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Abstract 
 

This thesis investigates the use of reinforcement learning algorithms, namely Q-learning and DQN, 

for trading bitcoin on a daily timeframe. The experimental results demonstrates that while all 

models trained without transaction costs technically outperform a buy-and hold strategy, they are 

highly unstable. The various Q-learning models appear to be making identical decisions, and we 

hypothesize that more training time is needed. One of the DQN models on the other hand, appear 

to be exhibiting hints of some rational and consistent trading behavior. Interestingly, it also ends 

up just being profitable. However, we argue this model is still far away from being applicable in a 

real-world trading-setting. Based on these findings, we conclude that further research is needed to 

develop more stable and rigorous models. Furthermore, it is recommended that future research 

incorporates things like a continuous action space, additional features, and primarily more time 

and computational power. Overall, the thesis highlights both the potential applicability and the 

challenging aspects of reinforcement learning in the world of trading.  

 

 

  



 
 

 

Sammendrag 
 

Denne oppgaven undersøker bruken av reinforcement learning algoritmer, nemlig Q-learning og 

DQN, for handel med bitcoin på en daglig tidsramme. De eksperimentelle resultatene viser at selv 

om alle modeller utkonkurrerer en buy-and-hold-strategi (ikke tatt transaksjonskostnader med i 

beregning), er de svært ustabile. De ulike Q-læringsmodellene ser ut til å ta identiske beslutninger, 

og vi antar at det trengs mer treningstid. På den andre siden viser en av DQN-modellene en viss 

rasjonell og konsistent atferd. Interessant nok klarer den akkurat å bli lønnsom. Imidlertid hevder 

vi at denne modellen fortsatt er langt unna å være anvendelig i en virkelig situasjon. Basert på 

disse funnene konkluderer vi med at ytterligere forskning er nødvendig for å utvikle mer stabile 

og strenge modeller. Videre anbefales det at fremtidig forskning inkluderer ting som et 

kontinuerlig action-space, flere features, og først og fremst mer tid og datakraft. Samlet sett 

fremhever oppgaven både den potensielle anvendeligheten og de utfordrende aspektene ved 

reinforcement learning i handel med finansielle eiendeler.  
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1 Introduction 
 

Since its inception in 2009, bitcoin has emerged as the most renowned digital currency that is 

currently undergoing widespread adoption. Its use cases are widely debated, but nonetheless it has 

attracted noticeable attention from both retail and institutional investors. As of today, bots and 

automated trading make up most of the traded volume in the financial markets, and different forms 

of AI is also incorporated to gain an edge. Bitcoin is often an attractive arena for such trading 

techniques as the market never closes, the volatility is high, and there is access to large amounts 

of historical data. AI is more commonly incorporated into trading using, for example, LSTM 

networks to predict future prices. While some research indicates interesting results in this domain, 

there are also findings indicating that such an approach is comparable to the Naive method, which 

is simply predicting tomorrow’s price based on the price today. Intrigued by these findings, this 

thesis instead explores the use of reinforcement learning. Traditionally, investors would like to 

know the reasoning behind a certain recommendation on whether to buy or sell an asset.  Because 

it is hard to decipher the reasoning behind the output of a reinforcement learning model, this 

approach has not been as widely researched as other AI methods in the world of finance. This 

renders reinforcement learning a particularly exciting area to research when it comes to trading. In 

more detail, this thesis explores the effectiveness of two popular reinforcement learning 

algorithms, namely Q-Learning and Deep Q-Learning.  
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2 Literature Review 
 

There have been numerous efforts in applying various analytical techniques to predict the price of 

bitcoin and exploit its volatility. In this literature review, we will examine the findings of previous 

research regarding AI and machine learning as an aid in trading and highlight the key-areas 

important to this paper going forward. In what follows, we will differentiate two strains of 

literature: The first strain is aiming purely at predicting bitcoin prices or returns, and models used 

for this task can mainly be classified as supervised learning models. The other strain looks at 

bitcoin trading decisions, where models belong to the family of reinforcement learning approaches.       

 

2.1 Supervised Learning Models for Prediction Bitcoin  
Huang, Huang, & Ni (2019) performed a study to determine if bitcoin returns are predictable by 

using price based technical indicators. The researched used a classification tree-based approach, 

and the findings suggest that their model has strong predictive power for certain ranges of daily 

returns on bitcoin. The team of researchers used 124 technical indicators from the “ta” library in 

pandas, and thus there was a variety of different types of indicators used as predictive variables. 

This model was trained on daily BTC-USD data, including the open, high, low, and close price of 

bitcoin. They used a sub-sample of the data to estimate and calculate the starting value of the 124 

indicators. In the end, we are not told if they performed any testing to determine some sort of 

statistical significance for each indicator, something that would have been preferable. Similar 

findings are highlighted by Erfanian et al. (2022) whose aim was to predict the price of bitcoin in 

the context of micro-and macroeconomic theories such as cost-based pricing models. The research 

team used a variety of comparative approaches including OLS, Ensemble learning, SVR, and MLP 

to investigate how well the microeconomic, macroeconomic, technical, and blockchain indicators 

predict the price of bitcoin. The results are somewhat similar to the results by Huang, Huang, & 

Ni (2019) since the team claims that “some technical indicators are significant short-run BTC 

price predictors, thus confirming the validity of technical analysis” (Erfanian et al. abstract, 2022). 

Furthermore, the report also suggests that macroeconomic and blockchain indicators are 

significant long-term predictors. In terms of the different models used, it turns out that SVR was 

superior to other machine learning models. Nonetheless, the authors doubt whether machine 
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learning currently can outperform traditional models in BTC price prediction. It is important to 

note that while Huang, Huang, & Ni (2019) tried to predict returns, Erfanian et al. (2022) tried 

predicting price. This can be fundamentally different in the context of timeseries and machine 

learning. 

