
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
N

TN
U

 B
us

in
es

s
Sc

ho
ol

Ba
ch

el
or

’s
th

es
is

Axel Wikner

Bitcoin Trading using Reinforcement
Learning

An Analysis of Q-Learning and DQN Algorithms
on a Daily Timeframe.

Bachelor’s thesis in Business Administration - Business Analytics
Supervisor: Denis M. Becker
April 2023

Axel Wikner

Bitcoin Trading using Reinforcement
Learning

An Analysis of Q-Learning and DQN Algorithms on a
Daily Timeframe.

Bachelor’s thesis in Business Administration - Business Analytics
Supervisor: Denis M. Becker
April 2023

Norwegian University of Science and Technology
Faculty of Economics and Management
NTNU Business School

Preface

This bachelor thesis signifies the culmination of three years as an economic student at NTNU,

specializing in business analytics. Early on I knew that either business analytics or finance would

be my specialization of choice. Fueled by my passion for emerging technologies such as AI and

blockchain outside of academia, I eventually opted for a specialization in business analytics. While

digital transformation has been affecting the field of economics for many decades, it is only

recently the use of AI has made its presence clear in areas such as automation, risk analysis, and

trading. Through this bachelor thesis I have gained a much more profound understanding of AI,

and in particular reinforcement learning. I have gained insight into its applicability in the economic

domain, and primarily how it has the potential to greatly alter the competitive landscape of

financial markets in the near future. The thesis has further reinforced my belief that AI will

transform the labor market for both skilled trades and white-collar jobs in the next decade.

However, the thesis has also dispelled the notion that AI is a mysterious black box as it may be

perceived in the public eye. Reinforcement learning is rather an elegant information processing

approach that leverages mathematical principles and computational power.

I would also like to direct a sincere thank you to my supervisor Denis Becker for the support in

helping me develop in the aforementioned areas, as well as for being a critical contributor to the

technical aspect of the thesis.

The content of this thesis is the sole responsibility of the author.

Axel Wikner

Abstract

This thesis investigates the use of reinforcement learning algorithms, namely Q-learning and DQN,

for trading bitcoin on a daily timeframe. The experimental results demonstrates that while all

models trained without transaction costs technically outperform a buy-and hold strategy, they are

highly unstable. The various Q-learning models appear to be making identical decisions, and we

hypothesize that more training time is needed. One of the DQN models on the other hand, appear

to be exhibiting hints of some rational and consistent trading behavior. Interestingly, it also ends

up just being profitable. However, we argue this model is still far away from being applicable in a

real-world trading-setting. Based on these findings, we conclude that further research is needed to

develop more stable and rigorous models. Furthermore, it is recommended that future research

incorporates things like a continuous action space, additional features, and primarily more time

and computational power. Overall, the thesis highlights both the potential applicability and the

challenging aspects of reinforcement learning in the world of trading.

Sammendrag

Denne oppgaven undersøker bruken av reinforcement learning algoritmer, nemlig Q-learning og

DQN, for handel med bitcoin på en daglig tidsramme. De eksperimentelle resultatene viser at selv

om alle modeller utkonkurrerer en buy-and-hold-strategi (ikke tatt transaksjonskostnader med i

beregning), er de svært ustabile. De ulike Q-læringsmodellene ser ut til å ta identiske beslutninger,

og vi antar at det trengs mer treningstid. På den andre siden viser en av DQN-modellene en viss

rasjonell og konsistent atferd. Interessant nok klarer den akkurat å bli lønnsom. Imidlertid hevder

vi at denne modellen fortsatt er langt unna å være anvendelig i en virkelig situasjon. Basert på

disse funnene konkluderer vi med at ytterligere forskning er nødvendig for å utvikle mer stabile

og strenge modeller. Videre anbefales det at fremtidig forskning inkluderer ting som et

kontinuerlig action-space, flere features, og først og fremst mer tid og datakraft. Samlet sett

fremhever oppgaven både den potensielle anvendeligheten og de utfordrende aspektene ved

reinforcement learning i handel med finansielle eiendeler.

Table of Contents
1 Introduction .. 1

2 Literature Review .. 2

2.1 Supervised Learning Models for Prediction Bitcoin .. 2

2.2 Reinforcement Learning Models for Bitcoin Trading Decisions .. 4

3 Theory ... 7

3.1 The Efficient Market Hypothesis and Random Walk Hypothesis .. 7

3.2 The role of Bitcoin in financial markets .. 9

4 Practical Conventions ... 10

5 Data ... 12

5.1 Data Sources ... 12

5.2 Input Features .. 12

6 Method... 14

6.1 Specifications of the environment .. 14
6.1.1 Environment with two decisions “in” or “out” .. 14
6.1.2 Environment with continuous decisions .. 16

6.2 Reinforcement Learning ... 16
6.2.1 Policy.. 19

6.3 Deep Reinforcement Learning .. 20
6.3.1 Q-Networks and Deep Q-Networks (DQN) ... 20

6.4 Testing the Algorithms with Simple Time-Series ... 21

7 Results ... 22

7.1 DQN .. 22

7.2 Q-Learning ... 28

7.3 Final Remarks .. 33

8 Conclusion .. 35

9 References ... 36

Appendix #1 – Experiments with Different Time Series and RL Algorithms 40

 1

1 Introduction

Since its inception in 2009, bitcoin has emerged as the most renowned digital currency that is

currently undergoing widespread adoption. Its use cases are widely debated, but nonetheless it has

attracted noticeable attention from both retail and institutional investors. As of today, bots and

automated trading make up most of the traded volume in the financial markets, and different forms

of AI is also incorporated to gain an edge. Bitcoin is often an attractive arena for such trading

techniques as the market never closes, the volatility is high, and there is access to large amounts

of historical data. AI is more commonly incorporated into trading using, for example, LSTM

networks to predict future prices. While some research indicates interesting results in this domain,

there are also findings indicating that such an approach is comparable to the Naive method, which

is simply predicting tomorrow’s price based on the price today. Intrigued by these findings, this

thesis instead explores the use of reinforcement learning. Traditionally, investors would like to

know the reasoning behind a certain recommendation on whether to buy or sell an asset. Because

it is hard to decipher the reasoning behind the output of a reinforcement learning model, this

approach has not been as widely researched as other AI methods in the world of finance. This

renders reinforcement learning a particularly exciting area to research when it comes to trading. In

more detail, this thesis explores the effectiveness of two popular reinforcement learning

algorithms, namely Q-Learning and Deep Q-Learning.

 2

2 Literature Review

There have been numerous efforts in applying various analytical techniques to predict the price of

bitcoin and exploit its volatility. In this literature review, we will examine the findings of previous

research regarding AI and machine learning as an aid in trading and highlight the key-areas

important to this paper going forward. In what follows, we will differentiate two strains of

literature: The first strain is aiming purely at predicting bitcoin prices or returns, and models used

for this task can mainly be classified as supervised learning models. The other strain looks at

bitcoin trading decisions, where models belong to the family of reinforcement learning approaches.

2.1 Supervised Learning Models for Prediction Bitcoin
Huang, Huang, & Ni (2019) performed a study to determine if bitcoin returns are predictable by

using price based technical indicators. The researched used a classification tree-based approach,

and the findings suggest that their model has strong predictive power for certain ranges of daily

returns on bitcoin. The team of researchers used 124 technical indicators from the “ta” library in

pandas, and thus there was a variety of different types of indicators used as predictive variables.

