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Abstract

In this thesis, Hartree-Fock and density functional theory are examined
for use in geometry optimization procedures. The theory behind Hartree-
Fock and DFT is thoroughly described, and a molecular gradient expres-
sion is derived for Hartree-Fock. A benchmarking study by Brémond and
coworkers [1] is used as a basis for discussion of 62 exchange-correlation
functionals, including HF and three post-HF methods, where only MP2 is
discussed. The ECFs are discussed using the results from this and other
studies, and their respective common challenges.
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Introduction

In electronic structure theory, one aims to solve the time-independent Schrödinger
equation (1.1) to find the electronic wavefunction and energy of the system in
question [2]. This has various applications, two of them being geometry opti-
mization [3;4] and response theory [5]. Because of the complexity of the equation,
methods of varying accuracy and sophistication, levels of theory, are used to
calculate this energy [6]. Before the days of quantum chemistry, spectroscopic
methods were used to find energies and structures of molecules and atoms. A
theoretical method for determining geometries at a lower level of theory, is the
valence shell electron pair repulsion (VSEPR) theory, which uses the electrostatic
repulsion of localized electron pairs to explain 3D structures of molecules and
complexes [7]. While spectroscopic methods have improved since its early days in
the 1800s [8], the development of ab initio quantum mechanical calculations have
improved our understanding, not only of atomic and molecular structure, but
also of the processes behind the spectroscopic methods used to obtain the same
results [9].

Geometry optimization is of great importance in quantum chemistry because it
predicts the geometry a molecule is most likely to have at a given time. This can
help explain molecular properties and reactions. The equilibrium geometry is
found when the energy is at a minimum. Multiple methods can be used for this,
but the gradient method proposed by Pulay [10] is an effective and widely used
method. Geometry optimization has many applications, including calculating
spectroscopic data [11]. This can be used for predicting the stability of struc-
tures an derivatives [12] or chromophores [13]. Other applications include optical
rotation [14], calculating bond lengths of polymers [15] and calculations of organic
crystal structures [16].

There are two views on electronic structure theory, wave function theory (WFT)
and density functional theory (DFT), where DFT can be seen as an approxima-
tion of WFT. The wavefunction theories include Hartree-Fock and post Hartree-
Fock methods of approximation [2]. These use the wavefunctions of electrons to
find properties of the system, while DFT uses the electron probability densities.
Importantly, WFT generally yields quite complicated equations, and can thus
only be used for relatively small systems without being too time-consuming and
expensive. Even then, the Schrödinger equation is impossible to solve exactly,
and approximations have to be done.

According to the Hohenberg-Kohn existence theorem, it is possible to find the ex-
act solution to the Schrödinger equation, using density functional procedures [17].
Unfortunately, DFT is dependent on an exchange-correlation term that is still
unknown today, sixty years after the theorem was first proposed. Because of this,
many approximate exchange-correlation functionals (ECFs) have been proposed,
but no one has found one that performs uniformly well for all systems and all
applications. This causes a split in the DFT-community, where some say that
finding empirical functionals that work well for a specific result for a specific
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system is sufficient, and others are looking for the universal functional that will
bring us closer to the exact solution of the Schrödinger equation. According to
Medvedev and coworkers, the empirical fitting of ECFs is obstructing the path
towards the exact functional [18].

This thesis will go through both Hartree-Fock theory, density functional theory
and the expression for the Hartree-Fock molecular gradient. General challenges
for Hartree-Fock and DFT are presented and discussed. A study by Brémond
et al. [1] is used as a basis for discussion of different exchange-correlation func-
tionals, including Hartree-Fock and MP2. The mathematical background of the
functionals will not be thoroughly discussed beyond the Hartree-Fock equations
and the exact part of DFT.

1 Fundamental quantum chemistry

The overall goal in electronic structure theory is to solve the time-independent
Schrödinger equation,

ĤΨ(x) = EΨ(x) (1.1)

where Ĥ is the Hamiltonian, Ψ(x) is the wavefunction and E is the energy of
the wavefunction [2]. This is a pretty simple task for a system of only one elec-
tron. However chemists are usually interested in larger systems, like molecules,
proteins, polymers etc. For these systems, the Schrödinger equation cannot be
solved exactly. Because of this, there is a need for approximations and compu-
tational methods.

The molecular Hamiltonian is an operator that works on the system to return
its energy [2]. It contains the kinetic energy of the nuclei and electrons, the repul-
sion between two nuclei, the repulsion between two electrons, and the attraction
between electrons and nuclei. Mathematically it is defined as the sum of these
operators (eq. 1.2).