 

A study by Chen (2023) also provides interesting findings with regards to predicting the price of 

bitcoin. This study used normalized daily bitcoin data to predict next day’s price using random 

forest regression and LSTM. 41 input variables were used, among them bitcoin variables, 

blockchain activity, other cryptos, commodities, foreign exchanges, market indexes, tweets, and 

day of the week. The findings indicated several interesting conclusions. For example, it appears 

the Open, High, Low, and Close price of bitcoin using only 1 lag is the best predictor for the price 

in the next period, which aligns with the efficient market hypothesis. This indicates that the best 

predictor for tomorrow’s price is simply today’s price, which in turn could imply the random walk 

hypothesis is correct. The results also indicated that while the most important explanatory variables 

vary within the testing periods, variables like the SP500, JP225, Oil, and some other cryptos like 

ETH had predictive power. The study also found that incorporating redundant variables, or to few 

variables, decreased the model accuracy. In addition, both the LSTM and random forest algorithm, 

struggled with predictions when the price exceeded that of the highest price in the training data. 

A problem with prediction the actual future price of an asset using machine learning models is 

often related to the normalization and the random walk hypothesis. Few of the research paper 

above have compared their models to the naïve stock prediction forecast, which is using the price 

in t-1 to predict the price in t. In addition, as pointed our earlier, the longevity of some of these 

models could be questioned, as they are using normalized prices as a variable. This can easily 

result in a broken model as stock prices rarely only fluctuate between their previous min and max 

price. Furthermore, it could be argued that price prediction in and of itself is not intuitive. Rather, 

what an investor is more concerned with is the return, which is what Huang, Huang, & Ni (2019) 

successfully predicted.  

A paper dealing with the previously mentioned issues regarding normalization and price prediction 

in a time series, is Nevasalmi, (2020). By using a multinominal approach, they attempted to predict 

the return of the S&P500 on a daily timeframe using various machine learning algorithms. The 
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team essentially established two thresholds of positive and negative return to reduce near-0% 

return noise. The findings indicated that decision tree models such as random forest and gradient 

boost were able to generate a statistically significant return prediction. The team also tested all the 

models in a trading environment, which resulted in all the models outperforming a standard buy 

& hold strategy.  

A paper dealing with the previously mentioned issues regarding normalization and price prediction 

in a time series, is Nevasalmi, (2020). By using a multinominal approach, they attempted to predict 

the return of the S&P500 on a daily timeframe using various machine learning algorithms. The 

team essentially established two thresholds of positive and negative return to reduce near-0% 

return noise. The findings indicated that decision tree models such as random forest and gradient 

boost were able to generate a statistically significant return prediction. The team also tested all the 

models in a trading environment, which resulted in all the models outperforming a standard buy 

& hold strategy.  

 

2.2 Reinforcement Learning Models for Bitcoin Trading Decisions 
Sattarov et al. (2020) built a deep reinforcement learning model using tensorflow libraries and 

Keras API which purpose was to maximize short term accumulated returns when trading 

cryptocurrency pairs. The policy function used was stochastic, which means the output was a 

probability resulting in, for example, 0.8 buy, 0.1 sell and 0.1 hold. The reward mechanism was 

simply the sell price minus the previous buy price, and the size of the reward was directly 

proportional to this profit. With this approach, the agent seemed to show signs of increasingly 

improved results. Another interesting approach was the decision to use 4 multilayer models. In 

short this meant that the output of the 4 models were used to assess confidence in each of the three 

possible actions. If the highest confidence indicator was less than a certain threshold, this would 

mean the agent took no action whatsoever as the signals were deemed unreliable. The study tested 

the models on bitcoin, Ethereum and Litecoin, and compared the model to three other common 

investing strategies (Double Cross MA, swing trading, and scalping). This resulted in the model 

outperforming the other investing strategies convincingly in all cases, as well as making a profit 

in all cases. The researchers also conclude that simply using “buy” and “sell” actions might be the 

best for improving the model further.  
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Similar results were obtained in a study by Liu, et al. (2021). They argue deep reinforcement 

learning is better than earlier reinforcement algorithms such as Q-learning since such algorithms 

can only be applied to limited states and actions which need to be manually designed in advance. 

By using deep reinforcement learning, they argue that they can produce massive states on a longer 

time frame. Their proposed framework looked as follows:  

• Create and initialize a gym trading environment. 

• Setup the framework and trading sessions. 

• Decide the basis of the policy function, the award function, and the optimization method. 

• Train and test an agent and visualize the trading process.  

Similar to the study by Munim, Shakil, & Alon, (2019), this study processed the data using the 

differencing method in order to get the bitcoin data stationary. This is because bitcoin is heavily 

influenced by seasonality which can negatively affect predictions. Subsequentially, they also 

normalized the price-data using the minimum-maximum value normalization method. Again, the 

problem with normalizing price data in this way is that stock prices technically does not have an 

absolute minimum and maximum. The reward mechanism in this paper is the Omega-ratio, which 

is unique compared to other papers examined in this literature review. When comparing the 

policies LSTM, MLP, SVM, and TCN, the study found LSTM to be superior. This supports similar 

findings in other studies. The framework in the study utilized a PPO-based Agent and the Gym 

anytrading environment provided by Open AI. The study compared the model to various strategies 

such as golden/death cross, a momentum strategy, variable moving average, buy and hold, and 

more. The results indicated that the model outperformed the other strategies. In the testing period, 

the model made a 341% profit rate, while the second-best strategy (buy-and hold), made a 302% 

profit rate. The study concludes that the model manages to significantly outperform high-

frequency trading strategies in times where the price is experiencing extreme surges upwards. This 

is because the agent constructed in the paper considers the long-term market trend information 

which high-frequency trading strategies do not.  

Regarding deep reinforcement learning, Lucarelli & Borrotti (2019) used Double and Dueling 

Double Deep Q-Learning Networks to trade bitcoin with profitable results. The data was sourced 

from Kaggle.com on a 1-minute timeframe but aggregated into hourly data thus resulting in 30.000 



 
 

 6 

data points. Furthermore, they compared two different reward mechanisms, one simply being 

profit, and the other being Sharpe-ratio. It turns out the Double Deep Q-Network with a Sharpe 

ratio reward function performed the best. This model was later tested on out-of-sample data and 

yielded an average return of 8% with a standard deviation of 2.77%. It is worth noting that the 

price also saw a positive surge of 182% followed by a 68% decrease in this period, resulting in a 

total (negative) return of 13%. Unfortunately, the result of the model in this timespan is not 

compared to any other traditional strategies, making it difficult to assess whether 8% profit is a 

good or bad. Similar results were found in a study by Zhang, Zohren, & Roberts (2020) who tested 

three different RL algorithms, DQN, PG, and A2C on 50 different future contracts in various assets 

classes. The inputs used for the models included normalized past price series, past returns, as well 

as the MACD and RSI technical indicators. Comparing the models to various other traditional 

momentum-trading strategies as well as a long-only strategy, on average the DQN model came out 

on top. DQN and A2C also managed to perform profitable results even when very high transaction 

costs were taken into consideration. 