This model was trained on daily BTC-USD data, including the open, high, low, and close price of

bitcoin. They used a sub-sample of the data to estimate and calculate the starting value of the 124

indicators. In the end, we are not told if they performed any testing to determine some sort of

statistical significance for each indicator, something that would have been preferable. Similar

findings are highlighted by Erfanian et al. (2022) whose aim was to predict the price of bitcoin in

the context of micro-and macroeconomic theories such as cost-based pricing models. The research

team used a variety of comparative approaches including OLS, Ensemble learning, SVR, and MLP

to investigate how well the microeconomic, macroeconomic, technical, and blockchain indicators

predict the price of bitcoin. The results are somewhat similar to the results by Huang, Huang, &

Ni (2019) since the team claims that “some technical indicators are significant short-run BTC

price predictors, thus confirming the validity of technical analysis” (Erfanian et al. abstract, 2022).

Furthermore, the report also suggests that macroeconomic and blockchain indicators are

significant long-term predictors. In terms of the different models used, it turns out that SVR was

superior to other machine learning models. Nonetheless, the authors doubt whether machine

 3

learning currently can outperform traditional models in BTC price prediction. It is important to

note that while Huang, Huang, & Ni (2019) tried to predict returns, Erfanian et al. (2022) tried

predicting price. This can be fundamentally different in the context of timeseries and machine

learning.

A study by Chen (2023) also provides interesting findings with regards to predicting the price of

bitcoin. This study used normalized daily bitcoin data to predict next day’s price using random

forest regression and LSTM. 41 input variables were used, among them bitcoin variables,

blockchain activity, other cryptos, commodities, foreign exchanges, market indexes, tweets, and

day of the week. The findings indicated several interesting conclusions. For example, it appears

the Open, High, Low, and Close price of bitcoin using only 1 lag is the best predictor for the price

in the next period, which aligns with the efficient market hypothesis. This indicates that the best

predictor for tomorrow’s price is simply today’s price, which in turn could imply the random walk

hypothesis is correct. The results also indicated that while the most important explanatory variables

vary within the testing periods, variables like the SP500, JP225, Oil, and some other cryptos like

ETH had predictive power. The study also found that incorporating redundant variables, or to few

variables, decreased the model accuracy. In addition, both the LSTM and random forest algorithm,

struggled with predictions when the price exceeded that of the highest price in the training data.

A problem with prediction the actual future price of an asset using machine learning models is

often related to the normalization and the random walk hypothesis. Few of the research paper

above have compared their models to the naïve stock prediction forecast, which is using the price

in t-1 to predict the price in t. In addition, as pointed our earlier, the longevity of some of these

models could be questioned, as they are using normalized prices as a variable. This can easily

result in a broken model as stock prices rarely only fluctuate between their previous min and max

price. Furthermore, it could be argued that price prediction in and of itself is not intuitive. Rather,

what an investor is more concerned with is the return, which is what Huang, Huang, & Ni (2019)

successfully predicted.

A paper dealing with the previously mentioned issues regarding normalization and price prediction

in a time series, is Nevasalmi, (2020). By using a multinominal approach, they attempted to predict

the return of the S&P500 on a daily timeframe using various machine learning algorithms. The

 4

team essentially established two thresholds of positive and negative return to reduce near-0%

return noise. The findings indicated that decision tree models such as random forest and gradient

boost were able to generate a statistically significant return prediction. The team also tested all the

models in a trading environment, which resulted in all the models outperforming a standard buy

& hold strategy.

A paper dealing with the previously mentioned issues regarding normalization and price prediction

in a time series, is Nevasalmi, (2020). By using a multinominal approach, they attempted to predict

the return of the S&P500 on a daily timeframe using various machine learning algorithms. The

team essentially established two thresholds of positive and negative return to reduce near-0%

return noise. The findings indicated that decision tree models such as random forest and gradient

boost were able to generate a statistically significant return prediction. The team also tested all the

models in a trading environment, which resulted in all the models outperforming a standard buy

& hold strategy.

2.2 Reinforcement Learning Models for Bitcoin Trading Decisions
Sattarov et al. (2020) built a deep reinforcement learning model using tensorflow libraries and

Keras API which purpose was to maximize short term accumulated returns when trading

cryptocurrency pairs. The policy function used was stochastic, which means the output was a

probability resulting in, for example, 0.8 buy, 0.1 sell and 0.1 hold. The reward mechanism was

simply the sell price minus the previous buy price, and the size of the reward was directly

proportional to this profit. With this approach, the agent seemed to show signs of increasingly

improved results. Another interesting approach was the decision to use 4 multilayer models. In

short this meant that the output of the 4 models were used to assess confidence in each of the three

possible actions. If the highest confidence indicator was less than a certain threshold, this would

mean the agent took no action whatsoever as the signals were deemed unreliable. The study tested

the models on bitcoin, Ethereum and Litecoin, and compared the model to three other common

investing strategies (Double Cross MA, swing trading, and scalping). This resulted in the model

outperforming the other investing strategies convincingly in all cases, as well as making a profit

in all cases. The researchers also conclude that simply using “buy” and “sell” actions might be the

best for improving the model further.

 5

Similar results were obtained in a study by Liu, et al. (2021). They argue deep reinforcement

learning is better than earlier reinforcement algorithms such as Q-learning since such algorithms

can only be applied to limited states and actions which need to be manually designed in advance.

By using deep reinforcement learning, they argue that they can produce massive states on a longer

time frame. Their proposed framework looked as follows:

• Create and initialize a gym trading environment.

• Setup the framework and trading sessions.

• Decide the basis of the policy function, the award function, and the optimization method.

• Train and test an agent and visualize the trading process.

Similar to the study by Munim, Shakil, & Alon, (2019), this study processed the data using the

differencing method in order to get the bitcoin data stationary. This is because bitcoin is heavily

influenced by seasonality which can negatively affect predictions. Subsequentially, they also

normalized the price-data using the minimum-maximum value normalization method. Again, the

problem with normalizing price data in this way is that stock prices technically does not have an

absolute minimum and maximum. The reward mechanism in this paper is the Omega-ratio, which

is unique compared to other papers examined in this literature review. When comparing the

policies LSTM, MLP, SVM, and TCN, the study found LSTM to be superior. This supports similar

findings in other studies. The framework in the study utilized a PPO-based Agent and the Gym

anytrading environment provided by Open AI. The study compared the model to various strategies

such as golden/death cross, a momentum strategy, variable moving average, buy and hold, and

more. The results indicated that the model outperformed the other strategies. In the testing period,

the model made a 341% profit rate, while the second-best strategy (buy-and hold), made a 302%

profit rate. The study concludes that the model manages to significantly outperform high-

frequency trading strategies in times where the price is experiencing extreme surges upwards. This

is because the agent constructed in the paper considers the long-term market trend information

which high-frequency trading strategies do not.

