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Abstract

Lepeophtheirus salmonis, commonly referred to as the salmon louse, is a parasitic organism that
affects the welfare of the Atlantic salmon. In recent years, there has been a growing interest
in utilizing non-medicinal delousing methods, yet these have been linked to various welfare
concerns. The group of non-medicinal delousing methods include freshwater treatment, thermal
treatments and mechanical treatments. Several commercial delousing technologies have been
developed based on these treatment principles, where the method called Optilicer is a thermal
treatment, while Hydrolicer and SkaMik are two types of mechanical delousing methods. The
objective of this thesis was to investigate and compare the impact of freshwater treatment,
Optilicer, Hydrolicer and SkaMik on a selection of parameters regarding delousing effect and fish
welfare. These parameters included the delousing effectiveness against adult female lice, salmon
mortality 3 and 14 days post-treatment and the change in the score-based welfare indicators for
skin haemorrhages (skin bleeding) and scale loss after treatment.

The provided data were from delousing operations on the cage level in production areas 5 and
6 from 2020 to the fall of 2022. The impact of the different delousing methods was analyzed by
fitting generalized linear models and generalized linear mixed models to the data, including a
range of explanatory variables to account for other factors that may influence the outcome.

For the delousing effect and mortalities, both quasi-binomial fixed-effects models and binomial
mixed-effects models were fitted as two different ways to address the observed overdispersion.
For analyzing the change in score evaluations for skin haemorrhages and scale loss after delousing
treatment, linear mixed models were preferred and used. The fitted models indicated disparities
in the impact of the different delousing methods on all the parameters considered, where most
of the results were dependent on the sea temperature. However, there were no indications that
the delousing methods associated with the highest delousing effect necessarily were better for
the fish welfare.
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Sammendrag

Lakselusen (Lepeophtheirus salmonis) er en parasitt som p̊avirker velferden til atlanterhavslak-
sen. De siste årene har det vært økende interesse for å bruke ikke-medikamentelle metoder for å
bekjempe lus, men disse behandlingene har ogs̊a blitt knyttet til ulike velferdsmessige problemer.
Ikke-medikamentelle avlusingsmetoder omfatter ferskvannsbehandling, termiske behandlinger og
mekaniske behandlinger. Ulike avlusingsmetoder har blitt utviklet basert p̊a disse prinsippene,
der Optilicer er en termisk behandling, mens Hydrolicer og SkaMik er to typer mekanisk be-
handling. Form̊alet med denne masteroppgaven var å undersøke og sammenligne effekten av
ferskvannsbehandling, Optilicer, Hydrolicer og SkaMik p̊a en rekke parametere for avlusing-
seffekt og fiskevelferd. De utvalgte parameterne inkluderte avlusingseffekt p̊a voksne hunnlus,
dødelighet for laksen 3 og 14 dager etter behandling og endring i sk̊ar-baserte velferdsindikatorer
for rødbuk (hudblødning) og risttap (skjelltap) etter behandling.

Dataene som ble analysert var fra avlusingsbehandlinger p̊a merd-niv̊a i produksjonsomr̊adene
5 og 6 fra 2020 til høsten 2022. Effekten av de ulike avlusingsmetodene ble analysert ved bruk
av generaliserte lineære modeller og generaliserte lineære mixed effekt modeller, der en rekke
forklaringsvariabler var inkludert for å ta hensyn til andre faktorer som kunne tenkes å p̊avirke
utfallet.

For analyse av avlusingseffekt og laksedødelighet ble b̊ade kvasi-binomiske fixed effekt modeller
og binomiske mixed effekt modeller brukt som to forskjellige m̊ater å h̊andtere den observerte
overdispersjonen. For endringen i sk̊arvurderinger for rødbuk og risttap etter avlusingsbehand-
ling ble lineære mixed effekt modeller brukt. De tilpassede regresjonsmodellene indikerte at det
var ulikheter i effekten av de ulike avlusingsbehandlingene p̊a alle de undersøkte parameterne,
der mesteparten av resultatene var avhengig av sjøtemperaturen. Det var derimot ingen in-
dikasjoner p̊a at avlusingsmetodene som var assosiert med størst avlusingseffekt nødvendigvis
var bedre for fiskevelferden.
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1 Introduction

1.1 Sea Lice

Lepeophtheirus salmonis (Krøyer 1837) and Caligus elongatus (Norrmann 1832) are two species
of sea lice that affect the Atlantic salmon (Noble et al., 2018). These are parasites that attach
to the salmon and feed on the skin, mucus and blood of the host (Overton et al., 2019). L.
salmonis, also called the salmon louse, is more prevalent and persistent on the salmon, and
therefore constitutes a greater health and welfare problem than C. elongatus (Costello, 2006;
Noble et al., 2018). The salmon louse has been a serious problem for the aquaculture industry
since the 1970s (Torrissen et al., 2013). With the intensive salmon farming, the density of hosts
is high year-round, creating ideal conditions for the louse to survive and reproduce. This results
in unnaturally high lice pressure for both farmed and wild salmon (Barrett et al., 2020; Torrissen
et al., 2013). Lice infestations can lead to health and welfare problems such as physical damage,
osmoregulatory problems, stress response, immunosuppression and secondary infections (Noble
et al., 2018; Overton et al., 2019). Infestations of sea lice may even be lethal in severe cases.
While wild salmon can have lice levels that may lead to welfare problems and increased mortality,
the lice levels are controlled for farmed salmon. Thus, for farmed salmon, the frequent handling
and treatment related to the delousing may be of greater concern for the welfare (Noble et al.,
2018).

Figure 1.1: Developmental stages of Lepeophtheirus salmonis.

Source: Igboeli et al., 2014
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L. salmonis goes through eight developmental stages during its life cycle, which are illustrated in
Figure 1.1. The first two nauplius stages and the copepodid stage make up the free-living phase,
where the louse flows in the water, before attaching to a host in the infective copepodid stage.
The copepodid then molts into the first of the two chalimus stages. These are characterized
by the development of a frontal filament that secures the attachment to the salmon, and the
louse is then sessile. Two pre-adult stages then follow, before the louse reaches the adult male
or female stage. In the pre-adult and adult stages, called the mobile stages, the louse is capable
of temporarily detaching the frontal filament, allowing it to move freely on the host (Hamre
et al., 2013; Igboeli et al., 2014). The adult female lice produce egg strings, which can contain
hundreds of eggs (Brooker et al., 2018).

When lice are counted, the different life stages are categorized a little differently than what is
described here. In concordance with the description, the term sessile is used for the two chalimus
stages. In contrast, the term mobile lice typically refers to lice in the pre-adult and adult male
stages. That means the adult female louse is excluded from this category, and instead makes up
a category of its own. In the remaining part of this thesis, we will use these definitions of the
terms unless otherwise specified.

1.2 Fish Welfare

Fish welfare is an important aspect in commercial farming. Welfare indicators (WIs) are meas-
urements or observations that are used to assess the welfare status of the fish (Noble et al.,
2018). Following Noble et al., 2018, where several welfare indicators are presented, we introduce
a few of them here.

The mortality rate is an animal-based WI that is measured on a group of fish, and is probably
the most used WI. If the mortality rate is higher than what is considered to be normal, it is an
indication that a welfare problem exists. However, it is pointed out that a low mortality rate
not necessarily means that there does not exist a welfare problem, because other problems may
reduce the welfare without resulting in deaths. It is therefore beneficial to use various WIs to
detect welfare problems.

Individual animal-based WIs are welfare indicators that can be measured on individual fish.
Some examples of externally visible WIs are the number of sea lice on a salmon, fin damage,
lesions, scale loss and skin haemorrhages. The latter two are indicators for skin condition, where
scale loss concerns observed areas on the fish where scales are missing and skin haemorrhages
are bleedings beneath the skin. The FISHWELL standard is suggested by Noble et al., 2018 as
a measure for evaluating the severeness of 14 types of WIs like these. This is a standardized
scoring system, where each indicator is evaluated with a score from 0 to 3. The score 0 indicates
little to no evidence of the WI and the scores 1 to 3 indicate increasingly worse evidence of the
WI. This grading system is illustrated in Figure 1.2 for scale loss and skin haemorrhages for
scores from 1 to 3. This type of indicators can also be applied on the group level by quantifying
the damage on a sample of fish from the group unit, and using it as an estimate for the whole
group.
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Figure 1.2: Morphological scheme for classifying injuries like skin haemorrhages and scale loss according
to the FISHWELL standard.

Source: Noble et al., 2018, p. 65

1.3 Lice Control

To reduce the harm due to sea lice on both farmed and wild salmon populations, it is important
to control the lice infestations. Preventing the spread of lice, which may lead to large infesta-
tions in wild salmon populations where the lice infestations are not controlled, is a motivating
factor. Regulations regarding salmon lice control in the aquaculture facilities have therefore
been established by The Ministry of Trade, Industry and Fisheries in Norway (Forskrift om
lakselusbekjempelse, 2012). Depending on the sea temperature, the salmon farms are required
to count and report the average number of salmon lice per fish every two weeks if the sea tem-
perature is below 4°C or every week if the temperature is equal to or greater than 4°C. The
average lice numbers have to be calculated from samples of a minimum of 10 or 20 arbitrary fish
from each cage depending on the time of year and geographical location of the salmon farm. In
addition, the average lice numbers should be reported for three categories of salmon lice based
on the life cycle. The lice are categorized by sessile lice, adult female lice and mobile lice (where
adult female lice are excluded).

In the regulations, there are specified allowed limits of adult female lice at a salmon farm. Most
of the year the allowed limit is an average of 0.5 adult female lice. However, in 6 weeks during
the spring, at the time of migration of wild salmon smolts, the limit is reduced to an average of
0.2 adult female lice. The specified weeks are different depending on the geographical location of
the salmon farm. The salmon farms are required to initiate measures to reduce the lice pressure
to ensure that the limits are not violated.
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1.4 Delousing Treatments

There are many different delousing treatments that can be used in order to reduce the lice
pressure. Medicinal delousing treatments, like chemotherapeutants as bath treatments or in-
feed additives, have long been effective and predictable measures to prevent high lice pressure.
However, the extensive use have resulted in sea lice developing resistance towards the drugs. The
aquaculture industry has therefore developed non-medicinal alternatives to combat the problem
(Aaen et al., 2015; Overton et al., 2019). The group of non-medicinal delousing treatments
include mechanical, thermal and freshwater treatments (Overton et al., 2019).

The use of the technologies based on these non-medicinal delousing treatments all involve pump-
ing the fish from the cage into the treatment system through a pipe. A process called crowding
is necessary for the pipe to get access to all the fish in the cage. In this process, the fish density
is increased by forcing the fish into a smaller volume closer to the pipe (Nersten, 2021). The
crowding process is associated with higher risk of injuries and stress responses in the fish, and
is therefore considered to be a risk factor for the fish welfare (Holan et al., 2017).

1.4.1 Thermal Delousing Treatment

Thermal delousing treatments are based on the concept of exposing the salmon to lukewarm sea
water with a temperature of 28-34 °C for 20-30 seconds. Since the salmon are much bigger than
the lice, and with a short exposure time, the heating is intended to mainly affect the lice. The
sudden temperature difference paralyzes the lice, causing them to loose the ability of remaining
attached to the dermis of the fish and falling off (Holan et al., 2017).

There exist two commercial delousing technologies based on this concept, and one of them is
called Optilicer (Roth, 2016). This treatment system uses an open bath of heated sea water
(Holan et al., 2017). After the fish are pumped from the cage into the treatment system, the
water is drained and the fish are taken through the treatment water bath by paddle wheels.
The exposure to the heated water can be adjusted to last for 21 seconds or longer. Thereafter,
the water is drained again to remove any lice that may be in the water and the fish are sent
back to a cage in the sea (Holan et al., 2017; Overton et al., 2019; Roth, 2016). This delousing
method is effective for removing mobile and adult female lice. The effectiveness depends on the
difference in temperature between the sea and the treatment water, where a greater difference
gives better results. Therefore, the treatment water temperature is partly determined based on
the sea temperature (Holan et al., 2017; Roth, 2016). However, fish experience a stress response
when exposed to heated water, which increases with a greater temperature difference (Roth,
2016; Stien et al., 2022). Exposure to heated water may also increase the risk of various injuries
like eye problems, scale loss, fin injuries and snout wounds (Moltumyr et al., 2022; Stien et al.,
2022).

1.4.2 Mechanical Delousing Treatment

Mechanical delousing treatments use techniques like flushing and brushing to physically remove
lice from the fish. There are three commercial delousing technologies that have been developed
based on this approach to remove the lice, and two of them, called SkaMik and Hydrolicer, are
presented here.

In the SkaMik treatment system (SkaMik 1.5), the water is drained before the fish are taken
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through three different chambers. The first is a flushing chamber with adjustable pressure of
around 4 bar, followed by a brushing chamber with rotating brushes. Then, the fish go through
a final flushing chamber to flush any remaining lice off. The total treatment time inside the
SkaMik treatment system is 1.5 seconds (SkaMik AS, n.d.). There are few studies regarding
the effectiveness and impact on the fish welfare for the SkaMik treatment system. A study
by Westg̊ard et al., 2021, carried out at 4 different salmon farms, reported an effectiveness of
90-100% on mobile lice and 50-100% on adult female lice. Additionally, an increase in scale loss
was found.

In the Hydrolicer treatment system, the fish are pumped through a pipe filled with water at a
controlled speed. Inside the pipe, over- and under-pressure, which creates turbulence, is used to
detach the lice, followed by low-pressure flushing to remove the lice (Antonsen, 2021; Erikson
et al., 2018; Overton et al., 2019; Smir AS, n.d.). According to a study by Erikson et al., 2018,
the effectiveness of Hydrolicer was reported to be 78-95% on mobile lice and 55-92% on adult
female lice. In addition, use of Hydrolicer was associated with scale loss and moderate skin
haemorrhages.

1.4.3 Freshwater Treatment

Another delousing method is the freshwater bath treatment. The fish are pumped into a well-
boat, where they are exposed to freshwater for 4-8 hours. The exposure to freshwater causes
disturbances in the osmotic balance of the lice, which become paralyzed and eventually die.
After the treatment, the water is drained, and the fish are returned to a cage (Holan et al.,
2017). A study by Reynolds, 2015 reported a reduction of 97% for mobile lice and 92% for
adult female lice. There are few studies about how freshwater treatment affects the welfare, but
longer treatment time, which means that the fish are crowded in the wells for a longer time,
may increase the risk of injuries (Holan et al., 2017).

1.5 Motivation and Objective

Sea lice infestations are associated with various welfare problems for both farmed and wild
salmon, and delousing treatments are used to manage the lice pressure in the aquaculture in-
dustry. With the development of resistance towards chemotherapeutants in the sea lice, the
use of alternative non-medicinal delousing treatments has increased the recent years. It is of
great interest to the industry to use delousing treatments that have a good delousing effect,
while minimizing the harmful effects on the salmon. However, the knowledge of these methods
is somewhat limited, so more and up to date information is of interest.

This thesis is a comparative investigation of four different non-medicinal delousing methods.
These delousing methods are Optilicer, SkaMik, Hydrolicer and freshwater treatment. The ob-
jective of this thesis is to investigate the impact of these methods on a selection of parameters
for delousing effect and fish welfare. In particular, these parameters are the delousing effect-
iveness against adult female lice, salmon mortality 3 and 14 days post-treatment and change in
evaluation of the welfare indicators skin haemorrhages and scale loss after treatment.
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1.5.1 Earlier Work

In Middelthon, 2022, the four delousing treatments Optilicer, Hydrolicer, SkaMik and freshwa-
ter treatment were compared with regards to different response variables concerning delousing
effect and fish welfare. Binomial models were fitted for the delousing effectiveness against adult
female lice and the salmon mortality 3 and 14 days post-treatment. These showed signs of
overdispersion, a phenomenon which will be explained later, so quasi-binomial models were
eventually used. In addition, linear models were fitted for the change in two welfare indicators
(skin haemorrhages and scale loss) after delousing treatment. The data that were analysed were
from several delousing treatments in 2021.

1.5.2 Outline of the Thesis

This thesis is a continuation of Middelthon, 2022, where several improvements are made. To
begin with, larger data sets have been analysed in this thesis, and the data are from 2020 to
the fall of 2022. For the binomial responses, two different models to handle overdispersion are
fitted. These are the quasi-binomial model and a binomial mixed model based on the multilevel
structure of the data. The linear models for the change in the welfare indicators have also been
improved by considering possible cluster effects, extending the models to linear mixed models. In
addition, more explanatory variables have been used in all the models. Throughout this thesis,
we will use the term ”delousing effect” for the delousing effectiveness against adult female lice.

The remaining part of the thesis is structured as follows. An explanation of the theory behind
the statistical models that are used is given in Section 2. Section 3 provides a description of the
data and the pre-processing, as well as an initial exploration of the data sets. The data analysis,
with results and evaluation of the fitted models, is presented in Section 4. Finally, a summary
and discussion of the results, as well as some recommendations for further work are given in
Section 5.
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2 Theory

This section provides an explanation of the theory behind the generalized linear models and
generalized linear mixed models, which are used in the analysis of the delousing effect and fish
welfare.

2.1 The Exponential Family

The density function of a variable y that comes from a distribution belonging to the exponential
family can be written on the form

f(y | θc) = exp

(
yθc − b(θc)

ϕ
w + c(y, ϕ, w)

)
, (2.1)

where θc is referred to as the canonical parameter, ϕ is the dispersion parameter and w is a
weight with a known value. Additionally, b(·) and c(·) are functions. With this notation, the
expectation of y is E(y) = b′(θc) and the variance is Var(y) = ϕb′′(θc)/w (Fahrmeir et al., 2013).

For a normally distributed variable y with mean µ and variance σ2, the probability density
function is

f(y | µ, σ2) =
1√
2πσ2

exp

(
− (y − µ)2

2σ2

)

= exp

(
− y2

2σ2
+

yµ

σ2
− µ2

2σ2
− 1

2
log
(
2πσ2

))

= exp

(
yµ− µ2/2

σ2
− y2

2σ2
− 1

2
log
(
2πσ2

))
.

This is on the form of (2.1), with canonical parameter θc = µ, dispersion parameter ϕ = σ2,
weight w = 1 and functions b(θc) = θ2c/2 and c(y, ϕ, w) = −(y2/ϕ + log(2πϕ))/2. Thus, the
normal distribution belongs to the exponential family.

If the number of successes y is binomial with success probability p for a given number of trials
n, the density function is

f(y | p) =
(
n

y

)
py(1− p)n−y

= exp

(
log

(
n

y

)
+ y log(p) + n log(1− p)− y log(1− p)

)

= exp

(
y log

(
p

1− p

)
+ n log(1− p) + log

(
n

y

))
.

If we set θc = log(p/(1−p)), then log(1−p) = − log(1+exp (θc)), and the density can be written

f(y | p) = exp

(
yθc − n log(1 + exp (θc)) + log

(
n

y

))
.

Hence, the binomial distribution belongs to the exponential family, with canonical parameter
θc = log(p/(1 − p)), dispersion parameter ϕ = 1, weight w = 1 and functions b(θc) = n log(1 +
exp(θc)) and c(y, ϕ, w) = log

(
n
y

)
.

7



If we instead define the observed success probability ȳ = y/n, where y ∼ Binomial(n, p), then ȳ
has a scaled binomial distribution ȳ ∼ Binomial(n, p)/n. The density function for the observed
success probability is identical to that of the number of the number of successes and can be
written

f(ȳ = y/n | p) =
(
n

y

)
py(1− p)n−y

= exp

(
y log

(
p

1− p

)
+ n log(1− p) + log

(
n

y

))

= exp

(
n
(
ȳθc − log(1 + exp (θc)

)
+ log

(
n

nȳ

))
,

where we have used θc = log(p/(1− p)) and y = nȳ in the last step. This is then on the form of
(2.1) with dispersion parameter ϕ = 1, weight w = n and functions b(θc) = log(1+ exp(θc)) and
c(ȳ, ϕ, w) = log

(
n
nȳ

)
. We notice that the weight now has the value n, as opposed to the value 1

for the binomial distribution.

2.2 Linear and Generalized Linear Models

In this section we will present a comprehensive theory of linear and generalized linear models
as to apply in our analysis. The theory in this section follows Fahrmeir et al., 2013 if nothing
else is specified. We first give a definition of the linear predictor, which will be extensively
used throughout this section. Then, the linear model is introduced, which is later extended to
generalized linear models.

Let the response variable for observations i = 1, . . . , n be yi, and assume that there are k
explanatory variables, xi1, xi2, . . . , xik, measured for each outcome. The linear predictor is then
defined as

ηi = β0 + β1xi1 + . . .+ βkxik = x⊺
iβ, (2.2)

where β = (β0, β1, . . . , βk)
⊺ is the vector of coefficients and xi = (1, xi1, . . . , xik)

⊺ is the vector of
explanatory variables, also called covariates, for observation i. Notice that the first element in
the covariate vector is 1 because the first element in the vector of coefficients is the ”intercept”
β0, so these vectors have length p = k + 1.

2.2.1 The Linear Model

Consider responses yi, i = 1, . . . , n, that are assumed to be independently and normally distrib-
uted, with mean E(yi) = µi and variance V ar(yi) = σ2, and probability density function

f(yi | µi, σ
2) =

1√
2πσ2

exp
{
− (yi − µi)

2

2σ2

}
.

In the linear model, we assume that the mean µi is linked linearly to the covariates through the
linear predictor in (2.2), resulting in

µi = ηi = x⊺
iβ. (2.3)

The method of maximum likelihood (ML) can be used to estimate the coefficients β and the
variance σ2. Their ML estimates will be denoted by β̂ = (β̂0, β̂1, . . . , β̂k)

⊺ and σ̂2, and the
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following derivation of these estimates is from Myers et al., 2002, p. 32-33. With the assumption
of independently and normally distributed responses, the likelihood function is given as

L(β, σ2) =
n∏

i=1

f(yi | β, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Xβ)⊺(y −Xβ)

}
.

Here, y = (y1, y2, . . . , yn)
⊺ is the vector of responses and X = (x1,x2, . . . ,xn)

⊺ is the design
matrix of dimension n × p, which we assume to have full column rank p. The log-likelihood is
then calculated by taking the logarithm of the likelihood, which gives

l(β, σ2) = log (L(β, σ2)) ∝ −n

2
log (σ2)− 1

2σ2
(y −Xβ)⊺(y −Xβ).

Taking the derivative of the log-likelihood with respect to β yields the score function

s(β) =
∂l(β, σ2)

∂β
= − 1

σ2
X⊺(y −Xβ).

The ML estimator of β is then obtained by solving s(β) = 0, which gives β̂ = (X⊺X)−1X⊺y.
Similarly, the ML estimate of the variance is found by solving

∂l(β, σ2)

∂σ2
= − n

2σ2
− 1

2σ4
(y −Xβ)⊺(y −Xβ) = 0,

resulting in σ̂2 = 1
n(y − Xβ̂)⊺(y − Xβ̂). Here we note that the ML estimate of β is used to

compute the ML estimate of the variance.

It can be shown that the maximum likelihood estimator of the variance, σ̂2, is biased, and that
an unbiased estimator is given by

σ̃2 =
n

n− p
σ̂2.

Thus, the ML estimator is downwardly biased, but the bias reduces for large n (Fahrmeir et al.,
2013; Myers et al., 2002).

2.2.2 Generalized Linear Models

The generalized linear model (GLM) is an extension of the linear model in that it allows for
the response variable to have other distributions than the normal distribution. Specifically, it
assumes that the response yi has a distribution belonging to the exponential family. In addition,
it is assumed that the expectation of the response, E(yi) = µi, can be modelled by connecting
the expectation to a linear combination of the covariates (i.e. the linear predictor in (2.2))
through a response function h. We can write this relation as µi = h(ηi), where the response
function has an inverse g(µi) = h−1(µi), called the link function (Fahrmeir et al., 2013).

2.2.3 Maximum Likelihood Estimation in GLMs

In Section 2.2.1, the ML estimates of the coefficients for the linear model were found by solving
s(β) = 0 exactly. In contrast, the ML estimates β̂ of the coefficients in a GLM are computed
numerically by using the Fisher scoring algorithm to solve s(β̂) = 0 (Fahrmeir et al., 2013). We
therefore present the expected Fisher information matrix, to be used in this algorithm. It is
given by

F(β) = E

(
− ∂2l(β)

∂β∂β⊺

)
,
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where l(β) is the log-likelihood (Fahrmeir et al., 2013).

Provided with starting values β̂
(0)

and using the score function and Fisher information matrix,
the Fisher scoring algorithm iteratively updates the estimate by calculating

β̂
(t+1)

= β̂
(t)

+ F−1
(
β̂
(t))

s
(
β̂
(t))

, t = 0, 1, 2, . . . (2.4)

until a convergence criterion is met. However, the algorithm can only converge to the ML
estimate if the design matrix X has full column rank. With a sufficiently large sample size n,
the ML estimate β̂ has an approximate normal distribution

β̂ ∼ N(β,F−1(β̂)), (2.5)

where the inverse expected Fisher information matrix, evaluated at the ML estimate β̂, i.e.
F−1(β̂), is the estimated covariance matrix (Fahrmeir et al., 2013).

2.2.4 Binomial GLM

Here we describe the use of the generalized linear model for binomial responses. We begin by
assuming that the response variables yi are Bernoulli trials with success probability πi, and define
yi = 1 as success and yi = 0 as failure. If some of the covariate vectors of the observations (yi,xi),
i = 1, . . . , n, are the same, the observations with identical covariates can be grouped. Then, the
data are instead given by (nj , yj ,xj), j = 1, . . . , G. Here, G is the number of groups, nj is the
number of observations in group j that all have the same covariate vector xj , and yj is the number
of successes in group j. That is, yj ∈ [0, nj ] is the sum of the nj individual binary responses
belonging to group j, and this quantity is also referred to as the absolute frequency. We can then
define the relative frequency ȳj ∈ [0, 1] as the proportion of successes in group j, i.e. ȳj = yj/nj .
Under the assumption of independence between the individual Bernoulli distributed responses
yi, the absolute frequencies follow a binomial distribution yj ∼ Binomial(nj , πj). Equivalently,
the relative frequencies have a scaled binomial distribution ȳj ∼ Binomial(nj , πj)/nj , with
E(ȳj) = πj and V ar(ȳj) = πj(1− πj)/nj .

The expectation πj can be modeled using either the logit, probit or complementary log-log link
function. Here we will use the former, i.e. the logit link function g(πj) = log (πj/(1− πj)), which
takes the logarithm of what is called the odds, i.e. πj/(1− πj) = P (ȳj = 1 | xj)/P (ȳj = 0 | xj).
As mentioned previously, this is used to link the expectation to the covariates through the linear
predictor, so we get

log

(
πj

1− πj

)
= ηj = x⊺

jβ. (2.6)

The inverse of the link function is the response function, given by πj = h(ηj) = (1+exp (−ηj))
−1

for the logit link function.

The log-likelihood, score function and the Fisher information matrix for the binomial logistic
model can be derived by following a similar procedure as for the linear model. These formulas
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are given in Fahrmeir et al., 2013, p. 283 as

l(β) =
G∑

j=1

{yj log (πj)− yj log (1− πj) + nj log (1− πj)}, (2.7)

s(β) =
G∑

j=1

njxj(ȳj − πj), (2.8)

F(β) =

G∑
j=1

xjx
⊺
jnjπj(1− πj), (2.9)

where πj = πj(β) as given by (2.6). The ML estimates of the coefficients β in the binomial
logistic model can then be obtained by the Fisher scoring algorithm in (2.4), using the expressions
for the score function and Fisher information matrix in (2.8) and (2.9).

