
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Axel Elias Wollebekk Jacobsen
Håvard Bø
Lars Lahlum Ruud
Matthias David Greeven

Cryogenetics logistics solution

Bachelor’s thesis in Bachelor i programmering
Supervisor: Tom Røyse
Co-supervisor: Frode Haug
May 2023

Axel Elias Wollebekk Jacobsen
Håvard Bø
Lars Lahlum Ruud
Matthias David Greeven

Cryogenetics logistics solution

Bachelor’s thesis in Bachelor i programmering
Supervisor: Tom Røyse
Co-supervisor: Frode Haug
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Bachelor thesis Cryogenetics 2023

Axel Elias Wollebekk Jacobsen
Håvard Bø

Lars Lahlum Ruud
Matthias David Greeven

CC-BY 2023/05/22

iii

iv Group 202: Cryogenetics Logistics Solution

Summary

Title Cryogenetics logistics solution

Project No 202
Date 22.05.2023

Authors Axel Elias Wollebekk Jacobsen
Håvard Bø
Lars Lahlum Ruud
Matthias David Greeven

Supervisor Frode Haug

Client Cryogenetics
Contact Person Steffen Wolla
Keywords: Cryogenetics, logistics, full-stack development

Pages 93
Attachments 13

Abstract Cryogenetics is the leading provider of technology and ser-
vices to the aquaculture industry. In 2022, Cryogenetics sub-
mitted a task to Norwegian University of Science and Tech-
nology (NTNU) with a request for a new logistics solution.
For years they have been logging everything from transac-
tions to repair logs manually, using spreadsheet software.
As their operation has expanded they needed a new and
more efficient system. During this project, we have built a
full-stack solution, which utilizes a mobile application for
warehouse operators, a web application for administrators,
and a backend server to store information. In this thesis we
will discuss the development process from start to finish.
We will also analyse our final product, to help our client in
further development of the product.

v

vi Group 202: Cryogenetics Logistics Solution

Oppsummering

Tittel Cryogenetics logistikkløsning

Prosjekt No 202
Dato 22.05.2023

Forfattere Axel Elias Wollebekk Jacobsen
Håvard Bø
Lars Lahlum Ruud
Matthias David Greeven

Veileder Frode Haug

Klient Cryogenetics
Kontakt person Steffen Wolla
Nøkkelord: Cryogenetics, logistikk, full-stack utvikling

Pages 93
Attachments 13

Sammendrag Cryogenetics er en ledende levrandør av teknologi og tjen-
ester innen akvakultur bransjen. I 2022 sendte Cryogenet-
ics en oppgave til Norges Teknisk-Naturvitenskapelige Uni-
versitet (NTNU) med forespørsel om en ny logistikkløs-
ning. De har i flere år loggført alt fra transaksjoner til re-
prasjonslogger manuelt ved bruk av regnearkprogrammer.
Ettersom at bedriften deres har blitt større, trengte de et
mer effektivt system. Gjennom prosjektet har vi bygget en
helhetlig løsning som innebærer en mobilapplikasjon for
lageropratører, en nettapplikasjon for administratorer og
en serverapplikasjon med database for lagring og håndter-
ing av data. I denne bachelorteksten skal vi gjennomgå og
diskutere utviklingsprosessen fra start til slutt. Avslutnings-
vis analyserer vi sluttproduktet for å se hva som kunne vært
bedre, samt hjelpe klienten vår med videreutviklingen av
produktet.

Preface

We would first like to express our gratitude to everyone who helped us complete
this project. We thank our client, Cryogenetics, who provided us with an intriguing
task which enabled us to further our knowledge on full stack development. Thank
you Frode, for offering guidance and indispensable feedback during every step of
the project. Finally, a special thanks to Steffen Wolla who provided feedback and
insight during the development process.

vii

Contents

Summary . iv
Oppsummering . vi
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
1 Introduction . 1

1.1 Project background . 1
1.1.1 Client background . 1
1.1.2 Subject area . 1
1.1.3 Delimitation . 1

1.2 Task description . 2
1.3 Target audience . 3

1.3.1 Logistics product . 3
1.3.2 Project Thesis . 3

1.4 Project goals . 3
1.4.1 Result goals . 3
1.4.2 Effect goals . 3
1.4.3 Learning goals . 4

1.5 Project rules & requirements . 4
1.5.1 Time Constraints . 4
1.5.2 Technological requirements . 4
1.5.3 Other requirements . 4

1.6 Group organization . 5
1.6.1 Member experience . 5
1.6.2 Responsibilities . 5
1.6.3 Group agreement . 5

1.7 Thesis organization . 6
2 Theory . 9

2.1 Subject area . 9
2.2 Task Analysis . 10

2.2.1 Commercially available solutions 10
2.3 Definitions . 10
2.4 Tools . 11

ix

x Group 202: Cryogenetics Logistics Solution

2.4.1 Microsoft Azure . 12
2.4.2 Golang . 12
2.4.3 Android studio & Kotlin . 12
2.4.4 REACT . 13

2.5 Digitalization & Digitization . 14
2.5.1 Digitization . 14
2.5.2 Digitalization . 14

2.6 Monolithic architecture . 14
3 Requirement Specification . 17

3.1 Functional requirements . 17
3.1.1 Use case model . 18
3.1.2 High level Use cases . 18
3.1.3 Low level Use cases . 24

3.2 Sequence diagram . 26
3.3 Product backlog . 27
3.4 Domain model . 28
3.5 Operational requirements . 29

3.5.1 Mobile application . 29
3.5.2 Web application . 29
3.5.3 Server . 30
3.5.4 Technical requirements . 30
3.5.5 Interface requirements . 31
3.5.6 Testing . 31
3.5.7 Security requirements and abuse handling 32
3.5.8 Authentication . 32
3.5.9 Encryption . 33

3.6 Project requirements . 34
3.6.1 Documentation . 34
3.6.2 Internationalization . 35
3.6.3 User friendliness . 35
3.6.4 Versioning . 36
3.6.5 Logging . 36

4 Graphical Design . 37
4.1 Graphical User Interface (GUI) development 37
4.2 Icons . 40
4.3 Color choice . 41
4.4 Admin website - UI . 42
4.5 Mobile application - UI . 43

5 System Design . 47
5.1 Frontend . 47

5.1.1 Web application architecture 48
5.1.2 Mobile application architecture 48

5.2 Backend . 48
5.2.1 Server API . 48

Contents xi

5.2.2 Database . 49
6 Development process . 51

6.1 Development Model . 51
6.1.1 Meetings . 51

6.2 GANTT chart . 52
6.3 Organization of quality assurance . 53

6.3.1 Documentation and standards 53
6.3.2 Standardized workflow . 54

7 Implementation . 55
7.1 Backend . 55

7.1.1 Overview . 55
7.1.2 Endpoints . 56
7.1.3 Internal packages . 56
7.1.4 External packages . 57
7.1.5 Modularity and expandability 58
7.1.6 Safety measures . 59
7.1.7 Database . 61

7.2 Mobile application . 62
7.2.1 API Communication . 62
7.2.2 Multitasking . 64
7.2.3 Recycler views . 64
7.2.4 Layouts and drawables . 65
7.2.5 External dependencies . 66

7.3 Web application . 67
7.3.1 Show data . 67
7.3.2 Manipulate data . 70
7.3.3 Print out Tank Labels . 73
7.3.4 Generate a monthly report . 74
7.3.5 Authentication keys . 75

8 Testing . 77
8.1 User testing . 77

8.1.1 Plan for Inspections and Testing 77
8.1.2 Testing at Cryogenetics . 77
8.1.3 Additional user testing in Trondheim 78
8.1.4 Feedback from User Testing . 78
8.1.5 Actions taken after user testing 79
8.1.6 User testing conclusion . 79

8.2 Backend tests . 79
8.2.1 Method . 79
8.2.2 Code . 80
8.2.3 Results . 81

9 Security . 83
9.1 Initial risk analysis . 83
9.2 Mobile security . 84

xii Group 202: Cryogenetics Logistics Solution

9.2.1 Framework . 84
9.2.2 Challenges . 85
9.2.3 Device attestation . 85
9.2.4 Employee codes . 85

9.3 Admin security . 86
9.3.1 Two-factor identification . 86
9.3.2 Authentication keys . 86

10 Reflection . 87
10.1 Product analysis . 87

10.1.1 GUI . 87
10.1.2 Backend . 88
10.1.3 Database . 89
10.1.4 Web application . 89
10.1.5 Mobile application . 90
10.1.6 Project schedule changes . 90

10.2 Project results . 92
10.2.1 Group results . 92
10.2.2 Client reception . 92
10.2.3 Future potential . 93

10.3 Conclusion . 93
Bibliography and External sources . 95
Acronyms . 97
Glossary . 99
A Project agreement . 105
B Project plan . 109
C Requirement specification . 127
D Gantt chart final . 147
E Status report 1 . 167
F Status report 2 . 173
G Meeting notes . 181
H User testing Cryogenetics employees . 187
I Notes from User Testing . 221
J Mobile Software Development Plan . 229
K Globals test coverage report . 235
L File tree backend . 241
M Time tracking . 243

Figures

1.1 Organizational model . 5

3.1 Use case . 18
3.2 Sequence diagram mobile . 26
3.3 Sequence diagram web . 27
3.4 Project example . 28
3.5 Domain model . 29
3.6 Missuse case . 33

4.1 First mobile app design . 38
4.2 First web app design . 38
4.3 Second mobile app design . 39
4.4 First web app design . 39
4.5 Second mobile app design . 40
4.6 Sample icons . 41
4.7 Color blindness example . 42
4.8 Cryogenetics website layout . 43
4.9 Figma design of the menu on the tank page. 44
4.10 Figma design of an action being performed 45
4.11 Figma design of act log page . 46
4.12 Figma design of inventory page . 46

5.1 Solution architecture . 47
5.2 Database conceptual model . 50

6.1 Github project . 52
6.2 GANTT chart . 53

7.1 Server routing . 56
7.2 Constants . 56
7.3 Cryptography outline . 57
7.4 Globals outline . 57
7.5 The header of the ConvertPutUrlToSql function 58
7.6 Examples of error handling . 59
7.7 The Encode function . 60

xiii

xiv Group 202: Cryogenetics Logistics Solution

7.8 The first part of the FetchPrivateKey function 60
7.9 The second part of the FetchPrivateKey function 61
7.10 The ’transaction’ table’s foreign keys, all set to RESTRICT on deletion 62
7.11 Some of the ’container’ table’s foreign keys, which are set to SET

NULL on delete . 62
7.12 fetchDataJson function . 63
7.13 Illustration of various fragments in Android emulator 65
7.14 Tank page in Android Studio’s emulator 66
7.15 Useage of Hooks in React . 68
7.16 React Table Head . 69
7.17 The handler for the Sort functionality 69
7.18 Define the search filters in React . 70
7.19 React Modal object . 70
7.20 Inserting fetched data into M-UI . 71
7.21 The HTTP structure of an Add Modal in React 72
7.22 The HTTP structure of an Edit Modal in React 72
7.23 Example of generated QR Label . 73
7.24 Report creation process . 74
7.25 Report format . 75
7.26 Authorizing mobile keys in a list . 76

8.1 Alphabetically sorting a map’s keys . 80
8.2 Iterating a sorted map . 80
8.3 Mocking an HTTP request . 80
8.4 Two subtests for the function ’ConvertPostURLToSql’ 81
8.5 All tests executing properly . 82

10.1 Gantt revised red . 91

L.1 File tree backend . 242

Tables

1.1 Expected features for the mobile application for operators and web
application for administration. 2

2.1 List of tools we intend to use . 11

3.1 Transaction log High level Use case . 19
3.2 Local inventory High level Use case . 19
3.3 Monthly report High level Use case . 19
3.4 Log out / Switch User High level Use case 20
3.5 Register acts High level Use case . 20
3.6 Maintenance act High level Use case 20
3.7 Discard of sell act High level Use case 21
3.8 Transactions act High level Use case 21
3.9 Link / Unlink client act High level Use case 21
3.10 Refill container act High level Use case 22
3.11 Refill multiple containers High level Use case 22
3.12 See container details High level Use case 22
3.13 Add new data High level Use case . 23
3.14 Edit existing data High level Use case 23
3.15 See container details Low level Use case 24

9.1 Risk analysis, Red: Dangerous, Has to be handled, Impact, Yellow:
Medium priority, should be handled or Impact, Green: Unimportant
or not dangerous . 84

xv

Chapter 1

Introduction

1.1 Project background

1.1.1 Client background

Cryogenetics AS, henceforth known as the client, is a Norwegian biotech company
that provides services and products for cryopreservation of milt and the fertiliza-
tion of fish. The company is based in Hamar, but maintains an international pres-
ence with labs in Chile, Canada, the United States, and Scotland[1].

Steffen Wolla, in his role as production manager and business developer for the
client, has requested the development of a logistical system to register the move-
ment of their liquid nitrogen tanks. The intention for this new system is to let
employees of the company have an easier time managing the tanks, without hav-
ing to manually log all transactions using spreadsheets.

1.1.2 Subject area

The main subject area for the project is logistics. Logistics deals with the move-
ment of materials and products towards facilities, in order to sell or produce ma-
terials and services. Logistics are a part of the company’s operational costs. As
companies grow and expand, it gets increasingly more complex to acquire, store
and transport resources. The digitalization of logistics has made many logistics
processes more precise and manageable. By using specialized tools, companies
are able to handle larger amounts of transactions, directly increasing profits and
efficiency. Features like tracking and estimating delivery times allow companies
to acquire more precise information surrounding their products, improving the
experience for employees and customers.

1.1.3 Delimitation

We are going to focus on the logistics of liquid nitrogen tanks, the contents of said
tanks will not be registered in our system. The client does not require the inclu-

1

2 Group 202: Cryogenetics Logistics Solution

sion of order fulfillment, labor management, or integration with other logistical
systems.

1.2 Task description

The objective of the project is to create an inventory control system that can track
and update the movement, status, and other details about their liquid nitrogen
tanks.

Mobile Application for Operators Web Application for Administration
User identification, with a numeric
code of at least 3 digits.

Ability to get a report of changes in a spe-
cified format between two desired points
in time.

A QR-Code scanner, to scan tank
identifiers.

Authentication of administrators
through email, password, and two
factor authentication.

A user-centered design to limit the
need for training and improve ac-
cessibility.

A page for transaction logs.

A page for transaction logs of each
tank individually.

An inventory page for the tanks.

An inventory page for the tanks. A sort, search and filter feature for trans-
actions, locations, employees, tanks and
customers.

A sort, search, and filter feature for
transactions and tanks.

Provide detailed logs over the history of
a specific tank, filtered by locations.

The ability to scan multiple tanks in a
“filling menu”, and update the server
with all newly filled tanks.

Functionality to add new customers and
update existing ones.

The date of when a tank was last
refilled to be visible for operators,
so they are able to locate tanks that
need to be refilled before the con-
tents are spoiled.

Retrieval of a detailed change log within
a time period.

Administration of:
- Laboratory locations in the database.
- Clients in the database.
- Operator’s information including their
authentication code.
- Container models in the database.

Table 1.1: Expected features for the mobile application for operators and web
application for administration.

Chapter 1: Introduction 3

The project requires two separate User Interface (UI)s as well as a server and
database. The final product has to include a mobile application that has to accom-
modate warehouse operators of varying technical skill levels. The application has
to be able to update information about the tanks, and then update the database
with this information. Furthermore, the product has to provide a web application.
This will be used by administrators to print monthly logs containing informa-
tion on all operations performed on locally stored tanks. The website should also
provide the ability to alter tank information in case of a user error.

1.3 Target audience

Our target audience is split between the two primary products of this project, the
logistics product and the thesis.

1.3.1 Logistics product

The product we developed is primarily directed towards our client. By extension,
our target audience is both the administrators and operators at Cryogenetics, due
to them being the primary users of the applications.

1.3.2 Project Thesis

The target audience for our thesis are all future developers looking to develop a
full-stack logistics solution. Our goal is that this thesis will provide knowledge to
any interested developer, such that they can use this as reference material.

1.4 Project goals

1.4.1 Result goals

Our project should produce a logistics solution which will keep track of the loca-
tion of liquid nitrogen containers, as well as all internal and external transactions
in which they are involved. Additionally, the solution should aid in tracking relev-
ant cryopreservation processes. The logistics solution will be a custom designed
solution for the clients needs. It will include:

• A mobile tool for operators.
• A desktop tool for administrators.
• A server and database.
• Deployment on Microsoft Azure.

1.4.2 Effect goals

By the projects end, the client will have:

• Better control and traceability over their liquid nitrogen containers.

4 Group 202: Cryogenetics Logistics Solution

• Digitized and simplified their workflow.
• Warnings for when containers require maintenance.
• Improved accountability.

1.4.3 Learning goals

During the development of our bachelor thesis, we will be exploring and learning
about our client’s subject area. The knowledge we will focus on learning include,
but is not limited to:

• Learning about the practices of the logistics business.
• Designing an efficient and user-friendly logistics system.
• Creating a product with sound foundations for use in a real work environ-

ment.
• Establishing a server-based database that is nationally available and secure

for company wide use.
• Using User Centered Design principles and techniques to develop a design

which is intuitive to use by staff of different demographics.
• Working efficiently and professionally in a group together with a third-party

client
• Improving our mobile programming skills by developing a professional ap-

plication.
• Creating an efficient database using data modeling.
• Developing a web application with the use of ReactJS.
• Creating a modern and fast backend using Golang.

1.5 Project rules & requirements

1.5.1 Time Constraints

The project’s final delivery deadline is 22.05.2023 12:00 PM, at this point the
product, final report and documentation needs to be complete.

1.5.2 Technological requirements

The solution should be user friendly and usable by employees with different levels
of technical experience. The end product must utilize a mobile device. The solu-
tion has to register and monitor the movement and maintenance of nitrogen con-
tainers. Additionally, there must be a system for QR- or bar-code to swiftly register
movement and maintenance of containers. Finally, a web application for admin-
istrative tasks is also required.

1.5.3 Other requirements

The final thesis will be written in Overleaf, using NTNUs provided LaTeX format.
Additionally, due to members of the group living far apart, we will conduct weekly

Chapter 1: Introduction 5

meetings online when it is not possible for all members to meet in person.

1.6 Group organization

1.6.1 Member experience

The group consists of four "Bachelor in programming" students, each with roughly
the same academic experience. However, in the course PROG2052 - Integrasjon-
sprosjekt, we worked on two separate groups, gaining expertise in different fields.
Håvard and Matthias developed an Android application in Kotlin, while Lars and
Axel made a Golang backend.

1.6.2 Responsibilities

Each group member has an area of responsibility based on their previous exper-
ience. Table 1.6.2 provides overview of the initial role distribution. In addition,
each group member has a role, as shown in figure 1.1.

Member Role Responsibilities
Håvard Documentation Manager Android development

Matthias Communications Manager Website development
Axel Group Leader Backend, Initial thesis
Lars Maintenance Manager Backend, Deployment

Figure 1.1: A simple overview of important people involved in the thesis.

1.6.3 Group agreement

Notification in case of absence or other incidents

Team members are expected to communicate as soon as possible if they are unable
to attend a meeting with the client or are running late. If a meeting cannot be
rescheduled, it will be held without the absent team member.

6 Group 202: Cryogenetics Logistics Solution

Expected effort

Team members are expected to spend approximately 30 hours per week on the
project, but this is not strictly enforced as long as their tasks and responsibilities
are completed. Team members are also expected to be available from 12:00 to
15:00 on days when a Scrumban meeting is held. If a team member cannot be
available during this time, they must notify the group at least 12 hours prior.

Disagreement

If there is an academic disagreement within the group, the team should attempt
to find a solution that the majority agrees on. If exactly half of the group disagrees
with the other, the Group Leader will make the final decision. Once a decision has
been made, all team members are expected to adhere to it.

Documents

Discord and Git are used to share files, with Google docs and Overleaf as collab-
orative writing tools. When writing with Overleaf we will be utilizing LaTeX to
format the text. The documentation manager is responsible for meeting reports
from meetings. These reports give a short description of which decisions have
been made and what has been done during the meeting, the full log can be found
in Appendix G.

Policy for monitoring tasks

The group leader is responsible for monitoring tasks and ensuring that everyone
has something to do. If you are struggling with completing your tasks, you should
notify the group leader so that your tasks can be more evenly distributed.

Submission of groupwork

The group leader is responsible for ensuring that deadlines are kept, and files are
submitted.

Maintenance / Services

The Maintenance Manager will be responsible for ensuring that necessary services,
such as cloud hosting services for backend, are available. This will be done in
cooperation with the client, who has agreed to provide these services.

1.7 Thesis organization

Chapter 1: Introduction A short description and elaboration on the thesis as a
whole.

Chapter 1: Introduction 7

Chapter 2: Theory Information on the subject area and client expertise.

Chapter 3: Requirement specification Descriptions on what is required of our
final product.

Chapter 4: Graphical Design Descriptions of the visual aspects of our applica-
tions.

Chapter 5: System design Overview of each individual application and their
component’s functions.

Chapter 6: Development process A broad overview of the development process
from start to finish.

Chapter 7: Implementation Thorough information and how our product is
structured and why we chose to build it this way.

Chapter 8: Testing An overview of the testing performed on and in our product.

Chapter 9: Security An in-depth view on how we have implemented security
into our product, as well as additional plans for more security.

Chapter 10: Reflection A reflection on the strengths and weaknesses of our final
product.

Chapter 2

Theory

In this chapter, we will introduce the subject area and provide information on our
client’s area of expertise. We will also provide more specific requirements for each
individual application as well as a list of tools we intend to use during the project.

2.1 Subject area

The primary subject area for the project is logistics. According to the New Ox-
ford Dictionary of English[2], logistics is the coordination of complex operations
involving many people, facilities, or supplies. However, the US-based Council of
supply chain management professionals [3] defines logistics as “The process of
planning, implementing, and controlling procedures for the efficient and effective
transportation and storage of goods including services, and related information
from the point of origin to the point of consumption for the purpose of conforming
to customer requirements. This definition includes inbound, outbound, internal,
and external movements.“

Logistics can also be explained by giving an understanding of what it involves.
We will use the explanation from the book “Global Logistics & supply chain man-
agement” [4]. “Logistics involves getting the right product, in the right way, in the
right quantity and right quality, in the right place at the right time, for the right
customer at the right cost.” Getting all these points right is a challenging task, but
for most businesses getting most of them right is good enough.

Our project will focus on the digitalization of warehouse management sys-
tems. As companies grow and expand, it gets increasingly more complex to ac-
quire, store, and transport resources effectively. Warehouse management systems
can be utilized to improve coordination, organization, and supervision of storage,
movement, handling, and other logistics operations. The digitization of logist-
ics has made many logistics processes more precise and manageable. By using

9

10 Group 202: Cryogenetics Logistics Solution

specialized tools, companies can handle larger amounts of transactions, directly
increasing profits and efficiency.

2.2 Task Analysis

Our client has requested a Warehouse Management System (WMS) to keep better
track of their liquid nitrogen tanks. Their current inventory control is a manual
system, where warehouse operators enter data into a spreadsheet. Our client has
chosen to not utilize an existing solution, we will identify the unique challenges
which our client wants to solve. We will also discuss the scope and criteria of our
task which is to produce a WMS for our client.

2.2.1 Commercially available solutions

Most modern commercially available WMS are complex and consist of tools and
features which may not be useful for all clients. Some clients may also require
special adaptations for it to fit their needs, while others might not find a system
that is able to suit their needs at all. For example, our client needs to be able to
register the refilling of liquid nitrogen to multiple tanks at the same time. This is
unlikely to be a readily available feature in most WMS. Other features that may
not be common in WMS are being able to maintain the stocked items, and keeping
track-record of items that are sent to customers and then returned.

2.3 Definitions

Below we have provided a small list of commonly used words used in this thesis
for easier reading.

• Frontend - The parts of the application the user directly interacts with, UI.
• Backend - The parts of the application the user never directly interacts with.

Deals with storing and manipulating data.
• Server / API - A computer system that responds to other devices through a

network.
• Component - A smaller part of a larger program, which has its own defined

functionality.
• Tank - A thermo-isolated container capable of holding biological content at

extreme freezing temperatures for extended periods of time.

Chapter 2: Theory 11

2.4 Tools

Name Usage
level

Reason

GitHub High We are familiar with using GitHub for version control.
By utilizing trunk-based development we are guaranteed
code insurance.

Golang Medium Golang is an efficient language with great external librar-
ies. Due to it being a young language with tremendous
support, it is highly unlikely that it will become deprec-
ated any time soon.

ReactJS Medium ReactJS (also known as React.js) is a free and open-source
front-end JavaScript library for building user interfaces
based on components.

Visual Stu-
dio code

High Our main development IDE will be Visual Studio Code due
to its simplicity and large library integration. This will be
used to develop the backend and the web application.

Android stu-
dio

Medium Android Studio will be used for developing the mobile ap-
plication aspect of our project. This is mostly due to previ-
ous experience with the IDE as well as its capabilities for
quickly testing code with the built-in Android emulator.

Discord High For day-to-day communication and meetings within the
group we will be using Discord. Discord is the group’s pre-
ferred tool for text and video communication as it allows
us to divide text and voice communication into different
channels.

Figma Medium Figma will be used to make low and high-fidelity proto-
types of the Graphical User Interface (GUI) of our web and
mobile applications. It will also be utilized for user testing
and as a visual representation of the desired outcome.

Microsoft
Teams

Low Teams will be used for digital meetings with our client and
counselor since it is their preferred tool for this purpose.

Microsoft
Outlook

Low Text communication by Mail will be used to send meeting
notices, questions, and more to our client and advisor.

Microsoft
Azure

Low Microsoft Azure will be used to deploy our backend server,
database, and web service.

Toggl Low To track time spent working we will be using Toggl. Toggl
makes it easy to either track time spent live while working
or insert worked hours afterwards.

Overleaf Medium Overleaf will be used to write our final thesis using LaTeX.

Table 2.1: List of tools we intend to use

https://github.com/
https://go.dev/
https://react.dev/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://developer.android.com/studio?gclid=CjwKCAiA2rOeBhAsEiwA2Pl7Q6S7HQMADzTmIMPoKntk-6JKchoalSk1eg1n6QycrmwKSN8ITgHuBhoCupsQAvD_BwE&gclsrc=aw.ds
https://developer.android.com/studio?gclid=CjwKCAiA2rOeBhAsEiwA2Pl7Q6S7HQMADzTmIMPoKntk-6JKchoalSk1eg1n6QycrmwKSN8ITgHuBhoCupsQAvD_BwE&gclsrc=aw.ds
https://discord.com/
https://www.figma.com/about/
https://www.microsoft.com/microsoft-teams/
https://www.microsoft.com/microsoft-teams/
https://www.microsoft.com/microsoft-365/outlook/
https://www.microsoft.com/microsoft-365/outlook/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://toggl.com/
https://www.overleaf.com/

12 Group 202: Cryogenetics Logistics Solution

2.4.1 Microsoft Azure

Microsoft Azure is a cloud computing service created by Microsoft for building,
testing, deploying, and managing applications and services through Microsoft-
managed data centers [5]. It is trusted by many companies and governments to
provide data security and provides services that tailor to the customer’s needs,
and some may prefer it to other competitors due to its scalability and reliability.
We opted to utilize Azure since the client is already using their services for other
purposes.

Azure offers an extensive array of services that cover various categories, cater-
ing to diverse business needs. Some of the key categories include databases, net-
working, analytics, Artificial Intelligence (AI), and Internet of Things (IoT). For
our project, interest falls into the Azure SQL Database and Azure Portal services.

Azure SQL Database [6] is a platform that provides high-performance, secure and
scalable storage. It serves as a highly dependable storage service, with features
like automatic backups and seamless integration with other Azure services.

Azure Portal [7] is a central monitoring hub to survey the resources Microsoft
Azure has to offer. This service offers extensive functionality for resource man-
agement, deployment, access control, and monitoring through the web-based in-
terface.

2.4.2 Golang

Golang is an open-source programming language developed by Google. It was
designed to be simple, efficient, and reliant, and can be used to make a wide vari-
ety of applications. It has a minimalistic syntax and a strong focus on perform-
ance. An important feature of Golang is its concurrency support which allows for
"goroutines" to be created and managed quickly and easily. Golang is also statically
typed, memory safe, and features automatic garbage collection. It is a compiled
language rather than interpreted, which improves its performance. Some notable
applications made partially with Golang include Docker, Dropbox, Twitch, and
Uber [8].

2.4.3 Android studio & Kotlin

Android Studio

The official Integrated Development Environment (IDE) for Android app develop-
ment is Android Studio [9]. It is based on the IntelliJ IDEA Integrated Develop-
ment Environment (IDE), with specialized features for mobile app development.
These are the following features that this IDE has to offer:

Chapter 2: Theory 13

Version Control Integration with popular systems like Git. All changes are auto-
matically tracked and allow for easy management of source code.

Emulator and device support are integrated with Android Studio, and allow
developers to emulate different Android devices on their workstations. This al-
lows developers to test their performance on different types of devices. The IDE
also allows for physical connections between Android devices, meaning that de-
velopers can download their applications on a remote device for debugging and
testing purposes.

Layout Editor is a visual design tool that simplifies and visualizes the creation
of user interfaces through real-time previews and drag-and-drop functionality.

Kotlin Language Support is a crucial part of developing an Android app. An-
droid Studio includes comprehensive support for Kotlin code, making it the pre-
ferred choice for Android developers when combined with the features described
previously.

Kotlin

Kotlin is a general-purpose programming language that is designed to fully inter-
operate with Java code/codebases [10]. This open-source language has a growing
community for Android app development and is capable of using existing Java
libraries due to the seamless integration with the Java Virtual Machine. Security
features like null safety reduce the risk of crashes more than Java does, while still
running as efficiently.

2.4.4 REACT

ReactJS (also known as simply React) is a JavaScript library [11], and is used
to create User Interfaces using components. A React component is a module that
houses a specific set of functions. Utilizing components is an essential part of cre-
ating modular and cohesive software. Each component should be independent
and reusable, meaning that they can quickly be replaced. The replacement com-
ponent must meet the requirement of the application interface. These components
are rendered to the root element in the Document Object Model (DOM), receiving
any necessary values through Props.

To render and update components efficiently, ReactJS utilizes a Virtual DOM. The
Virtual DOM is a lightweight representation of the actual DOM, and ReactJS com-
pares it to make minimal updates when changes occur. This approach enhances
performance when rendering and updating components.

The library is free, open source and maintained by Meta, along with its com-
munity of companies and individual developers.

14 Group 202: Cryogenetics Logistics Solution

What intend to achieve by using ReactJS is a fully functional and deployable
Single-Page Application (SPA). The ReactJS Router framework allows us to do
this. Router allows for navigation through various components by changing the
URL and keeps the Graphical User Interface (GUI) in sync with the URL.

2.5 Digitalization & Digitization

The topic of digitization & digitalization stands at the core of this thesis. Our client
has for a long time been using both pen and paper as well as digital spreadsheets
to manually track information about their tanks. With our solution, the goal is to
change that and merge all their processes into one product.

2.5.1 Digitization

Due to the confusing nature of these words, it is necessary to have a solid defini-
tion. "Digitization describes the conversion of continuous analog, noisy, and smoothly
varying information into clear bits of 1s and 0s" [12]. In other words, it refers to
the transition from pen and paper to electronic solutions. During our visit to the
client, we found that the warehouse operators would write down information in
a list when a tank is refilled with liquid nitrogen. This along with a few other op-
erations is still done using a physical solution. Our product will take part in the
digitization of the client as they no longer have to use pen and paper to track this
information.

2.5.2 Digitalization

Digitalization on the other hand, "describes the social implications of increased
computer-assistance, new media and communication platforms for economy, so-
ciety and culture" [12]. In essence, digitalization refers to the further development
of electronic services to better improve the profitability or efficiency of a business.
The way we fill this role is primarily in how we improve on their previous digital
solutions. They used to manually enter information about tanks and transactions
into spreadsheets. Our solution intends to perform this work semi-automatically
and thus, more efficiently.

2.6 Monolithic architecture

When creating any backend there is a decision to be made regarding if it should be
made monolithic or as a set of microservices. A monolithic application is "a single
unified software application which is self-contained and independent from other
applications" [13]. This is in contrast to a microservice architecture, wherein the
software is divided into fine-grained, loosely coupled, services.

Chapter 2: Theory 15

Creating an application as a set of microservices has some advantages. Since
each microservice can be scaled on its own, it gives more options when scaling
the product. The product as a whole becomes more resilient as the failure of one
microservice does not bring the whole system down. Lastly, it is easier to maintain
than a monolithic application, since each component can be updated separately
and faults are usually easier to isolate.

However, there are also disadvantages to using a microservice architecture.
With more parts come more problems, testing, and maintenance, which may re-
quire additional effort depending on the scale of the architecture. Additionally, the
need for communication between each microservice may lead to higher latency
and worse overall performance.

Monolithic applications on the other hand are simpler to test and maintain
and may have better performance. While monoliths have a greater risk of down-
time, we believe that our utilization of Golang’s exceptional error handling will
be sufficient for this project. Given the scale of the project, microservice architec-
ture is not necessary. For these reasons, we have decided to go with a monolithic
structure for our backend.

Chapter 3

Requirement Specification

We will go further into detail on what is expected of our final product in this
chapter. Additionally, we will provide use cases to better explain some possible
operations and show how the programs will respond. We will also cover what is
required of us as a group with respect to development procedures.

3.1 Functional requirements

The functional requirements entail what the project requires in order to work the
way we intended it to. The following sections will go through what operations
and functions the program is expected to perform.

Web application

New admins must be registered by existing admin users. The admin user has high
authority when managing digital resources. They are entrusted with keeping the
system running with provided tools. The admin application’s features are as fol-
lows:

• Two factor authentication.
• Inventory overview.
• Transaction logs.
• Filter and search all data.
• Generate monthly reports about the registered movement of the containers.
• Generate and print Quick Response Code (QR-Code) identifier for a liquid

nitrogen tank.

Mobile application

New mobile operators & devices must be registered through the admin applica-
tion. Operators have access to the following features:

• Sign into the application using a personal 3-digit code.

17

18 Group 202: Cryogenetics Logistics Solution

• Receive the latest version of the transaction logs for their workplace.
• See which containers require maintenance based on data from the transac-

tion log.
• Register when a container has been refilled.
• Filter and search all data.
• Register a container into the system when received from the client.
• When a user interacts with a container, a log must be sent to the server for

record-keeping, these will appear in the transaction log.

Backend server

The server must be able to handle the following:

• Multiple requests from all over the world and respond accordingly.
• Store incoming transactions in the SQL database.
• Create / Edit / Delete elements in the SQL database.

3.1.1 Use case model

Figure 3.1: Use case model for the mobile- and web applications

3.1.2 High level Use cases

In figure 3.1, our Use case model shows what the different actors are able to do
in their respective programs, and when they are allowed to do so.

Chapter 3: Requirement Specification 19

The following tables show what the most important user-available features
must be capable of doing. The following points on the Use case model are not
included due to redundancy: Log in, log out, and alter data manually.

