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Abstract

The purpose of this thesis is to utilize analytical models to predict the price of salmon

using similar commodities and macroeconomic factors. To make these predictions we

have used the cod price, halibut price, CPI and TWI. We have developed four models;

ARIMA, SARIMA, SARIMAX and LSTM. These are all trained on a dataset gathered

from Norsk Råfisklag. The models are trained on the data from the timeperiod spring

2013 to winter 2021, and tested on data from 2022.

Our research and testing has shown that the predictions improve when taking seasonality

into account. The improvement from the ARIMA to the SARIMA model is very signi-

ficant, whereas the improvement from SARIMA to the SARIMAX with one exogenous

variable is very small. This is also clearly shown in the predictions from the three models,

where the SARIMA and SARIMAX roughly follow the same trends, and the ARIMA

simply predicts the same average price for all weeks. The best prediction from the LSTM

model also comes close to the RMSE of the SARIMAX model, but the results from the

LSTM model varies greatly depending on the lookback period. Lookbacks of 52 and 104

weeks are the best perfoming in terms of catching the trends, but the lookback periods of

the models with the lowest RMSE is quite random. LSTM with short lookback periods

predict the average quite well, meaning that the RMSE is low, however, when looking at

the graphs its clear that this does not actually represent a good prediction.

Even though the SARIMAX model performs the best, there are still areas of uncertainty.

Tests on the SARIMAX model show that we can’t conclude whether or not the residuals

are white noise. We can only conclude that we can’t reject the null hypothesis that the

residuals are white noise.

In conclusion the models taking seasonality into account can to some extent catch the

trends in the price of salmon, but they are not able to predict the price of salmon with a

high degree of accuracy.
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Sammendrag

Formålet med denne oppgaven er å bruke analytiske modeller til å predikere lakesprisen

ved hjelp av lignende råvarer og økonomiske faktorer. For å produsere disse prediks-

jonene har vi brukt torskeprisen, kveiteprisen, KPI og TWI. Vi har utviklet fire modeller;

ARIMA, SARIMA, SARIMAX og LSTM. Disse er alle trent på et datasett samlet inn fra

Norsk Råfisklag, Norges Bank, Fishpool og SSB. Modellene er trent på data fra tidsperi-

oden vår 2013 til vinter 2021, og testet på data fra 2022.

Vår forskning og testing har vist at prediksjonene forbedres når sesongvariasjon tas i

betraktning. Forbedringen fra ARIMA- til SARIMA-modellen er vesentlig, mens for-

bedringen fra SARIMA til SARIMAX med én eksogen variabel er veldig liten. Dette

vises også tydelig i prediksjonene fra de tre modellene, der SARIMA og SARIMAX

omtrent følger de samme trendene, mens ARIMA predikerer den samme gjennomsnitts-

prisen for alle uker. Den beste prediksjonen fra LSTM-modellen er også nærme RMSE’en

til SARIMAX-modellen, men resultatene fra LSTM-modellen varierer stort avhengig av

”lookback”-perioden. ”Lookback” på 52 og 104 uker er best på å fange trendene, men

”lookback”-periodene for LSTM med lavest RMSE er tilfeldig. Med kort ”lookback”-

periode predikeres gjennomsnittet relativt bra. Dette resulterer i lav RMSE, men ved å se

på grafene er det tydelig at dette ikke representeterer en god prediksjon.

Selv om SARIMAX-modellen presterer best, er det fortsatt områder med usikkerhet.

Tester på SARIMAX-modellen viser at vi ikke kan konkludere med om residualene er

støy. Den eneste konklusjonen vi kan trekke er at vi ikke kan forkaste nullhypotesen om

at residualene er støy.

Konklusjonen fra denne oppgaven er at modellene som tar høyde for sesongvariasjon til

en viss grad klarer å følge trendene, men de klarer ikke å predikere lakseprisen med høy

nøyaktighet.
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1 Introduction

In this thesis we would like to answer the question. Can we predict the pricing of salmon

using similar commodities and macroeconomic factors? To answer this, we first need to

look at fish as a commodity. ”As the largest traded food commodity in the world, seafood

provides sustenance to billions of people world-wide. More than 3 billion people in the

world rely on wild-caught and farmed seafood.” (WWF, 2019) Seafood has been a traded

commodity for hundreds of years, and for most of this time has been one of Norway’s

biggest exports. ”Norwegian clipfish has been exported to Southern Europe and beyond

since the early 1700s.” (Norway, 2023) Fish world-wide has been an important source of

protein. Facing an ever larger growing population and the sustainability issues that comes

with it, the seafood industry plays a major role in solving these issues.

Norway’s biggest contribution towards solving these issues is the salmon farming in-

dustry. ”The salmon industry is one of the biggest industries in Norway.” (Johansen et al.,

2019) The companies in the industry impact the rest of the Norwegian economy and soci-

ety as a whole through labour and culture. This in turn means that the Norwegian society

is indirectly affected by the price of salmon on the open market. Salmon export makes up

about 2/3 of the Norwegian seafood export by value, amounting to a total of more than

105 billion NOK in 2022. This made salmon export the third largest exported commodity

by value in Norway, below oil and gas. (Meisingset, 2023) (Sjømatråd, 2023)

Most of the salmon that is exported comes from fish farms. Salmon farming is a Nor-

wegian lead global industry with four of the five biggest companies being Norwegian.

(Berge, 2020) These companies all rely heavily on the price of salmon. We hope that by

creating predictive models on the price of salmon short term we will gain insight into the

near future of these major companies. This in turn could give an idea of the impact they

might have, and the impact a changing salmon price have on the Norwegian economy and

society.

Fishing as a trade is seasonal given that different fish wanders and breads at different times

throughout the year. Although farmed fish are not subjected to this seasonality, society

adjusted their consumer habits to this seasonality of commodities long before fish farms,

and we suspected that this is the case for the salmon too. The quantitative data for sales
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also support this notion.

As business analysts this research question is interesting because it utilizes methods and

logic that are commonly used in the field. The theme of the research question is also

highly relevant in the economy today for multiple reasons. Large actors in the economy

are just now starting to implement the major advances in computation such as AI and

other Artificial neural networks. This is something we will be using to see if it can help

our prediction. The fish farming industry is a cornerstone in the Norwegian economy and

has been touted as one of the ways for Norway to prosper after the oil is gone. The market

and industry surrounding salmon has also been a subject of debates as of recently. This

debate comes as a result of massive growth, profits and old tax-related incentives for fish

farming. This has caused a lot of turbulence in the price of the salmon farming companies.

In this thesis we will not be tackling the issues of the salmon tax debates and its impact

on the industry. But we will be examining the changes in price that happened during the

hight of this debate.

In order to answer the research question, we have structured the thesis as follows. In

the first section we describe the previous literature and the economic theory that we found

relevant to the issue. Then we continue by explaining the theories pertaining to the models

we will be using. The next section talks about the gathering of our data, some of its basic

properties, and the preparation needed before we can start modelling. Then we present

our models and how they function in detail before we discuss the results. In the end we

compare the models and scope out the needs for further research.

2



2 Theory and literature

2.1 Literature review

At the time of writing this thesis there are only a few papers directly forecasting the price

of salmon. These papers use a variety of different methods to forecast the price of salmon.

These papers also use numerous features, creating a great starting point and giving insight

in to what to focus on and what to disregard in future research.

Vukina and Anderson (1994) is a study that forecasts the price of five different species of

salmon in the Tokyo wholesale market. Four state-space models are used to predict and

compare the prices by modelling non-stationary time series. When measuring the results

by use of MSE and MAPE the results were found to be quite good. The results were also

surprisingly good at predicting the correct direction of the price-movement.