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂eN (1.2)

The first simplification to the Schrödinger equation is the Born-Oppenheimer
approximation [2]. It states that since the nuclei are much heavier than the elec-
trons, the nuclei move very slowly relative to the electrons, and can be treated as
stationary. The Hamiltonian is then separated into a nuclear and an electronic
part. The resulting equation is the electronic Schrödinger equation,

ĤeΨe(r;R) = Ee(R)Ψe(r;R) (1.3)

where the Hamiltonian is

Ĥe = −1

2

N∑
i

∇2
i −

N∑
i

Nn∑
I

ZI

rIi
+

1

2

N∑
i ̸=j

1

rij
+

1

2

∑
I ̸=J

ZIZJ

rIJ
(1.4)
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in atomic units [6]. The first term is the kinetic energy of the electrons, where ∇2

is the Lagrangian, the second derivative with respect to all spacial coordinates.
The second term is the attraction between electrons and nuclei, where rIi is the
distance between electron i and nucleus I, and ZI is the charge of nucleus I. The
third term is the repulsion between electron i and j, where rij is the distance
between electrons. The last term is the nucleus-nucleus repulsion. N and Nn

are the number of electrons and nuclei, respectively. The repulsion between
nuclei often regarded as constant in the Born-Oppenheimer approximation, and
is usually added in the end.

The Born-Oppenheimer approximation yields a potential energy for the electron
as a function of the nuclei coordinates. This is the potential energy surface
(PES) [19]. It contains information about possible chemical reactions, molecular
vibrations and the dissociation energy [6]. For this thesis, the most important
information contained in the potential energy surface is the equilibrium geometry.
That is the geometry where the energy of the system is at a minimum. An
expression for this will be derived for Hartree-Fock theory.

1.1 Orbital notation

For single atoms, two electrons occupy the same atomic orbital (AO), χµ
[2].

These are extended to molecular orbitals (MOs), ψp, through the linear combi-
nations of atomic orbitals (LCAO) expansion, shown in equation 1.5.

ψp(r) =
N∑

µ=1

Cµpχµ(r) (1.5)

Cµp is a constant which decides the weighting of the AOs. MOs are further
extended to spin orbitals (SOs), ϕi, by multiplication with the spin function,
σ(ω), according to equation 1.6 [6].

ϕi(x) = ψp(r) · ω(σ) (1.6)

The spin function is defined as

ω(σ) =

{
α(σ)

β(σ)

where α and β are required orthonormal.

6
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2 Hartree-Fock

In this section the principles of Hartree-Fock (HF) theory will be presented.
This thesis will be limited to the discussion of restricted Hartree-Fock (RHF),
where only closed-shell states are considered [6], but unrestricted Hartree-Fock for
open-shell systems could also be discussed.

2.1 The Variational principle

The variational principle is a useful way of optimizing the wavefunction [6]. The
energy of a trial wavefunction, ψtrial, is calculated using the Hamiltonian. This
will energy will always be higher than or equal to the true ground-state energy
of the system, E0, as shown in equation 2.1.

⟨ψtrial|H|ψtrial⟩
⟨ψtrial|ψtrial⟩

≥ E0 (2.1)

The left side of this inequality, sometimes called the Rayleigh ratio, is then
differentiated and minimized with respect to MO coefficients to get the lowest
possible energy. This yields the optimum wavefunction, and an upper bound to
the energy of the wavefunction.

2.2 Self-consistent fields and the Hartree-Fock equations

The basis of Hartree’s wavefunctional theory [20] for N-electron systems is that
the electron to be calculated experiences a combined, average potential from
the other N-1 electrons and the nuclei. This is called mean fields [21]. For an
N-electron system, the Hamiltonian, Ĥ, is separated into N one-electron Hamil-
tonians, ĥi, as shown in equation 2.2.

H(x1,x2, ...,xN) = h1(x1) + h2(x2) + ...+ hN(xN) (2.2)

In order to ensure antisymmetry and obey the Pauli principle, the HF wavefunc-
tion is approximated by a Slater determinant of the spin orbitals [22]. A matrix
consisting of spinorbitals, ϕi(x), is constructed, where the columns are distinct
spin-parts and the rows are spin orbitals. The determinant is calculated as in
equation 2.3 [6].

ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕa(1) ϕb(1) . . . ϕz(1)
ϕa(2) ϕb(2) . . . ϕz(2)

...
... . . . ...

ϕa(N) ϕb(N) . . . ϕz(N)

∣∣∣∣∣∣∣∣∣ (2.3)

The determinant which is found is called the Hartree-Fock determinant, ΦHF .
This is the wavefunction which is minimized using the variational principle.

7
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The Fock operator, f̂ , is made up of a one-electron part and a two-electron part
(eq. 2.4),

f̂1 = h1 +
∑
j

{2Jj(1)−Kj(1)} (2.4)

where Ĵj(1) is the Coulomb operator, and accounts for the repulsion between
electrons [21]. The exchange operator, K̂j(1) accounts for the exchange inter-
action between equal spin states, specifically stabilizing the system when two
electrons have unpaired spins, and was introduced by Fock [23]. They are defined
in equations 2.5 and 2.6 [6].

Jj(1)ψi(1) =

∫
ψ∗
j (2)

1

r12
ψi(1)ψj(2)dτ2 (2.5)

Kj(1)ψi(1) =

∫
ψ∗
j (2)

1

r12
ψj(1)ψi(2)dτ2 (2.6)

The Fock operator acts on the wavefunction to form a pseudo-eigenvalue equa-
tion, which yields the diagonal matrix of orbital energies, εi, as the pseudo-
eigenvalue.

f1ψi(1) = εiψi(1) (2.7)

Equation 2.7 are the canonical Hartree-Fock equations, where ψi(1) are the or-
bital wavefunctions. These can be solved numerically for AOs, but for MOs, the
Roothaan-Hall equations are used, as shown in equation 2.8 in AO basis.