In terms of reinforcement learning, Li et al., (2019) proposes a slightly more sophisticated 

approach to trading with the use of AI. The team proposes a trading agent based on deep Q-network 

and actor-critic algorithms (A3C). Two interesting aspects of this paper is the way the data is pre-

processed, as well as the action set of the agent. Firstly, the team filtered the financial time series 

data by utilizing a technique called SDAE that reduces noise, deal with non-stationarity, and 

increases the model’s generalization-capabilities. Secondly, instead of defining the action space as 

“buy” and “sell” (1,0) the team defined multiple discrete positions (long, sell, short, cover). As a 

result, the agent could for example cover (close) a short position, without the need of having to go 

long simultaneously. This extended the action space to (-n, -n+1,….,0,….n-1, n) which represents 

the position of stock held in the next state. For example, if the previous action was 5 and the current 

action -2, the agent would currently sell 5 shares, and short 2 shares. These actions more effectively 

represent a real complex trading environment. The input variables were a hand full of market 

variables such as OHLC, as well as a few technical indicators. The result of the model was quite 

impressive as both the A3C and DQN-learning based of the SDAE out-performed a buy & hold 

strategy including slippage and transactions costs. The basic DQN and A3C without SDAE also 

outperformed the benchmark strategy, although not to the degree of the proposed models.    
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3 Theory 
 

In the following chapter we will go over economic theories relevant to topic at hand. 

 

3.1 The Efficient Market Hypothesis and Random Walk Hypothesis 
The efficient market hypothesis (EMH) is a theory coined by Nobel prize winner Eugene Fama in 

1979. The theory states that current prices in the stock market reflect existing available 

information. In essence, this implies that outperforming such a market would be highly unlikely 

(Baldridge, 2022). This theory is what partly has led to the popularity of index funds that track the 

benchmark stock market with low fees among investors. Since EMH predicts that the vast number 

of buyers and sellers in the market always have access to the same information, this leaves no 

room for any type of analysis or strategy that will outperform said market. The assumption that all 

market participants have access to the same publicly shared information about a stock, is the most 

important assumption underlying the theory. As mentioned by John H. Cochrane (2014), the EMH 

can me more precisely defined as “informationally efficient” markets. This implies that the market 

itself might at times act inefficient, but the point of the theory in this case is to highlight the fact 

that if an inefficient market move is not predicable, the market is informationally efficient. The 

result could in theory be a stock or commodity that acts what appears to be inefficient or irrational, 

but as long as it is also unpredictable, that means the market is informationally efficient. In other 

words, no one single actor can exploit the movement of the stock to outperform other market 

participants (Cochrane 2014).  

This theory and its underlying assumptions undeniably result in what some would describe as 

radical predictions. For example, EMH implies that any trading strategy based on mathematical 

formulas, technical analysis, or a similar approach cannot outperform the market. A substantial 

body of research support these predictions. Barber et al. (2014) found less than 3% of day-traders 

can predictably make profit, and other research suggest that number might be much lower. 

Arguably, the fact that some percentage of traders do outperform the market could be used as an 

argument against EMH in this case. However, the findings indicate that the predictions of EMH 

are generally true. If EMH holds true, this would also imply that the multi-billion-dollar industry 

of the fundamental analysis (usually part of the business model of investment firms) is no more 

than picking lottery tickets. Studies on this topics result in similar findings as the studies regarding 
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profitability of day traders, meaning hardly any fund manager systematically outperform the 

market. As suggested by Cochrane (2014) this is both a surprising and a rather radical outcome, 

since professionals usually always outperforms the average man in any other field. There are, 

however, weaker forms of the EMH which assumes that new information which is not yet publicly 

available is not priced into the market. This would mean that a fundamental analyst or insider 

trader would be able to outperform the market in the short-term (Baldridge, 2022). 

The predictions of the EMH are very similar to that of the Random Walk Theory. One could argue 

that one theory supports the other. The Random Walk Theory (RWT) simply states that stock 

prices are a random walk, and do not follow a specific trend or pattern. Therefore, trying to predict 

future market moves by means of technical, fundamental, or any other type of analysis, if futile. 

Followers of this theory often subscribe to the same teachings of the EMH, namely that the best 

strategy is a strategy that follows the market index as closely as possible (Park, 2018). The RWT 

is also partly built upon the findings that professional investors rarely outperform random pickings 

or amateurs, in accordance with the predictions of EMH.  Critics of RWT, argue that that trends 

and patterns do exist to varying degree within stocks, both in the short and long term. However, 

they may be very difficult, or in some cases impossible, to decipher (Park, 2018). Nonetheless, 

that does not mean that predictable trends and patterns are not prevalent critiques argue. A similar 

critique could be made about the EMH. Even if markets are “informationally efficient”, just having 

access to the information is not enough. An investor would also have to be able to 1: decipher or 

interpret the information, and 2: act upon the information (in other words buy the stock). This is 

the only way for the information to properly become incorporated into the market. If investors are 

not capable to decipher the information, they are also not able to act upon it. Furthermore, even if 

they can decipher the information, they must be able to buy the stock before the information 

becomes available to other investors. This is especially a problem in the world of stocks where the 

market is closed for trading generally two days per week. In conclusion, this could imply that 

contrary to what RWT and EMH proposes, stock prices could be predictable. The predictability of 

an asset would depend on to what degree a pattern exists within the data, and an investor’s ability 

to decipher it and act upon it. In the world of AI, where machines can decipher large amounts of 