This study was followed by Gu and Anderson (1995). This study combines OLS used

to model the seasonality the seasonality removal with a state-space, time-series forecast-

ing method to predict the price for the US salmon market. The result from this study

clearly indicates that accounting for seasonal factor significantly increases the forecasting

accuracy of the model.

In the study ”Short-term salmon price forecasting” by Daumantas Bloznelis 16 differ-

ent methods are used to forecast 1-5 weeks Atlantic salmon spot prices. Every method

Bloznelis (2018) uses gets the directional movement correct 50% of the time for all fore-

casting horizons. For one week prediction k-nearest neighbour gives the best prediction.

For two to three weeks prediction a vector error correction model using elastic net regu-

lation gives the best results, and for four to five weeks future prices is the best method.

2.2 Economic Theory

2.2.1 Consumer choice theory

“Consumer choice theory is the study of how individuals make choices about what goods

and services to consume. The theory is based on the assumption that consumers have
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preferences for different goods and services and that they will choose the combination

of goods and services that maximizes their utility subject to their budget constraints.”

(Perloff, 2017) This means that if you have two types of goods that are exchangeable

to some degree, the price of one should affect the price/demand of the other, and vice

versa. Based on this notion we intend to test whether this effect exists in our data between

salmon prices, cod prices and halibut prices.

2.2.2 Norwegian fishermen and the market for wild caught fish

To understand where our price data comes from we need to take a look at how wild caught

fish are sold in Norway. Wild caught fish in Norway have a heavily monitored way to the

consumer. There are laws concerning quality and handling that secures the fish are safe

to eat. There are also laws that dictate the way these fish can be sold and who are liable

throughout this process. The laws concerning the sales are governed by the act on first

hand purchase of wild marine resource. A sales organisation act like a middleman in the

transaction between fisherman and fish buyer. They can be compared in likeness to an

auction house or exchange, where the fisherman pays a fee to access the exchange to sell

their fish. But the fishermen remain as owner of the fish until the time of the transaction.

This means that the sales organisation never actually own any of the fish. Through this

sales process the Norwegian receipt for fishermen is created.(Nielsen, 2022)

2.2.3 Exchangeable goods

We want to explore the possibility that one might be able to use prices for similar com-

modities such as different seafood to help predict the price of salmon. To find the prices

of these exchangeable goods we contacted Norsk Råfisklag. They where very helpful and

provided us with historic prices data for halibut and cod. The data they provided was

gathered using the Norwegian receipt for fishermen also known as a contract note. The

receipt is a concept that is unique to Norway. The receipt contains both the quantity of

fish caught as well as the sales value of these fish and a plethora of other information.

It has a number of purposes such as paying the fishermen, creating the invoice for the

buyer, controlling that the quota of fish is upheld, contributing to the Norwegian statistics

4



for wild caught fish, and more. We use data from these receipts to gather the week by

week historic prices for halibut and cod. Norges Råfisklag, who provides the data, is an

entity created by the industry to make sure it upholds its responsibility to the rest of the

society. It is also responsible for securing a fair and transparent industry for workers and

the environment. This makes it a great reliable source of data.(Harland, 2022)

2.2.4 Currency change

As mentioned, the salmon market is an export market. This in turn means that the prices

are affected by the changes in between the NOK and the currency of the markets that it is

exported to. To account for this, we have added Norges Bank’s TWI to the dataset. “The

TWI is a nominal effective krone exchange rate calculated on the basis of NOK exchange

rates against the currencies of Norway’s 25 main trading partners.” (Bank, 2020) A rise

in the value of the index indicates that the exchange rate of NOK depreciates.

2.3 Exploratory analysis

Exploratory data analysis (EDA) is a method used to analyse datasets and summarize the

main characteristics. It helps determine how best to manipulate data sources to get the

answers needed. This makes it easier to discover patterns, anomalies, test hypotheses or

checking assumptions.

There are 4 steps involved in an exploratory data analysis: Data collection, data cleaning,

univariate analysis and bivariate analysis. Data collection simply consists of gathering

the data needed for the analysis. Data cleaning is the process of removing or replacing

missing values, outliers, and other anomalies. Anomalies can disproportionally skew the

data and hence adversely affect the results. (Biswal, 2023) Univariate analysis is analysis

the data of only one variable. This is usually done by creating a histogram, boxplot or a

frequency table. Bivariate analysis uses the data of two variables and compares them to

each other. This establishes the correlation (or lack of) between the two variables. This is

usually done by creating a correlation matrix or by plotting the data in a scatterplot.
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2.4 Regression

Regression analysis is a reliable method of identifying which variables have impact on a

topic of interest. Regression analysis consists of two types of variables: dependent and

independent. The dependent variable is the main variable or factor that the model is trying

to predict or understand. The independent variables are the factors that is hypothesized to

have an impact on the chosen dependent variable.

Linear regression models often use a ”least-squares approach” to determine a line of best

fit (regression line) to a given dataset. This line is the yellow line in the figure below. A

square is the squared distance between a datapoint and the regression line. These values

needs to be squared in order to not counteract each other.

Figure 1: Depiction of a regression analysis. Hyndman and Athanasopoulos, 2021

When the process above has been completed a regression model is constructed. The

general form of a multiple linear regression model is:

Y = a+b1X1 +b2X2 +b3X3 + ...+btXt +u (1)

Where Y is the dependent variable, X is the independent variable(s), a is the y-intercept,

b is the slope of the explanatory variable(s) and u is the residual or error term.
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2.5 ARIMA — SARIMAX

The ARIMA-model is one of the more popular and useful approaches to time series fore-

casting. The name is an acronym that stands for AutoRegressive Integrated Moving Aver-

age and the model utilizes these in order to predict future values solely on earlier values,

it is therefore an univariate model. In order for the model to be able to predict, the data

has to be stationary, which means that the mean, variance and covariance are constant

over time. Time-series data is especially prone to be non-stationary, which can be solved

either by log-transforming the data, convert it to a percentage change or by differencing

which is further explained in 2.5.2.

The SARIMAX-model is an extension of the ARIMA-model that also takes external

factors and seasonality into account in order to better predict future values. SARIMAX

can therefore be a multivariate model. (Hyndman and Athanasopoulos, 2021)

2.5.1 Auto Regressive (AR)

The first part of the ARIMA acronym is the Auto Regressive part. Auto comes from the

Greek word autos and mean self, in this context it means that the model is regressing on

itself. This part of the model can be written as follows:

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + εt (2)

Where c is a constant, p is the number of lag observations or autoregressive terms, φ are

the AR coefficients and εt is the error term. yt is the data on which the AR-model is

applied on. (Oracle, 2023) This model is a “pure” AR-model and relies therefore solely

on its own lags. If p is set to 1, the model looks at the previous value and tries to predict

the next value. If p is set to 2, the model looks at the previous two values and tries to

predict the next value, and so on. (Artley, 2022)
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2.5.2 Integrated (I)

The second part of the ARIMA acronym is the Integrated part. This part of the model

is used to make the time series stationary. In the ARIMA-equation it is represented by

the letter d and is the number of differencing required to make the time series stationary.

Usually, the optimal amount of differencing is the least amount needed to make the data

fluctuate around a well-defined mean. (Nau, 2019) It is the only form of converting the

data to a stationary form that the ARIMA-model itself can do. Log-transforming and

converting to a percentage change can only be done before the model is applied on the

data.