FC = SCε (2.8)

F is the Fock matrix, and S is the overlap matrix of atomic orbitals. Their
elements are shown in equations 2.9 and 2.10, respectively.

Fµν = ⟨χµ(1)|f1|χν(1)⟩ (2.9)

Sµν = ⟨χµ(1)|χν(1)⟩ (2.10)

C is the matrix of MO coefficients from equation 1.5.

The Roothaan-Hall equations are solved using the self consistent field (SCF)
method [6]. This is an iterative process, where the wavefunction is improved by
each iteration [21]. Solving the Roothaan-Hall equations requires an initial guess
of the wavefunction within a chosen basis. The Hartree-Fock SCF calculation is
done as shown in figure 2.1.

Typically, convergence is said to be reached when C′ = C. In reality however, the
MO coefficients might not converge even though the Fock matrix yields sufficient
energies. Because of this, convergence acceleration is done to reduce the number
of iterations, typically DIIS [24;25;26].

From the Slater-Condon rules [6], the Restricted Hartree-Fock energy expression
becomes,

ERHF = 2
∑
i

hii +
∑
i ̸=j

(2giijj + gijji) + hnuc (2.11)

8
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Select geometry
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coefficients, C
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Fock matrix
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Convergence? 

Yes

Done

No

Figure 2.1: A flow chart depicting the iterations of the Hartree-Fock self-consistent field
calculation.

where giijj is the coulomb contribution and gijji is the exchange contribution
to the energy in MO basis. hi is the one-electron contribution and hnuc is the
contribution from the nuclei. This energy is invariant to orbital rotation among
the occupied orbitals, meaning that alternative sets of orbitals can be used to
minimize the energy, if they maintain their orthogonality [27]. This can for exam-
ple be used for localizing orbitals. The HF energy can be rewritten in terms of
the AO density matrix (eq. 2.12) [10].

ERHF = 2Tr[Dh] + Tr[DG(D)] + hnuc (2.12)

where Tr[A] is the sum of the diagonal elements, trace, of a general matrix A [28].
The density matrix D is defined as

D = CoC
T
o (2.13)

where CT
o is the transpose of Co, which is the coefficient matrix for occupied

orbitals. G(D) is the two-electron part of the energy expression,

Gµν(D) =
∑
ρσ

(2gµνρσ − gµνσρ)Dρσ (2.14)

3 Density Functional Theory
In density functional theory (DFT), the Hamiltonian is defined as in equation
3.1 [17].

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(ri) +
N∑
i=1

N∑
j>i

1

|ri − rj|
= T̂ + V̂ext + V̂ee (3.1)

This is similar to the Hamiltonian in the Born-Oppenheimer approximation (eq.
1.4), as T̂ is the kinetic energy part, V̂ext is the potential between the nuclei and
the electrons, and V̂ee is the electron-electron repulsion [6].

9
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DFT uses electron density in place of wavefunctions, which is defined as the
electron probability density of N electrons,

ρ(r) = N

∫
· · ·

∫
|Ψ(r1σ1, ..., rNσN)|2dr2...drNdσ1...dσN , (3.2)

where N is a normalization constant [17].

3.1 The Hohenberg-Kohn theorems

The Hohenberg-Kohn existence theorem states that

The ground-state energy and all other ground-state electronic prop-
erties are uniquely determined by the electron density [6].

The DFT energy expression is

E[ρ] = T [ρ] + Vee[ρ] +

∫
ρ(r)v(r)dr (3.3)

where v(r) is defined mathematically as in equation 3.4, which is analogous to
the second term in equation 1.4.

v(r) = −
Nn∑
I

ZI

|r− rI |
(3.4)

Vee can be separated into a classical and a non-classical term, according to the
equation,

Encl[ρ] = Vee[ρ]− J [ρ] (3.5)

where the classical functional J [ρ], is defined similarly to the Coulomb interaction
in HF (eq. 2.5), and is the major contribution. It is given in equation 3.6.

J [ρ] =
1

2

∫∫
ρ(1)

1

|r− r′|
ρ(2)drdr′ (3.6)

The Hohenberg-Kohn variational theorem, like the variational theorem for wave-
functions, states that

For a trial density function ρ′(r), the energy functional E0[ρ
′] cannot

be less than the true ground-state energy of the molecule [6].

This means that there exists an upper bound for the ground state energy for a
specific electron density, and the variational principle can be used to find the
optimum electron density.