Regarding deep reinforcement learning, Lucarelli & Borrotti (2019) used Double and Dueling

Double Deep Q-Learning Networks to trade bitcoin with profitable results. The data was sourced

from Kaggle.com on a 1-minute timeframe but aggregated into hourly data thus resulting in 30.000

 6

data points. Furthermore, they compared two different reward mechanisms, one simply being

profit, and the other being Sharpe-ratio. It turns out the Double Deep Q-Network with a Sharpe

ratio reward function performed the best. This model was later tested on out-of-sample data and

yielded an average return of 8% with a standard deviation of 2.77%. It is worth noting that the

price also saw a positive surge of 182% followed by a 68% decrease in this period, resulting in a

total (negative) return of 13%. Unfortunately, the result of the model in this timespan is not

compared to any other traditional strategies, making it difficult to assess whether 8% profit is a

good or bad. Similar results were found in a study by Zhang, Zohren, & Roberts (2020) who tested

three different RL algorithms, DQN, PG, and A2C on 50 different future contracts in various assets

classes. The inputs used for the models included normalized past price series, past returns, as well

as the MACD and RSI technical indicators. Comparing the models to various other traditional

momentum-trading strategies as well as a long-only strategy, on average the DQN model came out

on top. DQN and A2C also managed to perform profitable results even when very high transaction

costs were taken into consideration.

In terms of reinforcement learning, Li et al., (2019) proposes a slightly more sophisticated

approach to trading with the use of AI. The team proposes a trading agent based on deep Q-network

and actor-critic algorithms (A3C). Two interesting aspects of this paper is the way the data is pre-

processed, as well as the action set of the agent. Firstly, the team filtered the financial time series

data by utilizing a technique called SDAE that reduces noise, deal with non-stationarity, and

increases the model’s generalization-capabilities. Secondly, instead of defining the action space as

“buy” and “sell” (1,0) the team defined multiple discrete positions (long, sell, short, cover). As a

result, the agent could for example cover (close) a short position, without the need of having to go

long simultaneously. This extended the action space to (-n, -n+1,….,0,….n-1, n) which represents

the position of stock held in the next state. For example, if the previous action was 5 and the current

action -2, the agent would currently sell 5 shares, and short 2 shares. These actions more effectively

represent a real complex trading environment. The input variables were a hand full of market

variables such as OHLC, as well as a few technical indicators. The result of the model was quite

impressive as both the A3C and DQN-learning based of the SDAE out-performed a buy & hold

strategy including slippage and transactions costs. The basic DQN and A3C without SDAE also

outperformed the benchmark strategy, although not to the degree of the proposed models.

 7

3 Theory

In the following chapter we will go over economic theories relevant to topic at hand.

3.1 The Efficient Market Hypothesis and Random Walk Hypothesis
The efficient market hypothesis (EMH) is a theory coined by Nobel prize winner Eugene Fama in

1979. The theory states that current prices in the stock market reflect existing available

information. In essence, this implies that outperforming such a market would be highly unlikely

(Baldridge, 2022). This theory is what partly has led to the popularity of index funds that track the

benchmark stock market with low fees among investors. Since EMH predicts that the vast number

of buyers and sellers in the market always have access to the same information, this leaves no

room for any type of analysis or strategy that will outperform said market. The assumption that all

market participants have access to the same publicly shared information about a stock, is the most

important assumption underlying the theory. As mentioned by John H. Cochrane (2014), the EMH

can me more precisely defined as “informationally efficient” markets. This implies that the market

itself might at times act inefficient, but the point of the theory in this case is to highlight the fact

that if an inefficient market move is not predicable, the market is informationally efficient. The

result could in theory be a stock or commodity that acts what appears to be inefficient or irrational,

but as long as it is also unpredictable, that means the market is informationally efficient. In other

words, no one single actor can exploit the movement of the stock to outperform other market

participants (Cochrane 2014).

This theory and its underlying assumptions undeniably result in what some would describe as

radical predictions. For example, EMH implies that any trading strategy based on mathematical

formulas, technical analysis, or a similar approach cannot outperform the market. A substantial

body of research support these predictions. Barber et al. (2014) found less than 3% of day-traders

can predictably make profit, and other research suggest that number might be much lower.

Arguably, the fact that some percentage of traders do outperform the market could be used as an

argument against EMH in this case. However, the findings indicate that the predictions of EMH

are generally true. If EMH holds true, this would also imply that the multi-billion-dollar industry

of the fundamental analysis (usually part of the business model of investment firms) is no more

than picking lottery tickets. Studies on this topics result in similar findings as the studies regarding

 8

profitability of day traders, meaning hardly any fund manager systematically outperform the

market. As suggested by Cochrane (2014) this is both a surprising and a rather radical outcome,

since professionals usually always outperforms the average man in any other field. There are,

however, weaker forms of the EMH which assumes that new information which is not yet publicly

available is not priced into the market. This would mean that a fundamental analyst or insider

trader would be able to outperform the market in the short-term (Baldridge, 2022).

The predictions of the EMH are very similar to that of the Random Walk Theory. One could argue

that one theory supports the other. The Random Walk Theory (RWT) simply states that stock

prices are a random walk, and do not follow a specific trend or pattern. Therefore, trying to predict

future market moves by means of technical, fundamental, or any other type of analysis, if futile.

Followers of this theory often subscribe to the same teachings of the EMH, namely that the best

strategy is a strategy that follows the market index as closely as possible (Park, 2018). The RWT

is also partly built upon the findings that professional investors rarely outperform random pickings

or amateurs, in accordance with the predictions of EMH. Critics of RWT, argue that that trends

and patterns do exist to varying degree within stocks, both in the short and long term. However,

they may be very difficult, or in some cases impossible, to decipher (Park, 2018). Nonetheless,

that does not mean that predictable trends and patterns are not prevalent critiques argue. A similar

critique could be made about the EMH. Even if markets are “informationally efficient”, just having

access to the information is not enough. An investor would also have to be able to 1: decipher or

interpret the information, and 2: act upon the information (in other words buy the stock). This is

the only way for the information to properly become incorporated into the market. If investors are

not capable to decipher the information, they are also not able to act upon it. Furthermore, even if

they can decipher the information, they must be able to buy the stock before the information

becomes available to other investors. This is especially a problem in the world of stocks where the

market is closed for trading generally two days per week. In conclusion, this could imply that

contrary to what RWT and EMH proposes, stock prices could be predictable. The predictability of

an asset would depend on to what degree a pattern exists within the data, and an investor’s ability

to decipher it and act upon it. In the world of AI, where machines can decipher large amounts of

data in record time, this is an intriguing critique.

 9

3.2 The role of Bitcoin in financial markets
There have been plenty of speculation about how cryptocurrencies such as bitcoin will fit into the

global financial markets. Proponents of bitcoin argue one of its main advantages is the scarcity,

which is ensured by the process of “mining” bitcoin using the proof of work algorithm. This

scarcity, proponents argue, is what makes bitcoin a hedge to inflation and inflatable assets such as

fiat currencies. This aspect of bitcoin can therefore be compared to the benefits of gold or other

scarce commodities. However, critics argue that the volatile nature of bitcoin does not make it

suitable as a hedge against inflation. This critique is largely supported by the fact that bitcoin saw

a 75% decline in value from its all-time-high in November of 2021 to November of 2022, when

inflation around the world was running rampant. Despite this, bitcoin’s ability to serve as a hedge

against inflation might not be a question of if, but rather of when. Some proponents argue that

bitcoin will eventually stabilize, and by then its purpose as a hedge against inflation will be more

pronounced. Whether bitcoin is a hedge to inflation or not, is up for debate. At the current time, it

appears that bitcoin is behaving more like a risk-on asset with positive correlation to tech stocks,

and negative correlation to traditional safe-haven assets such as gold (Wood, 2022). There is also

the case to be made that the value and price of bitcoin is more so driven by its fundamentals and

practical use-cases. The decentralized nature of bitcoin allows for it be used peer-to-peer without

a middleman such as a bank. In 2021, El Salvador became the first country in the world to adopt

bitcoin as official currency, and it appears that adoption of bitcoin globally in terms of practical

use is growing steadily, irrespective of the volatile price (Browne, 2022). Furthermore, the

practical adoption of bitcoin appears to be dominated by emerging markets in continents like Asia,

Africa, and south America. This can be considered a testification of bitcoins fundamental value as

a decentralized commodity and tender in places where stable financial institutions and

infrastructure is scarce (“The Global Crypto Adoption Index”, 2022).

