
ISBN 978-82-326-7114-4 (printed ver.)
ISBN 978-82-326-7113-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:206

Erlend Torje Berg Lundby

Data-Driven Dynamical
Modeling in the Face of Data
LimitationsD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2023:206
Erlend T orje Berg Lundby

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Thesis for the Degree of Philosophiae Doctor

Trondheim, June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Erlend Torje Berg Lundby

Data-Driven Dynamical
Modeling in the Face of Data
Limitations

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

© Erlend Torje Berg Lundby

ISBN 978-82-326-7114-4 (printed ver.)
ISBN 978-82-326-7113-7 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:206

Printed by NTNU Grafisk senter

Summary

Data-driven modeling has experienced an enormous increase in popularity recent
years due to the ever-growing data abundance, access to cheap computational re-
sources and great advances in algorithms and methodology. This has lead to great
accomplishments done by Machine Learning (ML) models within a range of do-
mains. This extraordinary success has not gone unnoticed within different process
industries. Motivated by the potential to improve efficiency, reduce energy con-
sumption, prevent severe incidents, costly downtime and more, stakeholders in the
industries are now looking to the ML community for solutions. However, unlike
a range of the successful showcases of data-driven modeling approaches, process
industries typically struggle with challenges of using ML models due to limited ac-
cess to informative data. Moreover, the safety critical nature of most industrial pro-
cesses put additional requirements on models’ ability to generalize to the broader
operational window, as well as knowledge about when the models fail. This does
in general not coincide with highly complex ML models, which typically requires
vast data to generalize, as well as suffering from low interpretability, challenging
the trustworthiness of these types of models when applied in dynamical processes.

This thesis presents a set of approaches utilizing Data-Driven Models (DDMs) of
dynamical processes under the constraint of limited data. A novel hybrid model-
ing approach, combining Physics Based Models (PBMs) and compressed sensing
was developed and utilized to estimate unmodeled dynamics in a measured sig-
nal sampled at low frequency in an aluminum electrolysis simulator. Subtracting
the PBM estimate from the measurements leaves us with a manipulated coarsely
sampled signal representing unmodeled dynamics. This manipulation enables the
powerful tool of compressed sensing, which can now estimate the unmodeled dy-
namics from measurements sampled at a much lower frequency than what the
Shannon-Nyquist theorem requires. Another hybrid modeling approach presented
in this thesis combines PBMs with Neural Networks. The NN is used to correct
the modeling errors of a PBM by adding a corrective source term to the set of gov-
erning Ordinary Differental Equations (ODEs) known as the PBM. The method

i

ii Summary

combines the best of both modeling approaches, while eliminating some of their
weaknesses. That is, the resulting hybrid modeling approach keeps the interpretab-
ility of the PBM, and correct for its error using the NN. Moreover, the PBM sim-
plifies complexity of the learning problem for the NN, leading to a reduced need
for data. The modeling approach is showcased on a set of high dimensional ODEs
representing the mass and energy balance of the aluminum electrolysis.

Moreover, a purely data-driven modeling approach was used in another work of
this PhD. The effect of sparsity promoting ℓ1 regularization on the generalizabil-
ity, interpretability, and training stability when modeling a high dimensional set
of ODEs was studied and compared to a densely connected NN. The results show
that the ℓ1 regularization significantly reduces the complexity of the model, mak-
ing the model more interpretable. Moreover, the results show that the sparse NN
generalizes better, and yield more stable convergence under the constraints of lim-
ited access to training data. Building on this work, we introduce skip-connections
to a NN for modeling high-dimensional nonlinear dynamics. The combination
of sparsity promoting regularization and skip-connections significantly improves
model accuracy and predictive stability for models trained on limited data. The
case studies in both works were conducted on a set of high-dimensional ODEs
representing the aluminum electrolysis.

Finally, the problem of maximizing the information content inherent in the train-
ing set was addressed. The goal was to excite the system dynamics to obtain the
most informative data for training Deep Neural Networks (DNNs). We present a
novel framework that samples a set of simulated informative state-action trajector-
ies distributed around the state-action space. This enables utilizing a novel static
Batch Mode Deep Active Learning (BMDAL) acquisition formulation to choose
the most informative regions in the state-action space in which to exite the system
dynamics. The case study show that the proposed method can outperform state-of-
the-art random based sampling methods in terms of providing training data such
that DNNs faster converges to acceptable model performaces in terms of accuracy
and generalization.

The work in this thesis has contributed with methodology that addresses some
challenges related to limitation of data which prevents the use of DDMs in pro-
cess industries that could potentially be highly beneficial. However, a wide range
of challenges still needs to be addressed, related to noise and disturbances, low
observability as well as safety concerns.

Sammendrag

Datadrevet modellering får stadig mer oppmerksomhet som følge av tilgang på
økende mengde data og billige databehandlingsressurser, samt store fremskritt
innen algoritmer of metodikk. Dette har ført til at maskinlæringsmodeller har løst
en rekke kompliserte modelleringsproblem innen ulike domener. Denne suksessen
har fått oppmerksomhet blant flere prosessindustrier, som nå ser på muligheten
til å bruke maskinlæring for å blant annet øke produksjonsrater, redusere ener-
giforbruk, forutse og dermed unngå alvorlighe hendelser i produksjon og dyrbar
nedetid og så videre. Prosessindustrien møter imidlertid store utfordringer knyttet
til sikkerhetskritiske aspekter samt manglede tilgang på data. Avanserte maskin-
læringsmodeller trenger typisk mye data for å kunne generalizere, samtidig som de
som regler er vansklige å tolke på grunn av deres kompleksitet. Kombinasjonen av
disse faktorene kompliserer bruken av maskinlæringsmodeller i prosessindustrien.

Denne avhandlingen presenterer en rekke bidrag med datadrevne modeller som på
ulike vis addresserer utfordringer knyttet til å modelere dynamiske prosesser med
begrenset tilgang på data. En ny hybrid modell som kombinerer en fysikkbasert
modell med compressed sensing kan estimere periodisk, stasjonær umodellert dy-
namikk i et signal som er målt ved svært lave frekvenser. I casestudiet ble det brukt
en enkel simuleringsmodell av aluminumselektrolysen, og det målte signalet var
metallhøyden av smeltet aluminum i elektrolysecellen. En annen hybrid modell
presentert i avhandlingen bruker et neuralt nettverk til å rette opp modelleringsfei-
len til en fysikkbasert modell. Den resulterende hybride modellen kombinerer det
beste av begge modellene samtidig som den eliminerer noen av ulempene de bærer.
Det vil si, den hybride modellen beholder tolkbarheten til den fysikkbaserte model-
len, samtidig som det neurale nettverket reduserer modellfeilen i den fysikkbaserte
modellen. Det neurale nettverket trenes på manipulert data, det vil si residualet
mellom målinger fra prosessen og fysikkbaserte estimater av målingene. Dette re-
duserer kompleksiteten i læringsproblemet og fører til at det kreves mindre data
for å oppnå gode datadrevne modeller. Casestudiet ble utført på et sett av høy-
dimensjonelle ordinære differensiallikninger (ODE’er) som representerer masse-,

iii

iv Sammendrag

og energibalansen i aluminumselektrolysen.

I tillegg til å bruke hybride modeller for å løse utfordringer knyttet til manglende
data presenterer denne avhandlingen også rene datadrevne tilnærminger. Effekten
av den kompleksitetsreduserende ℓ1 regulariseringen på neurale nettverks evne til
å generalisere, samt nettverkens treningsstabilitet og tolkbarhet ble analysert i et av
bidragene. Resultatene av casestudiet viste at ℓ1 regulariserte nettverk oppnådde
bedre generaliseringsevner, samt mer stabil treningskonvergens sammenliknet med
nettverk trent uten denne regulariseringen. Videre gjorde den reduserte kompleks-
iteten at tolkbarheten til modellene økte. Casestudien ble utført på samme høy-
dimensjonelle set av ODE’er som i sistnevnte hybride modell. I det påfølgende
arbeidet som bygger på disse resultatene så introduserte vi skip-connections til
modellstrukturen for å modellere det samme dynamiske systemet. Det viste seg
i casestudien at modeller med skip-connections som trenes med ℓ1 regularisering
oppådde økt modellnøyaktighet, samt prediktiv stabilitet for modeller trent med
begrensede mengder data.

Det sise bidraget i denne avhanlingen tar for seg informasjonsinnholdet i trenings-
dataen. Målet er å eksitere et dynamisk system på en slik måte at man får mest
mulig informasjon ut av det eksiterte dynamiske systemet. Dette gjør man for å
sample data som skal brukes til å trene neurale nettverk. Vi presenterer et nytt ram-
meverk basert på active learning. Først sampler man et sett av simulerte, informat-
ive state-action baner fordelt rundt om i tilstandsrommet. Dette muliggjør å utnytte
en ny statisk aktiv læringsformulering som søker finne de mest informative om-
rådene i tilstandstommet for så å eksitere systemet i disse områdene. Resultatene
viser at active learning metoden kan utkonkurrere de beste eksitasjonsmetodene
basert på tilfeldig eksitasjon.

Arbeidet i denne avhandlingen har bidratt med metodikk som addreserer noen
av utfordringene knyttet til manglende treningsdata som vanskligjør bruken av
datadrevne modeller i prosessindustri. Det er imidlertid en rekke utfordinger som
ikke er addressert, knyttet til målestøy, prosessforstyrrelser, lav observerbarhet
samt sikkerhetskritiske aspekter.

Contents

Summary i

Sammendrag iii

Preface xi

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 3

1.2.1 Hybrid modeling . 3

1.2.2 Compressed sensing . 5

1.2.3 Neural Networks . 6

1.2.4 Active Learning . 8

1.3 Outline and contributions . 9

1.3.1 Preliminaries (Chapter 2) 9

1.3.2 Hybrid modeling combining first principle model and com-
pressed sensing (Chapter 3) 9

1.3.3 Hybrid modeling combining first principle model and deep
learning (Chapter 4) . 10

v

vi CONTENTS

1.3.4 Modeling dynamics using sparse neural networks (Chapter 5) 11

1.3.5 Modeling dynamics using Neural Networks with skip-connections
(Chapter 6) . 12

1.3.6 Deep active learning in experimental design for nonlinear
system identification (Chapter 7) 12

1.3.7 Other contribitions . 13

2 Preliminaries 15

2.1 Simulation models . 15

2.1.1 Simple aluminum electrolysis model 15

2.1.2 Complex aluminum electrolysis model 18

2.1.3 Simulation model of surface vessel 21

2.2 Neural networks . 24

2.2.1 Sparse neural networks and regularization 24

2.2.2 Skip-connections . 27

2.2.3 Deep Active Learning 28

2.3 Compressed sensing . 29

2.3.1 Low complexity structures 32

2.3.2 Restricted isometry property 33

2.3.3 Signal estimation techniques 34

2.4 Performance metrics . 36

2.4.1 Rolling forecast error measure 36

2.4.2 Model stability measure 37

3 Hybrid modeling combining first principle model and compressed sens-
ing 39

3.1 Introduction . 39

3.2 Extended Kalman filter . 41

CONTENTS vii

3.3 Method and data generation . 42

3.3.1 Set-up for data generation and pre-processing 42

3.3.2 Novel hybrid framework 43

3.4 Results . 49

3.4.1 Noise and measurement study 50

3.4.2 State and signal estimates 52

3.5 Conclusion . 55

4 Hybrid modeling combining first principle model and deep learning 59

4.1 Introduction . 59

4.2 Corrective source term approach (CoSTA) 61

4.3 Method and experimental setup 63

4.3.1 Inducing error in the PBM 63

4.3.2 Data generation and preprocessing 64

4.3.3 Modeling approaches . 67

4.3.4 Training . 69

4.4 Results and discussion . 70

4.5 Conclusions and future work . 76

5 Modeling dynamics using sparse neural networks 79

5.1 Introduction . 79

5.2 Region bounds for piecewise affine neural networks 81

5.3 Method and experimental setup 82

5.3.1 Training with sparsity promoting regularization 82

5.3.2 Experimental setup and data generation 83

5.4 Results and discussion . 88

5.4.1 Interpretability perspective 88

viii CONTENTS

5.4.2 Generalizability perspective 101

5.4.3 Training stability perspective 110

5.5 Conclusions and future work . 110

6 Modeling dynamics using Neural Networks with skip-connections 113

6.1 Introduction . 113

6.2 Method and setup . 115

6.2.1 InputSkip . 115

6.2.2 Data generation . 116

6.2.3 Training setup . 117

6.3 Results and discussions . 117

6.4 Conclusion and future work . 120

7 Deep active learning in experimental design for nonlinear system iden-
tification 123

7.1 Introduction . 123

7.2 Ensembles of neural networks 124

7.3 Deep active learning in dynamical systems 126

7.4 Method and setup . 129

7.4.1 Novel DeepAL scheeme for dynamical systems 130

7.4.2 Test set generation . 134

7.5 Results and discussion . 135

7.5.1 Information based and random sampling 135

7.5.2 Uncertainty based and hybrid global strategy 140

7.6 Conclusions and future work . 141

8 Conclusions and further work 143

A Simulation model 147

CONTENTS ix

A.1 Heat capacity . 147

A.2 Energy and mass balance . 148

A.3 Heat transfer . 151

A.4 Electrochemical power . 153

A.5 Mass rates . 155

A.6 Temperature derivatives . 156

A.7 Liquidus temperature . 159

A.8 Further simplifications in the simulation model 159

x CONTENTS

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Techno-
logy (NTNU), Trondheim.

The work presented has been conducted at the Department of Engineering Cy-
bernetics (ITK), NTNU. The project supervisor has been Professor Jan Tommy
Gravdahl, and co-supervisor Professor Adil Rasheed, both from the Department
of Engineering Cybernetics, and co-supervisor Dr. Ivar Johan Halvorsen, senior
researcher at SINTEF Digital. This work was supported by the industry partners
Borregaard, Elkem, Hydro, Yara and the Research Council of Norway through the
project TAPI: Towards Autonomy in Process Industries, project number 294544.

Acknowledgements
I would like to express my sincere gratitude to Professor Jan Tommy Gravdahl,
my main supervisor, for seamlessly administering my PhD project and enabling
me to focus solely on research. Moreover, Jan Tommy has been open to my
ideas and motivated me to explore and pursue my research interests. His pro-
found academic insights have played a key role in sharpening the contributions in
this thesis. I would also like to extend my gratitude to my co-supervisor, Professor
Adil Rasheed, for being an extraordinary resource during my PhD work. Adil has
dedicated numerous hours with me writing academic articles, formalizing research
ideas, and teaching me fundamental theories, as well as discussing topics relevant
to my research. I deeply admire your exceptional work ethic and unwavering pas-
sion for helping all your students reach their fullest potential. Additionally, I want
to convey my appreciation to my co-supervisor, Dr. Ivar Johan Halvorsen. Ivar
possesses extensive industry knowledge, which he has shared through interesting
discussions in both formal meetings and informal conversations before and after
football practices. Ivar’s perspectives have been invaluable in shaping the research
and understanding the broader motivations behind our contributions. To all of my

xi

xii Preface

supervisors, I want to express my heartfelt gratitude for your open-mindedness,
which has made it effortless for me to freely voice my concerns and opinions on
various topics. This has been crucial in fostering the trusting relationship I have
with each of you, and for that, I am truly grateful.

I have had the privilege to work with highly skilled individuals at ITK. First and
foremost, I would like to thank Haakon Robbinson for the immensely valuable
collaborations we have had over an extended period during my PhD. Further, I
want express my gratutde to Professor Sebastien Gros and Dr. Dirk Peter Reinhardt
for assisting me in my latest work. I want to thank Emil Johannesen Haugstvedt
and Alberto Miño Calero for the collaboration we had together. In addition, I
would like to convey my appreciation to all my friends at ITK who have been
crucial in fulfilling my social needs throughout the PhD period.

Lastly, I want to express my deepest appreciation for my parents, Rigmor and
Halvdan, who have always supported me in every conceivable way and have shown
me unconditional love. And to my lovely love Gro, who stood by my side through
the toughest parts of my PhD.

Abbreviations

AL Active Learning.

AN-RFMSE Average Normalized Rolling Forecast Mean Squared Error.

APRBS Amplitude-modulated Pseudo-Random Binary Signal.

ARX Auto Regressive with eXternal input.

BMDAL Batch Mode Deep Active Learning.

BPDN Basis Pursuit Denoising.

CoSAMP Compressive Sampling Matching Pursuit.

CoSTA Corrective Source Term Approach.

DCT Discrete Cosine Transform.

DDM Data-Driven Model.

DeepAL Deep Active Learning.

DL Deep Learning.

DMBAL Diverse Mini-Batch Active Learning.

DNN Deep Neural Network.

DOF Degrees of Freedom.

DS Dantzig selector.

xiii

xiv Abbreviations

EKF Extended Kalman Filter.

GP Gaussian Process.

HAM Hybrid Analysis and Modeling.

HTP Hard Thresholding Pursuit.

IHT Iterative Hard Thresholding.

LASSO Least-Absolute Shrinkage Selection Operator.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MPC Model Predictive Control.

MSE Mean Squared Error.

NED North East Down.

NLP Natural Language Processing.

NMPC Nonlinear Model Predictive Control.

NN Neural Network.

OCP Optimal Control Problem.

ODE Ordinary Differential Equation.

OMP Othogonal Matching Pursuit.

PBM Physics-Based Model.

PDE Partial Differential Equation.

PE Persistency of Excitation.

PGML Physics Guided Machine Learning.

PINN Physics Informed Neural Network.

PWA Piecewise Affine.

Abbreviations xv

PWL Piece-Wise Linear.

QCBP Quadratic Constraint Basis Pursuit.

ReLU Rectified Linear Unit.

RFMSE Rolling Forecast Mean Squared Error.

RIP Restricted Isometry Property.

RK4 Runge-Kutta 4.

RMSE Rooted Mean Squared Error.

SINDy Sparse Identification of Nonlinear Dynamics.

xvi Abbreviations

Chapter 1

Introduction

1.1 Motivation
Process modeling is a cornerstone of a wide range of industrial processes, serving
several objectives. That is, process models are used in design of controllers, pro-
cess optimization, state estimation, decision support, designing process plants etc.
This has motivated businesses throughout the years to invest in developing and
maintaining models that describe their respective underlying dynamical systems.
First principle Physics-Based Models (PBMs) have been widely utilized in the
modeling of complex dynamical systems. Despite their effectiveness in repres-
enting the underlying mechanisms, their use has been met with challenges arising
from an incomplete understanding of the phenomena, the computationally intens-
ive nature of the models, and the inherent uncertainty associated with the factors
influencing the dynamics. In light of these challenges, there has been a grow-
ing interest in data-driven modeling approaches as an alternative to PBMs. The
increased availability of copious amounts of data, the accessibility of cheap com-
putational resources, and the advancement of algorithms and methodology have
further catalyzed the adoption of Data-Driven Models (DDMs) in various sci-
entific and engineering applications. This includes for example material science
[1], biomechanics [2], production of biofuels [3], reservoir modeling in oil and
gas industry [4], bioengineering [5], drug discovery [6] and more [7]. The key
advantage of DDMs is their ability to accurately model complex phenomena dir-
ectly from the data, even in cases where a comprehensive understanding of the
underlying mechanisms is lacking.

Learning and deploying DDMs in industrial processes is challenging due to various
factors, including the nonlinearity and high dimensionality of process dynamics

1

2 Introduction

which pose a significant difficulty for DDMs. Although Neural Networks (NNs)
are inherently suitable for modeling such complexities, they are highly flexible and
demand vast and varied datasets to ensure accurate and generalized model train-
ing. Complex DDMs also suffer in general from low interpretability making it
difficult to understand and validate the predictions made by the DDMs. Further-
more, DDMs have shown to be unstable to train, affecting prediction properties
[8].

The primary production of aluminum involves the extraction of the metal from
alumina through the electrolytic process known as the Hall-Héroult process [9].
The aluminum electrolysis is a high dimensional, highly nonlinear industrial pro-
cess with many interrelated physio–chemical sub–processes. Intensive research
have lead to the development of complex PBMs of different sub–processes of alu-
minum electrolysis. In [10], a mass and energy balance model based on the first
law of thermodynamics was developed. Authors of [11] use fundamental equa-
tions from fluid dynamics and electromagnetism to derive PBMs for the stationary
magnetohydrodynamic flow and heaving of the liquid metal caused by the current
induced magnetic field. A 3D multi-scale model predicting bubble flow derived
from physical laws describing motions of gas in liquid, bubble growth based on
chemical equations and Farraday’s law and the coalscence of micro bubbles based
on the probability of collision of bubbles was presented in [12]. The authors of [13]
presented a multiscale, multiphysics modeling framework that combines magneto-
hydrodynamic model in [11], a mesoscale model to describe bubble behavior, and
a full cell bath flow model into a full cell alumina distribution model.

Despite great advances in modeling the aluminum electrolysis from first-principles,
state-of-the-art models still suffer from strong modeling bias due to the difficult
modeling nature of the process. There are strong initiatives to improve mod-
eling accuracy of the aluminum process. For example, increased insight in the
process dynamics can potentially improve decision support, state estimation, and
consequently process optimization while maintaining safe operation. Therefore,
the industry is investing in research to map the utility of machine learning in the
aluminum process. However, the aforementioned challenges of training and im-
plementing DDMs are particulary present in the aluminum electrolysis. The envir-
onment in the aluminum electrolysis cell is extremely harsh due to the high tem-
peratures and highly corrosive electrolyte [14, 15]. Sensor systems generally do
not survive long in this environment, and most of the measurements taken of state
variables in the process are done manually by process operators. Due to the cost
of manual sampling, these measurements are taken at rare time-instants during op-
eration. In addition, data collected from process operation in industrial settings is
often limited due to the need for stability and safety control measures. This limited

1.2. Background 3

information is often inadequate for training robust and accurate DDMs that can ef-
fectively handle the intricacies of high-dimensional and complex processes, such
as aluminum electrolysis. Furthermore, the safety-critical nature of the aluminum
electrolysis process requires highly reliable models to be utilized. The black-box
nature of complex DDMs is generally not suitable for such requirements, and re-
lying on barely interpretable DDM predictions cannot be justified.

The focus of this thesis is on addressing the aforementioned challenges related to
data-driven modeling of dynamical systems under the constraints of limited data.
The aluminum electrolysis is given significant attention, and most case studies
are conducted on nonlinear Ordinary Differential Equations (ODEs) representing
the aluminum electrolysis. In Chapter 7 however, the research is conducted on a
surface vessel simulator. In principle, the scientific contributions of the thesis can
be extended to any system of ODEs.

1.2 Background
The purpose of this section is to provide context for the contributions made in the
thesis by briefly explaining and justifying the methodologies used in the research.

1.2.1 Hybrid modeling

By carefully observing physical phenomena, theories can be developed to under-
stand the underlying system, which are then condensed into mathematical equa-
tions that can be solved to make predictions about the system. This is, as men-
tioned above, known as PBM. PBMs possess several advantages, including their
intuitive and explainable nature, their ability to generalize well to situations where
assumptions are upheld, and the availability of mature theories for analyzing their
properties, such as stability and robustness to uncertainties and noise. However,
accurate modeling of many real-world systems is computationally demanding. As-
sumptions may be made to reduce complexity and minimize computational re-
quirements, particularly when developing control systems. Additionally, there may
be limitations in accurately describing all aspects of observations, resulting in an
incomplete, unfaithful, or overly simplified representation of the original system.

Data-Driven Modeling on the other side relies on direct approximation of the un-
derlying function from measurement data, rather than an understanding of the un-
derlying physics. In recent years, the rapid advancements in machine learning have
led to a significant increase in the availability of data, enabling the development
of DDMs for a wide range of applications, such as the identification of aluminum
electrolysis processes [16] and the detection of contamination for polymer pellet
quality control [17]. DDMs offer a high degree of flexibility and can often achieve
exceptional accuracy with minimal computational requirements. This makes them

4 Introduction

particularly useful in situations where a complete understanding of the underlying
physics is lacking. However, it is widely recognized that these models tend to have
poor generalization capabilities and often fail when presented with data that is not
well represented by the training data. Furthermore, many types of DDMs require
large amounts of data to be effective.

Due to these limitations, there is a preference for more transparent multivariate
statistical models that can provide greater insight into industrial processes, such
as estimating the internal state of an aluminum smelting process during operation
[18]. To address the shortcomings of DDMs and PBMs, a new breed of model-
ing is emerging called hybrid analysis and modeling (HAM) [19]. The modeling
approach combines PBMs and DDMs in order to utilize both the interpretability,
generalizability, and robust foundation of PBMs and the accuracy, efficiency, and
automatic recognition capabilities of DDMs. Hybrid models can balance the ad-
vantages and disadvantages of first-principles models and data-driven models and
therefore have several advantages over these classes of models, such as higher
prediction accuracy, better calibration properties, enhanced extrapolation prop-
erties and better interpretability [20]. Hybrid models can be designed in many
different ways to exploit the advantages of these models. In [21], a deep neural
network is used to estimate the process parameters utilized in a first-principle
model. In [22] correction terms are inferred from the data and added to a model
structure consisting of first-principle knowledge and the learned correction terms.
The Physics-Informed Neural Network (PINN) utilizes the known first-principles
knowledge expressed in Partial Differential Equations (PDEs) and their corres-
ponding boundary conditions to regularize a neural network that is trained to ap-
proximate the solution of the PDE [23]. The authors of [24] introduce a method
called physics-guided machine learning (PGML). The training of the Deep Neural
Network (DNN) is augmented with simplified theories relevant to the system’s
dynamics. Instead of passing these features as input to the network, they are
concatenated with the hidden layers of the network, avoiding loss of information
in earlier layers. A third method, Sparse Identification of Nonlinear Dynamics
(SINDy) [25], which is inspired by compressed sensing, seeks to express the phys-
ics of a sampled process as a sparse combination of candidate functions chosen
from a large dictionary. This has inspired other methods that search for sparse
solutions ([26, 27]), and other works optimize this search by trying to discover
symmetries in the data [28]. Deep symbolic regression methods, as presented in
literature such as [29] and [30], involve treating a neural network as an expression
tree and directly optimizing it to derive a closed-form equation. These approaches
utilize different activation functions at each layer of the network to represent a lib-
rary of permissible functions. See ([31, 32, 33, 34]) for more in-depth reviews of
this field. While showing some success, many HAM approaches suffer from issues

1.2. Background 5

such as increased computational cost for training and inference, difficult training
convergence, and overfitting. The Corrective Source Term Approach (CoSTA) is a
simple yet general and effective method that can combine a PBM and a DDM by
summing the predictions from both models. The DDM is then typically trained on
the residual of the data that the PBM did not capture. In [35] theoretically justified
that CoSTA can correct for a variety of modeling errors. CoSTA introduces model
interpretability and simplifies the DDM learning problem by canceling out known
physics using a PBM.

1.2.2 Compressed sensing

The Shanon-Nyquist sampling criterion demands a sampling frequency of at least
twice the fastest frequency component in a signal in order to accurately estimate
the signal and avoid aliasing [36]. This criterion is related to some of the ma-
jor challenges in the estimation, control, and data sampling for learning in the
aluminum electrolysis process. It is desirable to use advanced process control sys-
tems in the primary production of aluminum, such as non-linear model predictive
control (NMPC) to optimize the operation [37]. But the performance of the NMPC
is dependent on accurate state estimation, something that is a particularly difficult
task in aluminum electrolysis due to low sampling rates, low observability, and
difficult modeling conditions [38]. Moreover, the low sampling rates limit inform-
ation in the data and make it difficult to learn the process dynamics from sampled
data.

As discussed above, the cost of sampling is way to high to solve these problems
by increasing the sampling rate to the Nyquist rate. Fortunately, an emerging and
gradually more popular signal processing technique called Compressed sensing
[39] aims to reconstruct low frequency sampled signals by bypassing the Shannon-
Nyquist criterion. Compressed sensing (also referred to as compressive sensing,
compressive sampling, and sparse recovery) is a rapidly evolving field of research
that aims to estimate high-dimensional signals from low-dimensional measure-
ment vectors. This creates an underdetermined system of linear equations with an
infinite number of solutions. However, by exploiting sparsity or compressibility in
certain domains, it becomes possible to estimate high-dimensional signal vectors
from low-dimensional measurement vectors [40]. Compressed sensing provides a
framework that allows for the estimation of signals using far fewer measurements
than required by the Nyquist criterion. The strong potential of compressed sensing
has stimulated research interest of the topic in a wide range of scientific fields.
Examples are in medical imaging such as dynamic MRI [41], biomedical applic-
ations such as ECG signals[42] and EEG signals [43], and in communications
systems such as wireless sensor networks [44] to mention a few. The field of com-
pressed sensing has given rise to the development of compressive system identific-

6 Introduction

ation, which addresses the problem of identifying systems from a limited number
of observations. In [45], compressive system identification was used to identify
Auto Regressive with eXternal input (ARX) models for Linear Time-Invariant and
Linear Time-Variant systems with a large number of inputs and unknown delays.
Another method, presented in [46], combines compressed sensing and dynamic
mode decomposition to identify reduced-order models on downsampled spatial
measurements of high-dimensional systems, and to reconstruct full-state dynamic
modes associated with the model, and it was extended to actuated systems. In [47],
a method that incorporates physical knowledge into compressed sensing was de-
veloped to reduce the volume of data and number of sensors needed for modeling
and monitoring the temperature field of an additive manufacturing process. Fur-
ther research in the field of compressive system identification can be found in [48,
49, 50, 51, 52].

1.2.3 Neural Networks

DNNs are highly flexible DDMs that have the ability to approximate a wide range
of complex and high-dimensional relationships and patterns directly from data.
The hidden layers of DNNs provide intermittent representations of the input which
are reused in later layers. By adding more layers, a DNN can represent functions
of increasing complexity. Therefore, DNNs are the standard in NN modeling.

In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts
suggested how NNs might work by modeling a simple NN using electrical circuits
[53]. In 1958, Frank Rosenblatt introduced an implementation of the perceptron
[54], allowing for simple neural networks to be trained. In 1969, Marvin Minsky
and Seymour Papert pointed out that single perceptrons are not capable of solving
the XOR problem [55]. They argued that to solve the XOR problem using per-
ceptrons, they must be stacked in multiple layers. That is, in addition to an input
and output layer, at least one hidden layer is needed to solve the XOR problem.
The lack of methods to train such multilayer models led to the first major drop
in popularity of NNs [56]. In 1974, Paul Werbos suggested that backpropaga-
tion could be used to train deep neural networks. Backpropagation allows one to
calculate the gradient of a cost function with respect to the individual weights in
the network. This is done by utilizing the chain rule, computing the gradient one
layer at a time, and iterating backward from the output layer to the input layer.
This discovery has been indispensable for many subsequent advances within deep
learning (DL). The DL community has since faced major challenges that have
slowed research progress and led to a significant decrease in research funding and
interest. These periods have been followed by periods of revitalized enthusiasm
due to solutions to pressing challenges or the emergence of novel and imaginative
contributions. This encompasses an array of highly efficacious DNN architectures

1.2. Background 7

and ways of training them, the exploding increase in computational capability, and
the increasing access to vast data.

The Multi-Layer Perceptron (MLP) is a feed-forward NN composed of fully con-
nected layers. The MLP can be seen as the most intuitive and general form of
NNs because of its simplicity and applicability to a wide range of tasks. However,
different learning problems have different challenges and characteristics. There-
fore, introducing inductive bias to the neural network structure can be crucial to
achieving acceptable generalization error, or in some cases, being able to solve the
problem at all. Convolutional Neural Networks (CNN) are highly effective in tasks
like object detection in extremely high dimensional inputs like images. While the
MLP would naively look for correlations between all pixels in the image, the CNN
uses convolutions and pooling to extract local and sparse features. The utiliza-
tion of shared weights and local connections within the CNN is employed to fully
leverage the 2D input-data structures. This simplifies the learning problem and re-
duces computational time. Recurrent neural networks (RNNs) are another highly
popular DL architecture, able to capture dependencies in sequentially structured
data. RNNs can use variable length inputs due to the feedback mechanism that
reuses previous inputs. A main issue of training RNNs is their sensitivity to the
exploding and vanishing gradient problem [57]. The problem can arise when the
reduplications of several large and small derivatives potentially cause the gradients
to explode or decay. The long-short-term memory (LSTM) network [58] is a recur-
rent DNN that addresses the issues of exploding and vanishing gradients by intro-
ducing forget-gates in each processing unit so that the aforementioned sensitivity
decays over time. These DNN structures illustrate inductive bias is incorporated
into DL to achieve highly effective models.

DL is achieving great success in several applications such as computer vision, nat-
ural language processing (NLP), medicine, and more [59]. Lately, there has been
an increased interest in using NNs to model nonlinear dynamical systems, due to
their highly expressive power. Examples are the use of NNs to model the sim-
ulated dynamics of a pressurized water nuclear reactor [60], identification of the
dynamics of the bioethanol production and purification process [61], prediction of
chemical reactions [62], and determination of chlorinated compounds in fish [63].
In the aluminum electrolysis process, DNNs have been applied to predict essential
variables that are difficult to measure continuously. In [64], a dense single layer
neural network with more than 200 neurons was used to simulate bath chemistry
variables in aluminum electrolysis. The paper mainly addresses the training speed
of neural networks using an extreme learning machine. In [65] dense neural net-
works were used to predict variables in the electrolysis cell. The study took into
account the changing properties of the electrolysis cells by collecting data over the

8 Introduction

course of their life cycle. In [66], dense neural networks with two hidden layers
were used to model the properties of the carbon anode.

However, using NNs to model the dynamics of a physical process entails a number
of challenges. NNs typically need vast data in order to generalize well. While ap-
plications like NLP and computer vision typically have access to enormous data-
sets, data from physical processes like aluminum electrolysis is typically scarce
and contains limited information. Due to the cost of sampling and exciting the
dynamics, the potential experimental budget is a limiting factor. Moreover, the
safety-critical nature of the aluminum electrolysis is not compatible with standard
black-box NNs. NNs also turn out to be unstable in training. That is, NNs with the
same model structure trained on the same data but with different parameter initial-
ization converge to models with different prediction capabilities. While NNs have
proved to be highly effective, several challenges remains in order to fully exploit
their potential in safety-critical systems like the aluminum electrolysis.

1.2.4 Active Learning

Active Learning (AL) aims to maximize model accuracy with a minimal amount of
data by acquiring the most informative training data [67]. AL has been utilized in
many fields, including image recognition [68], text classification [69], and object
detection [70], to name a few. In these scenarios, large unlabeled datasets are avail-
able, and the AL algorithm aims to choose the most informative samples among
the unlabeled data. The goal is then to reduce the costly labeling process which
is performed by human domain experts. In the context of dynamical systems, la-
beling output data may not incur significant expenses. However, data obtained
from a processes under closed-loop feedback control often lacks the necessary in-
formation to identify NN models with acceptable performance, including accuracy
and generalizability to operational regions of the input space, known as the state-
action space. Obtaining informative datasets of dynamical processes is costly due
to for example interruption of the production or operation, and expenses of meas-
uring certain states. Moreover, exciting the dynamical systems to regions with
high model uncertainty can induce unforeseen and potentially severe incidents to
the process and its surroundings. While the safety-critical nature of using NNs
in controlled processes is a major research challenge itself, approached by for ex-
ample techniques within reachability analysis [71, 72], we limit the scope of the
work presented in Chapter 7 to the informativeness of the sampled data, addressing
challenges related to costs of sampling large datasets in dynamical systems.

Introducing AL methods to experimental design for system identification intro-
duces additional challenges to the AL problem. That is, most AL methods address
static acquisition problems where, in principle, any location in the input space is

1.3. Outline and contributions 9

directly accessible, or a dataset is sampled in advance. For dynamical systems,
on the other hand, reaching a desired location in the state-action space requires
system excitation through control inputs. The topic of optimal excitation has been
addressed in the research field known as optimal experiment design [73]. In light
of this, optimal experiment design can be seen as a subfield of AL, or they can be
seen as related research topics. Anyways, AL, which originates from the computer
science community provides a wide range of information-theoretic approaches as
well as a well-defined learning framework, providing great inspiration to research-
ers working with system identification.

Authors of [74] propose AL strategies for the identification of a Gaussian Process
(GP) model inspired by information theoretic measures. The most promising work
they propose suggests optimizing a sequence of control inputs that maximize the
predictive differential entropy along the state trajectory; a method outperforming
state-of-the-art experimental design methods. The work of identifying GP models
was extended in [75], to also include global explorations. The global search for
initial states is done by exploring the informativeness of short trajectories from
candidate initial states. When an informative initial state is acquired, the local
exploration maximizes the predictive entropy along the state trajectory as in [74].
AL is also applied to acquire data that efficiently identify linear models by solving
an Optimal Control Problem (OCP) that maximize the minimal eigenvalues of
covariates of states [76]. An active learning approach to identify a restricted class
of nonlinear dynamical modes whose state transitions depend linearly on a known
feature embedding of state-action pairs was investigated in [77]. However, a well-
defined formulation to utilize AL in acquiring data for identifying DNN models of
dynamical systems is yet to be defined.

1.3 Outline and contributions

1.3.1 Preliminaries (Chapter 2)

This chapter presents the preliminary theory used throughout the thesis. This in-
cludes simulation models used in the case studies as well as fundamental Machine
Learning (ML) theory utilized in different contributions presented in the thesis.
Two performance metrics used throughout the thesis are defined at the end of the
chapter.

1.3.2 Hybrid modeling combining first principle model and compressed sens-
ing (Chapter 3)

[78] E. T. B. Lundby, A. Rasheed, I. J. Halvorsen, J. T. Gravdahl, "A novel hybrid
analysis and modeling approach applied to aluminum electrolysis process”. In:

10 Introduction

Journal of Process Control 105 (2021), pp. 62–77. ISSN: 0959-1524.

Aluminum electrolysis cells are subject to severe conditions that necessitate mul-
tiple manual measurements. The costs associated with manual sampling signific-
antly impact operational expenses, resulting in a low frequency of measurements.
Due to the highly complex and interrelated nature of the aluminum electrolysis,
state-of-the-art PBMs, despite building on excellent system knowledge, are in-
sufficient to accurately express the full physics in the cells. The combination of
inadequate prediction models and low sampling rates makes state estimation in the
aluminum electrolysis highly challenging, which degrades the potential of optimal
process operation.

This chapter presents a novel hybrid modeling approach combining a PBM with
the powerful signal estimation technique called compressed sensing to estimate a
stationary disturbance from a signal measured at low sampling rates. Compressed
sensing requires that, in order to estimate a coarsely sampled signal, the signal
of interest must be sparse in some domain. Starting with a non-sparse coarsly
sampled signal, a PBM subtract the known physics from the measured signal. This
manipulation produces a much sparser residual signal representing the unmodeled
dynamics in the measured signal. Since the residual signal can be sparsely repres-
ented in some transformed domain, compressed sensing can be utilized to estimate
the unmodeled dynamics from low frequency measurements. The low frequency,
manipulated signal is used as inputs to a compressed sensing algorithm, producing
a high-fidelity estimate of the unmodeled dynamics in the originally measured sig-
nal. The novelty in the work is two-fold. First, compressed sensing is introduced
to the field of aluminum electrolysis. Second, the novel hybrid modeling approach
enabling compressed sensing to estimate the unmodeled dynamics of a measured
non-sparse signal presented. To illustrate how the novel hybrid model can be util-
ized in state estimation, the estimate of the unmodeled signal is integrated in an
Extended Kalman Filter (EKF) to increas accuracy of the state estimation.

1.3.3 Hybrid modeling combining first principle model and deep learning
(Chapter 4)

[79] H. Robinson1, E. T. B. Lundby1, A. Rasheed, J. T. Gravdahl, "A novel
corrective-source term approach to modeling unknown physics in aluminum ex-
traction process" Conditional Acceptance: Engineering Applications of Artificial
Intelligence. 2023, Available in: arXiv preprint arXiv:2209.10861 (2022).

State-of-the-art process models of the aluminum electrolysis are mostly derived
from first principles yielding PBMs. The accuracy of these models often suffer

1Equal contributions

1.3. Outline and contributions 11

due to partly understanding of the process, numerous modeling assumptions, and
uncertainty in the model coefficients. NNs are highly flexible DDMs with the cap-
ability to model complex input-output relations directly from data. However, NNs
typically requires vast data to reach desirable model accuracy and generalizability.
Moreover, the complex structure of NNs indicate that these models suffer from
low interpretability.

In this chapter, we present a novel approach to combine the best of both physics-
based and data-driven modeling approaches while eliminating some of their weak-
nesses. That is, a NN is used to correct a misspecified PBM of the Hall–Héroult
process by using a corrective source term added to the set of governing ODEs. Re-
sidual data, meaning data obtained from subtracting the PBM estimates of states
from measurements of the states is used as training data for the NNs. Utilizing
PBMs in this manner reduces complexity of the learning problem for the NNs,
which again reduces the need for data, while maintaining a high level of inter-
pretability in the PBM. We compare this approach with an end-to-end learning
approach and an ablated physics-based model, and show that the proposed hybrid
method is more accurate, consistent, and stable for long-term predictions.

