
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Sander Osvik Brekke
Ivan Norderhaug
Kristian Røren Svanholm

License Management in Closed
Offline Networks Using Modern
Cryptographic Solutions

In cooperation with Nevion Europe AS

Bachelor’s thesis in Bachelor in Computer Science and Bachelor in
Programming
Supervisor: Steven Yves Le Moan
May 2023

Sander Osvik Brekke
Ivan Norderhaug
Kristian Røren Svanholm

License Management in Closed Offline
Networks Using Modern Cryptographic
Solutions

In cooperation with Nevion Europe AS

Bachelor’s thesis in Bachelor in Computer Science and Bachelor in
Programming
Supervisor: Steven Yves Le Moan
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Title: License Management in Closed Offline Networks Using
Modern Cryptographic Solutions

Date: May 20, 2023

Participants: Sander Osvik Brekke

Ivan Norderhaug

Kristian Røren Svanholm

Supervisor: Steven Yves Le Moan

Employer: Anders Dale, Nevion Europe AS

Keywords: Offline Digital Rights Management, Licenses, Chain of Trust,
Certificates

Pages: 105 without appendix

222 with appendix

Appendices: 15

Availability: Open

.

Nevion wanted a concept solution to a system that incorporates a time-based li-
censing model, where the customer can generate sublicenses, from a larger top
level license, on the behalf of Nevion. This should happen without an internet con-
nection. Through this project, there has been developed a concept to the wanted
solution through combining technologies like X.509, AES-256 and PKI. Further-
more, there have been developed and implemented a proof of concept, proving
the practicality aspect of the system. Managing licenses and digital rights in off-
line environments is a risk regarding security. Because of this, Nevion wanted a
security review to shed light on the security aspects of the developed concept. The
total solution gives Nevion a base for implementing a similar system and utilizing
this report for further research and development.

iii

Sammendrag

Tittel: License Management in Closed Offline Networks Using
Modern Cryptographic Solutions

Dato: 20. mai 2023

Deltakere: Sander Osvik Brekke

Ivan Norderhaug

Kristian Røren Svanholm

Veileder: Steven Yves Le Moan

Oppdragsgiver: Anders Dale, Nevion Europe AS

Nøkkelord: Digitale rettigheter i frakoblede miljøer, lisenser, tillitskjede,
sertifikater

Antall sider: 105 uten vedlegg

222 med vedlegg

Antall vedlegg: 15

Tilgjengelighet: Åpen
.

Nevion ønsket en løsning til et system som benytter seg av en tidsbasert lisensier-
ingsmodell der kunden selv skal kunne generere del-lisenser av en større lisens
på Nevions vegne, uten internettilkobling. Gjennom dette prosjektet har det blitt
utviklet et konsept til det ønskede systemet ved å benytte seg av ulike teknolo-
gier som X.509, AES-256 og PKI. Videre har det også blitt implementert et bevis
på at dette konseptet er mulig å gjennomføre i praksis. Håndtering av lisenser og
digitale rettigheter i miljøer uten internettilkobling innebærer en stor sikkerhets-
risiko. Derfor ønsket Nevion å vite om et slikt system er sikkert, og etterspurte en
sikkerhetsanalyse av det utviklede konseptet. Den totale løsningen gir Nevion et
godt utgangspunkt til å implementere et liknende system og benytte prosjektrap-
porten til videre forskning og utvikling.

v

Preface

This is a bachelor thesis written at the Norwegian University of Science and Tech-
nology in Gjøvik, Faculty of Information Technology and Electrical Engineering,
Department of Computer Science during the spring of 2023. The bachelor thesis
has been written as a part of the Bachelor’s degree program in Computer Science
and the Bachelor’s degree in Programming, written by Ivan Norderhaug, Sander
Osvik Brekke, and Kristian Røren Svanholm.

We would like to extend our sincere appreciation to our supervisor, Steven Yves
Le Moan, for his unwavering support, insightful feedback, and constructive dis-
cussions. Additionally, we would like to express our gratitude to Anders Dale, our
Nevion representative, for his valuable contributions, helpful guidance, and re-
flective discussions throughout the process.

There are many additional people who deserve a thank you; first and foremost our
classmates who have been motivating and guiding us through deep, both relevant
and irrelevant, conversations. Countless hours at the reading hall went by more
quickly in your presence. Also, it is important not to forget the most valuable help;
each other! It has been an interesting, rewarding, and fun process.

Last but not least, we would like to thank our supporters at home: Pernille, Marthe,
and Laura.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Background . 1
1.2 Problem Area . 2
1.3 Problem Statement . 2
1.4 Scope . 3
1.5 Assumptions . 3
1.6 Goals and Constraints . 4

1.6.1 Constraints . 4
1.6.2 Result Goals . 5
1.6.3 Effect Goals . 5

1.7 Target Audience . 6
1.8 Group Background . 6
1.9 Project Structure . 6

1.9.1 Project Roles . 6
1.9.2 Technical Areas of Responsibility 7

1.10 Report Structure . 8
2 Development Process . 11

2.1 Development Model . 11
2.2 Meetings . 12
2.3 Scrum Sprints Summary . 12

3 Concept Review . 17
3.1 State of Technology . 17
3.2 Theory . 19

3.2.1 Cryptography . 19

ix

x S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

3.2.2 Digital Certificates . 22
3.2.3 Summary . 23

3.3 Offline License Management (OLM) . 23
3.3.1 Certificate Authority . 23
3.3.2 Network Management System 24
3.3.3 License File Aggregator . 24
3.3.4 Communication . 25
3.3.5 How Does it Work? . 26

3.4 Security Aspects . 27
3.5 Adapted Chain of Trust . 28
3.6 Discussion . 29

3.6.1 Challenges . 30
3.6.2 Alternative Solutions . 31

4 Security Review . 33
4.1 Introduction . 33
4.2 Theory . 33
4.3 Methodology . 37

4.3.1 Structure . 38
4.3.2 Assets Identification . 38
4.3.3 Threat Identification . 38
4.3.4 Risk Assessment . 38
4.3.5 Risk Control . 38

4.4 Assets Identification . 39
4.4.1 Sensitive Data & Third Party Components 39
4.4.2 Critical Assets . 39
4.4.3 CIA Classifying of Critical Assets 40

4.5 Actors & Roles . 42
4.5.1 Root License Administrator . 42
4.5.2 Client Employee . 42
4.5.3 Client Network admin . 42
4.5.4 External Actors . 42
4.5.5 Malicious Actors . 43

4.6 Risk Appetite . 43
4.7 Threat Identification: Stride . 44

4.7.1 Spoofing . 44
4.7.2 Tampering . 44
4.7.3 Repudiation . 45
4.7.4 Information Disclosure . 45
4.7.5 Denial of Service . 46
4.7.6 Escalation of Privilege . 46

4.8 Risk Assessment: DREAD . 46
4.9 Risk assessment: Threat Matrix . 51
4.10 Risk Control: Bowtie Modelling . 52

4.10.1 Spoofing . 52

Contents xi

4.10.2 Tampering . 53
4.10.3 Repudiation . 54
4.10.4 Information Disclosure . 55
4.10.5 Denial of Service . 56
4.10.6 Escalation of Privilege . 57

4.11 Residual Risk . 57
4.12 Discussion . 58

4.12.1 How Does the Risk Stand? . 58
4.12.2 Is it Viable? . 58

4.13 Conclusion . 59
5 Proof of Concept . 61

5.1 Introduction . 61
5.2 Requirements . 62

5.2.1 Functional Requirements . 62
5.2.2 Non-functional Requirements 62
5.2.3 Operational Requirements . 62

5.3 Technologies . 62
5.3.1 OpenSSL . 62
5.3.2 Network Management System 63
5.3.3 License File Aggregator . 63
5.3.4 Frontend . 63

5.4 Design . 64
5.4.1 Structure . 64
5.4.2 Communication . 64

5.5 License Signing . 65
5.6 Network Management System . 65

5.6.1 API . 67
5.6.2 LFA Registry . 71
5.6.3 Client . 72
5.6.4 License Parsing . 73
5.6.5 Security Features . 73
5.6.6 Pools . 75
5.6.7 Persistence . 76
5.6.8 Sub Level License Generation 76
5.6.9 Logging . 76
5.6.10 Project Initialization . 77

5.7 License File Aggregator . 78
5.7.1 Server . 78
5.7.2 OpenSSL . 80
5.7.3 Client . 82

5.8 Frontend . 82
5.9 Secrets Handling . 84
5.10 Licenses . 84
5.11 Hosting and Version Control . 86

xii S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

5.11.1 Distribution . 86
5.11.2 Deployment . 86
5.11.3 Git . 88

5.12 Quality Assurance . 88
5.13 Discussion . 90

5.13.1 Administrative Decisions . 90
5.13.2 Proof of Concept VS. Concept 91
5.13.3 Security . 91
5.13.4 Is the Concept Proven? . 92

6 Discussion . 95
6.1 Project Retrospective . 95
6.2 Project Plan . 96
6.3 Version Control & QA . 97
6.4 SCRUM . 99
6.5 Meetings . 100
6.6 Thesis . 100
6.7 Engineering Values and Perspectives 101

7 Conclusion . 103
7.1 Further Work . 104

Bibliography . 105
A Project Agreement . 111
B Task Description . 119
C Project Plan . 121
D Gantt Diagram . 139
E Group Rules . 141
F Status Report . 143
G Meeting Minutes . 149
H Time Sheets . 193
I Frontend Graphical User Interface . 197
J Proof of Concept Initial Setup Guide . 199
K Network Management System ReadMe . 203
L License File Aggregator ReadMe . 205
M Frontend ReadMe . 209
N License File Signing ReadMe . 211
O Checkstyle Ruleset . 213

Figures

2.1 Cumulative flow diagram of SCRUM (snapshot taken on May 11,
during the sprint period of April 28 – May 12. 12

3.1 Architectural diagram for OLM. 25
3.2 Applied chain of trust diagram. 29

4.1 Risk management summary figure [3, p. 120]. 34
4.2 Bowtie model for spoofing threats. 52
4.3 Bowtie model for integrity threats. 53
4.4 Bowtie model for Repudiation threats. 55
4.5 Bowtie model for Information disclosure threats. 56
4.6 Bowtie model for Denial of Service threats. 57

5.1 Initial PoC Architecture. 61
5.2 NMS API Overview. 67
5.3 Screenshot from front end website (NMS part). 83
5.4 Screenshot from front end website (LFA part). 83

xiii

Tables

1.1 Result goals of the project. 5
1.2 Development Roles Summary. 8

3.1 Example of XOR cipher encryption. 19
3.2 AES S-box [15]. 20

4.1 DREAD category ranking. 35
4.2 Average-score-to-ranking conversion using DREAD modelling [25,

p. 215]. 36
4.3 NTNU assets evaluation table [28]. 40
4.4 Assets CIA classification. 41
4.5 Security Review Actors & Roles. 43
4.6 Summarization of threats using DREAD modelling. 47
4.7 Value tuples for threat matrix visualization. 51
4.8 Threat matrix. 52

5.1 NMS API Endpoint Summary. 68
5.2 LFA API Endpoint Summary. 78
5.3 Proof of Concept Services Ports. 86

xv

Code Listings

5.1 Entire LFS bash script utilizing OpenSSL. 65
5.2 NMS Source Code Tree. 66
5.3 NMS API Spring Web Endpoint Handler Shell. 68
5.4 NMS API Positive response body example. 69
5.5 NMS API Negative response body example. 69
5.6 NMS API /license/lfa/ endpoint body structure. 69
5.7 NMS API /lfa/ endpoint response body structure. 70
5.8 NMS API /lfa/licenses endpoint response body structure. 70
5.9 NMS API /pool/all endpoint response body structure. 71
5.10 LFA alive check from NMS. 72
5.11 Cryptography.generateKey. 74
5.12 Cryptography.applyCipher. 74
5.13 NMS Pool: Property change listener definition. 75
5.14 NMS Logging file example. 77
5.15 LFA Source code tree. 78
5.16 LFA API / endpoint response body. 79
5.17 LFA API /licenses endpoint response body. 79
5.18 LFA API /consume endpoint response body. 79
5.19 Chain of trust verification using the root and intermediate certificate. 80
5.20 Integrity validation of sub level licenses. 81
5.21 A simple client for sending a PUT request to NMS. 82
5.22 Calls to NMS endpoints using Axios. 84
5.23 Top-Level License example. 85
5.24 Sub-Level License example. 86
5.25 NMS source code repository CI/CD implementation (simplified). . . 89
5.26 LFA source code repository CI/CD implementation (simplified). . . 90

O.1 NMS Checkstyle Rulesheet. 213

xvii

Acronyms

AES Advanced Encryption Standard. xv, 19, 20, 27, 73

CA certificate authority. 22–24, 26, 28, 40, 41

CIA Confidentiality, Integrity and Availability. xv, 33, 34, 40, 41

DRM Digital Rights Management. 17, 18, 29, 101, 104

LFA License File Aggregator. xiii, xv, xvii, 13, 14, 23–28, 30–32, 39–43, 45, 46,
54, 56, 62–64, 67–72, 75–87, 89, 91–93, 95, 103

LFS License File Signer. xvii, 65, 84

NMS Network Management System. xiii, xv, xvii, 1, 2, 5, 13, 14, 23–28, 30–32,
39–46, 54–56, 62–73, 75–77, 79–87, 89, 91–93, 95, 103

OLM Offline License Management. xiii, 3, 13, 18, 23–25, 27, 28, 30, 32, 43, 57–
59, 61, 62, 64, 85, 95, 101, 103

PoC Proof of Concept. xiii, xv, xxii, 1–5, 7, 8, 13–15, 61, 62, 64, 65, 70, 71, 73,
76, 79, 80, 82, 84–86, 88, 90–93, 95–98, 100

SLL Sub-Level License. xvii, xxii, 2, 5, 18, 24, 26, 31, 39, 40, 43, 45, 46, 54, 56,
62, 65, 68, 69, 71, 77, 80–86, 92, 103

TLL Top-Level License. xvii, xxii, 2, 5, 18, 24, 26, 27, 30, 31, 39, 40, 42–46, 48,
53, 54, 62, 64, 65, 68, 69, 71, 82, 84, 85, 92, 101, 103

UI User Interface. 82, 83

xix

Glossary

API Application program interface, used to communicate with an application, as
a point of contact for a software. xiii, xv, xvii, xxii, 13, 49, 63, 64, 67–72,
76, 78, 79, 82, 84, 86, 91

Bowtie model A bowtie-shaped diagram that visualizes the risk with a clear dif-
ferentiation of proactive and reactive risk management. xiii, 34, 37, 39, 52,
53, 55–57, 59

certificate A unique file that binds an identity using the public key infrastructure.
See Section 3.2.2 – Digital Certificates for more information. xvii, xxi, 13,
22–24, 26–32, 55, 63, 77, 80, 84, 85, 90

certificate authority A trusted entity that provides digital certificates to verify
the legitimacy of people or organisations. xix, 22, 23, 26, 28, 49, 50

chain of trust A series of certificates and key-derrivatives ensuring trust within
digital security systems. See Section 3.2.2 – Digital Certificates for more
information. xiii, xvii, 13, 23, 24, 26, 28–30, 42, 45, 49, 50, 55, 80, 85

cracked software Illegitemately unlocked or accessed licensed software. 17

cryptography The practice of conceiling/unveiling data through systematic scram-
bling. 7, 18, 19, 22, 23, 62, 73, 74

Digital Rights Management Management or orchestration of legal access to, of-
ten licensed, digital assets, contents, or products. 2

digital signature A technique of validating data origin through a signature and
the alleged source’s public key. See Section 3.2.1 – Cryptography for more
information. 22, 23, 27

DREAD A framework used to evaluate various threats by rating them on an or-
dinal scale. xv, 33–36, 38, 43, 46, 47, 51, 59

xxi

xxii S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

hash The product of the action of hashing. A unique fixed-size value representing
the data inputted, regardless on input size. A specified hash function must
be used. 26, 71

license functionality The functionality contained in the licenses, which are dis-
tributed through Top-Level Licenses (TLLs) & Sub-Level Licenses (SLLs).
The functionality may be different things, such as streaming or conversion
for media companies or usage time for software comapnies. xxii, 26, 62, 71,
77, 101

licensing company A company that issues software licensing to their customers.
2, 3, 23, 24, 26–28, 30, 32, 39, 40, 42–44, 47, 48, 54, 55, 57–59, 64, 65,
85, 91, 101, 103

media function In the Proof of Concept, Media Function has become the name
of the license functionality of the implementation. The PoC has been imple-
mented under the guidelines of Nevion, making mediafunctions a relevant
name. 62, 68, 69, 71, 75, 76

Nevion Thesis cooperation company, whom the thesis is written on the behalf of
[1]. xxii, 1, 2, 4, 6, 12, 23, 24, 62, 95, 100, 103

private key The private side of an assymetric key pair. Private keys can be used
to encrypt data and to prevent repudiation. 20–24, 26–28, 30, 40–42, 44,
45, 47, 49, 50, 52, 55, 59, 65, 76, 80, 84, 87, 101

public key The public side of an assymetric key pair. Public keys can be used to
encrypt and decrypt data. xxi, 20–24, 26–28, 73

RESTful API Architectural style for an application program interface (see API,
where HTTP(S) requests are being used for accessing data. 64, 67, 91

STRIDE A threat model used to identify potential vulnerabilities and threats in a
product. 33, 34, 36, 38, 44, 57, 59

threat actor The actor which is the threat. 2, 3, 31, 41–50, 52, 54, 55

Chapter 1

Introduction

1.1 Background

Nevion Europe AS is a company that makes virtual media production equipment [1].
Their focus is on transporting and processing media in real-time. One of their
products, Virtuoso, is a software defined media processing node which works to-
gether with another system called VideoIPath, which is an Network Management
System (NMS). The Virtuoso has different functionality such as compression, de-
compression and video conversion. These functions are provided by interchange-
able cards, which can be inserted into the Virtuoso. The VideoIPath controls and
manages all the Virtuosos in the network and assigns them tasks or connects them
together using software patching [2]. An example of where such a system is ap-
plicable is a football stadium, where several camera streams need to be gathered
at one place in order to be transcoded, compressed, and sent to the broadcaster’s
headquarters before being broadcasted to televisions at home.

Some of Nevion’s customers have expressed a wish for licenses that unlock func-
tionality for only a set amount of time, as opposed to the current lifetime license.
This is mostly due to the fact that they only utilize the unlocked functionality for
short periods of time and that the price of lifetime licenses is high. Nevion has
considered the feedback, and expressed their wish of using the VideoIPath as a
license manager, with responsibilities such as distributing licenses and keeping
track of unallocated time left. This restructuring is also motivated by their wish
to expand to customers who may not have the financial means to afford lifetime
licenses.

Given the uncertainty of such a system, Nevion has requested a concept to be
developed and with it, a security analysis, in order to find eventual security flaws.
Furthermore, Nevion has expressed a wish for a Proof of Concept (PoC) to be
developed with certain requirements.

1

2 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

1.2 Problem Area

This thesis addresses a complex problem encompassing multiple areas of con-
cern such as license communication, license integrity, system integrity and license
usage management. The purpose of the project is to develop an offline system,
which will enable digital rights owners – such as Nevion – to protect their assets
in offline environments. By using this project to develop a suggesting solution to
the problem presented, a secure offline Digital Rights Management solution can
be developed and researched. This will also gain the end users, as they will be
offered digital rights protected assets in offline environments. By using this pro-
ject to also research the problem area, a basis for further development in other,
future, projects can be presented.

Firstly, ensuring the integrity and security of an information system is crucial, es-
pecially when in a closed offline network outside the premises of the licensing
company. This involves challenges such as safeguarding confidential information,
hiding secrets effectively, and preventing tampering with the software and phys-
ical hardware by threat actors seeking financial gain. Additionally, there are sig-
nificant concerns, such as preventing license misuse within a customer’s network
and distribution to other customers to divide licensing costs amongst each other.
Failure to address these challenges could lead to financial setbacks for the licens-
ing company.

1.3 Problem Statement

The problem addressed in this thesis is formulated and written by Nevion. Their
current system operates on a closed offline network and consists of an Network
Management System (NMS) – VideoIPath – and one or more Virtuosos. As of today,
Nevion offers lifetime licenses to their customer for their services. However, there
is a demand for a more flexible licensing model that allows customers to purchase
licenses and divide them into smaller licenses on demand, to be used within the
customer’s network. This involves the entire process from the customer receiving
a bulk license, henceforth known as Top-Level License (TLL), from the licensing
company, to the distribution of a smaller, divided license, henceforth known as
Sub-Level License (SLL), within the customer’s network. Furthermore, the object-
ive is to implement a Proof of Concept (PoC) in Java and C++, showcasing a
working example of the proposed solution, and perform a security review of the
concept. The concept should address the challenges mentioned in Section 1.2,
such as ensuring sufficient security and alleviating concerns of license generation
in a closed offline network.

Chapter 1: Introduction 3

1.4 Scope

The scope of this project includes developing a concept solution for the described
offline digital rights management system, henceforth named Offline License Man-
agement (OLM). This involves designing and defining the necessary components
to implement a functional solution. The implementation will also include a Proof
of Concept (PoC), which serves as an example of how the concept can be put into
practice.

There are certain aspects that fall out of scope and will not be considered. This
includes securing the source code and considering the security of the hardware,
where Virtuoso software is run. Furthermore, the authentication process of system
users is also excluded from the scope, as it is not necessary for the system to work
independently, although it is strongly encouraged in a production environment of
the concept.

In addition to the concept development and PoC implementation, a security re-
view will be conducted. The purpose is to assess the level of cybersecurity within
the OLM system and identify its risks. The security review will primarily focus on
evaluating the concept and its overall security, rather than focusing on the limit-
ations of the PoC.

1.5 Assumptions

The assumptions are set as a basis for the development of the OLM-concept, also
valid for the security review. Firstly, the proprietary hardware on which the Virtu-
oso is deployed on, is assumed safe, as in not available for customer insight and
manipulation. As a result of this, that aspect of the OLM concept is exempt from
the scope of the security review.

Secondly, throughout the project, the customer has been assumed as not trust-
worthy, as the company will need to secure the concept against customer misuse.
This has had a major impact on the security implementations of the PoC and the
security review. This means that external threat actors have taken a back seat in
regard to security in the concept.

Finally, the licensing company is assumed to be a trustworthy organization where
satisfactory cybersecurity and physical security measures are in place. This does
not exempt it from being a target of Spear Phishing, Social Engineering, and sim-
ilar attack vectors in the security review [3, p. 72, p. 426].

These assumptions have been taken into account while developing the concept
and implementing the PoC, although to a varying degree; as with the specific
implementation, compromises followed. Given enough time and resources, these
compromises can be avoided.

4 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

1.6 Goals and Constraints

1.6.1 Constraints

Customer Internal Network

All hardware and software will be deployed within the customer’s own internal
network with direct physical access. Root access is also allowed for certain ele-
ments of the system.

Offline

Neither the concept nor the PoC source code will include any internet connectivity,
as prescribed by the problem statement in Section 1.3. The networks in use will
also be local, set within a venue or given premises.

Time

In the course of the project, the group has been given a limited time to develop
and review the concept, implement the PoC, and write the thesis. The amount
of time given is between 550 and 650 working hours per group member, divided
over the course of 20 weeks. This results in approximately 1 800 hours total for
the group. The deadline is the 22nd of May 2023.

Economics

The group does not have access to any additional funds other than the most neces-
sary, small, purchases. This means that the group is constrained from the ability to
hire external services or buy tools. The most necessary purchases will be covered
by Nevion.

Chapter 1: Introduction 5

1.6.2 Result Goals

Table 1.1: Result goals of the project.

Thesis Components Result Goals
The Concept

• A general concept is developed, adaptable by or-
ganizations such as Nevion.
• A graphical architectural model of the concept.

The Proof of Concept
• The PoC will be based on and fulfil the concept.
• It will demonstrate the feasibility and effective-

ness of the concept.
• The software will be secure when running offline.
• It will be hard to exploit the source code for finan-

cial gain.
• The NMS will be able to create Sub-Level Li-

censes.
• The Top-Level Licenses will only be read once.
• The Top-Level License is not reproducible and

signed by the customer.

The Security Review
• A comprehensive list of discovered threats.
• An in-depth ranking, modelling, and visualization

of threats.
• Various prevention and mitigation tactics for the

threats.
• An estimated risk appetite and residual risk, both

compared and defined.

1.6.3 Effect Goals

• The customer will save money and experience improved customer satisfac-
tion and trust in the system.
• Nevion and other organizations will be able to implement and utilize func-

tionality based on the concept.
• Nevion will have increased confidence in the security of the system running

within the customer’s internal network.
• The customer will be able to utilize the software and gain the intended

advantages of the software, with a high degree of usability.

6 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

1.7 Target Audience

The target audience for this report are technically educated individuals and or-
ganizations. We assume the reader has a background within IT with a sufficient
understanding of technical terms, concepts, and programming languages. The tar-
get audience may include individuals with any cybersecurity or software security
experience and knowledge, but this will not be necessary in order to understand
and make use of the report.

1.8 Group Background

Every member of the group has nearly three years of education within computer
science at NTNU Gjøvik. Whereas Ivan & Sander is completing a bachelors degree
in Computer Science, Kristian is completing a bachelors degree in Programming.
In addition to this, Kristian has been attending the course Software Security, while
Ivan and Sander has been attending a study program with a specialization within
programming and cybersecurity. The academic overlap between the two study
programs is sufficient to allow the students to work together on a shared thesis
of this matter. When the project started, Sander had been working at Nevion for
approximately six months, making it easier for the group to get a grasp of the
requirements and the level of security necessary.

1.9 Project Structure

1.9.1 Project Roles

Group Structure and Hierarchy

The group is aiming for the internal group structure to be as flat as possible. This
means that there will be no-one in the group who has a higher degree of decision-
making power than the others, except when the group rules and routines states
it. This is because a fully flat structure is impractical, for example, in the event of
an internal conflict. For this reason, a group leader is necessary.

The group leader is Sander Osvik Brekke.

Meeting Minutes

During the course of the project, there will be a number of meetings taking place.
To make sure all these meetings have their corresponding meeting minutes, the
group will have a meeting minutes responsible. The responsibilities consist of writ-
ing the meeting minutes, or delegating this responsibility when necessary, and
making sure the meeting minutes are stored compliantly.

The meeting minutes responsible is Ivan Norderhaug.

Chapter 1: Introduction 7

Documentation

While working with the bachelor thesis, there is a large amount of documenta-
tion required. The documentation responsible is responsible for making sure the
correct documentation is being created according to the requirements, within the
related deadlines, and that the created documentation is being stored compliantly.
The documentation responsible is also responsible for making sure the required
hand-ins are being handed in within the set deadlines, even though it is the group’s
common responsibility to make sure the products and material needed to hand in
is done within the set deadlines.

The documentation responsible is Sander Osvik Brekke.

Process Framework

The process framework chosen for this bachelor project is Scrum. For the process
framework Scrum to work optimal, a Scrum master is necessary. This is a respons-
ibility that, amongst other things, consist of leading the scrum meetings, both the
sprint planning, sprint review and retrospective.

The Scrum master is Kristian Røren Svanholm.

1.9.2 Technical Areas of Responsibility

Cryptography Researcher

The largest part of the project is developing a concept using cryptography. The
main responsibility of the cryptography researcher is researching cryptographic
solutions for the concept development. Additionally, the responsibility includes
making sure the necessary progress is present, making sure the concept follows the
given requirements, making sure the necessary research is performed and making
sure the tasks this development requires are delegated within the team.

The concept responsible is Ivan Norderhaug.

Proof of Concept

A part of the project description, thus also the thesis, is an implemented Proof of
Concept (PoC). The PoC responsible has the responsibilities of making sure the
PoC is developed according to requirements and making sure the tasks necessary
to make the PoC complete are being delegated within the team.

The PoC responsible is Kristian Røren Svanholm.

8 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Development roles

Underneath the PoC responsibility role, there are developers. Different parts of the
PoC is written in two different languages, Java and C++, where the team members
have different knowledge in the two programming languages. As a result of this,
team members will have different development roles.

Table 1.2: Development Roles Summary.

Kristian C++ developer
Sander Java developer

Ivan Java developer

1.10 Report Structure

Chapter 1 – Introduction

In this chapter, the task description and scope of the project is introduced, and the
goals and objectives are outlined. Context and preliminary work is also presented.

Chapter 2 – Development Process

Development Process describes the development process of the project, including
process framework, sprint summaries, and the different meetings throughout the
project.

Chapter 3 – Concept Review

The Concept review presents and discusses the conceptual framework with its
design and theory.

Chapter 4 – Security Review

The security review describes aspects of the proof of concept (PoC) in order to
identify potential threats and develop prevention and mitigation strategies for
them. The review also discusses the viability of the concept from a security stand-
point.

Chapter 5 – Proof of Concept

Proof of Concept describes the real-world implementation of the concept from the
previous chapter and its different modules. It also discusses different design de-
cisions that differ from the prescribed concept and following security challenges.

Chapter 1: Introduction 9

Chapter 6 – Discussion

The discussion chapter discusses the project’s outcomes, contributions and its
overall viability. In addition, a summary of future work is described here.

Chapter 7 – Conclusion

The conclusion describes the objective results of the thesis and concludes the
thesis.

Chapter 2

Development Process

2.1 Development Model

The development model SCRUM was used during the thesis project. This was
meant to allow for a more granular and systematic approach to completing bite
sized tasks organized into sprints with a larger enveloping goal.

SCRUM was organized with an Atlassian Jira1 instance, which allowed for quickly
organizing new sprints and moving issues between the different columns on the
accompanying kanban board. Within the board, any issue could exist under any
of five different columns, which signified the state of the issue. The columns were
as follows:

To do Work has not yet started on this issue.
Working on it Work is under way on this issue.
Help needed The assigned individual requires assistance issue.

Review The issue is ready for group member to review
Done The issue has successfully been completed.

Throughout the utilization of SCRUM, a few rules defined in Appendix C – Project
Plan were utilized to minimize misunderstandings and double work. Double work
entails a situation where an issue has not been moved out of the “To do” column
even though someone has started to work on it. By not moving it, someone else
might also “take” the job, which results in two items of work being completed
where only one is necessary. The list of rules can be found under Section 4.1 in
the appendix for the Project Plan.

1https://www.atlassian.com/software/jira

11

12 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

2.2 Meetings

Throughout the project period, there have been held three main categories of
meetings. Firstly, there have been held weekly meetings with the project super-
visor which mostly regarded project status, questions about future steps, and feed-
back from the supervisor.

Secondly, there have been held bi-weekly meetings with Nevion’s representative,
which have been more focused on technical details and updating the company of
the group’s progression. This meeting has also been utilized for technical questions
to gain a deeper understanding of the problem area of the thesis.

Finally, sprint planning, sprint review, and sprint retrospective meetings have been
held. These have only been attended by the group members and regarded the
organization and progression of the group’s chosen development model, SCRUM.

2.3 Scrum Sprints Summary

Throughout the project, the group adhered to a consistent weekly sprint cycle as
originally planned. The group held consecutive sprint-review and sprint-planning
meetings on Friday mornings for the completed sprint and the upcoming week’s
sprint. The sprint-planning meetings allowed for planning of which items that
needed to be worked on, while the sprint-review meetings allowed for reviewing
the success of the current sprint. Additionally, a sprint retrospective meeting was
held every three weeks to discuss the success of the last three sprints and address
any issues that were discovered.

Figure 2.1: Cumulative flow diagram of SCRUM (snapshot taken on May 11,
during the sprint period of April 28 – May 12.

The cumulative flow diagram in Figure 2.1 depicts the progress of weekly sprints
over time. The different colours within the diagram represent the amount of issues

Chapter 2: Development Process 13

in various states at that moment in time. Orange means the issue has not yet been
started on, and red means the issue is completed. As is very readily apparent by the
’staircase’ look of the figure, the group first worked in weekly sprints and then later
in bi-weekly sprints as the plateaus of the ’staircase’ gets longer. This cumulative
flow diagram gives a deep look into how the group has generated new work items
at the beginning of each sprint in the sprint planning meeting and throughout the
sprint have slowly moved the different issues from ’To do’ to ’Done’.

#1 – Project plan first draft

13/1 – 20/1

The first sprint of the project consisting of writing the first draft of the Project Plan,
constructing a group agreement and creating the Gantt chart for the project.

#2 – Project plan refinement

20/1 – 27/1

This sprint was oriented around refining the Project Plan, beginning the research
and initializing the development environments for the PoC.

#3 – Project plan final delivery

27/1 – 03/2

Sprint #3 was about creating a first draft of the structure for the final thesis,
implementing API communications for both LFA & NMS and updating & delivering
the project plan.

#4 – Infrastructure development 1

03/2 – 10/2

Sprint #4 concentrated on setting up basic license pool functionality for both NMS
& LFA. Research was also done on Java code obfuscation and the license file format
provided by Nevion.

#5 – Infrastructure development 2

10/2 – 17/2

Sprint #5 consisted of adding OpenSSL, HTTPS & certificate verification within
the LFA and implementing integrity functionality, networking, and chain of trust
functionality for the NMS. This was the first sprint with unfinished issues at the
end, as one issue was under-estimated in the sprint-planning meeting at the start
of the sprint. In total two large and one medium issues were left unfinished which
all regarded the implementation of OLM in the NMS.