10
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3.2 The Kohn-Sham equations

In Kohn-Sham theory, a chosen external potential, vref (r), yields a reference elec-
tron density, ρref (r) that is equal to the true electron density of the N -electron
system, ρ(r) [6]. This is done in orbital representation, where the Kohn-Sham
orbitals form a Slater determinant (equation 2.3) made from the N occupied or-
bitals [17]. The Hamiltonian of the reference state is given as a sum over the N
one-electron Kohn-Sham Hamiltonians, given in equations 3.7 and 3.8.

href =
N∑
i=1

hKS
i (3.7)

hKS
i = −1

2
∇2

i + vref (ri) (3.8)

Acting the Kohn-Sham Hamiltonian on Kohn-Sham orbitals, ψKS
m , gives an eigen-

value equation called the Kohn-Sham equation, where the orbital energy is the
eigenvalue (eq. 3.9).

hKS
i ψKS

m (i) = εKS
m ψKS

m (i) (3.9)

This is only for the reference system. The energy functional of the reference
system is given in equation 3.10.

Eref [ρref ] = Tref [ρref ] + Vee,ref [ρref ] +

∫
ρref (r)vref (r)dr (3.10)

This is extended to real systems by separating Vee[ρ] into a Coulomb and an
exchange-correlation part. Since the reference electron density and the real elec-
tron density are the same, and the reference potential is chosen to be the real
external potential, equation 3.10 can be further simplified into equation 3.11 [6].

E[ρ] = Tref [ρ] + J [ρ] +

∫
ρ(r)v(r)dr + EXC [ρ] (3.11)

where the exchange correlation functional is defined as in eq. 3.12.

EXC [ρ] = T [ρ] + Vee[ρ]− (Tref [ρ] + J [ρ]) (3.12)

The effective potential is defined as

veff = v(r) +

∫
ρ(r′)

|r− r′|
dr′ + vXC(r) (3.13)

where vXC(r) is the exchange-correlation part of the potential, which must be
equal to the reference potential to solve the Kohn-Sham equation. Rewriting
the Hamiltonian, by substituting equation 3.13 into the equation for the KS
Hamiltonian, eq. 3.8, the Kohn-Sham Hamiltonian is redefined to equation 3.14.

hKS
i = h1 +

∫
ρ(r′)

|r− r′|
dr′ + vXC(r) (3.14)

11
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where h1 is the same one-electron Hamiltonian as in HF. hKS
i is analogous to the

Fock operator [29]. Inserting this into equation 3.9, yields

hKSC = SCε (3.15)

in the AO basis, where the hKS works like the Fock matrix in HF,

hµν = ⟨χµ(1)|hKS|χν(1)⟩ (3.16)

and S is the atomic overlap matrix, defined in equation 2.10. The atomic orbitals
are defined by the LCAO expansion for the Kohn-Sham orbitals. This equation
is then solved iteratively, like the Roothaan-Hall equation in Hartree-Fock.

The Kohn-Sham energy contributions are given in 3.17.

E = ET + EV + EJ + EXC (3.17)

where ET is the energy that arises from the kinetic energy operator, EV is from
nucleus-electron repulsion, EJ is the Coulomb repulsion and EXC is the exchange-
correlation energy. In terms of operators, the energy expression becomes

EKS =
N∑
i

hii +
∑
i ̸=j

giijj + EXC (3.18)

This is very similar to the Hartree-Fock energy (equation 2.11). In fact, Hartree-
Fock theory can be seen as a special case of DFT, where the exchange-correlation
functional is given as the exchange term, K, and the correlation is zero. In matrix
notation for the AO basis, the energy expression becomes

EKS = 2Tr[Dh] + Tr[DJ] + EXC (3.19)

where J is the Coulomb matrix (eq. 3.20) [30] and D is the AO density matrix,
given for HF in equation 2.13.

Jµν =
∑
λσ

Dλσ⟨µν|λσ⟩ (3.20)

3.2.1 Exchange-Correlation functionals

The problem with DFT is calculating the exchange-correlation energy, EXC [ρ].
This must be done to get the exchange-correlation potential, vXC , which is
included in the Kohn-Sham Hamiltonian. To obtain a result from DFT, the
exchange-correlation energy thus has to be approximated, using an exchange-
correlation functional, ECF. This is where most of the error in DFT stem from [17].

The simplest ECFs are the local density approximation functionals (LDA). The
exchange-correlation energy is defined in LDA as

ELDA
XC [ρ] = A

∫
ρ(r)4/3dr (3.21)

12
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where A = −9
8
α( 3

π
)1/3 and α is a tunable parameter, usually determined from

fitting of experimental data. The exchange-correlation potential is then given in
eq. 3.22.

vXC(r) =
4

3
Aρ(r) (3.22)

LDA is most accurate for metals and other systems where the uniform elec-
tron gas approximation describes the system best [17]. The generalized gradient
approximation (GGA) is better suited to describe other systems with varying
electron densities. EGGA

XC is defined as

EGGA
XC [ρ] =

∫
f(ρ(r),∇ρ(r))dr (3.23)

where ∇ is the gradient and f is a chosen function [6].

Extending the GGA functional to include the second derivative of the electron
density, and occasionally the kinetic energy density τ(r), the meta-generalized
gradient approximation (mGGA) is obtained (equation 3.24).