1.3.4 Modeling dynamics using sparse neural networks (Chapter 5)

[80] E. T. B. Lundby, A. Rasheed, I. J. Halvorsen, J. T. Gravdahl "Sparse deep
neural networks for modeling aluminum electrolysis dynamics”. In: Applied Soft
Computing 134 (2023), p. 109989. ISSN: 1568-4946.

The remarkable capacity of DNNs to fit arbitrary nonlinear functions from data
with minimal expert intervention has made them a widely popular choice for mod-
eling complex nonlinear processes. However, they are almost always overparamet-
erized and challenging to interpret due to their internal complexity. In addition, the
optimization process to determine the learned model parameters can be unstable,
as it may get trapped in bad local minima.

This chapter showcases the effectiveness of sparse regularization techniques in
substantially decreasing model complexity. We illustrate this by applying these
techniques to the aluminum extraction process, which is a highly nonlinear system
comprising numerous interrelated subprocesses. We train a DNN with ℓ1 regu-
larization, which promotes sparsity, and then evaluate the impact of this regular-
ization on generalizability, interpretability, and training stability in comparison to
a densely connected DNN. Our findings reveal that sparse regularization signi-
ficantly diminishes model complexity compared to a corresponding densely con-
nected neural network. We contend that this renders the model more interpretable,
and demonstrate that training an ensemble of sparse DNNs with varying parameter

12 Introduction

initializations frequently converges to similar model structures with comparable
learned input features and similar prediction capabilities. Moreover, the empirical
study demonstrates that the resulting sparse models exhibit superior generalization
from small training sets in comparison to their dense counterparts.

1.3.5 Modeling dynamics using Neural Networks with skip-connections
(Chapter 6)

[81] E. T. B. Lundby1, H. Robinson1, A. Rasheed, J. T. Gravdahl, "Sparse neural
networks with skip-connections for identification of aluminum electrolysis cell"
Pending Review: IEEE CDC. (2023) Available in: arXiv preprint arXiv:2301.00582
(2023)

The limited access to informative data in the aluminum electrolysis combined with
the data-hungry nature of NNs possible put restrictions on the utility value of such
models as process models in aluminum extraction. However, the NN community
continues to conduct quantum leaps within NN methodology, improving NNs in
different applications. Huang et. al. [82] proposed DenseNet, connecting each
layer to all consecutive layers through concatenated skip-connections, obtaining
significant improvements in object recognition tasks performed by a convolutional
neural network.

Building on this work, this chapter introduces modifications of of a feed-forward
NN structure in the form of skip-connections from intermediate layers to the out-
put layer for modeling a set of ODEs representing the aluminum electrolysis.
Moreover, we combine the modified NN structure with sparsity promoting ℓ1 reg-
ularization. We demonstrate that the combination of skip-connections and ℓ1 reg-
ularization can greatly improve both the accuracy and the stability of the models
for datasets of varying sizes.

1.3.6 Deep active learning in experimental design for nonlinear system iden-
tification (Chapter 7)

[83] E. T. B. Lundby, A. Rasheed, I. J. Halvorsen, D. Reinhardt, S. Gros, J. T.
Gravdahl, "Deep active learning for nonlinear system identification", In arXiv pre-
print arXiv:2302.12667 (2023)

DNNs have great potential in modeling dynamical systems directly from data.
However, this typically requires access to vast data spanning the regions of the
input space in which the system will operate. Data obtained from a process un-
der closed-loop feedback control typically contains little variation, and thus the
information content of the data is often limited. Training DNNs using the data

1Equal contributions

1.3. Outline and contributions 13

from a closed-loop process to identify nonlinear system dynamics will therefore
typically lead to models with bad generalization properties. Obtaining vast and
informative data from a process with state-of-the-art experimental design methods
typically involves large additional costs.

This chapter proposes an optimal experimental design method that aims to effi-
ciently sample informative data from a dynamical system. The proposed method
is a deep active learning framework that iterative obtains informative data that can
be used to identify DNNs. The framework uses local explorations to obtain a set
of simulated candidate state-action trajectories to be evaluated by a global explor-
ation. The global exploration is a novel batch acquisition optimization problem
formulation for dynamical systems used to choose the most informative areas of
the input space of a dynamical system known as the state-action space. Results
show that the novel framework outperforms state-of-the-art random-based excita-
tion methods.

1.3.7 Other contribitions

During my PhD, I supervised Emil J. Haugstvedt - a master’s student at Engineer-
ing Cybernetics in his pre-project. In this work he investigated different sparsity
promoting pruning techniques for DNNs, and their effect on model accuracy and
generalization capability of the resulting DNNs that were used to model the high-
dimensional dynamical system described in Section 2.1.2 . The comparative study
includes hard and soft thresholding, pruning and regrowing, and ℓ1-regularization.
The study concludes that the ℓ1 regularization is the most crucial factor for the
model performance compared to other techniques. Moreover, it was found that
combining ℓ1 regularization with other pruning techniques could both improve and
impair model performance over both ℓ1 regualrization and the additional technique
alone, depending on the additional pruning technique. An article named "A com-
parative study of sparsity promoting techniques in neural network for modeling
non-linear dynamics" that describes the work is under review at IEEE access.

14 Introduction

Chapter 2

Preliminaries

2.1 Simulation models

2.1.1 Simple aluminum electrolysis model

This section describes a simple simulator of the aluminum electrolysis cell rep-
resenting the mass balance in the cell. The simulator is used in the case study in
Chapter 3.

Aluminum is extracted in the Hall-Héroult process, which involves dissolving alu-
mina (Al2O3) into an electrolytic bath mainly consisting of cryolite (Na3AlF6).
An electric current is sent through the cell, and aluminum ions in the electrolyte
are reduced to aluminum. The aluminum reduction cell consists of basic compon-
ents of an electrolysis cell such as anode, cathode, and electrolyte. One or several
carbon anodes are immersed into the electrolyte, also known as the bath. This is
illustrated in Figure 2.1. In this figure, the main components of an aluminum cell
and a rough sketch of its design is presented. The carbon anodes are consumed in
the process. This is expressed in the overall reaction of aluminum production in
the Hall-Héroult process:

2Al2O3 + 3C → 3CO2(g) + 4Al(l), (2.1)

where C is the carbon in the reaction from the anode, CO2 is carbon dioxide,
and Al is aluminum. The g indicates gas and the l indicates liquid. The molten
aluminum is considered as the cathode in the reaction.

On the sidewalls of the cell, a ledge of frozen electrolyte called side ledge is
formed. The side ledge works as a thermal insulator but most importantly as a
protecting layer preventing the sidewall from corroding.

15

16 Preliminaries

Side ledge

Side ledge

Insulation

Crust

Steel shell

Crust breaker

Carbon
anode

Carbon
anode

Electrolyte

Molten Aluminum

Carbon lining

Carbon lining Carbon lining

Alumina
supply

Point feeder

Current bar collector Current bar collector

Metal height

Figure 2.1: Conceptual drawing of an aluminum electrolysis cell.

The mass balance of the aluminum cell was derived in [84]. Let m be the mass of
aluminum in the cell, such that:

dm

dt
= ṁgen(t)− ṁout(t), (2.2)

where ṁgen(t) is the mass rate of aluminum generated at time instant t, and
ṁout(t) is mass rate of aluminum taken out of the cell. This can be approxim-
ated to a discrete model:

∆m(k) = ∆t(ṁgen(k)− ṁout(k)), (2.3)

where k = {1, 2, 3, ..} represent discrete time instants and ∆t is the sampling time
for when the model is updated. The mass of aluminum generated per time unit is
given by Faraday’s law:

ṁgen(k) =
∆Q(k) · CE ·MAl

F · z ·∆t , (2.4)

where CE is the current efficiency, MAl = 26.98g/mol is the molecular mass of
aluminum, F = 96485.3329C/mol is Faraday’s constant and z = 3 is the number
of electrones involved the reaction generating one aluminum atom. The charge
∆Q transferred from time instant k − 1 to k is calculated by the time integral of
the current I given by:

∆Q =

∫ k

k−1
I(τ)dτ . (2.5)

Assuming that the current I is constant within a time interval ∆t, generated mass
rate can be formulated as:

ṁgen(k) =
CE ·MAl

F · z I(k). (2.6)

2.1. Simulation models 17

Furthermore, assuming constant current efficiency during a time interval ∆t, the
mass generated during a time interval ∆t can be formulated as

mgen(k) = ṁgen(k)∆t (2.7)

The mass flow rate out of the cell relates to metal tapping. Assuming constant flow
rate during the tapping yields:

mout(k) = ∆t · ṁout(k) (2.8)

The metal height hm is a function of the average cross-section area of the cell and
the volume of molten aluminum in the cell. It is assumed that the cross-section
area is uniform. This follows from the assumption of horizontal side walls and
uniform side ledge thickness, see Figure 2.2. The metal height can be formulated
as:

hm =
VAl(mAl, ρAl)

AAl(l, w, xsl)
, (2.9)

where VAl is the volume of molten alumninum, mAl is the mass of molten alu-
minum in the cell and ρAl = 2200kg/m3 is the density of molten aluminum. AAl

is the cross section area where the cell is occupied by aluminum, l is the cell length,
w is the cell width and xsl is the side ledge thickness. VAl is given by:

VAl =
mAl

ρAl
. (2.10)

Figure 2.2b show a snap shot of the cross section of the electrolytic according
to the simulation. Figure 2.2a illustrates that the side ledge thickness is uniform.
These drawings illustrates that the uniform cross section area of aluminum is given
by:

AAl = (l − 2xsl) · (b− 2xsl) (2.11)

The thickness of the frozen electrolyte known as side ledge xsl is determined by a
complex interaction between heat balance, amperage, bath composition, cell res-
istance, movements in the bath induced by magnetism, bubbles, and more ([85]).
Therefore, this variable is challenging to estimate. As stated above, this variable
relates to the cross-section area AAl and, consequently, to the metal height hm.
Therefore, estimating the metal height with compressed sensing techniques can
reveal information about the side ledge thickness. The side ledge is crucial in pre-
venting corrosion of the sidewalls. Thus this information is of great value. The side
ledge thickness, which represents unmodeled dynamics in the cell, is simulated as
a sum of cosine waves.

18 Preliminaries

(a) Aluminum cell from the side (b) Aluminum cell from above

Figure 2.2: Geometry of simulated aluminum cell. The side walls are assumed
horizontal and the side ledge thickness is assumed uniform. In real aluminum
cells, the bottom of the side walls are in general sloping walls. Furthermore, the
side ledge thickness is in general not uniform.

2.1.2 Complex aluminum electrolysis model

This section presents the simulation model used in the case studies in Chapter 4,
5 and 5. The complete ODEs are presented, while derivations of-, and additional
information about the simulator is found in Appendix A. An overview of the
physical plant is shown in Figure 2.3. A PBM of the plant can be derived from
the mass/energy balance of the system. We omit this step and present the model
directly. The internal dynamics of the aluminum electrolysis cell are described by
a set of Ordinary Differential ODEs, with the general form:

ẋ = f(x,u), (2.12)

where x ∈ R8 is the state vector, u ∈ R5 are external inputs, and f(x,u) de-
scribes the nonlinear dynamics. Table 2.1 shows the names of the internal states
and external inputs. The intrinsic properties of the Al2O3+AlF3+Na3 AlF6 mixture
are determined by the mass ratios of x2 (Al2O3) and x3 (AlF3), written as:

cx2 = x2/(x2 + x3 + x4)

cx3 = x3/(x2 + x3 + x4)
(2.13)

2.1. Simulation models 19

Insulation

Temperature of
side ledge

Alumina feed

Carbon
anode

Carbon
anode

Mass
of

Alumina + Aluminium Fluoride + Molten Cryolite

Molten Aluminum

Carbon lining

Bath
temperature Side wall temperature

Alumina
supply

Current bar collector Current bar collector

Produced aluminum mass

Mass of side ledge

Line current

Anode-cathode distance

Tapped metal
flow rate

Figure 2.3: Schematic of the setup.

We then define the following quantities:

g1 = 991.2 + 112cx3 + 61c1.5x3
− 3265.5c2.2x3

(2.14a)

− 793cx2

−23cx2cx3 − 17c2x3
+ 9.36cx3 + 1

g2 = exp
(
2.496− 2068.4

273 + x6
− 2.07cx2

)
(2.14b)

g3 = 0.531 + 3.06 · 10−18u31 − 2.51 · 10−12u21 (2.14c)

+ 6.96 · 10−7u1 −
14.37(cx2 − cx2,crit)− 0.431

735.3(cx2 − cx2,crit) + 1

g4 =
0.5517 + 3.8168 · 10−6u2

1 + 8.271 · 10−6u2
(2.14d)

g5 =
3.8168 · 10−6g3g4u2

g2(1− g3)
(2.14e)

g1 is the liquidus temperature Tliq defined in Equation (A.59), g2 is the electrical
conductivity κ defined in Equation (A.33), g3 is the bubble coverage ϕ defined in
Equation (A.37), g4 is the bubble thickness dbub defined in Equation (A.36)), and
g5 is the bubble voltage drop Ubub defined in Equation (A.35). The expressions and

20 Preliminaries

Table 2.1: Table of states and inputs

Variable Physical meaning Unit Variable Physical meaning Unit
x1 mass side ledge kg x2 mass Al2O3 kg
x3 mass AlF3 kg x4 mass Na3 AlF6 kg
x5 mass metal kg x6 temperature bath ◦C
x7 temperature side ledge ◦C x8 temperature wall ◦C
u1 Al2O3 feed kg/s u2 Line current kA
u3 AlF3 feed kg/s u4 Metal tapping kg/s
u5 Anode-cathode distance cm

coefficients of the physical properties in Equation (2.14) are taken from different
academic works that have estimated these quantities. These academic works are
cited in Appendix A.

The full PBM can now be written as a set of 8 ODEs:

ẋ1 =
k1(g1 − x7)

x1k0
− k2(x6 − g1) (2.15a)

ẋ2 = u1 − k3u2 (2.15b)

ẋ3 = u3 − k4u1 (2.15c)

ẋ4 = −
k1(g1 − x7)

x1k0
+ k2(x6 − g1) + k5u1 (2.15d)

ẋ5 = k6u2 − u4 (2.15e)

ẋ6 =
α

x2 + x3 + x4

[
u2g5 +

u22u5
2620g2

− k7(x6 − g1)2 (2.15f)

+ k8
(x6 − g1)(g1 − x7)

k0x1
− k9

x6 − x7
k10 + k11k0x1

]

ẋ7 =
β

x1

[
k9(g1 − x7)
k15k0x1

− k12(x6 − g1)(g1 − x7) (2.15g)

+
k13(g1 − x7)2

k0x1
− x7 − x8
k14 + k15k0x1

]
ẋ8 = k17k9

(
x7 − x8

k14 + k15k0 · x1
− x8 − k16
k14 + k18

)
(2.15h)

The constants (k0, .., k18, α, β) in Equation (2.15) are described and given
numerical values in Table 2.2.

2.1. Simulation models 21

Table 2.2: Constants in the simulator

Constant Physical meaning Numeric value Unit
k0 1/(ρslAsl) 2 · 10−5 m/kg
k1 2kslAsl/∆fusHcry 7.5 · 10−4 (kg ·m)/(

◦
C · s)

k2 hbath−slAsl/∆fusHcry 0.18 kg/(
◦
C · s)

k3 0.002
MAl2O3

·CE

z·F 1.7 · 10−7 kg/(A · s)
k4 CNa2O

4MAlF3

3MNa2O
0.036 −

k5 CNa2O
2Mcry

3MNa2O
0.03 −

k6 0.002MAl·CE
z·F 4.43 · 10−8 kg/(A · s)

k7 k2 · cpcry, liq
338 J/(

◦
C2·s)

k8 k1 · cpcry, liq
1.41 (J ·m)/(

◦
C2·s)

k9 Asl 17.92 m2

k10 1/hbath−sl 0.00083 (s ·m2·◦C)/J
k11 1/(2ksl) 0.2 (s ·m·◦C)/J
k12 k2 · cpcry, s

237.5 J/(
◦
C2·s)

k13 k1 · cpcry, s 0.99 (J ·m)/(
◦
C2·s)

k14 xwall/(2kwall) 0.0077 (m
2·s·◦C)/J

k15 1/(2ksl) 0.2 (m · s·◦C)/J
k16 T0 35 ◦C
k17 1/(mwallcp, wall) 5.8 · 10−7 ◦/J

k18 1/hwall−0 0.04 (s ·m2·◦C)/J
α 1/cpbath, liq

5.66 · 10−4 (
◦
C · kg)/J

β 1/cpcry, sol
7.58 · 10−4 (

◦
C · kg)/J

cx2,crit 0.022 −

2.1.3 Simulation model of surface vessel

We use the standard 3-Degrees of Freedom (3-DOF) model of a marine craft,
which is a simplified model of a real vessel. The state of the vessel is described by
the pose vector η = [x y ψ]⊤ ∈ R3 and the velocity vector ν = [v1 v2 r]

⊤ ∈ R3.
The pose vector describes the position and orientation of the vessel in the North-
East-Down (NED) frame with x and y being the position in the North and East dir-
ections, respectively, and ψ being the heading angle. The velocity vector describes
the velocity of the vessel in the body frame with v1 and v2 being the velocity in
the surge and sway directions, respectively, and r being the yaw rate. Figure 2.4
illustrates the surface vessel:

22 Preliminaries

Figure 2.4: 3-DOF surface vessel in the NED frame.

The model is formulated as a nonlinear system of ODEs as follows (see [86] for
details):

η̇ = R(ψ)ν

Mν̇ +C(ν)ν +D(ν)ν = τ .
(2.16)

where R(ψ) ∈ SO(3) is the rotation matrix from the body frame to the NED
frame. The mass matrix M ∈ R3×3, the Coriolis matrix C(ν) ∈ R3×3, and
the damping matrix D(ν) ∈ R3×3 are given by [87] and express the inertia and
Coriolis matrices as:

M =

m11 0 0
0 m22 m23

0 m32 m33

 , C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0

 ,
D(ν) =

d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

 (2.17)

2.1. Simulation models 23

where the elements cij(ν) and dij(ν) are given by

c13(ν) = −m22v2 −m23r

c23(ν) = m11v1

c31(ν) = −c13(ν)
c32(ν) = −c23(ν)

d11(ν) = −Xv1 −X|v1|v1 |v1| −Xv1v1v1v
2
1

d22(ν) = −Yv2 − Y|v2|v2 |v2| − Y|r|v2 |r| − Yv2v2v2v22
d23(ν) = −Yr − Y|v2|r|v2| − Y|r|r|r|
d32(ν) = −Nv2 −N|v2|v2 |v2| −N|r|v2 |r|
d33(ν) = −Nr −N|v2|r|v2| −N|r|r|r| −Nrrrr

2

.

(2.18)
The constant coefficients in (2.18) are summarized in Table 2.3. The kinematics
of the vessel is given by

η̇ = R(ψ)v =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

v1v2
r

, (2.19)

and its dynamics are governed by

ν̇ = M−1 (τ −C(ν)ν −D(ν)ν) (2.20)

We are interested in learning the dynamics of the vessel in response to given forces
and moments, which we consider as control input. This simulation model is util-
ized in the case study in Chapter 7, where the following notation is used:

ẋ = f(x,u) with x = ν and u = τ , (2.21)

i.e. x ∈ R3 is the state vector and u ∈ R3 is the control input, with dynamics
described by (2.20).

Table 2.3: Values and units of the parameters of the vessel.

Constant Value Unit Constant Value Unit

m11 2389.657 kg m22 2533.911 kg
m23 62.386 kg m32 28.141 kg
m33 5068.910 kg ·m2 Xv1 -27.632 kg · s−1

X|v1|v1 -110.064 kg · s−1 Xv1v1v1 -13.965 kg · s−1

Yv2 -52.947 kg · s−1 Y|v2|v2 -116.486 kg · s−1

Yv2v2v2 -24.313 kg · s−1 Y|r|v2 -1540.383 kg · s−1

Yr 24.732 kg · s−1 Y|v2|r 572.141 kg · s−1

Y|r|r -115.457 kg · s−1 Nv2 3.5241 kg · s−1

N|v2|v2 -0.832 kg · s−1 N|r|v2 336.827 kg · s−1

Nr -122.860 kg · s−1 N|r|r -874.428 kg · s−1

Nrrr 0.000 kg · s−1 N|v2|r -121.957 kg · s−1

24 Preliminaries

2.2 Neural networks
A DNN is a supervised machine learning algorithm [56] that can be denoted by

y = f̂(x; θ), (2.22)

where y ∈ Rs is the output vector of the network model and s its length. x ∈ Rd is
the input vector to the network model, and d is the input dimension. Here, θ ∈ Rp

denotes all trainable parameters in the network model where p is the number of the
parameters. Each layer j+1 operates on the output vector from the previous layer
Zj ∈ RLj and outputs a vector Zj+1 ∈ RLj+1 :

Zj+1 = σ(Wj+1Zj + bj+1). (2.23)

Wj+1 ∈ RLj+1×Lj is called the weight matrix, bj+1 ∈ RLj+1 is the called the
bias vector of layer j + 1, θ = {θ1, ..., θj+1, ...}, and θj+1 = {Wj+1, bj+1}.
σ is a non-linear activation function. That is,

σ(Wj+1Zj + bj+1) = (σ(W j+1
1 Zj + bj+1

1), ...,

σ(W j+1
i Zj + bj+1

i), ..., σ(W j+1
Lj+1

Zj + bj+1
Lj+1

))T , (2.24)

where W j+1
i are the row vectors of the weight matrix Wj+1 and bj+1

i , i =
1, ..., Lj+1 are the entries of the bias vector bj+1. Thus, the activation func-
tion calculates the output of each neuron in layer j + 1 as a nonlinear function of
the weighted sum of outputs from the neurons in the previous layer plus a bias.
Each neuron outputs one value, and the weight in the consecutive layer determines
the importance of the output of each neuron in the current layer. The nonlinear
activation function σ can, for example, be the sigmoid function, hyperbolic tan-
gent function or the binary step function to mention a few. For the last decade or
so, the popularity of the Piece-Wise Linear (PWL) activation function Rectified
Linear Unit (ReLU) has grown exponentially. This is in part due to its computa-
tional simplicity, representational sparsity and non-vanishing gradients. The ReLU
activation function is given by:

σ(z) = max{0, z}. (2.25)

ReLU is the only activation function used in the work of this thesis.

2.2.1 Sparse neural networks and regularization

Dense neural networks are often overparameterized models, meaning that they
have more parameters than can be estimated from the data and thus often suffer
from overfitting. In [88], it is shown empirically that randomly initialized dense

2.2. Neural networks 25

neural networks contain subnetworks that can improve generalization compared
to the dense networks. These subnetworks, characterized by significantly fewer
non-zero trainable parameters than their dense counterpart, are called sparse neural
networks. Their utility can further be seen in terms of increased computational per-
formance for inference and training, and increased storage and energy efficiency.
Typically large-scale models that require millions to billions of parameters and
arithmetic operations can highly benefit from such sparsification. To conclude
sparsification of complex models will lead to simpler models which are relatively
easier to interpret, generalize, and train.

There are many existing schemes and methods for training sparse neural networks.
Coarsely speaking, model sparsity can be divided into structured sparsity, which
includes pruning for example entire neurons, and unstructured sparsity, which
deals with pruning individual weights. Furthermore, methods can be classified
into one out of three: data-free (such as magnitude pruning [89]), data-driven
(such as selection methods based on the input or output sensitivity of neurons [90]
) and training-aware methods (like weight regularization) based on the method’s
way of selecting candidates for removal. A comprehensive review is given in [91].
Among the methods that can be used to sparsify a complex network, regulariza-
tion techniques are the most popular ones, with a solid mathematical foundation.
In regularization, penalty terms R(w) defined on the weights are added to the cost
function C:

C(xi,yi,θ) = L(yi, f̂(xi;θ)) + λR(w). (2.26)

The vector θ = {w, b} denotes the adaptable parameters, namely the weights
w and biases b in the network model. Furthermore, {(xi,yi)}Ni=1 is the training
data, L(·, ·) is the loss function to minimize and the positive scalar coefficient λ is
a hyperparameter to weight the terms L(·, ·) and R(·). The standard choice of loss
function L(·, ·) for regression tasks is the Mean Squared Error (MSE):

L(yi, f̂(xi;θ)) = (yi − f̂(xi;θ))
2. (2.27)

In the training process, the cost function is minimized to find optimal values of the
parameters:

θ∗ = argmin
θ

{
1

N

N∑
i=1

C(xi,yi,θ)

}
. (2.28)

The most intuitive sparsity promoting regularizer is the ℓ0 norm, often referred to
as the sparsity norm:

Rℓ0(w) = ||w||0 =
∑
i

{
1 wi ̸= 0,

0 wi = 0.
(2.29)

26 Preliminaries

The ℓ0 norm counts the number of nonzero weights. Unfortunately, the ℓ0 norm
has several drawbacks that make it less suitable for optimization. The ℓ0 norm is
nondifferentiable and sensitive to measurement noise. Furthermore, in terms of
computational complexity, the problem of ℓ0 norm is shown to be NP-hard [92].
The ℓ1 norm is a convex relaxation of the ℓ0 norm, and is given by:

Rℓ1(w) = ||w||1 =
∑
i

|wi|. (2.30)

Due to its geometrical characteristics, ℓ1 minimization is sparsity promoting. How-
ever, the ℓ1 norm usually does not reduce the weights to zero but rather to very
small magnitudes. Thus, magnitude pruning can be applied after ℓ1 minimization
to achieve true sparse models.

Figure 2.5: Illustration of ℓ1 regularization. θ1 and θ2 are the model parameters.
θMSE is the MSE estimate. The ellipses show the contours of the error from the
MSE estimate. The blue diamond illustrates the ℓ1 constraints. θ∗ is the parameter
estimate when ℓ1 regularization is added to the optimization.

Fig. 2.5 illustrates how ℓ1 regularization can lead to a sparse solution. The contours
represented by the ellipse correspond to the mean squared error part (L(yi, f̂(x; θ)))
of the cost function C(xi,yi,θ) while the contours represented by the rhombus
correspond to the regularization term. The stronger the regularization parameter λ
the more the weights θ will be pushed towards the origin. It can be clearly seen
that the two contours corresponding to the two parts of the cost function has a good
chance interesting on the axis which will results in many θ values being zero.

2.2. Neural networks 27

2.2.2 Skip-connections

The representation capacity is generally understood to increase with both the depth
and the width (the number of neurons in each layer), although early attempts to
train very deep networks found them challenging to optimize using backpropaga-
tion due to the vanishing gradients problem. One of the major developments that
enabled researchers to train deep NNs with many layers is the skip connection. A
skip connection is simply an additional inter-layer connection that bypasses some
of the layers of the network. This provides alternate pathways through which the
loss can be backpropagated to the early layers of the NN, which helps mitigate the
issues of vanishing and exploding gradients, which were major hurdles to training
deeper models. In general, there are two fundamental ways skip connections are
joined to the network after passing some layers. These are addition, as proposed
in [93], also known as residual skip connection, and concatenation, as proposed in
[82].

consecutive
branch

skip
branch

(a) Concatenated skip connection

consecutive
branch

skip
branch

+

(b) Residual skip connection

Figure 2.6: Illustrating the difference between concatenated and addition based
skip connections. A skip connection from layer j−a skip a−1 consecutive layers.
After added or concatenated with hidden representation Zj , a regular nonlinear
transformation is conducted to produce the next hidden transformation Zj+1.

Figure 2.6 illustrates the difference between the two. In the work of this thesis,

28 Preliminaries

only concatenated skip connections are considered. The nonlinear transformation
with concatenated skip connections as illustrated in Figure 2.6a can be formulated
as:

Zj+1 = σ(Wj+1,′ [Zj ,Zj−a]) + bj+1,′). (2.31)

Wj+1,′ is the extended weight matrix, bj+1,′ is the extended bias vector, and
[Zj ,Zj−a] is the concatenation of vector Zj and Zj−a.

2.2.3 Deep Active Learning

Deep Active Learning (DeepAL) has emerged as a combined approach between
DL and AL, addressing DL specific challenges within AL. This mainly includes
dealing with over-confident uncertainty estimates of NN predictions, efficiently
data-acquisition of data batches rather than the traditional AL one-by-one query
method, and the joint optimization of the NN model and AL algorithm [67]. The
majority of research on DeepAL focuses on static acquisition problems. Static ac-
quisition problems refer to scenarios where data is already available, and any point
in the input space can be acquired directly. Examples of such problems are visual
data processing such as image classification [94] and object detection [95], NLP
such as machine translation [96], text classification [97] and semantic analysis
[98]. The static acquisition problem imply that there exists an unlabeled dataset
U = {Z} with c input samples Z = {z1, z2, ..., zc}. The goal of DeepAL in the
static acquisition problem is to acquire as few as possible of the unlabeled data in
U for labeling by choosing the most informative samples. That includes designing

a query strategy Q, U Q−→ L, where L = {Z,Y} is a labeled dataset, and Y are
labels corresponding to inputs Z . The query strategy can be expressed in terms
of an acquisition function abatch which acquires a batch B∗ = {z∗1 , z∗2 , ..., z∗b}
of samples to be labeled. The batch based query called Batch Mode Deep Act-
ive Learning (BMDAL) is the foundation of DeepAL. The DeepAL scheme is an
iterative acquisition scheme, and one acquisition step is generally defined by:

B∗ = argmax
B⊆U

abatch(B, f̂(L)), (2.32)

Here f̂(L) is the NN. L is the labeled data up until the given acquisition step,
and the notation f̂(L) indicate that the NN is trained on this data. The acquisition
function abatch is in general a function of the NN that is trained on the currently
acquired data since the informativeness of new samples can be evaluated using this
NN.

The acquisition function abatch defines the query strategy of the AL scheme. There
exists a range of different query strategies in AL. Here we will shortly describe the
strategies relevant to the case study. Uncertainty-based strategy is one of the most

2.3. Compressed sensing 29

popular strategies in AL. The strategy aims to select samples in which the model
predictions are most uncertain about. Uncertainty-based AL methods are typically
computationally efficient and easy to implement. Moreover, these methods typic-
ally provides highly informative samples. One of the most utilized uncertainty-
based methods calculates the predictive entropy H[y|x,L] for a given sample
x. However, there are some concerns about applying uncertainty-based sampling
strategies in BMDAL. Acquiring a batch of the most informative samples using
an uncertainty measure can lead to a batch of very similar samples. Moreover,
strategies of this type are often focused on examples close to a decision boundary,
making it vulnerable to adverserial attacks [67]. Hence, a Hybrid strategy is often
preferred, accounting for diversity in the sampled data. A method called Diverse
Mini-Batch Active Learning (DMBAL) [99] adds informativeness to the optim-
ization of a K-means algorithm in the weights of each candidate sample. In the
DMBAL algorithm, informative estimates obtained by some informative measures
are assigned as weights to the corresponding candidate samples. In each acquisi-
tion step, a batch B of b samples closest to the centroids of the weighted K-means
algorithm is added to the training set.

2.3 Compressed sensing
The Shannon-Nyquist theorem states that the signal information is preserved if
it is sampled uniformly at a rate at least two times faster than its bandwidth. In
different applications, signal acquisition is prohibitive due to the cost of measur-
ing the signal or simply because sensors do not sample the signal at rates as high
as required by the Shannon-Nyquist theorem. Compressed sensing provides an
alternative to Shannon-Nyquist sampling when the estimated signal is sparse or
compressible [39]. Consider the signal x of length n represented in a transform
basis Ψ such that x = Ψs. A sparse signal x can in some basis Ψ be represented by
k << n nonzero coefficients in s. A compressible signal x can be approximated
by k << n coefficients in s. That is, when coefficients in s are sorted according
to magnitude, they decay rapidly after the k’th coefficient. Compressed sensing
addresses the problem of estimating a signal x of length n from m linear measure-
ments y whenm << n by finding a solution to an underdetermined linear system:

y = Φx, (2.33)

where Φ is the measurement matrix of size m× n.

30 Preliminaries

y xΦ

Figure 2.7: Matrix illustration of the linear underdetermined system y = Φx.
Since the system is underdetermined and the signal x is in general not sparse,
the system can in general not be solved or have infinitely many solutions. The
left vector illustrates the measurements y, the matrix in the middle illustrates the
measurement matrix Φ and the vector on the right illustrates the signal x. The
black areas in Φ are zero entries, and the white areas are ones. Φ maps values
between x and y. Colors in x and y correspond to numeric values and range from
small values corresponding to dark and large values corresponding to light.

Figure 2.7 illustrates the linear system in matrix form. This expresses that the
number of equations (m) is much smaller than the number of unknowns (n).

Now, consider the mapping of the signal x from time or space domain to a trans-
form basis Ψ

x = Ψs, (2.34)

where s are the coefficients representing the signal x in Ψ. The resulting linear
system is given by

y = Θs, (2.35)

where Θ = ΦΨ, Θ ∈ Rm×n This transformation is illustrated in Figure 2.8. The
rows of Φ, {ϕj}mj=1, represent the measurement vectors, while the columns of Ψ,
{ψj}nj=1, represent orthonormal basis vectors. If an appropriate basis Ψ is chosen
so that the signal x is sparse in this domain, a solution for s of equation (2.35) can

2.3. Compressed sensing 31

y sΦ Ψ

(a) Represents the linear system y = ΦΨs. Decompose the signal x into a basis matrix Ψ
and basis coefficients s.

y Θ s

(b) Represents the linear system y = Θs. This is the resulting system to be solved in
compressed sensing.

Figure 2.8: Matrix illustration of how the signal x is represented in terms of a
basis Ψs. Hence the measurements y are represented in terms of the measurement
matrix Φ, basis matrix Ψ and basis coefficients s. In both (a) and (b), the leftmost
vector is the measurements y and the rightmost vector is the coefficient vector s. In
s, the black areas are zero entries. In (a), the middle-left matrix is the measurement
matrix Φ. The black areas in Φ are zero entries, and the white areas are ones.
The middle-right matrix is the transform basis Ψ. In this case, Ψ is the Discrete
Cosine Transform (DCT). In (b), the middle matrix is the matrix product Θ =
ΦΨ. Despite the resulting system in (b) being underdetermined, the system can
be solved for s if a suitable basis is found so that s is sparse. That is the case
in this illustration, where s is two-sparse. Colors in y, Ψ and s correspond to
numeric values and range from small values corresponding to dark and large values
corresponding to light.

32 Preliminaries

be found from far less measurements than if the original system in equation (2.33)
was to be solved for x.

2.3.1 Low complexity structures

As mentioned, the linear system in equation (2.33) has fewer equations than un-
knowns, thus it is underdetermined. However, by utilizing the fact that the signal of
interest x ∈ Rn belongs to a low-dimensional subspace of dimension k, the system
can still be solved. In other words, low complexity structures allows for recovering
a signal x by solving the underdetermined system y = Φx. This touches the core
of compressed sensing. All signals x ∈ Rn can be expressed in a basis {ψi}ni=1 in
terms of n coefficients {si}ni=1 as x =

∑n
i=1 siψi = Ψs. If the signal is k-sparse,

it can be expressed by k nonzero coefficients si. This can be expressed mathemat-
ically as ||s||0 ≤ k, where || · ||0 is the ℓ0 pseudonorm expressing the number of
nonzero coefficients. The set of all sparse signals is the union of

(
n
k

)
k-dimensional

subspaces spanned by k basis vectors. This gives the union-of-subspaces model
and can be formulated mathematically as:

s ∈
⋃

S⊂[n],|S|=k

WS =: Σk. (2.36)

Here WS is one subset of Ψ indexed by the index set S ⊂ [n] with cardinality
|S| = k. Hence Σk is the union of subspaces that correspond to vectors with at
most k nonzero coefficients ([100]).

As an intuitive example, consider the canonical example in Figure 2.9, where the
signal lives in R3. The union of subspaces spanned by maximum two vectors (2-
sparse vectors) is illustrated by the three 2-dimensional subspaces W1, W2 and
W3 in R3. Considering the k-sparse signal in an n dimensional space, the number
of possible k dimensional subspaces the solution can live in is

(
n
k

)
≈ klog(n/k).

This is an important quantity in compressed sensing in terms of required measure-
ments.

To include sets that do not necessarily form subspaces, a more general notion is
needed for low-complexity structures. If the set of basis vectors is replaced with
an arbitrary compact set, the signal models generated is referred to as simple sets:

Definition 2.3.1. Simple set: Let A ⊂ Rn be an origin-symmetric compact set,
and k ∈ R. Then a set K ⊂ Rn of vectors on the form

x =

k∑
i=1

ciai, ci ≥ 0,ai ∈ A (2.37)

is called a simple set. Since elements in K are conic combinations of at most k

2.3. Compressed sensing 33

Figure 2.9: Canonical example, 2-dimensional subspaces in R3

elements inA, K can be described as follows: K = conek(A). Moreover, since K
is generated by the set A, A is called an atomic set.

Again, consider the canonical example, where A = {±ei} ⊆ Rn. The simple set
K = conek(A) correspond to the set Σk(Rn) of k-sparse vectors. Furthermore,
introducing the notion of atomic norm, which is important in terms of compressed
sensing:

Definition 2.3.2. Atomic norm: The function

||x||A = inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A
}

(2.38)

associated with an atomic set A ⊂ Rn is called the atomic norm of A at x.

A general strategy in compressed sensing is to recover or estimate simple sets
through atomic norm minimization (ANM):

min
x

||s||A s.t. y = Θs. (2.39)

2.3.2 Restricted isometry property

Consider the matrix Θ = ΦΨ in equation (2.35). In general, this matrix is rank
deficient and hence loses information. However, Θ can be shown to preserve in-
formation in sparse and compressible signals if it satisfies the Restricted Isometry
Property (RIP).

Definition 2.3.3. RIP: A matrix A is said to satisfy the RIP of order k if

(1− δ)||x||22 ≤ ||Ax||22 ≤ (1 + δ)||x||22 (2.40)

34 Preliminaries

For all x ∈ Σk with δ > 0.

The intuition of the RIP is that for any index set S ⊂ [n] with cardinality |S| ≤ k,
the submatrix with columns of A indexed by S: AS approximately acts like an
isometry on the set of k-sparse vectors. Direct construction of the measurement
matrix Φ such that Θ = ΦΨ involves verifying equation (2.40) for all

(
n
k

)
sparse

vectors x ∈ Σk. However, RIP can be achieved with high probability by selecting
Φ as a random matrix [39]. This implies that to successfully estimate the signal of
interest, a reasonable sampling strategy would be to sample the variable of interest
at random time instants.

2.3.3 Signal estimation techniques

Given the linear system y = Θs, there are infinitely many coefficient vectors s that
are consistent with the m ≪ n number of measurements. Therefore, to find the
correct or approximate solution s, it is necessary to exploit the a priori knowledge
of sparsity or compressibility of the signal. This indicates minimizing the number
of nonzero coefficients in s so that Θs still is consistent with the measurements y.
In its most explicit form, this minimization is done through ℓ0-minimization:

min
s

||s||0 s.t. y = Θs. (2.41)

The optimization program in equation (2.41) shows remarkable results as it is only
dependent on m = 2k independent measurements to recover s [101]. However,
ℓ0-minimization is provably NP-hard [92]. Furthermore, the solution of a ℓ0-
minimization problem can be highly sensitive to measurement noise and sparsity
defects [100]. A key insight in compressed sensing is the convex relaxation of
the optimization program in (2.41). The closest convex relaxation of (2.41) is the
ℓ1-minimization known as Basis Pursuit (BP) [102]:

min
s

||s||1 s.t. y = Θs. (2.42)

The convex minimization problems such as the one in (2.42) guarantee a more
stable solution that can also be solved in polynomial time. However, with this
relaxation, there comes a cost in terms of increased number of required measure-
ments, m = O(k · log (n/k)) as it relies on the RIP ([101]). Both optimization
programs in (2.41) and (2.42) are formulated for exact reconstruction of the signal
x due to the equality constraint. To account for measurement noise, the equality
constraint can be replaced by an inequality constraint such as in Quadratic Con-
straint Basis Pursuit (QCBP):

min
s

||s||1 s.t. ||y − Φx||22 ≤ η (2.43)

2.3. Compressed sensing 35

Here, η represents the noise level of the measurements. Therefore, it is desirable
to estimate this noise level to get the most precise estimate of the signal of in-
terest. Other convex programs are the Least-Absolute Shrinkage Selection Oper-
ator (LASSO) [103], the Dantzig selector (DS) [104] and Basis Pursuit Denoising
(BPDN) [100]. Recovery guarantees are usually strongest for convex optimiza-
tion programs. However, these programs become less practical as the problem
increases in size. Thresholding algorithms represent a compromise between theor-
etical guarantees and efficient predictable running times. Thresholding algorithms
can be divided into hard and soft thresholding. The following hard thresholding
algorithm Hard Thresholding Pursuit (HTP) has been involved in the case study in
Chapter 3:

Algorithm 1: HTP
Result: si
Input: Θ Rm×n, y ∈ Rm, k ∈ [n] ;
Initializalize: s0 ← 0, i← 0;
while While condition do

instructions;
vi+1 ← sn − µΘT (Θs− y) (Gradient descent step);
Gn+1 ← Hk(v

i+1) (Support identification) ;
si+1
Gn+1

← Θ†
Gn+1

y (Least squares update) ;
i← i+ 1;

end

Here, Hk is a hard thresholding operator, identifying the index set G ⊂ [n] which
support the k largest values of s, and zeroing out any values supported on Ḡ. µ
is a hyperparameter proportional to the gradient descent term. In the most basic
case of the HTP algorithm, µ = 1. In a more general case of the HTP algorithm,
the hyperparameter µ ̸= 1. Another hard thresholding algorithm is Iterative Hard
Thresholding (IHT) [105], which HTP is based on. The main difference between
the two is that HTP converges faster than IHT [100]. Examples of soft threshold-
ing algorithms are Smoothing proximal gradient method [106], and Fast iterative
shrinkage-thresholding algorithm [107]. One of the most generic classifications of
recovery algorithms split the algorithms into three different classes. Two of them
are mentioned already, namely convex optimization and thresholding algorithms.
Another class of recovery algorithms is iterative greedy algorithms [100]. Some of
the most famous greedy methods are Orthogonal Matching Pursuit (OMP) [108]
and Compressive Sampling Matching Pursuit (CoSaMP) [109].