2.2.5 Overdispersion in Binomial GLM

In this section, the concept of overdispersion in the binomial model is introduced and its possible
causes and implications are presented. Overdispersion occurs when the empirical variance, i.e.
the variance observed in the data, is much larger than the variance assumed by the model. In
the case of the binomial model, this can occur because the variance of the model is a function
of the predicted mean. There are two primary reasons for overdispersion in the binomial model.
The first is unobserved heterogeneity, which the covariates fail to explain. The second reason
is positive correlations between the responses of the individual observations that belong to the
same group. Such correlation may arise if the individual observations within each group are not
independent, a reason for which is that they might stem from a cluster (Dunn and Smyth, 2018;
Fahrmeir et al., 2013).

Following Fahrmeir et al., 2013 the overdispersion parameter ϕ can be estimated as the average
Pearson statistic or the average deviance. The Pearson residuals and the Pearson statistic are
defined as

rj =
ȳj − π̂j√

π̂j(1− π̂j)/nj

and P =
G∑

j=1

r2j , (2.10)

where π̂j = h(x⊺
j β̂). In Collett, 1991, the deviance residuals and the deviance are given by

dj = sign(ȳj − π̂j)

√
2nj

{
ȳj log

( ȳj
π̂j

)
+ (1− ȳj) log

(1− ȳj
1− π̂j

)}
and D =

G∑
j=1

d2j , (2.11)

where sign(ȳj − π̂j) equals 1 if ȳj ≥ π̂j and -1 if ȳj < π̂j . If the group sizes nj are sufficiently
large, both the Pearson statistic and the deviance are approximately chi-squared distributed
with G − p degrees of freedom, where p = k + 1 is the number of coefficients in the model
(Fahrmeir et al., 2013). The estimates of the overdispersion parameter, based on the Pearson
statistic and the deviance, are then given by

ϕ̂P =
P

G− p
and ϕ̂D =

D

G− p
,

respectively. If the estimated dispersion parameter is significantly greater than 1, it indicates
overdispersion (Fahrmeir et al., 2013). The presence of overdispersion leads to underestimated
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standard errors for the coefficients in the model (Dunn and Smyth, 2018). Therefore, significance
tests for the coefficients may suggest that the coefficients are more significant than they really
are.

One possible way to address overdispersion is to introduce the overdispersion parameter, assum-
ing that V ar(ȳj) = ϕπj(1−πj)/nj . This leads to what is called a quasi-binomial model. Another
approach is to include random effects in the model in the case of possibly correlated responses
(Fahrmeir et al., 2013). It is also possible to improve the model fit by including additional terms
or interaction terms, thereby potentially reducing the unobserved heterogeneity (Collett, 1991).

2.2.6 Hypothesis Tests

In this section on hypothesis tests, we present several tests to assess the significance of ex-
planatory variables. In order to test the significance of one of the regression coefficients βj ,
j = 0, 1, . . . , k, one can use the t-test based on the hypotheses

H0 : βj = 0 vs H1 : βj ̸= 0,

which are referred to as the null hypothesis and alternative hypothesis, respectively. To perform
this test, we calculate and evaluate the t-statistic

tj =
β̂j√
âjj

,

where âjj is the estimated variance of the estimated coefficient β̂j . The estimated variance âjj
is the jth diagonal element of the estimated covariance matrix Â = F−1(β̂), which follows from
the asymptotic distribution of β̂ in (2.5). The statistic is t-distributed with n − p (G − p for
the binomial model) degrees of freedom. The significance can be evaluated based on the p-value
from the test, which is the probability of obtaining a more extreme value for the statistic than
the observed value. If the p-value is smaller than a chosen significance level α, we can reject the
null hypothesis.

The Wald test is a more general approach for testing linear hypotheses about the regression
coefficients on the form

H0 : Cβ = d vs H1 : Cβ ̸= d, (2.12)

where d is a vector of length r and the matrix C, of dimension r × p, has full row rank r ≤ p.
The Wald test is based on the Wald statistic

WS = (Cβ̂ − d)⊺[CÂC⊺]−1(Cβ̂ − d),

where Â is the estimated covariance matrix of β̂. Since β̂ is approximately normally distributed
according to (2.5), the Wald statistic has an asymptotic chi-squared distribution with r degrees
of freedom under H0. With appropriate choices of C and d, one can test a wide range of
hypotheses, for instance hypotheses such as H0 : β1 = β2 against H1 : β1 ̸= β2.

The likelihood ratio (LR) test is a test based on likelihood calculations used to evaluate the
hypotheses in (2.12). Let β be the coefficients under the full model and βalt the coefficients for
the alternative model subject to the constraints Cβ = d. The LR statistic is then given by

LR = −2
(
l(β̂alt)− l(β̂)

)
, (2.13)
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where l(β̂) is the unrestricted maximum likelihood and l(β̂alt) is the restricted maximum likeli-
hood under H0. The LR statistic has an asymptotic chi-squared distribution with r degrees of
freedom under H0.

The scaled deviance of a model with parameters β is defined in McCullagh and Nelder, 1989 as

D∗(β) = 2ls − 2l(β),

where ls is the maximized log-likelihood under the saturated model, i.e. where the fitted values
coincide with the observed values. The scaled deviance is also given by D∗(β) = D(β)/ϕ,
where ϕ is the dispersion parameter in the exponential family and D is the deviance. That is, ϕ
represents σ2 for the normal distribution or the overdispersion parameter ϕ in the quasi-binomial
model. The deviance for the binomial model is given in (2.11) and for the Gaussian model the
deviance is

∑n
i=1(yi − µ̂i)

2. The scaled deviance is approximately or asymptotically chi square
distributed with degrees of freedom equal to the difference between the number of observations
and the number of coefficients (Fahrmeir et al., 2013; McCullagh and Nelder, 1989). Using the
relation between the scaled deviance and the log-likelihood of the model, the LR statistic in
(2.13) can be written as

LR = −2l(β̂alt)− [−2l(β̂)]

= D∗(β̂alt)− 2ls − [D∗(β̂)− 2ls]

= D∗(β̂alt)−D∗(β̂).

2.2.7 Model Diagnostics

Model misspecification can result in biased and inefficient estimates of the covariate coefficients
and invalid variance estimates, which may lead to wrong conclusions (McCulloch et al., 2008).
It is therefore essential to detect model misspecification, which can be done by evaluating the
assumptions of the model.

As mentioned in Section 2.2.5, the Pearson and deviance statistics given in (2.10) and (2.11)
can be used to indicate whether or not the variance in the data is captured by the fitted model.
They are therefore considered goodness of fit measures for the binomial model.

Assessing the distribution of the residuals is an important step in model evaluation. The stand-
ardized residuals for the linear model are given in Fahrmeir et al., 2013 as

ri =
yi − x⊺

i β̂

σ̂
√
1− hi

,

where hi is the leverage of observation i, and is the ith diagonal element of the hat matrix
H = X(X⊺X)−1X⊺.

Accordingly, it is possible to standardize the Pearson and deviance residuals of the binomial

model, given in (2.10) and (2.11), by dividing them by
√

1− hj or with
√

ϕ̂(1− hj) in the

case of using a quasi-binomial model (Dunn and Smyth, 2018). Here, the hat matrix is H =
W1/2X(X⊺WX)−1X⊺W1/2, where W is the diagonal matrix of working weights used in fitting
the model. For the logistic model, the jth diagonal element is wj = nj π̂j(1 − π̂j). When the
model assumptions are correct, the standardized deviance residuals can be approximated by the
standard normal distribution (Collett, 1991).
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2.3 Correlation-Inducing Data Structure

In the generalized linear model, the responses yi, i = 1, . . . , n, were assumed to be independently
distributed. However, there are some situations in which this assumption may not be reasonable.
One such situation arises in the case of longitudinal data, where there are repeated measurements
on the same subjects over time. The other situation is in the case of clustered data, where
measurements are made on related subjects, e.g. subjects that belong to the same schools,
locations, countries etc. Measurements on one individual in the case of longitudinal data or on
a group of individuals within one cluster may be more alike than measurements on different
individuals or clusters, which could result in correlated responses (Dobson and Barnett, 2008;
Fahrmeir et al., 2013).

2.3.1 Multilevel Data Structure

Consider a multilevel data structure, as illustrated in Figure 2.1 for three levels. Imagine, for
example, that measurements are made on individual salmon (level 3) that are grouped within
different cages (level 2). The different cages, in turn, are located at different salmon farms (level
1). This is called a nested data structure, which points to the property that all observations
from one cluster group on the second level belong to the same cluster group on the first level.
In the context of the example, this means that all salmon that belong to the same cage also
belong to the same salmon farm. The illustration in Figure 2.1 then represents this nested data
structure for three salmon farms, each with five cages, where measurements are made on four
salmon in each of the cages. In the illustration we also notice that the number of observations
at the third level are equal for all level 2 clusters and within each level 1 cluster there are the
same number of level 2 clusters.

Figure 2.1: Illustration of nested multilevel structure.

Source: Inspiration from Dobson and Barnett, 2008, p. 208.

We generalize this data structure to other numbers of observations and clusters. Let N be the
number of clusters at the first level. For each first-level cluster i = 1, . . . , N , let ni be the
number of clusters at the second level, indexed by j = 1, . . . , ni. At the third level, the number
of observations in cluster ij is nij , and the observations are indexed by h = 1, . . . , nij . Each
observed response is then denoted by yijh and we assume that there are k explanatory variables,
xijh1, . . . , xijhk, measured for the outcome. We define the covariate vector for observation ijh
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as xijh = (1, xijh1, . . . , xijhk)
⊺. The observations in this 3-level data structure are then given by

(yijh,xijh), i = 1, . . . , N, j = 1, . . . , ni, h = 1, . . . , nij . (2.14)

Imagine instead that some measurement is made on the cage level, i.e. the second level in Figure
2.1, so that the third level is irrelevant and we have a 2-level data structure. The observations
are then given by cluster i = 1, . . . , N at the first level and the observation j = 1, . . . , ni at
the second level. The covariate vector associated with each observed response yij is denoted by
xij = (1, xij1, . . . , xijk)

⊺, and the observations in the 2-level data structure are then given by

(yij ,xij), i = 1, . . . , N, j = 1, . . . , ni. (2.15)

The structure for this 2-level data is also visualized in Table 2.1.

Table 2.1: 2-level data structure.

Level 1 cluster Observation Response Covariates

1 1 y11 x111, . . . , x11k

1 2 y12 x121, . . . , x12k
...

...
...

...

1 n1 y1n1 x1n11, . . . , x1n1k

...
...

...
...

N 1 yN1 xN11, . . . , xN1k

N 2 yN2 xN21, . . . , xN2k

...
...

...
...

N nN yNnN
xNnN1, . . . , xNnNk
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2.4 Mixed Models

Mixed models takes correlation between observations into account by allowing for individual-
or cluster-specific effects to be estimated. This is achieved by including random effects for the
grouping variables in addition to the fixed effects β = (β0, β1, . . . , βk)

⊺ in the linear predictor in
(2.2). Consider multilevel data with one grouping level, as given in (2.15). The linear predictor
for observation ij is then given as

ηij = x⊺
ijβ + u⊺

ijγi, (2.16)

where uij is the vector of random-effects variables, usually a subvector of the vector xij =
(1, xij1, . . . , xijk)

⊺ of fixed-effects variables. Furthermore, γi is a vector of cluster-specific (or
random) effects for cluster i. The random effects are assumed to be independent and identically
normally distributed with γi ∼ N(0,Q), where Q is the covariance matrix. The name mixed
models refers to this mixture of both fixed effects and random effects in the linear predictor
(Fahrmeir et al., 2013).

2.4.1 The Linear Mixed Model

In this section, the linear mixed model (LMM) and an estimation procedure for the fixed and
random effects is presented, following the theory in Fahrmeir et al., 2013 unless otherwise spe-
cified.

Consider observations (yij ,xij) resulting from data with one grouping level, which gives the linear
predictor in (2.16). We assume that the responses are conditionally normally distributed with
mean µij and variance σ2, given the random effect γi ∼ N(0,Q). Furthermore, we assume that
the expectation can be linked linearly to the linear predictor through µij = ηij = x⊺

ijβ + u⊺
ijγi,

resulting in the linear mixed model

yij = x⊺
ijβ + u⊺

ijγi + ϵij , (2.17)

where ϵij ∼ N(0, σ2). By defining

yi = (yi1, . . . , yini)
⊺, y = (y⊺

1, . . . ,y
⊺
N )⊺,

Xi = (xi1, . . . ,xini)
⊺, X = (X1, . . . ,XN )⊺,

Ui = (ui1, . . . ,uini)
⊺, U = blockdiag(U1, . . . ,UN),

ϵi = (ϵi1, . . . , ϵini)
⊺, ϵ = (ϵ⊺i , . . . , ϵ

⊺
N )⊺,

and γ = (γ⊺
1, . . . ,γ

⊺
N )⊺, the linear mixed model in (2.17) can be written in the general form

y = Xβ +Uγ + ϵ. (2.18)

Here, ϵ ∼ N(0,R) and γ ∼ N(0,G), where R = σ2I and G = blockdiag(Q, . . . ,Q).

The model (2.24) can be written as either a conditional or marginal model. The conditional
model formulation of y given the random effects is

y | γ ∼ N(Xβ +Uγ,R),

γ ∼ N(0,G).
(2.19)

If we instead define y = Xβ + ϵ∗ and ϵ∗ = Uγ + ϵ, the model can be written as the marginal
model

y ∼ N(Xβ,UGU⊺ +R). (2.20)
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Maximum Likelihood Estimation of Parameters

The maximum likelihood estimation of the variance and covariance parameters in the LMM is
based on the marginal model in (2.20). In the following, we denote by ψ the unknown variance
and covariance parameters in R and G. Furthermore, we define

V(ψ) = UG(ψ)U⊺ +R(ψ).

The log-likelihood corresponding to the marginal model in (2.20), up to additive constants, is
given by

l(β,ψ) = −1

2

(
log
∣∣V(ψ)

∣∣+ (y −Xβ)⊺V−1(ψ)(y −Xβ)
)
,

where | · | denotes the determinant of a matrix. The maximization of the log-likelihood with
respect to β results in β̂(ψ) = [X⊺V−1(ψ)X]−1X⊺V−1(ψ)y. The profile log-likelihood lP (ψ)
is obtained by inserting the estimated fixed-effect coefficients into the marginal likelihood, i.e.
lP (ψ) = l(β̂(ψ),ψ). The maximization of the profile log-likelihood with respect to ψ then
results in the ML estimator ψ̂ML for the variance and covariance parameters.

The ML estimates of the fixed effects β and the random effects γ are then found by maximizing
the joint log-likelihood of y and γ resulting from the conditional model formulation in (2.19) with
the ML estimate ψ̂ML for the variance and covariance parameters. Thus, we write R̂ = R(ψ̂ML),
Ĝ = G(ψ̂ML) and V̂ = V(ψ̂ML). The joint likelihood can then be written

L(β,γ) = f(y | γ)f(γ)

∝ exp
(
− 1

2

[
(y −Xβ −Uγ)⊺R̂−1(y −Xβ −Uγ) + γ⊺Ĝ−1γ

])
,

and the log-likelihood, up to additive constants, is

l(β,γ) = logL(β,γ) = −1

2

(
(y −Xβ −Uγ)⊺R̂−1(y −Xβ −Uγ) + γ⊺Ĝ−1γ

)
.

It can be shown that maximizing this with respect to β and γ results in the ML estimates

β̂ML = (X⊺V̂−1X)−1X⊺V̂−1y

γ̂ML = ĜU⊺V̂−1(y −Xβ̂ML).

Bias in ML Estimates of Variance Parameters

It was pointed out in Section 2.2.1 that the maximum likelihood estimate of the variance para-
meter in the linear model is biased downwards. This can also be shown for the ML estimates
of the variance parameters in mixed models. The ML estimates of the fixed effects are not so
much impacted by the biased variance parameters, but their standard errors may be affected.
However, if n − p, i.e. the difference between the number of observations and number of cov-
ariates, is relatively large the bias is negligible, but values of n− p smaller than 100 may be of
concern (Hedeker and Gibbons, 2006).

The bias can be corrected by an estimation procedure called restricted maximum likelihood
(REML) that maximizes a restricted likelihood. This procedure is therefore generally preferred
over ML estimation. However, the likelihood is modified for different numbers of covariates in
the model under REML estimation, so it is not possible to use restricted likelihood ratio tests
for comparison of models with different covariates (Hedeker and Gibbons, 2006). Due to this
limitation, and since n− p is relatively large for the data sets used in this thesis, the maximum
likelihood estimation procedure will be used.
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2.4.2 A Linear Random Intercept Model

In the special case where uij = 1 in the model in (2.17), this defines a linear random intercept
model, given by

yij = x⊺
ijβ + γ0i + ϵij (2.21)

The random effect γ0i is called the random intercept (hence the use of the subscript 0) because
it allows the intercept of each cluster i to deviate randomly from the intercept β0 with γ0i ∼
N(0, σ2

γ) (Fahrmeir et al., 2013).

2.4.3 Generalized Linear Mixed Models

The generalized linear mixed model (GLMM) is a generalization of the linear mixed model to
models for responses that are assumed to have other distributions than the normal distribution
(Fahrmeir et al., 2013). In particular, the responses are assumed to have a conditional distribu-
tion belonging to the exponential family. For 2-level data with response yij , the linear predictor
in (2.16) still applies and we denote the conditional expectation given the random effects as
E(yij | γi) = µij . In the GLMM, the conditional expectation is assumed to be related to the
linear predictor through a link function g, i.e. g(µij) = ηij , resulting in the model

g(µij) = x⊺
ijβ + u⊺

ijγi. (2.22)

2.4.4 GLMMs for Data with Two Levels of Grouping

Mixed models can also be extended to data structures with more than one grouping level. Here
we consider the 3-level data structure from (2.14), where each observation is given by (yijh,xijh).
Then the linear predictor for observation ijh is

ηijh = x⊺
ijhβ + u⊺

ijhγi + v⊺
ijhγij ,

where uijh and vijh are vectors of random-effects variables, which usually are subvectors of
the vector xijh = (1, xijh1, . . . , xijhk)

⊺ of fixed-effects variables. The random effects γi and γij

are vectors of cluster-specific effects for cluster i and ij, respectively. They are assumed to be
normally distributed with γi ∼ N(0,Q1) and γij ∼ N(0,Q2) (Fahrmeir et al., 2013; Pinheiro
and Chao, 2006). Similar to the model with one grouping level, the conditional expectation
E(yijh | γi,γij) = µijh given the random effects is then assumed to be related to the linear
predictor through a link function, i.e. g(µijh) = ηijh, or

g(µijh) = x⊺
ijhβ + u⊺

ijhγi + v⊺
ijhγij . (2.23)

In the special case where uijh = vijh = 1, the model is a random intercept model for two
grouping levels. It is given by g(µijh) = ηijh = x⊺

ijhβ + γ0i + γ0ij , where γ0i and γ0ij are the
random intercepts for cluster i and ij, respectively.

2.4.5 General Form of GLMMs

The GLMMs in (2.22) and (2.23) can both be written in the general form

g(E(y | γ)) = η = Xβ + Zγ. (2.24)
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Here, γ is the vector of all random effects and is normally distributed with γ ∼ N(0,Q), where
Q is a block-diagonal covariance matrix. Additionally, y is the vector of all responses, and X
and Z are the design matrices of appropriate dimensions for the fixed-effects and random-effects
variables, respectively (Fahrmeir et al., 2013).

2.4.6 Parameter Estimation

Maximum likelihood estimation is a popular method for parameter estimation for GLMMs. For
the general GLMM in (2.24), it involves maximization of the likelihood function

L(β,Q) =

∫
f(y | γ,β)f(γ | Q)dγ. (2.25)

This can not be solved analytically, except for the special case when the responses y are assumed
to be conditionally normally distributed and the identity link is used, resulting in the linear mixed
model described in Section 2.4.1. In other cases, it must be solved numerically (Raudenbush
et al., 2000).

The likelihood function is an integral, and therefore it needs to be approximated numerically.
When the dimension of the integral is small, the Gauss-Hermite quadrature method can be used
(Agresti, 2013; Raudenbush et al., 2000). The method is applicable for integrals of the form∫∞
−∞ f(x) exp (−x2)dx, and approximates it as a weighted sum

∫ ∞

−∞
f(x) exp (−x2)dx ≈

NAGQ∑
r=1

wrf(xr),

whereNAGQ is the number of (adaptive) quadrature points xr, which are the roots of the Hermite
polynomial HNAGQ

(x) of degree NAGQ and are symmetric around zero. The weights are given
by

wr =
2NAGQ−1NAGQ!

√
π

N2
AGQ[HNAGQ−1(xr)]2

(McCulloch et al., 2008). If the function f is not centered around zero, many of the quadrature
points xr may be located outside of the integration region of interest. The adaptive Gauss-
Hermite quadrature deals with this issue by centering the quadrature points around the mode
of the integrand and scaling them based on the estimated curvature at the mode, which reduces
the number of quadrature points needed to approximate the integral (Agresti, 2013). In the
case of using one quadrature point, NAGQ = 1, the adaptive Gauss-Hermite quadrature approx-
imation is equivalent to the first-order Laplace approximation, which is based on a Taylor-series
expansion of the log-likelihood around the mode.

The glmer function in the R-package lme4 can approximate the integral (2.25) with the adaptive
Gauss-Hermite quadrature with up to 25 quadrature points in the case of only one random effect.
With more than one random effect, the method is only implemented for the use of one quadrature
point (Handayani et al., 2017).

The likelihood approximation method described here can be used with different optimization
algorithms to obtain ML estimates of β and Q (Agresti, 2013). The glmer function uses
the Nelder-Mead and the Bounded Optimisation By Quadratic Approximation (BOBYQA) al-
gorithms (Willis et al., 2020). These are described in more detail in Nelder and Mead, 1965 and
Powell, 2009.
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2.4.7 A Binomial Mixed Model

Consider the GLMM (2.23) resulting from observations (yijh,xijh) from a data structure with
two nested grouping levels, as described in Section 2.4.4. Assuming that yijh | γi,γij ∼
Bernoulli(πijh), the model in (2.23) becomes

g(πijh) = x⊺
ijhβ + u⊺

ijhγi + v⊺
ijhγij , (2.26)

with an appropriate link function g, e.g. the logit link function g(π) = log(π/(1− π)).

If the covariate vector (and the vectors of random-effect variables) is the same for all observations
h = 1, . . . , nij within each group ij, the data can instead be given by (nij , yij ,xij), where
yij =

∑nij

h=1 yijh and xij is the covariate vector in common to all observations in group ij. It then
follows that yij has a conditional binomial distribution, i.e. yij | γi,γij ∼ Binomial(nij , πij),
with probability mass function

f(yij = k | γi,γij) =

(
nij

k

)
πk
ij(1− πij)

nij−k, k = 0, . . . , nij .

Equivalently, the relative frequency, ȳij = yij/nij , has a conditionally scaled binomial distribu-
tion ȳij | γi,γij ∼ Binomial(nij , πij)/nij .

A model for the binomial response probability based on the model (2.26) for the Bernoulli-
distributed responses can be written as g(πij) = x⊺

ijβ + u⊺
ijγi + γ0ij . Here, the subscript h in

(2.26) has been omitted, and we have set vij = 1, giving only a random intercept γ0ij for the
binomial grouping level.

The random effect γ0ij on the binomial observation-level is (sometimes) referred to as the
observation-level random effect (OLRE). The use of OLRE is a GLMM-specific way to ac-
count for overdispersion in a binomial regression model, where each observation is assigned to a
unique level of a random effect to absorb the extra-binomial variation (Bolker, 2015; Harrison,
2015).

In the case of only a random intercept for the first grouping level i as well (i.e. setting uij = 1),
and assuming that the logit link function is appropriate, a random intercepts model for the
binomial response probability is given by

log

(
πij

1− πij

)
= ηij = x⊺

ijβ + γ0i + γ0ij . (2.27)

where γ0i ∼ N(0, σ2
1) and γ0ij ∼ N(0, σ2

2).

The parameters in the model (2.27) can be estimated by maximizing the likelihood, which will
be derived in the following. By integration over the second-level random intercept, we have

f(yij | β, γ0i, σ2
2) =

∫
γ0ij

f(yij | β, γ0i, γ0ij)f(γ0ij | σ2
2)dγ0ij ,

where

f(yij | β, γ0i, γ0ij) =
(
nij

yij

)
π
yij
ij (1− πij)

nij−yij

= exp

(
yij log

(
πij

1− πij

)
+ nij log (1− πij) + log

(
nij

yij

))
,

20



with πij = πij(β, γ0i, γ0ij) as in (2.27). Again, let yi = (yi1, . . . , yini) be the responses for
first-level group i. Then the marginal distribution of yi is

f(yi | β, σ2
1, σ

2
2) =

∫
γ0i

ni∏
j=1

f(yij | β, γ0i, σ2
2)f(γ0i | σ2

1)dγ0i

=

∫
γ0i

ni∏
j=1

[∫
γ0ij

f(yij | β, γ0i, γ0ij)f(γ0ij | σ2
2)dγ0ij

]
f(γ0i | σ2

1)dγ0i,

and the likelihood is given by

L(β, σ2
1, σ

2
2) =

N∏
i=1

f(yi | β, σ2
1, σ

2
2)

=

N∏
i=1

[∫
γ0i

ni∏
j=1

[∫
γ0ij

f(yij | β, γ0i, γ0ij)f(γ0ij | σ2
2)dγ0ij

]
f(γ0i | σ2

1)dγ0i

]
,

which can be maximized with the parameter estimation procedure described in Section 2.4.6 to
obtain ML estimates.

2.4.8 Hypothesis Tests

Hypothesis tests for the fixed effects in GLMMs can be carried out like the tests described in
Section 2.2.6 (Fahrmeir et al., 2013).

For testing the significance of a random effect, the likelihood ratio test can be used (Fahrmeir
et al., 2013). Consider the model in (2.21) with parameters θ = (β⊺, σ2

γ). For testing the
significance of a single random effect, in this case the random intercept γ0i, we formulate the
hypotheses

H0 : σ
2
γ = 0 vs H1 : σ

2
γ > 0.

The LR statistic is calculated as

LR = −2
(
l(θ̂0)− l(θ̂)

)
,

where l(θ̂) is the unrestricted maximum log-likelihood and l(θ̂0) is the restricted maximum
log-likelihood under H0. When performing a significance test on a single random intercept
compared to a model with no random effects, the LR statistic has an asymptotic distribution
that is an equal mixture of a chi-square distribution with zero degrees of freedom and a chi-square
distribution with one degree of freedom under H0. We write this kind of mixture distribution
as 0.5χ2

0 : 0.5χ2
1. However, for testing one scalar random slope in the presence of a random

intercept, the LR statistic attains an asymptotic 0.5χ2
1 : 0.5χ2

2 mixture distribution (Fahrmeir
et al., 2013). Hypothesis tests regarding random effects in models with other random effects
structures can be carried out e.g. with a parametric bootstrap likelihood ratio test, as explained
in Halekoh and Højsgaard, 2014.