 10

4 Practical Conventions

In order to ensure the validity of the results of the models, we need to make sure that the agents’

decisions in training actually translates well into a real-world scenario. When trades are made on

an exchange, there are several factors and properties affecting the trade which are not usually

considered during the training of a model because of practical reasons. Some crucial factors

requiring mentioning is market makers, orders, and transaction costs. In most larger tradeable

assets on exchanges, there are market makers. These are actors which help facilitate trades on an

exchange by providing liquidity to the asset. Essentially, market makers provide liquidity at the

highest bid-price, and the lowest sell-price, thus enabling trades to me made immediately at these

prices. The spread is the difference between these two prices, and it is how market makers make

money. Orders placed in the market can either be market orders or limit orders. Market orders are

immediately executed at the best available buy or sell price, while limit order specify a particular

price to buy or sell at. Furthermore, each trade is affected by transaction costs. These are fees that

the trader must pay to the exchange when placing the trade. Such fees can be constant, percentage-

based, or both, and vary depending on the exchange, type of asset, regulatory domain, and other

factors.

In the training of the model, we are making some basic assumptions about how trades are made on

an exchange.

1. There is always liquidity.

This means that we assume that whenever our agent wants to place a trade (market-order),

there is always liquidity available at that certain price, and the trade is immediately

facilitated. This might now always be true in a real-life scenario.

2. Our orders do not affect the market price.

This means we assume that the order the agent place does not affect the asset price in any

direction.

3. Transaction costs do not change.

We assume that any transaction cost we include in the model, has been the same throughout

history and will remain the same in a real-world scenario.

 11

It is worth mentioning that the importance of these assumptions varies depending on the timeframe

the model is trading at.

 12

5 Data

The following chapter briefly goes over the set of data used, as well the input variables.

5.1 Data Sources
The bitcoin historical price on a daily timeframe is collected from investing.com. The reason being

the availability of data goes all the way back to 2009. In order to reduce the number of NULL

values, we only pick data from 1st Jan 2013. Generally, it is difficult to come across bitcoin data

with a lot of history, however investing.com seems to be a very good candidate for a daily

timeframe and higher. The daily data contains 3 726 rows. It would have been preferable to

compare the models in different timeframes, but this is an area of exploration for future research.

5.2 Input Features
The number of input variables chosen as well as their type is largely influenced by computational

power, and the findings of previous literature. The dataset has been equipped with 11 input

variables that are displayed in table 1.

 13

Table 1: Input variables for the models

Abbreviation Name Type

Returns - The variable the model tries to predict. Returns

of the bitcoin close price.

RSI Relative Strength Index Technical momentum oscillator

EMA(T=14) Exponential Moving Average Technical trend indicator (Returns as input)

TSI True Strength Index Technical momentum oscillator

RVI Relative Volatility Index Technical volatility oscillator

MFI Money Flow Index Technical momentum oscillator

STDEV Standard Deviation Statistical indicator – Standard deviation of

returns (Length=30)

Open % Change - Returns of the bitcoin open price from previous

period.

High % Change - Returns of the bitcoin high price from previous

period.

Low % Change - Returns of the bitcoin low price from previous

period.

Volume % Change - Percentage change of volume from previous

period.

Using oscillating and percentage-based input variables has mainly two benefits. 1) We can better

ensure the longevity of the model since the risk of there being new all-time-highs or all-time-lows

is severally reduced, particularly over a longer time frame. 2) We reduce some the inherent issues

that non-normalized price data has. For example, by using percentage change instead of prices, we

get rid of most of the trends within the data. There will still be volatility-clustering as well as some

seasonality in the data, but addressing such issue will be a recommendation for further research.

 14

6 Method

The following chapter goes over the technical aspects of reinforcement learning and explains the

inner workings of the Q-Learning and DQN algorithm.

6.1 Specifications of the environment
6.1.1 Environment with two decisions “in” or “out”

The very first environment we wish to create will only allow for two discrete actions, namely “in”

or “out” of the market (1,0). “in” simply means to enter the market, or to stay in the market if we

are already invested. “out” means to exit the market if we are invested, or to stay out if we are no

longer invested. OpenAI has preprogrammed trading environment for these types of decision

called gym-anytrading. After preliminary testing of this environment, we decided to develop our

own. In this iteration of the environment, we do not allow for short selling. Technically, a “hold”

or “do nothing” position is also not allowed as we are either in the market or out of the market.

Below, the pseudo-code of the trading environment is shown. The term “stock” can easily be

substituted for other assets such as commodities or cryptocurrencies. We apply the following

notation:

𝑆Out Value of stocks in the end of the iteration after the decision, and after the reward/return
from the current decision.

𝑆In Value of stocks in the beginning of the iteration before decision, but after the
reward/return from previous decision.

𝜏 Transaction costs when selling or buying stocks. There are no additional transaction
costs for buying/selling bonds.

𝑟S,𝑡 Return on stock investment
𝑟B Interest rate on bonds/bank (this is constant throughout time). This can also be

considered the risk-free return.

 15

Initialization:
𝐵Out = 𝐵0
𝑆Out = 0
This are the values from some fictive previous point in time.

Iterate:
The outgoing values from the previous iteration become the ingoing values:
𝐵In = 𝐵Out
𝑆In = 𝑆Out

Reading the return from the data that will be achieved by stocks (𝑟S,𝑡):

If 𝑎 = 1 (we go or stay long in stocks):

 If 𝑆In = 0 (out of stocks, and long in bonds, i.e., 𝐵In ≥ 0):
 We need to buy stocks: *
 𝑆Out =

𝐵In
(1 + 𝜏) ∙ (1 + 𝑟S,𝑡)

𝐵Out = 0

 Else (i.e. 𝑆In > 0 and 𝐵In = 0 which means long in stocks, out of bonds):
 We will stay in stocks:
 𝑆Out = 𝑆In ∙ (1 + 𝑟S,𝑡)

𝐵Out = 0

If 𝑎 = 0 (we sell stocks or stay out):

 If 𝑆In = 0 (out of stocks, and long in bonds, i.e., 𝐵In ≥ 0):
 𝑆Out = 0

𝐵Out = 𝐵In ∙ (1 + 𝑟B)

 Else (i.e., 𝑆In > 0 and 𝐵In = 0 which means long in stocks, out of bonds):
 We need to sell stocks: *

𝐵Out = 𝑆In ∙ (1 − 𝜏) ∙ (1 + 𝑟B)

𝑆Out = 0

 16

Explanation of *:

We buy stocks and pay transaction costs on the value invested into stocks:

𝑆Bought + 𝑆Bought ∙ 𝜏 = 𝐵In

Solving for 𝑆Bought:

𝑆Bought =
𝐵In
1 + 𝜏

On the stocks acquired we earn the return:

𝑆Out = 𝑆Bought ∙ (1 + 𝑟S,𝑡) =
𝐵In
1 + 𝜏 ∙ (1 + 𝑟S,𝑡)

6.1.2 Environment with continuous decisions
There is also the possibility of an environment with continuous decision, similar to Li et al., (2019).

