
ISBN 978-82-326-7102-1 (printed ver.)
ISBN 978-82-326-7101-4 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:200

Simon Vinding Blindheim

Risk-aware decision-making and
control of autonomous ships

D
oc

to
ra

l t
he

si
s

D
octor al theses at N

TN
U

, 2023:200
Sim

on Vinding Blindheim

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

Thesis for the Degree of Philosophiae Doctor

Trondheim, June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Simon Vinding Blindheim

Risk-aware decision-making and
control of autonomous ships

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

© Simon Vinding Blindheim

ISBN 978-82-326-7102-1 (printed ver.)
ISBN 978-82-326-7101-4 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

ITK-report 2023-14-W

Doctoral theses at NTNU, 2023:200

Printed by NTNU Grafisk senter

Summary

Autonomous agents able to operate without human supervision require decision-
making capabilities that predict outcomes based on internal and external models,
sensors and data. However, research on the topic of incorporating risk awareness
into such decision-making and control for autonomous ships is today limited. The
purpose of this thesis is thus to contribute to accelerate and expand the knowledge
within the field of risk-aware decision-making and control of autonomous ships, by
developing novel models, algorithms and software tools, and demonstrating proof-
of-concept results through simulation.

The thesis is divided into three main parts. The first part presents an applica-
tion programming interface (API) for electronic navigational charts (ENC), which
directly assists and enhances the actual process of effectively developing new au-
tonomous planning and control systems with anti-grounding capability for both
open research efforts as well as future industry applications. The second part ex-
amines how model predictive control (MPC) may be utilized for risk-aware au-
tonomous control and path planning, based on the concept of risk using the ENC
API and a ship model. The third part considers particle swarm optimization (PSO)
as an alternative to nonlinear programming (NLP) in MPC, in order to ultimately
further improve the risk-aware decision-making capabilities through the addition
of simultaneous autonomous machinery management.

The first part introduces and demonstrates the ENC API as a programming tool,
which may be used during development of algorithms and methods related to both
manned or unmanned (autonomous or remotely operated) maritime surface vessels
in future works.

The second part considers the use of MPC for autonomous ships, by minimiz-
ing costs based on the concept of risk. Chapter 3 presents a proof of concept
demonstration of an MPC approach for joint autonomous path planning, risk-
aware decision-making, and dynamic real-time emergency management. Chapter 4
develops a methodology which transforms the results of System-Theoretic Process
Analysis (STPA) of the path planning problem with anti-grounding into mathe-
matical equations and inequalities, which may be formulated and systematically
structured into an optimal control problem to be solved numerically by the MPC
approach.

i

Summary

In order to enable the use of non-smooth terms and discrete variables in the con-
straints and the cost function to be minimized, the last part considers the sampling-
based PSO method as an alternative approach to MPC. Chapter 5 demonstrates
an online and risk-aware waypoint re-planning approach, which displays analogous
behavior to that of the MPC method. Chapter 6 utilizes the flexibility inherent to
PSO by combining model-based predictions for autonomous machinery manage-
ment (AMM) with the sampling-based risk-aware path re-planning method. Here,
PSO essentially replaces NLP in the planning part of the problem, but is neverthe-
less used in a receding horizon procedure similar to an MPC approach. This elevates
the ability of the autonomous navigation system (ANS) to even further minimize
fuel consumption and risks through joint AMM and risk-aware path planning.

ii

Sammendrag

Autonome agenter i stand til å operere uten menneskelig tilsyn krever evner for
beslutningstaking som kan forutse utfall basert på interne og eksterne modeller,
sensorer og data. Forskning på å inkorporere risikobevissthet inn i slik beslut-
ningstaking og kontroll for autonome skip er derimot i dag begrenset. Målet med
denne avhandlingen er dermed å bidra til å akselerere og utvide kunnskapen in-
nen risikobevisst beslutningstaking og kontroll av autonome skip, ved å utvikle nye
modeller, algoritmer og programvare, samt demonstrere konseptutprøving gjennom
simulering.

Avhandlingen er delt inn i tre hoveddeler. Første del presenterer et grensesnitt
for applikasjonsprogrammering for elektroniske sjøkart, som direkte bidrar til å
forbedre selve prosessen for å effektivt utvikle nye autonome systemer for planleg-
ging og kontroll med hensyn på anti-grunnstøting både for åpen forskning så vel som
for fremtidige industriapplikasjoner. Andre del undersøker hvordan modellprediktiv
kontroll (MPC) kan bli utnyttet for risikobevisst autonom kontroll og baneplanleg-
ging, basert på et konsept av risiko ved bruk av programmeringsgrensesnittet og en
skipsmodell. Tredje del betrakter partikkelsverm-optimalisering (PSO) som et al-
ternativ til ulineær programmering i modellprediktiv kontroll, for å ytterligere øke
systemets kapabilitet for risikobevisst beslutningstaking ved å inkludere simultan
autonom maskineristyring eller kontroll.

Den første delen introduserer og demonstrerer grensesnittet for elektroniske sjøkart
som et programmeringsverktøy, som kan bli brukt under utvikling av algoritmer og
metoder relatert til både bemannede og ubemannede (autonome eller fjenstyrte)
maritime overflatefartøy.

Del to omhandler bruk av MPC for autonome skip, ved å minimere koster basert på
konseptet risiko. Kapittel 3 demonstrerer en konseptutprøving for en MPC-basert
tilnærming for autonom baneplanlegging, risikobevisst beslutningstaking, og dy-
namisk sanntidshåndtering av nødssituasjoner. Kapittel 4 utvikler en metodologi
som transformerer resultatene av en systemteorietisk prosessanalyse (STPA) i
baneplanleggingsproblemet med anti-grunnstøting til matematiske likninger og
ulikheter, som kan bli formulert og systematisk strukturert som et optimalingser-
ingsproblem som vil løses numerisk av MPC-metoden.

iii

Sammendrag

For å kunne utnytte både ikke-kontinuerlige og diskrete variabler i begrensningene
kostfunksjonen som skal minimeres, tar siste del for seg den prøvetakingsbaserte
metoden PSO som en alternativ tilnærming til MPC. Kapittel 5 demonstrerer en
dynamisk og risikobevisst metode for omplanlegging av banepunkter, som resul-
terer i en oppførsel analog til MPC-metoden. Kapittel 6 utnytter fleksibiliteten i
PSO ved å kombinere modellbaserte prediksjoner for autonom maskinerihåndtering
(AMM) med den prøvetakingsbaserte risikobevisste metoden for omplanlegging av
baner. Her erstatter i prinsippet PSO ulineær programmering i planleggingsdelen
av problemet, men blir likevel brukt i en prosedyre med dynamisk horisont likt
som i en MPC-tilnærming. Dette øker det autonome navigasjonssystemets (ANS)
evne til å i en større grad minimere drivstofforbruk og risiko gjennom kombinert
AMM og risikobevisst baneplanlegging.

iv

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU), Trondheim.

This work has been conducted at the Department of Engineering Cybernetics and
Centre for Autonomous Marine Operations and Systems NTNU, as part of the
ORCAS project. Professor Tor Arne Johansen from the Department of Engineering
Cybernetics was the main supervisor, and Professor Ingrid Bouwer Utne and Asgeir
Johan Sørensen from the Department of Marine Technology were co-supervisors.
The work was funded by the Research Council of Norway (grant number 280655),
Kongsberg Maritime and DNV GL, and Centre for Autonomous Marine Operations
and Systems (AMOS) at NTNU funded by the Research Council of Norway (grant
number 223254).

Acknowledgments

This thesis would not have come into existence without the inexhaustible and
consistent support and patience of a significant group of people dear to my heart.

My main supervisor Tor Arne has inspired and encouraged me to push on and avoid
any and all grounding obstacles through many years with constant exceptional and
personal guidance, and for that I would like to express my deepest gratitude. I
would also like to thank my co-supervisor Ingrid for our essential and rewarding
counseling sessions during my stay in Trondheim, as well as the continued support
throughout a stormy sea of lengthy e-mails. There were times when life made sure
to test my commitment, and you both invariably and promptly responded with
considerate and reassuring words which always kept me floating through the rocky
shallows. My co-supervisor Asgeir also served as a fundamental driving force for the
project as a whole, and I thank you all for making all these years truly worthwhile.

I would furthermore like to thank my colleagues in the ORCAS project, Børge,
Thomas and Tobias for all of their joyful encouragement and valuable inputs across
a multitude of project meetings, classes, seminars and writing sessions. The count-
less hours we spent together will be remembered as a big mess of liveliness, hard
work, priceless bad humor, and great pride.

v

Preface

The importance of my two closest childhood friends, Joakim and John, may not
be overstated. This is just the latest note on our shared story, as we have powered
through both master’s degrees and PhD’s together. You have once again continued
to support me during my candidate period - as you have helped me progress and
improve during most of my existence. For this, I’m extremely grateful.

Moreover, profound thanks must also be issued to those who provided me with
genes and a wonderful upbringing; my parents Verner and Hildegunn, and my
little sister Fride. You are still only a call away whenever I get lost, and I thank
you for your support all of my years.

Lastly, I would like to thank my wife and best friend Nina. Words are insufficient to
describe the fire you have ignited in my core. Your unconditional love and support
motivates me to better myself every day, and I hope my work these last years may
help provide for our new family. This thesis is dedicated to you.

vi

Contents

Summary i

Sammendrag iii

Preface v

Contents vii

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Literature review . 3
1.3 Research questions . 6
1.4 Contributions overview . 8

I Electronic navigational charts 13

2 Application programming interface 15
2.1 Introduction . 15
2.2 Methods . 21
2.3 Example usage . 37
2.4 Discussion . 60
2.5 Conclusion . 61

II Model predictive control 63

3 Autonomous ship emergency management 65
3.1 Introduction . 65
3.2 Problem description . 66
3.3 Mathematical modeling . 67
3.4 Planning and decision-making . 71
3.5 Implementation and settings . 73
3.6 Results . 77
3.7 Conclusion . 81

vii

Contents

4 Risk-based predictive supervisory control 83
4.1 Introduction . 83
4.2 Background . 85
4.3 Modeling . 88
4.4 Methodology . 98
4.5 NLP and MPC formulation . 105
4.6 Results . 110
4.7 Discussion . 120
4.8 Future work and extensions . 123
4.9 Conclusion . 125
4.10 Appendix: Ship model and dynamics 125

III Particle swarm optimization 129

5 Dynamic risk-aware path planning 131
5.1 Introduction . 131
5.2 Method . 134
5.3 Results . 138
5.4 Conclusion . 142
5.5 Appendix: The PSO Algorithm . 142

6 Autonomous planning and machinery management 147
6.1 Introduction . 147
6.2 Materials and methods . 149
6.3 Results . 159
6.4 Discussion . 174
6.5 Conclusion . 176
6.6 Appendix: The Level-1 route planning algorithm 177

IV Concluding remarks 181

7 Conclusion 183
7.1 Summary . 183
7.2 Discussion on research questions and future work 185
7.3 Concluding remarks . 188

Appendices 188

A Risk-based control system for autonomous ships 189
A.1 Introduction . 189
A.2 Method . 192
A.3 Case study: Supervisory risk control of an autonomous cargo ship . 197
A.4 Results and discussion . 209
A.5 Conclusions . 224
Appendix: BBN connections . 225

viii

Contents

B Ship collision avoidance and anti-grounding 227
B.1 Introduction . 227
B.2 The PSB-MPC COLAV planning algorithm 230
B.3 Parallelized PSB-MPC implementation 240
B.4 Simulation study . 243
B.5 Conclusion . 255

References 257

ix

Abbreviations

2D two-dimensional
3D three-dimensional
AMM autonomous machinery management
AMMS autonomous machinery management system
ANS autonomous navigation system
APF artificial potential fields
API application programming interface
ASV autonomous surface vessels
BBN Bayesian belief network
CC controller constraints
COLREGs the International Regulations for Preventing Collisions at Sea
CSV comma-separated values
DG diesel generator
DoF degrees of freedom
DP dynamic positioning
EA evolutionary algorithms
ENC electronic navigational charts
ETA estimated time of arrival
FGDB Esri File Geodatabase
GIF graphics interchange format
GIS geographic information systems
HIS hydrographic information systems
HSG hybrid shaft generator
IMO International Maritime Organization
IPOPT Interior Point OPTimizer
LOA length overall
LoA level of autonomy
LOPP loss of propulsion power
LoS line-of-sight

xi

Abbreviations

LQR linear-quadratic regulator
MASS maritime autonomous surface ships
MCR maximum continuous rating
ME main engine
MEC mechanical
ML machine learning
MPC model predictive control
MSO machinery system operation
MUMPS MUltifrontal Massively Parallel sparse direct Solver
NE North-East
NLP nonlinear programming
NTNU Norwegian University of Science and Technology
OCP optimal control problem
ORCAS Online Risk management and risk Control for Autonomous Ships
ORE online risk estimation
PhD Philosophiae Doctor
PID proportional–integral–derivative
PSO particle swarm optimization
PTI power take in
PTO power take out
PyPI Python Package Index
ROC remote operations center
RPN risk priority numbers
RRT rapidly-exploring random trees
SAS situational awareness system
SC safety constraints
SCA supervisory control actions
SI safety inequalities
SRC supervisory risk control
STAMP Systems-Theoretic Accident Model and Processes
STPA System-Theoretic Process Analysis
SV slack variables
TTG time-to-grounding
UCA unsafe supervisory control actions
USV unmanned surface vessel
UTM Universal Transverse Mercator
WP waypoint

xii

Chapter 1

Introduction

“I just want the future to happen faster. I
can’t imagine the future without robots.”

— Nolan Bushnell

1.1 Motivation

The maritime industry is subject to a technology and business transition towards
an increased level of autonomy (LoA). This is motivated by the prospects of lower
manning or unmanned ships supported by onshore operational centers to reduce
construction and operational cost, as well as improved safety and environmental
impact. This thesis is part of the project Online Risk management and risk Control
for Autonomous Ships (ORCAS), which endeavors to develop novel technological
solutions for online (real-time) risk management and risk control of autonomous
ships.

Increasing the LoA for maritime vessels is considered a powerful measure to im-
prove safety and environmental impact at sea, and to reduce the number of human
injuries and fatalities [1]. However, advancements in the technological systems on-
board, the operations, and the interactions with the environment, also increase the
complexity of the systems [2]. Thus, the requirements for the risk awareness and risk
control capabilities of the autonomous systems grow with this increased complex-
ity. Without proper risk-aware decision-making capabilities and safety measures in
place, the risk may not be found acceptable by commercial companies, regulatory
bodies, or the public.

LoA can in general be characterized as a set of metrics that describe detailed aspects
of an autonomous system and operation, including operator dependency, commu-
nication structure, human-machine interface, a dynamic online risk management
system, intelligence, planning functionalities, and mission complexity.

1

1. Introduction

They are defined by the International Maritime Organization (IMO) as [3], [4]:

1. Degree one | Ship with automated processes and decision support
Seafarers are on board to operate and control shipboard systems and func-
tions. Some operations may be automated and at times be unsupervised but
with seafarers on board ready to take control.

2. Degree two | Remotely controlled ship with seafarers on board
The ship is controlled and operated from another location. Seafarers are avail-
able on board to take control and to operate the shipboard systems and
functions.

3. Degree three | Remotely controlled ship without seafarers on board
The ship is controlled and operated from another location. There are no
seafarers on board.

4. Degree four | Fully autonomous ship
The operating system of the ship is able to make decisions and determine
actions by itself.

Industry leaders within classification and specifications for compliance with reg-
ulatory frameworks state that for an autonomous system, the action planning or
decision-making is performed by an algorithm based on necessary condition de-
tection and analysis, as well as a predefined ship mission and a set of rules [5].
Established navigational rules such as the International Regulations for Prevent-
ing Collisions at Sea (COLREGs) do however not cover every possible situation,
and the complete set of rules must consequently be formulated (or learned, e.g.
through machine learning (ML)) such that any circumstance, commonly antici-
pated and unexpected alike, may be handled safely by the autonomous system.
Moreover, recent scoping by the IMO to assess the way forward for regulating
maritime autonomous surface ships (MASS), included clarifying core terminology
related to LoA [4]: A key issue with respect to addressing the functional and oper-
ational requirements of the remote operations center (ROC) was identified, which
subsequently is directly dependent on explicit and well-defined capabilities of the
onboard systems of the autonomous ships commanded by the ROC. In this context,
the methods presented in this thesis contribute through the development, demon-
stration and discussion of dynamic online risk management and improved onboard
risk-aware decision-making for MASS, for the purpose of achieving LoA Degrees
three and four in the future.

Advanced control systems, such as ANS and path or voyage planners, introduce
new types of failures, due to this increased complexity and unforeseen interactions
in system design and functionality. If personnel are not onboard to operate, the
ship needs to have safe and reliable onboard control systems to be able to maneuver
safely in the seaway. Shutting down and re-mobilizing the ship operation due to haz-
ards caused by automatic or autonomous systems are not economically viable, nor
acceptable from a risk perspective. Increased LoA in complex maritime operations
may additionally support the human operator in supervision and decision-making,

2

1.2. Literature review

and reduce human workload. With reduced human operator intervention, and even-
tually presence onboard, it is important to provide early warnings (prediction) of
potential deviations outside the operating envelope to enable reconfiguration of
the system. Moreover, high LoA may reduce the ability for the human operator
to intervene when necessary [6]. If sufficient system integrity cannot be ensured,
highly autonomous and unmanned ships will not be realized on a broader scale.

The theme of this thesis as defined by the ORCAS project is supervisory risk con-
trol (SRC), focused on frameworks for online decision-making under uncertainty.
Though hazardous events for autonomous ships in general include technical fail-
ures, mal-operation, loss of position, fires, extreme weather conditions, malicious
attacks, hijacking, collision, and grounding, this thesis explicitly deals with ground-
ing avoidance and (proactively) handling unexpected machinery faults that lead to
loss of propulsion or steering capabilities in challenging scenarios. The over-arching
goal is to propose a general formulation of mission objectives and constraints for
the operation of autonomous ships, for online high-level decision-making and con-
sequence analysis. Specifically, the decision problems include modifications to the
mission plan or route and the selection of operational modes, in order to mitigate
risk. Numerical implementations of the methods based on simulation case studies
considering automatic sailing systems and propulsion control of autonomous ships
are subsequently used to evaluate the developed algorithm’s performance, with re-
spect to uncertainty from various weather conditions, unexpected faults, overall
mission requirements, and navigation hazards such as grounding obstacles.

1.2 Literature review

This section presents an overview of the most relevant research on risk-aware
decision-making and control of autonomous ships, to provide sufficient background
on which the research questions may be formulated. Each subsequent chapter in
this thesis will more specifically address research efforts related to each topic.

Risk management is essential for robust decision-making, and for safe and cost-
efficient design and operation of complex systems. With this in mind, SRC con-
siders autonomous systems with risk management capabilities [7]. A systematic
control theoretic approach to decision-making and control under uncertainty is to
use optimization to determine optimal control actions, and to predict their con-
sequences through model-based simulations or digital twins [8]. When the control
decisions are updated more or less continuously based on new information received
in real time, the implementation is usually referred to as MPC. It is currently a
widely used and powerful control technology that has been highly successful in the
optimization and automatic control of advanced industrial systems [9]. Moreover,
MPC facilitates the use of a nonlinear dynamic vehicle model, including environ-
mental forces, hazards and operational constraints for SRC, as well as objectives
in terms of a cost function with constraints in an optimization problem. It is an
attractive method for optimizing safety, efficiency, and emissions, and has been
successful in the process industries during recent years due to its ability to mathe-

3

1. Introduction

matically capture the specifications, performance objectives, and constraints of the
control system in a unifying framework.

However, the system- and application-specific data is greatly dependent on specifi-
cations of mission success criteria, acceptable risks and regulatory requirements, as
well as multiple uncertain factors and parameters. The selection of the control sys-
tem parameters and objectives is consequently a challenging task, and the choices
made with respect to these uncertainties and varying requirements strongly influ-
ence the performance of the system. A set of scenarios may in this regard be used to
represent typical realizations of the uncertain parameters and factors, and is exem-
plified in a recent application of this approach in the context of collision-avoidance
for autonomous ships [10]. It is proposed that this approach can be adapted to
more general automatic sailing systems for autonomous ships.

Another significant challenge is how to appropriately and accurately structure and
define the control problem such that the criteria for acceptable risk, mission suc-
cess, and regulatory requirements are met. STPA is a relatively new hazard analysis
technique based on an extended model of accident causation, which focuses on sys-
tem functions and couplings, rather than component failures [11]. The assumption
that “safety is a control problem” implicitly reflects dynamic properties of systems,
but has not been applied for risk management of autonomous systems and online
risk control. Its feasibility for verification of maritime systems has however been
demonstrated [12], [13], and STPA is thus considered an appropriate base approach
which may be utilized to standardize numerical optimal control formulations.

In contrast to the gradient-based MPC approach, the sampling-based PSO method
is able to deal with non-smooth or mixed-integer control and planning problems
utilizing discrete variables [14]. This is especially useful when considering more
complex problems such as navigation in large non-convex environments involv-
ing grounding obstacles. Moreover, the cost or fitness function may in this way
be defined using disjoint or non-smooth terms which would otherwise prove in-
tractable for numerical optimization. Recent works related to anti-grounding for
autonomous surface vessels have explored usage of PSO for distance-based path
or waypoint planning, energy efficiency, grounding risk, and safety [15]–[19]. It is
nevertheless proposed that there is significant potential for improvement in the
achieved control and decision-making performance, if the control problem is en-
hanced to include simulated grounding risks using ship dynamics, machinery mode
management considerations, and more effective utilization of well-structured ENC
data. This sampling-based PSO approach may ultimately be used in a receding
horizon fashion similar to the method employed in MPC, and even to utilize in-
dependent MPC solvers as internal sub-processes for PSO state predictions and
optimization in future works.

4

1.2. Literature review

Figure 1.1: Overview of the scope considered in this thesis, which is focused on the SRC
and its inputs (objectives, ENC and risk awareness).

5

1. Introduction

1.3 Research questions

The topics of this thesis are risk-awareness, decision-making, path planning, and
optimal control for autonomous ships. The scope of the thesis with respect to
considered systems and interfaces is visualized in Figure 1.1. The top-level is the
ROC, from which humans supervise the autonomous sailing process as planned
and carried out by the ANS. Additionally, the ROC performs and provides risk
analysis and routes to the Objectives module, which defines the cost function to be
supplied to the SRC path planner, which is the main focus of this thesis. The SRC
bases its costs on input geometry from ENC, states from a situational awareness
system (SAS), and the equations of motion of the physical system. Lastly, the
control commands issued by the ANS are applied to the ship machinery through
the autonomous machinery management system (AMMS), ultimately driving the
ship safely towards its given target destination.

During the initial work on introductory topics within the fields of path planning and
optimal control for surface vessels, there was noted an apparent lack of standard
development tools or simulation environments in which one can quickly establish
e.g. an ownship in a chosen scenario for rapid prototyping, experimentation and
evaluation. It seemed like fellow colleagues all started from scratch and developed
their own software platforms designed for their specific environment or ENC needs
in parallel, despite the evident similarities and strongly connected research topics
between them.

This lack of available software was also reflected in the literature. Although recent
research utilizing ENC data has made significant progress on the topics of deci-
sion support [20]–[22], path planning [23]–[25], and collision avoidance in restricted
waters [26]–[29], no comprehensive or unified platforms for open-source work with
ENC currently exists. Thus, considerable additional efforts were put into the de-
velopment of an open-source application programming interface for ENC which,
if shared, could help accelerate research on autonomous ships. The accompanying
research question is defined as follows:

RQ 1 How can the utilization and visualization of ENC data be made fast and
user-friendly in the research and development process for autonomous ship
control and decision-making?

Though the available literature shows that MPC is a promising method for heading
control, path following and collision avoidance [30]–[33], the systems discussed had
in general assumed standard conditions or a limited scope within which they were
allowed to make autonomous decisions, like e.g. path following during the transit
phase of an autonomous ferry [34]. However, little research currently exists on the
topic of autonomous planning which explicitly considers the ability to dynamically
handle uncertain (weather) disturbances and unexpected faults. Thus, the second
research question is proposed:

6

1.3. Research questions

RQ 2 How can autonomous ships a) be proactively controlled such that grounding
hazards are predicted and avoided on a voyage while subject to uncertain
disturbances, and b) be prepared for unexpected machinery faults such as
loss of steering or propulsion?

It is furthermore useful to define a systematic approach which can formulate and
structure the resulting objectives or constraints of established risk analysis methods
such as STPA [35] safely into a numerical optimal control problem:

RQ 3 How can the results of qualitative risk analysis methods such as STPA
be utilized and systematically structured into a numerical optimal con-
trol problem for autonomous ship navigation, such that grounding hazards
are identified, mathematically formulated and avoided through numerical
optimization?

Due to PSO being based on sampling rather than gradient search [14], the approach
is suitable for ENC, which in general lead to non-smooth cost functions. Several
works on utilizing PSO for MASS with respect to static obstacles were found in the
literature. However, these either do not consider the more complex risks associated
with close proximity to (grounding) obstacles [15], [16], or may be structurally
improved with regards to the fitness (cost) function and utilization of ENC data
[17]–[19], which leads to the research question:

RQ 4 How can the planned routes generated by established voyage planners be
modified to give a navigation path during complex real-time transit con-
ditions, such that unexpected hazards and changing environments are ac-
counted for en route?

Finally, the inherent versatility of using sampling-based PSO may be exploited e.g.
by taking into account additional sub-systems such as AMM during real-time path
following for autonomous ships. Previous work [36] proposes a model-based con-
trol system which automatically selects the optimal machinery mode in order to
minimize grounding risk and fuel consumption as a stand-alone approach. Thus, it
is proposed that improved fuel efficiency and risk-aware decision-making may be
achieved by combining risk-based online route re-planning with discrete optimiza-
tion variables for real-time machinery management modes and route selection:

RQ 5 How can model-based predictions for ship dynamics and onboard machinery
management systems be combined with a sampling-based path planning
algorithm and established path following algorithms in order to reduce
overall risks and expected mission costs?

7

1. Introduction

1.4 Contributions overview

This thesis consists of four parts, based on five peer-reviewed publications.

Part I presents one article on the development of an API for ENC in Chapter 2.

Part II is comprised of Chapters 3 and 4, which considers MPC and STPA for
risk-aware autonomous ship emergency management.

Part III deals with PSO for risk-aware autonomous route re-planning and AMM
in Chapters 5 and 6.

Part IV offers concluding remarks in Chapter 7.

The rest of Chapter 1 presents an overview of the contributions of each publication.