2.5.3 Moving Average (MA)

The third and last part of the ARIMA acronym is the Moving Average part. This incorpor-

ates the dependency of an observation on the residual errors from a moving average model

applied to lagged observations. (Hayes, 2019) This part of the model can be written as

follows:

ŷ = c+θ1εt−1 +θ2εt−2 + · · ·+θqεt−q (3)

Where c is a constant, q is the order of the moving average, i.e the number of lagged

forecast errors. θ are the MA coefficients and εt is the error term. For example, if q is 1,

the output relies solely on the errors from the previous time step. If q is 2, the output relies

on the errors from the previous two-time steps. (Hyndman and Athanasopoulos, 2021)

Combining these three parts of the ARIMA-model, we get the following general forecast-

ing equation:

ŷt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p +θ1εt−1 +θ2εt−2 + · · ·+θqεt−q + εt (4)

2.5.4 Seasonality (S)

For time-series data there can often incur a seasonal trend which is a pattern that repeats it-

self over a period of time. For example, pollution levels in a city that might increase in the
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winter and decrease in the summer. This trend can be accounted for by adding a seasonal

component to the model and where the ARIMA-model is written as ARIMA(p,d,q), the

SARIMA-model is written as SARIMA(p,d,q)× (P,D,Q)s. Uppercase P, D and Q cor-

responds to the lowercase p, d and q, namely the AR, I and MA terms, but for the seasonal

component. The s is the number of periods in a season, for example if the data is measured

daily, s would be 7 if the seasonal trend is weekly. (Chang et al., 2012)

2.5.5 Exogenous variables (X)

In addition to adding seasonality to the ARIMA model, one can also include exogenous

variables and turn it into a multivariate model. This is often used when there is a clear

correlation between the exogenous variable and the time series. For example, if the AR-

IMA model is used to predict the price of electricity, one could include weather data as

one or several exogenous variables. (Elamin and Fukushige, 2018)

2.6 Neural networks

2.6.1 Recurrent Neural Network

A recurrent neural network (RNN) is a special type of artificial neural network adapted

for work with time series data or data that involves sequences. (Saeed, 2021) By adding a

”feedback loop” RNNs are able to step through sequential input data while persisting the

state of nodes in the hidden layer between steps. This is called ”working memory”. The

hidden node concatenates its current input and the working memory from the previous

steps before the result is passed on to an activation function. The output from the activa-

tion function is then sent onwards to both the output layer, and forwarded on to the next

iteration of the RNN (as the working memory). (Bouvet, 2020)
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Figure 2: Depiction of an unrolled recurrent neural network. Khalajani, 2023

2.6.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a network specifically designed to overcome the

long-term dependency problem faced by RNNs. A typical LSTM network consists of

three gates; the input gate, the forget gate and the output gate. These gates control how

the information in a sequence of data comes into, is stored, and leaves the network.

The forget gate will decide which bits of the cell state are useful, given both the previous

hidden state and the new input data. This is done by feeding the previous hidden state and

the new input data into a neural network, which uses the sigmoid activation to output a

number between 0 and 1, where 0 means ”forget”, and 1 means ”remember”. The output

of the forget gate is then multiplied with the previous cell state. An output value of close

to 0 means that the cell state will have less influence on the following steps.

The input gate and new memory network will determine what information should be

added to the networks cell state, given the previous hidden state and new input data.

The inputs in this gate are the same as in the forget gate. Here there is created a neural

network with a tanh activation function, to combine the previous hidden state and the

new input data and generate a ”new memory update vector”. This vector decides how

much to update each component of the cell state of the network, given the data. Since the

tanh activation function is used the outputs of this neural network will be between -1 and

1. This new memory vector does not actually take into account whether the input data is

worth remembering. Therefore, the input gate is a sigmoid activated network which filters

which components of the new memory vector are worth retaining. The output of the new

memory vector and the input gate is then multiplied, and the combined vector is added to

the cell state.

10



The output gate uses the newly updated cell state, the previous hidden state and the new

input data to decide the new hidden state. The inputs in the output gate are the previous

hidden state, and the new input data, and this is fed into a sigmoid activated neural net-

work. This works as a filter, so that the output gate does not simply output everything it

knows about something, and instead only outputs the most relevant information. Before

this output can be used as the new hidden state, the cell state has to be passed through

a tanh activation function, in order to force the values to be between -1 and 1 (so called

”squished cell state”). When this is done the output from the output gate and the squished

cell state are then multiplied. This outputs the new hidden state.

Figure 3: Depiction of a LSTM network. Dolphin, 2021

2.6.3 Tensorflow

Tensorflow is an open source library for numerical computation that makes machine learn-

ing and developing neural networks faster and easier. (Yegulalp, 2018) It works by allow-

ing the user to define a graph of computations that are then executed by the library. The

graph is defined by the user by creating nodes that represent mathematical operations, and

edges that represent the multidimensional data arrays (tensors) communicated between

them. The library then optimizes the graph for execution on a CPU or GPU.
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2.6.4 Sigmoid function

The Sigmoid function is given as:

S(x) =
ex

ex +1
(5)

Since:

lim
x→∞

S(x) =
∞

∞+1
≈ ∞

∞
= 1 (6)

lim
x→0

S(x) =
0

0+1
=

0
1
= 0 (7)

The Sigmoid function will only output values between 0 and 1.

2.6.5 Hyperbolic tangent function

The hyperbolic tangent function is given as:

S(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x (8)

Since:

lim
x→∞

tanh(x) =
∞−0
∞+0

=
∞

∞
= 1 (9)

lim
x→−∞

tanh(x) =
0−∞

0+∞
=

−∞

∞
=−1 (10)

The hyperbolic tangent function will only output values between -1 and 1.
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3 Methodology

3.1 Data gathering

In order to analyse the salmon price, we first need to gather this data on the salmon price.

The main data point is the price of salmon. There are several sources for this data, but

we utilized the data from the NASDAQ salmon exchange. The reason for this being a

combination of the accessibility of the data, and the fact that the NASDAQ salmon ex-

change (NQSALMON) uses a weighted average for the salmon price, gathered from a

spectrum of salmon exporters and it is therefore the best source of meaningful data. An-

other reason for using the NASDAQ salmon exchange is that the data is updated weekly

with no missing values for the entire time frame. We downloaded data from March 2013

through December 2022, for a total of 507 data points. This was our base for the inde-

pendent factors. The next step was to gather data from the other relevant factors for our

analysis.

3.2 Descriptive analysis

3.2.1 Salmon Price

By looking at some simple descriptive statistics we will be able to decern if there are any

changes needed to be done in the pre-processing stage. We will also examine if there are

any trends or correlations that we will have to capture in order to produce the models. Let

us begin by looking at our main variable, the salmon price.
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Figure 4: Salmon price evolution.

Looking at the plot we can see that the price has been increasing over the years. The

top price having tripled our starting price, the mean of the price seems to have risen as

well. Another increase we notice is the increasing magnitude of the price fluctuation.

This is not only causing out highest prices but also some of the lowest prices in recent

year. The plot is also showing the seasonal pattern that we expected to find in the price

data where it is higher in the winter and lower in the summer. This is a characteristic we

want our models to capture in order to make more precise predictions. To understand the

seasonality of the price better we plot the prices for each month of the year.

Figure 5: Seasonality of the salmon price

We see that there is a clear peak in the price in April. The price level in general is at
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its highest in the spring and early summer and at its lowest in late summer and early fall.

Looking at our regression line we see that this is true for most of the data, and not only the

very top price points of each month. This line also visualizes the spread in price for the

individual months and we can see that the higher spread in price follows the months of the

highest prices. This might not be due to higher price differences during the spring. This

characteristic is at least in part caused by the fact that the rising price level is amplifying

the spring prices making the average of the earlier years a lot lower than the average of

the later. This in turn makes it look like there are larger price differences during these

months than what is actually the case.

3.2.2 Comparison between the different types of fish

We would also like to gain a little bit of insight as to how our variables compare to each

other. We start by having a look at the price data for the different types of fish considering

whether the cod and halibut is comparable to the salmon price.