Use case Transaction log
Actor User (App) & Admin (Website)

Purpose Retrieve an overview of the transactions regarding local labs
Description A user should be able to view the recent transactions from /

to their laboratory. The user can filter the selection of results
to their specific needs.

Table 3.1: Transaction log High level Use case

Use case Local inventory
Actor User (App) & Admin (Website)

Purpose Retrieve an overview of the containers currently in the local
labs inventory.

Description The user can see a list of all the containers they currently
have in their storage, and an overview of that containers’
current status.

Table 3.2: Local inventory High level Use case

Use case Download Monthly report
Actor Admin (Website)

Purpose Produce a CSV file containing customer, start and end
timestamps, location, and container for the chosen month.

Description The report must contain the data above, categorized by cus-
tomer. The purpose of the report is to track where the cus-
tomers’ containers have been moved within the last month.

Table 3.3: Monthly report High level Use case

20 Group 202: Cryogenetics Logistics Solution

Use case Log out / switch user
Actor User (App)

Purpose Remove/replace what user is responsible for transaction
logging

Description Users can log out / switch users when the current logged
in user no longer holds responsibility for the Acts that are
being recorded. Users can quickly switch between Logged
in users by typing their authentication code.

Table 3.4: Log out / Switch User High level Use case

Use case Register Acts
Actor User (App)

Purpose Register a container Act to the transaction log
Description Maintenance, Transactions, Discard or Sell, Link / Unlink

client and Refill container are all marked as “Acts”. This
means that this operation on the app is to record an activity
that the container has gone through.

Table 3.5: Register acts High level Use case

Use case Maintenance (Act)
Actor Send in a maintenance update about the scanned container

to the backend.
Purpose Send in a maintenance update about the scanned container

to the backend.
Description Users have three options when assigning maintenance:

• This container needs maintenance.

◦ The user specified what is required in the com-
ment field.

• Assign a custom act to this container. This is neces-
sary in order to clear up human error by letting users
“overwrite” their previous transactions.

◦ Assign container model, status, act, location, ad-
dress, date of last refill, invoice date, and serial
number.

Assigning maintenance is tracked on the transaction log,
and changes the status from “maint needed" to "maint
compl”.

Table 3.6: Maintenance act High level Use case

Chapter 3: Requirement Specification 21

Use case Discard or sell (Act)
Actor User (App)

Purpose Remove the container from the database
Description The user chooses a container to be sold or discarded, adding

a comment with the relevant information. When a container
is sold or discarded, it is no longer the property/interest
of Cryogenetics, and is therefore no longer needed to track
through the database. If the container is sold it no longer
shows up on the laboratory’s inventory.

Table 3.7: Discard of sell act High level Use case

Use case Transactions (Act)
Actor User (App)

Purpose Register where the container is being sent to / when it ar-
rives at the user’s workplace.

Description Users have three options when registering Transactions:

• Container is being sent out to customer

◦ User has to input the address of the destination
in order for our system to keep track.

• Container has been returned to us
• Container is being sent to an affiliate

◦ Users must select which affiliate the container
will be sent to.

This movement is tracked on the transaction log.

Table 3.8: Transactions act High level Use case

Use case Link / Unlink client (Act)
Actor User (App)

Purpose Change ownership of a container.
Description If the container does not have a client registered to it, con-

nect an existing client with the scanned / selected container.
Else if the container already has a customer, remove that
customer from the container’s data. Linking a container to
a client results in the customer taking ownership of the con-
tainer. The change in ownership is saved on the transaction
log of the container

Table 3.9: Link / Unlink client act High level Use case

22 Group 202: Cryogenetics Logistics Solution

Use case Refill container (Act)
Actor User (App)

Purpose Change the "Last_Filled" date for this container to the cur-
rent date

Description Users select which container they physically refilled with ni-
trogen, which will update the container "Last_Filled" date in
order to keep track of which containers need to be refilled
at what date.

Table 3.10: Refill container act High level Use case

Use case Refill multiple containers
Actor User (App)

Purpose Scan a single / multiple container(s) to register them as re-
filled.

Description Users can register that they have refilled one or multiple
containers with nitrogen. This will set the last filled date to
the current date. This is saved in the transaction logs of the
affected containers.

Table 3.11: Refill multiple containers High level Use case

Use case See Container details
Actor User (App)

Purpose Reveal the retrieved data about the scanned container.
Description After scanning / selecting a container, the application must

show the current status of the container from the server,
what actions the user can register from here, and what
transactions this container already has registered.

Table 3.12: See container details High level Use case

Chapter 3: Requirement Specification 23

Use case Add new data
Actor Admin (Website)

Purpose Input new data for the users to retrieve.
Description Admins can add new data objects to the database by navig-

ating to the desired data type they want to add. The follow-
ing data can be added:

• Acts
• Affiliates
• Customers
• Containers

◦ Container models
◦ Container statuses

• Users / employees

Each of these data types require their specific contents filled
before they are sent to the backend.

Table 3.13: Add new data High level Use case

Use case Edit existing data
Actor Admin (Website)

Purpose Edit existing data in case of errors / changes.
Description Admins can edit existing data objects by navigating to the

desired data type they want to edit. The following data can
be edited:

• Acts
• Affiliates
• Customers
• Containers

◦ Container models
◦ Container statuses

• Users / employees

Each of these data types require their specific contents filled
before they are sent to the backend.

Table 3.14: Edit existing data High level Use case

24 Group 202: Cryogenetics Logistics Solution

3.1.3 Low level Use cases

Due to the quantity and size of all potential low-level use cases we decided to
only add one. However, more can be found in the original draft for this chapter
see appendix C

Use case
See Container details

Actor User (App)
Purpose Reveal the retrieved data about the scanned container.
Description After scanning / selecting a container, the application must

show the current status of the container from the server,
what actions the user can register from here, and what
transactions this container already has registered.

Precondition 1 User must be authenticated on the application.
Precondition 2 The container must be in a non-sold/discarded state.
Post-condition The container data and history is shown, along with options

for next acts.
Detailed course
of action: 1. User locates the desired container.

2. User clicks the Camera icon to activate the QR scan-
ning / Selects container from the inventory list.

a. User scans the QR code located on the container.

3. Container data is fetched from the backend.
4. User sees the container data / history.
5. Users can Register Acts like Maintenance, Transac-

tions, Refilling, Discard / Sell and Link / Unlink the
container to customers.

Alternative
scenarios

Errors:

• The API fails to load the container data
• Loss of internet connection

Table 3.15: See container details Low level Use case

Chapter 3: Requirement Specification 25

26 Group 202: Cryogenetics Logistics Solution

3.2 Sequence diagram

Figure 3.2: Sequence diagram showing how the different components of the mo-
bile app cooperates

Chapter 3: Requirement Specification 27

Figure 3.3: Sequence diagram showing how the different components of the web
app cooperates

3.3 Product backlog

As we are using Scrumban, a Kanban board will be created to enhance workflow.
This Kanban board is going to be on GitHub. To do so, a new project with a backlog
will be set up and attached to the project repository. Here, issues can be categor-

28 Group 202: Cryogenetics Logistics Solution

ized and moved between columns, each will represent a step in the workflow. The
first column will be “Backlog”. Issues here have no set start or end date and are
not currently being worked on. The second column will be “In progress”, which
represents issues that are ongoing but have no set end date. Then a column named
“Deadline [DD/MM/YY]” will be added. We will update the column name each
meeting to reflect the next deadline. Issues in this column should be time-limited,
and be completed before the set date. When an issue is completed, it will be moved
to the “In review” column, which we will review at the end of each meeting. Then,
the reviewed issues will either be closed or put back into the backlog if they are
not complete.

Figure 3.4: An example of how our issue board looked with deadline 1st of May

New issues will be made during meetings when there are few issues left. These
new issues should typically be motivated by the GANTT 6.2 diagram, and be
aligned with the current development stage. Issues are to be designated labels,
size, priority, and milestone, in addition to responsible group members.

3.4 Domain model

The system mainly revolves around containers and how they are acted upon.
A container has a significant number of attributes, but only the ones that are
used in transactions with other tables are shown in the domain model. These are
“serial_number”, “id”, and “model”, which are used when selling, moving, filling,
or discarding a container. A container can be moved or filled as many times as
needed, but only sold or discarded once, which is shown in the domain model as
cardinality. Containers, clients, and employees are registered through the admin
web page. An admin can register as many of these as needed, but only one admin
is responsible for each registration. Employees may log on to either the admin
web page or the app, but not both at the same time. When an employee is using
the app their actions are logged. Each container sale, check-out, check-in, filling

Chapter 3: Requirement Specification 29

Figure 3.5: The domain model.

and discarding has a responsible app user, and containers are sold or checked out
to a client who is registered in the database.

3.5 Operational requirements

3.5.1 Mobile application

The mobile application is intended to run on an Android tablet with camera access.
The devices running the mobile application must:

• Have an Android operating system, version 10 - API 29 - Quince Tart or
above.
• Have at least 128MB of free local storage.
• Connect to a Cryogenetics WiFi network.
• A camera capable of reading QR-codes.

3.5.2 Web application

The web application will require an internet connection and a common desktop
browser. Users must login with a Microsoft account and an authentication applic-
ation on a mobile device for Microsoft two-factor authentication.

30 Group 202: Cryogenetics Logistics Solution

3.5.3 Server

Sending and storing data should be as efficient as possible to reduce the pressure
on the servers. Successful retrieval of data from the server must be in a reasonable
time, which is at least within 3 seconds. The server must be deployed on Cryo-
genics’ Microsoft Azure resources, alongside a disaster recovery plan to correct
problems that may occur.

3.5.4 Technical requirements

Mobile application

The app is to be developed for Android devices using the Android Studio de-
velopment environment. To utilize the latest features of Android Studio, the last
stable release available to the devices should be used. The app will be developed
primarily with Kotlin, the official language for Android App Development. To save
development resources the application will require a common tablet used in land-
scape orientation for an optimized experience. The device will also need a camera
capable of scanning QR codes.

Web application

To render the web application for administrators a browser will be required, as
well as an internet connection. To print QR-Code for tanks, a label printer with a 4
by 6-inch output label will be required. Users will be responsible for ensuring con-
nection to a printer, as well as installing the necessary drivers and changing printer
settings for successful printing. For quick and clean web development, ReactJS
will be used with the component library Material-UI. Communication between
the website and the backend server will utilize the Fetch API - a native browser
API that provides a low-level interface for making HyperText Transfer Protocol
(HTTP) requests. Fetch API is built into modern browsers, requiring no additional
libraries or dependencies, in addition to providing support for asynchronous re-
quests and responses through the use of Promises. Promises make it possible to
register callbacks that are executed once the response is received, making it easier
to write cleaner and more maintainable code.

Server

The backend will be deployed on the client’s Microsoft Azure instance. Git ac-
tions will be set up to automatically push updates to the Microsoft Azure cloud
when changes are made to the server. The server might need to process up to
600 bytes of data per transaction, which for a typical processor (1,9GHz), takes
about 40 nanoseconds, meaning processing power won’t be an issue for any mod-
ern processor. Storing one million transactions in the database takes about 0,6GB
of storage space, which in addition to project- and XAMPP files adds up to about
2GB of required storage space. Golang will be the primary programming language

Chapter 3: Requirement Specification 31

used for the backend. It is fast and well integrated with existing technologies such
as Structured Query Language (SQL).

3.5.5 Interface requirements

To ensure that our product operates nominally, we have set a few interface re-
quirements in place. Since our product consists of two separate applications as
well as a backend, the requirements have been split into three groups, mobile,
web, and shared. Since we will be developing the mobile application for Android
devices, the mobile device has to support at least Android version 10, Quince Tart.
This is so that we can ensure the longevity of the product as an older device might
cause deprecation problems. Additionally, we require the device to be a tablet, 8
inches or larger. To ensure the usability of our application we have selected colors
that contrast each other, and make the app easy to use even for those with spe-
cial requirements. In addition to the colors, almost all buttons have text and icons
which represent them.

For the admin web application, our priority is ensuring solid contrasts. The
website will have a simpler color palette. Thus, we have prioritized working with
different levels of saturation to increase contrast. The website will be largely text-
based. This ensures efficient communication of information. Since the application
is web based there are no specific device limitations. As for shared requirements,
the largest one is access to the internet. Both mobile- and web applications are
reliant on communication with a backend that interacts with the database. Thus,
if they lose internet access, neither application will be able to perform any opera-
tions. Additionally, both the mobile- and web applications should be able to filter
and sort all available data using the different categories present, such as container
size or location. Finally, the backend has to function as a server that can be run
on Microsoft Azure, in accordance with the client’s wishes.

3.5.6 Testing

Unit testing

From an early stage of development, we will include unit tests in our backend.
By using the test-driven development style we aim to create robust and stable
backend code which will act as a foundation for our client’s potential continual
development.

Testing during development

We will be using two main ways of testing our applications during development.
Postman to test backend HTTP requests, and Android Studio’s built-in emulator to
test the mobile application. Postman lets us send HTTP requests to specific URLs

32 Group 202: Cryogenetics Logistics Solution

with payloads. Using this we can test endpoints to see if they are returning the
expected data in the correct format. Android Studio’s emulator lets us test how
the mobile application will function on a “real” device, without having to export
it as an application every time a new feature is implemented.

User testing

During the development of the whole project we will be performing user testing.
Initially, we will test the low- and high-fidelity models with our client. The feed-
back we receive here will help us shape the application visually, in addition to
adding or removing functionality from the applications. In the later stages of de-
velopment, we will test the application to receive more fine-tuned feedback, while
also keeping our client up-to-date on the progress of the project.

3.5.7 Security requirements and abuse handling

Our primary security concern for our program is access. We wish to restrict ac-
cess so that only authorized personnel can interact with the application. For the
mobile frontend this involves limiting access to the application itself. The inten-
tion behind this is to stop threat actors from exploiting potential weak points in
the application through brute force. Additionally, we plan to implement device
attestation to ensure no new devices can connect to the server without permis-
sion from an administrator. This implies that the web frontend will have a higher
access level than the mobile application. Thus, we will implement two layers of
protection, an email login and two-factor authorization to secure the website.

To tackle abuse of our system we have decided to simply utilize regular backups
of the database. Since there are few things a user can do other than alter the data-
base, it is our primary concern to ensure that all data is not lost. Thus the backups
will be completely inaccessible from the program and will have to be manually
accessed in Microsoft Azures cloud storage. Additionally, we will implement an
automatic and comprehensive logging system. With this we can see every change
made to the database and the tanks in the system. This way, if a threat actor de-
cides to alter data to sabotage our client, we will see where changes were made,
and can therefore fix them quickly.

3.5.8 Authentication

To authenticate administrators in our web application, we intend to use Microsoft’s
two factor authentication, which requires a Microsoft account, a mobile device and
access to the client’s Microsoft Azure instance.

The mobile application may only be used from a known network and device,
since it uses simple 3-digit authentication for quick log in. Administrators can add
networks and devices to the list of known networks and devices. When the connec-

Chapter 3: Requirement Specification 33

Figure 3.6: Missuse case model, displaying potential threat actors and how we
deal with them.

ted network and the device is verified, the application can be used by employees
associated with the location.

3.5.9 Encryption

To protect against man-in-the-middle attacks, sensitive network traffic should be
encrypted. In our case we will mostly handle client- and employee information.
Passwords will be stored and handled by Microsoft’s two factor authentication, so
salt and hashing will not be necessary. Lastly, android automatically encrypts data
located in the internal storage, so the devices used by the employees will not need
any special encryption.

34 Group 202: Cryogenetics Logistics Solution

3.6 Project requirements

This project is required to be organized and well documented, since other de-
velopers will have the responsibility for maintaining and possible further devel-
opment. It is also necessary for our application to be user friendly for people of
all ages, without training the users to use the applications.

For the project to be successful for our client it must:

• Offer better tracking and organization of liquid nitrogen tanks.
• Offer reports that can be used for invoicing customers.
• Offer functionality to register actions that affect the tanks.
• Be user-friendly and internationalized for use in multiple countries.

The project must be completed and delivered to both the client and NTNU
before 22.05.2023 kl 12:00. The group must present the project on NTNU campus
when requested, the date could be 6-8. June 2023.

3.6.1 Documentation

Documentation is an important aspect of developing software. Good planning and
detailed documentation will often save time and resources in the future. Since this
project will not be maintained by the same team developing it, the importance of
good documentation is even greater. We will follow best practices for commenting
code, which will apply to our backend API, website- and mobile frontend.

Frontend - Low and High-level design

Web- and application design will be documented with the final iteration of both
our low- and high-level design. The final high-level designs will be the desired
result of our development and will be used as guidance to implement the intended
functionality.

Backend - Database

The database will be documented with a conceptual model and a logical model.
These models will show the thoughts behind the database implementation and
will help us design an optimized database with minimal oversight.

Backend - API

We will document the API by creating a plan for each endpoint, which will be help-
ful when developing and maintaining the API. We believe it will also increase our
productivity during development since we will have an overview of the required
functionality.

Chapter 3: Requirement Specification 35

Backend - Deployment

We will need a disaster recovery plan before production deployment, to account
for unplanned incidents which can shut down our service. One reason to plan
for these incidents is to keep recovery time and data loss minimal. Another is
to implement preventive measures and correctly detect issues that need to be
corrected before it greatly affects the availability.

User Testing Report

User testing will be documented with a report about the suggestions, results, and
conversations we found during user testing. This is to gather all the information
from the user testing session in one place. This will also make it easier for us to
make changes according to user feedback.

Meeting Notes

We will document all meetings by taking notes and writing a short summary for
each meeting. Keeping track of all our meetings will allow us to keep track of
decisions and what we have already discussed. This will allow us to have more
efficient meetings and therefore get more done with fewer resources.

3.6.2 Internationalization

We have decided to solve Internationalization in two ways, by operating exclus-
ively in English and utilizing symbols in the mobile application. We initially dis-
cussed with our client whether or not they wished for multiple languages to be
available. However, they preferred to keep it simple and only use English. Since
the mobile application will be used by most workers, we concluded that if Inter-
nationalization could be relevant, it would be there. This is part of the reason why
we have decided to use many small icons for important and significant buttons.
The web application does however, not include as many icons as the mobile app.

3.6.3 User friendliness

To create user-friendly interfaces for our applications, we will utilize User Centered
Design principles and user testing to create a custom-tailored and intuitive design.
Since the mobile application will be used during warehouse-related tasks, it needs
to be convenient and practical to use. Since the web application is considered
more of an additional tool for administrators, we will dedicate more resources to
the design of the mobile application. The mobile application will feature various
icons in combination with text and color, to help users navigate the user inter-
face quickly and precisely. It will also feature common functionality which most
users are already familiar with, for example changing the sorting in the log will
be inspired by Microsoft’s file explorer.

36 Group 202: Cryogenetics Logistics Solution

3.6.4 Versioning

For our project, we will be using GitHub for versioning. We will use branches to
keep track of different versions of our code, and we use pull requests to merge
changes from different branches. This allows us to develop more efficiently to-
gether by ensuring that everyone is working on the same version of the code. We
also use GitHub’s issue tracker to track bugs and feature requests. We have set
up a GitHub project where we store our issues, and quickly move them between
“backlog”, “in progress”, “next deadline”, “in review” and “done”. Additionally, we
can assign size, priority, and assignee’s as well as link the issues to specific com-
mits or pull requests to provide context and traceability. Overall, GitHub provides
us with a powerful tool for developing efficiently and transparently, in case the
client wishes to further develop our product in the future.

3.6.5 Logging

During our project we will log hours using Toggl. Toggl lets us begin a timer when
we start working which helps us keep track of how long we have worked. When
we are done we can see how much we have worked in a certain time period, as
well as what we were working on through the use of tags attached to each work
session. In addition to tracking time spent, we also have a designated note-taker
who writes short summaries of our group, client, and advisor meetings.

Chapter 4

Graphical Design

In this chapter we will cover the graphical design of our product’s two frontends.
We will cover the design process and discuss why certain decisions were made.

4.1 Graphical User Interface (GUI) development

The mobile and web application were designed using principles from the user-
centered design methodology. The applications were developed together with our
contact person at Cryogenetics. We also user tested and discussed the app design
with the warehouse operators. Working together with the client, we have created
an app for their operators and a web page for their administrators. This will help
the company transition their logistics workflow from their previous solution to the
new purpose-built product.

User testing the design and creating multiple iterations are essential steps to
user-centered design. Therefore, we have created multiple design prototypes for
both applications and conducted user testing with eight participants. Five of the
participants were the client’s employees, who will be using the applications if im-
plemented. The participant’s age ranged from young adults to middle-aged adults,
with varying levels of digital proficiency. To obtain comprehensive data, physical
user testing sessions were conducted for all participants except for one, who was
tested digitally due to their geographical location.

37

38 Group 202: Cryogenetics Logistics Solution

Figure 4.1: Screenshot of the fill multiple tanks page, from the first design itera-
tion of the mobile application.

Figure 4.2: First iteration of the website transaction page and navbar.

For our initial design iterations we created two low-fidelity prototypes to save
resources and keep the cost of changes low. The first drafts were created during
a meeting together with the whole group. Afterwards, updates to each model
were performed by the group members in charge of the respective application.
The application designs were then discussed in multiple meetings with the client,
which resulted in a better understanding of the operator’s workflow. When the
low-fidelity prototypes included all strictly necessary aspects and functionalities,

Chapter 4: Graphical Design 39

we decided it was time to move away from low-fidelity design.

Figure 4.3: Screenshot of the fill multiple tanks page, from the second design
iteration of the mobile application.

Figure 4.4: Second and final iteration of the website transaction page and navbar.

In the second iteration of the application designs, our objective was to develop
high-fidelity prototypes that could be used for effective user testing. The navig-
ation system of the mobile application was changed to suit a fast-paced logistics
setting. We integrated the ability to accommodate multiple tabs and multitask-
ing. By enabling operators to multitask, their workflow can be greatly enhanced

40 Group 202: Cryogenetics Logistics Solution

for certain tasks. This feature aims to provide flexibility and efficiency to the app,
without making it harder to use. We also added a menu to the tank page, where op-
erators can perform various actions on a tank. Additionally, we reworked the look
and feel of the application, adopting a contemporary and minimalistic design. We
decided to keep the web application strictly functional, due to the limited usage
area of the application. The web application got more features, to better manage
the administrator role of the mobile application. This included management of cli-
ents, tank models, lab locations, and a finalized layout of the printable container
labels.

Figure 4.5: Screenshot of the fill multiple tanks page, from the third design iter-
ation of the mobile application.

In the third and final design iteration [14], we aimed to enhance the User
Interface (UI) by integrating minor additional features and altering certain ele-
ments to improve usability and ease of use. Through user testing, we observed
that certain users encountered difficulties when carrying out specific tasks within
the tank menu, and that the act layout appeared awkward when exceeding the
menu’s height. To alleviate these issues, we reconfigured the menu from a ver-
tical to a horizontal layout, while retaining the 2 layered menu design. This was
received positively by the users in the previous iteration. We also made the menu
option´s text more visible, instead of only showing the icons of the menu options
when a choice has been made.

4.2 Icons

An important aspect of GUI development is readability. "Information is represen-
ted by icons semasiographically. They convey semantic information in a nonverbal

Chapter 4: Graphical Design 41

manner and do not rely on a set of clear rules to convey meaning, as do written
words" [15]. The intent behind adding icons to our applications was to improve
the readability and accessibility of applications. Being able to see an icon and
immediately know what the buttons do improves the efficiency of both the ad-
ministrators’ and the operators’ work.

N2
Figure 4.6: An example selection of icons from the applications. From left to
right, nitrogen tank icon, maintenance icon, swap user icon and camera icon.

Figure 4.6 shows a few of the over 25 icons we made for the applications. The
reason for making all of these icons instead of finding them on the internet was
copyright. Although there exists free icons available for commercial use, we de-
cided that we wanted to avoid any potential copyright problems by simply making
them ourselves. Each icon has been made using vector lines such that they could
be exported in any resolution without losing quality. We have made all of these
icons available to our client as some of the icons we made were not used in the
final product.

4.3 Color choice

When developing an application an important accessibility factor is the choice of
colors[16]. Before picking colors for the program, we researched common forms
of Color Vision Deficiency (CVD) and found that "Protanopia and deuteranopia,
the two most common forms of inherited color blindness, are red-green color vis-
ion defects caused by the absence of red or green retinal photoreceptors"[17].
With this in mind, we ensured that any green and red color we chose had to be
significantly different. To do this we performed tests using a color-blindness visu-
alizer. The final colors of our application, tested on every kind of available CVD
are visualized in Figure 4.7. Though some of the text is difficult to read if you are
suffering specific kinds of CVD, we hope that context together with the icons will
counteract this problem.

42 Group 202: Cryogenetics Logistics Solution

Figure 4.7: Tests performed for CVD

4.4 Admin website - UI

Since the web application is only used by administrators we decided that it should
be kept clean. This was so that we could maximize the amount of information
displayed without adding unnecessary noise to distract the user. Figure 4.8 shows
how the main page of the web application looks. We wanted to ensure that the dif-
ferent function tabs on the top did not blend into the background. For this reason,
we decided to add color to it. Our goal was for it to fit the theme of Cryogenetics
while also being a suitable color that wouldn’t demand too much attention. Luck-

Chapter 4: Graphical Design 43

ily, Cryogenetics’ own blue color, which they use on their website [1], fits these
criteria [18]. We also decided to utilize an F-shaped layout to ensure the readab-
ility of the website [19].

The website is divided into two major sections: The Navigation bar and the main
content screen. The buttons on the navigational bar give the user access to the
website, as well as indicate what page the user is on at a quick glance. The nav-
igational bar always stays on top of the screen, except when the user is logged
out. The main content screen varies based on the currently selected URL. On 4.8
we see an example of the User screen, containing a table and additional action
buttons. This is standard for all the components showing data from the database.

Figure 4.8: Screenshot of the layout on the website.

4.5 Mobile application - UI

Since the intent behind the mobile application is to be used in all of Cryogenetics
warehouses, we wanted to ensure that all important functions were visible and
easy to both access and use. Additionally, due to the small size of the tablet we
wanted to avoid cluttering the screen too much. For this reason, we have allocated
clear boundaries for functionalities and information to avoid blending. We also
wanted to ensure that the application was accessible to all our client’s operators.
For this reason, we carefully picked and arranged colors to ensure even colorblind
operators would be able to use it without confusion. In addition to this, we also
ensured that most primary functions were labeled with both an icon and a text
name.

44 Group 202: Cryogenetics Logistics Solution

Figure 4.9: Figma design of the tank page, maintenance menu options.

The layout chosen for the mobile application is optimized for tablets in land-
scape orientation. By designing the user interface for this layout, we can fit more
information on the screen without compromising usability. The user interface is
strictly optimized for the client and their needs, to keep better track of their liquid
nitrogen tanks. We decided that adding multitasking capabilities for the tablet
would be beneficial for warehouse operators. The addition of multitasking allows
users the ability to utilize the application in ways that are hard to consider and
facilitate by introducing other features. Multitasking was introduced by creating
a tabbed interface, like in a web browser. This will allow users to create different
tabs of content, which they can utilize in various ways to improve productivity.

The mobile application consists of five main pages which we will refer to as
dashboard, tank, multiple tank filling, act log and inventory. The menu on the left
side (blue) is used to navigate to the pages, each page has different features to
facilitate the client’s needs. The Dashboard is an informative page that consists
of a small version of the act log and inventory tables. The Tank page displays the
information of the tank chosen by scanning QR-Code or searching (green), the
values of the tank are below (yellow). The menu (brown) is a layered menu with
a total of 8 menu options divided into two categories, "Transaction" and "Mainten-
ance". The sub-options of the "Transaction" category can be found in figure 4.10,
sub-options of "Maintenance" can be found in figure 4.9. The sub-options reveals
a layout of user input fields (pink) in between the menu and the small version of
the act log below (teal).

Chapter 4: Graphical Design 45

Figure 4.10: Figma design of the tank page when performing send to client ac-
tion.

A central part of our logistics solution is the act log and inventory table, both
tables also have a smaller version which is used on the dashboard, tank, and tank
filling page. We tried to make the tables more modern by removing the border
surrounding the table, making it blend more into the background of the page.
The "Filter" button on the top left will open a pop-up window to filter the table
displayed, the data can also be searched in the top right corner. To sort the table
by different values the box containing the name of the column can be pressed, if it
is pressed twice the order will be reversed. The Tank filling (figure 4.5) page can
perform multiple refill actions simultaneously and will be used for weekly refilling
of the liquid nitrogen tanks. The act Log (figure 4.11) page displays the values we
will store when the different actions are performed. The Inventory (figure 4.12)
page displays the values of the tanks currently in use.

46 Group 202: Cryogenetics Logistics Solution

Figure 4.11: Figma design of the act log page.

Figure 4.12: Figma design of the inventory page.

Chapter 5

System Design

In this chapter we will cover the structural design of our product as a whole. As
mentioned in the earlier chapters our product exists of four parts, two frontend
applications, mobile and web, as well as two backend components, the server
application and the database. We will take a look at each primary component and
introduce its functions.

Admin

Operator

Admin
website

Mobile
application

Computer

Tablet

User interface

Online Backend

API
CRUD

Logistics solution

Database

Figure 5.1: Simplified solution architecture

5.1 Frontend

Figure 5.1 provides a rough overview of how the individual components are con-
nected. The product provides two separate ways for a "user" to interact with the

47

48 Group 202: Cryogenetics Logistics Solution

product. We have separated users into two categories, where "admins" use the
web frontend, and "operators" use the mobile frontend.

5.1.1 Web application architecture

The web application is a simple ReactJS website meant for admins to have full
control over the database without having to manually edit it. As the website will
have a high level of access, we decided that it needed to be secure enough to deter
most simple assaults. We will cover how we did this in chapter 9.

By using React and most importantly, React Router, we have been able to make
the website into a Single-Page Application (SPA). This means that the main page
(App.js) always stays loaded on our screen, importing components into itself
to the "change page". In the App.js file, we define all the components that are
available to the user, as long as they are logged in. This ensures that the application
is not accessible without the proper credentials.
The structure we define in this main file is reflected in every "page" we set up in
the future, so we have designed it as follows: First is the Navigation bar (NavBar),
a panel of buttons leading to different pages in the program and the logout button.
Second, is the page the user has selected, with all its content and buttons delivered
to the main page through the returns of those page functions. Last is the copyright
notice, which serves as a demonstration to the client on where they could include
it in the future.

5.1.2 Mobile application architecture

The mobile application has a relatively simple structure. To accommodate for the
multitasking feature, all "pages" had to be made as fragments instead of activities
due to how Android handles memory. This means that the only activity we have is
the initially loaded "MainActivity", which immediately loads a fragment presenting
the login screen. Most other functionalities are contained within other fragments.
The fragments present data dynamically using "recyclerviews". Some significant
components are not bound by this structure. This includes features such as the
API calling functions and all code related to QR scanning. These are generic and
accessible to all fragments.

5.2 Backend

5.2.1 Server API

Due to all database interaction being performed by the server API we decided
that it should be built as robustly and dynamic as possible. A central component
to this is the SQL statement constructors. We built four separate constructors, one
for each of the "GET", "PUT", "DELETE" and "POST" request types. We will go more

Chapter 5: System Design 49

in-depth on how these were made in chapter 7. To simplify further development
we built the API such that all tables can have their data altered using endpoints
that are dynamically created based on a list of table names on the server. This
means that if a developer wants to add another table of data, they only need to
add it to the database and then add it to the list of table names. After this, an
endpoint will be accessible for interaction by the frontend.

Endpoints

At time of delivery our API provides standard interaction for all tables from our
database. List 5.2.1 provides an overview of all standardized endpoints, all are
prefixed by the base URL which Cryogenetics have yet to decide.

• /api/transaction/
• /api/client/
• /api/container/
• /api/handler/
• /api/act/
• /api/container_model/
• /api/container_status/
• /api/employee/
• /api/location/

However, there are some endpoints that don’t utilize the standardized func-
tions. Each of these endpoints have unique functions tied to them that are not
used by the standardized endpoints. These are displayed below in list 5.2.1, with
a short description of their function. Additional information on how each endpoint
works is covered in chapter 7.

• /api/user/login/

◦ Handles the identification of operators using their login-code.

• /api/user/admin/login/

◦ Handles authentication encryption and decryption of an admin’s login
information.

• /api/create/

◦ container/
◦ transactions/
◦ employee/
◦ Endpoints built to fetch data from each table, and data from each of

their respective Foreign Key-tables.

5.2.2 Database

The database is where the whole logistics system stores its information. Due to
the importance of this component, we decided to spend significant time ensuring

50 Group 202: Cryogenetics Logistics Solution

that it was robust and well-structured.

Figure 5.2: A visual representation of the database structure.

Figure 5.2 shows how the different tables of the database are connected through
the use of Foreign Keys. By using Foreign Keys and tables with static information
such as status or client name, we can construct new tables that hold data that
gets updated dynamically when the Foreign Keys data are updated. Two signific-
ant tables are container and transaction. In the container table, we hold all data
related to a single container using its serial number as the primary key. Since we
want to save every alteration of a container done by the mobile frontend, we have
the "transaction" table to handle this. The transaction table holds information on
which container is altered, who did it, and when it was done. Additionally, it stores
what was done and potential comments added by the operator, as the container
is updated. This is the information displayed in the transaction report printable
from the admin application.

Chapter 6

Development process

In this chapter we will cover our development process, including the choice of
development method and meeting schedules. We will also elaborate further on
our use of GitHub as a version control tool.

6.1 Development Model

Due to previous experience with different development frameworks, the process
of deciding on one was not long. Due to the rigidity of standard frameworks like
Rapid Application Development (RAD) or waterfall, we decided that an Agile
framework would better suit our needs [20]. For our bachelor project, we de-
cided to work using the Scrumban agile framework. Scrumban, as the name im-
plies, takes aspects of Scrum and Kanban to create a highly adaptive agile frame-
work[21] benefiting from the advantages of both, with less of the negatives. Addi-
tionally, since we are familiar with Scrumban it is easier for us to effectively utilize
it instead of spending valuable time learning a new framework.

To make our Scrumban board more effective we decided to use GitHubs own
solution called "Github project" [22]. By using GitHubs own issue board instead of
an external solution, we can update the board using Git while referencing specific
issues in our commit messages. We have also added a "workflow" which automat-
ically moves issues to the "done" column when they are closed.

6.1.1 Meetings

Weekly meetings

As mentioned, weekly meetings are held according to the Scrumban framework.
Each Monday and Thursday at 12:00pm a Scrumban meeting is held physically or
over Discord. The Scrumban leader is responsible for incorporating proper Scrum-
ban technique, such as the use of the Github project issue board. Meetings with

51

52 Group 202: Cryogenetics Logistics Solution

Figure 6.1: An example of how our Github project looked during development
with a deadline of the 1st of May

the client are held on Mondays at 15:00 over Teams, if necessary. These are ar-
ranged at least 96 hours prior by the Communication manager and may be moved
to a more suitable time if needed.