Chapter 2 - Application programming interface

[37] S. Blindheim and T. A. Johansen, “Electronic Navigational Charts for Visu-
alization, Simulation, and Autonomous Ship Control,” IEEE Access, vol. 10,
pp. 3716–3737, 2022. doi: https://doi.org/10.1109/access.2021.
3139767

This chapter presents an open-source ENC visualization and manipulation API
implemented in Python, with emphasis on accessibility and simplicity for the pur-
pose of providing an accessible and open-source API for displaying and managing
spatial bathymetry or other related sea-faring data for research and development.
The current version of the package provides tools for displaying marine polygon
data such as ships, ocean depths, reefs, and shallows, using the transverse Mercator
projection. Additionally, polygon- and point-based transformation and calculation
methods for application development based on spatial geometry, path planning
and numerical optimal control are implemented. Usage of the spatial methods are
demonstrated by examples involving high-level path or trajectory planning, op-
timization, and assisted decision-making for autonomous and remote-controlled
ships.

Chapter 2 contributes towards RQ 1 by providing an open-source API which en-
ables researchers to access, visualize and utilize ENC data to more efficiently de-
velop methods for autonomous ships in future works.

8

https://doi.org/https://doi.org/10.1109/access.2021.3139767
https://doi.org/https://doi.org/10.1109/access.2021.3139767

1.4. Contributions overview

Chapter 3 - Autonomous ship emergency management

[38] S. Blindheim, S. Gros, and T. A. Johansen, “Risk-Based Model Pre-
dictive Control for Autonomous Ship Emergency Management,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 14 524–14 531, 2020, 21st IFAC World
Congress. doi: https://doi.org/10.1016/j.ifacol.2020.12.1456

In this chapter, a dynamic risk-based decision-making algorithm based on MPC
is constructed through the use of heuristic objectives, capable of planning suit-
able vessel trajectories in emergency situations. Nonlinear programming using the
direct multiple-shooting method implemented with the CasADi framework is con-
sidered [39], and the resulting control performance of several emergency scenarios
is analyzed using simulation. The developed MPC algorithm with independent risk
cost terms is capable of both generating suitable trajectories below a certain risk
threshold, and to engage the safety systems appropriately.

Chapter 3 contributes towards RQ 2 by demonstrating a dynamic risk-based nav-
igation algorithm with inherent emergency management capabilities, which avoids
grounding hazards both during normal conditions and when machinery faults un-
expectedly occurs, such as impaired steering and loss of propulsion.

Chapter 4 - Risk-based predictive supervisory control

[40] S. Blindheim, I. B. Utne, and T. A. Johansen, “Risk-Based Supervisory
Control for Autonomous Ship Navigation,” Journal of Marine Science and
Technology, pp. 1–25, 2023. doi: 10.1007/s00773-023-00945-6

This chapter proposes a novel method for transforming the results of qualitative risk
analysis into a numeric optimal control problem for autonomous ship navigation.
STPA considers safety as a control problem, which makes it feasible for revealing
hazards related to autonomous systems. Such hazards should be considered in the
design of control algorithms and when optimizing decisions during operations to
improve safety. One of the challenges with STPA, however, is that it only brings
forward qualitative results, which are impossible to use directly for MPC. Thus,
general principles for how the results from STPA can be transformed into a quan-
titative and computationally tractable optimization problem are suggested, solved
by a MPC-based decision-making algorithm for autonomous navigation. The pro-
posed method is demonstrated and evaluated by simulating an autonomous ship
navigating in a coastal environment.

Chapter 4 contributes towards RQ 3 by developing a step-wise methodology which
takes the results of an STPA and transforms them into mathematical equations and
inequalities, which subsequently are structured into an optimal control problem to
be solved numerically by an MPC approach.

9

https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1456
https://doi.org/10.1007/s00773-023-00945-6

1. Introduction

Chapter 5 - Dynamic risk-aware path planning

[41] S. Blindheim and T. A. Johansen, “Particle Swarm Optimization for
Dynamic Risk-Aware Path Following for Autonomous Ships,” IFAC-
PapersOnLine, 2022, IFAC CAMS. doi: https://doi.org/10.1016/j.
ifacol.2022.10.411

This chapter presents the use of PSO for dynamic risk-aware path planning and
following during autonomous surface navigation in a maritime environment with
polygonal grounding obstacles. Although recent research on control and local or
global path planning for MASS is considerable, few consider the concept of risk dur-
ing dynamic path following along a pre-planned path. The proposed method intro-
duces risk-based terms in the PSO fitness function for dynamic (online) adjustment
or re-planning of intermediate waypoints during path following of a pre-planned
route, where the control of the vessel in this work is left to a standard line-of-sight
(LoS) proportional–integral–derivative (PID) controller. The results are compared
to the performance of an analogous implementation of risk-aware MPC using a
gradient-based solver. The suggested method yields adequate performance similar
to that of the MPC algorithm.

Chapter 5 contributes towards RQ 4 by presenting a more flexible online path
re-planning method utilizing PSO, which may employ the use of established path
following or guidance algorithms after re-planning. This alternative method based
on PSO is compared to the previous MPC approach of Chapter 3 and Chapter 4,
and demonstrates analogous behavior, enabling the use of more complex (e.g. com-
bined continuous and discrete) cost functions in future works.

Chapter 6 - Autonomous planning and machinery management

[42] S. Blindheim, B. Rokseth, and T. A. Johansen, “Autonomous Machinery
Management for Supervisory Risk Control Using Particle Swarm Optimiza-
tion,” Journal of Marine Science and Engineering, vol. 11, no. 2, p. 327, 2023.
doi: https://doi.org/10.3390/jmse11020327

In this chapter, a novel methodology combining risk-based optimal control and
path following with AMM for MASS navigation and SRC is presented. Specifi-
cally, a risk-aware PSO scheme utilizes “time-to-grounding” predictions based on
weather data and ENC to simultaneously control both the ship’s motion as well as
the machinery system operation (MSO) mode during transit. The proposed ANS is
comprised of an online receding horizon control strategy that uses a PSO approach
from previous works, which produces a dynamic risk-aware path with respect to
grounding obstacles from a pre-planned path, subsequently given as the input to
a line-of-sight guidance controller for path following. Moreover, the MSO mode
of the AMMS is simultaneously selected and assigned to explicit segments along
the risk-aware path throughout the receding horizon, which effectively introduces

10

https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.411
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.411
https://doi.org/https://doi.org/10.3390/jmse11020327

1.4. Contributions overview

an additional safety layer as well as another dimension for risk or resource mini-
mization into the optimization scheme. The performance of the resulting ANS is
demonstrated and verified through simulations of a challenging scenario and human
assessment of the generated paths.

Chapter 6 contributes towards RQ 5 by proposing an approach for combining and
utilizing a model-based autonomous machinery management approach with the
sampling-based and risk-aware PSO voyage re-planner method from Chapter 5
in the same cost function, which increases the ability of the resulting ANS to
consider and optimize resource consumption and grounding risks through both
MSO selection and route re-planning or selection.

Appendix A - Risk-based control system for autonomous ships

[43] T. Johansen, S. Blindheim, T. R. Torben, I. B. Utne, T. A. Johansen,
and A. J. Sørensen, “Development and testing of a risk-based control system
for autonomous ships,” Reliability Engineering & System Safety, vol. 234,
p. 109 195, 2023

The first appendix presents the development of a SRC with decision-making ca-
pabilities for autonomous ships, in which an online risk model (Bayesian belief
network (BBN)) based on the results of STPA is used along with ENC data to
evaluate dynamic operational risks. Specifically, it is a relevant demonstration of
how the SeaCharts API may be utilized to process and visualize ENC data for
risk-aware route planning and path following for autonomous ships.

Appendix B - Ship collision avoidance and anti-grounding

[29] T. Tengesdal, T. A. Johansen, T. D. Grande, and S. Blindheim, “Ship
collision avoidance and anti grounding using parallelized cost evaluation in
probabilistic scenario-based model predictive control,” IEEE Access, vol. 10,
pp. 111 650–111 664, 2022

The second appendix considers the implementation of a model predictive controller
based on probabilistic scenarios, using parallelized cost evaluations for autonomous
ship collision avoidance and anti-grounding. This chapter also demonstrates how
the SeaCharts API is utilized by the MPC to consider the ship’s environment
based on both ENC data and structurally analogous dynamic obstacles defined as
two-dimensional (2D) general polygons, using the same base framework. It is con-
sidered another apt testimony to the capabilities and adaptability of the SeaCharts
package.

11

Part I

Electronic navigational charts

13

Chapter 2

Application programming interface

This chapter is based on the publication

[37] S. Blindheim and T. A. Johansen, “Electronic Navigational Charts for Visu-
alization, Simulation, and Autonomous Ship Control,” IEEE Access, vol. 10,
pp. 3716–3737, 2022. doi: https://doi.org/10.1109/access.2021.
3139767

The software, methods, algorithms, and simulations were developed and imple-
mented by S. Blindheim, under the supervision of T. A. Johansen. The first draft
was written by S. Blindheim, and was revised by T. A. Johansen.

2.1 Introduction

ENC have today become the digital standard to replace printed navigational charts.
Such formats allow for a range of possibilities with regards to data handling. How-
ever, the task of efficiently showing and manipulating ENC data has arguably
become more challenging with increased data sizes and degrees of freedom, and
solutions are largely developed on a case-to-case basis. More specifically, open API
for public use are scarce. Given the limited resources for polygon-based maritime
environments available today, it is apparent that there is a need for an open-source
ENC API for future research and software development efforts.

2.1.1 Literature review

Active development of increasingly more advanced ENC has been steadily moving
forward, since the emergence of digitally stored bathymetry data and specifications
of international exchange standards for hydrographic data were formulated [44].
There are several objectives associated with the use of ENC; applications related
to pure visualization for navigation purposes, geometric calculations and spatial
data operations, automatic control and decision support for manned or unmanned
operations such as anti-grounding and obstacle avoidance, safety or risk analysis,

15

https://doi.org/https://doi.org/10.1109/access.2021.3139767
https://doi.org/https://doi.org/10.1109/access.2021.3139767

2. Application programming interface

and route or path planning. However, there seems to be a lack of open API which
sufficiently provide necessary and/or convenient tools for research and development
of such systems. Though recent works have been carried out to specify and solidify
forms of systematization, standardization and classification of ENC [45]–[48], API
solutions for both visualization and direct spatial ENC data manipulation are still
limited. The following sections present an analysis of some of the relevant resources
available in the literature today.

Visualization

Norms and standards for visualization of 2D bathymetry data has been consistent
with practices used for printed navigational charts, and numerous applications have
emerged for various areas, such as pure visualization of ENC data [49]–[51], radar
display imaging [52], [53], three-dimensional (3D) visualization of bathymetry data
[54]–[56], and even endeavors on virtual or augmented reality [57], [58]. However,
visualization of spatial data is merely a tool for evaluation and affirmation within
research and development on applications for autonomous decision-making or deci-
sion support. Thus, the development of such stand-alone user applications or API
is not sufficient for research and development within this area, and variations of
such solutions are consequently not considered in this work.

Data extraction

In order to be able to utilize environment data for autonomous navigation, it is
necessary to make the intrinsic spatial data contained within the ENC accessible
for external applications through a programmable software interface, in addition
to simultaneous environment visualization and information display. ENC may as
such be utilized as direct data inputs for active decision support systems [20], and
may be formulated as a vector-based architecture [21] given a spatial point- or
polygon-based database from e.g. surveys [22], [59].

Path planning

Decision support systems using operational parameters related to mission objec-
tives and spatial hydrographic ENC data are mainly concerned with path or tra-
jectory planning in a maritime environment. Path planning in accordance with
mission objectives is a known problem, and as such there exists a rich collection
of research on efficient path planning for unmanned surface vessel (USV), such
as long-distance mission planning [25], dynamic or adaptive re-planning [23], [24],
control based on objective optimization and vector fields [60]–[64], and optimal
paths using the established A* algorithm [65]–[67].

It is noted that path planning in the context of maritime operations in itself is
only a tool commonly used to achieve higher levels of autonomy. As such, path
planning for this purpose is combined with (sub-)systems for situational awareness
(i.e. structured spatial data and prediction or simulation capabilities) based on
ENC as well as sensor data, to be used in schemes for decision-making and risk
analysis. However, the results of this research indicate some of the functionality

16

2.1. Introduction

required of an adequate ENC API. It is important that objective optimization is
facilitated by making relevant ENC data available to the algorithm, such as depth
values and distance calculations. Moreover, the prevalent prominence of methods
based on vector fields suggests that it is desirable to include a sufficient range of
vector-based methods in the ENC API, as well as to preserve the ability for scalable
resolutions of the data sets loaded by the system. If methods based on raster images
or spatial grids is used for decision-making, such grids may be directly constructed
by interpolation between coordinate points through sampling along the spatial
axes.

Autonomous navigation, risk and safety

The overarching main objective of ANS or decision support systems is to increase
maritime safety [68], [69] as well as efficiency, with respect to risks and/or expected
cost analyses. Additionally, effective visualization of important risk factors for hu-
mans involved both during the design, planning and operational phases of maritime
navigation is an integral part in achieving this goal, further highlighting the need
for practical and flexible ENC API for the purpose of additional information overlay
visualization. Moreover, risk analysis and risk management of (semi-) autonomous
vessels are of increased importance with the development of unmanned operations
[2], [70]. With higher levels of autonomy, the requirements for data quality and per-
formance demanded by the involved decision-making systems increase significantly,
and as such must be provided by the underlying ENC API.

Autonomous obstacle and collision avoidance

Path planning and autonomous obstacle or collision avoidance for complex mar-
itime environments remains a challenging problem [71]. In order to further ad-
vance ANS algorithms for autonomous surface vessels (ASV), decision-making
should include considerations related to environmental disturbances, identification
and dynamic or adaptive planning with respect to static and dynamic obstacles,
COLREGs compliance, and utilization of vessel safety domains [72]. These systems
must be highly flexible and robust, and be able to handle both long-term and short-
term (reactive) planning for obstacle avoidance based on reliable information, i.e.
sensors and detailed bathymetric ENC data constructed as polygons [26], [73].

Recent example applications include traffic monitoring with respect to collision de-
tection and risk assessment [74], obstacle tracking and reactive collision avoidance
based on sensor fusion [75], and the development of adaptive safety domains for
identification of grounding risks [28] and collision avoidance during vessel interac-
tions (COLREGs) [76]. Thus, it is clear that the demand for open and accessible
ENC software and resources for real-time simultaneous visualization and efficient
computation of hydrographic data is evermore increasing.

Current available API solutions

In general, web searches for ENC or hydrographical API yield few relevant re-
sults, and there currently exists only a handful of ENC API today. Moreover, most

17

2. Application programming interface

of these are proprietary or closed-source, making it exceedingly difficult to iden-
tify individual resources suitable for feature-by-feature comparison between these,
general desired API capabilities, and the solution presented in this work. Due to
this fundamental lack of accessibility and transparency, such alternatives are in-
herently considered inadequate for open research and development. The available
open-source software for ocean mapping is currently varying in quality and func-
tionality, and no single API is identified as an all-in-one solution [77].

Pydro [78] is identified as the most promising candidate solution supporting the
International Hydrographic Oranization S-57 standard [79]. However, Pydro is not
strictly a pure API for Python programming, but a suite of software tools built for
hydrography and cartography. The software is focused on enhancing and automat-
ing the hydrographic workflow from data acquisition to hydrographic survey review
and nautical chart compilation [80] which leaves the work of visualization and high-
level data abstraction to the researcher. Additionally, the application is currently
only supported in Windows, and may not be repackaged or redistributed due to
license restrictions. These are significant constraints with respect to open research
and development, and Pydro is as such considered unsuitable for this purpose.

The conclusion of the literature review is thus that no truly open-source API pack-
ages or ENC solutions for open research and development currently exists.

2.1.2 Problem and contribution

Unambiguously structured and visualized spatial data are needed for clear interpre-
tation and efficient computation in autonomous ENC-based maritime navigation.
This work addresses the research question: How can the utilization and visualiza-
tion of ENC data be made fast and user-friendly in the research and development
process for autonomous ship control and decision-making? It is proposed that an
open-source Python-based API may serve as a framework and/or a valuable sup-
port tool for further development of hydrographic information systems (HIS), sim-
ulation or control algorithms for ANS based on ENC.

Thus, the purpose of this work is to provide an open and user-friendly API pack-
age intended for fast and easy prototyping during software development such that
researchers more quickly may get to work on development on (autonomous) navi-
gation systems, rather than spending time on writing basic geographic information
systems (GIS) functionality such as polygon manipulation or simply displaying a
maritime environment. The package is focused on ease of use and fast prototyping
capabilities through high-level spatial computation of polygon data and flexible
visualization methods, and may play a part in facilitating more productive and
targeted research on the topic of autonomous ships, by allowing the researcher
to concentrate more on other aspects than application programming of a baseline
simulation environment for testing purposes. Intelligent design of the ENC package
may also lead to significant improvements to computation speeds for dynamic path
planning and simulation.

18

2.1. Introduction

An overview of the contributions included in the proposed API is listed in Sec-
tion 2.2, and shown as implemented class instance methods in Table 2.1.

2.1.3 Scope

Only 2D visualization is considered, in accordance with the goal of a simple and
comprehensible interface. As marine environments inherently are concerned with
depth-related data and representations, the core objective is thus to visualize ob-
jects and ocean depth through the use of distinctly colored 2D shapes. Moreover, all
given coordinates are projected onto a locally flat plane via the Universal Trans-
verse Mercator (UTM) coordinate system, subsequently allowing all polygon or
other shape-based operations performed by the application to assume a flat 2D
plane. Significant efforts in this work are targeted toward the development of clear
and uncomplicated methods for straightforward geometric polygon manipulation
and operations for spatial depth data sets, such as polygon simplification, inter-
sections, unions, dilution, erosion, convex hulls, and distance and bounding box
calculations. Finally, several example algorithms are defined and discussed in order
to showcase usage of the implemented methods of the ENC API package, within
the fields of autonomous path planning, collision avoidance, and online risk man-
agement.

2.1.4 Installation and usage

Python is chosen as the preferred programming language for the development of
an open-source API for elegant visualization and straightforward manipulation
of spatial data, given its design philosophy with regard to its readability, object
oriented structure and readily available libraries for management of HIS resources.

The package is given the name SeaCharts, and may be installed through the Python
Package Index (PyPI) [81] by executing the command pip install seacharts,
making it readily available through the standard import statements in Python
files within an environment. Interested readers may find maintained links to the
SeaCharts homepage, source code repository, documentation and usage instructions
at pypi.org/project/seacharts.

2.1.5 Design and structure

Table 2.1 presents a class diagram of the main class ENC to be instantiated by the
user, from which all other processes are initiated. An instance of this main class
serves as a single-point interface, which is initialized by arranging and encapsulat-
ing polygonal features extracted from external Esri File Geodatabase (FGDB) files
as local shapefiles [82]. These files are subsequently read and fed into a private en-
vironment variable containing all available data computation methods, accessed
by the user through the top-level bathymetry attributes (land, shore, seabed)
and direct utilization of geometric operations provided by the Shapely library [83].

19

https://pypi.org/project/seacharts/

2. Application programming interface

ENC

- environment: Environment
- display: Display

+ supported_crs: str
+ supported_layers: str

+ land: Land
+ shore: Shore
+ seabed: dict

+ ENC(size: tuple, origin: tuple, center: tuple, buffer: int, tolerance: int,
layers: list, depths: list, files: list, new_data: bool, raw_data: bool,
border: bool, verbose: bool, multiprocessing: bool): ENC

+ show_display(duration: float): None
+ refresh_display(): None
+ close_display(): None
+ save_image(name: str, scale: float, extension: str): None
+ colorbar(arg: bool): None
+ dark_mode(arg: bool): None
+ fullscreen_mode(arg: bool): None

+ add_vessels(args: list): None
+ clear_vessels(): None
+ add_ownship(easting: int, northing: int, heading: float,

hull_scale: float, lon_scale: float, lat_scale: float): None
+ remove_ownship(): None
+ add_hazards(depth: int, buffer: int): None

+ draw_arrow(start: tuple, end: tuple, color: str, width: float,
head_size: float, thickness: float, edge_style: str): None

+ draw_circle(center: tuple, radius: float, color: str, fill: bool,
thickness: float, edge_style: str): None

+ draw_line(points: list, color: str, width: float, thickness: float,
edge_style: str): None

+ draw_polygon(geometry: Any, color: str, interiors: list, fill: bool,
thickness: float, edge_style: str): None

+ draw_rectangle(center: tuple, size: tuple, color: str, rotation: float,
fill: float, thickness: float, edge_style: str): None

Table 2.1: Class diagram of the main SeaCharts ENC module in Python.

20

2.2. Methods

The display variable may if desired be utilized through the provided class methods
to display user-selected spatial features produced by the environment variable,
serially or in parallel with data computations performed by a possible third-party
navigation or optimization program. Users of the SeaCharts package are advised to
refer to its Readme file in the maintained repository for detailed usage instructions.
The following sections nevertheless provide an overview of the currently available
API methods and functionality, while leaving most of the programming-related
details to the code documentation.

2.2 Methods

This section presents the main contributions of this work. The initialization and
creation of an ENC interface instance is firstly described by its data extraction,
polygon handling and feature extraction processes, followed by demonstrations of
most of the user methods available in the API package as seen in Table 2.1, at the
time of writing.

The constructor of the ENC class is denoted at the top of the third compartment.
Its input arguments are used during initialization, and will be thoroughly discussed
in Sections 2.2.1 to 2.2.3. Built-in Python types are denoted in bold.

The methods related to the display are summarized as follows: The display util-
ity methods, namely the show_display, refresh_display, close_display and
save_image, are used to show and save images from the interactive display during
runtime. Additional visual configuration settings are available through the color-
bar, dark_mode and fullscreen_mode methods.

Next, methods for adding (drawing and maintaining references to) vessels and a
controllable interactive ownship with toggleable hazardous areas within a given
horizon are included through the methods add_vessels, clear_vessels, add_
ownship, remove_ownship and add_hazards.

Lastly, opaque or transparent geometric shape overlays may be drawn onto the
displayed environment through the draw-methods at the bottom of Table 2.1. Note
that the draw_polygon method may in general be used to draw any polygon-
based shape, the rest are provided for convenience.

2.2.1 Data extraction

The API is initialized through the creation of the single ENC instance, which reads
and stores geometric shapes for both future offline re-reading and dynamic shape
handling during runtime. This section illustrates how the API handles the data
during this initialization process, based on any combination of the class construc-
tor arguments of Table 2.1. For all remaining figures in this chapter, the border
argument is set to True in order to produce an encompassing black border around
the image edges, and the multiprocessing variable is set to False such that en-
vironment plotting is dependent on the running demonstration applications. The

21

2. Application programming interface

verbose argument may if desired be toggled on for the purpose of information
printing in the terminal during runtime.

The SeaCharts package supports loading and reading spatial data structured in
the FGDB 10.0 format. For demonstration purposes, the open-source ENC data
used in this work is downloaded from the Norwegian Mapping Authority, which
contains 2D ENC polygons of the coast of Norway projected in EUREF89 UTM
zone 33N. However, any region of the world may be read and extracted as an ENC,
provided a properly structured FGDB for the area in question is available.

At the time of writing, the depth data files for Norway may be downloaded as a
whole or divided into specific county areas. These files are to be placed in a specific
folder relative to the working directory of the Python application such that the Data
module may reach it, as detailed in the SeaCharts package Readme. Processing of
the downloaded FGDB files is performed during startup when the application is
first run, or if the user has explicitly requested a manual data extraction during a
subsequent run by setting the new_data argument value equal to True. During
this process, the polygonal or point data files specified by the files argument (a list
of file names) are loaded into memory and spatially filtered given a user-specified
bounding box calculated from the size and origin (or center) arguments, as well
as the depth bin groups defined by the depth argument (see Section 2.2.2). The
specified data is subsequently written to shapefiles and stored in memory for direct
access during runtime.

Figure 2.1 presents a visualization of the intended data extraction window hierarchy
of the SeaCharts package. The figure shows an example view of the Norwegian
counties Møre og Romsdal and Trøndelag merged together. The black border is
the abstraction of any (digital) ENC downloaded or constructed for any given
region of the world, and may contain one or several specific regions of spatial data
such as e.g. countries or municipalities. Next, the yellow rectangle represents an
arbitrary region of extracted depth data from the downloaded ENC in black, stored
as shapefiles on the system’s hard drive, as well as being available through the
corresponding top-level bathymetry layers of the ENC class instance. This region
may be considerably smaller than the initial raw data sets, and contains only the
optimized features (Section 2.2.2) selected by the user during the initial FGDB file
extraction phase. The orange rectangle shows the shape handling subregion or area
for which specific polygon- or point-based computations may be performed during
runtime, e.g. to extract and merge all depth layers deeper than ten meters in order
to construct a (binary) sea-faring domain feasible for any particular ship. Lastly,
the red rectangle represents a dynamic horizon subregion of the orange area, which
may be used by some external path planning, collision avoidance, or simulation
algorithm. This area is intended to be dynamic during external algorithm cycles and
e.g. follow the ship(s) in question during a voyage, such that appropriate domains
may be extracted and/or scaled for feasible optimization or planning given some
real-time requirements and mission objectives. Note that the shape handling and
dynamic horizon regions may be freely constructed as any arbitrary polygon based
on the application for which the API is used, and may if desired be identical.

22

2.2. Methods

Figure 2.1: Data extraction window hierarchy of the SeaCharts package.

In addition to selecting subregions of spatial data (even across data set bound-
aries such as e.g. county borders), the package explicitly specifies and selects each
desired spatial features or layers to be extracted from the data sets during ini-
tialization through the layers argument containing a list of valid layer names. If
the user of the API is e.g. only concerned specifically with the seabed depth poly-
gons included in the depth data set, all other features like docks or other marine
structures are disregarded and filtered out from the constructed shapefiles. The re-
sulting shapefile data set read by the application after the initial startup thus only
contains requested data, which allows for faster performance for dynamic filtering
and spatial computing during runtime. Additional polygonal data optimization or
simplifications are further described in the following sections.

2.2.2 Polygon optimization

Downloaded depth data sets are generally large, and regularly contain suboptimal
numbers of additional polygons due to region splits produced by some mapping

23

2. Application programming interface

algorithm or e.g. county boundaries. Thus, the SeaCharts package performs vari-
ous standard GIS simplification procedures on the raw data in order to speed up
runtime calculations and visualization, unless the raw_data argument is set to
True. This process is included and described in this work for completeness, such
that users of the package may become familiar with common GIS techniques in the
context of the provided API functionality for research and development.