2.4.9 Model Diagnostics

Model diagnostics for GLMMs involve assessing the model assumptions. Since random effects
are included in GLMMs, their distributional assumptions should be evaluated (McCulloch et
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al., 2008). For the fitted random effects, one should only worry about extreme deviations from
normality, since little is known about how non-normal distributions of fitted random effects may
affect a GLMM (Bolker, 2015).

Residuals are more difficult to interpret for GLMMs than for GLMs, partly because the expected
distribution of the observations changes with the fitted values. A simulation-based approach for
creating easily interpretable residuals for GLMMs is proposed by Hartig, 2022. The procedure
can be used for the models in (2.17) and (2.27), and follows the steps:

1. Simulate m new responses from the fitted model for each observation (yij,obs,xij).

2. For each observation, calculate the empirical cumulative density function F̂ij from the m
simulated responses. Assuming that the fitted model is correct, F̂ij then describes the
possible values (and their probability) of the response at the predictor combination xij of
the observed value.

3. Define the residual rij as the value of the empirical density function at the value of the
observed response, i.e. F̂ij(yij,obs). Then a residual rij = 0 means that all simulated
values are larger than the observed value, and a residual rij = 0.5 means that half of the
simulated values are larger than the observed value.

The residuals are expected to have a uniform distribution on the interval [0, 1] if the model is
correct (Hartig, 2022).

2.5 Model Selection

In selecting a model, there needs to be a compromise between a good fit to the data and
model complexity, since including too many and irrelevant parameters may result in overfitting
(Fahrmeir et al., 2013). Besides the use of hypothesis tests such as the ones presented in Section
2.2.6 and Section 2.4.8 to exclude insignificant parameters, there are other criteria that can also
be used.

The Akaike information criterion (AIC) is a popular measure used to compare different models.
Let θ = (θ1, . . . , θq) be the parameter vector of dimension q of the model under consideration.
The AIC is then defined as

AIC = −2l(θ̂) + 2q,

where l(θ̂) is the maximized log-likelihood. The effect of the term 2q is to penalize more complex
models. When using this measure in model selection, models with small AIC values are favored
(Fahrmeir et al., 2013).
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2.6 Collinearity

The problem of collinearity arises when some of the explanatory variables in a model have a
near-linear dependence. This can cause the estimated coefficients to be highly dependent on
other explanatory variables and their estimated standard errors to become large. Collinearity is
therefore mainly a problem when interpretation, rather than prediction, is the goal (Dunn and
Smyth, 2018).

Following Montgomery et al., 2012, the easiest way to detect collinearity is to compute the
correlations between pairs of variables, where correlations close to one in absolute value are of
concern. However, when there is a near-linear dependence involving more than two covariates,
pairwise correlations may not be enough to detect collinearity. In such cases, the variance
inflation factor (VIF), which is a measure for the dependency between several covariates, can
be used instead. For the jth explanatory variable, the VIF is defined as

VIFj =
1

1−R2
j

,

where R2
j is the coefficient of determination obtained by regressing this explanatory variable

on the rest of the explanatory variables. A VIF above 5 or 10 indicates collinearity and the
corresponding regression coefficient is likely to be poorly estimated (Montgomery et al., 2012).
According to Fahrmeir et al., 2013, there exists a serious collinearity problem if any of the VIFs
exceed 10.

To assess the dependency of a categorical explanatory variable on the other variables, the
generalized variance inflation factor (GVIF) must be calculated instead. Following Fox and
Monette, 1992, the design matrix X of the p explanatory variables is first partitioned into
X = (X0,X1,X2), where X0 is the column that contains the constant, X1 contains the set
of indicator variables for the different categories of the categorical variable of interest and X2

contains all other explanatory variables. Each column of X1 and X2 is then centered with mean
0 and scaled to length 1. Further, let R be the correlation matrix for all the columns in X1

and X2, and let R11 and R22 be the correlation matrices for X1 and X2, respectively. The
generalized variance inflation factor for the categorical variable of interest in X1 is then

GVIF1 =
|R11| |R22|

|R|
,

where | · | denotes the determinant of a matrix. For the GVIF to be comparable for categorical
variables with differing number of categories, one can calculate the quantity GVIF1/(2df), where
df is the number of categories. The GVIF can also be compared with the VIF for numeric
variables by squaring this quantity, i.e.

(
GVIF1/(2df)

)2
. Throughout this thesis, we will refer to

this as the comparable GVIF.
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2.7 Variables and Model Interpretation

Consider responses yi, i = 1, . . . , n, with k corresponding explanatory variables xij , j = 1, . . . , k.
The linear regression model (2.3) fitted to this data, where a variable xi0 = 1 is included for all
observations (thus including an intercept), results in the estimated model for the mean µi

µ̂i = β̂0 + β̂1xi1 + . . .+ β̂jxij + . . .+ β̂kxik. (2.28)

Here, β̂j , j = 1, . . . , k, is the estimated regression coefficient of the jth explanatory variables and

β̂0 is the estimated regression coefficient for the intercept. In the case where all the explanatory
variables are numeric, the intercept represents the estimated mean when all the variables have the
value zero. However, if the range of the explanatory variables do not include zero, the intercept
has no practical interpretation (Montgomery and Peck, 1982). If, for example, measurements
are made on adults, and one of the explanatory variables is the height of the individual measured
in meters, this will never have the value zero. Thus, the intercept will represent the estimated
mean for a height of 0 meters, which is not of particular interest. For a numeric variable xij ,

the regression coefficient β̂j represents the change in the estimated mean µ̂i by a unit change in
xij . This type of regression coefficient is also referred to as the slope of xij .

2.7.1 Centering and Scaling of Covariates

A popular scaling technique for numerical explanatory variables is the unit normal scaling.
Consider the jth explanatory variable xij for each observation i = 1, . . . , n. The unit normal
scaling of the variable is obtained by subtracting the sample mean x̄j =

∑n
i=1 xij/n of the

covariate and dividing by the sample standard deviation sj =
√∑n

i=1(xij − x̄j)2/(n− 1). The
centered and scaled variable is then given by

x∗ij =
xij − x̄j

sj
(2.29)

for each observation i = 1, . . . , n (Montgomery and Peck, 1982). With this transformation, the
new covariate x∗

j = (x∗1j , . . . , x
∗
nj)

⊺ has mean x̄∗j = 0 instead of the mean x̄j for the untransformed
variable. With the unit normal scaling of the jth explanatory variable as in (2.29), we have
xij = sjx

∗
ij + x̄j , and the model in (2.28) can be written as

µ̂i = β̂0 + β̂1xi1 + . . .+ β̂jxij + . . .+ β̂kxik

= β̂0 + β̂1xi1 + . . .+ β̂j(sjx
∗
ij + x̄j) + . . .+ β̂kxik

= (β̂0 + β̂j x̄j) + β̂1xi1 + . . .+ β̂jsjx
∗
ij + . . .+ β̂kxik

= β̂∗
0 + β̂1xi1 + . . .+ β̂∗

j x
∗
ij + . . .+ β̂kxik.

(2.30)

Here we observe that the regression coefficients for the intercept and the jth covariate (which is
now centered and scaled) also are changed. A unit increase in x∗ij is now represented by the new

coefficient β̂∗
j = β̂jsj . In addition, it was mentioned that the intercept β̂0 in (2.28) represents

the estimated mean when all variables are numeric and have the value zero. In (2.30), we now
observe that there is another constant in addition to the original intercept coefficient β̂0, i.e. the
term β̂j x̄j . Thus, the new intercept becomes β̂∗

0 = β̂0+ β̂j x̄j . This new intercept now represents
the estimated mean when xij attains its mean value x̄j (corresponding to x∗ij = 0) and the other
variables have values of zero.
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2.7.2 Categorical Explanatory Variables

A categorical variable does not have a natural measurement scale, but the effect of the variable
must be connected to the different categories of the variable. This is achieved with the use of
indicator variables (Montgomery and Peck, 1982). Consider the model in (2.28) with k = 2, i.e.

µ̂i = β̂0 + β̂1xi1 + β̂2xi2, (2.31)

where xi1 is a numerical variable and xi2 is a categorical variable with two different categories
A and B. The variable xi2 can then be used to represent the two different categories if it is
expressed as an indicator variable

xi2 =

{
0 if observation i belongs to category A

1 if observation i belongs to category B.
(2.32)

If observation i belongs to category A, then xi2 = 0, and the model in (2.31) becomes µ̂i = β̂0+
β̂1xi1. For category B, with xi2 = 1, the model becomes µ̂i = β̂0+ β̂1xi1+ β̂2 = (β̂0+ β̂2)+ β̂1xi1.
That is, the slope β̂1 for the numeric variable is the same for the two categories, but the intercept
for category B differs by β̂2 compared to category A.

The representation of a categorical variable can be extended to one with a different categories. In
this case, representing the different categories involves a−1 indicator variables (Montgomery and
Peck, 1982). Let a = 3 be the number of categories. Then the model in (2.31) must be extended
to include two indicator variables xi2 and xi3, resulting in µ̂i = β̂0+ β̂1xi1+ β̂2xi2+ β̂3xi3, where
the two indicator variables are now defined as

xi2 =

{
0 if observation i does not belong to category B

1 if observation i belongs to category B

xi3 =

{
0 if observation i does not belong to category C

1 if observation i belongs to category C.

For category B, we have xi2 = 1 and xi3 = 0, while xi2 = 0 and xi3 = 1 for category C. This
results in intercepts β̂0 + β̂2 and β̂0 + β̂3, for category B and C, respectively. However, for
category A, both indicator variables are zero, which gives the intercept β̂0. Thus, we call A the
reference category, since the effect of category B and C are given compared to the intercept β̂0
for A.

2.7.3 Interaction Terms

Consider the model (2.31), where xi1 is a numeric variable and xi2 is an indicator variable, as
given in (2.32), for a category with two levels A and B. Suppose that the effect of the numeric
variable xi1 in reality varies for the two categories, as opposed to the assumption of the same
effect for the two categories in model (2.31). This can be modeled by including an interaction
term between xi1 and xi2 in (2.31), i.e.

µ̂i = β̂0 + β̂1xi1 + β̂2xi2 + β̂3xi1xi2.

Thus, for category A, the model becomes µ̂i = β̂0+ β̂1xi1. For category B, it is µ̂i = (β̂0+ β̂2)+
(β̂1+ β̂3)xi1. We notice that the intercept for B differs with β̂2 from A, and the slope for xi1 for
B differs by β̂3, compared to A.
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3 Data Preparation and Exploration

In this section, a description of the provided data and the data preparation are given, followed
by an initial exploration of the data.

3.1 Data Set and Preparation

The provided data that were analysed in this thesis were collected from 2020 to the fall of 2022,
and contain information about the use of four delousing methods, namely freshwater treatment,
Optilicer, Hydrolicer, and SkaMik. More specifically, the data were from delousing treatments
at the cage-level from different salmon farms located in production areas 5 and 6 along the
Norwegian coast (Figure 3.1).

Figure 3.1: Map of production areas along the Norwegian coast. The data were collected from delousing
treatments at salmon farms located in production areas 5 and 6.

Source: Modified from BarentsWatch, 2023
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The provided data were given in different Excel documents, one for each delousing method
per year. An exception is Optilicer, for which there were no observations from 2022. Each
observation in the documents represents the delousing of one cage of salmon on a salmon farm
location on a specified date. To compare the four delousing methods, the relevant information
that was reported for all of the methods was selected and combined to create data sets.

The selected information included the date of treatment, crowding time during handling of the
salmon, average weight of the salmon in the cage, the total biomass in the cage and the sea
temperature, which were considered possible explanatory variables. In some of the analyses, in-
formation about disease at the location and the score of some welfare indicators before treatment
were also included as explanatory variables. The location of the farm was also reported for the
observations. Since there were several observations from each location, this induced a natural
hierarchic structure in the data, which is taken into account. Additionally, the provided data
contained information about the average lice number before and after treatment, the cumulative
mortality in the following days after treatment, as well as score evaluations for a number of dif-
ferent welfare indicators for the salmon. This information is the basis of the response variables.
The variables used in the analysis are described in more detail in the subsequent sections, and
a summary of them is given in Table 3.1.

3.1.1 Explanatory Variables

When combining the data from the different documents, the observations were categorized based
on the delousing methods used. The categorical variable Method was created to keep track of the
different delousing methods. The observations where the fish had undergone treatments by use
of freshwater treatment, SkaMik, Hydrolicer or Optilicer, were labeled as Freshwater, SkaMik,
Hydrolicer and Optilicer. The categorical variable was automatically converted into indicator
variables when fitting the models in R, and these are called MethodFreshwater, MethodSkaMik,
MethodHydrolicer and MethodOptilicer.

In order to gain a better understanding of the factors influencing the response variables, other
explanatory variables than the delousing method were included in the analysis. The reported
date of treatment was the basis for the creation of the categorical variable Season with four
levels, namely Winter (December-February), Spring (March-May), Summer (June-August) and
Fall (September-November). These categories were also converted to indicator variables, called
SeasonWinter, SeasonSpring, SeasonSummer and SeasonFall.

The sea temperature, given by SeaTemp in degrees Celsius, at the time of the delousing treatment
is also included as an explanatory variable. In some cases, SeaTemp was the only explanatory
variable missing, and an effort was then made to restore the values. The sea temperature that was
reported for the location the same week as the date of the delousing was found at BarentsWatch,
2022a and used as an estimate. When using different delousing methods, some precautions are
taken to not harm the salmon. The thermal delousing method Optilicer is typically avoided when
the sea temperature is high since it requires the use of higher temperatures for the treatment
water to obtain a good delousing effect. The use of mechanical delousing methods (Hydrolicer
and SkaMik), on the other hand, is often avoided at lower sea temperatures due to slower wound
healing when the temperature is lower. As a consequence, there are times of the year where
these methods are seldom used, which influences the data sets.
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Table 3.1: Description of the variables used in the models.

Variable Description

Explanatory variables

Method Treatment method used: Freshwater, SkaMik, Hydrolicer, Optilicer

Season Time of year of the treatment: Winter, Spring, Summer, Fall

Disease

Variable indicating whether there was an ongoing

pancreas disease (PD) case on the location at the time of the

delousing (values: PD or None)

SeaTemp Temperature in the sea, in °C
SeaTempSc Centered and scaled value of SeaTemp

AvCrowding Average crowding time, in minutes

AvCrowdingSc Centered and scaled value of AvCrowding

AvWeight Average weight of the salmon in the cage, in kg

AvWeightSc Centered and scaled value of AvWeight

Biomass Total biomass in the cage, in metric ton

BiomassSc Centered and scaled value of Biomass

HaemorrBefore Degree of skin haemorrhages before treatment (value from 0-3)

ScalelossBefore Degree of scale loss before treatment (value from 0-3)

Explanatory random variables

LocNumber
The different locations (salmon farms)

Each assigned to a different number (1-31)

Cage
The different cages of salmon treated

Each assigned to a different number

Response variables

CountFemalesBefore Number of adult female lice before treatment in a sample of 20 fish

CountFemalesAfter Number of adult female lice after treatment in a sample of 20 fish

NumBefore
Number of salmon before treatment

Calculated as (Biomass · 1000 / AverageWeight), rounded to integer

NumDeaths3 Total number of dead salmon during the first 3 days after treatment

NumDeaths14 Total number of dead salmon during the first 14 days after treatment

HaemorrhagesChange
Difference in degree of skin haemorrhages after and before treatment

Possible values are in the range -3 to 3

ScalelossChange
Difference in degree of scale loss after and before treatment

Possible values are in the range -3 to 3

Before the fish are transferred into the treatment systems, they are crowded in the cage, a
process that is often repeated several times on groups of fish to collect all the fish from the
cage. The average crowding time before treatment, reported in minutes, is given by the variable
AvCrowding. This is calculated by dividing the total crowding time by the number of times
the crowding procedure was repeated to collect all the fish for treatment. In some observations,
a number was written followed by a question mark in the provided data. In these cases, the

28



observations were inspected more closely, and better estimates were set for the average crowding
time. Additionally, the observations with the most extreme values (either very large or small
values) for this variable were also inspected more closely, and some typographical errors and
calculation mistakes were identified and corrected.

Moreover, two additional variables, namely the average weight of all the salmon in the cage in
kilogram (AvWeight) and the total biomass in the cage in metric tons (Biomass) were included
as explanatory variables. In some cases, the average weight was not reported, but information
about biomass and the number of fish before treatment was given. For these observations,
AvWeight was calculated from these quantities.

After the data preparation process described thus far, observations where any of the numeric
variables SeaTemp, AvCrowding, Biomass and AvWeight had missing values were removed and
not used in further analyses. These numeric variables were thereafter centered and scaled by
subtracting the mean value of the variable and dividing by the standard deviation, as described
in Section 2.7.1. Namely, the centering and scaling process was done before elimination of
observations due to invalid response values in the creation of the different data sets. The
centering and scaling values are given in Table 3.2 in the same unit as each of the variables.
The resulting scaled and centered variables are called SeaTempSc, AvCrowdingSc, BiomassSc
and AvWeightSc, respectively.

Table 3.2: Mean value and standard deviation of numeric variables used in the centering and scaling
process. These values were found before removing any observations due to invalid response values in the
creation of the data sets.

Explanatory variable Mean Standard deviation

SeaTemp 11.7 3.30

AvCrowding 62.6 17.97

AvWeight 3.15 1.475

Biomass 438.5 167.00

In addition, information about reported incidences of diseases such as pancreas disease (PD)
and infectious salmon anemia was found at BarentsWatch, 2022b. The data provide information
about disease cases on salmon farms and the time period for the duration of the cases. This
does not necessarily mean that all fish on the farm had the disease in the reported time period,
but only that there were discovered cases. Only the time periods from the date of demonstrated
cases (not from the date of suspected cases) to the end date of the case were considered here.
This information was then merged with the other data based on location and date. There were
no observations in the data where cases of infectious salmon anemia had been reported, so there
were only reported PD cases. Therefore, the categorical variable Disease was created with the
levels PD and None, which resulted in the creation of the indicator variables DiseasePD and
DiseaseNone.

3.1.2 Random Explanatory Variables

Salmon in the same cage may have more in common compared to salmon from other cages,
and the same can be said for salmon from different farms. This hierarchic nature of the data
motivated the creation of two additional variables, which will be used in some of the models.
The salmon farms (locations) were assigned to different numbers from 1 to 31 to maintain
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confidentiality. The information of the salmon farms for the observations was stored in the
variable LocNumber. Similarly, each observation (cage) was assigned to a different number,
represented by the variable Cage.

3.1.3 Response Variables and Creation of Data Sets

In this section, the response variables are presented and the creation of the data sets for the
different responses of interest is described.

One of the aims of this thesis was to compare the delousing effect of the different delousing
methods, with particular emphasis on the reduction of adult female lice since they can produce
egg strings containing hundreds of eggs. The variables used to evaluate the delousing effect
were based on the reported average number of adult female lice from a sample of fish before
and after treatment, which were contained in the variables FemalesBefore and FemalesAfter,
respectively. The standard practice is to use a sample size of 20 fish, but smaller sample sizes
may occasionally have been used for unknown reasons. Since fitting a binomial model requires
integer data, the average lice numbers were multiplied by 20. However, for some observations,
multiplying by 20 resulted in non-integer values, which may be due to human errors in the
reporting process or due to the use of smaller sample sizes. Since it was not possible to know
which was the reason, these numbers were also multiplied by 20 and then rounded to integer
values. The variables called CountFemalesBefore and CountFemalesAfter were created from
this count data, representing the total count of adult female lice in a sample of 20 fish before
and after treatment, respectively. Initially, there were some observations with missing values
for these variables, which were removed from the data set. Observations with zero counts for
CountFemalesBefore were also removed since they could not provide any information about the
effectiveness of the methods. Furthermore, observations with CountFemalesBefore less than 5
were removed, because such small values could give very inaccurate estimates of the delousing
effect. In cases where the count after treatment was greater than the count before treatment,
CountFemalesAfter was set to the number of CountFemalesBefore due to model requirements,
indicating that the treatment had no effect. One observation, with an especially large value of
289 for CountFemalesBefore, was also detected and removed, since this was considered a very
unlikely value and was more likely to be due to some human mistake. This pre-processing of
the data resulted in a data set which was used for modelling the delousing effectiveness against
adult female lice. In the following, this data set will be referred to as the delousing effect data
set.

Another objective was to investigate the effect of the delousing methods on the salmon, and
some welfare indicators (WIs) were considered. The score-based WIs skin haemorrhages and
scale loss were selected among other welfare indicators because they were reported for a larger
number of observations. The severity of these indicators was evaluated from the sample of fish
before and after treatment and reported on a scale of 0-3, which was contained in the variables
HaemorrBefore, HaemorrAfter, ScalelossBefore and ScalelossAfter. Both of these welfare indic-
ators before treatment were also used as explanatory variables in the analyses concerning fish
welfare, as they can provide information about the health status of the fish prior to treatment.
When creating data sets with these variables, any observations with missing values or values
outside the possible range of 0-3 were removed. However, the response variables of interest were
the changes in these indicators after treatment. To capture this, the variables HaemorrChange
and ScalelossChange were created, representing the difference between the value after treatment
and before treatment for the skin haemorrhages and scale loss indicators, respectively. These
variables can range from -3 to 3, and a positive value indicates a worsening of the condition of
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the salmon. Separate data sets were created for the change in skin haemorrhages and the change
in scale loss, where also observations with invalid values for HaemorrAfter and ScalelossAfter,
respectively, were removed.

It was also of interest to examine how different delousing methods affect the mortality rate of
salmon. To assess the short-term impact, the mortality 3 days after delousing was selected,
while mortality after 14 days was used as an indicator for the longer-term effects on mortality.
The variable NumBefore was created, representing the number of salmon in the cage before the
treatment. This number was only reported for two of the delousing methods, and the variable
was therefore created by dividing the biomass by the average weight of the salmon in the cage
and rounding this quantity to an integer value. The variables NumDeaths3 and NumDeaths14
represent the cumulative number of salmon from the cage that had died during the first 3 and 14
days after treatment, respectively. Since these quantities were not always reported for the same
observations, two separate data sets for salmon mortality were created, one for mortality after 3
days and one for mortality after 14 days. Observations without reported values for NumDeaths3
or NumDeaths14 were excluded from the respective data sets. For four observations, it was
reported that some of the fish were slaughtered after the treatment. Due to this, NumDeaths3
and NumDeaths14 were considered to be inaccurate, so these observations were not included in
either of the mortality data sets. In addition to the explanatory variables presented in Section
3.1.1, the variables HaemorrBefore and ScalelossBefore were included as explanatory variables
in the analyses of salmon mortality. Hence, any observations with missing or invalid values for
these variables were also excluded from the data sets.

3.2 Data Exploration

The R-code from the data preparation described in the previous section is given in Appendix C.
The data preparation resulted in five separate data sets; one for delousing effect, two for salmon
mortality after 3 and 14 days, and two for the change in skin haemorrhages and scale loss. The
creation of separate data sets for the different responses was done in order to obtain the maximal
number of observations for each of the responses. The total number of observations in each of
the data sets, as well as the number of observations for the different delousing methods used, is
given in Table 3.3. SkaMik constitutes the majority of the observations, while there are fewer
observations for the other delousing methods. These data sets are explored further in what
follows.

Table 3.3: Number of observations in each of the data sets with number of observations for each
delousing method.

Data set
Number of observations for each method Total number of

observationsFreshwater Optilicer Hydrolicer SkaMik

Delousing effect 104 (13%) 125 (15%) 162 (20%) 431 (52%) 822

Mortality (3 days) 92 (13%) 99 (14%) 145 (20%) 389 (54%) 725

Mortality (14 days) 85 (13%) 98 (15%) 99 (15%) 369 (57%) 651

Skin haemorrhages 98 (13%) 102 (14%) 148 (20%) 390 (53%) 738

Scale loss 98 (13%) 102 (14%) 148 (20%) 391 (53%) 739
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3.2.1 Delousing Effect

An initial data exploration of the data set for delousing effectiveness against adult female lice
(delousing effect) is given in this section. Since this data set was used to model the delousing
effect, i.e. the probability of removal of a louse when exposed to a delousing method, a variable
for the estimated proportion of removed lice after treatment was created for the visualization
of the data. In the figures that follow, this proportion is called PropRemoved, and it is calcu-
lated by dividing (CountFemalesBefore-CountFemalesAfter) by CountFemalesBefore for each
observation.

The explanatory variables considered in the analysis of delousing effect are those mentioned in
Section 3.1.1, except for the Disease variable, which is considered unlikely to affect the delousing
effect.

The 822 observations in the delousing effect data set are from 31 locations. The number of ob-
servations for the different locations is shown in Figure 3.2, where the different colors distinguish
between the number of observations for the different delousing methods. The locations varies
a lot in number of observations, ranging from 2 to 60. The distribution of observations over
location for each of the methods is also highly variable, and none of the methods are present
for all 31 locations. Naturally, as SkaMik accounts for ∼ 52% of the observations, it is also the
method that is represented from the most locations compared to the other methods.

Figure 3.2: Number of observations from the different locations for the data set for delousing effect.
The different colors distinguish between the number of observations for the different delousing methods.

The correlation between pairs of numeric variables in the data set was investigated and the
results are displayed in Figure 3.3. Scatter plots for each variable pair are shown to the left
of the diagonal, the Pearson correlation coefficients are shown to the right of the diagonal,
and density plots for each variable are displayed on the diagonal. Some correlation between
certain variables is observed, but none of them are found to be highly correlated, i.e. with
absolute values close to one. In particular, the variables AvWeightSc and BiomassSc seem to be
moderately correlated, which is a natural consequence of biomass being a product of the number
and average weight of the salmon in a cage. The correlation coefficient between these variables
was calculated to be 0.473, and is the largest correlation between any pair of variables.
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Figure 3.3: Correlations of the numeric variables in the data set for delousing effect. Scatterplots
between each pair of numeric variables are displayed on the left side of the diagonal, while the Pearson
correlation is shown on the right side. Distribution plots for the variables are shown on the diagonal.

(a) (b)

Figure 3.4: (a): Box plot of the proportion of adult female lice removed after the treatment for
each delousing method. The average values are shown by the black squares. (b): Density plot for the
proportion of removed lice. The grey histogram shows the density for all the observations. Density curves
for each of the different methods are shown with different colors.

A box plot of the proportion of removed adult female lice against delousing method is displayed
in Figure 3.4a. The blue boxes mark the interval of the observed values that are between the
lower and upper quartiles, i.e. half of the observations are in this interval, which is called the
interquartile range. The blue line inside the box shows the median value, while the black square
shows the average. From the plot one can observe some differences between the methods, where
freshwater seems to have the smallest proportion of removed lice. It is also noticeable that
the interquartile range is much larger for the freshwater treatment than for the other methods,
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meaning that the observations are more variable for this delousing method. There are smaller
differences between the other methods, but Hydrolicer seems to have the highest proportion of
removed lice.

The density of the proportion of removed adult female lice is also illustrated in Figure 3.4b.
Here, the grey histogram is the density of all observations, and the colored density curves are
for each of the delousing methods. All methods have a spike in approximately the same area,
around 0.8 to 0.9. However, freshwater seems to have relatively more small values compared to
the other methods, and the shape of its density curve stands out from the rest.