36 Preliminaries

2.4 Performance metrics
Accurate long-term predictions are crucial in the process industry for several reas-
ons. The scarcity of expensive measurements implies that process models play a
vital role in providing reliable forecasts without relying on feedback from meas-
urements. Additionally, precise and stable long-term predictions contribute to de-
cision support and process optimization. The choice of prediction horizon length
depends on factors such as the model’s objective, system open-loop stability, and
measurement sampling rates. This section introduces performance metrics to eval-
uate model predictions for different prediction horizon lengths.

It is assumed that the initial condition x(t0) are given to the models. Then the
consecutive n time steps of the states are estimated {x̂(t1), ..., x̂(tn)}. This is
called a rolling forecast. The model estimates the time derivatives of the states
dx̂i/dt based on the current state x(ti) and control inputs u(ti) and initial con-
ditions x0 = x(t0), or the estimate of the current state variables x̂(ti) if t > t0:

dx̂(ti)

dt
=

{
f̂(x̂(ti), u(ti)), if ti > t0

f̂(x0(ti), u(ti)), if ti = t0,
(2.44)

where f̂(·, ·) is the model. Then, the next state estimate x(ti+1) is calculated as

x̂(ti+1) = x̂(ti) +
dx̂(ti)

dt
·∆T. (2.45)

2.4.1 Rolling forecast error measure

The rolling forecast can be computed for each of the states xi for one set of test
trajectories Stest. However, presenting the rolling forecast of multiple test sets
would render the interpretation difficult. By introducing a measure called Average
Normalized Rolling Forecast Mean Squared Error (AN-RFMSE) that compresses
the information about model performance, the models can easily be evaluated on
a large number of test sets. The AN-RFMSE is a scalar defined as:

AN-RFMSE =
1

p

p∑
i=1

1

n

n∑
j=1

(
x̂i(tj)− xi(tj)

std(xi)

)2

, (2.46)

where x̂i(tj) is the model estimate of the simulated state variable xi at time step
tj , std(xi) is the standard deviation of variable xi in the training set Strain, p is
the number of state variables estimated, and n is the number of time steps the
normalized rolling forecast MSE is averaged over. Hence, for every model f̂j and
every test trajectory in the set of test trajectories Stest, there is a corresponding
AN-RFMSE value.

2.4. Performance metrics 37

2.4.2 Model stability measure

When performing a rolling forecast, the predicted state may reach a region of the
state space where the model is unstable. This may arise because the model is fail-
ing to generalize to this region, or because the system is unstable in this region.
At this point, the predicted trajectory will diverge, and the error will grow expo-
nentially. This phenomenon is referred to as a blow-up. The open loop instability
of the model can be quantified by counting the number of blow-ups that occur
within a finite time horizon. In this thesis, a blow-up is defined using the following
criterion:

max
j<n

[
1

p

p∑
i=1

(|x̂i(tj)− xi(tj)|
std(xi)

)]
> 3 (2.47)

where p is again the number of estimated state variables and n is the number of
time steps to consider. In other words, a blow-up is said to occur when the mean
absolute error for all states and timesteps exceeds three standard deviations of the
test set. Although this estimate is conservative, the number of blow-ups is not
underestimated due to the exponential growth of the error.

38 Preliminaries

Chapter 3

Hybrid modeling combining first
principle model and compressed
sensing

This chapter is based on the following publication:

[78] E. T. B. Lundby, A. Rasheed, I. J. Halvorsen, J. T. Gravdahl, "A novel hybrid
analysis and modeling approach applied to aluminum electrolysis process”. In:
Journal of Process Control 105 (2021), pp. 62–77. ISSN: 0959-1524.

It presents a novel hybrid modeling approach that enables estimating stationary
unmodeled dynamics in coarsly sampled signals.

3.1 Introduction
The cost and challenges of taking measurements of important state variables cause
low-frequency measurements and low observability in aluminum electrolysis. This
makes state estimation particularly challenging. Using highly precise predictive
models can greatly enhance the accuracy of the state estimation, potentially redu-
cing the need for frequent measurements. However, the task of enhancing predict-
ive modeling remains a formidable challenge for both PBM and DDM modeling
approaches, owing to the complex and interrelated nature of high-dimensional pro-
cesses, as well as the scarcity of available data. In the pursuit of addressing these
challenges, compressed sensing stands out as an interesting signal reconstruction
technique. Exploiting that the signal of interest is sparse or compressible in some
domain makes the problem of estimating a high dimensional signal vector from
a low dimensional measurement vector possible [40]. Compressed sensing offers

39

40 Hybrid modeling combining first principle model and compressed sensing

a framework that enables estimating signals from far fewer measurements than
required by the Nyquist criterion. Therefore, by introducing compressed sensing
to estimate a measured signal in aluminum electrolysis one can possible minim-
ize the number of expensive manual measurements taken from that signal and at
the same time achieve a high-resolution estimate of the coarsely measured signal.
That being said, directly applying compressed sensing to signals in the aluminum
electrolysis does not guarantee success. In general, compressed sensing is used on
signals or systems that are already sparse. This is rarely the case in the time-series
data sampled from the aluminum extraction process, and utilizing the power of
compressed sensing is not straightforward.

To summarize, there is a need for improved state estimation in aluminum elec-
trolysis. At the same time, the cost of taking manual measurements is high, and
should preferably be taken at an as low rate as possible. Thus, the main object-
ive of this chapter is to minimize the number of expensive manual measurements
needed to improve state estimation of essential variables in aluminum electrolysis
cells like the side ledge thickness. To realize the objective, two research questions
are formulated. These research questions are:

• How can sampled data be manipulated so that the powerful tool of com-
pressed sensing can be utilized for estimating unmodeled dynamics from
sparsely sampled data?

• How can a high-fidelity signal estimate of the unmodeled dynamics be util-
ized in a Kalman filter to improve the accuracy of the estimated system
states?

The case study in the chapter is conducted on the simplified aluminum simulator
presented in Section 2.1.1. The dynamics of this sub-process can be expressed in
terms of two state variables: the aluminum mass in the cell and the thickness of
frozen electrolyte on the inside of sidewalls known as the side ledge. The side
ledge works as a protective layer for the sidewall against the corrosive electrolyte
and molten metal at high electrolysis temperature. Furthermore, the side ledge
works as thermodynamic insulation. Thus, it is essential for both safe and effi-
cient operations. It is practically impossible to measure the side ledge profile in
operating electrolysis cells [110]. However, the side ledge can be estimated from
measurements of the metal height since it affects the displacement volume for the
aluminum in the cell and the metal height, see Figure 2.2. The metal height meas-
urements have to be sampled manually with a dipstick, observing the molten metal
mark. These measurements are taken at low sampling rates.

In this chapter, we present a novel hybrid modeling aproach. The approach sug-

3.2. Extended Kalman filter 41

gests a way of manipulating a sampled signal with a first principle PBM to take
advantage of compressed sensing. That is, estimating a signal from far fewer meas-
urements than what is required by the Nyquist criterion. Thus, instead of estimat-
ing the measured signal, the method suggests estimating the dynamics in the signal
that the first principle model does not capture. This unmodeled dynamics in the
sampled signal is much sparser than the sampled signal, and therefore it is required
much fewer measurements to estimate this signal with compressed sensing. The
novel hybrid modeling approach presented in this study can estimate stationary,
periodical unmodeled dynamics in a sampled signal from few, randomly sampled
measurements. The estimate of the unmodeled dynamics is then utilized in an EKF
to improve the accuracy of estimating the side ledge thickness.

The structure of the chapter is as follows. In Section 3.2, the EKF used to merge
estimates and measurements is presented. In Section 3.3, there is a detailed de-
scription of the novel hybrid modeling method and a description of how simulated
data is generated for analysis. In Section 3.4 the results from analysis are presented
and in Section 3.5 conclusions are made.

3.2 Extended Kalman filter
The Kalman filter is a set of equations that provide a recursive solution of the least-
squares method. It supports estimates of past, present, and future states based on
measurements, models, and uncertainties in the system. Although the Kalman
filter was initially derived for linear systems, it has been extended to nonlinear
systems through online Taylor expansions of the nonlinear system. This extension
is referred to as EKF. The EKF addresses the problem of estimating the state x of
a nonlinear system

xk+1 = f(xk,uk,wk) (3.1)

yk = h(xk,vk), (3.2)

where f(·) and h(·) are in general nonlinear functions. wk represents the process
noise, vk represents the measurement noise, yk represents the measurement, and
uk represent the control input. The subscript indicates at what time step the vari-
able is sampled or estimated. The process and measurement noise are assumed to
be normally distributed random variables with zero mean and covariances Q and
R respectively:

w ∼ N (0, Q) (3.3)

v ∼ N (0, R). (3.4)

The Kalman filter algorithm can roughly be divided into two steps, where equa-
tions of the Kalman filter fall into the groups of either time update or the measure-

42 Hybrid modeling combining first principle model and compressed sensing

ment update. Equations in the time update stage are responsible for projecting the
current state estimate x̂k and error covariance estimate Pk forward in time to get
the a priori state estimate x̂−

k+1 and covariance estimate P−
k+1. Equations in the

measurement stage are responsible for feedback from measurements to correct the
a priori estimates, hence give the a posteriori estimates x̂k and Pk ([111]). The a
priori and a posteriori error covariance estimates are defined by:

P−
k = E

[
(xk − x̂−

k)(xk − x̂−
k)

T
]

(3.5)

Pk = E
[
(xk − x̂k)(xk − x̂k)

T
]

(3.6)

The algorithm is as follows:

Algorithm 2: EKF

Time update:;
x̂−
k+1 = x̂k +∆t · f(x̂k,uk);

P−
k+1 = AkPkA

T
k +Qk ;

Measurement update:;
Kk = P−

k Hk(HkP
−
k H

T
k +Rk)

−1 ;
x̂k = x̂−

k +Kk(yk − h(x̂−
k ,uk));

Pk = (I−KkHk)P
−
k ;

Ak is the Jacobian matrix of f((xk,uk,wk)) with respect to x, Hk is the jac-
obian matrix of h(xk,vk) with respect to x and Kk is the Kalman gain. ∆t is the
sampling time and x̂−

k+1 is calculated according to the forward Euler method.

3.3 Method and data generation

3.3.1 Set-up for data generation and pre-processing

The cell dimensions in the simulated cell are assumed to be l = 20m as the
length and w = 2m as the width. The initial side ledge thickness has been set
to xsl = 0.08m and is assumed to be uniform along all sidewalls. The unmodeled
dynamics are expressed as variations in the side ledge. They are assumed to be
two cosine waves with frequencies 2[per day] and 5[per day] with associated amp-
litudes of respectively 0.02m and 0.01m. The fact that stationary periodical sig-
nals have been used to simulate unmodeled dynamics can be justified by the nature
of the process. The aluminum electrolysis is a semi-batch process with periodical
control inputs that induce periodical dynamics on the system states. Examples of
these periodical control inputs are alumina feed and anode change. This causes

3.3. Method and data generation 43

periodical dynamics in the side ledge thickness. The stationarity assumption is an
approximation that can be justified for shorter periods. The initial mass of molten
aluminum in the cell is set to mal = 14, 700kg. Given the dimensions of the cell,
the initial side ledge thickness, and the density of molten aluminum, this corres-
ponds to an initial metal height of hm[0] = 0.183m. The line current is set to
I = 330kA and is assumed constant during the simulation. In the current work,
a current efficiency of CE = 0.95 is used and assumed to be constant. Equa-
tion (2.6) with these inputs yields the mass of aluminum produced in the cell to
be 2524kg/day (∼ 2500kg/day). The amount of aluminum mass tapped at each
tapping is done according to the following control strategy:

mout =

mref + k · (hmeas − href), if hmeas not

older than 5 hours
mref , if hmeas is

older than 5 hours.

(3.7)

where mref = 2500kg and href = 18cm. hmeas is the measured metal height.
Metal is tapped from the cell every 18 − 48 hours. The line current I and current
efficiency CE is used as input to Equation (2.3) to generate a high resolution
timeseries of the rate of generated aluminum mass.

As described in Section 2.3.2, having a random measurement matrix, Φ will ensure
successful recovery of the signal with high probability. Therefore, measurements
of the metal height are sampled at random time instants. The average sampling rate
is varied for different simulations to test the limit of required data. This is also the
case for the standard deviation of the measurement noise, which is varied to test
the reconstruction algorithms robustness against noise. The measurement noise is
assumed to be Gaussian white. In the simulation, the measurements are values of
the simulated metal height chosen at random time instants. Each measurement has
an added value drawn from a normal distribution with zero mean and a standard
deviation chosen for that simulation. The simulations were conducted for a period
corresponding to 100 days with a small timestep of ∆t = 5minutes.

3.3.2 Novel hybrid framework

The proposed method is a novel hybrid approach that utilizes first principle system
knowledge to manipulate a measured signal. The manipulated data is the residual
between the measured signal and an estimate of the measured signal calculated by
a physics-based model. This residual represents the unmodeled dynamics in the
measured signal. The signal representing the unmodeled dynamics in the meas-
ured signal is much sparser than the measured signal itself. Therefore, much fewer
measurements are required to estimate the unmodeled dynamics in the measured

44 Hybrid modeling combining first principle model and compressed sensing

signal compared to estimating the measured signal with compressed sensing tech-
niques. The novel method is limited to estimating stationary unmodeled dynamics.
A compressed sensing technique is used to estimate the sparse residual and thereby
gaining information about the periodic disturbances. This information is provided
to an EKF as a pseudo measurement, leading to an increase in state estimation
accuracy. Figure 3.4 illustrates the novel hybrid framework developed in the work
related to this chapter.

Sparsification of a signal

The dynamics of the metal height is in its nature a non-sparse signal in the DCT.
This is due to the discontinuities of the saw-tooth shape in the signal. Figure 3.1b,
which shows the DCT of the metal height signal, illustrates this point. Moreover,
the metal height signal is non-stationary due to the non-regular tapping of metal.
The compressed sensing method used in this work estimates the frequency com-
ponents of a signal based on measurements of that signal. Since the metal height
signal is non-stationary, the frequency components will continuously vary. This
makes it much more difficult to predict the signal in the future. Instead, by utiliz-
ing this first principle model based on equation (2.6) and the available knowledge
about the amount of aluminum tapped from the cell, it is possible to sparsify the
signal and remove non-stationarities from the signal.

The idea is to estimate the signal hunmod in Figure 3.2b that represent the un-
modeled dynamics in the metal height signal by using the data points hresidual as
input in a compressed sensing algorithm. Subtracting the estimated signal hmodel

based on the physical model from the measured metal height hmeas gives a signal
hresidual representing the unmodeled dynamics and measurement noise. This sig-
nal hunmod is much more sparse in the DCT domain than the metal height signal
hm. This can be seen by comparing Figure 3.2c and Figure 3.1b. Given that DCT
is used as a basis, estimating the new signal hunmod with compressed sensing re-
quires much fewer datapoints than what is required for estimating the metal height
hm with compressed sensing. Furthermore, by including a first principle model
in the estimation process and leaving estimation of only the unmodeled dynamics
to compressed sensing, the robustness of the state-of-the-art estimate is preserved.
Figure 3.3 illustrates the signal representation in terms of the matrix representation
from Figure 2.8b.

Integrated solution

In Figure 3.4, a schematic representation of the integrated solution is presented.
The integrated solution is composed of a physics-based model f , a compressed
sensing signal estimation algorithm, a Kalman filter, and a metal height measure-

3.3. Method and data generation 45

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
time [days])

0.18

0.20

0.22

0.24

0.26

m
et

al
 h

ei
gh

t [
m

et
er

s]

(a) Simulated height from day 20 to day 40

0 1 2 3 4 5 6 7
frequency [1/day]

1.0

0.5

0.0

0.5

1.0

1.5

am
pl

itu
de

(b) DCT of simulated height.

Figure 3.1: In Figure (a), the simulated height hm from day 20 to day 40 is shown.
In (b), the DCT of hm, excluding the zero-frequency component, is shown. Fre-
quency components of the unmodeled dynamics are those at 2 [per day] and 5
[per day]. Clearly, the transform is not sparse in the Cosine transform domain.
Therefore it will be difficult to estimate the signal hm from a limited number of
measurements given the DCT as a transform basis.

46 Hybrid modeling combining first principle model and compressed sensing

0 2 4 6 8 10 12 14
time [days]

0.18

0.20

0.22

0.24

0.26

m
et

al
 h

ei
gh

t [
m

et
er

s]

Simulated height
Estimated height
Measured height

(a) Simulated height and estimated height from first principle model

0 2 4 6 8 10 12 14
time [days]

0.010

0.005

0.000

0.005

0.010

0.015

m
et

al
 h

ei
gh

t [
m

et
er

s]

Unmodeled dynamics
Residual data

(b) Unmodeled dynamics. Residual between measured and estimated metal height.

0 1 2 3 4 5 6 7
frequency [1/day]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

am
pl

itu
de

(c) DCT of unmodeled dynamics.

Figure 3.2: In (a), the orange graph represents the estimated metal height hmodel

based on Faraday’s law and knowledge of the amount of metal tapped. The blue
graph represents the simulated metal height hm. The green points represent meas-
ured metal height hmeas. In (b), the black graph represent the difference between
simulated and estimated metal height hunmod = hm − hmodel, whereas the green
points represent the difference between measured and estimated metal height at
the time instants when the measurements where taken hresidual = hmeas−hmodel.

3.3. Method and data generation 47

y =

s ZERO

Figure 3.3: The signal illustrated on matrix form. The blue columns of Θ corres-
ponds to the blue nonzero coefficients in s.

Numerical Model

Measurements

Compressed sensing

-

Kalman Filter

Figure 3.4: Methodology: The numerical model generates high temporal resolu-
tion time-series of the height hmodel. From the measurements, coarse resolution
time-series of height hmeas is obtained. The difference between them when height
measurements are taken is referred to as hresidual. hresidual, which has the same
time resolution as hmeas is provided as an input to the compressed sensing al-
gorithm to generate a signal estimate and hence high-resolution estimate hunmod

of the unmodeled dynamics expressed in the height signal. hunmod is then provided
to an EKF as a pseudo measurement to estimate the side ledge thickness. The nu-
merical model f and the height measurement hmeas are also provided to the EKF
to estimate the state vector x.

48 Hybrid modeling combining first principle model and compressed sensing

ment. The physics-based model is as follows:

f =
dm

dt
= ṁin − ṁout =

CE ·MAl

F · z I[k]− ṁtapped[k]. (3.8)

f estimates the mass flow in the electrolytic cell based on the inputs from the line
current I[k] and flow of tapped metal ṁtapped[k] at each time instant k. Given an
estimate of the mass of aluminum and displacement volume in the cell, a metal
height estimate can be calculated. This gives the first principle estimate hmodel

visualized in Figure 3.2a. Since the dynamics of the side ledge thickness affects
the displacement volume in the cell, it also affects the metal height in the cell. The
lack of a model estimating the dynamics of the side ledge thickness causes the
unmodeled dynamics in the height signal hunmod visualized in Figure 3.2b. The
compressed sensing signal estimation method estimates the unmodeled dynamics
expressed in the height signal hunmod using the manipulated datapoints hresidual
in Figure 3.2b. This estimate is then used as a pseudo measurement for the Kalman
filter to estimate the side ledge thickness xsl. In terms of a state-space model, the
input vector is defined as:

uk = [u1,k, u2,k] =

[
ṁin,k

ρ
,
ṁout,k

ρ

]
, (3.9)

the state vector is defined as:

xk = [x1,k, x2,k] = [m, xsl], (3.10)

and the measurement is defined as

y = hmeas. (3.11)

This gives the following state-space model:[
ẋ1
ẋ2

]
=

[
u1 − u2 + v1

v2

]
, (3.12)

y =
x1

Area(x2)
+ w. (3.13)

v = [v1, v2] is process noise, whereas w is the measurement noise.

Furthermore, the pseudo measurement representing the estimated unmodeled dy-
namics is defined as:

ypseudo = ĥunmod. (3.14)

ypseudo is used as a high-frequency measurement when a signal estimate is avail-
able. The pseudo measurement has corresponding Kalman filter Covariance matrices

3.4. Results 49

for the pseudo measurement Qpseudo and Rpseudo. Since the physics-based model
is assumed to have great abilities in estimating the mass balance of the cell, the
element of Qpseudo representing the process noise covariance for the mass estim-
ate Q11 is set to zero. The element of Qpseudo representing the process noise
covariance of the side ledge thickness Q22 is set to one. The measurement noise
covariance Rpseudo is much smaller than Q22, indicating that the pseudo meas-
urement ypseudo is trusted much more than the a priori estimate of the side ledge
thickness. Thus, the a posteriori estimate of the side ledge thickness will be greatly
influenced by the pseudo measurement. Since Q11 = 0, the a posteriori estimate
of the mass will not be influenced by the pseudo measurement.

Algorithm 3: EKF with pseudo measurement

Time update:;
x̂−
k+1 = x̂k +∆t · f(x̂k,uk);

P−
k+1 = AkPkA

T
k +Qk ;

if Meaurement yk is available then
Measurement update:;
Kk = P−

k Hk(HkP
−
k H

T
k +Rk)

−1 ;
x̂k = x̂−

k +Kk(yk − h(x̂−
k ,uk));

Pk = (I−KkHk)P
−
k ;

else
Kk,pseudo = P−

k,pseudoHk(HkP
−
k,pseudoH

T
k +Rk,pseudo)

−1 ;
x̂k = x̂−

k +Kk,pseudoyk,pseudo;
Pk,pseudo = (I−Kk,pseudoHk)P

−
k,pseudo

end

Algorithm 3 describes how the pseudo measurements ypseudo are incorporated into
the EKF. ypseudo is treated as a measurement in the EKF. In a regular measurement
update, when the a posteriori estimate x̂k is calculated, a model estimate h(x̂−

k ,uk)
of the variable x is subtracted from the measurement to include both measurement
and model estimate in the posterior estimate. However, since ypseudo is the estim-
ate of the unmodeled dynamics, there is no model estimate of this signal. Thus,
the posterior estimate after the pseudo measurement is included only depends on
the a priori estimate and the pseudo-measurement, see Algorithm 3.

3.4 Results
In this section, the results from a case study of the hybrid method explained in
Section 3.3.2 are presented. The data generation of the simulated data used in the
case study is described in Section 3.3.1. The unmodeled dynamics that the hybrid

50 Hybrid modeling combining first principle model and compressed sensing

modeling framework aims to estimate is a periodical, stationary signal composed
of two frequency components. As stated in the introduction, it is of interest to min-
imize the number of measurements and at the same time improve predictive mod-
eling. Therefore Section 3.4.1 investigates the number of measurements required
to successfully estimate the unmodeled dynamics with the novel hybrid method.
Furthermore, the robustness against measurement noise of the method is assessed.
Section 3.4.2 illustrates how the estimate of the unmodeled dynamics provided by
the novel method affects the state estimation in the Kalman filter. Throughout the
study, two different compressed sensing techniques were applied. These are the
QCBP optimization program and two versions of the HTP algorithm.

3.4.1 Noise and measurement study

The performance of the hybrid modeling approach given two different compressed
sensing techniques is assessed in this section. The performance measure in Figure
3.5 is a binary value stating if the correct signal support for the unmodeled dynam-
ics was found by the compressed sensing algorithm or not. Signal support means
the coefficients defining the signal in the sparse, transformed domain. The per-
formance measure in Figure 3.6 is the Rooted Mean Squared Error (RMSE). The
performance in both Figure 3.5 and Figure 3.6 is tested for several measurements
and noise levels. The HTP algorithm explicitly requires that the algorithm search
for a signal support with a given number of coefficients. Since the QCBP program
is an optimization program minimizing the ℓ1-norm of the support coefficients s
with constraints on the quadratic error between measurement and estimated signal,
it is not expected that the program will find a signal support with the exact same
number of coefficients as the correct solution. In general, some coefficients that
are not part of the correct solution can be expected to be included in the estimate
calculated by the QCBP program. Therefore, the requirement for the QCBP pro-
gram to succeed in the performance test presented in Figure 3.5 is that it finds the
correct support and that the largest erroneous estimated coefficient is smaller than
0.3 times the smallest of the correct coefficients. Figure 3.5 shows how QCBP and
HTP estimation strategies perform to find the correct support or basis coefficients
in the simulations with different levels of measurement noise and different number
of measurements used in the estimation. In the HTP algorithm, tuning the hyper-
parameter µ turns out to be of great importance. The amplitude of the unmodeled
dynamics estimated is small in magnitude (< 0.01[m]). Therefore, the gradient
descent term µΘT (Θs − y) for the basic implementation of HTP with µ = 1 be-
comes very small after the first iteration and converges. Implementing the HTP
algorithm with µ >> 1 estimates the correct support in many more cases than the
basic test with µ = 1. Figure 3.5b and Figure 3.5c show that the success of the
method is dependent on both the number of measurements used and the measure-

3.4. Results 51

15 20 25 30 35 40 45 50 55
Number of measurements

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
ise

 to
 si

gn
al

 ra
tio

(a) Performance plot of the HTP algorithm. Hyper-
parameter µ = 1

15 20 25 30 35 40 45 50 55
Number of measurements

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
ise

 to
 si

gn
al

 ra
tio

(b) Performance plot of the HTP algorithm. Hyper-
parameter µ = 700

15 20 25 30 35 40 45 50 55
Number of measurements

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
ise

 to
 si

gn
al

 ra
tio

(c) Performance plot of QCBP

Figure 3.5: Performance plot of the HTP algorithm and QCBP optimization pro-
gram. On the horizontal axis, the number of measurements of metal height in the
simulation varies, while the noise to signal ratio varies along the vertical axis. The
noise to signal ratio is defined as the ratio between the standard deviation of the
measurement noise and the average amplitude of the unmodeled dynamics signal
for any given simulation. For a given noise to signal ratio and a given number of
measurements, the color black indicates that the reconstruction algorithm found
the correct support for the signal.

52 Hybrid modeling combining first principle model and compressed sensing

ment noise. The figures show a clear tendency that the number of measurements
required for a successful signal estimation increases with increasing noise. Figure
3.6 shows the RMSE for the estimated signals from the QCBP program in Figure
3.6a and the RMSE for HTP algorithm with µ = 700 in Figure 3.6b. Simulations
with different levels of noise and number of measurements are included in the test.
Figure 3.5 and Figure 3.6 are results from the same test. Figure 3.6a shows that
the RMSE increases proportionally with the measurement noise for the QCBP pro-
gram. The explanation for this can be that the optimization program in QCBP has
an inequality constraint allowing for a certain maximum quadratic error between
the estimate and the measured values proportional to the standard deviation of the
noise. Furthermore, comparison of Figure 3.5c and 3.6a indicates that the RMSE
does not seem to be significantly dependent on the number of measurements used
to estimate the signal as long as the correct support is estimated. The same can be
said about the HTP algorithm, which has consistently low values of the RMSE as
long as the correct support is found. Figure 3.5b and 3.6b show that the RMSE is
significantly lower when the correct support is found compared to when the correct
support is not found. The QCBP program has an inequality constraint that allows
for a certain quadratic error between measured and estimated values that limits the
RMSE regardless of if the correct support is found or not. The HTP algorithm
does not have this limitation in RMSE in the search for correct support. Hence,
in general, the RMSE will be significantly larger if HTP finds the wrong support
for the signal. For the QCBP program, this difference is not that clear due to the
quadratic constraint.

3.4.2 State and signal estimates

In this section, the estimated metal height, height residual as well as the state es-
timates of aluminum mass and side ledge thickness is presented. In Figure 3.7
and Figure 3.8, simulated values and estimates when using the QCBP optimiza-
tion are presented, whereas in Figure 3.9 and Figure 3.10 simulated values and
estimates when using the HTP algorithm are presented. In both cases, a noise to
signal ratio equal to 0.215 was used. The time interval for the figures includes the
measurement from which the compressed sensing reconstruction algorithm finds
the correct support of the unmodeled dynamics. In the case presented, the HTP
algorithm needed a few more measurements than the QCBP algorithm to find the
correct support for the unmodeled dynamics. That is, the QCBP program needed
25 measurements of the signal to find the correct support for the signal while the
HTP algorithm needed 28 measurements to find the correct support for the signal.
Therefore, the time frame shown in Figure 3.7 and Figure 3.8 differs from the time
frame in Figure 3.9 and Figure 3.10.

3.4. Results 53

21 22 23 24 25 26 27
time [days]

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
he

ig
ht

 [m
et

er
s]

Simulated height
Estimated Height
Measured height

(a) Simulated and estimated height.

21 22 23 24 25 26 27
time [days]

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

he
ig

ht
 re

sid
ua

l [
m

et
er

s]

(b) Height residual.

Figure 3.7: In (a), the blue graph represents the simulated metal height hm,
whereas the orange graph represents the estimated metal height, estimated by the
Kalman filter. The green points are the measured values of the metal height. In (b),
the residual between simulated metal height hm and Kalman filter-estimated metal
height ĥm is shown. The unmodeled dynamics in the metal height are estimated
from the QCBP program.

Figure 3.7a shows the simulated and the estimated metal height. The unmodeled
dynamics are estimated by the QCBP optimization program using data points
hresidual, plotted as green points in Figure 3.2b. The estimate is then fed into the
Kalman Filter as a pseudo measurement, where the covariance matrices Qpseudo

and Rpseudo are tuned such that only the side ledge thickness xsl is updated. Fig-
ure 3.7b shows the residual between simulated and estimated metal height. Figure

54 Hybrid modeling combining first principle model and compressed sensing

3.7a shows that the estimated metal height changes character and simultaneously
follows the simulated metal height as the green data point is measured at day 23.
Looking at Figure 3.7b, it is clear to see the height residual hm − ĥm decreases
significant at this point.

Figure 3.8 shows the estimated and simulated states x as they are defined in the
EKF. The estimate of the unmodeled dynamics is based on the same estimate as in
Figure 3.7.

24 25 26 27 28
time [days]

6.5

7.0

7.5

8.0

8.5

al
um

in
um

 v
ol

um
e

[m
^3

]

Simulated volume of metal
Estimated volume of metal

(a) Simulated and estimated volume.

24 25 26 27 28
time [days]

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

sid
e

le
dg

e
th

ick
ne

ss
 [m

et
er

s]

Simulated side ledge thickness
Estimated side ledge thickness

(b) Simualted and estimated side ledge thickness.

Figure 3.10: In (a), the simulated and estimated volume of aluminum in the cell
is shown. The simulated thickness of the side ledge is shown in (b). Simulated
values are in blue while estimated values are in orange. The side ledge thickness
is estimated from the HTP algorithm.

3.5. Conclusion 55

Figure 3.9 corresponds to Figure 3.7 and Figure 3.10 corresponds to Figure 3.8.
The difference is that the estimate in Figure 3.9 and 3.10 is calculated by the HTP
algorithm, while the estimates in Figure 3.7 and 3.8 is calculated by the QCBP
program. The HTP algorithm estimates a signal with a much smaller RMSE than
the QCBP algorithm for this specific case. Figure 3.6, shows that this is the case
for the simulations where the correct support is found.

3.5 Conclusion
This chapter introduces a novel hybrid modeling method that addresses the prob-
lem of estimating stationary, periodical, unmodeled dynamics from a non-sparse,
non-stationary signal measured at low sampling rates. The two research questions
investigated have been satisfactorily addressed. These are pointed out below:

• The first research question sought an answer regarding the potential ma-
nipulation of the coarsely sampled signal so that compressed sensing tech-
niques could be utilized for signal estimation. It was observed that most
of the non-sparsity in the measured signal was due to the linear increase
caused by the aluminum production and discontinuities due to sudden drops
of the amplitude in the signal resulting from a regular tapping of the mol-
ten aluminum. This resulted in the measurement signal being non-sparse
even in the frequency domain. Fortunately, the cause and effect of these
linear increases and discontinuities were very well captured by the physics-
based model. Simply subtracting the estimated metal height signal based
on a physics-based model from the measured metal height signal yields ma-
nipulated measurements representing a new signal, namely the unmodeled
dynamics of the metal height. As shown in Section 3.4.1, compressed sens-
ing show promising results in estimating this residual signal from a limited
number of measurements with Gaussian measurement noise.

• The second research question pertained to utilizing the estimated signal in a
Kalman filter to improve the accuracy of the state estimation. The proposed
method answered this by including the estimated signal as a pseudo meas-
urement into the Kalman filter. The pseudo measurement is treated as a sep-
arate high-resolution measurement with corresponding Covariance matrices
tuned according to the uncertainty about the state estimates. It was demon-
strated that the state estimate of one of the variables improved significantly
when a signal estimate of the unmodeled dynamics is available.

In the proposed approach, only stationary unmodeled dynamics are considered.
This is because the compressed sensing techniques used in the method only con-
sider stationary signals.

56 Hybrid modeling combining first principle model and compressed sensing

Noise to signal ratio 0.00.20.40.60.8

Measurements
20

30
40

50
60

RMSE

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.001

0.002

0.003

(a) RMSE for QCBP estimation technique

Noise to signal ratio 0.00.20.40.60.8

Measurements
20

30
40

50
60

RMSE

0.001

0.002

0.003

0.004

0.005

0.001

0.002

0.003

0.004

(b) RMSE for the HTP algorithm. Hyperparameter µ = 700

Figure 3.6: RMSE for simulations with varying measurement noise and number of
measurements used in estimation of the signals.

3.5. Conclusion 57

21 22 23 24 25 26 27
time [days]

6.5

7.0

7.5

8.0

8.5

al
um

in
um

 v
ol

um
e

[m
^3

]

Simulated volume of metal
Estimated volume of metal

(a) Simulated and estimated volume.

21 22 23 24 25 26 27
time [days]

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

sid
e

le
dg

e
th

ick
ne

ss
 [m

et
er

s]

Simulated side ledge thickness
Estimated side ledge thickness

(b) Simualted and estimated side ledge thickness.

Figure 3.8: In (a), the simulated and estimated volume of aluminum in the cell
is shown. The simulated thickness of the side ledge is shown in (b) Simulated
values are in blue while estimated values are in orange. The side ledge thickness
is estimated from the QCBP program.

58 Hybrid modeling combining first principle model and compressed sensing

24 25 26 27 28
time [days]

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

he
ig

ht
 [m

et
er

s]

Simulated height
Estimated Height
Measured height

(a) Simulated and estimated height.

24 25 26 27 28
time [days]

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

he
ig

ht
 re

sid
ua

l [
m

et
er

s]

(b) Height residual.

Figure 3.9: In (a), the blue graph represent the simulated metal height hm, whereas
the orange graph is the estimated metal height, estimated by the Kalman filter.
The green points are the measured values of the metal height. In (b), the residual
between simulated metal height hm and Kalman filter-estimated metal height ĥm
is shown. The unmodeled dynamics in the metal height is estimated from the HTP
algorithm.

Chapter 4

Hybrid modeling combining first
principle model and deep
learning

This chapter is based on:

[79] H. Robinson1, E. T. B. Lundby1, A. Rasheed, J. T. Gravdahl, "A novel
corrective-source term approach to modeling unknown physics in aluminum ex-
traction process" Conditional Acceptance: Engineering Applications of Artificial
Intelligence. (2023), Available in: arXiv preprint arXiv:2209.10861 (2022).

It presents a hybrid modeling approach, where a DNN aims to correct a mispe-
cified PBM formulated as a high-dimensional set of ODEs. The DNN is added to
the set of ODE and trained on the residual data between measurements and PBM
estimates.

4.1 Introduction
State-of-the-art modeling of aluminum electrolysis used in decision support and
state estimation is mainly based on first principle PBMs. As mentioned earlier,
these models are known for their comprehensible and interpretable nature, their
ability to generalize well to situations where assumptions hold true, and the exist-
ence of established methods for evaluating their properties such as robustness and
stability in the presence of uncertainty and noise. But the process is characterized
by several nonlinear sub–processes that interact with each other. While some of

1Equal contributions

59

60 Hybrid modeling combining first principle model and deep learning

the sub–process are based on solid theoretical background and sound assumptions,
other sub-processes are more challenging to model and can be seen as disturbances
in the process. The strong interaction effects between sub–processes imply that
modeling errors in one sub–process propagate to other sub–processes and eventu-
ally cause significant uncertainty in state estimates and future predictions. DDMs
have the ability to model complex phenomena directly from data. However, these
methods typically require vast and diverse data, which is typically not available
from regular process operation and very expensive to acquire. Moreover, DDMs
struggle to generalize to unseen data and typically have low interpretability.

Recent developments in the field of hybrid modeling have drawn attention to the
potential benefits of combining the strengths of both first principle PBMs and
DDMs. In this study, we examine the effectiveness of the CoSTA, which involves
adjusting the output of a discretized PBM by utilizing a DDM that has been trained
to correct the errors of the base model. This method is an intuitive and efficient way
to leverage existing models, and have been used in different ways. For example,
in [35], it was demonstrated that CoSTA works for simple, one-dimensional heat
transfer problems. In [112], the same work was extended to 2D and was also
demonstrated that the CoSTA model has inbuilt sanity check mechanism. The
method use prior knowledge to make the learning problem more simple in terms
of complexity and also potentially reduce dimensionality by substracting PBM es-
timates from the training data.

In this work, we extend and apply CoSTA to correct a misspecified PBM of a
complex aluminum extraction process simulation. We build on previous work by:

• Extending CoSTA to multidimensional problems: The previous works util-
izing CoSTA were limited to modeling a single state temperature in either
one or two-dimensional heat transfer.

• Successfully applying CoSTA to a system with external control inputs: None
of the previous work involved any control inputs. In the current work, five
inputs are used to excite the system.

• Investigating the predictive stability of CoSTA relative to end-to-end learn-
ing, and showing that a hybrid approach can yield more trustworthy models.

• Demonstrating that CoSTA is applicable to a system with complex coupling
between different states and inputs: The system considered here involves
eight states and five inputs which form a set of eight ordinary equations
which are highly coupled. The previous works involving heat transfer in-
volved only one partial differential equations hence the potential of CoSTA
to couple problems was never evaluated earlier.

4.2. Corrective source term approach (CoSTA) 61

In the case study, the novel method is applied on the aluminum electrolysis simu-
lator described in Section 2.1.2.

This chapter is structured as follows. Section 4.2 presents the CoSTA approach
applied. We then outline the methodology of the work in Section 4.3, namely
how the data was generated, how the models were trained, and how they were
evaluated. In Section 4.4 we present the results, and give a detailed discussion
about the behavior of the process and the models. We then summarise our findings
and outline future work in Section 4.5.

4.2 Corrective source term approach (CoSTA)

CoSTA

PBM DDM

L̃ x̂ = f + σ̂NN

Figure 4.1: CoSTA combines PBM and DDM into a unified model by adding a
NN-generated corrective source term to the governing equation of the PBM.

In this section we outline the CoSTA approach, illustrated in Figure 4.1. Suppose
we want to solve the following general problem:

Lx = f(x,u) (4.1)

where L is a differential operator, x is the unknown state of the system that we
wish to compute, and f(·, ·) is a source term that depends on the state x and external
inputs u(t).

Assume now that we have a PBM designed to predict x, and let x̃ denote the
PBM’s prediction of the true solution x. If x̃ ̸= x, there is some error in the PBM,
and this error must stem from at least one of the following misspecifications in the
model:

1. Incorrect f in Equation (4.1), replaced by f̃ .

2. Incorrect L in Equation (4.1), replaced by L̃ .

3. A combination of the above.

4. Discretization of L , replaced by LD
1.

1Derived using, for example, finite differences. This is necessary when Equation (4.1) lacks
analytical solutions, which is almost always the case.

62 Hybrid modeling combining first principle model and deep learning

Note that case 4 is also mathematically equivalent to misspecifying L . For ex-
ample, ∂

∂t could be approximated using a forward finite difference. We can write
this using the difference operator ∆h, such that h is the time step and 1

h∆h f(t) =
(f(t+h)−f(t))/h. We can therefore limit our discussion to Cases 1 and 2 without
loss of generality.