Figure 2.2 shows a SeaCharts visualization of the raw polygon data extracted
from the downloaded FGDB files surrounding the Norwegian city of Ålesund (with
raw_data = True), in which polygon edges are white for demonstration purposes.
It is clear that the depth data polygon regions are divided into orthogonally adja-
cent subrectangles, creating situations in which there exists more than one poly-
gon for any single disjoint body of land, shore, or seabed depth. In addition to the
increased computational complexity introduced by this data structure, such redun-
dant polygon definitions may also produce unexpected, undesirable or potentially
incorrect results when performing numerical spatial operations, e.g. irregularities
where only half an island is included for path planning purposes due to excluded
polygon areas which are not properly intersected with a dynamic extraction win-
dow. Calculation performance during runtime may thus be increased significantly
by merging or calculating the unions of all orthogonally adjacent polygons with
depth data within the same depth bins present in the extracted data sets.

Polygon merging

Figure 2.3 presents the result after performing the Shapely operation
unary_union on the region from Figure 2.2. Notice how the polygons of large ar-
eas across the white rectangular divisions have been merged together, such that no
continuous regions of the same depths are split. Each seabed polygon is constructed
such that it fully envelops any and all polygons with depths deeper than its depth
value, that it might contain. Thus, the total area of all polygons of depths between
e.g. 5m and 10m will consequently be larger than the total area of all seabed layers
deeper than 10m. Note that this behavior is specific to the SeaCharts package, and
is chosen as such with the purpose of intuitive alternative views during visualiza-
tion - e.g. to toggle off deeper depth layers such that the remaining encompassing
and more shallow layers are still complete. All land polygons are however entirely
contained within the complete set of shore polygons, for the analogous inverse rea-
son. This layer structure facilitates an intuitive and effortless lookup interface with
respect to the fundamental question of identifying which areas are safe, hazardous
or simply impassable for any given ship to navigate within. If e.g. the maximum
draft of a ship is 5m, it is thus straightforward to simply extract the full seabed
layer of e.g. 7m including an additional safety depth margin.

In addition to the merged regional shapes, there are fewer different values of
depth polygons shown in the resulting environment in Figure 2.3 compared to
the original downloaded data in Figure 2.2 due to the user-specified depth bins, i.e.
ranges for which each depth measurement is grouped and separated by, through the
depths argument list of integers. This feature may serve as another flexible layer

24

2.2. Methods

Figure 2.2: SeaCharts visualization of raw downloaded polygon data with depth bins of
5, 10, 20, 50, 100, 200, 350 and 500m.

of data management for further computation optimization, e.g. by disregarding
depth range resolutions outside the scope of a path planning problem. In Fig-
ure 2.3, depths of 5m, 20m and deeper than 300m were disregarded, such that
the deeper Sulafjorden regions shown in dark blue in the bottom are consolidated
into a region of a larger range of depth values. Notice however how the differ-
ent resolutions present in the original raw data may produce polygon artifacts at
the boundaries between the resolution partitions, e.g. along the southern coast of
the Sula island/peninsula, marked by a red rectangle: The gradually deeper depth
contours in Figure 2.2 reveals a noticeable resolution discrepancy edge where two
depth bins are merged into one. These unavoidable artifacts emerge from the use
of several different spatial resolutions in the downloaded data set, and should be
treated with care.

25

2. Application programming interface

Figure 2.3: Polygon merging with depth bins of 10, 50, 100, 200, 300m.

Polygon simplification

The next step of the polygon optimization process is to simplify the topology of
the polygon edges and vertices. This operation is provided by the Shapely method
simplify, which removes vertices and edges from the polygon that are within the
distance defined by the optional tolerance initialization argument. The resulting
polygon may have a significantly reduced number of vertices, and consequently may
reduce the time complexity of the spatial algorithms performed on the polygon data
significantly. Moreover, the geometric shapes may be further simplified by buffering
(dilating or eroding) all polygons by providing the optional buffer argument.

Figure 2.4 presents an oversimplification example of the same Ålesund fjord area
from the previous section, showcasing why the simplification of the polygons must
be performed with care. If the tolerance distance is too large, the polygons may

26

2.2. Methods

Figure 2.4: Polygon simplification example with a tolerance of 300m.

become significantly distorted and thus no longer sufficiently represent the real-life
obstacles in the environment.

Additionally, oversimplification may lead to some artifact regions not being covered
by a depth polygon (as seen in white). These areas inherently have no ocean depth
data associated with them, introducing irregularities and holes in the spatial data
which are not easily fixed. Thus, the tolerance distance given to the simplification
method is during the rest of this work set to be smaller than the width of the
ship used for demonstration purposes, such that the topology of any polygon is
guaranteed to be of the same or a higher resolution than the ship navigating the
environment. This facilitates faster computation on shapes with lower counts of
vertices and edges, while simultaneously keeping the resolution within reasonable
bounds for the example applications demonstrated later in this chapter. Lastly, the
Shapely method simplify also provides the option preserve_topology, and is

27

2. Application programming interface

in this work set to true in order to avoid polygonal deformation.

2.2.3 Feature selection

In this section, the data extraction hierarchy mentioned in Section 2.2.1 will be
discussed in more detail. By selecting specific regions for the extraction of depth
data (the yellow rectangle of Figure 2.1), the package may filter out any unnecessary
regions from the full ENC data set, such that only the points and polygons of
the area of interest are constructed and stored as local shapefiles. An example
extraction view of such an area is presented in Figure 2.5, showing a square region
of Ålesund smaller than the region presented in Figures 2.2 to 2.4.

Next, one may isolate an even smaller shape handling subregion (in Figure 2.5
shown as the white square defined by some coordinates provided by the user) after

Figure 2.5: Bounded shape handling and dynamic horizon example.

28

2.2. Methods

reading the shapefiles to memory during runtime, and perform spatial operations
on these points or polygons. Furthermore, if the package is used by e.g. an ANS,
it may construct another artificial extraction window or dynamic horizon polygon
defined by e.g. the pink disk as in Figure 2.5, or any other shapes like rectangles or
general polygons. This dynamic region may subsequently be utilized to isolate all
features of interest within the horizon such as e.g. grounding obstacles or nearby
vessels for collision avoidance efforts, using methods provided by the SeaCharts
package or the Shapely library directly.

The white square is intersected with all of the data points located within it, ef-
fectively filtering out all features not inside the rotated square. Here, the poly-
gon merging and seabed range consolidation methods (i.e. the user-specified depth
ranges from Section 2.2.2) may be used as a filtering technique to extract "safe"
or feasible sea-faring regions for any ship, given user-specified parameters such as
a minimum allowed seabed depth e.g. based on the maximum draft of the ship
in question. For this purpose, the seabed polygon layer of e.g. 10m contains any
region of the processed data sets that are deeper than 10m, by construction.

Inversely, all areas of insufficient depths may be calculated by taking the spatial
difference (Shapely) between the white square polygon and the seabed layer,
yielding the inverted shallower areas in red within which all depths are less than
10m. Thus, both the dark green and lighter green land and shore polygons, as well
as all seabed depths down to 10m, are merged together and shown as red polygons
in this example. The exterior boundary of the horizon disk around the ship of
Figure 2.5 has an excessively small radius of 1 km, for demonstration purposes
only. The interior of the disk is calculated by performing the Shapely operation
intersection on the horizon disk polygon and the red polygons, resulting in the
isolated pink overlay separated from the red.

An important detail to note in this example is how the selection of the 10m seabed
effectively closes off both of the narrow straits between the individual islands of
Ålesund, northwest and northeast of the vessel. This is indeed the expected and de-
sired result, given that both passages are not continuously deeper than the selected
seabed layer. As such, appropriate depth bins or depth filters must be selected with
care and thorough consideration, based on the possible consequences for any given
navigation application.

2.2.4 Bounded depth regions

Extracted regions of arbitrary shape may be transformed into non-convex or convex
regions for path or trajectory planning algorithms, by intersecting the polygon of a
bounded region – like e.g. a rectangular view window – with any polygon of interest
within it.

Figure 2.6 demonstrates a variation of such an application, based on the white
square region from Figure 2.5. A new single polygon is constructed by the
traversable open water area around the ship within the square with depths deeper

29

2. Application programming interface

Figure 2.6: Inverted bounded minimum depth region transformation.

than 10m, using the Shapely methods mentioned in Section 2.2.3. The problem is
thus inverted from being based on an open environment with many land polygons,
into utilizing a closed environment consisting of a single ocean polygon with is-
lands represented as its inner holes. This transformed topology is inherently finite
and bounded by its construction, and may be more feasible for use in autonomous
navigation or path planning algorithms. Several overlapping or joined sets of these
smaller bounded areas may subsequently be used to calculate subpaths from in-
termediate points along a larger route, possibly yielding significantly faster solver
performances than global techniques.

This inverted topology may furthermore be used to facilitate methods for local path
planning or risk analysis through distance-based artificial potential fields (APF)
[60], [84], in which e.g. the distance from the ship to the nearest shore may be used
to indicate risk levels during transit.

30

2.2. Methods

An example plot of a rasterized and distance-based risk topology is presented in
Figure 2.7, based on the traversable polygon in Figure 2.6. Notice how the resolu-
tion of the point samples providing the base for the risk contours is lowered and
exaggerated in this example for demonstration purposes. This lowering of spatial
resolution may alongside with other techniques be used as a tool to facilitate faster
performance. Points of higher risk closer to the shoreline or the interior and exte-
rior boundaries of the traversable polygon are shown in red, and points far away
from any boundary are given shades of blue. The gray area outside of the polygon
is non-traversable land or seabed with insufficient depth. This type of plot may
be useful for visualization of distance-based navigation algorithms, or to define
constraints and cost functions in optimization techniques performed by external
programs. Such rasterized data points may e.g. additionally be used directly as an
alternative to the vectorized polygon data stored in the shapefiles.

Figure 2.7: Distance-based grounding risk topology example.

31

2. Application programming interface

2.2.5 Features visualization

This section presents an introductory overview of the visualization methods cur-
rently supported by the SeaCharts package. All figures are produced by utilizing
the show_display, refresh_display, close_display during testing, and saving
the resulting images through the save_image method in an appropriate image
format.

Vessels plotting

To visualize the environment, the user firstly creates an instance of the SeaCharts
main class. This class must be instantiated by defining an origin or center co-
ordinate pair (easting and northing) as well as the bounding box size in meters,
specifying any region of interest. After the environment polygon data produced
from depth measurements are displayed, other features such as vessels and other
physical structures along with abstract entities such as path references, pointer
arrows, enclosing circles or area overlays of interest may be visualized on top.

A magnified view of the Ålesund region from Figures 2.2 to 2.7 is presented in
Figure 2.8, showing a simplistic scene produced and displayed by merely selecting
a desired ENC region and plotting a collection of various vessels in different colors
within the environment using the add_vessels and clear_vessels methods. This
is considered the main feature of the package.

Furthermore, the procedure for plotting each ship position is designed such that the
Display may be created and run in parallel with the main calling process by setting
the multiprocessing initialization argument equal to True, in order to update the
visualization plot in real time. This separate process repeatedly reads the comma-
separated values (CSV) file containing all coordinate pairs, heading angles and
color names as well as other options for each single ship plot to be displayed in
the environment. Thus, the normally convoluted operation of visualizing ships in
a maritime environment is reduced to writing (or removing) a collection of values
to a plain file during runtime.

Information presentation

In addition to simply showing vessels in the environment, supplementary informa-
tion overlays may be added to the plot in order to present various aspects of e.g.
vessel(s) risks, intent, planning, predictions, or other relevant factors like weather
conditions or mission objectives. For this purpose, several basic shape-based vi-
sualization methods have been added to the package. Specifically, it is possible to
add lines, arrows, paths, circles, rectangles and any other general polygon shape on
top of the environment plot through the collection of draw methods of Table 2.1.
Various adjustment options are available to these methods. These will however
not be noted in detail in this work, and the user is referred to the maintained
repository Readme and code documentation for updated versions of all available
input arguments for each function. An example demonstration of these are shown
in Figure 2.9.

32

2.2. Methods

Figure 2.8: Example plots of various vessels in different colors.

Centered in the middle, a clock-like structure of various elements is plotted for the
purpose of demonstration. Behind the rotated and semi-transparent rectangle in
blue, a yellow disk is drawn with a dashed edge, which again encompasses another
smaller green circle. The difference in border style and the non-filled interior color
of the smaller circle highlights the flexibility of the available plotting variations,
and is possible to adjust similarly for all shapes. Likewise, the pair of two-part
straight lines in white and magenta are showing the different variations of straight
line segments. The thickness of all bordering edges of shapes as well as for lines
may be chosen by the user, as is readily apparent from the large plotted arrow in
orange. For this shape, the size of the arrow head may be adjusted as well.

Next, there are additionally shown three groups of polygonal overlays in Figure 2.9.
The lighter land and shore polygons of a single island due north in Ålesund is simply
a polygon overlay of white transparent color to highlight a region of interest. In

33

2. Application programming interface

Figure 2.9: Example demonstration of various available shapes and overlays, including
a depth bar legend.

the middle of the fjord to the southwest, a cyan shape has the contours of a seabed
polygon with a minimum depth of 100m and a maximum depth of 200m, given
the user-specified depth bins for this example. Thus, this shape outlines an area
for which the depth measurements of the ocean are within 100 and 200 meters
(assuming the collected data are valid). More interestingly, the group of red isles
to the southeast are intersected with the large square with pink dashed edges,
once more using the intersection method of the Shapely library. These shapes
contain areas for which the depth is more shallow than 10m, and are shown with
red solid boundaries in addition to a semi-transparent interior color. Note how the
demonstration shows that the user may select any subset of shapes resulting from
an intersection (or any other spatial operation), as not all of the areas with the
same depth within the pink square are highlighted in red.

The optional colorbar to the right of the environment plot is enabled by calling
the colorbar method, and shows how the colors of the land, shore, and seabed
polygons correspond to the depth measurements as grouped by the defined depth
bins. The dark green is simply all land polygons with a height of 0 meters and
above relative to the mean sea level, as indicated by the upwards triangle shape.
The lighter green is however chosen to represent all data polygons labeled as shore
in the downloaded data sets, and is denoted as a value range between 0m and 1m
on the depth bar legend. The seabed depths in blue are intuitively increasing in
color intensity in a downward direction, down to the darkest depth at the bottom.
As indicated by the legend shape, the bottom layer (here at 300m) also contains
all depth measurements larger, or deeper, than its value. Note however that the
depths of the color legend are not required to be present in the drawn environment,

34

2.2. Methods

and is only dependent on the user-specified depth bins, for consistency.

Lastly, Figure 2.10 shows the same environment plot with a bounding box window
equal to the pink square of Figure 2.9, with no colorbar added and dark mode
toggled on by calling the dark_mode method. This optional darker view may aid
in providing starker contrasts for the color of the informational shapes and vessels,
as well as complying with the established industry standard for e.g. vessel and
environment plotting on commercial ship bridges during the night. Thus, this mode
remains activated for all remaining figures in this work for increased readability.

Planned paths

Path plotting is an essential tool for visualizing navigation and ship routes within
an environment. Figure 2.11 presents an example demonstration of a coarse planned

Figure 2.10: Example demonstration of a square dark mode view.

35

2. Application programming interface

Figure 2.11: Example demonstration of path plotting and additional overlays.

path shown in a dashed white line. The start position of a single vessel is displayed
in green, and the target destination (before docking) is added as a pink disk. These
straight line segments and supplementary shapes may readily visualize a vessel
route e.g. given by defined mission objectives or other subsequent and automated
path planning schemes. Moreover, a simple arrow pointing from the vessel’s start
position and to its target crosses a land mass or island located in between, high-
lighted in red. Additional visualizations such as these may be used to communicate
to the viewer e.g. how a path planning algorithm (Section 2.3.5) performs or utilizes
available data resources during execution, like in this example.

36

2.3. Example usage

2.3 Example usage

The following sections present example demonstrations of various API usage within
contexts for which the SeaCharts package is intended. The example usages include
plotting of trajectories (trails) and simulations of target vessels, visualization of
points of interest, intent, and safety domains, utilizing the interactive capabilities
of the API for fast ad hoc prototyping, line of sight calculation, and example appli-
cations within the fields of collision avoidance, path planning, online risk analysis,
and optimal control.

2.3.1 Trajectories and trails

For the rest of this chapter, a particular area along the coast of Norway is used
for demonstration purposes, in order to highlight the capabilities of the SeaCharts

Figure 2.12: Vessel mission area example (Google Maps - satellite view).

37

2. Application programming interface

package. Figure 2.12 shows an example view of a fjord area northwest of the ferry
dock of Halsa, at the border between the Norwegian counties Møre og Romsdal
and Trøndelag. For example, an interesting scenario is path or trajectory planning
on each side of the small isle group shown in the middle of the image, with regard
to risk analysis and energy consumption optimization purposes.

Figure 2.13 shows an example visualization of three different ship trajectories with
the same origin, in the environment presented in Figure 2.12. Each color represents
a separate trajectory, and are as the other shapes made semi-transparent in order to
more easily distinguish between overlapping trajectories, and to make the temporal
aspects of each ship path more discernible if vessel polygons overlap. The original
planned path for all vessels is represented as green lines with circular waypoints
through the isles strait. This straightforward usage provides the user with a basis

Figure 2.13: Example plot of three overlapping vessel trajectories.

38

2.3. Example usage

for plotting of vessel trajectories, which may be useful for risk analysis or more
advanced optimization visualization.

Another natural application of the package is to show several different types of
alternative paths or trajectories for a single ship, such as future predictions or past
trails of ship poses. Figure 2.14 presents a visualization of a planned ship path with
power blackout simulations at regular intervals. In the environment plot, yellow ship
poses are shown along a green pre-planned path with waypoints given as discs. Note
that in contrast to the ship trajectories of Figure 2.13, these ship poses are not
produced by simulation of a ship dynamics model, and are generated simply by
discretizing the planned path and calculating the appropriate ship heading between
each intermediate interval along the path using trigonometry. It is thus apparent
that the package is not dependent on any past or future (accumulating) inputs

Figure 2.14: Pre-planned path example with wind disturbance simulations.

39

2. Application programming interface

for plotting, and may be used quite flexibly for visualization of a large selection of
various objectives or information of interest at any time instant during the program
cycle.

The ship trajectories in orange are however in this example computed by setting the
ship velocity to zero at each intermediate waypoint, and iteratively calculating the
next ship pose given a simple ship dynamics model, including a wind disturbance
force driving the ship westward e.g. as a result of power blackout or machinery
failure. The wind direction and velocity are given in the bottom right corner. All
ship poses intersecting with seabed polygons of depths less than 5m are in this
example given a red color, for illustrative purposes. This combined visualization of
both pre-planned and simulated paths are shown in a single demonstrative display,
to further showcase the capabilities of the package.

Figure 2.15: Simple vessel path example with danger area disks.

40

2.3. Example usage

2.3.2 Control and simulation

For planning and/or control applications that require reduced complexity, the user
may wish to display information accordingly. Figure 2.15 presents a simple environ-
ment in which ship poses are replaced by a single dashed line denoting a planned
path, along with overlapping red disc overlays with various diameters. Such envi-
ronment plots may be useful for fast prototyping or simple problem formulations,
and are readily available by the provided package methods. The red overlays may
e.g. represent abstract circular grounding obstacles for proof-of-concept planning
algorithm research [38], allowing for simple radius-based proximity calculations and
faster algorithm computations.

For more advanced usage, Figure 2.16 presents a snapshot of a larger temporal

Figure 2.16: Visualization example with red local danger areas and yellow arrows of
minimum distances to observable grounding obstacles.

41

2. Application programming interface

simulation run exported as the graphics interchange format (GIF), showcasing how
the spatial operations provided by the Shapely package may be used to visualize
dangerous or hazardous areas calculated based on a dynamic horizon radius around
the ship. The horizon is shown as a white disk with a radius of 1.5 km around the
cyan pose of the ship, and represents the red dynamic extraction window from
Figure 2.1. Similarly to the pink disk of Figure 2.5, the horizon is also here made
excessively small for demonstration purposes only.

The red regions shown inside the disk are generated by first taking the intersection
between the circular horizon and all areas with depths less than the maximum
ship draft of 5m, adding a spatial safety buffer of 30m, and extracting the convex
hull from each resulting polygon. This is done to demonstrate that the principle
of which areas are considered hazardous or impassable is entirely decided by the
user.

A green arrow is shown pointing to a target location along some route through
the strait. Moreover, the yellow arrows pointing from the ship center to the closest
point on each grounding obstacle are calculated by the Shapely method near-
est_points. Notice however that there is no yellow arrow pointing toward the
smallest red shape, as that polygon is not labeled "observable" by the ship as a
result of the larger red polygon between them. This may be verified in a user-
defined algorithm by e.g. utilizing the Shapely method intersects on each present
obstacle shape with respect to the straight line of sight between the ship and any
other obstacle.

2.3.3 Collision avoidance

In addition to the concepts related to anti-grounding described in previous sec-
tions, a user may also visualize how an autonomous or controlled ship perceives
and/or interacts with other vessels within its vicinity. Figure 2.17 demonstrates how
the positions and headings of nearby vessels are used to construct safety domains
[28] for each corresponding vessel pose based on given proportional parameters
and an ownship horizon. Here, the red overlays highlight only physical landmasses
disregarding seabed depths, and the yellow arrows are pointing toward all safety
domains of any nearby vessel within the horizon. Notice how in this example the
safety domains of each vessel shown in orange are scaled with its own velocity vec-
tor by some factor. Thus, the distant ship in pink has its safety domain polygon
visible within the ownship horizon due to a significantly high velocity.

Another example demonstration of vessel safety domains with respect to collision
avoidance is presented in Figure 2.18, serving as a base of discussion for the fol-
lowing section. The user is referred to the SeaCharts Readme for further usage
details.

42

2.3. Example usage

Figure 2.17: Vessel safety domains visualization within ownship horizon in orange, land
obstacles in red and yellow distance arrows.

2.3.4 Interactive mode

In addition to the shape plotting methods described in the previous section, the
SeaCharts package also includes two interactive programs; ownship and path plot-
ting. Figures 2.18 and 2.19 show example plots during such interactive sessions.

Controllable ownship

In order to easily plan around or estimate the outcome of various scenarios of
interest, the user may activate a controllable ownship to move around in the en-
vironment using keyboard keystrokes. Figure 2.18 exchanges the circular ownship
horizon of Figure 2.17 for a larger ownship domain split into sectors, based on the
concept of navigational lights. Here, the safety domain polygons of nearby vessels

43

2. Application programming interface

Figure 2.18: Interactive ownship visualization with alternative safety domains for vessels
within a sector-based horizon.

are of constant size, and are colored according to their orientation with respect to
the cyan ownship.

The diamond-like ship horizon polygon is constructed in a fashion similar to the
principles of a vessel’s navigation lights, split into seven subregions according to
the orientation of the navigation lights on the vessel: The starboard side has two
regions in green and lighter green respectively from the forward axis of the ship and
to the 112.5◦ mark, and the red regions are similarly mirrored on the opposite port
side. In white, the aft direction is split into three such that one may differentiate
between objects located within the different subregions relative to the heading of
the ship.

44

2.3. Example usage

The orange triangles denote the closest point of any selected type of polygon located
in each subregion, if it exists. In this example, the user has chosen the seabed layer
with 10m depths. All seabed, land, or shore polygons with depths less than 10m
within the horizon diamond of transparent white are consequently highlighted in
tints of green, red and white according to their corresponding subregion color.
Thus, there are exactly seven arrows (two overlapping) pointing toward each of
the identified regions of different navigation light colors, calculated and stored in
a simple CSV file during runtime. The application or user in question is at liberty
to freely decide how these closest polygon points are to be utilized for further
interpretation. The ownship, arrow triangles, nearby vessels and horizon hazards
may all be toggled off and hidden from the environment, if desired. Additionally,
the size and proportions of the vessel horizon and hazardous depth filter may be
dynamically adjusted during the interactive session by using keyboard keys.

Figure 2.19: Interactive ownship and paths visualization, with original waypoints in
yellow and a less crude path shown in pink.

45

2. Application programming interface

Path drawing and manipulation

Figure 2.19 presents another snapshot of an interactive session. Here, two indepen-
dent examples of planned paths are drawn between the same ownship and nearby
vessels from Figure 2.18. One may view the larger yellow path as the coarse ship
path planned for the ship through the isle strait, for which four separate waypoints
are given. These waypoints may be decided or planned as a subset of a larger mis-
sion objective from port to port, expanding further into the environment at either
side. The denoted waypoints demonstrated in Figure 2.19 are part of a subplanning
problem constrained within the environment shown, with the ownship horizon and
hazards toggled off for clarity.

The smoother path in pink may furthermore show how mission control or the
autonomous planner aims to follow the main yellow path, in which the time intervals
are shorter and the resulting trajectory has a higher resolution. Based on some given
operational costs or thresholds, an algorithm may e.g. produce a more detailed and
smooth path compared to the coarse main path for a given part of a larger route.
Notice how the path in pink attempts to avoid the safety domain of the blue vessel
(as shown in Figure 2.18), creating another significant deviation from the intended
path.

The path waypoints for both colors created by the user during the interactive mode
are stored in CSV files, and the package may conversely plot paths given by an
external program through simple reading of these files. Additionally, the user is
able to both move and delete existing path points at any location by appropriate
mouse and keyboard commands, allowing for flexible makeshift planning during
testing or programming of e.g. ANS.

2.3.5 Path planning

In addition to makeshift planning or prototyping during interactive sessions, the
user may also want to display or showcase autonomous path planning e.g. produced
by an ANS during or after simulations. Thus, an example path planning algorithm
as well as examples of information visualization is presented in this section.

For demonstration purposes, a simple path planning algorithm for constructing
a tree of possible route alternatives between two waypoints is presented in Algo-
rithm 1. Note that it is not intended to be a complete path planning algorithm,
but is merely included in this work to showcase example usage of a selection of
SeaCharts methods. The algorithm is given a set of grounding obstacle polygons
G, a safety distance ∆ds, an initial starting waypoint σ, and a single end tar-
get waypoint χ to which a path with several potential route alternatives is to be
planned. The grounding obstacles G may be any two-dimensional polygons of arbi-
trary shape with any optional depth(s) of interest, and is defined by the user as an
input to the algorithm. Similarly, the start point σ may be any point e.g. along a
route or the current position of a vessel, the end point χ may be any user-selected
target point, and ∆ds is defined as any desired buffer distance.