SalmonPrice CodPrice HalibutPrice

count 507.000000 507.000000 507.000000
mean 56.746134 24.553419 58.029858
std 15.455462 8.096777 7.900179
min 27.870000 10.275557 36.507234
25% 44.875000 20.365239 51.971903
50% 55.460000 24.035290 59.300626
75% 65.710000 30.478502 63.418690
max 125.870000 49.076318 79.182888

Table 1: Descriptive statistics for the fish price data

Looking at this we can see that the halibut is very similar to the salmon in price but with a

larger minimum and a lower maximum as well as half the standard deviation. In general

the halibut price seems to be much more stable. Looking at the cod price we see that its

quite a bit lower compared to the two others. Relative to its size it has a lot more similar

characteristics to the salmon price in terms of price stability. If we scale it by two, we

will see that the mean price becomes 49 compared to the 55 of salmon and the standard

deviation becomes 16 compared to the 15,5 of salmon. This indicates that the relative
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swing in price of cod is of the same magnitude as the swing in price of salmon. However,

the salmon price has a lot higher maximum price then the two others even if scaling the

cod price by two, this may mean that we have some outliers at the very top of our salmon

price range. To confirm this, we will look at a boxplot of the price data.

Figure 6: Whisker boxplot of fish price data.

Looking at the boxplot we can see that the salmon does indeed have a lot of outliers at

the top of the price range. The cod price seem to have a singular outlier whilst the halibut

price has none. The hight of the boxes also visualises the aforementioned price range

differences well. Looking at the yellow lines representing the average. We can see that

the cod and halibut have an average situated higher in middle of the 50th percentile. This

means that the distribution of these two are a little bit skewed to the right.

3.2.3 Covariance and correlation

By exploring the covariance and correlation of our chosen variables we aim to uncover

if they can be used as indicators for the salmon price. A good covariance between the

salmon price and another variable, means that moving that variable would result in a

likelihood of the other variable moving accordingly either positively or negatively. If the

covariance is high, it is interesting to look at the correlation for the same variables and see

16



if we expect to see a change in the same direction for the corresponding variable. This

property is what we are looking to exploit in our predictive models and finding variables

that possess this property is key to the accuracy of our predictions.

From the matrices in figures 7 and 8 we see that all the variables except months have

a pretty good covariance all being above 50. The best ones being the CPI and the Cod

Price as we suspected earlier. The corresponding correlations of CPI and cod are also

the highest correlations to our main variable which means that these two variables are

more likely to be good indicators for the salmon price. The other variables have a lower

covariance and correlation, but still have a positive covariance which means that they

are still good candidates for our predictive models. The months variable has a negative

covariance which means that the salmon price is more likely to go down in the winter

months. This is a good indicator for the salmon price as we know that the salmon price

has a seasonal tendency. Although a month term might not be the best way to capture it.
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Figure 7: Covariance matrix with all variables

Figure 8: Correlation matrix with all variables
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3.3 Data preprocessing

In order to use the data for prediction in our models we need to prepare the data. In

our case this means to split the data into a training and test set. We will use the same

split for all of our models, so that we they are comparable. The test set will be the

last year of the data, 2021. The training set will be the rest of the data, 2013–2020. A

very important aspect of forecasting using machine learning algorithms is that the test set

should be ‘invisible’ throughout the training process, otherwise we might get data leakage

and consequently, a false sense of how well the model performs. (Brownlee, 2016a)

3.4 ARIMA and SARIMAX

One important prerequisite for the ARIMA model is that the data is stationary. This can

be done either by analysing the time-series itself and noticing the variance and trend, or

by using the Augmented Dickey-Fuller test. After this is done, the next step will be to

find the optimal parameters for the ARIMA model. This is usually done by looking at the

ACF and PACF plots. When the optimal parameters are found, the model can be fitted

and used to predict future values. (Hyndman and Athanasopoulos, 2021)

3.4.1 Determining stationarity

The Augmented Dickey-Fuller test is a statistical test that can be used to determine sta-

tionarity. The null hypothesis of the test is that the time-series is non-stationary. If the p-

value is less than the significance level, the null hypothesis is rejected and the time-series

is expected to be stationary. Using the Augmented Dickey-Fuller test on the Salmon Price

data, we get a p-value of 0.02406, this means that we can reject the null hypothesis at a

95% confidence level according to this test. The data may therefore be stationary. (Dickey

and Fuller, 1979)

In order to better understand why the data is not stationary we can plot the data and look

at the variance, trend and seasonality. This is done by decomposing the data into its

components. We then get the following plot:
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Figure 9: Decomposition of the Salmon Price data.

Examining the decomposed data in Figure 9 there are especially two things that stand out.

The first is the trend, which is clearly increasing. The second is the seasonality. There

is a clear yearly seasonal trend where the price is higher in the summer months before

decreasing during the autumn and reaching a low in the winter. From this we draw a

different conclusion than the Augmented Dickey-Fuller test. According to the plot, the

data is not stationary and needs differencing. In the ARIMA model, this will be done by

setting d to 1 or more.

The exact number of differencing needed can be found either by using the ADF-test on

the differenced data and looking for when the p-value is less than the critical value, or by

looking at the autocorrelation plot and using rules set out by Nau (2019) to determine the

number of differencing needed.
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Figure 10: Different orders of differencing.

Examining the trend and autocorrelation in Figure 10 we can see that the original data

without differencing has both a clear trend and a slow decay in the autocorrelation plot

with a high number of positive lags. Following the first rule from Nau (2019) we can

conclude that the data needs at least one order of differencing.

After just a single order of differencing, the trends start to flatten out and fluctuate around

0. The autocorrelation plot also drops sharply after the first lag, and is then quite small

and patternless, this follows the second rule from Nau (2019) and will often be a sign

that higher differencing is not needed. Running the Augmented Dickey-Fuller test on the

differenced data, we get a p-value of 3.86388e-24, much lower than the critical value of

0.05. We can therefore reject the null hypothesis and conclude that the differenced data is

stationary.

With a second order of differencing, the trend seems to flatten even more, and the auto-

correlation plot shows a sharp negative decline for the first and second lag, this may be a

sign that the data is over-differenced. This is not optimal as over-differencing will lead to

a loss of historical information and trends. It is therefore of utmost importance to find the

order of differencing that both makes the data stationary and keeps the historical memory

intact. Over-differencing is a common mistake when fitting non-stationary data to ma-
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chine learning models, and can lead to the model not being able to capture the underlying

trend. (Prado, 2018)

A third way to determine the optimal number of differencing is, according to Nau (2019),

to look at the standard deviation of the plot at different orders of differencing. Following

his rule number 3, the optimal number of differencing is the one where the standard devi-

ation of the plot is the lowest. Examining Table 2 we can see that the standard deviation

of the data is lowest at the first order of differencing. After this the standard deviation

increases, and there is no reason to believe any higher number of differencing will reduce

the standard deviation.

Standard deviation

No differencing 11.989141
First differencing 3.708461
Second differencing 5.661965
Third differencing 6.548135

Table 2: Standard deviation of the differenced data.

We can therefore conclude that the optimal number of differencing should be either 0 or

1.

3.4.2 Autoregression and Moving Average

The next step in a regular ARIMA model is to identify the optimal AR and MA terms

needed to fit the model. This can be done by comparing different models by looking at

the AIC and BIC values, but with larger models this would constitute an unnecessary use

of computational power. A more efficient way to find the optimal terms is to look at the

ACF and PACF plots of the data and use the rules set out by Nau (2019) to determine the

optimal p and q.
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Figure 11: ACF and PACF plots of Salmon price.

The most noticeable part of the ACF plot in Figure 11 is the slow decline of the autocor-

relation after the first lag. This is a sign that the data is not white noise, and that there

is a correlation between the data and its lags. According to Nau (2019), this is called an

‘AR signature’ and is a clear sign that we need to add an AR term to the model, rather

than adding an MA term. To find the optimal amount of AR terms needed we can look at

the PACF plot. As a rule of thumb, the optimal number is where the PACF plot exhibits

a clear drop. In Figure 11 we can see that the PACF plot drops sharply after the lag 1,

and then fluctuates around 0, mostly within the confidence interval. Therefore, without

any differencing, the optimal number of AR terms is 1. But, as we concluded in 3.4.1, the

data needs at least one order of differencing. We therefore need to look at the ACF and

PACF plots of the differenced data.