This means that the agent will have a larger action space available, where it can choose to invest

only parts of the capital. Equivalently, the agent can choose to only sell parts of the active positions

as well. We hypothesize that similarly to the findings by Li et al., (2019), the agent should stay

more heavily invested in long-positions, during in bull-markets/trends, and less invested in bear-

markets/trends. It is reasonable to assume that such an action space and environment is more

suitable for a financial timeseries where unforeseeable and volatile changes frequently occur. Li

et al., (2019) found that tripling the action space (amount of stock held) from (-1,0,1) to (-3,-2,-

1,0,1,2,3) resulted in a more than triple the reward. However, in this case, the agent had multiple

stocks to choose from, so it is unclear in our case how this will affect an agent that only trades one

asset. We can hypothesize that perhaps the agent will increase its position during times of less

volatility, as well as adjust the size of its position according to the confluence of our input-

variables. This type of environment is interesting, but beyond the scope of this thesis, and is

therefore recommended for future research.

6.2 Reinforcement Learning
Reinforcement learning uses the framework of Markov Decision Processes (MDPs). The

ingredients of an MDP are states, decisions (actions) and rewards. A MDP is a mathematical

framework to model the decision-making by our agent (Vijay Kanade, 2022). This is essentially

 17

the mechanism of how the agents’ actions in a particular state, leads to another state. MDPs can

be illustrated in different ways.

Figure 1: Interaction between environment and agent in reinforcement learning

Figure 1 illustrates the interaction between the agent and the environment. The agent will observe its

state 𝑠𝑡, and then pick an action which through the environment will land the agent in a new state,

𝑆𝑡+1. By performing an action, the agent will also receive a reward 𝑅𝑡+1 which it will learn from.

In our case the reward will be the profit, and the states will be compromised of various economic

and technical indicators. In a real-world trading scenario, we cannot possible observe all the

variables which goes into explaining to rise or fall in the future price of an asset. We can merely

observe some of these variables, and therefore this is arguably a so called partially observable

Markov decision process (Williams & Young, 2007).

Another way to illustrate this process is shown below in figure 2.

 18

Figure 2: Alternative illustration of Markov-Decision-Chain

At first glance, it may seem like the flow of time is essential in this process, and in terms of how

much we train the model, we are using the term “timesteps”. However, the point in time is not

crucial in such a decision-making process. Rather it is the state S that is important. An agent will,

based on the state it finds itself in, find the optimal action. Therefore, a better, but simplified and

canonical example is to represent the problem in the in form of a table as in figure 3.

Figure 3: The relationship between states and actions in the Markov Decision process

 Action 1 Action 2 Action 3 Action n…
State 1(𝑠𝑡) Estimated reward Estimated reward …. ….

State 2 (𝑠𝑡+1) Estimated reward Estimated reward …. ….

State 3 (𝑠𝑡+2) Estimated reward Estimated reward …. ….

State 4 (𝑠𝑡+3) …. …. …. ….

State n… (𝑠𝑡) …. …. …. ….

In figure 3, we note that it is not time which is the essential ingredient, but it is the state and the

action taken in this state which is important in reinforcement learning. Intuitively, the agent can

exist in the same state at different points in time, and the goal is not necessarily reached at a given

point in time. Should we illustrate this on a timeline, an example would look at follows in figure

4.

𝑠𝑡 𝑠𝑡+1 𝑎𝑡

𝑡

𝑟𝑡+1

𝑡 + 1

𝑎𝑡+1

𝑡 + 2

𝑟𝑡+2

𝑠𝑡+2 𝑎𝑡+2 …
agent

env. env. env. agent agent

 19

Figure 4: The relationship between states and actions illustrated on a timeline

Figure 4 more accurately illustrates the notion that the state and action is the important relationship

in reinforcement learning rather than action-time.

6.2.1 Policy
With respect to the relationship between a state and an action, it is convenient to introduce the

notion of policy. The policy is the agents approach to picking a certain action in a particular state,

and thus landing the agent in a new state. Simply put, this is the agent’s strategy of picking actions

which will achieve its goals. In more technical terms, many different policies make up a probability

distribution of all the action-state pairs the agent currently must choose from. The agent then

evaluates these policies by computing the utility function U over said policies. By doing such, the

agent obtains the reward for each policy, and subsequently chooses the policy with the highest

12:00
State 1

Action 4

Reward
13:00

State 3
Action 2

Reward
14:00

State 1
Action 2

Reward
15:00

State 5
Action 1

 20

reward (Gabriele De Luca, 2020). This is also known as a stochastic policy. At the very start, all

of these policies are randomly generated, and through iterations, the agent will eventually (in

theory) learn the optimal policy which will map a probability distribution of actions to each action

space (MLK, 2021).

6.3 Deep Reinforcement Learning
6.3.1 Q-Networks and Deep Q-Networks (DQN)
A deep Q-Network is a reinforcement learning algorithm that combines the regular Q-learning

algorithm with deep neural networks. One of the main differences between a Q algorithm the DQN,

is the agents brain. In Q-learning, the Q-table, which is composed of states and actions, is the

agent’s brain. In a DQN the brain is the neural network, and the neural network takes the state of

the environment as an input and calculates the expected reward for each possible action in the Q-

table (Moghadam, 2019). One main advantage of the DQN is that it can handle high-dimensional

state spaces, which a Q-Network cannot. This means we can work with many input variables in

our data. This opens up the possibility of including variables that may be more far-fetched in the

context of having an effect on price-percentage change. Another advantage of the DQN is its ability

to learn “online”, meaning it can learn from experiences as it receives it. The value-iteration

method has the purpose of solving the Markov Decision Process which we are already familiar

with. In the case of the DQN, this method initializes the Q-values to random values, and then

iteratively updates these values as they eventually converge to their optimal value or state. The Q-

value can simply be defined as the immediate reward for a particular state-action pair (see figure

3), plus the discounted value of the very next state (Ken, n.d.). The idea of discounting the value

of the very next state is the same novel concept used in finance, namely that we value rewards

today more than rewards in the future. The value-iterations to calculate all possible state-actions,

is performed using a deep neural network. A common disadvantage of DQN is that the learning

process can be very slow due to the use of deep neural networks. This type of approach is also

prone to overfitting, and the learning process can also be unstable which is an inherent

characteristic in neural networks.

 21

6.4 Testing the Algorithms with Simple Time-Series
To get a sense of how the aforementioned algorithms apply to real-life data, they were first tested

on deterministic data or very simplistic time-series. Firstly, we allow for the algorithms to trade

on deterministic timeseries where the optimal decision should be very easily obtained. These

timeseries have been divided into 4 types.

• Predetermined prices.

• Sine-Curve

• Sine-Curve with linear trend.

• Time series with predefined ups, downs

Some of the results are shown in the appendix. After having evaluated the algorithms on all the

deterministic timeseries, we can conclude that Q-learning behaves as expected and that DQN

generally behaves as expected. However, in timeseries with predefined ups and down, the DQN

algorithm often fails. The reason for this is unknown, but could be due to the data set,

hyperparameters, or number of timesteps. Regardless, the results generally warrants that we move

forward with both algorithms.

 22

7 Results

In the following we will dissect and compare the results between the DQN and Q-learning

algorithm. The models have been trained on a dedicated PC. Each model is given 100 units of

currency to trade with, and the result is compared to a simple buy-and hold strategy as that is what

proponents of the random walk theory and efficient market hypothesis generally would suggest.