46

2.3. Example usage

Algorithm 1 PlanRoutes
Input: grounding obstacles G, safety distance ∆ds,

start point σ, end point χ
Output: binary tree R of alternative routes from σ to χ

procedure PlanRoutes(G, σ, χ)
H ← convex hulls of all polygons in G
I ← dilate H by ∆ds
J ← spatial unions of all polygons in I
K ← convex hulls of unions J
ρ← straight line segment from σ to χ
R← new tree of line nodes with root ρ
while ∃P ∈ K intersects ∃ρ ∈ R do

P ← largest intersecting polygon
ρ← remove intersecting line from R
V ← visible vertices of P
Λ, Γ← group V into left and right wrt. ρ
λ, γ ← vertices of Λ and Γ farthest from ρ
δ ← start point of ρ
α1,2 ← linear line segments from δ to χ via λ
β1,2 ← linear line segments from δ to χ via γ
R← add α1,2 and β1,2 as new line nodes

end while[0]
end procedure

Figure 2.20 shows an example in which a vessel intends to navigate around a
collection of smaller isles, i.e. the set of grounding obstacles G. The start point σ
is represented by the vessel hull in cyan, and the end point χ is denoted by the
yellow disk. The initial route path ρ intersecting G is shown as a yellow line from σ
to χ. In this example, G is defined by extracting all nearby areas of seabed depths
< 10m, which consists of the union of all dark gray island masses as well as the
light blue ocean polygons sharing at least one edge with (and fully encompassing)
the land masses.

An initialization phase of six steps sets up the algorithm before the main loop is
initiated, and consists of the following. The convex hulls H of all polygons in G
are computed by accessing the Shapely property convex_hull, and the resulting
new set of polygons H are subsequently dilated by the safety distance ∆ds (here
defined as 50m), using the Shapely method buffer to produce the polygon set of
I. In Figure 2.20, the pink overlay is isolated by selecting all (in this case two)
polygons of I that intersect the initial route line segment ρ, for the purpose of
visualization only.

The next step calculates the spatial unions J of all polygons in I using the Shapely
method unary_union, such that any overlapping polygons are merged. The con-
vex hulls K of J are lastly computed similarly to the first step, yielding the final

47

2. Application programming interface

Figure 2.20: Two overlapping polygons from the set of polygons I, which overlap the
initial straight line route ρ between start point σ and end point χ.

set of polygons to be used in the main loop. This is done to potentially save a
significant number of subsequent algorithm iterations, by reducing the number of
considered polygons and disregarding all non-convex areas contained within or be-
tween the dilated (larger) obstacle polygons of I. The only such polygon in K
intersecting ρ is shown as the pink region in Figure 2.21, demonstrating how the
group of isles is reduced to a single convex polygon. Lastly, the initial straight line
segment ρ (shown as the yellow line in Figures 2.20 and 2.21) is defined by the
start point σ and the end point χ, and a new binary tree R with ρ as its root node
is created.

After initialization, the main loop of the algorithm identifies the largest (if any)
polygon P ∈ K that intersects with any line segment ρ ∈ R and extracts all visible
vertices V of P , filtered as described in Section 2.3.6. Next, these vertices are split

48

2.3. Example usage

Figure 2.21: Main loop step visualization of the path planning algorithm.

into two sets of left and right (Λ and Γ, respectively) based on their positions
with respect to the line segment ρ. These are shown in Figure 2.21, given the
colors red (port) and green (starboard), respectively. This grouping is computed
by constructing a triangular polygon between σ, χ and each vertex, in that order.
If the resulting polygon is counter-clockwise oriented (asserted using the Shapely
method object.is_ccw), the vertex is located on the left side of ρ, and vice versa.

The vertices with the maximum distance from ρ in each group (shown in Figure 2.21
as cyan perpendicular arrows from ρ to each respective vertex) are selected as the
new intermediate route waypoints λ and γ, i.e. the minimum distance required to
circumnavigate the visible part of the obstacle P at each iteration. These waypoints
are used to construct two separate splines of straight lines α and β consisting of
two linear line segments each, from σ to χ via λ and γ.

49

2. Application programming interface

These new line segments are subsequently added to the root node of the R tree,
leaving two new leaf nodes of line segments sharing the same end target point at
χ. If any of the line segments in the resulting tree intersects with any polygon P
of K, this process is repeated for that particular line segment, potentially creating
more branching nodes along its respective route alternative.

Note that redundant further branching along one side of the obstacle is prevented
by the fact that all vertex candidates in that special case are sorted into the same
Λ or Γ set. The end result of the algorithm for the demonstrative example case is
presented in Figure 2.22, in which two route alternatives in red and green have been
constructed with several intermediate waypoints, generated by repeated iterations
of the main loop of the algorithm. These path alternatives may subsequently be
used by other navigational optimization schemes, e.g. to select the optimal path

Figure 2.22: Path planning end result visualization of two alternative routes.

50

2.3. Example usage

with respect to resource consumption or time. Thus, several relevant methods and
visualization capabilities of the SeaCharts package is demonstrated.

2.3.6 Visibility-based enclosing circles

Throughout development of various applications such as ANS, simplifications may
be implemented in order to facilitate faster computation. Advanced shapes such
as polygons with many vertices or irregular forms can be transformed into circular
approximations, such that only a single point in space along with a radius can be
used for rapid spatial calculations in an otherwise complex environment. This may
be useful for formulating convex constraints and optimization costs.

Extending this further, any complicated environment may be closely approximated
through disjoint or overlapping sets of circles or disks of various desired resolutions.
Consequently, it may be useful to demonstrate an approximation technique for
simplifying polygons into circles, using available methods of the SeaChart package.

Figure 2.23 presents the results of the example algorithm EnclosingCircles, which
calculates local polygon approximation circles analogous to the concept of minimal
enclosing circles, based only on the currently visible shoreline from any given ship
position.

Algorithm 2 outlines an overview of the construction of the visibility-based en-
closing circles. Similarly to solving the smallest-circle or minimal enclosing circle
problem, the algorithm attempts to construct an enclosing circle that spans all

Figure 2.23: End result demonstration of overlapping visibility-based enclosing circles.

51

2. Application programming interface

Algorithm 2 EnclosingCircles
Input: grounding obstacles G, horizon disk D,

ship center s, distance buffer ∆d
Output: enclosing circles C of obstacles as seen from ship

procedure EnclosingCircles(G,D, s,∆d)
C ← ∅
I ← spatial intersection of G and D
for all P ∈ I do

K ← ∅
H ← convex hull of P
V ← remove nonvisible vertices from H
for all combinations of v1, v2, v3 ∈ V do

b1 ← perpendicular bisector of line v1-v2
b2 ← perpendicular bisector of line v2-v3
p← intersection point of b1 and b2
r ← distance between p and v2 + ∆d
c← circle with center point p and radius r
K ← candidate circle c

end for
C ← max(K) w.r.t. open water*

end for
end procedure

*area of unobstructed water between ship and circle

of the visible vertices of a grounding obstacle (i.e. island or land) polygon within
a relatively small horizon circle around the ship, such that the overlap between
the area of the open water seen from the center of the ship and the constructed
circle is minimized. Inversely, the open water seen between the ship and the con-
structed circle is maximized, such that there is minimal discrepancy between the
constructed circle and its enveloped polygon. This is based on the assumption that
the enclosing circles should map to its original polygon most accurately along the
shoreline closest to the ship, as viewed by the perspective of the onboard navigator.
Thus, for short term obstacle avoidance purposes, only the immediate surrounding
grounding obstacles are acknowledged, disregarding unnecessary considerations of
land masses hidden behind obstacles the ship might potentially hit if moving in
any straight line from its current position.

Figure 2.24 presents a diagram showing some of the variables from Algorithm 2
for an example of a single non-convex grounding obstacle ∈ G. The algorithm is
firstly initialized by intersecting all grounding obstacles (land and shore polygons
in this example) with the dynamic horizon disk D, producing a new set of polygons
I. In Figure 2.24, the resulting example polygon is shown in red color, in which
the original grounding obstacle with eight vertices is intentionally clipped by the
horizon disk D (here shown as a quadrant) in dashed lines. In Figure 2.23, however,
the entire environment is chosen as the horizon given to the algorithm. In the main

52

2.3. Example usage

b2

b1
p

v3

v2

v1

∆d

s

Figure 2.24: Diagram of the construction of perpendicular bisectors in Algorithm 2,
with open water* shown in green, I in red, H as the union of red and orange, and the
resulting enclosing circle c in blue.

loop, each polygon P is used as a basis to compute its individual enclosing circle.

In order to reduce the number of vertices for further computations, the convex
hull H of P is calculated – concave crevices or pockets of any polygon are ignored
for high-level navigation purposes. The resulting polygon may be identified as the
union of the red and orange regions in Figure 2.24. Thus, it is immediately clear
why all polygons are trimmed along the horizon boundary. In a situation in which
there exists e.g. a land mass significantly encompassing the current ship position
such that the vessel is located within a non-convex crevice, the convex hull of this
polygon would remove the feasible navigation area of interest in its entirety.

Moving forward, only visible vertices V of H are considered, in accordance with the
principle of disregarding all obstacle topology hidden behind the closest shoreline in
any direction from the ship center s. The visibility of each vertex is readily examined
by asserting that the line constructed from s to the vertex in question does not
intersect the interior of H, not including its exterior (boundary). In the simple
example in Figure 2.24, the only visible vertices are v1, v2, and v3 exactly. The
secondary inner loop repeats the final steps of the procedure for any combination
of three vertices from V , i.e. all possible ways to construct two lines from three
visible obstacle vertices.

53

2. Application programming interface

Next, perpendicular bisectors b1,2 for both visible vertex lines between v1 and v2,
and v2 and v3, respectively, are calculated. By definition, b1,2 are perpendicular
lines passing through the midpoint of the pair-wise vertex lines, and as such are
extended in each direction with respect to the original environment scope. Thus,
the intersection point p between b1 and b2 is in general computable, unless the
vertex lines are parallel. If this occurs, the candidate is silently disregarded.

Lastly, a candidate circle c is constructed from the intersection point p as its center
point, and the radius r of c is set equal to the distance from p to v2 plus the given
input distance buffer ∆d. All of the enclosing circles constructed by the inner loop
are stored in a set of circle candidates K, ultimately sorted by the area of open
water left between the ship and the obstacle by each c (shown in green). The more
open water is still remaining between the ship and the constructed circle, the more
accurate the circle approximates the obstacle boundary shape given the perspective
of the ship at the current time instant. The circle with the maximum area of
unobstructed water between the ship and itself is added to the set of enclosing
circles C.

The results of Algorithm 2 may be verified in the example demonstrations dis-
played in Figures 2.23 and 2.25, with different reference points as ship centers. In
Figure 2.23, the convex hulls of each polygon considered in Algorithm 2 are shown
in red, and the end result enclosing C are shown in yellow. Green polygons high-
light the visible "open water" between each red convex hull and the ship center,

Figure 2.25: End result demonstration of filtered visibility-based enclosing circles and
field of view visualization.

54

2.3. Example usage

i.e. the water surface between all visible shorelines as seen from the ship. It is clear
that every vertex of visible land or obstructed water is strictly contained within
the horizon disk D, and that each obstruction polygon is assigned exactly one en-
closing circle. Note however that the entirety of the convex hull of each grounding
obstacle need not be fully enclosed by the resulting circle, as is slightly discernible
on the second small isle from the west boundary of the environment. Using this
method, any radial sector around the ship not covered in green or yellow is in effect
considered completely open water, given the specific horizon and ship center.

This intuitive interpretation and visibility classification may also be useful for field
of view procedures, e.g. simulating radar images of a ship’s surrounding envi-
ronment. By identifying all visible shoreline edges within the horizon, one may
construct and apply radar-based techniques to a separate layer of the simulated
environment for additional situational awareness and decision-making algorithms.
Figure 2.25 shows an example visualization in which a different reference ship center
is used to produce a filtered view of the resulting enclosing circles and open waters
according to the principle of sight lines, further demonstrating the capabilities of
the SeaCharts package.

Here, all minor circles fully encompassed in or located behind other circles are
disregarded, and the polygons of visible open waters in green are merged and
adjusted appropriately, producing the ship’s field of view with respect to nearby
obstacles. Notice how the circle of the large land mass to the east has changed
considerably given the relocated reference point, and that the small group of isles
to the west are hidden behind the yellow circles to the north of the plot.

Furthermore, the green open water polygons once again serve as the optimization
objective for the end results of Algorithm 2. In Figure 2.25, only the resulting
green region is considered unobstructed or navigable waters. This metric is in this
work selected on the premise that only the visible exterior of any nearby polygons
is considered e.g. with respect to reactive anti-grounding or collision avoidance,
and that any circular boundary completely covering an irregular shoreline should
minimize its overlap with otherwise unobstructed open water. The effects of this
area maximization are considered adequately sufficient, by comparison of the red
polygons against the constructed enclosing circles within the horizon.

2.3.7 Dynamic risk optimization

Research on autonomous ships involve (online) risk analysis with respect to anti-
grounding and collision avoidance. In this section, the package methods established
in the previous sections are further demonstrated by a numerical gradient-based
ANS. The example application utilizes functionality and attributes of the SeaCharts
package to construct an optimal control problem (OCP), transform it into a NLP
and repeatedly solve it during runtime. Algorithm 3 presents a simplified overview
of the main ANS procedure for demonstration purposes, based on MPC.

55

2. Application programming interface

Algorithm 3 ModelPredictiveControl
Input: ownship state x0, grounding obstacles G
Output: simulated ship trajectory along planned path

procedure ModelPredictiveControl(x0, G)
d(x, g)← Shapely distance-to-polygons method
f(x)← formulate risk cost function using d(x, g)
xs ← x0
while not arrived and risk < threshold do

Π← construct new NLP using f(xs)
s← optimal solution of solved Π
u← first control step of s
xs ← apply u to simulate next ownship state

end while
end procedure

A grounding risk cost function (recall Figure 2.7) is formulated mathematically as
f(x) where x is a state vector, based on the Shapely distance method applied
to all nearby grounding obstacles G. The distance function is denoted as d(x, g),
where g ∈ G is each individual grounding obstacle polygon within the horizon.
Additional mission constraints and risk thresholds for emergency management [38]
is considered outside the scope of this discussion.

In this work, f(x) =
∑

g γ ·exp(−
d(x,g)

λ)+w(x, g) where γ and λ are tuning param-
eters. This form is chosen to scale an abstract measure of grounding risk cost by
the distance to all grounding obstacles such that the risk gradient is exponentially
larger closer to land. w(x, g) is an additional wind disturbance cost to be discussed
later. In the environment plot of Figure 2.26, subsequent ship poses of a simulated
ship trajectory are shown in yellow.

The colored arrows attached to each ship pose are visual representations of the risk
gradients produced by each respective obstacle polygon on each side of the ship
path. The direction of each arrow at every time interval is equal to the direction
of the unit vector from the closest point of an obstacle polygon and to the center
of the ship. The magnitude or length of each arrow increases closer to land due to
the inverse exponential scaling, and may as such aid in demonstrating the effects
of the risk-based anti-grounding costs for autonomous control.

Figure 2.27 shows an alternate view of the same simulation plot, this time visualiz-
ing the wind-related risk gradients produced by the w(x, g) term of f(x) for a wind
disturbance with velocity equal to 10m/s and direction equal to 30◦ relative to the
North axis. Here, the risk magnitude is proportional to the (positive only) scalar
product between the wind disturbance vector and the vector from the ship to each
grounding obstacle g, and are similarly to previously displayed as risk gradients
directed away from the grounding obstacles [38].

56

2.3. Example usage

Figure 2.26: Distance-based risk gradient vectors visualization.

Note how the length of the vectors are only significant when the obstacles are lo-
cated in an onshore wind direction relative to the ship position, given the scaling
based on the scalar product between the wind vector and the vector to the near-
est point of an obstacle. Thus, the diminishing vector arrows defined by the green
(starboard) obstacle shown for the earlier time intervals of the simulation are neg-
ligible and consequently not visible during the later intervals. The scaling factors
used between Figures 2.26 and 2.27 are not proportional to the terms of the cost
function utilized by the ANS , and are adjusted for visual clarity in the example
demonstrations.

2.3.8 Path following

Figure 2.28 considers a more complex path following example in order to further
demonstrate potential usage of the visualization tools in the SeaCharts package.

57

2. Application programming interface

Figure 2.27: Wind disturbance scalar products visualization.

Here, the red ship pose is the initial ship state and the yellow ship poses are part of
a discretized pre-planned path (i.e. before optimization or simulations) calculated
by the ANS given four route waypoints in green (the last one off-screen), written
to the ship pose file for some time horizon and an appropriate sampling interval.
Similarly to Figure 2.14 in Section 2.2.5, the planned ship poses are calculated only
by simple trigonometry as an initialization step (warm start) of the MPC algorithm,
and may as well be valuable to visualize during algorithm demonstrations.

Another example view of the same environment and simulation run is shown in
Figure 2.29, in which the past ship pose trail in white is also shown behind the
red ship pose for the current simulation time step. Notice how the yellow future
predictions in this example have been computed to comply with the dynamics
of the ship, as a result of the trajectory optimization performed by the external
ANS. This simple two-part example highlights the flexibility resulting from the

58

2.3. Example usage

Figure 2.28: Vessel trajectory initialization along the pre-planned path.

visualization module of the SeaCharts package not being dependent on any past
or future inputs for plotting of temporal information, and is considered one of the
main contributions of this work.

The methods discussed above are focused on online analysis of distance-based risk
related to grounding obstacles. However, it is proposed that the anti-grounding ap-
proaches described in this section may similarly be applied to collision avoidance
e.g. based on vessel safety domains [28], given the general spatial formulations
presented and the methods available to the SeaCharts package [85]. If external
procedures for predicting or measuring velocities and/or intent of other vessels are
included in an ANS, polygon-based risk analysis techniques for grounding obsta-
cles may in general be fused with reactive collision avoidance methods to further
enhance the potential of autonomous path and trajectory planning for autonomous
ships.

59

2. Application programming interface

Figure 2.29: Vessel future predictions and past trail during MPC simulation.

2.4 Discussion

This section sums up some of the limitations and areas of improvement for the
developed API, as well as points that may provide the basis for future work.

The SeaCharts API is a Python-based package for spatial visualization and compu-
tation, targeted at providing methods for fast prototyping and efficient research. As
this work presents the very first version of this package, there is vast potential for
improvements. Specifically, the API currently only supports the UTM coordinate
system / map projection and the FGDB format for spatial data. Moreover, the
features that are inherently loaded by the package are currently defined to comply
with the feature labels defined by the Norwegian Mapping Authority. Note however
that these labels if desired may be added or replaced directly in the source code
after installation, for any feature names provided in the FGDB format. Lastly, the

60

2.5. Conclusion

installation process may for some be cumbersome if users attempt to install and use
the package in non-empty (virtual) environments, due to possible package version
mismatches or support conflicts. The package currently uses the Intel® oneAPI
Math Kernel Library [86] for Numpy/Scipy, which must be properly supported by
the environment using the API.

Given the current status of the SeaCharts package and the notes above, it is recom-
mended to continue the development of the API by improving upon its limitations,
as well as adding new features and interface methods. For instance, support for the
most commonly used coordinate systems or map projections (such as the equirect-
angular or plate carrée projection) may be useful to integrate into the package.
Similarly, support for other file formats for spatial databases may prove benefi-
cial to many potential users. Another suggestion for future work is to attempt
to streamline the installation process, e.g. by utilizing the Intel® Distribution for
Python. Several additional interface methods may also be added, such as e.g. conve-
nience methods for depth sampling at any location in the plane, and the possibility
to change the coordinates and size of the bounding box of the ENC main class
during runtime. These are just few of the potential changes and additions that
may be made to the SeaCharts package, in order to make the API useful and more
practical for researchers and developers within maritime path planning, optimal
control, and obstacle avoidance.

2.5 Conclusion

A shortage of versatile and open-source API with simple and user-friendly methods
for spatial visualization of maritime environments for research and development
has been observed in the literature. In an attempt to fill this need, the open-
source Python package SeaCharts was implemented and presented in this work.
The package includes demonstrated methods for reading and parsing depth data
of known formats, spatial operations for polygon merging and simplification, user-
specified features filtering and extraction, visualization of environments, vessels and
mission objectives, as well as interface methods for use by external programs such
as autonomous systems using spatial data for navigation. Additionally, algorithms
for enclosing circle approximations and simplified procedures for path planning
and optimization was presented in order to demonstrate potential usage of the
package. Ultimately, this API may prove useful for high-level autonomous path
planning, control, obstacle avoidance and simulation in maritime environments,
by facilitating combined usage of convenient spatial computation and visualization
methods for autonomous navigation.

61

Part II

Model predictive control

63

Chapter 3

Autonomous ship emergency
management

This chapter is based on the publication

[38] S. Blindheim, S. Gros, and T. A. Johansen, “Risk-Based Model Pre-
dictive Control for Autonomous Ship Emergency Management,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 14 524–14 531, 2020, 21st IFAC World
Congress. doi: https://doi.org/10.1016/j.ifacol.2020.12.1456

The method and simulations were developed by S. Blindheim, under the supervision
of S. Gros and T. A. Johansen. The first draft was written by S. Blindheim, and
was revised by S. Gros and T. A. Johansen.

3.1 Introduction

This chapter focuses on determining sequences of control actions to be taken in
maritime emergency situations, in which it is not deemed appropriate to – or the
ship is not able to – operate normally. The motivation behind this work is the ever-
increasing desire to further reduce both operational costs and risks during shipping
operations, particularly by moving personnel normally on board the vessel to on-
shore control centers. To achieve this, ships need increased autonomy and onboard
decision-making capabilities. MPC has shown great results for autonomous vehicle
steering [87], ship heading control [30], path following [31] and collision avoidance
[32], [33]. However, these systems usually have strictly defined operational con-
straints or limited available decision spaces in which they are explicitly allowed
to make autonomous decisions. Conditions such as these are normally the default
operational stages, like the transit phase of a fjord-crossing autonomous ferry. In
order to reach higher levels of autonomy, a more high-level supervisory system for
risk or threat assessment and decision-making [88]–[90] for maritime operations is
needed. Thus, the main purpose of this chapter is to investigate the use of MPC for
handling emergency situations that are normally taken care of by human opera-

65

https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1456

3. Autonomous ship emergency management

tors, through the use of some risk model and optimization-based decision-making.
The approach is summarized as follows. The ship control is performed using a
receding horizon approach, based on a dynamic ship model, a cost function and
operational constraints. Each term in the constructed cost function targets differ-
ent aspects of trajectory planning during normal operations and various emergency
scenarios. Specifically, the developed algorithm handles a selection of abnormal or
hazardous operational situations in which some degree of uncertainty is involved.
As such, the novel contribution of this work is to include a separate risk term
as an additional optimization cost, which makes it possible to address the un-
certainty inherent in emergency scenarios directly. This term combined with other
costs for resource management and mission objectives may collectively form a total
emergency management algorithm, capable of handling all of the presented scenar-
ios simultaneously. The resulting risk-based decision-making method may in turn
serve as a foundation for a decision support system for human operators and as an
autonomous navigation system for fully autonomous vessels.

3.2 Problem description

3.2.1 Scope and simplifications

The main objective of this work is to control the trajectory of a ship along a pre-
planned path in a challenging maritime environment, demonstrated by simulating
a crossing through a strait with grounding obstacles on both sides. A simplified
dynamic environment is used in this work, in which only variables related to the hor-
izontal movement of the ship position are considered. The ship model is equipped
with two freely rotating azimuth thrusters (one at the bow and one at the stern)
with given maximum power specifications, and wind and currents velocities are
assumed to be constant. No collision avoidance or sensor data quality handling
is considered in this work, as these concepts are assumed to be added as natural
extensions in a more exhaustive system [10]. Docking is also disregarded here, as it
may be viewed as a separate control mode. Lastly, the approach presented in this
work assumes that the ship and/or the operator is able to stop or react quickly
when the risk is too large. However, it is considered a trivial task to appropriately
increase the related risk coefficients to account for the stopping dynamics of the
anchor drop or other significant delays as a consequence of higher velocities. These
simplifications and approximations are used to develop a simple model serving as
a proof of concept.

3.2.2 Failure modes and emergency scenarios

A collection of scenarios are presented in Table 3.1 to showcase the proposed
method in this work:

66

3.3. Mathematical modeling

1. Impaired thrusters
In this failure mode, the propulsion system has reduced maneuvering capabil-
ities. No wind disturbances are assumed.

a) Both thrusters lose the ability to rotate for a period of time, leaving
the ship with constant thruster azimuth angles. Steering along the path
is achieved by changing thrust magnitude only, until azimuth rotation
capabilities are restored.

b) The bow thruster goes offline. Thus the MPC scheme must use reduced
degrees of freedom, i.e. the stern thruster only, to complete its mission.

2. Total blackout
The ship experiences a complete loss of propulsion due to a temporary power
blackout, until the crew is able to restart the engines. Moderate wind distur-
bances lead to drifting. If and when to drop the anchor is continuously assessed
by the algorithm.

a) If the ship recovers its propulsion capabilities before the grounding hazard
is too large, an alternative trajectory is calculated after drifting away
from the original path.

b) An anchor drop is triggered if the maximum grounding risk threshold
becomes violated.

3. Strong winds
The increased grounding risks due to exceedingly strong winds are assessed in
order to perform sufficiently safe control actions.

a) A reference scenario demonstrates how the added risk term contributes
to adjustments in the ship trajectory close to grounding obstacles.

b) Crossing the strait is deemed too dangerous due to strong winds. As a
result, the ship holds its position and waits for improved weather condi-
tions for some time.

c) The ship avoids the narrow strait in its entirety and opts to navigate
around the nearby smaller isles, as a result of an alternative risk cost
tuning approach.

Table 3.1: Demonstration scenarios

3.3 Mathematical modeling

3.3.1 Variables and reference frame definitions

First, the locally flat North-East (NE) coordinate frame {n} and the body coor-
dinate frame {b} are defined as presented in Figure 3.1. The variables are defined
as follows: x and y denote the position of the ship along the North and East axes,
u and v are the surge and sway velocities of the ship, X and Y are the surge and

67

3. Autonomous ship emergency management

f2

f1

a2

a1
v, Y

u,Xψ, r,N

y (E)
(N)

x

{b}

{n}

Figure 3.1: The model variables and coordinate frames used in this work.

sway forces of the ship, ψ, r and N are the yaw angle, velocity and moment of the
ship, and at =

[
a1 a2

]⊤ and ft =
[
f1 f2

]⊤ are the azimuth angles and propul-
sion forces of the ship’s stern and bow thrusters, respectively.