Suppose now that the PBM-predicted solution x̃ is given as the solution of the
following system:

L̃ x̃ = f̃ (4.2)

This formulation encompasses both Case 1 (L̃ = L and f̃ ̸= f), Case 2 (L̃ ̸= L
and f̃ = f), and combinations thereof (for L̃ ̸= L and f̃ ̸= f). Furthermore,
suppose we modify the system above by adding a source term σ̂ to Equation (4.2),
and let the solution of the modified system be denoted ˆ̃x. Then, the modified
system reads

L̃ ˆ̃x = f̃ + σ̂ (4.3)

and the following theorem holds.

Theorem Let ˆ̃x be a solution of Equations (4.3), and let x be a solution of Equa-
tions (4.1). Then, for both operators L̃ , L and both functions f , f̃ , such that ˆ̃x and
x are uniquely defined, there exists a function σ such that ˆ̃x = x.

Proof : Define the residual σ of the PBM’s governing equation (4.2) as2

σ = L̃x− f̃ . (4.4)

If we set σ̂ = σ in Equation (4.3), we then obtain

L̃ ˆ̃x = f̃ + σ̂ (4.5)

= f̃ + L̃x− f̃ (4.6)

= L̃x (4.7)

=⇒ ˆ̃x = x+ c (4.8)

where c is a function of independent variables. We can eliminate c by setting
appropriate boundary conditions. ■

2Instead of defining the residual in terms of the approximate solution (e.g. as is done in truncation
error analysis [113, chapter 8]), we define σ by inserting the true solution into Equation (4.1). Our
proof is simpler, and fit well with real systems where state measurements are more readily available
than the true governing equations.

4.3. Method and experimental setup 63

This shows that we can always find a corrective source term σ̂ that compensates
for any error in the PBM’s governing equation (4.2) such that the solution ˆ̃x of the
modified governing equation (4.3) is equal to the true solution x. This observation
is the principal theoretical justification of CoSTA. As illustrated by Figure 4.2,
the CoSTA approach should be applicable to many physical problems that can be
described using differential equations.

Full physics

Observed
physics

Modeled physics Resolved physics Resolved physics
(PBM)

DDM

Figure 4.2: CoSTA: It maximizes the utilization of the well known PBM while
correcting for the unknown using DDM. In the CoSTA, PBM is described by the
set of differential equations describing the state of the system after the introduction
of errors as explained in Section 4.3.2. We call it resolved physics and represent it
by the red ellipse. All the unaccounted physics and unintended numerical discret-
ization errors are captured using the data-driven corrective source terms.

4.3 Method and experimental setup
This section explains how data is generated, how modeling errors are induced in
the PBM, the modeling approaches applied in the case study, and how the models
were evaluated.

4.3.1 Inducing error in the PBM

For this case study, we use simulation data generated from Equation (2.15) in order
to validate the CoSTA method. To that end, we make a further simplification: we
ignore Equation (2.14a) and set the liquidus temperature g1 to a constant.

g1,PBM = 968◦C. (4.9)

64 Hybrid modeling combining first principle model and deep learning

We refer to the resulting model as the ablated PBM. This choice was made because
the model is particularly sensitive to errors in g1. Inspecting Equation (2.15) shows
that the ablated PBM will incorrectly predict the evolution of [x1, x4, x6, x7, x8].
As we will see later in Section 4.4 and Figure 4.6, this can lead to errors of roughly
5°C in g1, and 500kg in the side ledge mass x1 (a relative error of 10%). The aim of
the case study is to develop a DDM to correct the ablated PBM using measurement
data sampled from the true model.

4.3.2 Data generation and preprocessing

The dynamical system data is generated by integrating the set of non-linear ODE’s
in Equation (2.15) representing the system dynamics using the fourth-order nu-
merical integrator Runge-Kutta 4 (RK4) with a fixed timestep ∆T = 10s. One
time-series simulation starts at an initial time t0 with a set of initial conditions
x(t0), and last until a final time T = 5000 × ∆T . For the slow dynamics of the
aluminum process, a sampling time of 10s turns out to be sufficiently fast with
negligible integration errors. Higher sampling frequencies would lead to unneces-
sary high computational time and large amounts of simulation data. The initial
conditions for each trajectory were uniformly sampled from the ranges shown in
Table 4.1. Each simulation generates a set of trajectories consisting of 8 states and
5 inputs. 40 simulated trajectories are used for training the models, and 100 simu-
lated trajectories are used as the test set. This relatively large number of test cases
was to chosen to allow us to explore the statistics of how the model performs.

Figure 4.3 shows the time series evolution of the entire training set and test set.
The training set trajectories are blue while the test set trajectories are orange. The
figures show that the range of the training set covers the range of the test set. This
indicates that models are evaluated on interpolation cases in the test set.

Table 4.1: Initial conditions for system variables. For x2 and x3, concentrations
cx2 and cx3 are given.

Variable Initial condition interval
x1 [2060, 4460]
cx2 [0.02, 0.05]
cx3 [0.09, 0.13]
x4 [11500, 16000]
x5 [9550, 10600]
x6 [940, 990]
x7 [790, 850]
x8 [555, 610]

4.3. Method and experimental setup 65

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

2000

3000

4000

5000

x
1
(k
g)

(a) Side ledge mass x1

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

400

600

800

1000

x
2

(k
g)

(b) Alumina mass x2

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

1250

1500

1750

2000

2250

2500

x
3

(k
g)

(c) Aluminum fluoride mass
x3

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

12000

14000

16000

x
4

(k
g)

(d) Molten cryolite mass x4

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

9800

9850

9900

9950

10000

x
5

(k
g)

(e) Produced aluminum
mass x5

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

960

970

980

x
6

(◦
C

)

(f) Bath temperature x6

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

775

800

825

850

875

x
7

(◦
C

)

(g) Side ledge temperature
x7

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

550

600

650

x
8

(◦
C

)

(h) Side wall temperature x8

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0

5

10

15

20

u
1

(k
g)

(i) Alumina feed u1

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

120000

130000

140000

150000

u
2

(A
)

(j) Line current u2

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0

2

4

6

8

10

u
3

(k
g)

(k) Aluminum fluoride feed
u3

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0

2

4

6

8

u
4

(k
g)

(l) Metal tapping u4

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0.045

0.050

0.055

u
5

(m
)

(m) Anode-cathode distance
u5

Training data Test data

Figure 4.3: Training and test set trajectories of the system states. Only 10 random
sample test trajectories are shown here to make the figures clearer.

66 Hybrid modeling combining first principle model and deep learning

Estimation of the regression variable ẋ

The ODEs in Equation (2.15) are time invariant. This means that at time k + 1,
ẋk+1 in general only depends on the current state and input (xk,uk) at time k. In
other words, the system has the Markov property. Therefore, the datasets are listed
in pairs D = {(xk,yk)} = {(xk,uk), ẋk}. This does not always hold in practice,
and the state vector must therefore be augmented with additional information, i.e.
lookback states from previous time steps. Takens’ Theorem gives an upper bound
on the number of necessary lookback states [114]. The time derivatives at time
k are estimated as the forward difference ẋk = (xk+1 − xk)/h, where h is the
time step. In this work we use h = 10s. This numerical derivative induces a
discretization error. However, since the dynamics of the aluminum electrolysis is
slow, this error is considered negligible. In a pure DDM approach, the datasets are
listed in pairs as follows:

DDDM = {((xk,uk) , ẋk)}N1 , (4.10)

with N training pairs. In other words, the DDM aims to map (xk,uk) to ẋk. For
the corrective source term model presented in Equation (4.3), the target variable is
the error of the PBM model:

DCoSTA = {(xk,yk,CoSTA)} = {(xk,uk), (ẋk − ˆ̇xk,PBM)}N1 . (4.11)

Input signal generation

While machine learning models are extremely useful for function approximation
and interpolating data, they naturally do not always extrapolate properly and are
highly dependent on on the quality and variety of the data that they are trained
on. Due to this it is vital that the training data covers the intended operational
space of the system. Here, the operational space means the region of the state
space which the system operates in, meaning state and input vectors [xT ,uT]T

observed over time. The data should capture the different nonlinear trends of the
system covered by the operational space. For systems without exogenous inputs,
variation can only be induced by simulating the system with different initial condi-
tions x(t0). For systems with exogenous inputs, the initial conditions are generated
in the same way. Moreover, the input vector u will excite the system dynamics.
The aluminum process has a feedback controller that ensures safe and prescribed
operation. However, operational data from a controlled, stable process is generally
characterized by a low degree of variation which is insufficient for effective system
identification. A well-known convergence criterion for the identification of linear
time-invariant systems is Persistency of Excitation (PE). A signal x(tk) is PE of
order L if all sub-sequences [x(tk), . . . ,x(tk + L)] span the space of all possible

4.3. Method and experimental setup 67

sub-sequences of length L that the system is capable of generating. While the PE
criterion is not directly applicable to nonlinear systems, sufficient coverage of the
dynamics is required for successful system identification [115, 116].

To push the system out of its standard operating conditions, we add random per-
turbations to the control inputs. In general, each control input i is given by:

ui = Deterministic term + Random term. (4.12)

The control inputs u1, u3 and u4 are impulses. The random term is zero for these
control inputs when the deterministic term is zero. The deterministic term is a
proportional controller. The control inputs u2 and u5 are always nonzero. These
control inputs have constant deterministic terms and a random term that changes
periodically. The random term stays constant for a certain period ∆Trand before
changing to a new randomly determined constant. Choosing the period ∆Trand
is a matter of balancing different objectives. On the one hand, it is desirable to
choose a large period ∆Trand so that the system can stabilize and evolve under
the given conditions to reveal the system dynamics under the given conditions. On
the other hand, it is desirable to test the systems under many different operational
conditions. By empirically testing different periods ∆Trand, and seeing how the
dynamics evolve in simulation, it turns out that setting ∆Trand = 30∆T is a fair
compromise between the two. In this study, we generate the random disturbances
using the Amplitude-modulated Pseudo-Random Binary Signal (APRBS) method
[117]. Table 4.2 gives the numerical values of the deterministic term of the control

Table 4.2: Equations used to control the aluminum process

Input Deterministic term Random term interval ∆Trand
u1 3 · 104(0.023− cx2) [−2.0, 2.0] ∆T
u2 1.4 · 104 [−7 · 103, 7 · 103] 30 ·∆T
u3 1.3 · 104(0.105− cx3) [−0.5, 0.5] ∆T
u4 2(x5 − 104) [−2.0, 2.0] ∆T
u5 0.05 [−0.015, 0.015] 30 ·∆T

input, the interval of values for the random terms, and the duration ∆Trand of
how long the random term is constant before either becoming zero (u1, u3, u4) or
changing to a new randomly chosen value (u2, u5).

4.3.3 Modeling approaches

The case study compares three different modeling approaches, namely a PBM ap-
proach using an ablated PBM, the hybrid modeling approach CoSTA - combining

68 Hybrid modeling combining first principle model and deep learning

the ablated PBM with a DNN, and a purely DDM approach - modeling the en-
tire set of ODEs with DNNs. Comparing the CoSTA approach with a PBM and a
DDM approach will reveal the effect of the CoSTA approach.

Ablated PBM

As previously discussed, we are interested in modeling scenarios where the PBM
does not capture the full underlying physics of the system. For this case study, the
PBM is described by Equation (2.15), with modifications to induce modeling er-
rors so that the PBM deviates from the simulation model. That is, Equation (2.14a)
describing the liquidus temperature g1 was ignored, and g1 was set to a constant,
as shown in Equation (4.9). The resulting model, which ignores the dynamics of
the liquidus temperature, is referred to as the ablated PBM, or PBM. The PBM
used in the case study is a set of ODEs on the general form:

ˆ̇xk = fPBM(xk, uk), (4.13)

where ˆ̇xk is the PBM estimate of the time derivative at timestep k, fPBM(·, ·) is
the ablated PBM, and xk and uk are state variables and control inputs at timestep
k.

DDM

The DDM approach models the time derivative of the state, and has the following
form:

ˆ̇xk = fDDM(xk, uk). (4.14)

In the case study, the DDM fDDM(·, ·) is a DNN. The DNN is trained on the
training set D in Equation (4.10).

CoSTA

The case study aims to develop a DDM to correct the ablated PBM using meas-
urement data sampled from the true model. The resulting hybrid model CoSTA
presented on a general form in Equation (4.3) consists of the PBM in Equation (4.13)
and a DDM that is meant to correct the misspecified PBM. The CoSTA in this case
study used to model the set of ODEs in Equation (2.15) is given by:

ˆ̇xk = fCoSTA(xk, uk) = fPBM(xk, uk) + fcorr(xk, uk). (4.15)

fcorr is a DNN that aims to correct the errors in the PBM. The parameters of the
corrective source term fcorr are learned through training, using the manipulated
training set in Equation (4.11).

4.3. Method and experimental setup 69

4.3.4 Training

The PBM in CoSTA will typically reduce the complexity of the learning problem
compared to the learning problem of a pure DDM approach. In light of this, it
is interesting to see the effects of sparsity promoting ℓ1 regularization, which is
known to lead to sparser models and better generalization with less available data,
while maintaining model accuracy. The case study includes two versions of the
DNN in the CoSTA, namely:

• Dense fcorr

• Sparse fcorr

where fcorr is the corrective source term in Equation (4.15). In order to compare
the results with a purely DDM approach, the same two versions of complexity are
used in the DDM approach in Equation (4.14), that is:

• Dense fDDM

• Sparse fDDM

The architecture of all networks, both in CoSTA and the DDM approach, was
[13, 20, 20, 20, 20, 8] (13 inputs, 8 outputs, 4 hidden layers with 20 neurons each).
The ReLU activation function was used for all layers except the output layer, which
had no activation function. The same architecture was used for all networks for a
fairer comparison. The models were trained on the training set using the total-loss
function shown in Equation (2.26), where the loss function L(·, ·) is the MSE as
shown in Equation (2.27). The ADAM optimizer, a popular SGD method with
adaptive learning rates proposed by [118], was used with the following default
parameters: Initial learning rate η = 10−3, Gradient forgetting factor β1 = 0.9,
and Gradient second-moment forgetting factor β2 = 0.999. The dense networks
were trained with λ = 0, and sparse networks with λ = 10−4, where λ is the
ℓ1 regularization parameter. All models were trained for 100 epochs (an epoch
is defined as one full pass over the dataset). This value was chosen empirically
during initial training attempts by inspecting training loss curves and selecting a
rough average of optimal training times. An alternative would be early stopping,
where training is terminated when performance on an additional validation dataset
begins to drop. However, [119] and [120] showed that early stopping could have an
additional regularizing effect by constraining the parameter space. Therefore, early
stopping was not used to maintain similar training conditions over all experiments.

70 Hybrid modeling combining first principle model and deep learning

4.4 Results and discussion
As described in Section 4.3.2, the test set consists of 100 simulated trajectories,
each with a length of 5000 timesteps, with a timestep of ∆T = 10sec. Each model
is used to perform a rolling forecast given the initial conditions and input signal of
each test trajectory. The experiments were repeated 10 times with different random
initializations of the trainable parameters to increase the statistical significance of
the results. That is, each of the four model types consisting of DNNs has 10
model instances. The 4 model types evaluated in the case study that consists of
DNNs are the dense and sparse DNN model structures in the CoSTA("CoSTA
dense" and "CoSTA sparse" in Figure 4.4 and Figure 4.5), and dense and sparse
DNN model structures in the DDM approach ("DDM dense" and "DDM sparse" in
Figure 4.4 and Figure 4.5). These model structures are described in Section 4.3.4.
The last model type that was evaluated, namely the ablated PBM has no trainable
parameters, and remained the same in all experiments. Hence, the PBM has only
1 model instance.

Figure 4.4 shows violin plots of the AN-RFMSE values defined in Equation (2.46)
for all model types. The AN-RFMSE violin plots are shown at three different pre-
diction horizons to demonstrate the models’ short-term, medium-term, and long-
term performance. The AN-RFMSE values included in constructing a single violin
plot for a given horizon and model type are based on the forecasts of the test-set
trajectories up until the given forecasting horizon, and blow-ups are omitted as
outliers. A possible issue here is that excluding these AN-RFMSE values favors
the models that have many blow-ups. However, the results also show high blow-up
rates correlate with high AN-RFMSE. Figure 4.5 shows the frequency of blow-ups
for each model type, based on the blow-up measure defined in Equation (2.47).

These results show that, on average, all DDM and CoSTA models have a lower
AN-RFMSE than the ablated PBM in the short and medium term. However, all
DDM and CoSTA models experience some blow-ups in the long term, which the
PBM model does not. The dense DDM fared the worst, with 27.3% of long-
term forecasts blowing up. The sparse DDM marginally improves on the AN-
RFMSE, but we found that the blow-up rate was significantly reduced in the long
term compared to the dense DDM. Both dense and sparse CoSTA models were
significantly more accurate than the DDM models. The sparse CoSTA had similar
accuracy to the dense CoSTA models in the short and medium term. However,
the sparse CoSTA model had no blow-ups in the short and medium term and had
half the blow-up rate of the Sparse DDM in the long term. These experiments
demonstrate that CoSTA can reliably correct misspecified PBMs and significantly
improves predictive stability compared to end-to-end learning. The base PBM does

4.4. Results and discussion 71

100∆T 2500∆T 5000∆T

10−3

10−2

10−1

100

DDM dense DDM sparse CoSTA dense CoSTA sparse PBM

Figure 4.4: Violin-plot of the AN-RFMSE for all model types for 100 different
initial conditions and inputs signals. The width of the bar reflects the distribution
of the data points, and the error bars represent the range of the data. The error is
shown after 3 different times to compare the performance in the short, medium,
and long-term. We trained 10 different instances for each model type for statistical
significance. We see that CoSTA improves the predictive accuracy over the whole
trajectory. Introducing sparse regularization appears to improve performance for
DDM, but only appears to affect CoSTA models in the long term, where sparse
CoSTA appears to have less variance.

not exhibit any blow-up issues, suggesting that the blow-ups can be attributed to
the NNs used in this work. If long-term forecasts are required (> 3000 timesteps),
we recommend combining the CoSTA approach with a sanity check mechanism to
detect potential blow-ups.

Figure 4.4 and Figure 4.5 summarize the main results of the case study as they
include forecasts of all test-set trajectories. To illustrate and elaborate on the effect
of the results when forecasting without feedback from measurements, we have
included plots of forecasts of a single, representative test trajectory. Figure 4.6
shows the mean predictions for each model type for the representative test traject-
ory, along with a 99.7% confidence interval to show the spread of the predictions
from the 10 instances of each model type. Only the DDM and CoSTA models
trained with ℓ1 regularization are shown for clarity. Before discussing the differ-
ences between the models, we will describe the system’s dynamics and how the in-
correct PBM behaves in comparison. First, note that all variables are non-negative,

72 Hybrid modeling combining first principle model and deep learning

100∆T 2500∆T 5000∆T0

100

200

DDM dense DDM sparse CoSTA dense CoSTA sparse

Figure 4.5: Bar chart of the number of times model estimates blow up and di-
verges. The plot is for all model types for 100 different initial conditions and input
signals. The number of blow-ups was counted after 3 different times to compare
the performance in the short, medium, and long-term. We trained 10 different
instances for each model type for statistical significance. We see that applying
CoSTA greatly increases the predictive stability in the long term. That is, the
number of blow-ups for CoSTA models is far less than the number of blow-ups
for DDM. However, PBM does not suffer from significantly fewer blow-ups than
CoSTA.

4.4. Results and discussion 73

reflecting different physical quantities in the system, i.e., mass, temperature, and
current. Inspecting Equation (2.15), we see that the states x2, x3, and x5 are lin-
early dependent on u1, u2, u3, and u4. We refer to these as the linear states, and
the rest as the nonlinear states.

Liquidus temperature g1: Figure 4.6i shows the true liquidus temperature g1 (in
black) and the constant PBM estimate of the liquidus temperature (in red dotted
line). The liquidus temperature g1, which is the temperature at which the bath
solidifies, is determined by the chemical composition of the bath. That is, g1 is
determined by the mass ratios between x2, x3, and x4. The fact that PBM assumes
g1 to be constant induces modeling errors for the PBM.

Mass of side ledge x1: Figure 4.6a shows the mass of frozen cryolite (Na3 Al F6),
or side ledge. The solidification rate ẋ1 is proportional to the heat transfer Qliq−sl

through the side ledge (Qliq−sl ∼
(
g1−x7

x1

)
) minus the heat transfer Qbath−liq

between the side ledge and the bath (Qbath−liq ∼ (x6 − g1)). The solidification
rate ẋ1 is dependent on the value of g1, and therefore the PBM incorrectly predicts
the mass rate ẋ1. In Figure 4.6a we see that the PBM modeling error for x1 starts to
increase after approximately one hour. This is simultaneously as the true liquidus
temperature g1 drifts away from the constant PBM estimate of g1, see Figure 4.6i.
As we can see, the PBM overestimates g1. Therefore, the PBM also overestimates
the heat transfer out of the side ledge, leading to an overestimate of the amount of
cryolite that freezes, and hence an overestimate of the increase in side ledge mass.
However, this modeling error is limited by the effect that an increased side ledge
mass (and therefore increased side ledge thickness) leads to better isolation. Thus,
the PBM estimate of the heat transfer through the side ledge Qliq−sl is inversely
proportional to the x1 estimate, and the modeling error of x1 reaches a steady state
for a constant modeling error in g1. In addition to modeling errors due to errors in
the g1 estimate, modeling errors of x6 and x7 propagates as modeling errors in ẋ1.

Both the mean of DDM and the mean of CoSTA models appear to correctly predict
the response of x1. However, both model classes show a growing spread. While
the error spread of both model classes appears to grow over time, the DDM error
grows roughly twice as fast. Furthermore, both CoSTA and DDM show some cases
where the error bound becomes significantly large, meaning that one or more of
the models fail. For the DDM models, these cases appear more frequently, and
the errors are larger than for the CoSTA models. Figures 4.6f and 4.6g shows that
these error peaks often coincide with the peaks in the bath temperature x6 and the
side ledge temperature x7.

74 Hybrid modeling combining first principle model and deep learning

Mass of alumina x2: Figure 4.6b shows the mass of aluminum in the bath. Equa-
tion (2.15) shows that ẋ2 (mass rate of Al2O3) is proportional to u1 (Al2O3 feed),
and negatively proportional to u2. Figure 4.6b shows that this yields a saw-tooth
response that rises as u1 spikes, and decays with a rate determined by u2. This
state has no dependence on g1, nor any dependence on other states that depends
on g1. Therefore the PBM (and CoSTA) predict this state with no error. On the
other hand, the spread of the DDM models grows over time, with the mean error
eventually becoming significant.

Mass of aluminum fluoride x3: The x3 state (mass of Al F3) acts as an accumu-
lator, rising when Al F3 is added to the process (u3 spikes), and falling when Al2O3
is added to the process (u1 spikes). The latter is caused by impurities (Na2 O) in
the Alumina (Al2 O3) reacting with Al F3, generating cryolite (Na3 Al F6). As can
be seen in Figure 4.6c, the latter effect is relatively small. Despite this, the DDM
appears to correctly model these decreases. However, the DDM models become
less and less accurate as time goes on. The PBM and CoSTA model x3 with no
error.

Mass of molten cryolite x4: This state represents the mass of molten cryolite in
the bath, where ẋ4 = k5u1 − ẋ1. The first term represents additional cryolite
generated by reactions between impurities in the added alumina (u1) and AlF3
(x3). The second term describes how the cryolite can freeze (x1) on the side ledge,
which can melt again as the side-ledge temperature x7 increases. As can be seen
in Figure 4.6d the response of x4 therefore mirrors that of x1, with relatively small
upturns when alumina is added (u1). Inspecting Figure 4.6a, we see that the models
have essentially identical behavior. Incorrectly estimating x4 causes some issues.
The mass ratio cx2 (see Equation (2.13)) is important in terms of determining the
cell voltage Ucell. A forecasting error of x4 will propagate as a forecasting error
of cx2 , leading to inaccurate estimates of the cell voltage Ucell. This is elaborated
when discussing the bath temperature x6.

Mass of produced metal x5: This linear state also has a saw-tooth characteristic,
growing at a rate proportional to the line current (u2), and falling when metal is
tapped (u4 spikes). Looking at Figure 4.6e, the DDM models have similar er-
ror dynamics to the other linear states, while the PBM and CoSTA models have
virtually no error.

Temperature in the bath x6: There are several possible sources of PBM modeling
errors of the bath temperature x6. As discussed earlier, since the PBM overestim-
ates the side ledge thickness due to a modeling error of g1, it follows that the PBM
overestimates the thermal insulation of the side ledge. This leads to an overestima-

4.4. Results and discussion 75

tion of the bath temperature, as the heat transfer out of the bath is underestimated.
In Figure 4.6f, we see this overestimate of x6 provided by the PBM after approx-
imately one hour, simultaneously as the PBM starts to overestimate the side ledge
mass x1.

Furthermore, the change in bath temperature ẋ6 is determined by the energy bal-
ance in the bath. The energy balance in the bath consists of several components,
namely the electrochemical power Pel which adds energy to the system, the heat
transfer from the bath to the side ledge Qbath−sl which transports energy out of
the bath, and the energy Etc,liq required to break inter-particle forces in the frozen
cryolite liquidus temperature. The electrochemical power Pel = Ucell · u2 is the
product of the cell voltage Ucell and the line current u2. The cell voltage is given
by Ucell =

(
g5 +

u2u5
2620g2

)
, where g5 is the bubble voltage drop, and u2u5

2620g2
is the

voltage drop due to electrical resistance in the bath. The bubble voltage drop g5
increases exponentially when the operation gets close to an anode effect. Anode
effects occurs when the mass ratio of alumina - cx2 is reduced to the a critical
mass ratio of alumina cx2,crit ∼ 2. This can explain overestimate error peaks in
the x6 estimate, which are most present for the DDM models. As we can see in
Figure 4.6f the peaks of the error band for the DDM happens simultaneously with
overestimates of x4 (see Figure 4.6d), indicating that the DDM wrongly predict
anode effects in these cases. Moreover, the voltage drop due to electrical resist-
ance is given by u2u5

2620g2
, where u2 is the line current, u5 is the Anode-Cathode

Distance (ACD), 2620[m2] is the total surface of the anodes and g2 is the electrical
conductivity. Within reasonable operational conditions, 1

g2
can be approximated

as a function that increases linearly with the increasing mass ratio of alumina cx2 .
The modeling error in x4 can therefore propagate to x6. After approximately eight
hours, the error bound of CoSTA models shows that one of the CoSTA models cal-
culates an instantaneous overestimate of x6, followed by an instantaneously under-
estimate of x6. A possible explanation is that the CoSTA model first erroneously
predicts the anode effect. The underestimate of x6 that instantaneously follows
can possibly be caused by an underestimate of cx2 that is lower than cx2,crit which
leads to negative Pel values in the model.

Temperature in the side ledge x7: The change of temperature in the side ledge
ẋ7 is determined by the heat balance in the side ledge. That is, the heat transfer
from the bath to the side ledge Qliq−sl, the heat transfer from the side ledge to
the side wall Qsl−wall, and the energy Etc,sol required to heat frozen side ledge
to liquidus temperature from side ledge temperature. The change of side ledge
temperature depends on the side ledge thickness x1, the bath temperature x6, the
side ledge temperature x7, the wall temperature x8 and the liquidus temperature

76 Hybrid modeling combining first principle model and deep learning

g1. As argued above, for the PBM modeling errors in x1, x6, x7, x8, and g1 will
propagate as modeling errors in the side ledge temperature change ẋ7. For the
DDM and CoSTA models, the error bounds for the modeling errors of x7 shown in
Figure 4.6g are mostly growing simultaneously with error spikes in the error bound
of x6, presumably caused by erroneously predicted anode effects, as explained
above.

Temperature in the wall x8: Figure 4.6h shows that The temperature of the side
wall x8 is changing according to the heat transfer from the side ledge to the wall
Qsl−wall, and the heat transfer from the wall to the ambient Qwall−0. Changes in
the wall temperature ẋ8 depend on the side ledge temperature x7, the wall tem-
perature x8, and the side ledge thickness x1. PBM modeling errors of these states
at time k propagate as modeling errors in the side wall temperature x8 in the next
time step, k+1. Hence, the PBM will, with correct inputs always model the correct
ẋ8 since the PBM model of ẋ8 is equal to the simulator.

4.5 Conclusions and future work
In this work, we presented a recently developed approach in modeling called the
Corrective Source Term Approach (CoSTA). CoSTA belongs to a family of HAM
tools where PBMs and DDMs are combined to exploit the best of both approaches
while eliminating their weaknesses. The method was applied to model an alu-
minum extraction process governed by very complex physics. First, a detailed
high-fidelity simulator was used to generate a dataset treated as the ground truth.
Then, an ablated model was created by setting an internal variable of the simu-
lator to a constant. Finally, the ablated model was supplemented with a corrective
source term modeled using a NN that compensated for the ignored physics. The
main conclusions from the study are as follows:

• CoSTA, in all the scenarios investigated, could correct for the ignored phys-
ics and was consistently more accurate in predicting all 8 states of the pro-
cess compared to both the PBM and DDM over a reasonably long time ho-
rizon.

• Both end-to-end learning and CoSTA were able to capture the complex
coupling between states and inputs.

• CoSTA consistently yields more stable predictions when compared to pure
DDM, despite the numerous input signals being very sparse and discontinu-
ous.

• Regularizing the networks using ℓ1 regularization was found to be effective
in improving model stability in both DDM and CoSTA.

4.5. Conclusions and future work 77

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

2000

3000

4000
M

as
s

(k
g)

(a) Side ledge mass x1

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

400

500

600

700

M
as

s
(k

g)

(b) Alumina mass x2

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

400

500

600

700

M
as

s
(k

g)

(c) Aluminum fluoride mass
x3

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

14000

15000

16000

M
as

s
(k

g)

(d) Molten cryolite mass x4

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

9900

9950

10000

M
as

s
(k

g)

(e) Produced aluminum
mass x5

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

960

970

980

990

T
em

p
(◦

C
)

(f) Bath temperature x6

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

775

800

825

850

T
em

p
(◦

C
)

(g) Side ledge temperature
x7

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

550

600

650

T
em

p
(◦

C
)

(h) Side wall temperature x8

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

962.5

965.0

967.5

970.0

972.5

T
em

p
(◦

C
)

(i) Liquidus temperature g1

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0

5

10

15

M
as

s
ra

te
(k

g/
s)

(j) Alumina feed u1

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

120000

130000

140000

150000

L
in

e
cu

rr
en

t
(A

)

(k) Line current u2

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0.0

2.5

5.0

7.5

M
as

s
ra

te
(k

g/
s)

(l) Aluminum fluoride feed
u3

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0

2

4

6

8

M
as

s
ra

te
(k

g/
s)

(m) Metal tapping u4

0.0 2.5 5.0 7.5 10.0 12.5

Time (hours)

0

2

4

6

8

M
as

s
ra

te
(k

g/
s)

(n) Anode-cathode distance
u5

Truth CoSTA sparse DDM sparse PBM 99.7% conf. DDM 99.7% conf. CoSTA

Figure 4.6: Rolling forecast of a representative test trajectory. 10 CoSTA models
with sparse corrective NN’s, 10 DDM’s consisting of sparse NN models, as well
as a PBM, are predicting the test set trajectories given the initial conditions and the
input vector at any given time.

78 Hybrid modeling combining first principle model and deep learning

One significant benefit of the CoSTA approach is that it can maximize the utiliz-
ation of domain knowledge, leading to reliance on black-box DDM for modeling
only those physics that are either not known or are poorly known. Although it
remains to be investigated in future work, it can be expected that much simpler
models will be sufficient for modeling the corrective source terms. These source
terms can then be investigated to achieve additional insight giving more confidence
in the model. Even if it is not possible to interpret the source terms, it should still
be possible to place bounds on their outputs using domain knowledge. This can be
used as an inbuilt sanity check mechanism in the system. For example, since we
know the amount of energy put into the system, the source terms for the energy
equation will be bounded, so any NN-generated source term violating this bound
can be confidently rejected, making the models more attractive for safety-critical
applications like the one considered here. Another topic that would be worth in-
vestigating is the robustness of the method to noise.

Chapter 5

Modeling dynamics using sparse
neural networks

This chapter is based on the publication:

[80] E. T. B. Lundby, A. Rasheed, I. J. Halvorsen, J. T. Gravdahl "Sparse deep
neural networks for modeling aluminum electrolysis dynamics”. In: Applied Soft
Computing 134 (2023), p. 109989. ISSN: 1568-4946.

The contribution consider the effect of the sparsity promoting ℓ1 regularization
on generalizability, interpretability and training stability of DNNs compared to
densely trained DNNs.

5.1 Introduction
NNs are challenging to interpret, difficult to generalize to solve previously unseen
problems, and unstable to train. These are critical shortcomings to overcome be-
fore the models can be used in high-stake applications. We discuss each of these
briefly.

Interpretability: This can be defined as the ability of a model to express itself
in human interpretable form [121]. A simple model like linear regression having
very few trainable parameters can be a good example of an interpretable model.
However, a DNN, constituting millions of trainable parameters, can be extremely
difficult or almost impossible to interpret. We can attempt to remedy this by train-
ing DNNs with a sparsity prior, thereby reducing the number of parameters and
revealing a more parsimonious structure.

Generalizability: This refers to the model’s ability to predict outcome values for

79

80 Modeling dynamics using sparse neural networks

unseen data from the same distribution as the training data. Highly complex and
overparameterized models are prone to overfitting, meaning they do not generalize
to unseen data not adequately represented during the training. The overfitting can
be mitigated by increasing the amount and variety of data. However, in many com-
plex physical systems, the cost and challenges of data acquisition limit the amount
of training data. As a result, the trained DNN can fail to generalize. However, if
the overparameterization issue is addressed, then there is tentative evidence that
the DNN will be better at generalization [122].

Stability: The training of a DNN requires solving an optimization problem in a
multidimensional space. Depending upon the complexity of the problem, the di-
mension can easily be in thousands or even millions, and multiple local minima
might be encountered. Even the same DNN with just a slightly different initializa-
tion of the parameters can end up in very different minima, and the risk of ending
up in a bad minimum is high. By stability in the context of the current work,
we mean that the optimization leads to a reasonable minimum, which, even if not
global, yields a similar loss value. On the contrary, an unstable DNN will be the
one where the optimization process yields inconsistent results, gets stuck in bad
local minima, or fails to converge to an acceptable parameter configuration.

This chapter addresses the challenges of generalizability, interpretability, and sta-
bility by training sparse neural networks. Authors in [122] show empirically that
sparse neural networks can generalize better than dense neural networks on clas-
sification tasks. This line of reasoning is intuitively related to Occam’s Razor, and
even early research such as [123] has investigated trimming small neural networks
to increase interpretability. However, most recent research in deep learning fo-
cuses on high-dimensional data and uses architectures with millions to billions of
parameters. Fully interpreting these models is unfortunately intractable and is not
given much attention in this work. On the other hand, dynamical systems can of-
ten be expressed in a relatively low dimensional state space despite their rich and
complex behavior. This makes them a good candidate for further investigation.
Unfortunately, the research on sparse neural networks for modeling dynamical
systems is limited. The authors in [124] propose a sparse Bayesian deep learning
algorithm for system identification. The method was tested on a simulator of a
cascade tank [125] with two states and one input, and on a simulator of coupled
electric drives [126] with three states and one input. Besides this, little research has
been done, and the critical shortcomings of DNN mentioned above remain mostly
unaddressed. In this work, we attempt to address the following research questions:

• What effect can sparsity-promoting regularization have on the complexity
of neural networks?

5.2. Region bounds for piecewise affine neural networks 81

• Can one generate insight from the interpretation of sparse neural networks,
or are they as difficult to interpret as their dense counterparts?

• Can sparsity promoting regularization improve the data efficiency of neural
networks?

• Can the model uncertainty of neural networks be reduced, and their accuracy
improved so that they are better suited for modeling the complex dynamics
over both short and long-term horizons?

The study is applied to the aluminum electrolysis simulator described in Sec-
tion 2.1.2.

The chapter is structured as follows. Section 5.2 presents theory on model com-
plexity of ReLU networks. Section 5.3 presents the method applied in the paper
and the experimental setup of the simulator for data generation. In section 5.4, the
results are presented and discussed. Finally, in section 5.5, conclusions are given,
and potential future work is presented.

5.2 Region bounds for piecewise affine neural networks
The complexity of NNs with Piecewise Affine (PWA) activation functions such as
ReLU can be analyzed by looking at how the network partitions the models’ input
space to an exponential number of linear response regions [127, 128]. For each
region in the input space, the PWA neural network has a linear response for the
output. Authors in [129] present asymptotic upper and lower bounds for maximum
number of regions for a DNN with ReLU activation:

Lower : Ω
((n

d

)(L−1)d
nd
)
,

Upper : O
(
ndL
)
.

(5.1)

d is the input dimension, L is the number of hidden layers, and n is the number
of activation functions or neurons in each layer. The bounds in Equation (5.1) are
valid for networks with the same number of neurons in each layer. The bonds for
networks with an uneven number of neurons show similar exponential results and
are thus not included for convenience. Equation (5.1) illustrates the exponential
relation between the input dimension, number of neurons, and the depth of the
network. For realistic amounts of data sampled from a physical system, the number
of linear regions that a relatively small dense neural network partition the input
space into exceeds the sampled data by several orders of magnitude. Thus, in
order to generalize to larger areas of the models’ input space, the number of regions
needs to be reduced drastically. This motivates sparsifying the model.

82 Modeling dynamics using sparse neural networks

5.3 Method and experimental setup

5.3.1 Training with sparsity promoting regularization

In this chapter, sparse DNN models are utilized to predict state variables in the
aluminum electrolysis simulator. All the weight matrices in a DNN model are ℓ1
regularized to impose sparsity. Figure 5.1 illustrates how weights are enumerated
according to their input and output nodes. Layer j has i nodes and layer (j + 1)
has r nodes. Layer j = 0 corresponds to the input layer, and consist of measured
or estimated states x(t) and control inputs u(t) at time step t. The output layer
consists of the estimated time derivatives of the states ẋ(t) at time step t.

Figure 5.1: Enumerated weights according to their input and output nodes between
layer j and (j + 1)

The weight matrix Wj+1 corresponds to the weights that connect layer j to j +1.

5.3. Method and experimental setup 83

Wj+1 is arranged as follows:

Wj+1 =

w11 w12 ... w1i

w21 w22 ... w2i
...

. . .
wr1 wr2 . . . wri

 . (5.2)

Regularization terms Rℓ1,j+1 are defined for each weight matrix Wj+1 :

Rℓ1,j+1 =
∑

i,k∈Wj+1

|wi,k|. (5.3)

wherewi,k are the model weights from layer j to j+1, or equivalently, the elements
of Wj+1. The regularization terms for each layer are added to the cost function:

w∗ = argmin
w

{
1

N

N∑
i=1

(yi − f(xi))
2 + λ1Rℓ1,1...

+ λj+1Rℓ1,j+1 + ...+ λLRℓ1,L

}
,

(5.4)

where 1
N

∑N
i=1(yi− f(xi))

2 is the MSE, and λj+1, j = 0, ..., 3 is a layer-specific
hyperparameter that determines how the weights in Wj+1 are penalized.

5.3.2 Experimental setup and data generation

Data for the aluminium electrolysis process is generated by integrating the non-
linear ODEs given by Eqs. (2.15a) - (2.15h) with a set of chosen initial values for
the state variables x(t0), and fourth-order RK4 algorithm. The initial conditions
of each variable xi for each simulation are randomly chosen from a given interval
of possible initial conditions given in Table 5.1. For x2 and x3, concentrations
cx2 and cx3 are given. Data-driven models depend on a high degree of variation
in the training data to be reliable and valid in a large area of the input space. The
input signal determines how the system is excited and thus what data is available
for modeling and parameter estimation. Operational data from a controlled, stable
process is generally characterized by a low degree of variation. Even large amounts
of data sampled over a long period from a controlled process can not guarantee
that the variation in the training data is large enough to ensure that the trained
model generalizes to unseen data. Therefore, random excitations are added to the
input signals to increase the variation in the sampled data. The intuition is that the
random excitation will push the dynamics out of the standard operating condition
so that variation in the training data increases. In general, each control input i is
given by:

ui = Deterministic term + Random term. (5.5)

84 Modeling dynamics using sparse neural networks

Table 5.1: Initial conditions for system variables

Variable Initial condition interval
x1 [3260, 3260]
cx2 [0.02, 0.03]
cx3 [0.10, 0.12]
x4 [13500, 14000]
x5 [9950, 10000]
x6 [975, 975]
x7 [816, 816]
x8 [580, 580]

The control inputs u1, u3 and u4 are impulses. The random term is zero for
these control inputs when the deterministic term is zero. The deterministic term
is a proportional controller. The control inputs u2 and u5 are always nonzero.
These control inputs have constant deterministic terms and a random term that
changes periodically. The random term stays constant for a certain period ∆Trand
before changing to a new randomly determined constant. Choosing the period
∆Trand is a matter of balancing different objectives. On one hand, it is desirable
to choose a large period ∆Trand so that the system can stabilize and evolve under
the given conditions to reveal the system dynamics under the given conditions. On
the other hand, it is desirable to test the systems under many different operational
conditions. By empirically testing different periods ∆Trand, and seeing how the
dynamics evolve in simulation, it turns out that setting ∆Trand = 30∆T is a
fair compromise between the two. Table 5.2 gives the numerical values of the

Table 5.2: Control functions

Input Deterministic term Random term interval ∆Trand
u1 3e4(0.023− cx2) [−2.0, 2.0] ∆T
u2 14e3 [−7e3, 7e3] 30 ·∆T
u3 13e3(0.105− cx3) [−0.5, 0.5] ∆T
u4 2(x5 − 10e3) [−2.0, 2.0] ∆T
u5 0.05 [−0.015, 0.015] 30 ·∆T

deterministic term of the control input, the interval of values for the random terms,
and the duration ∆Trand of how long the random term is constant before either
becoming zero (u1, u3, u4) or changing to a new randomly chosen value (u2, u5).
One simulation i with a given set of initial conditions is simulated for 1000 time

5.3. Method and experimental setup 85

steps, and each time step ∆T = 30s. The simulation generates the data matrix as
in Equation (5.6):

X =

x1(0) x2(0) ... x8(0) u1(0) ... u5(0)

x1(1) x2(1) ... x8(1) u1(1) ... u5(1)
...