EmGGA
XC [ρ] =

∫
f(ρ(r),∇ρ(r),∇2ρ(r), τ(r))dr (3.24)

τ(r) is defined according to

τ(r) = −1

2

∑
i

∫
ψ∗
i (r)∇2ψi(r)dr (3.25)

For both GGA and mGGA the function f is often chosen according to experi-
mental data.
The hybrid class of functionals uses the exchange energy from Hartree-Fock the-
ory in the exchange part of EXC . This can be used in combination with LDA,
GGA or mGGA functionals. The resulting exchange-correlation functional is a
linear combination of HF exchange energy in addition to other ECFs,

Ehybrid
XC = a0E

HF
x + (1− a0)E

ECF
x + EECF

c (3.26)

where a0 is a constant. This comes from the separability of EXC to EX + EC .

Some specific functionals are shown in table 3.1.

13
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Table 3.1: A selection of different exchange-correlation functionals used in chemistry, accord-
ing to which family of functionals they belong in [17].

Class of functionals Specific functionals

LDA
SVWN
SVWN5

SPL

GGA
BLYP

BPW91
PBE

mGGA TPSS
M06-L

Global hybrid
M06

M06-2X
B3LYP

Range separated hybrid
ωB97
M11

CAM-B3LYP

Double hybrid
xDH-PBE0
B2π-PLYP

PBE0-2

4 Geometry optimization
The goal of geometry optimization procedures is to find the optimum geometry of
the molecule, which is found at the minimum of the potential energy surface [31].
The analytical way of finding a minimum is by differentiating with respect to each
spacial coordinate. For a system of N coordinates, the differentiation thus needs
to be over 3N Cartesian coordinates or 3N-6 internal coordinates [32]. Due to the
complexity of large molecules, numerical methods are used. Some methods used
are gradient descent, Newtons method and BFGS [33;34]. These are all gradient
methods, with various rates of convergence. Newtons method is generally more
accurate, but since it includes the Hessian, it is much more expensive than BFGS.
Thus, BFGS is most used in practice.

Gradient descent uses the gradient of a function, ∇, to take steps of smaller and
smaller size towards the minimum of the function.

f(xi+1) = f(xi)− λ∇f(xi) (4.1)

As the geometry converges, ∇f(xi) gets smaller, and the optimum geometry is
found. λ is a constant that determines the weighting of the gradient, and the
size of the step. The optimum value of λ would be one over the second derivative
of the function, which will yield Newtons method.

14



Ingrid Dybdal April 28, 2023

Finding the molecular gradient is an important first step in most geometry opti-
mization procedures [10]. This will be done for HF in the next section, and it will
be commented on for DFT.

4.1 Finding the gradient of the Hartree-Fock energy

For a Hartree-Fock calculation, all the nuclear coordinates R = (X1, X2, ..., XN)
have to be evaluated for each atom. The Hartree-Fock energy is given in matrix
form in equation 2.12. Because of the coefficient matrices, Cµp, this equation is
costly to differentiate. The goal is to differentiate this expression, and to simplify
equation 4.2.

E(1) = Tr[2(Dh)(1)] + Tr[(DG(D))(1)] + h(1)nuc (4.2)
By using the product rule, the definition of the Fock matrix, F = h+G(D),
and the chain rule on DG(D)(1), equation 4.2 simplifies to

E(1) = Tr[2Dh(1) + 2D(1)F+DG(1)(D)] + h(1)nuc (4.3)

Substituting D with CoC
T
o , where Co is the coefficient matrix for occupied or-

bitals, and combining eq. 4.3 with eq. 2.8, the second term in eq. 4.3 can be
replaced as in eq. 4.4.

Tr[D(1)F] = Tr[ε0(C(1)
o SCT

o +C(1)T

o SCo] (4.4)

Using the orthonormality of the molecular orbitals, CT
o SCo simplifies to the

identity matrix, I [10]. Since the identity matrix is constant, the derivative is
zero. The result of this is

(CT
o SCo)

(1) = C(1)T
o SCo +CT

o S
(1)Co +CT

o SC
(1)
o = 0 (4.5)

which means
C(1)T

o SCo +CT
o SC

(1)
o = −CT

o S
(1)Co (4.6)

Using this result, rewriting the matrix of orbital energies, ε, to the Fock matrix
in AO basis, and rewriting the coefficient matrices to density matrices, the result
is equation 4.7.

E(1) = Tr[2DFDS(1) + 2Dh(1) +DG(1)(D)] + hnuc (4.7)

which does not depend on the derivatives of the MO coefficients.

4.2 Geometry optimization methods for DFT

The expression for the DFT gradient is different depending on which exchange-
correlation functional is chosen. How these are derived will not be the focus of
this thesis. The starting point, is given in equation 4.8.