3.3.2 Ship model and dynamics

The model variables are given in Table 3.2. From (2.1) and (2.2) in [91], the reduced
three-dimensional ship kinematic and kinetics equations in the horizontal NE-plane
(disregarding Coriolis, wave, ballast, buoyancy or gravitational forces) are given as

η̇ = JΘ(η)ν (3.1)

ν̇ = M−1(τ + d−Dν) (3.2)

where d = τwind + τcurrent is the system disturbance vector. The ocean currents
forces τcurrent ≜ 0 in the example simulations presented in this work, for simplicity.
The wind forces are defined as

τwind =

 −cx cos(γw)AFw

cy sin(γw)ALw

cn sin(2γw)ALwLoa

 1

2
ρaV

2
w (3.3)

from [91], where Vw is the wind velocity relative to the ship’s velocity, γw = ψ −
ψw − π, and ψw is the clockwise wind angle relative to the North axis. The wind
coefficients cx, cy and cn are in this work set to 0.7, 0.8 and 0.1, respectively. See
Section 3.5.3 for all remaining model parameter definitions and their given values,
and see [91] for generalizations to other propulsion and steering configurations.

68

3.3. Mathematical modeling

Entity Symbol Elements

North-East ship position pn
b/n

[
x
y

]
North-East ship attitude Θnb

[
ψ
]

Ship position and orientation η

[
pn
b/n

Θnb

]
Body-fixed linear velocity vb

b/n

[
u
v

]
Body-fixed angular velocity ωb

b/n

[
r
]

Linear and angular ship velocities ν

[
vb
b/n

ωb
b/n

]
System state vector x

[
η
ν

]
Principal rotation matrix Rn

b (Θnb)

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
Ship pose Jacobian JΘ(η)

[
Rn

b (Θnb) 0
0 1

]
North-East linear velocity ṗn

b/n Rn
b (Θnb)v

b
b/n

North-East angular velocity Θ̇nb ωb
b/n

Thrusters transformation matrix
s∗ := sin(a∗) c∗ := cos(a∗)

T (at)

 c1 c2
s1 s2

−lxs1 lxs2

Body-fixed propulsion forces f b

b

[
X
Y

]
Body-fixed moment (torque) mb

b

[
N
]

Ship forces and moments τ T (at)ft =

[
f b
b

mb
b

]
Control input vector u

[
ft

ȧt

]
Constant damping matrix D diag(Xu, Yv, Nr)

Hydrodynamic added mass MA diag(Xu̇, Yv̇, Nṙ)

Rigid-body ship mass MRB diag(m,m, Iz)

Total model mass M MRB +MA

Table 3.2: Model terminology and definitions

69

3. Autonomous ship emergency management

3.3.3 Optimal control problem formulation

An OCP is defined as follows:

min
x(.),u(.)

∫ T

t=0

ϕ̃(x(t),u(t),θ(t)) dt

s.t. ẋ(t) = f(x(t),u(t),d(t))

h(x(t),u(t)) ≤ 0

x(0) = x0, 0 ≤ t ≤ T

(3.4)

where ϕ̃ is a scalar stage cost function, θ is a parameter vector, x0 is the initial
state, T is the prediction horizon, and ẋ is given by the system dynamics (3.1) and
(3.2). The constraints h(x(t),u(t)) are given as:

−fmax ≤ u1 ≤ fmax

−fmax ≤ u2 ≤ fmax

−ωmax ≤ u3 ≤ ωmax

−ωmax ≤ u4 ≤ ωmax

(3.5)

where u =
[
u1 u2 u3 u4

]⊤ from Table 3.2, and fmax and ωmax are the maxi-
mum propulsion force and rotational turning rate of the azimuth thrusters, respec-
tively. The solution to problem (3.4) will be deployed in a receding horizon fashion,
yielding an MPC scheme.

3.3.4 Nonlinear programming

Next, the model is discretized in order to solve the problem numerically. The con-
tinuous time variable t is divided into a time grid of N intervals, defined by discrete
time instants tk ∈ {t0, t1, ..., tN}. The system inputs are discretized as piecewise
constant over that time grid, i.e. uk = u([tk, tk+1]). The system state is discretized
using a numerical integration function xk+1 = Fk(xk,uk,dk), based on the widely
used Runge-Kutta 4th order method. The discretization allows one to treat (3.4) as
an NLP by defining a vector of decision variables

w =
[
x⊤
0 q⊤

0 u⊤
0 . . . x⊤

N−1 q⊤
N−1 u⊤

N−1 x⊤
N q⊤

N

]⊤ (3.6)

where qk is a vector of additional decision variables related to mission objectives
to be defined in Section 3.4.1. Additionally, a parameter vector comprised of var-
ious control settings, desired states and coefficients through time is denoted as
θ =

[
θ⊤
0 . . . θ⊤

N

]⊤. The only parameters considered in this work are

θk =

 sref
αstep

σ

 ∈ R2+3J (3.7)

70

3.4. Planning and decision-making

for each tk where sref is a constant reference transit speed and αstep is a path
progression parameter (see Section 3.4) across all N control intervals. The ground-
ing obstacles are modeled as a union of J circles. Thus, σ is the collection of all
grounding hazard vectors of the form

σj =

[
cj
rj

]
, cj =

[
xj
yj

]
, j = 1, ..., J (3.8)

where cj and rj are the center point and radius of each obstacle, respectively. The
resulting NLP is defined as

C(θ,x0) = min
w

ϕ(w,θ)

s.t. g(w) = 0

h(w) ≤ 0

(3.9)

where C(θ,x0) ∈ R is the minimum cost generated by a given set of parameter
values and initial conditions x0. The inequality constraints h(w) are given by (3.5),
and the equality constraints g(w) hold the system dynamics:

Fk(xk,uk,dk)− xk+1 = 0, k = 0, 1, ..., N−1 (3.10)

The cost function ϕ is defined and discussed in Section 3.4.2. Note that the dis-
cretization chosen here is based on the direct multiple-shooting approach [92]. Be-
cause of the nonlinear dynamics and since the obstacles yield a non-convex feasible
set, the NLP (3.9) is non-convex. As a result, the goal is to compute a feasible
and local optimal solution for a given control horizon N and initial conditions.
The preplanned path and ship speed reference parameters are used to calculate a
reasonable initial guess for the ship trajectory. Rather than using hard constraints
in addition to the ship dynamics and the natural input constraints, only costs bal-
ancing is utilized to achieve the desired control behavior. This ensures feasibility
of the NLP solutions.

3.4 Planning and decision-making

The decision-making of the MPC algorithm consists of two main tasks: the plan-
ning of the ship trajectory achieved by propulsion and steering control, and the
decision to drop the anchor in emergency situations. If the planning algorithm
is unable to produce a trajectory that does not violate the given grounding risk
thresholds, emergency procedures are triggered in order to minimize damages and
costs – such as dropping the anchor. It may be noted that this can also be achieved
by a formulation based on mixed-integer programming, allowing for more complex
decisions to be made during emergency situations. The following subsections de-
scribe the chosen path-following method, as well as how different mission objectives
are evaluated and weighted in order to produce desired ship trajectories.

71

3. Autonomous ship emergency management

3.4.1 The path following method

There are many different methods readily available for following a preplanned path,
e.g. by using a predefined stride each time interval along the path, or a line-of-sight
method [93]. A time-invariant method is chosen in this work to generate consistent
and robust solutions at any time interval. First, a preplanned path is chosen by
designing a piecewise linear (spline) function given an initial position, discrete
intermediate points and a destination. It is assumed that the path is designed such
that fuel/resource consumption, time spent and distance traveled is considered
(close to) optimal for the given mission. Next, the reference path is parameterized,
giving the two-dimensional reference function

r(α) =

[
x(α)
y(α)

]
(3.11)

for calculating path points where α ≥ 0 is an advancement parameter acting as
a decision variable along the preplanned path, and x(α) and y(α) are piecewise
linear functions. As such, advancing along the path is a simple matter of increasing
α. The desired ship speed along the path is furthermore established by penalizing
ship transit velocities larger than the given reference speed sref . This is achieved
by minimizing a speed penalty decision variable β, where

u2 + v2 ≤ s2ref + β, 0 ≤ β (3.12)

Collecting the additional decision variables into a vector for each time step through
the control horizon N yields

qk =

at

αk

βk

 , k = 0, 1, ..., N − 1 (3.13)

and the NLP decision variable vector w is well defined.

3.4.2 Objectives and cost function definitions

In order to complete the NLP, a cost function to be minimized is constructed. In
this research, the cost function is heuristically defined with the purpose of pro-
ducing a safe ship trajectory that fulfills the mission objectives. The primary cost
function is denoted as

ϕ(w,θ) =
N∑

k=1

ξ(xk, qk, qk-1) + ϵ(uk,uk-1) + ρ(xk,θk) (3.14)

where the individual cost terms are defined as follows:

72

3.5. Implementation and settings

i. The path progression cost function

ξ(xk, qk, qk−1) = κ⊤

 ||r(αk)− pk||2
||αk − αk−1 − αstep||2

βk

 (3.15)

where κ > 0. These terms are responsible for driving the ship position pk (trajec-
tory) along the precomputed feasible path, through the constant path step param-
eter αstep and the reference function r(αk). The βk term penalizes violations of the
transit speed reference as detailed in Section 3.4.1. It is recommended that αstep

is chosen such that sref ≈ αstep/t∆, where t∆ is the sampling period of the NLP.

ii. Next, the control input cost function is defined as

ϵ(uk,uk−1) = u⊤
k Λuk + (uk−uk−1)

⊤∆(uk−uk−1) (3.16)

where Λ = diag(λ) > 0 and ∆ = diag(δ) > 0 are tuning matrices. These terms
collectively help conserve power and reduce the input variations, consequently low-
ering environmental and operational costs.

iii. Finally, an ad hoc risk cost function is introduced to keep the risk levels present
in the system acceptable:

ρ(xk,θk) =

J∑
j=1

(µ1 + µ2χjVw)e
−ζ(||cj−pk||−rj) (3.17)

with µ > 0. Moreover, χj = max(0, ι̂j · ω̂) where ι̂j is the unit vector from the ship
to each obstacle center and ω̂ is the unit wind direction vector. Note that the risk
costs are not formulated as explicit constraints to ensure safe distances between
the ship and obstacles. Rather, this formulation utilizes violatable risk costs in
order to acknowledge that grounding risks may still be evaluated even if they are
very high. Using exponential terms for the obstacle or grounding risk costs serves
to strongly dominate the other objectives in the cost function, heavily favoring
staying safe from grounding obstacles. The grounding risk sensitivity constant ζ
may for this purpose be tuned for optimal behavior. Lastly, the dot product scales
the wind force contribution toward the land obstacles in any orientation around
the ship, i.e. increasing the risk close to an obstacle to the east of the ship if the
wind is coming from the west, etc. Negative dot products are however set to zero,
disregarding favorable winds with respect to perceived risks.

3.5 Implementation and settings

3.5.1 MPC scheme overview

Pseudo-code for the complete MPC algorithm is presented in Algorithm 4, and
a more detailed rundown is as follows: Vectors, matrices, cost functions and cus-
tom functions for numerical integration are set up using the CasADi symbolic

73

3. Autonomous ship emergency management

Algorithm 4 MPC algorithm
Ensure: optimal control input

initialize empty solution
while not arrived at destination do

if any thrusters online then
construct NLP ← last state
optimal states and inputs ← solve NLP
current state ← extract first optimal step

else
current state ← simulate drifting ship

end if
if risk > accepted maximum threshold then

activate emergency protocol
else

solution ← current state and control inputs
last state ← current state

end if
end while

framework [39]. The implemented MPC module then solves one NLP for each con-
trol interval, using the nonlinear optimization package Interior Point OPTimizer
(IPOPT) and the linear solver MUltifrontal Massively Parallel sparse direct Solver
(MUMPS). However, if all inputs are constrained to zero, i.e. during the drifting
ship or blackout scenarios, an open loop simulation is used instead. Finally, the
total risk at each time step is evaluated through the risk cost model from (3.17). If
the risk level rises above a given maximum acceptable threshold, the algorithm is
terminated with the assumption that emergency procedures such as remote control
or automatic drop of anchor would be applied.

3.5.2 Initialization and performance factors

Due to the non-convex nature of the control problem, the initial values given to
each NLP for solving have a significant impact on its solutions. In this work, the
current state and input vectors, the previous solution as well as the internal solver
parameters are given to the next NLP to be solved as initial guesses (warm start),
as described in Algorithm 4. However, for the first NLP solve, initial guesses are
generated by assuming that the ship will follow the path with a velocity equal to
the given reference transit speed. The sampling period of t∆ = 30 s was chosen to
have a reasonable balance between the slowest time constant of the ship dynamics
and a desired long prediction horizon. Longer sampling periods give faster MPC
tuning and testing, but for certain time-sensitive scenarios however, this may be
inadequate. It is recommended that this interval should be reduced if used in
applications. Similarly, a control horizon of N = 40 was chosen, resulting in a total
of 570 decision variables for each NLP. This was set by assessing the solving time of
the algorithm with respect to the quality of the computed solutions. Increasing the
control horizon past this point seemed not to improve the NLP solutions noticeably,

74

3.5. Implementation and settings

and the average solving time of 2 s across all scenarios was deemed appropriate
compared to the total prediction horizon of 20 min. If the NLP solver does not
converge to a solution within the maximum limit of 300 iterations, the last solution
calculated is used. This maximum iteration limit was set such that the maximum
solve time during any emergency scenario would be 27 s < t∆.

3.5.3 Model parameters and values

The model parameters and MPC settings are given in Table 3.3, based on the di-
mensions and onboard systems of a cargo vessel with a maximum surge velocity of
∼15 knots. The rest of the initial and final values are all set to zero. The remaining
cost coefficients of κ, λ, δ, µ and ζ are set constant throughout all scenarios, and
were empirically determined in order to produce desired trajectories: The path fol-
lowing and speed-related costs were first established to encourage path progress.
Next, the input force costs were tweaked to smooth out gradients and reduce power
consumption. Finally, appropriate risk costs were estimated by assessing the result-
ing trajectories during various wind angle and velocity configurations. This ad hoc
evaluation approach should however be replaced by more systematic and robust
methods for approximating or learning risk coefficient values in future works.

3.5.4 Visualization

Figure 3.2 illustrates how the slope of the separate risk cost term influences path
planning and decision-making. The risk values along the z-axis are given as per-
centages of the maximum risk cost present at a selected time instant, and the x
and y axes are given in meters. The surface plot indicates how the gradient of the
obstruction- and disturbance-related terms naturally push the trajectory of the

Parameter Symbol Value Unit
Path step size αstep 75 m

Overall ship length Loa 75 m
Thruster arm lengths lx 33 m

Transit reference speed sref 2.5 m/s
Frontal projected area AFw 110 m2

Lateral projected area ALw 624 m2

Max thruster force fmax 200 kN
Max thruster azimuth rate ωmax 2.0 rpm

Viscous damping force surge Xu 5.0 × 101 kN s/m
Viscous damping force sway Yv 2.0 × 102 kN s/m
Viscous damping force yaw Nr 3.0 × 104 kN s/rad

Hydrodynamic added mass surge Xu̇ 4.4 × 104 kg
Hydrodynamic added mass sway Yv̇ 8.6 × 105 kg
Hydrodynamic added mass yaw Nṙ 4.9 × 107 kgm2

Rotational inertia yaw Iz 9.8 × 108 kgm2

Rigid-body ship mass m 1.5 × 106 kg

Table 3.3: Model parameters

75

3. Autonomous ship emergency management

ρ

yx

Figure 3.2: Surface plot of MPC risk costs at some time instant.

ship (the dashed line) down into the "valley" of lower costs between two grounding
obstacle examples. This topography is similar to that of artificial potential fields
and is unique for each time step, as well as for each predicted time step into the
control horizon N . The risk term surface thus evolves dynamically based on the
current ship position and the disturbance circumstances influencing the ship. That
is, if the ship moves closer to an obstacle with wind disturbances directed toward
it, the slope of the risk cost around that obstacle steepens and rises accordingly.
Figure 3.3 presents the usage of an early version of the ENC API module SeaCharts
[37] for visualization of the scenario simulations, which displays polygon data of a
Norwegian fjord area shown using the Mercator projection. A color bar indicates
the ocean depths for the surrounding maritime environment, here used for display

Figure 3.3: Visualization of the circular obstacles used by the MPC algorithm during
cost function calculations.

76

3.6. Results

purposes only. The preplanned reference path is shown as a dashed gray line. Ad-
ditionally, red circles mark the grounding obstacles σ used by the MPC for cost
function calculations. In this work, these obstacle circles are static, and are delib-
erately made simplistic for proof of concept. Methods for dynamic calculation of
grounding areas more shallow than the maximum draft of the ship should however
be used in applications. This is left to be further expanded upon in future works.

3.6 Results

Ceasing normal operations mid-transit is considered a costly action. The main
goal of the decision-making algorithm is thus to assess and optimize the risk lev-
els against other operational costs at each time interval, and determine to what
degree the ship should follow its initial route within some safety threshold. This
section presents the MPC performance of seven scenarios in a simulated maritime
environment, to demonstrate the capabilities of the algorithm during extreme cir-
cumstances. System stability follows in general from optimality of solutions and by
utilizing an adequately long horizon [94], as well as through low-level controllers
used by the ship’s propulsion subsystems. Figures 3.4 to 3.6 and 3.8 show the
generated ship trajectories for the investigated scenarios, plotted every 2 min for
visibility. Figure 3.7 shows time series plots of the azimuth thrusters during run-
time.

3.6.1 Impaired thrusters

The defective propulsion system failure mode is split into two separate faults, with
no wind disturbances for analysis purposes. Figure 3.4 shows both scenario sim-
ulations in red and yellow, as well as a trajectory during normal operations in
cyan, for reference. It may be noted how the normal operations trajectory deviates
slightly from the planned path, due to imposed thruster input costs and the inter-
nal prediction horizon each time step. This is a result of the preplanned piecewise
reference path being linear and non-optimal. The red ship trajectory depicts the
scenario (1.a) in which the azimuth thruster rotators are disabled after 5 min e.g.
due to an auxiliary system fault, effectively leaving the ship with limited steering
capabilities for a time period. However, the algorithm is capable of adjusting the
thruster propulsion forces appropriately to continue along an almost identical tra-
jectory until the thruster rotation capabilities are restored, by utilizing the current
azimuth angles and varying their propulsion output appropriately. Straying away
some distance from the path and closer to the shoreline is considered sufficiently
safe, and the ship thus continues ahead despite the imposed system faults. In the
second scenario (1.b) shown in yellow, the bow thruster shuts down after 3 min,
and stays offline until the ship reaches its destination. It is nevertheless apparent
that the ship is still able to continue its voyage safely and almost as quickly as the
nominal trajectory, even with only the stern thruster available. Note that the algo-
rithm has no access to information about future faults, and consequently is forced
to operate with only its current knowledge each control interval. It is considered
trivial to investigate less extreme scenarios than the total steering and propulsion
loss cases presented here.

77

3. Autonomous ship emergency management

Figure 3.4: Simulations during normal operations (cyan), a temporary loss of steering
power scenario (red), and a single offline thruster scenario (yellow).

3.6.2 Total blackout

In this failure mode, the ship experiences a power blackout and drifts due to mod-
erate disturbances. An open-loop simulation produces new states each time step
during this time period, as there are no available degrees of freedom through the
zero-constrained system inputs. If and when to drop the anchor is consequently the
only decision left to make in these circumstances. The act of dropping the anchor
is assumed to be an exceptionally costly action, and is thus postponed as long as
reasonably possible in order to give the crew a chance to restart the engines before
doing so. Both scenarios have Vw = 10m/s set constant for consistency and proof
of concept. Color-coded risk gradient vectors are added to the ship trajectory plots
every time step. These vectors show how the perceived risk cost penalizes staying
close to the shoreline during difficult weather conditions. The arrows have lengths
inversely proportional to ||cj − pk|| − rj , and are parallel to −ι̂j . Yellow to red ar-
row colors represent a medium to large scalar product χj , respectively. Figure 3.5
shows the first scenario (2.a) with ψw = 90◦ (east), demonstrating how the ship
may still salvage the situation and complete its mission if a blackout is recovered

78

3.6. Results

Figure 3.5: A temporary blackout and recovery scenario.

from quickly. Though the ship deviates from the planned path, the solutions of
the NLP solver are able to swiftly find their way back to resume the mission as
normal. The second scenario (2.b) with ψw = −90◦ (west) is shown in Figure 3.6,
in which the ship gets too close to the shoreline after a blackout. Thus, the risk
rises above the given threshold, and the anchor is ultimately dropped. Figure 3.7
contains the time series plots of the azimuth thrusters for each blackout scenario.
The time axis is given in minutes, and azimuth angles at for the stern and bow
thrusters are shown in green and yellow, respectively. The propulsion forces ft ap-
plied by the stern and bow thrusters are respectively shown in blue and red, given
as percentages of the maximum thruster force fmax.

3.6.3 Strong winds and risk cost tuning

The choice of specific cost tuning strategies play a critical part in both the trajec-
tory planning algorithm and the anchor drop decision-making. In these hazardous
scenarios with strong winds where Vw = 20m/s and ψw = 45◦ (north-east), it is
demonstrated in Figure 3.8 how particular risk cost tuning strategies may lead to
different desired behaviors. First, the cyan trajectory (3.a) shows a fully completed

79

3. Autonomous ship emergency management

Figure 3.6: A blackout too close to the shoreline, leading to an anchor drop.

transit. The risk level does not exceed the maximum threshold, and the algorithm
is allowed to continue as normal despite the increased perceived risk levels due
to greater wind disturbances. The second trajectory in red, however, (3.b) shows
how the ship alternatively may hold a position for some time and await improved
weather conditions. This tuning approach is based on a significantly increased em-
phasis on safety. Here, the ship is prohibited to pass the narrow strait due to too
high predicted risk levels introduced by the strong winds, until the wind veloci-
ties recedes after 25 min. This temporary dynamic positioning (DP)-like behavior
demonstrates some of the inherent versatility of the MPC scheme, due to the com-
bined steep gradients of the nominal grounding risk and the wind disturbance risk
from (3.17) creating a local minimum (in an undesirable crosswind pose due to
initial conditions), blocking the path progression forward. An appropriate system
improvement in this situation may be to also consider making an anchor drop if the
wait time exceeds some given time period. Alternatively, a second similar approach
may be applied, in which the control of the ship is given to a separate DP controller
if the opposing risk cost gradients rises above some threshold. The last scenario in
yellow (3.c) showcases a different cost tuning philosophy, in which the NLP solu-

80

3.7. Conclusion

Figure 3.7: Thruster inputs for the temporary blackout and blackout with anchor drop
scenarios, respectively.

tions steer the ship around the smaller isles of the narrow strait if the reference
path cost coefficient κ1 is sufficiently relaxed. Which of these approaches is the
most suitable for any given scenario may vary greatly depending on specific envi-
ronmental conditions, ship dimensions and system configurations. These diverging
trajectories do however demonstrate another aspect of the flexibility of the MPC
algorithm, allowing one to carefully tune cost parameters for several alternative
desired behaviors.

3.7 Conclusion

The results from various simulation scenarios show that the MPC algorithm is
capable of managing extreme cases of different ship failure modes to a satisfying
degree. The implemented system typically solves each nonlinear program with a
prediction horizon of 20min in approximately 2 s, and is thus considered a rela-
tively fast and online decision-making algorithm. There is however much potential
for improvement within both the algorithm itself and the complexity of the inves-
tigated scenarios, e.g. by combining scenarios to produce more intricate behaviors.
Furthermore, it is recommended that the ad hoc risk function implemented for
proof of concept should be replaced with probabilistic risk models, and that fur-
ther advancements of the path progression or risk cost functions may be achieved
by adding additional terms related to other operational objectives. This is left to be
explored in future works. Ultimately, risk-based MPC is considered an appropriate
method for trajectory planning and decision-making for autonomous ships during
emergencies.

81

3. Autonomous ship emergency management

Figure 3.8: Different cost tuning approaches generate diverse behaviors during strong
winds.

82

Chapter 4

Risk-based predictive supervisory
control

This chapter is based on the publication

[40] S. Blindheim, I. B. Utne, and T. A. Johansen, “Risk-Based Supervisory
Control for Autonomous Ship Navigation,” Journal of Marine Science and
Technology, pp. 1–25, 2023. doi: 10.1007/s00773-023-00945-6

The methodology and simulations were developed by S. Blindheim, under the su-
pervision of I. B. Utne and T. A. Johansen. The first draft was written by S.
Blindheim, and was revised by I. B. Utne and T. A. Johansen.

4.1 Introduction

There is an increasing desire to reduce operational costs and risks during ship oper-
ations by improving the intelligence and autonomous decision-making capabilities
of maritime vessels [95]. Bridging the gap, however, between qualitative risk anal-
ysis and quantitative supervisory optimal control is a challenging task. The aim of
this work is to develop a method for applying results from risk analysis to be uti-
lized by an supervisory optimal control algorithm. Results from risk analysis may
provide useful input to determining safe and efficient sequences of control actions
to be taken in a complex maritime environment.

Higher levels of autonomy is not the main objective in itself, but rather to realize
safer and more efficient operations involving human personnel. One way of improv-
ing human safety may be to move operators to an ROC, which may increase the
productivity and efficiency of operations by giving, e.g., ship captains the oppor-
tunity to focus their abilities on monitoring a larger fleet of vessels simultaneously,
supported by increased analysis of human factors or interference related to the
altered supervision and (semi-)autonomous control hierarchy [96], [97].

83

https://doi.org/10.1007/s00773-023-00945-6

4. Risk-based predictive supervisory control

Caution should nonetheless be exercised when making changes to a large oper-
ational infrastructure such as cargo or passenger transport. Communication and
cooperation with conventional ships and compliance with international regulations,
such as COLREGs are decisive. The safety and well-being of smaller vessels also
need to be taken into account, e.g., smaller sailboats sailing in the vicinity of the
larger (semi-)autonomous vessels.

In general, accidents occur due to unpredictable conditions, erroneous decision-
making, or unexpected emergent system failures [98]–[100]. Risk assessment is
therefore required to identify and analyze hazardous events, and determine the
need for potential risk mitigation measures. One potential measure for autonomous
ships is to implement onboard online consequence analysis-based optimization al-
gorithms with some prediction horizon, weighting different operational objectives
in light of the risks associated with each action considered for execution. MPC is
such a method, and has shown promising results for development of operational
constraints [101], DP [102], path following [31] and collision avoidance [32], [33].

These systems, however, usually have strictly defined operational areas or limited
available decision spaces in which they are explicitly allowed to make autonomous
decisions. The conditions are normally the default operational stages, like the cross-
ing transit phase of an autonomous ferry. Nor do typical applications of MPC
include risk models or results from risk analysis as input to the optimization algo-
rithm. In order to reach even higher levels of autonomy, a high-level supervisory
control system for risk assessment and safety-aware decision-making is needed [7].