...
. . .

...
...

. . .
...

x1(k) . . . xi(j) . . . u1(j) . . . u5(j)
...

...
. . .

...
...

. . .
...

x1(999) x2(999) ... x8(999) u1(999) ... u5(999)

. (5.6)

The number j within the parenthesis of variable i indicates the time step for when
xi(j) is sampled. The target values are then calculated as

Y =

x1(1)−x1(0)
∆T ... x8(1)−x8(0)

∆T

x1(2)−x1(1)
∆T ... x8(2)−x8(1)

∆T
...

. . .
...

x1(k)−x1(j−1)
∆T ... x8(j)−x8(k−1)

∆T
...

. . .
...

x1(1000)−x1(999)
∆T ... x8(1000)−x8(999)

∆T

. (5.7)

Each training set Sk from simulation k are put in input and outputs are put in pairs:

Sk = [X,Y] =

[xT (0),uT (0)]T , y(0)

...
...

[xT (j),uT (j)]T , y(j)
...

...
[xT (999),uT (999)]T , y(999)

 . (5.8)

The training sets from each simulation are normalized before they are stacked

Sstack =
[
ST1 , ST2 , ..., STk ,, STn

]T
. (5.9)

Here, n is the number of simulated time-series X. The number of time series
simulations n varies in the experiments to evaluate the model performance as a
function of training size. Then, all input-output pairs in the stacked training set are
shuffled:

Strain = shuffle(Sstack). (5.10)

The shuffled training set is put in mini-batches [Xbatch, i, Ybatch, i], and the mod-
els are trained on these mini-batches. The test set also consists of several time
series simulations generated in the same way described above. The test set is
given by:

Stest = {{X1}, {X2}, ..., {Xp}}. (5.11)

86 Modeling dynamics using sparse neural networks

Stest(i) = {Xi} = {([xk, uk]}1000k=1 is one simulated time series, and {xk}1000k=1 is
being forcasted by the models. In all experiments, 20 models of each dense and
sparse networks with different initialization are trained on the training set and then
evaluated on the test set.

5.3. Method and experimental setup 87

Simulations Preprocessing

Training data

Trained model

Processed training data

Training

Evaluation

Test data

Normalize data

for epoch in epochs:
 for in batches:

Trajectories

Initial conditions

Rolling forecast

Estimated Trajectories

 Blow up plot

Model uncertainty

Model evaluation

Figure 5.2: Schematic presentation of the experimental setup. This includes the
data simulation, preprocessing of training data, model training, and model evalu-
ation. In the first step (blue box), training and test data are simulated. Each frame
in the blue box corresponds to a simulation of the dynamics from some random
initial conditions. The training and test data are separated, where the test data
is given directly to the evaluation part of the case study, while the training data
is sent to preprocessing. In the preprocessing stage, input features from a given
simulation are arranged in an input matrix. Output features are calculated (see
Equation (5.7)) before they are put in an output matrix corresponding to the in-
put matrix. Then, both input and output features are normalized and put in pairs.
After all the simulations are arranged in input-output pairs, all pairs are shuffled
before being put in mini-batches for training. In the training procedure, the model
parameters are optimized on the mini-batches. The trained models are then sent
to the evaluation stage. In this stage, models are given the initial conditions from
the test set. In addition, the models are given the control inputs in the test set
at every time step. Given the initial conditions as well as control inputs at every
time-step of the test set trajectory, the models produce a forecast of the test set
trajectories. The estimated trajectories are compared to the test set trajectories and
evaluated according to accuracy measures, uncertainty in terms of disagreement
between models with different initial parameters trained on the same data with the
same hyperparameters, and according to the number of blow-ups of a given model
type (models trained with same hyperparameters), meaning the number of times
that model type estimate diverges from the test set they are estimating.

88 Modeling dynamics using sparse neural networks

Figure 5.2 summarizes the workflow in the case study. Each step is briefly ex-
plained in the figure text, and more thoroughly throughout Sec. 5.3.

5.4 Results and discussion
In this section, we present and discuss the main findings of the work. In doing so,
we will analyze the results from the perspective of interpretability, generalizability,
and training stability.

5.4.1 Interpretability perspective

As discussed earlier, the interpretability of a model is the key to its acceptability in
high-stake applications like the aluminum extraction process considered here. Un-
fortunately, highly complex dense neural networks having thousands to millions
of parameters which were the starting point for the modeling here are almost im-
possible to interpret. Figure 5.3 shows the model structure of a dense DNN model
learned for the generated data. The figure illustrates how densely trained neural
networks yield uninterpretable model structures.

5.4. Results and discussion 89

Z1

f1

Z12
Z9
Z2
Z6
Z5
Z8
Z4
Z3

Z10

Z2
Z12
Z13

Z10

Z11
Z3

Z4

Z6
Z7
Z5
Z9

Z14
Z8
Z1

Z9

Z15
Z8
Z7

Z14

Z4

Z6

Z11

Z1
Z10
Z2

Z3
Z13

Z5

Z12

X1
U1
X8
U4
X7
X4

X2
X3

X5

X6

U3

U2
U5 Z7

f2

Z2
Z1

Z11

Z10

Z4

Z13
Z8

Z14

Z2
Z11
Z9
Z7
Z3
Z1
Z6
Z5

Z12

Z8

Z6

Z7

Z12

Z15

Z11

Z9

Z1
Z4

Z2
Z14

Z3

Z10
Z5

Z13

U4

U1
X4

X3

X7

X1

X8

X2

X6

U2

U5
U3

X5

Z11

f3

Z2
Z1
Z7

Z8
Z1
Z6

Z13
Z3
Z7
Z5
Z2

Z12
Z9

Z4

Z14

Z10
Z11

Z5

Z13

Z12

Z15

Z11

Z4
Z10

Z3

Z9

Z7
Z8

Z14

Z1
Z2

Z6

X2

X4
U1

X3

X1

U2

X7
X8
U4

U5

X6

U3

X5

Z1

f4

Z12
Z9
Z6
Z2
Z5
Z8
Z4
Z3
Z7

Z10
Z11

Z2
Z12
Z13

Z10

Z11
Z3

Z4

Z6
Z7
Z5
Z9

Z14
Z8
Z1

Z9

Z15
Z8
Z7

Z14

Z4

Z6

Z11

Z1
Z10
Z2

Z3
Z13

Z5

Z12

X1
U1
X8
U4
X7
X4

X2
X3

X5

X6

U3

U2
U5

Z4

f5
Z1
Z2

Z14
Z13
Z7

Z10

Z11
Z3
Z6
Z1

Z12

Z5
Z9

Z4

Z8
Z2

Z8

Z3
Z11

Z7
Z2
Z4

Z12

Z13

Z9

Z14

Z10
Z15
Z5

Z1

Z6

U4
U1
X4

X3

X7
X1
X8

X2

X6

U2
U5
U3

X5

Z2

f6

Z6
Z9
Z5

Z12
Z1
Z3
Z8

Z11
Z10
Z7

Z8
Z5
Z6

Z4

Z9
Z1

Z11
Z7

Z10

Z13
Z12
Z3

Z14
Z2

Z5

Z13

Z12

Z15

Z11

Z4
Z10

Z3

Z9

Z7
Z8

Z14

Z1
Z2

Z6

X2

X4
U1

X3

X1

U2

X7
X8
U4

U5

X6

U3

X5

Z1

f7

Z12
Z9
Z6
Z3

Z10
Z2
Z4
Z5
Z8

Z11

Z2
Z12
Z13

Z10

Z11
Z3

Z4

Z6
Z7
Z5
Z9

Z14
Z8
Z1

Z9

Z15
Z8
Z7

Z14

Z4

Z6

Z11

Z1
Z10
Z2

Z3
Z13

Z5

Z12

X1
U1
X8
U4
X7
X4

X2
X3

X5

X6

U3

U2
U5

Z5

f8
Z2
Z3

Z11
Z10
Z4
Z9
Z7
Z6

Z12Z6
Z2

Z11

Z14
Z8

Z10

Z3
Z9

Z12
Z1

Z4

Z5
Z7

Z13

Z15
Z4
Z7

Z10

Z11

Z12
Z9

Z1

Z14
Z6
Z2
Z8

Z3

Z13

Z5

X8

X1
X6
X4

X3

U3

X2

X7

U4
U1

U2

U5

X5

Figure 5.3: Model structure of each output function {f1, .., f8} for one of the
trained dense neural network models. The circles represent neurons, inputs, and
outputs in the model. Xi represent system variable i in the input layer, Ui rep-
resents control input i in the input layer, and Zi represents latent variable i in the
layer it is visualized. The directed edges indicate weights in the model.

Fortunately, through the regularization, it was possible to significantly reduce the
model complexity resulting in a drastically reduced number of trainable paramet-
ers (see the Figs. 5.4-5.11). It can be argued that the reduced model complexity of
sparse neural networks increases the model interpretability. With domain know-
ledge about the aluminum electrolysis process, the sparse models can be evaluated
as we will do in the remainder of this section.

The results related to the interpretability aspect are presented in the form of model
structure plots which can be used to explain the input-output mapping of the mod-
els. If the model structures are very sensitive to initialization, then their interpret-
ation will not make sense. Therefore, 100 DNNs with different initialization are

90 Modeling dynamics using sparse neural networks

trained independently and their common trends are emphasized in the discussions.
We now present each of the model outputs {f̂1(x,u), ..., f̂8(x,u)}. It is worth
mentioning that these outputs are estimates of each of the time derivatives of the
states {ẋ1, ..., ẋ8} respectively.

Table 5.3: Frequency of learned features for each output {f̂1, ..., f̂8}. Each
column i corresponds to an output f̂i of the neural network. Each row element j
correspond to one of the features {x1, x2, ..., x8, u1, u2, ..., u5}. The value of
the table element (i, j) is the percent of how many out of one hundred models of
the output fi that feature j occurs for DNNs with ℓ1 regularization.

Feature
Output functions

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8
x1 86 1 1 86 2 100 99 100

x2 100 2 2 100 1 100 100 100

x3 100 2 2 100 0 93 100 87

x4 100 0 0 100 0 87 100 87

x5 2 0 0 2 0 2 2 2

x6 100 2 2 100 1 100 100 87

x7 22 1 1 21 1 7 89 89

x8 100 1 1 100 2 87 100 100

u1 100 100 100 100 0 100 100 87

u2 4 0 0 4 1 100 18 18

u3 2 0 100 2 0 2 4 4

u4 2 0 0 2 100 3 3 3

u5 3 0 0 3 1 100 18 18

Model output f̂1

The simulation model for the first output f1 defined in Equation (2.15a) is a func-
tion of the features {x1, x2, x3, x4, x6, x7}. f1 can further be divided into three
sums f1 = h1(x1, x2, x3, x4, x7)+h2(x6)+h3(x2, x3, x4), where h1 = k1

g1(x2,x3,x4)−x7

k0x1
,

h2 = −k2x6 and h3 = g1(x2, x3, x4). g1 is a nonlinear function defined in Equa-
tion (2.14a).

5.4. Results and discussion 91

Z1 f1Z1Z1

X1

X2

X3

X4

X6

X8

U1

63% of the models

Z1
f1

Z2

Z1

Z2

Z1

Z2

X1

X2

X3

X4

X6

U1

X7

X8

13% of the models

Z1
f1

Z2

Z1

Z2Z1

Z2

X2

X3

X4

X6

X8

U1

10% of the models

Figure 5.4: Most common learned structures for f̂1(x,u) for DNNs with ℓ1 regu-
larization..

Figure 5.4 shows the three most common learned structures of the first output of the
neural network f̂1(x,u). In total, these structures account for 86% of all learned
structures of f̂1. The top structure forms the resulting structure for 63% of the
models. It is a function of seven inputs f̂1 = f(x1, x2, x3, x4, x6, x8, u1). All input
features are connected to the same neuron in the first layer. Moreover, it is only
one neuron in each hidden layer. The upper bound in Equation (5.1) states that this
model structure only has ndL = 17·3 = 1 region. This is equivalent to stating that
the model collapses to one linear model. The middle and the bottom structures of
Figure 5.4 has more than one neuron in the hidden layers. However, the structures
can be divided into two disconnected subnetworks since the hidden neurons are

92 Modeling dynamics using sparse neural networks

not connected before they are added in the output layer. Hence, also these models
collapse to linear models with a single region. This means that the neural networks
do not capture the nonlinear dynamics in the simulation model. All structures of
Figure 5.4 are erroneously including x8 and u1 in their feature basis. Besides,
x7 which is present in the simulation model f1 is not found by the top and bottom
structures in Figure 5.4. In fact, x7 is found only in 22% of the models f̂1 according
to Table 5.3. The exact cause of this erroneous feature selection is not trivial.
However, x8 which is the wall temperature correlates highly with the side ledge
temperature x7. Thus, x8 can possible have been learned as a feature of f1 instead
of x7. Moreover, the alumina feed u1 on the other hand affects the time derivative
of the mass of alumina ẋ2, the time derivative of mass of aluminum fluoride ẋ3
and the time derivative of cryolite ẋ4 directly. All these variables affect ẋ1 through
the liquidus temperature g1(x2, x3, x4). To understand how this might cause the
learning algorithm to find u1 as a feature of f̂1, consider the following: let u1 be
zero until time t. Then, {x2, x3, x4} will be updated due to u1 at the next sampled
time step t+ 1. However, the fourth-order Runge Kutta solver splits the sampling
interval into 4 smaller intervals {t + 0.25, t + 0.5, t + 0.75, t + 1} and solve
the ODE eqautions at all these time steps. Thus, the state variables {x2, x3, x4}
are updated already at time t + 0.25. Since ẋ1 is depending on these variables,
x1 will be updated at t + 0.5. Therefore, at time t + 1, when data is sampled,
x1 would also be changed. Hence, the learning algorithm finds u1 to affect the
time derivative ẋ1. This could might have been solved by shortening the sampling
interval. Furthermore, x1 not included as a feature in 14% of the models. This
might be a combination of parameter initialization and that x1 is multiplied by the
small constant k0 = 2 · 10−5.

Z1 f2Z1Z1U1

97% of the models

Figure 5.5: Most common learned structure for f̂2(x,u) for DNNs with ℓ1 regu-
larization. 97% of f2 ends up with this structure.

5.4. Results and discussion 93

Model output f̂2

Figure 5.5 shows the most common learned structure among the models f̂2 that
models the time derivative of alumina f2 = ẋ2. 97% of the structures end up
as the structure in Figure 5.5. The simulation model f2 in Equation (2.15b) is a
linear model dependent on {u1, u2}. The learned models f̂2 only finds u1 as the
relevant feature. The reason for this might be that u2 is proportional to a very small
constant k3 = 1.7 · 10−7. Variations in the line current u2 are not big enough to be
significant for the learning algorithm. The dynamics caused by u2 are captured in
a bias in the models.

Z1

f3

Z2

Z1

Z2

Z1

Z2U1

U3

45% of the models

Z1

f3

Z2

Z1

Z2

Z1

Z2

U1

U3

22% of the models

Z1 f3

Z1

Z2

Z1

Z2

U3

U1

10% of the models

Z1

f3

Z2Z3

Z2

Z1

Z2

U1

U3

8% of the models

Figure 5.6: Most common learned structures for f̂3(x,u) for DNNs with ℓ1 regu-
larization.

94 Modeling dynamics using sparse neural networks

Model output f̂3

Figure 5.6 shows the four most common learned structures of f̂3. f̂3 models the
time derivative of the aluminum fluoride mass ẋ3 in the cell. The simulation model
ẋ3 = f3 in Equation (2.15c) is a linear model depending on the features {u1, u3},
and in all structures in Figure 5.6, only these two features are found. As shown in
Table 5.3, these features are found in 100% of the trained models. The structures
found are mainly linear models. However, in the second and fourth structures,
some weights connect the features in intermediate layers.

5.4. Results and discussion 95

Z1
f4

Z2

Z1

Z2Z1

Z2

X1

X2

X3

X4

X6

X8

U1

41% of the models

Z1 f4Z1Z1

X1

X2

X3

X4

X6

X8

U1

21% of the models

Z1
f4

Z2

Z1

Z2

Z1

Z2

X1

X2

X3

X4

X6

U1

X7

X8

13% of the models

Z1 f4Z1Z1

X2

X3

X4

X6

X8

U1

10% of the models

Figure 5.7: Most common learned structures for f̂4(x,u) for DNNs with ℓ1 regu-
larization.

Model output f̂4

Figure 5.7 shows the four most common learned structures among models f̂4 that
models the mass rate of liquid cryolite Na3AlF6 in the bath, namely ẋ4. The

96 Modeling dynamics using sparse neural networks

DNNs yielding this structure are ℓ1 regularized. ẋ4 is simulated by the simulation
model ẋ4 = f4 in Equation (2.15c). f4 consist of the features {x1, x2, x3, x4, x6, x7, u1}.
Table 5.3 show that {x2, x3, x4, x6, x8, u1} are included in 100% of the learned
models, x1 is included in 86% of the models and x7 is included in only 21% of the
models. As for f̂1, x8 is erroneously included in the basis of the model. This might
be explained by the fact that x7 and x8 are highly correlated and that the wrong
feature is included. The structures in Figure 5.7 are all forming linear models.
However, the simulation model ẋ4 = f4 is partly nonlinear. Thus, the approxima-
tion f̂4 oversimplifies the dynamics. This might be caused by a high weighting of
the sparse regularisation term. If the loss function is less penalized, there is room
for more weights in the model and, therefore, more nonlinearities.

Model output f̂5

Z1 f5Z1Z1U4

98% of the models

Figure 5.8: Most common learned structures for f̂5(x,u) for DNNs with ℓ1 regu-
larization.

Figure 5.8 shows the most commonly learned structure among the ℓ1 regularized
DNNs that models f̂5. The structures in the figure include 98% of the learned
model structures. f̂5 is modeling the mass rate of produced aluminum in the cell
ẋ5. The x5 time series are produced by the simulation model ẋ5 = f5 in Equa-
tion 2.15e. f5 is a linear model dependent on the features {u2, u4}. However, most
of the model structures are only depending on u4. This can be caused by the fact
that u2 is proportional to a very small constant k6 = 4.43 · 10−8. Thus, variations
in u2 might not be large enough for the learning algorithm to find u2 significant as
a basis for f̂5.

5.4. Results and discussion 97

Model output f̂6

Z1
f6

Z2

Z1

Z2

Z1

Z2X1

X2

X3

X4

X6

X8

U1

U2

U5

57% of the models

Z1
f6

Z2

Z1

Z2Z1

Z2X1

X2

X6

X8

U1

U2

U5

X3

X4

11% of the models

Z1 f6Z1Z1

X1

X2

X6

U1

U2

U5

7% of the models

Z1
f6

Z2

Z1

Z2

Z1

Z2

Z3

Z4X2

X3

X6

U2

X1

X8

U5

X4

U1

6% of the models

Figure 5.9: Most common learned structures for f̂6(x,u) for DNNs with ℓ1 regu-
larization.

98 Modeling dynamics using sparse neural networks

Figure 5.9 shows the most common model structures of f̂6. f̂6 models the bath
temperature time derivative ẋ6. The bath temperature x6 is simulated by the ODE
in Equation (2.15f). It is a nonlinear equation depending on
{x1, x2, x3, x4, x6, x7, u2, u5}. The most common structure, learned by 57% of
the models f̂6 is illustrated in the top plot of Figure 5.9. This structure has the basis
{x1, x2, x3, x4, x6, x8, u1, u2, u5}. Hence, it finds u1 and x8, which is erroneously
found in many of the structures above. A possible explanation for this trend is
given above. The structure has two neurons in the first layer, one with the basis
{x1, x2, x6, x8, u1, u2, u5} and one with the basis {x1, x2, x3, x4, x6, x8, u1}. Since
the model collapses to a linear model, all terms are summed in the end. Thus, the
separation of the basis is thus of little importance. The second plot from above in
Figure 5.9 is the second most common structure, and accounts for 11% of the mod-
els f̂6. It has the same feature basis as the most common structure, but they are ar-
ranged differently in the first layer. However, since both model structures are linear
models, this arrangement is of minor importance. The third structure in Figure 5.9
which account for 7% of the structures of f̂6 has the basis {x1, x2, x6, u1, u2, u5}.
Compared to the other structures, {x3, x4, x8} is not present. Since it only happens
rarely, this is maybe partly caused by bad parameter initialization. The fourth most
common structure, which accounts for 6% of the structures, has the same feature
basis as the first and the second most common structures. This structure is plotted
in the bottom of Figure 5.9. While all other structures in Figure 5.9 have one linear
response region, the fourth most common model structure models some nonlinear-
ities. That is, neurons in the first hidden layer are connected in the second hidden
layer. Hence, the input space must be divided into several linear response regions
for this structure.

5.4. Results and discussion 99

Model output f̂7

Z1

f7
Z2

Z1

Z2

Z1

Z2

X1

X2

X3

X4

X6

X8

U1

X7

63% of the models

Z1

f7
Z2

Z1

Z2

Z1

Z2

X1

X2

X3

X4

X6

U1

X7

X8

10% of the models

Figure 5.10: Most common learned structures for f̂7(x,u) for DNNs with ℓ1 reg-
ularization.

Figure 5.10 shows the two most common structures for the models f̂7. f̂7 models
the time derivative of the side ledge temperature ẋ7. ẋ7 = f7 is simulated by the
ODE in Equation (2.15g). ẋ7 is depending on the feature basis
{x1, x2, x3, x4, x6, x7, x8}. Table 5.3 states that the basis {x2, x3, x4, x6, x8, u1}
is present for 100% of the models, x1 is present for 99% of the models and x7
is present in 89% of the models. The top plot in Figure 5.10 show the structure
that accounts for 63% of the models. The bottom plot account for 10% of the
model structures of f̂7. These two structures collapse to linear models, and have
the same feature basis {x1, x2, x3, x4, x6, x7, x8, u1}, but have minor differences
in how weights are connected between input layer and first hidden layer. u1 is also
for this model output erroneously found as a basis, and a possible explanation is
mentioned above.

100 Modeling dynamics using sparse neural networks

Model output f̂8

Z1

f8
Z2

Z1

Z2Z1

Z2

X1

X2

X3

X4

X6

X8

U1

X7

60% of the models

Z1 f8Z1Z1

X1

X2

X7

X8

11% of the models

Figure 5.11: Most common learned structures for f̂8(x,u) for DNNs with ℓ1 reg-
ularization.

Figure 5.11 show the two most common model structures for the last model output
f̂8. f̂8 models the time derivative of the wall temperature ẋ8 = f8, which is simu-
lated in Equation (2.15h). ẋ8 depends on the feature basis {x1, x7, x8}. However,
the most common learned structure for f̂8 has the basis
{x1, x2, x3, x4, x6, x7, x8, u1}. This is the exact same structure as the most com-
mon learned structure for f̂7. Therefore, a possible explanation is that f̂8 adapts
the same parameters as f̂7 in some cases as they highly correlates. The bottom
plot in Figure 5.11 show the second most common learned structure of the model
output f̂8. This structure is learned by 11% of the models f̂8. The feature basis
for this structure is {x1, x2, x7, x8}, and reminds more of the actual basis. In this
structure, there is only one erroneous learned feature, namely x2. Figure 5.4-5.11
and Table 5.3 show that the sparse learning is quite consistent in finding the same
feature basis and structure with similar characteristics. However, some differences
that affect the models are present.

5.4. Results and discussion 101

It is clear that doing a similar analysis for models in Figure 5.3 is impossible as all
interconnections make the models a black box. On average, 93% of the weights of
dense DNNs are pruned in the sparse DNN models. For the outputs f̂1, f̂4, f̂6, f̂7
and f̂8, approximately 40% of the input features are pruned of the model structures.
For f̂2, f̂3 and f̂5, 85 − 95% of the input features are pruned. For all outputs of
the sparse DNN models, around 85− 95% of the neurons are pruned at each layer.
In a neural network, the number of matrix operations only decreases if neurons
are pruned. That is, removing a neuron in layer j is equivalent to removing a row
in weight matrix Wj and a column in weight matrix Wj+1. The dense models
have a compact model structure, where most weights are nonzero. The dense
DNN models in the case study have the shapes 13-15-14-12-8. The first number
is the number of features, the second, third, and fourth numbers are the number of
neurons in hidden layers, and the last is the number of outputs. This shape gives
669 matrix operations in a forward pass. An average sparse DNN, has the shape
13− 6− 6− 6− 8. This gives 198 matrix operations. Thus, the number of matrix
operations in the forward pass of a sparse DNN model is reduced by approximately
70%.

5.4.2 Generalizability perspective

This section investigates the joint impact of the training data quantity and model
sparsity on the models’ performance on a set of test trajectories in terms of ac-
curacy and predictive stability. The performance measures defined in Section 2.4,
namely the AN-RFMSE defined in Equation (2.46) and the instabillity measure
defined in Equation (2.47) are used.

Comparison of sparse and dense rolling forecast

Figure 5.12 and Figure 5.13 show the performance of the ensembles of 20 sparse
and 20 dense DNN models with different parameter initialization forecasting the
state variables x in one of the time series in the test set Stest(i) = {Xi} as defined
in Equation (5.11). The models are trained on a data set
Strain = {{X1, Y1}, {X2, Y2}, ..., {X10, Y10}} consisting of ten time series
{X1, .., X10} with 999 time steps each.

102 Modeling dynamics using sparse neural networks

0 2 4 6 8

Time (hours)

2750

3000

3250

3500

3750

4000

M
as

s
(k

g)

(a) Side ledge mass x1

0 2 4 6 8

Time (hours)

300

350

400

450

500

550

M
as

s
(k

g)

(b) Alumina mass x2

0 2 4 6 8

Time (hours)

1900

1950

2000

2050

M
as

s
(k

g)

(c) Aluminum fluoride mass
x3

0 2 4 6 8

Time (hours)

12750

13000

13250

13500

13750

14000

M
as

s
(k

g)

(d) Molten cryolite mass x4

0 2 4 6 8

Time (hours)

9940

9960

9980

10000
M

as
s

(k
g)

(e) Produced aluminum
mass x5

0 2 4 6 8

Time (hours)

970

972

974

T
em

p
(◦

C
)

(f) Bath temperature x6

0 2 4 6 8

Time (hours)

790

800

810

820

830

840

T
em

p
(◦

C
)

(g) Side ledge temperature
x7

0 2 4 6 8

Time (hours)

560

580

600

T
em

p
(◦

C
)

(h) Side wall temperature x8

0 2 4 6 8

Time (hours)

0

2

4

6

M
as

s
ra

te
(k

g/
s)

(i) Alumina feed u1

0 2 4 6 8

Time (hours)

135000

140000

145000

L
in

e
cu

rr
en

t
(A

)

(j) Line current u2

0 2 4 6 8

Time (hours)

0.0

0.5

1.0

1.5

M
as

s
ra

te
(k

g/
s)

(k) Aluminum fluoride u3

0 2 4 6 8

Time (hours)

0.0

0.5

1.0

1.5

2.0

M
as

s
ra

te
(k

g/
s)

(l) Metal tapping u4

0 2 4 6 8

Time (hours)

0.045

0.046

0.047

0.048

0.049

0.050

D
is

ta
n

ce
(m

)

(m) Anode-cathode-distance
u5

Truth Mean sparse control input std. dev. sparse

Figure 5.12: Sparse rolling forecast of state variables {x1, .., x8} at each time in-
stant. The true values of x and control inputs u are taken from one simulated set
of test set trajectories Xi ∈ Xtest. The orange dotted line shows the average of 20
forecasts calculated by 20 sparse neural network models with different parameter
initialization. The orange band shows the standard deviation of the same 20 fore-
casts calculated by 20 sparse models.

5.4. Results and discussion 103

0 1 2 3 4

Time (hours)

0

2000

4000
M

as
s

(k
g)

(a) Side ledge mass x1

0 1 2 3 4

Time (hours)

0

200

400

600

800

1000

M
as

s
(k

g)

(b) Alumina mass x2

0 1 2 3 4

Time (hours)

1500

2000

2500

3000

M
as

s
(k

g)

(c) Aluminum fluoride mass
x3

0 1 2 3 4

Time (hours)

12000

14000

16000

18000

M
as

s
(k

g)

(d) Molten cryolite mass x4

0 1 2 3 4

Time (hours)

9950

10000

10050

M
as

s
(k

g)

(e) Produced aluminum
mass x5

0 1 2 3 4

Time (hours)

950

960

970

980

990

1000

T
em

p
(◦

C
)

(f) Bath temperature x6

0 1 2 3 4

Time (hours)

750

800

850

900

950

T
em

p
(◦

C
)

(g) Side ledge temperature
x7

0 1 2 3 4

Time (hours)

500

550

600

650

700

T
em

p
(◦

C
)

(h) Side wall temperature x8

0 1 2 3 4

Time (hours)

0

2

4

6

M
as

s
ra

te
(k

g/
s)

(i) Alumina feed u1

0 1 2 3 4

Time (hours)

135000

137500

140000

142500

145000

L
in

e
cu

rr
en

t
(A

)

(j) Line current u2

0 1 2 3 4

Time (hours)

0.0

0.5

1.0

1.5

M
as

s
ra

te
(k

g/
s)

(k) Aluminum fluoride u3

0 1 2 3 4

Time (hours)

0.0

0.5

1.0

1.5

2.0

M
as

s
ra

te
(k

g/
s)

(l) Metal tapping u4

0 1 2 3 4

Time (hours)

0.047

0.048

0.049

0.050

D
is

ta
n

ce
(m

)

(m) Anode-cathode-distance
u5

Truth Mean sparse control input std. dev. sparse

Figure 5.13: Dense rolling forecast of state variables {x1, .., x8} at each time in-
stant. The true values of x and control inputs u are taken from one simulated set
of test set trajectories Xi ∈ Xtest. The orange dashed line shows the average of 20
forecasts calculated by 20 dense neural network models with different parameter
initialization. The orange band shows the standard deviation of the same 20 fore-
casts calculated by 20 dense models. The forecast is shown until some of the dense
model estimates starts to diverge from true values.

104 Modeling dynamics using sparse neural networks

Figure 5.12 and Figure 5.13 indicate that the forecasts of sparse and dense models
are showing similar performance for the first time steps after they are given the
initial conditions. However, while the forecasts calculated by sparse models show
a consistently slow drift from the simulated values of x, the mean and standard de-
viation of forecasts calculated by dense models suddenly drifts exponentially. The
narrow banded standard deviation of sparse neural networks can indicate that these
models converge to models with similar characteristics during training despite dif-
ferent parameter initialization. Furthermore, the consistently slow drift between
the sparse DNN model forecast of x and the true values of x indicate that the sparse
models are generalizing better as they are showing good forecasting capabilities in
a broader region than the dense DNN models. Figure 5.12 and Figure 5.13 show
some interesting results that indicate better generalization of sparse DNN models
than dense DNN models and that the convergence of model parameters for sparse
DNN models are more robust to random initialization than dense DNN models are.

Impact of the training data quantity and prediction horizon

Figure 5.14 shows the median, maximum and minimum values of AN-RFMSE
among test set trajectories.

5.4. Results and discussion 105

10 20 50 100 200
Datapoints…in…training…data…(x999)

10 3

10 2

10 1

100

A
N

R
FM

SE

(a) 200 ∆T of forecasting.

10 20 50 100 200
Datapoints…in…training…data…(x999)

10 3

10 2

10 1

100

101

102

103

A
N

R
FM

SE

(b) 300 ∆T of forecasting.

10 20 50 100 200
Datapoints…in…training…data…(x999)

10 1

101

103

105

107

109

1011

1013

A
N

R
FM

SE

(c) 500 ∆T of forecasting.

10 20 50 100 200
Datapoints…in…training…data…(x999)

100

103

106

109

1012

1015

1018

1021

A
N

R
FM

SE

(d) 1000 ∆T of forecasting.

Median AN-RFMSE sparse Median AN-RFMSE dense

Figure 5.14: Median, maximum, and minimum AN-RFMSE values. There are
five ensembles of models of both sparse and dense DNNs trained on data sets with
different sizes. For each ensemble of models, there is a corresponding colored bar
indicating median values and an error bar indicating maximum and minimum AN-
RFMSE values. Moreover, the size of the training sets is indicated on the x-axis of
the subplots. The blue bar shows the median AN-RFMSE value among 20 sparse
DNN models over 20 test set trajectories. The orange bar shows the median AN-
RFMSE value among 20 dense DNN models over 20 test set trajectories. For each
subfigure, the AN-RFMSE values are calculated for a given number of timesteps
reported in the captions of each subfigure (5.14a - 5.14d). Notice the logarithmic
scale of the y-axis.

Figure 5.14 contains a good amount of information about the model perform-
ance of dense DNN models and the sparse DNN models with weight penalty
λℓ1 = 1e−2. Figs. 5.14a to 5.14d report median and extreme AN-RFMSE val-
ues over four different time horizons for five ensembles of models trained on five
data sets with different sizes. Hence, the results in Figure 5.14 show how dense
and sparse DNN models perform with varying amounts of training data over vary-
ing time horizons. Figs. 5.14a to 5.14d show that the ensembles of sparse models
trained on data sets with varying size show similar results, both in terms of me-
dian and extreme AN-RFMSE values. However, as Figure 5.14d shows, there
seems to be a small trend that model ensembles trained with more data perform
slightly better over longer forecasting horizons. Furthermore, the band between
the minimum and maximum AN-RFMSE values is overall relatively small for all
ensembles of models and all forecast horizons for sparse models. The converging

106 Modeling dynamics using sparse neural networks

behavior of the performance of ensembles of sparse models as a function of the
amount of data in the training set indicates that only small amounts of data are
required to gain significance for the model parameters. While the sparse models
show stable performance across ensembles of models with different amounts of
training data and slowly increasing AN-RFMSE values proportional to the length
of the forecasting horizon, the same cannot be said about the performance of the
dense models. When considering the dense models, Figs. 5.14a to 5.14d indicate
that there is a trend where both median, minimum and maximum AN-RFMSE val-
ues decrease significantly as sizes of training set decreases. This expected trend
indicates that the performance improves with increasing dataset size. However,
the trend is not consistent for all ensembles of dense DNN models for all fore-
casting horizons. Furthermore, the maximum AN-RFMSE values for ensembles
of dense DNN models for longer forecasting horizons such as in Figure 5.14c
and Figure 5.14d show that the AN-RFMSE exponentially increases for some of
the models within the ensemble. This indicates that the dense DNN models are
likely to have some input regions where the model output is not sound. If the
model estimate enters a region with poorly modeled dynamics, the model estimate
might drift exponentially. For short-term prediction, that is in Figure 5.14a and
Figure 5.14b, the trend is that dense models show better performance for median
and minimum values than sparse models, especially within the ensembles with
large training sets. This may be because dense models have more flexibility in
terms of more parameters. However, it is important to state that the weights of
the sparse models evaluated in Figure 5.14 are especially hard penalized, indicat-
ing that the flexibility of these models are limited. For longer forecasting horizons
(Figure 5.14c and Figure 5.14d), sparse models are always showing better perform-
ance than dense models in terms of median AN-RFMSE values. This is a typical
example of a bias-variance trade-off. For all forecasting horizons and within all
groups of training set sizes, sparse models are always showing smaller maximum
AN-RFMSE values.
While it is valuable to have models that can give reasonable estimates in the long
term, short-term prediction accuracy can be given extra attention since the mod-
els typically perform best on shorter horizons, and can therefore be used more
aggressively for optimal control. As observed above, dense models tend to give
better median accuracy than sparse models with hard ℓ1 regularization in shorter
prediction horizons if trained on larger datasets. We, therefore, conducted a study
where we compared dense models with sparse models trained with different levels
of weight regularization with different sizes of the training set. Figure 5.15 show
the mean prediction accuracy of an ensemble of dense models and three different
ensembles of sparse models with different degree of weight penalization (namely
λℓ1 = 1e−4, λℓ1 = 1e−3 and λℓ1 = 1e−2). Each ensemble consists of 20 mod-

5.4. Results and discussion 107

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) 25 000 training datapoints

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) 50 000 training datapoints

0.5

1.0

1.5

2.0

2.5

(c) 100 000 training datapoints

1

2

3

4

5

6

7

(d) 200 000 training datapoints

λℓ1 = 0 (Dense) λℓ1 = 1e−4 λℓ1 = 1e−3 λℓ1 = 1e−2

Figure 5.15: Median prediction error ratio for short prediction horizon of 200∆T .
All median prediction errors are divided by the median prediction error of dense
models. Thus, dense models will always have a prediction error ratio of 1.

108 Modeling dynamics using sparse neural networks

els, and each of the models forecast 200 timesteps of 50 different test trajectories.
The median accuracy is expressed in terms a ratio called median prediction error
ratio. This ratio is given by of the ratio between the median prediction error of
the given ensemble of models and the median prediction error of the ensemble of
dense models. This means that the median prediction error ratio of dense models
is always one, and that smaller ratio indicates higher median accuracy. For low
and medium data sizes (Figure 5.15a and 5.15b), the median accuracy of all en-
sembles of sparsely regularized models are more accurate than dense models also
in the short term. In this data regime, the different sparse models show similar pre-
diction capabilities. In Figure 5.15c, the median prediction error ratio for models
trained on 100 000 data points are plotted. In this data regime, the median accur-
acy ratio between medium sparse models (λℓ1 = 1e−3 and λℓ1 = 1e−4) and dense
models remains quite similar to the median accuracy ratio between dense and me-
dium sparse models in the low data regime. Moreover, the prediction error ratio of
very sparse models (λℓ1 = 1e−2) and the other models increase significantly. This
is probably because the model accuracy of very sparse models converges at low
data limits. In contrast, medium sparse and dense models can exploit their non-
linear prediction capabilities when large amounts of training data are available. In
Figure 5.15d, median prediction error ratios for models trained on 200 000 data
samples are presented. At this point, sparse models trained with λℓ1 = 1e−4 has a
median model prediction error ratio of 0.5, sparse models trained with λℓ1 = 1e−3

has a prediction error ratio of 1.1 and sparse models trained with λℓ1 = 1e−2 has
a prediction error ratio of approximately 7. In this large data regime, it seems
clear that the medium sparse, and dense models are very accurate. In contrast,
the accuracy of very sparse models converges for small training datasets. Further-
more, the sparse model trained with the smallest sparsity regularization parameter
(λℓ1 = 1e−4) still outperforms the dense models. This study illustrates that dense
models require enormous amounts of data to outperform sparse models.

To quantify the exponential drift or blow-up of model estimates for different levels
of sparsity, we run a test on ensembles of models trained on datasets with different
data sizes. The measure used in Figure 5.16 is defined in Equation (2.47).