Client meetings

To ensure close cooperation with our client we decided to commit to weekly meet-
ings in the startup period of the project. During these meetings, we asked ques-
tions regarding the task to our client’s spokesperson, Steffen Wolla. He would
provide feedback on the planned features to ensure that we had not misinter-
preted the task. When we later moved to bi-weekly meetings, we would perform
small-scale user tests. Here we would receive feedback on whether or not he found
them user-friendly and in line with his idea of the product.

Advisor meetings

We decided early that the most efficient way to utilize our advisor was for him to
assist us with the writing aspect of the thesis. This meant that instead of having
weekly scheduled meetings, we rather contacted our advisor as we approached
significant development milestones. Our advisor requested that if he was to review
anything, it had to be submitted 24 hours ahead of the meeting. This proved
essential, as his feedback was indispensable.

6.2 GANTT chart

As part of our initial project planning, we decided to set up a GANTT chart. Hav-
ing a GANTT chart assists us in maintaining steady work progression while not

Chapter 6: Development process 53

being fully binding. We benefited greatly from this when we decided to alter our
priorities a few weeks in. We will cover this more in-depth in Chapter 10.

ACTIVITY START DURATION END 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Planning 2 4 5

Project plan draft 2 2 3

Project plan review 4 1 4

Project plan deadline 5 1 5

Development start 5 6 10

Physical database 5 2 6

Backend draft 6 3 8

Website draft 7 2 8

First status report 9 1 9

App draft 5 5 9

User testing 8 1 8

User test revision 10 3 12

Website revision 10 2 11

App revision 10 2 11

Backend complete 10 3 12

Thesis start 12 6 17

Thesis outline 12 2 13

Second status report 14 1 14

Thesis draft 14 4 17

Development end 15 2 16

User test final round 14 1 14

Website complete 15 2 16

App complete 15 2 16

Thesis end 18 3 20

Third status report 18 1 18

Thesis review 18 2 19

Thesis complete 20 1 20

WEEK NR.

Figure 6.2: The chart displays our initial progression plan.

6.3 Organization of quality assurance

6.3.1 Documentation and standards

During the development process we put an emphasis on client-friendly develop-
ment practices. Though not a requirement, our client suggested that if our product
provided a solid foundation, then they would consider developing it further to
add more features. For this reason, we used the commenting and documentation
practices of each individual coding language respectively. Additionally, we have
included links to the documentation practices of every language we used, in our
GitHub repository. To further ensure consistency we will be developing and doc-
umenting exclusively in English.

54 Group 202: Cryogenetics Logistics Solution

6.3.2 Standardized workflow

To simplify the workflow of our project, we have decided that all tasks will go
through the same development steps. This ensures that all work is tracked prop-
erly, and follows a clear step-by-step path. A task begins its life cycle as a feature
desired by our client. We will then discuss specifications around how this feature
operates before we break it down into smaller, more manageable tasks. These
tasks are then added to the backlog of our Github project issue board. Our issue
board consists of five sections, “Backlog”, “In progress”, “Deadline [XX.XX.XXXX]”,
“In review” and “Done”.

When a team member starts working on an issue, they will move it into "In
progress" and assign it a size as well as a priority tag. However, since most issues
are designed to be small, and are assigned twice a week during our meetings, it
is likely that the issue will be moved straight from the backlog to the "Deadline"
category. A task in this category is expected to be completed by the updated date in
the category title, see figure 6.1 for an example. When a task has been completed,
it will be moved to "In review," and the team will review the task during the next
Scrumban meeting, to decide if the task has been completed up to the group’s
standards. If yes, the issue is closed and moved to "Done". However, if a task
needs more work, it will be moved back into either "In progress" or "Deadline,"
depending on the priority and size of the task.

Chapter 7

Implementation

In this chapter, we will elaborate on how our product works. We will first dissect
our backend and provide detailed information on how it is structured, as well as
some important functions. We will then do this for each of the frontends and the
database as well.

7.1 Backend

Since our product utilizes two separate frontends, both needing to display ac-
curate and updated information, we decided to link them both up to a unified
backend. The backend handles all database interactions and performs most of
our product’s security functions. We will elaborate further on the security aspects
of our product in chapter 9.

7.1.1 Overview

The backend consists of the files listed in Appendix L.
At the root level there are Golang configuration files responsible for managing
dependencies and storing essential project information. Each folder represents a
package and has files containing source code and tests within. These tests are
described in chapter 8. The main function is located within cmd\server.go and
starts the server. The server routes each endpoint to an appropriate "handler"
function based on the Uniform Resource Locator (URL).

55

56 Group 202: Cryogenetics Logistics Solution

Figure 7.1: Server routing

7.1.2 Endpoints

Each endpoint has a specific function, but they all have something in common.
They read the URL arguments, marshal the URL body, and write back a suitable
response. The contents of this suitable response is calculated by functions defined
in internal packages.

7.1.3 Internal packages

Constants

The "Constants" package defines terms and functions that are unchanging across
each session. These can be changed outside of runtime and dictate things such as
database credentials, database metadata, and endpoint URLs.

Figure 7.2: Constants

Chapter 7: Implementation 57

Request

The "Request" package provides functions for reaching external resources such as
the database. Additionally, it handles common exceptions that might arise from
missing data and SQL errors.

Cryptography

The "Cryptography" package contains functions for encoding, decoding, encrypt-
ing, and decrypting data - in addition to communicating such data to the database
and managing encryption keys.

Figure 7.3: Cryptography outline

Globals

The "Globals" package consists of functions that might be required in any context.
For this reason, functions here are made as pure functions - so that they don’t rely
on any specific external components and can work independently. Data treatment,
parsing, and database string generation happens here. This package is also the
one that is tested the most, as it is responsible for some of the backend’s most
important tasks.

Figure 7.4: Globals outline

7.1.4 External packages

Go standard library

The Golang standard library is plentiful and used all through the backend. It con-
tains functions for handling strings, keeping track of time, marshalling to JSON,

58 Group 202: Cryogenetics Logistics Solution

and much more.

MySQL driver

To handle interactions between Golang and SQL, the "Go-MySQL-Driver" is used.
It is a commonly used open source driver that formats raw SQL data into more
usable Golang data types. It also establishes a connection with the database and
automatically handles interrupted connections.

7.1.5 Modularity and expandability

As previously mentioned, every function handling database string generation is
a pure function located within the "Globals" package. These functions provide
a modular way to create SQL statements without having any prior knowledge
of SQL. Additionally, they provide automatic protection against SQL injections,
which is further explained in chapter 9.

Figure 7.5: The header of the ConvertPutUrlToSql function

Imaged in Figure 7.5, is the header of the ConvertPutURLToSQL function. Tak-
ing in a wide array of parameters, this function generates a SQL statement that
updates the contents of one or more tables in the database. It automatically loc-
ates which table each field originates from, joins the required tables for the op-
eration, and covers edge cases such as missing values. If the optional argument
alterForeignTables is included. It attempts to avoid change to the main table,
instead changing the values of foreign fields whenever possible.
This function is one of four string generation functions. The others generating
SQL queries for getting, posting, and deleting content. To add a new endpoint
that automatically utilizes these functions, the client can simply add the name of
the table they wish to expose to a list in the EndpointHandler function. Addition-
ally, if the client wishes to join more tables when making database requests, they
can simply add the names of the tables in the SetJoinData function.

Chapter 7: Implementation 59

7.1.6 Safety measures

To minimize risk, multiple safety measures are taken advantage of in the backend.
The purpose and logic behind these measures are explained in chapter 9, while
this section only describes their implementation.

Error handling

Every place an error might occur is immediately followed by a check to see if
something went wrong. If everything went as expected, the program continues as
normal. Otherwise, an error is generated and returned with an empty payload.
Meaningful error messages are used to make debugging easier.

Figure 7.6: Examples of error handling

Encoding and encryption

Vulnerable data is encrypted, then encoded before sent. The PKCS1v15 algorithm
is used for the public-key cryptography, while base64 encoding is used to reduce
the size of the encrypted payload. Due to the nature of JSON, special precautions
must be taken when encoding data that is going to be marshalled as such. Certain
symbols, such as the newline symbol, are temporarily replaced with something
that can be marshalled without error. The replaced symbols are put back as they
were when decoded.

60 Group 202: Cryogenetics Logistics Solution

Figure 7.7: The Encode function

Automatic key handling

The management of encryption keys is automatic and never exposed to any other
packages. When a key is requested the Cryptography package first checks if a key
file already exists, reading the key from file if it does, as seen in Figure 7.8.

Figure 7.8: The first part of the FetchPrivateKey function

Otherwise, a new key is generated and stored. The key is generated using the
Rivest-Shamir-Adleman (RSA) algorithm, as seen in Figure 7.9

Chapter 7: Implementation 61

Figure 7.9: The second part of the FetchPrivateKey function

7.1.7 Database

The database consists of SQL code and was made with phpMyAdmin. Details on
the database’s design can be found in chapter 5. This section describes practical
measures that was taken during the implementation of the database.

Location

To reduce the amount of fields in the container table, the following assumption
is made: If container.address is NULL, the location of the container is instead
container.location_id - which means the tank is currently not at a client.

Transaction history integrity

Once an entity has been mentioned in a transaction, it cannot be deleted. This
is done by setting every Foreign Key in the transaction table to RESTRICT mode,
and ensures log integrity.

62 Group 202: Cryogenetics Logistics Solution

Figure 7.10: The ’transaction’ table’s foreign keys, all set to RESTRICT on deletion

Imaged below is the same Foreign Keys, but in the container table. If a client
or location is deleted from the database, the client_id and location_id fields
of container are respectively set to NULL.

Figure 7.11: Some of the ’container’ table’s foreign keys, which are set to SET
NULL on delete

Minor practical measures

• The tables requested_keys and valid_keys are separated to allow for dif-
ferent privileges.
• transaction.employee_id is set to NOT NULL to ensure accountability for

each transaction. This was requested by the client.
• act entries cannot be deleted once referenced, instead, the is_active field

is set to false.

7.2 Mobile application

The mobile application was a large part of the project, which demanded the at-
tention of multiple group members. To facilitate clear and efficient teamwork a
development plan was made, see Appendix J. In this section we will go into further
detail on how the mobile application was implemented.

7.2.1 API Communication

The mobile communication with the API consists of 4 major functions. 2 for GET
calls, and 2 for PUT and POST. To perform a GET request to the backend you first
have to call the fetchJsonData function. This function utilizes the url package

Chapter 7: Implementation 63

to open a connection with a provided URL, then send a request with the provided
method. In this case, we use the URL provided as a parameter to perform a GET
request.

Figure 7.12: Function responsible for fetching data from a given endpoint and
returning the JSON data.

fetchJsonData shown in Figure 7.12, returns a jsonString which the next
function parseJsonArray receives and turns into a List<Map<String, Any>>. A
Map<String, Any> provides the ability to store any type of variable and have it
coupled to an identifying string. Storing this in a list lets us contain multiple, unre-

64 Group 202: Cryogenetics Logistics Solution

lated chunks of data in one place. This is beneficial considering that JSON utilizes
a similar storage format, with a JSON string containing one or multiple objects -
each containing a list of Key Value pairs. To summarize, the data is fetched from
the API, turned into a string, and then reorganized into a list of many pairs of
data. This data can then be displayed by the mobile application.

To PUT or POST, these process has to be done in reverse. For this, we have
generateJson which takes a List<Map<String, Any>> and turns it into a JSON
formatted string. To simplify usage, the generateJson function is called from
within the makeBackendRequestWithResonse function, where the actual request
is performed. This function takes three parameters, an endpoint to contact, the list
of data to send, and which method to perform. By opening a connection the same
way as in fetchJsonData, we then "write" the JSON string to the OutputStreamWriter
which handles sending the data itself. Upon completing the request, we receive
an updated version of the data as well as a response code in case of errors.

7.2.2 Multitasking

We decided that we wanted to create a multitasking layout for the mobile applic-
ation. This decision was made because it gives the users the ability to utilize the
application in ways that are hard to consider and facilitate by introducing other
features. The multitasking feature is implemented using a tabbed interface similar
to how web browsers do it. The addition of multitasking has caused some limita-
tions for the development of the mobile application, the largest limitation being
that we cannot change activity as easily. To mitigate this, we decided to only use
one activity, which is the host for all fragments. The fragments have a host frag-
ment which is the parent of all other fragments, the children are modular pieces of
UI. All fragments are hosted and managed by the parent, this results in a modular
GUI with different layers of layouts.

The illustration in figure 7.13 shows four different fragments inside our GUI,
the host is green, tank is red, camera is blue and mini-act-log is yellow. The host
fragment’s purpose is to control the menu navigation and be a parent for various
child fragments. In this example the tank fragment is a child of the host, tank frag-
ment is also the parent of camera and mini-act-log. By dividing the different lay-
outs into fragments, they can easily be reused, replaced and changed. To achieve
the multitasking GUI we designed, it was strictly necessary to make a modular ap-
plication. By making the application modular we have made the application more
complex, by introducing more files and cross communication between them.

7.2.3 Recycler views

To create different lists of elements, we have utilized Android’s recycler views
to create these lists in a dynamic manner. This allows us to make modular and

Chapter 7: Implementation 65

Figure 7.13: Screenshot of tank page in Android emulator, lines have been added
to illustrate different fragments.]

interactable lists of elements with different elements to serve various purposes.
For example, on the multiple tank filling page we have a list of all tanks which
have been scanned or added by search. This list can be modified by checking
boxes, clicking buttons in the list or by clicking the tool options above the list.
We also utilize recycler views to create inventory and act log tables, the benefit of
using a recycler view instead of Android’s built in table tools here is flexibility of
design choices. This was the best solution we found to create the custom design
which we had planned for. This comes with the benefit of being able to listen for
clicks in the rows of the table, for example to show the complete data in the table
or to navigate to the tank which was pressed.

7.2.4 Layouts and drawables

To make a resizable Android application we utilized constraint layouts, constraint
layout allows us to make complex layouts with various tools like weighted chains.
Constraint layouts are resizable, since they can be constrained to neighboring
views, layouts, the parent or invisible guidelines. When a view is constrained
between other elements, the width and height values can for example be set to
use the “0dp” to utilize the space given or to “wrap-content” to use the minimum
amount of space. To customize some elements to a greater extent we have util-
ized Android shapes to achieve rounded corners and borders on the background
of views and layouts. Utilization of weighted chains is crucial to achieve the de-

66 Group 202: Cryogenetics Logistics Solution

Figure 7.14: Screenshot of tank page in an Android emulator, the manage main-
tenance option has been chosen in the menu.

sired result, for example, in the various tables all the columns of each row are
constrained to their neighbors. By using a weighted chain, the elements of the
chain can have different weight relative to each other, which will result in a dif-
ferent utilization of space.
The layout and drawable files can be found in zip attachment, "Code/Frontend/-
Mobile application/Logistics/app/src/main/res/".

7.2.5 External dependencies

We utilize mostly the stock Android library, which is included in the android soft-
ware development kit. In addition to this, we also utilize dependencies from An-
droidX, Google and Journeyapps. AndroidX is intended to be an improvement
and replacement for the original Android support library, and it contains regu-
lar support functionality for Android applications. An example of the function-
ality offered by AndroidX is the camera functionality we have utilized, which is
imported from the Androidx.camera. Utilizing this framework has allowed us to
create a live preview of the camera view and to analyze each frame. From Jour-
neyapps, we have imported ZXing Android Embedded, which is a library dedicated
to barcode and QR-Code scanning. Utilizing the functionality from AndroidX and
Joruneyapps we have implemented quick and modular QR-Code scanning capab-
ilities to our app. We have also utilized Google’s Android Material library for the

Chapter 7: Implementation 67

theme of the application. This allows us to define more colors for the theme of
the application. For example, we use Cryogentetics blue for the background on
the status bar inside the application, and then we have made the icons like the
wifi symbol white to match.
The full list of dependencies can be found in zip attachment, "Code/Frontend/-
Mobile application/Logistics/build.gradle".

7.3 Web application

The purpose of the web application in this project is to act as an administrative
space. The client requested the domain to be capable of the following:

• Reveal data that is stored on the database.
• Manipulate data.
• Print out QR-Codes linked to specific containers.
• Generate a report to track what locations the containers have been in.
• Authorize mobile devices.

Our previous experience with webapp development came from the PROG2053
course: Web-technologies. Here we learned how to create a webapp using JavaS-
cript and the React library, widely known and used tools in the industry. We de-
cided to use these tools again, as they are well-known and documented, allowing
us to utilize many comprehensive guides on how to use them most efficiently.

We used the React Router feature to make a Single-Page Application (SPA).
This reduced the loading and development time by separating the backend from
the webapp. ReactJS also allows us to utilize Material User-Interface (M-UI), a
component library which simplifies the Cascading Style Sheet (CSS) and Hyper-
Text Markup Language (HTML) aspect of the webapp. These are respectively used
for defining the style and layout of the web application.

We chose to use M-UI due to its vast documentation and popularity, the style
fitting the client’s request, and its flexibility. React uses the Fetch API to send its
HTTP calls. Fetch is built into the ReactJS framework, and provides highly flexible
construction of Representational State Transfer (REST) calls, as long as a URL to
the API is included.

7.3.1 Show data

Retrieving data

When the admin navigates to a page where the data is displayed (e.g. /transac-
tion), we call a GET function to that item type’s URL (e.g server-name/api/transaction).
The JSON data that is inside the response is saved in an array.

68 Group 202: Cryogenetics Logistics Solution

Figure 7.15: The fetchData function is called once when the component is
rendered (indicated by the empty array at the end of the useEffect)

Table structure

The table is designed and provided by M-UI, and includes a table head, table
content and toolbar. The table head is where we define what columns will be dis-
played, through headCells. The ID assigned to the headCells is what binds the
JSON data to the table when the rendering begins, so it is important that they
share the same ID/name (e.g. both the headCell and JSON data name for the
container name field are called container_name). Should the values be renamed
on the database or on the server, these IDs must be renamed as well.

Chapter 7: Implementation 69

Figure 7.16: The EnhancedTableHead returned values

Local sorting

The table head allows users to sort the locally stored data in ascending or descend-
ing order. By clicking on the names of the desired field, the attribute of which to
sort by is saved, and the table is rearranged. When sorted in ascending order,
the smallest number, earliest date or earliest letter of the alphabet will appear at
the top of the list. This is reversed for descending sorting order. The table head
only allows for one value to be set as the sorted value, as sorting multiple values
through this interface was disorienting and confusing.

Figure 7.17: The handler for the Sort functionality

Local searching

We placed the local search feature in the top right corner of the table Toolbar. An
admin can search by entering a query into the text box. When changed, the data
will then be filtered through the filterRows value, where the output is all the
rows that have matching data. The values the data is filtered through are determ-

70 Group 202: Cryogenetics Logistics Solution

ined by the const filterRow.

Figure 7.18: The filterRow const in the Container component

7.3.2 Manipulate data

All types of data manipulation are done in their own "popup", called a Modal. A
Modal is a message box that appears in front of all other content on the screen,
allowing the user to temporarily commit operations without losing their location
on the previous screen. The Modal used in this project are provided by M-UI, as
they are very simple to use. The Modal is rendered when its parent component
is rendered, but remains invisible until it is "opened". By passing a Boolean value
openModal into the Modal component’s "props", we can later reveal the Modal by
changing this value to true.

Figure 7.19: Example of an M-UI Modal object

All Modals are given Props, which is data that the parent component provides
to its child. This works much like arguments do in functions, as it allows us to cus-
tomize the children in our desired way. Props like openModal and handleCloseModal
are used in every Modal in this project. handleCloseModal is the handler for when
the user closes the Modal, either through clicking on the outside of the Modal or
pressing a button that would close it. This handler calls the parent’s onCloseModal
function, which makes another HTTP GET call, refreshing the page with the most

Chapter 7: Implementation 71

recent data. handleCloseModal also "cleans" all the input fields the user can ac-
cess, emptying them for the next time the Modal opens. If a Modal is intended to
use or alter an existing object, the user selected row from the table is also passed
through the props.

Creating an item

If an admin wants to add an item to the database, they click the green "Add item"
button on its respective page. The admin is presented with TextFields and Lists
to fill out the information about the specified item. If said item must contain an
SQL foreign key in the database, then the list shows the name of that foreign key
ID. To accomplish this, we use the Create endpoint of our backend, which gives
the names, IDs, and other values that the foreign keys have (e.g. Client names and
IDs). When we receive that data, we put them into MenuItems, which are shown
in Lists. This is demonstrated in Figure 7.20. When an item in that list is selected,
we store its ID in order to use them when sending the HTTP request.

Figure 7.20: Here the data gathered from another GET call (containerModelOp-
tions) is inserted into the list

When all of the required fields are filled, the admin is allowed to press the
Confirm button. This creates a JSON array containing the data that was input,
before sending it to the server as a POST request.
Should an error occur, the admin will receive an Error popup with the error code.
If the error code is 409, the popup reveals that the identification digit is already
occupied by a different object. This means that the object that was attempted to
be created had the same Primary Key as a different object in the database, causing
an SQL error.

72 Group 202: Cryogenetics Logistics Solution

Figure 7.21: The HTTP structure of an Add Modal

Editing an item

Each row on each table has an edit button ,except for Transaction, as they are not
to be altered to keep accountability on the users and admins. When pressed the
Modal is given the selected rows’ data and inserts them into TextFields and Lists.
The admin can then change any non-primary value of that item. The updated val-
ues are inserted into a JSON array, where the primary field is always the primary
key of the given database table.

Figure 7.22: A Modal with the Edit feature

Chapter 7: Implementation 73

Deleting an item

For an item to be deleted, the item in question must not have been used or re-
gistered on any object or transaction in the database. If this is not the case, it
simply will not be deleted, throwing an SQL error. The Admin receives this warn-
ing in the Modal when the Modal opens. If they press the Delete button in the
Modal, the items’ ID is sent through a DELETE HTTP call, deleting it from the
database.

7.3.3 Print out Tank Labels

In our original design we imagined having a separate page for Quick Response
Code (QR-Code) generation, where the admin will receive a list of the tanks in
their storage. This idea proved to be more complicated than necessary, and in-
stead, we went with the following design. On the Container page, we added an-
other button behind the objects’ Edit button on the table. This button opens a
Modal called PrintModal.js, taking the item data as a prop. The Modal will in-
stantly generate a QR-Code using the qrcode-generator library, and display it to
the admin on a canvas, with the tank ID and model liter capacity underneath it.
The QR-Code contains a singular value, the container serial number, which is uni-
versally unique.
We chose this third-party library as it was the simplest to understand for such a

Figure 7.23: Example of the generated Label

complex task, more so than its alternatives. When the admin confirms that this
is the correct QR-Code, they can press the generate function. This downloads the

74 Group 202: Cryogenetics Logistics Solution

canvas with its QR-Code and text as a Portable Network Graphics (PNG) file that
they can print out on a sticky surface and attach to a tank.

7.3.4 Generate a monthly report

Our client requested the ability to generate monthly reports that track the loca-
tions and movement of their tanks in the selected time frame. This feature would
allow them to more easily create invoices for their clients, as they would see ex-
actly which tanks are in their storage, and which ones are shipped out to other
places. Our solution accomplishes this by retrieving all the recorded transactions
from the selected month and filtering out those that have no client attached to
them. This is important, since if no client is attached to the tank, then there is
nobody to direct the invoice to in that time period. The remaining transactions
are sorted by tank and date before we begin assembling the Comma Separated
Values (CSV) file. We chose to use a CSV file as the output of this functionality, as
they are simple to create and easy to port over to other programs like Microsoft
Excel, which is what the client has been using to keep track of their containers
movement so far.

Figure 7.24: The process of creating the CSV file

For each client we retrieve, we create a "section" of transactions that only in-
cludes that client. In this section, we track the movement of the containers based
on the act in the transaction, as only the acts "Returned" and "Sent Out" correlate
with a change in location in the transaction. Any container that does not have one
of these two acts, is counted as being stationary for the duration of that month and
receives a single row with the location being the last transaction’s location name.
When a location has the act "Sent Out", the location field changes from the current
location name to "Sent Out", meaning that the container is at a client. This is vice
versa when the act is "Returned". In order to register the "end date", we needed to

Chapter 7: Implementation 75

catalog when the next mention of the "Sent out", "Returned" or "Discarded" acts,
and write their date as the end date. This means that the action ended on the date
when the location was changed again, or the container was discarded.

Figure 7.25: The client row displays only the name of the client, the csvData
scrolls through all the transactions and returns the correct format

This functionality works with the expectation that each container (that is con-
nected to a client) in the storage of Cryogenetics has at least one transaction re-
gistered in the span of the month. Should the container stay "Idle" for the whole
month, then we assume it is not being used.

7.3.5 Authentication keys

When loading the devices.js component, the API is called with the admin/verification
URL to GET all the values stored in the requested_keys table. These values are
stored in an array and displayed on a toggle-able list, made using the M-UI List
components. Each item fetched from the API is placed in a list item, along with
a checkbox that acts as a button. We used check-boxes to allow the admin to se-
lect multiple keys at the same time, should they so desire. All items that have an
active checkbox are stored in an array, which is sent in an HTTP POST request
to the API. When the request has been completed, the list is refreshed with the
remaining keys from the API.

76 Group 202: Cryogenetics Logistics Solution

Figure 7.26: List of key names with example data

Chapter 8

Testing

In the testing chapter, we will look at the different testing methods we have ap-
plied during this project. This includes both in-person tests and unit tests for the
backend functions.

8.1 User testing

8.1.1 Plan for Inspections and Testing

We have been granted permission to conduct testing with some staff members
from Cryogenetics. This was a great help for our user tests, as the employees are
our main target for users in the finished product (Adults ranging between the ages
of 25- to 60). We conducted these tests on both our low-fidelity mobile application
model as well as our first mobile- and web-application draft. With the data we
received from the tests, we can add, remove or alter functionality to better serve
our client’s needs.

User testing the design and creating multiple iterations are essential steps to
user-centered design, therefore we have created three design prototypes and con-
ducted user testing with eight participants. Five of the participants were Cryo-
genetics employees, who will be using the application if implemented. The parti-
cipants’ ages ranged from young adults to middle-aged adults, with varying levels
of digital proficiency. To obtain comprehensive data, physical user testing sessions
were conducted for all participants except for one, who was tested digitally due
to geographical location.

8.1.2 Testing at Cryogenetics

The 17th of February we visited Cryogenetics in Hamar to user test 4 of their
employees. In preparation for this user testing session, we made an intractable
prototype of the mobile app. To give the most authentic user experience, we util-
ized an older tablet to run the prototype in Figma and then gave the participants
the tablet. We then asked the participants to explore the prototype on their own,

77

78 Group 202: Cryogenetics Logistics Solution

before we gave them tasks and asked questions. The data gathered was useful and
can be found in Appendix I, but we were hoping for more new ideas and ways to
improve the program.

8.1.3 Additional user testing in Trondheim

To gather more data, we performed user tests on our advisor, a Cryogenetics em-
ployee in Trondheim and two fellow students. To user test the employee in Trond-
heim, we chose to send the prototype and ask the employee to open it on their
computer and share their screen with us. The other participants were tested phys-
ically with the prototype on a computer. Both testing procedures were successful
and gave valuable insight. The employees were more concerned with functional-
ity, while the others were more focused on design.

8.1.4 Feedback from User Testing

• Most participants praised the design and color choices, which proved to be
satisfactory.
• Cryogenetics employees were thrilled to see a personalized app, which in-

cluded custom icons and features the company’s colors and logo.
• The inclusion of comments when performing actions proved to be a signi-

ficant feature, as it allows supplementary information to be provided.
• Users found the app easy to navigate, and the interface was user-friendly

and intuitive.
• All preconfigured acts were useful, including manual acts which gave the

option to make more complex changes.
• The participants had no suggestions for actions to add as a preconfigured

option in the menu on the tank page.
• The possibility of adding clients, operators, and tank models proved to be

necessary, adding actions and statuses was only nice to have.
• The participants appreciated the effort we had made to display the right

information at the right time.
• The addition of multitasking proved to be a valuable feature some operators

found useful.
• The menu on the tank page left dead space and was not informative.
• Participants indicated that the serial number is rarely used, and should only

be displayed on the tank page.
• One user complained that black text on a red button was hard to read.
• Users expressed the need for an additional value for tanks, which would

express the rate liquid nitrogen evaporates.
• It could be beneficial to add more features to separate operations from dif-

ferent laboratories.
• Production date for each tank could be beneficial, as tanks get worn out

with time.

Chapter 8: Testing 79

• Features to display and change the time format could be beneficial for in-
ternational use in Cryogenetics.
• While we got some praise from participants for the battery indicator, which

predicts the level of liquid nitrogen in the tanks, some said it was not strictly
necessary, others said it would be nice to have several places.
• We got a suggestion to add a preview of the act before it is confirmed, which

would make the app more transparent for the operators.

8.1.5 Actions taken after user testing

• The menu on the tank page was redesigned to be more informative and to
utilize the space more efficiently.
• An option to change the “Cryo dissipation rate” was added to the design to

express the rate of liquid nitrogen evaporation.
• Production date was added to the web application to manage worn-out

tanks.
• Buttons with red backgrounds were changed to a lighter red.
• An option to press a row in a table to display the information in a pop-up

was added, which allows users to see information that cannot fit in the table
layout.
• A preview of the act is now provided before it is confirmed, which gives the

operators the opportunity to preview the change before it is made.

8.1.6 User testing conclusion

The product was deemed successful after user testing, according to the client’s
employees, all necessary features were included. Multitasking, comments when
performing actions and various other features mentioned above proved to be de-
sirable or necessary. The design and color choices were adequate, and the GUIs
were user-friendly and intuitive.

8.2 Backend tests

8.2.1 Method

We chose unit testing to be our main method of testing the backend. The main
workload of the backend is done by a few pure functions located within the
Globals package. Testing these functions with a broad array of different subtests
was prioritized over integration tests and End-to-End (E2E) tests. Integration tests
are useful for finding errors that might arise when different components interact
with each other. The backend does not have much interaction between different
components, instead, it has a flat - but modular - layout. The exact architecture of
the backend is described in chapter 6. E2E tests are helpful in verifying that the
entire system works from the end user’s perspective, but are time-consuming to

80 Group 202: Cryogenetics Logistics Solution

make. Focus was instead put into making sure the core functions worked exactly
as intended, regardless of the parameters given. This way the client may choose
to continue with an incremental test approach, building more complex tests on
the solid foundation of tests we made.

8.2.2 Code

Before testing could begin the functions had to be made entirely pure. Since
Golang’s map data type is fundamentally unordered, special measures have been
taken to order it so that no factors are unaccounted for. First, an alphabetically
sorted list of the map’s keys was made.

Figure 8.1: Alphabetically sorting a map’s keys

This sorted list is then iterated rather than the map itself, and the value of that
key is fetched for each iteration.

Figure 8.2: Iterating a sorted map

To mock HTTP requests, the httptest package from Golang’s standard library
was used. This package provides methods for constructing fake requests as if they
were made by an external actor.

Figure 8.3: Mocking an HTTP request

A testing environment was created for each function tested, allowing for rapid
development of new subtests. These subtests require a name, input, and expected
output. The expected output includes any error which may arise.

Chapter 8: Testing 81

Figure 8.4: Two subtests for the function ’ConvertPostURLToSql’

8.2.3 Results

Most edge cases are covered by three or four tests per function, as well as one test
testing the way the function is normally used. In total there are 13 tests divided
among four functions, resulting in a 91.3% test coverage of all global functions.
See Appendix K for the complete test coverage report of the "Globals" package.

82 Group 202: Cryogenetics Logistics Solution

Figure 8.5: All tests executing properly

Chapter 9

Security

Since our product will be handling information our client has deemed sensitive,
we decided to prioritize security. Our security is mainly focused on two areas,
authorization and identification. This chapter goes into detail about the decisions
and measures we have taken in order to secure our client’s assets.

9.1 Initial risk analysis

Before starting our project we performed an initial risk analysis. This analysis was
performed based on preconceptions and predictions we had for the future of our
product, before starting development.

• Overestimated development speed:
As a group we overestimated our own skill and development speed, causing
us to fall behind on the development plan.
• Late and sudden changes in desired product or client wishes:

The client realizes late into development that there had been significant
miscommunication leading us to develop a product that doesn’t suit their
needs.
• Loss of documentation or source code:

Somehow all code or documentation is lost or becomes inaccessible for a
longer period of time, causing a halt in development.
• Leaked customer data:

An insufficient security protocol causes client data to be accessible to any-
one.
• Loss of group members:

A group member becomes inaccessible or decides that they do not wish to
work together, causing them to leave the group.
• Conflicts within the group:

A tear in the group causes work to slow down or grind to a halt.
• Lack of competence:

Insufficient competence leads to an unfinished or inferior product.

83

84 Group 202: Cryogenetics Logistics Solution

• Server crash:
Temporarily stored data gets erased or server access is lost.
• Local data is lost:

Local progress is lost causing a setback to previous Git commit.

Probability

Low Medium High

Impact Low 5, 6 9

Medium 1, 4 7

High 2, 3 8

Table 9.1: Risk analysis, Red: Dangerous, Has to be handled, Impact, Yellow:
Medium priority, should be handled or Impact, Green: Unimportant or not dan-
gerous

9.2 Mobile security

9.2.1 Framework

Rich Internet mobile apps are deployed on the client device but they
leverage the backend support infrastructure extensively using com-
munications technologies [23]

When creating the mobile application we decided on making it a Rich Internet
Mobile App. The option of creating it as a Browser Based Mobile App using React
Native was considered. This would have the benefit of being cross-platform and
utilizing the same programming language as the admin web page. However, it
quickly became clear that there was no necessity for cross-platform, as our client
preferred Android over alternatives such as iOS. Mainly due to the cost difference,
but also due to security concerns.
IOS has a multi-tasking feature known as backgrounding. "In iOS backgrounding,
iOS takes a screenshot of the application before minimizing it to run in the back-
ground" [23]. This could lead to potential vulnerabilities in the application and
be a threat to confidentiality.
There are additional security issues that come with creating a browser-based mo-
bile app. "Browser-based mobile applications are relatively more susceptible to
traditional web vulnerabilities in addition to threats that come with mobile use
cases and device weaknesses" [23]. For these reasons, we ended up scrapping
the idea of a browser-based app, because although it would have been simpler, it
would also be less secure.

Chapter 9: Security 85

9.2.2 Challenges

When creating mobile applications there are multiple factors to keep in mind
which are easily avoidable on desktop devices. For example, data storage is not as
secure. This is in part due to the mobile nature of the mobile device, but also be-
cause mobile databases are not as mature yet as their counterpart desktop ones.
In the words of Paul Mano (2013), "Local databases on most mobile operating
systems are not as mature as their desktop counterparts when it comes to the con-
fidentiality assurance capabilities such as encryption" [23]. To mitigate the risk of
an employee losing a device containing sensitive information, or a fundamental
security flaw leading to such information being leaked, we decided to not keep
sensitive information stored on the mobile application.

Another factor we considered when creating the mobile application was that of
encryption. "Lack of end-to-end encryption and data-in-motion cryptographic pro-
tection between the mobile device and the carrier network or between one device
and another can lead to sniffing and tapping attacks, which have been known to
lead to information disclosure from mobile applications" [23]. To ensure integrity
in the verification process, the devices’ identifying information is encrypted be-
fore it is sent to the backend, in addition to being communicated with Hypertext
Transfer Protocol Secure (HTTPS).