14 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

#6 – Testing and tools

17/2 – 24/2

The sixth sprint in our project was about adding unit testing to the codebase and
creating a control panel to interact with the system. In the end, three medium-
sized issues regarding unit testing for the NMS was never completed and went
back to the backlog.

#7 – Testing and LFA verification

24/2 – 03/3

Sprint seven was one of the larger sprints, with thirteen finished issues and one un-
finished issue. During of which the codebases came to a good enough completion
that the group considered them as a minimal viable product and NMS unit testing
was further expanded. The PoC control panel was also further expanded with the
ability to generate sublicenses from available NMS license pool and viewing all
the connected License File Aggregators (LFAs) respective license pools.

#8 – Testing and code completion

03/3 – 10/3

Sprint #8 consisted of finishing the codebase to a more stable and feature com-
plete state, which was going largely to plan. Only one issue was started on and not
finished, wish was about adding testing to the LFA. After this sprint the codebase
has largely been untouched as it has reached the status of PoC.

#9 - Exam sprint

10/3 – 17/3

During this sprint, two of the group members were busy with an exam in another
course, so the last member was largely left to their own devices and worked on
the thesis.

#10 – Security review writing 1

17/3 – 24/3

Sprint #10 was the beginning of the work on the Security Review. The chapter
would turn out to be one of the most tenacious chapters in the thesis, taking an
entire months worth of sprints to reach a first draft. Five issues were created, of
which two were finished.

Chapter 2: Development Process 15

#11 – Security review writing 2

24/3 – 31/3

Similarly to sprint #10, sprint #11 was about writing the Security Review and
saw several key pillars of the review take its first form. However, this sprint was
also slow as several aspects of the review had to be debated several times over
to find a suitable answer the group were happy with. In the end, four out of six
issues were completed during this sprint.

#12 – Security review first draft

31/3 – 14/4

Given the previous two sprints’ rate of completion, it was decided that sprint #12
would be two weeks long. This turned out to be a good decision, as a first draft of
the Security Review was completed and ready for review by the thesis supervisor
at the end of the sprint. From here on out, all sprints were two weeks long as a
standard.

#13 – Process, theory, PoC

14/4 – 28/4

Sprint #13 regarded doing a lot of work in several parts of the thesis and saw
sizeable restructuring. The process section was finalized for the first draft, the
theory section was combined with the concept section into ’Concept review’ which
saw a lot of work and the PoC section was nearly finalized for the first draft. At
the end of this sprint the thesis document had reached 20000 words and 79 pages
without the appendix. In the end all but one issue regarding the PoC was finished
which was sent into the next sprint for finalization.

#14 - First Draft

28/4 – 12/5

Sprint #14 saw the completion of the first draft and several more quality updates
to the final report. The group received valuable feedback from the thesis super-
visor and revised several aspects of the document. The several code-bases of the
project also received updates to their README files with updated knowledge and
explanations. Overall, a lot was finished, and the thesis had reached a high level
of maturity.

16 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

#15 – Final delivery

12/5 – 26/5

Sprint #15 was the sprint where detailed feedback was received and applied,
proofreading was performed, and other detailed, minor, alterations were applied.
During the sprint, the thesis was also exported and handed in as the final report.

Chapter 3

Concept Review

This chapter aims to present, describe, and discuss the concept developed dur-
ing the course of the project. The concept will be presented in terms of compon-
ents, composition, requirements fulfilment, and functionality, and discussed by the
same terms and aspects. Security aspects of the concept will also be presented.

3.1 State of Technology

In the field of offline Digital Rights Management, several approaches and tech-
nologies have been developed to address the unique challenges posed by closed
offline networks. This section provides an overview of the state of the technology
in this domain.

The problem domain of this project is close to the problem domain of offline Di-
gital Rights Management (DRM). DRM is a way of managing several things in
relation to digital media, for example managing access, redistributions, and util-
ization [4]. An example of this, is the sharing of paid stock photos.

Computer software products that require a license, but do not need an internet
connection, are also handling Digital Rights Management. An example of this is
the game Farming Simulator 2022 1. This game, and several other similar com-
puter software products, experience the spread of cracked versions of their soft-
ware [5]. A cracked version of a computer software product, often called cracked
software, is a piece of software that has got its copyright protection, license re-
quirements, or similar removed [6]. The fact that software products, often created
by large software companies, have issues with cracked software versions signals
the fact that the problem domain is still relevant, and no general – completely
secure – solution have been created.

Some companies have created computer software products which do not suffer

1https://www.farming-simulator.com/, visited April 28th, 2023

17

18 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

from distributed cracked versions. What is common between these products is the
fact that they require an internet connection in order to be run. This allows for
the license information and other pieces of software legitimacy information to be
checked with a trusted central server before the software is run. An example of
this is computer games with DRM solutions created by companies such as Denuvo
[7].

Spotify and Netflix are two examples of computer software products that allow
the end user to stream digital media through a subscription-based license2,3. The
two services also allow their end users to download media to their devices, in
order to listen to music or watch series & movies while offline. Their solution to
offline Digital Rights Management is to make it online; at certain intervals, the
user is required to connect to the internet in order to maintain access to their
downloaded media [8][9]. For Spotify, this interval is set to 30 days, which is also
the subscription interval of the license; this way, it is not possible for an end user
to cancel their subscription and keep access to their media, which is offline. For
Netflix, the online connection requirement is set to irregular intervals, as it varies
by the media which is downloaded. If the end user does not connect to the internet
within the required time, the downloaded media will be voided. The downloaded
media will also be voided if the end-user alters the time and date of the mobile
phone manually, and the phone is no longer getting its current time from an NTP
server [10].

Common DRM solutions utilize techniques such as cryptography and hashing,
which the OLM system also relies on. However, most similarities end there, as
these other solutions also make use of an internet connection, either at certain in-
tervals or constantly, to enforce their integrity. This makes the solutions included
in the compared technologies hard to adapt for this concept, as a completely off-
line environment is a requirement. This project includes the aggregation of TLLs
and generation of SLLs, which makes it further different from the examples of
technologies and solutions, as the examples does not handle this. However, the
examples should still be deemed relevant, as they are examples of computer soft-
ware handling licenses and digital rights in an – often – offline environment.

2https://support.spotify.com/no-en/, visited April 28th, 2023
3https://www.netflix.com/no-en/, visited April 28th, 2023

Chapter 3: Concept Review 19

3.2 Theory

3.2.1 Cryptography

Cryptography is a practice used to secure sensitive information from unauthor-
ized access, tampering, and interception. By utilizing mathematical algorithms,
it provides a range of security services, such as confidentiality, integrity, and au-
thentication. One common approach is symmetric key encryption, which employ
the same key for both encryption and decryption. The plaintext is converted into
ciphertext using mathematical operations with a secret key, which can also re-
trieve the original plaintext when used in reverse [11].

An early form of encryption, is the substitution cipher, which involves substituting
each letter in a plaintext with another letter based on a fixed rule. The Caesar
cipher is a well known example of this, in which each letter in the plaintext was
replaced with another letter, x number of positions down the alphabet [12].

One of the most widely used operations in symmetric key encryption is XOR (ex-
clusive OR), a binary operation that outputs a 1 if the input bits are different from
each other and a 0 if they are the same [13, p. 32-34]. To securely encrypt a mes-
sage using the XOR operation, a key that is at least as long as the plaintext needs
to be present. This is because a smaller repeating key could easily be broken using
frequency analysis [14]. As shown in Table 3.1, the process involves XOR-ing each
bit of the plaintext with the corresponding bit of the key.

Table 3.1: Example of XOR cipher encryption.

Plaintext H E L L O
Plaintext(2) 01001000 01000101 01001100 01001100 01001111
Key(2) 00000001 00000010 00000011 00000100 00000101
XOR 01001001 01000111 01001111 01001000 01001010
Ciphertext I G O H J

Today, the most widely used symmetric cipher is the Advanced Encryption Stand-
ard (AES). The algorithm employs a block cipher4 which operates on fixed-size
blocks. The block size is determined by the key size, e.g., 128-bit blocks for AES-
128. The key size can either be 128, 192 or 256 bits, with bigger key sizes offering
greater security. The AES algorithm consists of many rounds of substitution and
permutation operations that convert the plaintext into ciphertext. For each round,
a round key is derived from the original key using a key expansion algorithm. The
key is then XOR-ed with the plaintext block before being subjected to many sub-
stitutions and permutations. During the substitution step, each byte of the input
block is replaced with the corresponding byte from a pre-defined lookup table
known as the S-box (e.g., Table 3.2) [16]. The S-box is designed to withstand a
variety of cryptographic attacks, such as linear and differential cryptanalysis [15].

4A cipher that encrypts an entire block of plaintext bits at a time with the same key [13, p. 30].

20 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Table 3.2: AES S-box [15].

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

During the permutation step, also known as the shift rows step, the bytes of the
input block are rearranged according to a pre-defined permutation pattern. This
ensures that the output is resistant to attacks relying on the ordering of bytes
within the input block. Additionally, the AES algorithm has a mixing step. It in-
volves performing a matrix multiplication operation on the columns of the input
block, which provides diffusion of the plaintext and strengthens the security of
the algorithm [16].

Given the strong security properties of the Advanced Encryption Standard (AES)
and its resistance to known attacks, it presents itself as a viable choice for securing
sensitive data.

Asymmetric key encryption involves two distinct keys, a public key and a private
key, for encryption and decryption respectively. RSA is a frequently used asym-
metric encryption method in secure communication protocols. Ron Rivest, Adi
Shamir, and Leonard Adleman developed RSA in 1977 and named it after their
initials. The algorithm generates both a public and a private key. The difficulty of
factoring huge prime numbers is the foundation of RSA’s security, as a big com-
posite number is thought to be computationally impossible to factor into its prime
elements in a practical timeframe [13, p. 174].

Chapter 3: Concept Review 21

Key Generation [13, p. 175-176]:

To generate an RSA key pair, the first step is to choose two large prime
numbers p and q. These should be chosen randomly and should be half the bit
length off n. The modulus n is then computed by multiplying the primes together.

n= p · q

The totient function of n, represented by φ(n), is then computed.

φ(n) = (p− 1)(q− 1)

Then an integer e is chosen, which must satisfy the condition where the greatest
common divisor of e and φ(n) is 1:

1< e < φ(n)− 1,

gcd(e,φ(n)) = 1

After e has been chosen, the integer d must be computed such that d is the mul-
tiplicative inverse of e modulo φ(n):

d · e = mod φ(n)

Output:
The public key is the pair of integers (n, e), which can be shared with anyone.

kpub = (n, e)

The private key is the integer d, which is kept secret.

kpr = (d)

22 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Encryption

To encrypt a message M using the recipient’s public key, the message is raised to
the power of their public exponent e and modulo the recipient’s public modulus
n, which results in the ciphertext C [13, p. 174-175]. This can be expressed with
the following equation:

C = M e · mod n,

Decryption

To decrypt a message using the recipient’s private key, the ciphertext C is raised to
the power of their private exponent d and modulo the recipient’s private modulus
n, which results in the message M [13, p. 174-175]. This can be expressed with
the following equation:

M = Cd · mod n,

Integrity

Apart from encryption, cryptography also facilitates the verification of data integ-
rity through the use of digital signatures. The Basic RSA Digital Signature Protocol
is one example of this [13, p. 265]. In this protocol, a signer uses their private key
to compute the signature s of the message x as:

s ≡ si gkpr
= xd · mod n

The message and the signature are both sent to the recipient, where the signature
is validated with the signer’s public key.

x ′ ≡ se · mod n

If x and x ′ match, the recipient can be certain that the author of the message pos-
sessed the signer’s private key. This ensures that the authenticity of the message,
thus also the legitimacy of the message sender, is preserved.

3.2.2 Digital Certificates

An X.509 certificate is a public key certificate which binds an identity, such as an
individual or organization, to a public key using a digital signature, either signed
by a certificate authority or self-signed. A signed certificate, from a trusted source,
allows for validation of digitally signed documents.

There are two types of certificates in an X.509 system; CA certificates and end-
entity certificates. The certificate authority, either the root certificate authority or
one of its children, have the ability to issue other certificates, whereas end-entity
certificates serve the goal of identifying users. This hierarchical structure creates
a certificate chain.

Chapter 3: Concept Review 23

In addition to issuing certificates, a certificate authority (CA) also plays a crucial
role in certificate revocation. When a certificate needs to be invalidated before its
expiration date, the CA can revoke it. This is typically done in situations where the
private key associated with the certificate is compromised, the certificate holder’s
privileges have changed, or the certificate is no longer trusted for other reasons

Through the use of a certificate chain, a chain of trust can be established. Us-
ing a process called Certificate Path Validation5, a target certificate’s signature is
checked against the next certificate’s public key, and so on, until the top of the
chain is reached. As the certificate at the top is the source of truth, reaching it
means that the target certificate can be trusted and therefore authenticated [17].

3.2.3 Summary

In short, cryptography provides a range of security services such as confidentiality,
integrity, and authentication by using mathematical operations to secure inform-
ation from unauthorized access, tampering, or interception. Symmetric key en-
cryption uses the same key for both encryption and decryption, while asymmetric
encryption uses two distinct keys, a public key for encryption and a private key
for decryption. Furthermore, these keys can be used to ensure integrity through
the use of digital signatures. By signing a message with the private key, the recip-
ient can verify the authenticity by checking the signature against the public key.
Digital certificates are utilized for establishing authentication and sources of trust
within cybersecurity systems and through the use of a digital certificate chains,
trust can be established in distributed systems.

3.3 Offline License Management (OLM)

Offline License Management (OLM) is a system created for closed networks where
an internet connection is not available. OLM serves as an intermediary licensing
process, relying on a chain of trust between various entities. The OLM system is
based on Nevion’s system but expanded upon to meet the requirements mentioned
in Section 1.3. From here on, VideoIPath will only be referred to as Network Man-
agement System (NMS) and the Virtuoso will only be referred to as License File
Aggregator (LFA).

3.3.1 Certificate Authority

The certificate authority (CA) is the fundamental source of truth and authority
within the system. It is owned, operated, and secured by the licensing company
which utilizes it to sign licenses for different customers. Given the sensitivity of
data stored within the CA, security is of the utmost importance. Should any single
key leak, an entire customer relationship would be rendered compromised. The

5https://datatracker.ietf.org/doc/html/rfc5280

24 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

security around the CA should include both digital and physical security measures,
as well as a required high security clearance for access.

3.3.2 Network Management System

The Network Management System (NMS) is a software solution which serves the
purpose of acting on the licensing company’s behalf. Preferably, the NMS is to
be deployed on proprietary hardware provided by the licensing company as this
would ensure only one instance of the software existing, thus reducing the po-
tential exploitability of the system. However, in this specific case, the focus is on
accommodating Nevion’s request. Therefore, the focus will be on the NMS de-
ployed on a customer’s computer.

To enable the NMS to act on the licensing company’s behalf, the system incorpor-
ates a certificate, which will henceforth be known as the intermediate certificate,
derived from a trusted root. This certificate enables the NMS to sign the generated
SLLs, thereby enabling their acceptance by the License File Aggregator (LFA). This
is achieved by the NMS redeeming a Top-Level License (TLL) issued by the licens-
ing company, which in turn allows the NMS to generate and sign SLLs which are
subsequently issued to various LFAs across the internal network. To ensure secure
operations under the specified circumstances, each customer relationship in the
OLM system necessitates a root key pair. The private key is securely stored within
the licensing company, while the public key is integrated into the NMS software
that is distributed to each customer.

For the Offline License Management (OLM) system to function properly, it requires
the secure storage of the intermediate private key, as this component is critical for
the NMS to sign a license. Furthermore, due to local storage, the OLM system re-
quires encrypted persistence at the NMS to store the active and redeemed licenses.

3.3.3 License File Aggregator

The License File Aggregator (LFA) is software that is run on proprietary hardware,
and in turn, considered secure. This is where the actual functionality of a given
product lies, and needs to be unlocked by NMS in the form of an SLL. The LFA
requires the certificate of the root CA to be embedded in the software, which
allows for verification of received licenses. As with the NMS, the LFA also requires
local storage to store the active and redeemed licenses as checksums. By storing
the certificates in an immutable storage space — also known as embedding – the
certificates will be rendered more resilient to attacks. This acts as a preventative
measure for certificate swapping, which, if happens, may render the entire chain
of trust compromised, as the system relies on the LFA to act as a source of truth.

Chapter 3: Concept Review 25

Figure 3.1: Architectural diagram for OLM.

3.3.4 Communication

To be able to make all components of the concept work, communication is ne-
cessary. Firstly, communication between the customer’s actors and the NMS is
necessary to upload licenses. This can be done in numerous ways, for example
through a Command-Line Interface6 or an Application Programming Interface7.
In addition to this, it is necessary for the NMS to be able to communicate with the
LFA. This can be done in a number of ways over a network and does not require

6https://en.wikipedia.org/wiki/Command-line_interface, visited April 27th, 2023
7https://en.wikipedia.org/wiki/API, visited April 27th, 2023

26 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

a particularly secure connection, as if the payload has been altered it will be de-
tected in the LFA through the use of signatures and certificates. As a result of this,
an example of the means of communication is, similar to the first required com-
munication channel, an Application Programming Interface (API). The network
in use may be any kind of network, as long as it is not connected to the internet;
LAN8, VLAN9, or similar.

3.3.5 How Does it Work?

It all starts with the licensing company which maintains their own certificate au-
thority (CA). Within the CA the licensing company keeps a series of keys, key-
derivatives, and certificates per customer relationship stored. When an order for
a new TLL arrives at the licensing company, the company creates a new license
and then signs it using their pre-existing customer root private key. This simple
technique of giving each customer relationship its own keys enforces that the new
license will only ever be redeemed by that specific customer. The licensing com-
pany then sends the new TLL to the customer via their preferred means, such as
an e-mail.

On receiving an ordered TLL, the customer redeems the license at the NMS, where
a verification process will start. The TLL and its signature are verified against the
embedded public key, where only validly signed TLLs will be parsed. If the license
is verified successfully, the license functionality is added to its corresponding pool
located in the NMS. During the redeeming process of the TLLs, a hash of the TLL
file will need to be appended to the storage of TLL hashes if it does not already
exist there. This is done to prevent multiple redeems of the same license.

When a satisfying amount of TLLs are redeemed at the NMS, SLLs can be gener-
ated. The NMS is then be able to subtract given functionality from the respective
pools, generate a license file and write a corresponding signature file which res-
ults in a new SLL. When creating an SLL, an LFA unique identifier is necessary
and will be added to the license file. The necessary files, including the license file,
the signature, and the intermediate certificate of the NMS, is then communicated
to an LFA to be redeemed there.

When the LFA receives an SLL from the NMS a series of steps are taken to verify
the legitimacy of the license. First, the accompanying intermediate certificate is
verified against an embedded copy of the root certificate. This ensures that the al-
leged intermediate certificate in fact is part of the chain of trust. If successful, the
LFA continues by validating the integrity of the license by deriving the interme-
diate public key from the now-validated intermediate certificate. With this public
key, it is possible to validate that the license signature is from the trusted interme-
diate source and that the signature matches the license payload. Once all these

8https://en.wikipedia.org/wiki/Local_area_network, visited May 10th, 2023
9https://en.wikipedia.org/wiki/VLAN, visited May 10th, 2023

Chapter 3: Concept Review 27

facts have been established, the LFA can continue knowing a legitimate license
has been uploaded.

Once the legitimacy and integrity of a license has been validated, the LFA checks
the license payload for an identifying factor which only this specific LFA has at-
tributed to it. This could be a unique ID, the device’s MAC address, or similar. If
the attribute matches, the LFA knows that the specific license was not created for
another LFA. Finally, the checksum of the license payload is checked against a loc-
ally stored list of previously uploaded licenses. This prevents re-using licenses that
match the LFA, but has already been redeemed before. Once the license is verified
and redeemed, it is possible for the LFA to utilize the included functionality by
consuming the license redeemed.

Within Figure 3.1, four boxes have green arrows in them to signify them as ’entry-
points’. This means that they are starting points which engage core functionality
within OLM.

3.4 Security Aspects

Integrity and confidentiality are crucial aspects of the Offline License Manage-
ment, ensuring that the licensing data remains both accurate and protected from
unauthorized access. By prioritizing these two security principles, the OLM system
aims to maintain trust between the licensing company and the customers, as well
as to safeguard sensitive information.

Integrity in the OLM system is primarily maintained through the use of digital
signatures. By utilizing RSA to create unique root key pairs for each customer
relationship, the OLM system establishes a strong foundation for the system’s in-
tegrity. The private key, held by the licensing company, is used to sign TLLs and
create intermediate certificates. The corresponding public key, stored at the NMS,
is used to verify these signatures and ensure the authenticity of the licenses as ex-
plained in Section 3.2.1. In addition to digital signatures, the use of X509 certific-
ates – explained in Section 3.2.2 – further strengthens the system by only allowing
authenticated uploads. This is done by ensuring that the trust is only in the root
certificate and the child certificates derived from it, which prevents other sources
from being accepted.

Confidentiality in the OLM system is achieved through the use of a strong encryp-
tion algorithm, such as the AES-256 algorithm mentioned in Section 3.2.1. Its
purpose is to encrypt the active licenses and redeemed licenses’ checksums loc-
ated at the NMS, keeping the license data protected from unauthorized parties.

28 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

3.5 Adapted Chain of Trust

OLM is built around the chain of trust standard, with certain modifications and
adaptions to allow for the system to be deployed in an offline environment. As de-
scribed in Section 3.2, the concept of chain of trust is built upon an intermediary
certificate authority which will approve or disapprove any end entity certificates
on the behalf of the root certificate authority. The Offline License Management
concept includes an adapted version of chain of trust, where the division of re-
sponsibility and roles is adapted to this purpose, and the number of links is re-
duced. The NMS becomes an end entity of the chain, and the LFA becomes a
client of the chain of trust, as seen in Figure 3.2. This way, the intermediary link
of the chain is removed, and therefore shortened.

As seen in Figure 3.2, the intermediate key pair is distributed from the certificate
authority to the end entity and the certificate authority public key is distributed
to the client. This is done before the delivery to the customer, for example, by
embedding the data during the system setup. This is necessary to do in this order
due to the fact that the devices will not be connected to the internet, as it is an
offline solution. The figure also shows the chain, as described earlier, where the
licensing company is the certificate authority, the NMS is the end entity and the
LFA is the client.

An important aspect is the fact that the OLM system is offline. This means that
an important part of the chain of trust concept is rendered impossible; certificate
revocation. If the certificate of an end entity, i.e. the NMS, is deemed invalid by
the certificate authority, the client has no way of accessing this information. As
certificate revocation is an important part of chain of trust, as described in Section
3.2, this is a rather large departure from the standard chain of trust concept.
Essentially, the trust can only be given and never taken away. This means that the
integrity and confidentiality of the NMS, its data, and private key is essential.

As opposed to most normal deployments of chain of trust, this concept attempts to
protect the licensing company from malicious customers instead of the licensing
company protecting the customers from other malicious users. In this way, the
purpose of the utilization is inverse.

Despite the adaptions done in the concept’s rendition, the concept is still regarded
as a utilization of chain of trust, as the key components are still present. The
key components, as described in Section 3.2, consisting of a chain of derived key
pairs and a hierarchical structure of validation, can be identified. For example,
certificate path validation is present, as the LFA verifies the intermediate certificate
against the public certificate authority embedded in the hardware. As a result of
this, it is clear that the key components are utilized in a way such that OLM can
be called a rendition of adapted chain of trust.

Chapter 3: Concept Review 29

Figure 3.2: Applied chain of trust diagram.

3.6 Discussion

The concept is a comprehensive and detailed general solution to the issue of hand-
ling licenses in an offline environment. It contains solutions to and covers the
problems and the requirements sketched up as a basis for the project: with an ad-
apted version of chain of trust, the concept works in an offline environment; with
a combination of encrypted local storage, secure storage, certificates, and keys,
the concept has its integrity secured; with well-defined components and modules,
an implemented instance of the concept will easily maintain a high cohesion and
loose coupling between the different components.

As mentioned in Section 3.1, similar challenges are present in similar products,
where different techniques have been used to solve them. Some products, for
example Spotify and Netflix, utilize an “online at intervals” approach to the issue,
while the DRM solutions of Denuvo have a “keep the connection online” approach.
These solutions are, as mentioned, not possible to utilize in this concept, as it is
required to be kept solely offline. This makes it hard to take inspiration or to look
at similar technology.

When implementing a new or altered solution, there are many pitfalls to look out

30 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

for. For example, it is important to maintain the principles related to modularity10,
coupling11, and cohesion12. The goals are to maintain a high degree of modularity,
loose coupling and a high degree of cohesion, which has been kept in mind during
the development of the concept, and is considered to be fulfilled. This is due to,
for example, the division of responsibilities between the NMS and LFA, where the
LFA only need to communicate with the NMS, and not any potential end user.

The security of this concept is crucial to whether or not it will cover the require-
ments. As a consequence of this, the security has been paramount in the develop-
ment, running reviews, and iterations. As mentioned in Section 3.4, the integrity
has been especially important in the effort of securing the concept among other se-
curity details, such as securing the confidentiality of important private keys within
the NMS. By altering the chain of trust and effectively giving the customer control
over and physical access to a source of authority, such as the NMS within the OLM
system, a plethora of new issues arise. For a more detailed review of the security
of the concept, please see Chapter 4 – Security Review.

3.6.1 Challenges

Although the concept covers the requirements to a satisfying degree, there are
some challenges which makes it hard to perfect the concept. Firstly, when an
intermediate certificate has been given to an NMS, a TLL has been sent to the
customer, or an LFA with an embedded root certificate has been given to the cus-
tomer, they are impossible to revoke. This means that if there is a breach in the
security, where, for example, a license can be redeemed several times, it is hard
to invalidate the licenses that are given to the customer. As a result, it is hard to
remove the TLL the customer is redeeming several times, giving the customer, in
theory, indefinite amounts of functionality time for the functionality included in
the TLL. Similarly to this, if the root private key of a customer relation is leaked
from the licensing company, it is impossible to revoke the intermediate certificate
in the NMS and the root certificate in the LFA, making it possible to generate and
validly sign TLLs. The solution to the difficulty of revoking licenses and certificates
is to make it impossible for the leaks and cracks to happen. Of course, it is not pos-
sible to make it impossible, thus there are security holes. Even if it was possible to
revoke these things, it would be hard to discover the misuse, and when to revoke
the said certificates, licenses, or keys.

This leads us into a different challenge with the concept; it is hard to discover
any potential cracks, leaks, or broken chains inside the customer’s offline system.
When this is the case, it is hard for the licensing company to, firstly, discover the
misuse; secondly, act on the misuse; and finally prove the fact that it happened.
This means that the licensing company accepts a risk when the system is deployed

10https://en.wikipedia.org/wiki/Modularity, visited May 2nd, 2023
11https://en.wikipedia.org/wiki/Coupling_(computer_programming), visited May 2nd, 2023
12https://en.wikipedia.org/wiki/Cohesion_(computer_science), visited May 2nd, 2023

Chapter 3: Concept Review 31

in the customer’s internal network and TLLs are sent to the customer.

Due to all the security challenges within the system, a lot of impracticality is also
present. Swapping a customer’s certificate would require a technician from the
licensing company to physically enter the premises of the customer to do their
work. The balance act between security and usability is also important to take into
account, as this could impact adoption. For example, if a completely secure system
were to exist, it is probable that the security measures have been implemented
on the cost of usability and practicality to a degree where the system is deemed
impractical.

Combining the facts that revocations are not possible and that it is hard to discover
any potential breaches, if any breaches first occur, it is difficult to end the misuse.

3.6.2 Alternative Solutions

A large amount of the issues that have been proven hard to solve in offline en-
vironments, are intuitive to solve in online environments. An example of this is
integrity checks of the software, or source code, towards a central server. This does
not necessarily require a constant internet connection, and can, for example, util-
ize the Spotify model mentioned in Section 3.1, where an internet connection is
required on certain time intervals. When doing so, a trusted clock can also be ac-
cessed, thus making it possible to utilize time- or duration-restricted certificates.
When an internet connection is made, the certificates may also be automatically
swapped out, making the action of performing certificate rotations possible. The
duration of the certificates should line up with the intervals of the internet connec-
tion requirements, similarly to how the internet connection requirement intervals
line up with the subscription intervals in the Spotify model. Given the fact that
the LFA is deemed as secure hardware, a possible solution may also be to add a
trusted clock to it. This can, although, go against the principle of high cohesion
and loose coupling; the NMS will rely on the clock of an LFA, while the LFA is re-
liant on the NMS for SLLs. This creates a circular dependency, which is unwanted
[18].

For the Spotify model to work, the system infrastructure will need to be connec-
ted to network infrastructure allowing for communication with the World Wide
Web. If the infrastructure is already present, why not keep the online connection
running constantly? By doing so, the concept may not need to verify any licenses
locally, where a central server can be used. This does, of course, open the system
to a different kind of threat actors: online threat actors. The advantages are still
comprehensive; the integrity of the system is ensured, making it much harder to
crack the system for any gains. However, due to the danger of online threat act-
ors, some industries prefer their hardware and networks to be entirely offline to
prevent any digital attacks during broadcasting. This means that an entirely dis-
abled or extremely limited internet connection might be required, which makes
all above examples pointless.

32 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

When an offline solution is required – such as this project – a central verification
server is, of course, not possible. A possible improvement of the concept, when
keeping it offline, may be a physical visit from a technician from the licensing
company at certain intervals. The technician could rotate and swap certificates
at regular intervals. The immediate drawback of this is the fact that programmed
functionality for changing certificate makes it harder to secure the certificates from
the customer; the certificates are then no longer embedded.

As mentioned earlier in Section 3.3.2, it is preferable for the NMS to exclusively
run on proprietary hardware, in the same manner as the LFA. This is, as men-
tioned, considered more secure as it would ensure only one instance of the soft-
ware existing. Thus reducing the potential exploitability of the system. Further-
more, it would provide enhanced protection against unauthorized access, tamper-
ing, or software piracy as the closed nature of proprietary systems makes it harder
for potential attackers to gain an advantage [19].

These are only some possible adaptions, each with their own advantages and dis-
advantages. When using OLM as inspiration for an implemented instance of the
concept, it is always possible to perform adaptions, as it is flexible.

Chapter 4

Security Review

4.1 Introduction

This chapter aims at performing a cybersecurity review of the developed concept
in Chapter 3 – Concept Review. The review will be performed as a risk man-
agement analysis, through utilizing modern and up-to-date cybersecurity analysis
frameworks, modelling concepts, and visualization tools.

The security review will be limited in scope to the concept solely. This means that
the threats that are identified will only be threats that are a part of the concept
developed in the course of this project, and not any threats that are part of already
existing systems or other out-of-scope aspects.

Furthermore, the purpose of this security review is to identify, assess, categorize,
prevent, and mitigate all distinguishable security threats, before comparing the
residual risk to the risk appetite defined for the concept.

4.2 Theory

This section presents the relevant theory and best practices concerning security
reviews, which primarily involve the identification, assessment, and handling of
risks, collectively known as risk management (see Figure 4.1) [3, p. 119]. Risk
management relies on established frameworks and methodologies in the field of
information security, such as the CIA triad and security frameworks like DREAD
and STRIDE.

33

34 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Figure 4.1: Risk management summary figure [3, p. 120].

At its core, computer security revolves around protecting valuable assets in a sys-
tem, which may include hardware, user data, or source code [20, p. 8]. Con-
sequently, the first step in efficiently protecting these assets is their identification
[3, p. 122].

The CIA serves as the foundation of information security, outlining three primary
objectives: Confidentiality, Integrity and Availability [21, p. 21-23].

Confidentiality Preserve the confidentiality of sensitive information
Integrity Maintain the integrity of data and systems

Availability Ensure the availability of resources for authorized users

These principles form the basis for identifying critical assets. Each asset is assigned
a value per attribute and ranked numerically, with those possessing high CIA val-
ues considered crucial to protect from threats [3, p. 123-125].

Subsequently, threat identification involves recognizing, describing, and categor-
izing threats against a security system. The threat identification process is crucial
for performing further security modelling, such as DREAD or the Bowtie model
[22][23].

The STRIDE framework serves as a valuable tool for identifying threats to a system
and pinpointing targeted security aspects. While encompassing elements from the
CIA triad, STRIDE expands the scope by integrating additional aspects, such as
repudiation. The acronym STRIDE represents Spoofing, Tampering, Repudiation,
Information disclosure, Denial of service, and Elevation of privilege, addressing
the primary types of threats to Confidentiality, Integrity and Availability within a

Chapter 4: Security Review 35

security system [24].

Once risks have been identified and defined, the next step is to evaluate their
severity along with the likelihood of their occurrence. This process is known as
risk assessment [3, p. 140-145]. Conducting a risk assessment of identified threats
enables the suggestion and implementation of more effective measures, ultimately
aiming to prevent threats and mitigate potential damages [3, p. 146].

DREAD is a model used to quantitatively assess the severity of cybersecurity threats,
where a scaled rating system is used to assign numerical values to five different
risk categories. The five risk categories all have the same weighting, where the
average of all categories per threat is treated as the severity rating for the given
threat [22].

The score may be within the interval of [0, 3], where the score translates to:

Table 4.1: DREAD category ranking.