E
(1)
KS = 2Tr[(Dh)(1)] + Tr[(DJ)(1)] + E

(1)
XC (4.8)

A possible gradient for DFT was proposed by Pople and coworkers [30]. Impor-
tantly, the gradient is dependent on the derivative of the exchange-correlation
term, so no one DFT gradient is known. It is closely related to the Hartree-Fock
gradient.
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5 Discussion

The discussion in this thesis is mostly based on the benchmarking study by
Brémond et al., where 62 exchange-correlation functionals (ECFs), including
four HF and post-HF methods, were tested on two different datasets; CCse21,
which is a set of 21 small organic molecules, and B3se47, which is the same set,
extended with 26 more small to medium sized organic molecules [1]. Equilibrium
geometries were found using the aug-cc-pVTZ basis set, and the results are given
as mean absolute deviations (MAD) from the reference geometry for the distance
matrix.

5.1 Challenges for Hartree-Fock theory

In this section, the most significant HF challenges will be discussed. Because
Hartree-Fock is a variational method, improving the wavefunctions will yield an
energy that is closer to the true ground-state energy of the system [6]. When the
HF energy is as close as possible to the energy from the variational principle, the
Hartree-Fock limit is reached. To increase accuracy of the wavefunctions, one can
increase the amount of basis functions [35]. These dictate which atomic orbitals
will be included in the calculations, as well as what shape the mathematical
functions have. In principle, the Hartree-Fock limit can be reached if one uses
an infinite basis set. This is however not possible in practice, which means the
HF wavefunction will always be an approximation, yielding some intrinsic error,
which also influence post-HF methods.

The ignorance towards electron correlation in Hartree-Fock is its largest source of
error [6]. Electron correlation is defined as the difference between the Hartree-Fock
energy calculated at the HF limit, and the exact energy from the Schrödinger
equation. While HF is about 98-99 % accurate. The remaining 1 % describes al-
most all chemically interesting results, like dispersion and dissociation. Because
of this missing energy, the HF ground state energy will never reach the exact
value. Using a post-HF method would offset this error by some value depen-
dent on the specific electron correlation model. These could be Møller-Plesset
perturbation theory (MPPT), configuration interaction (CI) or coupled cluster
(CC). Both CI and CC are based on linear combinations of excited state wave-
functions, where full configuration interaction (FCI) includes all excited states
of the HF Slater determinant, ΦHF . FCI is the exact solution of the Schrödinger
equation within a given basis set, which is too computationally demanding for
most systems, but can be solved for the hydrogen molecule, for example [36]. As
FCI is based on a HF calculation, basis set truncation error influences the FCI
solution, and this will not be the exact solution in practice.

Hartree-Fock is usually a good approximation at equilibrium distances. This
means it is a pretty accurate method for geometry optimization. However, it
tends to underestimate bond lengths, as effects of bonding orbitals are overesti-
mated [35;10]. For transition states, for example, HF struggles more. Here, there
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tends to be overlapping or near-overlapping potential energy surfaces, leading to
the wavefunction having large character from multiple Slater determinants. At
these instances, multireference methods can be used, like complete active space
CI (CASCI) or complete active space SCF (CASSCF).

5.2 Challenges for Density Functional Theory

The biggest, fundamental difference between density functional theory and Hartree-
Fock is that DFT uses the electron density, whereas HF uses the wavefunctions.
Because of this, one needs to know how properties depend on the electron densi-
ties [35]. However, even if one knew the exact electron density and how it affects
electronic properties, the exact exchange-correlation functional is still not cur-
rently known, which causes DFT to heavily rely on approximations and empirical
data. This also means that while the way to exact solution to the Schrödinger
equation for HF is known (FCI with an infinite basis set), one cannot say the
same for DFT.

For DFT, the Kohn-Sham orbitals are constructed. These are similar to the
Hartree-Fock orbitals. One key difference lies in the external potential and how
it handles occupied and virtual orbitals [35]. For DFT, all KS orbitals experience
the same external potential, whereas in HF, the virtual orbitals experience a
potential equivalent to adding an extra electron to the system. This leads to
the virtual HF orbitals being too high in energy. There however is some debate
on how useful the KS wavefunction is. The KS Slater determinant, like the HF
Slater determinant (eq. 2.3), can constructed from the KS orbitals, yielding
the wavefunction for a non-interacting system. This has some improvement of
certain properties, but is not the main focus of this thesis.

Because the different density functional methods only differ in their ECFs, the
quality of the method can be determined from the quality of the electron corre-
lation functional. Because of this, only the ECFs need to be discussed.

It is important to note that DFT is a semiempirical method, meaning that it
combines ab initio methods and empirical data in the ECFs. This means that
although the ECFs discussed might yield inaccurate results for equilibrium ge-
ometries in one class of molecules, it could be more accurate for another group.
In addition, ECFs are often constructed for a specific use. A big challenge for
DFT is thus finding an ECF that is generally satisfactory, both for a large num-
ber of systems and for many different properties. Many studies have focused on
the search for a universal ECF, including one by Peverati and Truhlar [37]. In an
article by Medvedev and co-workers, it is pointed out that modern work with
DFT has been too focused on empirical fitting of data, and not on the work
towards universality [18].