data in record time, this is an intriguing critique.  
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3.2 The role of Bitcoin in financial markets 
There have been plenty of speculation about how cryptocurrencies such as bitcoin will fit into the 

global financial markets. Proponents of bitcoin argue one of its main advantages is the scarcity, 

which is ensured by the process of “mining” bitcoin using the proof of work algorithm. This 

scarcity, proponents argue, is what makes bitcoin a hedge to inflation and inflatable assets such as 

fiat currencies. This aspect of bitcoin can therefore be compared to the benefits of gold or other 

scarce commodities. However, critics argue that the volatile nature of bitcoin does not make it 

suitable as a hedge against inflation. This critique is largely supported by the fact that bitcoin saw 

a 75% decline in value from its all-time-high in November of 2021 to November of 2022, when 

inflation around the world was running rampant. Despite this, bitcoin’s ability to serve as a hedge 

against inflation might not be a question of if, but rather of when. Some proponents argue that 

bitcoin will eventually stabilize, and by then its purpose as a hedge against inflation will be more 

pronounced. Whether bitcoin is a hedge to inflation or not, is up for debate. At the current time, it 

appears that bitcoin is behaving more like a risk-on asset with positive correlation to tech stocks, 

and negative correlation to traditional safe-haven assets such as gold (Wood, 2022). There is also 

the case to be made that the value and price of bitcoin is more so driven by its fundamentals and 

practical use-cases. The decentralized nature of bitcoin allows for it be used peer-to-peer without 

a middleman such as a bank. In 2021, El Salvador became the first country in the world to adopt 

bitcoin as official currency, and it appears that adoption of bitcoin globally in terms of practical 

use is growing steadily, irrespective of the volatile price (Browne, 2022). Furthermore, the 

practical adoption of bitcoin appears to be dominated by emerging markets in continents like Asia, 

Africa, and south America. This can be considered a testification of bitcoins fundamental value as 

a decentralized commodity and tender in places where stable financial institutions and 

infrastructure is scarce (“The Global Crypto Adoption Index”, 2022).   
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4 Practical Conventions 
 

In order to ensure the validity of the results of the models, we need to make sure that the agents’ 

decisions in training actually translates well into a real-world scenario. When trades are made on 

an exchange, there are several factors and properties affecting the trade which are not usually 

considered during the training of a model because of practical reasons. Some crucial factors 

requiring mentioning is market makers, orders, and transaction costs. In most larger tradeable 

assets on exchanges, there are market makers. These are actors which help facilitate trades on an 

exchange by providing liquidity to the asset. Essentially, market makers provide liquidity at the 

highest bid-price, and the lowest sell-price, thus enabling trades to me made immediately at these 

prices. The spread is the difference between these two prices, and it is how market makers make 

money. Orders placed in the market can either be market orders or limit orders. Market orders are 

immediately executed at the best available buy or sell price, while limit order specify a particular 

price to buy or sell at. Furthermore, each trade is affected by transaction costs. These are fees that 

the trader must pay to the exchange when placing the trade. Such fees can be constant, percentage-

based, or both, and vary depending on the exchange, type of asset, regulatory domain, and other 

factors.  

In the training of the model, we are making some basic assumptions about how trades are made on 

an exchange.  

1. There is always liquidity.  

This means that we assume that whenever our agent wants to place a trade (market-order), 

there is always liquidity available at that certain price, and the trade is immediately 

facilitated. This might now always be true in a real-life scenario.   

2. Our orders do not affect the market price. 

This means we assume that the order the agent place does not affect the asset price in any 

direction.  

3. Transaction costs do not change. 

We assume that any transaction cost we include in the model, has been the same throughout 

history and will remain the same in a real-world scenario.  
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It is worth mentioning that the importance of these assumptions varies depending on the timeframe 

the model is trading at. 
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5 Data  
 

The following chapter briefly goes over the set of data used, as well the input variables.  

 

5.1 Data Sources 
The bitcoin historical price on a daily timeframe is collected from investing.com. The reason being 

the availability of data goes all the way back to 2009. In order to reduce the number of NULL 

values, we only pick data from 1st Jan 2013. Generally, it is difficult to come across bitcoin data 

with a lot of history, however investing.com seems to be a very good candidate for a daily 

timeframe and higher. The daily data contains 3 726 rows. It would have been preferable to 

compare the models in different timeframes, but this is an area of exploration for future research.  

 

5.2 Input Features 
The number of input variables chosen as well as their type is largely influenced by computational 

power, and the findings of previous literature. The dataset has been equipped with 11 input 

variables that are displayed in table 1. 
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Table 1: Input variables for the models 

Abbreviation Name Type 

Returns - The variable the model tries to predict. Returns 

of the bitcoin close price. 

RSI Relative Strength Index Technical momentum oscillator 

EMA(T=14) Exponential Moving Average Technical trend indicator (Returns as input) 

TSI True Strength Index Technical momentum oscillator 

RVI Relative Volatility Index Technical volatility oscillator 

MFI Money Flow Index Technical momentum oscillator 

STDEV Standard Deviation Statistical indicator – Standard deviation of 

returns (Length=30) 

Open % Change - Returns of the bitcoin open price from previous 

period. 

High % Change - Returns of the bitcoin high price from previous 

period. 

Low % Change - Returns of the bitcoin low price from previous 

period. 

Volume % Change - Percentage change of volume from previous 

period. 

 

 

Using oscillating and percentage-based input variables has mainly two benefits. 1) We can better 

ensure the longevity of the model since the risk of there being new all-time-highs or all-time-lows 

is severally reduced, particularly over a longer time frame. 2) We reduce some the inherent issues 

that non-normalized price data has. For example, by using percentage change instead of prices, we 

get rid of most of the trends within the data. There will still be volatility-clustering as well as some 

seasonality in the data, but addressing such issue will be a recommendation for further research. 

  



 
 

 14 

6 Method 
 

The following chapter goes over the technical aspects of reinforcement learning and explains the 

inner workings of the Q-Learning and DQN algorithm. 