Score Category rank
0 Low
1 Medium
2 High
3 Critical

The explanation of the different aspects of DREAD, in addition to an explanation
of the scale used in the threat modelling, is presented below:

Damage Potential

“Ranks the damage that will be caused when a threat is materialized or vulnerab-
ility exploited” [25, p. 214].

0. No damage is done, and minor downtime may be present
1. Serious downtime
2. User data is compromised
3. Full system destruction

Reproducibility

“Ranks the ease of being able to recreate the threat and the frequency of the threat
exploiting the underlying vulnerability successfully” [25, p. 215].

0. Impossible to reproduce the threat
1. Very hard to reproduce the threat
2. One or two steps necessary to reproduce the threat
3. Only the address bar, without any authentication, is necessary to reproduce

the threat

36 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Exploitability

“Ranks the effort that is necessary for the threat to be manifested and the precon-
ditions, if any, that are needed to materialize the threat” [25, p.215].

0. Impossible to exploit the threat
1. Advanced programming or custom tools are necessary to exploit the threat
2. Malware exists, allowing exploitation of the threat
3. Only a web browser is necessary to exploit the threat

Affected Users

“Ranks the number of users or installed instances of the software that will be
impacted if the threat materializes” [25, p. 215].

0. No customers are affected
1. One customer relation is affected
2. Several customers relations are affected
3. All customer relations are affected

Discoverability

“Ranks how easy it is for [. . .] researchers and attackers to discover the threat, if
left unaddressed” [25, p. 215].

0. Impossible to discover
1. Inside knowledge or source code access is necessary
2. Guessing or network traffic monitoring is necessary
3. Information is visible in the web browser, in a form or similar, or the threat

is common knowledge.

The average score of the different aspects is used to define the rank of the threat,
using the conversion table seen as Table 4.2.

Table 4.2: Average-score-to-ranking conversion using DREAD modelling [25, p.
215].

Rank Score
Low 0.0 - 1.0

Medium 1.1 - 2.0
High 2.1 - 3.0

Following the identification and assessment of threats using methods such as
DREAD, a threat matrix provides a means to communicate the risk of these threats
effectively. Threats discovered in STRIDE are deconstructed into pairs of con-
sequence and probability, which are then plotted into a threat matrix, where the

Chapter 4: Security Review 37

coordinates convey the risk each threat poses to the system [26]. By utilizing a
threat matrix, a security team can visually determine which threats to priorit-
ize when implementing measures and intervention techniques for prevention and
mitigation.

As the security team moves towards implementing these measures, understand-
ing the risk appetite becomes essential. Risk appetite is defined as the type and
amount of risk a product owner is willing to pursue or retain [27, p. 3]. It serves
as the starting point for securing a system, acknowledging that it is challenging, if
not impossible, to prevent all potential threats. Establishing a risk appetite enables
setting a goal for how secure the system needs to be at the end of development.
Often, finding a balance between lowering the risk appetite and maintaining the
system’s usability is necessary [3, p. 163-164].

With a clear understanding of the risk appetite, risk control comes into play. This
practice involves identifying and cataloguing various prevention and mitigation
methods to help reduce the severity of threats to a security system [27, p. 24]. Risk
control can be achieved by preventing threats altogether, reducing the damage
resulting from a successful attack, or, more commonly, a combination of the two.
Examples of risk control measures include adding a VPN to a network to prevent
unauthorized access or encrypting confidential data to mitigate the potential harm
of data leaks to the system’s confidentiality [3, p. 146-150].

Risk Prevention

Risk prevention is controlling the risks that are already identified [27, p. 23]. This
often consists of functionality or culture-related measures [3, p. 155].

Risk Mitigation

Risk mitigation is reducing the effects of an already successfully completed threat
to a security system. This will often consist of encrypting confidential data and
implementing session/authorization invalidation functionality.

Bowtie Model

The Bowtie model is a way to visualize prevention and mitigation measures, in
correlation to their related threats and their consequences [23]. By visually ’block-
ing’ threat vectors, an individual can quickly surmise where a security system is
lacking either prevention or mitigation measures.

4.3 Methodology

This section provides a description of the methodologies used to conduct the se-
curity review. The section will explain the rationale behind selecting these meth-
odologies.

38 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

4.3.1 Structure

The structure of the security review will be according to the best practice of risk
management performance and reporting, as seen in Figure 4.1 and outlined in
ISO27005:2022, with a pipeline of identifying, assessing, and handling [27].

4.3.2 Assets Identification

Asset identification is the first step in performing a security review, according to
ISO27005:2022 [27]. It has been used in the security review because it made it
possible to identify the critical assets of the system, including hardware, software,
and data. Identifying these assets made it possible to determine the potential risks
associated with each asset and develop mitigation strategies accordingly. This ap-
proach helped focus the efforts on protecting the most critical assets of the system
and ensuring the continuity of operations in case of any security breaches.

4.3.3 Threat Identification

Threat identification is the second step, where methods are utilized in order to
explore and identify threats. The STRIDE model was selected to identify and eval-
uate potential security threats because of its structured approach. As mentioned
in Section 4.2, STRIDE stands for Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, and Elevation of privilege. By focusing on these six
categories of threats, the STRIDE model allows for a comprehensive evaluation of
potential security threats towards different aspects of a security system.

4.3.4 Risk Assessment

Risk assessment was used to assess and prioritize potential security risks systemat-
ically. DREAD was one of the two methods utilized to do so. This method includes
scoring and prioritizing threats based on their potential damage, reproducibility,
exploitability, affected users, and discoverability. It allows for a comprehensive
evaluation of the security threats associated with the system and enabled the team
to develop appropriate mitigation strategies to address these threats. DREAD was
paired with a threat matrix, as a second method, which is based on the probability
and consequence of each threat plotted out in a 2D matrix. This method repres-
ents a less comprehensive assessment, but generates an improved visualization,
compared to DREAD.

4.3.5 Risk Control

Risk control is the last step in the security review. It was used to maintain, mitigate
and prevent the threats found in the threat identification phase of the security
review. Prevention and mitigation strategies were developed based on the risk
assessment and threat modelling results. These strategies aim to prevent security

Chapter 4: Security Review 39

breaches and minimize the potential impact of any successful attacks. For this
purpose, the Bowtie model has been used, enabling the group to visualize the
different threats along with their potential consequences. Moreover, this approach
allowed for the identification of barriers and controls that could be implemented
to prevent or mitigate these threats [23]. Because of this, the group was able to
develop a comprehensive set of prevention and mitigation strategies that provide
maximum protection to the system. Risk control, including both mitigation and
prevention, is always a balance between keeping the residual risk at a level lower
than the risk appetite and maintaining a necessary degree of usability for the end
users of the system [3, p. 163-164].

4.4 Assets Identification

4.4.1 Sensitive Data & Third Party Components

The system does not contain any sensitive data, nor does it manage customer data.
The concept does not rely on any third-party components and should be possible
to implement in several programming languages and environments.

4.4.2 Critical Assets

Critical assets are the organizational resources necessary for continued business
operations [25, p. 64]. This includes, for example, all software components, hard-
ware devices, and documents necessary to keep the intactness of availability, con-
fidentiality, and integrity of the system. In the case of this conceptual system, the
assets necessary to maintain the integrity of the system are of especially high im-
portance, thus are the most critical assets. The threats assessed in this security
review are centred around the critical assets of the system.

In this system, the critical assets are as follows:

Network Management System

The Network Management System (NMS) is the heart of the system, as this is
where the customer can upload new licenses bought from the licensing company.
The software is deployed directly onto customer-owned hardware within the local
network, and there is very little control of the software’s deployment environment.
Here, the new licenses can be validated if both the signature is coming from the
correct authority and if the signature matches the accompanying license payload.
It is also asserted that the license has never been redeemed before by checking it
against an encrypted file of checksums of all previously redeemed licenses. This
file is required untouched for the system to boot. The NMS can also generate SLLs
from their available pool of TLLs with any amount of time within the bounds of
available time and send the SLL to any connected LFA.

40 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

License File Aggregator

The LFAs are where licenses are sent to be consumed. Any one LFA can hold a
series of licenses with varying amounts of license durations associated with them.
Throughout this project, it has been assumed that the LFAs are safe, as they are
required to be proprietary hardware with safe-boot functionality. This means that
the LFA is regarded as “truth-asserters” with unbreakable integrity. All licenses
uploaded here have their integrity and authority checked as in the NMS and will
only accept licenses from the NMS.

Root Certificate Authority

The root CA is the licensing company. Here, all TLLs are created per customer
order. The TLLs are then signed with the customer-company relationship private
key and sent by email to the customer, who then uploads them to their network.

Software Licenses

Software licenses, both TLLs and SLLs, are defined as a critical asset. These are
defined as either the license file itself, in JSON format, and its signature, in sign
format, or the ZIP file containing both of the aforementioned files. A TLL is al-
ways distributed from the licensing company to the customer using a file in ZIP
format, containing the two mentioned, and necessary, files. To create a signature
file, uniquely created in association with each license file, it is necessary to either
have access to the root private key, contained with the licensing company, or the
intermediate private key, contained within the NMS. If the license file is altered
at any point in time, the associated signature file will become invalid, and one of
the two private keys is necessary to create a new, valid, signature file.

4.4.3 CIA Classifying of Critical Assets

The CIA rank is the average rank of the results for the confidentiality, integrity,
and availability of the asset as described in Table 4.3. The numbers express how
large of a security risk the asset is within the system and ranges from 1 to 4, where
1 is low and 4 is critical.

Table 4.3: NTNU assets evaluation table [28].

Rank Confidentiality Integrity Availability
1 Public No requirement No requirement
2 Internal Expected 2 days
3 Confidential Required 4 hours
4 Strictly confidential Critical Immediately

Chapter 4: Security Review 41

Table 4.4: Assets CIA classification.

Properties Average
Asset

C I A Ranking
NMS 3 4 4 3.7
LFA 2 4 4 3.3
Root CA 4 4 1 3.0
Software Licenses 2 4 4 3.3

NMS

The NMS was given an average ranking of 3.7 which makes it a high-risk asset. It
was ranked a 3 on the importance of its confidentiality, as it contains information
that is confidential. It was ranked a 4 on integrity, as its integrity is critical to the
security of the system. If any threat actor breaches its integrity, a lot of value is
lost. Finally, it was ranked a 4 on availability, as it should respond to requests
immediately.

LFA

The LFA was given an average ranking of 3.3 which also makes it a high-risk
asset. Firstly, it was ranked as a 2 on confidentiality, because its information is
only internal, as there are no mission-critical data on it. Secondly, it was ranked
as a 4 on integrity because if breached, the customer would be able to use the
product indefinitely. This, however, is highly unlikely as the LFA is expected to
be proprietary hardware. Finally, it was ranked as a 4 on availability, as it should
respond to license distribution and similar immediately.

Root CA

The root CA was given an average ranking of 3.0 which makes it a high-risk asset,
but at the lower end. The root CA was ranked as a 4 on confidentiality as if any
single root private key is leaked an entire customer relationship would be com-
promised. It was then ranked as a 4 on integrity as well because if a single root
key were to be compromised or altered, an entire customer relationship would
need their keys renewed if they want to buy a license again. Finally, a score of
1 on availability was given, as there is no requirement on how fast the root CA
should respond to purchases with a new license.

Software Licenses

The software licenses were given an average ranking of 3.3 which makes it a high-
risk asset as well. Firstly, it was given a confidentiality rank of 2 as the structure of
a license is not secret, only internal. Secondly, it was given an integrity ranking of
4 as if compromised a threat actor could in theory create their own faux licenses.

42 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Finally, it was given an availability rank of 4 as it has to be immediately available
to use once it has been received into a system. This last requirement is not difficult
to achieve as it is a piece of data and not a system made to respond to anything.

4.5 Actors & Roles

4.5.1 Root License Administrator

The root license administrator is an employee of the licensing company whose
roles within the system is to process customer purchases, create new TLLs, sign
them with the corresponding customer relation private key, and send it via email
to the customer. Any individual with this role could if compromised leak the secret
private keys and effectively destroy the established chain of trust. For this reason,
only people with a very high security clearance should have access to this role.

4.5.2 Client Employee

The client employees’ roles include, but are not limited to: uploading top-level
licenses to the NMS, generating sublevel licenses for the LFA, and consuming the
licenses by using the software functionality. The client employee does also have
to be regarded as a threat actor. The reason is that if the actor can breach the
security of their locally deployed NMS, they can effectively re-use licenses forever.
Often, the integrity of a security system benefits the customer and is present for
the customer. Yet, in this situation, the customer is the one who could gain from
breaching the security of their own system.

4.5.3 Client Network admin

The client network admin manages the NMS and the locally deployed network.
They have direct physical and root access to the NMS. The client network admin
does also have to be regarded as a threat actor, similarly to the client employee.

4.5.4 External Actors

As a result of the fact that the system is placed in a closed offline network, not
connected to the internet, a potential external actor will need physical access or
gain access through someone who has access to the closed network. This may,
for example, happen through a breach of the physical security of the licensing
company compound or through social engineering affecting someone who already
has access to the closed network. In effect, the external actors are anyone outside
the licensing company and the customer company who have the competency and
motivation to gain access.

Chapter 4: Security Review 43

4.5.5 Malicious Actors

All actors listed in Table 4.5 have the potential to become malicious for different
reasons. For instance, a client employee or network admin could be considered
malicious should their intention be to compromise the system. Additionally, an
external actor also holds the potential to become malicious for the same reason.
Furthermore, the licensing administrator with root access holds significant power
and can inflict severe damage on the system should there be an incentive such as
financial gain.

Table 4.5: Security Review Actors & Roles.

Actor Roles
Root license administrator

• Process customer purchases
• Create and sign new TLLs
• Sending TLLs via electronic mail to cus-

tomer

Client network admin
• Maintains NMS & LFAs on client network

Client employee
• Uploads TLLs to NMS
• Generates SLLs to LFAs
• Consumes licenses by using software func-

tionality

4.6 Risk Appetite

In the case of OLM as a concept, the group finds that the risk appetite should be
low. The nature of the concept means that a threat actor, on behalf of – or as –
a customer, can achieve significant monetary gain and net loss for the licensing
company. This can be done in order to achieve net savings for the customer or
private monetary gain.

To be able to deem the concept as viable and secure, the following DREAD mod-
elling and Threat Matrix requirements must be fulfilled, where no threat can be:

• DREAD modelled to a higher rank than low,
• placed in the risk matrix at a higher risk degree than green.

44 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

4.7 Threat Identification: Stride

STRIDE is a threat modelling technique used to identify and classify various threats
to a system and what aspect of the system the threat would violate [25, p. 65].
In this section, the different STRIDE threats are listed as subsections and their
accompanying discovered threats with description is written below.

4.7.1 Spoofing

Spoofing is the activity of impersonating fake human or technical identities, in
order to gain privileges that the user normally would not have available.

S1 Signing of Fake Licenses

If either the root private key or the intermediate private key is leaked or obtained
in any other way, as described in Section 4.7.4, it is possible to sign fake licenses.
This will make it possible for a threat actor to impersonate either the licensing
company or the NMS, creating faux licenses that will still redeem as if authorized
by the licensing company.

S2 Malicious license files

If a threat actor purporting to be the licensing company sends the customer a
malicious license file, damage can be done to the customer’s network and infra-
structure. When the license file upload happens, for example as a compressed
package, it is possible to upload malicious scripts or similar, attacking the host
machine before security measures can react. This could as an example manifest
as a zip-bomb [29].

4.7.2 Tampering

Tampering is the action of performing unauthorized changes that affect the integ-
rity.

T1 Ledger Files Replacement

When a ledger file containing the checksums of the already redeemed TLLs is being
used, it can be replaced at strategic moments in time for license duplication. This
may be done by copying the file at an early stage before any license have been
redeemed. By later replacing a ledger file full of consumed redeemed licenses
with the earlier copy, the customer can effectively reset the list and redeem the
licenses again. This attack also applies to the save-file containing the serialized
pool. By copying the file while the pools contain active licenses, the customer can
swap back to the populated license pool after spending the initial pools, effectively
gaining unlimited licenses.

Chapter 4: Security Review 45

T2 Encrypted Ledger Files Modification

If the NMS secret key is leaked or obtained, it is possible to modify either the file
containing the serialized pool or the file containing a list of the checksums of the
redeemed licenses. By doing this, the serialized pools may be added to in size or
the list of checksums may be emptied in order to make it possible to redeem TLLs
several times.

T3 Source Code Modifications

If a threat actor is able to reverse engineer the code, modify the source and compile
a new version of the software, it will be possible to bypass the integrity checks,
license file parsing, or other features that guarantee the software operates cor-
rectly.

4.7.3 Repudiation

Repudiation is the inability to prove claim or guilt, where the actions performed
may be denied, as a consequence of lack of tracing, logging, authentication, or
similar.

R1 Repudiable License Distribution

Given the lack of authentication and authorization within the scope of the concept,
there is no non-repudiability within the concept regarding the distribution of li-
censes from the NMS to the LFAs. Anyone with digital access, for example the IP
address to the NMS or LFAs, is regarded as an admin.

4.7.4 Information Disclosure

Information disclosure is the action of unveiling, disclosing, or revealing confid-
ential information to unauthorized users or processes.

I1 Intermediate Private Key Leak

Should the intermediate private key for any deployed NMS be obtained by a threat
actor, the chain of trust will be compromised. The threat actor will be able to
sign their own SLLs. This key can either be gained through social engineering or
through discovering it in the local installation of the NMS.

I2 Root Private Key Leak

Should the root private key for a customer relationship be disclosed, either on
accident or on purpose, the chain of trust will be compromised. The threat actor
will be able to sign their own TLLs. This leak can, for example, be achieved through
techniques such as social engineering or a digital breach.

46 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

4.7.5 Denial of Service

Denial of service is the action of restricting an authorized user or process the
access to one or more resources that they should have access to.

D1 Power Outage

If the power is compromised in any customer systems, the customer will effectively
be locked out and any use of licenses will be impossible. This can be achieved by,
for example, physically breaking the building’s power inlet.

D2 Network Equipment Failure

The licenses are distributed from the NMS to the LFA through the local network.
If the network equipment, in any way, breaks or fails, either intentionally or unin-
tentionally, it will no longer be possible to distribute SLLs. It will only be possible
to redeem TLLs at the NMS.

D3 NMS Host Unit Downtime

If the host unit device where the NMS is running has downtime, it will not be
possible to redeem TLLs or distribute SLLs from the NMS to the LFAs. This can
happen through both intended and unintended downtime, for example through
unintended downtime caused by broken hardware or intended downtime through
sabotage performed by a threat actor.

4.7.6 Escalation of Privilege

Escalation of privilege is where an authorized or unauthorized user or process
gains access to resources that the process or user normally does not have access
to. This is performed by an unauthorized increase in the user’s or process’ rights.
As there is no authentication system within the concept, Escalation of privilege is
not topical.

4.8 Risk Assessment: DREAD

In this section, DREAD modelling has been performed. The threats are given
a score for the five risk categories, assessing their severity. In addition to this,
the reasoning behind the assessments is presented. The letters of DREAD are ex-
plained in Section 4.2, where dread is short for Damage potential, Reproducibility,
Exploitability, Affected users, and Discoverability.

The average score to ranking conversion can be seen in Table 4.2.

1 Depends on the source code language of the actual concept implementation.

Chapter 4: Security Review 47

Table 4.6: Summarization of threats using DREAD modelling.

Threat D R E A Di Avg. Rank
S1 Signing of Fake Licenses 2 2 3 1 1 1.8 Med
S2 Malicious license files 1 1 2 1 1 1.2 Med
T1 Ledger Files Replacement 2 2 3 1 1 1.8 Med
T2 Encrypted Ledger Files Modification 2 2 1 1 01 1.2 Med
T3 Source Code Modifications 3 11 21 2 1 1.8 Med
R1 Repudiable License Distribution 2 3 3 1 2 2.2 High
I1 Intermediate Private Key Leak 2 2 21 1 2 1.8 Med
I2 Root Private Key Leak - Singular 2 1 1 1 2 1.4 Med
I2 Root Private Key Leak - Multiple 3 1 1 2 2 1.8 Med
D1 Power Outage 0 1 1 1 2 1.0 Low
D2 Network Equipment Failure 0 1 2 1 2 1.2 Med
D3 NMS Host Unit Downtime 0 2 2 1 2 1.4 Med

S1 Signing of Fake Licenses (Medium)

The threat is considered to be medium as the damage potential and affected users
scores are low, but the exploitability score is higher. The threat is not easily dis-
coverable, but once discovered, holds the possibility of being easily reproducible.

Getting a hold of one of the private keys allows the threat actor to sign their own
licenses on the behalf of the company, which will damage the company’s earnings.
However, as the keypairs are different between company-customer relations, only
that specific relation will be affected.

S2 Malicious license files (Medium)

This threat has been given medium damage as such an attack could, for example,
result in the system shutting down or the local files being encrypted. Because
the network is entirely offline, no data can be stolen, but it could, for example,
be held for ransom. Reproducibility has been ranked as medium as well, as this
attack would likely only work once in a while, as it likely requires insider access
to the licensing company or social engineering. Both of which often results in
the threat actor being discovered and losing their authentication, or a revamp
of the security training of on-site employees to prevent future social engineering
attacks. Exploitability has been ranked as high, as there exists malware online
that will do the work for a threat actor, leaving only the task of getting it into
the system to them. Affected users and discoverability was ranked as medium as
it will only affect one customer relationship and the threat actor would require
insider knowledge of how the licensing company sends licenses to a customer.

Overall, the threat was ranked as medium.

48 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

T1 Ledger Files Replacement (Medium)

This threat is defined with a critical exploitability ranking and high damage and
reproducibility ranking, while the affected users and the discoverability rating are
medium. The damage rating is set because the threat will completely avoid the re-
strictions prohibiting the redeeming of TLL files several times. The reproducibility
rating is set because of the ease of reproducing; if one customer has exploited the
vulnerability associated with the threat, it is easy for other customers to do the
exact same thing, as there is no difference in the threat between different custom-
ers. There are no tools necessary to copy and replace files; the only knowledge
necessary is the knowledge associated with the fact that the files are replaceable
and which files that need to be replaced. This gives the threat a critical exploit-
ability ranking and a high discoverability ranking. The affected users are only the
current customer relation, giving the threat a medium ranking in regard to the
affected users.

All in all, this threat is given a medium ranking.

T2 Encrypted Ledger Files Modification (Medium)

This threat was given a high damage rank as if successful, the customer could
reuse old licenses indefinitely, effectively releasing the customer from their need
of ever buying a license again from the licensing company. It was also ranked high
for reproducibility, as once it has been done it is rather simple to do again. It has
a medium exploitability ranking, as it will require advanced IT knowledge; it is
necessary to create a program that manipulates the ledger files properly in order to
compromise the files. Furthermore, the threat has a medium rated affected users
score as it will only affect the customers who perform the attack themselves, given
the nature of the secure environment. Finally, its discoverability was rated as low,
as the threat actor would require intimate knowledge of the source code.

This results in an overall medium rank for the threat.

T3 Source Code Modifications (Medium)

This threat has been given a high damage rank because the ability to remove or
avoid integrity checks, both for the local files and the licenses that will be parsed,
will make it obsolete to spend any more money on licenses from the licensing
company. Although it depends on the source code language chosen, most relev-
ant languages make it difficult to reverse engineer, making the threat difficult to
reproduce. If the threat actor is able to reproduce the threat, it is relatively easy
to exploit and materialize the threat; there are tools and applications available
to alter and compile source code. If the threat is exploited, it will only affect the
user who altered the source code. Although, if the altered version is distributed
to other customers, it will be possible for several users to become affected by the
threat.

Chapter 4: Security Review 49

The threat is hard to discover, where it is necessary to have inside knowledge
about the source code or the source code itself to discover this threat.

All in all, the threat is ranked as a medium.

R1 Repudiable License Distribution (High)

As the concept itself does not contain any specification for user-authentication, the
threat of unauthorized users is the highest ranked threat. The damage has been
ranked high, as a lot of licenses can be redistributed around the system or deleted
if this were to happen. Reproducibility and exploitability has been ranked critical
as all functionality can be accessed from an open API endpoint within the system,
making this insecure. The affected users ranking has been set to medium, as the
damage would be contained to a single customer network. Finally, discoverability
has been ranked high, as a threat actor could gain knowledge of this simply by
looking at network traffic or guessing.

This results in the threat receiving the rank ’high’.

I1 Intermediate Private Key Leak (Medium)

This threat has been given a high damage rank as it could severely compromise
customer data by allowing customers to self sign their own custom licenses. It has
been given a high reproducibility rank as well, as once it has been leaked, it would
be rather easy to perform the threat multiple times. Exploitability is set to high,
but could be critical, depending on the language used to implement the concept.
The affected users ranking is set to medium, as it would only ever affect a single
customer within their own network. Finally, the discoverability ranking is set to
high, as chain of trust is a well known system within the industry, which would
be easily recognizable to a threat actor.

This results in a medium rank for the threat.

I2 Root Private Key Leak – Singular (Medium)

This threat has been given a high damage rank, as if the private key has been
obtained for a single customer relationship, it would allow the customer to self
sign their own custom licenses. Following this, the reproducibility, exploitability
and affected users are all limited to medium threats as the certificate authority
should be a highly secure institution within the system. Finally, discoverability
has been set to high, as the concept of a root certificate authority is a well known
way of establishing chain of trust for secure systems within the industry. It would
not take a threat actor long to realize that it exists.

Overall, the threat has been ranked as medium.

50 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

I2 Root Private Key Leak – Multiple (Medium)

This threat has been given a critical damage rank as if the private key has been
obtained for several customer relationships it would allow all the customers to self
sign their own custom licenses. Following this, reproducibility & exploitability are
limited to medium threats, as the certificate authority should be a highly secure
institution within the system. The affected users ranking has been set to high, as
this would affect several users within the system as opposed to just one. Finally,
discoverability has been set to high as the concept of a root certificate authority
is a well known way of establishing chain of trust for secure systems within the
industry. It would not take a threat actor long to realize it exists.

Overall, the threat has been ranked as medium.

D1 Power Outage (Low)

This threat has low damage, with medium reproducibility, exploitability and af-
fected users, while the discoverability is high. The damage is chosen due to the fact
that materialization of the threat do not damage the system other than affecting
the availability. In regard to reproducibility, exploitability and affected users, the
score is chosen due to the fact that it is hard to perform a power outage, although
not impossible, and there are no affected users other than the one affected cus-
tomer relation. As a consequence of the fact that it is common sense that a power
outage affects the availability of a digital system, the discoverability is also set to
high.

All in all, this threat is given a low ranking.

D2 Network Equipment Failure (Medium)

The threat has been given a low damage rating and a medium reproducibility and
affected users rating, while the exploitability and discoverability has been set to
high. The reason the damage has been set to low is the lack of real damage occur-
ring when, or if, the threat is materialized. The availability will be affected, but no
data will be compromised, and no systems will take damage. When the network
equipment is fixed or swapped out for functioning equipment, everything will be
back to normal. The reproducibility rank has been set due to how difficult it is for
an external actor to make the network equipment malfunction, especially given
the fact that the network is local and offline. The same goes for the exploitability
rank. The discoverability has been set to the same rating, as it is not hard to figure
out that the system is reliant on a network connection. As for the affected users,
a network equipment failure will only affect the current customer relation.

The combination of the risk category assessments gives this threat a medium rank-
ing.

Chapter 4: Security Review 51

D3 NMS Host Unit Downtime (Medium)

The threat is considered to be medium, as the reproducibility, exploitability and
discoverability are high, while availability and damage potential are low. Should
the system experience downtime, then its core functionality would become un-
available, thus impacting the customer. However, should the threat materialize,
expected downtime is set to be minimum as it is possible to use the system applic-
ation on multiple devices.

4.9 Risk assessment: Threat Matrix

In this section, the threats discovered in Section 4.7 are modelled into a threat
matrix with a value for probability and consequence of threats. The threats from
Table 4.7 have been plotted into the threat matrix in Table 4.8, allowing for swift
visualization of factors such as priority and risk.

The threats have been given a consequence and probability grading according to
the DREAD modelling done in Section 4.8.

Table 4.7: Value tuples for threat matrix visualization.

Threat Consequence Probability
S1 Signing of Fake Licenses 4 3
S2 Malicious license files 3 3
T1 Ledger Files Replacement 4 3
T2 Encrypted Ledger Files Modification 4 2
T3 Source Code Modifications 4 2
R1 Repudiable License Distribution 1 4
I1 Intermediate Private Key Leak 4 2
I2 Root Private Key Leak - Singular 4 1
I2 Root Private Key Leak - Multiple 5 1
D1 Power Outage 1 3
D2 Network Equipment Failure 1 3
D3 NMS Host Unit Downtime 1 3

52 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Table 4.8: Threat matrix.

Probability
1 2 3 4 5

1 D1,D2,
D3

R1

2
C

on
se

qu
en

ce 3 S2

4 I3-1 I2,T2,
T3

S1,T1

5 I3-2

4.10 Risk Control: Bowtie Modelling

4.10.1 Spoofing

To be able to prevent spoofing, it is important to have ways of making sure com-
ponents and requests are legitimate, for example by finding a way to uniquely
identify the correct and incorrect components and requests.

Figure 4.2: Bowtie model for spoofing threats.

One way of performing this identification is through the use of keys, where in this
case, the root private key and the intermediate private key will need to be kept
safe from threat actors. When these keys are kept secret, it is not possible to sign
fake licenses.

Chapter 4: Security Review 53

A way of identifying requests and components is necessary also when sending and
receiving TLLs meant to be uploaded into the system, where it is important to be
able to make sure the TLL is legitimate and does not contain malicious files. One
way of doing this can be to implement a system of identification, to make sure the
files are from the correct sender.

To mitigate spoofing attacks, it is important to minimize the possible consequences
of a spoofing attack. One way of doing this is through regular backups of data,
where corrupt or lost data can be replaced by the backed-up data. In addition to
this, if the customer has received malicious license files, support for malware scans
during upload would mitigate this attack, albeit this would require some sort of
online connection. Otherwise, the customer could perform a manual scan before
uploading the payload. These mitigations do not have any effect if the malicious
files contain undetected malware and the malware is aimed towards other aspects
than data integrity and availability.

4.10.2 Tampering

As illustrated in Figure 4.3, potential threats may compromise system integrity. To
prevent these risks, various precautionary measures should be implemented.

Figure 4.3: Bowtie model for integrity threats.

One effective approach to secure a system is to increase the difficulty of reverse
engineering. This can be achieved by employing binary hardening techniques,
which involves the strengthening of an application’s binary code in order to protect
it against potential exploitations.

Another approach to consider is the incorporation of code obfuscation techniques.
Code obfuscation is the deliberate modification of source code to make it harder

54 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

for humans and machines to understand, hindering the interpretation of the sys-
tem’s functionality.

Furthermore, the use of proprietary hardware with secure boot capabilities intro-
duces an additional layer of security to the system. Secure boot is a technology
that ensures only authorized and trusted firmware and software can be executed
during the system’s startup process. By incorporating proprietary hardware, it is
possible to integrate custom security features and protocols that are specifically
designed for the system in question. This makes it increasingly challenging for
threat actors to access and manipulate system components, as they would need to
overcome multiple security barriers tailored to the unique aspects of the hardware
in use.

In the event that an integrity breach occurs, it is crucial to implement mitigation
measures. The most effective approach involves dispatching a technician from
the licensing company to perform a keypair change, which guarantees that only
legitimate files are accepted and generated. This will restore the integrity of the
system temporarily. The problem with this solution is that the customer can simply
breach the system again, as the system is not more secure than before, simply
restored. The solution will also drastically affect the usability of such a system, as
the licensing company will experience a smaller financial setback due to increased
number of technicians required and the customers will have to endure all the visits
and downtime that follows.

4.10.3 Repudiation

As seen in Figure 4.4, there is only one threat, which is R1 Repudiable License Dis-
tribution. This is also coincidentally the only threat classified as high risk. Given
the nature of the concept, there is no authentication within the system. This, how-
ever, does not prevent the licensing company to complement the system with au-
thentication, which would prevent this threat from coming to fruition. By doing
this, the threat would essentially be rendered inert, unless a threat actor were to
bypass the added authentication.

Should the attack have already been successful, there are a couple of ways to
mitigate the two defined outcomes. Firstly, there is adding comprehensive logging
of all actions taken within the system. This would include time, IP-address, and –
if available – user-ID from authentication added in prevention. Secondly, adding
functionality to withdraw SLLs from an LFA, and add it to the NMS as a TLL. This
recovery functionality would mitigate the damage done by an actor sending out
an SLL to the wrong LFA.

Chapter 4: Security Review 55

Figure 4.4: Bowtie model for Repudiation threats.

4.10.4 Information Disclosure

As seen in Figure 4.5, there are three threats attempting to achieve information
disclosure. The first one is obtaining the root private key for one or more cus-
tomer relationships, the second is obtaining the intermediate private key for one
customer relationship, and the last one is obtaining information about how the li-
censing company protects the integrity of the data in their NMS. These three have
three preventions that can be applied, the first of which is regularly re-educating
authenticated personnel about social engineering and new security threats. The
second is utilizing code obfuscation to prevent the source code from leaking the
intermediate private key or the utilized integrity techniques. The third, is to store
all the private keys throughout the system in secure offline key stores with strong
passwords. Utilizing these three prevention techniques, all threat vectors have two
barriers to get through before achieving information disclosure.