Figure 3.5a shows a box plot of the proportion of removed female lice against the season. It
indicates that the lice might have a lower probability of surviving the treatment in the summer
and spring, but the differences are quite small. However, it is important to keep in mind
that some of the methods are rarely or not used at all for certain temperatures or seasons,
which is illustrated in Figure 3.5b. It shows a box plot of SeaTemp against Season for each
of the delousing methods. We notice that the sea temperature is lowest in the winter and
spring and higher in the summer and fall. Table 3.4 gives the number of observations from the
different delousing methods in the different seasons. It also lists the minimum and maximum
temperature, as well as the interquartile range, for which the different delousing methods have
been used. In the spring and winter, when the temperature is at the lowest, Hydrolicer has been
used few times, and has not been used at all in the winter according to this data set. The lowest
temperature registered when Hydrolicer was used was 5.1°C, but it has only been used three
times at temperatures below 7.4°C, and its interquartile range is from 12.4 to 14.4°C. On the
other hand, the second mechanical delousing method, SkaMik, has been used in winter as well.
It has been used at temperatures as low as 7°C, but not at any lower temperatures. SkaMik has
been used the most during summer and fall, and has an interquartile range from 10.7 to 14.4°C.
In contrast, Optilicer is typically avoided when the sea temperature is high, so its interquartile
range is from 5.6 to 10.4°C. The highest registered temperature when Optilicer was used was
14.9°C and this was in the summer.

(a) (b)

Figure 3.5: (a): Box plot of the proportion of adult female lice removed after the treatment against
season. The average values are shown by the black squares. (b): Box plot of sea temperature against
season for each delousing method.
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Table 3.4: Number of observations for the seasons for each delousing method (data set for delousing
effect). Additionally, the interquartile range, as well as the minimum and maximum value of the sea
temperature for which the different delousing methods have been used is given.

Number of observations in seasons Temperature

Method Winter Spring Summer Fall Min Max IQR

Freshwater 30 16 43 15 4.7 15.3 6.2-13.9

Optilicer 62 29 26 8 4.8 14.9 5.6-10.4

Hydrolicer 0 21 122 19 5.1 18.8 12.4-14.4

SkaMik 29 20 240 142 7.0 21.6 10.7-14.4

The relation between the sea temperature and the season is even clearer in Figure A.1a in
Appendix A. As discussed, the sea temperature is somewhat related to the choice of delousing
method, which is more apparent in Figure A.1b. It therefore seems necessary to further assess
the severity of the dependency between the explanatory variables in the data set by calculating
the comparable generalized variance inflation factor. The function vif from the car-package
(Fox and Weisberg, 2019) in R was used to compute these quantities, given in Table 3.5. Here, an
interaction effect between Method and SeaTemp is included, since, by the nature of the different
delousing methods, the sea temperature may have different effects depending on the delousing
method used. We notice that the value for SeaTemp is quite high, with a value of 5.83. However,
the value does not exceed 10, in which case there would be a collinearity problem of concern.

Table 3.5: Comparable generalized variance inflation factor for the explanatory variables in the data set
for delousing effect. An interaction between delousing method and sea temperature has been included
here.

Explanatory variable df
(
GVIF1/(2df)

)2
Method 3 1.64

SeaTempSc 1 5.83

SeaTempSc:Method 3 2.00

AvWeightSc 1 1.44

AvCrowdingSc 1 1.23

BiomassSc 1 1.81

Season 3 1.95

3.2.2 Salmon Mortality

In this section, an initial data exploration and visualization of the two data sets for salmon
mortality after 3 and 14 days is presented. Variables for the proportion of salmon that had died
3 and 14 days after treatment was created for the visualization of the data. The variable for the
mortality rate after 3 days is called Mortality3, and it is calculated by dividing NumDeaths3 by
NumBefore for each observation. Likewise, Mortality14 is calculated by dividing NumDeaths14
by NumBefore.

In the analyses of salmon mortality, all the explanatory variables introduced in Section 3.1.1 are
included. In addition, HaemorrBefore and ScalelossBefore are considered as possible explanat-
ory variables.
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Figure 3.6: Correlations of the numeric variables in the data sets for mortality after 3 days (top) and
14 days (bottom). Scatterplots between each pair of numeric variables are displayed on the left side of
the diagonal, while the Pearson correlation is shown on the right side. Distribution plots for the variables
are shown on the diagonal.
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In both the data sets for mortality, the observations are from 31 locations. The locations varies
a lot in number of observations, ranging from 1 to 60 for mortality after 3 days and 1 to 48
for mortality after 14 days (Figure A.2), due to a smaller data set for mortality after 14 days.
There is also an uneven distribution of observations over the locations for each of the methods,
where none of the methods are present for all the locations.

In Figure 3.6, the correlation between each pair of the numeric variables is displayed. The figure
in the top and bottom panels show the correlations in the data set for mortality after 3 and
14 days, respectively. As mentioned, the variables AvWeightSc and BiomassSc are naturally
correlated. This is evident in both data sets for salmon mortality, where the Pearson correlation
is 0.448 and 0.392, respectively. There is also some correlation between HaemorrBefore and
ScalelossBefore, with values of 0.489 and 0.480 for the two data sets. Both skin haemorrhages
and scale loss are probably associated with rough treatment, which may result from earlier
delousing treatments or other factors, so this may explain the correlation.

(a) Mortality after 3 days for each delousing
method.

(b) Mortality after 14 days for each delousing
method.

(c) Density plot for mortality rate after 3 days. (d) Density plot for mortality rate after 14
days.

Figure 3.7: Salmon mortality (proportion of fish that had died after 3 and 14 days). (a)-(b): Box
plots of mortality rate for each delousing method. The average values are shown by the black squares.
(c)-(d): Density plots for mortality rate. The grey histogram shows the density for all observations.
Density curves for each of the different delousing methods are shown with different colors. Note the
different axis values for mortality after 3 and 14 days.

37



The mortality rate after 3 and 14 days against the delousing method used is shown in Figure
3.7a and Figure 3.7b, respectively. Comparing the plots for 3 and 14 days, we notice that the
mortality rate seems to increase from 3 to 14 days (note the different values on the y-axis),
which is expected. We also observe that Optilicer has a noticeably higher median and average
value than the other methods both after 3 and 14 days. Optilicer also has a larger interquartile
range than the other methods, that is more skewed towards higher mortality rates. This can
also be seen in Figure 3.7c and Figure 3.7d, which show the distribution of the mortality rates
for the different delousing methods.

The mortality after 3 and 14 days is also plotted against Disease, shown in Figure 3.8a and
Figure 3.8b, respectively. In both plots, the mortalities seem to be higher for observations
where there has been a PD case on the location at the time of delousing. However, in both data
sets for mortality, only 176 observations belonged to the PD group, which make up 24% and
27% of the observations in the data sets for mortality after 3 and 14 days, respectively. Out of
these observations, 45 stem from the use of Optilicer, 16 from freshwater, 12 from Hydrolicer
and 103 from SkaMik.

(a) Mortality after 3 days against Disease (b) Mortality after 14 days against Disease

(c) Mortality after 3 days for each season (d) Mortality after 14 days for each season

Figure 3.8: Salmon mortality (proportion of fish that had died after 3 and 14 days) against Disease
and Season. Note the different axis values for mortality after 3 and 14 days.

Figure 3.8c and Figure 3.8d show the mortality rate after 3 and 14 days for each season, respect-
ively. For both 3 and 14 days, the mortality seems to be higher in the winter compared to the
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other seasons. However, this is also the time of year when Optilicer, which was associated with
higher mortality, is used the most according to these data sets. About ∼ 63% of the observations
in the winter are from delousing operations using Optilicer (Table B.1 in Appendix B).

The relation between delousing method, the sea temperature and the season in these data sets
is similar to what was described in the previous section. The sea temperature is lowest in the
winter and spring (Figure A.3a and A.4a in Appendix A), and the different delousing methods
seem to be preferred to be used at different temperatures (Figure A.3b and A.4b), as pointed
out in the previous section. This induces a relation between the season and method, where
most seasons are dominated by observations from one or two delousing methods (Table B.1).
An exception is the spring, which has a more even distribution of observations from all four
methods.

The comparable GVIF for the explanatory variables in the data sets for mortality were calcu-
lated, and are given in Table B.2. An interaction between Method and SeaTempSc has been
included, since the effect of the different delousing methods on the mortality may vary differ-
ently with this variable. In the data sets for mortality after 3 days and 14 days, the variable
SeaTempSc obtained values of 7.42 and 6.65, respectively. These values are somewhat high, but
do not exceed 10.

3.2.3 Score-Based Welfare Indicators

An initial data exploration for the two data sets for change in skin haemorrhages and scale loss is
given in this section. In the analyses of the change in WIs, all explanatory variables presented in
Section 3.1.1, as well as HaemorrBefore and ScalelossBefore are considered possible explanatory
variables. The latter ones are included since they may contain information about the health
status of the salmon prior to the delousing treatment. In addition, since the score of the WIs are
limited to the interval 0-3, one can imagine that the change may be smaller if the fish exhibit a
higher score of the particular WI in consideration before treatment.

As for the data sets described earlier, the observations in the data sets for change in WIs are
from 31 different locations, and the distributions are shown in Figure A.5 in Appendix A. The
number of observations for each location varies from 1 to 59 for both data sets. The distribution
of the number of observations from each delousing method is also highly variable.

In Figure 3.9, the correlation between each pair of numeric variables is displayed for the two
data sets. The figure in the top panel shows the correlations in the data set for change in
skin haemorrhages and the figure in the bottom panel shows the correlations in the data set
for change in scale loss. As pointed out earlier, the variables AvWeightSc and BiomassSc are
moderately correlated, with values of 0.452 for both data sets. In addition, HaemorrBefore
and ScalelossBefore have moderate correlations of 0.491 and 0.490 for the two data sets. We
also notice that HaemorrBefore is moderately correlated with HaemorrChange, with a value of
-0.443, meaning that observations with a smaller degree of skin haemorrhages before treatment
tend to have a higher positive change in skin haemorrhages after treatment. The same applies
to ScalelossBefore and ScalelossChange, which are strongly correlated, with a value of -0.614, in
the data set for change in scale loss.
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Figure 3.9: Correlations of the numeric variables in the data sets for skin haemorrhages (top) and scale
loss (bottom). Scatterplots between each pair of numeric variables are displayed on the left side of the
diagonal, while the Pearson correlation is shown on the right side. Distribution plots for the variables
are shown on the diagonal.
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(a) Change in skin haemorrhages for each de-
lousing method

(b) Change in scale loss for each delousing
method

(c) Change in skin haemorrhages for each sea-
son

(d) Change in scale loss for each season

(e) Change in skin haemorrhages against Dis-
ease

(f) Change in scale loss against Disease

Figure 3.10: Box plots of change in skin haemorrhages and scale loss against delousing method, season
and disease. The average values are shown by the black squares.

The change in skin haemorrhages plotted against the categorical variables Method, Season and
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Disease is shown in the left panels in Figure 3.10. Freshwater seems to be associated with a
smaller change in skin haemorrhages compared to the other delousing methods (Figure 3.10a).
The differences between the seasons seem to be small (Figure 3.10c), and the observations with
a PD case at the location are associated with only a slightly larger change in skin haemorrhages
(Figure 3.10e). In this data set for change in skin haemorrhages, 179 (∼ 24%) observations
belong to the PD group, of which 20 are from freshwater, 46 from Optilicer, 12 from Hydrolicer
and 101 from SkaMik.

The change in scale loss plotted against the categorical variables is shown in the right panels in
Figure 3.10. We notice that the mechanical delousing methods, i.e. Hydrolicer and SkaMik, seem
to be associated with a larger change than freshwater and Optilicer (Figure 3.10b). Hydrolicer
also seems to be related to a larger change than SkaMik. The spring and summer are associated
with a larger change in scale loss than the fall and the winter (Figure 3.10d). The observations
with a PD case at the location are associated with a slightly smaller change in scale loss than the
observations for which PD was not reported (Figure 3.10f), which seems counter-intuitive. In
this data set, 180 (∼ 24%) observations belong to the PD group, of which 20 are from freshwater,
46 from Optilicer, 12 from Hydrolicer and 102 from SkaMik. That is, relatively few observations
in this group are from Hydrolicer, which seems to be associated with the largest change in scale
loss, so this may explain the smaller change in scale loss for the PD group.

The relation between the delousing method, sea temperature and season has the same tendencies
as pointed out for the data sets for delousing effect and salmon mortality (Figure A.6, Figure
A.7 and Table B.3). The comparable GVIF for the explanatory variables in the data sets for
change in skin haemorrhages and scale loss are given in Table B.4. An interaction between
the delousing method and sea temperature has been included here as well. We notice that the
variable SeaTempSc obtain a somewhat high value of 5.80 for both data sets.
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4 Data Analysis

In this section, models are fitted for delousing effectiveness against adult female lice (delousing
effect), salmon mortality after 3 and 14 days, as well as change in skin haemorrhages and scale
loss. The analysis presented in this section was done in R, so all functions and packages referred
to throughout this section are from R. For each of the responses of interest, two different models
are fitted. First, a GLM is fitted using the function glm from the stats-package (R Core Team,
2022). In these models, only fixed effects are used, so these models are called fixed effects
models. Then a GLMM, that aims at also taking the hierarchical structure of the observations
into account, is fitted by using the function glmer or lmer from the lme4-package (Bates et al.,
2015). These models include both fixed and random effects, and are therefore referred to as
mixed effects models. For a more clear distinction between and easier referral to the models,
the abbreviations in Table 4.1 will be used in the following.

Table 4.1: Models and their abbreviations.

Model for Regression type Model abbreviation

Fixed effects DE-FE
Delousing effect

Mixed effects DE-ME

Mortality after 3 days
Fixed effects M3-FE

Mixed effects M3-ME

Fixed effects M14-FE
Mortality after 14 days

Mixed effects M14-ME

Change in skin haemorrhages
Fixed effects SH-FE

Mixed effects SH-ME

Fixed effects SL-FE
Change in scale loss

Mixed effects SL-ME

The delousing effect and mortality after 3 and 14 days are modelled with binomial models. If
only fixed effects are used, these models suffer from overdispersion, which will be pointed out in
the following presentation of the analysis. As discussed in Section 2, there are different ways of
dealing with overdispersion in binomial models. One of them is to use a quasi-binomial model in
the case of only fixed effects. Another possibility is to include random effects, where especially
the inclusion of an observation-level random effect is effective to model overdispersion. Since
it is not as straight forward to compare quasi-binomial models with models including random
effects, both a fixed effects quasi-binomial model and a mixed effects binomial model is fitted.
Thus, the results from both types of models will be presented for the delousing effect and the
mortalities.

On the other hand, the change in skin haemorrhages and scale loss are assumed to have a normal
distribution, which does not have the same limitation as the binomial distribution regarding the
estimated variance. Thus, the fixed and mixed effects linear models are more easily comparable.
The significance of the random effect will therefore be evaluated, and based on this, either a
fixed or mixed effects model will be preferred and presented.
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Model Selection

Different explanatory variables are considered in the different models, and an overview of these
are presented in Table 4.2. As mentioned, the fixed effects models use only fixed effects, while
the mixed effects models consider both fixed effects and random effects from the hierarchical
structure of the data. All the explanatory variables in Section 3.1.1, in addition to HaemorrBe-
fore and ScalelossBefore, are considered in the models for salmon mortality and change in WIs.
In the models for delousing effect, the same explanatory variables, except for Disease, Haem-
orrBefore and ScalelossBefore, are included. The mixed effects models include, in addition to
the fixed effects, random effects in the form of random intercepts. The mixed effects models
for delousing effect and salmon mortality consider random intercepts for Cage and LocNumber.
Since each observation stems from the delousing of an entire cage, the random intercept for
Cage is what we have referred to as an observation-level random effect for the binomial mixed
model. For the mixed effects models for change in WIs, however, only a random intercept for
LocNumber is included.

The models where all the corresponding variables in Table 4.2 are included will be referred to as
full models. However, a model selection may be preferred if there are insignificant explanatory
variables. For the fixed effects models, the significance of a covariate can be evaluated by
comparing the larger model including the covariate with a smaller model without it with a LR
test, which was covered in Section 2.2.6. A backward step-wise selection procedure based on the
LR test will be applied for the models. The procedure is carried out by starting with the full
model containing all explanatory variables and eliminating the variable that obtains the largest
p-value above the 0.05 significance level from the LR test. For the LR tests, we use the function
drop1 from the stats-package (R Core Team, 2022). Then, the model without the insignificant
variable is refitted and the elimination step is performed again. This process is repeated until no
more variables are considered insignificant. We emphasize that, since the delousing method used
is the variable of interest in this thesis, it will not be removed regardless. In addition, SeaTempSc
should not be removed if the interaction Method:SeaTempSc is considered significant.

When it comes to model selection for the mixed effects models, the random effects structure
will be evaluated first. The significance of the random effects are also evaluated with the LR
test, which is described in Section 2.4.8 in the context of testing random effects. This will
also be done in a backward manner, where the starting point is the full model, containing all
fixed and random effects. For testing one random intercept in the presence of another, which
applies for the models considering random intercepts for both Cage and LocNumber, there is no
known distribution for the LR test statistic, so parametric bootstrap LR tests are performed for
evaluating the significances. The function PBmodcomp from the pbkrtest-package (Halekoh and
Højsgaard, 2014) is used for this, with 1000 simulated bootstrap values. However, for testing
a single random intercept, where one compares the model with the random intercept with the
model without any random effects, the asymptotic mixture distribution of the LR statistic (see
Section 2.4.8) will be assumed. This is especially relevant for the SH-ME and SL-ME models
that only consider a random intercept for LocNumber. The AIC, where each random effect
counts as one parameter, will also be used as a supplementary measure in the evaluation of the
random effects structure. After deciding on the random effects structure, the fixed effects will
be determined. For assessing the fixed effects structure in the mixed effects models, the same
procedure as described above for the fixed effects models will be used.
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Table 4.2: Variables considered in the models.

Model Variables

DE-FE

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season

DE-ME

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season

Random intercepts: Cage, LocNumber

M3-FE

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

M3-ME

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

Random intercepts: Cage, LocNumber

M14-FE

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

M14-ME

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

Random intercepts: Cage, LocNumber

SH-FE

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

SH-ME

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

Random intercepts: LocNumber

SL-FE

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

SL-ME

Fixed effects: Method, SeaTempSc, Method:SeaTempSc, AvWeightSc, AvCrowdingSc,

BiomassSc, Season, Disease, HaemorrBefore, ScalelossBefore

Random intercepts: LocNumber
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Residuals for Fixed and Mixed Effects Models

Residuals are used for model diagnostic purposes for both fixed and mixed effects models. For
the fixed effects models, standardized residuals (see Section 2.2.7) are calculated with the func-
tion rstandard from the stats-package (R Core Team, 2022) and evaluated based on their
expected standard normal distribution. For the mixed effects models, however, we simulate
scaled residuals, as described in Section 2.4.9. To obtain these simulated residuals, the function
simulateResiduals from the DHARMa-package (Hartig, 2022) is used with m = 1000 simula-
tions for each observation. The simulations are done unconditional on the fitted random effects,
meaning that new random effects are simulated from their estimated distributions in the first
step in the procedure. It was pointed out in Section 2.4.9 that these residuals should have a
uniform distribution on the interval [0, 1].
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4.1 Delousing Effect

4.1.1 Fixed Effects Binomial Regression

In this section, the results of a model for the proportion of lice that were removed after treatment
is presented. This is a model with only fixed effects, so the hierarchical structure of the data
is not accounted for. The proportions of removed lice ȳj = (nj − CountFemalesAfterj)/nj for
each observation j, where nj = CountFemalesBeforej , were assumed to follow a scaled binomial
distribution ȳj ∼ Binomial(nj , πj)/nj , and the logistic regression model in (2.6) was fitted to
the data.

The model output from the full binomial DE-FE model fitted initially is given in Figure D.1
in Appendix D. The summary gives the estimated regression coefficients with corresponding
standard errors, t values and p-values. The Pearson statistic is found to be P = 1736.387 and
should have an asymptotic χ2

808-distribution. Further, the estimated overdispersion parameter
is ϕ̂P = 2.149. To find out if the overdispersion is significant, the p-value is calculated and found
to be ∼ 7.28 · 10−70, so the variability in the data is significantly greater than the variability
assumed by the binomial model. As pointed out in Section 2.2.5, this may lead to deflated
standard errors, and as a result, significance tests for the regression coefficients may become
unreliable.

To avoid overly significant coefficients, a quasi-binomial model is fitted instead. All explanatory
variables to be considered are included initially, and the resulting model output for the full quasi-
binomial model is given in Figure D.2. As expected, the coefficient estimates remain the same,
but the standard errors have increased for all the coefficients, resulting in increased p-values. In
particular, we observe that the standard errors for all coefficients are relatively equally inflated
with a factor of ϕ̂1/2 compared to the full binomial model in Figure D.1. By performing Wald
tests for each numerical and categorical variable for the full quasi-binomial model, the variables
SeaTempSc, AvCrowdingSc, BiomassSc and Season with p-values 0.133, 0.087, 0.580 and 0.061,
respectively, were considered insignificant at the 0.05 significance level.

A backward stepwise selection procedure based on the LR test was then applied to reduce the
model. Table 4.3 shows the variables removed at each step in order in a top-down manner.
The procedure begins with the full model, and in the first step, the model without BiomassSc
obtains the largest p-value from the LR test. Hence, this is the first variable to be removed.
Thereafter, Season obtained the largest p-value above the 0.05 level. However, the p-value was
only 0.067 which is not that large. Wald tests were also computed for each of the variables at
this step, and they supported the conclusion from the LR test, so Season was removed. In the
last step, AvCrowding was eliminated since it obtained a p-value of 0.076 from the LR test, a
conclusion which was also supported by the calculation of Wald tests at this step. We notice
that the step-wise elimination removed all the variables that were considered insignificant in
the initial full model by the Wald tests, except for SeaTempSc which was included since its
interaction with delousing method was significant.
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Table 4.3: Results from the LR tests for the quasi-binomial DE-FE model. The dropped terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Deviance Scaled deviance difference Pr(>Chi)

None (full model) 1790.6

BiomassSc 1 1791.2 0.3062 0.580

Season 3 1806.6 7.1646 0.067

AvCrowdingSc 1 1813.4 3.1533 0.076

The model selection resulted in the reduced model

log
( π̂j
1− π̂j

)
= η̂j

= β̂0 + β̂1 ·MethodFreshwaterj + β̂2 ·MethodHydrolicerj + β̂3 ·MethodOptilicerj

+ β̂4 · SeaTempScj + β̂5 ·AvWeightScj + β̂6 ·MethodFreshwater:SeaTempScj

+ β̂7 ·MethodHydrolicer:SeaTempScj + β̂8 ·MethodOptilicer:SeaTempScj ,
(4.1)

where the estimated coefficients are given in Table 4.4, and the full model output is given in
Figure D.3. Note that MethodSkaMik is used as the reference category. In this model, π̂j is
the estimated probability of removal of a louse, and the estimated odds for removing a louse is
π̂j

1−π̂j
= exp (η̂j). A high probability of removal means that the delousing effect is good, and a

higher probability π̂j corresponds to a larger value for the odds. Hence, larger positive values of
the coefficients means that the associated delousing effect is better. For SkaMik the estimated
coefficient for SeaTempSc has a value of β̂4 ≈ 0.19. For Hydrolicer, the estimated coefficient
for SeaTempSc is β̂4 + β̂7 = 0.1903 − 0.0091 ≈ 0.18. This means that a better delousing effect
is associated with higher sea temperatures for these two methods. The estimated coefficients
for SeaTempSc for freshwater and optilicer are -0.09 and -0.12, respectively. These values are
negative, which implies that a better delousing effect is associated with lower sea temperatures.

Table 4.4: Model summary for the reduced quasi-binomial DE-FE model. Estimated coefficients with
corresponding standard error, t value and p-value are given. MethodSkamik is used as reference category.

Coefficient Estimate Standard error t value p-value

Intercept 1.3869 0.0474 32.45 < 2 · 10−16

MethodFreshwater -0.6918 0.0876 -7.90 9.12 · 10−15

MethodHydrolicer 0.2946 0.0894 3.30 1.03 · 10−3

MethodOptilicer -0.1350 0.0957 -1.41 0.159

SeaTempSc 0.1903 0.0546 3.49 5.14 · 10−4

AvWeightSc 0.1494 0.0275 5.42 7.73 · 10−8

MethodFreshwater:SeaTempSc -0.2848 0.0874 -3.26 1.17 · 10−3

MethodHydrolicer:SeaTempSc -0.0091 0.1125 -0.08 0.936

MethodOptilicer:SeaTempSc -0.3106 0.0828 -3.75 1.87 · 10−4

Dispersion parameter taken to be 2.169

When interpreting the results it is important to keep in mind that the model was fitted with
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the average sea temperature of 11.7°C as the intercept value. This was due to the centering of
the variable SeaTemp, where the average temperature of 11.7°C was subtracted in the centering
and scaling procedure, resulting in the transformed variable SeaTempSc. This means that the
temperature 11.7°C for SeaTemp corresponds to the value 0 for SeaTempSc. The centering and
scaling procedure and the effects on the regression coefficients is covered in Section 2.7.1.

Since the estimated coefficient for SeaTempSc is different for the different delousing methods,
the estimated coefficients for the delousing methods in Table 4.4 give information about how the
different delousing methods perform in comparison to one another for SeaTempSc = 0 (corres-
ponding to SeaTemp = 11.7°C). Looking at the estimated coefficients for the delousing methods,
Hydrolicer seems to have the best delousing effect, followed by SkaMik and Optilicer, whereas
freshwater is associated with the least effect of the methods for a sea temperature of 11.7°C.
From the p-values in Table 4.4, both freshwater and Hydrolicer have a significantly different
effect than SkaMik, but Optilicer is not considered significantly different from SkaMik. Some
additional Wald tests were performed to compare the effects of the different delousing meth-
ods, and these are given in Table 4.5 for the intercept temperature of 11.7°C. Not surprisingly,
Hydrolicer is significantly different from freshwater and Optilicer. Additionally, freshwater is
significantly different from Optilicer.

Table 4.5: Results from additional Wald tests from the reduced quasi-binomial DE-FE model. The
tests are done for two models fitted with the same covariates, but with two different sea temperatures
defined as intercept values.

Sea temperature

as intercept
Null hypothesis df Wald statistic p-value

11.7°C
βMethodOptilicer = βMethodHydrolicer 1 13.714 2.13 · 10−4

βMethodOptilicer = βMethodFreshwater 1 23.942 9.93 · 10−7

βMethodFreshwater = βMethodHydrolicer 1 80.802 2.49 · 10−19

7°C

βMethodOptilicer = βMethodHydrolicer 1 1.319 0.997

βMethodOptilicer = βMethodFreshwater 1 19.750 8.82 · 10−6

βMethodFreshwater = βMethodHydrolicer 1 7.315 6.84 · 10−3

βMethodFreshwater = 0 1 4.060 0.044

βMethodHydrolicer = 0 1 1.921 0.166

βMethodOptilicer = 0 1 5.190 0.023

The performance of the different delousing methods for different sea temperatures according to
the fitted model is illustrated in Figure 4.1. From the estimated coefficients in Table 4.4 for the
model (4.1), only the part of the linear predictor that varies for the different delousing methods
is plotted as a function of the untransformed sea temperature. That is, for each delousing
method X we have plotted β̂MethodX + (β̂SeaTempSc + β̂MethodX:SeaTempSc) · SeaTempSc against
the corresponding values of SeaTemp. For SkaMik, which is used as the reference category,
β̂SeaTempSc · SeaTempSc is plotted. Note that at the sea temperature 11.7°C, marked by the
second vertical dotted line, SkaMik attains the value 0. In addition, we emphasize that the lines
for each of the delousing methods are plotted only for sea temperatures within the range of the
observations for that particular method.
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Figure 4.1: Illustration of the difference in the estimated linear predictor (from the reduced quasi-
binomial DE-FE model) for the different delousing methods at different sea temperatures. For each

delousing method X we have plotted β̂MethodX+(β̂SeaTempSc+ β̂MethodX:SeaTempSc) ·SeaTempSc against

the corresponding sea temperature. For SkaMik, β̂SeaTempSc · SeaTempSc is plotted. Note that these
are plotted only for sea temperatures within the range of the observations for each of the methods. The
dotted lines mark the temperatures 7°C and 11.7°C (intercept value in the fitted model).