 

6.1 Specifications of the environment 
6.1.1 Environment with two decisions “in” or “out” 

The very first environment we wish to create will only allow for two discrete actions, namely “in” 

or “out” of the market (1,0). “in” simply means to enter the market, or to stay in the market if we 

are already invested. “out” means to exit the market if we are invested, or to stay out if we are no 

longer invested. OpenAI has preprogrammed trading environment for these types of decision 

called gym-anytrading. After preliminary testing of this environment, we decided to develop our 

own. In this iteration of the environment, we do not allow for short selling.  Technically, a “hold” 

or “do nothing” position is also not allowed as we are either in the market or out of the market. 

Below, the pseudo-code of the trading environment is shown. The term “stock” can easily be 

substituted for other assets such as commodities or cryptocurrencies. We apply the following 

notation: 

𝑆Out Value of stocks in the end of the iteration after the decision, and after the reward/return 
from the current decision. 
 

𝑆In Value of stocks in the beginning of the iteration before decision, but after the 
reward/return from previous decision. 
 

𝜏 Transaction costs when selling or buying stocks. There are no additional transaction 
costs for buying/selling bonds. 
 

𝑟S,𝑡 Return on stock investment 
𝑟B Interest rate on bonds/bank (this is constant throughout time). This can also be 

considered the risk-free return.  
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Initialization: 
𝐵Out = 𝐵0  
𝑆Out = 0 
This are the values from some fictive previous point in time. 
 
 
Iterate: 
The outgoing values from the previous iteration become the ingoing values: 
𝐵In = 𝐵Out 
𝑆In = 𝑆Out 
 
Reading the return from the data that will be achieved by stocks (𝑟S,𝑡): 
 
 
If 𝑎 = 1 (we go or stay long in stocks): 
 
 If 𝑆In = 0 (out of stocks, and long in bonds, i.e., 𝐵In ≥ 0): 
  We need to buy stocks: * 
  𝑆Out =

𝐵In
(1 + 𝜏) ∙ (1 + 𝑟S,𝑡) 

 
𝐵Out = 0 
 

 Else (i.e. 𝑆In > 0 and 𝐵In = 0 which means long in stocks, out of bonds): 
  We will stay in stocks: 
  𝑆Out = 𝑆In ∙ (1 + 𝑟S,𝑡) 

 
𝐵Out = 0 
 

   
If 𝑎 = 0 (we sell stocks or stay out): 
 
 If 𝑆In = 0 (out of stocks, and long in bonds, i.e., 𝐵In ≥ 0): 
  𝑆Out = 0 

𝐵Out = 𝐵In ∙ (1 + 𝑟B) 
 

 Else (i.e., 𝑆In > 0 and 𝐵In = 0 which means long in stocks, out of bonds): 
  We need to sell stocks: * 

 
𝐵Out = 𝑆In ∙ (1 − 𝜏) ∙ (1 + 𝑟B) 
 
𝑆Out = 0 
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Explanation of *: 

We buy stocks and pay transaction costs on the value invested into stocks: 

𝑆Bought + 𝑆Bought ∙ 𝜏 = 𝐵In 

Solving for 𝑆Bought: 

𝑆Bought =
𝐵In
1 + 𝜏 

On the stocks acquired we earn the return: 

𝑆Out = 𝑆Bought ∙ (1 + 𝑟S,𝑡) =
𝐵In
1 + 𝜏 ∙ (1 + 𝑟S,𝑡) 

 

6.1.2 Environment with continuous decisions 
There is also the possibility of an environment with continuous decision, similar to Li et al., (2019). 

This means that the agent will have a larger action space available, where it can choose to invest 

only parts of the capital. Equivalently, the agent can choose to only sell parts of the active positions 

as well. We hypothesize that similarly to the findings by Li et al., (2019), the agent should stay 

more heavily invested in long-positions, during in bull-markets/trends, and less invested in bear-

markets/trends. It is reasonable to assume that such an action space and environment is more 

suitable for a financial timeseries where unforeseeable and volatile changes frequently occur. Li 

et al., (2019) found that tripling the action space (amount of stock held) from (-1,0,1) to (-3,-2,-

1,0,1,2,3) resulted in a more than triple the reward. However, in this case, the agent had multiple 

stocks to choose from, so it is unclear in our case how this will affect an agent that only trades one 

asset. We can hypothesize that perhaps the agent will increase its position during times of less 

volatility, as well as adjust the size of its position according to the confluence of our input-

variables. This type of environment is interesting, but beyond the scope of this thesis, and is 

therefore recommended for future research.  

 

6.2 Reinforcement Learning 
Reinforcement learning uses the framework of Markov Decision Processes (MDPs). The 

ingredients of an MDP are states, decisions (actions) and rewards. A MDP is a mathematical 

framework to model the decision-making by our agent (Vijay Kanade, 2022). This is essentially 
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the mechanism of how the agents’ actions in a particular state, leads to another state.  MDPs can 

be illustrated in different ways.  

 

  

Figure 1: Interaction between environment and agent in reinforcement learning 

 

 

 

Figure 1 illustrates the interaction between the agent and the environment. The agent will observe its 

state 𝑠𝑡, and then pick an action which through the environment will land the agent in a new state, 

𝑆𝑡+1. By performing an action, the agent will also receive a reward 𝑅𝑡+1 which it will learn from. 

In our case the reward will be the profit, and the states will be compromised of various economic 

and technical indicators. In a real-world trading scenario, we cannot possible observe all the 

variables which goes into explaining to rise or fall in the future price of an asset. We can merely 

observe some of these variables, and therefore this is arguably a so called partially observable 

Markov decision process (Williams & Young, 2007).   

Another way to illustrate this process is shown below in figure 2. 
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Figure 2: Alternative illustration of Markov-Decision-Chain 

 

At first glance, it may seem like the flow of time is essential in this process, and in terms of how 

much we train the model, we are using the term “timesteps”. However, the point in time is not 

crucial in such a decision-making process. Rather it is the state S that is important. An agent will, 

based on the state it finds itself in, find the optimal action. Therefore, a better, but simplified and 

canonical example is to represent the problem in the in form of a table as in figure 3.  

 

Figure 3: The relationship between states and actions in the Markov Decision process 

 Action 1 Action 2 Action 3 Action n… 
State 1( 𝑠𝑡) Estimated reward Estimated reward …. …. 