Using a debugger or disassembler, a malicious actor can easily recover hardcoded
strings from the mobile application [23]. For this reason, the application is de-
signed in such a way that even if the original source code is retrieved, it poses no
threat. This security practice is known as open design, which is the opposite of
security by obscurity.

9.2.3 Device attestation

The first time a device starts the app, a unique number is generated and stored
in the device’s app preferences, which is inaccessible from other apps. Each time
the device opens the app it sends an encrypted version of this number to the
backend, which then decrypts it and checks if it has been verified before. If it has
not been verified the key is added to a list, which an admin on the website can
verify at their earliest convenience. The exact details of how the key is encrypted
and decrypted is described in section 7.1.3. This is a form of ownership-based
authentication which does not add any accountability.

9.2.4 Employee codes

When an admin adds an employee, they decide on their personal code. This code
is used as a form of knowledge-based identification. The code is only three to
four digits long, which means it is not secure enough for proper authentication.
It is simply in place to increase accountability and does not prevent a malicious

86 Group 202: Cryogenetics Logistics Solution

employee from posing a threat to the system. It does however work as both a
deterrent and detective control to accidents which are prone to happen as a result
of carelessness.

9.3 Admin security

9.3.1 Two-factor identification

Our wish was to implement Microsoft Multifactor Authentication (MFA), where
admins could log into the website using their work-related email. MFA introduces
more layers of security past just using an email and password. Our plan was to
utilize the Microsoft Authenticator app, which would make users provide a finger-
print and personal code in order to identify and authenticate themselves. Should
this solution be implemented in future versions, the risk of outsider attacks would
be nullified, as only trusted individuals would gain access. Unfortunately we re-
ceived complications surrounding the access to our client’s Azure network, which
is where these features need to be implemented. These complications have resor-
ted in us postponing MFA in the finished prototype.

In place of this feature, as a temporary security measure, we added a simple
login page where the admin has to log in with an email and password registered
into the database. There is no way to register another email/change password
on the website. Before the login request is sent, the password is encrypted with
SHA265 hashing. This type of hashing cannot be "decoded", and brute-forcing the
password has astronomically low odds of succeeding.

Our server receives the password and email, and checks if the email exists in
the database. If it does not, the user must submit another email to proceed. If the
email exists, the server hashes the password connected to the email with SHA265,
and checks if the hashed passwords are the same. Should they match, then the
password is correct, and the user is granted access to the website. This serves as
a layer of authentication, making it more difficult for a malicious actor to gain
Authorization to the system and reducing risk.

9.3.2 Authentication keys

As described in subsection 9.2.3, new mobile devices are given a code that iden-
tifies them. That code is sent to the database as a "requested key". The device
cannot access the application until this key is registered in the "valid keys" by an
administrator. The administrator gets a list of the devices that want to access the
application and can accept them, or leave them be.

Chapter 10

Reflection

In the final chapter of our thesis we will be reviewing our project retrospectively.
We will discuss what is good and what could be better. Finally, we will discuss
potential future improvements.

10.1 Product analysis

Our final product has been completed according to the primary requirements we
defined at the beginning of this project. In collaboration with the client, we care-
fully developed two graphical user interfaces tailored to their administrators’ and
warehouse operators’ needs. The product is an inventory control system that can
help the client keep better track of their liquid nitrogen tanks.

10.1.1 GUI

Initially, this project was not graphically demanding, but we decided to spend
significant time planning the graphical design. The reason behind this was to es-
tablish the necessary functionality and develop a user-friendly solution for the
client’s needs. We started the process by making a low-fidelity model which we
could pitch to our client, then we made higher-fidelity models to further develop
the design. After the initial design and pitch, we continued updating the models
to better reflect the desired product. By over-engineering the models of the ap-
plications, we may have spent more time than necessary on the design process.
The time schedule was also affected by the client’s desired date to perform user
testing at Cryogenetics in Hamar. However, the lost time was made up by having
an accurate model we could discuss with our client during progression meetings.
A visual representation of the desired outcome would prove itself to be a great as-
set for the group as it aligned our goals, helping us work together in an effective
manner.

Our mobile application was built around the multi-tasking feature. However,
from a graphical design standpoint, this feature is questionable. Although it serves

87

88 Group 202: Cryogenetics Logistics Solution

a practical purpose in case there is high workload and an operator needs to do
multiple tasks at once. However, it can be seen as an unnecessary complication
and as visual clutter. Had it not been for our client liking the feature, we could
have considered not including it to simplify the mobile application. Other than
that the mobile application conveys information effectively, considering the small
format of the screen. Overall, the design, color choice and layout supports its func-
tions effectively.

The web application’s simple visuals are both its greatest strength and weak-
ness. The application is only intended for infrequent operations, such as adding
new employees, clients, tanks or mobile devices. For this reason, the priority is
to effectively convey functions and make these processes as quick and easy as
possible. However, this results in an uninteresting design. There is a lot of dead-
room on the website that could be filled, either using notifications or by displaying
important notifications. This would, however, go past the scope of what this ap-
plication’s intent is. In the end, keeping it simple and effective has taken priority
over making it visually intriguing.

10.1.2 Backend

Choice of programming language

During the planning phase we considered using Node.js instead of Golang. This
would have the benefit of using the same programming language as the fron-
tend website, making development faster as functions could have been reused.
Node.js is also great for building performance-friendly websites with heavy visu-
als. However, due to the simplistic design of the website this was not necessary.
Additionally, Golang is a compiled language while Node.js is interpreted. This
makes Golang’s performance slightly better than Node.js’ when doing data-heavy
calculations, which lead to it being chosen instead of Node.js.

JoinData

The joinData function was implemented in order to allow for easy change of
"joins" between tables, the exact details of how this is achieved is described in sub-
section 7.1.5. However, this also means that every time the database is updated,
the joinData section must be changed as well. This makes altering the database
more troublesome than it should be, and is in retrospect something we should
have done differently. For example, we could have used SQL’s "views". This is a
feature which allows for the creation of virtual tables which remain inactive un-
til invoked with a given input. This could have removed the need to change the
backend when updating the database.

Chapter 10: Reflection 89

10.1.3 Database

Choice of database

During the planning phase noSQL alternatives such as mongoDB and firebase were
considered. These would have been simpler to design, completely removing the
need for conceptual modeling and greatly reducing the amount of work required
to create and update the database. However, we decided to use SQL as it is more
structured and vertically scalable. In retrospect, this was the right choice as it
leaves the client with a product which is easier to expand on.

Normalization

When normalizing the database there were several challenges. Many columns are
weakly connected and have to be separate even though they are directly depend-
ent most of the time. This has lead to some recurring columns in separate tables.
Additionally, some tables had to be un-normalized to allow for separate permis-
sions. The end result was a very mixed database, with some normalized parts and
some that were not. As with joinData, we should have taken better use of SQL’s
view feature to reduce the amount of clutter.

Wide vs narrow tables

To reduce the amount of database joins, we decided on making wide tables rather
than narrow tables. In retrospect, some tables should have been made more nar-
row by dividing them into multiple sub-tables. For example, container and transaction
contains almost half of all columns. This leads to worse performance when query-
ing, but reduces the total amount of data stored. For our project a more narrow
approach would be better suited.

10.1.4 Web application

We are satisfied with how the admin application have turned out. Especially the
color scheme, functionality, and general layout. However, there are a few parts
of our program that we would like to change to boost code accessibility and im-
prove the overall structure. The first and biggest issue is the presence of database
value names in the code. As described in chapter 7 Implementation, should a value
change its name on the database, it would need to be renamed across the entire
website code base as well. This could be fixed by utilizing the data structures of
the desired objects more efficiently, generating the tables and Modal based on the
names and values by passing them throughout the program as props, instead of
the hard-coded way it stands now.

As described in chapter 9 Security, we wanted to implement Microsoft Azure
Multifactor Authentication (MFA) as the primary authorization method. Complic-

90 Group 202: Cryogenetics Logistics Solution

ations regarding access to Microsoft Azure delayed this plan to the point of re-
placement. The structure is in place to implement this feature, to hopefully ease
the method for our client, but we are disappointed by the missed opportunity to
work with this technology. The team is satisfied with the resulting website and
has learned a lot from the improvements we wish to make.

10.1.5 Mobile application

The structuring of the mobile application had one major constraint during devel-
opment, the multitasking feature. A feature we proposed to our client was the
ability to swap between "tabs" inside the app, like in a web browser. Since we
got positive feedback for this feature, we decided to implement the tabbed in-
terface which we had designed. To make a multitasking interface in Android we
utilized fragments and various other methods to divide the application into mod-
ular pieces. This helped us minimize the files and lines of code required for the
desired solution while creating a responsive and detailed GUI. We were able to
implement all strictly necessary features and make the application functional.

To achieve a seamless multitasking user experience we choose to utilize frag-
ments, which allowed us to seamlessly switch between different pages without
loading. The alternative to using multiple fragments to achieve this layout would
be to use Androids Jetpack Compose with an activity. Jetpack Compose would
introduce a sharp learning curve to the project since we do not have much exper-
ience using it to create GUI. Compose would also allow us to generate the GUI
using Kotlin instead of XML, and therefore allow us to create more intricate code.
We tried out a couple of samples from the official Jetpack Compose samples, and
we were not impressed by the performance of the applications we tried. Multiple
people would also have to learn the new technology to contribute to the app.
Based on the arguments mentioned, we came to the conclusion that utilizing Jet-
pack Compose was not the right choice for this project. We decided it was best to
stick with eXtensible Markup Language (XML) since it would allow us to achieve
more progress quickly. We were also quite familiar with XML, as it is the standard
for Android UI before Jetpack Compose was introduced.

10.1.6 Project schedule changes

Figure 6.2 shows our initial plan in the form of a GANTT chart. We followed this
while maintaining steady progress for the first 6 weeks. However, after a meet-
ing with our advisor we decided to complete the requirement specification part
of the final thesis early. Since the requirement specifications cover the goals for
our project, writing this early let us measure our progress not only in time but
also milestones that we set in the text. Since this had not been included in our
initial time estimates for the project, it ended up causing a delay for all ongoing
work. We included a chart to show how much time we spent across the project

Chapter 10: Reflection 91

where we can see the increased workload as the project progressed M. To ensure
that we could meet future goals without causing large delays, we revisited the
GANTT chart. Figure 10.1 shows how we updated the GANTT to compensate for
the delays.

ACTIVITY START DURATION END 10 11 12 13 14 15 16 17 18 19 20

User test revision 10 3 12

Website revision 10 2 11

App revision 10 2 11

Backend complete 10 3 12

Thesis start 12 6 17

Thesis outline 12 2 13

Second status report 14 1 14

Thesis draft 14 4 17

Development end 15 2 16

User test final round 14 1 14

Website complete 15 2 16

App complete 15 2 16

Thesis end 18 3 20

Third status report 18 1 18

Thesis review 18 2 19

Thesis complete 20 1 20

WEEK NR.

Figure 10.1: The revised GANTT chart for the affected weeks, changes are
marked in red

Another unforeseen delay arose around the same time. To access Microsoft
Azure we needed to be given access by the client. The request for access began
almost as soon as we started work, but there were potential security risks in giving
us access to their own server instance. The process of gaining access took time
and had to go through multiple confirmation steps within Cryogenetics. Around
March we should have been granted access, but when we tested it there were still
problems. In the end we found that there had simply been a delay before we were
granted full access. With the problem solved, we managed to host a version of
our product on an enclosed Azure instance. This was a relief as it made handing
over the product to our client easier, allowing us to deploy it for them on their
Microsoft Azure instance.

The final delaying factor was the other subject we had this semester, IØ-2000.
Before the final semester started we asked around trying to gauge the workload
required for this subject. However, it seemed that no one was quite sure. In the
end, we were under the impression that the subject was largely practical and
would not demand too much time outside of the allocated classes. Though as

92 Group 202: Cryogenetics Logistics Solution

we would find out, that was not the case. The subject involved three separate
assignments which demanded significant time, causing minor delays throughout
the semester. We understand that this is a delay that most groups likely suffered,
but as it was an outside factor of our initial time estimates, we found it necessary
to bring up.

10.2 Project results

10.2.1 Group results

At the beginning of this project, we set primary roles and responsibilities for each
of the group members. In our initial plan, we intended for these roles to help guide
progress and ensure that we always had a "leader" for each product component.
This turned out to be a successful arrangement that was helpful during develop-
ment. Since we had also agreed on a time of day where all members had to be
available, there was never an issue reaching a "leader" in the case of development-
related questions. This meant that we had effectively consolidated knowledge of
each major component into a group member each. In addition to this, we also
worked across components. Thus, if a component ended up behind schedule we
could delegate more group members to help. The ability to perform these swaps
was primarily due to our choice of development method 6. With an Agile develop-
ment method we had significantly more flexibility than we otherwise would have.
In the end, we cooperated well as a group. If someone was struggling, we would
help, and if someone was slacking, we were not afraid to give them a warning.
This helped us keep a balance in the group which kept everyone motivated to
finish this thesis together.

10.2.2 Client reception

During this project, we have maintained steady communication with our client
through bi-weekly meetings. During these meetings, we have received feedback on
each feature we developed during the project. This ensured that we never strayed
off the course our of our client’s brief. Thus, when the time came to deliver the
product, we gave them a short demo of all the features and agreed upon a date
to deploy the product on their servers. The only issue was our lack of time. As
the project was approaching the end, we could not spare the time to deploy it for
them locally as it would demand a whole day, travel included. Considering that
we managed to host a version on a separate Microsoft Azure instance they had
access to, we decided to instead perform the exchange digitally on the 1st of June.
This way we will be in much less of a rush and can go through the features and
product structure at a slower pace.

Chapter 10: Reflection 93

10.2.3 Future potential

Our program shows significant potential for future development. Even though it
is functional in its current form, it still requires some polishing. As mentioned,
security is the main issue. Though we implemented significant measures to stop
potential malicious actors, there is still room for improvement. An example of an
additional security feature would be linking the application up to Microsoft such
that a Microsoft account can be used to log in to the admin website. This would
decrease the amount of sensitive data that has to be sent through our own API
while utilizing Microsoft’s own security. Another feature that would improve our
product is the implementation of automatic database backups. Though not a large
feature, it would provide increased availability of their data in the case of an error
on Microsoft’s side. Finally, as mentioned earlier in Chapter 5, we have built the
server and database with high modularity in mind. This will simplify expansion
for our client if they wish to store additional data in our product.

10.3 Conclusion

During the duration of this thesis project we have learned a lot about working as
a group, working with a client, and setting realistic expectations. We managed to
build a product to our client’s specifications. We cooperated, managed our time,
and also completed this thesis. Although our product is finished, it is not perfect.
As a high quality MVP it is great. However, it still needs more work before it
can compete with the industry standard with regard to security and efficiency.
Through our weekly meetings and unexpected delays, we have learned a lesson
in time management. Overall, we consider this bachelor thesis to be a success. Our
client has received a product that we are proud of, and we have gained invaluable
experience.

Bibliography and External
sources

[1] Cryogenetics about us, https://www.cryogenetics.com/, Accessed: 2023-
05-4.

[2] New Oxford Dictionary, Definition of "logistics", 2023.

[3] Supply chain management terms and glossary, https://cscmp.org/CSCMP/
Educate/SCM_Definitions_and_Glossary_of_Terms.aspx, Accessed:
May 20, 2023.

[4] J. Mangan, C. Lalwani, T. Butcher and R. Javadpour, Logistics and Supply
Chain Management, 2nd. John Wiley & Sons Ltd, 2012.

[5] Microsoft azure, https://azure.microsoft.com/en- us/resources/
cloud-computing-dictionary/what-is-azure/, Accessed: May 5, 2023.

[6] Azure sql database, https://learn.microsoft.com/en-us/azure/azure-
sql/database/sql-database-paas-overview?view=azuresql, Accessed:
May 5, 2023.

[7] Azure portal, https://learn.microsoft.com/en- us/azure/azure-
portal/azure-portal-overview, Accessed: May 5, 2023.

[8] Golang, https://go.dev/, Accessed: May 5, 2023.

[9] Android studio, https://developer.android.com/studio, Accessed: May
5, 2023.

[10] Kotlin, https://kotlinlang.org/, Accessed: May 5, 2023.

[11] React website, https://reactjs.org/, Accessed: May 5, 2023.

[12] A. Schumacher, W. Sihn and S. Erol, ‘Automation, digitization and digit-
alization and their implications for manufacturing processes,’ 2016, Ther-
esianumgasse 27, 1040 Vienna, Austria.

[13] ‘Cracking the monolith: Challenges in data transitioning to cloud native
architectures,’ 2018. DOI: 10.1145/3241403.3241440.

[14] Cryogenetics logistical solution design prototypes, https://www.figma.com/
community/file/1242273867569143764, Accessed: May 20, 2023.

95

https://www.cryogenetics.com/
https://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx
https://cscmp.org/CSCMP/Educate/SCM_Definitions_and_Glossary_of_Terms.aspx
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-portal/azure-portal-overview
https://learn.microsoft.com/en-us/azure/azure-portal/azure-portal-overview
https://go.dev/
https://developer.android.com/studio
https://kotlinlang.org/
https://reactjs.org/
https://doi.org/10.1145/3241403.3241440
https://www.figma.com/community/file/1242273867569143764
https://www.figma.com/community/file/1242273867569143764

96 Group 202: Cryogenetics Logistics Solution

[15] T. H. Carr, ‘Perceiving visual language,’ in Handbook of Perception and Hu-
man Performance: Vol. 2. Cognitive Processes and Performance, K. R. Boff, L.
Kaufman and J. P. Thomas, Eds., Accessed: May 17, 2023, New York: Wiley,
1986, pp. 29–92.

[16] L. Zhou, V. Bensal and D. Zhang, ‘Color adaptation for improving mobile
web accessibility,’ in 2014 IEEE/ACIS 13th International Conference on Com-
puter and Information Science (ICIS), 2014, pp. 291–296. DOI: 10.1109/
ICIS.2014.6912149.

[17] B. Wong, ‘Color blindness,’ nature methods, vol. 8, no. 6, p. 441, 2011.

[18] R. M. Rider, ‘Color psychology and graphic design applications,’ Senior
Honors Theses, no. 111, 2010, Accessed: May 10, 2023. [Online]. Avail-
able: https://digitalcommons.liberty.edu/honors/111/.

[19] N. Babich, ‘"f-shaped pattern for reading content",’ https://uxplanet.org/f-
shaped-pattern-for-reading-content-80af79cd3394, 2017, Accessed: May 10,
2023.

[20] T. Thesing, C. Feldmann and M. Burchardt, ‘Agile versus waterfall project
management: Decision model for selecting the appropriate approach to a
project,’ Procedia Computer Science, vol. 181, pp. 746–756, 2021, CEN-
TERIS 2020 - International Conference on ENTERprise Information Sys-
tems / ProjMAN 2020 - International Conference on Project MANagement
/ HCist 2020 - International Conference on Health and Social Care Inform-
ation Systems and Technologies 2020, CENTERIS/ProjMAN/HCist 2020,
ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2021.01.
227. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877050921002702.

[21] N. Ozkan, S. Bal, T. Gurgen Erdogan and M. Gok, ‘Scrum, kanban or a mix of
both? a systematic literature review,’ Aug. 2022. DOI: 10.15439/2022F143.

[22] Github project, https://docs.github.com/en/issues/planning-and-
tracking-with-projects/learning-about-projects/about-projects,
Accessed: May 5, 2023.

[23] M. Paul, ‘Official (isc)2 guide to the csslp cbk,’ 2013.

https://doi.org/10.1109/ICIS.2014.6912149
https://doi.org/10.1109/ICIS.2014.6912149
https://digitalcommons.liberty.edu/honors/111/
https://doi.org/https://doi.org/10.1016/j.procs.2021.01.227
https://doi.org/https://doi.org/10.1016/j.procs.2021.01.227
https://www.sciencedirect.com/science/article/pii/S1877050921002702
https://www.sciencedirect.com/science/article/pii/S1877050921002702
https://doi.org/10.15439/2022F143
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects

Acronyms

API Application Programming Interface. 30, 34, 48, 49, 62, 67, 75, 93

CSS Cascading Style Sheet. 67

CSV Comma Separated Values. 19, 74

CVD Color Vision Deficiency. 41, 42

DOM Document Object Model. 13

E2E End-to-End. 79

GUI Graphical User Interface. 11, 14, 40, 64, 79, 90, 102

HTML HyperText Markup Language. 67

HTTP HyperText Transfer Protocol. 30, 31, 67, 70, 71, 73, 75, 80

IDE Integrated Development Environment. 12, 13, 99

JSON JavaScript Object Notation. 57, 59, 63, 64, 67, 68, 71, 72

M-UI Material User-Interface. xiv, 67, 68, 70, 75

MFA Multifactor Authentication. 86, 89

MVP Minimal Viable Product. 93

NTNU Norges Teknisk-Naturvitenskapelige Universitet. vi

NTNU Norwegian University of Science and Technology. iv, 4, 34

PNG Portable Network Graphics. 74

QR-Code Quick Response Code. 17, 30, 44, 66, 67, 73, 74

97

98 Group 202: Cryogenetics Logistics Solution

RAD Rapid Application Development. 51

REST Representational State Transfer. 67

RSA Rivest-Shamir-Adleman. 60

SPA Single-Page Application. 14, 48, 67

SQL Structured Query Language. 12, 31, 48, 57, 58, 61, 71, 73, 88, 89

UI User Interface. 3, 10, 13, 40

URL Uniform Resource Locator. 14, 43, 49, 55, 56, 63, 67, 75

WMS Warehouse Management System. 10

XML eXtensible Markup Language. 90

Glossary

accountability The principle that an individual is entrusted to safeguard and
control equipment, keying material, and information and is answerable to
proper authority for the loss or misuse of that equipment or information. 85

activities In Android, an activity is a single, focused thing that a user can do. It
is a class that typically corresponds to a single screen with a user interface.
48

Agile A set of values and principles for software development that prioritize cus-
tomer satisfaction, teamwork, and flexibility, with a focus on delivering
working software early and often. 51, 92

Android An open-source operating system used for smartphones and tablet com-
puters. 13, 29–31, 48, 65, 66, 84, 90

Android Studio The official Integrated Development Environment (IDE) for An-
droid app development. 11, 13, 30–32

authentication Verifying the identity of a user, process, or device, often as a pre-
requisite to allowing access to resources in an information system. 85, 86

Authorization In a security setting, authorization refers to the process of granting
or denying access rights to resources or actions based on established policies
and privileges.. 86

backend The "Backend" of our project refers to our server application as well as
our database . 4, 14, 15, 30, 31, 34, 55, 57, 59, 67, 71, 79, 85, 88

confidentiality The security concept that has to do with protection against un-
authorized information disclosure. 84

configuration The way something is arranged. 55

cross-platform Able to be used on different types of operating systems or with
different software packages. 84

database A centralized location for the storage, retrieval, and modification of
data. 29, 30, 55–58, 61, 72, 88, 89

99

100 Group 202: Cryogenetics Logistics Solution

debug The process of identifying and removing errors from software. 59, 85

decode The process of transforming encoded data back into its original form. 57,
59

decrypt The process of transforming encrypted data back into its original form.
57, 85

dependency A component required for something to work. 55

disassembler A program for converting machine code into a low-level symbolic
language. 85

Discord A proprietary, all-in-one voice and text chat application. 6, 11, 51

encode The process of putting data into a specialized format for efficient trans-
mission or storage. 57, 59

encrypt The process of putting data into a specialized format to prevent unau-
thorized access to it. 57, 59, 60, 85

endpoint A digital location in software where in- and outgoing requests are made
to an external actor. 55, 56, 58

exception An abnormal or unprecedented event that occurs after the execution
of a software program or piece of code. 57

field A set of values that have the same data type and are arranged in a table. 58,
61, 62

firebase A set of backend cloud computing services and application development
platforms provided by Google hosting databases, services, authentication,
and integration for a variety of applications. 89

folder A container for one or several files. 55

Foreign Key One or multiple fields in a database table that refers to the primary
key of another table.. 49, 50, 61, 62

fragments In Android, a fragment is a modular section of an activity’s UI that can
be combined with other fragments to create a flexible and responsive UI. 48

frontend The "Frontend" of our project refers to our mobile- and web application.
37, 47, 55, 88

function A sequence of program instructions that performs a specific task. 55–58,
79–81

function header The piece of a function containing its name and what type of
data it expects to receive and return. 58

Glossary 101

GANTT Gantt chart, a bar chart used to illustrate a project schedule. 28, 52, 90,
91

Git A free and open-source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. 6, 13,
30, 51, 84

GitHub A web-based hosting service for version control using Git. 11, 27, 36, 51,
53

Github project A project is an adaptable spreadsheet that integrates with your
issues and pull requests on GitHub to help you plan and track your work
effectively. 51, 52, 54

Golang A statically typed, compiled programming language designed at Google.
4, 5, 11, 12, 15, 30, 55, 57, 58, 80, 88

Google docs Google docs is a cloud-based word processing software developed
by Google that allows users to create, edit, and collaborate on documents
in real-time. 6

hardcode (Adjective) Data or parameters being made in such a way that they
cannot be altered without modifying the program. 85

Hypertext Transfer Protocol Secure (HTTPS) An extension of the Hypertext Trans-
fer Protocol (HTTP), using encryption for secure communication over a
computer network. 85

incremental test The process of iteratively making more complex tests than the
previous ones. 80

integration test A software testing method by which individual software units
are combined and tested as a group. 79

integrity The measure of software resiliency and it has to do with the alternation
or modification of data and the reliable functioning of software. 85

Internationalization Internationalization is the process of designing and devel-
oping software products or applications that can be adapted to various lan-
guages, regions, and cultures without requiring changes to the source code.
35

iOS An operating system used for mobile devices manufactured by Apple Inc. 84

issue A feature of the GitHub platform that allows users to track and manage
tasks, bugs, and feature requests for a project. 51, 54

Kanban A visual management method used to track and manage work, originally
developed for manufacturing but now used in many fields. 27, 51

102 Group 202: Cryogenetics Logistics Solution

Key In the context of maps, a key is a unique identifier that is used to access a
corresponding value. 64

Kotlin A cross-platform, statically typed, general-purpose programming language
with type inference. 13, 30

LaTeX A document preparation system for high-quality typesetting, widely used
in academia and the scientific community. 4, 6, 11

marshal The process of transforming data into a format suitable for storage or
transmission. 56, 57, 59

Material-UI A component library for ReactJS for GUI development. 30

Meta A multinational technology based company, formerly Facebook Inc. 13

metadata Data providing information about data. 56

Microsoft Azure A cloud computing service created by Microsoft for building,
testing, deploying, and managing applications and services through Microsoft-
managed data centers. 3, 11, 12, 30–32, 89–92

Microsoft Excel Microsoft Excel is a spreadsheet developed by Microsoft. It fea-
tures calculation or computation capabilities, graphing tools, and pivot tables.
74

milt In fishing, milt refers to the seminal fluid or sperm of male fish. It is released
during the spawning process. 1

Modal A user interface component or pattern that is used to display information,
notifications, or additional content on top of the main application screen.
70–73, 89

mongoDB A source-available cross-platform document-oriented database pro-
gram. 89

Node.js A cross-platform, open-source server environment which runs on the V8
JavaScript Engine, and executes JavaScript code outside a web browser. 88

normalize the process of organizing data into tables in such a way that the results
of using the database are always unambiguous and as intended. 89

noSQL Databases that are non-tabular and store data differently than relational
tables. 89

open design A security principle which states that the implementation details of
the design should be independent of the design itself. 85

Glossary 103

open source Software for which the oroginal source code is made freely available
and may be redistributed and modified. 58

Overleaf Overleaf is an online collaborative LaTeX editor that allows users to
create, edit, and share LaTeX documents. 6, 11

package A group of components licensed, downloaded or subscribed to as a
bundle of related products. 55–58, 60, 79, 80

parse The process of transforming data from one format to another. 57

phpMyAdmin A free software tool written in PHP, intended to handle the admin-
istration of MySQL over the Web. 61

Props React properties (more commonly known as Props) are like function ar-
guments used to pass attributes from a parent component to its child. 13,
70

public-key cryptography The field of cryptographic systems that use pairs of re-
lated keys. 59

pure function A function which does not rely on anything else than its declared
inputs. 57, 58, 79, 80

React Native An open-source UI software framework used to develop cross-platform
applications. 84

ReactJS A JavaScript library for building user interfaces, created by Facebook
and maintained by Meta. 4, 11, 13, 14, 30, 48, 67, 102

repository In the context of Git and GitHub, a repository (or "repo") is a collection
of files and version control information stored on a server. 27

risk The probability of exposure or loss resulting from a cyber attack or data
breach on an organization. 59, 85, 86

root The top-level directory of a file system. 55

runtime The time when a program is running. 56

Scrum An agile framework for developing and sustaining complex products, with
a focus on team collaboration and iterative progress. 51

Scrumban The Scrumban framework merges the structure and predictable routines
of Scrum with Kanban’s flexibility to make teams more agile, efficient, and
productive. 6, 27, 51, 54

security by obscurity A security principle wherein the security of the software is
dependent upon the obscuring of the design itself. 85

104 Group 202: Cryogenetics Logistics Solution

server A computer or computer program which manages access to a centralized
resource or service in a network. 55

session The time frame between program- start and interruption. 56

source code Program instructions stored in a format that humans can read. 55,
85

SQL injection A form of attack in which a SQL query is inserted or "injected" via
the input data of a function. 58

string A data type representing a sequence of characters. 57, 58, 85

table A database object containing organized data. 58, 61, 62, 72, 88, 89

test A method to check if a component acts as expected. 55, 57, 79–81

test A software testing method by which individual units of source code are tested
separately. 79

threat The possibility of an unwanted, unintended or harmful event occurring.
85, 86

Toggl A time tracking tool that offers both web-based and desktop-based applic-
ations as well as mobile apps for iOS and Android. 11, 36

Value In the context of maps, a value is the data associated with a key. It can be
accessed using the key in a key-value pair. 64

verification The process of evaluating software to determine whether the products
of a given development phase satisfies the conditions imposed at the start
of the phase. 85

Visual Studio Code A free source-code editor made by Microsoft for Windows,
Linux and macOS. 11

vulnerability A weakness or flaw that could be accidentally triggered or inten-
tionally exploited by an attacker, resulting in the breach or breakdown of
the security policy. 84

waterfall A linear sequential approach where the project is divided into distinct
phases, such as requirements gathering, design, implementation, testing,
and maintenance. 51

XAMPP XAMPP is a free and open-source cross-platform web server solution stack,
which includes Apache HTTP server, MariaDB database, and PHP scripting
language . 30

Appendix A

Project agreement

105

 1 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og

__

___ (oppdragsgiver), og

__

__

___ (student(er))

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra ____________ til______________ .

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og
materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det
arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på
forespørsel fra NTNU å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:

 Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon/fax,
reiser og nødvendig overnatting på steder langt fra NTNU på Gjøvik. Studentene dekker utgifter for
ferdigstillelse av prosjektmateriell.

 Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som
er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få
gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell
kostnadsfordeling og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller
at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og
ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte
spesifikasjoner, funksjonsnivå og tider.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

2

4. Alle bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til publisering, kan

gjøres tilgjengelig via NTNUs institusjonelle arkiv hvis de har skriftlig karakter A, B eller C.

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om
publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne
prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av
prosjektet endrer syn på slik offentliggjøring.

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som inngår
som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.
Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående uten
etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller
studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i sin

besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver
og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse, det
være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke
må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder
stiller til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg
leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det
instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og NTNU som regulerer
nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og som
oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.
Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i
tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

3

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): __

Oppdragsgivers kontaktperson (navn): ___

Student(er) (signatur): ___ dato ____________

 ___ dato ____________

 ___ dato ____________

 ___ dato ____________

Oppdragsgiver (signatur): ___ dato ____________

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur): ____________________________________ dato ____________

Appendix B

Project plan

109

Project plan Cryogenetics
Authors:

Lars Lahlum Ruud
Axel Elias Wollebekk Jacobsen

Matthias David Greeven
Håvard Bø

Project plan Cryogenetics 1
1 Background and Scope 2

1.1 Background 2
1.2 Subject area 2
1.3 Delimitation 2
1.4 Task description 2

2 Goals and frames 3
2.1 Project goals 3

2.1.1 Result goals 3
2.1.2 Effect goals 4
2.1.3 Learning goals 4

2.2 Constraints 4
2.2.1 Time Constraints: 4
2.2.2 Technological constraints 4

3 Project organization 4
3.1 Responsibilities and roles 5
3.2 Routines and group rules - set up a contract 5

4 Planning, follow-up & reporting 8
4.1 Main division of the project 8
4.2 Plan for status meetings and milestones during the project 8

5 Organization of quality assurance 9
5.1 Documentation and standards 9
5.2 Standardized workflow 9
5.3 Tools 10
5.4 Plan for Inspections and Testing 11
5.5 Risk analysis at project level (identify, analyze, measures, follow-up) 11
5.6 Plan for risk handling through preemptive and corrective measures 12

6 Gantt diagram & Implementation plan 14
7 Conceptual model 16

1

1 Background and Scope

1.1 Background
Cryogenetics AS, henceforth known as the client, is a Norwegian biotech company that provides
services and products for cryopreservation of milt and the fertilization of fish. The company is
based in Hamar, but maintains an international presence with labs in Chile, Canada, the United
States and Scotland.
Steffen Wolla, in his role as Production Manager and Business Developer for the client, has
requested the development of a logistical system to register the movement of their liquid nitrogen
containers. The ambition of this new system is that employees of the company would have an
easier time managing the containers.

1.2 Subject area
The main subject area for the project is logistics. Logistics deals with the movement of materials
and products towards facilities, in order to sell or produce materials and services. Logistics are a
part of the company's operational costs. As companies grow and expand, it gets increasingly
more complex to acquire, store and transport resources.

The digitalization of logistics has made many logistics processes more precise and manageable.
By using specialized tools, companies are able to handle larger amounts of transactions, directly
increasing profits and efficiency. Features like tracking and estimated delivery times allow
companies to acquire more precise information surrounding their products, improving the
experience for employees and customers.

1.3 Delimitation
We’re going to focus on the logistics of liquid nitrogen containers, the contents of said containers
will not be registered in our system. These containers are designed to keep its contents below
-140°C for extended durations, which removes the biological decay from its content. To ensure
this they have to be regularly refilled with liquid nitrogen. The frequency of refilling depends on
the size and model of the container, where larger containers often require recurrent refilling.
Therefore it is crucial to document when refilling happens, as temperature increases could lead to
the biological content to contaminate or expire.

1.4 Task description
The task is to develop an application to track and register the movement and status of their liquid
nitrogen tanks. The project requires user interfaces, a server and a database. Operators and
administrators will have two different user interfaces, which will communicate with a common
server and database.