Mitigating an already successful Information disclosure attack is a more difficult
situation as the entire network is offline. Keys and certificates cannot be made
invalid after-the-fact as in normal chain of trust systems. The solution is then to
regularly manually change customer key-pairs with a licensing company techni-
cian visiting the customer. This however does not really solve the problem when
the customer is considered to be the threat actor. Nothing prevents the threat
actor from finding the new intermediate private key and creating their own li-
censes again. Given the weak mitigation possibilities on an offline chain of trust
system, a lot of the security is dependent on prevention rather than mitigation.

56 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Figure 4.5: Bowtie model for Information disclosure threats.

4.10.5 Denial of Service

As illustrated in Figure 4.6, there are three threats which could result in Denial of
service for the system: power outage, NMS host unit downtime either by failing
hardware or sabotage, and network equipment failure. These three can all be
prevented in a couple of ways. A power outage and the NMS host unit going down
can both be prevented by ensuring strong on-site security routines with trained
personnel around exposed assets. Second, the NMS host unit going down, and
network equipment failure can be prevented in two ways. Firstly, by only utilizing
quality hardware with built-in fail safes which can prevent natural equipment
failure to a certain extent, and secondly by regularly maintaining all equipment
within the system.

Should the threat have already succeeded, there are a few ways to mitigate the
denial of service. Firstly, an on-site backup power supply can keep the system up
for some time until it runs out of energy. Secondly, in the case of the NMS unit
failing, a backup NMS readily available in the system could replace the one that
has gone offline. Finally, the effects of the NMS going down can be mitigated by
having scheduled the license distribution a while before the SLLs are needed in
an LFA.

Chapter 4: Security Review 57

Figure 4.6: Bowtie model for Denial of Service threats.

4.10.6 Escalation of Privilege

As there are no threats under the STRIDE category of escalation of privilege, there
is not presented any mitigation or prevention measures.

4.11 Residual Risk

The residual risk after discussing the several ways to prevent and mitigate security
threats is set to medium. Given the nature of OLM, once the integrity is breached
or information disclosed, there is little that can be done to prevent severe exploit-
ation of the security system.

First of all, the entirety of the mitigation section of Bowtie 4.3 consists of customer
key-pair changes. This is not a final solution as it will only temporarily mitigate
the outcome of the original threats’ success, as the door for it to happen again re-
mains open. The solution also introduces a higher operational cost and reduction
of usability, with a licensing company technician visiting the customer’s network
physically at a set interval. Second of all, the entirety of the mitigation section of
Bowtie 4.5 consists of the same solution introducing the same operational costs,
and cost-of-usability. Additionally, both these mitigation sections are missing cov-
erage on a threat vector each, which means that even the small mitigation of
swapping key pairs would not completely cover the outcome.

58 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

The upside of OLM is that if any exploit is deployed within a customer’s network,
the damage is retained within the network. This is the primary reason the risk
assessment never reached much further than medium, mostly, as the number of
affected customers was low.

4.12 Discussion

In the course of the security review, a number of threats have been identified
and assessed. In addition to this, most of the threats have been prevented and
mitigated in order to lower the risk of the system.

4.12.1 How Does the Risk Stand?

Most of the risks presented have been removed completely after the prevention
and mitigation measures have been implemented. There are some threats, thus
also a risk, that is unavoidable, even after implementing measures, at least not
without affecting the usability to a degree that is experienced as too high.

Overall, the group believes the concept naturally comes with a high risk. There
exists a multitude of good threat preventions that could be deployed, as presented
in Section 4.10, but once the threat has been materialized, there is little a licensing
company could do to mitigate it.

4.12.2 Is it Viable?

As the residual risk (medium) is higher than the risk appetite of the concept (low),
the concept cannot be deemed viable in the sense of security. It is possible to im-
plement or suggest further measures or additional security functionality in order
to reduce the residual risk, although these measures are deemed to have a too
high effect on the usability, interfering with the demands for the usability of the
concept.

With the currently suggested implementable measures and security features, it is
possible to utilize the system. The downside is the residual risk, which is higher
than the desired residual risk, defined through the risk appetite. If the trust in
the customers is improved, thus increasing the risk appetite, the system may be
looked upon as viably secure. In a practical deployment, for example, the licensing
company will be able to detect when a customer stops buying licenses, and the
licensing company may end their customer support. The compromised customer
system can run for an undetermined amount of time without support, thus making
this mitigation only affective after the need for customer support arises.

The accepted risk appetite may be regarded as strict, yet it is necessary in order
to protect the licensing company’s assets due to the mentioned vulnerable nature
of the concept. This makes sense in business-to-consumer relations, where the cus-
tomer of the licensing company is a private consumer. In many cases, although,

Chapter 4: Security Review 59

the concept is made available and is handling licenses in a business-to-business
relation. In these cases, the customer may be more trustworthy, as the customer
wants a product that delivers the required functionality and wants to receive sup-
port on this functionality. If the customer were to crack the system, and stop buy-
ing licenses, the licensing company will notice, and support may not be offered.
In addition to this, the customer may see less value in cracking the system than
what a private consumer customer does.

4.13 Conclusion

Throughout the security review, the group utilized several threat modelling ex-
ercises such as STRIDE, DREAD, and the Bowtie model. During these exercises,
there was uncovered a series of threats that could compromise the relationship
of any company attempting to deploy this concept in their product line and their
customers. Given the nature of a customer-hosted trusted security asset existing
entirely offline, the licensing company can never revoke fraudulent licenses, up-
date private keys, or prevent the customer from tampering with the system dir-
ectly. All of which can result in a severed relationship between the customer and
licensing company. With a high enough risk appetite OLM could be deployed in
a real-world scenario, but with the current requirements it can not be defined as
secure.

Chapter 5

Proof of Concept

5.1 Introduction

This chapter delves into the practical realization of the concept discussed through-
out the thesis. The objective is to demonstrate an example of how the concept of
OLM can be transformed into a functional software application, highlighting its
key features and capabilities. A thorough examination of the software will be con-
ducted, focusing on its architecture, essential components, and their interactions.
This approach aims to provide an understanding of how the concept was brought
to life, showcasing its potential and areas for improvement.

Figure 5.1: Initial PoC Architecture.

61

62 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

In regard to the PoC, under the influence of Nevion, the license functionality has
been named “media function”. There is no difference between the license function-
ality discussed and presented in Concept Review and the media functions used in
the PoC, except the fact that the media function implementation has been used as
a part of the example implementation of the concept.

From the concept, as described in Chapter 3 – Concept Review, the initial idea of
architecture is defined in Figure 5.1. This figure is added as a starting point for
the architecture development of the PoC.

5.2 Requirements

5.2.1 Functional Requirements

• Redeem and accumulate functionality from TLLs on Network Management
System (NMS).
• Generate SLLs.
• Send SLLs to LFAs.
• Consume licenses on LFAs.

5.2.2 Non-functional Requirements

• NMS coded in Java.
• LFA coded in C++.
• Secure implementation, with regard to integrity.
• Secure implementation, with regard to serialization.

5.2.3 Operational Requirements

• Reliability, whereas results should be consistent and accurate.
• User-friendly, with clear documentation and straightforward interfaces.
• Logging for diagnostic purposes.

5.3 Technologies

Implementing the concept of Offline License Management (OLM) into a product
that can be used in practice requires a number of different technologies combined.
These are the technologies that have been utilized in order to create this Proof of
Concept.

5.3.1 OpenSSL

OpenSSL is a widely used, open-source toolkit implementing the Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) protocols, as well as a general-
purpose cryptography library. It has been used in this project to ensure secure

Chapter 5: Proof of Concept 63

communication between different components and provide cryptographic func-
tionality for certificates and authentication [30].

5.3.2 Network Management System

According to the non-functional requirements, the Network Management System
(NMS) has been coded in Java. The Java version is set to 11, as the development
team has the most experience with this version. Although Java 17 offers some
newer features and general improvements, the benefits of using a familiar ver-
sion in this project outweighs the potential gains of adopting the latest release.
Java 11 also provides long-term support, which ensures an up-to-date JDK for the
application even though it is the older version of the two [31].

Java Library Manager

MAVEN has been used as the Java library manager to streamline the build pro-
cess, manage dependencies, and automate the packaging and deployment of the
application [32].

API

The Java framework Spring Boot has been chosen for the API layer of the Network
Management System (NMS), as it allows for rapid development, easy configura-
tion, and seamless integration with other tools and libraries [33].

5.3.3 License File Aggregator

According to the non-functional requirements, the License File Aggregator (LFA)
has been coded in C++. C++was paired with the networking library Oatpp which
includes all the different technologies required. It is a verbose library, requiring a
lot of boilerplate for simple things, such as a client, but such is the nature of the
’beast’. Things which may be regarded as trivial in other higher-level languages
require several lines of setup and configuration within Oatpp.

Additionally, the OpenSSL library has been used to provide custom cryptographic
functionality for the system’s various certificates and for HTTPS support. Finally,
CMake is utilized to bundle the codebase into an executable properly with the
g++ compiler.

5.3.4 Frontend

The frontend implementation was not originally a part of the thesis and did there-
fore not have any requirements applied to it, which allowed the group to build it
in whatever they wanted to. The frontend implementation was constructed with
the web framework Vue [34] and one of its plugins ’vuetify’ [35] which allows for

64 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

good-looking standardized components for quick development. Axios was utilized
for all API requests to the NMS because of its quick setup with little effort [36].

In addition, the code also utilizes the Node package manager (NPM) [37] and
Node.js [38] for its long list of dependencies and its runtime environment. NPM
allows for quickly fetching project dependencies, which allows for quicker devel-
opment by utilizing open source packages that solve different problems. This is
done in an attempt to never re-invent the wheel, but also comes with the plethora
of issues that are associated with third party dependencies [39].

5.4 Design

5.4.1 Structure

The Proof of Concept is structured into 3 different code bases: one code base
representing the NMS; one code base representing the LFA; and one code base
representing the frontend. In addition, there is a script created for signing TLLs.
The repositories are split for ease of deployment, difference of environments and
separation of documentation.

The split is also attributed to the relationship between the different elements
within a deployed OLM system. The NMS is, as its name indicates, a manager
of the network and allows for managing several LFAs within a network. This one-
to-many hierarchy is important to separate in code as well, as deploying an NMS
per LFA is unnecessary.

5.4.2 Communication

Chapter 3 – Concept Review presents two channels where communication is ne-
cessary for an implemented instance of the concept. Communication is necessary
between both the licensing company and the customer hosting the concept sys-
tem, and between the NMS and the LFAs within the network.

As for this PoC, the concept requirements for communication have been chosen
to be covered by two different RESTful APIs, one at the NMS and one at the
LFA. These communicate by the use of requests built up of pre-defined structures
and contents [40]. The choice of a RESTful API was made for its widely used
architectural style for web services. It is also scalable, allowing high cohesion and
low coupling between services [41]. The communication between the NMS and
the LFA is done solely from the NMS to the LFA, as the NMS is the orchestrating
node. An exception to this rule of direction is the initial contact between one LFA
and the NMS, upon connection, which will be described in detail under Section
5.6.2. The rule of direction is deduced through a one-to-many relationship, where
one NMS is potentially connected to several LFAs.

Chapter 5: Proof of Concept 65

As for the communication between the licensing company and the customer host-
ing the instance of the system, no means of communication has been chosen in
this example implementation of the concept. This is done because the means of
communication is irrelevant to the implementation, as long as the Top-Level Li-
cense can be redeemed at the NMS without an internet connection. The TLL can
as an example be mailed to an online customer-device and then physically moved
into the offline network for uploading into the NMS.

5.5 License Signing

License signing at the top level is performed using a simple bash script – called
the License File Signer (LFS) – that accepts the license to be signed and the root
authority’s private key as inputs. The script can be seen as Listing 5.1. The output
is a file with the same name as the license file, appended with a ’.signature’ suffix.
The purpose of the signature is to ensure that the license was signed by the cor-
rect authority, providing a secure way to validate the authenticity of the license.
These two files are then shipped together to the customer within a zip file to be
redeemed. Sub-Level Licenses are signed by the NMS itself with its intermediate
private key automatically whenever a license is created by the NMS. More on this
in Section 5.6.8 – Sub Level License Generation.

Code listing 5.1: Entire LFS bash script utilizing OpenSSL.

1 #!/bin/bash
2
3 # Check if the required parameters have been provided
4 if [$# -lt 2]; then
5 echo "Usage: $0 <file_to_sign> <private_key_file>"
6 exit 1
7 fi
8
9 # Input file to be signed

10 file=$1
11
12 # Private key file used to sign the input file
13 key=$2
14
15 # Sign the file
16 if openssl dgst -sha256 -sign "$key" -out "${file}.signature" "$file"; then
17 echo "File signed successfully."
18 else
19 echo "File signing failed."
20 fi

5.6 Network Management System

The Network Management System (NMS) from the concept is implemented in
the Proof of Concept as a Java application, the structure of which can be seen in
Listing 5.2.

66 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Code listing 5.2: NMS Source Code Tree.

.
|-- java
| ‘-- no
| ‘-- ntnu
| ‘-- nms
| |-- App.java
| |-- CustomerConstants.java
| |-- Init.java
| |-- api
| | |-- BodyParser.java
| | |-- Constants.java
| | |-- client
| | | ‘-- Client.java
| | ‘-- handlers
| | |-- LfaRegistryHandler.java
| | |-- LicenseHandler.java
| | |-- PoolHandler.java
| | ‘-- Root.java
| |-- domainmodel
| | |-- Pool.java
| | ‘-- PoolRegistry.java
| |-- exception
| | |-- CryptographyException.java
| | |-- ExceptionHandler.java
| | |-- FileHandlerException.java
| | |-- LedgerException.java
| | |-- LfaRegistryException.java
| | |-- LicenseGeneratorException.java
| | ‘-- ParserException.java
| |-- filehandler
| | ‘-- FileHandler.java
| |-- lfa
| | ‘-- LfaRegistry.java
| |-- license
| | |-- LicenseGenerator.java
| | ‘-- LicenseLedger.java
| |-- logging
| | ‘-- Logging.java
| |-- parser
| | |-- LicenseParser.java
| | ‘-- ZipUtil.java
| |-- persistence
| | ‘-- PersistenceController.java
| ‘-- security
| |-- Checksum.java
| |-- Cryptography.java
| ‘-- KeyGenerator.java
‘-- resources

|-- application.properties
‘-- keystore.jks

Chapter 5: Proof of Concept 67

5.6.1 API

As mentioned in Section 5.4.2, a RESTful API is being used for communication
between the NMS and the LFA. The API is run through an embedded web server
in Spring Web [33], which launches at runtime and handles the endpoints defined
by code.

The API consists of three groups of endpoints. The groups are license, regarding
all licenses in the NMS; LFA, regarding all actions in connection with LFA; and
pool, regarding the pools in the NMS.

For the implemented frontend to get access to the information and functionality
necessary, the frontend makes use of this API. This is done due to the unreliability
of network IP assignment for more dynamic devices, such as the LFA, where a
connection to the NMS is more constant and secure. All requests that are meant
to be sent from the frontend to an LFA are sent through the NMS, only to be
translated and forwarded to the actual IP address. The API uses standard HTTP
response status codes when returning responses to requests [42][43].

The API handlers are written as Rest Controllers, through Spring Web, where the
different classes contain handlers for different endpoint groups. As seen in List-
ing 5.3, the root handler class is defined as a @RestController where it handles
requests sent to the BASE_URL, defined as “/api/v1”. The example handler from
Listing 5.3 handles a GET-request sent to the base URL, given the fact that the
@GetMapping value is an empty string. The value string can also be non-empty,
where the content is added to the BASE_URL, for example “/root”. In this case, the
URL for the endpoint will be BASE_URL_VALUE/root. If the handler should handle
POST-requests, the method will need a @PostMapping annotation, instead of the
@GetMapping [33].

Figure 5.2: NMS API Overview.

68 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Code listing 5.3: NMS API Spring Web Endpoint Handler Shell.

1 package no.ntnu.nms.api.handlers;
2
3 import no.ntnu.nms.logging.Logging;
4 import org.springframework.web.bind.annotation.*;
5
6 import static no.ntnu.nms.api.Constants.BASE_URL;
7
8 /**
9 * Root is a handler for the root API endpoint, which is not in use.

10 */
11 @RestController
12 @RequestMapping(value = {BASE_URL})
13 public class Root {
14
15 /**
16 * Root endpoint handler method for a request of method GET.
17 * @return {@link String} a message that the endpoint is not in use.
18 */
19 @GetMapping(value = {""})
20 public String rootEndpoint() {
21 Logging.getLogger().info("Root endpoint called");
22 return "This endpoint is not in use. " +
23 "Please check the documentation for available endpoints.";
24 }
25 }

Table 5.1: NMS API Endpoint Summary.

Endpoint Method Functionality
/license/ POST Redeems a Top-Level License on the

NMS.
/license/lfa/ POST Generates a SLL and sends it to the LFA.
/lfa/ GET Getter for all registered LFAs.
/lfa/consume PUT Consumes a certain amount of a certain

media function from a certain LFA.
/lfa/licenses GET Getter for all the LFAs with their licenses.
/lfa/register PUT Registers a new LFA on the NMS.
/pool/all GET Getter for all NMS license pools.
/pool/
{mediaFunction}

GET Getter for a certain media function pool
from the NMS.

General Response

Unless otherwise is described in this section, the response to the requests is of the
content-type application/json. The response contains either a success message or
an error message. An example of both a positive and negative response can be
seen in Listing 5.4 and Listing 5.5.

Chapter 5: Proof of Concept 69

Code listing 5.4: NMS API Positive response body example.

1 {
2 "message": "File uploaded :)"
3 }

Code listing 5.5: NMS API Negative response body example.

1 {
2 "error": "No file uploaded"
3 }

/license/

This endpoint functions as the upload point for the Top-Level License (TLL). After
the upload, the files are checked for their integrity, the signature, and the con-
tents. After the parsing, which is described in detail under Section 5.6.4, the TLL
functionality is added to the pool, which is described in detail in Section 5.6.6.
The license is uploaded as form-data in the request. The key to the data is file, and
the name of the file is irrelevant, as it is discarded.

/license/lfa/

This endpoint makes it possible to generate an SLL, from the redeemed TLL, of
a given length, from a given media function, and send it to a given LFA. The SLL
will be packaged and signed, to keep the integrity of the license until it is received
by the LFA. The body of the request needs to contain the information necessary to
perform the actions triggered by the endpoint. The structure of the response and
the JSON-keys are pre-defined. An example request can be seen in Listing 5.6,
where all fields are required. The duration is given in seconds.

Code listing 5.6: NMS API /license/lfa/ endpoint body structure.

1 {
2 "ip": "IP.TO.THE.LFA",
3 "mediaFunction": "J2KHD",
4 "duration": 300
5 }

/lfa/

This endpoint acts as a getter for a list of all the LFAs registered at the given NMS.
The list of registered LFAs is returned in a JSON-structure. An example of the
JSON structure response body can be seen in Listing 5.7.

70 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Code listing 5.7: NMS API /lfa/ endpoint response body structure.

1 {
2 "lfas": [
3 {
4 "ip": "127.0.0.1:8443",
5 "name": "License File Consumer - Alpha"
6 },
7 {
8 "ip": "127.0.0.1:8453",
9 "name": "License File Consumer - Omega"

10 }
11]
12 }

/lfa/consume

As a part of the frontend written to demonstrate the PoC, there is functionality
enabling the end user to consume license time from an LFA. This endpoint allows
for the frontend to utilize the consume functionality within an LFA. The request
sent to this endpoint is converted into a request suitable for the given LFA, and
sent to the device. The response body structure of this endpoint is identical to the
/license/lfa/ endpoint, as seen in Listing 5.6.

/lfa/licenses

This endpoint gathers all the LFAs connected to the NMS, similar to /lfa/, but
adds the LFAs licenses. The request body structure is the same as /license/lfa/,
as seen in Listing 5.6. An example of the response body structure can be seen in
Listing 5.8. It is similar to the response body seen in Listing 5.7, except it adds the
licenses currently present at the given LFAs.

Code listing 5.8: NMS API /lfa/licenses endpoint response body structure.

1 {
2 "lfas": [
3 {
4 "ip": "127.0.0.1:8443",
5 "name": "License File Consumer - Alpha",
6 "licenses": [
7 {
8 "duration": 300,
9 "name": "J2KHDX",

10 "description": "J2K HD Encoders/Decoders"
11 }
12]
13 }
14]
15 }

Chapter 5: Proof of Concept 71

/lfa/register

This is the endpoint where the LFAs register to the NMS as available and on-
line. When registering, the LFA becomes a part of the Lfa Registry. The registry is
described in detail in Section 5.6.2. For the endpoint, there are two URL query
parameters; the name of the LFA and the port where the LFA server is running.
The two query parameters have the keys name and port, where the name and the
port are strings.

/pool/all

As described in Section 5.6.6, the NMS is keeping all redeemed TLLs in pools. This
endpoint functions as a getter for all the pools within one NMS. An example of
the response body structure can be seen in Listing 5.9.

Code listing 5.9: NMS API /pool/all endpoint response body structure.

1 {
2 "pools": [
3 {
4 "mediaFunction": "J2KHDX",
5 "timeLeftSeconds": 5700,
6 "description": "J2K HD Encoders/Decoders"
7 },
8 {
9 "mediaFunction": "UpstreamDataTransfer",

10 "timeLeftSeconds": 3600,
11 "description": "Data transfer for use upstream"
12 }
13]
14 }

/pool/{mediaFunction}

This endpoint works in the same way as /pool/all, except it returns only one
of these pools. The pools returned are defined by the URL parameter {mediafunc-
tion}, where the media function is the name of the license functionality. The re-
sponse body structure is close to the one presented in Listing 5.9, except there is
no list, as there is just one pool returned.

5.6.2 LFA Registry

For the NMS to be able to distribute SLLs to the LFAs, it is necessary to keep track of
the connected LFAs. This is done through the LFA registry. This registry is, through
the API, also used for the front end of the PoC, when presenting menu choices and
similar.

The LFA Registry is implemented as a singleton class of its own, containing a Java
Hashmap as a field and the Singleton instance as a static class field. The Hash
Map, named lfaMap, is defined with strings as both the key and the value, where

72 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

the key is the name of the LFA and the value is the IP address, including the port,
of the LFA.

Every time the list of LFAs is requested from the registry, the map of the LFAs is
refreshed. By refreshing, it is checking each entry to filter out the entries which
are no longer online, or no longer connected for any other reason. The filtered
LFAs are then returned. The refresh method can be seen in Listing 5.10. Every
time an LFA server is started, it registers with the API of the NMS, which adds it
as an entry to the LFA registry.

Code listing 5.10: LFA alive check from NMS.

1 /**
2 * Checks if the LFA is alive.
3 * @param ip The ip of the LFA.
4 * @return True if the LFA is alive, false otherwise.
5 */
6 public static boolean lfaIsAlive(String ip) {
7 String url = "https://" + ip + "/api/v1";
8 try (CloseableHttpClient httpClient = getHttpClient()) {
9 if (httpClient == null) {

10 Logging.getLogger().warning("Failed to create http client");
11 return false;
12 }
13 return httpClient.execute(ClassicRequestBuilder.get(url).build(),
14 (ClassicHttpResponse response) -> {
15 if (response.getCode() == 200) {
16 return true;
17 } else {
18 Logging.getLogger().warning("Failed to connect to LFA: " +
19 response.getCode());
20 return false;
21 }
22 });
23 } catch (Exception e) {
24 Logging.getLogger().warning(e.getMessage());
25 return false;
26 }
27 }

5.6.3 Client

To cover the need to communicate with the LFAs’ API, a client has been imple-
mented in the NMS. This client performs actions such as consuming licenses on a
given LFA, gets information about the LFAs licenses, and similar. The client uses a
standard Java HTTP client library created by Apache [44].

An example of how the client communicates with an LFA can be seen in Listing
5.10. In this example, a call is made to the LFA to check if it is still alive and online
in the network. For a more detailed overview of the API calls possible to perform
towards an LFA, Section 5.7.1 may be referenced.

Chapter 5: Proof of Concept 73

5.6.4 License Parsing

The license parsing process is an essential component of the system, responsible
for verifying, parsing, and handling license files. The main functionality of this
process is implemented in two Java classes: LicenseParser and ZipUtil.

The LicenseParser class is responsible for handling the license files and their as-
sociated signature files. It starts by unzipping the provided input stream (Multi-
PartFile) containing the license and signature files using the ZipUtil class. Once
the files are extracted, the class assigns the file paths to the respective instance
variables. Next, the LicenseParser verifies the existence of both the files. It reads
the content of these files and validates the signature against the embedded public
key. This is crucial for ensuring the integrity and authenticity of the license files,
and to prevent misuse and exploitation. If the verification fails, an exception is
thrown, and the process is halted.

Upon successful verification, the LicenseParser checks if the license has already
been used, and if so, it throws an exception and handles it accordingly. If the
license has not been used, it proceeds to parse the JSON content of the license
file. The parsing process extracts the relevant data, such as name, duration, and
description, for each license key in the file. The parsed data is then used to update
the LicenseLedger and PoolRegistry instances accordingly. Finally, the LicenseParser
class cleans up the temporary files and folders created during the process to avoid
clutter.

5.6.5 Security Features

The security of the NMS is a vital aspect of the system, as it manages sensitive data
and communication between components. It is essential to use strong encryption
algorithms and key generation techniques to ensure data confidentiality, which is
why the PoC is using the AES-256 algorithm, which was covered in Section 3.2.1
– Cryptography.

The cryptography class generates a secret key with a key length of 256 bits for use
in encryption and decryption using the javax.crypto.KeyGenerator and the AES
algorithm. The key is stored as a byte array named KEY, and to ensure that the
key is the same every time, the generateKey function specifies a preset seed for the
secure random number generator.

74 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Code listing 5.11: Cryptography.generateKey.

1 // The key used for encryption/decryption.
2 public static final byte[] KEY = generateKey();
3
4 /**
5 * Generates a key for encryption/decryption.
6 * @return The generated key.
7 * @throws RuntimeException if the AES algorithm is not available.
8 */
9 public static byte[] generateKey() throws CryptographyException{

10 try {
11 javax.crypto.KeyGenerator keyGen = KeyGenerator.getInstance("AES");
12 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
13 random.setSeed(123456L); // Set a fixed seed for the random number

generator, can be e.g. customer ID
14 keyGen.init(256, random); // key length of 256 bits
15 SecretKey secretKey = keyGen.generateKey();
16 return secretKey.getEncoded();
17 } catch (NoSuchAlgorithmException e) {
18 Logging.getLogger().warning("Failed to generate key: " +

e.getMessage());
19 throw new CryptographyException("Failed to generate key: " +

e.getMessage());
20 }
21 }

Furthermore, the cryptography class utilizes a method called applyCipher that
takes a message in the form of a byte array and a Mode, which indicates whether
to encrypt or decrypt the message. The method will then use the previously gen-
erated key to generate a SecretKeySpec1 which will in turn be used to create the
final ciphertext.

Code listing 5.12: Cryptography.applyCipher.

1 public class Cryptography {
2 public enum Mode {
3 ENCRYPT,
4 DECRYPT
5 }
6
7 /**
8 * Encrypts/decrypts a message using AES encryption.
9 * @param message The message to encrypt.

10 * @param mode The mode to use, e.g. ENCRYPT or DECRYPT
11 * @return The encrypted message.
12 */
13 public static byte[] applyCipher(byte[] message, Mode mode) throws

CryptographyException {
14 try {
15 SecretKeySpec keySpec = new SecretKeySpec(KEY, "AES");
16 Cipher cipher = Cipher.getInstance("AES");
17
18 int modeInt = mode == Mode.ENCRYPT ? Cipher.ENCRYPT_MODE :

Cipher.DECRYPT_MODE;
19 cipher.init(modeInt, keySpec);

1https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/spec/SecretKeySpec.html

Chapter 5: Proof of Concept 75

20 return cipher.doFinal(message);
21 } catch (Exception e) {
22 Logging.getLogger().warning("Failed to apply cipher:" +

e.getMessage());
23 throw new CryptographyException("Failed to apply cipher:" +

e.getMessage());
24 }
25 }
26 }

5.6.6 Pools

Within the NMS, pools are responsible for managing the allocation of media func-
tions. Each pool represents a media function and features a time value indicat-
ing the amount of time available for allocation. The Pool class, more specifically,
stores information about the media function, duration, and a description of the
pool. Furthermore, it offers methods for adding and subtracting time from the
pool, allowing the NMS to stay up-to-date when time is allocated to an LFA.

Additionally, the Pool class has implemented a property change listeners, listening
for changes in the pool object, when, for example, time is subtracted, licenses
are added, or the descriptions are changed. When the property change listener is
triggered, a log message is created and the pool is serialized. This way, the disk-
stored version of the pool objects, defined as a Pool Registry, is always identical
to the memory-stored pool objects, ensuring that all pools remain consistent even
in the event of a restart or crash. The definition of the property change listener
trigger function is seen in Listing 5.13, where the @Override annotation is added
because the class implements the interface PropertyChangeListener.

Code listing 5.13: NMS Pool: Property change listener definition.

1 /**
2 * This method gets called when a bound property is changed.
3 *
4 * @param evt A PropertyChangeEvent object describing the event source
5 * and the property that has changed.
6 */
7 @Override
8 public void propertyChange(PropertyChangeEvent evt) {
9 Logging.getLogger().info("Pool change listener triggered. Updating pool

registry.");
10 PoolRegistry.getInstance(false).updatePoolReg();
11 }

The PoolRegistry class manages all the pools in the NMS. As a singleton class, it
ensures that there is only one instance of the registry throughout the entire system.
The registry maintains a list of pools and provides methods to add, remove, and
query pools based on their media function. The list is implemented as a Java
ArrayList of the data type Pool.

76 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

5.6.7 Persistence

As mentioned in Section 5.6.6, the PoC employs persistent features, which is in the
form of serialization. This process entails converting the data to a byte stream and
encrypting it using the encryption key and the Cryptography.applyCipher method
mentioned in Section 5.6.5. Lastly, the encrypted data is written to a file.

Ensuring integrity of data is important. As a safeguard against potential tamper-
ing, the NMS has a self-termination function built in. If decryption fails during
the NMS startup, it means important data did not decrypt correctly, which is a big
indicator of tampering or unauthorized access. This self-termination feature helps
protect the system’s safety and reliability, and to prevent misuse and exploitation.

5.6.8 Sub Level License Generation

The sublevel license generation is handled by the LicenseGenerator class, which is
responsible for creating licenses for specific media functions and durations. The
class uses a combination of methods to generate a license, sign it using the private
key loaded from the key store, and upload it to the LFA.

The main method, generateLicense, accepts as inputs the IP address of the client,
the media function, and the license duration. It then checks the input before re-
trieving the associated pool for the specified media function. The procedure then
produces a unique license ID and creates the file path for the license file.

The license string is then generated by merging the pool information, duration,
and other required data in a JSON format with the generateString function. The
writeToFile method is used to save the JSON file to disk, and the signFile method
is used to sign the license file using the private key loaded from the key store.

The REST API endpoint /generateSubLicense is responsible for handling the sub-
license generation request, which takes a payload containing the LFA IP, media
function, and duration. The payload is first parsed, and then the generateLicense
method is called to create the sublicense. Once the sublicense is generated, it is
uploaded to the LFA using the Client.uploadLicense method.

5.6.9 Logging

As a part of the operational requirements of the PoC, logging is introduced as a
diagnostics tool.

In the package Logging, the Singleton class Logging is present. This is a class con-
taining two methods and two class variables. The class variables, named LOG_PATH
and logger. They are, respectively, the variable containing the path of the log files
and the variable that keeps the singleton instance of the custom logger. To re-
trieve the logger from a different class, a getLogger() method is implemented.
This method throws a NullpointerException if the second method of the class has

Chapter 5: Proof of Concept 77

not been called firstly. The method that is required to be called first has the sig-
nature: public static void setUpLogger(String logLevel)throws IOException. This cre-
ates a Singleton logger object, with the given log level, where the log levels are
the standard log levels for Java logging [45].

An example of a part of a log file can be seen in Listing 5.14. This log file snip-
pet starts from the beginning of the application, where the logger is initialized.
Further, a license is redeemed, where the license functionality does not exist in
the NMS. This is why a new pool is created. For the sake of this snippet, the file
containing the checksums of the redeemed licenses is failing to be read; this way,
the log file does also contain WARNING statements. The log level for the logger
that created this snippet is set to ALL.

Code listing 5.14: NMS Logging file example.