5.4. Results and discussion 109

200 T 500 T 1000 T
0

100

200

300

400

500

600

700

800

(a) 25 000 training data

200 T 500 T 1000 T
0

100

200

300

400

500

(b) 50 000 training data

200 T 500 T 1000 T
0

25

50

75

100

125

150

175

(c) 100 000 training data

200 T 500 T 1000 T
0

10

20

30

40

50

(d) 200 000 training data

λℓ1 = 0 (Dense) λℓ1 = 1e−4 λℓ1 = 1e−3 λℓ1 = 1e−2

Figure 5.16: Effect of regularization on the number of blowups for different
amount of training data

Figure 5.16 shows the frequency of blowups for models with different degree of
ℓ1 regularization ranging from λℓ1 = 0 giving dense DNNs to λℓ1 = 1e−2 giving
very sparse DNNs. The models are trained on four different datasets, and for each
dataset and each value of regularization parameter λℓ1 , an ensemble of 20 DNNs
are trained. The models are then tested on 50 different simulated test trajector-
ies, yielding 1000 possible blowups for each ensemble of models. The training
datasets consist of respectively 25 000, 50 000, 100 000 and 200 000 datapoints
to show the effect of sparsfication on preventing blow-ups for a range of train-
ing set sizes. In each subfigure of Figure 5.16, the number of blow-ups are given
after three different prediction horizons. For the models trained on the smallest
training set (show in Figure 5.16a and Figure 5.16b) the trend is clearly that the
higher degree of sparsity, the lesser the blow ups. For models trained on larger
datasets (Figure 5.16c and Figure 5.16d) the dense models are still having signific-
antly more blow ups than all the sparse models. However, when we compare very
sparse models (λℓ1 = 1e−2) with medium-, and little sparse models (λℓ1 = 1e−3

and λℓ1 = 1e−3 respectively), the difference becomes less significant. This can
maybe be explained by the fact that the amount of data converges to a sufficient
level also for the models trained with smaller sparsity promoting regularization on

110 Modeling dynamics using sparse neural networks

the parameters.

5.4.3 Training stability perspective

Sparsification on a large ensemble of neural networks gives similar sparse struc-
tures. This has been shown in the structure plots in the Figs.5.4-5.11. Furthermore,
Table 5.3 show that sparse models to a large extent finds the same feature basis for
each of the model outputs {f̂1, ..., f̂8}.
Moreover, Figure 5.14 clearly indicates for all forecasting horizons that the uncer-
tainty bounds for dense models are much larger than those for sparse models. For
the longer horizons, some of the dense models tend to blow up. This is probably
due to that the model enters a region of the input space where it overfits. This
can be seen as poor generalization to that specific area. Figure 5.16 quantify this
by showing that state estimates calculated by dense models tend to blow up much
more frequently than sparse models for all forecasting horizons and all training
dataset sizes used in the case study. This indicates that the risk of finding bad
minimas is higher for dense models. Furthermore, sparse models are more likely
to converge to reasonable minimas with smaller training data than dense models.
Hence, the study shows that sparse models have better training stability than dense
models with limited data.

5.5 Conclusions and future work
This chapter presents a sparse neural network model that approximates a set of
nonlinear ODEs based on time series data sampled from the system variables in-
cluded in the ODEs. The set of nonlinear ODEs represents an aluminum electro-
lysis simulator based on the mass and energy balance of the process. This includes
nonlinear and interrelated models of electrochemical and thermal subprocesses.
The sparsity in the model is achieved by imposing sparsity using ℓ1 regularization
on the weights. The main conclusions from the study can be itemized as follows:

• ℓ1 regularization drastically reduces the number of parameters in the DNN.
In our case we witnessed a 93% reduction in the parameters compared to the
corresponding dense DNN for a regularization parameter of λℓ1 = 1e−2.

• The sparse neural network was more interpretable using the domain know-
ledge of the aluminium electrolysis process. In contrast, the dense neural
networks were completely black-box.

• Sparse neural networks were consistently more stable than their dense coun-
terparts. This was reflected in the model uncertainty estimates based on a
large ensemble of models. Furthermore, dense model estimates tend to di-

5.5. Conclusions and future work 111

verge from the states that they are estimating way more often than sparse
models. This means that the parameters of sparse neural networks are more
likely to end up at a reasonable minima than the parameters of dense DNN
with limited training data.

• For small to medium amounts of data, even the most sparse models have bet-
ter median prediction accuracy than the dense models for a short prediction
horizon.

• For medium to large amounts of training data, sparse models with low weight
penalization still has better prediction accuracy than dense models in the
short term. However, dense models outperform very sparse models in terms
of median prediction accuracy in short prediction horizons. For longer pre-
diction horizons, sparse models outperform dense models both in terms of
higher median accuracy.

While the sparse models show promising results within interpretability and gen-
eralizability, there is still a high potential for improvement. There is a desire to
increase prediction accuracy and decrease the bias of the sparse models. This
might be addressed by investigating other sparsity structures at different layers that
better compromise the bias-variance trade-off. One possible direction is to inject
simplified theories known from first principle into the neural network to possibly
increase accuracy. Lastly, we have not addressed the additional challenges related
to the presence of noise.

112 Modeling dynamics using sparse neural networks

Chapter 6

Modeling dynamics using Neural
Networks with skip-connections

This chapter is based on the article:

[81] E. T. B. Lundby1, H. Robinson1, A. Rasheed, J. T. Gravdahl, "Sparse neural
networks with skip-connections for identification of aluminum electrolysis cell"
Pending Review: IEEE CDC. (2023) Available in: arXiv preprint arXiv:2301.00582
(2023)

Here, skip connections are introduced in the DNN model structure. Furthermore,
the combined effect of skip-connections and sparsity promoting ℓ1 regularization
is examined.

6.1 Introduction
Recent research has found that using sparser networks may be the key to train-
ing models that can generalize across many situations. In particular, [88] showed
empirically that for any dense architecture, there is a very high probability that
there is a sparse subnetwork which will train faster and generalize better than the
full model. This is known as the Lottery Ticket Hypothesis, and many methods of
sparsification can be seen as attempts to somehow extract such a "winning lottery
ticket" from an initially dense network. There have been numerous advances in
this field, and we refer to [91] for a recent and comprehensive review. In this work
we use the well-known ℓ1 regularization for sparsification of the model.

A challenge related to the use of NNs is the choice of architecture and hyper-

1Equal contributions

113

114 Modeling dynamics using Neural Networks with skip-connections

parameters. Typical networks have multiple layers which are densely connected,
although this can vary between domains. Choosing an appropriate architecture
is an art, generally involving trial and error to improve performance and avoid
overfitting. It is commonly understood that the early layers of a neural network
have a significant impact on the overall performance of the network, but deep
networks often suffer from the vanishing or exploding gradient problem which
prevents effective training of these early parameters [56]. Skip-connections were
originally proposed by [93] as a way to circumvent this, by introducing a shorter
path between the early layers and the output. They were not only found to enable
the training of significantly deeper networks, but [130] also demonstrated that they
may help improve training convergence.

In this work, we investigate the effects of adding skip connections and ℓ1 regular-
ization on the accuracy and stability of these models for short, medium, and long
horizons. We address the following questions:

• How do skip connections affect the stability and generalization error of
neural networks trained on high-dimensional nonlinear dynamical systems?

• How does sparsity affect stability and generalization error for neural net-
works with skip connections that model nonlinear dynamics?

• How does the amount of training data affect neural networks with skip con-
nections compared to neural networks without skip connections?

We make the following contributions:

• We perform a black box system identification of an aluminum electrolysis
cell using different NN architectures.

• We demonstrate that the accuracy and open-loop stability of the resulting
models is greatly improved by using ℓ1 weight regularization and incorpor-
ating skip connections into the architecture.

• This advantage is consistent across datasets of varying sizes.

The chapter is structured as follows. Section 6.2 describes the proposed method
and the experimental setup. In Section 6.3, results are presented and discussed,
and in Section 6.4, conclusions are made.

6.2. Method and setup 115

6.2 Method and setup
In this section, we present all the details of data generation and its preprocessing,
and the methods that are required to reproduce the work. The steps can be briefly
summarized as follows:

• Use Equation (2.15) with random initial conditions to generate 140 traject-
ories with 5000 timesteps each. Set aside 40 for training and 100 for testing.
Construct 3 datasets by selecting 10,20 and 40 trajectories respectively.

• For each model class and dataset, train 10 instances on the training data.

• Repeat all experiments with ℓ1 regularization, see loss function in Equation
(6.2).

• Use trained models to generate predicted trajectories along the test set and
compare them to the 100 test trajectories.

6.2.1 InputSkip

In this work, we utilize a modified DenseNet architecture as proposed by [82],
where the outputs of earlier layers are concatenated to all the consecutive layers.
We simplify the structure such that the model only contains skip connections from
the input layer to all consecutive layers. We call this architecture InputSkip, which
has reduced complexity compared to DenseNet.

Figure 6.1: InputSkip architecture with 4 hidden layers

116 Modeling dynamics using Neural Networks with skip-connections

The model InputSkip model structure is illustrated with 4 hidden layers in Fig-
ure 6.1. This design is motivated by the fact that the output of each layer (including
the final output) becomes a sum of both a linear and a nonlinear transformation of
the initial input x. Hence, the skip connections from the input layer to consecutive
layers facilitate the reuse of the input features for modeling different linear and
nonlinear relationships more independently of each other. The structure can be
described mathematically as follows:

z1 = σ1(W1z0 + b1)

zi = σi

(
Wi

[
zi−1

z0

]
+ bi

)
, i > 1,

(6.1)

where z0 is the input layer, zi for i > 0 are hidden layers and y is the output
layer. The output of each layer (excluding the first) becomes a sum of a linear and
a nonlinear transformation of the initial input x. Hence, the skip connections from
the input layer to consecutive layers facilitate the reuse of the input features for
modeling different linear and nonlinear relationships more independently.

6.2.2 Data generation

Equation (2.15) was discretized using the RK4 scheme with a fixed timestep h =
10 s and numerically integrated on the interval [0, 5000h]. We used uniformly ran-
domly sampled initial conditions from the intervals shown in Table 6.1 to generate
140 unique trajectories. We set aside 40 trajectories for training and 100 of the
trajectories as a test set. The 40 training trajectories were used to create 3 data-
sets of varying sizes (small, medium, large), namely 10, 20, and 40 trajectories.
In total, the datasets contained 50000, 100000, and 200000 individual data points
respectively.

Equation (2.15) also depends on the input signal u. In practice, this is given by
a deterministic control policy u = π(x) that stabilizes the system and keeps the
state x within some region of the state space that is suitable for safe operation.
We found that this was insufficient to successfully train our models, because the
controlled trajectories showed very little variation after some time, despite having
different initial conditions. This lack of diversity in the dataset resulted in models
that could not generalize to unseen states, a situation that frequently arose during
evaluation. To inject more variety into the data and sample states x outside of the
standard operational area, we used a stochastic controller

πs(x) = π(x) + r(t)

that introduced random perturbations r(t) to the input. These perturbations were
sampled using the APRBS method proposed by [117] for nonlinear system identi-
fication.

6.3. Results and discussions 117

Table 6.1: Initial conditions intervals for x

Variable Initial condition interval
x1 [2060, 4460]
cx2 [0.02, 0.05]
cx3 [0.09, 0.13]
x4 [11500, 16000]
x5 [9550, 10600]
x6 [940, 990]
x7 [790, 850]
x8 [555, 610]

In system identification it is typical to optimize the model to estimate the function
ẋ = f(x,u). However, this is not feasible for Equation (2.15) because the inputs
u are not differentiable. Instead, we discretize the trajectories using the forward
Euler difference and use this as the regression variable:

yk =
xk+1 − xk

h

The datasets are then constructed as sets of the pairs ([xk,uk],yk).

6.2.3 Training setup

We optimize the models by minimizing the following loss function using stochastic
gradient descent:

Jθ =
1

|B|
∑
i∈B

(yi − f̂(xi,ui))
2 + λ

L∑
j=1

|Wj | (6.2)

where B is a batch of randomly sampled subset of indices from the dataset, L
is the number of layers of the NN, and λ is the regularization parameter. This
loss function is the sum of the MSE of the model f̂ with respect to the regression
variables y, and the ℓ1 norm of the connection weight matrices Wi in all layers.
We used a batch size of |B| = 128. We used the popular ADAM solver proposed
by [118] with default parameters to minimize Equation (6.2).

6.3 Results and discussions
We characterize the different model classes (PlainDense, PlainSparse, InputSkip-
Dense, InputSkipSparse) by estimating their blow-up frequencies and their Rolling
Forecast Mean Squared Error (RFMSE) on the validation data. The blow-up fre-
quency is an interesting measure since it can indicate how stable the model is

118 Modeling dynamics using Neural Networks with skip-connections

in practice. The measures used in this section are defined in Section 2.4 as the
AN-RFMSE defined in Equation (2.46), and the instability measure defined in
Equation (2.47).

We perform a Monte Carlo analysis by training 10 instances of each model class
and evaluating these on 100 trajectories randomly generated using the true model,
yielding 1000 data points for each model class. We repeat the experiments for 3
different dataset sizes to study the data efficiency of the models.

Figure 6.2 presents the total number of blow-ups recorded within each model class
after 100h, 2000h, and 5000h (short, medium, and long term respectively). For
simplicity, blow-ups were detected by thresholding the computed variance of a
predicted trajectory and manually inspected. It is clear that for short time horizons
all the models exhibit robust behavior independently of the size of the training
datasets. However, for medium and long time horizons, PlainDense, PlainSparse,
and InputSkipDense architectures exhibit a significant number of blow-ups and
therefore instability. Figure 6.2a - 6.2c show that PlainDense is generally the most
unstable, with up to 67% of all trajectories resulting in a blow-up. For the smallest
amount of training data (Figure 6.2a) PlainSparse and InputSkipDense have sim-
ilar blow-up frequencies. For larger datasets, the PlainSparse architecture shows
significantly better stability than both PlainDense and InputSkipDense. InputSkip-
Dense and PlainDense both show better stability with increasing amounts of train-
ing data in terms of fewer blow-ups. However, both these dense models still suffer
from significant amounts of blow-ups.

In comparison, almost no blow-ups are recorded when using the InputSkipSparse
architecture, even for the small training dataset. In Figure 6.2, the orange bars
corresponding to the blow-up frequency of InputSkipSparse models are not visible
for any of the training sets due to the significantly lower number of blow-ups.
For InputSkipSparse models trained on the smallest dataset, only 3 out of 1000
possible blow-ups were reported for the longest horizon. Apart from that, no blow-
ups were reported for the InputSkipSparse models.

Only a few blow-ups were recorded after 5000h in the medium term.

Figure 6.3 presents a violin plot of the accuracy of each model class, expressed
in terms of RFMSE over different time horizons. Only the plot for the smallest
dataset (50000 points) is shown, due to the results being very similar. A larger
width of the violin indicates a higher density of that given RFMSE value, while
the error bars show the minimum and maximum recorded RFMSE values. The
model estimates that blew up (see Figure 6.2) are not included. In this way, we
estimate the generalization performance of the models only within their regions of

6.3. Results and discussions 119

100 T 2500 T 5000 T
0

100

200

300

400

500

600

700

(a) Trained on smallest dataset with 50000
datapoints

100 T 2500 T 5000 T
0

50

100

150

200

250

(b) Trained on medium sized dataset with
100000 datapoints

100 T 2500 T 5000 T
0

25

50

75

100

125

150

175

200

(c) Trained on largest dataset with 200000
datapoints

PlainDense PlainSparse InputSkipDense InputSkipSparse

Figure 6.2: Divergence plot: Number of trajectories that blow-up over different
time horizons. The total number of trajectories is 1000, so the values can be read
as a permille.

120 Modeling dynamics using Neural Networks with skip-connections

100 T 2500 T 5000 T

10 2

10 1

100

PlainDense PlainSparse InputSkipDense InputSkipSparse

Figure 6.3: Model accuracy expressed in terms of AN-RFMSE over different hori-
zons. Ten models of each of the model types (PlainDense, PlainSparse, InputSkip-
Dense, InputSkipSparse) are trained on the smallest dataset of 50000 data points.
The model estimates that blow up (see Figure 6.2) are excluded. The plot shows
that sparse models with skip connections (InputSkipSparse) are consistently more
accurate than both sparse and dense models without skip connections.

stability. Note that the violin plots for model classes with many blow-ups are made
using fewer samples, and can be seen as slightly “cherry-picked". Nonetheless,
the InputSkipSparse architecture consistently yields more accurate results, up to
an order of magnitude better than the others in the long term.

6.4 Conclusion and future work
In this work, we compared the performance of two different model structures
trained both with and without sparsity promoting ℓ1 regularization. The two model
types are standard MLPs, and a more specialized architecture that includes skip
connections from the input layer to all consecutive layers. This yields four dif-
ferent model structures, which we call PlainDense, PlainSparse, InputSkipDense,
and InputSkipSparse. The main conclusions of the chapter are as follows:

• NNs with skip connections are more stable for predictions over long time
horizons compared to standard MLPs. Furthermore, the accuracy of NNs
with skip connections is consistently higher for all forecasting horizons.

6.4. Conclusion and future work 121

0 2 4 6 8 10
Time…(hours)

2000

4000

6000

M
as

s
(k

g)

(a) Side ledge mass x1

0 2 4 6 8 10
Time…(hours)

1000

0

1000

2000

M
as

s
(k

g)

(b) Alumina mass x2

0 2 4 6 8 10
Time…(hours)

1600

1800

2000

2200

M
as

s
(k

g)

(c) Aluminum fluoride x3

0 2 4 6 8 10
Time…(hours)

10000

12000

14000

16000

M
as

s
(k

g)

(d) Molten cryolite x4

0 2 4 6 8 10
Time…(hours)

9000

9500

10000

10500

M
as

s
(k

g)

(e) Produced aluminum x5

0 2 4 6 8 10
Time…(hours)

940

960

980

1000

Te
m

p
(

C
)

(f) Bath temperature x6

0 2 4 6 8 10
Time…(hours)

650

700

750

800

850

Te
m

p
(

C
)

(g) Side ledge temperature x7

0 2 4 6 8 10
Time…(hours)

400

500

600

700

Te
m

p
(

C
)

(h) Side wall temperature x8
Truth InputSkipSparse PlainSparse 99.7% conf. PlainSparse 99.7% conf. InputSkipSparse

Figure 6.4: Rolling forecast of a representative test trajectory

122 Modeling dynamics using Neural Networks with skip-connections

• The application of sparsity-promoting ℓ1 regularization significantly im-
proves the stability of both the standard MLP and InputSkip architectures.
This improvement was more apparent for models with the InputSkip archi-
tecture.

• The InputSkipSparse showed satisfactory stability characteristics even when
the amount of training data was restricted. This suggests that this architec-
ture is more suitable for system identification tasks than the standard MLP
structure.

The case study shows that both sparsity-promoting regularization and skip con-
nections can result in more stable NN models for system identification tasks while
requiring less data, as well as improving their multi-step generalization for both
short, medium, and long prediction horizons. Despite the encouraging perform-
ance of the sparse-skip networks, we can not guarantee similar performance for
noisy data, as we have only investigated the use of synthetic data devoid of any
noise. However, such a study will be an interesting line of future work. This case
study also has relevance beyond the current setup. In more realistic situations,
we often have a partial understanding of the system we wish to model (see Equa-
tion (2.15)), and only wish to use data-driven methods to correct a PBM when it
disagrees with the observations (e.g. due to a faulty assumption). As shown in
[79], combining PBMs and data-driven methods in this way also has the potential
to inject instability into the system. Finding new ways to improve or guarantee out-
of-sample behavior for data-driven methods is therefore of paramount importance
to improve the safety of such systems.

Chapter 7

Deep active learning in
experimental design for
nonlinear system identification

This chapter is based on the article in:

[83] E. T. B. Lundby, A. Rasheed, I. J. Halvorsen, D. Reinhardt, S. Gros, J. T.
Gravdahl, "Deep active learning for nonlinear system identification", In arXiv pre-
print arXiv:2302.12667 (2023).

The contribution propose a novel DeepAL acquisition scheme. A set of simulated
state-action trajectories are obtained through local explorations. This simulated set
of state-action trajectories enables a novel static BMDAL acquisition scheme that
aims to acquire the batch of most informative regions among the candidates. The
dynamics are then explored locally in the acquired regions to acquire data from the
system.

7.1 Introduction
While having extrordinary capabilities to model complex input-output relations,
DNNs typically need vast data to obtain levels of accuracy and generalizability
acceptable to apply them in safety-critical systems. AL aims to maximize model
accuracy with a minimal amount of data by acquiring the most informative training
data [67]. This has been noticed by researches aiming to identify the dynamics of
different systems with more simple ML models such as GP models [74], linear
models [76], and restricted class of nonlinear models [77]. However, the research
on active learning for system identification of NN models is, to the best of the

123

124 Deep active learning in experimental design for nonlinear system identification

authors’ knowledge, highly limited. To that end, we extend the work of AL used
to acquire the most informative data for system identification to NNs. That is,

• In equation (7.7), we formalize a general BMDAL acquisition scheme for
dynamical system identification referred to in this work as global explor-
ation. The scheme is on the static deep active learning batch acquisition
form presented in equation (2.32) from [67]. The static acquisition scheme
for dynamical systems is enabled through local explorations, obtaining a
set of simulated informative candidate state-action trajectories distributed
around the state-action space. The novel DeepAL scheme builds upon the
AL scheme presented in [75] that iteratively searches for the single most
informative state-action trajectory for identifying a GP model through local
and global explorations.

• The novel formulation of the static BMDAL acquisition for dynamical sys-
tems is utilized in a novel framework presented in Fig. 7.2. Ensembles of
NNs are used to produce uncertainty estimates that assess the informative-
ness of single state-action trajectories.

• The general nature of the proposed BMDAL formulation allows for a wide
range of query strategies to be applied. This is demonstrated by using two
different query strategies in the case study.

The AL algorithm is showcased on the simulated dynamics of a 3 Degree Of Free-
dom (DOF) surface vessel with three states and three control inputs, yielding an
input space of six dimensions. The simulator represents the dynamics of the Mil-
liAmpere ferry[87], which is an experimental platform owed by NTNU. The sim-
ulation model is presented in Section 2.1.3.

7.2 Ensembles of neural networks
Ensemble learning includes methods that combine multiple models in making pre-
dictions. The main premise in ensemble learning is that errors made by individual
models are likely to be compensated by other models such that the overall en-
semble prediction on average improves prediction accuracy over individual models
[131]. Deep ensembles, consisting of multiple DNNs, have gained significant at-
tention in recent years due to their improved accuracy, uncertainty estimation, and
robustness to out-of-distribution data. There are two well known methods of train-
ing ensembles of NNs; by bootstrapping, where the ensemble methods are trained
on different bootstrap samples of the dataset, and by multiple random seeds, where
the model parameters of the members are intialized with different random para-
meters and then trained on the entire dataset. While the bootstrapping method has

7.2. Ensembles of neural networks 125

been found to hurt performance of the NNs, using random initializations turn out
to be a promising approach [132, 133]. In [134], the success of random initializ-
ation in deep ensembles is explained by the fact that this method explore diverse
modes of the function space. That is, Bayesian neural networks, which do not per-
form as good as deep ensembles, only explore the proximity of one single mode
of the function space. Ensembles can provide both point estimates and uncertainty
estimates. The point estimate can be calculated as an average of the predictions.
Consider an ensemble of M NNs with different parameter initialization. When
forecasting several timesteps ahead without feedback from measurements, we let
each ensemble member estimate individual state forecast trajectories. The state
forecast jx̂t+1 at time t + 1 provided by an ensemble member f̂j is given by for-
ward Euler integration:

jx̂t+1 =
j x̂t + f̂j(

jx̂t,ut;θ)∆T, (7.1)

where ∆T is the time step. Then, the average prediction of M predictions calcu-
lated by individual NN ensemble members at timestep t+ 1 is given by:

µt+1 =
1

M

M∑
j=1

jx̂t+1, (7.2)

Uncertainty-based strategies are utilized in the proposed AL method. Therefore,
the main motivation of using deep ensembles in this work is to obtain an uncer-
tainty estimate. NN predictions have two sources of uncertainty, namely model un-
certainty (also known as epistemic uncertainty), and data uncertainty (also known
as aleatoric uncertainty). Usually, these types of uncertainties are modeled sep-
arately. In this study, the data is sampled from a fully observed process without
process disturbances or measurement noise. Thus, only model uncertainty is con-
sidered here. The model uncertainty is caused by shortcomings in the model. This
includes errors in the training procedure such as bad training hyperparameters
(learning rate, batch size, regularization etc.), insufficient model structure, or lack
of information in the data [135]. In general, there are four different types of meth-
ods of estimating the uncertainty of a NN based on whether the NNs are determin-
istic or stochastic, and whether a single NN or multiple NNs are used to estimate
the uncertainty. These are single deterministic methods, Bayesian methods, en-
semble methods and test-time augmentation methods [135]. Ensemble methods
have proven to be attractive in quantifying uncertainty of NNs. Ensemble meth-
ods are in several works compared to Bayesian methods. In [136], it is argued
that ensemble based methods preform better than Bayesian Monte-Carlo Dropout
approximations in DeepAL due to more calibrated predictive uncertainties. Both
[137] and [138] came to the same conclusions, particularly under dataset shift.

126 Deep active learning in experimental design for nonlinear system identification

A simple way to quantify the uncertainty of these predictions is to calculate the
empirical variance of NN predicitions for each output of the network

σ2
t+1 =

1

n

n∑
j

(jx̂t+1 − µt+1)
2. (7.3)

Here, jx̂t+1 is the NN prediction made by ensemble member j of xt+1, and µt+1

is the mean ensemble prediction at time step t+ 1.

(a) Forecasts calculated by ensemble
members

(b) Fusion of individual ensemble fore-
casts

Figure 7.1: Ensemble

Figure 7.1a illustrate how individual ensemble members independently calculate
a rolling forecast of the state vector, and Figure 7.1b illustrates how the set of
trajectories calculated by the models in the ensemble produce a mean estimate and
an uncertainty estimate.

7.3 Deep active learning in dynamical systems
Although data from a dynamical system may be readily available from production
or operation, it often provides limited information and is not well-suited for the
purpose of system identification. Due to the physical nature of dynamical systems,
arbitrary points in the state-action space cannot be directly accessed. In order
to sample given data points from the state-action space, the dynamics must be
excited by control inputs. This is a dynamic acquisition problem. In an attempt
to maximize the information contained in this sampling process, an OCP can be
defined over a finite horizon, maximizing some measure of information. This is
here referred to as the local exploration. As the name indicates, this optimization
is only efficient for shorter horizons, limiting the method to explore the dynamics
in the proximity of the initial state. However, when identifying the input-output
mapping of a nonlinear dynamical system, the entire operational window of the
system must be explored.

Assuming a set of input data is already available, AL offers a robust approach for
selecting the most informative data points from the input space. In the current ac-
quisition problem for dynamical systems, we do not have access to a pre-sampled

7.3. Deep active learning in dynamical systems 127

dataset. However, by locally exploring different parts of the input space, a set of
simulated state-action trajectories can be obtained. With an available simulated
dataset, a static AL acquisition problem for dynamical systems can be formulated.
This is referred to as global exploration. The global exploration acquires the batch
of initial states corresponding to the batch of state-action trajectories that max-
imizes a global batch acquisition function. Following the acquisition of a set of
initial states through global exploration, a subsequent round of local exploration
is conducted for each state in the batch. This local exploration entails a longer
optimization horizon compared to the initial search conducted for all candidates
during the global exploration. This is because the computational complexity of the
OCP increases significantly with the horizon, making it necessary to restrict the
horizon to a relatively short length when optimizing for all candidates prior to the
global exploration. When control trajectories are obtained from the final local ex-
plorations these trajectories are applied to the real system from the corresponding
acquired initial states. This is done under the assumption that the system is driven
to each initial state using a specific control law. As the system evolves under the
applied control sequences, data on the system states is collected.

Local exploration

Data sampled from a dynamical system should be properly excited by a control
signal to obtain informative data that can be used for system identification. Local
exploration refers to the dynamic AL acquisition problem of finding a control
trajectory that informatively excites the system. Given an initial state x0 from
where the dynamical system is excited, the local exploration can be formulated
as an open loop finite horizon OCP , which yields a sequence of control inputs
{u}T−1, ∗

k=0 = {u0, u1, ..., uT−1}∗ . In the context of active learning, the ob-
jective function is an acquisition function alocal that measures the informativeness
of the sequence of forecasted states {x̂t}Tt=1 = {x̂1, x̂2, ..., x̂T } given the can-
didate sequence of control inputs {uk}T−1

k=0 = {u0, u1, ..., uT−1} and an initial
state x0:

{ut}T−1, ∗
t=0 = argmax

{ut}T−1
t=0

alocal

(
x0, {ut}T−1

t=0 , {x̂t}Tt=1

)
s.t. x̂t+1 = f̂(x̂t,ut;θ)

(7.4)

where x̂0 = x0. The standard strategy in Model Predictive Control (MPC) for-
mulation is to only apply the first control input in the sequence and then solve the
OCP again for each consecutive timestep until the end of the horizon. This scheme
requires T −1 optimizations to obtain one sequence of control inputs, and is there-
fore computational expensive. An alternative that is computationally feasible is to
optimize for the entire control sequence one time and apply the control sequence

128 Deep active learning in experimental design for nonlinear system identification

obtained from that one solution of the OCP. The authors of [74] developed an active
learning scheme for a GP model. They suggested to maximize the sum of differ-
ential entropy of the GP model predictions over the control horizon of T steps,
such that alocal =

∑T−1
i=0 H[f̂(x̂i,ui;θ)]. The differential entropy of variable y is

defined by [139]

H(y) = −
∫
Y
p(y)log(p(y))dy, (7.5)

where p(y) is the probability density function. In this case, the probability density
function represent the distribution over the predictions. If the variable y is Gaus-
sian distributed, the differential entropy is given by

HGaussian(y) =
1

2
log(2πexp(σ2(y)), (7.6)

where σ2 is the variance of the given prediction.

Global exploration

Exciting the system dynamics is essential to obtain informative data from a dy-
namical system. The local exploration formulated as an OCP in equation (7.4)
provides a sound basis for exciting the problem locally. However, when the goal
is to obtain the most informative data from the entire input space, solely depend-
ing on the optimization in equation (7.4) is inefficient. That is, the computational
complexity increases drastically with optimization horizon. This put restrictions
on how long the optimization horizon can be, and therefore also the area that a
optimized state-action trajectory can span. Moreover, the uncertainty of state fore-
casts typically increases with each time step. This is highly relevant in the local
exploration formulation since the corresponding OCP typically aims to maximize
some uncertainty measure. With high levels of uncertainty, the actual states are
likely to deviate from predicted states after longer horizons. Thus, the efficacy
of local explorations as defined above is typically limited to exploring dynamics
locally. Authors in [75] suggest partitioning the search problem into global and
local explorations for actively learning a GP model. Building upon the work in
[75], equation (7.7) provides a general formulation of the DeepAL optimization
problem for dynamical systems, acquiring an optimal batch rather than single ini-
tial states. The global exploration consider a set X = {x0, 1, x0, 2, ..., x0, c} of
c candidate initial states. For each of the candidate initial states x0, i, an optimal
control trajectory (ut

T−1, ∗
t=0)i is obtained by optimizing the OCP in equation (7.4).

With an initial condition x0, i and the obtained control trajectory (ut
T−1, ∗
t=0)i, the

corresponding forecasted state trajectory
(
{x̂t}Tt=1

)
i

is estimated by the model.
One acquisition step of the global exploration is generally described in the follow-

7.4. Method and setup 129

ing DeepAL optimization formulation:

B∗ = argmax
B⊆X

aglobal

(
B,
{
{ut}T−1, ∗

t=0 , {x̂t}Tt=1

}b

i=1

)
{
{ut}T−1, ∗

t=0 , {x̂t}Tt=1

}b

i=1
⊆ XU

(7.7)

where B = {x0, 1, x0, 2, ..., x0, b} is a candidate batch of initial conditions, and{
{ut}T−1, ∗

t=0 , {x̂t}Tt=1

}b

i=1
is the corresponding batch of simulated state-action tra-

jectories.
XU =

{{
ut}T−1, ∗

t=0 , {x̂t}Tt=1

}
1
,
{
ut}T−1, ∗

t=0 , {x̂t}Tt=1

}
2
, ...,

{
ut}T−1, ∗

t=0 , {x̂t}Tt=1

}
c

}
is the set of simulated candidate state-action trajectories. The acquired a batch
B∗ = {x∗

0, 1, x∗
0, 2, ..., x∗

0, b} of initial conditions corresponds to the batch

simulated state-action trajectories
(
{ut}T−1, ∗

t=0 , {x̂t}Tt=1

)b
i=1

that maximize some
global batch acquisition function aglobal. Since simulated state-action trajectories
are already sampled from in a local exploration scheme, the global exploration be-
comes a static acquisition problem on the form of the standard DeepAL scheme
presented in equation (2.32).

7.4 Method and setup
In this section, the experimental setup, as well as the methods used in the case
study are presented. The data is generated by integrating the nonlinear ODEs
in equation (2.21) with a set of initial values for the states x0 using the fourth-
order Runge-Kutta (RK4) numerical integration algorithm. In the DeepAL method
presented in this work, a batch of initial states are chosen from a set of candid-
ate states according to the optimization in equation (7.7). The query strategies
defined by the global acquisition function aglobal are described in Section 7.4.1.
The control trajectories that excite the system dynamics are acquired in the local
exploration scheme defined in equation (7.4). The local acquisition function alocal
in this scheme is an uncertainty-based strategy also described in detail in Sec-
tion 7.4.1. The benchmark method chooses the set of initial conditions randomly.
Moreover, the control input trajectory from each initial state are chosen according
to the APRBS used to identify nonlinear dynamics with NNs in works like [117],
[81] and [79]. In each loop of the AL scheme, a batch of b = 10 time series
{X1, X2, ..., Xi, ..., Xb} are obtained. The i′th time series is obtained by sim-
ulating the dynamics from an initial condition x0 = [x1(0), x2(0), x3(0)] over a

130 Deep active learning in experimental design for nonlinear system identification

horizon of T = 15 with timesteps ∆T = 0.1sec. This yields a time series Xi:

Xi =

x1(0) x2(0) x3(0) u1(0) u2(0) u3(0)
x1(1) x2(1) x3(1) u1(1) u2(1) u3(1)

...
...

...
...

...
...

x1(t) x2(t) x3(t) u1(t) u2(t) u3(t)
...

...
...

...
...

...
x1(T − 1) x2(T − 1) x3(T − 1) u1(T − 1) u2(T − 1) u3(T − 1)
x1(T) x2(T) x3(T) nan nan nan

(7.8)

Hence, the control inputs u(t) are defined until timestep t = T − 1. That is, at
the last step there is no need for a control input since there is no next state to be
calculated. For each time series i in the batch, the output label Yi for training is
calculated by the forward Euler formula:

Yi =

x1(1)−x1(0)

∆T
x2(1)−x2(0)

∆T
x3(1)−x3(0)

∆T
x1(2)−x1(1)

∆T
x2(2)−x2(1)

∆T
x3(2)−x3(1)

∆T
...

...
...

x1(T)−x1(T−1)
∆T

x2(T)−x2(T−1)
∆T

x3(T)−x3(T−1)
∆T

 (7.9)

We define a new matrix X
′
i that contains all but the last row of the i′th time series

Xi. Then X
′
i and Yi are paired as inputs and outputs:

Si = [X
′
i, Yi]. (7.10)

This is done for all simulations in the batch. Then the input-output pairs are
stacked:

Sbatch = [ST1 , ST2 , ..., STb]T , (7.11)

before added to the training data Dtrain. Before the training is conducted, the
inputs and outputs in the training set Dtrain are normalized, shuffled, and put in
mini-batches for training. In each loop of the learning scheme, an ensemble of
M = 10 NNs are trained on all training data sampled up until that time.

7.4.1 Novel DeepAL scheeme for dynamical systems

The DeepAL acquisition scheme comprises a global exploration scheme and a
local exploration scheme. The global exploration scheme will for each acquisition
step in the AL loop choose a batch of b initial states B∗ = {x∗

0, 1, x
∗
0, 2, ..., x

∗
0, b}

among a set of c candidates X = {x0, 1, x0, 2, ..., x0, c} according to the AL
optimization problem defined in equation (7.7). For each of the candidate initial

7.4. Method and setup 131

states x0, i a state-action trajectory is obtained according to the local exploration
in equation (7.4). The query strategy is defined by the global batch acquisition
function aglobal, which quantifies the informativeness of batches of state-action
trajectories corresponding to initial state candidates. A simple uncertainty-based
acquisition function that sum of predictive entropies along all candidate trajector-
ies is given by:

aglobal

(
B,
(
{ut}T−1, ∗

t=0 , {x̂t}Tt=1

)b
i=1

)
=

b∑
i=1

T∑
t=1

H([jx̂t]
M
j=1), (7.12)

where [jx̂t]
M
j=1 is the set of ensemble forecasts at timestep t. Assuming that the

ensemble predictions are approximately normally distributed around the mean pre-
diction µt given in equation (7.2), and that predicted states are uncorrelated, max-
imizing the entropy will become approximately the same as maximizing the em-
pirical variance given in equation (7.3):

H([jx̂t]
M
j=1) ≈ σ2

t . (7.13)

In order to scale the optimization problem according to the magnitude of states
in the state vector, the empirical variance of state k, σt, k, k ∈ {1, 2, 3} can be
divided by the standard deviation of the k′th state based on the currently sampled
dataset. defining the vector sinv = [1

std1
, 1

std2
, 1

std3
]T , where stdk is the standard

deviation of the k′th state xk, the resulting acquisition function can be defined as:

aglobal

(
B,
(
{ut}T−1, ∗

t=0 , {x̂t}Tt=1

)b
i=1

)
=

b∑
i=1

T∑
t=1

σ2
t ⊙ sinv, (7.14)

where ⊙ is the Hadamard product operator that takes the element-wise multiplic-
ation of the two vectors. The resulting acquisition function is purely uncertainty
based and does not take into account the similarity between samples. Hybrid ac-
quisition strategies takes into account both uncertainty of individual samples as
well as the similarities between samples in a candidate batch B. An intuitive hy-
brid acquisition method DMBAL adds informativeness to the optimization of a
weighted K-means algorithm. That is, the algorithm acquires the closest sample
to each of the b centroids found by a weighted K-means, where the weight is some
informative measure. A simple adaption of the algorithm to the problem at hand
is given in Algorithm 4: The method reuses the uncertainty measure defined in
equation (7.14). In addition, the method aims to add diversity of samples by com-
paring the similarities of the candidate initial conditions in the modified DMBAL
method. The c candidates in X = {x0, 1,x0, 2, ...,x0,c} are at each acquisition
step uniformly sampled from the intervals given in Table 7.1:

132 Deep active learning in experimental design for nonlinear system identification

Algorithm 4: Diverse Mini-Batch Active Learning (DMBAL) in Global
exploration

Input: Candidate initial conditions X , Acquired dataset Dtrain,
pre-filter factor β, batch size/number of clusters b, Required level of

model accuracy α
Train model on Dtrain

while required level of model accuracy α is not reached do
Get informativeness

∑T
t=1 σ

2
t ⊙ sinv for simulated state-action

trajectories corresponding to initial states in X
Prefilter top β · b informative samples
Cluster β · b initial states to b clusters with weighted K-means
Select batch B∗ of b different initial states closest to the cluster centers
Perform local exploration to obtain control input trajectories for each
initial state in B∗

From initial conditions in B∗, apply obtained control trajectories on
system dynamics

Add sampled data to training set Dtrain

Train model on all samples in Dtrain

Table 7.1: Initial condition intervals for the states x

Variable Initial condition interval
x1 [−0.2, 1.4]
x2 [−0.2, 0.2]
x3 [−0.2, 0.2]

The local exploration scheme obtains a sequence of control inputs by optimizing
the dynamic acquisition problem formulated as an OCP in equation (7.4) from a
given initial state. The local acquisition function alocal used in the optimization
defined in equation (7.4) is the same as the uncertainty-based global acquisition
function defined in equation(7.14), but only for a single initial state and the cor-
responding trajectory. That is, the local acquisition function is:

alocal =

T∑
t=1

σ2
t ⊙ sinv. (7.15)

A schematic illustration of the novel DeepAL scheme is presented in Fig. 7.2

7.4. Method and setup 133

Train ensemble of DNNs

Global Exploration

Local Exploration

Acquired batch of initial conditions

Apply
control trajectories

on dynamical system

Optimized control trajectories for
acquired batch of informative regions

Initial dataset

Preprocess timeseries
and add to trainingset

Batch of timeseries

Updated dataset

True

FalseRequired level of
accuracy reached?

Terminate

Trained ensemble

Trained ensemble

Evaluate model
on testset

Local Exploration &
 Simulation

Randomly generated candidate
initial conditions

Optimized candidate control trajectories
and corresponding forecasted state

trajectories

Figure 7.2: Schematic presentation of the DeepAL scheme. Given an initial data-
setDinit, NNs in an ensemble are trained. If the ensemble yields the required level
of model accuracy, the AL scheme is terminated. If not, the ensemble is used in
global and local explorations. First, local exploration and simulation procedure
generates control trajectories for each initial state candidate in X . The global ex-
ploration scheme then acquires a batch B∗ of b initial states in which excitation of
the dynamics would be most informative. Then, local explorations are conducted
for each of the initial states in B∗, yielding a set of b control trajectories. Given that
the dynamics are driven to each of the initial conditions in B∗, the corresponding
control trajectories are applied to excite the dynamics. From this excitation pro-
cess, time series are obtained, preprocessed and added to the training set Dtrain.
The ensemble is then trained on this training set, and the procedure is repeated
until the required model accuracy on the test set is achieved, or a sampling budget
is exhausted.