STPA considers safety as a control problem, which makes it feasible for revealing
hazards related to autonomous systems. Such hazards should be considered in the
design of control algorithms and when optimizing decisions during operations to
improve safety. One of the challenges with STPA, however, is that it only brings
forward qualitative results, which are impossible to use directly for MPC.

In this chapter, a step-by-step approach for the design of supervisory risk control
and risk-aware MPC is proposed as follows. (i) Risk analysis or hazard identifica-
tion in terms of a STPA is performed in order to identify how inadequate control
of a maritime vessel may occur. Next, (ii) the qualitative results of the STPA
are transformed into an OCP, subsequently (iii) solved numerically by nonlinear
programming through an existing MPC-based decision-making algorithm for path
planning with anti-grounding [38]. The ship control is performed using a receding
horizon approach, based on the chosen dynamic ship model and a combination of
cost functions and operational limitations, each targeting different aspects of online
path planning and risk management. The performance of the developed risk terms
in the MPC cost function is furthermore demonstrated by example simulations.

Ultimately, the novel contribution of this work is a method for transforming the re-
sults of qualitative risk analysis into a tractable optimization problem to be solved
by an online decision-making algorithm. It provides a systematic approach to the
design of nonlinear MPC cost, constraints, and solution strategy, with systematic

84

4.2. Background

considerations for hazards and risks, which is a highly challenging task. The result-
ing framework may serve as a foundation for future autonomous decision-making
or online consequence analysis techniques for both accident prevention and online
risk control. To the authors knowledge, this is the first time qualitative risk analysis
and MPC are explicitly coupled.

4.2 Background

4.2.1 Supervisory risk control

Risk analysis in general is concerned with identifying what may go wrong, and
determining the likelihoods and consequences of those events [103]. Risk modeling
represents risk qualitatively or quantitatively, and risk control is the use and inte-
gration of such models to support situation awareness and decision-making, e.g.,
by autonomous systems [7]. Separating the performed risk control into two equally
important and dependent "modes", i.e. by human supervision of an automated or
autonomous system, and by an autonomous system itself; supervisory risk control
focuses on the latter of the two [2].

The control of an autonomous system may be divided into the offline mission
planner layer, the online guidance and optimization level, and the control execution
level [104]. The work in this chapter is mainly focused on control related to guidance
and optimization, for which the high-level mission is given and preplanned, and the
lower-level control is taken care of by corresponding subsystems.

Previous work within supervisory risk control proposes to use BBN for online
risk control [7], in which the BBN serves as an underlying risk model in order
to update and assess the current risk levels during operations. This is in contrast
to the approach presented in this work, wherein the main objective is to use the
results of the risk analysis in the design process of the online control algorithm.
Though both methods involve updating risk levels during runtime, no underlying
risk model is used in this work. Instead, a risk-based cost function is constructed
and used to solve the resulting numeric OCP.

4.2.2 STAMP and STPA

The Systems-Theoretic Accident Model and Processes (STAMP) [11] is an accident
causation model for analyzing and explaining how accidents may occur, attempting
to handle the ever-increasing complexity of systems. Complex systems may have
emergent properties only surfacing through the interconnection of the various parts
of the system, which is difficult to predict by component failure analysis alone.
STAMP regards safety as a control problem, preventing accidents by controlling
the system or process according to appropriate safety constraints (SC). Accidents
may thus occur if these constraints are broken, i.e., inadequate control. STPA [11]
is a hazard analysis method based on STAMP, which attempts to identify how
hazards or inadequate control may take place. This method is feasible for complex

85

4. Risk-based predictive supervisory control

and automated maritime control systems [12] and as a basis for safety verification
[105], and is generally applied through the following steps:

1. Define losses, system-level hazards and system-level safety constraints.

2. Define a system representation by analyzing and modeling the system as a
hierarchical control structure.

3. Identify unsafe control actions.

4. Identify loss scenarios in which the unsafe control actions may occur.

The first step identifies or defines what types of losses one wants to prevent. In the
case of autonomous ships, one may specify what the focus of the analysis is aimed
at, e.g., fires, grounding, collision, or security threats such as piracy. Thus, the scope
and purpose of the analysis is clarified by defining how the system-level hazardous
states may lead to such losses. Next, the system is modeled and represented as a
hierarchical control structure, i.e., a set of feedback control loops, and all relevant
process model variables related to the internal belief of the controllers are identified.
The third step is to identify unsafe control actions, i.e., supervisory control actions
(SCA) that in any way may lead to one of the system-level hazards.

Note that supervisory control actions in the context of this risk analysis are defined
as any type of decision or program flow between system modules which allows for
hazardous states or outcomes to develop or occur, in contrast to automatic con-
trol actions typically performed by machinery systems (i.e. propulsion or steering
control). STPA uses four general categories of unsafe control actions, which are
presented in Table 4.1 [106].

Scenarios in which unsafe control actions may occur and their causes are identi-
fied by inspecting relevant parts of the control loops in the control hierarchy in
specific contexts, e.g., incorrect feedback, lack of feedback, decision-making flaws,
time-delay, (lack of) situation awareness, component failures, process disturbances,
communication errors, or other risk influencing factors related to the control loops.

The identified scenarios from the STPA may subsequently be considered for testing
and simulation, and the results used to construct a suitable risk-based cost function
for the MPC-based decision-making algorithm.

Table 4.1: Categories of unsafe control actions

A A SCA required for safety is not provided or not followed.

B A SCA that causes a hazard is provided.

C A SCA is provided too early, too late or in the wrong sequence.

D A SCA is applied for a too long or too short period of time.

86

4.2. Background

4.2.3 Scope and simplifications

An important prerequisite for risk analysis is to define its scope. The main ob-
jective is to develop an optimization-based algorithm controlling the ship, given a
preplanned path in a maritime environment. To ensure safe optimization and that
hazards and risks are considered in the optimization, STPA is performed and results
are transformed into mathematical constraints, logic and objectives, implemented
in MPC. The results from STPA are used as input to construct an OCP, subse-
quently discretized into a nonlinear program and solved by an MPC algorithm,
and assessing the resulting trajectories. The goal is to improve the autonomy of
the control system, and enhance safe operation of autonomous ships.

The cost function of the resulting MPC consists of risk-based cost terms. Unlike
the established nomenclature of shipping economics concerned with e.g. capital and
operational expenditures [107], the concept of cost in this context is specifically
applied solely to weigh and balance opposing interests or penalties as part of the
standard terminology used within the field of optimization.

A simplified overview of the system scope of this work is shown in Figure 4.1. The
implemented software used for simulations is highlighted in blue, and represents
a core element of a simulated ANS. The MPC algorithm utilizes a mathematical
Ship Model (the dynamical model in Section 4.10) to predict future states given
the current system state. This structure assumes communications between systems
such as a SAS and an AMMS, controlling the ship’s machinery. These system
modules shown in gray color are, however, simplified in this work to only contain
and relay their intended inputs and outputs between appropriate software modules.

Figure 4.1: Scope of the system considered in this work.

87

4. Risk-based predictive supervisory control

This work is mainly concerned with grounding hazards, allision, and anti-grounding
functionality, for proof of concept. Thus, collision avoidance with respect to dy-
namic obstacles, e.g., other maritime vessels, is not considered. Disturbances ap-
plied to the system are simplified such that only wind direction and wind ve-
locity is considered, i.e., no current or wave disturbances are included. Further-
more, COLREGs compliance (or violation) is disregarded. As the act of docking
(or berthing) the autonomous ship may be viewed as a separate control mode, dock-
ing is not considered in this work. The approach assumes that the autonomous ship
is able to execute appropriate emergency measures or otherwise surrender control
of the ship to human operators if the supervisory risk control algorithm exceeds
a certain risk threshold or enters a specific hazardous situation. Additionally, con-
sequences related to or occurring as a result of grounding, such as environmental
pollution or loss of human lives, are not included in the risk analysis. This is con-
sidered appropriate for a proof-of-concept study.

Even though approximations are used, it is proposed that extensions for more
complex analysis and risk modeling, such as collision avoidance and COLREGs
compliance, may be equivalently added using the presented method in future works,
without loss of generality.

4.3 Modeling

The STPA in this chapter is based on an analysis performed in workshops together
with industry participants during Spring 2019. The main objectives of the control
process is to: a) avoid grounding and allision with mapped obstacles, and b) com-
plete the given mission of the ship operations with optimized resource allocation
weighted against risk considerations from a, within defined limits.

4.3.1 STPA Step 1 - Purpose

Step 1 of the STPA is presented in Tables 4.2 to 4.5, to be used as a basis for the
following steps. The hazards were specified with respect to which motion control
objectives that may lead to violation of the safety constraints, defined in Table 4.5.

Table 4.2: Accidents

A1 Allision with a stationary mapped obstacle.

A2 The ship grounds or makes contact with the seafloor.

88

4.3. Modeling

Table 4.3: System-level hazards

H1 The ship violates the minimum separation distance to a stationary obsta-
cle (A1).

H2 The ship violates the minimum separation distance to the shore (A2).

H3 The ship sails in too shallow water (A2).

Table 4.4: System-level safety constraints

SSC1 The minimum separation distance to obstacles must be maintained.

SSC2 The minimum separation distance to shore must be maintained.

SSC3 The ship must not sail in too shallow water.

Table 4.5: Specified hazards

H1a Motion control objectives that result in violation of the minimum dis-
tance of separation to an obstacle are formulated, i.e., the cost function
of the trajectory planning algorithm is inappropriately designed with
respect to avoiding obstacles during assigned time intervals.

H1b Motion control objectives that do not result in violation of the minimum
distance of separation to an obstacle are not followed, i.e., the subsys-
tems of the ANS are unable to apply the required motion control to
avoid obstacles.

H2a Motion control objectives that result in violation of the minimum dis-
tance of separation to the shore are formulated, i.e., the cost function
of the trajectory planning algorithm is inappropriately designed with
respect to avoiding the shoreline during assigned time intervals.

H2b Motion control objectives that do not result in violation of the minimum
distance of separation to the shore are not followed, i.e., the subsystems
of the ANS are unable to apply the required motion control to avoid the
shoreline.

H3a Motion control objectives that result in sailing in too shallow water are
formulated, i.e., the cost function of the trajectory planning algorithm
is inappropriately designed with respect to keeping the vessel in deep
enough waters during assigned time intervals.

H3b Motion control objectives that do not result in sailing in too shallow
waters are not followed, i.e., the subsystems of the ANS are unable to
apply the required motion control to keep the vessel within deep enough
waters.

89

4. Risk-based predictive supervisory control

4.3.2 STPA Step 2 - System representation

The system control flow and feedback hierarchy of this work is shown in Figure 4.2,
and consists of all implemented software modules and physical entities present in
the system, including peripheral interfaces between the software system and the
physical environment. Directed connections between the various modules show the
program flow.

Ship denotes the physical ship, which also encompasses all software modules com-
municating with the ANS, as well as the presence of a physical ship hull and
machinery interacting with the physical environment. Numerical values for phys-
ical Environment forces and states are provided to the Ship by the SAS module
through forecasts and sensor measurements, which are in turn interpreted by the
MPC through its Scenario module. Additionally, the Dynamics module contains
the ship’s equations of motion, which are used to generate simulated (expected)
movement within the physical environment.

These system states along with bathymetry data from the ENC module [37] is
utilized by the Supervisory Risk Control module to predict future states into a
discrete time horizon using its internal MPC, NLP, and Solver modules, based on
the cost function given by the Objectives constructed from the preplanned route
and an internal online risk estimation (ORE) module (not shown), and applied
control from the AMMS. The output of real-time computations from the ORE
module as defined by the operators in a ROC is used both as a direct input to the
MPC module during runtime, as well as serving as a measurement or monitoring
tool for the ROC. Additionally, the AMMS is updated with events occurring in
the environment detected by sensor measurements generated in the SAS, such as
machinery failures.

The ANS module is in turn given a mission by the ROC, i.e., to follow a pre-planned
route or path within certain time and risk limits, and uses the predicted trajec-
tories to make autonomous control decisions and give commands to the AMMS.
The resulting decisions, including the trajectory, risk cost calculations, and current
internal states of the autonomous ship, are communicated to the ROC through
information reports and ENC visualization, for supervisory human assessment and
potentially human intervention.

Note that the mission given by the ROC to the ANS may be to follow a pre-planned
route or mitigate damages through various emergency protocols. Moreover, the risk
levels calculated by the ANS is of integral importance to the supervisory risk con-
troller, through scaling coefficients provided to the MPC objective or cost function
for trajectory predictions. The risk analysis, as well as transforming the results of
a qualitative analysis into a quantifiable optimization problem, thus provide the
very important basis for the supervisory risk control and must be performed with
care.

90

4.3. Modeling

Figure 4.2: Overview of the system control architecture. The supervisory risk control
module is the primary scope of the design.

91

4. Risk-based predictive supervisory control

4.3.3 STPA Step 3 - Unsafe supervisory control actions

Given the hazards presented in Table 4.5, hazardous or unsafe supervisory control
actions (UCA) are to be identified with respect to the control flow in the system
control architecture, as shown in Figure 4.2. The supervisory control actions are
given in Table 4.6, and the process variables considered during the identification of
the control actions are given in Table 4.7. No command or SCA given by the ROC
to the ANS is considered, as the ROC handles higher levels of decision-making
than the ANS, and as such, is generally considered outside of the control bounds
or complexity which the autonomous ship is expected to be able to control on its
own.

It is assumed that the mission to be carried out by the ship is static throughout
the decision process, and that no changes to objectives are made, i.e., the risk-
aware cost function based on the results from the risk analysis and the specified
mission objectives is unchanged during the entire process of autonomous naviga-
tion. This is assumed both in an effort to limit the scope of the system, and the
fact that changing the mission to the ANS also is considered a higher level form of
decision-making than the autonomous system should be able to perform by itself.
Consequently, any change in the general mission objectives is thus considered to
either be the initiation of an emergency protocol, or simply the start of another
mission. For dynamic missions, the structure of the constructed solution would be
unchanged, as the proposed analysis is generic. The same methodology may thus
either be repeated in its entirety if a mission changes considerably, or one may
alternatively change and re-evaluate the cost coefficients only (steps 12 and 13). It
is suggested that an explicit methodology for online evaluation and tuning of the
resulting cost function en route (for e.g. dynamic missions) should be investigated
in future works.

The main SCA of the control hierarchy originates from commands given by the
ANS to its two main modules: the MPC and the AMMS. Human operators in the
ROC set the operational mode of the ANS to either autonomous mode or remote

Table 4.6: Considered supervisory control actions

Controller Process Supervisory control action

MPC Solver Calculate trajectory over time horizon

Solver NLP Solve NLP

NLP ENC Compute obstacle distances

Scenario SAS Construct scenario from states

MPC Objectives Compute risk costs

ANS ORE Assess risk levels

ANS AMMS Command first control step

AMMS Machinery Apply first control step

92

4.3. Modeling

Table 4.7: Process variables

Process variable Available states

Trajectory on horizon Distinct future ship states

Current risk level Continuous interval

Current wind disturbance Constant velocity and angle

First MPC control step Next optimal control input

Machinery health / status Online / Offline / Fixed

control, or initiate an emergency protocol during emergencies. If the ANS is in an
autonomous mode, the MPC is run to predict the next optimal trajectory (i.e.,
the next set of future ship states within the sampled time horizon) by solving
an NLP. During this solve, the equations defining the ship dynamics are used to
compute costs, based on calculated distances to spatial polygons of obstacles or
grounding areas. The result is returned to the ANS as an optimal ship trajectory
given the current ship and environmental states. It may be noted that trajectories
are dependent on time, whereas paths (or routes) are not. Thus, the time aspect
is in this context considered as one of the three main evaluation criteria during
optimization, along with resource allocation and risk levels.

If the risk levels after the first control interval (or along the trajectory) are within
accepted thresholds, the first control step of the trajectory is applied to the steering,
power and propulsion machinery by the AMMS. Additionally, the current status
and health of the physical machinery is estimated and reported back to the ROC for
potential human intervention. The Online state means that both the steering and
propulsion are available with ordinary capabilities, Offline indicates no propeller
propulsion or steering available, and Fixed represents no available steering.

All identified UCA are listed in Tables 4.8 and 4.9, evaluated with respect to
the ability of the ANS to keep the ship sufficiently safe during a specified time
interval (i.e., the time required to apply appropriate SCA or counter-measures due
to physical limitations or safety constraints). Note that complex computations,
such as calculating future trajectories in this context are also considered supervisory
control actions, due to the fact that they may lead to later (autonomous) decisions-
making which can cause hazardous events. Each SCA is given a unique identifier
and a short description, in addition to being assigned a relevant control action
category label (mode) from Section 4.2.2.

Together, these UCA are used to identify the controller constraints (CC) presented
in Table 4.10. From Figure 4.2 and Table 4.8, it is clear that UCA4-UCA12
are all part of subsystems related to computations for constructing scenarios and
nonlinear problems to be solved by the MPC module. These UCA are thus closely
related and connected, and are all found to potentially lead to the first three UCA
identified between the ANS and the MPC. However, these underlying UCA also

93

4. Risk-based predictive supervisory control

Table 4.8: Unsafe supervisory control actions (part 1)

ID Controller Process Supervisory control
action

Mode Description

UCA1 MPC Solver Calculate trajectory
on horizon

A The calculated risk levels
along the predicted trajec-
tory is unacceptable, i.e., ex-
ceeds the risk threshold as
defined by the ROC.

UCA2 MPC Solver Calculate trajectory
on horizon

B The predicted trajectory re-
turned by the MPC directly
causes an obstacle allision or
grounding.

UCA3 MPC Solver Calculate trajectory
on horizon

C / D The MPC does not return a
calculated trajectory within
the required time interval,
i.e. the result was provided
too late or the computation
was performed for too long.

UCA4 Solver NLP Solve NLP A The computed solution tra-
jectory is infeasible, i.e., a
solution satisfying all physi-
cal constraints as well as risk
constraints was not found,
leading to UCA1 or UCA2.

UCA5 Solver NLP Solve NLP B The Solver produces a feasi-
ble trajectory which contains
obstacle allisions or ground-
ing events, leading to UCA2.

UCA6 Solver NLP Solve NLP C / D A solution is not calculated
within the required time in-
terval e.g. due to a divergent
or infeasible nonlinear prob-
lem, leading to UCA3.

UCA7 NLP ENC Compute obstacle dis-
tances

A / B The returned distances to ob-
stacles are incorrect, produc-
ing an inaccurate or unsafe
basis for the MPC trajec-
tory calculations, leading to
UCA1 or UCA2.

UCA8 NLP ENC Compute obstacle dis-
tances

C / D The geometric operations or
distance calculations applied
to polygons are too computa-
tionally expensive, leading to
UCA3.

UCA9 Scenario SAS Construct scenario
from states

A / B The scenario classifications
defined by the SAS are im-
properly formulated (e.g. if
calm winds are classified as
adverse weather), leading to
UCA1 or UCA2.

UCA10 Scenario SAS Construct scenario
from states

A / B The scenarios produced are
erroneous due to incorrect
environment measurements
or state estimations, leading
to UCA1 or UCA2.

UCA11 MPC Objectives Compute risk costs A / B The calculated risk costs de-
fined by the scaling coeffi-
cients from the ORE module
are improperly formulated by
the ROC, leading to UCA1
or UCA2.

UCA12 MPC Objectives Compute risk costs C / D The risk cost function is
too computationally expen-
sive, leading to UCA3.

94

4.3. Modeling

Table 4.9: Unsafe supervisory control actions (part 2)

ID Controller Process SCA Mode Description
UCA13 ANS ORE Assess risk levels A The calculated risk level of

the currently estimated ship
position during a time in-
terval exceeds the maximum
risk threshold set by the
ROC, leading to the activa-
tion of an emergency proto-
col, a change of control mode
or adjustments made to mis-
sion objectives by the ROC.

UCA14 ANS AMMS Command control step A The next ship position re-
sulting from applying the
first optimal control step cal-
culated by the MPC exceeds
the maximum risk threshold
defined by the ROC, leading
to UCA13.

UCA15 ANS AMMS Command control step B The ship position resulting
from applying the first op-
timal control step calculated
by the MPC causes an obsta-
cle allision or grounding.

UCA16 AMMS Machinery Apply 1st control step A / D The control input as com-
manded by the ANS is not
followed by the AMMS (i.e.
the control is not applied to
the machinery long enough
or not at all), causing the
maximum risk level thresh-
old to be violated and lead-
ing to UCA13.

UCA17 AMMS Machinery Apply 1st control step B The control input as com-
manded by the ANS is not
followed by the AMMS, caus-
ing an obstacle allision or
grounding.

UCA18 AMMS Machinery Apply 1st control step C / D The AMMS or the ship ma-
chinery does not carry out
the control commanded by
the ANS within the required
time interval e.g. due to
physical system constraints
or machinery faults.

95

4. Risk-based predictive supervisory control

Table 4.10: Controller constraints

ID UCA Constraint description

CC1 1, 2, 3 The calculated trajectories on the horizon must be com-
puted within the required time interval, cannot violate the
maximum risk threshold, and shall not lead to any obstacle
allision or grounding.

CC2 4, 5, 6 A feasible NLP must be constructed, and the computed
solution must converge to an optimal solution within the
require time interval.

CC3 7, 8 The calculations for obstacle distances must be sufficiently
accurate as well as not too computationally expensive.

CC4 9 All scenario definitions must be properly formulated, such
that the behavior resulting from the calculated trajectories
matches the expected behavior in any given scenario.

CC5 10 The generated environment states from sensor measure-
ments or simulations must be sufficiently accurate.

CC6 11 The risk-based cost function and associated risk scaling co-
efficients must be correctly and sufficiently defined, such
that obstacle allision or grounding does not occur due to
logical or mathematical inconsistencies or assumptions that
do not hold.

CC7 13 Dependent on CC6, the maximum risk level threshold
given by the ROC must be set with respect to the risk
elements of the ORE module such that the threshold is vi-
olated only when the system should appropriately engage
automatic emergency protocols or human intervention.

CC8 14, 15 The first optimal control step of the MPC trajectory must
not result in an obstacle allision or grounding.

CC9 16, 17, 18 The physical machinery must carry out the control as com-
manded by the ANS through the AMMS within the re-
quired time interval.

96

4.3. Modeling

Table 4.11: Loss scenarios and safety constraints

ID Hazards CC Loss scenario Safety constraint
SC1 H1a, H2a, H3a CC1, CC8 The first control step or later

intervals of the predicted fu-
ture trajectory violates the
minimum separation distance
to an obstacle, the shore or
too shallow water.

The predicted ship trajectory
must be spatially constrained
to avoid crossing the mini-
mum separation distance to
obstacles, the shoreline or too
shallow waters at all times.

SC2 H1b, H2b, H3b CC1, CC2 The MPC module is not
able to compute a feasible
ship trajectory within the re-
quired time interval, leading
to a violation of the minimum
separation distance to an ob-
stacle, the shore or too shal-
low water due to inappropri-
ate control during the compu-
tation period.

Given some defined available
computation power, the con-
straints of the NLP must
be well-formulated and fea-
sible to enable proper solver
performance and satisfactory
convergence rates within the
required time interval, i.e. the
ship model must sufficiently
account for the ship dynam-
ics, and the initial conditions
and state constraints must be
physically and logically con-
sistent.

SC3 H1a, H2a, H3a CC4 The parameters or complex-
ity of an estimated scenario
for a given time interval are
incorrect or insufficient, lead-
ing to unsuitable decision-
making or MPC trajectory
solutions which cause obsta-
cle allision or grounding.

The mathematical model of
environmental variables and
ship system states included
in the risk-based cost func-
tion must be adequately for-
mulated as to properly simu-
late the physical behavior of
the ship in a designated sce-
nario.

SC4 H1b, H2b, H3b CC6 The risk cost function of the
NLP is too computationally
expensive, which during com-
putation leads to a violation
of the minimum separation
distance to an obstacle, the
shore or too shallow water
due to absent or sub-optimal
decision-making by the ANS
(inappropriate control).

The cost function must be
computationally feasible with
respect to the given com-
putation power capabilities,
within the specified time
interval or calculation fre-
quency, based on the dynam-
ics of the ship. For instance,
the cost function should be
sufficiently smooth, locally
convex, and computationally
simple, such that the risk
costs are easily calculated by
the NLP solver.

SC5 H1b, H2b, H3b CC9 The machinery of the ship is
not able to control the ship
as required during the desig-
nated control interval, lead-
ing to drift-off or drive-off
and a violation of the min-
imum separation distance to
an obstacle, the shore or too
shallow waters due to current
ship velocities or external dis-
turbances.

The risk-based cost function
must be designed and tuned
such that the ship is suffi-
ciently far enough away from
grounding obstacles during
normal operations as well as
with limited propulsion al-
location during unexpected
failures or emergency scenar-
ios, in order to avoid ob-
stacle allision or grounding
during drive-off or drift-off
due to external disturbances.
Namely, the risk levels of tra-
jectories closer to minimum
separation distances plus a
safety distance margin must
be weighted sufficiently high.

97

4. Risk-based predictive supervisory control

introduce separate system design concerns, which in this context are treated as
supervisory control actions and must be considered during formulation of the in-
dividual controller constraints. The UCA presented in Table 4.9 are related to the
ship in its current state during operations, i.e., either with respect to the maximum
risk level threshold being violated or inadequate AMM or machinery control.

4.3.4 STPA Step 4 - Safety constraints (SC) and loss scenarios

In the final step of the STPA, the system-level safety constraints of Table 4.4 and
specified hazards of Table 4.5 are combined with the identified CC of Table 4.10
to identify loss scenarios and UCA-level SC, ultimately presented in Table 4.11.

Note that CC3, CC5 and CC7 from Table 4.10 are disregarded, due to the fol-
lowing. The ENC and SAS modules are considered separate subsystems, which are
assumed to independently perform adequately and within their given requirements.
Similarly, setting the maximum risk threshold is in this work considered outside
the scope of the ANS, and a process that must be performed by human operators
on the ROC. However, potential machinery faults (CC9) are included as part of
the core of the supervisory risk control. The resulting safety constraints SC1-5 are
used as the fundamental basis for further decisions related to the design of relevant
supervisory risk control components.

4.4 Methodology

The proposed steps for transforming the qualitative results from the STPA into a
quantifiable optimal control problem for supervisory risk control are defined below.
Details of the methodology are provided in the following subsections.

State variables identification

1. Define explicit mathematical state variables for all relevant measurable or
quantifiable nouns or variables related to the identified loss scenarios and
safety constraints of the risk-based supervisory control problem.