1 2023-04-27 09:41:56 INFO no.ntnu.nms.logging.Logging Logger initialized
2 2023-04-27 09:41:56 INFO no.ntnu.nms.parser.ZipUtil Found license.json
3 2023-04-27 09:41:56 INFO no.ntnu.nms.parser.ZipUtil Found license.json.signature
4 2023-04-27 09:41:56 INFO no.ntnu.nms.domainmodel.Pool Creating new pool for

mediafunction J2KHDX
5 2023-04-27 09:41:56 INFO no.ntnu.nms.domainmodel.Pool Pool registry change

listener successfully added
6 2023-04-27 09:41:56 INFO no.ntnu.nms.parser.ZipUtil Found license.json
7 2023-04-27 09:41:56 INFO no.ntnu.nms.parser.ZipUtil Found license.json.signature
8 2023-04-27 09:41:56 INFO no.ntnu.nms.parser.ZipUtil Found license.json
9 2023-04-27 09:41:56 INFO no.ntnu.nms.parser.ZipUtil Found license.json.signature

10 2023-04-27 09:41:56 INFO no.ntnu.nms.logging.Logging Logger initialized
11 2023-04-27 09:41:56 WARNING no.ntnu.nms.security.Checksum Failed to read file: test
12 2023-04-27 09:41:56 WARNING no.ntnu.nms.filehandler.FileHandler Failed to open and

read file: null
13 2023-04-27 09:41:56 INFO no.ntnu.nms.logging.Logging Logger initialized
14 2023-04-27 09:41:58 INFO no.ntnu.nms.api.handlers.Root Root endpoint called

5.6.10 Project Initialization

Before the NMS software can be built, some code is run as a preliminary step to
prepare the necessary files required for the NMS software to function correctly.
The code creates a certificate file by converting the intermediate certificate from
the key store to a PEM file format and saves it to a new file. This certificate is
essential for sending SLLs to the LFAs as it is sent with the licenses and their
respective signatures. Additionally, the code generates two critical files that the
NMS software requires to operate. One of these files stores the encrypted serialized
pools, while the other stores the encrypted checksums of the redeemed licenses.
Should one of these files be removed, the self-termination mechanism activates
as mentioned in 5.6.7.

78 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

5.7 License File Aggregator

Code listing 5.15: LFA Source code tree.

.
|-- CMakeLists.txt
|-- LICENSE
|-- README.md
|-- src
| |-- App.cpp
| |-- AppComponent.hpp
| |-- client
| | ‘-- client.hpp
| |-- controller
| | |-- Controller.cpp
| | ‘-- Controller.hpp
| |-- dto
| | ‘-- DTOs.hpp
| |-- error
| | |-- error.cpp
| | ‘-- error.hpp
| |-- file
| | |-- fileHandler.cpp
| | ‘-- fileHandler.hpp
| |-- shared.hpp
| ‘-- ssl
| |-- certificates.cpp
| ‘-- certificates.hpp
|-- test
| |-- ControllerTest.cpp
| |-- ControllerTest.hpp
| |-- app
| | |-- ApiTestClient.hpp
| | ‘-- TestComponent.hpp
| ‘-- tests.cpp
‘-- utility

‘-- install-oatpp-modules.sh

5.7.1 Server

The primary function of the LFA is to act as a running license consumer which can
take in any kinds of timed licenses for any functionality a customer would want.
For all this to work, the server component of the LFA is essential.

Table 5.2: LFA API Endpoint Summary.

Endpoint Method Functionality
/ GET Used to ping the LFA
/licenses GET Fetches currently available license pool
/consume DELETE Consumes n seconds from media-

function x
/upload UPLOAD Accepts valid sublevel licenses and adds

to pool

Chapter 5: Proof of Concept 79

/

First there is the root endpoint which simply returns a “Hello World!” to any calls
to it. This is used by the NMS for pre-checking that the LFA is still up and running,
before performing requests to any of the other three endpoints. This is done to
prevent larger, unnecessary requests to an offline LFA from the NMS.

Code listing 5.16: LFA API / endpoint response body.

1 {
2 "message": "Hello World!"
3 }

/licenses

The second endpoint simply lists all the LFA’s currently available licenses, their
description, and how much time is left for the given license.

Code listing 5.17: LFA API /licenses endpoint response body.

1 {
2 "licenses": [
3 {
4 "name": "J3KHDX",
5 "duration": 100,
6 "description": "J3K HD Encoders/Decoders"
7 },
8 {
9 "name": "J2KHDX",

10 "duration": 100,
11 "description": "J2K HD Encoders/Decoders"
12 }
13]
14 }

/consume

The third endpoint allows for ’consuming’ any valid submitted time from a re-
gistered license. This would in a real world scenario be the actual use of the given
license’s accompanying functionality, but within the scope of this Proof of Concept
it has been decided to simply allow for a direct ’consumption’ – or rather deletion
– of time from any active licenses through this endpoint. When correctly called
upon, it returns the remaining duration of the license which was consumed.

Code listing 5.18: LFA API /consume endpoint response body.

1 {
2 "name": "J2KHDX",
3 "duration": 100,
4 "description": "J2K HD Encoders/Decoders"
5 }

80 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

/upload

Finally, there is the most important endpoint for the LFA which is the upload en-
dpoint. This endpoint represents a very important part of the Proof of Concept,
namely verifying the chain of trust, validating integrity, and allowing a license
payload to be added to the project. A further explanation of how this is verified
and the integrity of the uploaded license are verified can be found in 5.7.2.

5.7.2 OpenSSL

This overview of the implementation of OpenSSL in the PoC will mostly regard
the upload endpoint and the steps deployed to verify both the chain of trust and
the integrity of licenses.

Foremost, three files are required to be uploaded; the license, its signature, and
the intermediate certificate. When called upon, the endpoint will proceed by first
reading its own embedded copy of the root certificate and verifying the chain of
trust between the supplied intermediate and root certificates.

Code listing 5.19: Chain of trust verification using the root and intermediate
certificate.

1 // Verify that certificate file is valid
2 int correctCert = system(("openssl x509 -in "+certificate+" -text

-noout").c_str());
3 OATPP_ASSERT_HTTP(correctCert==0, Status::CODE_400, "Certificate not valid");
4
5 // Verify intermediate cert as derived from root.
6 X509 * intCert = readCertFromFile(certificate);
7 X509 * rootCert = readCertFromFile("../cert/external/root.cert");
8 OATPP_ASSERT_HTTP(cert_verify(intCert, rootCert)==1, Status::CODE_401,

"Certificate could not be validated!");
9 X509_free(intCert);

10 X509_free(rootCert);

The second step is then to validate the integrity of the license file. This is done to
prevent man in the middle attacks [46] in the transit of an SLL from the NMS to
an LFA. By also requiring the signature of the license in the upload, it can ensure
that the payload is both unchanged in the period between now and the moment
it was signed, and that it was signed by the previously verified chain-of-trust in-
termediate private key holder (the NMS). This step is critical to prevent fake or
altered licenses from being uploaded and accepted by the LFA, as otherwise a ma-
licious customer could intercept the license on the network and alter its content
rather easily.

Chapter 5: Proof of Concept 81

Code listing 5.20: Integrity validation of sub level licenses.

1 // Concatenate the system calls for later use
2 std:string createCommand = "openssl x509 -in "+certificate+" -pubkey -noout >

intpubkey.pem";
3 std::string verifyCommand = "openssl dgst -sha256 -verify intpubkey.pem

-signature " + signatureFile + " " + licenseFile;
4
5 // Execute the system calls
6 int createIntPubKey = system((createCommand).c_str());
7 int verifySignature = system((verifyCommand).c_str());
8
9 // Assert success of all previous system commands.

10 OATPP_ASSERT_HTTP(createIntPubKey==0, Status::CODE_400,
11 "Could not derive public key from certificate.");
12
13 OATPP_ASSERT_HTTP(verifySignature==0, Status::CODE_401,
14 "Could not verify license with license signature.");

As the source code is written, it allows for re-uploading the same SLL over and
over again as long as it was once generated correctly, which represents a security
risk. The reason it has not been implemented in the LFA is because the problem
has already been proven ’solved’ in the NMS and a similar solution would work to
prevent the risk here as well. The technique works by saving a list of checksums
of each license uploaded to the LFA on the disk, which is then parsed each time a
’new’ license is uploaded. If a match were to be found, the license is a duplicate.
More on this in Section 5.6.7.

As seen in listing 5.20, the approach to OpenSSL is quite different from listing 5.19
as the code now perform system calls rather than calling a custom-made function.
This was done due to time constraints, as the OpenSSL library is infamously poorly
documented [47] and the previous custom interpretation took quite some time,
even though it should have been a simple implementation. Therefore, making
system calls directly to the OS installation of OpenSSL proved much faster for
development.

However, this could be a security risk as there is no control of what exactly ’OpenSSL’
calls to in the OS. A simple alias to always return 0 for all system calls to ’OpenSSL’
would entirely break the integrity check, as the result would always be 0 (meaning
success). Blindly trusting system calls is short-sighted and for a real world secure
implementation, all functionality should be custom-made in the code-base as in
listing 5.19.

Finally, the LFA uses an implementation of OpenSSL to host the server on HTTPS
to secure the line for an even stronger protection of the licenses payload between
the NMS and the LFA. This is still vulnerable to attacks such as man-in-the-middle
attacks and cannot be entirely relied on, which is why further integrity checks are
performed in the upload endpoint.

82 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

5.7.3 Client

One slightly out of scope component of the LFA is the client. It only exists to make
an initial call to the NMS at a static IP in the network at the very beginning of
the program. This is done so that the NMS can create a list of connected LFAs
for further ease-of-use to make mass-requests to all or any connected LFAs in the
future. In the real world, this should be done properly through a fully fledged
network management system. An issue with this approach is that if an LFA is
launched before the NMS, the NMS will never know that the LFA is running, as
the request was made earlier and failed. The LFA does not change its behaviour if
it does not have any NMS available, and the NMS will not attempt to establish a
connection to the LFA, as this would be even further out of scope.

Code listing 5.21: A simple client for sending a PUT request to NMS.

1 class Client : public oatpp::web::client::ApiClient {
2 API_CLIENT_INIT(Client)
3 API_CALL("PUT", "api/v1/lfa/register", getResource, QUERY(String, name),

QUERY(String, port))
4 };

The code in Listing 5.21 defines the client to perform a single PUT request with
two variables in the URL; namely the name of the LFA and the port it exists on.
The NMS also requires the IP for future request relays, but this is fetched from
the request itself, as this presented as a far easier technique to grab the LFA IP.
Initially it was attempted to fetch the port from the request, but it was discovered
that the client itself would not run at the same port as the LFA server and would
be randomly assigned an unassigned port on the system. Therefore, if the request
port was cached, the NMS would never receive a response from the LFA as the
client would have already been shut down and the server would be running on a
different pre-defined port.

5.8 Frontend

For demonstration purposes, there was also developed a website hosted alongside
the NMS to interact with the various API endpoints on the NMS.

This website was built with vue.js and the accompanying plugin Vuetify to quickly
build UI with the design language of Google’s Material Design. The UI allows for
several key interactions with Proof of Concept functionality.

First the website allows for uploading TLLs which, if successful, adds the license
data to the list of available licenses below. Next to this license pool, the website
allows for generating SLLs and sending them to any connected LFAs. The UI for
this can be seen in Figure 5.3.

When loading the website, a dynamic list of all connected LFAs are available at
the bottom of the screen, with the license pool for each LFA. This list also reloads

Chapter 5: Proof of Concept 83

with new data each time the user generates new Sub-Level Licenses. In the license
pool of all the LFAs, the UI allows for consuming any amount of available duration
from any license. The UI for this can be seen in Figure 5.4.

Figure 5.3: Screenshot from front end website (NMS part).

Figure 5.4: Screenshot from front end website (LFA part).

The webpage itself can as stated and shown earlier see all available LFAs and inter-
act with them, but it never makes requests directly to them. The webpage makes
requests only to the NMS which then makes requests on behalf of the webpage
to the various LFAs. Be it fetching a list of all available LFAs or sending LFA #1
a license for x of n units of time, it all goes through the NMS. This keeps the

84 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

networking simple for the webpage and results in a list of six different NMS API
endpoints it interacts with.

Code listing 5.22: Calls to NMS endpoints using Axios.

1 // Axios functions to call NMS endpoints
2 const fetchLfas = () => {return api.get(’/lfa/licenses’)}
3 const fetchPools = () => {return api.get(’/pool/all’)}
4 const fetchLfaNames = () => {return api.get(’/lfa’)}
5 const generateSubLicense = (payload) => {return api.post(’/license/lfa’, payload)}
6 const consumeLicense = (payload) => {return api.put(’/lfa/consume’, payload)}
7 const uploadFile = (payload) => {return api.post(’/license’, payload,

{ headers: {"Content-Type": "multipart/form-data"} })}

5.9 Secrets Handling

For the purpose of the PoC, all secrets have remained embedded within the repos
for ease-of-use for anyone who would need to test the system. This is not good
practice and should not be done in any real-world scenario. Given the fact that
this is a proof of the concept and the secrets are not real-world secrets, the group
elected to leave them in each respective code-base.

Secrets and their derivatives include: a root private key for the LFS; an intermedi-
ate private key and intermediate certificate within the NMS, stored in a keystore;
and finally the root certificate within the LFA. Additionally – and less importantly –
a private key with an accompanying certificate exist within the LFA for hosting the
API on HTTPS. This key & certificate pair is not a part of the main chain-of-trust
and should be generated separately.

Some secrets are included inside the compiled versions of the code, such as the
passphrase for the keystore containing the intermediate certificate and its private
key. While this is fine in the sense of a Proof of Concept, this is rather unpractical
in a production environment. This is because a recompilation is necessary in order
to swap out the keystore, the pass phrases, and the public key. In the case of this
PoC, where the concept is built on a new compilation for each customer relation,
the impracticalities are reduced, as it is necessary anyway. This is also supported
by the need to keep the secrets hidden from the customer, who has physical access
to the device.

5.10 Licenses

As this project handles license management, licenses are necessary. The concept
requires the use of two different licenses: Top-Level License (TLL) and Sub-Level
License (SLL). These are, respectively, the licenses being redeemed by the NMS
and the LFA. This section will discuss some of their key features and their differ-
ences.

Chapter 5: Proof of Concept 85

Code listing 5.23: Top-Level License example.

1 {
2 "info":{
3 "date":"2021-08-03 07:49:51",
4 "customer":"TV2",
5 "issuer":"Root",
6 "uid":123
7 },
8 "license":{
9 "keys":[

10 {
11 "name":"J2KHDX",
12 "duration":100,
13 "description":"J2K HD Encoders/Decoders"
14 }
15]
16 }
17 }

A TLL is the license sent from the licensing company to the customer. An example
of a TLL can be seen in Listing 5.23. It contains information about one or more
licensed functionality. The functionality is defined by a name, a description, and
a duration in seconds, where the functionality is defined as a list of keys under
the license part of the JSON file. For the context of this PoC, the description of
the licensed functionality could have been excluded, but was added to improve
the graphical user interface of the front-end. The none-license part of the JSON
file is the info part of the content. This part contains the name of the intended
customer, the name of the issuer, a unique identifier2 (UID) for the license, and
a timestamp. The name of the intended customer and the issuer is included to
create the license more human-readable. On the other hand, the timestamp and
the UID is included to be able to always have a unique checksum of the license, for
securing the redeeming. An SLL is structured in the same way as the TLL except
for only one difference; it includes a unique identifier for the intended receiver,
which in the Proof of Concept is the unique name of the LFA. Within the general
concept of OLM the SLL also supports several licenses within the payload, but this
support has not been implemented on the NMS end of the equation in the PoC.

The two different license types are communicated in a package containing several
files. For the TLL, it is communicated in a package containing the license file and
the signature. In this case, the signature is used for verifying the legitimacy of the
license; if a trusted source has created it. The SLL is communicated in a package
containing the same files, in addition to the intermediate certificate of the NMS
that generated the SLL. The intermediate certificate is used to verify the chain of
trust; verify if the NMS is in the correct chain of trust, between the trusted source
and the LFA.

2https://en.wikipedia.org/wiki/Unique_identifier, visited April 27th, 2023

86 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Code listing 5.24: Sub-Level License example.

1 {
2 "name":"lfa_omega",
3 "info": {
4 "date": "2021-08-03 07:49:51",
5 "customer": "Riot Games",
6 "issuer": "Root"
7 },
8 "license": {
9 "keys": [

10 {
11 "name": "J3KHDX",
12 "duration": 100,
13 "description": "J3K HD Encoders/Decoders"
14 }
15]
16 }
17 }

5.11 Hosting and Version Control

5.11.1 Distribution

Proof of Concept is implemented as 4 standalone applications, including the fron-
tend. This means that they may be distributed and run isolated from each other,
as long as the IPs are correct, the ports are available and firewalls, routers and
similar are opened for the required network traffic. In the case of the PoC, please
see Table 5.3 for an overview of the ports.

Table 5.3: Proof of Concept Services Ports.

Service Port
Frontend 8080

NMS REST API 8090
LFA REST API 8443

License Signing N/A

5.11.2 Deployment

Network Management System

The NMS is, as mentioned in Section 5.3.2, based on Java and Maven. In order
to initialize the project, it is necessary to run the Init class’ main method. This is
done through running mvn run in the project root. This creates a Jar file, which
later can be run with a Java command, more specifically
java -jar target/nms-software-1.0-SNAPSHOT.jar. The actions performed during the
Init class’ main method is described in Section 5.6.10.

Chapter 5: Proof of Concept 87

The Network Management System is compiled with Java and can run platform
independently. At the time of writing, it has been tested on macOS, Linux Debian,
and Windows 10 & 11.

License File Aggregator

To initialize an instance of the LFA repository, a couple of things need to be done.
Firstly, the project requires an installation of CMake [48] and the G++ compiler,
as well as the Oatpp web framework. To Install Oatpp, simply run the
utility/install-oatpp-modules.sh bash script in the project. To compile and build
the project, a build folder has to be created within the source root folder. Once
created and entered, running cmake .. initializes the CMake environment. Finally,
to build the project, the command make has to be run in the same folder.

License Signing

The license signing is written as a script, and not as an intricate application. This
makes it necessary to just run the script, preferably through command line, as
there are arguments necessary.

The necessary arguments are the license file to sign and the private key file to use
when signing.

The license signing script is written as a Bourne Shell Script, thus it can be run
on Unix based operating systems only, like macOS and Linux, by default [49].
However, it can also run on a Windows machine with a shell installed, if the first
line of the script is altered according to the shell path, as seen in listing 5.1.

Frontend

The frontend is, as mentioned in Section 5.8, a JavaScript application built using
Vue, with NPM as a package manager.

For the application to run, the necessary packages will need to be installed. In
order to do so, run npm install with the project root as the working directory.
After this, it is possible to either build a product for deployment or run a local,
hot-swappable3, development intended version of the project, on a locally hosted
web server. This can be done through either npm run build or npm run dev.

The frontend is completely platform independent, and can be run on any operating
system supporting NPM and Node.js [50].

3Automatically including changes to source code while running

88 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

5.11.3 Git

For the Proof of Concept, GitHub4 has been used for version controlling.

The four different components have used their own repositories in the version
controlling system, where they are gathered in one GitHub organization, for the
purpose of this project.

Each repository has their own README, a file containing information about the
repository, how it is used, and similar. The README files of the different reposit-
ories can be found as appendix K, L and M.

When working with version controlling, branching has been used. When branch-
ing, the source code is copied into parallel tracks of changes before the new branch
containing new functionality, is merged into the main track. How this functional-
ity has been used in a quality assurance perspective, is described in Section 5.12.
To make sure that no broken functionality has been merged into the functioning
code base, or similar, branch protection has been used. This is a measure where it
is required for code to pass the quality assurance (i.e., unit tests, CI/CD scripts and
pull requests). On GitHub, this functionality is behind a paywall. As a consequence
of this, the branch protection has been an internal agreement in the group, rather
than a software enforced ruleset. How this has been used in practice has been
described in Section 5.12.

The repositories containing the PoC can be found at: https://github.com/orgs/
ntnu-2023-bcs-bidata-bprog-g3/repositories.

5.12 Quality Assurance

Throughout the project, quality work has been important to the group, and for
just that, a couple quality assurance techniques have been utilized.

When working on a PoC, the source code is relevant to put under quality assur-
ance. To do so, several measures have been implemented in the project work. As
mentioned in Section 5.11.3, Git versioning has been used through GitHub. When
using branches in the version control system, there is always a need for at least
one other project member to review the pull requests being submitted after fully
implementing the given functionality.

In addition to this, the pull request (both new and old code) will need to pass the
CI/CD5 implementation. As this CI/CD includes running the unit tests, the quality
assurance for new source code also includes unit tests. For a simplified version of
the CI/CD implementations, see listing 5.25 and 5.26. This makes sure the newly
implemented code is functioning according to intentions before it is merged with

4https://github.com/, retrieved April 25th 2023
5Continuous integration and continuous delivery, implemented using GitHub Actions [51]

https://github.com/orgs/ntnu-2023-bcs-bidata-bprog-g3/repositories
https://github.com/orgs/ntnu-2023-bcs-bidata-bprog-g3/repositories

Chapter 5: Proof of Concept 89

the existing source code base. This is being done for both of the two main source
code repositories, the NMS and the LFA.

Code listing 5.25: NMS source code repository CI/CD implementation (simpli-
fied).

1 name: Java CI with Maven
2
3 on: [push, pull_request]
4
5 permissions: write-all
6
7 jobs:
8 build:
9 runs-on: ubuntu-latest

10 steps:
11 - name: Checkout
12 uses: actions/checkout@v3
13 - name: Set up JDK 11
14 uses: actions/setup-java@v3
15 with:
16 java-version: ’11’
17 distribution: ’corretto’
18 cache: maven
19 - name: Build and run tests
20 run: mvn --batch-mode --fail-at-end package
21 - name: Surefire Report
22 if: ${{ always() }}
23 uses: ScaCap/action-surefire-report@v1.4.0
24 with:
25 report_paths: ’target/surefire-reports/TEST-*.xml’
26 - name: Upload Report
27 uses: actions/upload-artifact@v3.1.2
28 with:
29 name: report.xml
30 path: target/site/jacoco/jacoco.xml

For the CI/CD to be able to test the implemented functionality, unit tests are neces-
sary. These have been implemented in the source code repositories, according to
the standards per language. For example, in the NMS repository, unit test classes
have been implemented in the same class structure as the ordinary classes, as seen
in listing 5.2.

The quality and readability of the source code is important for further develop-
ment and maintenance. In the NMS repository, the code linter Checkstyle has been
used with a custom ruleset [52]. The custom ruleset can be seen as appendix O.

90 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

Code listing 5.26: LFA source code repository CI/CD implementation (simpli-
fied).

1 name: build
2
3 run-name: Build project
4
5 on: [push, pull_request]
6
7 jobs:
8 Build-and-run-tests:
9 runs-on: ubuntu-latest

10 steps:
11 - name: Check out repository code
12 uses: actions/checkout@v3
13 - name: Install dependencies
14 run: |
15 cd utility/ && sudo ./install-oatpp-modules.sh && cd ..
16 sudo apt-get install libboost-all-dev libssl-dev -y
17 git submodule update --init --recursive
18 - name: Build project
19 run: mkdir build && cd build && cmake .. && make
20 - name: Run tests
21 run: cd build && sudo ./license_consumer-test

5.13 Discussion

5.13.1 Administrative Decisions

The Proof of Concept is not defined as production ready. This is due to several reas-
ons, but the most importantly is the handling of secrets. As mentioned in chapter
5, the PoC has been made with ease of use in mind, specifically regarding the as-
sessment of the project. Key pairs have been left in the online code repositories and
secrets have been left in the source code text. It is important to underline the fact
that this exact instance is not secure, and the key pairs cannot be re-used for fu-
ture instances. By handling the secrets this way, the code repositories are prepared
for clone-and-run, where it is possible to clone the code repositories, compile, and
run the application without any setup, like key generation, necessary. If not, it will
be necessary to generate two key pairs, one derived from the other, in addition
to two certificates derived from the key pairs and a separate HTTPS key pair. The
best practices are to handle the secrets in a more secure way, but after discus-
sion within the group and with the thesis supervisor, it was decided to do it this
way [53]. However, a guide on how to generate the necessary keys, the location,
and similar, relevant to the initial setup of the Proof of Concept, is appended. It
can be found in Appendix J or in the license file signing script repository (https:
//github.com/ntnu-2023-bcs-bidata-bprog-g3/license-file-signing).

https://github.com/ntnu-2023-bcs-bidata-bprog-g3/license-file-signing
https://github.com/ntnu-2023-bcs-bidata-bprog-g3/license-file-signing

Chapter 5: Proof of Concept 91

5.13.2 Proof of Concept VS. Concept

The concept, reviewed and presented in chapter 3, is defining the shell of how a
system should be implemented. Many things are still left for decision when the
implementation of the Proof of Concept is being performed.

An example of this is the communication between the licensing company and
the customer hosting the system, which in this PoC has been deemed irrelevant,
according to Section 5.4.2.

Another example of this is the communication between the NMS and the LFA,
which in the PoC has been covered by RESTful APIs with JSON request and re-
sponse bodies. This communication channel could, however, be covered by a vari-
ety of other communication methods, like the use of GraphQL, WebSocket or a
computer vision script reading images sent through the postal services6 [54] [55].
By using RESTful APIs, the communication part of the PoC is deemed to be accord-
ing to the concept. WebSockets, designed for continuous communication, are not
relevant for an implementation where the communication is only needed sporad-
ically, while GraphQL is designed for APIs with a wider range of options for the
requests [56] [57]. Further reasoning behind the choice is presented in Section
5.4.2.

The concept does not define which programming language to use in the imple-
mentation, and the language choice may have been different from the ones chosen.
According to requirements given by Nevion, as seen in Section 5.2, the LFA had
to be implemented in C++ and the NMS had to be implemented in either Java or
Scala. Java was chosen, out of the two, due to experience from earlier courses in
the study program.

The concept requires storage within the LFA, among other things, for storing li-
cense pools and the checksums of redeemed licenses. As the source code is written
right now, this is not implemented. As mentioned in Section 5.7.2, this does pose
a security risk, because it is not implemented according to the concept. This is due
to several reasons, mostly because of the lack of time and the fact that this exact
functionality is proven in the NMS. This is although one of the few deviations
between the PoC and the concept.

5.13.3 Security

As a basis for the concept, security is important. As a result, the Proof of Concept
had to be done securely, according to the concept.

One of the languages chosen, however, are not optimal. Java is a language that
is hard to compile in a way where the compiled source code is not easily reverse-
engineered into readable code7. As a result of this, the group was put in a dilemma

6This is obviously a joke
7https://www.kali.org/tools/ghidra/, visited April 26th, 2023

92 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

between making the PoC secure to the necessary level or following the require-
ments given by Nevion, as there were no relevant solutions to make the compiled
source code hardened enough. After a thorough walkthrough, Java was decided
to be the programming language of the NMS despite its flaws.

During the development of the NMS in the PoC, there was no sufficient time to
investigate ways to implement HTTPS on the web server as an enhancement over
HTTP. HTTPS is by all means the preferred solution for network traffic, and is
also preferred for the network traffic accessing the NMS [58]. The content of
the network traffic is, however, not deemed sensitive enough to prioritize this
improvement. In addition to this, the implementation exists in the web server of
the LFA, which supports HTTPS.

The concept requires the PoC to utilize cryptographic techniques for signing and
verifying signed TLLs and SLLs. For the NMS, the Security package from the Java
standard library is used and is defined as a secure way to do it. In the LFA, however,
sub-processes have been used. To do so, method calls to std::system, calling the
local installation of OpenSSL, have been performed. By doing so, a security risk
is created, where, for example, an alias to a different script can make all licenses
verifiable [59]. However, the assumptions of the LFA hardware security mentioned
earlier prevent this risk.

As a result of these aspects, the PoC do open holes in the security, for example
through the choice of programming language, which are not present in the concept.
This means that a possible (production-environment) implementation of the concept
will need to have its security reviewed separately in order to properly prevent and
mitigate new security threats which are not present in the concept.

5.13.4 Is the Concept Proven?

The concept presents a general solution to the issue, where, as mentioned, a lot
of decisions are left for the implementation of the concept. A key factor to this is
whether the concept is, foremost, implementable and, second of all, a viable solu-
tion to the issue. By implementing the PoC, the concept is proven implementable.
The question remaining is whether the PoC proves the concept as a viable solu-
tion to the issue. When reviewing the PoC, all the necessary functionality from the
concept have been implemented and tested to an extent where they are deemed
functioning.

From the functional requirements, given in Section 5.2, all four requirements are
being met: the NMS is able to store TLLs; the NMS is able to generate and sign
SLLs; the NMS can send and the LFA can receive SLLs; as well as the fact that
the LFA can redeem and consume SLLs. Two out of four of the non-functional
requirements are also met, as the requirements to the implementation language
has been met. The rest of the non-functional requirements, in addition to some
operational requirements, however, are of less of a concrete nature. Whether or

Chapter 5: Proof of Concept 93

not the implementation is safe, with regard to integrity of the source code and
the serialization, is abstract. As mentioned, there is some security functionality
missing, for example storage of the checksums of the redeemed licenses in the
LFA, although this is reasoned for and seen as proven in the NMS. Similarly, the
group believes the PoC is reliable and user-friendly, although the crux of security is
the balance between user-friendliness and security; a PoC with fewer threats, and
more preventative measures, may be at the expense of the usability requirements.
Logging is also implemented. Given this achievement of the requirements, there
is little reason to say that the PoC does not prove the concept, in regard to the
requirements themselves.

As mentioned in Section 5.13.3, the security aspect of the implementation is not
perfect. This is due to the choices made and requirements presented in the course
of the implementation phase of the PoC. The group do still believe it is possible to
create an implementation of the system concept which do not open any security
holes that are not discussed in the security review of the concept (see Chapter 4
– Security Review).

All in all, the PoC does prove the concept – both in feasibility and functionality;
the concept is possible to implement, and it is possible to do in a functioning way.
The fact that the concept is general makes it possible to implement versions of
the concept that suits many different needs; some could need a higher degree of
security, while some could need a higher degree of usability.

Chapter 6

Discussion

6.1 Project Retrospective

The whole project started with a kick-off at Nevion headquarters at Lysaker, out-
side Oslo. Here, the group got a detailed presentation of the project task, what
Nevion does, their product portfolio, and some of their customers. This made it
easier to understand exactly what they were looking for when they made the task
description. After the kick-off, the work on the concept began: different technolo-
gies, cryptographic techniques, and integrity techniques were researched. A first
draft of the concept, close to how it looks today, saw the light of day in the begin-
ning of February. Quickly after this, the implementation of the PoC began, where
the group split up into working on the NMS and the LFA. The following month
and a half, the implementation process continued, including new iterations of the
concept adapted after experiences with the PoC. In the middle of March, the work
on the security review began, and lasted approximately a month. When the secur-
ity review was finished, in the beginning of April, the work on the first draft of the
report began; it was finished no later than the early beginning of May. This gave
the group close to three weeks of iterations containing rewrites, add-ons, report
reviews, and proofreading.

Early in the project period, the group discovered that the task at hand was more
difficult to solve securely than first anticipated. The reason for this, is the require-
ments of an offline network and on-premises equipment. The problem is, as men-
tioned in the report, no general truly safe solution for an entirely offline license
management system exists on the market, which would have made a potential
general solution from this project groundbreaking for the industry.

For these reasons, the group spent the first couple of weeks coming to the con-
clusion that no all-purpose general solution is likely to be invented during this
thesis, and that the focus should rather be on developing an as-close-as-possible
rendition of a safe OLM system and then comprehensively showcase the faults of

95

96 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

such a system. The Security Review is in essence this showcase.

Further challenges met during the project period was another course running in
parallel during the first half of the project period. This course often took several
days of the week from two out of three members, which often left the third to
work alone in shorter segments. The course finally culminated in an exam which
caused a week-long hiatus from the project.

As outlined, the PoC was written between the concept development and the se-
curity review of the concept. There are several advantages and disadvantages to
this, where the disadvantages speak in the direction of writing the PoC after the
security review. One of the greatest advantages of maintaining the order that has
been used, is the fact that the PoC development process makes it easier to discover
the security threats that are present in the concept, that may be useful for the se-
curity review. By implementing the PoC before the security review is performed,
however, makes it hard to include the mitigation and prevention measures that
the work on the security review introduces. Although, a better balance can be to
work on the development of the PoC parallel to the security review. The disad-
vantage of this is the context switching introduced by this approach, which make
it harder to focus on one thing at a time.

Other than this, the group started on the thesis itself right after completing a work-
ing prototype of the Proof of Concept (PoC). This allowed the group to write from
recent memory about core functionality, and the progress experienced an acceler-
ation. The progress took a considerable hit once the group started on the Security
Review, as nearly all aspects of each paragraph required research and discussion
amongst the group. The thorough nature of the review resulted in approximately
a month of work, and the first draft was finished during the end of April.

In the beginning of the project, the group agreed to use the Campus premises
as working environment. By doing so, the cooperation, discussion, and dialogue
within the group in the course of the project work was made easier. Although,
when the project work started to move from concept & PoC development, and to-
wards report writing, some group members tended towards using a more hybrid
solution. This meant spending some days, or parts of days, working from home,
and was approved within the group. Towards the end of the project, as report re-
views and discussions got more relevant, the Campus premises once again became
the norm for all group members.

6.2 Project Plan

As a part of the project, a project plan was written before the project commenced.
The project plan has been mentioned several times during the report, and can be
found as appendix C. It contains a Gantt diagram, describing the planned progres-
sion of the project; a ruleset and guidelines for the use of version control systems;
a definition of the project goals; and a description of the group member respons-

Chapter 6: Discussion 97

ibilities, to mention some things. The project plan also included a set of group
rules signed by the group members.

The Gantt diagram, attached as appendix D, has been used as a guide to the pre-
ferred progression of the project. Overall, the progression has been followed. The
progression plan gives the group a couple of weeks margin at the end of the pro-
ject; the plan was to finish the thesis in the beginning of May. However, this margin
was used up, and a longer thesis writing period became necessary. Because of this
margin, the group extended the thesis writing period without reaching the final
deadline. The diagram also contains a structure of the SCRUM sprints, where the
sprint number is set per week. After the decision to transition to bi-weekly sprints
in the end of April, this part of the diagram was no longer accurate. Overall, the
diagram was followed, and there are no immediate points of improvement dis-
cussed within the group.