2

The tablet application must be able to do the following:
● Provide authentication through a 3 digit code.
● Designed with the principles of user centered design to limit the need for training.
● Scan QR codes on containers to identify the container.
● Sort transactions based on date, location, employee, container type and customer.
● Show transaction logs for the scanned container.
● Scan multiple containers in a filling menu”, and update the server with all newly filled

containers.
● Display when specific tanks were last filled with nitrogen, and give an approximation of

when they should be refilled, based on tank size and model.

The administration application is requested to be designed for desktop environment, and must do
the following:

● Deliver a report of change logs in between two desired time points.
● Authenticate users through email, password and two factor authentication.
● Sort on transactions based on date, location, employee, container and customer.
● Provide detailed logs over the history of a specific tank, filtered by locations.
● Administrate client locations in the database.
● Administrate operators authentication codes.
● Administrate container models in the database.
● Register new customers and update existing ones.
● Retrieve a detailed change log of all desired containers.

2 Goals and frames

2.1 Project goals
These are the goals we want to achieve during this project.

2.1.1 Result goals

Our project should produce a logistics solution which can be used to keep track of liquid nitrogen
containers location and internal processes used for cryopreservation. The logistics solution will
be custom designed solution for the clients needs, it will include:

● A mobile tool for operators.
● A desktop tool for administrators.
● A server and database.
● Deployment on Microsoft Azure.

3

2.1.2 Effect goals

By the projects end, cryogenetics will have:
● Better control and traceability over their liquid nitrogen containers.
● Digitized and eased their workflow.
● Warnings for when containers require immediate or scheduled maintenance.

2.1.3 Learning goals

During the development of our bachelor thesis we will be exploring and learning about our
clients subject area. The knowledge we will focus on learning include, but is not limited to:

● Learning about the practices of the logistics business.
● Designing an efficient and user friendly logistics system.
● Creating a product with sound fundations for use in a real work environment.
● Establishing a server-based database that is internationally available and secure for

company wide use.
● Using User Centered Design principles and techniques to develop a design which is

intuitive to use by staff of different ages.
● Working efficiently and professionally in a group together with a third-party client
● Improving our mobile programming skills by developing a professional application.
● Creating an efficient database using data modeling.
● Developing a web application with the use of ReactJS.
● Creating a modern and fast back-end using Golang.

2.2 Constraints

2.2.1 Time Constraints:

● The project's final delivery deadline is 22.05.2023 12:00 PM, at this point the product,
final report and documentation needs to be complete.

2.2.2 Technological constraints

● User friendly solution, which can be used by employees with different prerequisites.
● Application for a mobile device.
● Register and monitor movement and maintenance of nitrogen containers.
● Use of QR- or bar-code for swiftly registration of movement and maintenance.
● A web application for administrative tasks.

3 Project organization
The group consists of four BPROG students, each with roughly the same academic experience.
However, in the course PROG2052 - Integrasjonsprosjekt, we worked on two different groups,

4

gaining expertise in different fields. Håvard and Matthias developed an android application in
kotlin, while Lars and Axel made a GoLang backend.

3.1 Responsibilities and roles
Each group member has an area of responsibility based on their previous experience,

● Håvard is responsible for the Android application.
● Matthias is responsible for the website.
● Axel is responsible for the Golang backend.
● Lars is responsible for the SQL database and its deployment.

In addition each group member has a role, as shown in the image below.

3.2 Routines and group rules - set up a contract

Members: Axel Elias Wollebekk Jacobsen, Matthias David Greeven, Lars Lahlum Ruud, Håvard
Bø

Procedures for the teamwork
A. Meetings

Meetings are held according to the Scrumban agile framework. Each Monday and Thursday
12:00 a Scrumban meeting is held physically or over Discord. The scrumban leader is
responsible for incorporating proper scrumban technique, such as the use of the Github Project
issueboard. Meetings with the client are held on mondays at 15:00 over Teams, if necessary.
These are arranged at least 96 hours prior by the Communication manager and may be moved to
a more suitable time if needed.

B. Notification in case of absence or other incidents

If you are late to- or cannot attend a meeting with the client, this should be communicated as
soon as possible so that the meeting can be moved. If the meeting cannot be moved, it is held
without you.

C. Expected effort

5

It is expected that you spend about 30 hours a week on this project, but as long as you complete
your tasks and responsibilities it is not strictly enforced. In addition, you should be available
from 12:00 to 15:00 each day a Kanban meeting has been held. If you cannot be available during
this time, you should notify the group at least 12 hours prior.

D. Disagreement

If there is an academical disagreement the group should try to find a solution which the majority
agrees on. If exactly half the group disagrees with the other, the Group leader decides. After the
solution has been set, everyone must be loyal to it.

E. Documents

Discord and GIT are used to share files, with Google Docs as a collaborative writing tool. The
Documentation Manager is responsible for meeting reports from meetings, these reports give at
least a short description of which decisions have been made and what has been done during the
meeting.

F. Policy for monitoring tasks

The Group Leader is responsible for monitoring tasks and ensuring that everyone has something
to do. If you are struggling with completing your tasks, you should notify the group leader so
that your tasks can be more evenly distributed.

G. Submission of teamwork

The Group Leader is responsible for ensuring that deadlines are kept and files are submitted.

H. Maintenance / Services

The Maintenance Manager is responsible for ensuring that the necessary services are available,
such as cloud hosting services for backend. This is done in cooperation with the client, who has
agreed to provide such services.

Breach of contract
If a group member does not follow the agreed upon procedures, a meeting can be held with every
group member present about the breach of contract. If this does not solve the issue, a written
warning is created by the other group members. The written warning should contain: An
explanation of how the contract was breached, requirements for solving the issue, and what
action will be taken if the group member does not fulfill the requirements. If the breach is severe
enough, this action should be holding a meeting with the group and advisor about solving the
issue. If none of this solves the issue, the group member who breached the contract will be
expelled from the group.

6

4 Planning, follow-up & reporting

4.1 Main division of the project
For our bachelor thesis we decided to utilize the scrumban SDLC framework. Initially, our plan
was to just use scrum. By having daily meetings we could ensure that everyone had work to do,
and that they got it done. However, an issue we found with this was that the daily meetings
ended up consuming a significant portion of extra time, even if the meeting itself only lasted
15-30 minutes. After consulting our advisor who suggested we tried an alternative approach, we
decided to try using both kanban and scrum. Kanban would offer some flexibility in the
beginning of the project where members can work on their parts when they have time, while
scrum would ensure efficient progress later when we are mostly coding. After some discussion
however, we realized that moving from one framework, to another mid-project could pose
unwanted delays. Due to this we found that scrumban would suit our needs. By having two
scrumban meetings a week with specific tasks distributed from a backlog we can ensure both
progress and flexibility. Additionally, altering the length of sprints would permit us to optimize
the framework to our needs as we progress in the project, while only utilizing one development
framework.

4.2 Plan for status meetings and milestones during the project
During the initial design phase of the project we will have weekly meetings with our
Cryogenetics representative, and NTNU Advisor, Frode Haug. This will help us ensure that the
project's design models are correctly designed and up to the desired standards of both the school
and our client. When the design gets accepted, the group will shift its focus from designing to
development. Since the design is already decided on, we will reduce the amount of meetings
with our representative and councilor. This will permit us to work faster since we can divide
larger tasks between meetings. The meetings will also transition into a presentation format where
we present our work so far, and receive feedback for improvement or alterations.

To improve progress tracking through the project, we have placed progress milestones. Setting
dates for major progress checkpoints will help us change our focus from one work pattern to
another. Since we do not have perfect foresight these dates will be subject to change as we
progress in the project. However, we initially have chosen to place our milestones at these dates:

● 25.01 : Project plan
● 02.02 : Physical database set up
● 13.02 : First backend application draft
● 16.02 : First web application draft
● 20.02 : First status report
● 25.02 : First mobile application draft
● 01.03 : Main user testing round

7

● 13.03 : Web application mostly finished
● 17.03 : Mobile application mostly finished
● 22.03 : Backend completed
● 27.03 : Thesis outline completed
● 03.04 : Second status report
● 21.04 : Mobile & web application completed
● 28.04 : First rough draft of thesis
● 01.05 : Final status report
● 12.05 : Thesis mostly done
● 17.05 : Thesis completed

5 Organization of quality assurance

5.1 Documentation and standards
During the development process we will put an emphasis on client-friendly development
practices. The intent behind this is to make it easier for our client to further develop our project
after its completion without it demanding significant work with code and structural
interpretation. For this reason we will be using the commenting and documentation practices
each individual coding language uses respectively. Additionally we will include links to
documentation practices in our GitHub repository to further simplify the process. To further
ensure consistency we will be developing and documenting exclusively in english.

5.2 Standardized workflow
To simplify the workflow of our project, we have decided that all tasks will go through the same
development steps. This ensures that all work is tracked properly, and follows a clear
step-by-step path. A task begins its lifecycle as a feature desired by our client. We will then
discuss specifications around how this feature operates before we break it down into smaller,
more manageable tasks. These tasks are then added to the backlog of our GitHub-project issue
board. Our issue board consists of five sections, “Backlog”, “In progress”, “Deadline
[XX.XX.XXXX]”, “In review” and “Done”.

As mentioned, a new task is initially added to the backlog. When a group member starts work on
a task they move it into “In progress”. Usually this is done during a scrumban meeting, but if
someone decides they want to work more, then they can move it themselves to signify that it's
being worked on to the rest of the group. At the same time as moving it, a task is assigned to
whoever is working on it as well as being given a size and priority tag. More often than not we
will move a task straight from the backlog into the “Deadline” category. The reason for this is
that “Deadline [XX.XX.XXXX]” signifies when the next meeting, and delivery date is. We
update the x’es to display the date of our next meeting. Thus a task in this category is expected to

8

be completed by that date. When a task has been completed it will be moved into “In review”. In
our scrumban meetings we go through all tasks in “In review” and decide whether or not they
have been completed up to the groups standards, if yes, the task is closed and moved to “Done”.
However, if a task needs more work it will be moved back into either “In review” or “Deadline”,
depending on the priority and size of the task.

Visualized progression of a feature’s life cycle

9

5.3 Tools

Name Usage
level

Reason

Github High We are familiar with using github for version control
as well as utilizing trunk based development offers
code insurance.

Golang Medium Golang is an efficient and fast language with great
external libraries. Due to it being a young language
with tremendous support it is highly unlikely that it
will become deprecated any time soon.

Visual Studio Code High Our main development IDE will be VS code due to
its simplicity and large library integration. This will
be used to develop the backend and the web
application.

Android studio Medium Android studio will be used for developing the
mobile application aspect of our project. This is
mostly due to previous experience with the IDE as
well as its capabilities for quickly testing code with
its built in android emulator.

Discord High For day to day communication and meetings within
the group we will be using discord. We have chosen
to work mostly online due to living far apart and
most of us developing on a stationary computer.
NOTE:We make sure to not share any sensitive
client information via normal communication
channels to ensure confidentiality of the data.

Microsoft Azure Low For hosting our backend and database we will be
using Microsoft Azure in accordance with our clients
wishes.

Toggl High To track time spent working we will be using Toggl.
Toggl makes it easy to either track time spent live
while working or insert worked hours afterwards.

10

5.4 Plan for Inspections and Testing
We’ve been granted permission to conduct testing with some staff members from Cryogenetics.
This is a great help for our user tests, as the employees are our main target for users in the
finished product (Adults ranging between the ages of 25-60). We will conduct these tests on both
our low-fidelity mobile application model as well as our first mobile- and web application draft.
With the data we receive from the tests we can add, remove or alter functionality to better serve
our client’s needs.

During development we’ll utilize Postman to test our API. With postman we can send specific
requests to a server endpoint with both SQL and JSON. Postman will then display the resulting
response data and code in a structured fashion which will help identify bugs more efficiently. We
will also write some simple tests that can be run to check that the endpoints are functioning as
expected during development.

5.5 Risk analysis at project level (identify, analyze, measures, follow-up)
We have performed an overarching risk analysis for the entire project where we have identified
how likely an event is, as well as the impact of each event.

1. Overestimated development speed
As a group we overestimated our own skill and development speed, causing us to fall
behind on the development plan.

2. Late and sudden changes in desired product or client wishes
The client realizes late into development that there has been significant
miscommunication leading us to develop a product that doesn't suit their needs.

3. Loss of documentation or source code
Somehow all code or documentation is lost or becomes inaccessible for a longer period of
time, causing a halt in development.

4. Leaked customer data
An insufficient security protocol causes client data to be accessible to anyone.

5. Loss of group members
A group member becomes inaccessible or decides that they do not wish to work together,
causing them to leave the group.

6. Conflicts within the group
A tear in the group causes work to slow down or grind to a halt.

7. Lack of competence
Insufficient competence leading to an unfinished or inferior product.

8. Server crash
Temporarily stored data gets erased or server access is lost.

9. Local data is lost
Local progress is lost causing a setback to previous Git commit.

11

Probability

Low Medium High

Impact
Low 5 & 6 9

Medium 1 & 4 7

High 2 & 3 8

5.6 Plan for risk handling through preemptive and corrective measures

Nr Preemptive Corrective

1 By estimating progress based on our
milestone estimates we can quickly
see if we are falling behind.

Working longer hours or assigning more issues per
sprint should help catch up to our desired schedule.
Worst case, discuss with the client about decreasing
the project's scope.

2 Through early user testing and
prototyping we can clearly convey
our intentions with our client to avoid
miscommunication.

Initiate an emergency meeting with our client to
correct our misinterpretations, and specify customer
desires. Then salvaging what we can from the
product and attempt to meet the client’s wishes.

3 By storing backups of the source code
locally on each developer's computer,
we ensure that there is always an
additional copy either locally or in
Github’s commit history.

Utilize a previous backup of the project locally
stored on a group member’s computer.
Worst case, if all is lost contact supervisor and
client in a joint meeting to discuss a solution.

4 By utilizing hashed passwords and
individual ID’s to access the sensitive
endpoints we prevent unauthorized
access. Additionally, perform regular
tests to see if we can breach our own
security.

First contact our client to alert them. Then, identify
and fix the security flaw. Afterwards, host a meeting
with our client to resolve the situation
diplomatically.

5 By dividing work equally and
ensuring that work is done
cooperatively, there will always be
someone who knows what the
missing person was doing, and can

Communicate with the missing member to see if
they will be gone permanently or temporarily.
Worst case, reconfigure our work schedule and
increase the workload of each individual member.

12

thus fill their position.

6 Regular and clear communication
about issues ensures that there is no
festering disagreements among group
members that could escalate further.

In the case of a full blown conflict among group
members, we will host a special meeting to discuss
the problem and clear the air between the offending
group members.

7 Tight knit cooperation and
development with other group
members will ensure that knowledge
and expertise is shared in the case of
a group member struggling with
progressing their appointed task.

Lack of competence will hopefully be noticed
during a weekly scrumban meeting when a
member’s work is not on par with expectations. The
task will then be made cooperative so that
knowledge can be shared.
Worst case, a member will be given more time to
research and acquire the needed expertise

8 Microsoft Azure permits saving
temporary database backups on their
server. Enabling this will grant us
previous versions of the server
available for rollback scenarios.

If the server crashes we should be able to restore the
database using a backup file.
Worst case, due to the clients wishes of not having a
regular database backup system, we would have to
rely on the client themselves having saved a
backup.

9 Frequent and atomic sized git
commits will ensure that even if local
data is lost, the time since the last
commit is minimal.

Restoring from the previous git commit, or previous
git push should not cause a huge set back.
Worst case, a group member has to start working
from the beginning of their work session.

13

6 Gantt diagram & Implementation plan

GANTT Chart. Blue, bold lines indicate the start of a new development phase.

14

GANTT Chart as text, with more detailed start- and end dates.

15

7 Conceptual model

16

Appendix C

Requirement specification

127

Requirements specification Cryogenetics
Table of contents:
3.1 Functional Requirements 2

Web Application 2
Mobile Application 2
Backend 2

3.1.1 Use case Model 3
3.1.2 High level Use case 3
3.1.3 Low Level Use Cases 7
3.2 Sequence Diagram 10
3.3 Product backlog 10
3.4 Domain model 12
3.5 Operational Requirements 12

Mobile Application 12
Web Application 13
Server 13

3.5.2 Technical Requirements 13
3.5.3 Interface Requirements 14
3.5.4 Testing 14
3.5.5 Security Requirements and Abuse Handling 15
3.5.6 Authentication 16
3.5.7 Encryption 16

3.6.1 Project requirements 17
3.6.2 Documentation 17

Frontend - Low- and High-Level Design 17
Frontend - Implementation Plan 17
Backend - Database 18
Backend - API 18
Backend - Deployment 18
User Testing Report 18
Meeting Notes 18

3.6.3 Internationalization 18
3.6.4 User friendliness 19
3.6.5 Versioning 19
3.6.6 Logging 19

3.1 Functional Requirements
The functional requirements entail what the project requires in order to work the way we
intended it to. The following sections will go through what operations and functions the
program is expected to perform.

Web Application
Admins must be registered by existing admin users. The admin user has higher authority
when managing digital resources, entrusted with keeping the system running with provided
tools. The admin features are as follows:

● Two factor authentication.
● Inventory
● Transaction logs
● Filter and search
● Generate monthly reports about the registered movement of the containers.
● Generate and print QR Code identifier for a liquid nitrogen tank.

Mobile Application
Users must have been registered through the admin webpage. Users have access to the
following features:

● Sign into the application by using a personal 3 digit code.
● Receive the latest version of the transaction log for their workplace.
● See which containers require maintenance based on data from the transaction log.
● Register when a container has been refilled.
● Register a container into the system when received from the client.
● When a user interacts with a container, a log must be sent to the server for record

keeping, these will appear in the transaction log.

Backend
The server must be able to handle the following:

● Multiple requests from all over the world and respond accordingly.
● Store incoming transactions in the SQL database.
● Create / Edit / Delete elements in the SQL database.

3.1.1 Use case Model

Fig 1: Use case model

3.1.2 High level Use case
In figure 1, our Use case model shows what the different actors are able to do in their
respective programs, and when they are allowed to do so.

The following tables show what the most important user available features must be capable of
doing. The following points on the use case model are not included due to redundancy: Log
in, log out and alter data manually.

Use case Transaction log

Actor User (App) & Admin (Website)

Purpose Retrieve an overview of the transactions regarding local labs

Description A user should be able to view the recent transactions from / to their
laboratory. The user can filter the selection of results to their specific
needs.

Use case Local inventory

Actor User (App) & Admin (Website)

Purpose Retrieve an overview of the containers currently in the local labs
inventory.

Description The user can see a list of all the containers they currently have in their
storage, and an overview of that containers’ current status.

Use case Download Monthly report

Actor Admin (Website)

Purpose Produce a CSV file containing customer, start and end timestamps.
location and container for the chosen month.

Description The report must contain the data above, categorized by customer. The
purpose of the report is to track where the customers' containers have
been moved within the last month.

Use case Log out / switch user

Actor User (App)

Purpose Remove/replace what user is responsible for transaction logging

Description Users can log out / switch users when the current logged in user no
longer holds responsibility for the Acts that are being recorded. Users
can quickly switch between Logged in users by typing their
authentication code.

Use case Register Acts

Actor User (App)

Purpose Register a container Act to the transaction log

Description Maintenance, Transactions, Discard or Sell, Link / Unlink client and
Refill container are all marked as “Acts”. This means that this
operation on the app is to record an activity that the container has gone
through.

Use case Maintenance (Act)

Actor User (App)

Purpose Send in a maintenance update about the scanned container to the
backend.

Description Users have three options when assigning maintenance:
● This container needs maintenance.

○ The user specified what is required in the comment
field.

● This container has completed its maintenance.
● Assign a custom act to this container. This is necessary in order

to clear up human error by letting users “overwrite” their
previous transaction.

○ Assign container model, status, act, location, address,
date of last refill, invoice date and serial number.

Assigning maintenance is tracked on the transaction log, and changes
the status to “maint needed / maint compl”.

Use case Transactions (Act)

Actor User (App)

Purpose Register where the container is being sent to / when it arrives at the
users workplace.

Description Users have three options when registering Transactions:
● Container is being sent out to customer

○ User has to input the address of the destination in order
for our system to keep track.

● Container has been returned to us
● Container is being sent to an affiliate

○ Users must select which affiliate the container will be
sent to.

This movement is tracked on the transaction log.

Use case Discard or sell (Act)

Actor User (App)

Purpose Remove the container from the database

Description The user chooses a container to be sold/discarded, adding a comment
with the relevant information.
When a container is sold or discarded, it is no longer the
property/interest of Cryogenetics, and is therefore no longer needed to
track through the database.
If the container is sold it no longer shows up on the laboratory's
inventory.

Use case Link / Unlink client (Act)

Actor User (App)

Purpose Change ownership of a container.

Description If the container does not have a client registered to it, connect an
existing client with the scanned / selected container. Else if the
container already has a customer, remove that customer from the
container’s data.
Linking a container to a client results in the customer taking ownership
of the container. The change in ownership is saved on the transaction
log of the container

Use case Refill container (Act)

Actor User (App)

Purpose Change the Last_Filled date for this container to the current date

Description Users select which container they physically refilled with Nitrogen,
which will update the container Last_Filled date in order to keep track
of which containers need to be refilled at what date.

Use case Refill multiple containers

Actor User (App)

Purpose Scan a single / multiple container(s) to register them as refilled.

Description Users can register that they have refilled one or multiple containers
with nitrogen. This will set the last filled date to the current date. This
is saved in the transaction logs of the affected containers

Use case See Container details

Actor User (App)

Purpose Reveal the retrieved data about the scanned container.

Description After scanning / selecting a container, the application must show the
current status of the container from the server, what actions the user
can register from here, and what transactions this container already has
registered.

Use case Add new data

Actor Admin (Website)

Purpose Input new data for the users to retrieve.

Description Admins can add new data objects to the database by navigating to the

desired data type they want to add.
The following data can be added:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

Use case Edit existing data

Actor Admin (Website)

Purpose Edit existing data in case of errors / changes.

Description Admins can edit existing data objects by navigating to the desired data
type they want to edit.
The following data can be edited:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

3.1.3 Low Level Use Cases

Use case See Container details

Actor User (App)

Purpose Reveal the retrieved data about the scanned container.

Description After scanning / selecting a container, the application must show the
current status of the container from the server, what actions the user
can register from here, and what transactions this container already has
registered.

Precondition 1 User must be authenticated on the application

Precondition 2 The container must be in a non-sold/discarded state.

Post-condition The container data and history is shown, along with options for next
acts.

Detailed course
of action:

1. User locates the desired container.
2. User clicks the Camera icon to activate the QR scanning /

Selects container from the inventory list.
a. User scans the QR code located on the container.

3. Container data is fetched from the backend.
4. User sees the container data / history.
5. Users can Register Acts like Maintenance, Transactions,

Refilling, Discard / Sell and Link / Unlink the container to
customers.

Alternative
scenarios

Errors:
● The API fails to load the container data
● Loss of internet connection

Use case Add new data

Actor Admin (Website)

Purpose Input new data for the users to retrieve.

Description Admins can add new data objects to the database by navigating to the
desired data type they want to add.
The following data can be added:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

Precondition 1 Admin must be authenticated on the website.

Precondition 2 The data must not exist beforehand.

Post-condition The new data is sent to the backend, and updated on the Admin’s page.

Detailed course
of action:

1. Admin locates the desired type of data to add
2. A table of existing data of that type is retrieved from the

backend.

3. Existing data is revealed on that data’s page
4. Admin clicks the “Add Data” button
5. A popup appears with the required fields of input for that data

type.
6. Admin inputs the data in the required fields.
7. Admin presses the “Confirm” button.
8. New data is sent to the backend
9. New data is added to the table on the page.

Alternative
scenarios

Errors:
● The added data already exists within the database
● Not all required fields are filled.
● Loss of internet connection.

Use case Edit existing data

Actor Admin (Website)

Purpose Edit existing data in case of errors / changes.

Description Admins can edit existing data objects by navigating to the desired data
type they want to edit.
The following data can be edited:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

Pre-condition Admin must be authenticated on the website.

Post-condition The new data is sent to the backend, and updated on the Admin’s page.

Detailed course
of action:

1. Admin locates the desired type of data to edit
2. A table of existing data of that type is retrieved from the

backend.
3. Existing data is revealed on that data’s page
4. Admin clicks the “Edit” button for the object they want to edit
5. A popup appears with the previous inputs that the admin can

change as they please.
6. Admin edits the data.
7. Admin presses the “Confirm” button.
8. New data is sent to the backend.
9. New data is added to the table on the page.

Alternative
scenarios

Errors:
● The added data already exists within the database (No

duplicates)
● Not all required fields are filled.
● Loss of internet connection.

3.2 Sequence Diagram

3.3 Product backlog
As we are using scrumban, a kanban board will be created to enhance workflow. This kanban
board is going to be on Github. To do so, a new project with a backlog will be set up and
attached to the project repo. Here, issues can be categorized and moved between columns,
which each will represent a step in the workflow. The first column should be “Backlog”,

issues here have no set start or end date and are not currently being worked on. The second
column will be “In progress”, which represents issues that are ongoing, but have no set end
date. Then a column named “Deadline [DD/MM/YY]” will be added, in which we will
change the name of each meeting to represent the next deadline. Issues in this column should
be time-limited, and be completed before the set date. When an issue is completed, it will be
moved to the “In review” column, which we will review at the end of each meeting. Then, the
reviewed issues will either be closed or put back into the backlog if they were not complete.

New issues will be made during meetings when there are few issues left. These new issues
should typically be motivated by the GANTT diagram, and be aligned with the current
development stage. Issues are to be designated labels, size, priority, and milestone, in addition
to responsible group members.

3.4 Domain model

The system mainly revolves around containers and how they are acted upon. A container has
a lot of attributes, but only the ones that are used in transactions with other tables are shown
in the domain model. These are “serial_number”, “id”, and “model”, which are used when
selling, moving, filling or discarding a container. A container can be moved or filled as many
times as needed, but only sold or discarded once, which is shown in the domain model as
cardinality. Containers, clients and employees are registered through the admin webpage. An
admin can register as many of these as needed, but only one admin is responsible for each
registration. Employees may log on to either the admin webpage or the app, but not both at
the same time. When an employee is using the app their actions are logged. Each container
sale, check out, check in, filling and discardment has a responsible app-user, and containers
are sold or checked out to a client who is registered in the database.

3.5 Operational Requirements

Mobile Application
The mobile application is intended to run on an android tablet with camera access.
The devices running the mobile application must:

● Have an Android operating system, version 10 - API 29 - Quince Tart or above.
● Have at least 128MB of free local storage.
● Connect to a Cryogenetics wifi network.
● A camera capable of reading QR-codes.

Web Application
The web application will require an internet connection and a common desktop browser.
Users must login with a microsoft account and an authentication application on a mobile
device for microsoft two factor authentication.

Server
Sending and storing data should be as efficient as possible to reduce the pressure on the
servers. Successful retrieval of data from the server must be in reasonable time, which is at
least within 3 seconds. The server must be deployed on Cryogenics’ Microsoft Azure
resources, alongside with a disaster recovery plan to correct problems that may occur.

3.5.2 Technical Requirements
Mobile Application
The app is to be developed for android devices using the Android Studio development
environment. To utilize the latest features of Android Studio, the last stable release available
to the devices should be used.. The app will be developed primarily with Kotlin, the official
language for Android App Development. To save development resources the application will
require a common tablet used in landscape orientation for an optimized experience. The
device will also need a camera capable of scanning QR codes.

To render the web application for administrators a browser will be required, as well as an
internet connection. A Microsoft account and a mobile device is required to use two-factor
authentication. To print QR codes for tanks, a label printer with a 4 by 6 inch output label will
be required. Users will be responsible for ensuring connection to a printer, as well as
installing the necessary drivers and changing printer settings for successful printing. For
quick and clean web development, React will be used with the component library Material
UI. Communication between the website and the backend server will utilize the Fetch API - a
native browser API that provides a low level interface for making HTTP requests. Fetch API
is built into modern browsers, requiring no additional libraries or dependencies, in addition to
providing support for asynchronous requests and responses through the use of Promises.
Promises make it possible to register callbacks that are executed once the response is
received, making it easier to write cleaner and more maintainable code.

The backend will be deployed fast and easily with Docker, which allows for
cross-compatibility across windows, linux, mac, and more. The server might need to process
up to 600 bytes of data per transaction, which for a typical processor (1,9GHz) takes about 40
nanoseconds, meaning processing power won’t be an issue for any modern processor. Storing
one million transactions in the database takes about 0,6GB of storage space, which in
addition to project- and XAMPP files adds up to about 2GB of required storage space.
GoLang will be the primary programming language used for the backend. It is fast and well
integrated with existing technologies such as Docker and MySQL.

Github will be used for versioning, in addition to keeping track of issues, CI/CD, and
milestones.

3.5.3 Interface Requirements
To ensure that our product operates nominally, we have set a few interface requirements in
place. Since our product consists of two separate applications as well as a backend the
requirements have been split into three groups, mobile, web and shared. Since we will be
developing the mobile application for android devices, the mobile device has to support at
least android version 10, Quince Tart. This is so that we can ensure the longevity of the
product as an older device might cause deprecation problems. Additionally, we require the
device to be a tablet, 8 inches or larger. To ensure the usability of our application we have
selected colors that contrast each other, and make the app easy to use even for those with
special requirements. In addition to the colors almost all buttons have text and icons which
represent them.

For the admin web application our priority is ensuring solid contrasts. The website will have
a simpler color palette. Thus, we have prioritized working with different levels of saturation
to increase contrast. The website will be largely text based, this ensures efficient
communication of information. Since the application is web based there are no specific
device limitations. As for shared requirements, the largest one is access to the internet. Both
the mobile- and web application are reliant on communication with a backend that interacts
with the database. Thus, if they lose internet access, neither application will be able to
perform any operations. Finally, the backend will be run on Microsoft Azure, in accordance
to the clients wishes.

3.5.4 Testing
Mocking
From an early stage of development we will include mocking in our backend. Mocking the
backend endpoints will allow us to perform tests without it influencing our database as well
as. Additionally it will let us perform tests which give a standardized result regardless of the
contents of the database. This way we can ensure that any failed tests are attributed to the
application in development, and not the backend. Finally, through mocking we can see if a
design choice is efficient and will grant the result we want before implementing

Testing during development
We will be using two main ways of testing our applications during development. Postman to
test backend HTTP requests, and android studio’s built in emulator to test the mobile
application. Postman lets us send HTTP requests to specific URLs with payloads. Using this
we can test endpoints to see if they are returning the expected data in the correct format.
Android studio's emulator lets us test how the mobile application will function on a “real”
device, without having to export it as an application every time a new feature is implemented.

User testing
During the development of the whole project we will be performing user testing. Initially we
will test the low- and high fidelity models with our client. The feedback we receive here will
help us shape the application visually, in addition to adding or removing functionality from
the applications. In the later stages of development we will test the application to receive
more fine tuned feedback, while also keeping our client up-to-date on the progress of the
project.

3.5.5 Security Requirements and Abuse Handling
Our primary security concern for our program is access. We wish to restrict access so that
only authorized personnel can interact with the application. For the mobile frontend this
involves limiting access to the application itself. The intention behind this is to stop threat
actors from exploiting potential weak points in the application through brute force.
Additionally, we plan to implement MAC and IP authorization to ensure no new devices can
connect to the server without permission from an administrator. This implies that the web
frontend will have a higher access level than the mobile application. Thus, we will implement
two layers of protection, an email login and two-factor authorization to secure the website.

To tackle abuse of our system we have decided to simply utilize regular backups of the
database. Since there are few things a user can do other than alter the database, it is our
primary concern to ensure that all data is not lost. Thus the backups will be completely
inaccessible from the program and will have to be manually accessed in the Azure cloud
storage. Additionally we will implement an automatic and comprehensive logging system.
With this we can see every change made to the database and the tanks in the system. This
way, if a threat actor decides to alter data to sabotage our client, we will see where changes
were made, and can therefore fix them quickly.

3.5.6 Authentication
To authenticate administrators in our web, Microsoft's two factor authentication will be used,
which requires a Microsoft account and a mobile device. Super User and administrator can
grant administrator access to other employees within the company.

The mobile application may only be used from a known network and device, since it uses
simple 3-digit authentication for quick log in. Administrators can add networks and devices
to the list of known networks and devices. When the connected network and the device is
verified, the application can be used by employees associated with the location.

3.5.7 Encryption
To protect against man-in-the-middle attacks, sensitive network traffic should be encrypted.
In our case we will mostly handle client- and employee information. Passwords are stored
and handled by Microsoft's two factor authentication, so salt- and hashing will not be

necessary. Lastly, android automatically encrypts data located in the internal storage, so the
devices used by the employees won’t need any special encryption.

3.6.1 Project requirements
This project is required to be organized and well documented, since other developers will
have the responsibility for maintaining and possible further development. It is also necessary
for our application to be user friendly for people of all ages, without training the users to use
the applications.

For the project to be successful for our client it must:
● Offer better tracking and organization of liquid nitrogen containers.
● Offer reports that can be used for invoicing customers.
● Offer functionality to register actions which affect the containers.
● Be user friendly and internationalized for use in multiple countries.

The project must be completed and delivered to both the client and NTNU before 22.05.2023
kl 12:00, the group must present the project on NTNU campus when desired, date could be
6-8. June 2023.

3.6.2 Documentation
Documentation is an important aspect of developing software, good planning and detailed
documentation will often save time and resources in the future. Since this project will not be
maintained by the same team developing it, the importance for good documentation is even
greater. We will follow best practices for commenting code, which will apply to our backend
API, website- and mobile frontend.

Frontend - Low- and High-Level Design
Web- and application-design will be documented with the final iteration of both our low- and
high-level design. The final high-level designs will be the desired result of our development,
and will be used as a guidance to implement intended functionality.

Frontend - Implementation Plan
Web- and application-design will be documented with the final iteration of both our low- and
high-level design. The final high-level designs will be the desired result of our development,
and will be used as a guidance to implement intended functionality.

Backend - Database
The database will be documented with a conceptual model and a logical model. These models
will help show the thoughts behind the database implementation, and will help us design an
optimized database with minimal oversight.

Backend - API
We will document the API by creating a plan for each endpoint, which will be helpful when
developing and maintaining the API. We believe it will also increase our productivity during
development, since we will have an overview over the required functionality.

Backend - Deployment
We will need a disaster recovery plan before production deployment, to account for
unplanned incidents which can shut down our service. One reason to plan for these incidents
is to keep recovery time and data loss minimal. Another is to implement preventive measures
and correctly detect issues that need to be corrected before it greatly affects the availability.

User Testing Report
User testing will be documented with a report about the suggestions, results and the
conversations we had during user testing. This is to gather all the information from the user
testing session in one place, this will make it easier for us to make changes according to user
feedback.

Meeting Notes
We will document all meetings by taking notes, and writing a short summary for each
meeting. Keeping track of all our meetings will allow us to keep track of decisions and what
we have already discussed. This will allow us to have more efficient meetings and therefore
get more done with less resources.