7.1 DQN
The hyper parameters used in training the DQN models are shown in table 2. Other useful settings

and parameters are shown in table 3.

Table 2: Explanation of DQN hyper parameters

Hyper Parameter Value Explanation
gamma 1 Determines the present value of future rewards

learning_rate 0.05 Learning rate for adam optimizer
exploration_fraction 0.8 The probability of the agent taking random actions in the

beginning
exploration_initail_eps 0.8 Length of the exploration period

exploration_final_eps 0.00 Probability of random actions in the end

batch_size 120 Size of a batched sampled from replay buffer for training

Table 3: Other DQN settings and parameters

Other
settings

Training/Test
Split

Epochs Timesteps Average Run
time

Early Stopping
Callback

 80/20 5,000 14,905,000 5hrs 600

 23

Training #1

Figure 5: Graphical illustration of trading decisions in training DQN model #1

• The final profit of the DQN strategy is: 2153499865.072….

• The final profit of the buy-and hold strategy is: 288094.60….

 24

Test #1

Figure 6: Graphical illustration of trading decisions in testing DQN model #1

• The final profit of the DQN strategy is: 114.61…. (+14,61%)

• The final profit of the buy-and hold strategy is: 52.41….(-47,59%)

 25

Training #2

Figure 7: Graphical illustration of trading decisions in training DQN model #2

• The final profit of the DQN strategy is: 27541984.072….

• The final profit of the buy-and hold strategy is: 288094.60….

 26

Test #2

Figure 8: Graphical illustration of trading decisions in testing DQN model #2

The final profit of the DQN strategy is: 103.60…. (+3,6%)

The final profit of the buy-and hold strategy is: 52.41…. (-47,59%)

Training #3

The final profit of the DQN strategy is: 21533944.072….

The final profit of the buy-and hold strategy is: 288094.60….

Test #3

The final profit of the DQN strategy is: 100.65…. (+0.65%)

The final profit of the buy-and hold strategy is: 52.41…. (-47,59%)

 27

While at first glance, it might appear that the DQN models have outperformed the buy-and hold

strategy in every single case, the more evident takeaway should be the instability of the models.

As derived from the results above, model #1 has behaved seemingly irrationally by staying out of

the market almost exclusively. At some points in time, it enters and then exits market profitably.

While it is impossible to say why the agent suddenly enters the market towards the end of the time

period, this appears to be more of a random artefact rather than the result of any meaningful

pattern-recognition. Despite this being the most profitable DQN model, we argue these results are

not fully reliable. While it is interesting to note that all the models have outperformed the buy-and

hold strategy, the validity and reliability of the models is up for discussion. The most interesting

behavior of the DQN models is exhibited by model #2. This model appears to be making some

consistent decisions and utilizing some sort of pattern. There is a trading pattern emerging from

the model, where it enters the market after some type of bullish reversal, and then chooses to stay

in the uptrend until the trend is broken. However, it is also important to note that these models

were trained without transaction costs. Introducing transaction costs would likely result in all

models trading at a loss.

 28

7.2 Q-Learning
The hyper parameters used in training the Q-Learning model are shown in table 3. Other useful

settings and parameters are shown in table 4.

Table 3: Explanation of Q-Learning hyper parameters

Hyper Parameter Value Explanation
Learning_rate 0.03 The extent to which the Q-values are updated during the

learning process.
Discount_Rate 1 Determines the present value of future rewards

Episodes 150,000

Epsilon 0.5 The exploration-exploitation trade-off

End_Epsilon 0.00 The lowest value of epsilon the agent will reach.

Start_Epsilon_Decay 0.00 Zero means that it starts in episode 0 (immediately)

End_Epsilon_Decay Episodes // 2 After this many episodes we will not decrease the
epsilon anymore.

Table 4: Other Q-Learning settings and parameters

Other
settings

Training/Test
Split

Epochs Timesteps Average Run
time

Early Stopping
Callback

 80/20 - - 5hrs -

 29

Training #1

Figure 9: Graphical illustration of trading decisions in training Q-Learning model #1

• The final profit of the Q-Learned strategy is: 873576347527.28….

• The final profit of the buy-and hold strategy is: 288094.60….

 30

Test #1

Figure 10: Graphical illustration of trading decisions in testing Q-Learning model #1

• The final profit of the Q-Learned strategy is: 100.43… (+0,43%)

• The final profit of the buy-and hold strategy is: 52.41…. (-47,59%)

 31

Training #2
Figure 11: Graphical illustration of trading decisions in training Q-Learning model #2

• The final profit of the Q-Learned strategy is: 461299986811.80….

• The final profit of the buy-and hold strategy is: 288094.60….

 32

Test #2
Figure 12: Graphical illustration of trading decisions in testing Q-Learning model #2

• The final profit of the Q-Learned strategy is: 100.43… (+0,43%)

• The final profit of the buy-and hold strategy is: 52.41…. (-47,59%)

Training #3

The final profit of the Q-Learned strategy is: 7669037549.67….

The final profit of the buy-and hold strategy is: 288094.60….

Test#3

The final profit of the Q-Learned strategy is: 100.43… (+0,43%)

The final profit of the buy-and hold strategy is: 52.41…. (-47,59%)

 33

As can be seen from the results, the Q-learning models has very similar results to the DQN-models.

Despite the Q-Learning models also technically outperforming the buy-and hold strategy, it

appears this is more due to chance rather than the model making meaningful decisions. We can

also note that all Q-learning models converge to the same decisions in the test set, but not in the

training set. The test data is largely characterized by a down trend, and it is hard to say what would

happen if the test data instead was a strong up trend or a neutral trend. Summarized results for the

DQN and Q-Learning models can be seen in table 5.

Table 5: Summary of the test results of the DQN and Q-Learning models

Summary DQN Q-Learning Buy-and Hold

Model No

.

Model #1 Model #2 Model #3 Model #1 Model #2 Model #3 -

Profit +14,61% +3,6% +0,65% +0,43% +0,43% +0,43% -47,59%

7.3 Final Remarks
The major takeaway from results of the models is that more time and computational power is

needed. Furthermore, due to time constraints we we’re unable to test the algorithms in ideal

circumstances. For future research, these findings suggest several recommendations. For starters,

one should experiment with more sophisticated environments where the models are allowed to

trade with continuous decisions. Furthermore, the combination of computational power and time

appears to be crucial. This allows for the models to be fed more input variables, which can result

in better decision making. We also recommend experimenting with different reward functions,

such as the sharpe or sortino ratio. It also important to remember that factors such as short

positions, transaction costs, and slippage can largely affect the results. In these experiments, it may

appear that the models are strictly outperforming the buy-and hold strategy, which they technically

are. However, the way the models behave suggests that this is likely not due to some sort of

rigorous trading strategy, but rather by chance. DQN Model 2 is the one model which appears to

 34

demonstrate hints at rational trading behavior. The model manages to end up in a 3,6% profit where

the market otherwise saw negative returns of 47,59%. Finally, it is also wise to experiment with

the various hyperparameters, although this should be far less prioritized compared to constructing

a solid reward function and environment.