The project plan set clear descriptions for the responsibilities of the different group
members, in addition to defining how the group should work with this division of
responsibilities. All group members have however worked on all domains of the
thesis; the group cooperated on part one before moving to part two, etc., where
the member responsible for the given domain lead the group. This way, everyone
got experience with leading the group and taking responsibility.

The group leader during the project has been Sander Osvik Brekke, where the only
real use of a group leader is in the case of disagreements, arguments or similar,
where the group leader would then try to mediate within the group. There have,
although, not been any need for this, because the group have discussed decisions
internally and professionally, in order to avoid arguments and disagreements that
could affect the thesis work. In addition to this, the group have focused on making
the group environment open and available, where anyone can present their ideas
and ask questions, and receive a professional response.

Through the use of the project plan, the thesis work was well organized, where
everyone was aware of, among other things, how things were going to be done,
how the decision-making processes should go and how the version control system
should be used.

6.3 Version Control & QA

The group has utilized GitHub for version control throughout the project, primar-
ily for the implementation process of the Proof of Concept (PoC). Additionally,
version control has been employed during the report writing phase using Over-
leaf’s built-in solution.

As part of the project plan, a set of internal rules for version control system usage
was established, covering aspects such as commit messages, pull requests, branch-
ing, and similar practices. Some rules, like the mandatory passing of tests before

98 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

merging a pull request, are automatically enforced by GitHub, triggering an error
if not satisfied. Other rules have been upheld by the group members themselves.
In hindsight, the group collectively agrees that the rules were followed to the best
of their abilities. However, there were instances where bug fixes, patches, and
similar changes were directly pushed to the main branch, which is considered
poor practice. Fortunately, the issue did not escalate to a significant extent. One
rule stipulated in the project plan was that pull requests must be reviewed by
another group member. This posed challenges in cases where pair programming
was employed, since it was unclear who should review the code that all members
contributed to. To address this, the group believed that everyone participating in
the pair programming sessions constituted sufficient reviewing. Although code re-
viewing proved difficult when substantial changes were made to the codebase, the
group always made an effort to conduct reviews, and no exceptions were made
to this rule.

The main branch was designated as a protected branch, forbidding direct com-
mits and requiring all changes to be made through pull requests from different
branches. This safeguard ensured that the code in the main branch was functional,
runnable, tested, and documented. Consequently, a significant amount of code
was merged into the development branch instead of being frequently merged with
the main branch. This was primarily due to incomplete functionality. In hindsight,
the group acknowledges that they should have invested more effort into avoiding
the main branch being practically empty until the later stages of the develop-
ment process. While it is nearly impossible to completely eliminate merge errors
when working with branches, the group addressed such incidents by fixing the
errors locally on one member’s computer after manually pushing fixes to protec-
ted branches. Only a few such incidents occurred. Furthermore, the extensive use
of pair programming should be noted. The preferred software for pair program-
ming was JetBrains’ Code with me functionality, allowing multiple programmers
to collaborate on the same source code with live updates of each other’s edits.
In these cases, the commits following the session were attributed to the group
member who hosted the Code with me session. Consequently, the distribution of
commits, particularly in the NMS repository, does not accurately reflect individual
contributions.

Regarding the report writing process in Overleaf, version control also involved
manually downloading copies of the LATEX source files after completing major work
as a precaution against errors or server failures.

The quality assurance of the PoC has also consisted of a continuous implementa-
tion and continuous development pipeline, implemented and integrated in GitHub
through the use of their Actions system. The use of GitHub Actions have been de-
scribed in the report. The pipeline was written and implemented at an early stage,
where it builds the source code on pushes and pull requests. Later, the running of
unit tests was added to the pipeline. However, the number of tests were low, and
the test coverage was not at a satisfying level. The low number of tests is mostly

Chapter 6: Discussion 99

due to the lack of time, and is something that would be improved given more
project time.

6.4 SCRUM

SCRUM has been an important tool during the project’s course, as it has helped
organize the project into smaller parts, and has generally been functioning well.
Through the use of SCRUM, it was easy to find new tasks to work on after com-
pleting a previous task.

A series of columns with an associated set of rules, first defined in the Project
Plan, was used for each sprint. The ’Review’ column was throughout the sprints
an obligatory stop for all issues claimed finished by an individual in the group.
When an issue had reached the review column, only another group-member could
move it, either back to ’working on it’ or into the ’done’ column. This ensured
that all pieces of work that had been done got two sets of eyes on them before
being accepted as done. Effectively working as a two-thirds vote for the work to be
regarded as done, before the group accepted it and moved on. As always, there
were discovered exceptions to the rules during the project period, which were
granted amnesty from further scrutiny. As an example: who reviews the issue if
everyone participated in the work?

It was not always possible to estimate an issue work-load accurately, and there
were some instances where the team missed the mark. In these cases, the SCRUM
board was not empty when the sprint ended. To not break the flow of work, these
tasks were kept and added to the next sprint. The issue that the group faced, was
that some tasks were too large and never got finished within the given sprint.
However, this emphasizes the importance of well-defined and broken down tasks,
as they are more manageable for the group to handle effectively.

When the project progressed to the thesis writing period, one-week long sprints
turned out to be too short, and two-week long sprints were introduced. During
the period of implementing functionality in, for example, source code, the issues
were smaller, which was not the case during the thesis writing. The tasks, which
were often defined by thesis sections, got larger, and it became more difficult to
finish a set of tasks within the sprints with a duration of one week. The doubling
in the sprint duration happened from sprint number 12, as outlined in the Scrum
Sprints Summary. The group was happy with the decision, and the flow of the
sprints got improved with the longer durations.

100 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

6.5 Meetings

The meetings have been beneficial in helping the group work together and achieve
its goals. Weekly meetings with the thesis supervisor helped us stay on track and
focus on the work at hand. These meetings allowed the group to discuss any issues
or concerns that arose. Similarly, bi-weekly meetings with Anders Dale, the repres-
entative from Nevion, provided valuable guidance and feedback on our progress
during the development phase. However, there were times when meetings with
Nevion were not necessary or productive, such as when the group progressed from
development of the PoC to writing of the thesis. On these occasions, the meetings
were cancelled as the Nevion representative had nothing to add to the current
work at hand.

In addition to this, there were often held unofficial meetings within the group,
where decisions were made, logic was discussed, and solutions were discovered.
These meetings were not planned, thus, no meeting notes were created. Similarly,
there were no meeting minutes produced either, as the outcome of the meeting
often was put into effect immediately.

6.6 Thesis

The work on the report started early and slowly, alongside the end of the work
with the Proof of Concept. This was a result of the parallel course that two of the
three group members attended, which periodically took up a lot of time. During
this time, the third group member started writing some parts of the report.

As mentioned, in the beginning of May, the first draft was completed. This first
draft was, however, an already reworked version, which the group had put more
effort into than what would normally be expected from a “normal” first draft.
Thus, the remaining three weeks were spent reworking a draft that had already
been through excessive work. This is not a bad thing in the groups’ opinion, as it
allows for a deeper dive to into, and polish for, several important aspects of the
thesis.

While working on the concept, the Proof of Concept, and the Security Review se-
curity review, there was little feedback given by our supervisor, except making sure
the group was on track, according to the project plan timeline, and the calendar
in general. When the work on the remaining project report began, the feedback
saw an increase, and became continuous. The continuous feedback allowed the
group to always have something to rework and improve, such that there were no
downtime due to any lack of feedback.

Chapter 6: Discussion 101

6.7 Engineering Values and Perspectives

Within engineering, topics range from ethics and economy to health and environ-
ment that needs to be acknowledged, weighed, and taken into account. As with
every new system developed, computer software implemented, bridge built, and
tool designed, there are both negative and positive consequences and repercus-
sions. The Offline License Management system is no exception, and there are as-
pects that need to be discussed and taken into account.

Economically speaking, the OLM system helps customers, the companies consum-
ing licenses, to easier afford the license functionality necessary. The concept in-
troduces an alternative to lifetime licensing, which can be hard to afford and has
a higher up-front investment requirement. With the new concept, licenses can be
sold as they are being used, and they become less of an investment and more of
a running cost. Although, this may be more expensive over time, the initial in-
vestment is no longer present, and the threshold to invest is removed. Through
the distribution of licenses with a lower threshold of purchase, it is more likely
that a greater amount of companies survives after their startup period, creating a
more diverse market, with more jobs and more local companies. The distribution
of affordable licenses may also make it easier for worldwide trades, where com-
panies in developing countries, which need the licensed functionality, can afford
it. This also has benefits for the licensing company, where they are able to grow
a larger customer base, with smaller customers which would normally not have
the possibility to invest in the lifetime licenses.

In an environmental perspective, the solution is working towards decreasing the
environmental footprint of the software business. The data centers, containing
both computational power and data storage, are responsible for 2% of the global
carbon emissions [60]. When using an offline licensing solution, the network
traffic is decreased drastically across the board. The traffic is decreased to TLLs
only; the amount of central servers necessary is decreased to almost none, except
the storage of root private keys; and the amount of stored data is decreased to only
the root private keys, in comparison to storing the DRM software and necessary
associated data. Through this decrease, the amount of electrical power necessary
can be decreased, thus decreasing the environmental footprint of the software, as
most sources of electrical power are none-green.

The concept of OLM also plays a role in the ethical aspects of engineering. By
developing a system to safely handle licensed offline functionality, thus handling
offline Digital Rights Management, the system may help companies secure and
protect their intellectual property rights and proprietary software. By doing so,
the act of cracking and distributing pirated copies of software and licensed func-
tionality, which cost the software business more than 46 billion USD between 2015
and 2017 [61], becomes harder.

Chapter 7

Conclusion

The purpose of the project was to develop a concept for a system, deployed within
a customer’s internal network, that could generate licenses on a licensing com-
pany’s behalf. Moreover, a proof of concept was to be developed given certain
requirements from Nevion and a security analysis was to be conducted.

The solution provides a concept which describes an Offline License Management
system where the licensing company can send out digitally signed Top-Level Li-
censes to the Network Management System (NMS) deployed on the customer’s
internal network. The Network Management System can use the allotted time
from the Top-Level Licenses to generate Sub-Level Licenses which are sent to the
connected hardware-deployed LFAs to unlock functionality, while maintaining the
integrity of the whole system.

Following this, the proof of concept was successfully developed and tested in a
controlled environment, proving the feasibility of the proposed solution. How-
ever, a thorough security review revealed several vulnerabilities that need to be
addressed before the system can be implemented and deployed in a production
environment. The review assessed the identified threats and implemented pre-
vention and mitigation measures to reduce the risk. Despite these measures, the
review determined that the residual risk is still higher than the desired level of risk,
defined through the risk appetite. Therefore, the concept cannot be considered vi-
able from a strict security perspective, and further measures are required to reduce
the risk to an acceptable level without affecting the usability of the system.

Despite the security challenges, the project achieved its main objective of devel-
oping a concept for a system that can generate licenses on a licensing company’s
behalf. Further development and refinement of the concept, along with address-
ing several key security concerns raised in Chapter 4 – Security Review, could lead
to a more secure solution for an Offline License Management system.

103

104 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

7.1 Further Work

The development of the concept has created a basis for further development, al-
though there are several weaknesses that can benefit from improvements. One of
the main aspects is the secrets handling, which needs to be combined with the
distribution model and the customer relationship management. According to the
security review, the concept is not a fully secure solution to offline Digital Rights
Management. Because of this, the security aspect will need further work before
an instance of the concept can be developed for production environments.

Bibliography

[1] Nevion Europe AS. ‘About nevion.’ (2023), [Online]. Available: https://
nevion.com/about/ (visited on 09/03/2023).

[2] ‘Soft patching,’ TheProductionAcademy. (17th Sep. 2021), [Online]. Avail-
able: https://www.theproductionacademy.com/blog/soft-patching
(visited on 06/05/2023).

[3] M. E. Whitman and H. J. Mattord, Principles of information security, 4th ed.
Mason, OH: CENGAGE Learning Custom Publishing, Jan. 2011.

[4] C. Roach. ‘Cryptography,’ Data Insider. (4th Jan. 2023), [Online]. Avail-
able: https://www.digitalguardian.com/blog/what-digital-rights-
management (visited on 28/04/2023).

[5] ‘1219- farming simulator 22: Platinum edition (v1.9.0.0+ all dlcs+multi23)
– [dodi repack],’ DODI Repacks. (26th Mar. 2023), [Online]. Available:
https://dodi- repacks.site/1219- farming- simulator- 22- v1- 1-
1- 0- dlcs- online- multiplayer- multi23- dodi- repack/ (visited on
28/04/2023).

[6] ‘Software cracking,’ Wikipedia. (31st Mar. 2023), [Online]. Available: https:
//en.wikipedia.org/wiki/Software_cracking (visited on 28/04/2023).

[7] M. Taylor. ‘A great day for drm as denuvo lapse renders tons of games
temporarily unplayable,’ PC Gamer. (8th Nov. 2021), [Online]. Available:
https://www.pcgamer.com/a-great-day-for-drm-as-denuvo-lapse-
renders-tons-of-games-temporarily-unplayable/ (visited on 28/04/2023).

[8] ‘Listen offline,’ Spotify. (), [Online]. Available: https://support.spotify.
com/no-en/article/listen-offline/ (visited on 28/04/2023).

[9] ‘Downloaded title says ’expired’,’ Netflix. (), [Online]. Available: https:
//help.netflix.com/en/node/54865 (visited on 28/04/2023).

[10] ‘Network time protocol,’ Wikipedia. (27th Apr. 2023), [Online]. Available:
https://en.wikipedia.org/wiki/Network_Time_Protocol (visited on
28/04/2023).

[11] ‘Cryptography,’ Wikipedia. (2nd May 2023), [Online]. Available: https:
//en.wikipedia.org/wiki/Cryptography (visited on 04/05/2023).

105

https://nevion.com/about/
https://nevion.com/about/
https://www.theproductionacademy.com/blog/soft-patching
https://www.digitalguardian.com/blog/what-digital-rights-management
https://www.digitalguardian.com/blog/what-digital-rights-management
https://dodi-repacks.site/1219-farming-simulator-22-v1-1-1-0-dlcs-online-multiplayer-multi23-dodi-repack/
https://dodi-repacks.site/1219-farming-simulator-22-v1-1-1-0-dlcs-online-multiplayer-multi23-dodi-repack/
https://en.wikipedia.org/wiki/Software_cracking
https://en.wikipedia.org/wiki/Software_cracking
https://www.pcgamer.com/a-great-day-for-drm-as-denuvo-lapse-renders-tons-of-games-temporarily-unplayable/
https://www.pcgamer.com/a-great-day-for-drm-as-denuvo-lapse-renders-tons-of-games-temporarily-unplayable/
https://support.spotify.com/no-en/article/listen-offline/
https://support.spotify.com/no-en/article/listen-offline/
https://help.netflix.com/en/node/54865
https://help.netflix.com/en/node/54865
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Cryptography

106 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

[12] ‘Caesar cipher,’ Wikipedia. (22nd Apr. 2023), [Online]. Available: https:
//en.wikipedia.org/wiki/Caesar_cipher (visited on 03/05/2023).

[13] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and
practitioners. Springer-Verlag, 2009, ISBN: 9783642041013.

[14] ‘Xor cipher,’ Wikipedia. (20th Mar. 2023), [Online]. Available: https://
en.wikipedia.org/wiki/XOR_cipher (visited on 03/05/2023).

[15] ‘Rijndael s-box,’ Wikipedia. (14th Sep. 2022), [Online]. Available: https:
//en.wikipedia.org/wiki/Rijndael_S-box (visited on 27/04/2023).

[16] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback and J.
Dray, Advanced encryption standard (aes), en, 26th Nov. 2001. DOI: https:
//doi.org/10.6028/NIST.FIPS.197. [Online]. Available: https://www.
nist.gov/publications/advanced-encryption-standard-aes (visited
on 01/05/2023).

[17] ‘X.509,’ Wikipedia. (3rd May 2023), [Online]. Available: https://en.
wikipedia.org/wiki/X.509 (visited on 05/05/2023).

[18] ‘Circular dependency,’ Wikipedia. (2nd Nov. 2022), [Online]. Available:
https://en.wikipedia.org/wiki/Circular_dependency (visited on
01/05/2023).

[19] ‘Embedded software,’ Wikipedia. (20th Apr. 2023), [Online]. Available:
https://en.wikipedia.org/wiki/Embedded_software (visited on 16/05/2023).

[20] C. P. Pfleeger, S. L. Pfleeger and J. Margulies, Security in Computing, 5th ed.
Philadelphia, PA: Prentice Hall, Jan. 2015.

[21] H. Bergsjø, R. Windvik and L. Øverlier, Digital sikkerhet: en innføring, Nor-
wegian. 2020.

[22] EC-Council Cybersecurity Exchange. ‘Dread threat modeling: An introduc-
tion to qualitative risk analysis.’ (2022), [Online]. Available: https://
eccouncil.org/cybersecurity-exchange/threat-intelligence/dread-
threat-modeling-intro/ (visited on 24/03/2023).

[23] A. de Ruijter and F. Guldenmund, ‘The bowtie method: A review,’ Safety
Science, vol. 88, pp. 211–218, 2016, ISSN: 0925-7535. DOI: 10.1016/j.
ssci.2016.03.001.

[24] ‘Stride (security),’ Wikipedia. (20th Feb. 2023), [Online]. Available: https:
//en.wikipedia.org/wiki/STRIDE_(security) (visited on 06/04/2023).

[25] M. Paul, Official (ISC)2 Guide to the CSSLP CBK (ISC2 Press), 2nd ed. Phil-
adelphia, PA: Auerbach, Aug. 2013.

[26] NTNU. ‘Conducting risk assessments.’ Norwegian. (), [Online]. Available:
https://i.ntnu.no/wiki/-/wiki/English/Conducting+risk+assessments
(visited on 12/04/2023).

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/XOR_cipher
https://en.wikipedia.org/wiki/XOR_cipher
https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Circular_dependency
https://en.wikipedia.org/wiki/Embedded_software
https://eccouncil.org/cybersecurity-exchange/threat-intelligence/dread-threat-modeling-intro/
https://eccouncil.org/cybersecurity-exchange/threat-intelligence/dread-threat-modeling-intro/
https://eccouncil.org/cybersecurity-exchange/threat-intelligence/dread-threat-modeling-intro/
https://doi.org/10.1016/j.ssci.2016.03.001
https://doi.org/10.1016/j.ssci.2016.03.001
https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/STRIDE_(security)
https://i.ntnu.no/wiki/-/wiki/English/Conducting+risk+assessments

Bibliography 107

[27] Information security, cybersecurity and privacy protection – Guidance on man-
aging information security risks, ISO/IEC 27005:2022. Vernier, Geneva, Switzer-
land: International Organization for Standardization, Oct. 2021. [Online].
Available: https://www.iso.org/standard/80585.html.

[28] NTNU. ‘Informasjonsklassifisering - informasjonssikkerhet.’ Norwegian. (),
[Online]. Available: https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-
+informasjonssikkerhet (visited on 28/03/2023).

[29] ‘Zip bomb,’ Wikipedia. (2nd May 2023), [Online]. Available: https://en.
wikipedia.org/wiki/Zip_bomb (visited on 16/05/2023).

[30] ‘Openssl,’ Wikipedia. (15th Mar. 2023), [Online]. Available: https://en.
wikipedia.org/wiki/OpenSSL (visited on 15/03/2023).

[31] ‘Getting started with java,’ Oracle Java. (), [Online]. Available: https://
dev.java/learn/getting-started/ (visited on 24/04/2023).

[32] ‘Apache maven features,’ Apache. (), [Online]. Available: https://maven.
apache.org/maven-features.html (visited on 14/04/2023).

[33] ‘Building rest services with spring,’ VMware Tanzu. (), [Online]. Available:
https://spring.io/guides/tutorials/rest/ (visited on 14/04/2023).

[34] ‘Vue.js,’ Vuejs. (), [Online]. Available: https://vuejs.org/ (visited on
24/04/2023).

[35] ‘Vue component framework,’ Vuetify. (), [Online]. Available: https://v2.
vuetifyjs.com/en/.

[36] ‘Axios,’ Axios. (), [Online]. Available: https://axios-http.com/ (visited
on 24/04/2023).

[37] ‘Npm.’ (), [Online]. Available: https://www.npmjs.com/ (visited on 26/04/2023).

[38] ‘Nodejs documentation.’ (), [Online]. Available: https://nodejs.org/en/
docs (visited on 26/04/2023).

[39] ‘Security concerns with using third-party dependencies.’ (), [Online]. Avail-
able: https://ottofeller.com/blog/security-concerns-with-using-
third-party-dependencies (visited on 25/04/2023).

[40] ‘What is a rest api?’ Red Hat. (8th Jul. 2020), [Online]. Available: https:
//www.redhat.com/en/topics/api/what-is-a-rest-api (visited on
14/04/2023).

[41] ‘What is a restful api?’ MuleSoft. (), [Online]. Available: https://www.
mulesoft.com/resources/api/restful-api (visited on 24/04/2023).

[42] ‘Http response status codes,’ Mozilla Developer. (10th Apr. 2023), [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Status (visited on 18/04/2023).

[43] R. T. Fielding, M. Nottingham and J. Reschke, HTTP Semantics, RFC 9110,
Jun. 2022. DOI: 10.17487/RFC9110. [Online]. Available: https://www.
rfc-editor.org/info/rfc9110.

https://www.iso.org/standard/80585.html
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet
https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/OpenSSL
https://dev.java/learn/getting-started/
https://dev.java/learn/getting-started/
https://maven.apache.org/maven-features.html
https://maven.apache.org/maven-features.html
https://spring.io/guides/tutorials/rest/
https://vuejs.org/
https://v2.vuetifyjs.com/en/
https://v2.vuetifyjs.com/en/
https://axios-http.com/
https://www.npmjs.com/
https://nodejs.org/en/docs
https://nodejs.org/en/docs
https://ottofeller.com/blog/security-concerns-with-using-third-party-dependencies
https://ottofeller.com/blog/security-concerns-with-using-third-party-dependencies
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.mulesoft.com/resources/api/restful-api
https://www.mulesoft.com/resources/api/restful-api
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://doi.org/10.17487/RFC9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110

108 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

[44] ‘Apache httpcomponents httpclient overview,’ The Apache Software Found-
ation. (), [Online]. Available: https://hc.apache.org/httpcomponents-
client-5.2.x/ (visited on 21/04/2023).

[45] ‘Java jdk 11: Log level,’ Oracle. (), [Online]. Available: https://docs.
oracle.com/en/java/javase/11/docs/api/java.logging/java/util/
logging/Level.html (visited on 03/05/2023).

[46] ‘Man-in-the-middle attacks,’ Wikipedia. (31st Mar. 2023), [Online]. Avail-
able: https://en.wikipedia.org/wiki/Man-in-the-middle_attack
(visited on 27/04/2023).

[47] ‘Too many cooks may worsen the openssl mess.’ (), [Online]. Available:
https://www.infoworld.com/article/2608410/too-many-cooks-may-
worsen-the-openssl-mess.html (visited on 27/04/2023).

[48] ‘Get the software.’ (), [Online]. Available: https://cmake.org/download/
(visited on 25/04/2023).

[49] ‘Bourne shell,’ Wikipedia. (17th Feb. 2023), [Online]. Available: https:
//en.wikipedia.org/wiki/Bourne_shell (visited on 26/04/2023).

[50] ‘Downloading and installing node.js and npm,’ NPMJS. (), [Online]. Avail-
able: https://docs.npmjs.com/downloading-and-installing-node-
js-and-npm (visited on 26/04/2023).

[51] ‘Github actions documentation,’ GitHub. (), [Online]. Available: https:
//docs.github.com/en/actions (visited on 25/04/2023).

[52] ‘About checkstyle,’ Checkstyle. (), [Online]. Available: https://checkstyle.
sourceforge.io/index.html (visited on 04/05/2023).

[53] ‘5 best practices for secrets management,’ HashiCorp. (14th Mar. 2023),
[Online]. Available: https://www.hashicorp.com/resources/5-best-
practices-for-secrets-management (visited on 10/05/2023).

[54] ‘Graphql,’ GraphQL Foundation. (), [Online]. Available: https://graphql.
org/ (visited on 10/05/2023).

[55] ‘Websocket api,’ Mozilla Developer. (), [Online]. Available: https://developer.
mozilla.org/en- US/docs/Web/API/WebSockets%5C_API (visited on
10/05/2023).

[56] ‘Graphql,’ Wikipedia. (9th May 2023), [Online]. Available: https://en.
wikipedia.org/wiki/GraphQL (visited on 10/05/2023).

[57] ‘Websocket,’ Wikipedia. (8th Apr. 2021), [Online]. Available: https://en.
wikipedia.org/wiki/WebSocket (visited on 10/05/2023).

[58] K. Annoh. ‘Http vs https – what’s the difference?’ FreeCodeCamp. (16th Aug.
2022), [Online]. Available: https://www.freecodecamp.org/news/http-
vs-https/ (visited on 26/04/2023).

https://hc.apache.org/httpcomponents-client-5.2.x/
https://hc.apache.org/httpcomponents-client-5.2.x/
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/Level.html
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://www.infoworld.com/article/2608410/too-many-cooks-may-worsen-the-openssl-mess.html
https://www.infoworld.com/article/2608410/too-many-cooks-may-worsen-the-openssl-mess.html
https://cmake.org/download/
https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/Bourne_shell
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://checkstyle.sourceforge.io/index.html
https://checkstyle.sourceforge.io/index.html
https://www.hashicorp.com/resources/5-best-practices-for-secrets-management
https://www.hashicorp.com/resources/5-best-practices-for-secrets-management
https://graphql.org/
https://graphql.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets%5C_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets%5C_API
https://en.wikipedia.org/wiki/GraphQL
https://en.wikipedia.org/wiki/GraphQL
https://en.wikipedia.org/wiki/WebSocket
https://en.wikipedia.org/wiki/WebSocket
https://www.freecodecamp.org/news/http-vs-https/
https://www.freecodecamp.org/news/http-vs-https/

Bibliography 109

[59] L. Mui. ‘Wyntk: Unix system admininistrator by linda mui,’ O’Reilly Media,
Inc. (), [Online]. Available: https://www.oreilly.com/library/view/
wyntk-unix-system/1565921046/ch03s12.html (visited on 26/04/2023).

[60] ‘The impact of data centers on global carbon emissions & how removing rot
data can help reduce it,’ NowVertical. (11th Sep. 2022), [Online]. Avail-
able: https : / / www . nowvertical . com / insights / impact - of - data -
centers-on-global-emissions/ (visited on 05/05/2023).

[61] B. Vuleta. ‘23 corrupting piracy statistics you must know in 2023,’ Leg-
alJobs. (30th Mar. 2023), [Online]. Available: https://legaljobs.io/
blog/piracy-statistics/ (visited on 05/05/2023).

https://www.oreilly.com/library/view/wyntk-unix-system/1565921046/ch03s12.html
https://www.oreilly.com/library/view/wyntk-unix-system/1565921046/ch03s12.html
https://www.nowvertical.com/insights/impact-of-data-centers-on-global-emissions/
https://www.nowvertical.com/insights/impact-of-data-centers-on-global-emissions/
https://legaljobs.io/blog/piracy-statistics/
https://legaljobs.io/blog/piracy-statistics/

Appendix A

Project Agreement

111

Appendix B

Task Description

119

External generation of software licenses using modern cryptographic solutions

Nevion is a leader in the media industry providing award-winning media transport solutions to

broadcasters, telecom service providers, governmental agencies and other industries.

One of Nevions solutions is a hardware platform with several features that may be unlocked by buying a

software license file. These licenses may last for a limited period, but typically has infinite duration.

Although this suits many customers, some customers aren’t using the equipment 24/7, and would like to

pay only when they are using a specific feature. One example of this is equipment located at sport

venues, which is only used during matches.

Nevion is also a provider of a software network management system (NMS) that has access to all the

units in the customers’ network.

We would like some students to find a solution for how our NMS, which is deployed in the customers

internal network, safely could generate licenses on Nevion’s behalf.

One approach to solving this could be to use the same functionality the HTTPS protocol uses to validate

the authenticity of a host. This is done using a Chain of Trust using X.509 certificates and modern

cryptographic solutions. It should be possible to reuse the same concept, thus allowing a piece of

software in the NMS deployed at customer site to create and sign software licenses on Nevions behalf

using an intermediate certificate signed by Nevions root certificate. The public part of the root certificate

will be embedded in the hardware platform, allowing both the NMS generated license file, and a license

file issued directly from Nevion to be approved in the device.

Nevion will issue software licenses to the customers NMS for a given feature for X number of minutes.

This goes into a common pool, and the NMS can freely use these minutes among devices

Nevion would like a report on the security of such a system; Is it secure? Any weak points to consider?

How to handle weak points? How to handle certificates? Revoking certificates? Revoking licenses? How

to keep track of license usage?

Nevion would also like a PoC system implemented. This includes the software to generate licenses

(preferably c++), software to run within the NMS (preferably Java or Scala code), and software to

authenticate license files (preferably c++).

In addition to getting experience in programming, this assignment will give the students a good

understanding of encryption using asymmetric encryption algorithms, and modern authentication using

digital certificates. This is increasingly relevant as the digital world is adopting secure practices.

Assignment reserved for: Sander Osvik Brekke, Ivan Norderhaug and Kristian Røren Svanholm

Contact info:

Anders Dale, Senior Software Architect

adale@nevion.com, +47 4819925

Nevion AS, Nordre Kullerød 1, 3241 Sandefjord

Appendix C

Project Plan

121

Client Side Generation of Software Licenses Using Modern

Cryptographic Solutions

–

Project Plan

Sander Osvik Brekke Ivan Norderhaug Kristian Røren Svanholm

January 2023

Contents

List of Tables iii

Acronyms iv

1 Goals and frameworks 1

1.1 Background . 1

1.2 Project goals . 1

1.3 Constraints . 2

2 Scope 3

2.1 Knowledge Domain . 3

2.2 Delimitation . 3

2.3 Task description . 4

3 Project Organization 5

3.1 Roles and Responsibilities . 5

3.1.1 Group Structure and Hierarchy . 5

3.1.2 Development and Research Roles and Responsibilities 5

3.1.3 Documentation Roles and Responsibilities 6

3.1.4 Process Framework Roles and Responsibilities 6

3.1.5 Summary . 7

3.2 Routines and Group Rules . 7

4 Planning, follow-up and reporting 8

4.1 Process Framework . 8

4.2 Meeting Plan . 9

5 Quality Assurance 10

5.1 Documentation, tools and standards . 10

i

5.1.1 Documentation . 10

5.1.2 Tools . 10

5.1.3 Standards . 10

5.1.4 Git Workflow . 11

5.2 Test Plan . 12

5.3 Risk analysis . 13

5.4 Inspection . 15

6 Progress Plan 16

6.1 Gantt . 16

6.2 Activities . 16

6.3 Milestones . 16

A Gantt Diagram 18

ii

List of Tables

1 Responsibilities and roles summary . 7

2 Risk Analysis Table . 13

3 Risk Matrix . 14

4 Remedy Table . 14

5 Project milestones . 16

iii

Acronyms

PoC Proof of Concept.

NMS Network management system.

PKI Public key infrastructure.

MVP Minimum viable product

iv

1 Goals and frameworks

1.1 Background

Nevion is a leader in the media industry providing award-winning media transport solutions to

broadcasters, telecom service providers, governmental agencies and other industries.

One of their solutions is a hardware platform with several features that may be unlocked by

buying a software license file. These licenses may last for a limited period, but typically has

infinite duration. Although this suits many customers, some customers aren’t using the equip-

ment 24/7, and would like to pay only when they are using a specific feature. One example of

this is equipment located at sport venues, which is only used during matches.

They are also a provider of a software NMS that has access to all the units in the customers’

network and would like us to find a solution for how their NMS, which is deployed in their

customers internal network off the internet, safely could generate licenses on their behalf. Our

delivery will be in two parts: Firstly a security review regarding the safety of such a system

in its environment and secondly a proof of concept Nevion can re-implement into their own

product line.

1.2 Project goals

Goal Description

Effect-oriented
Nevion will receive a concept on how to implement a solution
for providing time limited licenses for their customers

Nevion will receive a security review enabling them to com-
prehend and act on the risks related to implementing the
concept in their own systems.

Results-oriented
A security review of the system and the implications of its
environment.

A proof of concept cryptography solution to the problem
consisting of three standalone pieces of software.

• Piece of Software to generate license files

• Piece of (preferably C++) Software to authenticate
license files

• Piece of (preferably Java) Software to operate within
the NMS

Learning outcomes
Gain a deeper understanding of cryptography and chain of
trust concepts

Obtain real life experience from a real life industry project.

1

1.3 Constraints

The project constraints are as follows:

Time constraints

• The project will be delivered the 22nd of May, 2023.

• The project plan and thesis-contract will be delivered the 31st of January, 2023

Economic constraints

• NTNU will not cover any expenses for the project.

• Nevion will cover necessary expenses as outlined in the thesis-contract.

Code constraints

• Authentication of license files will be coded in C++

• The management software will be coded in Java/Scala

Other constraints

• All documentation in the final delivery shall be written in English.