At this time, no universal ECF has been proposed [38]. In an article by Verma and
Truhlar, 15 different ECFs were benchmarked for geometries using three different
databases [39]. They found that while M06-2X was one of the best ECF tested
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for light-atom molecules (the DGL6 database [37]) with a mean unsigned error
(MUE) of 0.004 Å, it was the worst performing ECF for transition-metal dimers
(the TMDBL10 database [40]) with an MUE of 0.163 Å. They also found that PBE
was the best performing ECF for the transition-metal dimers (MUE of 0.043 Å)
and the worst for the light-atom molecules (MUE of 0.0013 Å). Note that the
MUEs are much larger for the transition-metal dimers than for the light-atom
molecules. The same ECFs were also tested for transition-states (the TSG48
database [41]), which showed similar results as for the light-atom molecules, but
much higher MUEs (0.017 Å for M06-2X and 0.141 Å for PBE). This illustrates
that even within the context of equilibrium geometries, no one ECF can show
results to the same level of accuracy for all systems. It is further illustrated by
comparing with the study by Brémond et al., where M05 showed better results
than M06-2X, even though this was only of medium quality in the study by
Verma et al [1].

DFT also has some general weaknesses. The most important weakness for DFT
is self-interaction error (SIE) [39;42], which arises because each electron experiences
a potential field from all electrons in the system. This means that each electron
interacts, not only with the other electrons in the molecule, but also itself. This
comes from the Coulomb potential in a one-electron system. For HF, the self-
interaction part of the Coulomb potential is canceled by the exact exchange.
This is not the case for DFT, as exchange is included in the ECF, which is
only an approximation. SIE also leads to delocalisation error. How this arises is
explained by Li et al. [42], but will not be explained further here. The consequences
of delocalisation error is that the electron densities of most systems are predicted
to be too spread out, which causes the energies the be lowered, unphysically.

In general, DFT also struggles with dispersion and hydrogen bonds [39]. These
are electron-correlation problems, which means they are poorly described by HF
as well, in practice HF is in fact incapable of modeling this interaction. Because
of this, multiple empirical dispersion-corrected functionals have been proposed
for DFT [43]. These are needed to describe weakly bonded systems, which is im-
portant for biochemistry, and are essential for interactions between closed-shell
species. According to the Hohenberg-Kohn theorem, properly dispersion cor-
rected ECFs should exist, and the issues are possibly purely mathematical [6].
When dispersion is improperly described, equilibrium structures for Van der
Waals complexes are distorted, and larger structures get wrongly calculated en-
ergetic properties. Double hybrids have been proposed as an alternative to dis-
persion corrected ECFs. For more information on specific dispersion corrected
ECFs, see the study by Grimme [43]. For hydrogen bonding, most ECFs predict
them to be too short, compared to real systems. For HF these tend to be sur-
prisingly good, because the of a cancellation of error between covalent character
(too tightly bound) and dispersion character (too weakly bound).
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5.3 Comparing the exchange correlation functionals

Brémond et al. found that HF showed deviations of 0.0250 (HNCCN+) to 0.0054
(CH2ClF) Å, with a MAD of 0.016 Å, for the distance matrices of the CCse21
set [1]. For this dataset, HF was the worst-performing method out of all the
methods tested. For B3se21, it was better than the BLYP ECF, and equal to
PBE. Looking specifically at the CH-, CC-, and CO-bonds in the CCse21 set,
the CO-bonds proved most challenging for HF, while the CC and CH-bonds were
close to the errors for the worst performing ECFs. In another study, Johnson et al.
found that the mean deviation for HF bond lengths was -0.010 Å at equilibrium
geometries for a group of molecules made up of second row atoms [44]. Both these
studies illustrate that HF systematically underestimates bond lengths, which fits
theory.

Using electron correlation models should improve the HF geometries. For John-
son et al., the most accurate results were found using MP2 (MPPT to the second
order correction) [44]. For Brémond et al, MP2 was only beaten by 10 ECFs for
the B3se47 set and 19 for the CCse21 set, where four of these were ab initio DFT
methods [45;46;47;48;49;50;51]. According to DeFrees et. al. [52], MP2 showed improved
results for both AH and AB bond lengths, where A and B are atoms heavier than
hydrogen. Lucchese et al. [53] however, found that the bond lengths for fluorine
peroxide (F2O2) were not significantly improved by electron correlation methods.
According to Amos and coworkers, MP2 for F2O2 is very dependent on the basis
set, but should yield better results than HF [54]. They also found that the ECFs
tested gave better results than SCF methods, except for CCSD(T) with a large
basis set.

Of the ECFs, the worst performing functionals were the non-hybrids, or local
ECFs. For the B3se47 set, some of these methods had larger MADs than HF.
The results show that SVWN, which is an LDA, did not necessarily do worse
than other locals. This is surprising, as LDA is one of the most primitive ECFs.
The two dispersion corrected local ECFs, B97D and B97D3 did not do much
better than the non-dispersion corrected locals. This is not surprising, as the
molecules tested were single organic molecules, small enough to be relatively
independent of dispersion effects. For bigger biochemical systems, this would
be much more important, and the dispersion-corrected ECFs would most likely
outperform ECFs of the same type. The best performing local ECF was M06-L.
While it is unexpected that a local performs better than many hybrids, what is
more surprising is that M06-L was not made for calculating geometries [55]. In
addition, local ECFs usually perform better for metals, where electrons behave
more like the uniform electron gas model that DFT was based on.