2. Represent the relationships between related variables as mathematical equa-
tions, and introduce intermediate variables or remove redundant variables if
applicable.

3. Structure the identified variables into explicit system state and parameter
vectors of the OCP.

4. Add all physical and logical equalities to the system dynamic equations of
the OCP.

98

4.4. Methodology

Safety inequalities construction

5. Formulate a risk-related inequality for all parts of a safety constraint that
contains quantifiable variables.

6. Rank the safety inequalities based on the concept of risk priority numbers
(RPN) [108].

7. Merge and/or remove any redundant safety inequalities by evaluation of as-
signed RPN and mathematical inspection.

Cost function formulation

8. Define a slack variable s for each inequality of the form g(x) ≥ 0 such that
g(x) + s = 0 holds, where x is a state variable.

9. Define an exponential cost term of the form µe−ζs for each slack variable
s, where µ > 0 and ζ > 0 are tuning parameters approximately weighted
according to the RPN assigned to its respective safety inequality.

10. Define the risk-related part of the cost function ρ as the sum of the exponen-
tial slack variable terms.

11. Formulate the total cost function as a sum of the resulting risk terms and
other terms, e.g., related to resource consumption and mission objectives.

Evaluation and performance verification

12. Tune the coefficients of the cost function until the desired solver performance
and control behavior is achieved.

13. Verify through inspection and test simulations that the performance satisfies
all safety constraints.

This methodology leads to the development of a risk-based OCP and numerical so-
lution. Note how the resulting safety inequalities and risk parts of the cost function
are only related to the specific risk analysis performed through STPA, producing
the mathematical risk elements of Figure 4.2. Thus, all additional physical system
constraints and resource consumption costs (i.e., fuel and/or time), as well as mis-
sion objective costs (e.g., path following) are in the steps 11 and 12 combined and
tuned in tandem such that the total system is complete, meaning that the resulting
cost function is appropriately weighted between the various aspects of autonomous
navigation. This comparative tuning or weighting process through extensive testing
and simulation, denoted as steps 12 and 13 of the methodology, must be performed
in a case-by-case basis, and may be difficult to generalize. Even though risk analy-
sis provides inputs to such a tuning, this procedure must be performed so that the
formulation of the cost complete function is appropriate.

99

4. Risk-based predictive supervisory control

The following subsections apply each step of the proposed method for a case study
presented in this work, and the performance of the implemented system is ulti-
mately simulated and assessed in order to evaluate the quality of the mathematical
formulation and risk quantification formulated by the procedure.

4.4.1 State variables identification

The physical state variables of the ship relevant to the control problem and their
relationship equations are defined as given in Section 4.10.

Next, the content of the SC description sentences are dissected and interpreted into
additional mathematical variables by language analysis:

– SC1: Identified quantifiable nouns include the predicted ship trajectory,
grounding obstacles, and the minimum separation distances to obstacles, the
shoreline and too shallow waters.

– SC2: No quantifiable nouns or variables related to system states are identified
in this safety constraint aside from the initial conditions of the NLP solver.

– SC3: No specific quantifiable nouns are identified aside from general mentions
of physical states/behavior and (risk) cost function formulation.

– SC4: The only identified quantifiable noun is "risk cost".
– SC5: The identified quantifiable or measurable nouns are propulsion (allo-

cation), risk level, (ship) trajectories, external disturbances, minimum sepa-
ration distances, and a safety distance margin. Unexpected failures, drift-off,
and drive-off are terms for special events or scenarios during extraordinary
circumstances, and are consequently not measurable system states.

Some of the identified quantifiable nouns concern the same physical quantities: The
predicted ship trajectory contains multiple ship states, which include the positions,
orientations and velocities of the ship at each discrete time step within the given
time horizon. These ship states, as well as propulsion forces, are defined in Sec-
tion 4.10. Moreover, the term grounding obstacles will throughout the remainder
of this text encompass all possible allision obstacles, shorelines and/or too shallow
waters. This simplification assumes that there are no consequence or outcome dif-
ferences between ship grounding and obstacle or shoreline allision, as per the scope
defined in Section 4.2.3.

The additional system state and environmental variables identified during Step 1
are listed collectively as follows:

□ XN =
[
x⊤
0 . . . x⊤

N

]⊤, the vector of N ship states xk (including positions,
orientations and velocities), i.e. the discretized ship trajectory throughout
the predicted horizon of N control intervals

□ σj ∈ ΘJ = one of J grounding obstacle polygons provided by the ENC (see
Section 4.5.4)

100

4.4. Methodology

□ dsep = the minimum allowed separation distance between the ship position
p and any grounding obstacle σj

□ dsafe = the safety distance margin which is added to dsep in order to have
the ship positioned sufficiently far away from obstacle boundaries such that
temporary loss of propulsion does not result in grounding

□ ρ(x) = numerical value denoting the current risk cost of any ship state xk

□ ρmax = numerical threshold value denoting the maximum accepted risk (cost)
level of the autonomous system at any point in the defined two-dimensional
space, selected by the ROC with respect to the definition of ρ in the cost
function

□ vd = velocity of the generalized disturbance forces acting on the ship during
transit (i.e. wind velocity)

□ ψd = angle of attack of the generalized disturbance forces acting on the ship
during transit

All remaining system state and parameter vectors of physical constraints (such as
propulsion or steering limitations) not directly related to the risk analysis of the
optimal control problem are given in Section 4.5.1.

4.4.2 Safety inequalities construction

The above mathematical definitions are subsequently used to construct safety in-
equalities (SI) for all sub-parts of each SC, given some appropriate interpretation
of the SC formulations with respect to key logical, quantitative, qualitative and
comparative statements.

In this work, only SC1 and SC5 are identified as containing safety inequalities.
The remaining safety constraints are discussed in Section 4.4.4.

SI1a: min
(
d(x, σj) ∀σj ∈ ΘJ

)
> dsep

SI5a: min
(
d(x, σj) ∀σj ∈ ΘJ

)
> dsafe + dsep

SI5b: min
(
d(x, σj) ∀σj ∈ ΘJ

)
· f(vd, ψd) > dsep

where d(x, σj) is a distance function which returns the distance between its two
arguments. The scaling function f(.), dependent on the disturbance velocity vd and
disturbance angle of attack ψd, is given as

f(vd, ψd) = max(0, ι̂j · ω̂) · vd (4.1)

where ι̂j is the unit vector from the ship to the obstacle j with the minimum
distance to the ship position x, and ω̂ is the unit direction vector of the disturbance
[38].

101

4. Risk-based predictive supervisory control

Next, each inequality is assigned an RPN [108], based on severity (result or con-
sequence of failure/loss), occurrence (failure probability) and detection (failure
identification difficulty). For the purpose of demonstration, three RPN are in this
work defined to serve as simple categories classifying the three identified safety
inequalities: Recall that the loss scenario of SI1a is related to grounding without
considering external disturbances, see Table 4.11. Table 4.12 shows the resulting
RPN for each safety inequality, based on 1 to 10 rankings of its severity factor (S),
probability of occurrence (O), and ease of detection (D) [109]. Note that the RPN
of Table 4.12 are assigned with respect to how the absence of each cost term would
affect the autonomous navigation behavior of the ship, e.g. a moderate probability
of grounding is assumed if the short-term re-planning navigation algorithm does
not include any term directly related to anti-grounding based on ENC.

In this example, an RPN of 108 is assigned to SI1a due to high severity with re-
spect to grounding (9), a moderate probability of occurrence (4), and high ease of
detection (3). This is considered appropriate due to the fact that the ship should
preemptively follow a pre-planned feasible path within well-defined safety bound-
aries and parameters, with only dynamic and unplanned obstacles providing the
main uncertainty aspect of the equation. If the MPC planner has to significantly
re-plan the trajectory due to some unforeseen circumstances such as a crossing
ship, the probability of grounding may consequently rise accordingly. Moreover,
the onboard and remote sensors with respect to spatial movement in the environ-
ment are assumed to be relatively robust with sufficient levels of e.g. accuracy and
redundancy shared across multiple different types of technologies, and should thus
provide a reasonably high probability of detecting internal failures.

Next, SI5a is given an RPN of 30 due to low severity in which only the safety dis-
tance margin between the ship and the minimum distance of separation to obstacles
is violated (2), moderate probability just slightly more likely than direct grounding
(5), and similar failure detection capabilities (3). However, SI5b is given an RPN
of 216 due to the following. This SI specifically is concerned with taking into ac-
count how external disturbances such as winds affect the ship trajectory, and how
it relates to avoiding grounding events with respect to the physical propulsion and
steering limits. Thus, the severity of grounding is high as in SI1a (9), the occur-
rence is somewhat higher due to expected disturbances (6), and the difficulty of
detecting failures in the equipment for measuring disturbance forces is moderately
low (4).

Table 4.12: RPN assignment to each safety inequality, based on its severity factor (S),
probability of occurrence (O), and ease of detection (D)

Safety inequality S O D RPN

SI1a 9 4 3 108

SI5a 2 5 3 30

SI5b 9 6 4 216

102

4.4. Methodology

In general, the definition of RPN is closely related to risk acceptance of the system
and its operation, which are usually determined based on stakeholders´ perspec-
tives, current risk levels for similar activities, rules, and regulations. Since risk
acceptance is outside the scope of this work, reasonable RPN are derived for illus-
tration. From this example, and with these assigned RPN, it is clear that there is
a distinct disparity between the highly ranked SI1a and SI5b compared to SI5a.
This will be addressed in the following steps.

4.4.3 Cost function formulation

All safety inequalities are subsequently transformed into risk cost terms which
contribute to the accumulated system risk levels present at any point in time, and
are used as additional guidance objectives during the autonomous decision-making
and ship trajectory optimization.

In Step 8, the slack variables (SV) of each safety inequality are consequently defined
as:

SV1a : s1 = dmin(x)− dsep
SV5a : s2 = dmin(x)− dsafe − dsep
SV5b : s3 = dmin(x) · f(vd, ψd)− dsep

(4.2)

where dmin(x) = min
(
d(x, σj)

)
∀σj ∈ ΘJ . In general, dmin(x) is a non-smooth

function, in which the J distances d(x, σj) to each grounding obstacle σj are them-
selves minimum distances between a singular geometric point p(x, y) ∈ xk and the
boundary of the obstacle polygon as provided by the ENC.

Note that the resulting SV, when feasible (greater than or equal to zero), indicate
"increased" compliance with the SI constraint for larger values, directly analo-
gous to the slack variables used by nonlinear numeric solvers to satisfy constraints
through barrier functions [110].

The risk cost terms are during Step 9 constructed as monotonic and strictly in-
creasing exponential functions with the (negatively) weighted SV as the exponents.
Thus, the resulting risk cost function ρ for a single time interval k is by Steps 8
and 9 of the procedure defined as

ρ(xk, σj) = µ1e
−ζ1s1 + µ2e

−ζ2s2 + µ3e
−ζ3s3 (4.3)

Note that the form of (4.3) directly follows from Step 9, and that the slack variables
from Step 8 by definition serve as the only variables to be weighted or scaled
through their respective coefficients as strictly positive cost terms. Moreover, (4.3)
is only defined for a ship state during a single time interval (xk), with respect to
an individual grounding obstacle polygon σj . It is proposed that this weighted cost
may simply be summed for all grounding obstacles ΘJ within the spatial horizon
(see Section 4.5.3). Due to the exponential form of (4.3), far away obstacles are

103

4. Risk-based predictive supervisory control

evaluated as negligible, making only nearby obstacles significant with respect to
the total cost value at any point. This is indeed in accordance with the desired
behavior, i.e., to first and foremost avoid nearby shorelines or shallow waters – due
to the exponential function, any land mass consequently yields insignificant costs
compared to, e.g., a small reef closer to the ship, if located behind it.

Determining the values of the risk coefficients µ1,2,3 and ζ1,2,3 is achieved approxi-
mately through the RPN of the SI associated with each resulting exponential term,
i.e., larger coefficient values for higher RPN, and lower values for lower RPN. Conse-
quently, smaller minimum distances between the location of the ship and grounding
obstacles lead to (exponentially) larger costs, as expected. Moreover, each individ-
ual cost is weighted so that the terms with larger RPN have larger costs closer
to their constraint boundary, with respect to the other terms. Note, however, that
as the RPNs are semi-qualitatively defined, the correspondence between the RPN
and the resulting cost scaling coefficients may after tuning be diminished.

More detailed discussion of the tuned risk cost terms with respect to optimal control
and desired behavior for autonomous navigation is presented in Section 4.7.

4.4.4 Evaluation and performance verification

Evaluating and verifying the performance of the cost function and resulting NLP
formulation is challenging. The coefficients of the cost function are tuned, e.g.,
incrementally through repeated simulations, and the performance is evaluated by
comparing the resulting behavior with all safety constraints. Section 4.4.2 denotes
how SC1 and SC5 are exercised through SI1a, SI5a and SI5b. However, SC2,
SC3 and SC4 are directly related to the solver performance, i.e. that the resulting
solution convergence and behavior is appropriate and achieved within the required
time intervals. Compliance with these constraints are thus verified through the fol-
lowing discussion and simulation results presented in Section 4.6, both validating
the proposed methodology in this work as well as the autonomous behavior re-
sulting from the application of the method to the considered use case. A special
case worth noting is nevertheless that the resulting cost function, as defined by
following the proposed methodology, by construction satisfies SC4 with respect to
computational feasibility.

The initial solution given to the solver (i.e., the pre-planned trajectory) during the
first solve will greatly affect the produced trajectories due to the problem being
non-convex, and must be pre-computed appropriately. The solver used to calculate
optimal trajectories at each time interval may also have a significant impact on
the generated results. In this work, a gradient-based solver is used – non-smooth
functions such as the minimum function used for polygon distances are handled by
the solver through automatic differentiation (differentiable programming). How-
ever, one may consider using solvers employing e.g. evolutionary algorithms, PSO
or similar techniques, in order to utilize discontinuous and non-differentiable cost
functions.

104

4.5. NLP and MPC formulation

Additionally, the non-convexity of the constructed NLP makes no guarantees with
respect to optimality of its local solutions, and the generated ship trajectories
must consequently be assessed during development, with respect to the current
conceptual view of acceptable risks, desired operations behavior and defined mission
objectives. As such, the implementation and performance of a MPC algorithm and
a case study with example simulations are presented in the following sections for
evaluation and verification purposes.

4.5 NLP and MPC formulation

This section presents the resulting MPC and final cost function to be solved by
the NLP algorithm, extended and improved from previous works [38]. Additionally,
simulation results of the various test scenarios are summarized to demonstrate the
performance of the formulated risk-based supervisory control problem.

4.5.1 Optimal control problem (OCP) formulation

An OCP is in general defined as follows:

min
x(.),u(.)

∫ T

t=0

ϕ̃(x(t),u(t),θ(t)) dt

s.t. ẋ(t) = f(x(t),u(t),d(t))

h(x(t),u(t)) ≤ 0

x(0) = x0, 0 ≤ t ≤ T

(4.4)

where ϕ̃ is a scalar stage cost function that will be defined in Section 4.5.3, θ
is a parameter vector, x0 is the initial state, T is the prediction horizon, and ẋ
is given by the ship dynamics as presented in Section 4.10. The hard constraints
h(x(t),u(t)) are given as:

−fmax ≤ u1 ≤ fmax

−ωmax ≤ u2 ≤ ωmax

(4.5)

where u =
[
u1 u2

]⊤ is the control input vector where u1 is the propulsion force
of the rudder, u2 is the rotational turning rate of the rudder, and fmax and ωmax

are the maximum propulsion force and rotational turning rate of the rudder, re-
spectively. The solution to problem (4.4) will be deployed in a receding horizon
fashion, yielding an MPC scheme.

105

4. Risk-based predictive supervisory control

4.5.2 The reference path

A preplanned reference path is defined as a piecewise linear (spline) function given
an initial position, discrete intermediate points and a destination. Next, the refer-
ence path is parameterized, giving the two-dimensional reference function

r(α) =

[
x(α)
y(α)

]
(4.6)

for calculating path points where α ≥ 0 is a scalar advancement parameter (i.e.
the traveled distance during a control interval) acting as a decision variable along
the preplanned path, and x(α) and y(α) are piecewise linear functions.

4.5.3 Objectives and cost function definitions

In order to construct the NLP, a cost function to be minimized is defined. Advanc-
ing along the path is a simple matter of increasing α, and the desired ship speed
along the path is furthermore established by penalizing ship transit velocities larger
than the given reference speed sref . This is achieved by minimizing a speed penalty
decision variable β, where

u2 + v2 ≤ s2ref + β, 0 ≤ β (4.7)

in which u is the forward surge velocity, and v is the sideways sway velocity.

Collecting the additional decision variables into a vector for each time step through
the control horizon N yields

qk =

[
αk

βk

]
, k = 0, 1, ..., N − 1 (4.8)

which in Section 4.5.4 is used to define the NLP decision variable vector w.

In this work, the cost function is defined with the purpose of producing a safe ship
trajectory that fulfills the mission objectives:

ϕ(w,θ) =
N∑

k=1

ξ(xk, qk, qk-1) + ϵ(uk,uk-1) + ρ(xk,θk) (4.9)

106

4.5. NLP and MPC formulation

The cost terms are defined as follows:

i. The path progression cost function

ξ(xk, qk, qk−1) = κ⊤

 ||r(αk)− pk||2
||αk − αk−1 − αtrav||2

βk

 (4.10)

where κ > 0 is a vector of tuning parameters. These terms are responsible for
advancing the ship position pk (trajectory) along the precomputed feasible path,
through the constant path step parameter αtrav and the reference path r(αk).
The βk term penalizes violations of the transit speed reference as detailed in Sec-
tion 4.5.3. It is recommended that αtrav is chosen such that sref ≈ αtrav/t∆, where
t∆ is the sampling period of the NLP.

ii. Next, the control input cost function is defined as

ϵ(uk,uk−1) = u⊤
k Λuk + (uk−uk−1)

⊤∆(uk−uk−1) (4.11)

where Λ = diag(λ) > 0 and ∆ = diag(δ) > 0 are tuning matrices. These terms
collectively help conserve power and reduce the input variations, consequently low-
ering environmental and operational costs.

iii. Finally, the constructed risk cost function is used to keep the grounding risk
levels low:

ρ(xk,θk) =

J∑
j=1

µ1e
−ζ1s1,j + µ2e

−ζ2s2,j + µ3e
−ζ3s3,j (4.12)

where s1,j , s2,j and s3,j are defined as in (4.2), with respect to each grounding
obstacle σj ∈ ΘJ . Here, the dot product within s3,j scales the disturbance con-
tribution toward the grounding obstacles in any orientation around the ship, i.e.
increasing the risk close to an obstacle to the east of the ship if the wind, waves
or currents are coming from the west, etc. Negative dot products are however set
to zero, disregarding "favorable" disturbances with respect to perceived risks. The
remaining variables were defined in Section 4.4.3.

It may be noted that all of the initial safety inequalities are transformed into risk
costs, in favor of being formulated as explicit constraints to ensure safe distances
between the ship and obstacles. Thus, this "soft constraint" formulation utilizes
violatable risk costs in order to acknowledge that grounding risks may still be eval-
uated even if high, and guaranteeing NLP feasibility. Using exponential terms for
the obstacle or grounding risk costs serves to strongly dominate the other objec-
tives in the cost function, heavily favoring staying safe from grounding obstacles.
The grounding risk sensitivity constant ζ may for this purpose be tuned for optimal
behavior.

107

4. Risk-based predictive supervisory control

4.5.4 Nonlinear programming

The dynamic ship model is discretized in order to solve the problem numerically.
The continuous time variable t is divided into a time grid of N intervals on the
horizon T , defined by discrete time instants tk ∈ {t0, t1, ..., tN}. The system inputs
are discretized as piecewise constant over that time grid, i.e. uk = u([tk, tk+1]).
The system state is discretized using a numerical integration function based on
the widely used Runge-Kutta 4th order method : xk+1 = Fk(xk,uk,dk). The dis-
cretization allows one to treat (4.4) as a nonlinear program by defining a vector of
decision variables

w =
[
x⊤
0 q⊤

0 u⊤
0 . . . x⊤

N−1 q⊤
N−1 u⊤

N−1 x⊤
N q⊤

N

]⊤ (4.13)

where qk is the vector of additional decision variables related to mission objec-
tives defined in Section 4.5.3. Additionally, a parameter vector comprised of var-
ious control settings, desired states and coefficients through time is denoted as
θ =

[
θ⊤
0 . . . θ⊤

N

]⊤. The parameters considered in this example are

θk =

 sref
αtrav

ΘJ

 (4.14)

for all tk where sref is a constant reference transit speed and αtrav is a path pro-
gression parameter (see Section 4.5.3) across all N control intervals. The grounding
obstacles are in this work modeled as a union of convex polygons σj ∈ ΘJ . Thus,
ΘJ is the collection of all grounding obstacles, enumerated by j = 1, ..., J in (4.12).

In other words, the entirety of all grounding or allision polygons present in some
specified data (sub)set provided by the ENC module is included for distance cal-
culations in each time step, yielding J distance computations for each subsequent
NLP solver iteration, for each time interval k throughout the time horizon of N
sampling intervals. Moreover, the distance to each polygon is computed based on
its inherent complexity, given by its number of vertices and edges. Thus, it is impor-
tant to limit the resolution of the grounding polygons such that the computation
time is fast enough (SC4), e.g., by simplifying and reducing the number of vertices
of each ENC polygon to some extent relative to the size of the ship or the size of the
considered environment during application runtime. Note, however, that simplify-
ing the complexity, which consequently also lowers the resolution of the grounding
obstacles, directly affects the spatial error margins needed for safe navigation near
the obstacle polygons. As a result, both dsep and dsafe from (4.2) must be defined
with respect to the resolution and inherent complexity of the grounding obstacles
as provided by the ENC module (SC3).

108

4.5. NLP and MPC formulation

The resulting NLP is defined as

C(θ,X0) = min
w

ϕ(w,θ)

s.t. g(w) = 0

h(w) ≤ 0

(4.15)

where C(θ,X0) ∈ R is the minimum cost generated by a given set of parameter
values and initial conditions X0, i.e., a full initial trajectory of N ship state vectors
x given by the path r: The preplanned path and ship speed reference parameters
are used to calculate a reasonable initial guess for the ship trajectory XN . For all
subsequent NLP solve calls, the last solution (forward shifted one time step) is used
as the initial guess, i.e. warm start. The inequality constraints h(w) are given by
(4.5), and the equality constraints g(w) hold the system dynamics:

Fk(xk,uk,dk)− xk+1 = 0, k = 0, 1, ..., N−1 (4.16)

The cost function ϕ was defined and discussed in Section 4.5.3, based on the risk
cost formulation of Section 4.4.3. Note that the discretization chosen here is based
on the direct multiple-shooting approach [92]. Because of the nonlinear dynamics
and since the obstacles yield a non-convex feasible set, the NLP (4.15) is non-
convex. As a result, the goal is to compute a feasible and local optimal solution for
a given control horizon N and initial conditions. Moreover, only costs balancing is
as noted utilized to achieve the desired control behavior, rather than using hard
constraints in addition to the ship dynamics and the natural input constraints.
This ensures feasibility of the NLP solutions.

Table 4.13: Model parameters

Parameter Symbol Value Unit
Path step size αtrav 75 m

Overall ship length Loa 75 m
Transit reference speed sref 2.5 m/s

Frontal projected wind area AFw 110 m2

Lateral projected wind area ALw 624 m2

Max propulsion force fmax 400 kN
Max rudder turn rate ωmax 2.0 rpm

Viscous damping force surge Xu 5.0 × 101 kN s/m
Viscous damping force sway Yv 2.0 × 102 kN s/m
Viscous damping force yaw Nr 3.0 × 104 kN s/rad

Hydrodynamic added mass surge Xu̇ 4.4 × 104 kg
Hydrodynamic added mass sway Yv̇ 8.6 × 105 kg
Hydrodynamic added mass yaw Nṙ 4.9 × 107 kgm2

Rotational inertia yaw Iz 9.8 × 108 kgm2

Rigid-body ship mass m 1.5 × 106 kg

109

4. Risk-based predictive supervisory control

4.6 Results

4.6.1 Simulation verification

The purpose of this section is to present simulation results which showcases how the
constructed risk cost terms affect the performance and resulting trajectory of the
MPC scheme, to serve as the verification method for this work. Thus, the goal is to
verify that the safety constraints of Table 4.11 are satisfied during the autonomous
navigation shown in the simulations, with respect to suitable compliance relative
to the expected behavior. The model parameters used for simulation verification
are presented in Table 4.13.

Figure 4.3 presents a reference trajectory resulting from a simulation using the

Figure 4.3: A demonstrative path following simulation using MPC, not including any
risk cost terms in the cost function.

110

4.6. Results

MPC scheme discussed in this chapter, for the purpose of comparison to later sim-
ulation trajectories. A square example region with an area of 9 km2 just south of
Giske island in Norway is to demonstrate various aspects and discussion points re-
lated to the construction of the risk cost terms. Using the visualization capabilities
of the ENC package [37], several information overlays are added. Three waypoints
are given as a route reference (the western-most off-screen), and a green path is
drawn between the waypoints. The ship trajectory is shown as a white trail of ship
poses (i.e., the position and orientation of the ship at each time interval), and the
future trajectory solution computed by the MPC is shown in yellow. The current
ship pose is shown in magenta, recorded as a snapshot during a simulation run. It
may be noted that the path following and resource consumption costs are tuned
such that the trajectory is allowed to deviate slightly from the planned path, in
order to save time, rudder actuation, or fuel into the time horizon.

Figure 4.4: MPC simulation showcasing the effect of the first risk cost term (SV1a) for
only one grounding obstacle shown in red.

111

4. Risk-based predictive supervisory control

Figure 4.4 shows a simplified example in which only the first risk cost term for
SV1a is included in the complete cost function during the MPC run. Moreover,
only one single island is considered as a grounding obstacle in this example, for
clarity. Shown in red, the single grounding obstacle is constructed as the convex
hull of all ocean depths more shallow than 10m, closest to the initial ship position.
The first waypoint serves as the starting point of the simulation, and is shown as a
green disk. The convex hull of the original grounding obstacle is chosen, based on
the assumption that concave crevices along the boundary of any obstacle polygon
are not considered for purposeful navigation along a planned path. Furthermore,
though the island itself (i.e., land mass above sea level) is not intersected by the
planned path, the convex grounding obstacle intersects slightly. This is as a result
of an additional safety margin added to the grounding obstacle in all directions, in
Figure 4.4 set to 50 m. This static margin is added at the ENC level in order to
ensure that inaccuracies related to the numerical charts data and/or e.g. tides are
accounted for, and is considered a separate discussion than the cost term added
related to the dsafe variable of SV5a. This static margin should be kept small, and
is exaggerated in this work for the purpose of demonstration. See the discussion
related to Figure 4.9 on this topic.