23



Figure 12: ACF and PACF plots of differenced Salmon price.

Examining the ACF plot in Figure 12 we can see that the autocorrelation now has a much

more rapid decline compared to the original data. The PACF plot exhibits some of the

same characteristics as the original data, but with a much sharper decline for the first lag.

Nevertheless, as the first lag of both the ACF and PACF plot is positive and significant

outside the 95% confidence interval, there should be at least one AR term. At the same

time, there is also some negative lags in both the ACF and PACF plots which may indicate

that there should be an MA term, but according to Nau (2019), we should be careful

mixing AR and MA terms in ARIMA models, as they may cancel each other out. The

best model will, in most cases, consist solely of either AR or MA terms.

As the interpretation of visual plots and clues from these can be a bit subjective, we should

employ some objective test to determine the optimal number of p and q. The most straight

forward way to do this is to perform an iterative search over the possible values of p and

q and then compare the AIC and BIC values of the different models, as well as comparing

the mean squared error of the predictions from the models.

3.4.3 Seasonality

Hitherto we have only considered the non-seasonal ARIMA model, but as with many time

series, the Salmon price might also exhibit some seasonal patterns and trends. It may
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therefore be better to add a seasonal part to the model and consequently call it a SARIMA

model. One way to determine this is to look at the seasonal part of the decomposed data.

The decomposed data shows us what part of the variation in the data is due to the trend,

the seasonal part, and the residual part.

Figure 13: Seasonal part of the decomposed data

Examining Figure 13 we can see a clear seasonal trend which seems to be repeating itself

every 12 months. This could indicate that we should add a seasonal part to the model. As

the data is recorded weekly, the s should be 52. Hyndman and Athanasopoulos (2021)

mentions that working with weekly data can prove difficult for the ARIMA model to

handle as there are, on average, 52.18 weeks in a year, which is not an integer. Never-

theless, we will try to fit a SARIMA model with s = 52 and compare the AIC and mean

squared error of the predictions to the non-seasonal ARIMA model.

The seasonal part of the ARIMA model also contains PDQ which corresponds to the

pdq in the non-seasonal ARIMA model in that they describe the number of seasonal

autoregressive terms, the number of seasonal differences, and the number of seasonal

moving average terms. In order to determine these terms, we can use the same method as

we did for the non-seasonal ARIMA model, namely examine the ACF and PACF plots,

but this time for the seasonally differenced data. We can also perform a grid search for the

different combinations of AR and MA terms, and in that way obtain the optimal model.

3.4.4 Exogenous Variables

One last way to expand on the ARIMA model in order to make it more accurate is to in-

clude one or more exogenous variables. This is especially useful if there is some external

data that might affect the time series. In our case we suspected that the price of Salmon

might be affected by the price of other seafood, as well as the Norwegian Krone. We
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therefore decided to add these to our dataset and see if it would improve the accuracy of

the model.

In order to measure the accuracy of these exogenous variables, we can follow the same

procedure as before and compare both the AIC of different models as well as the root

mean squared error of the predictions. Comparing the RMSE will probably prove to be

a more accurate way of examining the accuracy of the models as AIC cannot handle

different levels of differencing and will not work well to compare ARIMA with Tensor-

flow. (Brownlee, 2017)

3.5 LSTM — Tensorflow

In order to apply the data to a LSTM model, we need to define the different parameters

of the model. As a LSTM model consists of an input layer, a hidden layer, and an output

layer, we need to define the number of neurons in each layer. And as can be seen in Fig-

ure 14, all neurons between the layers has to be connected, which makes the complexity

of the model grow exponentially. Therefore, we need to be careful not to make the model

too complex, as it will use too much unnecessary computing power, as well as increasing

the risk of overfitting.

Figure 14: Example of the different layers in an LSTM model. TowardsAI, 2020.
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3.5.1 The input layer

The input layer is the first layer in the model, and as the name suggests, it is where the

input data is fed into the model. The number of input nodes corresponds to the number

of features in our model. Therefore, it will depend on the number of exogenous variables

we choose to include in the model. We can, for example, choose to only train the model

on the previous price of Salmon, and have only one input neuron, or we can include such

variables as the price of other seafood and the Norwegian Krone, and have three input

neurons.

In order to prepare the data we will need to scale it between 0 and 1, technically this is not

necessary for the LSTM model to work, but it will make the training process both faster

and more accurate. (Brownlee, 2019) Secondly, for time series data, it can be helpful to

reshape the data into several timesteps, for example, we can use the previous 10 weeks

of data to predict the next week. This is expected to make the model more accurate, as

it will be able to learn the patterns in the data more efficiently. The reshaped data will

be a 3-dimensional array, where the first dimension is the number of samples, the second

dimension is the number of timesteps, and the third dimension is the number of features.

In mathematics, this sort of array is called a tensor; hence the name Tensorflow. (Tensor-

Flow, 2023)

Figure 15: Example of sequential data in timesteps. Dobilas, 2022.
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3.5.2 The hidden layer

The hidden layer is the layer in the model that is responsible for the actual learning,

and while the input layer is quite straightforward as the only variables are the number of

timesteps and features, the hidden layer is more complicated. This layer consists primarily

of multiple interconnected neurons, these neurons can themselves be arranged in layers

and result in several hidden layers. The neurons are assigned weights and biases which

are used to calculate the output, the weights are used to determine the importance of the

input while biases are used to regulate at what point the weight should be added to the

output. The weights and biases are updated during the training process in order to make

the model as accurate as possible, it achieves this by reducing the loss function, such

as mean squared error. In addition to specifying the number of neurons in the hidden

layer, we also need to specify the activation function, which is used to determine when

the neuron should be activated. The most common activation functions are the sigmoid

function, the hyperbolic tangent function, and the rectified linear unit function. (Sharma,

2019)

Consequently, there are a great number of hyperparameters that needs to be chosen be-

fore the model can be fitted, and while the goal is to find the optimal model, we also

need to avoid overfitting. One way to achieve this is to solely experiment with different

hyperparameters and see which combination gives the best results, but this can be a time-

consuming process. A more efficient way is to utilize grid search, similarly to the ARIMA

model, which will test for different models automatically and return the model with the

best results according to our chosen metric. (Brownlee, 2016b) To avoid overfitting the

model it can be useful to implement a regularization technique, such as a dropout layer

which will randomly break some synapsis between the neurons, or an early stopping cri-

terium which will stop the training process when the model stops improving. (Srivastava

et al., 2014)

3.5.3 The output layer

The output layer is the last layer in the model, and as the name suggests, it is where the

output is generated. This layer consists of a single neuron which will output the predicted
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value of the Salmon price.

In conclusion, we will choose an appropriate number of timesteps for the input tensor, and

then use grid search to find the optimal model. The hyperparameters we will evaluate are

the number of neurons in the hidden layer, the activation function, the number of epochs,

the batch size, the dropout rate, and the optimization algorithm. In order to evaluate the

model, we will use the root mean squared error, which is the same metric we used for the

ARIMA model.

3.5.4 Implementation

Finding the optimal neural network can be a complex and time-consuming task, we there-

fore constructed a nested for-loop with different hyperparameters. A network like this

can be connected with infinite amount of params, depending on the amount of layers and

neurons, to reduce the complexity and run-time, we opted for a simpler model with only

97 params and three layers. During the research period, we did some limited testing with

more complex models, but did not find any improvements over the simpler ones.