The best performing functionals were the double hybrids, dominated by the ECF
xDH-PBE0. Of the 12 double hybrid functionals tested, nine were in the top ten
best performing ECFs for the CCse21 set, and seven for the B3se47 set. Only one
of the three ab initio double hybrids performed better than MP2, however [47]. It
is no surprise that double hybrid functionals perform well, as they include contri-
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butions from MP2 and other MP2-like methods, not just HF. For mathematical
discussions on the double hybrids, see Martin and Santra (2019) [56]. Double
hybrids have been found to give very good results for large, diverse databases,
seemingly approaching universality. The biggest problem with double hybrids
is static correlation, which means transition metal systems are badly described.
However, the MP2-like contribution to the correlation means this is improved
somewhat from semilocal ECFs. Static correlation might be what causes the
MAD values of the double hybrids. A solution of this could be to use a multiref-
erence method. Martin and Santra also point out that singlet-paired CC could
improve results.

Of the global hybrids, those including more than 40 % of the exact exchange
(EXX) from HF did better overall than those with less than 40 % EXX. Many
of these were on the same level as MP2. The accuracy of global hybrids with
less than 40 % EXX do not show a clear trend. The best global hybrid was
SOGGA11-X (>40 % EXX), which was almost on the level of the double hybrids.
That means SOGGA11-X might be a good alternative when post-HF methods,
and thus double hybrids, are unavailable.

Over the last few years, range-separated functionals have been introduced. These
can be combined with hybrid, double hybrid or semilocal ECFs. For the study
by Brémond et al, the double hybrids showed better results than the range sepa-
rated hybrids, but they showed no general improvements to the global hybrids [1].
However, range separated schemes show great promise in general, and can solve
problems where the other ECFs fail. An example of this is the structure of an
sp-hybridized carbon allotrope, with alternating single and triple bonds [57]. This
study showed that only the range-separated schemes were able to predict the
correct geometry.

Now that the results of different ECFs have been discussed, it is important to
also look at the computational cost and time. This varies, depending on what
program one uses. Formally, DFT methods scale as N4, meaning that if the
number of atoms increase by N , the runtime increases by N4. This has been
reduced to N3 through density fitting [29]. Programs that are designed for DFT
calculations often implement this. In these programs, the cost of HF and DFT are
about the same, but DFT often yields better results. This is of course dependent
on what ECF is used as well. For programs designed for HF, the scaling of DFT
is the same as HF (N4), but the cost of the DFT calculations are about double
that for HF [35]. DFT reaches basis set convergence faster than HF and post-HF
methods do, and can thus do calculations with smaller basis sets, yielding better
results. One problem for DFT is that the KS orbitals converge slower than HF
orbitals in an SCF scheme. This can however be solved by using the optimized
HF orbitals as an initial guess for the KS orbitals, but then a HF calculation
needs to be done before the DFT calculation.

For post-HF methods, MP2 scales as N5 and CCSD(T), which is considered to
be a very accurate method [58], scales as N7 [35]. For different ECFs the scaling is
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the same, but local ECFs are generally faster than non-local methods [55], which
makes sense, considering the HF contribution that needs to be added. According
to Yu and coworkers, the cost of LDA methods is not significantly lower than
that of GGAs or mGGAs [59]. It is however reasonable to assume that GGA and
mGGA calculations are somewhat slower than LDA calculations, as their func-
tionals include the gradient, as shown in equations 3.23 and 3.24. See Ekström et
al. for more discussion on this [60]. According to Martin and Santra, the inclusion
of MP2 in double hybrid functionals is of little importance in terms of scaling [56].
Calculations take about as long as other hybrid ECFs, assuming MP2 is available
in the program used. In a paper by Zhao and coworkers however, they claim the
double hybrid methods are much more computationally demanding (and thus
expensive) for DH methods than for other hybrid methods [61].

Concluding remarks
A benchmarking paper by Brémond et al. was used as basis of discussion for
geometry optimization with Hartree-Fock, MP2 and 59 ECFs. The results of this
paper showed that double hybrid functionals did best overall, with xDH-PBE0
being the best performing functional. The global hybrids with more than 40
% contribution from Hartree-Fock did better than those with less EXX. Of the
global hybrids, SOGGA11-X performed best. The local ECFs did worst of the
DFT methods, but M06-L did surprisingly well. Hartree-Fock did worst overall,
systematically underestimating the bond lengths, but beat BLYP for the bigger
set of molecules. It was also found that using MP2 improved the results, but
it was still not on the same level of precision as the bulk of the double hybrids.
Range separated hybrids showed no clear trend in this study, but are known to
do well in areas where other ECFs struggle.

The results are seen in light of the empirical fitting of ECFs, and how they are
designed for a specific purpose. It seems like the double hybrids are approaching
a point of universiality, but from the results it is apparent that they are not the
exact solution to the Schrödinger equation. The search for an ab initio universal
ECF with high precision should continue in the coming years, as empirical ECFs
currently show the best results.
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