages chosen

• 3. February: SkyHigh server and development environments set up

• 17. March: Backend done

• 5. May: Product done

• 31. March Product ready for user testing

• 22. May Final report and product deadline

• 6. - 8. June Presentations

References https://www.projectmanager.com/training/how-to-analyze-risks-project

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Glossary
	Introduction
	Background
	Domain
	Delimitations
	Task description

	Target audience
	Thesis
	Product

	Group background
	Academic background
	Motivations

	Constraints
	Time constraints
	Software, hardware constraints

	Project goals
	Result goals
	Effect goals
	Learning goals

	Group organization
	Thesis structure

	Theory - User Experience
	Domain
	Purpose
	What is User Experience?
	User Experience vs. User Interface
	Achieving a Positive User Experience
	Using testing data to improve product

	Requirements
	Use case
	Actors
	User Stories

	Backlog
	Performance
	Functional
	Operational
	Security
	UI

	Development process
	Project characteristics
	Software development model
	Project management tools
	Version control and code organization
	Gantt diagram
	Planning phase
	Front end design
	Front end development
	Back end development
	User testing
	Changes based on user feedback

	Meetings
	Group meetings
	Supervisor meetings
	Client meetings

	Graphical user interface
	Initial Design
	Design Changes
	Camera Controls
	User Interface Changes
	Changes Based on User Feedback
	Final Design

	Technical design
	System architecture
	Architecture Alternative
	Front end
	Back end

	Implementation
	Already implemented
	wxs.three.js
	Modifications by the municipality

	Dependencies
	3D Map
	Lighting
	User Interface
	Loading Message and Error Message
	Caching
	Code Metrics
	Code and languages
	Issues and merge requests
	Time usage

	Quality Assurance
	Testing
	User feedback
	During development
	Feedback from client
	User Feedback

	Deployment
	SkyHigh
	Gjøvik Kommune's website

	Evaluation
	Development process
	Quality of what was achieved
	Project and Code
	Stakeholder
	User studies
	Project plan

	Conclusion
	Bibliography
	Additional Material
	User Test Results