At the first layer we experimented with different options, but ended up with a flatten layer,

this is used to reduce the dimensionality of the input data and make it easier for the model

to learn. In order to keep the model as simple, we used a single hidden dense layer with

32 neurons and a relu activation function. The output layer is a dense layer with a single

neuron.

29



Figure 16: Model architecture.

In order to test for the different possible models, we decided to have the batch size, the

number of epochs, the number of timesteps and different optimizers as variables in our

loop. In addition we tested for both univariate and multivariate models. The batch size

is the number of samples that will be propagated through the network, we choose to test

for batch sizes between 1 and 104. The number of epochs is the amount of times the

model will be trained for each model, we here chose epochs between 10 and 100. The

number of time steps we chose to use is a week, 4 weeks, 52 weeks and 104 week. The

main reason for this is the hypothesis that the model will perform better if it is able to

take the seasonality into account. The optimizers we tested for are Adam and nadam, two

of the more accurate optimizers. (Zaman et al., 2021) In conclusion, this resulted in 288

different models.
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4 Results and discussion

The following chapter will discuss the results of the models presented in section 3 before

comparing the different models and discussing the results. We will start by examining the

different ARIMA models, from the simplest ARIMA to the more complex SARIMAX.

We will then compare this to the LSTM model.

4.1 ARIMA

As explained in section 3.4, determining the order of the ARIMA model can be a difficult

and complex task, examining the ACF and PACF plots can be a good starting point, but

will also be a bit subjective. The only objective way to optimize the model is to use a loss

function. In our case we have chosen root mean squared error as this is a commonly used

way to measure the accuracy of a model.

In order to find the model with the least RMSE, we performed a grid search on the differ-

ent parameters using a nested for-loop and outputting the results in the following table:

RMSE

ARIMA(0,1,1) 20.113051
ARIMA(1,1,0) 20.451239
ARIMA(1,1,1) 20.459960
ARIMA(0,1,0) 21.098688
ARIMA(0,1,2) 21.199198
ARIMA(1,1,4) 21.335281
ARIMA(1,1,2) 21.343223
ARIMA(0,1,4) 21.345766
ARIMA(1,1,3) 21.359142
ARIMA(0,1,3) 21.410871

Table 3: Results of the grid search for the ARIMA model.

Examining table 3 we can see that the ARIMA(0,1,1) has the lowest RMSE and is there-

fore expected to be the best model, but there is no significant difference between the

models. This may indicate that the model is not able to capture the trends. An ARIMA

model with p of 0, d of 1 and q of 1 is, according to Nau (2019), a simple exponential
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smoothing model which indicates that it may capture the moving average trend, but no

other trends. Fitting the model to the data and plotting the results against the actual values

we get the following plot:

Figure 17: ARIMA(0,1,1) model fitted to the data.

As we can see, the model was not able to capture the trend, it seems that it was only able

to take the average and draw it further out. In addition, the 95% confidence interval is

very wide, indicating that the model is less than accurate.

Since this was the ARIMA model with the lowest RMSE, there is no reason to believe

that the other ARIMA models will be any more accurate. We will therefore not examine

the other ARIMA models, but instead move on to the SARIMA models.

4.2 SARIMA

One of the more prominent features of the Salmon data is the clear seasonality that is

exhibited on a yearly basis. We should therefore expect a seasonal model to better be

able to capture this trend. As we did with the ARIMA models, we will perform a grid

search on the different parameters using a nested for-loop, the problem with this is that

the SARIMA model has 6 parameters instead of 3. The search will therefore grow expo-

nentially. Consequently, we decided to solely use a P of 0, D of 1 and Q of 0 as a larger P
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and Q seemed to have a negative effect on the RMSE. As the data has a seasonality of 52

weeks, this is the seasonal parameter we will use. The ten best results of the grid search

are presented in the following table:

RMSE

SARIMA(2,1,0)(0,1,0,52) 14.829437
SARIMA(3,1,4)(0,1,0,52) 14.833213
SARIMA(3,1,0)(0,1,0,52) 14.833392
SARIMA(3,1,2)(0,1,0,52) 14.837780
SARIMA(3,1,1)(0,1,0,52) 14.839969
SARIMA(4,1,0)(0,1,0,52) 14.840067
SARIMA(4,1,2)(0,1,0,52) 14.840717
SARIMA(2,1,2)(0,1,0,52) 14.840721
SARIMA(3,1,3)(0,1,0,52) 14.840871
SARIMA(4,1,1)(0,1,0,52) 14.840890

Table 4: Results of the grid search for the SARIMA model.

Similarly, to the ARIMA model, there is not a significant difference between the models,

but the RMSE is clearly lower for the SARIMA than the ARIMA, this indicates the im-

portance of capturing the seasonal trend in the dataset. The SARIMA(2,1,0)(0,1,0)[52]

model has the lowest RMSE and should therefore be the most accurate SARIMA model.

After fitting the model on the train data and comparing the predictions against the actual

data we get the following plot:

Figure 18: SARIMA(2,1,0)(0,1,0,52) model fitted to the data.
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As we can see in figure 18, and as predicted from the RMSE, the SARIMA model is

able predict the data much closer to the actual data than the ARIMA model. The 95%

confidence interval is still quite large, especially when we reach the end of 2022, but as

we can see from the large spike in the spring of 2022, this interval is necessary to be

accurate. We can also take a closer look at the twenty first predictions for the year 2022:

Actual Predicted Difference

2022-04-17 125.870000 92.412135 -33.457865
2022-04-24 122.750000 92.791669 -29.958331
2022-04-10 115.170000 87.122430 -28.047570
2022-12-04 78.050000 101.861789 23.811789
2022-05-29 107.090000 83.941779 -23.148221
2022-04-03 109.910000 87.461039 -22.448961
2022-08-21 57.150000 78.941789 21.791789
2022-12-11 75.830000 96.591789 20.761789
2022-08-14 59.560000 79.561789 20.001789
2022-06-12 105.150000 87.961792 -17.188208
2022-06-05 106.900000 89.841786 -17.058214
2022-05-22 101.130000 84.361794 -16.768206
2022-02-06 92.820000 76.549877 -16.270123
2022-08-28 60.740000 76.991789 16.251789
2022-08-07 65.780000 80.431789 14.651789
2022-10-30 66.200000 80.791789 14.591789
2022-07-10 79.140000 93.701789 14.561789
2022-09-18 63.230000 77.501789 14.271789
2022-11-06 70.700000 84.841789 14.141789
2022-09-04 62.400000 76.531789 14.131789

Table 5: SARIMA(2,1,0)(0,1,0,52) model predictions for the year 2022.

Sorting the difference between actual and predicted values in ascending order we can

see that the model does have some large errors, especially in the spring of 2022 with

the largest difference being -33.5. We can also take a look at the actual model with the

different parameters:

We can in table 6 see our two autoregressive terms, ar.L1 and ar.L2, and the error term

sigma2. The important thing to note from the table is that both the autoregressive terms

have a p-value of 0.000, which means that they are both statistically significant. Another

important conclusion to draw from the SARIMA results is whether or not the residuals

are independent, or white noise. Examining the Ljung-Box test, we see that it produces
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Dep. Variable: SalmonPrice No. Observations: 457
Model: SARIMA(2, 1, 0)x(0, 1, 0, 52) Log Likelihood -1190.4
Date: Fri, 21 Apr 2023 AIC 2386.72
Time: 14:19:24 BIC 2398.73
Sample: 04-07-2013 HQIC 2391.48

- 01-02-2022
Covariance Type: opg

coef std err z P> |z| [0.025 0.975]

ar.L1 0.1953 0.044 4.486 0.000 0.110 0.281
ar.L2 -0.2932 0.043 -6.895 0.000 -0.376 -0.210
sigma2 21.2106 1.328 15.966 0.000 18.607 23.814

Ljung-Box (L1) (Q): 0.14 Jarque-Bera (JB): 6.15
Prob(Q): 0.71 Prob(JB): 0.05
Heteroskedasticity (H): 2.14 Skew: -0.14
Prob(H) (two-sided): 0.00 Kurtosis: 3.54

Table 6: SARIMA(2, 1, 0)x(0, 1, 0, 52) Results

a result with a p-value of 0.71, this is far greater than the critical value of 0.05. This

means that we cannot reject the null hypothesis that the residuals are independent, and

there could therefore be more information in the residuals that the model was not able to

capture.