 35

8 Conclusion

This thesis has covered the topic of using reinforcement learning to trade bitcoin on a daily

timeframe. We have explored and investigated the effectiveness of two popular algorithms, namely

Q-learning and DQN. Our experiments demonstrate both the difficulty and the potential

applicability of reinforcement learning algorithms in financial trading. We can conclude that data

preprocessing, the construction of the reward function and the environment, as well as the

combination of computational power and time are crucial. We have shown that that while the

algorithms have potential, they can also be prone to irrational decision making. The findings

primarily suggest that there is more to learn about the algorithms and their use case in trading.

While all models of both algorithms technically performed better than a simple buy-and hold

strategy, we hypothesize that this is mostly due to chance. Nonetheless, some findings indicate

hints at rational trading behavior, but to draw any meaningful conclusions we require more time,

computational power, and resources. Overall, the thesis has contributed to the growing body of

research on using machine learning for financial trading, and hopefully it will inspire further

research and experimentation in the domain.

 36

9 References

Baldridge, R. (2022, August 5). What Is the Efficient Market Hypothesis? Forbes. Retrieved

from https://www.forbes.com/advisor/investing/efficient-market-hypothesis/

Barber, B. M., Lee, Y.-T., Liu, Y.-J., & Odean, T. (2014). Do Day Traders Rationally Learn

About Their Ability? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2535636

Browne, R. (2022, April 28). Central African Republic becomes second country to adopt bitcoin

as legal tender. CNBC; CNBC. https://www.cnbc.com/2022/04/28/central-african-

republic-adopts-bitcoin-as-legal-tender.html

Chainalysis Team. (2022, September 14). 2022 Global Cryptocurrency Adoption Index -

Chainalysis. Chainalysis. https://blog.chainalysis.com/reports/2022-global-crypto-

adoption-index/

Chen, J. (2023). Analysis of Bitcoin Price Prediction Using Machine Learning. Journal of Risk

and Financial Management, 16(1), 51. https://doi.org/10.3390/jrfm16010051

Erfanian, S., Zhou, Y., Razzaq, A., Abbas, A., Safeer, A. A., & Li, T. (2022). Predicting Bitcoin

(BTC) Price in the Context of Economic Theories: A Machine Learning

Approach. Entropy, 24(10), 1487. https://doi.org/10.3390/e24101487

Gabriele De Luca. (2020, August 9). What is a Policy in Reinforcement Learning? | Baeldung on

Computer Science. Baeldung on Computer Science. https://www.baeldung.com/cs/ml-

policy-reinforcement-learning

https://www.forbes.com/advisor/investing/efficient-market-hypothesis/
https://www.cnbc.com/2022/04/28/central-african-republic-adopts-bitcoin-as-legal-tender.html
https://www.cnbc.com/2022/04/28/central-african-republic-adopts-bitcoin-as-legal-tender.html
https://doi.org/10.3390/e24101487

 37

Huang, J.-Z., Huang, W., & Ni, J. (2019). Predicting bitcoin returns using high-dimensional

technical indicators. The Journal of Finance and Data Science, 5(3), 140–155.

https://doi.org/10.1016/j.jfds.2018.10.001

Jiang, X. (2020). Bitcoin Price Prediction Based on Deep Learning Methods. Journal of

Mathematical Finance, 10(01), 132–139. https://doi.org/10.4236/jmf.2020.101009

John H. Cochrane. Eugene F. Fama, Efficient Markets, and the Nobel Prize. (2014). Retrieved

March 10, 2023, from The University of Chicago Booth School of Business website:

https://www.chicagobooth.edu/review/eugene-fama-efficient-markets-and-the-nobel-

prize#:~:text=Fama%20defined%20a%20market%20to,and%20low%20costs%20of%20in

formation.

Ken. (n.d.). Recitation 13: Reinforcement Learning.

https://deeplearning.cs.cmu.edu/S20/document/recitation/Recitation%2013_%20Reinforce

ment%20Learning.pdf

Liu, F., Li, Y., Li, B., Li, J., & Xie, H. (2021). Bitcoin transaction strategy construction based on

deep reinforcement learning. Applied Soft Computing, 113, 107952.

https://doi.org/10.1016/j.asoc.2021.107952

Li, Y., Zheng, W., & Zheng, Z. (2019). Deep Robust Reinforcement Learning for Practical

Algorithmic Trading. IEEE Access, 7, 108014–108022.

https://doi.org/10.1109/access.2019.2932789

https://doi.org/10.1016/j.jfds.2018.10.001
https://doi.org/10.4236/jmf.2020.101009
https://www.chicagobooth.edu/review/eugene-fama-efficient-markets-and-the-nobel-prize#:~:text=Fama%20defined%20a%20market%20to,and%20low%20costs%20of%20information
https://www.chicagobooth.edu/review/eugene-fama-efficient-markets-and-the-nobel-prize#:~:text=Fama%20defined%20a%20market%20to,and%20low%20costs%20of%20information
https://www.chicagobooth.edu/review/eugene-fama-efficient-markets-and-the-nobel-prize#:~:text=Fama%20defined%20a%20market%20to,and%20low%20costs%20of%20information
https://deeplearning.cs.cmu.edu/S20/document/recitation/Recitation%2013_%20Reinforcement%20Learning.pdf
https://deeplearning.cs.cmu.edu/S20/document/recitation/Recitation%2013_%20Reinforcement%20Learning.pdf
https://doi.org/10.1016/j.asoc.2021.107952

 38

Lucarelli, G., & Matteo Borrotti. (2019, May). A Deep Reinforcement Learning Approach for

Automated Cryptocurrency Trading. Retrieved March 8, 2023, from ResearchGate

website:https://www.researchgate.net/publication/333107392_A_Deep_Reinforcement_Le

arning_Approach_for_Automated_Cryptocurrency_Trading

MLK. (2021, March 31). Machinelearningknowledge.ai.

https://machinelearningknowledge.ai/beginners-guide-to-what-is-policy-in-reinforcement-

learning/#:~:text=What%20is%20Policy%20in%20Reinforcement%20Learning%20In%2

0a,take%20at%20a%20particular%20state%20in%20the%20environment.

Munim, Z. H., Shakil, M. H., & Alon, I. (2019). Next-Day Bitcoin Price Forecast. Journal of

Risk and Financial Management, 12(2), 103. https://doi.org/10.3390/jrfm12020103

 Nevasalmi, L. (2020). Forecasting multinomial stock returns using machine learning

methods. The Journal of Finance and Data Science, 6, 86–106.

https://doi.org/10.1016/j.jfds.2020.09.001

Park, M. (2018, February 2). Random Walk Theory. Retrieved March 12, 2023, from Corporate

Finance Institute website: https://corporatefinanceinstitute.com/resources/capital-

markets/what-is-the-random-walk-theory/

Parsa Heidary Moghadam. (2019, July 21). Deep Reinforcement learning: DQN, Double DQN,

Dueling DQN, Noisy DQN and DQN with Prioritized Experience Replay. Medium;

Medium. https://medium.com/@parsa_h_m/deep-reinforcement-learning-dqn-double-dqn-

dueling-dqn-noisy-dqn-and-dqn-with-prioritized-

551f621a9823#:~:text=The%20only%20difference%20between%20Q,is%20a%20deep%2

0neural%20network.

https://doi.org/10.3390/jrfm12020103
https://doi.org/10.1016/j.jfds.2020.09.001
https://corporatefinanceinstitute.com/resources/capital-markets/what-is-the-random-walk-theory/
https://corporatefinanceinstitute.com/resources/capital-markets/what-is-the-random-walk-theory/

 39

Sattarov, O., Muminov, A., Lee, C. W., Kang, H. K., Oh, R., Ahn, J., … Jeon, H. S. (2020).