3.6.3 Internationalization
We have decided to solve internationalization in two ways, by operating exclusively in
english and utilizing symbols in the mobile application. We initially discussed with our client
whether or not they wished for multiple languages to be available. However, they preferred to
keep it simple and only use english. Since the mobile application will be used by most
workers, we concluded that if internationalization could be relevant, it would be there. This is
part of the reason why we have decided to use many small icons for important and significant
buttons. The web application does, however, not include as many icons as the mobile app.
Regardless, since it will only be used by administrative personnel, we concluded with our
client that keeping English would be satisfactory.

3.6.4 User friendliness
To create user friendly interfaces for our applications we will use User Centered Design
principles and user testing to create a custom-tailored, intuitive and convenient design. Since
the mobile application will be used during warehouse related tasks, it needs to be convenient
and practical to use. Since the web application is considered more of an additional tool for
administrators, will we dedicate more resources to the design of the mobile application. The
mobile application will feature various icons in combination with text and color, to help users
navigate the user interface quickly and precisely. It will also feature common functionality
which most users are already familiar with, for example changing the sorting in the log will
be inspired by Microsoft's file explorer.

3.6.5 Versioning
For our project, we will be using GitHub for versioning. We will use branches to keep track
of different versions of our code, and we use pull requests to merge changes from different
branches. This allows us to develop more efficiently together by ensuring that everyone is
working on the same version of the code. We also use GitHub's issue tracker to track bugs
and feature requests. We have set up a GitHub project where we store our issues, and quickly
move them between “backlog”, “in progress”, “next deadline”, “in review” and “done”.
Additionally, we can assign size, priority and assignees as well as link the issues to specific
commits or pull requests to provide context and traceability. Overall, GitHub provides us
with a powerful tool for developing efficiently and transparently, in case Cryogenetics wishes
to further develop our product in the future.

3.6.6 Logging
During our project we will log hours using Toggl. Toggl lets us begin a timer when we start
working which helps us keep track of how long we have worked. When we are done we can
see how much we have worked in a certain time period, as well as what we were working on
through the use of tags attached to each work session. In addition to tracking time spent, we
also have a designated note-taker who writes short summaries of our group-, client- and
advisor meetings.

Appendix D

Gantt chart final

147

Requirements specification Cryogenetics
Table of contents:
3.1 Functional Requirements 2

Web Application 2
Mobile Application 2
Backend 2

3.1.1 Use case Model 3
3.1.2 High level Use case 3
3.1.3 Low Level Use Cases 7
3.2 Sequence Diagram 10
3.3 Product backlog 10
3.4 Domain model 12
3.5 Operational Requirements 12

Mobile Application 12
Web Application 13
Server 13

3.5.2 Technical Requirements 13
3.5.3 Interface Requirements 14
3.5.4 Testing 14
3.5.5 Security Requirements and Abuse Handling 15
3.5.6 Authentication 16
3.5.7 Encryption 16

3.6.1 Project requirements 17
3.6.2 Documentation 17

Frontend - Low- and High-Level Design 17
Frontend - Implementation Plan 17
Backend - Database 18
Backend - API 18
Backend - Deployment 18
User Testing Report 18
Meeting Notes 18

3.6.3 Internationalization 18
3.6.4 User friendliness 19
3.6.5 Versioning 19
3.6.6 Logging 19

3.1 Functional Requirements
The functional requirements entail what the project requires in order to work the way we
intended it to. The following sections will go through what operations and functions the
program is expected to perform.

Web Application
Admins must be registered by existing admin users. The admin user has higher authority
when managing digital resources, entrusted with keeping the system running with provided
tools. The admin features are as follows:

● Two factor authentication.
● Inventory
● Transaction logs
● Filter and search
● Generate monthly reports about the registered movement of the containers.
● Generate and print QR Code identifier for a liquid nitrogen tank.

Mobile Application
Users must have been registered through the admin webpage. Users have access to the
following features:

● Sign into the application by using a personal 3 digit code.
● Receive the latest version of the transaction log for their workplace.
● See which containers require maintenance based on data from the transaction log.
● Register when a container has been refilled.
● Register a container into the system when received from the client.
● When a user interacts with a container, a log must be sent to the server for record

keeping, these will appear in the transaction log.

Backend
The server must be able to handle the following:

● Multiple requests from all over the world and respond accordingly.
● Store incoming transactions in the SQL database.
● Create / Edit / Delete elements in the SQL database.

3.1.1 Use case Model

Fig 1: Use case model

3.1.2 High level Use case
In figure 1, our Use case model shows what the different actors are able to do in their
respective programs, and when they are allowed to do so.

The following tables show what the most important user available features must be capable of
doing. The following points on the use case model are not included due to redundancy: Log
in, log out and alter data manually.

Use case Transaction log

Actor User (App) & Admin (Website)

Purpose Retrieve an overview of the transactions regarding local labs

Description A user should be able to view the recent transactions from / to their
laboratory. The user can filter the selection of results to their specific
needs.

Use case Local inventory

Actor User (App) & Admin (Website)

Purpose Retrieve an overview of the containers currently in the local labs
inventory.

Description The user can see a list of all the containers they currently have in their
storage, and an overview of that containers’ current status.

Use case Download Monthly report

Actor Admin (Website)

Purpose Produce a CSV file containing customer, start and end timestamps.
location and container for the chosen month.

Description The report must contain the data above, categorized by customer. The
purpose of the report is to track where the customers' containers have
been moved within the last month.

Use case Log out / switch user

Actor User (App)

Purpose Remove/replace what user is responsible for transaction logging

Description Users can log out / switch users when the current logged in user no
longer holds responsibility for the Acts that are being recorded. Users
can quickly switch between Logged in users by typing their
authentication code.

Use case Register Acts

Actor User (App)

Purpose Register a container Act to the transaction log

Description Maintenance, Transactions, Discard or Sell, Link / Unlink client and
Refill container are all marked as “Acts”. This means that this
operation on the app is to record an activity that the container has gone
through.

Use case Maintenance (Act)

Actor User (App)

Purpose Send in a maintenance update about the scanned container to the
backend.

Description Users have three options when assigning maintenance:
● This container needs maintenance.

○ The user specified what is required in the comment
field.

● This container has completed its maintenance.
● Assign a custom act to this container. This is necessary in order

to clear up human error by letting users “overwrite” their
previous transaction.

○ Assign container model, status, act, location, address,
date of last refill, invoice date and serial number.

Assigning maintenance is tracked on the transaction log, and changes
the status to “maint needed / maint compl”.

Use case Transactions (Act)

Actor User (App)

Purpose Register where the container is being sent to / when it arrives at the
users workplace.

Description Users have three options when registering Transactions:
● Container is being sent out to customer

○ User has to input the address of the destination in order
for our system to keep track.

● Container has been returned to us
● Container is being sent to an affiliate

○ Users must select which affiliate the container will be
sent to.

This movement is tracked on the transaction log.

Use case Discard or sell (Act)

Actor User (App)

Purpose Remove the container from the database

Description The user chooses a container to be sold/discarded, adding a comment
with the relevant information.
When a container is sold or discarded, it is no longer the
property/interest of Cryogenetics, and is therefore no longer needed to
track through the database.
If the container is sold it no longer shows up on the laboratory's
inventory.

Use case Link / Unlink client (Act)

Actor User (App)

Purpose Change ownership of a container.

Description If the container does not have a client registered to it, connect an
existing client with the scanned / selected container. Else if the
container already has a customer, remove that customer from the
container’s data.
Linking a container to a client results in the customer taking ownership
of the container. The change in ownership is saved on the transaction
log of the container

Use case Refill container (Act)

Actor User (App)

Purpose Change the Last_Filled date for this container to the current date

Description Users select which container they physically refilled with Nitrogen,
which will update the container Last_Filled date in order to keep track
of which containers need to be refilled at what date.

Use case Refill multiple containers

Actor User (App)

Purpose Scan a single / multiple container(s) to register them as refilled.

Description Users can register that they have refilled one or multiple containers
with nitrogen. This will set the last filled date to the current date. This
is saved in the transaction logs of the affected containers

Use case See Container details

Actor User (App)

Purpose Reveal the retrieved data about the scanned container.

Description After scanning / selecting a container, the application must show the
current status of the container from the server, what actions the user
can register from here, and what transactions this container already has
registered.

Use case Add new data

Actor Admin (Website)

Purpose Input new data for the users to retrieve.

Description Admins can add new data objects to the database by navigating to the

desired data type they want to add.
The following data can be added:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

Use case Edit existing data

Actor Admin (Website)

Purpose Edit existing data in case of errors / changes.

Description Admins can edit existing data objects by navigating to the desired data
type they want to edit.
The following data can be edited:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

3.1.3 Low Level Use Cases

Use case See Container details

Actor User (App)

Purpose Reveal the retrieved data about the scanned container.

Description After scanning / selecting a container, the application must show the
current status of the container from the server, what actions the user
can register from here, and what transactions this container already has
registered.

Precondition 1 User must be authenticated on the application

Precondition 2 The container must be in a non-sold/discarded state.

Post-condition The container data and history is shown, along with options for next
acts.

Detailed course
of action:

1. User locates the desired container.
2. User clicks the Camera icon to activate the QR scanning /

Selects container from the inventory list.
a. User scans the QR code located on the container.

3. Container data is fetched from the backend.
4. User sees the container data / history.
5. Users can Register Acts like Maintenance, Transactions,

Refilling, Discard / Sell and Link / Unlink the container to
customers.

Alternative
scenarios

Errors:
● The API fails to load the container data
● Loss of internet connection

Use case Add new data

Actor Admin (Website)

Purpose Input new data for the users to retrieve.

Description Admins can add new data objects to the database by navigating to the
desired data type they want to add.
The following data can be added:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

Precondition 1 Admin must be authenticated on the website.

Precondition 2 The data must not exist beforehand.

Post-condition The new data is sent to the backend, and updated on the Admin’s page.

Detailed course
of action:

1. Admin locates the desired type of data to add
2. A table of existing data of that type is retrieved from the

backend.

3. Existing data is revealed on that data’s page
4. Admin clicks the “Add Data” button
5. A popup appears with the required fields of input for that data

type.
6. Admin inputs the data in the required fields.
7. Admin presses the “Confirm” button.
8. New data is sent to the backend
9. New data is added to the table on the page.

Alternative
scenarios

Errors:
● The added data already exists within the database
● Not all required fields are filled.
● Loss of internet connection.

Use case Edit existing data

Actor Admin (Website)

Purpose Edit existing data in case of errors / changes.

Description Admins can edit existing data objects by navigating to the desired data
type they want to edit.
The following data can be edited:

● Acts
● Affiliates
● Customers
● Containers

○ Container models
○ Container statuses

● Users / employees

Each of these data types require their specific contents filled before
they are sent to the backend.

Pre-condition Admin must be authenticated on the website.

Post-condition The new data is sent to the backend, and updated on the Admin’s page.

Detailed course
of action:

1. Admin locates the desired type of data to edit
2. A table of existing data of that type is retrieved from the

backend.
3. Existing data is revealed on that data’s page
4. Admin clicks the “Edit” button for the object they want to edit
5. A popup appears with the previous inputs that the admin can

change as they please.
6. Admin edits the data.
7. Admin presses the “Confirm” button.
8. New data is sent to the backend.
9. New data is added to the table on the page.

Alternative
scenarios

Errors:
● The added data already exists within the database (No

duplicates)
● Not all required fields are filled.
● Loss of internet connection.

3.2 Sequence Diagram

3.3 Product backlog
As we are using scrumban, a kanban board will be created to enhance workflow. This kanban
board is going to be on Github. To do so, a new project with a backlog will be set up and
attached to the project repo. Here, issues can be categorized and moved between columns,
which each will represent a step in the workflow. The first column should be “Backlog”,

issues here have no set start or end date and are not currently being worked on. The second
column will be “In progress”, which represents issues that are ongoing, but have no set end
date. Then a column named “Deadline [DD/MM/YY]” will be added, in which we will
change the name of each meeting to represent the next deadline. Issues in this column should
be time-limited, and be completed before the set date. When an issue is completed, it will be
moved to the “In review” column, which we will review at the end of each meeting. Then, the
reviewed issues will either be closed or put back into the backlog if they were not complete.

New issues will be made during meetings when there are few issues left. These new issues
should typically be motivated by the GANTT diagram, and be aligned with the current
development stage. Issues are to be designated labels, size, priority, and milestone, in addition
to responsible group members.

3.4 Domain model

The system mainly revolves around containers and how they are acted upon. A container has
a lot of attributes, but only the ones that are used in transactions with other tables are shown
in the domain model. These are “serial_number”, “id”, and “model”, which are used when
selling, moving, filling or discarding a container. A container can be moved or filled as many
times as needed, but only sold or discarded once, which is shown in the domain model as
cardinality. Containers, clients and employees are registered through the admin webpage. An
admin can register as many of these as needed, but only one admin is responsible for each
registration. Employees may log on to either the admin webpage or the app, but not both at
the same time. When an employee is using the app their actions are logged. Each container
sale, check out, check in, filling and discardment has a responsible app-user, and containers
are sold or checked out to a client who is registered in the database.

3.5 Operational Requirements

Mobile Application
The mobile application is intended to run on an android tablet with camera access.
The devices running the mobile application must:

● Have an Android operating system, version 10 - API 29 - Quince Tart or above.
● Have at least 128MB of free local storage.
● Connect to a Cryogenetics wifi network.
● A camera capable of reading QR-codes.

Web Application
The web application will require an internet connection and a common desktop browser.
Users must login with a microsoft account and an authentication application on a mobile
device for microsoft two factor authentication.

Server
Sending and storing data should be as efficient as possible to reduce the pressure on the
servers. Successful retrieval of data from the server must be in reasonable time, which is at
least within 3 seconds. The server must be deployed on Cryogenics’ Microsoft Azure
resources, alongside with a disaster recovery plan to correct problems that may occur.

3.5.2 Technical Requirements
Mobile Application
The app is to be developed for android devices using the Android Studio development
environment. To utilize the latest features of Android Studio, the last stable release available
to the devices should be used.. The app will be developed primarily with Kotlin, the official
language for Android App Development. To save development resources the application will
require a common tablet used in landscape orientation for an optimized experience. The
device will also need a camera capable of scanning QR codes.

To render the web application for administrators a browser will be required, as well as an
internet connection. A Microsoft account and a mobile device is required to use two-factor
authentication. To print QR codes for tanks, a label printer with a 4 by 6 inch output label will
be required. Users will be responsible for ensuring connection to a printer, as well as
installing the necessary drivers and changing printer settings for successful printing. For
quick and clean web development, React will be used with the component library Material
UI. Communication between the website and the backend server will utilize the Fetch API - a
native browser API that provides a low level interface for making HTTP requests. Fetch API
is built into modern browsers, requiring no additional libraries or dependencies, in addition to
providing support for asynchronous requests and responses through the use of Promises.
Promises make it possible to register callbacks that are executed once the response is
received, making it easier to write cleaner and more maintainable code.

The backend will be deployed fast and easily with Docker, which allows for
cross-compatibility across windows, linux, mac, and more. The server might need to process
up to 600 bytes of data per transaction, which for a typical processor (1,9GHz) takes about 40
nanoseconds, meaning processing power won’t be an issue for any modern processor. Storing
one million transactions in the database takes about 0,6GB of storage space, which in
addition to project- and XAMPP files adds up to about 2GB of required storage space.
GoLang will be the primary programming language used for the backend. It is fast and well
integrated with existing technologies such as Docker and MySQL.

Github will be used for versioning, in addition to keeping track of issues, CI/CD, and
milestones.

3.5.3 Interface Requirements
To ensure that our product operates nominally, we have set a few interface requirements in
place. Since our product consists of two separate applications as well as a backend the
requirements have been split into three groups, mobile, web and shared. Since we will be
developing the mobile application for android devices, the mobile device has to support at
least android version 10, Quince Tart. This is so that we can ensure the longevity of the
product as an older device might cause deprecation problems. Additionally, we require the
device to be a tablet, 8 inches or larger. To ensure the usability of our application we have
selected colors that contrast each other, and make the app easy to use even for those with
special requirements. In addition to the colors almost all buttons have text and icons which
represent them.

For the admin web application our priority is ensuring solid contrasts. The website will have
a simpler color palette. Thus, we have prioritized working with different levels of saturation
to increase contrast. The website will be largely text based, this ensures efficient
communication of information. Since the application is web based there are no specific
device limitations. As for shared requirements, the largest one is access to the internet. Both
the mobile- and web application are reliant on communication with a backend that interacts
with the database. Thus, if they lose internet access, neither application will be able to
perform any operations. Finally, the backend will be run on Microsoft Azure, in accordance
to the clients wishes.

3.5.4 Testing
Mocking
From an early stage of development we will include mocking in our backend. Mocking the
backend endpoints will allow us to perform tests without it influencing our database as well
as. Additionally it will let us perform tests which give a standardized result regardless of the
contents of the database. This way we can ensure that any failed tests are attributed to the
application in development, and not the backend. Finally, through mocking we can see if a
design choice is efficient and will grant the result we want before implementing

Testing during development
We will be using two main ways of testing our applications during development. Postman to
test backend HTTP requests, and android studio’s built in emulator to test the mobile
application. Postman lets us send HTTP requests to specific URLs with payloads. Using this
we can test endpoints to see if they are returning the expected data in the correct format.
Android studio's emulator lets us test how the mobile application will function on a “real”
device, without having to export it as an application every time a new feature is implemented.

User testing
During the development of the whole project we will be performing user testing. Initially we
will test the low- and high fidelity models with our client. The feedback we receive here will
help us shape the application visually, in addition to adding or removing functionality from
the applications. In the later stages of development we will test the application to receive
more fine tuned feedback, while also keeping our client up-to-date on the progress of the
project.

3.5.5 Security Requirements and Abuse Handling
Our primary security concern for our program is access. We wish to restrict access so that
only authorized personnel can interact with the application. For the mobile frontend this
involves limiting access to the application itself. The intention behind this is to stop threat
actors from exploiting potential weak points in the application through brute force.
Additionally, we plan to implement MAC and IP authorization to ensure no new devices can
connect to the server without permission from an administrator. This implies that the web
frontend will have a higher access level than the mobile application. Thus, we will implement
two layers of protection, an email login and two-factor authorization to secure the website.

To tackle abuse of our system we have decided to simply utilize regular backups of the
database. Since there are few things a user can do other than alter the database, it is our
primary concern to ensure that all data is not lost. Thus the backups will be completely
inaccessible from the program and will have to be manually accessed in the Azure cloud
storage. Additionally we will implement an automatic and comprehensive logging system.
With this we can see every change made to the database and the tanks in the system. This
way, if a threat actor decides to alter data to sabotage our client, we will see where changes
were made, and can therefore fix them quickly.

3.5.6 Authentication
To authenticate administrators in our web, Microsoft's two factor authentication will be used,
which requires a Microsoft account and a mobile device. Super User and administrator can
grant administrator access to other employees within the company.

The mobile application may only be used from a known network and device, since it uses
simple 3-digit authentication for quick log in. Administrators can add networks and devices
to the list of known networks and devices. When the connected network and the device is
verified, the application can be used by employees associated with the location.

3.5.7 Encryption
To protect against man-in-the-middle attacks, sensitive network traffic should be encrypted.
In our case we will mostly handle client- and employee information. Passwords are stored
and handled by Microsoft's two factor authentication, so salt- and hashing will not be

necessary. Lastly, android automatically encrypts data located in the internal storage, so the
devices used by the employees won’t need any special encryption.

3.6.1 Project requirements
This project is required to be organized and well documented, since other developers will
have the responsibility for maintaining and possible further development. It is also necessary
for our application to be user friendly for people of all ages, without training the users to use
the applications.

For the project to be successful for our client it must:
● Offer better tracking and organization of liquid nitrogen containers.
● Offer reports that can be used for invoicing customers.
● Offer functionality to register actions which affect the containers.
● Be user friendly and internationalized for use in multiple countries.

The project must be completed and delivered to both the client and NTNU before 22.05.2023
kl 12:00, the group must present the project on NTNU campus when desired, date could be
6-8. June 2023.

3.6.2 Documentation
Documentation is an important aspect of developing software, good planning and detailed
documentation will often save time and resources in the future. Since this project will not be
maintained by the same team developing it, the importance for good documentation is even
greater. We will follow best practices for commenting code, which will apply to our backend
API, website- and mobile frontend.

Frontend - Low- and High-Level Design
Web- and application-design will be documented with the final iteration of both our low- and
high-level design. The final high-level designs will be the desired result of our development,
and will be used as a guidance to implement intended functionality.

Frontend - Implementation Plan
Web- and application-design will be documented with the final iteration of both our low- and
high-level design. The final high-level designs will be the desired result of our development,
and will be used as a guidance to implement intended functionality.

Backend - Database
The database will be documented with a conceptual model and a logical model. These models
will help show the thoughts behind the database implementation, and will help us design an
optimized database with minimal oversight.

Backend - API
We will document the API by creating a plan for each endpoint, which will be helpful when
developing and maintaining the API. We believe it will also increase our productivity during
development, since we will have an overview over the required functionality.

Backend - Deployment
We will need a disaster recovery plan before production deployment, to account for
unplanned incidents which can shut down our service. One reason to plan for these incidents
is to keep recovery time and data loss minimal. Another is to implement preventive measures
and correctly detect issues that need to be corrected before it greatly affects the availability.

User Testing Report
User testing will be documented with a report about the suggestions, results and the
conversations we had during user testing. This is to gather all the information from the user
testing session in one place, this will make it easier for us to make changes according to user
feedback.

Meeting Notes
We will document all meetings by taking notes, and writing a short summary for each
meeting. Keeping track of all our meetings will allow us to keep track of decisions and what
we have already discussed. This will allow us to have more efficient meetings and therefore
get more done with less resources.

3.6.3 Internationalization
We have decided to solve internationalization in two ways, by operating exclusively in
english and utilizing symbols in the mobile application. We initially discussed with our client
whether or not they wished for multiple languages to be available. However, they preferred to
keep it simple and only use english. Since the mobile application will be used by most
workers, we concluded that if internationalization could be relevant, it would be there. This is
part of the reason why we have decided to use many small icons for important and significant
buttons. The web application does, however, not include as many icons as the mobile app.
Regardless, since it will only be used by administrative personnel, we concluded with our
client that keeping English would be satisfactory.

3.6.4 User friendliness
To create user friendly interfaces for our applications we will use User Centered Design
principles and user testing to create a custom-tailored, intuitive and convenient design. Since
the mobile application will be used during warehouse related tasks, it needs to be convenient
and practical to use. Since the web application is considered more of an additional tool for
administrators, will we dedicate more resources to the design of the mobile application. The
mobile application will feature various icons in combination with text and color, to help users
navigate the user interface quickly and precisely. It will also feature common functionality
which most users are already familiar with, for example changing the sorting in the log will
be inspired by Microsoft's file explorer.

3.6.5 Versioning
For our project, we will be using GitHub for versioning. We will use branches to keep track
of different versions of our code, and we use pull requests to merge changes from different
branches. This allows us to develop more efficiently together by ensuring that everyone is
working on the same version of the code. We also use GitHub's issue tracker to track bugs
and feature requests. We have set up a GitHub project where we store our issues, and quickly
move them between “backlog”, “in progress”, “next deadline”, “in review” and “done”.
Additionally, we can assign size, priority and assignees as well as link the issues to specific
commits or pull requests to provide context and traceability. Overall, GitHub provides us
with a powerful tool for developing efficiently and transparently, in case Cryogenetics wishes
to further develop our product in the future.

3.6.6 Logging
During our project we will log hours using Toggl. Toggl lets us begin a timer when we start
working which helps us keep track of how long we have worked. When we are done we can
see how much we have worked in a certain time period, as well as what we were working on
through the use of tags attached to each work session. In addition to tracking time spent, we
also have a designated note-taker who writes short summaries of our group-, client- and
advisor meetings.

Appendix E

Status report 1

167

28/2/23

Cryogenetics status report 1

This is the first status report for our bachelor thesis project. In this report we will cover our
progress as of february 28th.

Project plan
Before we started work on the product itself, we set up a comprehensive project plan which
covered our plans for the completion of the project itself. We detailed rules for the group as well
as important milestones in the form of a Gannt timeline. This was to ensure that we could keep a
steady workflow while also knowing what to do if a group member either failed to accomplish
what they were supposed to, or if an unexpected obstacle occurred. Additionally, we outlined
what technologies we planned on using for the project, and what we hoped to gain by completing
this project from an educational standpoint.

Knowing what technologies we plan to utilize will grant our client more insight into the
workings of our product, as well as giving them an overview of potential expenses for when they
ultimately receive the product. Finally, setting educational goals will help us stay on track to
accomplish our goal using the methods we set out to learn.

Requirement specification
Since requirement specifications are an integral part of developing a successful product, we
decided to do this early in development. In the document we detailed our use and misuse cases,
operational- and functional requirements, as well as how we intended to test our programs. In
addition to this we covered our work methods, such as issue board utilization, documentation,
time tracking and versioning. Our use cases are split into two categories, high- and low level use
cases. In the high level use cases we cover some of the overlying functions that a user can
operate, these include critical actions such as retrieving an overview and downloading a monthly
report. In the low level use cases we bring up examples of more complicated and niche actions,
an example of this would be a detailed description of what happens when the user tries to reveal
the retrieved data about a scanned container.

When it comes to our work methods, they have proven to be quite effective in ensuring proper
and in-depth documentation. Github’s project function has worked seamlessly, partiallу due to
our experience with using it in past projects. We have utilized toggl time track to track our time
spent, and it has worked as intended. By giving us a clear overview of the time spent in any
given time period, we can easily tell if we need to work more or if we are on schedule. Finally,
Github has functioned as it should so far, and by using trunk-based development we have
avoided any merge error so far.

1

28/2/23

Models
Link to figma workspace of the Low + high fidelity models

2

28/2/23

Program progress

Frontend
The mobile application design is finished, most if not all content and functionality is
implemented in the design model. We have used the model to create an interactable prototype
that Cryogenetics staff got to explore during usertesting. We got mostly positive feedback from
the users, but some aspects had room for improvement. The application was intuitive and easy to
use according to the results of the usertesting, most users said this was due to simplicity, icons
and color choices. Because we did not want to use icons from various suppliers, we have created
icons using adobe illustrator to be used for mobile- and web-application.

We did not conduct user testing on the administration website as the main relevant feedback is
gathered with our meetings with our Cryogenetics Correspondent. Because of the limited users,
we decided it wasn't important to customize the website too much. The main appeal should be
simplicity and usability, much like the app. Due to the larger screen size on monitors compared
to tablets, we are able to use more text instead of images, reducing the amount of time needed to
design the layout.

Backend
For the backend, we started by creating the conceptual model of the database. This conceptual
model was made in multiple iterations, the first being made during the second week of
development. For the first couple of weeks a new iteration was made after each meeting with the
client, adding and changing content based on the client’s feedback. Eventually, we felt satisfied
with the conceptual model and decided to make it physical. The physical model was made in
phpMyAdmin, and each time the physical model was changed afterwards, the conceptual model
was too. This was done to ensure clear and correct documentation.

After user testing and some quick updates to the database, we began working on the GoLang
server. A list of endpoints with URIs was created and agreed upon by the group so that both
front- and backend could work simultaneously without confusion. For the backend, setting up the
server with empty endpoints which returned status code OK was a high priority so that the back-
and frontend could be connected as soon as possible.

Finally, a list of structures and functions for the server was made, as well as code which connects
the server to the database and runs an example query.

3

28/2/23

Time tracking [february 28th]

4

Appendix F

Status report 2

173

Cryogenetics status report 2
This is the second status report for our bachelor thesis project. This report covers our progress
as of April 10th.

1. Progress Status
1.1 Android application

1.1.1 Android design / figma prototype
1.1.2 Navigation
1.1.3 Multitasking
1.1.4 Api calls

1.2 Web application
1.2.1 SSL Certificate
1.2.2 Website layout
12.3 HTTP calls

1.3 Server
1.4 Deadlines
1.5 Planning, organization & responsibilities
1.6 Report progress

2 Summary of the above points
3 Possibilities, threats and problems
4 Motivation and group relations
5 Contact with client and advisor

1. Progress Status
Since the last status report major progress has been made on the app, website, and server.

1.1 Android application

1.1.1 Android design / figma prototype
Android design is close to being completed for functionally, but some minor aspects are not
implemented yet and the design is not finished visually. Some fine tuning and design work is
still needed to make it look closer to the design prototype.

1.1.2 Navigation
Navigation is about close to completed, the menu navigation is implemented, but we still
have to achieve intuitive navigation. Intuitive navigation refers to the ability to navigate the

application in different ways, for example the ability to navigate to a tank that is in the
inventory-table.

1.1.3 Multitasking
Multitasking is close to complete, but it still needs some fine tuning to make it work as
intended. The management of different android fragments is important to make a seamless
application which does not require loading of new activities when the user navigates to a
different page. Instead of loading a new activity we switch out the child fragment and delete
it from memory when it is no longer needed.

1.1.4 Api calls
API GET calls have been implemented and functions as they should. Currently only
implemented in the inventory fragment. The data is initially fetched as a string and we have
another function to convert from string into a List<Map<String,Any>> that can be used to
access the data. The inventory fragment currently gets data from these functions and assigns
it to the recyclerview in the adapter. PUT and POST requests are under development and
testing, we will not utilize any other types of requests.

1.2 Web application

1.2.1 SSL Certificate
We’ve been in contact with Cryogenetics and their IT partners to get a SSL certificate for the
admin website. This is required in order to use Azure’s multi factor authentication, which will
allow admins to log in using their company email. The purchase has been accepted by
Cryogenetics, and the issue has been escalated to the IT company’s consumer department. We
are waiting for them to get back to us.

1.2.2 Website layout
The layout is around 90% complete, the only thing still required are the add/edit buttons and
the QR code screen. Using the Figma models shown in the previous status report, the layout
has stayed exactly the same.

12.3 HTTP calls
GET requests have been fully implemented along with the backend, and we need to
implement the POST and PUT requests on the backend before we do anything else. When we
add that functionality to the server, the website’s development will be extremely simple:
Open a Modal that allows the user to input fields of information. Generate a HTTP request
around that data. Display the returned data to the tables.

1.3 Server
Development on the server began by designing the server architecture, coming up with a list
of endpoints, and setting up the file structure. After this was done, essential functions such as
querying the database and formatting data was prioritized. With these functions in place the
first endpoint was made - the GET endpoint for containers. After bug testing and
modularizing, safety was our next concern. Research was put into mitigating and protecting
against common vulnerabilities such as SQL injections using features of the official Go SQL
package. Filters were also added in order to avoid sending unnecessary data to the frontend.

Once the first GET endpoint was complete and secure we began work on the first POST
endpoint. There was some difficulty reformatting the data while at the same time protecting
against SQL injections due to how the Go SQL package works, but it did not take long before
this endpoint was complete too.

Lastly, the first PUT endpoint was developed. A discussion was held about how to format the
input data in order to have it consistent, but easy to use. Some of the code from the POST
endpoint was reused as most of the work revolved around data reformatting. The endpoint
was SQL injection-proofed and modularized, and we were done.

With one endpoint of each type (GET, POST, and PUT) created in a modular fashion, it was
easy to create the rest of the endpoints (transaction, client, admin, etc.). However, before we
did so, a discussion was held about changing the endpoint URLs. Additionally, functions for
joining table data would have to be made in order to reduce the amount of requests from the
frontend and redundant data.

These changes were made as well as some changes to the database in order to simplify the
new functions, and the backend was declared complete in terms of functionality. Device
verification and testing was put on hold so that the group’s entire focus could be used on the
app and website.

1.4 Deadlines
We have tried our best to keep up with the deadlines we agreed upon, but when the original
GANTT scheme was made the requirements specification was not put into consideration.
Due to this oversight we had to make space for writing the requirement specification, which
pushed most deadlines back by 1-2 weeks.

Work on the thesis outline has been moved from week 12 to 14. Focus was put into creating
core functionalities for the app early, which have made it easier to integrate without
unexpected issues.

The image above shows the original GANTT scheme for weeks 10 to 20, it is currently week
14. Completed items are colored green, uncompleted items that have crossed the deadline are
red, and not yet met deadlines are orange. The final round of user testing was completed
before week 10 instead of week 14, due to involvement of the clients employees.

The image above shows what the updated GANTT scheme looks like. We worked with
requirements specification for two weeks before sending a draft, which we then worked
another two weeks on before completion. During this time there was little development on all
other parts. The other deadlines have been moved to compensate for the time utilized writing
the requirements specification.

1.5 Planning, organization & responsibilities
Our organization & planning method has stayed the same; online meetings twice per week to
discuss our progress and set new goals until the next meeting. We use our issue board to keep
track of our tasks, and we evaluate what works and what needs improvement in our social
and work dynamics. In case of any roadblocks or issues, we aim to address them immediately
and find solutions before the next meeting.
This has worked well for us, as we have gotten better at breaking down the goals ahead of us
to make achievable goals. This has resulted in more effective development, where we achieve
great progress as individuals and solve the bigger challenges as a team.

Under a short period we had three people working on the mobile application, this was mostly
to give development a speed boost towards the final weeks. However we see that this has
caused a slight delay for other tasks, for this reason we are splitting up again. We will be
dividing work as shown below until the last few weeks.

Responsibility Person

Mobile Håvard

Website Mats

Deployment
Backend Security

Lars

Beginning thesis Axel

1.6 Report progress
Chapters that have been written

● Requirements specification
● The project plan
● Software development plan
● Contract with client
● Progress plan
● Gantt chart
● Milestones
● Responsibility map

2 Summary of the above points
We have held steady progress on the project overall and are where we are expecting to be.
The web application is slightly ahead of schedule, it's mostly finished and we are only
missing authentication and some minor things. The mobile application is slightly behind
however, but the team is confident it will be finished in time. The cause of the delay is an
oversight of not taking into account the time it takes to write the requirement specification.
This put us slightly behind on the backend as well. However, since the requirement
specification is ready to be put straight into the final thesis we haven't ended up significantly
behind on the project overall.

3 Possibilities, threats and problems
The main threats are related to time and security. While we would prefer to have started on
the thesis outline earlier, being finished with the requirement specifications means we have
some leeway on the rapport side of things. However, to be sure that we have the time needed
for the rapport we will be starting on the thesis outline week 14. This way we gain a better
understanding of how much work there is ahead of us and mitigate the risk of not completing
the rapport.

Additionally, we will put two weeks of work into verification and security for the backend so
that we aren’t caught off guard in case an issue arises. This means the group is spread thin,
each member working on their own, which could become an issue if someone becomes stuck.
However, we are in tight communication and will be doing this for about three weeks, so this
should not be an issue.

Lastly, there is a possibility that we might not be able to add Microsoft's two factor
authentication to our program. This was requested by the client as a method for
authentication by the client. The reason for this threat is that documentation related to
Microsoft’s two factor authentication is sparse, and using it might require a license which we
depend on the client to provide. As part of development on the backend’s final security
features during week 14-16, more research will be put into this. If it is found to be
unrealizable or too time consuming, a discussion will be held with the client in regards to
alternative solutions to Microsoft’s two factor authentication.