While the AIC and BIC values both can be important to when comparing models, the

change in differencing and seasonality makes it difficult to compare the models purely

based on this criterion. This is part of the reason why we chose to use the RMSE as our

main criterion for comparing the models.

4.3 SARIMAX

The final way to improve upon our ARIMA model is to include exogenous variables. We

will also here utilize a grid search on the different parameters in order to optimize the

model. To reduce the number of iterations we will assume that the optimal parameters

from the SARIMA model are still the optimal parameters for the SARIMAX model. Fur-

ther, we have the choice between having all exogenous variables in the model, only a few,

or just a single variable. We will start by including all exogenous variables in the model,

and then gradually reduce the number of exogenous variables. As there is only one pos-
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sible model when including all models, we will not use a grid search, but instead just fit

the model, we then get the following results:

RMSE

SARIMAX(2,1,0)(0,1,0,52)(CodPrice+HalibutPrice+CPI+TWI) 15.809896

Table 7: Result from SARIMAX model with all exogenous variables.

As we can see from table 7 the RMSE did increase from table 4, this probably means that

the exogenous variables do not increase the accuracy of the model. This might be because

there are conflicting trends in the exogenous variables that cancel each other out. A better

way to increase accuracy might therefore be to drop some of the exogenous variables

and instead include the ones that reduces the RMSE the most. Iterating over all possible

combinations of two exogenous variables we get the following results:

RMSE

SARIMAX(2,1,0)(0,1,0,52)(HalibutPrice+TWI) 14.575270
SARIMAX(2,1,0)(0,1,0,52)(TWI+HalibutPrice) 14.575270
SARIMAX(2,1,0)(0,1,0,52)(TWI+CodPrice) 14.705717
SARIMAX(2,1,0)(0,1,0,52)(CodPrice+TWI) 14.705717
SARIMAX(2,1,0)(0,1,0,52)(HalibutPrice+CodPrice) 14.928625
SARIMAX(2,1,0)(0,1,0,52)(CodPrice+HalibutPrice) 14.928625
SARIMAX(2,1,0)(0,1,0,52)(TWI+CPI) 15.962664
SARIMAX(2,1,0)(0,1,0,52)(CPI+TWI) 15.962665
SARIMAX(2,1,0)(0,1,0,52)(CPI+CodPrice) 16.593182
SARIMAX(2,1,0)(0,1,0,52)(CodPrice+CPI) 16.593207
SARIMAX(2,1,0)(0,1,0,52)(CPI+HalibutPrice) 16.607369
SARIMAX(2,1,0)(0,1,0,52)(HalibutPrice+CPI) 16.607373

Table 8: Result from SARIMAX model with two exogenous variables.

Examining the RMSE we can now see that reducing the number of variables had a pos-

itive effect on the accuracy of the model. We archived the best results when including

HalibutPrice and TWI as exogenous variables. This might indicate that the CodPrice

has a negative effect on the model. In addition, this SARIMAX model is more accurate

than the SARIMA model, which indicates that the inclusion of exogenous variables can

improve the accuracy.
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Still, we can reduce the number of exogenous variables to just one, in order possibly

improve the accuracy even further. Utilizing a grid search we get the following results:

RMSE

SARIMAX(2,1,0)(0,1,0,52)(TWI) 14.529888
SARIMAX(2,1,0)(0,1,0,52)(HalibutPrice) 14.857380
SARIMAX(2,1,0)(0,1,0,52)(CodPrice) 14.877221
SARIMAX(2,1,0)(0,1,0,52)(CPI) 16.654635

Table 9: Result from SARIMAX model with one exogenous variable.

As we can see, the RMSE did improve. More interestingly, it seems that the only exogen-

ous variable that improves the accuracy of the model is the TWI, as both HalibutPrice,

CodPrice and CPI has a negative effect on the model. To examine the results further we

can take a look at the summary of the model:

Dep. Variable: SalmonPrice No. Observations: 457
Model: SARIMAX(2, 1, 0)x(0, 1, 0, 52) Log Likelihood -1185.0
Date: Sun, 23 Apr 2023 AIC 2378.09
Time: 17:10:51 BIC 2394.09
Sample: 04-07-2013 HQIC 2384.42

- 01-02-2022
Covariance Type: opg

coef std err z P> |z| [0.025 0.975]

TWI -0.5192 0.146 -3.561 0.000 -0.805 -0.233
ar.L1 0.1774 0.043 4.087 0.000 0.092 0.263
ar.L2 -0.3044 0.044 -6.850 0.000 -0.391 -0.217
sigma2 20.6612 1.320 15.650 0.000 18.074 23.249

Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 5.29
Prob(Q): 0.82 Prob(JB): 0.07
Heteroskedasticity (H): 2.04 Skew: -0.17
Prob(H) (two-sided): 0.00 Kurtosis: 3.45

Table 10: SARIMAX(2, 1, 0)x(0, 1, 0, 52) Results

Compared to table 6, we can see that both the AIC and BIC have been reduced. This does

indicate that the model is more accurate. However, the p-value of the Ljung-Box test is

still above the critical value of 0.05 which indicates that the residuals are not white noise

and that there might be some trends left in the residuals that the model has not captured.
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Finally, we can plot the results from the best SARIMA and SARIMAX model against the

actual data:

Figure 19: SARIMAX model with TWI as exogenous variable compared with SARIMA.

Figure 20: Predictions from figure 19.

Comparing these predictions we find no discernible difference between the two models.

This is not surprising with a difference in RMSE of only 0.3. The reason why the SAR-

IMAX model is somewhat more accurate may be that it throughout predicts a lower price

than the SARIMA model.
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4.4 LSTM

In order to get a meaningful result from the different models in the grid search, the RMSE

was calculated for each model, and returned to the following dataframe:

Batch Size Epochs Model Name Optimizer Time steps Uni/Multi RMSE
Run

1 1 10 Model 1 adam 1 Univariate 37.942711
2 1 10 Model 2 adam 1 Multivariate 31.080595
3 1 40 Model 3 adam 1 Univariate 31.504920
4 1 40 Model 4 adam 1 Multivariate 27.286080
5 1 100 Model 5 adam 1 Univariate 33.270839
6 1 100 Model 6 adam 1 Multivariate 30.467997
7 1 10 Model 7 adam 4 Univariate 33.727742
8 1 10 Model 8 adam 4 Multivariate 27.184055
9 1 40 Model 9 adam 4 Univariate 30.977471
10 1 40 Model 10 adam 4 Multivariate 20.755111

Table 11: RMSE for each model in the grid search.

These first runs are not particularly accurate, at least compared to the best SARIMAX

models. There are also no clear difference between the different parameters. A more effi-

cient way to find the best models is sorting after the RMSE. This is done in the following

table:

Batch Size Epochs Model Name Optimizer Time steps Uni/Multi RMSE
Run

186 26 100 Model 186 nadam 52 Multivariate 14.870351
72 2 100 Model 72 adam 104 Multivariate 16.107470
286 104 40 Model 286 nadam 104 Multivariate 17.215180
46 1 40 Model 46 nadam 104 Multivariate 17.250147
202 52 40 Model 202 adam 4 Multivariate 18.637282
124 13 40 Model 124 nadam 1 Multivariate 18.896268
130 13 40 Model 130 nadam 4 Multivariate 18.949729
52 2 40 Model 52 adam 1 Multivariate 19.147302

Table 12: RMSE for each model in the grid search sorted after RMSE.