The important aspect of this plot is not the values at the different sea temperatures, but rather
the difference between the values for the delousing methods at different sea temperatures, since
it is preferable to use the best method. For higher temperatures than 11.7°C, the differences
between freshwater and Optilicer compared to the mechanical delousing methods seem to in-
crease. For lower temperatures, however, the differences between freshwater and Optilicer com-
pared to the mechanical methods decrease. It is therefore of interest to do significance tests at
a lower temperature as well. The temperature 7°C is chosen, and we fit the same model with
this as the intercept value for the sea temperature. This results in the model output in Figure
D.4, where we observe that the estimated coefficients for the intercept and the delousing meth-
ods have changed. In addition, the standard errors have increased for these coefficients, likely
because there are fewer observations with lower temperatures. Although the coefficient values
have changed, the differences between the estimated coefficients for the delousing methods re-
main the same as the differences observed in Figure 4.1 for the temperature 7°C, marked by the
first dotted vertical line. At this temperature, Hydrolicer and Optilicer are considered to have
best delousing effect and have almost the same estimated coefficients. Freshwater, on the other
hand, is considered to have the lowest delousing effect. Wald tests are performed again for this
model, and these are given in Table 4.5 for the sea temperature 7°C. From these tests, freshwater
and Optilicer are considered significantly different from SkaMik, but Hydrolicer is not. The fact
that Optilicer is significantly different from SkaMik, but Hydrolicer is not, although they have
almost the same estimated coefficient is likely due to the fact that Optilicer have more obser-
vations around this temperature, which may result in less uncertainty. Additionally, Optilicer
and Hydrolicer are significantly different from freshwater, but Optilicer and Hydrolicer are not
significantly different.

In Figure 4.2, the standardized deviance residuals are plotted against the fitted values and the
theoretical quantiles of the normal distribution. Looking at the plot against fitted values, there
does not appear to be any obvious pattern in the residuals, but there are some residuals with
quite large absolute values. In addition, it may seem like freshwater has more large residuals
compared to the other methods, even though it is one of the methods with fewer observations.
From the plot against the theoretical quantiles of the normal distribution, the residuals seem
to follow the dotted line quite well, indicating a standard normal distribution. However, there
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seem to be some larger values in the tails than what is expected. Observations with standard-
ized deviance residuals larger than 3 in absolute value were inspected to detect any irregular
observations. There were found six observations with residuals values smaller than -3. These
were from 4 treatments with freshwater and 2 with SkaMik. They all had very small registered
proportions of removed lice. Specifically, five of them had a proportion of 0 and the last one
had a proportion of 0.067. There were three observations with residual values greater than 3,
which were from freshwater, Optilicer and SkaMik. These had quite large registered proportions
of removed lice of 0.959, 0.988 and 0.972. In addition, they had quite high values of CountFe-
malesBefore of 170, 80 and 108. However, this was not considered evidence enough to exclude
any of the observations.

Figure 4.2: Model diagnostic plots for the reduced quasi-binomial DE-FE model. Standardized deviance
residuals plotted against fitted values and the theoretical quantiles of the normal distribution.

4.1.2 Mixed Effects Binomial Regression

A model for the proportion of lice that were removed after treatment that also takes the hierarch-
ical structure of the data into account was also fitted. In the following, all individual binomial
observations are indexed by ij, and these represent observations from different cages, indexed
by j, nested within different locations, indexed by i. The proportions of removed lice ȳij =
(nij − CountFemalesAfterij)/nij for each observation ij, where nij = CountFemalesBeforeij ,
were assumed to have a conditional scaled binomial distribution ȳij ∼ Binomial(nij , πij)/nij

given the random effects. The logistic mixed-effect model in (2.27), with random intercepts for
Cage and LocNumber in addition to the fixed effects, was initially fitted to the data. The random
intercept for Cage on the binomial observation-level is then an observation-level random effect.
The fitting of the model is done using the Laplace approximation (corresponding to nAGQ =
1 adaptive quadrature point) since the adaptive Gaussian quadrature with more quadrature
points is not implemented for models with more than one random effect for the function glmer.

This resulted in the full model in Figure D.5, where the estimated variance for the random
intercepts for Cage and LocNumber is 0.3167 and 0.0089, respectively. We also observe that the
standard errors of the fixed effects coefficients have increased compared to the full binomial fixed
effects model in Figure D.1. However, in contrast to the quasi-binomial model, the standard

51



errors are not inflated by the same factor.

The estimated variance for the intercept for LocNumber is rather small compared to Cage in
the full DE-ME model. In any case, the random effects structure is decided with a backward
step-wise elimination based on likelihood ratio tests. A parametric bootstrap likelihood ratio
test is performed to test the null hypothesis that the variance of the intercept for LocNumber
is zero in the presence of a random intercept for Cage. As mentioned, the test is performed
using the PBmodcomp-function from the package pbkrtest (Halekoh and Højsgaard, 2014), with
1000 simulated bootstrap values. This results in a p-value of 0.0360. A similar test is also
performed for the variance of the intercept for Cage in the presence of random intercept for
LocNumber, which gives a p-value of 0.0029. Since both p-values are smaller than the chosen
significance level 0.05, the null hypotheses are rejected and both random effects are considered
significant. Additionally, the smaller models without Cage and LocNumber obtained AIC values
of 3984.8 and 3662.5, respectively. The full model obtained a value of 3663.4, which was slightly
larger than for the model without LocNumber. Since the random intercept for LocNumber was
considred significant by the parametric bootstrap LR test and the difference in the AIC between
the full model and the model without LocNumber was relatively small, both random effects were
included.

After deciding the random effects structure, the fixed effects structure was decided by a backward
stepwise elimination based on the LR test, and the results are shown in Table B.5. Both
BiomassSc and AvCrowdingSc were removed from the model, since their contributions to the
model fit were considered insignificant. The model selection procedure resulted in the reduced
model

log
( π̂ij
1− π̂ij

)
= η̂ij

= (β̂0 + γ̂0i + γ̂0ij) + β̂1 ·MethodFreshwaterij + β̂2 ·MethodHydrolicerij

+ β̂3 ·MethodOptilicerij + β̂4 · SeaTempScij + β̂5 ·AvWeightScij

+ β̂6 · SeasonFallij + β̂7 · SeasonSpringij + β̂8 · SeasonWinterij

+ β̂9 ·MethodFreshwater:SeaTempScij + β̂10 ·MethodHydrolicer:SeaTempScij

+ β̂11 ·MethodOptilicer:SeaTempScij ,
(4.2)

conditional on the random effects. The estimated fixed effects coefficients are given in Table 4.6.
In this model for delousing effect, the interaction between delousing method and sea temperature
was also considered significant. The estimated coefficient for SeaTempSc for SkaMik, Hydrolicer,
Optilicer and freshwater was 0.04, 0.03, -0.22 and -0.33, respectively. The expected difference in
the log odds (or the linear predictor) in (4.2) for the different delousing methods for different sea
temperatures is illustrated in Figure 4.3. For the sea temperature 11.7°C (marked by the second
dotted line), we notice that Hydrolicer is associated with the highest delousing effect, followed by
SkaMik and Optilicer, while freshwater is associated with the least effect. For inference about
the difference in delousing effect for a sea temperature of 11.7°C, t-tests and Wald tests are
performed. Based on the p-values in Table 4.6 and the additional Wald tests in Table 4.7, all
methods are considered significantly different for this sea temperature, except for the difference
between Optilicer and SkaMik. This is the same conclusion as obtained by the reduced DE-FE
model.

For the sea temperature 7°C, marked by the first dotted line in Figure 4.3, we observe that
Optilicer is associated with the best delousing effect, followed by Hydrolicer, SkaMik and then
freshwater. For inference about the differences for this temperature, the model (4.2) was fitted
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with a sea temperature of 7°C as the intercept value instead. Wald tests were then performed,
and they are given in Table 4.7. The results show that freshwater is considered significantly
different from the three other delousing methods for the sea temperature 7°C, but there is no
significant difference between Optilicer, Hydrolicer and SkaMik. The conclusions from the DE-
FE model only differs from the DE-ME model in that Optilicer was considered significantly
different from SkaMik.

Table 4.6: Model summary for the reduced DE-ME model. Estimated coefficients with corresponding
standard error, t value and p-value are given. MethodSkamik and SeasonSummer are used as reference
categories.

Coefficient Estimate Standard error t value p-value

Intercept 1.6439 0.0722 22.78 < 2 · 10−16

MethodFreshwater -0.8496 0.1073 -7.92 9.12 · 10−15

MethodHydrolicer 0.1823 0.0974 1.87 0.061

MethodOptilicer -0.1352 0.1199 -1.13 0.259

SeaTempSc 0.0428 0.0729 0.59 0.558

AvWeightSc 0.1064 0.0351 3.04 2.40 · 10−3

SeasonFall -0.3269 0.0867 -3.77 1.62 · 10−4

SeasonSpring -0.3339 0.1802 -1.85 0.064

SeasonWinter -0.4938 0.1631 -3.03 2.46 · 10−3

MethodFreshwater:SeaTempSc -0.3699 0.1028 -3.599 3.20 · 10−4

MethodHydrolicer:SeaTempSc -0.0102 0.1115 -0.09 0.927

MethodOptilicer:SeaTempSc -0.2602 0.1010 -2.58 9.99 · 10−3

Estimated variance

Cage (Intercept): 0.3175

LocNumber (Intercept): 0.0096

Figure 4.3: Illustration of the difference in the estimated linear predictor (from the reduced DE-ME
model) for the different delousing methods at different sea temperatures. For each delousing method X

we have plotted β̂MethodX + (β̂SeaTempSc + β̂MethodX:SeaTempSc) · SeaTempSc against the corresponding

sea temperature. For SkaMik, β̂SeaTempSc · SeaTempSc is plotted. Note that these are plotted only for
sea temperatures within the range of the observations for each of the methods. The dotted lines mark
the temperatures 7°C and 11.7°C (intercept value in the fitted model).
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Table 4.7: Additional Wald tests from the reduced DE-ME model. The tests are done for two models
fitted with the same variables, but with two different sea temperatures defined as intercept values.

Sea temperature

as intercept
Null hypothesis df Wald statistic p-value

11.7°C
βMethodOptilicer = βMethodHydrolicer 1 5.326 0.021

βMethodOptilicer = βMethodFreshwater 1 25.848 3.69 · 10−7

βMethodFreshwater = βMethodHydrolicer 1 68.184 1.49 · 10−16

7°C

βMethodOptilicer = βMethodHydrolicer 1 0.032 0.859

βMethodOptilicer = βMethodFreshwater 1 16.093 6.03 · 10−5

βMethodFreshwater = βMethodHydrolicer 1 5.502 0.019

βMethodFreshwater = 0 1 4.105 0.043

βMethodHydrolicer = 0 1 0.764 0.382

βMethodOptilicer = 0 1 2.462 0.117

(a) Simulated residuals against predicted values.

(b) Simulated residuals against the theoretical
quantiles of the uniform distribution.

(c) Distribution of simulated residuals. The
blue line indicates the uniform distribution.

Figure 4.4: Model diagnostic plots for the reduced DE-ME model.
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In Figure 4.4a, the simulated residuals for the DE-ME model are plotted against predicted values
(i.e. the predictions based on fixed effects only). Since the simulated residuals theoretically
should have a uniform distribution if the model is correct, we look at the distribution in the y-
direction. The distribution seems to be quite even. However, it may seem like SkaMik, Hydrolicer
and Optilicer have slightly more residuals centered around 0.5, while freshwater seems to have
less residuals in the middle. This is further confirmed by the box plot of simulated residuals for
each delousing method in Figure A.8, where we observe that the interquartile range is smaller
than 0.5 for SkaMik, Hydrolicer and Optilicer, but larger than 0.5 for freshwater. The simulated
residuals are plotted against the theoretical quantiles of the uniform distribution, shown in
Figure 4.4b. The plot shows a slightly inverted s-shape when compared to the dotted line that
shows the expected relation. The distribution of the simulated residuals is further shown in
Figure 4.4c. The blue line indicates the uniform distribution, and we observe that there are
more residuals in the middle and fewer in the extremes compared to the uniform distribution.

(a) Quantile plot for fitted random inter-
cepts for Cage.

(b) Quantile plot for fitted random inter-
cepts for LocNumber.

(c) Density plot of fitted random intercepts for Cage for each
delousing method.

Figure 4.5: Model diagnostic plots for the reduced DE-ME model. (a)-(b): Fitted random inter-
cepts for Cage and LocNumber plotted against the theoretical quantiles of the normal distribution. The
straight dotted lines indicate the expected distribution based on the estimated variances σ̂2

2 and σ̂2
1 . (c):

Distribution of the fitted random intercepts for Cage for each delousing method. The blue lines indicate
the expected distribution based on the estimated variance σ̂2

2 .

The random intercepts γ0i and γ0ij were assumed to be normally distributed with mean 0 and
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variance σ2
1 and σ2

2, respectively. The fitted random intercepts for Cage and LocNumber are
plotted against the theoretical quantiles of the normal distribution, shown in Figure 4.5a and
Figure 4.5b, where the expected relations (based on the estimated variances) are shown by the
straight dotted lines. The plots seem to indicate that the fitted random intercepts have smaller
variance than what is expected. Since the simulated residuals seemed to be slightly different for
freshwater, the distribution of the fitted observation-level random effects (i.e. the fitted random
intercepts for Cage) is plotted for each delousing method. This is shown in Figure 4.5c, where
the blue lines indicate the expected distribution based on the estimated variance σ̂2

2. We notice
that the distribution for freshwater is closest to the expected, and it has some large values in the
tails. As opposed to this, the distributions for the other delousing methods are more peaked in
the middle and have smaller tails compared to the expectation. It seems like freshwater obtains
more of the larger fitted values for the random intercept for Cage compared to the other three
delousing methods. Thus, one may suspect that the estimated variance σ̂2

2 is higher due to
more variable observations for freshwater, and this would explain the pattern in the simulated
residuals.
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4.2 Salmon Mortality 3 Days Post-Treatment

4.2.1 Fixed Effects Binomial Regression

In this section, a fixed-effects model for the salmon mortality three days after delousing treat-
ment is presented. The proportions of dead salmon ȳj = NumDeaths3/nj for each obser-
vation j, where nj = NumBeforej , were assumed to follow a scaled binomial distribution
ȳj ∼ Binomial(nj , πj)/nj , and the logistic regression model in (2.6) was fitted to the data.

The estimated overdispersion parameter for the full M3-FE model was ϕ̂P = 603.0, and, not
surprisingly, it was found to be highly significant. Hence, a quasi-binomial model was fitted
instead, given in Figure D.6. Many of the explanatory variables were not considered significant
then, so a backward step-wise model selection based on the LR test was applied. The variables
listed in Table B.6 were sequentially dropped, so only the variables Method, AvWeightSc, Season
and HaemorrBefore were considered significant and were included in the final model.

Specifically, the model selection resulted in the reduced model

log
( π̂j
1− π̂j

)
= η̂j

= β̂0 + β̂1 ·MethodFreshwaterj + β̂2 ·MethodHydrolicerj

+ β̂3 ·MethodOptilicerj + β̂4 ·AvWeightScj + β̂5 · SeasonFallj
+ β̂6 · SeasonSpringj + β̂7 · SeasonWinterj + β̂8 ·HaemorrBeforej ,

(4.3)

where the estimated cofficients are given in Table 4.8. The estimated mortality rate is given by
π̂j for this model.

Table 4.8: Model summary for the reduced quasi-binomial M3-FE model. Estimated coefficients with
corresponding standard error, t value and p-value are given. MethodSkamik and SeasonSummer are used
as reference categories.

Coefficient Estimate Standard error t value p-value

Intercept -5.8805 0.0879 -66.91 < 2 · 10−16

MethodFreshwater -0.0568 0.1627 -0.35 0.727

MethodHydrolicer 0.2780 0.1058 2.63 8.76 · 10−3

MethodOptilicer 0.6061 0.1427 4.25 2.44 · 10−5

AvWeightSc 0.1086 0.0550 1.98 0.049

SeasonFall 0.2250 0.1073 2.10 0.036

SeasonSpring -0.1666 0.1504 -1.11 0.268

SeasonWinter 0.2186 0.1403 1.56 0.120

HaemorrBefore 0.2419 0.0902 2.68 7.51 · 10−3

Dispersion parameter taken to be 612.1

From (4.3) it can be seen that larger and positive coefficients mean that the expected mortality
rate is higher. Based on the estimated coefficients for the delousing methods in Table 4.8,
Optilicer is associated with the highest mortality, followed by Hydrolicer, SkaMik and freshwater.
Compared to SkaMik, the odds for mortality is expected to decrease with a factor of exp(β̂1) =
exp(−0.0568) ≈ 0.94 if freshwater is used instead and the other variables are the same. If
Optilicer and Hydrolicer are used, the odds for mortality is expected to increase with factors
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exp(0.6061) ≈ 1.83 and exp(0.2780) ≈ 1.32, respectively, when compared to SkaMik. Based
on the t-tests in Table 4.8 and the additional Wald tests in Table 4.9, the differences between
all delousing methods are considered significant at the 0.05 significance level, except for the
difference between freshwater and SkaMik.

Table 4.9: Results from additional Wald tests from the reduced quasi-binomial M3-FE model.

Null hypothesis df Wald statistic p-value

βMethodOptilicer = βMethodHydrolicer 1 4.554 0.033

βMethodOptilicer = βMethodFreshwater 1 16.057 6.15 · 10−5

βMethodFreshwater = βMethodHydrolicer 1 3.940 0.047

The standardized deviance residuals from the M3-FE model are plotted against the fitted values
and the theoretical quantiles of the normal distribution in Figure 4.6. The residuals may seem
to have somewhat smaller variance for the smaller fitted values. In addition, there seems to
be more large positive than negative residuals, but more small negative than positive residuals.
In the quantile plot, we observe that the residuals deviate quite strongly from the standard
normal distribution. It is more apparent in Figure A.9 that the distribution of the residuals is
right skewed, with median and mean values of -0.29 and -0.12, respectively, shown by the brown
and purple dashed lines. Furthermore, the distribution of the residuals shows signs of having
smaller variance compared to the standard normal distribution. The deviating distribution may
be explained by the fact that the observed mortality rates are very close to zero, which makes
deviations towards zero relatively limited, but not in the opposite direction. This would explain
why there are more small negative residuals and more large positive residuals.

Figure 4.6: Model diagnostics for the reduced quasi-binomial M3-FE model. Standardized deviance
residuals plotted against fitted values and the theoretical quantiles of the normal distribution. The dotted
line in the quantile plot indicates the standard normal distribtution.
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4.2.2 Mixed Effects Binomial Regression

A model for the mortality rate that also considers random intercepts for Cage and LocNumber
was then fitted. The individual binomial observations are indexed by ij, where the index j rep-
resent observations from different cages that are nested within different locations, indexed by i.
The proportions of dead salmon after 3 days ȳij = NumDeaths3ij/nij , where nij = NumBeforeij ,
were assumed to have a conditional scaled binomial distribution ȳij ∼ Binomial(nij , πij)/nij

given the random effects.

The full M3-ME model was fitted according to (2.27) and the model output is given in Figure
D.7. The significance of the random effects was evaluated with parametric bootstrap likelihood
ratio tests by comparing the smaller models with the full model. This resulted in p-values
of 0.0031 and 0.0026 for Cage and LocNumber, respectively. In addition, the smaller models
without Cage and LocNumber obtained AIC values of 247698 and 10554, while the full model
had a value 10429, which was the smallest. Hence, both random intercepts were included in
the model, and the fixed effects structure was then decided by a backward step-wise elimination
based on the LR test. Only ScalelossBefore and HaemorrBefore were considered insignificant
(Table B.7), and were therefore eliminated from the model. This resulted in the model

log
( π̂ij
1− π̂ij

)
= η̂ij

= (β̂0 + γ̂0i + γ̂0ij) + β̂1 ·MethodFreshwaterij + β̂2 ·MethodHydrolicerij

+ β̂3 ·MethodOptilicerij + β̂4 · SeaTempScij + β̂5 ·AvCrowdingScij
+ β̂6 ·AvWeightScij + β̂7 · BiomassScij + β̂8 · SeasonSpringij
+ β̂9 · SeasonFallij + β̂10 · SeasonWinterij + β̂11 ·DiseasePDij

+ β̂12 ·MethodFreshwater:SeaTempScij + β̂13 ·MethodHydrolicer:SeaTempScij

+ β̂14 ·MethodOptilicer:SeaTempScij ,
(4.4)

conditional on the random effects. The estimated coefficients are given in Table 4.10. The
estimated variance is σ̂2

1 = 0.29 for LocNumber and σ̂2
2 = 0.73 for Cage. The interaction between

delousing method and sea temperature was significant, and thus included in this model. The
estimated slope for SeaTempSc was 0.11, -0.06, -0.28 and 0.08 for SkaMik, Hydrolicer, Optilicer
and freshwater, respectively. A higher value for the slope means that the delousing method is
associated with a higher mortality for higher temperatures. The slope for Optilicer is significantly
different from those of SkaMik and freshwater.

It is a little surprising that Optilicer has a negative slope. However, it should be noted that
only 25% of the observations from Optilicer have SeaTemp > 7.4° C, which also could explain
why the estimated coefficient β̂14 has the largest estimated standard error compared to the
other estimated slope parameters for SeaTempSc. In addition to the scarce data for Optilicer
for higher sea temperatures, another possible explanation for this unexpected result is that the
industry may be particularly careful when using Optilicer when the sea temperature is high,
since they then have to use higher temperatures for the treatment water to obtain a good
delousing effect. The industry may be inclined to reduce the use of Optilicer for bigger fish
or fish with poor health when the sea temperature is high. The data was therefore inspected,
and the observations from delousing operations using Optilicer for sea temperatures less than
or equal to 7.4°C had a mean of 3.0 kg for AvWeight. However, for observations where Optilicer
had been used for sea temperatures greater than 7.4°C, AvWeight had a mean of 2.1 kg. For
the observations with SeaTemp > 10°C, the mean of was even smaller, with a value of 1.86 kg.
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The correlation between AvWeightSc and SeaTempSc was calculated and found to be -0.435
for the observations for Optilicer, so the sea temperature and average weight may be somewhat
confounded for Optilicer.

Table 4.10: Model summary for the reduced M3-ME model. Estimated coefficients with corresponding
standard error, t value and p-value are given. MethodSkamik and SeasonSummer are used as reference
categories.

Coefficient Estimate Standard error t value p-value

Intercept -6.5154 0.1315 -49.56 < 2 · 10−16

MethodFreshwater 0.1785 0.1465 1.22 0.223

MethodHydrolicer 0.5544 0.1151 4.82 1.45 · 10−6

MethodOptilicer 0.3553 0.1818 1.96 0.051

SeaTempSc 0.1096 0.0822 1.33 0.1824

AvCrowdingSc 0.0865 0.0385 2.24 0.025

AvWeightSc 0.2733 0.0623 4.39 1.14 · 10−5

BiomassSc -0.1299 0.0575 -2.26 0.024

SeasonSpring -0.0746 0.1903 -0.39 0.695

SeasonFall -0.0027 0.1164 -0.023 0.982

SeasonWinter 0.4339 0.2069 2.10 0.036

DiseasePD 0.3610 0.1207 2.991 2.78 · 10−3

MethodFreshwater:SeaTempSc -0.0323 0.1184 -0.27 0.785

MethodHydrolicer:SeaTempSc -0.1661 0.1221 -1.36 0.174

MethodOptilicer:SeaTempSc -0.3854 0.1448 -2.66 7.78 · 10−3

Estimated variance

Cage (Intercept): 0.7300

LocNumber (Intercept): 0.2885

The difference in the linear predictor in (4.4) between the different delousing methods for differ-
ent sea temperatures is illustrated in Figure 4.7. For a sea temperature of 11.7°C, Hydrolicer is
associated with the highest mortality, followed by Optilicer, freshwater and SkaMik. From the
t-tests in Table 4.10 and the additional Wald tests in Table 4.11 the only significant differences
is between Hydrolicer, which is significantly different from freshwater and SkaMik at a 0.05 sig-
nificance level. The difference between Optilicer and SkaMik has a significance level just above
this, with a p-value of 0.051.

For a sea temperature of 7°C, Optilicer is associated with the highest mortality, followed by
Hydrolicer, freshwater and SkaMik, as can be seen in Figure 4.7. Both Optilicer and Hydrolicer
are significantly different from both freshwater and SkaMik for this temperature.
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Figure 4.7: Illustration of the difference in the estimated linear predictor (from the reduced M3-ME
model) for the different delousing methods at different sea temperatures. For each delousing method X

we have plotted β̂MethodX + (β̂SeaTempSc + β̂MethodX:SeaTempSc) · SeaTempSc against the corresponding

sea temperature. For SkaMik, β̂SeaTempSc · SeaTempSc is plotted. Note that these are plotted only for
sea temperatures within the range of the observations for each of the methods. The dotted lines mark
the temperatures 7°C and 11.7°C (intercept value in the fitted model).

Table 4.11: Results from additional Wald tests from the reduced M3-ME model. The tests are done for
two models fitted with the same variables, but with two different sea temperatures defined as intercept
values.

Sea temperature

as intercept
Null hypothesis df Wald statistic p-value

11.7°C
βMethodOptilicer = βMethodHydrolicer 1 0.997 0.325

βMethodOptilicer = βMethodFreshwater 1 0.697 0.404

βMethodFreshwater = βMethodHydrolicer 1 5.588 0.018

7°C

βMethodOptilicer = βMethodHydrolicer 1 0.216 0.642

βMethodOptilicer = βMethodFreshwater 1 14.805 1.19 · 10−4

βMethodFreshwater = βMethodHydrolicer 1 5.076 0.024

βMethodFreshwater = 0 1 1.230 0.268

βMethodHydrolicer = 0 1 10.813 1.01 · 10−3

βMethodOptilicer = 0 1 25.824 3.74 · 10−7

The simulated residuals for the M3-ME model are plotted against predicted values, shown in
Figure 4.8a. It seems like there is a somewhat uneven distribution in the y-direction, with more
residuals with larger values. This is especially evident for SkaMik, which is more apparent in
Figure A.10. We observe that SkaMik has a residual mean that is a little higher than for the
other methods. Thus, it is possible that the model may underestimate the mortality for SkaMik
more than for the other delousing methods.