4 Motivation and group relations
Currently our group shows good motivation and cooperation in mobile development, making
the work efficient and successful. Regardless, there have been challenges with motivation due
to inexperience with large development products. In addition, we have not maintained a
common working time, which may have hindered efficiency, collaboration and caused more
independent choices. Despite these challenges, the team has been able to collaborate,
organize and make great progress.

5 Contact with client and advisor
We have made sure to keep in contact with both our advisor and our client during the whole
project. However as we have only been developing for the last few weeks we reduced the
amount of meetings to suit our and the clients needs. This worked out for us as we had more
continuous work sessions, then we would normally have when we had meetings. Now we
have less frequent regular meetings, and we reach out to the client when we need to. We will
likely communicate more with our advisor to get feedback on our thesis as more parts are
added. So far we are satisfied with both our client’s and advisor’s contributions to our thesis,
and we will continue to utilize their skills and knowledge.

Appendix G

Meeting notes

181

Meeting Notes Cryogenetics Bachelor Thesis

09.01.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 14.00 to 16.00. We went
through the project at their offices in Hamar and got a deeper understanding of the project as
a whole. During the meeting we got to see their warehouse and how they currently handle the
logistics of their liquid nitrogen tanks. We also discussed which key functionality the client
needs, and the data we need to store in the database. We also discussed how we could choose
to solve different tasks and what technology we should use.

16.01.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.00 to 15.30. We went
through our low fidelity design, which is still a work in progress at this moment. The client
gave us feedback on our design, and we for example got a better understanding of what we
should display on the dashboard. We also got a moment to go over our transaction table and
database model, where we had missed some categories which we needed to include. We also
had some icons to show off, where the client had the option to choose between two iterations
of an icon. To finish the meeting the client gave us some positive feedback and guidance for
further developing the project.

17.01.23 Meeting with counselor

We had a meeting with Frode Haug from NTNU, from 14.30-15.00. We started the meeting
by getting more familiar with each other and the project. Then we got a crash course on how
he wants us to write the project plan, which changes the original template. He also gave us
insight into what he wants us to write about under the different categories. We also discussed
development methods, working remotely and the work in progress project plan.

23.01.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.00 to 15.30. We went
through some questions we had gathered from the last week, with regards to storage and
functionality. Because there was a discussion regarding how we should implement locations

in our storage model, but after understanding the clients needs, we found a solution we could
get behind. We also discussed other subjects, like deployment on Microsoft Azure, because
we need access to the clients Azure resources.

24.01.23 Meeting with counselor
We had a meeting with Frode Haug from NTNU, from 14.00-14.30. Frode had given us some
feedback, by commenting on our WIP project plan. So we collectively went through each
subject in the project plan and discussed changes that we should make. The meeting helped
us improve our project plan, and was greatly appreciated.

30.01.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.00 to 15.30. Where we
showcased some progress on our low-fidelity design-iteration of the web-page and
mobile-application. When we went through the design on figma, we had many questions
about how they wanted the application to work. We also had some questions about the data
set, because we discovered it would be beneficial to have an address field, instead of writing
this in the comment.

31.01.23 Meeting with counselor
WC, Axel and Mats met physically with Frode, while I was available for comments on
MS-Teams. This was the first time Frode got to see the application and got a bigger picture of
the functionality we are working towards. He had many questions and gave us mostly
positive feedback, even though it is not really his expertise or responsibility for his role.

13.02.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.00 to 15.30. Where we
showcased some progress on our high-fidelity design-iteration of the web-page and
mobile-application. The web page prototype was highly functional, and included all aspects
that the client had asked for. We also discussed the addition of tank statuses and acts. In
addition we discussed the new tank menu, which got positive feedback from the client.

14.02.23 Meeting with counselor
We had a meeting with Frode Haug from NTNU, from 14.00-14.30. Frode had given us some
feedback, by commenting on our requirement specification. The feedback was not
comprehensive because the format was not correct, and we had to add much more to the

document. We also discussed low- and high-level use cases, since we had only made a use
case model, which was not sufficient.

21.02.23 Meeting with counselor
We had a meeting with Frode Haug from NTNU, from 14.00-14.15. Frode had given us
feedback on our requirement specification, by commenting on the document. The feedback
was mostly positive, but we still had some format problems and missing categories. We also
had to write the text in the future time form, instead of the mix we currently have of different
timeforms.

22.02.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.00 to 15.30. Where we
discussed the feedback from usertesting, and the solution to solve concerns and wanted
functionality. We also discussed the opportunity to contact an employee of Cryogenetics in
Trondheim which will use the system extensively, to get more data. We also discussed MS
Azure access, which is taking longer than expected due to confidentiality concerns.

06.03.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.00 to 15.30. Where we
discussed the feedback from usertesting with an employee from Trondheim, and we discussed
some solutions to a concern and some additional functionality. We also discussed some
changes to the tank-menu, and some minor changes to act-table. Steffen had arranged azure
access for the group, and we could confirm it was working as intended. We also mentioned
some of the progress regarding the documentation, and the future plans for the next two
weeks.

07.03.23 Meeting with counselor
We had a meeting with Frode Haug from NTNU, from 14.00-14.15. Frode had given us some
more feedback on our requirement specification, by commenting on the document. The
feedback was mostly positive, but we still had some format problems and Frode had made
some changes to the expected format of the document. We also briefly discussed some
questions we had regarding the changes he wanted us to add.

14.03.23 Meeting with counselor

We had a meeting with Frode Haug from NTNU, from 14.00-14.30. Axel and Mats visited
Frode’s office on campus in Gjøvik, they brought a laptop and a tablet to usertest Frode. The
remaining group members joined the meeting digitally on teams.
We also briefly discussed some questions about the requirement specification, and the results
of usertesting at Cryogenetics.

20.03.23 Meeting with client
We had a meeting with Steffen Wolla from Cryogenetics, from 15.15 to 15.45. Where we
discussed the feedback from usertesting at Cryogenetics, and the changes we wanted to make
to the application. We also asked to usertest another employee in Trondheim to get more data,
this employee is likely to be the most active user of the application. Steffen asked the
employee for a date and time of the meeting, and we later agreed on the time by mail.

12.04.23 Meeting with counselor

We had a meeting with Frode Haug from NTNU, from 14.00-14.30. We discussed the second
status report, which we had sent to Frode by mail prior to the meeting. Frode was thrilled to
see a detailed status report, but he also said it was longer than necessary. We discussed the
project's progress and he answered some questions from the group. We also discussed the
thesis and the structure of the document and the attachments.

14.04.23 Meeting with client

We had a meeting with Steffen Wolla from Cryogenetics, from 13-13.30. We showed a demo
of the web and mobile application, Steffen was excited to see the applications coming
together. We were missing some minor features, which we discussed and explained to the
client. We also had some minor bugs occur during the demo, which we took note of.

05.05.23 Meeting with client

We had a meeting with Steffen Wolla from Cryogenetics, from 13-13.30. We showed a demo
of the web and mobile application, unfortunately we had some issues with “null” values and a
bug occurred. But overall the demo was successful and the participants were excited to see

the working applications. We also agreed to another meeting where we will run the demo on
their Azure resources and give them the resources to test it out for themselves.

09.05.23 Meeting with counselor

We had a meeting with Frode Haug from NTNU, from 14.00-14.30. Where we discussed the
deployment of the application for Cryogenetics, because they want to start using the product.
We agreed that it is not our responsibility to give the client a production environment for
production use, but we still wish to give them a test environment. It will be the client's
responsibility to set up a production environment and ensure that the software is maintained
and secure to store confidential data. We also discussed the bachelor thesis document, we had
many questions regarding the structure. After the meeting we were able to restructure the
document and get a better understanding of what we needed to work on.

15.05.23 Meeting with counselor

We had a meeting with Frode Haug from NTNU, from 14.00-14.30. Prior to the meeting we
sent Frode the latest version of our thesis, which he read and commented on. We discussed
comments which we wanted him to elaborate on, we also discussed the structure of the
document. We also got answers for questions regarding where we should place different
chapters or sub-chapters in our document. Frode provided more insight into how we can
improve the text, and we got to thank him for his contributions to our thesis.

Appendix H

User testing Cryogenetics
employees

187

Very nice design, intuitivt design, fine symboler, veldig oversiktlig.

Very nice to have features, can be useful to get an overview, hard to understand that the mens are split.

Like the design, like the battery tank indicator for nitrogen liquid.

Very poor

1 2 3 4 5 6

Very good

Cryogenetics feedback form

Explore the prototype on your own, and write a short summary of your first impression. *

Navigate to "Dashboard", what do you think about this feature?

What did you like about the Dashboard? (color, layout, content, icons, features etc.)

What don't you like about the Dashboard? (color, layout, content, icons, features etc.)

How would you rate the Dashboard?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

1 av 33 18.05.2023, 11:33

DD/MM/YY for other countries, looks nice.

Balansed color choices.

Very poor

1 2 3 4 5 6

Very good

Is there anything you want to add or remove from the Dashboard?

Any text that could be changed?

Navigate to the "Log", what do you think about the Act Log?

What did you like about the Act Log? (color, layout, content, icons, features etc.)

What did you not like about the Act Log? (color, layout, content, icons, features etc.)

How would you rate the Act Log?

Is there anything you want to add or remove from the Act Log?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

2 av 33 18.05.2023, 11:33

Very poor

1 2 3 4 5 6

Very good

Wish to add battery indicator to last filled column, serial number is not strictly neccecjary here. Store
date of container use, yearly service for tanks older than about 8-10 year and approval.

Looks nice, If I am in a room I can scan them all, and then quickly get the job done.

Navigate to the "Inventory", what do you think about the Inventory?

What did you like about the Inventory? (color, layout, content, icons, features etc.)

What did you not like about the Inventory? (color, layout, content, icons, features etc.)

How would you rate the Inventory?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Navigate to Tank Filling for multiple containers, what do you think about how this feature

works?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

3 av 33 18.05.2023, 11:33

Cancel all

Undo

Remove selected

more details

Andre:

Very poor

1 2 3 4 5 6

Very good

Since there is space, i think it is nice to have.

Mark buttons/features which you think are necessary?

What would rate the multiple Tank filling menu?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Navigate to "Container", and press camera icon to open a container. What do you think about

this layout?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

4 av 33 18.05.2023, 11:33

Very poor

1 2 3 4 5 6

Very good

The icons are nice, i can understand the functionality behind, I like nested menus because it is easier to
use..
I would like the order of the table to have Time, location, Act, status, comment.

Looks alright.

I like how it is.

Looks okay.

How would you rate the menu inside the container window?

What do you think about the menu inside the container window?

Any comments about Link and Unlink client?

Any comments about individual refill?

Any comments about Discard or sell?

Any comments about Maintence need and complete?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

5 av 33 18.05.2023, 11:33

It looks handy, but I can not see any specific use case for myself.

Looks nice.

Cryogentics �sh

N^2 Tank and o�ce/lab

Andre:

Very poor

1 2 3 4 5 6

Very good

Side menu

Bottom menu

What do you think about the manual act feature?

Any comments about Transaction?

Go to the Transaction menu, and press the square on the bottom navigation bar, which icon

would you rather use on the internal transfer menu?

How would you rate the functionality of the container menu?

Navigate to the dashboard and press the square on the bottom naigation bar, do you prefer

the main menu on the side or the bottom?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

6 av 33 18.05.2023, 11:33

Landscape

Portrait

Both

Very poor

1 2 3 4 5 6 7 8 9 10

Completly perfect

Impossible to navigate and
use

1 2 3 4 5 6 7 8 9 10

Intuitive and easy to
use

(Navigate to the dashboard and) press the triangle on the bottom naigation bar, do you prefer

a verticale layout?

How would you rate the draft? *

If there are any, what changes would you make to the program?

If there are any, what additional functionalities would you like to see in the program?

How user friendly was the program? (How hard was it to navigate, understand content etc.) *

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

7 av 33 18.05.2023, 11:33

Yes

No

Andre:

Do not see a use for the zeros in running number.

Dette innholdet er ikke laget eller godkjent av Google.

Were the colors used in the draft to your liking?

Additional Feedback

If we have time left, explore the web application and please give your feedback.

 Skjemaer

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

8 av 33 18.05.2023, 11:33

Oversiktlig, intuitive menu.

Looks quite usefull, nice to have.

I like the balanced color choices, text size is nice, icons are good.

I would like to have the feature to see the complete comment for example.

Very poor

1 2 3 4 5 6

Very good

Cryogenetics feedback form

Explore the prototype on your own, and write a short summary of your first impression. *

Navigate to "Dashboard", what do you think about this feature?

What did you like about the Dashboard? (color, layout, content, icons, features etc.)

What don't you like about the Dashboard? (color, layout, content, icons, features etc.)

How would you rate the Dashboard?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

9 av 33 18.05.2023, 11:33

I would like a popup to see a whole field that does not fit.

OPER is not self explaintory.

Nice simplified, color for statuses, green for available for example.

Very poor

1 2 3 4 5 6

Very good

Instead of code it would be nicer to have initials, so i can easier see which is which.

Is there anything you want to add or remove from the Dashboard?

Any text that could be changed?

Navigate to the "Log", what do you think about the Act Log?

What did you like about the Act Log? (color, layout, content, icons, features etc.)

What did you not like about the Act Log? (color, layout, content, icons, features etc.)

How would you rate the Act Log?

Is there anything you want to add or remove from the Act Log?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

10 av 33 18.05.2023, 11:33

Could be nice to separate the screen into two, drag and drop to move tanks internal. Could be split
horizontally.
I would love to have a feature to hide columns or add columns.
I do not think serial number is not neccessary, but it strictly neccessary to store.

Simple style, intiuitive.

Unneccessary columns,

Very poor

1 2 3 4 5 6

Very good

instead of #NR it could be tank id.
Specify invoice means, what does this date mean.

Navigate to the "Inventory", what do you think about the Inventory?

What did you like about the Inventory? (color, layout, content, icons, features etc.)

What did you not like about the Inventory? (color, layout, content, icons, features etc.)

How would you rate the Inventory?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

11 av 33 18.05.2023, 11:33

Really cool, undo is a nice feature.
Cancel all, the whole list removes.

Cancel all

Undo

Remove selected

more details

Andre:

Very poor

1 2 3 4 5 6

Very good

I would like to have the battery indicator and last refilled date.

Navigate to Tank Filling for multiple containers, what do you think about how this feature

works?

Mark buttons/features which you think are necessary?

What would rate the multiple Tank filling menu?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

12 av 33 18.05.2023, 11:33

Layout is nice

Very poor

1 2 3 4 5 6

Very good

Very good, easy to use, icons are nice.

It works

Easy and nice

Good, we need to know who it is sold to.

Navigate to "Container", and press camera icon to open a container. What do you think about

this layout?

How would you rate the menu inside the container window?

What do you think about the menu inside the container window?

Any comments about Link and Unlink client?

Any comments about individual refill?

Any comments about Discard or sell?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

13 av 33 18.05.2023, 11:33

What is maintence, yearly maintence?
It would be nice to have production year to be extra causus with these tanks.

Could be handy to have, but i think it is very easy to make human errors with this feature.

One customer may have many address.
I want be able to change linked client easier, since

Cryogentics �sh

N^2 Tank and o�ce/lab

Andre:

Very poor

1 2 3 4 5 6

Very good

Any comments about Maintence need and complete?

What do you think about the manual act feature?

Any comments about Transaction?

Go to the Transaction menu, and press the square on the bottom navigation bar, which icon

would you rather use on the internal transfer menu?

How would you rate the functionality of the container menu?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

14 av 33 18.05.2023, 11:33

Side menu

Bottom menu

Landscape

Portrait

Both

Very poor

1 2 3 4 5 6 7 8 9 10

Completly perfect

Small changes I would like to add

Navigate to the dashboard and press the square on the bottom naigation bar, do you prefer

the main menu on the side or the bottom?

(Navigate to the dashboard and) press the triangle on the bottom naigation bar, do you prefer

a verticale layout?

How would you rate the draft? *

If there are any, what changes would you make to the program?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

15 av 33 18.05.2023, 11:33

Some tanks dont hold nitrogen as efficiently, It could be nice with a yellow indicator for tanks that do not
hold nitrogen as well, red for really badly.
Can you have a login option for trondheim/hamar?

Impossible to navigate and
use

1 2 3 4 5 6 7 8 9 10

Intuitive and easy to
use

Yes

No

Andre:

Colors, menus and content
Multitasking, I do not think it is strictly neccessary. But there is some use cases where i think it quite
handy.
We use tank mostly, not container.

If there are any, what additional functionalities would you like to see in the program?

How user friendly was the program? (How hard was it to navigate, understand content etc.) *

Were the colors used in the draft to your liking?

Additional Feedback

If we have time left, explore the web application and please give your feedback.

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

16 av 33 18.05.2023, 11:33

Dette innholdet er ikke laget eller godkjent av Google.

Skjemaer

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

17 av 33 18.05.2023, 11:33

Not answered.

Very poor

1 2 3 4 5 6

Very good

Cryogenetics feedback form

Explore the prototype on your own, and write a short summary of your first impression. *

Navigate to "Dashboard", what do you think about this feature?

What did you like about the Dashboard? (color, layout, content, icons, features etc.)

What don't you like about the Dashboard? (color, layout, content, icons, features etc.)

How would you rate the Dashboard?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

18 av 33 18.05.2023, 11:33

We would like to #NR to be changed to tank id.
Maybe it would be better to only show critical information and
I think the invoice features would only be suited for the admin page/web-app, or a specific menu option
for this feature.

Oper could be replaced with initials.
Nice to have

Very poor

1 2 3 4 5 6

Very good

Is there anything you want to add or remove from the Dashboard?

Any text that could be changed?

Navigate to the "Log", what do you think about the Act Log?

What did you like about the Act Log? (color, layout, content, icons, features etc.)

What did you not like about the Act Log? (color, layout, content, icons, features etc.)

How would you rate the Act Log?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

19 av 33 18.05.2023, 11:33

We would like to have the battery nitrogen level indicator to be on the separate inventory.

We need to have seperate icons for not paid and needs to be filled.

Very poor

1 2 3 4 5 6

Very good

Add battery nitrogen level indicator.
Different icon for invoice not paid.

Is there anything you want to add or remove from the Act Log?

Any text that could be changed?

Navigate to the "Inventory", what do you think about the Inventory?

What did you like about the Inventory? (color, layout, content, icons, features etc.)

What did you not like about the Inventory? (color, layout, content, icons, features etc.)

How would you rate the Inventory?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

20 av 33 18.05.2023, 11:33

Cancel all

Undo

Remove selected

more details

Andre:

Very poor

1 2 3 4 5 6

Very good

Navigate to Tank Filling for multiple containers, what do you think about how this feature

works?

Mark buttons/features which you think are necessary?

What would rate the multiple Tank filling menu?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

21 av 33 18.05.2023, 11:33

Looks good, nice to have the Log on the button. We need to have warning symbols for each seperate
container.

Very poor

1 2 3 4 5 6

Very good

Intuiative to use.

Good

Navigate to "Container", and press camera icon to open a container. What do you think about

this layout?

How would you rate the menu inside the container window?

What do you think about the menu inside the container window?

Any comments about Link and Unlink client?

Any comments about individual refill?

Any comments about Discard or sell?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

22 av 33 18.05.2023, 11:33

I think it is fine to have this feature.

Cryogentics �sh

N^2 Tank and o�ce/lab

Andre:

Very poor

1 2 3 4 5 6

Very good

Any comments about Maintence need and complete?

What do you think about the manual act feature?

Any comments about Transaction?

Go to the Transaction menu, and press the square on the bottom navigation bar, which icon

would you rather use on the internal transfer menu?

How would you rate the functionality of the container menu?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

23 av 33 18.05.2023, 11:33

Side menu

Bottom menu

Landscape

Portrait

Both

Very poor

1 2 3 4 5 6 7 8 9 10

Completly perfect

We would love to have an option to add comment to multiple fill menu, and to each seperate icon.

Navigate to the dashboard and press the square on the bottom naigation bar, do you prefer

the main menu on the side or the bottom?

(Navigate to the dashboard and) press the triangle on the bottom naigation bar, do you prefer

a verticale layout?

How would you rate the draft? *

If there are any, what changes would you make to the program?

If there are any, what additional functionalities would you like to see in the program?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

24 av 33 18.05.2023, 11:33

Impossible to navigate and
use

1 2 3 4 5 6 7 8 9 10

Intuitive and easy to
use

Yes

No

Andre:

Multitasking would be nice to have to quickly check and do different actions at the same time, would
defintly be used in some operations.

Indicator for bigger tanks 5-600 which is approved, organized innside before link to client.

Dette innholdet er ikke laget eller godkjent av Google.

How user friendly was the program? (How hard was it to navigate, understand content etc.) *

Were the colors used in the draft to your liking?

Additional Feedback

If we have time left, explore the web application and please give your feedback.

 Skjemaer

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

25 av 33 18.05.2023, 11:33

Looks really nice, cool to have all the information about our product in our.

Handy to get an overview of contents.

Very poor

1 2 3 4 5 6

Very good

Cryogenetics feedback form

Explore the prototype on your own, and write a short summary of your first impression. *

Navigate to "Dashboard", what do you think about this feature?

What did you like about the Dashboard? (color, layout, content, icons, features etc.)

What don't you like about the Dashboard? (color, layout, content, icons, features etc.)

How would you rate the Dashboard?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

26 av 33 18.05.2023, 11:33

Very poor

1 2 3 4 5 6

Very good

I would like to have initials, instead of operator codes.

Is there anything you want to add or remove from the Dashboard?

Any text that could be changed?

Navigate to the "Log", what do you think about the Act Log?

What did you like about the Act Log? (color, layout, content, icons, features etc.)

What did you not like about the Act Log? (color, layout, content, icons, features etc.)

How would you rate the Act Log?

Is there anything you want to add or remove from the Act Log?

Any text that could be changed?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

27 av 33 18.05.2023, 11:33

Very poor

1 2 3 4 5 6

Very good

Navigate to the "Inventory", what do you think about the Inventory?

What did you like about the Inventory? (color, layout, content, icons, features etc.)

What did you not like about the Inventory? (color, layout, content, icons, features etc.)

How would you rate the Inventory?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Navigate to Tank Filling for multiple containers, what do you think about how this feature

works?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

28 av 33 18.05.2023, 11:33

Cancel all

Undo

Remove selected

more details

Andre:

Very poor

1 2 3 4 5 6

Very good

Looks like it have all the information

Mark buttons/features which you think are necessary?

What would rate the multiple Tank filling menu?

Is there anything you want to add or remove from the Inventory?

Any text that could be changed?

Navigate to "Container", and press camera icon to open a container. What do you think about

this layout?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

29 av 33 18.05.2023, 11:33

Very poor

1 2 3 4 5 6

Very good

Good that we can comment on discard or sell, so we can write the reason for discardment.

It is really helpful to know when maintence is needed for a tank, since we often forget to make strictly
neccessary.

How would you rate the menu inside the container window?

What do you think about the menu inside the container window?

Any comments about Link and Unlink client?

Any comments about individual refill?

Any comments about Discard or sell?

Any comments about Maintence need and complete?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

30 av 33 18.05.2023, 11:33

Sometimes we have to make changes to correct specific issues, which makes this

It is very handy to have comments on each Transactions.

Cryogentics �sh

N^2 Tank and o�ce/lab

Andre:

Very poor

1 2 3 4 5 6

Very good

Side menu

Bottom menu

What do you think about the manual act feature?

Any comments about Transaction?

Go to the Transaction menu, and press the square on the bottom navigation bar, which icon

would you rather use on the internal transfer menu?

How would you rate the functionality of the container menu?

Navigate to the dashboard and press the square on the bottom naigation bar, do you prefer

the main menu on the side or the bottom?

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

31 av 33 18.05.2023, 11:33

Landscape

Portrait

Both

Very poor

1 2 3 4 5 6 7 8 9 10

Completly perfect

It could be nice with an option to fill all tanks, but i see that i

Impossible to navigate and
use

1 2 3 4 5 6 7 8 9 10

Intuitive and easy to
use

(Navigate to the dashboard and) press the triangle on the bottom naigation bar, do you prefer

a verticale layout?

How would you rate the draft? *

If there are any, what changes would you make to the program?

If there are any, what additional functionalities would you like to see in the program?

How user friendly was the program? (How hard was it to navigate, understand content etc.) *

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

32 av 33 18.05.2023, 11:33

Yes

No

Andre:

Everything is here, but i think I might have more feedback after mor
It would be cool to have a record of the production date of tanks, because tanks get "worn" and cannot
be used after 10 years.

Dette innholdet er ikke laget eller godkjent av Google.

Were the colors used in the draft to your liking?

Additional Feedback

If we have time left, explore the web application and please give your feedback.

 Skjemaer

Cryogenetics feedback form https://docs.google.com/forms/u/0/d/13CI5FRS6eXj4IaCkurDBkeYV...

33 av 33 18.05.2023, 11:33

Appendix I

Notes from User Testing

221

Elin Bergsett
* La merke til tankene først

* "Tanknivået er ut ifra når den var fylt sist"

 * Likte batterimoddelen, slipper å se på datoene, raskere å se

* Prøvde å trykke på en spesifikk dunk

 * Antok at man kan se historikken bak hver tank

* Antok at man kan bla ned tankene i overblikk-siden (scroll/recycler-view)

* Liker symbolene

 * Ikke like selvforklarende: Link/Unlink

* Antok at man kan søke etter dato på log

 * Filtrere etter både kunde og lokasjon

* Foretrekker dd/mm/åå, bekymret for misforståelse i USA og andre land

 * Står "dato/måned/år som i dmy", vil ha det forklart et sted

* Liker godt fargene og symbolene, synes det er oversiktlig

* "Hvor nyttig er dashboard"

 * Ikke klart at log og fylling er uavhengige tabeller, trodde comment var forrige handling på

tank 1

 * Spurte om maintenance merke og rødt utropstegn.

* Trodde Internal transfer ikonet var shorthand for hjemaddressen til kunden

* Forstod return symbolet

* Dashboard rating 1-6: 5

* Ingen kommentar på ting å legge til/fjerne fra dashboard

* Log: Skal være presist hvilket dato-format som brukes

 * Passe mengde farger, likte fargene

 * Log rating 1-6: 6

* Inventory:

 * "Går det an å ha fyllestatus her også (batteri-indikatoren), ellers synes jeg det ser veldig bra

ut"

 * "Alle tanker over en viss alder skal kontrolleres en gang i året, kanskje ha et varsel for visse

eldre dunker"

 * => Age variabel for tanker. Tanker over 8-10 år gamle burde få årlig service.

 * Warning for de som er over alderen og skal godkjennes

 * Inventory rating 1-6: 5

* Tank filling:

 * "Det er bra"

 * Noen knapper som er overflødige?: "Vil tro at det er bruk for alle"

 * Trodde man måtte hake av før cancel all. Klargjør?

 * Likte undo, "alltid kjekt med å kunne gå tilbake"

 * Tank filling rating 1-6: 6

* Likte nested menus måten å gjøre ting på "jeg liker at det er få valg til å begynne med"

 * terningskast: 5

* "Men ein ting her: At en ACT kanskje kunne ha tenkt meg den mellom time og location"

 * "Status etter ACT"

 * => time, location, act, status

* Likte hvordan unlink og comment funker sammen

* Discard or sell:

 * Likte det

* Manual act:

 * Kan ikke se for seg når hun vil bruke det, "men sikkert fint med muligheten"

 * "Ingen ting er mer frustrerende enn når man vil velge en meny men ikke får valgt det man

skal"

* Transaction menu:

 * "Synes det ser fint ut"

* Firkant-knapp-meny

 * Ikonene: Skjønte fabrikken, "internal er jo cryo, kanskje kult å bruke logoen", 5/6

terningskast

* Hele skissen:

 * "Synes det ser veldig fint ut"

 * 1-10: 9

* Admin page:

 * Foretrekker QR-koden med tallet til høyre uten null

* Dunker som kommer fra kunde tomme burde stå tomme i 1 uke uten nitrogen

 * Alltid 1 uke i kvarantene, litt usikker på om de klarer å holde det i gang selv

Arthur Zolothare

* Førsteinntrykk

 * "Det jeg liker veldig godt er at det er veldig enkelt, ikke for komplisert layout, og det er

veldig oversiktlig"

Dashboard: 5/6

* Likte å kunne se hva som skal fylles først

* "Hvordan skal selve invoice delen oppdateres"

 * Viste mye bekymring for hvordan fakturering gjøres. F.eks. hvis tanken har vært hos kunde i

bare 2 uker, men er fakturert for en måned.

 * Likte hvordan månedlige rapporter kunne genereres

 * Ville at man skal kunne selektere dato fra til for månedsrapport

* "Liker ikke alt for flashy farger, så liker disse, fargene til cryogenics"

 * Likte tekststørrelse, font, ikoner

 * Vil at man skal kunne trykke på en comment for å utvide den og se hele samtidig

* Lurte på: Hva er poenget med faner når man kan bytte meny på venstre-siden

 * Multi-tasking feature: Virket ikke veldig positiv.

 * Kan hende man vil se info om én tank i spesifikk imens man fyller for å se om den

har begynt å lekke.

* Vil at man skal ha forskjellige grader av advarsel, likt som en bil.

 * Dårlig kapasitet -> gul, burde ikke sende til kunde i lange perioder

 * Foreslår: Ikon av tank som viser hva som er galt.

* Forventer ikke så mye av dashboardet , vil bare ha en generell oversikt

Log: 5/6

* "Hva er opper." -> kort for operator. "Hva er det?" -> hvem som har gjort aktiviteten. "Ja det er

bra."

* "I utgangspunktet er det nok info å begynne med, på loggen, så det er bra"

* Ville ha fargekode på status

 * Available -> grønn.

* Istedenfor operasjon nr: Bruk initsialer

 * => Navn/initsialer i databasen

Inventory: 5/6

* Det hadde gått an å dele skjermen i to: hamar og trondheim

* Mange sendinger mellom hamar og trondheim, hadde likt om man kunne sveipet over skjermen

raskt og lett, siden det bare er internal transfer

* Invoice ikke nødvendig

* "Hadde det vært mulig å ha vis/gjem kolonner"

 * Ikke alltid man er interessert i å se noe annet enn tank nr og én ting til

* Liker den enkle stilen

* Ville likt farge på øverste rad

* Serienr er ikke så nødvendig her, men veldig viktig på container details

 * "Bare f.eks. hvis det skjer noe og man skal informere leverandøren om at tanken er

ødelagt"

* Kunne kalt nr for "tank ID, det er det jeg bruker når jeg snakker med kunde"

* Bruker "tank", ikke "container"

* "Går det an å på en måte bare spesifisere hva invoice betyr, om det er invoiced UNTIL eller noe

annet"

Tank filling menu for multiple containers: 5/6

* "Det er kjempekult"

* Ingen misforståelse med "cancel all" knappen her

* Likte "more details" knappen godt

* "Hvor kan man f.eks. se tank filling history for den spesifikke knappen?"

 * F.eks. hvis de scanner tank 24 vil de se tank filling history for å se om det har blitt hoppet

over. Kan hende noen glemte, da legger de merke til at de må fylle mer.

 * Etter å ha blitt forklart hvordan det kan gjøres: "Det er OK da"

* Tenker på human error:

 * Hvis man f.eks. er lat og fyller først så scanner alle, det kan hende man har hoppet over en

tank

* Tolket at datoene på oversikten er sortert etter når de ble fylt (halvveis sant)

 * Vil ha litt farge, ikonene på toppen mindre, gjøre bildene av batteriene større

 * Eller erstatte med: En ekstra kolonne med nr(#), client, og "refill date"

Container menu:

* "Layouten er veldig bra"

* ville at deadspacen skulle bli brukt

* Manuel act er human error mode xD

* "Icons er veldig fine"

* "Hvordan er det når man får tanken tilbake, trykker på unlink client, affiliasjonen til tanken"

 * "Går det an at når man logger inn, velger man affiliation hamar/trondheim"?

Individual refill:

* "Som sagt, alt er veldig enkelt å greit"

* "Det viktige med refill er registrering av tank, tidspunkt, og evt. noen kommentarer om tanken er

veldig tom, og se loggen av tanken"

* Ville ikke ha feature for å fylle i går

Discard and sell:

* "Det som kunne vært alright er om man MÅ legge til hvem det er solgt til"

* "Comment section er bra, da kan man skrive nødvendige ting der, det viktigste er hvem man har

solgt det til"

Maintenance needed:

* "Eneste jeg kan tenke på er: Man får tanken tilbake av en kunde, har vært på anlegg med unik

helsestatus der, disinfeksjon/vasking av tanken er veldig viktig"

* "Produksjonsår er del av serienummer, typ 2022XYZ"

 * Vil ha mulighet til å se production year for å sammenlikne med hvor fort nitrogenen

fordamper

Manual act:

* Problem med human error? "Over alt. Kan skje hvor som helst, når som helst."

Transaction: 5/6

* Antok at man bruker det når man får tanken tilbake fra kunde

* Viste bekymring for hvor man registrerer kunde, viste forvirring om link/unlink/send/recieve

* "{om link/unlink} Det som kan skje, det vil ikke alltid være mulighet for å kjapt registrere en kunde,

når man sender ut"

 * Vil at det skal være mulig å registrere kunde imens man sender ut, uten å gå unlink->link

først

* Viste bekymring om kunde->kunde transfer

* Internal transfer icon: Foretrekker cryogenetics logo, den andre ser ut som en "ukrainian bunker"

Hele prototypen: 7/10 på farger, ikoner, meny, funksjoner. Enkelt å forstå

Inger og Anelene

Log:

* Vil at man skal kunne velge kategori(er) å se

* Forvirret over "oper." loginkode, vil ha initsialer også

Inventory: 6/6

* Antok at inventory viser tankene på de forskjellige beholdningene

 * Antok at man kan søke lokasjon: Hamar, så kommer kun Hamar opp

 * Gjøre filtrering og søking til samme? Typ discord "channel:DnD Dolbus"

* Fylling > Invoice, vis den tidligere

* Snakk om testing av tanker for å sjekke om de lekker

 * Hvert år? At man kan manuelt legge til at en tank burde sjekkes?

* Vil ha batteri-ikonet her

* Notification: Forskjell mellom fylling og fakturering; vil ha forskjellige ikoner

 * Gjem fakturering litt fra appen, ikke av interesse for dem

 * "Viktig at det som er rødt er krise"

Tank filling:

* Vil at man skal kunne legge til kommentarer for både enkeltdunker og alle dunker under fylling

 * => Tank comment? Vil ha for spesifikke tanker hvis de er sus

* Vil at man skal kunne skrive kommentar på spesifikke dunker under "more details"

* Vil at "man skal kunne gå rett tilbake til der man var"

* Likte de fire knappene

Dashboard:

* Tank nr -> tank ID

* "Sånn det her har nå er det et lite utvalg av tanker, vi har mange fler"

* Vurderte at det hadde vært bedre med å se én kategori om gangen på dashboard

* Tenker at invoice er viktig, men det er ofte andre som gjør det enn de som fyller

 * Flytt invoice vekk fra dashboardet

 * Tenkte at de som bruker admin pagen kan gjøre det

 * Faktureres ofte én gang i året per tank bare

* "Kanskje hvis man hadde hatt at den loggen lå inne på inventory, ikke at det er to separate lister"

* Litt "meh" om loggen på dashboard? "Det er viktig at den er der, men det er ikke det vi har fokus på

på daglig drift liksom"

* En "logg"-knapp på bunnen av inventory

Container:

* Syntes det var greit at "maintenance need, maintenance complete"

* Antok at når man trykker unlink får faktorerings-folka beskjed om det

* Vil ha varsling for tanker som er maintenance need men ikke maintenance complete, og at det skal

ligge på dunk info.