By examining table 12 we can clearly see that the best performing LSTM model is run

number 186 with a batch size of 26, 100 epochs, 52 timesteps and with the nadam op-

timizer. Still, the RMSE is somewhat worse than the best SARIMAX model. This may

indicate that the neural network was not able to capture all the trends in the dataset.
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An interesting observation is that while the SARIMA and SARIMAX were quite similar

measured by RMSE, every single of the best LSTM models are multivariate. The LSTM

may therefore be better suited for multivariate time series than univariate, and may need

a larger amount of data to be able to capture the trends.

Figure 21: The eight best models measured by RMSE, 1–4, actual data in red, predicted
data in blue

Figure 22: The eight best models measured by RMSE, 5–8, actual data in red, predicted
data in blue
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By plotting the models from table 12 we can see that the four best models are able to quite

accurately predict the next year, while the next four models does not seem to capture

any other trend than a rolling mean. The RMSE from these models may therefore be

somewhat misleading as they are not able to capture any complex trends.

In order to determine the effect of the different hyperparameters we can group by these

and calculate the mean RMSE for each group. This is done in the following tables:

RMSE
Batch Size

1 30.772256
2 30.464227
13 31.391215
26 31.309650
52 31.555332
104 30.439968

Table 13: Mean RMSE for each batch size.

RMSE
Time steps

1 30.994684
4 29.726808
52 30.672561
104 32.561046

Table 14: Mean RMSE for each timestep.

RMSE
Epochs

10 31.923834
40 31.494624
100 29.547866

Table 15: Mean RMSE for each epoch.

RMSE
Optimizer

adam 30.869023
nadam 31.108526

Table 16: Mean RMSE for each optimizer.

RMSE
Uni/Multi

Multivariate 29.319889
Univariate 32.657660

Table 17: Mean RMSE for each univariate
or multivariate model.

From the different tables we can discern that there are not any large difference in RMSE

between the different hyperparameters. With the exception of univariate to multivariate

where the multivariate models do have a clear lower RMSE. An interesting conclusion to

draw is that the batch size seem to have a small effect on the RMSE, and it may therefore

be more efficient with a large batch size, as this should decrease the computational time
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needed. Another is that the number of time steps does not have a large effect on the

RMSE, even though we hypothesised that it may see more seasonality when introducing

more time steps. This may still be attributed to the models ability to capture the rolling

trend of the data in such a way that the RMSE becomes somewhat misleading.

The number of epochs in table 15 does not seem to vary from 10 to 40, but seems to

have some effect when increasing to 100 epochs. This may either be due to the need for

more epochs to draw out the information from the data, especially with such a simple

model, or it may be because of overfitting of the data. Taking a look at the loss plot from

the same models we examined in figure 21 and 22 we see that for the models with an

actual variation in the prediction there is a logarithmic decrease, converging towards 0

loss. Comparatively, the models where the predictions are more similar to a rolling mean,

the loss exhibits a large amount of variation. This may indicate that the model is not able

to learn anything from the data, and is therefore not able to improve the prediction.

Interestingly, several of the models that perform well in terms of RMSE, have an optimal

epoch of 40. This might indicate that the loss will increase with more epochs.

Figure 23: Loss plot for the eight best models measured by RMSE, 1–4
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Figure 24: Loss plot for the eight best models measured by RMSE, 5–8

4.5 Comparison and Discussion

The biggest difference in RMSE is from ARIMA to SARIMA, indicating the import-

ance of seasonality. Adding exogenous variable to the SARIMA, making it a SARIMAX

model, improves the RMSE very slightly, but the SARIMAX model still seems to be sub-

optimal. Comparing the RMSE from the SARIMAX model and the LSTM model we see

that the best prediction from the LSTM is still slightly worse than the SARIMAX model.

This being said there is a little drop off in the RMSE from the best prediction from the

LSTM to the second best, meaning that cherry picking the best prediction from the LSTM

gives a wrong impression of how well the LSTM actually performs. At the same time its

also worth noting that without the lack of the necessary computing power, as well as the

other limitations listed below, the LSTM model has the potential to be the best model.

One limitation in our data is the massive swings of the salmon price in 2022. Compared

to earlier years we see that the trends are still the same in 2022, but the extent of the price-

spikes are much larger. This means that actually producing a model that predicts the price

in 2022 relatively well would mean that the model is in fact not very good. Good models

would have to produce lower highs and higher lows than what was actually the case in

2022. This is the case for our test set as well, and is very clearly illustrated in figure
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20 where the actual price is peaking outside of the 95% confidence interval. In order to

succeed in predicting such a steep climb in price with certainty the model would have to

capture a much larger portion of the factors that go into determining the price.

Given that the NASDAQ gathers it data though sampling form a large range of sales

venues each week and by doing so aggregating a good average with little bias over time.

This might cause the LSTM models with a low amount of lookbacks to be biased in some

of its predictions because it looks at this small sample isolated. This may be one the

reasons why the model is not able to catch the trends as well when utilizing low amounts

of lookbacks.

Even though our best model, the SARIMAX, seems to be somewhat able to catch the

trends, we cant say that there is not more information in the residuals. The results from

the Ljung-Box test means that we have to reject the null hypothesis. However, rejecting

the null hypothesis only tells us that we cant claim that there is not white noise. It does

not mean that we can claim that there is white noise. This uncertainty means that we cant

be sure how much of the price fluctuations are explained by the model and how much is

left in the residuals.

When suggesting further research we note that when examining the Ljung-Box test on

the SARIMAX model. It shows that the residuals might not be white noise, and that

there might be some trends left to capture. We therefore suggest that future research

focuses on improving the models and perhaps lengthen the dataset in order to get better

odds of picking up these more illusive trends. One possibility for improving the models

is simply to use more computing power as this would allow for more complex models.

Another possibility is to use different variables in the multivariate analysis in LSTM as

we saw the multivariate was by far the best version of LSTM. This might also apply to the

SARIMAX model. It is possible to try different models entirely, but we suggest focusing

on multivariate.
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5 Conclusion

In this thesis we have predicted the salmon price using different analytical models. In

doing so we have tested how well these different models perform, when trying to predict

the price of salmon using similar commodities and macroeconomic factors. The approach

we had to solving this task were to first perform a simple exploratory analysis to see if

there was any changes needed to be done in the pre-processing stage. This was not the

case. We then built four different models: ARIMA, SARIMA, SARIMAX and LSTM.

The general findings are that the SARIMA and SARIMAX models produces quite similar

predictions, and both outperform the ARIMA model. This clearly indicates that season-

ality must be taken into account. When examining the SARIMAX predictions we see

that the confidence interval is rather large. However, the salmon price spiked massively

in the spring of 2022, so this is necessary. Therefore, simply examining whether or not

the model predicts the correct movement of the price is of relevance. Although the model

is not great, it is somewhat capable of catching the trends in the short term. The LSTM

model seems not to be able to catch the seasonality before it reaches 52 Time steps. This

makes sense as we saw from the exploratory analysis that the seasonality is a yearly pat-

tern. But when looking back at 52 weeks or more then the models get better at catching

the seasonality as well as other trends.

Overall, the SARIMAX model seems to be the best model for predicting the salmon price.

However, the LSTM model has the potential to be the best model, but it needs more work.

The struggles of the best models were mainly predicting the big magnitude in price change

as it is following the price change in direction in many cases, but not as steep as the actual

change.
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Appendix

GitHub Repository

All data, code and figures used in the thesis can be found in the GitHub repository https:

//github.com/BachelorLaks/bachelor2023 which will be made public after the thesis is

graded.
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