The OCP solved to generate control sequence is solved in the optimization frame-
work CasADi [140], while the design and training of DNNs used in the optimiz-
ation is done using the DL framework PyTorch [141]. The ML-CasADi package
developed by authors of [142] is used to integrate the two frameworks.

134 Deep active learning in experimental design for nonlinear system identification

7.4.2 Test set generation

The utilization of DNNs in modeling dynamical systems is driven by their cap-
ability to represent intricate relationships with a high degree of accuracy. When
proper measures are taken to address safety considerations, they have the potential
to enhance the optimality of MPC. As a result, evaluating the sampling strategies
on a testset generated by using an optimal control policy is a subject of significant
interest. The MPC used when generating the testset solves an OCP that minimize
a quadratic cost function:

{u0, ..., un−1} = min
u

n−1∑
k=0

(xk − xref, k)
TQ(xk − xref, k) + ukRuk,

s.t. ẋk = f(xk,uk).

(7.16)

xref, k is the desired reference signal, and Q and R are weighting matrices. The
subscript k indicates the value of the variable at timestep k. The function f(·, ·) is
the simulation model itself. Given an initial condition, the optimization problem
in equation (7.16) is solved for n steps. Both the sequence of states {xk}n−1

k=0

and control inputs {uk}n−1
k=0 are decision variables in the optimization, and can be

extracted from the solution of the optimization. The testset consist of 100 time
series with initial conditions uniformly sampled from the intervals in Table 7.1.

Table 7.2: Reference intervals for the states xref

Variable Reference values interval
x1 [−0.3, 1.3]
x2 [−0.3, 0.3]
x3 [−0.3, 0.3]

Each of the time series are generated by ten optimizations of equation (7.16) each
with a horizon of 50 timesteps. The final state xn in one optimization is then the
initial state of the next time series, such that the i′th time series in the testset can
be written as:

Xtest, i =

x1(0) . . . u3(0)
...

. . .
...

x1(n− 1) . . . u3(n− 1)
x1(n) . . . u3(n)

...
. . .

...
x1(10 ∗ n− 1) . . . u3(10 ∗ n− 1)

, (7.17)

7.5. Results and discussion 135

where n = 50. The value of the references xref are uniformly drawn from
Table 7.2 are constant for the optimization horizon. Hence each time series has
ten different references over 500 timesteps. Hence, the testset can be written as:

Dtest = {Xtest, 1, Xtest, 2, ..., Xtest, 100} (7.18)

7.5 Results and discussion
The case study presented in this section investigate the efficacy of global and local
explorations compared to benchmark random sampling methods. Moreover, the
study presents the effect of the global hybrid strategy DMBAL for different val-
ues of the prefilter hyperparameter β, where the special case of β = 1 can be
considered as an uncertainty based acquisition strategy.

7.5.1 Information based and random sampling

In order to quantify the efficacy of global and local explorations in the proposed
DeepAL sampling scheme compared to benchmark random sampling methods, we
define three fundamental data acquisition schemes. All schemes use both a global
and a local sampling method. The three fundamental methods are based on either
an information theoretic approach or a random sampling strategy for both local and
global exploration. Fig. 7.3 shows a schematic presentation of how the different
schemes are derived from the two sampling strategies.

Global Acquisition Local acquisition

Informative Random Informative Random

GI-LI GR-LI GR-LR

GI-LI GR-LI GR-LR

Figure 7.3: Schematic of how fundamental sampling schemes are derived from
global and local sampling strategy. Global Informative Local Informative (GI-LI),
Global Random Local Informative (GR-LI), and Global Random Local Random
(GR-LR) are the derived methods that are investigated in the case study.

The fundamental sampling schemes are namely Global Informative Local Inform-
ative (GI-LI), Global Random Local Informative (GR-LI), and Global Random

136 Deep active learning in experimental design for nonlinear system identification

Local Random (GR-LR). The GI-LI method is described in Section 7.4.1, and
is using information theoretic sampling strategies both locally and globally. The
global exploration in GI-LI acquires initial conditions from where to conduct the
local explorations. The global exploration is using the local exploration method to
assign measures of informativeness to the candidate initial conditions. The GR-LI
method is globally random, and a batch of initial states is acquired by uniformly
sampling within the interval of states presented in Table 7.1. The local explora-
tion method of GR-LI is the exact same as the local sampling method used GI-LI.
The GR-LR method uses the same random global strategy as GR-LI, and uses the
APRBS method to excite the dynamics locally.

7.5. Results and discussion 137

0 10 20 30 40 50 60
Acquisition step

0.0

0.1

0.2

0.3

0.4
AN

-R
FM

SE

(a) GI-LI vs. GR-LR.

0 10 20 30 40 50 60
Acquisition step

0.0

0.1

0.2

0.3

0.4

AN
-R

FM
SE

(b) GI-LI vs. GR-LI.

0 10 20 30 40 50 60
Acquisition step

0.0

0.1

0.2

0.3

0.4

AN
-R

FM
SE

(c) GR-LI vs. GR-LR.

0 10 20 30 40 50 60
Acquisition step

0.050

0.075

0.100

0.125

0.150

0.175

0.200
AN

-R
FM

SE

(d) Mean values GI-LI, GR-LI and GR-
LR.

GI-LI GR-LI GR-LR

Figure 7.4: AN-RFMSE values for NN models trained on each batch of sampled
data. The rolling forecast has a prediction horizon of 50 timesteps. The drawn line
show the mean AN-RFMSE values, and the error bound show the 25 prosentile and
75 procentile of AN-RFMSE values for models trained on data sampled up until
the AL loop specified on the x-axis. The GI-LI methods yields significantly lower
mean and 75 procentile of AN-RFMSE values than the two competing methods.
The GR-LI method slightly outperforms the GR-LR method, but this result is not
as significant.

Fig. 7.4 presents the performance of the three sampling schemes after all data ac-
quisition steps. The error bounds show the 25 − 75 percentile of AN-RFMSE

138 Deep active learning in experimental design for nonlinear system identification

values. The upper bound is particularly interesting since it gives an intuition about
the models ability to generalize to a broader set of the test set trajectories. The res-
ults show that the GI-LI method outperforms the GR-LI and the GR-LR methods,
both in terms of higher mean accuracy as well as significantly lower values for the
75 percentile of AN-RFMSE values. Moreover, the globally random, locally in-
formative GR-LI method shows better performance in terms of higher mean accur-
acy an lower 75 percentile AN-RFMSE values than the purely random GR − LR
method. However, the superiority of GR-LI method over the GR-LR method is
not as significant as the superiority of GI-LI over the two others, indicating that
the globally informative step is of major importance.

7.5. Results and discussion 139

0 10 20 30 40 50
Time…(sec)

0.25

0.00

0.25

0.50

0.75

Ve
lo

ci
ty

 (m
/s

)

(a) Surge x1

0 10 20 30 40 50
Time…(sec)

0.2

0.0

0.2

0.4

Ve
lo

ci
ty

 (m
/s

)

(b) Sway x2

0 10 20 30 40 50
Time…(sec)

0.1

0.0

0.1

0.2

Ya
w

 r
at

e
(r

ad
/s

)

(c) Yaw x3

0 10 20 30 40 50
Time…(sec)

400

200

0

200

400

600

Fo
rc

e
(N

)

(d) Forward force u1

0 10 20 30 40 50
Time…(sec)

200

0

200

Fo
rc

e
(N

)

(e) Sideways force u2

0 10 20 30 40 50
Time…(sec)

200

0

200

To
rq

ue
 (N

m
)

(f) Torque u3
GI-LI GR-LR

Figure 7.5: Rolling forecast of 50 timesteps. The black drawn lines in Fig. 7.5a-
7.5a are state simulated states. The dotted lines show mean forecast values, and the
uncertainty bounds show 99.7% confidence intervals. The black lines in Fig. 7.5d-
7.5f are control inputs. The ensembles that forecast the states are trained on data
based on the GI-LI and GR-LR methods. The plot illustrates how the GI-LI method
gives better mean predictions as well as narrower and better calibrated uncertainty
bounds.

Fig. 7.5 shows the mean and uncertainty bounds of ensemble forecasts trained on
data sampled with GI-LI and GR-LR methods. The plots illustrate how the GI-LI
might provide data that gives improved mean predictions as well as narrower and
better calibrated uncertainty bounds.

140 Deep active learning in experimental design for nonlinear system identification

7.5.2 Uncertainty based and hybrid global strategy

1 2 3 4 5 10

0.05

0.10

0.15

0.20

0.25

0.30

AN
-R

FM
SE

(a) AN-RFMSE values for
models trained between AL
loop number ten and 30.

1 2 3 4 5 10

0.05

0.10

0.15

0.20

0.25

AN
-R

FM
SE

(b) AN-RFMSE values for
models trained between AL
loop number 30 and 40.

1 2 3 4 5 10
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225

AN
-R

FM
SE

(c) AN-RFMSE values for
models trained between AL
loop number 40 and 45.

1 2 3 4 5 10

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

AN
-R

FM
SE

(d) AN-RFMSE values for
models trained between AL
loop number 45 and 50.

1 2 3 4 5 10

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

AN
-R

FM
SE

(e) AN-RFMSE values for
models trained between AL
loop number 50 and 55.

1 2 3 4 5 10

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

AN
-R

FM
SE

(f) AN-RFMSE values for
models trained between AL
loop number 55 and 60.

Figure 7.6: Violin plots of AN-RFMSE values corresponding to models trained
on data sampled with the GI-LI method. The rolling forecast has a prediction ho-
rizon of 50 timesteps. All methods use the global DMBAL method for choosing
initial conditions, but with different prefilter hyperparameter β. The two inner-
most horizontal lines of each violin plot show the 5 and 95 procentile, while the
outermost horizontal lines show the extreme values. Each subplot includes AN-
RFMSE values for models trained on data from a range of the AL loops. That
is, Fig. 7.6a summarize the perfomance of the sampling methods in early stages,
while Fig. 7.6c-7.6f summarize the performace later in the AL scheme.

Fig. 7.6 show the performance of GI-LI methods using the global DMBAL method
with different prefilter parameter β for different stages of the AL scheme. The
algorithm only considers the b · β samples with highest informativeness score ac-
cording to a given informativeness measure, where a batch B∗ of b = 10 initial
conditions are chosen. Hence, β = 1 corresponds to simply picking the b samples
with the highest informativeness score. Since the chosen informative measure is
uncertainty based, using β = 1 means that the global method is uncertainty based.
Using β > 1 means that the global algorithm takes into account diversity by choos-

7.6. Conclusions and future work 141

ing the samples closest to centroid centers of a k-means algorithm, which means
that the overall method is a hybrid AL strategy, combining uncertainty measures
and diversity measures. Fig 7.6 shows that the average performance in all plots is
approximately the same for all choices of β. In Fig. 7.6a and 7.6a showing per-
formance for models trained on data acquired after respectively 10 to 30 AL loops
and 30 to 40 AL loops, it is difficult to conclude any significant differences, other
than that the method using β = 10 has higher extremum AN-RFMSE values, as
well as more stretched distribution towards higher AN-RFMSE values, indicating
that lower choices of β give better results. Fig 7.6c-7.6f show the performance
of the method for different β values for later stages of the AL scheme. The most
evident result is the tendency that the upper extreme values of AN-RFMSE have
a minimum for β = 3, and that both lower and higher values of β give higher
extreme AN-RFMSE values. Moreover, it seems like the 95 percentile also is the
lowest for β = 3. Moreover, again, using high values of β turns out to give worse
result as β = 10 show the worst performance. The overall results from the conduc-
ted case study indicate that using the DMBAL algorithm in the global acquisition
scheme is of minor importance compared to acquiring a batch of samples with the
highest uncertainty scores. However, choosing the right values of the prefilter hy-
perparameter β, the modeling errors in extreme cases can potentially be reduced.
The limited value of the hybrid method used in this study might be explained by
that it only compares the similarity of initial states rather than similarities between
candidate trajectories. Moreover, the shortcomings of uncertainty based methods
are known to be more present if the batch size is greater. With the currently choice
of batch size b = 10 trajectories being sampled at each acquisition step, the power
of hybrid strategies might not be present.

7.6 Conclusions and future work
The main conclusions from the work can be itemized as follows:

• The globally random, locally informative based GR-LI strategy show slightly
better results than a globally random, locally random strategy in terms of
mean accuracy an lower values of the 75 procentile of AN-RFMSE values,
indicating better generalization. However, the novel GI-LI DeepAL scheme
significantly outperform GR-LI and GR-LR schemes both in terms of mean
accuracy and 75 procentile values of AN-RFMSE. This indicates that global
explorations are of major importance with respect to achieving higher accur-
acy and generalization.

• The DMBAL approach, which emphasizes diversity in the selection of samples,
might reduce the upper bound of extreme error values, provided that the

142 Deep active learning in experimental design for nonlinear system identification

prefilter hyperparameter is carefully chosen. This method is compared to
simply selecting the top b samples based on some uncertainty measure, when
sampling a batch of initial conditions globally. However, the DMBAL ap-
proach does not exhibit significant improvements over the global uncertainty
based method beyond this in the given case study. The method only com-
pares the similarity between initial states of the candidate trajectories, rather
than similarity between the whole candidate trajectories. This leaves out
potentially important information.

The novel DeepAL framework is flexible and allows for a range of AL aqcuisi-
tion strategies. Conducting a comparative study including different AL acquisi-
tion functions in the framework would be highly interesting as it could increase
our knowledge about efficient sampling of dynamical systems. Global hybrid
strategies that can consider similarity of entire state trajectories are of particular
interest since the currently tested hybrid strategy that only compares initial condi-
tions seems to be of limited value.

Chapter 8

Conclusions and further work

This thesis presents a set of novel contributions, including data-driven and hy-
brid methodologies that address the challenges of using ML to model dynamical
systems suffering from data scarcity. The contributions include utilizing system
knowledge to reduce the complexity of the learning problem, assessing the effect
of different model structures and the model complexity of NNs, and maximizing
the information content in training data obtained from experimental design.

Chapter 3 presents a novel hybrid modeling approach. The method can estimate
periodical and stationary unmodeled dynamics from a non-stationary measured
signal sampled at low rates. We illustrate that the obtained high-fidelity signal
estimate can be utilized in a state observer like the EKF to improve accuracy of
the state estimates in the dynamical system. The linear nature of the compressed
sensing signal model makes the method highly intepretable. However, while the
method can cancel non-stationarities captured by the PBM, the method is sensitive
to non-stationarities in the unmodeled dynamics. In complex processes like alu-
minum electrolysis, capturing all non-stationarities in a PBM is highly unlikely.
Therefore, it is of scientific interest to investigate the possibility of using basis
transforms that can sparsely represent non-stationary signals. If such basis trans-
forms were found, a signal estimate could be estimated offline, such that high-
fidelity data from a coarsely sampled signal could be obtained. This data could be
used as training data for other ML models. However, depending on the compressed
sensing model in real-time to provide a forecast of system dynamics for longer ho-
rizons means that we would rely on the signal to be constant in the transformed
domain. This is a big assumption. However, if we can assume that the signal is
slowly varying, the signal estimate could be used in state estimation for shorter ho-
rizons. Researching the possibility of extending the work to model slowly-varying

143

144 Conclusions and further work

signals could also make the approach more attractive.

The remaining contributions in this thesis comprise DNNs that partly or com-
pletely model ODEs directly from input-output data. The hybrid modeling ap-
proach discussed above is inherently sensitive to unforeseen incidents or control
actions deviating from the periodical pattern since the model does not account for
these inputs. On the other hand, the DNNs included in the remaining models aim
to learn a mapping from an input space containing all states and inputs affecting
the dynamical system to the time derivative of the states. With access to control
inputs at each time step, time integration of the models can provide state forecasts.
These models aim to capture the underlying dynamics.

Chapter 4 introduces the hybrid modeling approach CoSTA approach to modeling
aluminum electrolysis. That is, a corrective source term is added to the terms of a
PBM, correcting for modeling errors in the PBM. We demonstrate that the method
outperforms a purely data-driven approach with the same training data size. We ar-
gue that this can be explained by the reduced complexity of the modeling problem,
compared to model all dynamics with a data-driven approach.

Pure data-driven modeling approaches was presented in Chapter 5 and 6. Chapter 5
examines the impact of sparsity promoting ℓ1 regularization on the generalizability,
interpretability, and training stability of DNNs compared to a densely connected
NN. The findings of the study indicate that the use of ℓ1 regularization leads to a
significant reduction in model complexity, which enhances its interpretability. Ad-
ditionally, the results demonstrate that the sparse neural network exhibits superior
generalization performance, and achieves more stable convergence, especially in
scenarios where the amount of training data is limited. The work in Chapter 6
builds on the previous work on sparse DNNs, and introduces skip-connections to
model nonlinear dynamics. The combination of sparsity promoting regularization
and skip-connections significantly improves model accuracy and training stability
for a model trained on limited data. The case studies in both works were conducted
on a set of high-dimensional ODEs representing the aluminum electrolysis.

The work on DNNs discussed above demonstrates that DNNs can obtain accurate
models of a set of simulated high-dimensional ODEs representing the aluminum
electrolysis. However, the case study assumes access to all state variables at each
time step of the time series used as training data. Accessing measurements of state
variables in the aluminum electrolysis is typically expensive, or even impossible
due to the electrolysis cell’s harsh environment. This can restrict the possibility
of applying the models proposed to the aluminum electrolysis. In that sense, the
work conducted might be of greater value to processes where all states affecting
the dynamics are measurable. However, DNNs can possibly be used to model sub-

145

processes in the electrolysis, given that variables affecting the sub-process can be
modeled.

Chapter 7 presents the last contribution in this thesis. The chapter presents a novel
DeepAL framework for acquiring informative data used in identifying DNN mod-
els of dynamical systems. The acquisition framework is decomposed into a local
and a global exploration. The local exploration explore different regions of the
input space by obtaining control informative trajectories corresponding to each re-
gion, and then simulates state-action trajectories in these regions. This enables
a novel static BMDAL acquisition formulation that evaluates the acquired set of
candidate trajectories, and choose the set of regions that maximize some batch ac-
quisition function. The dynamics of the chosen regions are then explored. The
case study demonstrates that the novel sampling framework can outperform state-
of-the-art random based sampling methods for system identification. The general
formulation of the novel static BMDAL acquisition problem allows for a range
of query strategies to be applied, potentially improving the performance of the
method. However, it is inherent in searching for informative data in dynamical
systems that the system will encounter regions of the input space where the model
is uncertain. This can impose a safety risks which must be addressed if using the
novel framework on real systems.

146 Conclusions and further work

Appendix A

Simulation model

In this section we will follow a purely physics-based approach to deriving the
equations. At appropriate places we will highlight the challenges and assumption

The dynamical system simulated in this study is generated by the set of ordinary
differential equations (ODE’s) in Eqs. (2.15a) - (2.15h). This system of equa-
tions is derived from a simplified model of an aluminum electrolysis cell. This
model comprises simplified energy and mass balance of the electrolysis cell. The
model considers an energy balance based on sideways heat transfer, energy transfer
between the side ledge and bath due to the melting and freezing of cryolite, and en-
ergy input as a function of electrical resistance in the electrolyte and voltage drop
due to bubbles. The mass balance includes mass transfer between side ledge and
bath, the input of Al2O3 and AlF3, production of metal and consumption of the
raw material Al2O3, and tapping of metal from the electrolysis cell. In Table 2.1,
the system states and inputs are described. The purpose of the simulation model
is not to mimic the exact dynamics of an aluminum electrolysis cell but rather to
generate nonlinear dynamics similar to what occurs in real aluminum electrolysis.

A.1 Heat capacity
Heat capacity is a measure of the amount of thermal energy a body of a certain ma-
terial can store for a given temperature and volume and is given by the definition:

C =
δq

δT
. (A.1)

147

148 Simulation model

C[J/◦C] is the heat capacity, δq[J] is an infinitesimal heat quantity and δT [◦C].
Specific heat capacity cp is heat capacity at constant pressure per unit of mass:

cp =

(
dh

dT

)
p

, (A.2)

where cp [J/(kg◦C] is the specific heat capacity, h [J/kg] is specific enthalpy
and T [◦C] is temperature. The subscript p indicates constant pressure. In the
process of aluminum electrolysis, the pressure can be assumed to be constant at
p = 1 [atm].

A.2 Energy and mass balance
The first law of thermodynamics known as the energy conservation principle states
the following [143]:

dEi

dt
= Ėin, i − Ėout, i. (A.3)

dEi
dt [W] is the change of energy of species i in the system, Ėin, i [W] is the

energy input rate and Ėout, i [W] is the energy output rate of species i the system.
System is here used synonymous to control volume. The energy of the system can
be transferred through heat, work or through the energy associated with the mass
crossing the system boundary. This can be expressed as follows:

Ėin, i = Q̇in, i + Ẇin, i + ṁin, iein, i (A.4)

Ėout, i = Q̇out, i + Ẇout, i + ṁout, ieout, i (A.5)

where Q̇in, i [W] and Q̇out, i [W] are the rates of heat in and out of the sys-
tem and Ẇin, i [W] and Ẇout, i [W] is the rate of work generated on the system.
ṁin, i [kg/s] and ṁout, i [kg/s] is the mass rate into the system and out of the sys-
tem respectively, whereas ein, i [J/kg] and eout, i [J/kg] is the specific energy of
the mass entering and leaving the system. The specific energy can be formulated
as:

e = u+
1

2
v2 + gz, (A.6)

where u [J/kg] is the specific internal energy, 1
2v

2 [J/kg] is the specific energy
related to velocity v [m/s], and gz [J/kg] is the specific energy related to elevation
difference z [m].

The change of system energy dEi
dt = Ėi can be written as:

dEi

dt
=
d(miei)

dt
, (A.7)

A.2. Energy and mass balance 149

where m [kg] is the mass of the system and ei [J/kg] is the specific energy of the
system. Since the relevant control volumes are related to an aluminum electrolysis,
it is reasonable to neglect the terms 1

2v
2 and gz. In this work, Q̇ = Qin, i−Qout, i

is defined as positive when net heat is provided to the system, and W = Win, i −
Wout, i is positive when work is added to the system. Thus, the resulting energy
equation can be formulated as:

d(miui)

dt
= m

dui
dt

+ ui
dmi

dt
= ṁin, iuin, i − ṁout, iuout, i + Q̇+ Ẇ . (A.8)

Work W [J] is organized transfer of energy. W can be divided into several types
of work [144]:

W =Wflow +W∆V +Ws +Wel +Wother. (A.9)

Wflow is the work associated with the volume displacements of streams that enter
and exit the system, W∆V is the work associated with changes of the volume of
the system, Ws is the mechanical work supplied using movable machinery, Wel

is the electrochemical work supplied when the system is connected to an external
electric circuit. Wother is the sum of other types of work, for example if surface
areas changes or electromagnetic work. For an aluminum electrolysis, W∆V =
Ws =Wother ≈ 0. Wflow is given by:

Wflow = pV, (A.10)

where p is pressure and V is volume. Enthalpy H [J] is given by:

H = U + pV. (A.11)

where U = m · u [J]. Furthermore, H = h ·m. Thus:

m
dui
dt

+ ui
dmi

dt
= ṁin, ihin, i − ṁout, ihout, i + Q̇+ Ẇel. (A.12)

Assuming that the flow work is neglectable compared to the other quantities in the
energy equation for aluminum electrolysis gives thatH ≈ U . Recall that cp = dh

dT .
Hence:

dui
dt
≈ dhi

dt
=
∂hi
∂Ti

dTi
dt

= cpi
dTi
dt
, (A.13)

where dT
dt = Ṫi [

◦C] is the temperature derivative with respect to time. This yields:

dTi
dt

=
1

micpi

(
ṁin, ihin, i − ṁout, ihout, i + Q̇+ Ẇel − ui

dmi

dt

)
(A.14)

150 Simulation model

The mass rate equation can be formulated as:

dmi

dt
= ṁin − ṁout +

nj∑
j=1

ri,j , (A.15)

where ri,j is the reaction rate of species i being produced or consumed in reaction
j. Assuming that the contents of the control volume to be perfectly mixed and
assuming that the flow work is neglectable gives:

ui ≈ hi = hout, i. (A.16)

Hence, the resulting temperature specific energy equation for component i in a
control volume is given by:

dTi
dt

=
1

micpi

ṁin,i(hin,i − hout,i) + Q̇+ Ẇel − hout, i
nj∑
j=1

ri, j .

 (A.17)

The latter equation states that the time derivative of the temperature in the control
volume is dependent on the composition of species in the control volume. It is as-
sumed that the temperature is equal for all components in the control volume. Fur-
thermore, it is assumed that there is a common heat loss Q̇ from a control volume
to other control volumes, and that electrical power Ẇel is performed on the whole
control volume instead of on different components in the control volume. When
different components are mixed in a control volume, the enthalpy of this mix is
more complex than adding the enthalpy of individual species. However, the com-
plexity of mixed enthalpy is left out of this simulation model. The heat capacity of
a mix of components in a control volume cpcv is simplified to be constant despite
of that cpcv varies with composition and temperature in the control volume. The
values for different species and control volumes are taken from [145] and [146].
Thus, the simplified simulation equation for the temperature derivative in a control
volume is given by:

dTcv
dt

=
1

mcvcpcv

([
ni∑
i=1

ṁin,i(hin,i − hout,i)
]
+ Q̇+ Ẇel

−
ni∑
i=1

hout, i nj∑
j=1

ri, j

 (A.18)

where mcp is the sum of masses in the control volume.

A.3. Heat transfer 151

A.3 Heat transfer

Heat transfer Q̇[W] will from this point be referred to as Q, meaning that the dot
is omitted. the In the process of aluminum electrolysis, the two most important
principles for heat transfer are convection and conduction. Conduction is heat
transfer through molecular motion within a solid material. The expression for
conduction is given by

Q = −k ·A · ∂T
∂x

. (A.19)

Q [W] is heat transferred, A [m2] is the area the heat is transferred through
∂T
∂x [◦C/m] is the temperature gradient in the direction x that the heat is trans-
ferred, and k [W/(m◦C)] is the thermal conductivity, a material dependent pro-
portionality constant. For a fixed cross-section area, the one dimensional steady
state heat flow through a wall of thickness x [m] from x = 0 with temperature T1
to x = 1 with temperature T1 integrates to:

Q = k ·A · T1 − T2
x

, (A.20)

where T1 > T2. Thermal conductive resistance for a plane wall can be extracted
from the latter expression:

Rcond =
x

k ·A, (A.21)

where Rcond[
◦C/W] is the thermal resistance, x[m] is the thickness of the solid

material in the direction heat is transferred, and k and A are as mentioned above.
Thermal conductive analysis is analogous to an electrical circuit, where the tem-
perature difference is analogous to the potential difference V , the heat flow is ana-
logous to the electrical current I and thermal resistance is analogous to electrical
resistance Rel. Convection is the heat transfer through the mass motion of a fluid.
Heat transfer between a surface at temperature Ts and a fluid at a bulk temperature
Tf is due to convection. Convection can be formulated as:

Q = h ·A · (Ts − Tf), (A.22)

where A[m2] is the contact surface between a solid surface and the liquid, the heat
transfer coefficient h [W/(m2)◦C] is the proportionality constant between the heat
flux and the thermodynamic driving force for the flow of heat, i.e. the temperature
difference (Ts − Tf).
Thermal resistance can be defined for a fluid Rconv, and is given by:

Rconv =
1

h ·A. (A.23)

152 Simulation model

As for electrical circuits, thermal resistances can be coupled in series, and the
reciprocal of the total resistance equals the sum of reciprocals of individual resist-
ances:

1

Rtot
=

N∑
i=1

1

Ri
(A.24)

Eq. A.24 together with the assumption of stationary heat transfer makes it possible
to calculate the heat transfer from one edge to the other through several resistors
in series as the temperature difference between the edges divided by the sum of
reciprocals of individual resistors:

Q =
T1 − TN+1∑N

i=1Ri

, (A.25)

where T1 > T2 > ... > TN+1 is temperature and Ri are the resistors. In the
simulation model, the heat transfer is assumed to be piecewise stationary, meaning
that the heat transfer is assumed to be constant from the middle of one control
volume to the middle of the adjacent control volume. However, the heat transfer
is not assumed to be stationary through several control volumes. Thus, there are
separate energy balances for each control volume. Heat transfer is only considered
through the side walls of the electrolysis cell.

Figure A.1: Convection and conduction trough several materials

Convective heat transfer Qbath−liq from the bath to the surface of the side ledge

Qbath−liq = hbath−slAsl(Tbath − Tliq). (A.26)

Conductive transfer Qliq−sl from surface of side ledge to the center of the side

A.4. Electrochemical power 153

ledge

Qliq−sl =
2kslAsl(Tliq − Tsl)

xsl
. (A.27)

Conductive heat transfer Qsl−wall from center of side ledge to the center of the
side wall

Qsl−wall =
Asl(Tsl − Twall)

(xwall/2kwall) + (xsl/2ksl)
(A.28)

The heat transfer from the middle of the wall to the ambient Qwall−0 consists of
conductive heat transfer from the middle of the wall to the surface of the wall, and
the convection from the surface of the wall to the ambient air

Qwall−0 =
Asl(Twall − T0)

(1/hwall−0) + (xwall/2kwall)
. (A.29)

A.4 Electrochemical power

Electrochemical power Ẇel [W], from now referred to as Pel is the amount of
energy transferred to a system from a electrical circuit and is defined as:

Pel = Ucell · Iline, (A.30)

where Ucell [V] is the applied cell voltage and Iline [A] is the line current sent
through the electrolyte. The cell voltage is composed of three different types of
voltage contributions. these are the decomposition voltage, which is the theoret-
ical minimum potential for the decomposition of alumina, overvoltage, meaning
the excess voltage due to electrode polarization and ohmic voltage drops, due to
resistance of various sections in the cell [147]. These contributions can be divided
into smaller contributions caused by different effects in different parts of the cells.
To make the mathematical expression in the resulting nonlinear simulation model
less comprehensive, only ohmic voltage drop contributions are included. These
are:

• Electrolyte voltage drop Uel [V]

• Bubble voltage drop Ubub [V]

The voltage drop over the electrolyte is due to the electrical resistivity of the
electrolyte. Assuming uniform current density, the resistance of the elecrolyte is
given by:

Rel =
1

κ

d

A
. (A.31)

154 Simulation model

Rel [Ω] is the electrical resistance, κ [1/(Ωm)] is electrical conductivity, d [m] is
the interpolar distance andA [m2] is the total surface of the anodes. The expression
for electrical conductivity is given by [9]:

κ = exp

(
2.0156− 2068.4

Tbath + 273
+ 0.4349 ·BR− 2.07Cal2O3 − 0.5CCaF2

− 1.66CMgF2 + 1.78CLiF + 0.77CLi3AlF6

)
. (A.32)

Tbath [◦C] is the temperature of the electrolyte, BR [−] is the bath ratio, while
Cx[−] is the concentration of substance x. BR is assumed to be constant at 1.2,
CMgF2 = 0.01, CCaF2 = 0.05, CLiF = 0 and CLi3AlF6 = 0. Thus, κ can be
simplified to:

κ = exp

(
2.496− 2068.4

Tbath + 273
− 2.07CAl2O3

)
. (A.33)

The voltage drop due to resistance in the electrolyte is given by:

UEL = REL · Iline (A.34)

Gas accumulation beneath the anode surface which reduces the cross-sectional
area of the electrolyte in that zone. Thus, the effective resistivity increases and
causes the so called bubble voltage drop Ubub [148]:

Ubub =
dbub · jA

κ

ϕ

1− ϕ. (A.35)

jA [A/cm2] is the anode current density dbub [cm] in the bubble layer thickness
and ϕ [−] is the bubble coverage as a fraction of the anode:

dbub =
0.5517 + jA
1 + 2.167jA

, (A.36)

and

ϕ = 0.509 + 0.1823jA − 0.1723j2A + 0.05504j3A

+
0.4322− 0.3781BR

1− 1.637BR
+

0.431− 0.1437(xAl2O3 − xAE
Al2O3)

1 + 7.353(xAl2O3 − xAE
Al2O3)

(A.37)

xAl2O3 [−] is the weight percent of alumina in the bath and xAE
Al2O3

[−] is the
weight percent of alumina at where the anode effect occurs, in this case it is as-
sumed that xAE

Al2O3
= 2.0. Since the simulation model is simplified to only include

contributions from Ubub and UEL, the total applied cell voltage in the simulation
model is given by:

Ucell = UEL + Ubub. (A.38)

A.5. Mass rates 155

A.5 Mass rates
The substances considered in the simulation model are alumina (Al2O3), alu-
minum fluoride (AlF3) and cryolite (Na3AlF6) in the bath and liquid aluminum
(Al) in the metal pad below the bath. Aluminum is extracted from alumina, which
is dissolved in the electrolytic bath. In addition to alumina, carbon anodes are
consumed in the net reaction, producing molten aluminum and carbon dioxide gas
(CO2):

2Al2O3 + 3C → 3CO2 + 4Al. (A.39)

This reaction occurs at a rate according to Farraday’s law for aluminum electrolysis
[146]:

ral =
CE · Iline
z · F , (A.40)

where ral [mol/s] is the reaction rate of the primary reaction of the Hall-Héroult
process presented in Eq. A.39, z = 12 is the number of electrones in the reaction,
F = 96486.7[(A · s)/mol] is the Faraday constant, and CE[−] is the current
efficiency, assumed constant at CE = 0.95. The fed alumina contains several
impurities [146]. In the simulation model derived used in this work, only sodium
oxide (Na2O) is considered as additions in the feeded alumina. The content of
Na2O in alumina react as:

3Na2O + 4AlF3 → 2Na3AlF6 +Al2O3. (A.41)

3 Mol Na2O reacts with 4 Mol of AlF3 and produces 2 Mol of Na3AlF6 and
1 Mol of Al2O3. The reaction rate of the latter reaction rbath [kmol/s] can be
formulated as:

rbath =
CNa2O

3MNa2O
uAl2O3 , (A.42)

whereCNa2O [−] is the weight percent ofNa2O in the alumina feed,MNa2O [g/mol]
is the molar mass of Na2O and uAl2O3 kg/s is the rate of alumina feed. The re-
action in Eq. A.41 affects the mass balance of both AlF3, Na3AlF6 and Al2O3.
Therefore, rbath is included in the mass balance equations of all these species. The
general mass rate Eq. A.15 is used in the derivation the mass rate of side ledge,
cryolite, alumina, aluminum fluoride and metal. The control volumes in which
there are nonzero mass rates are the bath/electrolyte, the metal pad and the side
ledge. The mass rates in the electrolyte are:

ṁAl2O3 = (1− CNa2O)uAl2O3 −
2

1000
ralMAl2O3 + rbathMAl2O3 . (A.43)

ṁAl2O3 [kg/s] is the mass rate of alumina and MAl2O3 [g/mol] is the molar mass
of alumina. 2

1000ralMAl2O3 [kg/s] is the reaction rate of alumina produced due to

156 Simulation model

the reaction in Eq. A.39 and rbathMAl2O3 [kg/s] is the reaction rate of alumina
due to the reaction in Eq. A.41. The mass rate of AlF3 is given by:

ṁAlF3 = uAlF3 − 4rbathMAlF3 , (A.44)

where ṁAlF3 [kg/s] is the mass rate of aluminum fluoride, uAlF3 [kg/s] is the
input rate of aluminum flouride and 4rbathMAlF3 [kg/s] is the reaction rate of
produced aluminum fluoride from the reaction in equation (A.41). The mass rate
of cryolite in the bath is given by:

ṁcry = wfus + 2rbathMcry. (A.45)

ṁcry [kg/s] is the mass rate of cryolite in the electrolyte, 2rbathMcry [kg/s] is the
reaction rate of produced cryolite due to the reaction in Eq. A.41 and wfus [kg/s]
is the mass rate of cryolite transferred between the side ledge and the bath. wfus

is given by:

wfus =
Qbath−liq −Qliq−sl

∆fusHcry
. (A.46)

Qbath−liq andQliq−sl is given in Eqs. A.26 and (A.27) respectively, and ∆fusHcry

is the heat of fusion for cryolite, i.e. the amount of energy required to melt
one kg of cryolite. The heat of fusion for cryolite at 1000◦C is ∆fusHcry =
119495 [J/kg] [146], and is assumed to be constant in the simulation model. The
side ledge is necessary to withstand the highly corrosive molten cryolite in the
oven. The side ledge consists of frozen cryolite [146]. The mass rate of side ledge
is therefore the transfer of cryolite between the electrolyte and side ledge due to
melting and freezing:

ṁsl = −wfus. (A.47)

ṁsl [kg/s] is the mass rate of side ledge, and wfus [kg/s] is given above. The
mass rate of aluminum is given by:

ṁAl =
2

1000
ralMAl − utap. (A.48)

ṁAl [kg/s] is the mass rate of aluminum, 2
1000ralMAl [kg/s] is the reaction rate

of produced aluminum due to the reaction in equation (A.39), and utap [kg/s] is
the control input of tapping metal from the oven.

A.6 Temperature derivatives
Eq. (A.18) is used to calculate the temperature derivatives in the electrolyte, side
ledge and side wall. As mentioned above, Q̇ = Q and Ẇel = Pel. In the electro-
lyte, the energy is transferred in and out of the control volume in many different

A.6. Temperature derivatives 157

ways. Heat Qbath−sl is transferred through convection from the bath to the side
ledge surface (Qbath−liq) and from the side ledge surface to the center of the side
ledge with conductive heat Qliq−sl. The resulting heat transfer can be formulated
as:

Qbath−sl =
Tbath − Tsl

(xsl/2kslAsl) + 1/(hbath−slAsl)
. (A.49)

Energy is transferred through mass transfer in several ways. The energy needed to
heat and melt substances fed as control input u is given by:

Eu = ∆fusHAl2O3uAl2O3 +∆fusHAlF3uAlF3

+ (Tbath − Tin)(c̄pAl2O3
uAl2O3 + c̄pAlF3

uAlF3). (A.50)

∆fusHi [J/kg] is the specific heat of fusion for substance i, and c̄pi [J/(
◦Ckg)]

is the average heat capacity from Tin to Tbath. Energy is also transferred through
mass transfer between the electrolyte and the side ledge. When the side ledge
(frozen cryolite) melts into the bath, energy is required both to heat and melt the
frozen cryolite. The energy required to heat the frozen cryolite is:

Etc, liq = wfuscp,cry,liq(Tbath − Tliq). (A.51)

wfus [kg/s] is as mentioned above the mass rate of cryolite between the bath
and side ledge, and is positive when cryolite melts and is transferred to the bath.
cp,cry,liq [J/(◦Ckg)] is the heat capacity of molten cryolite Tbath [◦C] is the bath
temperature and Tliq [◦C] is the liquidus temperature at which cryolite melts and
freezes. Etc, liq [W] is the energy required to heat molten cryolite from liquidus
temperature to bath temperature. The subscript tc stands for temperature change
and the subscript liq indicates that the substance is liquid. When Etc,liq is positive,
it is because Wfus is positive, indicating that cryolite is melting. Thus, when
Etc,liq is negative, cryolite is freezing. The energy needed to melt frozen cryolite
is given by:

Esc = wfus∆fusHcry. (A.52)

Esc [W] is the energy required to melt the mass of frozen electrolyte. The subscript
sc stands for state change, meaning that it transitions between solid and liquid.
∆fusHcry [J/kg] is the heat of fusion for cryolite as mentioned above. When Esc

is positive, cryolite is melted and energy is required whereas when Esc is negative,
cryolite freezes, and energy is released. Energy is required for the primary reaction
in Eq. A.39 since it is endothermic:

Eral = ral∆Hral . (A.53)

Eral [W] is the amount of energy required for the reaction to take place, ral[mol/s]
is as mentioned above the reaction rate of the primary reaction in the process,

158 Simulation model

and ∆Hral = 2197582 [J/mol] is the enthalpy of reaction for (A.39). Since
the reaction in equation (A.41) is exothermic, this reaction releases energy to its
surroundings. This is given by:

Erbath = 1000rbath∆Hrbath . (A.54)

Erbath [W] is the energy released due to the reaction in (A.41) rbath [kmol/s] =
1000[mol/s] is the reaction rate of (A.41) and ∆Hrbath = −993283 [J/mol] is
the entalpy of reation for (A.41). The time derivative for the bath temperature is
given by:

Ṫbath =
Pel −Qbath−sl − Eu − Etc, liq − Esc − Eral − Erbath

mbathcpbath, liq
. (A.55)

mbath [kg] is the mass of the liquid bath and cpbath, liq [J/(◦C ·kg)] is the enthalpy
of the liquid bath. For the side ledge control volume, the energy transfer is through
melting and freezing of cryolite and heat transfer. The energy transfer related to
melting and freezing of cryolite is given by:

Etc sol = wfuscpcry, sol(Tliq − Tsl). (A.56)

Etc sol [W] is the energy required into the side ledge when frozen cryolite heats
from side ledge temperature Tsl to liquidus temperature Tliq. wfus [kg/s] is given
above and cpcry, sol [J/(◦C · kg)] is the heat capacity of solid cryolite. The time
derivative of the side ledge temperature is given by:

Ṫsl =
Qliq−sl −Qsl−wall − Etc sol

mslcpcry, sol
(A.57)

Ṫsl [
◦C/s] is the temperature change in the side ledge,Qliq−sl [W] andQsl−wall [W]

is the heat in and out of the side ledge respectively. msl [kg] is the mass of the side
ledge, and cpcry, sol [J/(◦C · kg)] is the heat capacity of solid cryolite. There is
no mass transfer through the wall. Therefore, the only energy transfer through this
control volume is through heat transfer. The time derivative of the wall temperature
Ṫwall [◦C/s] is given by:

Ṫwall =
Qsl−wall −Qwall−0

mwallcpwall

. (A.58)

Qsl−wall [W] is the heat from the side ledge to the wall, Qwall−0 [W] is the heat
from the wall to the ambient,mwall [kg] is the mass og the wall and cpwall

[J/(◦C ·
kg)] is the heat capacity of the wall.