State 2 ( 𝑠𝑡+1) Estimated reward Estimated reward …. …. 

State 3 ( 𝑠𝑡+2) Estimated reward Estimated reward …. …. 

State 4 ( 𝑠𝑡+3) …. …. …. …. 

State n… ( 𝑠𝑡) …. …. …. …. 
 

In figure 3, we note that it is not time which is the essential ingredient, but it is the state and the 

action taken in this state which is important in reinforcement learning. Intuitively, the agent can 

exist in the same state at different points in time, and the goal is not necessarily reached at a given 

point in time. Should we illustrate this on a timeline, an example would look at follows in figure 

4. 

 

 

 

 

𝑠𝑡 𝑠𝑡+1 𝑎𝑡 

𝑡 

𝑟𝑡+1 

𝑡 + 1 

𝑎𝑡+1 

𝑡 + 2 

𝑟𝑡+2 

𝑠𝑡+2 𝑎𝑡+2 … 
agent 

env. env. env. agent agent 
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Figure 4: The relationship between states and actions illustrated on a timeline 

 

 

 

 

Figure 4 more accurately illustrates the notion that the state and action is the important relationship 

in reinforcement learning rather than action-time.  

 

6.2.1 Policy 
With respect to the relationship between a state and an action, it is convenient to introduce the 

notion of policy. The policy is the agents approach to picking a certain action in a particular state, 

and thus landing the agent in a new state. Simply put, this is the agent’s strategy of picking actions 

which will achieve its goals. In more technical terms, many different policies make up a probability 

distribution of all the action-state pairs the agent currently must choose from. The agent then 

evaluates these policies by computing the utility function U over said policies. By doing such, the 

agent obtains the reward for each policy, and subsequently chooses the policy with the highest 

12:00
State 1

Action 4

Reward
13:00

State 3
Action 2

Reward
14:00

State 1
Action 2

Reward
15:00

State 5
Action 1 
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reward (Gabriele De Luca, 2020). This is also known as a stochastic policy. At the very start, all 

of these policies are randomly generated, and through iterations, the agent will eventually (in 

theory) learn the optimal policy which will map a probability distribution of actions to each action 

space (MLK, 2021). 

 

6.3 Deep Reinforcement Learning 
6.3.1 Q-Networks and Deep Q-Networks (DQN) 
A deep Q-Network is a reinforcement learning algorithm that combines the regular Q-learning 

algorithm with deep neural networks. One of the main differences between a Q algorithm the DQN, 

is the agents brain. In Q-learning, the Q-table, which is composed of states and actions, is the 

agent’s brain. In a DQN the brain is the neural network, and the neural network takes the state of 

the environment as an input and calculates the expected reward for each possible action in the Q-

table (Moghadam, 2019). One main advantage of the DQN is that it can handle high-dimensional 

state spaces, which a Q-Network cannot. This means we can work with many input variables in 

our data. This opens up the possibility of including variables that may be more far-fetched in the 

context of having an effect on price-percentage change. Another advantage of the DQN is its ability 

to learn “online”, meaning it can learn from experiences as it receives it. The value-iteration 

method has the purpose of solving the Markov Decision Process which we are already familiar 

with. In the case of the DQN, this method initializes the Q-values to random values, and then 

iteratively updates these values as they eventually converge to their optimal value or state. The Q-

value can simply be defined as the immediate reward for a particular state-action pair (see figure 

3), plus the discounted value of the very next state (Ken, n.d.). The idea of discounting the value 

of the very next state is the same novel concept used in finance, namely that we value rewards 

today more than rewards in the future. The value-iterations to calculate all possible state-actions, 

is performed using a deep neural network. A common disadvantage of DQN is that the learning 

process can be very slow due to the use of deep neural networks. This type of approach is also 

prone to overfitting, and the learning process can also be unstable which is an inherent 

characteristic in neural networks.  
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6.4 Testing the Algorithms with Simple Time-Series 
To get a sense of how the aforementioned algorithms apply to real-life data, they were first tested 

on deterministic data or very simplistic time-series. Firstly, we allow for the algorithms to trade 

on deterministic timeseries where the optimal decision should be very easily obtained. These 

timeseries have been divided into 4 types. 

• Predetermined prices.  

• Sine-Curve 

• Sine-Curve with linear trend. 

• Time series with predefined ups, downs 

Some of the results are shown in the appendix. After having evaluated the algorithms on all the 

deterministic timeseries, we can conclude that Q-learning behaves as expected and that DQN 

generally behaves as expected. However, in timeseries with predefined ups and down, the DQN 

algorithm often fails. The reason for this is unknown, but could be due to the data set, 

hyperparameters, or number of timesteps. Regardless, the results generally warrants that we move 

forward with both algorithms.  
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7 Results 
 

In the following we will dissect and compare the results between the DQN and Q-learning 

algorithm. The models have been trained on a dedicated PC. Each model is given 100 units of 

currency to trade with, and the result is compared to a simple buy-and hold strategy as that is what 

proponents of the random walk theory and efficient market hypothesis generally would suggest.  

 

7.1 DQN 
The hyper parameters used in training the DQN models are shown in table 2. Other useful settings 

and parameters are shown in table 3. 

 

Table 2: Explanation of DQN hyper parameters 

Hyper Parameter Value Explanation 
gamma 1 Determines the present value of future rewards 

learning_rate 0.05 Learning rate for adam optimizer 
exploration_fraction 0.8 The probability of the agent taking random actions in the 

beginning 
exploration_initail_eps 0.8 Length of the exploration period 

exploration_final_eps 0.00 Probability of random actions in the end 

batch_size 120 Size of a batched sampled from replay buffer for training 
 
 

 

Table 3: Other DQN settings and parameters 

Other 
settings 

Training/Test 
Split 

Epochs Timesteps Average Run 
time 

Early Stopping 
Callback 

 80/20 5,000 14,905,000 5hrs 600 
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Training #1 

Figure 5: Graphical illustration of trading decisions in training DQN model #1 

 

 
• The final profit of the DQN strategy is: 2153499865.072…. 