We also notice from the plot against predicted values that there are some observations from
freshwater with high predicted values and small residuals with quite similar values. The residuals
with predicted values larger than 0.01 all stem from observations from the same location, where
freshwater was used. In addition, they have an unusual high weight in the range 10.7-11.3 kg,
as well as quite similar covariate values, and mortality rates in the range 0.0034-0.0088.
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In Figure 4.8b, the simulated residuals are plotted against the theoretical quantiles of the uniform
distribution, and there is some deviation from the expectation (shown by the dotted line). From
the distribution plot in Figure 4.8c, we see that there are more residuals with values from around
0.45 to 1 than expected for the uniform distribution, indicated by the blue line.

(a) Simulated residuals against predicted values.

(b) Simulated residuals against the theoretical
quantiles of the uniform distribution.

(c) Distribution of simulated residuals. The
blue line indicates the uniform distribution.

Figure 4.8: Model diagnostic plots for the reduced M3-ME model.

The fitted random intercepts for Cage and LocNumber are plotted against the theoretical
quantiles of the normal distribution, shown in Figure 4.9a and Figure 4.9b, respectively. The
straight dotted lines indicate the expected relations based on the estimated variances σ̂2

2 and
σ̂2
1. The fitted random effects seem to follow the expected lines quite well. In addition, the dis-

tribution of the fitted random intercepts for Cage is plotted for each delousing method, shown
in Figure 4.9c. There does not seem to be any large deviations from the expected distribution
and the distributions for the delousing methods do not seem to be too different.
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(a) Quantile plot for fitted random inter-
cepts for Cage.

(b) Quantile plot for fitted random inter-
cepts for LocNumber.

(c) Density plot of fitted random intercepts for Cage for each
delousing method.

Figure 4.9: Model diagnostic plots for the reduced M3-ME model. (a)-(b): Fitted random inter-
cepts for Cage and LocNumber plotted against the theoretical quantiles of the normal distribution. The
straight dotted lines indicate the expected distribution based on the estimated variances σ̂2

2 and σ̂2
1 . (c):

Distribution of the fitted random intercepts for Cage for each delousing method. The blue lines indicate
the expected distribution based on the estimated variance σ̂2

2 .
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4.3 Salmon Mortality 14 Days Post-Treatment

4.3.1 Fixed Effects Binomial Regression

Similar to the M3-FE model presented in Section 4.2.1, a fixed-effects model was fitted for the
proportion of dead salmon 14 days after delousing treatment. Since the overdispersion was
highly significant for this as well, a quasi-binomial model was fitted. The full quasi-binomial
M14-FE model is given in Figure D.8. Many of the explanatory variables were then considered
insignificant, so the model was reduced with a backward step-wise elimination based on the
LR test. The dropped terms in each of the steps are given in Table B.8, and only Method,
AvCrowdingSc and HaemorrBefore were considered significant. This resulted in the model in
Figure D.9, with estimated overdispersion parameter ϕ̂ = 1433, which is even higher than for
the M3-FE model.

According to the model, Optilicer is associated with the highest mortality, followed by SkaMik,
Hydrolicer and Freshwater. Based on the t-tests in Figure D.9 and the Wald tests in Table B.9,
the delousing methods are considered to have different effects, except for Hydrolicer, which is
not significantly different from SkaMik or freshwater.

The standardized deviance residuals are plotted against the fitted values and theoretical quantiles
of the normal distribution, shown in Figure A.11. The residuals exhibit quite similar patterns
as the residuals from the M3-FE model.

4.3.2 Mixed Effects Binomial Regression

Similar to the M3-ME model, a mixed-effects model for the proportion of dead salmon after 14
days was also fitted. The full model was initially fitted (see Figure D.10) and the significance
of the random effects were evaluated. Based on a parametric bootstrap LR test, the random
intercept for LocNumber was considered significant with a p-value of 0.0013. In the attempt
of doing a similar test for Cage, the model with only a random intercept for LocNumber could
not be fitted, even with different optimizers or scaling of the variables. However, since the
random intercept for Cage was significant compared to the model with no random effects and
the random intercept for Cage was considered significant in the M3-ME model, it was kept in
the M14-ME model as well. The decision was further supported by computation of the AIC.
The full model, the model with only a random intercept for Cage and the model without any
random effects obtained AIC values of 10172, 10347 and 614840, respectively. That is, the model
with only Cage as random intercept has a substantially smaller AIC than the model without
random effects, and should therefore be included in the model. In addition, the model with
random intercepts for both LocNumber and Cage has an even smaller AIC, and it is therefore
preferred.

The fixed effects structure was then decided with a backward step-wise elimination based on
the LR test. This procedure found HaemorrBefore and BiomassSc to be insignificant, as given
in Table B.10, so these were eliminated from the model. The resulting model is given in Figure
D.11. The estimated variance is σ̂2

1 = 0.28 for LocNumber and σ̂2
2 = 0.48 for Cage. The

interaction between delousing method and sea temperature was significant to the model fit, and
the estimated slope for SeaTempSc for SkaMik, Hydrolicer, Optilicer and freshwater are 0.07,
0.06, -0.38 and -0.01, respectively. As for the M3-ME model, we notice that Optilicer has a quite
large negative slope, meaning that larger temperatures are associated with a lower mortality.
We suspect the same possible reasons for this unexpected result as was pointed out in Section
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4.2.2.

The difference in the estimated linear predictor for the different delousing methods at different
sea temperatures is illustrated in Figure 4.10. For a sea temperature of 11.7°C, Hydrolicer is
associated with the highest mortality, followed by freshwater, Optilicer and SkaMik. The only
significant difference for this temperature is between Hydrolicer and SkaMik (see Figure D.11
and Table B.11).

In contrast, for a sea temperature of 7°C, Optilicer is associated with the highest mortality,
followed by Hydrolicer, freshwater and SkaMik. Optilicer differs significantly from freshwater
and SkaMik for this temperature (see Table B.11).

Figure 4.10: Illustration of the difference in the estimated linear predictor (from the reduced M14-ME
model) for the different delousing methods at different sea temperatures. For each delousing method X

we have plotted β̂MethodX + (β̂SeaTempSc + β̂MethodX:SeaTempSc) · SeaTempSc against the corresponding

sea temperature. For SkaMik, β̂SeaTempSc · SeaTempSc is plotted. Note that these are plotted only for
sea temperatures within the range of the observations for each of the methods. The dotted lines mark
the temperatures 7°C and 11.7°C (intercept value in the fitted model).

The simulated residuals from the M14-ME model exhibit quite similar features as the residuals
from the M3-ME model (Figure A.12). The fitted random effects are plotted against the the-
oretical quantiles of the uniform distribution and seem to follow the expected line quite closely
(Figure A.13).
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4.4 Change in Skin Haemorrhages

The results from a model for change in skin haemorrhages after delousing treatment is presented
in this section. The full SH-FE model (Figure D.12) was obtained by fitting the linear model in
(2.3) to the data with all the explanatory variables included initially. The model relies on the
assumption of the change in skin haemorrhages to be independent and normally distributed. The
full SH-ME model was then obtained by fitting the linear random intercept model in (2.21) to
the data using the lmer function, and is given in Figure D.13. This model initially includes the
same explanatory variables, but also an additional random intercept for LocNumber. The SH-
ME model then accounts for possible correlation between observations from the same location,
modelled through a random intercept.

Since the SH-FE model is nested within the SH-ME model, these were compared by evaluating
the significance of the random intercept with a LR test. The LR statistic was calculated to be
34.031, and with an asymptotic 0.5χ2

0 : 0.5χ2
1 mixture distribution, the p-value was found to

be 2.71 · 10−9, so the random intercept was considered significant and the SH-ME model was
preferred. The AIC supported this conclusion, with values of 699 and 731 for the SH-ME and
SH-FE model, respectively.

The fixed effects structure of the SH-ME was then decided with a backward step-wise elimination
that excluded the variables listed in Table B.12. In the end, only Method, SeaTempSc, Season,
HaemorrBefore and ScalelossBefore were considered significant by the LR test, resulting in the
model

µ̂ij = (β̂0 + γ̂0i) + β̂1 ·MethodFreshwaterij + β̂2 ·MethodHydrolicerij + β̂3 ·MethodOptilicerij

+ β̂4 · SeaTempScij + β̂5 · SeasonFallij + β̂6 · SeasonSpringij + β̂7 · SeasonWinterij

+ β̂8 ·HaemorrBeforeij + β̂9 · ScalelossBeforeij ,
(4.5)

where the estimated coefficients are given in Table 4.12, with corresponding standard errors and
t-values. Note that p-values are not given here, since this was not provided in the model output
when using the lmer function. However, a t-value outside the interval (t0.025,n−p, t0.975,n−p) =
(−1.963, 1.963) indicates that the variable is significant at the 0.05 significance level. The residual
variance for this model was estimated to be σ̂2 = 0.137 and the estimated random intercept
variance was σ̂2

γ = 0.020.

In the model (4.5), µ̂ij is the estimated change in skin haemorrhages for the salmon after
delousing treatment. Hence, larger estimated coefficients mean that the associated change in skin
haemorrhages is greater, which corresponds to a worsened condition for the salmon. Based on
the estimated coefficients, Optilicer is associated with the greatest change in skin haemorrhages,
followed by SkaMik, Hydrolicer and freshwater. According to the Wald tests in Table B.13, the
differences between all delousing methods are significant, except for the one between Optilicer
and SkaMik. Based on the model, the change in skin haemorrhages (i.e. the change in the
evaluation of the degree of skin haemorrhages after delousing treatment based on a score from
0-3) is expected to increase with β̂2 − β̂1 = 0.20, −β̂1 = 0.33 and β̂3 − β̂1 = 0.42 for Hydrolicer,
SkaMik and Optilicer, respectively, if these are used instead of freshwater and all other variables
are constant.

The simulated residuals plotted against the predicted values are shown in Figure 4.12a, and
show no obvious pattern. The quantile plot and the distribution plot in Figure 4.12b and Figure
4.12c do not show signs of any large deviations from uniformity. The fitted random intercepts
for LocNumber are plotted against the theoretical quantiles of the normal distribution, shown
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in Figure 4.11, and they seem to follow the expected line quite well.

Table 4.12: Model summary for the reduced SH-ME model. Estimated coefficients with corresponding
standard error and t value are given. A t value outside the interval (t0.025,n−p, t0.975,n−p) = (−1.963, 1.963)
indicates that the variable is significant at the 0.05 significance level. MethodSkamik and SeasonSummer
are used as reference categories.

Coefficient Estimate Standard error t value

Intercept 0.6151 0.0484 12.723

MethodFreshwater -0.3284 0.0513 -6.407

MethodHydrolicer -0.1250 0.0462 -2.706

MethodOptilicer 0.0879 0.0571 1.540

SeaTempSc 0.0870 0.0297 2.936

SeasonFall 0.0221 0.0466 0.475

SeasonSpring 0.2279 0.0752 3.031

SeasonWinter 0.1016 0.0811 1.252

HaemorrBefore -0.6694 0.0414 -16.180

ScalelossBefore 0.0891 0.0308 2.891

Estimated variance

Residual: 0.1366

LocNumber (Intercept): 0.0203

Figure 4.11: Fitted random intercepts for LocNumber from the reduced SH-ME model against the the-
oretical quantiles of the normal distribution. The straight dotted line indicates the expected distribution
based on the estimated variance σ̂2

γ .
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(a) Simulated residuals against predicted values.

(b) Simulated residuals against the the-
oretical quantiles of the uniform distribu-
tion.

(c) Distribution of the residuals. The blue
line indicates the uniform distribution.

Figure 4.12: Model diagnostic plots for the reduced SH-ME model.
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4.5 Change in Scale Loss

The full SL-FE (Figure D.14) and SL-ME (Figure D.15) models for the change in scale loss
were fitted similarly as the SH-FE and SH-ME models, with all explanatory variables included
initially. The SL-ME model, with a random intercept for LocNumber, was compared to the SL-
FE model without any random effects by a LR test to evaluate the significance of the random
effect. The random intercept was found to be significant, with a p-value of 3.02 · 10−34, and
the SL-ME model was therefore preferred. AIC calculations also supported the inclusion of the
random intercept, with values of 573 and 718 for the model with the random intercept and the
model without it, respectively.

A backward step-wise elimination of insignificant fixed effects based on the LR test resulted in
the elimination of the variables in Table B.14. The reduced model was then given by

µ̂ij = (β̂0 + γ̂0i) + β̂1 ·MethodFreshwaterij + β̂2 ·MethodHydrolicerij + β̂3 ·MethodOptilicerij

+ β̂4 · SeaTempScij + β̂4 ·AvWeightScij + β̂4 · BiomassScij + β̂5 · SeasonFallij
+ β̂6 · SeasonSpringij + β̂7 · SeasonWinterij + β̂9 · ScalelossBeforeij
+ β̂8 ·MethodFreshwater:SeaTempScij + β̂8 ·MethodHydrolicer:SeaTempScij

+ β̂8 ·MethodOptilicer:SeaTempScij ,
(4.6)

where the estimated coefficients are given in Table 4.13. For this model, the estimated residual
variance was σ̂2 = 0.111 and the estimated variance for the random intercept for LocNumber
was σ̂2

γ = 0.049.

The interaction between the delousing method and sea temperature was considered significant
to the model fit. The slopes for SeaTempSc for SkaMik, Hydrolicer, Optilicer and freshwater
are 0.07, 0.18, -0.02 and 0.08, respectively. The difference in the expected mean in (4.6) for
the different delousing methods for different sea temperatures, when all other variables are the
same, is illustrated in Figure 4.13. Wald tests for the difference between the delousing methods
for sea temperatures of 7°C and 11.7°C are presented in Table B.15.

For a sea temperature of 11.7°C, SkaMik is associated with the greatest change in scale loss,
followed by Hydrolicer, Optilicer and freshwater. Compared to freshwater, which is associated
with the smallest change, the change in scale loss after delousing treatment is expected to increase
with 0.13, 0.60 and 0.68 for Optilicer, Hydrolicer and SkaMik, respectively, if these are used
instead. Based on the Wald tests, SkaMik and Hydrolicer are both significantly different from
both Optilicer and freshwater. However, SkaMik is not significantly different from Hydrolicer,
and neither is the difference between Optilicer and freshwater.

For a sea temperature of 7°C, the delousing methods are ranked in the same order from worst
to best. SkaMik is associated with the greatest change in scale loss, followed by Hydrolicer,
Optilicer and freshwater. However, the magnitude of the differences between the methods have
changed for this sea temperature. The change in scale loss after delousing treatment is expected
to increase with 0.27, 0.46 and 0.69 for Optilicer, Hydrolicer and SkaMik, respectively, if these
are used instead of freshwater. The differences between all four delousing methods are considered
significant for this sea temperature.

Plots of the simulated residuals from the SL-ME model against predicted values and the the-
oretical quantiles of the uniform distribution, as well as a distribution plot of the residuals, are
shown in Figure A.14. A quantile plot for the fitted random intercepts is shown in Figure A.15.
No obvious patterns or deviations are detected from these.
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Table 4.13: Model summary for the reduced SL-ME model. Estimated coefficients with corresponding
standard error and t value are given. A t value outside the interval (t0.025,n−p, t0.975,n−p) = (−1.963, 1.963)
indicates that the variable is significant at the 0.05 significance level. MethodSkamik and SeasonSummer
are used as reference categories.

Coefficient Estimate Standard error t value

Intercept 1.2389 0.0553 22.413

MethodFreshwater -0.6832 0.0565 -12.084

MethodHydrolicer -0.0842 0.0459 -1.833

MethodOptilicer -0.5574 0.0682 -8.177

SeaTempSc 0.0689 0.0317 2.173

AvWeightSc -0.0661 0.0234 -2.822

BiomassSc -0.0568 0.0218 -2.606

SeasonFall -0.0837 0.0438 -1.914

SeasonSpring 0.2732 0.0726 3.765

SeasonWinter -0.0023 0.0778 -0.030

ScalelossBefore -0.6942 0.0258 -26.873

MethodFreshwater:SeaTempSc 0.0076 0.0470 0.161

MethodHydrolicer:SeaTempSc 0.1071 0.0458 2.340

MethodOptilicer:SeaTempSc -0.0920 0.0540 -1.703

Estimated variance

Residual: 0.1105

LocNumber (Intercept): 0.0489

Figure 4.13: Illustration of the difference in the estimated linear predictor (from the reduced SL-ME
model) for the different delousing methods at different sea temperatures. For each delousing method X

we have plotted β̂MethodX + (β̂SeaTempSc + β̂MethodX:SeaTempSc) · SeaTempSc for the corresponding sea

temperature. For SkaMik, β̂SeaTempSc · SeaTempSc is plotted. Note that these are plotted only for sea
temperatures within the range of the observations for each of the methods. The dotted lines mark the
temperatures 7°C and 11.7°C (intercept value in the fitted model).

70



5 Discussion

Different models were fitted for different responses in order to compare the impact that the
delousing methods freshwater, Optilicer, Hydrolicer and SkaMik have on delousing effect and fish
welfare. Here, we present a comparison of the models and the results for the different responses
of interest. The significance level 0.05 has been used in all significance tests mentioned in the
following discussion.

5.1 Delousing Effect

When fitting a binomial fixed effects model to the data set for delousing effectiveness against
adult female lice (delousing effect), the model showed signs of significant overdispersion, which
indicates a lack of fit. In addition, overdispersion is a problem when performing significance
tests, since it causes the coefficients to seemingly be more significant than they actually are.

One way of dealing with overdispersion is to use the quasi-binomial model, where one simply
adjusts the assumed variance of the binomial model with the estimated overdispersion. In
essence, this approach then adjusts the estimated standard errors of the coefficients by the same
multiplicative factor (the square root of the estimated overdispersion parameter), thus reducing
the perceived significance of the coefficients from the Wald test.
A weakness of this approach is that the sources of overdispersion is not actually modelled.
Instead, the significance of the parameters are simply corrected with the same multiplying
factor. The assumption that the standard errors of all explanatory variables are equally biased
may not be appropriate (Harrison, 2015).

Another way to model overdispersion is by including random effects. A random effect on the
binomial observation-level can be used to ”soak up” the extra-binomial variation. By fitting a
binomial mixed model for the delousing effect, it was observed that the standard errors of the
coefficients were inflated compared to the binomial model. However, the inflation factor for the
binomial mixed model compared to the binomial model was not constant for all coefficients, like it
was for the quasi-binomial model. This shows that the two types of models model overdispersion
differently, which motivated the use of both types of models for comparison purposes. If both
models reach the same conclusion, we consider it to be more certain.

In both the reduced quasi-binomial DE-FE model (Table 4.4) and the reduced DE-ME model
(Table 4.6), the interaction between delousing method and sea temperature was considered
significant. Thus, the comparison of the delousing methods had to be done for specific tem-
peratures, and the sea temperatures 7°C and 11.7°C were chosen. All four delousing methods
have observations in this interval, but SkaMik and Hydrolicer have quite few observations with
SeaTemp ≤ 7°C.

For a sea temperature of 11.7°C, both models agree that Hydrolicer was associated with the
best delousing effect, followed by SkaMik, Optilicer and freshwater. In addition, significance
tests from both models suggested that freshwater was significantly different from the three other
delousing methods and that Hydrolicer was significantly different from Optilicer. For a sea
temperature of 7°C, the models agree that freshwater is associated with the lowest delousing
effect, and is significantly different from the three other delousing methods.

Although significance tests have only been performed for the two temperatures, we emphasize
that for both models, freshwater is considered to have the lowest delousing effect for all tem-
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peratures for which it has been used when all other variables are constant. Figure 3.4, from the
initial data exploration, also indicated that freshwater had the lowest delousing effect. From
this figure it also seemed like the delousing effect from freshwater was subject to more uncer-
tainty than the other delousing methods. Although the binomial logistic model (with variance
nπ(1 − π) ∝ π(1 − π)) allows for larger variance for proportions closer to 0.5 and smaller vari-
ance for proportions close to 0 or 1, it did not seem like this was enough to capture the larger
variance for freshwater. In both the DE-FE and DE-ME model, the residuals seemed to have
higher variance for freshwater compared to the other delousing methods. For freshwater treat-
ment, it has been suspected that the lice may be strongly affected by the osmotic shock and
immobilized, while still remaining attached to the fish for a variable amount of time, which may
be an explanation for the larger uncertainty.
As a consequence of the delayed response to the freshwater treatment, there may be a further
reduction in lice numbers after the fish are returned back into the sea after freshwater treatment
(Holan et al., 2017). In Gaasø, 2019, there seemed to be a tendency of smaller lice numbers
in the week after treatment than what was counted during the unloading of the fish from the
treatment vessel into the cage. Although the models for delousing effect in this thesis indicated
that freshwater had a smaller reduction in adult female lice than the other methods when the
lice were counted immediately after treatment, the more long-term effect after the fish had been
returned to the sea for some time should ideally also have been investigated. Unfortunately, this
kind of data were not available.

A drawback of the response data for delousing effect is that lice are counted on different samples
of fish before and after treatment. This means that there are different lice that are counted before
and after treatment. Thus, one relies on the assumption that the lice are evenly distributed on
all the fish in the cage both before and after. This is not necessarily the case, which became
evident in the data preparation where there were instances where the number of lice reported
after treatment was greater than before treatment. In a binomial setting where the same lice
were measured before and after treatment this would not have been possible. In addition, one
assumes that the lice are similar in all ways and respond to the treatment in the same way.
Thus, one can argue that there are other sources of variation in the measurements other than
the variance in the simple binomial setting, so the observed overdispersion is quite reasonable.

5.2 Salmon Mortality

Like the delousing effect, the mortality rates for salmon 3 and 14 days after delousing were
modelled with binomial models, and the problem with overdispersion applied to these as well.
Thus, both quasi-binomial fixed effects models and binomial mixed effects models were fitted
for comparison reasons. We first summarize the results for the models for mortality after 3 and
14 days separately, before a comparison and discussion of the two follows.

Mortality 3 Days Post-Treatment

After the model selection of the quasi-binomial M3-FE model and the M3-ME model, the two
models ended up including different explanatory variables. In particular, the interaction between
delousing method and sea temperature was considered significant, and was therefore included, in
the reduced M3-ME model (Table 4.10). However, this was not the case in the reduced M3-FE
model (Table 4.8).

According to the results of the reduced M3-FE model, Optilicer was associated with the highest
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mortality, followed by Hydrolicer, SkaMik and freshwater. The differences between all delousing
methods were considered significant, except for the difference between freshwater and SkaMik.
For the reduced M3-ME model, Hydrolicer was associated with a significantly higher mortality
than both freshwater and SkaMik at a sea temperature of 11.7°C. For a sea temperature of 7°C,
both Optilicer and Hydrolicer are associated with a significantly higher mortality than both
freshwater and SkaMik.

To summarize, the models suggest that, 3 days after delousing treatment, Hydrolicer has a
significantly higher mortality than freshwater and SkaMik for both these temperatures, and that
Optilicer has a significantly higher mortality than freshwater and SkaMik for a sea temperature
of 7°C.

Mortality 14 Days Post-Treatment

Like the models for mortality after 3 days, the interaction between delousing method and sea
temperature was considered significant in the mixed effects model for mortality after 14 days,
but not in the fixed effects model. In the reduced quasi-binomial M14-FE model (Figure D.9),
Optilicer was associated with the highest mortality, followed by SkaMik, Hydrolicer and Fresh-
water. The differences are significant, except for Hydrolicer, which is not significantly different
from SkaMik or freshwater.
The reduced M14-ME model (Figure D.11) suggests that Hydrolicer has a significantly higher
mortality than SkaMik for a sea temperature of 11.7°C. For a sea temperature of 7°C, Optilicer
has significantly higher mortality than both freshwater and SkaMik.

Thus, both models seem to agree that Optilicer has a significantly higher mortality 14 days after
treatment than freshwater and SkaMik for a sea temperature of 7°C.

Comparison and Discussion

The mortality rate after 3 days was chosen as a measure for the short-term mortality, while the
mortality rate after 14 days was used for long-term mortality. The models for mortality after
3 days had more significant results than the models for mortality after 14 days. However, they
all concluded that Optilicer has a significantly higher mortality than freshwater and SkaMik for
a sea temperature of 7°C. Hence, it seems like this may be both an short-term and a long-term
effect. The long-term effect on the mortality could be further investigated by considering longer
periods of time.

The full binomial M3-FE and M14-FE models had estimated overdispersion parameters of 603
and 1386, respectively. This is an indication that the models for mortality after 3 days may fit
better than the models after 14 days. It is not surprising that the variability after 14 days seem-
ingly is greater than after 3 days, since more time after delousing to measurement of mortality
means that there is more time for other factors, possibly unrelated to the delousing, to influence
the mortality. The models for mortality after 3 and 14 days were also fit to different data sets,
where the data set for mortality after 3 days was bigger than that for 14 days.

An advantage of the mortality data is that the mortality is measured for the entire group of fish
in the cage, rather than for small and different samples of fish. However, a weakness with using
the mortality as a welfare indicator is that welfare problems may result in mortality after a
period of time (Noble et al., 2018). In other words, there may have been other causes happening
before the treatment that could result in increased mortality in the period after treatment as
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well. Therefore, the health status of the salmon prior to the delousing treatment is an important
factor to take into consideration. With the available data, it was attempted to take this into
consideration by including the welfare indicator scores for skin haemorrhages and scale loss
before treatment. However, these are only indicators for skin condition, and were calculated
from a sample of the fish. Other welfare indicators could have been included, but these were
less frequently reported, so inclusion of these would have resulted in a smaller data set. It
would likely be more beneficial to use the mortality rate in a time period prior to the delousing
treatment as an explanatory variable, as this would provide a more direct comparison to the
mortality rate after treatment. Unfortunately, this kind of information was not available. By
including this, it would probably become more clear whether the delousing treatments were the
actual cause of higher mortality or not.

5.3 Score-Based Welfare Indicators

The change in the score of the welfare indicators skin haemorrhages and scale loss after delousing
was assumed to be normally distributed and was therefore modelled with linear mixed models
with a random intercept for LocNumber. The mixed effects models were compared with the
fixed effects models with LR tests, and the mixed effects models were preferred for both welfare
indicators.

According to the reduced SH-ME model (Table 4.12), Optilicer is associated with the greatest
change in skin haemorrhages, followed by SkaMik, Hydrolicer and freshwater. Compared to
freshwater, which was associated with the smallest change after delousing treatment, the change
was expected to increase with 0.20, 0.3 and 0.42 for Hydrolicer, SkaMik and Optilicer, respect-
ively, if these were used instead and all other variables were constant. The differences between
all delousing methods were considered significant, except for the difference between Optilicer
and SkaMik.

In the reduced SL-ME model (Table 4.13) for change in scale loss, the interaction between delous-
ing method and sea temperature was included. Comparisons between the delousing methods
were therefore done for the two temperatures 11.7°C and 7°C. For both these temperatures,
SkaMik was associated with the greatest change in scale loss, followed by Hydrolicer, Optilicer
and freshwater. For a sea temperature of 7°C, the change in scale loss is expected to increase
with 0.27, 0.46 and 0.69 for Optilicer, Hydrolicer and SkaMik, respectively, if these are used
instead of freshwater. The differences between all four delousing methods are considered signi-
ficant for this sea temperature. However, for a sea temperature of 11.7°C, the change is expected
to increase with 0.13, 0.60 and 0.68 for Optilicer, Hydrolicer and SkaMik, respectively, if these
are used instead of freshwater. The mechanical delousing methods (SkaMik and Hydrolicer) are
significantly different from both Optilicer and freshwater for this temperature.