 * Vil ha grønn fargekode når den er fiksa, og viktigst at det er rød fargekode på venstre bunn

når den ikke er vedlikeholdt

Manuell act:

* "Ser greit ut"

* Vil ha rød varsling hvis man prøver å sende ut maintenance needed tank til kunde

 * Samme med årlig checkup

* Vil ha mulighet for å legge til maintenance varsel for dunker som ikke er riktig organisert på

innsiden, slik at de ***må*** fikses før de sendes(linkes) til kunde

 * Spesifikt 500-literne

Appendix J

Mobile Software Development
Plan

229

Software Development Plan for mobile
application

To create our Android application for mobile devices we decided it would be beneficial to create
a software development plan. The android application is quite large and complex, to develop it
effectively our team will work closely together and utilize the plan to divide tasks between us.
Effective dividing of tasks has many benefits, but we are mostly interested in keeping merge
errors to a minimum and to make swift progress.

Activities or Fragments
To create a multitasking android application we will only use 2 activities, this is to create a
seamless experience where the user can rapidly navigate and switch fragments without loading
a new activity. Separate activities can be imagined as separate processes, and when starting a
new activity there will be a delay while the new activity is loaded and the old one is finished.
This delay will create a poor user experience if we were to create our multitasking UI with mostly
activities. Therefore we will create the UI using mostly fragments, since they are modular and
we can quickly switch between them without delay.

Activities:
● Authentication
● Main activity

Fragments:
● Log

○ Header with title, search and filter/sort.
■ Search implementation
■ Filter implementation
■ Sort implementation

○ Tablenames
■ display for each column of th

○ Recycleview
● Partial log for tank view and dashboard

○ Header with title, search and filter/sort.
○ Tablenames
○ Recycleview

● Inventory
○ Header with title, search and filter/sort.
○ Tablenames
○ Recycleview

● Partial Inventory for dashboard and tank filling menu

● Tank filling
○ Menu for tank filling
○ List of Scanned tanks

● Tank
○ Tank menu
○ Tank menu content

■ Link or unlink
■ Send to client
■ Return from client
■ Internal Transfer
■ Refill
■ Dispose
■ Manual Act
■ Maintenance

● Camera for Tank, and Tank filling
● Tab manager

○ Tabs (5 menu options)
○ Display name and switch user button

● Sidebar

The main tasks of development is:
1. Build Android UI

○ Purpose
■ The purpose of this task is to create all the UI elements for the

application, everything that the user can see.
○ Approach

■ Build the Android UI in XML layout files, replicate the final Figma design
using Android Studio's Layout Editor. The design may be slightly different
to avoid spending unnecessary time making big changes to Android
elements.

■ All visible elements should be created with the use of XML, unless it is
strictly necessary to create the element with other techniques.

■ All layouts should be created using constraint layout to optimize for
different screen sizes, unless it is strictly necessary to use other layouts.

○ Goals
■ Replicate all elements from Figma layout within reasonable similarity.
■ Create a scalable layout for different screen sizes of tablets, only for

landscape orientation.
2. Navigation

○ Purpose
■ The purpose of navigation is to intuitively let the user navigate the

application. This task includes all aspects of navigation from log in to log
out, except the multitasking functionality.

○ Approach
■ Implement the sidebar navigation, which navigates to the 5 main menu

options.
■ Implement intuitive navigation, when a tank is in a list, it can be pressed

to open that specific tank, the header can be pressed to open a complete
log or inventory. This includes the log, partial log, partial inventory, see
complete log etc.

○ Goals
■ Navigation works similar or better than the figma prototype.
■ Handle inaccurate touches correctly, like long presses, swipes and others.
■ All elements that could potentially be used as buttons to navigate the user

are implemented, within reason.

3. Login, authentication and switch user
○ Purpose

■ The main purpose of this login and authentication system is to identify the
users which interact with the tanks.

■ We also want to provide a level of authentication, this may stop a bad
actor with access to an authorized device on the clients warehouse
networks.

■ Another possible purpose is to also provide different levels of
authorization for users. Even though this is not a requirement for this
project, it can be added at a later stage with little effort.

○ Approach
■ Create an authentication activity which only navigates to the main activity

when a valid login code is submitted.
■ Get the name of the user to display in the top right corner, and store the

identifier locally.
○ Goals

■ Provide a level of authentication, identification and authorization.
■ Display the users name, and allow the user to log out/switch users.
■ Log out users when inactive for more than 10 minutes.

4. Log
○ Purpose

■ The log shows all actions which have affected the tanks.
■ The user can use sorting, filter and search to find the changes they are

looking for.
○ Approach

■ Display the data inside the table UI.
■ Implement sorting, by category rising and falling.
■ Implement filtering, for
■ Implement smart search functions.

○ Goals
■ Display the data correctly, similar to the figma model.

■ Provide tools for users to sort in alphabetical and non alphabetical order
for each column in the table, this also includes ascending and descending
order for dates and numbers.

■ Provide tools for users to filter the data for different set values, for
example acts, statuses, dates etc.

■ Provide a smart search function, which lets users search for all different
values in the table.

5. Inventory
○ Purpose

■ The inventory shows all tanks which are stored in the clients facility and
the tanks which are sent out to the customers of the client.

6. Tank
○ Purpose

■ Search for a tank or scan QR-code and get related information
■ Display all info related to a tank
■ Let users perform various acts

1. Transaction
a. Link/unlink client
b. Send to client
c. Recieve from client
d. Internal transfer

2. Maintence
a. Manage maintence
b.
c. Dispose/sell
d. Manual act

○ Approach
■ Create tank fragment, which will be “parent” to various fragments.
■ Implement Tank menu and related functionality

1. POST -> /transactions
2. PUT -> /container
3. Show and hide second row of menu, and change menu-content

based on if user choose transaction or maintenance.
4. Change menu-sub-content for different text and inputs for the 8

different act categories.
■ Implement search, let users search for any value they wish.
■ Implement camera fragment, with QR-scanning functionality.

○ Goals
■ Create a similar GUI to the Design prototype with satisfactory result.
■ Scan or search, and open correct tank.
■ Perform acts successfully by updating both transaction and container

tables correctly.
7. Tank filling

○ Purpose

■ Provide functionality to be able to quickly scan and register fill act to
multiple tanks at the same time.

■ Be able to see the tanks which needs to be refilled.
○ Approach

■ Create the basis of the UI based on the Figma design prototype.
■ Create a recyclerview of the list of scanned tanks, then add functionality

like adding, deleting, etc.
■ Put the updates to the tank table
■ Post the new acts to the act table
■ Make a confirm pop up which allows for double checking before entries

are sent.
○ Goals

■ Create a similar GUI to the Design prototype with satisfactory results.
■ Make all lists tools work correctly.
■ Put and post data to the backend.
■ Give the users a view of the tanks which needs to be refilled.

Appendix K

Globals test coverage report

235

package globals

import (
 "encoding/json"
 "errors"
 "fmt"
 "math"
 "net/http"
 "sort"
 "strings"
)

/**
 * Flattens a map slice.
 *
 * @param mapSlice - The map slice
 *
 * @return The map slice, flattened.
 */
func flattenMapSlice(mapSlice []map[string]interface{}) map[string]([]interface{}) {
 // Reorder into format: ["propertyName":[value1, value2, value3]]
 // (And assembly prop query)
 props_values := make(map[string]([]interface{}))

 var props []string
 for _, kvp := range mapSlice {
 for k, v := range kvp {
 // Check if prop already exists in props
 propExists := false
 for _, prop := range props {
 if prop == k {
 propExists = true
 break
 }
 }
 if !propExists {
 props = append(props, k)
 }

 props_values[k] = append(props_values[k], v)
 }
 }

 return props_values
}

/**
 * Parses a value, removing the in-built scientific notation of GoLang.
 * For example: Parsing 123456789 becomes "123456789" instead of 1.23456789e8, and 12345678.9 becomes "12345678.90000" instead of 1.23456789e7
 * Non-numbers are parsed like normal.
 *
 * @param any - Value to parse.
 *
 * @return The parsed value, devoid of scientific notation.
 */
func RemoveScientificNotation(any interface{}) string {
 parsed := ""
 switch any.(type) {
 case float64, float32:
 // Parse as float...
 parsed = fmt.Sprintf("%f", any)

 // ...Then convert the float to int if it doesn't change it's value
 if argVal64, ok := any.(float64); ok {
 if argVal64 == math.Floor(argVal64) {
 parsed = fmt.Sprint(int(argVal64))
 }
 } else if argVal32, ok := any.(float32); ok {
 if float64(argVal32) == math.Floor(float64(argVal32)) {
 parsed = fmt.Sprint(int(argVal64))
 }
 }

 default:
 parsed = fmt.Sprintf("%v", any)
 }

 // Return
 return parsed
}

/**
 * Finds the origin table of a column, if given by joinData.
 *
 * @param column - The column name.
 * @param joinData - The joinData to search through.
 *
 * @return The table which the column originates from.
 */
func FindOriginTable(column string, joinData map[string][]string) string {
 // Find which table the given field belongs to
 belongsToTable := ""
 for t, tf := range joinData {
 for _, s := range tf {
 if column == s {
 belongsToTable = t
 break
 }
 }
 if belongsToTable != "" {
 break
 }
 }

 // If not found, assume the field belongs to the main table
 if belongsToTable == "" {
 belongsToTable = joinData["main"][0]
 }

 // Return
 return belongsToTable
}

/**
 * ConvertUrlToSql takes an HTTP request and generates an SQL query with values separated based on the parameters provided.
 * The SQL query GETS entries from the provided activeTable and its related foreign key tables.
 *
 * @param r: a pointer to the HTTP request
 * @param joinData: a map where the key is a string representing the table name and any foreign key references, and the value is a slice containing:
 * - the name of the table
 * - the name of the primary key for that table
 * - any data values requested from that table
 * @param keys: a slice of strings representing the keys in the joinData map
 * @param table: The main table which data is being queried from
 *
 * @returns: a string representing the SQL query with placeholders
 * @returns: a slice of interface{} containing the values to fit the SQL query
 * @returns: an error if there are any issues with the request or query construction
 */
func ConvertUrlToSql(r *http.Request, joinData map[string][]string, keys []string) (string, []interface{}, error) {
 var (
 sqlArgs []interface{}
 sqlSelect string
 sqlJoin string
)

 table := joinData["main"][0]

 for _, key := range keys {
 // Extract values from data
 data := joinData[key]
 tableName := data[0]

primaryKey := data[1]

backend/globals/functions.go (91.3%) not tracked not covered covered

 primaryKey : data[1]
 dataIWant := data[2:]

 // Extract target table name from key
 targetTableName := strings.Split(key, ":")[0]

 // Construct SQL JOIN statement
 if key != "main" {
 sqlJoin += fmt.Sprintf("LEFT JOIN %s ON %s.%s = %s.%s ", targetTableName, tableName, primaryKey, targetTableName, primaryKey)
 }

 // Construct SQL SELECT statement
 for _, val := range dataIWant {
 if key == "main" {
 sqlSelect += fmt.Sprintf("%s.%s, ", joinData[key][0], val)
 } else {
 sqlSelect += fmt.Sprintf("%s.%s, ", key, val)
 }
 }
 }

 // Construct SQL WHERE statement
 urlData := r.URL.Query()
 urlDataKeys := make([]string, 0, len(urlData))
 for k := range urlData {
 urlDataKeys = append(urlDataKeys, k)
 }
 sort.Strings(urlDataKeys)

 var queryWhere strings.Builder

 // Declare start- and end date for later
 var (
 startDates []string
 endDates []string
)

 // Iterate each key (field name) and value (filter after)
 for _, k := range urlDataKeys {
 v := urlData[k]

 // Save and skip over start- and end date fields
 if k == "start_date" {
 startDates = v
 continue
 } else if k == "end_date" {
 endDates = v
 continue
 }

 // Find which table the given field belongs to
 belongsToTable := FindOriginTable(k, joinData)

 // If found, add field and table to query string
 if belongsToTable != "" {
 for _, vd := range v {
 if queryWhere.String() != "" {
 queryWhere.WriteString(" OR")
 }
 // Check if the value says to exclude values rather than include
 if len(vd) > 4 && vd[:4] == "not_" {
 vd = vd[4:]
 if vd == "null" || vd == "NULL" || vd == "" {
 queryWhere.WriteString(fmt.Sprintf(" %s.%s IS NOT NULL", belongsToTable, k))
 } else {
 queryWhere.WriteString(fmt.Sprintf(" %s.%s != ?", belongsToTable, k))
 sqlArgs = append(sqlArgs, vd)
 }
 } else {
 if vd == "null" || vd == "NULL" || vd == "" {
 queryWhere.WriteString(fmt.Sprintf(" %s.%s IS NULL", belongsToTable, k))
 } else {
 queryWhere.WriteString(fmt.Sprintf(" %s.%s = ?", belongsToTable, k))
 sqlArgs = append(sqlArgs, vd)
 }
 }
 }
 }
 }

 // Remove trailing comma from SELECT statement
 sqlSelect = sqlSelect[:len(sqlSelect)-2]

 // Combine all SQL statements into one
 SQL := fmt.Sprintf(
 "SELECT %s FROM %s %s ",
 sqlSelect, //what we want
 table, //what is the main table
 sqlJoin, //where do we get extra data
)

 // Append filters to SQL query
 if queryWhere.String() != "" {
 SQL += " WHERE " + queryWhere.String()
 }

 // Append start- and end date to SQL query
 if startDates != nil && endDates != nil {
 // Ensure the "WHERE" part has been added...
 firstWhere := queryWhere.String() == ""

 // ...and add the ranges
 for i, startDate := range startDates {
 // (Stop if the current startDate doesn't have a corresponding endDate)
 if i >= len(endDates) {
 break
 }

 endDate := endDates[i]
 if firstWhere {
 SQL += " WHERE "
 firstWhere = false
 } else {
 SQL += " OR "
 }

 SQL += table + ".date BETWEEN '" + startDate + "' AND '" + endDate + "'"
 }
 }

 return SQL, sqlArgs, nil
}

/**
 * Takes an http request and returns an SQL query with values sepperate.
 * The SQL query POSTS entries to the given table.
 *
 * @param r - a pointer to the http request
 * @param table - name of the relevant table, (should be added as request header or in the url instead)
 *
 * @returns - an SQL string with placeholders
 * @returns - a list of values to fit the SQL query
 * @returns - any potential errors thrown
 */
func ConvertPostURLToSQL(r *http.Request, table string) (string, []interface{}, error) {
 // Decode body
 var data []map[string]interface{}
 err := json.NewDecoder(r.Body).Decode(&data)
 if err != nil {
 println(data)
 return "", nil, err
 }
 // Get props string and create a sorted list of its keys
 props_values := flattenMapSlice(data)
 props := make([]string, 0, len(props_values))
 for k := range props_values {
 props = append(props, k)
 }
 sort.Strings(props)

 // Iterate props_values in order and append to propsQuery
 var propsQuery strings.Builder
 for i, k := range props {
 if i > 0 {
 propsQuery.WriteString(",")
 }

propsQuery.WriteString(k)

 propsQuery.WriteString(k)
 }

 var args []interface{}

 // Assemble values string
 var valuesQuery strings.Builder
 for i, kvp := range data {
 if i > 0 {
 valuesQuery.WriteString("), (")
 }
 for j, prop := range props {
 if j > 0 {
 valuesQuery.WriteString(",")
 }
 v := kvp[prop]
 if v == nil {
 valuesQuery.WriteString("NULL")
 continue
 }
 args = append(args, fmt.Sprintf("%v", v))
 valuesQuery.WriteString("?")
 }
 }

 // Assemble final query and query it
 query := fmt.Sprintf("INSERT INTO `%s` (%s) VALUES (%s)", table, propsQuery.String(), valuesQuery.String())
 return query, args, nil
}

/**
 * Takes an http request and returns an SQL query with values sepperate
 * The SQL query PUTS(updates) entries in the given table.
 *
 * @param r - a pointer to the http request
 * @param joinData - a map where the key is a string representing the table name and any foreign key references, and the value is a slice containing:
 * - the name of the table
 * - the name of the primary key for that table
 * - any data values requested from that table
 * @param keys - a slice of strings representing the keys in the joinData map
 * @param kwargs - Additional arguments presented as strings:
 * "alterForeignTables" - Alters foreign table values rather than the main table values whenever possible
 *
 * @returns - an SQL string with placeholders
 * @returns - a list of values to fit the SQL query
 * @returns - any potential errors thrown
 */
func ConvertPutURLToSQL(r *http.Request, joinData map[string][]string, keys []string, kwargs ...string) (string, []interface{}, error) {
 table := joinData["main"][0] // The table which the request is aimed at

 // Additional arguments
 alterForeignTables := false
 for _, kwarg := range kwargs {
 if kwarg == "alterForeignTables" {
 alterForeignTables = true
 }
 }

 // Decode body
 var data []map[string]interface{}

 err := json.NewDecoder(r.Body).Decode(&data)
 if err != nil {
 println("error decode")
 return "", nil, err
 }

 // Get props
 props_values := flattenMapSlice(data)
 props := make([]string, 0, len(props_values))
 for k := range props_values {
 props = append(props, k)
 }
 sort.Strings(props)

 // TODO: Add exception for when NO values are given
 // OR primary_key's value isnt found in the JSON data

 var queryPref strings.Builder
 queryPref.WriteString(fmt.Sprintf("UPDATE %s ", table))

 // Add inner joins
 for _, key := range keys {
 if key == "main" {
 continue
 }

 // Extract values from data
 data := joinData[key]
 tableName := data[0]
 primaryKey := data[1]

 // Extract target table name from key
 targetTableName := strings.Split(key, ":")[0]

 // Construct SQL JOIN statement
 queryPref.WriteString(fmt.Sprintf("LEFT JOIN %s ON %s.%s = %s.%s ", targetTableName, tableName, primaryKey, targetTableName, primaryKey))
 }

 queryPref.WriteString(" SET")

 it := 0
 var args []interface{}
 for _, property := range props {
 if property == "primary" {
 continue
 }

 // Find which table the given field belongs to, if allowed to alter foreign tables
 belongsToTable := table
 if alterForeignTables {
 belongsToTable = FindOriginTable(property, joinData)
 }

 //Ensures that if there is only one type of primary key there wont be an empty update field for that value
 delayedEntry := ""
 if it == 0 {
 delayedEntry = fmt.Sprintf(" %s.`%s` = CASE", belongsToTable, property)
 } else {
 delayedEntry = fmt.Sprintf(", %s.`%s` = CASE", belongsToTable, property)
 }
 prevVal := ""
 for index, val := range props_values["primary"] {
 if propVal, ok := val.(string); ok {
 if prevVal == propVal {
 continue
 }
 prevVal = propVal
 if propVal != property {
 it++
 queryPref.WriteString(delayedEntry)
 queryPref.WriteString(fmt.Sprintf(" WHEN %s.`%s` = ? THEN ?", FindOriginTable(propVal, joinData), propVal))

 // If the args are numbers, don't use scientific connotation
 args = append(args, RemoveScientificNotation(props_values[propVal][index]))
 args = append(args, RemoveScientificNotation(props_values[property][index]))

 if index+1 != len(props_values["primary"]) {
 queryPref.WriteString(fmt.Sprintf(" ELSE `%s`", property))
 }
 queryPref.WriteString(" END")
 }
 } else {
 println("error prop value")

 return "", nil, errors.New("error asserting props_values as string")
 }
 }
 }

 for p, property := range props_values["primary"] {
 if propVal, ok := property.(string); ok {
 belongsToTable := FindOriginTable(propVal, joinData)

 if p == 0 {
 queryPref.WriteString(fmt.Sprintf(" WHERE %s.`%s` = '%s'", belongsToTable, propVal, RemoveScientificNotation(props_values[propVal][p])))

} else {

 } else {
 queryPref.WriteString(fmt.Sprintf(" OR %s.`%s` = '%s'", belongsToTable, propVal, RemoveScientificNotation(props_values[propVal][p])))
 }
 } else {

 println("error prop value as string")
 return "", nil, errors.New("error asserting props_values as string")
 }
 }

 // Return
 queryPref.WriteString(";")
 return queryPref.String(), args, nil
}

/**
 * Takes an http request and returns an SQL query with values sepperate
 * The SQL query DELETES entries in the given table.
 *
 * @param r - a pointer to the http request
 * @param joinData - a map where the key is a string representing the table name and any foreign key references, and the value is a slice containing:
 * - the name of the table
 * - the name of the primary key for that table
 * - any data values requested from that table
 * @param keys - a slice of strings representing the keys in the joinData map
 *
 * @returns - an SQL string with placeholders
 * @returns - a list of values to fit the SQL query
 * @returns - any potential errors thrown
 */
func ConvertDeleteURLToSQL(r *http.Request, joinData map[string][]string, keys []string) (string, []interface{}, error) {

 table := joinData["main"][0] // The table which the request is aimed at

 // DELETE statement
 query := fmt.Sprintf("DELETE P FROM %s P", table)
 var args []interface{}

 // JOIN statement
 for _, key := range keys {
 if key == "main" {
 continue
 }

 // Extract values from data
 data := joinData[key]
 tableName := data[0]
 primaryKey := data[1]

 // Use P rather than the main table name
 if tableName == table {
 tableName = "P"
 }

 // Extract target table name from key
 targetTableName := strings.Split(key, ":")[0]

 // Add left join
 query += fmt.Sprintf(
 "\nLEFT JOIN %s ON %s.%s = %s.%s",
 targetTableName,
 tableName,
 primaryKey,
 targetTableName,
 primaryKey,
)
 }

 // Set up start- and end date variables for later
 var (
 startDates []string
 endDates []string
)

 // Iterate query keys- and values
 urlQuery := r.URL.Query()
 urlQueryKeys := make([]string, 0, len(urlQuery))
 for k := range urlQuery {
 urlQueryKeys = append(urlQueryKeys, k)
 }
 sort.Strings(urlQueryKeys)

 var queryWhere strings.Builder
 for _, k := range urlQueryKeys {
 v := urlQuery[k]
 // Save and skip over start- and end date fields
 if k == "start_date" {
 startDates = v
 continue
 } else if k == "end_date" {
 endDates = v
 continue
 }

 // Find which table the given field belongs to
 belongsToTable := FindOriginTable(k, joinData)
 if belongsToTable == table {
 belongsToTable = "P"
 }

 // If found, add field and table to query string
 if belongsToTable != "" {
 for _, vd := range v {
 if queryWhere.String() != "" {
 queryWhere.WriteString(" OR")
 }
 queryWhere.WriteString(fmt.Sprintf("\n\t%s.%s = ?", belongsToTable, k))
 args = append(args, vd)
 }
 }
 }

 // Add WHERE statement
 if queryWhere.String() != "" {
 query += "\nWHERE" + queryWhere.String()
 }

 // Append start- and end date to SQL query
 if startDates != nil && endDates != nil {
 // Ensure the "WHERE" part has been added...
 firstWhere := queryWhere.String() == ""

 // ...and add the ranges
 for i, startDate := range startDates {
 // (Stop if the current startDate doesn't have a corresponding endDate)
 if i >= len(endDates) {
 break
 }

 endDate := endDates[i]
 if firstWhere {
 query += "\nWHERE"
 firstWhere = false
 } else {
 query += " OR"
 }

 query += "\n\tP.date BETWEEN '" + startDate + "' AND '" + endDate + "'"
 }
 }

 // Return
 return query, args, nil
}

241

242 Group 202: Cryogenetics Logistics Solution

Appendix L

File tree backend

Figure L.1: File tree backend

Appendix M

Time tracking

243

Summary Report
01/01/2023 – 12/31/2023

TOTAL HOURS: 1932:31:59

583:20:00

466:40:00

350:00:00

233:20:00

116:40:00

0:00:00

204:16:31
244:44:34

450:52:54

582:59:00

449:39:00

Jan

2023

Feb

2023

Mar

2023

Apr

2023

May

2023

Jun

2023

Jul

2023

Aug

2023

Sep

2023

Oct

2023

Nov

2023

Dec

2023

24%

25%
25%

26%

USER DURATION

Havard_ski 493:22:24

Mats Greeven 489:45:38

AJ Axel Jacobsen 476:31:46

LL Lars L R 472:52:11

29%

1%
1%
1%
1%
1%
1%

1%
1%

1%
1%2%2%2%2%2% 3%

7%

9%

10%

10%

12%
TIME ENTRY DURATION

Thesis 224:15:00

Android application development 200:24:55

Writing thesis 186:35:00

thesis work 166:00:00

backend 129:18:46

mobile application 55:30:00

Last design revison 38:03:44

Icons 34:22:46

Backend 34:12:00

GET calls from Backend to Web 32:26:52

meeting 29:35:07

Website HTTP calls 26:30:00

Project Plan 25:55:14

Web draft 25:21:19

Meeting 25:13:00

Low fidelity design website 25:10:50

Page 1/10Matsgreeven's workspace

Group meeting 24:38:03

Mobile application design 24:20:00

Kravspek 23:52:59

Adding data from backend to tables frontend 22:02:56

Add PUT / POST from existing endpoints into general endpoint 20:00:00

Other time entries 558:43:28

USER - TIME ENTRY DURATION PERCENTAGE

AJ Axel Jacobsen 476:31:46 24.66%

API requests 10:35:00 0.55%

Backend 34:12:00 1.77%

Backend dummy 2:37:00 0.14%

Backend dummy data 8:00:00 0.41%

Backend planning 6:12:32 0.32%

Backend SQL 6:00:00 0.31%

First meeting 2:00:00 0.1%

Fixed CORS errors 2:15:00 0.12%

Icons 34:22:46 1.78%

Inventory fragment 10:15:00 0.53%

Kravspek 21:18:13 1.1%

Lecture 1:30:00 0.08%

Logo & Meeting 5:43:00 0.3%

Page 2/10Matsgreeven's workspace

Low fidelity 3:30:00 0.18%

Lynkurs 1:45:00 0.09%

Meeting 24:13:00 1.25%

Meeting with advisor 5:30:00 0.28%

Meeting with client 0:30:00 0.03%

Meeting with Cryogenetics 5:00:00 0.26%

Mobile bugs 14:00:00 0.72%

Project Plan 10:42:15 0.55%

PUT request on backend 19:05:00 0.99%

Questionaire 1:31:00 0.08%

Status report 6:05:00 0.31%

Thesis 224:15:00 11.6%

Url To sql convertion 15:25:00 0.8%

Havard_ski 493:22:24 25.53%

Android app Sw Dev Plan 4:45:00 0.25%

Android application development 200:24:55 10.37%

Application design 11:30:15 0.6%

Page 3/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

Container menu 12:15:00 0.63%

Designing on figma 2:00:00 0.1%

Discussion 0:30:00 0.03%

Driving to Cryogenetics 2:10:00 0.11%

Final moments 4:12:00 0.22%

Group meeting, work session 1:30:00 0.08%

Inventory design 2:00:00 0.1%

Kravspek - Operational Requirements 1:30:00 0.08%

Last desgin revison 3:54:00 0.2%

Last design revison 38:03:44 1.97%

Lynkurs bachlor oppgave 1:45:00 0.09%

Meeting 1:00:00 0.05%

Meeting about design 1:00:00 0.05%

Meeting notes 0:40:00 0.03%

Meeting with counselor Frode 6:30:00 0.34%

Meeting with Cryogenetics 5:30:00 0.28%

Meeting with steffen from Cryo 1:30:00 0.08%

Page 4/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

Meeting, work session 1:15:00 0.06%

Mobile application design 24:20:00 1.26%

Project design 1:00:00 0.05%

Project plan 0:30:00 0.03%

Project plan revision 4:00:00 0.21%

Project plan revision meeting 1:20:00 0.07%

Project plan, capter 2 - objectives 2:00:00 0.1%

Scrumban meeting 16:45:00 0.87%

Sequence diagram 6:52:30 0.36%

Tank filling menu 6:00:00 0.31%

Transaction log design 2:30:00 0.13%

Travel from Cryogenetics 1:10:00 0.06%

Travel to Cryogenetics 1:10:00 0.06%

User friendliness 0:30:00 0.03%

User testing at Cryogenetics 4:30:00 0.23%

Work session 0:30:00 0.03%

Working with high fidelity design 11:00:00 0.57%

Page 5/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

working with high fidelity design 10:00:00 0.52%

Working with low fidelity design 10:15:00 0.53%

Writing Kravspek 5:15:00 0.27%

Writing meeting notes 4:15:00 0.22%

Writing Statusrapport 3:00:00 0.16%

Writing thesis 70:35:00 3.65%

XML designs 2:00:00 0.1%

LL Lars L R 472:52:11 24.47%

add POST to backend 3:00:00 0.16%

add safe POST to backend and fix a few things 1:53:22 0.1%

add safe PUT to backend 2:00:00 0.1%

backend 129:18:46 6.69%

backend dummy 1:00:00 0.05%

conceptual model 8:00:00 0.41%

domain model 7:15:00 0.38%

finish group contract & chapter 3 2:30:00 0.13%

gantt 2:00:00 0.1%

Page 6/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

group contract 1:00:00 0.05%

kravspek planning 7:00:00 0.36%

maintain database 4:00:00 0.21%

meeting 29:35:07 1.53%

meeting with cryogenetics 5:15:00 0.27%

meeting with frode 2:00:00 0.1%

misuse case 2:33:35 0.13%

mobile application 55:30:00 2.87%

physical database draft 15:15:00 0.79%

product backlog & domain model desc 1:30:44 0.08%

redesign endpoints 2:00:00 0.1%

revision after meeting with frode 7:56:28 0.41%

rewrite kravspek to future-tense 0:47:04 0.04%

status report 1:58:41 0.1%

technical requirements 1:48:24 0.09%

thesis work 166:00:00 8.59%

update conceptual and physical model 7:15:00 0.38%

Page 7/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

usertesting 4:30:00 0.23%

Mats Greeven 489:45:38 25.34%

Add PUT / POST from existing endpoints into general endpoint 20:00:00 1.03%

Adding data from backend to tables frontend 22:02:56 1.14%

Brukertesting 1:20:00 0.07%

Bug fixes 5:15:00 0.27%

Client Meeting 10:15:04 0.53%

Client meeting 0:30:00 0.03%

Code cleanup 0:20:28 0.02%

Councillor meeting 5:33:01 0.29%

DELETE calls from webstite 6:00:00 0.31%

endpoint documentation 4:28:16 0.23%

Endpoints Admin website 2:20:00 0.12%

Final design revision 6:30:00 0.34%

Fix searching on web app 9:48:10 0.51%

Fix sorting on web app 9:54:16 0.51%

Fixing data to send 6:45:00 0.35%

Page 8/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

Generate Report 12:45:00 0.66%

GET calls from Backend to Web 32:26:52 1.68%

Group meeting 24:38:03 1.27%

Initial meeting for Project Plan setup 1:30:00 0.08%

Kravspek 2:34:46 0.13%

Low fidelity design 1:20:01 0.07%

Low fidelity design App 2:33:07 0.13%

Low fidelity design website 25:10:50 1.3%

Modify SQL translator 11:00:00 0.57%

PROG2900 Seminar

Lynkurs prosjektstyring

1:45:00 0.09%

Project Plan 15:12:59 0.79%

QR Code generation 8:00:00 0.41%

rework endpoints 13:00:00 0.67%

Rework website tables with new data 9:30:00 0.49%

Search to frontend 0:16:26 0.01%

Setting up Toggl 0:11:15 0.01%

Use case 10:37:03 0.55%

Page 9/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

Web draft 25:21:19 1.31%

Web draft (adding Tables) 7:05:46 0.37%

Website HTTP calls 26:30:00 1.37%

Website POST 14:45:00 0.76%

Website PUT 9:00:00 0.47%

Work with Azure to figure out deployment 7:30:00 0.39%

Writing thesis 116:00:00 6.0%

Created with toggl.com Page 10/10

USER - TIME ENTRY DURATION PERCENTAGE

Matsgreeven's workspace

	Summary
	Oppsummering
	Preface
	Contents
	Figures
	Tables
	Introduction
	Project background
	Client background
	Subject area
	Delimitation

	Task description
	Target audience
	Logistics product
	Project Thesis

	Project goals
	Result goals
	Effect goals
	Learning goals

	Project rules & requirements
	Time Constraints
	Technological requirements
	Other requirements

	Group organization
	Member experience
	Responsibilities
	Group agreement

	Thesis organization

	Theory
	Subject area
	Task Analysis
	Commercially available solutions

	Definitions
	Tools
	Microsoft Azure
	Golang
	Android studio & Kotlin
	REACT

	Digitalization & Digitization
	Digitization
	Digitalization

	Monolithic architecture

	Requirement Specification
	Functional requirements
	Use case model
	High level Use cases
	Low level Use cases

	Sequence diagram
	Product backlog
	Domain model
	Operational requirements
	Mobile application
	Web application
	Server
	Technical requirements
	Interface requirements
	Testing
	Security requirements and abuse handling
	Authentication
	Encryption

	Project requirements
	Documentation
	Internationalization
	User friendliness
	Versioning
	Logging

	Graphical Design
	Graphical User Interface (GUI) development
	Icons
	Color choice
	Admin website - UI
	Mobile application - UI

	System Design
	Frontend
	Web application architecture
	Mobile application architecture

	Backend
	Server API
	Database

	Development process
	Development Model
	Meetings

	GANTT chart
	Organization of quality assurance
	Documentation and standards
	Standardized workflow

	Implementation
	Backend
	Overview
	Endpoints
	Internal packages
	External packages
	Modularity and expandability
	Safety measures
	Database

	Mobile application
	API Communication
	Multitasking
	Recycler views
	Layouts and drawables
	External dependencies

	Web application
	Show data
	Manipulate data
	Print out Tank Labels
	Generate a monthly report
	Authentication keys

	Testing
	User testing
	Plan for Inspections and Testing
	Testing at Cryogenetics
	Additional user testing in Trondheim
	Feedback from User Testing
	Actions taken after user testing
	User testing conclusion

	Backend tests
	Method
	Code
	Results

	Security
	Initial risk analysis
	Mobile security
	Framework
	Challenges
	Device attestation
	Employee codes

	Admin security
	Two-factor identification
	Authentication keys

	Reflection
	Product analysis
	GUI
	Backend
	Database
	Web application
	Mobile application
	Project schedule changes

	Project results
	Group results
	Client reception
	Future potential

	Conclusion

	Bibliography and External sources
	Acronyms
	Glossary
	Project agreement
	Project plan
	Requirement specification
	Gantt chart final
	Status report 1
	Status report 2
	Meeting notes
	User testing Cryogenetics employees
	Notes from User Testing
	Mobile Software Development Plan
	Globals test coverage report
	File tree backend
	Time tracking