• The final profit of the buy-and hold strategy is: 288094.60…. 
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Test #1 

Figure 6: Graphical illustration of trading decisions in testing DQN model #1 

 

• The final profit of the DQN strategy is: 114.61…. (+14,61%) 

• The final profit of the buy-and hold strategy is: 52.41….(-47,59%) 
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Training #2 

Figure 7: Graphical illustration of trading decisions in training DQN model #2 

 

• The final profit of the DQN strategy is: 27541984.072…. 

• The final profit of the buy-and hold strategy is: 288094.60…. 
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Test #2 

Figure 8: Graphical illustration of trading decisions in testing DQN model #2 

 

The final profit of the DQN strategy is: 103.60…. (+3,6%) 

The final profit of the buy-and hold strategy is: 52.41…. (-47,59%) 

 

Training #3 

The final profit of the DQN strategy is: 21533944.072…. 

The final profit of the buy-and hold strategy is: 288094.60…. 

 

Test #3 

The final profit of the DQN strategy is: 100.65…. (+0.65%) 

The final profit of the buy-and hold strategy is: 52.41…. (-47,59%) 
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While at first glance, it might appear that the DQN models have outperformed the buy-and hold 

strategy in every single case, the more evident takeaway should be the instability of the models. 

As derived from the results above, model #1 has behaved seemingly irrationally by staying out of 

the market almost exclusively. At some points in time, it enters and then exits market profitably. 

While it is impossible to say why the agent suddenly enters the market towards the end of the time 

period, this appears to be more of a random artefact rather than the result of any meaningful 

pattern-recognition. Despite this being the most profitable DQN model, we argue these results are 

not fully reliable. While it is interesting to note that all the models have outperformed the buy-and 

hold strategy, the validity and reliability of the models is up for discussion. The most interesting 

behavior of the DQN models is exhibited by model #2. This model appears to be making some 

consistent decisions and utilizing some sort of pattern. There is a trading pattern emerging from 

the model, where it enters the market after some type of bullish reversal, and then chooses to stay 

in the uptrend until the trend is broken. However, it is also important to note that these models 

were trained without transaction costs. Introducing transaction costs would likely result in all 

models trading at a loss. 
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7.2 Q-Learning 
The hyper parameters used in training the Q-Learning model are shown in table 3. Other useful 

settings and parameters are shown in table 4. 

 

Table 3: Explanation of Q-Learning hyper parameters 

Hyper Parameter Value Explanation 
Learning_rate 0.03 The extent to which the Q-values are updated during the 

learning process. 
Discount_Rate 1 Determines the present value of future rewards 

Episodes 150,000  

Epsilon 0.5 The exploration-exploitation trade-off 

End_Epsilon 0.00 The lowest value of epsilon the agent will reach. 

Start_Epsilon_Decay 0.00 Zero means that it starts in episode 0 (immediately) 

End_Epsilon_Decay Episodes // 2 After this many episodes we will not decrease the 
epsilon anymore. 

 

 

Table 4: Other Q-Learning settings and parameters 

Other 
settings 

Training/Test 
Split 

Epochs Timesteps Average Run 
time 

Early Stopping 
Callback 

 80/20 - - 5hrs - 
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Training #1 

Figure 9: Graphical illustration of trading decisions in training Q-Learning model #1 

 

 

• The final profit of the Q-Learned strategy is: 873576347527.28…. 

• The final profit of the buy-and hold strategy is: 288094.60…. 
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Test #1 

Figure 10: Graphical illustration of trading decisions in testing Q-Learning model #1 

 

• The final profit of the Q-Learned strategy is: 100.43… (+0,43%) 

• The final profit of the buy-and hold strategy is: 52.41…. (-47,59%) 
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Training #2 
Figure 11: Graphical illustration of trading decisions in training Q-Learning model #2 

 

• The final profit of the Q-Learned strategy is: 461299986811.80…. 

• The final profit of the buy-and hold strategy is: 288094.60…. 
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Test #2 
Figure 12: Graphical illustration of trading decisions in testing Q-Learning model #2 

 

• The final profit of the Q-Learned strategy is: 100.43… (+0,43%) 

• The final profit of the buy-and hold strategy is: 52.41…. (-47,59%) 

 

 

Training #3 

The final profit of the Q-Learned strategy is: 7669037549.67…. 

The final profit of the buy-and hold strategy is: 288094.60…. 

 

Test#3 

The final profit of the Q-Learned strategy is: 100.43… (+0,43%) 

The final profit of the buy-and hold strategy is: 52.41…. (-47,59%) 
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As can be seen from the results, the Q-learning models has very similar results to the DQN-models. 

Despite the Q-Learning models also technically outperforming the buy-and hold strategy, it 

appears this is more due to chance rather than the model making meaningful decisions. We can 

also note that all Q-learning models converge to the same decisions in the test set, but not in the 

training set. The test data is largely characterized by a down trend, and it is hard to say what would 

happen if the test data instead was a strong up trend or a neutral trend. Summarized results for the 

DQN and Q-Learning models can be seen in table 5.  

 
 
Table 5: Summary of the test results of the DQN and Q-Learning models 

Summary DQN Q-Learning Buy-and Hold 

Model No

.  

Model #1 Model #2 Model #3 Model #1 Model #2 Model #3 - 

Profit +14,61% +3,6% +0,65% +0,43% +0,43% +0,43% -47,59% 

 

 

 

7.3 Final Remarks 
The major takeaway from results of the models is that more time and computational power is 

needed. Furthermore, due to time constraints we we’re unable to test the algorithms in ideal 

circumstances. For future research, these findings suggest several recommendations. For starters, 

one should experiment with more sophisticated environments where the models are allowed to 

trade with continuous decisions. Furthermore, the combination of computational power and time 

appears to be crucial. This allows for the models to be fed more input variables, which can result 

in better decision making. We also recommend experimenting with different reward functions, 

such as the sharpe or sortino ratio. It also important to remember that factors such as short 

positions, transaction costs, and slippage can largely affect the results. In these experiments, it may 

appear that the models are strictly outperforming the buy-and hold strategy, which they technically 

are. However, the way the models behave suggests that this is likely not due to some sort of 

rigorous trading strategy, but rather by chance. DQN Model 2 is the one model which appears to 
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demonstrate hints at rational trading behavior. The model manages to end up in a 3,6% profit where 

the market otherwise saw negative returns of 47,59%. Finally, it is also wise to experiment with 

the various hyperparameters, although this should be far less prioritized compared to constructing 

a solid reward function and environment.   
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8 Conclusion 
 

This thesis has covered the topic of using reinforcement learning to trade bitcoin on a daily 

timeframe. We have explored and investigated the effectiveness of two popular algorithms, namely 

Q-learning and DQN. Our experiments demonstrate both the difficulty and the potential 

applicability of reinforcement learning algorithms in financial trading. We can conclude that data 

preprocessing, the construction of the reward function and the environment, as well as the 

combination of computational power and time are crucial. We have shown that that while the 

algorithms have potential, they can also be prone to irrational decision making. The findings 

primarily suggest that there is more to learn about the algorithms and their use case in trading. 