Similar to the delousing effect responses, the responses for the welfare indicators, i.e. the reported
scores before and after delousing for each cage, were based on evaluations of different samples
of fish for practical reasons. One can imagine that this could be an extra source of uncertainty,
and more reliable results could probably have been obtained if measurements were made on the
same sample. That being said, the linear mixed models seem to capture the uncertainty well,
with residuals that appeared to follow the assumed distribution.
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5.4 Conclusion and Recommendations for Further Work

Significant overdispersion was observed in the binomial models for the delousing effectiveness
against adult female lice and mortality for salmon 3 and 14 days after delousing treatment.
Therefore, both quasi-binomial and binomial mixed models, which handle the overdispersion
differently, were fitted for comparison reasons.
According to both models for the delousing effectiveness against adult female lice, Hydrolicer
had a significantly better delousing effect than Optilicer for a sea temperature of 11.7°C. In
addition, both types of models indicated that freshwater had a lower delousing effect than
the three other methods for all sea temperatures for which it had been used. The result was
tested for two sea temperatures of 7°C and 11.7°C, and was found to be significant for both
temperatures. However, this way of measuring the delousing effect, where the reduction in lice
immediately after treatment is considered, may not be accurate for freshwater treatment. It has
been observed that freshwater treatment may lead to further reduction in lice after the fish are
returned to the sea, so this aspect should be further investigated.

According to the models for mortality 3 days after delousing treatment, which was chosen as a
measure for short-term mortality, Hydrolicer had a significantly higher mortality than freshwater
and SkaMik for sea temperatures of 7°C and 11.7°C. In addition, Optilicer has a significantly
higher mortality than freshwater and SkaMik for a sea temperature of 7°C.
According to the models for mortality after 14 days, which was chosen for the long-term mor-
tality, Optilicer had a significantly higher mortality than freshwater and SkaMik for a sea tem-
perature of 7°C. This result is in concordance with the models for short-term mortality.
For further analyses of the mortality, an improvement would be to include an explanatory
variable for the mortality before the treatment as well. In this way, one could obtain more
information about the actual cause of mortality.

For further analysis of the delousing effect and mortality with binomial models, where overd-
ispersion is present, one could also consider more complex mixed models with the inclusion of
random slopes or other random effects. On the other hand, more complex models in general
require more data and the chance of the model not converging to a stable solution may increase.
Another method for modelling overdispersion in binomial data is the hierarchical beta-binomial
model. This is an alternative to the inclusion of an observation-level random effect in the bino-
mial mixed model (Harrison, 2015). In this model, one assumes that the probability of success
in each binomial trial varies with a beta distribution (Collett, 2003). It would be interesting to
see if this type of model could handle the overdispersion better.

The change in score evaluations for skin haemorrhages and scale loss after delousing treatment
was modelled using linear mixed models. Optilicer was then associated with the greatest change
in score for skin haemorrhages, followed by SkaMik, Hydrolicer and freshwater. The differences
between the delousing methods were considered significant, except for the difference between
Optilicer and SkaMik.
Regarding the change in scale loss after delousing, SkaMik was associated with the greatest
change, followed by Hydrolicer, Optilicer and freshwater for sea temperatures up to approxim-
ately 14°C. All four methods are significantly different for a sea temperature of 7°C. However, for
a sea temperature of 11.7°C, only the mechanical delousing methods (SkaMik and Hydrolicer)
are significantly different from both Optilicer and freshwater.

In this thesis, only a selection of parameters have been investigated for a comparison of the
delousing methods. In order to get a broader picture of the impacts of the different delousing
methods, more parameters should be looked into. Regarding the delousing effect, only the effect
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on adult female lice was considered in this thesis, but it could also be analysed for mobile and
sessile lice. As pointed out, the more long-term effect of the delousing methods on the lice
numbers should also be investigated. To evaluate the fish welfare, it was argued in Section 1.2
that one should consider several different welfare indicators. In this thesis, only the mortality,
in addition to skin haemorrhages and scale loss, were investigated. However, many more welfare
indicators could be considered (see Noble et al., 2018).
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Appendix

A Additional Figures

(a) SeaTemp against Season (b) SeaTemp against Method

Figure A.1: Additional box plots from the data set for delousing effect on adult female lice.

Figure A.2: Number of observations from the different locations for the data sets for salmon mortality
after 3 days (top) and 14 days (bottom). The different colors distinguish between the number of obser-
vations for the different delousing methods.
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(a) SeaTemp against Season (b) SeaTemp against Method

Figure A.3: Additional box plots from the data set for mortality after 3 days.

(a) SeaTemp against Season (b) SeaTemp against Method

Figure A.4: Additional box plots from the data set for mortality after 14 days.
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Figure A.5: Number of observations from the different locations for the data sets for skin haemorrhages
(top) and scale loss (bottom). The different colors distinguish between the number of observations for
the different delousing methods.

(a) SeaTemp against Season (b) SeaTemp against Method

Figure A.6: Additional box plots from the data set for change in skin haemorrhages.
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(a) SeaTemp against Season (b) SeaTemp against Method

Figure A.7: Additional box plots from the data set for change in scale loss.

Figure A.8: Box plot of simulated residuals for each delousing method for the reduced DE-ME model.

Figure A.9: Distribution of standardized deviance residuals from the M3-FE model (gray). The brown
and purple dashed lines show the median and mean values, respectively. The blue density curve shows
the standard normal distribution.
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Figure A.10: Box plot of simulated residuals for each delousing method for the reduced M3-ME model.
The mean values are marked by the black squares.

Figure A.11: Model diagnostics for the reduced quasi-binomial M14-FE model. Standardized deviance
residuals plotted against fitted values and the theoretical quantiles of the normal distribution.
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(a) Simulated residuals against predicted values.

(b) Simulated residuals against the theoretical
quantiles of the uniform distribution.

(c) Distribution of simulated residuals. The
blue line indicates the uniform distribution.

Figure A.12: Model diagnostic plots for the reduced M14-ME model.

Figure A.13: Model diagnostic plots for the reduced M14-ME model. The fitted random intercepts
for Cage and LocNumber are plotted against the theoretical quantiles of the normal distribution. The
straight dotted lines indicate the expected distribution based on the estimated variances σ̂2

2 and σ̂2
1 .
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(a) Simulated residuals against predicted values.

(b) Simulated residuals against the theoretical
quantiles of the uniform distribution

(c) Distribution of simulated residuals. The
blue line indicates the uniform distribution.

Figure A.14: Model diagnostic plots for the reduced SL-ME model.

Figure A.15: Fitted random intercepts for LocNumber from the reduced SL-ME model plotted against
the theoretical quantiles of the normal distribution. The straight dotted line indicates the expected
distribution based on the estimated variance σ̂2

γ .

86



B Additional Tables

Table B.1: Number of observations for the seasons for each delousing method in the data sets for
mortality. Additionally, the interquartile range, as well as the minimum and maximum value of the sea
temperature for which the different delousing methods have been used is given. This information is given
for both the data sets for mortality (after 3 and 14 days), as given by the first column.

Number of observations in seasons Temperature

Data set Method Winter Spring Summer Fall Min Max IQR

3 days

Freshwater 18 20 45 9 4.7 15.3 6.0-14.0

Optilicer 58 21 18 2 4.8 14.9 5.8-7.4

Hydrolicer 0 21 115 9 5.1 18.8 12.2-14.1

SkaMik 15 19 238 117 7.0 21.6 11.3-14.5

14 days

Freshwater 19 20 38 8 4.7 15.3 5.5-14.0

Optilicer 58 20 18 2 4.8 14.9 5.7-7.4

Hydrolicer 0 13 77 9 5.1 18.8 12.6-14.5

SkaMik 15 19 218 117 7.0 21.6 11.0-14.6

Table B.2: Comparable generalized variance inflation factor for the explanatory variables in the data
sets for mortality after 3 and 14 days. An interaction between delousing method and sea temperature is
included.

3 days 14 days

Explanatory variable df
(
GVIF1/(2df)

)2 (
GVIF1/(2df)

)2
Method 3 2.11 2.12

SeaTempSc 1 7.42 6.65

SeaTempSc:Method 3 2.58 2.50

AvWeightSc 1 2.79 2.70

AvCrowdingSc 1 1.18 1.20

BiomassSc 1 2.86 2.75

Season 3 2.15 2.08

Disease 1 1.20 1.17

HaemorrBefore 1 1.59 1.61

ScalelossBefore 1 1.62 1.51
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Table B.3: Number of observations for the seasons for each delousing method in the data sets for skin
haemorrhages and scale loss. Additionally, the interquartile range, as well as the minimum and maximum
value of the sea temperature for which the different delousing methods have been used is given.

Number of observations in seasons Temperature

Data set Method Winter Spring Summer Fall Min Max IQR

Skin

haemorrhages

Freshwater 23 20 42 13 4.7 15.3 6.2-13.9

Optilicer 57 23 20 2 4.8 14.9 5.7-7.5

Hydrolicer 0 25 114 9 5.1 18.8 12.0-14.0

SkaMik 13 19 239 119 7.0 21.6 11.3-14.5

Scale loss

Freshwater 23 20 42 13 4.7 15.3 6.2-13.9

Optilicer 57 23 20 2 4.8 14.9 5.7-7.5

Hydrolicer 0 25 114 9 5.1 18.8 12.0-14.0

SkaMik 13 19 238 121 7.0 21.6 11.3-14.5

Table B.4: Comparable generalized variance inflation factor for the explanatory variables in the data
sets for change in skin haemorrhages and scale loss. An interaction between delousing method and sea
temperature is included.

Skin haemorrhages Scale loss

Explanatory variable df
(
GVIF1/(2df)

)2 (
GVIF1/(2df)

)2
Method 3 1.99 1.99

SeaTempSc 1 5.80 5.80

SeaTempSc:Method 3 2.40 2.40

AvWeightSc 1 1.69 1.69

AvCrowdingSc 1 1.21 1.21

BiomassSc 1 1.79 1.79

Season 3 2.01 2.01

Disease 1 1.18 1.18

HaemorrBefore 1 1.51 1.52

ScalelossBefore 1 1.62 1.62

Table B.5: Results from the LR tests for the DE-ME model. The dropped fixed effects terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Log likelihood LR Pr(>Chi)

None (full model) -1815.679

BiomassSc 1 -1815.831 0.3040 0.5814

AvCrowdingSc 1 -1816.396 1.1299 0.2878
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Table B.6: Results from the LR tests for the quasi-binomial M3-FE model. The dropped terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Deviance Scaled deviance difference Pr(>Chi)

None (full model) 326310

ScalelossBefore 1 326343 0.0546 0.815

Disease 1 326437 0.1556 0.693

Method:SeaTempSc 3 328154 2.8572 0.414

SeaTempSc 1 328846 1.1483 0.284

BiomassSc 1 329494 1.0674 0.302

AvCrowdingSc 1 331367 3.0776 0.079

Table B.7: Results from the LR tests for the M3-ME model. The dropped fixed effects terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Log likelihood LR Pr(>Chi)

None (full model) -5195.298

ScalelossBefore 1 -5195.299 0.0020 0.964

HaemorrBefore 1 -5195.661 0.7229 0.395

Table B.8: Results from the LR tests for the quasi-binomial M14-FE model. The dropped terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Deviance Scaled deviance difference Pr(>Chi)

None (full model) 609264

Season 3 611683 1.7453 0.627

Method:SeaTempSc 3 616143 3.2105 0.360

SeaTempSc 1 617411 0.9136 0.339

ScalelossBefore 1 619872 1.7878 0.181

AvWeightSc 1 622420 1.8483 0.174

BiomassSc 1 624657 1.6046 0.205

Disease 1 629255 3.2231 0.073

Table B.9: Results from additional Wald tests from the reduced M14-FE model.

Null hypothesis df Wald statistic p-value

βMethodOptilicer = βMethodHydrolicer 1 12.632 3.79 · 10−4

βMethodOptilicer = βMethodFreshwater 1 21.221 4.09 · 10−6

βMethodFreshwater = βMethodHydrolicer 1 1.952 0.162
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Table B.10: Results from the LR tests for the M14-ME model. The dropped fixed effects terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Log likelihood LR Pr(>Chi)

None (full model) -5066.781

HaemorrBefore 1 -5067.553 1.5450 0.214

BiomassSc 1 -5069.135 3.1642 0.075

Table B.11: Results from additional Wald tests from the reduced M14-ME model. The tests are done
for two models fitted with the same variables, but with two different sea temperatures defined as intercept
values.

Sea temperature

as intercept
Null hypothesis df Wald statistic p-value

11.7°C
βMethodOptilicer = βMethodHydrolicer 1 2.541 0.111

βMethodOptilicer = βMethodFreshwater 1 0.023 0.878

βMethodFreshwater = βMethodHydrolicer 1 2.998 0.083

7°C

βMethodOptilicer = βMethodHydrolicer 1 2.321 0.128

βMethodOptilicer = βMethodFreshwater 1 12.434 4.22 · 10−4

βMethodFreshwater = βMethodHydrolicer 1 0.465 0.495

βMethodFreshwater = 0 1 1.464 0.226

βMethodHydrolicer = 0 1 2.509 0.113

βMethodOptilicer = 0 1 23.523 1.23 · 10−6

Table B.12: Results from the LR tests for the SH-ME model. The dropped fixed effects terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Log likelihood LR Pr(>Chi)

None (full model) -330.5468

Disease 1 -330.5949 0.096 0.756

AvCrowdingSc 1 -330.6479 0.106 0.745

AvWeightSc 1 -330.7410 0.186 0.666

Method:SeaTempSc 3 -333.2657 5.049 0.168

BiomassSc 1 -333.9229 1.314 0.252
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Table B.13: Results from Wald tests from the reduced SH-ME model.

Null hypothesis df Wald statistic p-value

βMethodOptilicer = βMethodHydrolicer 1 10.688 1.08 · 10−3

βMethodOptilicer = βMethodFreshwater 1 48.421 3.44 · 10−12

βMethodFreshwater = βMethodHydrolicer 1 12.376 4.34 · 10−4

βMethodFreshwater = 0 1 41.045 1.49 · 10−10

βMethodHydrolicer = 0 1 7.322 6.81 · 10−3

βMethodOptilicer = 0 1 2.371 0.124

Table B.14: Results from the LR tests for the SL-ME model. The dropped fixed effects terms of the
initial full model are listed sequentially in a top-down manner, so that each line represents the model
from the previous line with the additional dropped term given.

Dropped Df Log likelihood LR Pr(>Chi)

None (full model) -267.2923

AvCrowdingSc 1 -267.3167 0.05 0.825

HaemorrBefore 1 -267.5329 0.43 0.511

Disease 1 -269.2801 3.49 0.062

Table B.15: Results from Wald tests from the reduced SL-ME model. The tests are done for two models
fitted with the same variables, but with two different sea temperatures defined as intercept values.

Sea temperature

as intercept
Null hypothesis df Wald statistic p-value

11.7°C

βMethodOptilicer = βMethodHydrolicer 1 38.230 6.29 · 10−10

βMethodOptilicer = βMethodFreshwater 1 2.501 0.114

βMethodFreshwater = βMethodHydrolicer 1 96.939 7.15 · 10−23

βMethodFreshwater = 0 1 146.020 1.29 · 10−33

βMethodHydrolicer = 0 1 3.358 0.067

βMethodOptilicer = 0 1 66.861 2.91 · 10−16

7°C

βMethodOptilicer = βMethodHydrolicer 1 4.538 0.033

βMethodOptilicer = βMethodFreshwater 1 18.092 2.11 · 10−5

βMethodFreshwater = βMethodHydrolicer 1 23.075 1.56 · 10−6

βMethodFreshwater = 0 1 81.805 1.50 · 10−19

βMethodHydrolicer = 0 1 6.654 9.89 · 10−3

βMethodOptilicer = 0 1 39.226 3.78 · 10−10
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C R-code from Data Preparation

R-code from the preparation of the data and creation of the data sets. Salmon farm names and
treatment dates have been replaced by ”...” to maintain confidentiality.

####### Loading packages #############
l ibrary ( ” readx l ” )
l ibrary ( ” wr i t e x l ” )
l ibrary ( ” dplyr ” )
l ibrary ( ” s t r i n g r ” )

############# Load data ##############
# Freshwater
df . ferskDod20 = read ex c e l ( ”Ferskvann 2020 . x l sx ” ,

shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 41)
df . f e r s kE f f 2 0 = read ex c e l ( ”Ferskvann 2020 . x l sx ” ,

shee t = ” Ef f ek t ” , sk ip = 1 , n max = 41)

df . ferskDod21 = read ex c e l ( ”Ferskvann 2021 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 81)

df . f e r s kE f f 2 1 = read ex c e l ( ”Ferskvann 2021 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 81)

df . ferskDod22 = read ex c e l ( ”Ferskvann 2022 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 100)

df . f e r s kE f f 2 2 = read ex c e l ( ”Ferskvann 2022 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 100)

# Op t i l i c e r
df . optDod20 = read ex c e l ( ” Op t i l i c e r 2020 . x l sx ” ,

shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 107)
df . optEf f20 = read ex c e l ( ” Op t i l i c e r 2020 . x l sx ” ,

shee t = ” Ef f ek t ” , sk ip = 1 , n max = 107)

df . optDod21 = read ex c e l ( ” Op t i l i c e r 2021 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 73)

df . optEf f21 = read ex c e l ( ” Op t i l i c e r 2021 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 73)

# Hydro l i c e r
df . hydDod20 = read ex c e l ( ” Hydro l i c e r 2020 . x l sx ” ,

shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 31)
df . hydEff20 = read ex c e l ( ” Hydro l i c e r 2020 . x l sx ” ,

shee t = ” Ef f ek t ” , sk ip = 1 , n max = 31)

df . hydDod21 = read ex c e l ( ” Hydro l i c e r 2021 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 45)

df . hydEff21 = read ex c e l ( ” Hydro l i c e r 2021 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 45)

df . hydDod22 = read ex c e l ( ” Hydro l i c e r 2022 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 126)

df . hydEff22 = read ex c e l ( ” Hydro l i c e r 2022 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 126)

92



# SkaMik
df . skamikDod20 = read ex c e l ( ”SkaMik 2020 . x l sx ” ,

shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 139)
df . skamikEff20 = read ex c e l ( ”SkaMik 2020 . x l sx ” ,

shee t = ” Ef f ek t ” , sk ip = 1 , n max = 139)

df . skamikDod21 = read ex c e l ( ”SkaMik 2021 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 253)

df . skamikEff21 = read ex c e l ( ”SkaMik 2021 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 253)

df . skamikDod22 = read ex c e l ( ”SkaMik 2022 . x l sx ” ,
shee t = ” D d e l i g h e t ” , sk ip = 1 , n max = 110)

df . skamikEff22 = read ex c e l ( ”SkaMik 2022 . x l sx ” ,
shee t = ” Ef f ek t ” , sk ip = 1 , n max = 110)

####### Check cons i s t ency between e x c e l s h e e t s #######
# Freshwater
s t o p i f n o t (df . ferskDod20$Behandl ingsdato == df . f e r s kE f f 2 0$`Beh . dato `)
s t o p i f n o t (df . ferskDod20$Anlegg == df . f e r s kE f f 2 0$Anlegg )

s t o p i f n o t (df . ferskDod21$Behandl ingsdato == df . f e r s kE f f 2 1$`Beh . dato `)
s t o p i f n o t (df . ferskDod21$Anlegg == df . f e r s kE f f 2 1$Anlegg )

s t o p i f n o t (df . ferskDod22$Behandl ingsdato == df . f e r s kE f f 2 2$`Beh . dato `)
df . ferskDod22$Behandl ingsdato [ 2 1 ] = df . f e r s kE f f 2 2$`Beh . dato ` [ 2 1 ]
df . f e r s kE f f 2 2$`Beh . dato ` [ 2 7 ] = df . ferskDod22$Behandl ingsdato [ 2 7 ]
s t o p i f n o t (df . ferskDod22$Anlegg == df . f e r s kE f f 2 2$Anlegg )

# Op t i l i c e r
s t o p i f n o t (df . optDod20$Behandl ingsdato == df . optEf f20$`Beh . dato `)
df . optEf f20 = df . optEf f20 [−c ( 74 ) , ] # de l e t e treatment wi th no in format ion
temp = df . optDod20 [ 8 3 , ] # incon s i s t e n t order o f the t rea tments
df . optDod20 [ 8 3 , ] = df . optDod20 [ 8 4 , ]
df . optDod20 [ 8 4 , ] = temp
s t op i f n o t (df . optDod20$Anlegg == df . optEf f20$Anlegg )

s t o p i f n o t (df . optDod21$Behandl ingsdato == df . optEf f21$`Beh . dato `)
s t o p i f n o t (df . optDod21$Anlegg == df . optEf f21$Anlegg )

# Hydro l i c e r
s t o p i f n o t (df . hydDod20$Beh . dato == df . hydEff20$`Beh . dato `)
s t o p i f n o t (df . hydDod20$Anlegg == df . hydEff20$Anlegg )

s t o p i f n o t (df . hydDod21$Beh . dato == df . hydEff21$`Beh . dato `)
s t o p i f n o t (df . hydDod21$Anlegg == df . hydEff21$Anlegg )

s t o p i f n o t (df . hydDod22$Beh . dato == df . hydEff22$`Beh . dato `)
s t o p i f n o t (df . hydDod22$Anlegg == df . hydEff22$Anlegg )

# SkaMik
s t o p i f n o t (df . skamikDod20$Beh . dato == df . skamikEff20$`Beh . dato `)
s t o p i f n o t (df . skamikDod20$Anlegg == df . skamikEff20$Anlegg )

s t o p i f n o t (df . skamikDod21$Beh . dato == df . skamikEff21$`Beh . dato `)
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# rearrange obs t ha t was not in e f f e c t s h e e t
df . skamikDod21 = rbind (df . skamikDod21 , df . skamikDod21 [ 114 , ] )
df . skamikDod21 = df . skamikDod21[−c (114) , ]
df . skamikEff21 [ 253 , ] $`Beh . dato ` = df . skamikDod21 [253 , ] $Beh . dato
df . skamikEff21 [ 253 , ] $Anlegg = df . skamikDod21 [ 253 , ] $Anlegg
s t o p i f n o t (df . skamikDod21$Anlegg == df . skamikEff21$Anlegg )

s t o p i f n o t (df . skamikDod22$Beh . dato == df . skamikEff22$`Beh . dato `)
s t o p i f n o t (df . skamikDod22$Anlegg == df . skamikEff22$Anlegg )

########### Extrac t r e l e v an t data ################

# Season v a r i a b l e f unc t i on
makeSeasonVariables = function ( l i s t e ){

chars = as . character ( l i s t e ) %>% s tr sp l i t ( sp l i t = ”−” )
s ea sonL i s t = rep ( ”” , length ( l i s t e ) )
for ( i in ( 1 : length ( l i s t e ) ) ){

month = chars [ [ i ] ] [ 2 ]
i f (month %in% c ( ”12” , ”01” , ”02” ) ){

s e a sonL i s t [ i ] = ”Winter”
}
else i f (month %in% c ( ”03” , ”04” , ”05” ) ){

s e a sonL i s t [ i ] = ”Spring ”
}
else i f (month %in% c ( ”06” , ”07” , ”08” ) ){

s e a sonL i s t [ i ] = ”Summer”
}
else i f (month %in% c ( ”09” , ”10” , ”11” ) ){

s e a sonL i s t [ i ] = ” Fa l l ”
}
else {print ( ' Error in treatment date . ' )}

}
return ( s e a sonL i s t )

}

# Function f o r e x t r a c t i n g data
extractData = function ( dfDod , d fEf f , methodString , year ){

l en = length ( d fE f f$Anlegg )
df = data . frame (Date = as . character ( d fE f f$`Beh . dato ` ) ,

Locat ion = d fE f f$Anlegg ,
Cage = d fE f f$Merd ,
Method = rep ( methodString , l en ) ,
Season = makeSeasonVariables ( d fE f f$`Beh . dato ` ) ,
S laughter = rep (0 , l en ) ,
FemalesBefore = d fE f f$Kj .modn . . . 6 ,
s t r i ng sAsFac to r s = FALSE)

i f ( methodString == ”Op t i l i c e r ” ){
df = cbind (df , AvWeight = dfDod$` Sn i t tvek t ( g ) ` ,

Biomass = dfDod$`Biomasse ( kg ) ` ,
NumFish = dfDod$`Anta l l ( s tk ) ` ,
SeaTemp = dfDod$`Temp i s j ` ,
AvCrowding = dfDod$`Gj . s n i t t t r enge t id ` ,
NumDeaths3 = dfDod$`3 dager stk ` ,
NumDeaths14 = dfDod$`Dag 14 ( s tk ) ` ,
D i sease = dfDod$`Sykdom p l o k a l i t e t ` ,
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FemalesAfter = d fE f f$Kj .modn . . . 1 6 ,
HaemorrBefore = d fE f f$Rdbuk . . . 1 0 ,
HaemorrAfter = d fE f f$Rdbuk . . . 2 0 ,
S c a l e l o s sB e f o r e = d fE f f$Risttap . . . 1 1 ,
S c a l e l o s sA f t e r = d fE f f$Risttap . . . 2 1 )

}
else i f ( methodString == ”Freshwater ” ){

df = cbind (df , AvWeight = dfDod$Sni t tvekt ,
Biomass = dfDod$`Biomasse (KG) ` ,
NumFish = dfDod$`Anta l l ( s tk ) ` ,
SeaTemp = dfDod$ R sjsj ,
AvCrowding = dfDod$`Gj . s n i t t t r eng e t i d (min) ` ,
NumDeaths3 = dfDod$`Etter 3 dager ( s tk ) ` ,
NumDeaths14 = dfDod$`Etter 14 dager ( s tk ) ` ,
D i sease = rep ( as . character (NA) , l en ) ,
FemalesAfter = d fE f f$Kj .modn . . . 1 6 ,
HaemorrBefore = d fE f f$Rdbuk . . . 1 0 ,
HaemorrAfter = d fE f f$Rdbuk . . . 2 0 ,
S c a l e l o s sB e f o r e = d fE f f$Risttap . . . 1 1 ,
S c a l e l o s sA f t e r = d fE f f$Risttap . . . 2 1 )

}
else i f ( methodString == ”Hydro l i c e r ” ) {

df = cbind (df , AvWeight = dfDod$Sni t tvekt ,
Biomass = dfDod$`Biomasse ( kg ) ` ,
NumFish = rep (NA, l en ) ,
SeaTemp = dfDod$`Temp i s j ` ,
AvCrowding = dfDod$`Gj . s n i t t t r eng e t i d per kast (min) ` ,
NumDeaths3 = dfDod$`3 dager ( s tk ) ` ,
NumDeaths14 = dfDod$`Dag 14 ( s tk ) ` ,
D i sease = dfDod$`Sykdom p l o k a l i t e t `)

i f ( year == ”2022” ) {
df = cbind (df , FemalesAfter = d fE f f$Kj .modn . . . 1 7 ,

HaemorrBefore = d fE f f$Rdbuk . . . 8 ,
HaemorrAfter = d fE f f$Rdbuk . . . 1 9 ,
S c a l e l o s sB e f o r e = d fE f f$Risttap . . . 9 ,
S c a l e l o s sA f t e r = d fE f f$Risttap . . . 2 0 )

}
else {

df = cbind (df , FemalesAfter = d fE f f$Kj .modn . . . 1 6 ,
HaemorrBefore = d fE f f$Rdbuk . . . 7 ,
HaemorrAfter = d fE f f$Rdbuk . . . 1 7 ,
S c a l e l o s sB e f o r e = d fE f f$Risttap . . . 8 ,
S c a l e l o s sA f t e r = d fE f f$Risttap . . . 1 8 )