• The project description is locked and is not flexible for expansion during the project

period.

• Our knowledge domain is limited in the sense that we cannot recruit anyone to help during

the project period. However, given our experience in learning concepts in shorts periods

of time from nearly three years of attending NTNU, we will be able to expand our total

knowledge domain somewhat during the project period

2

2 Scope

The project aims to provide a secure solution for the client’s NMS to generate licenses while

being deployed in customers’ internal networks, which are not connected to the internet.

2.1 Knowledge Domain

The project falls under the domain of network security and licensing management. The pro-

posed solution involves generating licenses for the client’s NMS securely while being deployed

in customers’ internal networks, which are not connected to the internet. To achieve this, the

project will need to consider the following key concepts and technologies:

Network
security

This includes the various security measures and protocols that are used to
protect networks and the data that is transmitted over them.

PKI This is a security infrastructure that is used to manage digital certificates and
public-private key pairs. PKI is commonly used to secure communications
over the internet and to authenticate users and devices.

License file
management

This involves managing licenses for software and hardware that is used on a
network. This may include tracking the number of licenses that are in use,
enforcing license compliance, and generating new licenses.

2.2 Delimitation

The following delimitations will act as a boundary for what is relevant and not for this project.

As mentioned in the constraints (section 1.3), this project statement is locked to these delimi-

tations and will not be altered or expanded at any time.

• The project will not cover integration of PoC into Nevions codebase.

• The implementation of PoC will not be designed for direct insertion into Nevions code-

base beyond using the corresponding programming languages. The PoC will function as

inspiration and a demonstration of the concept in practice.

• The project does not include developing a user interface for PoC outside internal tools

made for interfacing between the three different pieces of software.

• The PoC will only utilize conventional security meassures for communication between

different aspects of the system such as TLS.

• The security review will only cover our own system in a vacuum and will not consider

other aspects of Nevions system.

• The security review will not be an isolated product of its own, but a part of the thesis.

3

2.3 Task description

Our task is to deliver a security review of a ”chain of trust”-solution for generating genuine

software license files on an external closed network, disconnected from Nevion HQ. We are also

tasked with creating our own proof of concept for this solution that Nevion may integrate into

their own product line or take inspiration from if they so wish.

The security review will require the following:

• Identifying the main assets of the system.

• Identifying the main actors, roles and use-cases within the system.

• Identifying potential threat actors and abuse-cases.

• Performing a risk assessment using the DREAD model [1].

• Create a threat model using the STRIDE model [2].

• Document different remedies for potential threats.

The proof of concept will require the following:

• An entirely local solution. (Standard within the field of broadcasting)

• One piece of software for generating new license files for different functionality.

• One piece of software for authenticating license files. Written in C++.

• One piece of software to orchestrate and manage all the license files in the system with

different time-pools for different functionality.

4

3 Project Organization

3.1 Roles and Responsibilities

For a team working on a bachelor thesis, some internal distribution of roles and responsibilities is

necessary, as a part of making sure workload is equally distributed and that the responsibilities

are clear from the beginning.

3.1.1 Group Structure and Hierarchy

The group is aiming for the internal group structure to be as flat as possible. This means that

there will be no-one in the group who has a higher degree of decision making power than the

others, except when the group rules and routines states it. This is because a fully flat structure

is impractical, for example, in the event of an internal conflict. For this reason, a group leader

is necessary.

The group leader is Sander Osvik Brekke.

The group leader role and the related group rules are further explained under section 3.2.

3.1.2 Development and Research Roles and Responsibilities

Cryptography Concept Responsible

The largest part of the project is developing a concept using cryptography. The development

of this concept is the main responsibility of the cryptography concept responsible. This re-

sponsibility includes, but is not restricted to, making sure the necessary progress is present,

making sure the concept follows the given requirements, making sure the necessary research is

performed and making sure the tasks this development requires are delegated within the team.

The concept responsible is Ivan Norderhaug.

Proof of Concept

A part of the project description, thus also the thesis, is an implemented proof of concept,

abbreviated to PoC. The PoC responsible has the responsibilities of making sure the PoC is

developed according to requirements and making sure the tasks necessary to make the PoC

complete are being delegated within the team.

The PoC responsible is Kristian Røren Svanholm.

Underneath the PoC responsibility role, there are developers. Different parts of the PoC is

written in two different languages, Java and C++, where the team members have different

knowledge in the two programming languages. As a result of this, team members will have

different development roles.

5

Development roles

Kristian C++ developer

Sander Java developer

Ivan Java developer

3.1.3 Documentation Roles and Responsibilities

Meeting Minutes

During the course of the project, there will be a number of meetings taking place. To make sure

all these meetings have their corresponding meeting minutes, the group will have a meeting

minutes responsible. The responsibilities consist of writing the meeting minutes, or delegat-

ing this responsibility when necessary, and making sure the meeting minutes are stored in a

compliant way.

The meeting minutes responsible is Ivan Norderhaug.

Other Documentation

While working with the bachelor thesis, there is a large amount of documentation required.

The documentation responsible is responsible of making sure the correct documentation is

being created according to the requirements, within the related deadlines, and that the created

documentation is being stored in a compliant way. The documentation responsible is also

responsible of making sure the required hand-ins are being handed in within the set deadlines,

even though it is the group’s common responsibility to make sure the products and material

needed to hand in is done within the set deadlines.

The documentation responsible is Sander Osvik Brekke.

3.1.4 Process Framework Roles and Responsibilities

The process framework chosen for this bachelor project is Scrum. For the process framework

Scrum to work optimal, a Scrum master is necessary. This is a responsibility that, amongst

other things, consist of leading the scrum meetings, both the sprint planning, sprint review and

retrospective.

The Scrum master is Kristian Røren Svanholm.

6

3.1.5 Summary

A summary of the roles and responsibilities that has been delegated can be seen in table 1.

Student Responsibilities

Sander Osvik Brekke Group leader
Java developer
Main contact person for Nevion
Documentation responsible

Ivan Norderhaug Java developer
Concept development responsible
Meeting minutes responsible

Kristian Røren Svanholm C++ developer
PoC responsible
Scrum master

Table 1: Responsibilities and roles summary

3.2 Routines and Group Rules

For the cooperation and group dynamic to work, it is necessary to have clear routines for when

incidents occur and rules that team members need to follow.

A complete list of the group rules is attached to the final bachelor thesis, signed by the group

members. The group rules does also contain an ordered list of actions followed at the incident

of a broken rule.

7

4 Planning, follow-up and reporting

4.1 Process Framework

We’ve chosen to utilize Scrum as our Process Framework for the project duration to organize

our work. This allows us to create smaller objectives in the form of sprints over one-week

periods. During a sprint, we stay on track and prioritize important tasks. If an important issue

arises, it is added to the backlog for future sprint planning. We will not be holding ”official”

daily standup meetings, but will keep a flowing conversation daily during our work hours to

keep everyone up to date.

Backlog prioritization

We will be prioritizing different issues in the backlog for new sprints based on a few of their

qualities and the state of the project. We prioritize our backlog items by assessing their impact

on the project’s objectives and the dependencies they have with other items. We will also

consider the urgency of the item and its complexity and effort required to complete it. As an

example, new functionalities have higher priority than issues related to minor bugs. Given a

rather large bug this changes and the bug takes priority. A very generalized list of priorities

can be found below. The order of priority may be looked away from given imminent deadlines

1. Project-hindering bugs

2. Mission critical rework of old works

3. New functionality / New documentation

4. Minor bug

5. Refinement of old works

Kanban Columns

To Do Issue planned for this sprint, not started yet.

Working on it Someone has started work on the issue.

Help needed Assignee is stuck and either requires help or someone to take over. Should
be comment explaining problem on the issue.

Review Issue is ready for another team member to look over the work and
OK/Deny

Done Issue is done

More columns might be added in the future if we discover a need for a more granular approach.

8

General rules for working with the Kanban board

• Always assign yourself to your issues once you move them into ”Working on it”.

• It is allowed to assign yourself to an issue preemptively, but if the issue stagnates in ”To

Do” anyone else with time can take it.

• Do not delay moving an issue to its next logical column.

• An item can be moved back to ”Working on it” if needed after review.

• The only way to ”Done” is through ”Review”.

• If you get stuck and require assistance move your issue to ”Help needed” and write a

comment about what you are stuck on. If the next person entirely takes over the issue,

they can assign themselves to it to keep clarity in the ”Working on it” column.

These rules are in place to avoid double work, misunderstandings and low quality work.

4.2 Meeting Plan

Communication about change of plans for meetings with people outside the main group will

take place over eMail with a corresponding calendar event being cancelled/updated in the group

calendar. Internal changes will be communicated either verbally or over our Discord server.

Sprint meetings

For the sprints we will hold three different kinds of meetings at slightly different intervals. They

will be held mainly physically, but potentially digitally on the Discord server.

• Sprint review is each Friday 09.00 in the morning.

• Sprint planning meeting is each Friday after the previous sprints’ review meeting.

• Sprint retrospective is every third Friday after the first two meetings.

Nevion meetings

We will meet with our contact at Nevion every other week at Thursdays 11.00 to 12.00. This will

likely take less than an hour, but we’ve decided to keep it this way to ensure an open calendar

in case a longer meeting is required. These meetings will take place mostly digitally over Teams

but may take place physically as we hit important milestones throughout the project.

Thesis-counselor meetings

We will meet with our thesis-counselor every Wednesday at 10.30 to 11.30. Again this is likely

larger than needed, but is kept at an hour for the same reason as above. These meetings will

take place digitally over Teams.

9

5 Quality Assurance

5.1 Documentation, tools and standards

5.1.1 Documentation

We are going to create and maintain a comprehensive set of documentation throughout the

project. As the client wishes to integrate our implementation into their existing products, this

part will be of utmost importance. All documentation will be kept up-to-date and will reflect

the state of the project. We will store our documentation in a central location so that it can be

easily accessible to all team members. This location will be Notion.

5.1.2 Tools

GitHub Tool for version control of the codebase with integrated issue tracking system and
built-in CI/CD pipeline that can be used to build, test, and deploy our code.

Notion Tool for note-taking and organizing project-related information.

Jira Tool for Scrum management.

Toggl A time tracking tool that will be used to track the time spent on different tasks
and activities, to help us manage our project schedule.

Overleaf A collaborative LATEX editor that will be used to write and edit our project’s
documentation, and also to prepare the final report and thesis.

5.1.3 Standards

As the source code will consist of multiple programming languages such as C++ and Java, it is

essential that the code base is well structured and follows the best practices of each respective

language to ensure efficient and optimized code. To achieve this we will be following the Java

and C++ standards and use code linting tools to highlight potential problems with styling and

syntax.

As the project is of considerable size and complexity, it is essential to follow a consistent and

organized approach to version control. To ensure the quality and maintainability of the code

base, we will adhere to the following guidelines for committing code:

1. The commit message should briefly describe the changes made in the commit. It should be

clear and easy to understand.

2. If the commit is related to a specific issue or bug, include the issue number in the commit

message.

10

5.1.4 Git Workflow

To manage the codebase effectively and efficiently, we will follow a Git workflow. This will

ensure that the codebase is well organized and that changes can be tracked and reviewed easily.

The following is an outline of the Git workflow we will follow:

• All development will take place on branches, with the main development branch being

’dev’.

• The ’main’ branch will represent the current production version of the codebase.

• The codebase on the ’main’ will be stable, well documented and tested.

• Each feature or bug fix will have its own branch, which will be created from the ’dev’

branch and will be named after the feature or bug fix.

• When a feature or bug fix is complete, a merge request will be created to merge the feature

or bug fix branch into the ’dev’ branch.

• The merge request will be reviewed by at least one other member of the team before being

merged.

• The ’dev’ branch needs to be stable.

• The branch naming convention will be meaningful and in line with the task, bug or feature

retrieved from Jira.

By following these guidelines, we can ensure that the codebase is well-organized and that changes

can be easily tracked and reviewed. This will help ensure the quality and maintainability of the

codebase.

11

5.2 Test Plan

We will use JUnit for Java and CppUnit for C++ to perform unit testing on individual code

modules. This will help to ensure that each module is functioning as expected and identify any

bugs throughout the development process.

These tests will be integrated with GitHub Actions (CI/CD). This will ensure that unit tests

are automatically run with every code change, and any failing tests will prevent the code from

being merged to the main branch.

In addition to unit testing, we will also be performing a thorough code review process, which is

further explained under section 5.4. This will involve reviewing the code for any bugs, security

vulnerabilities, or other issues. By identifying and addressing any issues early on, we can ensure

that the final product is of high quality and meets the project’s objectives.

We will not be conducting user testing or usability testing as the project does not involve end-

user interactions. As for security testing, we will not be performing any penetration testing,

but we will be performing a thorough code review process and security analysis to identify and

address any potential vulnerabilities.

12

Appendix D

Gantt Diagram

139

1 Project Plan

1.1 Goals and framework 13.01.2023 17.01.2023

1.2 Scope 17.01.2023 19.01.2023

1.3 Project organization 11.01.2023 16.01.2023

1.4 Planning, follow up and reporting 13.01.2023 19.01.2023

1.5 Qualiry assurance 13.01.2023 19.01.2023

1.6 Progress plan 19.01.2023 20.01.2023

1.7 Project plan reviewing 20.01.2023 24.01.2023

2 Research

2,1 Cryptography 20.01.2023 02.02.2023

2,2 OpenSSL 23.01.2023 30.01.2023

2,3 Component Communication Interface 24.01.2023 15.02.2023

2,4 Security Aspects 27.01.2023 15.02.2023

3 Development

3,1 Set up dev environments 21.01.2023 25.01.2023

3,2 Initial PKI setup 28.01.2023 03.02.2023

3.3 License Generation and Parsing 04.02.2023 07.04.2023

3.4 Lisence Authentication 04.02.2023 07.04.2023

3.5 NMS functionality 10.02.2023 31.02.2023

4 Report

4.1 Introduction 10.02.2023 23.02.2023

4.2 Theory 14.02.2023 06.03.2023

4.3 Security review 17.02.2023 20.04.2023

4.4 Development and implementation 10.02.2023 04.05.2023

4.5 Proof of concept 26.03.2023 04.05.2023

4.6 Concept review 07.04.2023 04.05.2023

4.7 Conclusion 31.03.2023 04.05.2023

W19W18 W21W20

Spr. 17 Spr. 18 Spr. 19Spr. 12 Spr. 13 Spr. 14 Spr. 15 Spr. 16

W15W5 W8W4 W14W13W7W6 W12W11W10W9
NR TITLE START DATE END DATE

PRE

W2

May

Spr. 3 Spr. 4 Spr. 5Spr. 1 Spr. 2 Spr. 10 Spr. 11Spr. 6 Spr. 7 Spr. 8 Spr. 9

W3 W17W16

PROPOSED SCHEDULE January February March April

Appendix E

Group Rules

141

Group rules

A. Everyone is expected to attend all meetings. If someone is unable to attend, advance
notice must be given within the day before the agreed meeting.

B. Responsibilities must be distributed so that no one works completely alone on one

aspect to ensure that illness/absence does not delay parts of the project more than
necessary.

C. Everyone is expected to complete a minimum of 30 hours of work per week per

student. If this cannot be done, an average of around 30 hours per week is expected
over the duration of the project.

D. Everyone is expected to contribute with their share, approximately 1/3 of the total

workload. If a group member's contribution is drastically lower than expected over a
longer period, the group member risks being expelled from the group.

E. Everyone is expected to follow common customs, be polite to other group members

and act professionally both internally and externally.

F. Everyone is expected to follow up and maintain their own obligations, roles, and
responsibilities, as defined in the project plan.

G. If unavoidable expenses arise, and they are not covered by the client, these must be

shared equally between the group members.

In the event of a breach of the rules, the following measures are taken, in the given order:

1. The group tries to resolve the conflict internally through group meetings. In the event
of disagreements, the group leader will try to mediate.

2. A written warning is given to the relevant group member. The warning must contain

the reason for the warning and attempts at mediation. A copy of the written warning is
sent to the supervisor. After 2 written warnings, further mediation is initiated.

3. The supervisor, Steven Yves Le Moan, is contacted, the situation is clarified, and the

supervisor tries to mediate.

4. The course coordinator, Tom Røise, is contacted, the situation is clarified, and the
course coordinator tries to mediate.

5. If disagreements and conflicts are not resolved, the group will be split up according to
current procedures at NTNU.

Date and signatures:

Appendix F

Status Report

143

Status Report

Group 2 -
Kristian Røren Svanhold
Sander Osvik Brekke
Ivan Norderhaug

March 2, 2023

Contents

1 Shorthands 1

2 Status rapport 2

2.1 Establishment . 2

2.2 Technologies . 2

2.2.1 Front-end . 2

2.2.2 Back-end . 2

2.2.3 Network Management System . 2

2.2.4 License File Aggregator . 2

2.2.5 Hosting . 3

2.3 Core Functionality . 3

2.4 Scrum . 3

3 Architecture diagram 4

1 Shorthands

NMS - Network Management System
LFA - License File Aggregator

1

2 Status rapport

2.1 Establishment

During the last two months we’ve worked hard on developing our proof of concept and are nearing a
stage in development where we feel we can finish within a few weeks from now (2.march 2023). We’ve
performed all the development using scrum and following the group rules we defined at an earlier
stage of the project. Our code is also up and running at NTNU’s SkyHigh to simulate the real world
environment it could be used in.

We’ve also logged all our working hours in Toggl where we per today (2. march 2023) have logged an
average total of ∼ 168 hours per person which averages out to around 24 hours of work per person per
week. This is below our target but is explained by the group consisting of two individuals which have
the INGG2300 course which have consumed an absurd amount of time out of their work week to no
fault of their own.

2.2 Technologies

The different parts of this complex machinery uses a range of different technologies, including different
languages. This section will go through the different technologies used in the different parts of the
system.

2.2.1 Front-end

The front-end is a web site written with demonstration purposes, where JavaScript and Vue2 has been
used as the technologies. Vuetify has also been used. This web site will be used to send API requests to
the different APIs being served by the LFAs and the NMSs, displaying the current statuses of different
aspects and to upload license files.

2.2.2 Back-end

The back-end consists of both the Network management systems and the license file aggregators. These
serve their own web servers. This is done to ensure the ability to communicate between the different
parts of the system.

2.2.3 Network Management System

The NMS is written in Java 11, using Maven as the package manager. In addition to this, Apache is
being used as an HTTP Client. The RESTFUL API and the web server is made through Spring Web,
and more specifically Spring Boot Start.

2.2.4 License File Aggregator

The LFA software is written in C++. In addition, OatPP is being used as a web server and a RESTFUL
API.

2

2.2.5 Hosting

The proof of concept is hosted in the NTNU Internal infrastructure solution named ”SkyHigh”. There
is being hosted one NMS and two LFAs, communicating on the local network. The hosting happens
on 3 different Linux Debian servers on a closed local network.

2.3 Core Functionality

• The NMS can receive and parse licenses

• Licenses and license usage persist between instances

• The LFA can receive a sub license, verify it and then use it if all is ok.

• The NMS can GET all licenses available in the LFA and consume them if they have expired.

• As all data from the NMS is stored locally, which is a huge security concern. Everything of value
is encrypted using a mathematically derived key.

• ”Doomsday” mechanism is active on the NMS and if a vital file is modified or deleted, the
program will not work. This is because integrity has been breached.

• We have implemented simple frontend to showcase the system.

2.4 Scrum

We decided early on to utilize the SCRUM framework and we feel we have been successful during the
last two months in implementing the system. We perform weekly sprints with a corresponding weekly
sprint review and sprint planning meeting for the next sprint. Asynchronously we hold tri-weekly
sprint-retrospective meetings to take a wider look at how the last three sprints have gone.

Our chosen tool for managing SCRUM is Jira where we continuously update the backlog and work
through our sprints within a Kanban board. A more thorough explanation can be found in the initial
project plan.

3

3 Architecture diagram

Our architecture is quite simple consisting of two main parts. Our LFAs and our NMS. These two
components exist together on different devices on its own closed network with no access to the wider
internet which means that all Top-level Licenses are sent by email to an actor at the network location.
This individual who will then proceed to manually upload the license to the NMS as seen in the above
diagram.

4

Appendix G

Meeting Minutes

149

Meeting Minutes 20230109
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Anders Dale

Event time

Place NTNU (T114)

Type Client meeting

Tag

Topics
Contract Work
Development Tools
Project strategy

Details
At this meeting, we initiated the planning process for our bachelor thesis by discussing and selecting effective tools for our
project. We decided to utilize Joplin for taking notes and maintaining meeting minutes and ShareLatex, similar to Overleaf, for
creating our main report. Additionally, we progressed with outlining the details of the agreement between our group and
Nevion. We also discussed and selected scrum as our project strategy.

Actions:

Meeting Minutes 20230118
Attendees

External
attendees

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

This meeting was cancelled by Steven Yves Le Moan with no description.

Meeting Minutes 20230120
Attendees I Ivan K Kristian S Sander Osvik Brekke

External
attendees

Anders Dale

Event time

Place Nevion

Type Client meeting

Tag

Topics:
- Contract Writing
- Program Development
- Security Report
- Meeting Plan

Details:
Contract Writing:

Nevion will own the rights to the project
No concerns regarding confidentiality

Program Development:

Separate from VIP/Virtuoso
Preferably writing in C++ for authenticator & generator, and Java/Scala for VIP functionality
TPM (Trusted Platform Module) to be discussed
OpenSSL to be considered as an option

Security Report:

To be incorporated into the project, not as a separate document
Review whether or not the concept/concept implementation is secure or not. What holes would we need to cover?

Meeting Plan:

Bi-weekly meetings with Nevion, weekly meetings with the supervisor
Specific dates TBD.

Meeting Minutes 20230120
Attendees I Ivan K Kristian S Sander Osvik Brekke

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Topics:
Sprint Review
Sprint Planning

Details:
The initial sprint was successful, with all issues being completed before the next sprint. The team had a positive experience
using this framework for the project.

The planning for the next sprint is on schedule and we will continue as outlined in the Project Plan's Gantt chart. Kristian
suggests filling up the backlog as soon as possible.

During the meeting, we also talked about configuring development environments and determining the meaning of various
repositories, this was added to the backlog and will be done during Sprint 2.

Meeting Minutes 20230125
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
Project plan
MVP
Collaboration agreement

Details:
Steven approved of the project plan.

We have decided to create a secure as possible solution as it is not possible to make something 100% when it is on the
premise of the threat actor. Steven agrees. (This might be updated in the future once we get more information from experts in
the field)

A MVP of the proposed solution would be practical, and so does Steven.

We have not created a collaboration agreement. However, we have a group rules document which is signed and Steven
approved it as a replacement for the collaboration agreement.

Meeting Minutes 20230126
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

Topics
Discussion regarding the current proposal
Concept/Proof concept

Details
Unless there is “secure boot”, then it is not possible to be 100% secure.

Virtuso holds the public certificate/public key of Nevion.

Garbage in, garbage out. Intermediate CA must be generated by Nevions private key

Intermediate CA will time out, will need to somehow renew the CA.

Pool function wont work if source code is altered.

Check if the pool is signed by the Intermediate CA on the Virtuso.

Maybe ignore the pool aspect

Is Hardware locked software the solution?

License generator does not need to be in C++. However, the NMS software and Virtuso software would be preferable to be in
C++ and Java.

Licenses must be same format. Create out JSON file → Sign → Give to the target software

Prerequisites
We can assume that NMS is safe, therefore this should be possible
We can assume that the source code is safe

Meeting Minutes 20230127
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Event time

Place NTNU (A155)

Type Sprint meeting

Tag

Topics:
Sprint Review
Sprint Planning

Details:
The sprint was successful, with all issues being completed before the next sprint. The team still had a positive experience
using this framework for the project.

The plan for the upcoming sprint is on track and we will follow the schedule outlined in the Project Plan's Gantt chart. However,
this progress is only possible because we are not focusing on group work in another course. This approach is likely not
sustainable and our progress may slow down temporarily while the other course is ongoing.

Meeting Minutes 20230130
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Tjerand Silde

Event time

Place Microsoft Teams

Type Domain Expert Meeting

Tag

Topics
Ideas to license distribution inside network
Ideas to securing the integrity of licenses

Details

Tjerand suggests anonymous tagging of licenses
This was researched, but appears to be of a different use than what is relevant for the project

Meeting Minutes 20230130
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Laszlo Erdodi

Event time

Place Microsoft Teams

Type Domain Expert Meeting

Tag

Topics

Java source code hardening
Secrets inside and integrity of source code
Source code integrity self check?

Details

Source code hardening of Java is possible, but Java is not a good language for integrity.
Integrity self checks are hard to perform, easy to bypass.
Secrets in compiled languages, such as C++, should be fine. Secure HW is a plus

Meeting Minutes 20230201
Attendees I Ivan K Kristian S Sander Osvik Brekke

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
Status meeting

Details
We had a short meeting with the thesis coordinator, Steven, where we informed him about our progress, and our plans
onward.

Steven was content with our progress.

Meeting Minutes 20230203
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning

Details
We ended up completing the sprint earlier than expected. This led us to do way more work, work which was completely
unplanned. Luckily this didn’t cause any problems this time around, but we are aware that we can’t do this anymore and we
should rather better plan our sprints.

During development we figured out that there are a lot of questions we didn’t answer, so this sprint we will focus on answering
these questions so that we can continue with development.

Meeting Minutes 20230209
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

Topics
Forslag til løsning
Sikre NMS er umulig

Details
Foreslår ide til Anders, hvor Virtuosoene på samme nettverk kan kommunisere med hverandre. Svar: “Nei”.

Virtuoso er bare en server, og skal bare motta.

Da må vi holde track på data i VIP, og hva den har sendt ut.

Kunden ønsket eksplisitt å kunne deploye VIP hvor som helst, når som helst. Vi kan derfor ikke hardware låse VIP.

Tillitsbasert kundeforhold, derfor må vi anta at kundene ikke vil misbruke systemet.

Kan vi lage en stor kryptert fil som inneholder lisens og signatur?

VIP holder styr på alle virtuoso boksene, og vet derfor når de er ferdig med å recorde.

En UID kommer kun en gang, Nevion → VIP

Meeting Minutes 20230209
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
Status meeting

Details
We had a short meeting with the thesis coordinator, Steven, where we informed him about our progress, and our plans
onward.

Steven had nothing to comment on.

Meeting Minutes 20230215
Attendees

External
attendees

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

This meeting was cancelled by Steven Yves Le Moan without description

Meeting Minutes 20230217
Attendees I Ivan K Kristian S Sander Osvik Brekke

External
attendees

Event time

Place NTNU (A155)

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning

Details
This is the first time we were unable to complete the sprint. This was caused by Sander and Ivan not being able to allocate
more time to the bachelors project due to us having another course with a really heavy workload. We also failed on estimating
the amount of work needing to be done on one of the issues, which led to the other issues standing still.

For the next sprint, we’ll plan more accordingly and have smaller issues until Sander and I are done with the secondary course
which would be in a month from now-

Meeting Minutes 20230222
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
Status meeting

Details
We had a short meeting with the thesis coordinator, Steven, where we informed him about our progress, and our plans
onward.

Nothing else to be added.

Meeting Minutes 20230223
Attendees K Kristian S Sander Osvik Brekke I Ivan

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

Topics
Proof of concept done soon
Extension of PoC
Walktrough of current implementation

Details
ING course is eating up Ivan and Sanders time. Two weeks until finish maybe

Virtuoso hello request is realistic.

Virtuoso code not entirely functional yet.

We do system calls in Java, Anders does not mind.

We show both Java code and simple frontend code

Rework Java verification code. Don’t send pubkey with request, should be imbedded in NMS

Retract unused license from virtuoso not in scope.

Would be nice to retract time from virtuoso, but on the very edge of scope.

All licenses need unique ID (delete request with ID)

Talked about how we save our license pool and hash contra their real solution with some ID number at pc and generate
customer relationship keys from that

Meeting Minutes 20230224
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Event time

Place NTNU (A155)

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning

Details
We were unable to complete the sprint again, caused by the workload in ING2300. We project that once the course is done,
our swift progress will resume and we’ll be done in no time. It is unfortunate, that one course would have this effect but we’ll
plan accordingly and split the workload more efficiently.

Meeting Minutes 20230301
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics
Info about status report
Status update

Details
Status report to be delivered 8.3.2023 to Steven. Should contain 2-3 pages regarding our current project status.

As per usual, we informed our coordinator that we are on progress to be done soon with the PoC. No further remarks.

Meeting Minutes 20230303
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
Status meeting
Presentation of Proof of Concept

Details
During this meeting, we demonstrated our proof of concept to Steven. Steven was very positive to our result and our progress.

Meeting Minutes 20230308
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
- Status meeting

Details
We had a short meeting with Steven, where we informed him about our progress, and our plans onward.

Steven was content with out progress and had a positive outlook on our work.

Meeting Minutes 20230309
Attendees S Sander Osvik Brekke K Kristian

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

Topics
Demo showcase
Security details

Separate Keypairs between NMS and each Virtuoso → see

Security Hole

Details
We showed Anders the demo successfully and had a long talk about how it all worked. Anders liked the implementation.

We also discussed certain specifics about the security and how using system Calls to OpenSSL might not be the best
approach in a production environment due to the absence of control of what exactly “OpenSSL” calls on any given system. (A
simple alias could drastically compromise our security ��)

We also talked a bit about the source code of the virtuoso and the general algorithm for uploading sublicenses.

Meeting minutes 20230310
Attendees

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Sprint meeting 10.03.2023 is canceled due to illness.

Meeting Minutes 20230315
Attendees

External
attendees

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

This meeting was cancelled by Steven Yves Le Moan without description

Meeting Minutes 20230322
Attendees

External
attendees

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

This meeting was cancelled by Steven Yves Le Moan due to sick child.

Meeting Minutes 20230323
Attendees S Sander Osvik Brekke K Kristian I Ivan

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

Topics
Status update

Details
After discussing with the client, we came to the conclusion that we need to add an ID field to all SLLs to ensure that each
license can only be used with the corresponding LFA.

We will send the security review to the client when we need the them to proofread.

Brew up an email regarding the presentations.

Meeting Minutes 20230324
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning

Details
Due to some member inactivity related to other courses, we are slowly beginning to fully work on the thesis again. This week's
sprint was somewhat completed, but we could not complete it due to some member absence. We plan on doing some code
refactoring for the next sprint and further work on the security review.

Meeting Minutes 20230329
Attendees

External
attendees

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

This meeting was cancelled by Steven Yves Le Moan without description.

Meeting Minutes 20230330
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

This meeting was moved from april 6th to this date

Meeting Minutes 20230331
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning

Details
This sprint went a lot better and we are all back on track to work full time with the thesis. This sprints focus has been the
security review and we have had major progress with it this week. We plan on speaking with a professional regarding our
security review 31.03.2023 and will proceed accordingly after the feedback.

Next week will be Easter break, which will cause some minor unavailability some days but the goal is to complete the first draft
of the security review of our concept.

Meeting Minutes 20230331
Attendees K Kristian S Sander Osvik Brekke

External
attendees

Erjon Zoto

Event time

Place NTNU, Topas

Type Domain Expert Meeting

Tag

Topics

How to write a security review?
Revision of first draft

Details

Erjon suggests to read more theory, in order to learn about the structure and content of a security review
Erjon will gladly read more drafts, and give feedback.

Note: A second review was sent, but no feedback was received.

Meeting Minutes 20230405
Attendees I Ivan S Sander Osvik Brekke

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
Status meeting

Details
“motivasjonen” betyr konteksten/bakgrunnen for oppgaven

“konklusjon/oppsummering” bør legges til i kapittel 7.

alle andre kapitler bør ha innledning og konklusjon.

Meeting Minutes 20230407
Attendees

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

This meeting was cancelled due to Easter break.

Meeting Minutes 20230412
Attendees S Sander Osvik Brekke K Kristian

External
attendees

Steven Yves LeMoan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Finish first draft of security review by 14th of April. Send to Steven for reviewing; feedback on the 19th of April.

No further questions.

Meeting Minutes 20230414
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning

Details
Significant progress was made on several parts of the thesis, resulting in substantial restructuring. All issues related to the
PoC were resolved except for one, which was deferred to the next sprint for finalization.

Meeting Minutes 20230420
Attendees I Ivan K Kristian

External
attendees

Anders Dale

Event time

Place Microsoft Teams

Type Client meeting

Tag

This meeting it was agreed to no longer have weekly meetings, but invite to meetings when necessary.

Meeting Minutes 20230421
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics:
- Status meeting

Details
We had a short meeting with Steven, where we informed him about our progress, and our plans onward. He had no comments
to add, and was content with our progress.

Meeting Minutes 20230426
Attendees K Kristian S Sander Osvik Brekke I Ivan

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics
Status update

Details
After giving Steven an update on our progress, we predicted to be done with the first draft by 5th of May. He agreed, and set
aside some time in his calendar for reviewing the first draft.

Meeting Minutes 20230428
Attendees I Ivan S Sander Osvik Brekke K Kristian

External
attendees

Event time

Place Discord

Type Sprint meeting

Tag

Topics
Sprint Review
Sprint Planning
Sprint Retrospective

Details
The sprint “Process, Theory and PoC” lasted for 2 weeks and consisted of writing the final report. The team felt that this sprint
went well and all issues where either done or very-very close to done. We also created a ToggleTrack Parser which was out of
scope, but saves us valuable time when extracting data regarding the time of work we’ve tracked.