A.7. Liquidus temperature 159

A.7 Liquidus temperature
In [149], the liquidus temperature Tliq was determined for primary crystalization
of cryolite (Na3AlF6) in a system consisting of the bath componentsNa3AlF6−
AlF3 − LiF − CaF2 −MgF2 −KF . The liquidus temperature was determined
by thermal analysis in a vertical alumina tube furnace under argon atmosphere. An
empirical cure was fitted, which is valid from temperatures 1011◦C to approxim-
ately 800◦C. The curve is given by:

Tliq = 1011 + 0.50[AlF3]− 0.13[AlF3]
2.2

− 3.45[CaF2]

1 + 0.0173[CaF2]

+ 0.124[CaF2][AlF3]− 0.00542 ([CaF2][AlF3])
1.5

− 7.93[Al2O3]

1 + 0.0936[Al2O3]− 0.0017[Al2O3]2 − 0.0023[AlF3][Al2O3]

− 8.90[LiF]

1 + 0.0047[LiF] + 0.0010[AlF3]2

− 3.95[MgF2]− 3.95[KF]. (A.59)

[x] denote the weight-% of component x. In the simulator, it is assumed that
the following components are constant at values [MgF2] = 1%, [CaF2] = 5%,
[KF] = [LiF] = 0%. This yields:

Tliq = 991.2 + 1.12[AlF3]− 0.13[AlF3]
2.2 + 0.061[AlF3]

1.5

− 7.93[Al2O3]

1 + 0.0936[AlF3]− 0.0017[AlF3]2 − 0.0023[AlF3][Al2O3]
. (A.60)

A.8 Further simplifications in the simulation model
In addition to assumptions and simplifications accounted for in the article, some
additional simplifications are made in the simulation model. The reason for this is
to simplify the analytical expression in the ODE’s used to simulate the dynamics of
the simulation model. The ODE’s will still describe a complex nonlinear system,
but comparing predictive models with the simulation models, and thus analysing
the performance of the novel predictive models will be clearer. From the expres-
sion for Ṫbath in (A.55), the terms Eu, Esc, ErAl

and Erbath are omitted. Thus, in
the simulation model, the expression for Ṫbath is given by:

Ṫbath, sim =
Pel −Qbath−sl − Etc, liq

mbathcpbath, liq
. (A.61)

This neglects some essential physical effects in the process. This is justified by the
argument that the main purpose of this work is to evaluate data driven models on
a complex nonlinear system, rather than simulating the dynamics of an aluminum
electrolysis cell as good as possible.

160 Simulation model

Bibliography

[1] Kun Wang and WaiChing Sun. “A multiscale multi-permeability poroplas-
ticity model linked by recursive homogenizations and deep learning”. In:
Computer Methods in Applied Mechanics and Engineering 334 (2018),
pp. 337–380. ISSN: 0045-7825.

[2] Yan Feng and Sorin Mitran. “Data-driven reduced-order model of micro-
tubule mechanics”. In: Cytoskeleton 75.2 (2018), pp. 45–60.

[3] Pamela P Peralta-Yahya, Fuzhong Zhang, Stephen B Del Cardayre and
Jay D Keasling. “Microbial engineering for the production of advanced
biofuels”. In: Nature 488.7411 (2012), pp. 320–328.

[4] Soodabeh Esmaili and Shahab D. Mohaghegh. “Full field reservoir mod-
eling of shale assets using advanced data-driven analytics”. In: Geoscience
Frontiers 7.1 (2016). Special Issue: Progress of Machine Learning in Geosciences,
pp. 11–20. ISSN: 1674-9871.

[5] Vasilis Marmarelis, Georgios Mitsis, E Daskalaki, P Diem and S Mou-
giakakou. Data-driven modeling for diabetes. Lecture Notes in Bioengin-
eering. Springer Berlin, Heidelberg, 2014. ISBN: 9783662523674.

[6] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams and Alán Aspuru-
Guzik. “Automatic chemical design using a data-driven continuous repres-
entation of molecules”. In: ACS central science 4.2 (2018), pp. 268–276.

[7] Francisco J. Montáns, Francisco Chinesta, Rafael Gómez-Bombarelli and
J. Nathan Kutz. “Data-driven modeling and learning in science and en-
gineering”. In: Comptes Rendus Mécanique 347.11 (2019). Data-Based
Engineering Science and Technology, pp. 845–855. ISSN: 1631-0721.

161

162 BIBLIOGRAPHY

[8] Omer San, Adil Rasheed and Trond Kvamsdal. Hybrid analysis and mod-
eling, eclecticism, and multifidelity computing toward digital twin revolu-
tion. 2021. arXiv: 2103.14629 [physics.comp-ph].

[9] Kai Grotheim and Halvor Kvande. Introduction to Aluminium Electrolysis-
Understanding the Hall-Heroult Process. Dusseldorf, Germany: Aluminium-
Verlag, 1993.

[10] Vanderlei Gusberti, Dagoberte S Severo, Barry J Welch and Maria Skyllas-
Kazacos. “Modeling the mass and energy balance of different aluminium
smelting cell technologies”. In: Light Metals 2012. Springer, 2012, pp. 929–
934.

[11] Jinsong Hua, Christian Droste, Kristian E Einarsrud, Magne Rudshaug,
Robert Jorgensen and Nils-Haavard Giskeodegard. “Revised benchmark
problem for modeling of metal flow and metal heaving in reduction cells”.
In: Light Metals (2014), pp. 691–695.

[12] Meijia Sun, Baokuan Li and Linmin Li. “A multi-scale mathematical model
of growth and coalescence of bubbles beneath the anode in an aluminum
reduction cell”. In: Metallurgical and Materials Transactions B 49.5 (2018),
pp. 2821–2834.

[13] Kristian Etienne Einarsrud, Ingo Eick, Wei Bai, Yuqing Feng, Jinsong Hua
and Peter J. Witt. “Towards a coupled multi-scale, multi-physics simu-
lation framework for aluminium electrolysis”. In: Applied Mathematical
Modelling 44 (2017), pp. 3–24. ISSN: 0307-904X.

[14] He Song Li and Chang Wei Jiang. “Development and application of soft
sensor model for heterogeneous information of aluminum reduction cells”.
In: Control Engineering Practice 19.10 (2011). ISSN: 09670661.

[15] Zhaohui Zeng, Weihua Gui, Xiaofang Chen, Yongfang Xie and Renchao
Wu. “A mechanism knowledge-driven method for identifying the pseudo
dissolution hysteresis coefficient in the industrial aluminium electrolysis
process”. In: Control Engineering Practice 102 (2020). ISSN: 09670661.

[16] A. Meghlaoui, J. Thibault, R.T. Bui, L. Tikasz and R. Santerre. “Neural
networks for the identification of the aluminium electrolysis process”. In:
Computers & Chemical Engineering 22.10 (1998), pp. 1419–1428. ISSN:
0098-1354.

[17] You Peng, Birgit Braun, Casey McAlpin, Michael Broadway, Brenda Colegrove
and Leo Chiang. “Contamination classification for pellet quality inspection
using deep learning”. In: Computers & Chemical Engineering 163 (2022),
p. 107836. ISSN: 0098-1354.

https://arxiv.org/abs/2103.14629

BIBLIOGRAPHY 163

[18] Nazatul Aini Abd Majid, Mark P. Taylor, John J.J. Chen and Brent R.
Young. “Multivariate statistical monitoring of the aluminium smelting pro-
cess”. In: Computers & Chemical Engineering 35.11 (2011), pp. 2457–
2468. ISSN: 0098-1354.

[19] Adil Rasheed, Omer San and Trond Kvamsdal. “Digital Twin: Values,
Challenges and Enablers From a Modeling Perspective”. In: IEEE Access
8 (2020), pp. 21980–22012.

[20] Moritz von Stosch, Rui Oliveira, Joana Peres and Sebastião Feyo de Azevedo.
“Hybrid semi-parametric modeling in process systems engineering: Past,
present and future”. In: Computers and Chemical Engineering 60 (2014),
pp. 86–101. ISSN: 00981354.

[21] Mohammed Saad Faizan Bangi and Joseph Sang Il Kwon. “Deep hybrid
modeling of chemical process: Application to hydraulic fracturing”. In:
Computers and Chemical Engineering 134 (2020). ISSN: 00981354.

[22] Dongheon Lee, Arul Jayaraman and Joseph S. Kwon. “Development of a
hybrid model for a partially known intracellular signaling pathway through
correction term estimation and neural network modeling”. In: PLoS Com-
putational Biology 16.12 (2020), pp. 1–31. ISSN: 15537358.

[23] Maziar Raissi, Paris Perdikaris and George E Karniadakis. “Physics-informed
neural networks: A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations”. In: Journal
of Computational Physics 378 (2019), pp. 686–707.

[24] Suran Pawar, Omer San, Burak Aksoylu, Adil Rasheed and Trond Kvams-
dal. “Physics guided machine learning using simplified theories”. In: Phys-
ics of Fluids 33.1 (2021), p. 011701.

[25] Steven L. Brunton, Joshua L. Proctor and J. Nathan Kutz. “Discovering
governing equations from data by sparse identification of nonlinear dy-
namical systems”. In: Proceedings of the National Academy of Sciences
113.15 (2016), pp. 3932–3937.

[26] Joseph Bakarji and Daniel M. Tartakovsky. “Data-driven discovery of coarse-
grained equations”. In: Journal of Computational Physics 434 (2021), p. 110219.
ISSN: 0021-9991.

[27] Kathleen Champion, Bethany Lusch, J. Nathan Kutz and Steven L. Brunton.
“Data-driven discovery of coordinates and governing equations”. In: Pro-
ceedings of the National Academy of Sciences 116.45 (2019), pp. 22445–
22451. ISSN: 0027-8424.

164 BIBLIOGRAPHY

[28] Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin
Wu and Max Tegmark. “AI Feynman 2.0: Pareto-optimal symbolic regres-
sion exploiting graph modularity”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 4860–4871.

[29] Samuel Kim, Peter Y. Lu, Srijon Mukherjee, Michael Gilbert, Li Jing,
Vladimir Ceperic and Marin Soljacic. “Integration of Neural Network-
Based Symbolic Regression in Deep Learning for Scientific Discovery”.
In: IEEE Transactions on Neural Networks and Learning Systems 32.9
(2021), pp. 4166–4177.

[30] Hao Xu, Dongxiao Zhang and Nanzhe Wang. “Deep-learning based dis-
covery of partial differential equations in integral form from sparse and
noisy data”. In: Journal of Computational Physics 445 (2021), p. 110592.
ISSN: 0021-9991.

[31] Rahul Rai and Chandan K. Sahu. “Driven by Data or Derived Through
Physics? A Review of Hybrid Physics Guided Machine Learning Tech-
niques With Cyber-Physical System (CPS) Focus”. In: IEEE Access 8
(2020), pp. 71050–71073.

[32] Laura von Rueden, Sebastian Mayer, Rafet Sifa, Christian Bauckhage and
Jochen Garcke. “Combining Machine Learning and Simulation to a Hy-
brid Modelling Approach: Current and Future Directions”. In: Advances
in Intelligent Data Analysis XVIII. Ed. by Michael R. Berthold, Ad Feeld-
ers and Georg Krempl. Cham: Springer International Publishing, 2020,
pp. 548–560.

[33] Manuel Arias Chao, Chetan Kulkarni, Kai Goebel and Olga Fink. “Fusing
physics-based and deep learning models for prognostics”. In: Reliability
Engineering & System Safety 217 (2022), p. 107961. ISSN: 0951-8320.

[34] William Bradley, Jinhyeun Kim, Zachary Kilwein, Logan Blakely, Mi-
chael Eydenberg, Jordan Jalvin, Carl Laird and Fani Boukouvala. “Per-
spectives on the Integration between First-Principles and Data-Driven Mod-
eling”. In: Computers & Chemical Engineering (2022), p. 107898. ISSN:
0098-1354.

[35] Sindre S. Blakseth, Adil Rasheed, Trond Kvamsdal and Omer San. “Deep
neural network enabled corrective source term approach to hybrid analysis
and modeling”. In: Neural Networks 146 (2022), pp. 181–199. ISSN: 0893-
6080.

[36] C. E. Shannon. “Communication In The Presence Of Noise”. In: Proceed-
ings of the IEEE 86.2 (1998), pp. 447–457.

BIBLIOGRAPHY 165

[37] Steinar Kolås and Stein O. Wasbø. “A Nonlinear Model Based Control
Strategy for the Aluminium Electrolysis Process”. In: Essential Readings
in Light Metals: Volume 2 Aluminum Reduction Technology. Ed. by Geoff
Bearne, Marc Dupuis and Gary Tarcy. Cham: Springer International Pub-
lishing, 2016, pp. 825–829.

[38] Steinar Kolås. “Estimation in nonlinear constrained systems with severe
disturbances”. PhD thesis. Norwegian university of science and techno-
logy, 2008.

[39] Richard G. Baraniuk. “Compressive sensing”. In: IEEE Signal Processing
Magazine 24.4 (2007). ISSN: 10535888.

[40] Simon Foucart and Holger Rauhut. “An invitation to compressive sens-
ing”. In: Applied and Numerical Harmonic Analysis. 9780817649470. 2013.

[41] Ricardo Otazo, Emmanuel Candès and Daniel K. Sodickson. “Low-rank
plus sparse matrix decomposition for accelerated dynamic MRI with sep-
aration of background and dynamic components”. In: Magnetic Resonance
in Medicine 73.3 (2015), pp. 1125–1136.

[42] Mohammed M Abo-Zahhad, Aziza I Hussein, Abdelfatah M Mohamed
et al. “Compression of ECG signal based on compressive sensing and the
extraction of significant features”. In: International Journal of Communic-
ations, Network and System Sciences 8.05 (2015), p. 97.

[43] Kok-Kiong Poh and Pina Marziliano. “Compressive sampling of EEG sig-
nals with finite rate of innovation”. In: EURASIP journal on advances in
signal processing 2010 (2010), pp. 1–12.

[44] Xiao-Yang Liu, Yanmin Zhu, Linghe Kong, Cong Liu, Yu Gu, Athanas-
ios V Vasilakos and Min-You Wu. “CDC: Compressive data collection for
wireless sensor networks”. In: IEEE Transactions on Parallel and Distrib-
uted Systems 26.8 (2014), pp. 2188–2197.

[45] Borhan M. Sanandaji, Tyrone L. Vincent, Michael B. Wakin, Roland. Tóth
and Kameshwar Poolla. “Compressive System Identification of LTI and
LTV ARX models”. In: 2011 50th IEEE Conference on Decision and Con-
trol and European Control Conference. 2011, pp. 791–798.

[46] Zhe Bai, Eurika Kaiser, Joshua L. Proctor, J. Nathan Kutz and Steven L.
Brunton. “Dynamic mode decomposition for compressive system identi-
fication”. In: AIAA Journal 58.2 (2020), pp. 561–574. ISSN: 00011452.

[47] Yanglong Lu and Yan Wang. “Monitoring temperature in additive manu-
facturing with physics-based compressive sensing”. In: Journal of Manu-
facturing Systems 48 (2018), pp. 60–70. ISSN: 02786125.

166 BIBLIOGRAPHY

[48] Reinhard Heckel and Helmut Bolcskei. “Identification of sparse linear op-
erators”. In: IEEE Transactions on Information Theory 59.12 (2013). ISSN:
00189448.

[49] Yannis Kopsinis, Konstantinos Slavakis and Sergios Theodoridis. “Online
sparse system identification and signal reconstruction using projections
onto weighted l1 balls”. In: IEEE Transactions on Signal Processing 59.3
(2011). ISSN: 1053587X.

[50] Yilun Chen, Yuantao Gu and Alfred O. Hero. “Sparse LMS for system
identification”. In: ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings. 2009.

[51] Yuantao Gu, Jian Jin and Shunliang Mei. “l0 norm constraint LMS al-
gorithm for sparse system identification”. In: IEEE Signal Processing Let-
ters 16.9 (2009). ISSN: 10709908.

[52] Nicholas Kalouptsidis, Gerasimos Mileounis, Behtash Babadi and Vahid
Tarokh. “Adaptive algorithms for sparse system identification”. In: Signal
Processing 91.8 (2011). ISSN: 01651684.

[53] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133.

[54] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

[55] Marvin Minsky and Seymour Papert. Perceptrons. Cambridge: MIT Press,
1969.

[56] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep learning. MIT
press, 2016.

[57] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR Work-
shop and Conference Proceedings. 2010, pp. 249–256.

[58] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (1997), pp. 1735–1780.

[59] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye
Duan, Omran Al-Shamma, José Santamaría, Mohammed A Fadhel, Muthana
Al-Amidie and Laith Farhan. “Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions”. In: Journal of
big Data 8.1 (2021), pp. 1–74.

BIBLIOGRAPHY 167

[60] Amine Naimi, Jiamei Deng, Altahhan Abdulrahman, Vineet Vajpayee, Vic-
tor Becerra and Nils Bausch. “Dynamic Neural Network-based System
Identification of a Pressurized Water Reactor”. In: 2020, pp. 100–104.

[61] Erasmo M. Rentería-Vargas, Carlos J. Zúñiga Aguilar, Jesse Y. Rumbo
Morales, Felipe De Jesús S. Vázquez, Miguel De-La-Torre, José A. Cer-
vantes, Estela S. Bustos and Manuela Calixto Rodríguez. “Neural Network-
Based Identification of a PSA Process for Production and Purification of
Bioethanol”. In: IEEE Access 10 (2022), pp. 27771–27782.

[62] David Fooshee, Aaron Mood, Eugene Gutman, Mohammadamin Tavakoli,
Gregor Urban, Frances Liu, Nancy Huynh, David Van Vranken and Pierre
Baldi. “Deep learning for chemical reaction prediction”. In: Mol. Syst. Des.
Eng. 3 (3 2018), pp. 442–452.

[63] Vassilios D. Papadopoulos, Grigorios N. Beligiannis and Dimitra G. Hela.
“Combining experimental design and artificial neural networks for the de-
termination of chlorinated compounds in fish using matrix solid-phase dis-
persion”. In: Applied Soft Computing 11.8 (2011), pp. 5155–5164. ISSN:
1568-4946.

[64] Patrizia R.S. Chermont, Fábio M. Soares and Roberto C.L. De Oliveira.
“Simulations on the bath chemistry variables using neural networks”. In:
TMS Light Metals. Vol. 2016-January. 2016.

[65] Alan Marcel Fernandes de Souza, Fábio Mendes Soares, Marcos Anto-
nio Gomes de Castro, Nilton Freixo Nagem, Afonso Henrique de Jesus
Bitencourt, Carolina de Mattos Affonso and Roberto Célio Limão de Oli-
veira. “Soft sensors in the primary aluminum production process based
on neural networks using clustering methods”. In: Sensors 19.23 (2019).
ISSN: 14248220.

[66] Dipankar Bhattacharyay, Duygu Kocaefe, Yasar Kocaefe and Brigitte Mo-
rais. “An artificial neural network model for predicting the CO 2 reactivity
of carbon anodes used in the primary aluminum production”. In: Neural
computing and Applications 28.3 (2017), pp. 553–563.

[67] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij
B. Gupta, Xiaojiang Chen and Xin Wang. “A Survey of Deep Active Learn-
ing”. In: ACM Computing Surveys 54.9 (Oct. 2021). ISSN: 0360-0300.

[68] Yarin Gal, Riashat Islam and Zoubin Ghahramani. “Deep Bayesian Act-
ive Learning with Image Data”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup and Yee Whye
Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June
2017, pp. 1183–1192.

168 BIBLIOGRAPHY

[69] Christopher Schröder and Andreas Niekler. “A survey of active learn-
ing for text classification using deep neural networks”. In: arXiv preprint
arXiv:2008.07267 (2020).

[70] Hamed H Aghdam, Abel Gonzalez-Garcia, Joost van de Weijer and Ant-
onio M López. “Active learning for deep detection neural networks”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vis-
ion. 2019, pp. 3672–3680.

[71] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li and Qi Zhu. “Reachnn*:
A tool for reachability analysis of neural-network controlled systems”. In:
Automated Technology for Verification and Analysis: 18th International
Symposium, ATVA 2020, Hanoi, Vietnam, October 19–23, 2020, Proceed-
ings. Springer. 2020, pp. 537–542.

[72] Diego Manzanas Lopez, Patrick Musau, Nathaniel P Hamilton and Taylor
T Johnson. “Reachability analysis of a general class of neural ordinary
differential equations”. In: Formal Modeling and Analysis of Timed Sys-
tems: 20th International Conference, FORMATS 2022, Warsaw, Poland,
September 13–15, 2022, Proceedings. Springer. 2022, pp. 258–277.

[73] Xavier Bombois, Michel Gevers, Roland Hildebrand and Gabriel Solari.
“Optimal experiment design for open and closed-loop system identifica-
tion”. In: Communications in Information and Systems 11.3 (2011), pp. 197–
224.

[74] Mona Buisson-Fenet, Friedrich Solowjow and Sebastian Trimpe. “Actively
Learning Gaussian Process Dynamics”. In: Proceedings of the 2nd Con-
ference on Learning for Dynamics and Control. Vol. 120. Proceedings of
Machine Learning Research. PMLR, 2020, pp. 5–15.

[75] Shengbing Tang, Kenji Fujimoto and Ichiro Maruta. “Actively Learning
Gaussian Process Dynamical Systems Through Global and Local Explor-
ations”. In: IEEE Access 10 (2022), pp. 24215–24231.

[76] Andrew Wagenmaker and Kevin Jamieson. “Active learning for identific-
ation of linear dynamical systems”. In: Conference on Learning Theory.
PMLR. 2020, pp. 3487–3582.

[77] Horia Mania, Michael I Jordan and Benjamin Recht. “Active learning for
nonlinear system identification with guarantees”. In: arXiv preprint arXiv:2006.10277
(2020).

[78] Erlend T. B. Lundby, Adil Rasheed, Jan T. Gravdahl and Ivar J. Halvorsen.
“A novel hybrid analysis and modeling approach applied to aluminum
electrolysis process”. In: Journal of Process Control 105 (2021), pp. 62–
77. ISSN: 0959-1524.

BIBLIOGRAPHY 169

[79] Haakon Robinson, Erlend Lundby, Adil Rasheed and Jan T. Gravdahl.
“A novel corrective-source term approach to modeling unknown phys-
ics in aluminum extraction process”. In: arXiv preprint arXiv:2209.10861
(2022).

[80] Erlend T. B. Lundby, Adil Rasheed, Jan T. Gravdahl and Ivar J. Halvorsen.
“Sparse deep neural networks for modeling aluminum electrolysis dynam-
ics”. In: Applied Soft Computing 134 (2023), p. 109989. ISSN: 1568-4946.

[81] Erlend T. B. Lundby, Haakon Robinsson, Adil Rasheed, Ivar J. Halvorsen
and Jan T. Gravdahl. “Sparse neural networks with skip-connections for
nonlinear system identification”. In: arXiv preprint arXiv:2301.00582 (2023).

[82] Gao Huang, Zhuang Liu, Laurens Van Der Maaten and Kilian Q. Weinber-
ger. “Densely Connected Convolutional Networks”. In: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2261–
2269.

[83] Erlend T. B. Lundby, Adil Rasheed, Ivar J. Halvorsen, Dirk Reinhardt,
Sebastien Gros and Jan T. Gravdahl. “Deep active learning for nonlinear
system identification”. In: arXiv preprint arXiv:2302.12667 (2023).

[84] Håkon Viumdal, Saba Mylvaganam and David Di Ruscio. “System iden-
tification of a non-uniformly sampled multi-rate system in aluminium elec-
trolysis cells”. In: Modeling Identification and Control 35.3 (2014), pp. 127–
146.

[85] Laszlo I. Kiss and Véronique Dassylva-Raymond. “Freeze thickness in the
aluminum electrolysis cells”. In: Light Metals 2008 - Proceedings of the
Technical Sessions Presented by the TMS Aluminum Committee at the TMS
2008 Annual Meeting and Exhibition. TMS. New Orleans, LA., Mar. 2008,
pp. 431–436.

[86] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion
Control. John Wiley & Sons, May 2011.

[87] Anders Aglen Pedersen. “Optimization Based System Identification for the
milliAmpere Ferry”. MA thesis. NTNU, 2019.

[88] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks”. In: arXiv preprint arXiv:1803.03635
(2018).

[89] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the
efficacy of pruning for model compression. 2017.

170 BIBLIOGRAPHY

[90] Xiaoqin Zeng and Daniel S Yeung. “Hidden neuron pruning of multilayer
perceptrons using a quantified sensitivity measure”. In: Neurocomputing
69.7-9 (2006), pp. 825–837.

[91] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden and Alexandra
Peste. “Sparsity in Deep Learning: Pruning and growth for efficient infer-
ence and training in neural networks.” In: J. Mach. Learn. Res. 22.241
(2021), pp. 1–124.

[92] Balas K. Natarajan. “Sparse approximate solutions to linear systems”. In:
SIAM Journal on Computing 24.2 (1995), pp. 227–234. ISSN: 00975397.

[93] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. “Deep residual
learning for image recognition”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 770–778.

[94] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang and Liang Lin. “Cost-
Effective Active Learning for Deep Image Classification”. In: IEEE Trans-
actions on Circuits and Systems for Video Technology 27.12 (2017), pp. 2591–
2600.

[95] Ying Li, Binbin Fan, Weiping Zhang, Weiping Ding and Jianwei Yin.
“Deep active learning for object detection”. In: Information Sciences 579
(2021), pp. 418–433. ISSN: 0020-0255.

[96] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas
Poczos and Tom M Mitchell. “Competence-based curriculum learning for
neural machine translation”. In: arXiv preprint arXiv:1903.09848 (2019).

[97] Ye Zhang, Matthew Lease and Byron C. Wallace. “Active Discriminative
Text Representation Learning”. In: Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence. AAAI’17. San Francisco, California,
USA: AAAI Press, 2017, pp. 3386–3392.

[98] Sreyasee Das Bhattacharjee, Ashit Talukder and Bala Venkatram Balantrapu.
“Active learning based news veracity detection with feature weighting and
deep-shallow fusion”. In: 2017 IEEE International Conference on Big Data
(Big Data). 2017, pp. 556–565.

[99] Fedor Zhdanov. “Diverse mini-batch active learning”. In: arXiv preprint
arXiv:1901.05954 (2019).

[100] Niklas Koep, Arash Behboodi and Rudolf Mathar. “An Introduction to
Compressed Sensing”. In: Applied and Numerical Harmonic Analysis. Springer
International Publishing, 2019, pp. 1–65.

BIBLIOGRAPHY 171

[101] Richard G Baraniuk, Volkan Cevher, Marco F Duarte and Chinmay Hegde.
“Model-based compressive sensing”. In: IEEE Transactions on informa-
tion theory 56.4 (2010), pp. 1982–2001. ISSN: 00189448.

[102] S. S. Chen, D. L. Donoho and M. A. Saunders. “Atomic decomposition
by basis pursuit”. In: SIAM Review 43.1 (Mar. 2001), pp. 129–159. ISSN:
00361445.

[103] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”.
In: Journal of the Royal Statistical Society: Series B (Methodological) 58.1
(Jan. 1996), pp. 267–288. ISSN: 0035-9246.

[104] Emmanuel Candes and Terence Tao. “The Dantzig selector: Statistical es-
timation when p is much larger than n”. In: The annals of Statistics 35.6
(2007), pp. 2313–2351.

[105] Thomas Blumensath and Mike E. Davies. “Iterative hard thresholding for
compressed sensing”. In: Applied and Computational Harmonic Analysis
27.3 (Nov. 2009), pp. 265–274. ISSN: 10635203.

[106] Xi Chen, Qihang Lin, Seyoung Kim, Jaime G Carbonell, Eric P Xing et
al. “Smoothing proximal gradient method for general structured sparse re-
gression”. In: The Annals of Applied Statistics 6.2 (2012), pp. 719–752.

[107] Amir Beck and Marc Teboulle. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”. In: SIAM journal on imaging sci-
ences 2.1 (2009), pp. 183–202.

[108] Joel A Tropp and Anna C Gilbert. “Signal recovery from random meas-
urements via orthogonal matching pursuit”. In: IEEE Transactions on in-
formation theory 53.12 (2007), pp. 4655–4666.

[109] Deanna Needell and Joel A Tropp. “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples”. In: Applied and computational
harmonic analysis 26.3 (2009), pp. 301–321.

[110] Anela M. Ivanova, Pavel A. Arkhipov, Olga Tkacheva and Yury P. Zaikov.
“Experimental Studies of the Dynamic Formation of the Side Ledge in
an Aluminum Electrolysis Cell”. In: Russian Metallurgy (Metally) 2020.2
(2020). ISSN: 15556255.

[111] Greg Welch and Gary Bishop. “An Introduction to the Kalman Filter”. In:
In Practice 7.1 (2006), pp. 1–16. ISSN: 10069313.

[112] Sindre S. Blakseth, Adil Rasheed, Trond Kvamsdal and Omer San. “Com-
bining physics-based and data-driven techniques for reliable hybrid ana-
lysis and modeling using the corrective source term approach”. In: Applied
Soft Computing 128 (2022), p. 109533. ISSN: 1568-4946.

172 BIBLIOGRAPHY

[113] Randall J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. 1st.
Cambridge University Press, 2002.

[114] Floris Takens. “Detecting strange attractors in turbulence”. In: Dynamical
Systems and Turbulence, Warwick 1980. Ed. by David Rand and Lai-Sang
Young. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp. 366–
381. ISBN: 978-3-540-38945-3.

[115] Lennart Ljung. System Identification: Theory for the User. 2nd. Pearson,
1998. ISBN: 978-0136566953.

[116] Oliver Nelles. Nonlinear system identification: from classical approaches
to neural networks, fuzzy models, and gaussian processes. Springer Nature,
2020.

[117] Maximilian Winter and Christian Breitsamter. “Nonlinear identification
via connected neural networks for unsteady aerodynamic analysis”. In:
Aerospace Science and Technology 77 (2018), pp. 802–818. ISSN: 1270-
9638.

[118] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic op-
timization”. In: arXiv preprint arXiv:1412.6980 (2014).

[119] J. Sjöberg and L. Ljung. “Overtraining, Regularization and Searching for a
Minimum, with Application to Neural Networks”. In: International Journal
of Control 62.6 (Dec. 1995), pp. 1391–1407. ISSN: 0020-7179. DOI: 10.
1080/00207179508921605. URL: https://doi.org/10.1080/
00207179508921605.

[120] Christopher M. Bishop. “Regularization and Complexity Control in Feed-
Forward Networks”. In: International Conference on Artificial Neural Net-
works. 1995, pp. 141–148. ISBN: 978-2-910085-19-3. URL: https://
publications.aston.ac.uk/id/eprint/524/ (visited on 25/03/2023).

[121] Yu Zhang, Peter Tiňo, Aleš Leonardis and Ke Tang. A Survey on Neural
Network Interpretability. 2021. arXiv: 2012.14261 [cs.LG].

[122] Shiwei Liu, Decebal Constantin Mocanu and Mykola Pechenizkiy. “On
improving deep learning generalization with adaptive sparse connectivity”.
In: arXiv preprint arXiv:1906.11626 (2019).

[123] Michael C Mozer and Paul Smolensky. “Skeletonization: A Technique for
Trimming the Fat from a Network via Relevance Assessment”. In: Ad-
vances in Neural Information Processing Systems. Ed. by D. Touretzky.
Vol. 1. Morgan-Kaufmann, 1988.

https://doi.org/10.1080/00207179508921605
https://doi.org/10.1080/00207179508921605
https://doi.org/10.1080/00207179508921605
https://doi.org/10.1080/00207179508921605
https://publications.aston.ac.uk/id/eprint/524/
https://publications.aston.ac.uk/id/eprint/524/
https://arxiv.org/abs/2012.14261

BIBLIOGRAPHY 173

[124] Hongpeng Zhou, Chahine Ibrahim, Wei Xing Zheng and Wei Pan. “Sparse
Bayesian deep learning for dynamic system identification”. In: Automatica
144 (2022), p. 110489. ISSN: 0005-1098.

[125] Maarten Schoukens, P Mattson, Torbjörn Wigren and Jean-Philippe Noel.
“Cascaded tanks benchmark combining soft and hard nonlinearities”. In:
Workshop on nonlinear system identification benchmarks. 2016, pp. 20–
23.

[126] Torbjörn Wigren and Maarten Schoukens. Coupled electric drives data set
and reference models. Department of Information Technology, Uppsala
Universitet, 2017.

[127] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho and Yoshua Bengio.
“On the Number of Linear Regions of Deep Neural Networks”. In: Ad-
vances in Neural Information Processing Systems. Ed. by Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence and K. Q. Weinberger. Vol. 27. Curran
Associates, Inc., 2014.

[128] Razvan Pascanu, Guido Montufar and Yoshua Bengio. “On the number
of response regions of deep feed forward networks with piece-wise linear
activations”. In: ICLR, 2014.

[129] Thiago Serra, Christian Tjandraatmadja and Srikumar Ramalingam. “Bound-
ing and Counting Linear Regions of Deep Neural Networks”. In: CoRR
abs/1711.02114 (2017). arXiv: 1711.02114.

[130] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein.
Visualizing the Loss Landscape of Neural Nets. 2017. URL: https://
arxiv.org/abs/1712.09913.

[131] Omer Sagi and Lior Rokach. “Ensemble learning: A survey”. In: Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 8.4 (2018),
e1249.

[132] Jeremy Nixon, Balaji Lakshminarayanan and Dustin Tran. “Why are boot-
strapped deep ensembles not better?” In: ”I Can’t Believe It’s Not Bet-
ter!”NeurIPS 2020 workshop. 2020.

[133] Balaji Lakshminarayanan, Alexander Pritzel and Charles Blundell. “Simple
and scalable predictive uncertainty estimation using deep ensembles”. In:
Advances in neural information processing systems 30 (2017).

[134] Stanislav Fort, Huiyi Hu and Balaji Lakshminarayanan. “Deep ensembles:
A loss landscape perspective”. In: arXiv preprint arXiv:1912.02757 (2019).

https://arxiv.org/abs/1711.02114
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1712.09913

174 BIBLIOGRAPHY

[135] Jakob Gawlikowski, Cedrique R N Tassi, Mohsin Ali, Jongseok Lee, Mat-
thias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher et al. “A survey of uncertainty in deep neural networks”.
In: arXiv preprint arXiv:2107.03342 (2021).

[136] William H Beluch, Tim Genewein, Andreas Nürnberger and Jan M Köhler.
“The power of ensembles for active learning in image classification”. In:
Proceedings of the IEEE conference on computer vision and pattern re-
cognition. 2018, pp. 9368–9377.

[137] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Se-
bastian Nowozin, Joshua Dillon, Balaji Lakshminarayanan and Jasper Snoek.
“Can you trust your model’s uncertainty? evaluating predictive uncertainty
under dataset shift”. In: Advances in neural information processing sys-
tems 32 (2019).

[138] Fredrik K Gustafsson, Martin Danelljan and Thomas B Schon. “Evaluating
scalable bayesian deep learning methods for robust computer vision”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops. 2020, pp. 318–319.

[139] Thomas M Cover. Elements of information theory. John Wiley & Sons,
1999.

[140] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings and Mor-
itz Diehl. “CasADi – A software framework for nonlinear optimization
and optimal control”. In: Mathematical Programming Computation 11.1
(2019), pp. 1–36.

[141] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems
32 (2019).

[142] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide
Scaramuzza and Markus Ryll. “Real-time Neural-MPC: Deep Learning
Model Predictive Control for Quadrotors and Agile Robotic Platforms”.
In: arXiv preprint arXiv:2203.07747 (2023).

[143] Ibrahim Dincer and Calin Zamfirescu. “Chapter 1 - Fundamentals of Ther-
modynamics”. In: Advanced Power Generation Systems. Ed. by Ibrahim
Dincer and Calin Zamfirescu. Boston: Elsevier, 2014, pp. 1–53.

[144] Sigurd Skogestad. Chemical and energy process engineering. CRC press,
2008.

BIBLIOGRAPHY 175

[145] M.P. Taylor, W.D. Zhang, V. Wills and S. Schmid. “A Dynamic Model
for the Energy Balance of an Electrolysis Cell”. In: Chemical Engineering
Research and Design 74.8 (1996), pp. 913–933.

[146] Tormod Drengstig. “On process model representation and AlF3 dynamics
of aluminum electrolysis cells”. PhD thesis. Ph. D. thesis, Norwegian Univ.
of Science and Tech.(NUST), 1997.

[147] Stefan W. Jessen. “Mathematical modeling of a Hall Héroult aluminium
reduction cell”. MA thesis. Technical University of Denmark, DTU, DK-
2800 Kgs. Lyngby, Denmark, 2008.

[148] Thomas M Hyde and Barry J Welch. “The gas under anodes in aluminium
smelting cells. Part I: Measuring and modelling bubble resistance under
horizontally oriented electrodes”. In: LIGHT METALS-WARRENDALE-
(1997), pp. 333–340.

[149] Asbjørn Solheim, Sverre Rolseth, Egil Skybakmoen, Lisbet Støen, Ås-
mund Sterten and Trond Støre. “Liquidus temperature and alumina sol-
ubility in the system Na 3 AlF 6-AlF 3-LiF-CaF 2-MgF 2”. In: Essen-
tial Readings in Light Metals: Aluminum Reduction Technology, Volume
2. John Wiley & Sons, 2013, pp. 73–82.

ISBN 978-82-326-7114-4 (printed ver.)
ISBN 978-82-326-7113-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:206

Erlend Torje Berg Lundby

Data-Driven Dynamical
Modeling in the Face of Data
LimitationsD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2023:206
Erlend T orje Berg Lundby

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

	Summary
	Sammendrag
	Preface
	Introduction
	Motivation
	Background
	Hybrid modeling
	Compressed sensing
	Neural Networks
	Active Learning

	Outline and contributions
	Preliminaries (Chapter 2)
	Hybrid modeling combining first principle model and compressed sensing (Chapter 3)
	Hybrid modeling combining first principle model and deep learning (Chapter 4)
	Modeling dynamics using sparse neural networks (Chapter 5)
	Modeling dynamics using Neural Networks with skip-connections (Chapter 6)
	Deep active learning in experimental design for nonlinear system identification (Chapter 7)
	Other contribitions

	Preliminaries
	Simulation models
	Simple aluminum electrolysis model
	Complex aluminum electrolysis model
	Simulation model of surface vessel

	Neural networks
	Sparse neural networks and regularization
	Skip-connections
	Deep Active Learning

	Compressed sensing
	Low complexity structures
	Restricted isometry property
	Signal estimation techniques

	Performance metrics
	Rolling forecast error measure
	Model stability measure

	Hybrid modeling combining first principle model and compressed sensing
	Introduction
	Extended Kalman filter
	Method and data generation
	Set-up for data generation and pre-processing
	Novel hybrid framework

	Results
	Noise and measurement study
	State and signal estimates

	Conclusion

	Hybrid modeling combining first principle model and deep learning
	Introduction
	Corrective source term approach (CoSTA)
	Method and experimental setup
	Inducing error in the PBM
	Data generation and preprocessing
	Modeling approaches
	Training

	Results and discussion
	Conclusions and future work

	Modeling dynamics using sparse neural networks
	Introduction
	Region bounds for piecewise affine neural networks
	Method and experimental setup
	Training with sparsity promoting regularization
	Experimental setup and data generation

	Results and discussion
	Interpretability perspective
	Generalizability perspective
	Training stability perspective

	Conclusions and future work

	Modeling dynamics using Neural Networks with skip-connections
	Introduction
	Method and setup
	InputSkip
	Data generation
	Training setup

	Results and discussions
	Conclusion and future work

	Deep active learning in experimental design for nonlinear system identification
	Introduction
	Ensembles of neural networks
	Deep active learning in dynamical systems
	Method and setup
	Novel DeepAL scheeme for dynamical systems
	Test set generation

	Results and discussion
	Information based and random sampling
	Uncertainty based and hybrid global strategy

	Conclusions and future work

	Conclusions and further work
	Simulation model
	Heat capacity
	Energy and mass balance
	Heat transfer
	Electrochemical power
	Mass rates
	Temperature derivatives
	Liquidus temperature
	Further simplifications in the simulation model
	Blank Page