}
}
else i f ( methodString == ”SkaMik” ) {

df = cbind (df , AvWeight = dfDod$Sni t tvekt ,
Biomass = dfDod$`Biomasse ( kg ) ` ,
NumFish = rep (NA, l en ) ,
SeaTemp = dfDod$`Temp i s j ` ,
AvCrowding = dfDod$ . . . 1 3 ,
NumDeaths3 = dfDod$`3 dager ( s tk ) ` ,
NumDeaths14 = dfDod$`Dag 14 ( s tk ) ` ,
D i sease = dfDod$`Sykdom p l o k a l i t e t `)

i f ( year == ”2022” ) {
df = cbind (df , FemalesAfter = d fE f f$Kj .modn . . . 1 7 ,
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HaemorrBefore = d fE f f$Rdbuk . . . 8 ,
HaemorrAfter = d fE f f$Rdbuk . . . 1 9 ,
S c a l e l o s sB e f o r e = d fE f f$Risttap . . . 9 ,
S c a l e l o s sA f t e r = d fE f f$Risttap . . . 2 0 )

}
else {

df = cbind (df , FemalesAfter = d fE f f$Kj .modn . . . 1 6 ,
HaemorrBefore = d fE f f$Rdbuk . . . 7 ,
HaemorrAfter = d fE f f$Rdbuk . . . 1 7 ,
S c a l e l o s sB e f o r e = d fE f f$Risttap . . . 8 ,
S c a l e l o s sA f t e r = d fE f f$Risttap . . . 1 8 )

}
}
return (df )

}

# Combine to one data frame
df = rbind ( extractData (df . ferskDod20 , df . f e r skE f f 20 , ”Freshwater ” , ”2020” ) ,

extractData (df . ferskDod21 , df . f e r skE f f 21 , ”Freshwater ” , ”2021” ) ,
extractData (df . ferskDod22 , df . f e r skE f f 22 , ”Freshwater ” , ”2022” ) ,
extractData (df . optDod20 , df . optEff20 , ” Op t i l i c e r ” , ”2020” ) ,
extractData (df . optDod21 , df . optEff21 , ” Op t i l i c e r ” , ”2021” ) ,
extractData (df . hydDod20 , df . hydEff20 , ” Hydro l i c e r ” , ”2020” ) ,
extractData (df . hydDod21 , df . hydEff21 , ” Hydro l i c e r ” , ”2021” ) ,
extractData (df . hydDod22 , df . hydEff22 , ” Hydro l i c e r ” , ”2022” ) ,
extractData (df . skamikDod20 , df . skamikEff20 , ”SkaMik” , ”2020” ) ,
extractData (df . skamikDod21 , df . skamikEff21 , ”SkaMik” , ”2021” ) ,
extractData (df . skamikDod22 , df . skamikEff22 , ”SkaMik” , ”2022” ) )

######## Manually go through comments in e x c e l s h e e t s #########
######## and make changes in data s e t #########

# Slaugh t e r o f f i s h
df = df %>% mutate ( S laughter = i f e l s e ( Locat ion == ” . . . ” & Cage ==”6”

& Date == ” . . . ” , 1 , S laughter ) )
df = df %>% mutate ( S laughter = i f e l s e ( Locat ion == ” . . . ” & Cage ==”7”

& Date == ” . . . ” , 1 , S laughter ) )
df = df %>% mutate ( S laughter = i f e l s e ( Locat ion == ” . . . ” & Cage ==”12”

& Date == ” . . . ” , 1 , S laughter ) )
df = df %>% mutate ( S laughter = i f e l s e ( Locat ion == ” . . . ” & Cage ==”13”

& Date == ” . . . ” , 1 , S laughter ) )
# Only h a l f the cage was t r e a t e d
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Cage == ”10” & Date == ” . . . ” ) )
# Observat ion where Freshwater was used f i r s t and then Hydro l i ce r
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Cage == ”4” & Date == ” . . . ” ) )
# Early terminat ion o f treatment
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Date == ” . . . ” ) )
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Date == ” . . . ” ) )
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Date == ” . . . ” ) )
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Date == ” . . . ” ) )
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Date == ” . . . ” ) )
df = f i l t e r (df , ! ( Locat ion == ” . . . ” & Date == ” . . . ” ) )

############## Pre−proce s s ing o f v a r i a b l e s #################
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# Convert Biomass to numerical v a r i a b l e
strRemove = substr (df$Biomass [ 5 0 ] , 4 , 4 )
df = df %>% mutate ( Biomass = s t r remove a l l ( Biomass , strRemove ) )
df$Biomass = as . double (df$Biomass )

# Convert NumFish to numerical v a r i a b l e
df = df %>% mutate (NumFish = s t r remove a l l (NumFish , strRemove ) )
df$NumFish = as . double (df$NumFish)

# Convert AvWeight to numerical v a r i a b l e
df = df %>% mutate (AvWeight = s t r remove a l l (AvWeight , strRemove ) )
df = df %>% mutate (AvWeight = gsub ( ” , ” , ” . ” , AvWeight ) )
df$AvWeight = as . double (df$AvWeight )
df$AvWeight = df$AvWeight / 1000 # in kg
df = df %>% mutate (AvWeight = i f e l s e ( i s .na(AvWeight ) & ! i s .na(NumFish)

& ! i s .na( Biomass ) ,
Biomass/NumFish , AvWeight ) )

# Create v a r i a b l e NumBefore
df = cbind (df , NumBefore = df$Biomass / df$AvWeight )

# Biomass in metr ic ton
df$Biomass = df$Biomass / 1000

# Convert SeaTemp to numerical v a r i a b l e
df = df %>% mutate (SeaTemp = i f e l s e (SeaTemp == ”−” , NA, SeaTemp ) )
df$SeaTemp = as . double (df$SeaTemp)

# Convert NumDeaths3 to numerical v a r i a b l e
df = df %>% mutate (NumDeaths3 = i f e l s e (NumDeaths3 == ”−” , NA, NumDeaths3 ) )
df$NumDeaths3 = as . double (df$NumDeaths3 )

# Fac tor i z e c a t e g o r i c a l v a r i a b l e s
df$Method = as . factor (df$Method)
df$Season = as . factor (df$Season )
df$Slaughter = as . factor (df$Slaughter )

# Correct typos f o r Locat ion
df = df %>% mutate ( Locat ion = i f e l s e ( Locat ion == ” . . . ” , ” . . . ” , Locat ion ) )
# . . . . Chunk o f s im i l a r code sk ipped f o r c o n f i d e n t i a l i t y

# Remove ob s e r va t i on s where f i s h were moved to another
# l o c a t i o n a f t e r treatment
df = f i l t e r (df , Locat ion != ” . . . ” )

# Convert FemalesBefore to numerical v a r i a b l e s
df = mutate (df , FemalesBefore = i f e l s e ( FemalesBefore == ”?” ,

NA, FemalesBefore ) )
df = mutate (df , FemalesBefore = gsub ( ” , ” , ” . ” , FemalesBefore ) )
df = mutate (df , FemalesBefore = gsub ( ” ” , ”” , FemalesBefore ) )
df$FemalesBefore = as . double (df$FemalesBefore )

# Convert HaemorrBefore and HaemorrAfter to numerical v a r i a b l e s
df = mutate (df , HaemorrBefore = i f e l s e ( HaemorrBefore == ”−” ,
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NA, HaemorrBefore ) )
df = mutate (df , HaemorrBefore = i f e l s e ( HaemorrBefore == ”?” ,

NA, HaemorrBefore ) )
df$HaemorrBefore = as . double (df$HaemorrBefore )
df = mutate (df , HaemorrAfter = i f e l s e ( HaemorrAfter == ”−” , NA, HaemorrAfter ) )
df = mutate (df , HaemorrAfter = i f e l s e ( HaemorrAfter == ”?” , NA, HaemorrAfter ) )
df$HaemorrAfter = as . double (df$HaemorrAfter )

# Convert S ca l e l o s sBe f o r e and S c a l e l o s sA f t e r to numerical v a r i a b l e s
df = mutate (df , S c a l e l o s sB e f o r e = i f e l s e ( S c a l e l o s sB e f o r e == ”−” ,

NA, S c a l e l o s sB e f o r e ) )
df = mutate (df , S c a l e l o s sB e f o r e = i f e l s e ( S c a l e l o s sB e f o r e == ”?” ,

NA, S c a l e l o s sB e f o r e ) )
df$S c a l e l o s sB e f o r e = as . double (df$S c a l e l o s sB e f o r e )
df = mutate (df , S c a l e l o s sA f t e r = i f e l s e ( S c a l e l o s sA f t e r == ”−” ,

NA, S c a l e l o s sA f t e r ) )
df = mutate (df , S c a l e l o s sA f t e r = i f e l s e ( S c a l e l o s sA f t e r == ”?” ,

NA, S c a l e l o s sA f t e r ) )
df$ S c a l e l o s sA f t e r = as . double (df$ S c a l e l o s sA f t e r )

# AvCrowding
f i l t e r (df , g r ep l ( ”?” , AvCrowding , f i x ed = TRUE) )
# be t t e r e s t ima t e s a f t e r l o o k in g at the t rea tments
df = mutate (df ,

AvCrowding = i f e l s e (AvCrowding == ”40 ,63? ” , ” 44 .7 ” , AvCrowding ) )
df = mutate (df ,

AvCrowding = i f e l s e (AvCrowding == ”49 ,16? ” , ”59” , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == ”60?” , ”72” , AvCrowding ) )
df = mutate (df ,

AvCrowding = i f e l s e (AvCrowding == ”53 ,42? ” , ” 62 .3 ” , AvCrowding ) )
# conver t ing to numerical v a r i a b l e
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == ”?” , NA, AvCrowding ) )
df = mutate (df , AvCrowding = gsub ( ” , ” , ” . ” , AvCrowding ) )
df$AvCrowding = as . double (df$AvCrowding )
# Correct c a l c u l a t i o n mis takes
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 636 .7 , 63 . 67 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 212 .5 , 106 .25 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 199 , 99 . 5 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 180 , 120 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 160 , 120 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 25 , 50 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 50 & Date == ” . . . ” ,

100 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 20 .2 , 32 . 2 , AvCrowding ) )
df$AvCrowding = round(df$AvCrowding , 2)
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 26 .67 , 46 .67 , AvCrowding ) )
df = mutate (df , AvCrowding = i f e l s e (AvCrowding == 139 .2 , 91 . 67 , AvCrowding ) )

# Disease data from BarentsWatch
df . d i s e a s e = read ex c e l ( ” i l a pd barentswatch . x l sx ” ,

shee t = ”ILA og PD” , n max = 33093 ,
col types = c ( ”numeric ” , ”numeric ” , ”numeric ” ,

” t ext ” , ” t ext ” , ” t ext ” , ” t ext ” , ” t ext ” ,
” sk ip ” , ” sk ip ” , ” sk ip ” , ” sk ip ” , ” sk ip ” ,
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” sk ip ” , ” t ext ” , ” sk ip ” , ” t ext ” , ” t ext ” ,
” date ” , ” date ” , ” date ” , ” date ” ) )

# Function f o r date format
dateFunk = function ( DateList ){

newList = rep ( ”” , length ( DateList ) )
for ( i in ( 1 : length ( DateList ) ) ){

newList [ i ] = s tr sp l i t ( DateList [ i ] , sp l i t = ” ” ) [ [ 1 ] ] [ 1 ]
}
return ( newList )

}

# Function f o r date format
dateFunk2 = function (date ){

chars = s tr sp l i t (date , sp l i t = ”/” )
month = i f e l s e (nchar ( chars [ [ 1 ] ] [ 1 ] ) == 1 ,

paste ( ”0” , chars [ [ 1 ] ] [ 1 ] , sep = ”” ) , chars [ [ 1 ] ] [ 1 ] )
day = i f e l s e (nchar ( chars [ [ 1 ] ] [ 2 ] ) == 1 ,

paste ( ”0” , chars [ [ 1 ] ] [ 2 ] , sep = ”” ) , chars [ [ 1 ] ] [ 2 ] )
year = chars [ [ 1 ] ] [ 3 ]
newDate = paste ( year , month , day , sep = ”−” )
return ( newDate )

}

df . d i s e a s e$`Ti l dato ` = dateFunk (df . d i s e a s e$`Ti l dato `)
df . d i s e a s e$`Fra dato ` = dateFunk (df . d i s e a s e$`Fra dato `)
df . d i s e a s e$` P vist −dato ` = as . character (df . d i s e a s e$` P vist −dato `)
df . d i s e a s e$`Avsluttet−dato ` = as . character (df . d i s e a s e$`Avsluttet−dato `)
df . d i s e a s e$` P vist −dato ` = dateFunk (df . d i s e a s e$` P vist −dato `)
df . d i s e a s e$`Avsluttet−dato ` = dateFunk (df . d i s e a s e$`Avsluttet−dato `)

df . d i s e a s e = cbind (df . d i s ea s e , ToDate = df . d i s e a s e$`Avsluttet−dato `)
for ( i in ( 1 : length (df . d i s e a s e$Uke ) ) ){

i f ( i s .na(df . d i s e a s e$ToDate [ i ] ) & ! i s .na(df . d i s e a s e$`Ti l dato ` [ i ] ) ) {
df . d i s e a s e$ToDate [ i ] = dateFunk2 (df . d i s e a s e$`Ti l dato ` [ i ] )

}
}

df . d i s e a s e = cbind (df . d i s ea s e , FromDate = df . d i s e a s e$` P vist −dato `)
for ( i in ( 1 : length (df . d i s e a s e$Uke ) ) ){

i f ( i s .na(df . d i s e a s e$FromDate [ i ] ) & ! i s .na(df . d i s e a s e$`Fra dato ` [ i ] ) ) {
df . d i s e a s e$FromDate [ i ] = dateFunk2 (df . d i s e a s e$`Fra dato ` [ i ] )

}
}

# F i l t e r i n g out r e l e v an t l o c a t i o n s
# Code sk ipped f o r c o n f i d e n t i a l i t y

# F i l t e r out r e l e v an t data
df . d i s e a s e = cbind (df . d i s ea s e , Out = rep (0 , length (df . d i s e a s e$Uke ) ) )
df . d i s e a s e = f i l t e r (df . d i s ea s e , Status== ” P vist ” )
df . d i s e a s e = df . d i s e a s e %>%

mutate (ToDate = i f e l s e ( i s .na(ToDate ) & r == 2022 , ”2022−10−22” , ToDate ) )
df . d i s e a s e = f i l t e r (df . d i s ea s e , ! i s .na(ToDate ) )
df . d i s e a s e = mutate (df . d i s ea s e ,

Out = i f e l s e ( ! (ymd(ToDate ) %with in%
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i n t e r v a l (ymd( ”2020−01−01” ) ,
ymd( ”2022−10−22” ) ) ) , 1 , Out ) )

df . d i s e a s e = f i l t e r (df . d i s ea s e , Out == 0)
df . d i s e a s e$Loka l i t e t snavn = drop l e v e l s (df . d i s e a s e$Loka l i t e t snavn )

# Exclude CMS from d i s ea s e because o f in format ion only f o r one data shee t
df = mutate (df , D i sease = i f e l s e ( Disease == ”CMS” , NA, Disease ) )

# Extrac t d i s e a s e in format ion from BW data
for ( i in ( 1 : length (df$Date ) ) ){

i f (df$Locat ion [ i ] %in% levels (df . d i s e a s e$Loka l i t e t snavn )
& is .na(df$Disease [ i ] ) ) {

diseaseDF = f i l t e r (df . d i s ea s e , Loka l i t e t snavn == df$Locat ion [ i ] )
for ( j in ( 1 : length ( diseaseDF$ r ) ) ){

i n t = i n t e r v a l (ymd( diseaseDF$FromDate [ j ] ) , ymd( diseaseDF$ToDate [ j ] ) )
i f (ymd(df$Date [ i ] ) %with in% in t ){

df$Disease [ i ] = diseaseDF$Sykdom [ j ]
break

}
}

}
}

# Disease v a r i a b l e
df = mutate (df , D i sease = i f e l s e ( i s .na( Disease ) , ”None” , Disease ) )
df$Disease = as . factor (df$Disease )

# Combine nearby l o c a t i o n I and I I to one l o c a t i o n
df = mutate (df , Locat ion = i f e l s e ( Locat ion %in% c ( ” . . . ” , ” . . . ” ) ,

” . . . ” , Locat ion ) )
df = mutate (df , Locat ion = i f e l s e ( Locat ion %in% c ( ” . . . ” , ” . . . ” ) ,

” . . . ” , Locat ion ) )
df = mutate (df , Locat ion = i f e l s e ( Locat ion %in% c ( ” . . . ” , ” . . . ” ) ,

” . . . ” , Locat ion ) )
df$Locat ion = as . factor (df$Locat ion )

# Manually f i nd e s t ima t e s f o r miss ing SeaTemp
# from BW data
f i l t e r (df , i s .na(SeaTemp) & ! i s .na(AvWeight ) & ! i s .na(AvCrowding ) )

df = mutate (df , SeaTemp = i f e l s e ( Locat ion == ” . . . ” & is .na(SeaTemp)
& ymd(Date ) %with in%

i n t e r v a l (ymd( ” . . . ” ) , ymd( ” . . . ” ) ) ,
13 . 9 , SeaTemp ) )

df = mutate (df , SeaTemp = i f e l s e ( Locat ion == ” . . . ” & is .na(SeaTemp)
& ymd(Date ) %with in%

i n t e r v a l (ymd( ” . . . ” ) , ymd( ” . . . ” ) ) ,
14 . 8 , SeaTemp ) )

# . . . . Skipped chunk o f s im i l a r code f o r c o n f i d e n t i a l i t y

# Var iab l e LocNumber
# Assign numbers be l ong ing to d i f f e r e n t l o c a t i o n s f o r a l l o b s e r va t i on s
df = cbind (df , LocNumber = rep (NA, length (df$Locat ion ) ) )
names = levels (df$Locat ion )
for ( i in ( 1 : length (df$Locat ion ) ) ){
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for ( j in ( 1 : length (names ) ) ){
i f (df$Locat ion [ i ] == names [ j ] ) {

df$LocNumber [ i ] = j
break

}
}

}

# Remove ob s e r va t i on s wi th miss ing exp lana tory v a r i a b l e s
df = f i l t e r (df , ! i s .na( Biomass ) )
df = f i l t e r (df , ! i s .na(AvWeight ) )
df = f i l t e r (df , ! i s .na(SeaTemp ) )
df = f i l t e r (df , ! i s .na(AvCrowding ) )

# Sca le/ cen ter numeric exp lana tory v a r i a b l e s
numVarStats = data . frame ( Vars = c ( ”AvWeight” , ”AvCrowding” ,

”Biomass” , ”SeaTemp” ) )
numVarStats = cbind ( numVarStats , Mean = c (mean(df$AvWeight ) ,

mean(df$AvCrowding ) ,
mean(df$Biomass ) ,
mean(df$SeaTemp ) ) )

numVarStats = cbind ( numVarStats , SD = c ( sd (df$AvWeight ) ,
sd (df$AvCrowding ) ,
sd (df$Biomass ) ,
sd (df$SeaTemp ) ) )

df = cbind (df ,
AvWeightSc = as . double ( scale (df$AvWeight ) ) ,
AvCrowdingSc = as . double ( scale (df$AvCrowding ) ) ,
BiomassSc = as . double ( scale (df$Biomass ) ) ,
SeaTempSc = as . double ( scale (df$SeaTemp ) ) )

write x l sx ( numVarStats , ”NumVarStats . x l sx ” )

####################################################
# Data s e t f o r de l ou s ing e f f e c t ( adu l t female l i c e )
####################################################
df . E f f e c t = df

# CountFemalesBefore , CountFemalesAfter
df . E f f e c t = cbind (df . E f f e c t ,

CountFemalesBefore = round(df . E f f e c t$FemalesBefore ∗ 20))
df . E f f e c t = cbind (df . E f f e c t ,

CountFemalesAfter = round(df . E f f e c t$FemalesAfter ∗ 20))
df . E f f e c t = f i l t e r (df . E f f e c t , ! i s .na( CountFemalesBefore ) )
df . E f f e c t = f i l t e r (df . E f f e c t , ! i s .na( CountFemalesAfter ) )
df . E f f e c t = f i l t e r (df . E f f e c t , CountFemalesBefore>0)
df . E f f e c t = df . E f f e c t %>%

mutate ( CountFemalesAfter = i f e l s e ( CountFemalesAfter > CountFemalesBefore ,
CountFemalesBefore , CountFemalesAfter ) )

# Estimated propor t ion o f removed adu l t female l i c e
df . E f f e c t =

cbind (df . E f f e c t , PropRemoved =
(df . E f f e c t$CountFemalesBefore−df . E f f e c t$CountFemalesAfter )/
df . E f f e c t$CountFemalesBefore )
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# Small count , drop CountFemalesBefore < 5
df . E f f e c t = f i l t e r (df . E f f e c t , CountFemalesBefore >= 5)

# Drop ob s e r va t i on wi th count o f 289
df . E f f e c t = f i l t e r (df . E f f e c t , CountFemalesBefore < 289)

# Index ob s e r va t i on s − New va r i a b l e Cage
df . E f f e c t = subset (df . E f f e c t , s e l e c t = −c (Cage ) )
df . E f f e c t = cbind (df . E f f e c t , Cage = seq ( 1 : length (df . E f f e c t$Date ) ) )
df . E f f e c t$Cage = as . factor (df . E f f e c t$Cage )

write x l sx (df . E f f e c t , ”Data d e l ou s i n gE f f e c t . x l sx ” )

#########################################
# Data s e t f o r mor t a l i t y a f t e r 3 days
#########################################
df . Mort3 = df
df . Mort3 = f i l t e r (df . Mort3 , ! i s .na(NumDeaths3 ) )
df . Mort3 = f i l t e r (df . Mort3 , S laughter == ”0” )
df . Mort3$NumDeaths3 = round(df . Mort3$NumDeaths3 )
df . Mort3 = cbind (df . Mort3 ,

Morta l i ty3 = df . Mort3$NumDeaths3/df . Mort3$NumBefore )

# Remove ob s e r va t i on s wi th i n v a l i d wi s core s f o r exp lana tory v a r i a b l e s
df . Mort3 = f i l t e r (df . Mort3 , ! i s .na( HaemorrBefore ) )
df . Mort3 = f i l t e r (df . Mort3 , ! i s .na( S c a l e l o s sB e f o r e ) )
df . Mort3 = f i l t e r (df . Mort3 , S c a l e l o s sB e f o r e <= 3)

# Index ob s e r va t i on s − New va r i a b l e Cage
df . Mort3 = subset (df . Mort3 , s e l e c t = −c (Cage ) )
df . Mort3 = cbind (df . Mort3 , Cage = seq ( 1 : length (df . Mort3$Date ) ) )
df . Mort3$Cage = as . factor (df . Mort3$Cage )

write x l sx (df . Mort3 , ”Data morta l i ty3 . x l sx ” )

#########################################
# Data s e t f o r mor t a l i t y a f t e r 14 days
#########################################
df . Mort14 = df
df . Mort14 = f i l t e r (df . Mort14 , ! i s .na(NumDeaths14 ) )
df . Mort14 = f i l t e r (df . Mort14 , S laughter == ”0” )
df . Mort14 = cbind (df . Mort14 ,

Morta l i ty14 = df . Mort14$NumDeaths14/df . Mort14$NumBefore )

# Remove ob s e r va t i on s wi th i n v a l i d wi s core s f o r exp lana tory v a r i a b l e s
df . Mort14 = f i l t e r (df . Mort14 , ! i s .na( HaemorrBefore ) )
df . Mort14 = f i l t e r (df . Mort14 , ! i s .na( S c a l e l o s sB e f o r e ) )
df . Mort14 = f i l t e r (df . Mort14 , S c a l e l o s sB e f o r e <= 3)

# Index ob s e r va t i on s − New va r i a b l e Cage
df . Mort14 = subset (df . Mort14 , s e l e c t = −c (Cage ) )
df . Mort14 = cbind (df . Mort14 , Cage = seq ( 1 : length (df . Mort14$Date ) ) )
df . Mort14$Cage = as . factor (df . Mort14$Cage )
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write x l sx (df . Mort14 , ”Data morta l i ty14 . x l sx ” )

###########################################
# Data s e t f o r change in sk in haemorrhages
###########################################
df . Haemorr = df
df . Haemorr = f i l t e r (df . Haemorr , ! i s .na( HaemorrBefore ) )
df . Haemorr = f i l t e r (df . Haemorr , ! i s .na( S c a l e l o s sB e f o r e ) )
df . Haemorr = f i l t e r (df . Haemorr , S c a l e l o s sB e f o r e <= 3)
df . Haemorr = f i l t e r (df . Haemorr , ! i s .na( HaemorrAfter ) )
df . Haemorr = f i l t e r (df . Haemorr , HaemorrAfter <= 3)
df . Haemorr = cbind (df . Haemorr ,

HaemorrChange = df . Haemorr$HaemorrAfter −
df . Haemorr$HaemorrBefore )

write x l sx (df . Haemorr , ”Data changeHaemorr . x l sx ” )

###########################################
# Data s e t f o r change in s c a l e l o s s
###########################################
df . S c a l e l o s s = df
df . S c a l e l o s s = f i l t e r (df . S c a l e l o s s , ! i s .na( S c a l e l o s sB e f o r e ) )
df . S c a l e l o s s = f i l t e r (df . S c a l e l o s s , ! i s .na( HaemorrBefore ) )
df . S c a l e l o s s = f i l t e r (df . S c a l e l o s s , ! i s .na( S c a l e l o s sA f t e r ) )
df . S c a l e l o s s = f i l t e r (df . S c a l e l o s s , S c a l e l o s sB e f o r e <= 3)
df . S c a l e l o s s = cbind (df . S c a l e l o s s ,

Sca le los sChange = df . S c a l e l o s s $ S c a l e l o s sA f t e r −
df . S c a l e l o s s $S c a l e l o s sB e f o r e )

write x l sx (df . S c a l e l o s s , ”Data changeSca l e l o s s . x l sx ” )
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D Model Output

DE-FE

Figure D.1: Model output for the full binomial DE-FE model.
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Figure D.2: Model output for the full quasi-binomial DE-FE model.
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Figure D.3: Model output for the reduced quasi-binomial DE-FE model.
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Figure D.4: Model output for the reduced quasi-binomial DE-FE model with sea temperature of 7°C
(corresponding to SeaTempSc=-1.422) as the intercept value.
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DE-ME

Figure D.5: Model output for the full DE-ME model.
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M3-FE

Figure D.6: Model output for the full quasi-binomial M3-FE model.
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M3-ME

Figure D.7: Model output for the full M3-ME model.
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M14-FE

Figure D.8: Model output for the full quasi-binomial M14-FE model.
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Figure D.9: Model output for the reduced quasi-binomial M14-FE model.
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M14-ME

Figure D.10: Model output for the full M14-ME model.
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Figure D.11: Model output for the reduced M14-ME model.
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SH-FE

Figure D.12: Model output for the full SH-FE model.
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SH-ME

Figure D.13: Model output for the full SH-ME model.
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SL-FE

Figure D.14: Model output for the full SL-FE model.
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SL-ME

Figure D.15: Model output for the full SL-ME model.
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