Meeting Minutes 20230503
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics
Thesis discussion
Secrets in GitHub repositories

Details
After updating Steven on the groups progress, which he was happy with, we asked for him to slowly begin reading through out
LaTeX document in order to give us some feedback. We were still on track to having a first draft of the report by 5th May.

The group asked questions about secrets and keys in the GitHub repository. Steven answered that, for the intention of easier
grading, it is tolerated to leave the keys and secrets in the repositories.

Meeting Minutes 20230509
Attendees S Sander Osvik Brekke

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics
Feedback after first draft delivery

Details

Steven thinks it is a good report that is written in a clear way.

He is happy that we are integrating his comments and suggestions to improvement.

We are working on further implementing his suggestions to improvement.

Easily read report, more than enough covering. Good flow and a clear “red line”

Through the report, many things that are not well enough reasoned for/against. We need to remember to reason any choice,
decision and similar.

Somewhat missing reflection; we need to reflect more over our own product, work, etc. Perhaps relevant to the different
discussions.

Please use the assessment criteria that are made available.

Check for syntax errors, spelling errors, etc. This is a big part of the impact of the report.

New read-through, will come back with new suggestions to improvement

Next meeting

Ordinary meeting tomorrow, if we do not get any other message. Else, the meeting will be postponed until Steven has finished
his new read-through.

Meeting Minutes 20230511
Attendees S Sander Osvik Brekke I Ivan K Kristian

External
attendees

Steven Yves Le Moan

Event time

Place Microsoft Teams

Type Thesis supervisor meeting

Tag

Topics
Security details

Thesis flow

Order of chapters

Rewritten chapter 1

Details
Steven read the report and says it looks great. He would give it a high grade.

Easily read
Very in-depth

Chapter 1 looks good now
Development process could be moved. Steven is unsure.

Move it if we want
Chicken and egg situation
Think it looks good, not necessary to move

Report structure is good for readability.
Steven likes the tables and figures
Weird to read “protect revenue streams” in security review

We will look into adding further explanations
Steven says it makes sense, but was unsure.

The reviews in Overleaf are all his last remarks.
Steven can help practice for the presentation

Appendix H

Time Sheets

193

30.75

30.5316.82

142.4

Sander

Meeting Activities

Research

Reporting

Programming
January February March April May

Programming 6 77 51.15 4.5 3.75
Reporting 23.25 8.05 52.75 112.8 119.97

Research 28 2.5 0 0 0
Meeting Activities 13.5 6.25 4.5 3.5 3

0

20

40

60

80

100

120

140

Programming

Reporting

Research

Meeting Activities

28.25

47.6

308.24

114

Ivan

Meeting Activities

Research

Reporting

ProgrammingJanuary February March April May
Programming 0 64.75 49.25 0 0
Reporting 21.5 0 65.5 105.24 116

Research 36.1 11.5 0 0 0
Meeting Activities 13.5 6.25 2 3.5 3

0

20

40

60

80

100

120

140

Programming

Reporting

Research

Meeting Activities

30.75

21.25
369.75

174.08

Kristian

Meeting Activities

Research

Reporting

ProgrammingJanuary February March April May
Programming 15.5 103.75 39.58 15.25 0
Reporting 24.25 10.5 100.75 104.5 129.75

Research 14.25 7 0 0 0
Meeting Activities 13.5 6.25 4.5 3.5 3

0

20

40

60

80

100

120

140

160

Programming

Reporting

Research

Meeting Activities

520.47

498.09

595.83

Total Hours

Sander Osvik Brekke Ivan Norderhaug Kristian Røren Svanholm

89.75
99.35

994.81

430.48

Total Hours per Category

Meeting Activities Research Reporting Programming

Appendix I

Frontend Graphical User
Interface

197

Appendix J

Proof of Concept Initial Setup
Guide

199

Initial Setup Guide
Background

This guide is written as a part of the proof of concept, written as a part of a bachelor project in
Computer Science at NTNU Gjøvik, during the spring of 2023.

In order to use the demonstration of an OLM system, a set of keys and certificates are necessary.
This guide will go through the steps necessary, in order to start, run and use the applications.

License Company Root Key Pair

The first step is to generate a key pair for the License Company, as the root.

This is done through:

1. Run the following command to create a private key and a certificate:

openssl req -x509 -newkey rsa:4096 \

 -keyout rootkey.pem \

 -out rootcert.crt -sha256 \

 -days 3650

Then follow the interactive guide presented. This creates a private key and a certificate.
The certificate is self-signed, and is valid for 10 years.

2. Run the following command to generate a public key from the certificate:

openssl x509 -in rootcert.crt \

 -pubkey -noout > rootpub.pem

3. The private key (rootkey.pem) is kept in a secure place, the certificate (rootcert.crt) is
distributed to the license file aggregator (follow steps below), and the public key
(rootpub.pem) is distributed to the network management system (follow steps below).
These are being used to cerify the origin of license signatures at a later time.

4. Update the NMS source code file named "CustomerConstants.java" located in
src/main/java/no/ntnu/nms/CustomerConstants.java, and replace the current root
public key with the updated one, in the exact same format.

Network Management System Intermediate Key Pair

The next step is to generate an intermediate key pair for the Network Management System.

This is done through:

1. Run the following command to create a private key:

openssl genrsa -aes256 -out nmskey.pem 4096

2. Run the following command in order to create a certificate request:

openssl req -new -sha256 \

 -key nmskey.pem \

 -out nmscert.csr

Then follow the interactive guide presented. This creates a private key and a certificate
request.

3. Run the following command to sign the intermediate key with the root key:

openssl x509 -req \

 -in nmscert.csr \

 -CA rootcert.crt \

 -CAkey rootkey.pem -CAcreateserial \

 -out nmscert.crt -days 3600

The intermediate key and intermediate certificate is to be distributed to the network
management system.

4. Verify the intermediate certificate against the root certificate by running:

openssl verify -CAfile rootcert.crt nmscert.crt

Where the output should be nmscert.crt: OK.

5. Create a keystore object for the NMS software:

1. Create a pkcs12 keystore with the intermediate cert and intermediate private key by
running:

openssl pkcs12 -export \

 -in nmscert.crt \

 -inkey nmskey.pem \

 -out keystore.p12 \

 -name keystore \

 -password pass:secret

Please note that the password is secret, as stated in the source code. Do not use this in a
production environment. 2. Place the keystore in src/main/resources/.

License File Aggregator Setup

1. Replace the root certificate, located in cert/external/ with the newly created one,
renamed to root.cert.

Please note: Do NOT alter the keys placed under cert/internal/. These are used for the web
server HTTPS connection, and are not to be altered, unless new, signed, certificates are to be
used.

Application Startup

To start the application, the different parts are dependant on being started in the right order, in
order to connect properly.

1. Start the Network Management System by following its guide.
1. Initialize the files
2. Start the jar

2. Start the License File Aggregator by following its guide.
1. Enter correct name and port for the LFA, and the correct IP and port of the NMS.
2. Build the project
3. Run the application

4. Enter the secret for the key
3. (Optional) Start the frontend

1. Enter the correct IP and port of the NMS
2. Build the project
3. Run the application

Appendix K

Network Management System
ReadMe

203

Network Management System (NMS)
Background

The network management system is developed and written as a part of a bachelor's thesis at the
University of Science and Technology in Gjøvik, Norway.

Description

NMS, short for network management system, is one of the several components of an offline
license management system.

Requirements

The application requires Java 11 to run, in addition to Maven.

In order to redeem licenses, a root public key is necessary, and to generate and distribute licenses,
an intermediate private key and certificate is necessary. The root public key is included in the
source code, inside no/ntnu/nms/CustomerConstants.java, the intermediate private key and
the intermediate certificate is included in the keystore.

A guide on how to generate these keys and certificates can be found HERE.

Launch

To launch the application, you need to use an IDE bundled with Maven or install Maven on you
local machine.

Install Maven

For Linux Debian, Ubuntu, etc.:

sudo apt-get install maven

For MacOS: Please note, Brew is required.

brew install maven

Package the application

Package the application by running:

mvn clean compile package exec:java

Run the application

Then run the created Jar file:

java -jar target/nms-software-1.0-SNAPSHOT.jar

Appendix L

License File Aggregator ReadMe

205

License File Aggregator
Overview

Purpose

The License File Aggregator (LFA) is made to function as a functionality consumer. I.E the
place where a license for a certain functionality is actually ran and used up.

It has been designed for operating within an Offline License Management System (OLM) and
is assumed to be ran on proprietary hardware as to ensure its integrity.

This repo was made to be used together with the NMS and functions as a Proof of Concept
toghether with it. This means certain functionality that would be required within a real OLM
system is either missing / changed for time or due to it having been proved in the NMS already.

Project layout

.

|-- CMakeLists.txt

|-- LICENSE

|-- README.md

|-- src

| |-- App.cpp

| |-- AppComponent.hpp

| |-- client

| | `-- client.hpp

| |-- controller

| | |-- Controller.cpp

| | `-- Controller.hpp

| |-- dto

| | `-- DTOs.hpp

| |-- error

| | |-- error.cpp

| | `-- error.hpp

| |-- file

| | |-- fileHandler.cpp

| | `-- fileHandler.hpp

| |-- shared.hpp

| `-- ssl

| |-- certificates.cpp

| `-- certificates.hpp

|-- test

| |-- ControllerTest.cpp

| |-- ControllerTest.hpp

| |-- app

| | |-- MyApiTestClient.hpp

| | `-- TestComponent.hpp

| `-- tests.cpp

`-- utility

 `-- install-oatpp-modules.sh

Build and Run

Requiments

Git submodule oatpp-openssl. Run following command to install.

$ git submodule update --init --recursive

oatpp module installed. You may run utility/install-oatpp-modules.sh script to
install required oatpp modules.

Build

For Linux:

$ mkdir build && cd build

$ cmake ..

$ make

For MacOS:

$ mkdir build && cd build

$ cmake -DOPENSSL_ROOT_DIR="/usr/local/opt/openssl@1.1" ..

$ make

Run

Inside the build folder.

$./lfa-exe # - run application.

the secret is 'secret' if using the default chain of trust.

When running the LFA it is important to enter the secret before sending NMS requests. If the secret
has not been given, the server is not ready and the NMS will remove it from its list of active LFAs.
Should this happen, the LFA would need a reboot to be recognized by the NMS.

Swapping certificates

If you are changing the chain of trust, all that needs to be swapped is the file
'./cert/external/root.cert' with the new root certificate of the same name.

The contents of the './cert/local/' folder is for HTTPS and can be swapped with new files of
the same names if wanted.

Oatpp

This repo was based on a starter project of oat++. See more:

Oat++ Website
Oat++ Github Repository

Appendix M

Frontend ReadMe

209

OLM Frontend
Demo tool for interacting with Offline License Management system.

All requests to LFAs are first sent to the NMS and then relayed to the correct LFA in order to
support the system topology.

Note This codebase is out of scope for the bachelor thesis, meaning less time has been spent on
QA.

Project setup

Installs all dependecies:

npm install

Compiles and hot-reloads for development:

npm run dev

Compiles and minifies for production:

npm run build

The code should automatically detect an online NMS on the same device / network. If not, ensure
that the NMS is running on port 8090.

Appendix N

License File Signing ReadMe

211

License File Signer (LFS)
Important

There is currently a private key located in this repository. By no means, whatsoever, should this
be the case for anyone else. This is only here for simplicity sake so that people can clone and run
the different projects wtihout any other necessary steps.

Background

The license file signer is developed and written as a part of a bachelor's thesis at the University of
Science and Technology in Gjøvik, Norway.

Description

LFS, short for license file signer, is the component acting as the licensing company in this proof
of concept.

Requirements

OpenSSL (windows)

Usage

To use the LFS correctly, clone the repository and set is at as the working directory. Then simply
run the following command in the terminal:

For linux/macOS

./sign.sh <file_to_sign> <private_key_file>

where the <file_to_sign> is the example_license.json and the <private_key_file> is the root-
pk.key

Finally, select the example_licecnse.json and example_license.json.signature and compress them
to a zip file. The payload is now ready to be used.

The structure should be looking like this:

payload.zip/

├── license.json

└── license.json.signature

Alternatively, there is a already signed and ready payload located in the repository, named
example_payload.zip.

Appendix O

Checkstyle Ruleset

Code listing O.1: NMS Checkstyle Rulesheet.

<?xml version="1.0"?>
<!DOCTYPE module PUBLIC

"-//Checkstyle//DTD Checkstyle Configuration 1.3//EN"
"https://checkstyle.org/dtds/configuration_1_3.dtd">

<module name="Checker">
<module name="SuppressWarningsFilter"/>

<property name="charset" value="UTF-8"/>

<property name="severity" value="warning"/>

<property name="fileExtensions" value="java, properties, xml"/>
<!-- Excludes all ’module-info.java’ files -->
<!-- See https://checkstyle.org/config_filefilters.html -->
<module name="BeforeExecutionExclusionFileFilter">
<property name="fileNamePattern" value="module\-info\.java$"/>

</module>
<!-- https://checkstyle.org/config_filters.html#SuppressionFilter -->
<module name="SuppressionFilter">
<property name="file" value="${org.checkstyle.google.suppressionfilter.config}"

default="checkstyle-suppressions.xml" />
<property name="optional" value="true"/>

</module>

<!-- Checks for whitespace -->
<!-- See http://checkstyle.org/config_whitespace.html -->
<module name="FileTabCharacter">
<property name="eachLine" value="true"/>

</module>

<module name="LineLength">
<property name="fileExtensions" value="java"/>
<property name="max" value="100"/>
<property name="ignorePattern" value="^package.*|^import.*|a

href|href|http://|https://|ftp://"/>
</module>

213

214 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

<module name="TreeWalker">
<module name="OuterTypeFilename"/>
<module name="IllegalTokenText">
<property name="tokens" value="STRING_LITERAL, CHAR_LITERAL"/>
<property name="format"

value="\\u00(09|0(a|A)|0(c|C)|0(d|D)|22|27|5(C|c))|\\(0(10|11|12|14|15|42|47)|134)"/>
<property name="message"

value="Consider using special escape sequence instead of octal
value or Unicode escaped value."/>

</module>
<module name="AvoidEscapedUnicodeCharacters">
<property name="allowEscapesForControlCharacters" value="true"/>
<property name="allowByTailComment" value="true"/>
<property name="allowNonPrintableEscapes" value="true"/>

</module>
<!--

<module name="AvoidStarImport"/>
-->
<module name="OneTopLevelClass"/>
<module name="NoLineWrap">
<property name="tokens" value="PACKAGE_DEF, IMPORT, STATIC_IMPORT"/>

</module>
<module name="EmptyBlock">
<property name="option" value="TEXT"/>
<property name="tokens"

value="LITERAL_TRY, LITERAL_FINALLY, LITERAL_IF, LITERAL_ELSE,
LITERAL_SWITCH"/>

</module>
<module name="NeedBraces">
<property name="tokens"

value="LITERAL_DO, LITERAL_ELSE, LITERAL_FOR, LITERAL_IF,
LITERAL_WHILE"/>

</module>

<module name="LeftCurly">
<property name="tokens"

value="CLASS_DEF, ANNOTATION_DEF, ENUM_CONSTANT_DEF, ENUM_DEF,
CTOR_DEF, INTERFACE_DEF, METHOD_DEF, LAMBDA, LITERAL_CASE,
LITERAL_CATCH, LITERAL_DEFAULT,

LITERAL_DO, LITERAL_ELSE, LITERAL_FINALLY, LITERAL_FOR,
LITERAL_IF,

LITERAL_SWITCH, LITERAL_SYNCHRONIZED, LITERAL_TRY,
LITERAL_WHILE,

OBJBLOCK, STATIC_INIT, RECORD_DEF, COMPACT_CTOR_DEF"/>
</module>
<module name="RightCurly">
<property name="id" value="RightCurlySame"/>
<property name="tokens"

value="LITERAL_TRY, LITERAL_CATCH, LITERAL_FINALLY, LITERAL_IF,
LITERAL_ELSE,
LITERAL_DO"/>

</module>
<module name="RightCurly">
<property name="id" value="RightCurlyAlone"/>
<property name="option" value="alone"/>
<property name="tokens"

value="CLASS_DEF, METHOD_DEF, CTOR_DEF, LITERAL_FOR, LITERAL_WHILE,
STATIC_INIT,
INSTANCE_INIT, ANNOTATION_DEF, ENUM_DEF, INTERFACE_DEF,

RECORD_DEF,

Chapter O: Checkstyle Ruleset 215

COMPACT_CTOR_DEF"/>
</module>
<module name="SuppressionXpathSingleFilter">
<!-- suppresion is required till

https://github.com/checkstyle/checkstyle/issues/7541 -->
<property name="id" value="RightCurlyAlone"/>
<property name="query" value="//RCURLY[parent::SLIST[count(./*)=1]

or
preceding-sibling::*[last()][self::LCURLY]]"/>

</module>
<module name="WhitespaceAfter">
<property name="tokens"

value="COMMA, SEMI, TYPECAST, LITERAL_IF, LITERAL_ELSE,
LITERAL_RETURN,
LITERAL_WHILE, LITERAL_DO, LITERAL_FOR, LITERAL_FINALLY,

DO_WHILE, ELLIPSIS,
LITERAL_SWITCH, LITERAL_SYNCHRONIZED, LITERAL_TRY,

LITERAL_CATCH, LAMBDA,
LITERAL_YIELD, LITERAL_CASE"/>

</module>
<module name="WhitespaceAround">
<property name="allowEmptyConstructors" value="true"/>
<property name="allowEmptyLambdas" value="true"/>
<property name="allowEmptyMethods" value="true"/>
<property name="allowEmptyTypes" value="true"/>
<property name="allowEmptyLoops" value="true"/>
<property name="ignoreEnhancedForColon" value="false"/>
<property name="tokens"

value="ASSIGN, BAND, BAND_ASSIGN, BOR, BOR_ASSIGN, BSR, BSR_ASSIGN,
BXOR,
BXOR_ASSIGN, COLON, DIV, DIV_ASSIGN, DO_WHILE, EQUAL, GE, GT,

LAMBDA, LAND,
LCURLY, LE, LITERAL_CATCH, LITERAL_DO, LITERAL_ELSE,

LITERAL_FINALLY,
LITERAL_FOR, LITERAL_IF, LITERAL_RETURN, LITERAL_SWITCH,

LITERAL_SYNCHRONIZED,
LITERAL_TRY, LITERAL_WHILE, LOR, LT, MINUS, MINUS_ASSIGN, MOD,

MOD_ASSIGN,
NOT_EQUAL, PLUS, PLUS_ASSIGN, QUESTION, RCURLY, SL, SLIST,

SL_ASSIGN, SR,
SR_ASSIGN, STAR, STAR_ASSIGN, LITERAL_ASSERT,

TYPE_EXTENSION_AND"/>
<message key="ws.notFollowed"

value="WhitespaceAround: ’’{0}’’ is not followed by whitespace.
Empty blocks

may only be represented as ’{}’ when not part of a multi-block
statement (4.1.3)"/>

<message key="ws.notPreceded"
value="WhitespaceAround: ’’{0}’’ is not preceded with whitespace."/>

</module>
<module name="OneStatementPerLine"/>
<module name="MultipleVariableDeclarations"/>
<module name="ArrayTypeStyle"/>
<module name="MissingSwitchDefault"/>
<module name="FallThrough"/>
<module name="UpperEll"/>
<module name="ModifierOrder"/>
<module name="EmptyLineSeparator">
<property name="tokens"

216 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

value="PACKAGE_DEF, IMPORT, STATIC_IMPORT, CLASS_DEF,
INTERFACE_DEF, ENUM_DEF,
STATIC_INIT, INSTANCE_INIT, METHOD_DEF, CTOR_DEF,

VARIABLE_DEF, RECORD_DEF,
COMPACT_CTOR_DEF"/>

<property name="allowNoEmptyLineBetweenFields" value="true"/>
</module>
<module name="SeparatorWrap">
<property name="id" value="SeparatorWrapDot"/>
<property name="tokens" value="DOT"/>
<property name="option" value="nl"/>

</module>
<module name="SeparatorWrap">
<property name="id" value="SeparatorWrapComma"/>
<property name="tokens" value="COMMA"/>
<property name="option" value="EOL"/>

</module>
<module name="SeparatorWrap">
<!-- ELLIPSIS is EOL until https://github.com/google/styleguide/issues/259

-->
<property name="id" value="SeparatorWrapEllipsis"/>
<property name="tokens" value="ELLIPSIS"/>
<property name="option" value="EOL"/>

</module>
<module name="SeparatorWrap">
<!-- ARRAY_DECLARATOR is EOL until

https://github.com/google/styleguide/issues/258 -->
<property name="id" value="SeparatorWrapArrayDeclarator"/>
<property name="tokens" value="ARRAY_DECLARATOR"/>
<property name="option" value="EOL"/>

</module>
<module name="SeparatorWrap">
<property name="id" value="SeparatorWrapMethodRef"/>
<property name="tokens" value="METHOD_REF"/>
<property name="option" value="nl"/>

</module>
<module name="PackageName">
<property name="format" value="^[a-z]+(\.[a-z][a-z0-9]*)*$"/>
<message key="name.invalidPattern"

value="Package name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="TypeName">
<property name="tokens" value="CLASS_DEF, INTERFACE_DEF, ENUM_DEF,

ANNOTATION_DEF, RECORD_DEF"/>
<message key="name.invalidPattern"

value="Type name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="MemberName">
<property name="format" value="^[a-z][a-z0-9][a-zA-Z0-9]*$"/>
<message key="name.invalidPattern"

value="Member name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="ParameterName">
<property name="format" value="^[a-z]([a-z0-9][a-zA-Z0-9]*)?$"/>
<message key="name.invalidPattern"

value="Parameter name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="LambdaParameterName">
<property name="format" value="^[a-z]([a-z0-9][a-zA-Z0-9]*)?$"/>
<message key="name.invalidPattern"

Chapter O: Checkstyle Ruleset 217

value="Lambda parameter name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="CatchParameterName">
<property name="format" value="^[a-z]([a-z0-9][a-zA-Z0-9]*)?$"/>
<message key="name.invalidPattern"

value="Catch parameter name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="LocalVariableName">
<property name="format" value="^[a-z]([a-z0-9][a-zA-Z0-9]*)?$"/>
<message key="name.invalidPattern"

value="Local variable name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="PatternVariableName">
<property name="format" value="^[a-z]([a-z0-9][a-zA-Z0-9]*)?$"/>
<message key="name.invalidPattern"

value="Pattern variable name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="ClassTypeParameterName">
<property name="format" value="(^[A-Z][0-9]?)$|([A-Z][a-zA-Z0-9]*[T]$)"/>
<message key="name.invalidPattern"

value="Class type name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="RecordComponentName">
<property name="format" value="^[a-z]([a-z0-9][a-zA-Z0-9]*)?$"/>
<message key="name.invalidPattern"

value="Record component name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="RecordTypeParameterName">
<property name="format" value="(^[A-Z][0-9]?)$|([A-Z][a-zA-Z0-9]*[T]$)"/>
<message key="name.invalidPattern"

value="Record type name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="MethodTypeParameterName">
<property name="format" value="(^[A-Z][0-9]?)$|([A-Z][a-zA-Z0-9]*[T]$)"/>
<message key="name.invalidPattern"

value="Method type name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="InterfaceTypeParameterName">
<property name="format" value="(^[A-Z][0-9]?)$|([A-Z][a-zA-Z0-9]*[T]$)"/>
<message key="name.invalidPattern"

value="Interface type name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="NoFinalizer"/>
<module name="GenericWhitespace">
<message key="ws.followed"

value="GenericWhitespace ’’{0}’’ is followed by whitespace."/>
<message key="ws.preceded"

value="GenericWhitespace ’’{0}’’ is preceded with whitespace."/>
<message key="ws.illegalFollow"

value="GenericWhitespace ’’{0}’’ should followed by whitespace."/>
<message key="ws.notPreceded"

value="GenericWhitespace ’’{0}’’ is not preceded with whitespace."/>
</module>
<module name="Indentation">
<property name="basicOffset" value="4"/>
<property name="braceAdjustment" value="2"/>
<property name="caseIndent" value="4"/>
<property name="throwsIndent" value="4"/>
<property name="lineWrappingIndentation" value="4"/>
<property name="arrayInitIndent" value="4"/>

218 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

</module>
<module name="AbbreviationAsWordInName">
<property name="ignoreFinal" value="false"/>
<property name="allowedAbbreviationLength" value="0"/>
<property name="tokens"

value="CLASS_DEF, INTERFACE_DEF, ENUM_DEF, ANNOTATION_DEF,
ANNOTATION_FIELD_DEF,
PARAMETER_DEF, VARIABLE_DEF, METHOD_DEF, PATTERN_VARIABLE_DEF,

RECORD_DEF,
RECORD_COMPONENT_DEF"/>

</module>
<module name="NoWhitespaceBeforeCaseDefaultColon"/>
<module name="OverloadMethodsDeclarationOrder"/>
<module name="VariableDeclarationUsageDistance"/>
<module name="MethodParamPad">
<property name="tokens"

value="CTOR_DEF, LITERAL_NEW, METHOD_CALL, METHOD_DEF,
SUPER_CTOR_CALL, ENUM_CONSTANT_DEF, RECORD_DEF"/>

</module>
<module name="NoWhitespaceBefore">
<property name="tokens"

value="COMMA, SEMI, POST_INC, POST_DEC, DOT,
LABELED_STAT, METHOD_REF"/>

<property name="allowLineBreaks" value="true"/>
</module>
<module name="ParenPad">
<property name="tokens"

value="ANNOTATION, ANNOTATION_FIELD_DEF, CTOR_CALL, CTOR_DEF, DOT,
ENUM_CONSTANT_DEF,
EXPR, LITERAL_CATCH, LITERAL_DO, LITERAL_FOR, LITERAL_IF,

LITERAL_NEW,
LITERAL_SWITCH, LITERAL_SYNCHRONIZED, LITERAL_WHILE,

METHOD_CALL,
METHOD_DEF, QUESTION, RESOURCE_SPECIFICATION, SUPER_CTOR_CALL,

LAMBDA,
RECORD_DEF"/>

</module>
<module name="OperatorWrap">
<property name="option" value="NL"/>
<property name="tokens"

value="BAND, BOR, BSR, BXOR, DIV, EQUAL, GE, GT, LAND, LE,
LITERAL_INSTANCEOF, LOR,
LT, MINUS, MOD, NOT_EQUAL, QUESTION, SL, SR, STAR, METHOD_REF,
TYPE_EXTENSION_AND "/>

</module>
<module name="AnnotationLocation">
<property name="id" value="AnnotationLocationMostCases"/>
<property name="tokens"

value="CLASS_DEF, INTERFACE_DEF, ENUM_DEF, METHOD_DEF, CTOR_DEF,
RECORD_DEF, COMPACT_CTOR_DEF"/>

</module>
<module name="AnnotationLocation">
<property name="id" value="AnnotationLocationVariables"/>
<property name="tokens" value="VARIABLE_DEF"/>
<property name="allowSamelineMultipleAnnotations" value="true"/>

</module>
<module name="NonEmptyAtclauseDescription"/>
<module name="InvalidJavadocPosition"/>
<module name="JavadocTagContinuationIndentation"/>
<module name="SummaryJavadoc">

Chapter O: Checkstyle Ruleset 219

<property name="forbiddenSummaryFragments"
value="^@return the *|^This method returns |^A [{]@code

[a-zA-Z0-9]+[}](is a)"/>
</module>
<module name="JavadocParagraph"/>
<module name="AtclauseOrder">
<property name="tagOrder" value="@param, @return, @throws, @deprecated"/>
<property name="target"

value="CLASS_DEF, INTERFACE_DEF, ENUM_DEF, METHOD_DEF, CTOR_DEF,
VARIABLE_DEF"/>

</module>
<module name="JavadocMethod">
<property name="accessModifiers" value="public"/>
<property name="allowMissingParamTags" value="false"/>
<property name="allowMissingReturnTag" value="false"/>
<property name="allowedAnnotations" value="Override, Test"/>
<property name="tokens" value="METHOD_DEF, CTOR_DEF, ANNOTATION_FIELD_DEF,

COMPACT_CTOR_DEF"/>
</module>

<module name="MissingJavadocMethod">
<property name="scope" value="public"/>
<property name="minLineCount" value="0"/>
<property name="allowedAnnotations" value="Override, Test"/>
<property name="allowMissingPropertyJavadoc" value="false"/>

<property name="tokens" value="METHOD_DEF, CTOR_DEF, ANNOTATION_FIELD_DEF,
COMPACT_CTOR_DEF"/>

</module>
<module name="MissingJavadocType">
<property name="scope" value="protected"/>
<property name="tokens"

value="CLASS_DEF, INTERFACE_DEF, ENUM_DEF,
RECORD_DEF, ANNOTATION_DEF"/>

<property name="excludeScope" value="nothing"/>
</module>
<module name="MethodName">
<property name="format" value="^[a-z][a-z0-9]\w*$"/>
<message key="name.invalidPattern"

value="Method name ’’{0}’’ must match pattern ’’{1}’’."/>
</module>
<module name="SingleLineJavadoc"/>
<module name="EmptyCatchBlock">
<property name="exceptionVariableName" value="expected"/>

</module>
<module name="CommentsIndentation">
<property name="tokens" value="SINGLE_LINE_COMMENT, BLOCK_COMMENT_BEGIN"/>

</module>
<!-- https://checkstyle.org/config_filters.html#SuppressionXpathFilter -->
<module name="SuppressionXpathFilter">
<property name="file"

value="${org.checkstyle.google.suppressionxpathfilter.config}"
default="checkstyle-xpath-suppressions.xml" />

<property name="optional" value="true"/>
</module>
<module name="SuppressWarningsHolder" />
<module name="SuppressionCommentFilter">
<property name="offCommentFormat" value="CHECKSTYLE.OFF\: ([\w\|]+)" />
<property name="onCommentFormat" value="CHECKSTYLE.ON\: ([\w\|]+)" />
<property name="checkFormat" value="$1" />

220 S. O. Brekke, I. Norderhaug, K. R. Svanholm: Offline License Management

</module>
<module name="SuppressWithNearbyCommentFilter">
<property name="commentFormat" value="CHECKSTYLE.SUPPRESS\: ([\w\|]+)"/>
<!-- $1 refers to the first match group in the regex defined in

commentFormat -->
<property name="checkFormat" value="$1"/>
<!-- The check is suppressed in the next line of code after the comment -->
<property name="influenceFormat" value="1"/>

</module>
</module>

</module>

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Problem Area
	Problem Statement
	Scope
	Assumptions
	Goals and Constraints
	Constraints
	Result Goals
	Effect Goals

	Target Audience
	Group Background
	Project Structure
	Project Roles
	Technical Areas of Responsibility

	Report Structure

	Development Process
	Development Model
	Meetings
	Scrum Sprints Summary

	Concept Review
	State of Technology
	Theory
	Cryptography
	Digital Certificates
	Summary

	Offline License Management (OLM)
	Certificate Authority
	Network Management System
	License File Aggregator
	Communication
	How Does it Work?

	Security Aspects
	Adapted Chain of Trust
	Discussion
	Challenges
	Alternative Solutions

	Security Review
	Introduction
	Theory
	Methodology
	Structure
	Assets Identification
	Threat Identification
	Risk Assessment
	Risk Control

	Assets Identification
	Sensitive Data & Third Party Components
	Critical Assets
	CIA Classifying of Critical Assets

	Actors & Roles
	Root License Administrator
	Client Employee
	Client Network admin
	External Actors
	Malicious Actors

	Risk Appetite
	Threat Identification: Stride
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Escalation of Privilege

	Risk Assessment: DREAD
	Risk assessment: Threat Matrix
	Risk Control: Bowtie Modelling
	Spoofing
	Tampering
	Repudiation
	Information Disclosure
	Denial of Service
	Escalation of Privilege

	Residual Risk
	Discussion
	How Does the Risk Stand?
	Is it Viable?

	Conclusion

	Proof of Concept
	Introduction
	Requirements
	Functional Requirements
	Non-functional Requirements
	Operational Requirements

	Technologies
	OpenSSL
	Network Management System
	License File Aggregator
	Frontend

	Design
	Structure
	Communication

	License Signing
	Network Management System
	API
	LFA Registry
	Client
	License Parsing
	Security Features
	Pools
	Persistence
	Sub Level License Generation
	Logging
	Project Initialization

	License File Aggregator
	Server
	OpenSSL
	Client

	Frontend
	Secrets Handling
	Licenses
	Hosting and Version Control
	Distribution
	Deployment
	Git

	Quality Assurance
	Discussion
	Administrative Decisions
	Proof of Concept VS. Concept
	Security
	Is the Concept Proven?

	Discussion
	Project Retrospective
	Project Plan
	Version Control & QA
	SCRUM
	Meetings
	Thesis
	Engineering Values and Perspectives

	Conclusion
	Further Work

	Bibliography
	Project Agreement
	Task Description
	Project Plan
	Gantt Diagram
	Group Rules
	Status Report
	Meeting Minutes
	Time Sheets
	Frontend Graphical User Interface
	Proof of Concept Initial Setup Guide
	Network Management System ReadMe
	License File Aggregator ReadMe
	Frontend ReadMe
	License File Signing ReadMe
	Checkstyle Ruleset