While all models of both algorithms technically performed better than a simple buy-and hold 

strategy, we hypothesize that this is mostly due to chance. Nonetheless, some findings indicate 

hints at rational trading behavior, but to draw any meaningful conclusions we require more time, 

computational power, and resources. Overall, the thesis has contributed to the growing body of 

research on using machine learning for financial trading, and hopefully it will inspire further 

research and experimentation in the domain.  
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Appendix #1 – Experiments with Different Time Series and RL 
Algorithms 
 

Direct Optimization of Optimal Trading with Deterministic Series 
When time series are deterministic and comparably small, we can find the optimal solution by 

means of linear optimization: 

Let 𝑥𝑡S and 𝑦𝑡S represent the number of stocks purchased or sold in point of time 𝑡. The variable 𝑥𝑡B 

is the amount invested in bonds (bank), respectively. 𝑃𝑡S is the stock price in point of time 𝑡. Let 𝑟 

be the constant interest rate, and 𝜏 are transactions costs in % when selling or buying stocks. 𝐵0 

denotes the initial budget available at point in time 𝑡 = 0 

for 𝑡 = 0: 

Budget constraint: 𝑃0S ∙ 𝑥0S + 𝑃0S ∙ 𝑥0S ∙ 𝜏 + 𝑥0B = 𝐵0 

Holding of asset: 𝑧0S = 𝑥0S 

Non-negativity: 𝑥0S ≥ 0, 𝑥0B ≥ 0 

𝑧0S ≥ 0 (redundant) 

 

We need to follow with the volume of stocks: 

for all 0 < 𝑡 < 𝑇: 

Budget constraint: 𝑃𝑡S ∙ 𝑦𝑡S ∙ (1 − 𝜏) − 𝑃𝑡S ∙ 𝑥𝑡S ∙ (1 + 𝜏) + (1 + 𝑟) ∙ 𝑥𝑡−1B − 𝑥𝑡B = 0 

Cannot sell more than 
holding: 

𝑦𝑡S ≤ 𝑧𝑡−1S  

Holding of asset: 𝑧𝑡S = 𝑧𝑡−1S − 𝑦𝑡S + 𝑥𝑡S 

Non-negativity: 𝑥𝑡S ≥ 0, 𝑥𝑡B ≥ 0, 𝑦𝑡S ≥ 0 

𝑧𝑡S ≥ 0 (redundant) 

 

In point of time 𝑡 = 𝑇, we assume that we hold the position (no more trading) from the previous 

point in time, and we calculate its value. The wealth in the end of the trading-horizon is: 

𝑤𝑇 = 𝑃𝑡S ∙ 𝑧𝑡−1S + (1 + 𝑟) ∙ 𝑥𝑡−1B  

This wealth is supposed to be maximized. 
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The solution to this problem can serve as a benchmark against the solutions of RL.  

It is also possible to formulate a corresponding optimization problem for a stochastic environment. 

When applying the framework of stochastic optimization with deterministic equivalent in form of 

linear programs, this would require the construction of scenario trees. We will omit this approach 

here.   

 

RL-Experiments with Deterministic Series 
We have run several experiments with artificial time series, to have some kind of guarantee that 

RL Methods will learn to make good trading decisions when there exists a possibility of learning. 

For this reason, we have tested deterministic and simple stochastic time series. In what follows, 

we will present the results. 

Prespecified Return List 
In this experiment, we have used the following list of prices, which was repeated three times: 

[0.10, 0.05, 0.08,−0.03,−0.04, 0.00, 0.00,0.07,−0.02,… ] 

Except for the return of 0.00 this time series does not really contain any ambiguous states. 

In this list we have indicated, when to stay in (green) and when to stay out (red). 



 
 

 42 

 
Figure 13: Plot of Returns and Prices for Deterministic Return List with Random In and Out Decisions 

If we use the price 𝑟𝑡 as only information, RL algorithms should not unambiguously learn the right 

decisions: 

Return Next Return Reward (for one repetition) Expected 
Decision 

0.10 0.05 1 x positive reward Stay in 
0.05 0.08 2 x positive reward Stay in 
0.08 -0.03 1 x pos., 1 x neg. (but pos. reward is larger) Stay Out 
-0.03 -0.04 1 x pos., 1 x neg. of same absolute size Stay Out 
-0.04 0.00 2 x positive reward Indifferent 
0.00 0.00 1 x negative Indifferent 
0.00 0.07  Stay in 
0.07 0.02  Stay in 
0.02 0.10 1 x negative Stay in 

 

At price 12: 2 x positive reward when it comes to downward trends or negative rewards. 
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Q-Learning: 
• Bin-size = 9 
• Learning_Rate = 0.03 
• Discount_Rate = 1     
• Episodes = 5,000 
• Epsilon = 0.5 
• End_Epsilon = 0.00 

 
Conclusion: Algorithm performs as expected. 

DQN: 
• gamma = 1, 
• batch_size = 18 
• total_timesteps = 

1,440,000 
• Time: 1,554 s 

 
Conclusion: Algorithm does not perform 100% as expected, but quite 
acceptable. 
 

PPO: No training results achieved at all. 
 

 

If we use both the price 𝑝𝑡 and the lagged price 𝑝𝑡 as information, the RL algorithms should be 

perfectly able to conclude the correct decisions: 
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