Recommending Cryptocurrency Trading Points with Deep Reinforcement Learning

Approach. Applied Sciences, 10(4), 1506. https://doi.org/10.3390/app10041506

Vijay Kanade. (2022, December 20). Markov Decision Process Definition, Working, and

Examples. Spiceworks; Spiceworks. https://www.spiceworks.com/tech/artificial-

intelligence/articles/what-is-markov-decision-process/

Williams, J. D., & Young, S. (2007). Partially observable Markov decision processes for spoken

dialog systems. Computer Speech & Language, 21(2), 393–422.

https://doi.org/10.1016/j.csl.2006.06.008

Wood, J. (2022, November 10). What Bitcoin’s Inflation Hedge Narrative Needs: More Time.

@Coindesk; CoinDesk. https://www.coindesk.com/business/2022/11/10/what-bitcoins-inflation-

hedge-narrative-needs-more-time/

Zhang, Z., Zohren, S., & Roberts, S. (2020). Deep Reinforcement Learning for Trading. The

Journal of Financial Data Science, 2(2), 25–40. https://doi.org/10.3905/jfds.2020.1.030

https://doi.org/10.3390/app10041506
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/
https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-markov-decision-process/
https://doi.org/10.1016/j.csl.2006.06.008
https://www.coindesk.com/business/2022/11/10/what-bitcoins-inflation-hedge-narrative-needs-more-time/
https://www.coindesk.com/business/2022/11/10/what-bitcoins-inflation-hedge-narrative-needs-more-time/
https://doi.org/10.3905/jfds.2020.1.030

 40

Appendix #1 – Experiments with Different Time Series and RL
Algorithms

Direct Optimization of Optimal Trading with Deterministic Series
When time series are deterministic and comparably small, we can find the optimal solution by

means of linear optimization:

Let 𝑥𝑡S and 𝑦𝑡S represent the number of stocks purchased or sold in point of time 𝑡. The variable 𝑥𝑡B

is the amount invested in bonds (bank), respectively. 𝑃𝑡S is the stock price in point of time 𝑡. Let 𝑟

be the constant interest rate, and 𝜏 are transactions costs in % when selling or buying stocks. 𝐵0

denotes the initial budget available at point in time 𝑡 = 0

for 𝑡 = 0:

Budget constraint: 𝑃0S ∙ 𝑥0S + 𝑃0S ∙ 𝑥0S ∙ 𝜏 + 𝑥0B = 𝐵0

Holding of asset: 𝑧0S = 𝑥0S

Non-negativity: 𝑥0S ≥ 0, 𝑥0B ≥ 0

𝑧0S ≥ 0 (redundant)

We need to follow with the volume of stocks:

for all 0 < 𝑡 < 𝑇:

Budget constraint: 𝑃𝑡S ∙ 𝑦𝑡S ∙ (1 − 𝜏) − 𝑃𝑡S ∙ 𝑥𝑡S ∙ (1 + 𝜏) + (1 + 𝑟) ∙ 𝑥𝑡−1B − 𝑥𝑡B = 0

Cannot sell more than
holding:

𝑦𝑡S ≤ 𝑧𝑡−1S

Holding of asset: 𝑧𝑡S = 𝑧𝑡−1S − 𝑦𝑡S + 𝑥𝑡S

Non-negativity: 𝑥𝑡S ≥ 0, 𝑥𝑡B ≥ 0, 𝑦𝑡S ≥ 0

𝑧𝑡S ≥ 0 (redundant)

In point of time 𝑡 = 𝑇, we assume that we hold the position (no more trading) from the previous

point in time, and we calculate its value. The wealth in the end of the trading-horizon is:

𝑤𝑇 = 𝑃𝑡S ∙ 𝑧𝑡−1S + (1 + 𝑟) ∙ 𝑥𝑡−1B

This wealth is supposed to be maximized.

 41

The solution to this problem can serve as a benchmark against the solutions of RL.

It is also possible to formulate a corresponding optimization problem for a stochastic environment.

When applying the framework of stochastic optimization with deterministic equivalent in form of

linear programs, this would require the construction of scenario trees. We will omit this approach

here.

RL-Experiments with Deterministic Series
We have run several experiments with artificial time series, to have some kind of guarantee that

RL Methods will learn to make good trading decisions when there exists a possibility of learning.

For this reason, we have tested deterministic and simple stochastic time series. In what follows,

we will present the results.

Prespecified Return List
In this experiment, we have used the following list of prices, which was repeated three times:

[0.10, 0.05, 0.08,−0.03,−0.04, 0.00, 0.00,0.07,−0.02,…]

Except for the return of 0.00 this time series does not really contain any ambiguous states.

In this list we have indicated, when to stay in (green) and when to stay out (red).

 42

Figure 13: Plot of Returns and Prices for Deterministic Return List with Random In and Out Decisions

If we use the price 𝑟𝑡 as only information, RL algorithms should not unambiguously learn the right

decisions:

Return Next Return Reward (for one repetition) Expected
Decision

0.10 0.05 1 x positive reward Stay in
0.05 0.08 2 x positive reward Stay in
0.08 -0.03 1 x pos., 1 x neg. (but pos. reward is larger) Stay Out
-0.03 -0.04 1 x pos., 1 x neg. of same absolute size Stay Out
-0.04 0.00 2 x positive reward Indifferent
0.00 0.00 1 x negative Indifferent
0.00 0.07 Stay in
0.07 0.02 Stay in
0.02 0.10 1 x negative Stay in

At price 12: 2 x positive reward when it comes to downward trends or negative rewards.

 43

Q-Learning:
• Bin-size = 9
• Learning_Rate = 0.03
• Discount_Rate = 1
• Episodes = 5,000
• Epsilon = 0.5
• End_Epsilon = 0.00

Conclusion: Algorithm performs as expected.

DQN:
• gamma = 1,
• batch_size = 18
• total_timesteps =

1,440,000
• Time: 1,554 s

Conclusion: Algorithm does not perform 100% as expected, but quite
acceptable.

PPO: No training results achieved at all.

If we use both the price 𝑝𝑡 and the lagged price 𝑝𝑡 as information, the RL algorithms should be

perfectly able to conclude the correct decisions:

 44

	Preface
	Abstract
	Sammendrag
	1 Introduction
	2 Literature Review
	2.1 Supervised Learning Models for Prediction Bitcoin
	2.2 Reinforcement Learning Models for Bitcoin Trading Decisions

	3 Theory
	3.1 The Efficient Market Hypothesis and Random Walk Hypothesis
	3.2 The role of Bitcoin in financial markets

	4 Practical Conventions
	5 Data
	5.1 Data Sources
	5.2 Input Features

	6 Method
	6.1 Specifications of the environment
	6.1.1 Environment with two decisions “in” or “out”
	6.1.2 Environment with continuous decisions

	6.2 Reinforcement Learning
	6.2.1 Policy

	6.3 Deep Reinforcement Learning
	6.3.1 Q-Networks and Deep Q-Networks (DQN)

	6.4 Testing the Algorithms with Simple Time-Series

	7 Results
	7.1 DQN
	7.2 Q-Learning
	7.3 Final Remarks

	8 Conclusion
	9 References
	Appendix #1 – Experiments with Different Time Series and RL Algorithms
	Direct Optimization of Optimal Trading with Deterministic Series
	RL-Experiments with Deterministic Series
	Prespecified Return List