The consequence of the combination of these factors is that the resulting optimal
trajectory computed by the MPC module deviates from the planned path close to
the grounding obstacle, as expected. Thus, it is apparent that the first risk cost
term is sufficient to produce the necessary behavior in order to avoid grounding
obstacles, even when the grounding obstacle is intersecting with the original path.

The next example is shown in Figure 4.5, which includes the south-western island
group as a grounding obstacle. Notice the small perturbation of the ship trajectory
close to the northern tip of the obstacle, indicating that both islands have an
effect on the risk cost term, as expected. Moreover, it is shown that the risk cost
is properly defined also for grounding obstacles located on opposite sides of the
ship. The northern island is, however, located far away, and is through the inverse
exponential weighting and resulting value of the risk cost term negligible compared
to the closer islands. This is considered appropriate for the specific environment
domain shown in the example demonstrations in this work.

Figure 4.6 demonstrates how the addition of the second risk cost term related to
SV5a appropriately adds an extra virtual safety buffer or safeguard with respect
to nearby grounding obstacles, indeed in accordance with the wording of SC5:
The risk levels of trajectories closer to the minimum separation distance plus a
safety distance margin must be weighted sufficiently high, such that the ship to a
larger degree is able to avoid grounding if unexpected failures or disturbances are
introduced – which effectively increases the time available to, e.g., restart the ship
engines after a power blackout in order to regain ship control. The trajectory shown
in Figure 4.6 is ultimately considered an appropriate trajectory for sufficiently safe
navigation through the strait as presented here.

It may be noted, however, that this behavior also can be achieved in this example

112

4.6. Results

Figure 4.5: MPC simulation utilizing the first risk cost term (SV1a) to avoid two
opposing islands at each side of the ship.

simply by adjusting the sensitivity coefficient ζ1 of the first risk cost term, as may
be inferred through the mathematical similarities of both terms. The second risk
cost term is nevertheless included in this work, for completeness.

In contrast to the previous example demonstrations, Figure 4.7 shows a simulation
in which the non-convex forms of each grounding obstacle are used in place of the
previous convex hulls. Additionally, the minimum distances between the ship and
both nearby grounding obstacles are shown as orange lines, in order to clearly visu-
alize the exact coordinates of each distance calculation provided to the exponential
risk cost terms during MPC optimization.

Note, however, that the resulting trajectory of Figure 4.7 is identical to that of
Figure 4.6. This is a consequence of the fact that only the minimum distances

113

4. Risk-based predictive supervisory control

Figure 4.6: MPC simulation with increased grounding sensitivity through the second
risk cost term (SV5a), or alternatively by tuning of the ζ coefficient.

between the ship and all obstacles are provided to the risk cost terms. By definition,
no point not located exactly on the boundary of the convex hull of an obstacle
may exist as a minimum distance to the ship. Thus, the advantage of calculating
the convex hulls of all obstacles during initialization of the algorithm through the
functionality provided by the ENC module is clear. This results in fewer polygon
vertices for distance computations, which leads to faster solver performance in
accordance with the objective described in SC4 related to computational feasibility.
The approach may nevertheless also be used on non-convex obstacles if necessary,
at a price of reduced computational efficiency.

Figure 4.8 presents the same orange distance visualizations as those of Figure 4.7,
applied to the convex grounding obstacles in Figure 4.6. In addition to the previous
discussion with respect to convexity, it is apparent that these line segments are more

114

4.6. Results

Figure 4.7: MPC simulation with non-convex grounding obstacles, and minimum dis-
tances shown as orange lines between each past vessel position and the obstacle polygons.

well-behaved and the variation between each consecutive line is smaller, which in
turn improves the smoothness of the gradients as present in the MPC during the
NLP solve. This effect is seen directly by faster solver timings.

The last example related to the first two risk cost terms and the structure of the
grounding obstacles provided by the ENC is presented in Figure 4.9, in which the
safety buffer added to the obstacles are increased from 50 m to 200m. This is shown
in order to demonstrate the effects of this static approach compared to the addition
of the increased safety risk cost applied through the second risk cost term.

One may notice how the resulting trajectory in this case is significantly more re-
stricted through the consequently narrower isle strait. It may be argued that the
approach of adding static safety margins in this manner – i.e., through the initial

115

4. Risk-based predictive supervisory control

Figure 4.8: MPC simulation showing the orange minimum polygon distances for convex
grounding obstacles. Less variance between each evaluated minimum distance along the
trajectory yields improved solver performance.

creation process and structure of grounding obstacles, as constructed by the ENC
module – reduces the flexibility of the MPC algorithm, and should be avoided in
favor of the added virtual safety margin cost exemplified through the second risk
cost term in this work. Moreover, it is clear that if the safety buffer is too large
(e.g., 400m), the strait would be entirely closed, which would lead to an entirely
new behavior in which the ship must sail around the resulting merged obstacle
of both islands. Though potentially appropriate in some cases, this approach is
considered unstable and prone to produce irregular solutions given any particular
environment.

The effects of the third and last risk cost term of the constructed risk cost func-
tion produced through the methodology presented in this chapter is visualized in

116

4.6. Results

Figure 4.9: MPC simulation with an increased safety buffer added to the convex obstacle
polygons, resulting in less flexible performance and lower degrees of solver feasibility.

Figure 4.10. Though the effects of the cost term is limited with respect to changes
in the trajectory due to the direction of the wind compared to the vessel heading,
the example illustrates how both isles each contribute separately to the risk cost
scaling. Here, the two grounding obstacles located at the port and starboard side of
the ship are given the colors red and orange, respectively. Furthermore, the value
of s3 at each time step is multiplied by the unit vectors with directions equal to the
opposite of the direction of the vectors between the ship center and the minimum
distance point on each obstacle. The wind disturbance direction and wind velocity
is shown in the compass in the top-right corner of the environment plot.

Intuitively, the red and orange arrows point away from their respective grounding
obstacles at each side of the ship, due to the risks increasing toward the obstacles
– which the MPC attempts to minimize, effectively directing the ship away from

117

4. Risk-based predictive supervisory control

Figure 4.10: MPC simulation including visualization of the third risk cost term (SV5b),
demonstrating the effects of a wind disturbance with respect to nearby grounding obsta-
cles.

the obstacles in accordance with the arrow directions. Moreover, the length of the
arrows are proportional to the gradient of the risk cost term at each point, i.e.,
the magnitude of how much the perceived risks promote evasive maneuvers with
respect to each grounding obstacle.

This illustration aims to visualize how the external disturbances (here limited to
wind disturbances only) affect the risk levels through the third risk cost term. In
this case, the wind direction is in an on-land direction towards both grounding
obstacles with respect to the initial location of the ship, yielding positive scalar
products. Thus, if the wind force is driving the ship towards the shoreline or other
grounding obstacles, the risk level increases as expected.

118

4.6. Results

Figure 4.11 presents a situation in which the wind direction is directed towards the
south-west grounding obstacle shown in red. Notice how the trajectory in this case
intersects the orange grounding obstacle, due to the scalar products between this
obstacle and the ship location being non-positive and consequently disregarded.
This is indeed the expected behavior, as this risk cost term is only concerned with
the risk levels related to external disturbance forces, and must be combined with
the first (two) risk cost term(s) in order to produce appropriate trajectories during
autonomous navigation. It is argued that no disturbance forces should be included
as a positive or favorable driving force toward safe autonomous control, and as
such is factored out in this context.

Lastly, the quality of the solutions are considered appropriate: All figures are

Figure 4.11: MPC simulation visualizing how the third risk cost term (SV5b) is only
significant for on-land wind directions.

119

4. Risk-based predictive supervisory control

generated within 6.5 s to 12.4 s on an Intel® Core™ i7-9700K (3.6GHz), with a
20 min future horizon using a sampling time of 30 s. This means that the algorithm
is able to predict, optimize and plot the future ship states along the route for 40
time intervals into the future, repeated 20 times (one for each trailing ship pose
shown in gray), within a maximum of 12.4 s on a desktop computer. The average
optimization timing for a single run is thus well below one second. Consequently,
the proposed algorithm may be repeatedly utilized online to predict the real-time
effects of the latest measured or predicted weather conditions on a voyage 20min
into the future, recalculated every second using this setup. It is however noted that
this performance is strongly dependent on the trade-off between the chosen data
resolution and the resulting solution quality. Moreover, the MPC solutions consis-
tently convergence to similar sets of trajectories across various tested simulations
of different initial conditions, further assuring the validity of the approach. This
concludes the verification of the constructed risk cost terms, by human assessment
and review of the presented simulation demonstrations.

4.7 Discussion

4.7.1 Choice of methods: STPA and MPC

The risk analysis part of this work is based on STPA, mainly due to its feasibility
for large and complex control system structures such as autonomous navigation,
control and awareness systems of a ship presented in this work. By focusing on
potential unsafe control actions, loss scenarios, and associated safety constraints,
the integrity and safety of the system is thus considered through the emergent
behavior of the interconnected system as a whole.

For the quantifiable and optimization side of the problem, an MPC scheme was
chosen due to the flexibility and robustness of the method. As presented and dis-
cussed in this work, the MPC approach is largely capable of solving quite complex
optimization problems if given appropriate and well-defined system dynamics and
cost formulations. In this regard, the difficult part of the method is rather to pro-
vide the MPC with a feasible and satisfactory cost function, as well as an initial
guess that produces the desired results when used for autonomous navigation.

4.7.2 Risk analysis versus optimal control

There is a definite distinction between the fields of qualitative risk analysis and
numerical optimal control. As such, it is challenging to standardize a transforma-
tion between STPA and MPC. Firstly, STPA is considered an effective method for
identification of hazardous events for a range of applications. However, the results
of the analysis often yield extensive collections of possible failures or unsafe control
actions. A challenge with STPA is that it only considers negative losses, which
means that any rewards and trade-offs between risks and system performances are
not analyzed or supported in decision-making. Furthermore, STPA is a qualita-
tive approach, which means that several additional steps are needed to translate

120

4.7. Discussion

the results into meaningful representations in MPC. A methodology for such a
"translation" is provided in this chapter.

One of the main strengths of the traditional applications of MPC is that it usually
has relatively straightforward and well-tested costs, similar to feedback controllers,
such as the linear-quadratic regulator (LQR). If instead the cost terms of the MPC
are extensively non-smooth or nonlinear, feasibility and solvability problems for a
given real-time constraint may arise. It is also apparent that operational optimiza-
tion is not the same as emergency management. During extreme conditions, the
focus is arguably only to handle or contain the situation to a satisfactory degree,
to avoid further loss of control within strict and short time periods. Hence, there is
usually limited benefits to be gained from optimizing the best possible solution dur-
ing these scenarios. The method is nonetheless chosen due to the parallels between
MPC and human decision-making, in the sense that humans inherently weigh costs
(negative consequences) and rewards against each other when making most logical
decisions on a day to day basis. The challenge, as previously mentioned, lies in the
uncertainty and intricacies that arise when quantifying the decision variables for
optimization, and as such, this must be performed with care.

4.7.3 Risk cost verification

There is no conclusive way to verify if the constructed costs of the OCP and NLP
are sufficient to satisfy the given safety constraints for any possible scenario. Gen-
erally, some form of evaluation method has to exist for any given method for which
the performance is to be examined. However, for the performance to be evaluated
and classified, real meaning and/or actual values need to be assigned to abstract
concepts for the purpose of assessment, as it is not possible to know the "true" or
objective risk. This has been shown to be exceedingly difficult in the case of risk
quantification or cost estimation, due to the inherent ethical and computational
challenges of evaluating human lives and environmental damages [111], [112], and
the discrepancy between the meaning of different interpretations of core terminol-
ogy, such as risk. Even for humans, risk aversion in itself is a highly subjective
concept, and it is difficult to conclude upon a universal perception of the term.
For example, one may relate (minimum) distances to the size of the vessel, such
that larger vessels require larger minimum separation and safe distances. Another
suggestion can be to utilize common law rulings to inform what constitutes a safe
distance. Until a global consensus is reached and explicit definitions are obtained
for these notions, however, the evaluation of risk "costs" is still somewhat abstract,
and is consequently treated as such for the time being.

Thus, verification of the resulting risk cost function is approximated through visual
presentation and human interpretation of the simulation results presented in this
work. More testing and research is recommended to achieve higher technology
readiness levels.

121

4. Risk-based predictive supervisory control

4.7.4 Safety inequalities and hard constraints

Even though, for example, the safety inequality of SC1 may be implemented as an
explicit (hard) constraint in the constructed control problem, it is argued that hard
constraints simultaneously reduce the feasibility and may raise the computational
complexity of the NLP to be solved [113]. Thus, the decision was made to relax
this constraint and allow it to be violated if the situation calls for it. Note that
this subsequently allows for handling of hazardous situations in more complex
implementations, i.e., scenarios in which the combined decision-making algorithm
deems the cost of purposely grounding the ship favorable to other alternatives (e.g.,
to avoid a complete loss of the vessel, reduce the probability of an oil spill and/or
potential loss of human lives).

Consequently, all explicit inequality constraints were formulated as weighted risk
costs, in accordance with Steps 5 to 10 of the proposed method. However, inspection
of the other risk cost terms reveals that the act of weighting distances close to
grounding obstacles with high values of risk is already achieved by the second (and
to some degree the third) term of the constructed risk cost function (4.12). As
such, one may if desired merge the terms if the corresponding cost coefficients are
appropriately adjusted such that the cost term strongly and sufficiently discourages
violation of the minimum separation distance to grounding obstacles.

This is left to be further explored in future works.

4.7.5 The structure of the risk cost terms

Making the cost terms monotonic and convex greatly simplifies the complexity
of the NLP, leading to faster solving times as well as more predictability with
respect to solution quality or expected trajectories (performance). Using various
polynomials in place of exponentials was in this context considered, for different
levels or ranges of assigned risk priority numbers. However, compared to e.g. x−2 or
x−4, the exponential function does not contain singularities for inverse proportional
relationships such as e−x, making it a more suitable candidate for continuous risk
scaling when approaching the safety boundary. Additionally, it is argued that due
to limited function domains (e.g., 0 - 10 km horizon ranges around a ship in a
specific environment), there is little to no practical difference between terms of e.g.
the form x−2 compared to ae−bx for a given domain range and appropriate tuning
of the a and b parameters. It is thus assumed that any approximately equivalent
behavior may be obtained through the exponential terms alone.

In summary, the first risk term related to SV1a is introduced to enforce minimal
distances to grounding obstacles by a natural inverse exponential relationship. For
SV5a, it is assumed that the objective of not grounding is unchanged during
loss scenarios with reduced propulsion capabilities, regardless of environmental
disturbance forces potentially being dominant. However, SV5a serves to encourage
even more conservative avoidance distances to grounding obstacles if such scenarios
occurs. The magnitude of this effect may be tweaked by adjusting µ2 and ζ2 relative

122

4.8. Future work and extensions

to µ1 and ζ1. This is due to the fact that by definition, the safety buffer variable
dsafe of SI5a is merely a shifted or more conservative formulation of dsep from
SI1a. Lastly, the third term of SV5b is modified to increase only with positive
scalar products between the wind disturbance vector and the vector between the
ship and any grounding obstacle σj , scaled by the disturbance velocity vd. This
effectively adds an additional safety margin toward down-stream obstacles, which
may improve the initial system state if loss scenarios such as machinery faults
occurs.

4.7.6 Simulation performance and parameter tuning

In general, the performance of the MPC is both expected and verified as appropri-
ate. However, the simulation results are heavily dependent on the specific tuning
of parameters as applied in the example demonstrations. Recent research indicate
that there exists methods for data-driven or automatic tuning of simple problems
[114], [115], in which the latter software is available as an open-source Python
package. This is nevertheless a limitation of this study, which means that further
evaluation and verification of the simulation performance is necessary.

Similarly, the connection between the assigned RPN and the resulting coefficient
values of the exponential risk cost terms presented in the methodology is somewhat
abstract. The RPN only provide initial values for parameter tuning, and as such,
the cost coefficients must be fine-tuned to each application on a case-to-case basis.
Thus, detailed parameter tuning was mostly left out of the scope of the main
contribution of this work.

4.8 Future work and extensions

4.8.1 Forward velocity and risks ahead of the ship

In autonomous navigation for surface vessels, the forward velocity and the un-
certainties and related risks in the front of the ship are considered as significant
contributions to the risk of a given situation, potentially dominating other risk
factors, such as the uncertainty and grounding risk related to lateral on-land wind
disturbances. It is recommended that this is addressed in future implementations.

4.8.2 Machinery system additions

Additional risk cost terms for wear and tear or component failure in the machin-
ery system related to high-intensity operation periods or over-use may be included
in future versions of the implementation, including certain thresholds or dynam-
ically weighted costs for machinery utilization. With varying AMM modes, the
machinery system may experience changes in its inherent uncertainty and proba-
bility estimations for, e.g., a blackout scenario based on various available system
modes or power configurations. The margins could be smaller with safer machin-
ery modes, and the ship may in such situations consequently sail closer to land.

123

4. Risk-based predictive supervisory control

Fuel consumption modeled in the machinery model may similarly also yield a more
thorough understanding of the actual costs related to various control actions.

4.8.3 NLP solver considerations

Due to the complexity of the environment (i.e., sea depth polygon obstacles pro-
vided by an ENC module) in the constructed NLP, feasible solutions that success-
fully carries out the given mission are not guaranteed. Moreover, if the solver is not
able to converge to a solution within the given maximum time limit, the returned
solution may be dangerous or even physically impossible with respect to the defined
ship dynamics. In this case, the MPC could fail to produce a suitable trajectory,
and this is regarded as a drawback to this method. A potential remedy to this
challenge may be to, e.g., employ the use of an additional backup controller and a
performance monitor to assume emergency control or make the human intervene
in the ROC if failures or problems are detected in the MPC, as suggested by recent
research [9].

Moreover, the complexity or resolution of the mapped grounding obstacles con-
structed during initialization of the ENC, as well as the discretization step or
resolution of the ship trajectory (i.e., sampling time) are of significant importance
with respect to the performance of the NLP solver. Lower spatial and temporal res-
olutions reduce the time complexity of the ENC minimum distance computations,
but also decrease the accuracy and confidence of the computed optimal solution.
An appropriate balance between these essential factors is in general difficult to de-
termine, and must in addition to the cost function parameter tuning be established
and verified on a case by case basis.

As a result of the non-convexity of the ENC grounding obstacles and their re-
spective risk costs, no global minimum solution is guaranteed. Hence, providing a
suitable initial guess to the NLP solver during setup is critical in order to both
achieve adequate solver performance and to ensure feasibility of the optimal NLP
solutions. It is thus necessary that a conservative initial guess is properly con-
structed such that the solution converges to an appropriate local minimum, with
respect to the expected trajectory of the navigational mission given to the ship. Due
to warm start, subsequent initial guesses are provided to the solver as the forward
shifted solution of the previous solve, and are consequently also largely dependent
on the solution guess of the very first solve. Furthermore, this initial guess should
not diverge from the optimal solution to such a degree that the solver is not able to
calculate and return the solution within the required time interval. It is proposed
that evolutionary or genetic algorithms such as particle swarm optimization may
serve as a possible alternative approach for this problem, in order to obtain global
convergence less dependent on the initial conditions of the NLP.

4.8.4 Safety framework and risk model utilization

An additional consideration may be to transform or model tuning variables or cost
coefficients into a safety framework, or to employ the use of an appropriate risk

124

4.9. Conclusion

model. Recent research has shown that scenario-based MPC may utilize a proba-
bilistic uncertainty model to achieve safe path traversal for e.g. inspection drones
[116]. This may prove useful in order further structure the considered problem,
to speed up the tuning process, and to enable use of models for resource limited
embedded and real-time computing.

4.8.5 Other improvements

No sensor uncertainties were considered in this study, and may be implemented in
future works. Additionally, parallel scenario simulations may be utilized during run-
time to predict more complex risk pictures for any given time instant, beyond the
current system state and environment conditions considered in this work. Collision
avoidance and COLREGs handling are considered natural features of autonomous
navigation systems, and should be included in future works. It is lastly recom-
mended that more scenarios are investigated for analysis and simulation purposes
in order to further increase the robustness and reliability of the MPC scheme.

4.9 Conclusion

A systematic and novel method has been proposed that enables the use the re-
sults of risk analysis to formulate an optimizable supervisory risk control prob-
lem through MPC, taking safety constraints and risk factors systematically into
account. The risk analysis was performed by using STPA with a focus on anti-
grounding for an autonomous ship. A method providing appropriate system state
variables and equations and a risk-based cost function for an optimal control prob-
lem, based on the STPA results has been proposed. The optimal control problem
was subsequently transformed into a nonlinear program and solved using an MPC
scheme with a receding horizon approach. Several demonstrated control scenarios
for an autonomous ship, simulated by an MPC scheme, show that the proposed
method for construction of quantitative and optimizable risk-based costs based on
safety constraints from STPA produces adequate and safe control trajectories. Ad-
ditionally, the analysis has identified some vulnerabilities that should be addressed
in future works. Ultimately, this work shows that constructing the MPC objective
function based on the results from STPA produces ANS behavior appropriate for
safe navigation of ships, thus supporting the hypothesis that increased levels of
safety may be achieved by the MPC-based ANS through systematic analysis of
unsafe control actions and hazards when designing the MPC cost function. This
approach is consequently considered a reasonable bridge between the realms of
qualitative risk analysis and numerical optimal control.

4.10 Appendix: Ship model and dynamics

To model the risk and enable optimization and control of related physical processes,
the mathematical and physical relationships between the autonomous ship and its
environment are formulated. This section defines the ship model used in this work,
adapted from the ship model and the terminology as presented in [91].

125

4. Risk-based predictive supervisory control

The horizontal plane NE and BODY coordinate frames are defined as given in
Figure 4.12. The NE coordinate system assumes a locally flat ocean surface plane
and is oriented with its X- and Y-axes toward the true North and East, respectively.
The BODY reference frame is positioned with its origin located in the centroid of
the ship.

Given the previous reference frame definitions, the model variables are defined
according to Figure 4.12:

NE position pn
b/n =

[
x
y

]
∈ R2

Body-fixed linear velocity vb
b/n =

[
u
v

]
∈ R2

Body-fixed propulsion forces f b
b =

[
X
Y

]
∈ R2

Attitude (yaw angle) Θnb =
[
ψ
]
∈ R

Body-fixed angular velocity ωb
b/n =

[
r
]
∈ R

Body-fixed rotational moment mb
b =

[
N
]
∈ R

where {n} is the NE reference frame and {b} is the BODY reference frame. The
ship states, forces and moments are defined by the variables

η =

[
pn
b/n

Θnb

]
, ν =

[
vn
b/n

ωb
b/n

]
, τ =

[
f b
b

mb
b

]
(4.17)

where η, ν and τ denotes the position, velocity and forces or moments vectors in
the horizontal plane, i.e. surge, sway and yaw, respectively. Moreover, the principal
rotation matrix in the XY-plane is defined as

Rn
b (Θnb) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
∈ R2×2 (4.18)

Due to the roll and pitch angles being neglected, the body-fixed velocity vectors
can be expressed in {n} as

ṗn
b/n = Rn

b (Θnb)v
b
b/n, Θ̇nb = ωb

b/n (4.19)

126

4.10. Appendix: Ship model and dynamics

ψr

v, Y

u,X
ψ, r,N

y (E)

(N)
x

{b}

{n}

Figure 4.12: The model variables and coordinate frames of the autonomous ship used
in this work.

The Jacobian JΘ(η) is further given by

JΘ(η) =

[
Rn

b (Θnb) 0
0 1

]
(4.20)

and the resulting kinematic equations are formulated as

η̇ = JΘ(η)ν (4.21)

The reduced three-dimensional ship kinetics equations in the horizontal XY-plane
(with no Coriolis, wave, ballast, buoyancy or gravitational forces included) are
given by

(MRB +MA)ν̇ +Dν = τ + τwind + τcurrents (4.22)

where MRB is the rigid body mass matrix, MA is the hydrodynamic added mass
matrix, τwind and τcurrents are the wind and currents forces, and D is a constant
damping matrix. In the example simulations presented in this work, τcurrents = 0
for simplicity, and the wind forces τwind are defined according to [91] as

127

4. Risk-based predictive supervisory control

τwind =

Xwind

Ywind

Nwind

 =

 −cx cos(Ψw)AFw

cy sin(Ψw)ALw

cn sin(2Ψw)ALwLoa

 1

2
ρaV

2
w (4.23)

where Vw is the relative wind velocity with respect to the ship’s velocity, Ψw =
ψ−ψw−π, ψw is the clockwise wind angle relative to the North axis, and the wind
coefficients c∗ are generated by polynomial approximations of a wind coefficient
table for a given ship.

Lastly, the propulsion and steering forces vector is given as

τ (ψr) =

 u1
0

−frudder(.)u2 sin(ψr)

 (4.24)

given the definitions from Figure 4.12, where frudder(.) is a rudder coefficient func-
tion, u is the forward surge velocity, and ψr is the rudder angle.

See [91] for generalizations to other propulsion and steering configurations.

128

Part III

Particle swarm optimization

129

Chapter 5

Dynamic risk-aware path planning

This chapter is based on the publication

[41] S. Blindheim and T. A. Johansen, “Particle Swarm Optimization for
Dynamic Risk-Aware Path Following for Autonomous Ships,” IFAC-
PapersOnLine, 2022, IFAC CAMS. doi: https://doi.org/10.1016/j.
ifacol.2022.10.411

The method and simulations were developed by S. Blindheim, under the supervision
of T. A. Johansen. The first draft was written by S. Blindheim, and was revised
by T. A. Johansen.

5.1 Introduction

In this work, a standard path following problem for MASS is formulated, given a
pre-planned route in a maritime environment with several isles or islands nearby.
This is considered a common MASS control problem of moderate difficulty, with
high safety requirements. Moreover, due to increasing complexity of various addi-
tional operating modes and emergent behaviors in larger composite systems, the
act of formulating, handling and optimizing more complex cost functions accom-
modating the safety requirements of MASS should be advanced accordingly. Thus,
this work presents an approach which allows future works to mix and incorpo-
rate discrete and non-smooth cost objectives together with smooth penalties or
optimization variables to be provided to the solver, which may make ANS more
risk-aware during online guidance or control in uncertain or changing environments.

5.1.1 Literature review

Path planning and obstacle avoidance for MASS remains a challenging problem
[71], [72]. There exists a wide range of methods for long-distance (global) au-
tonomous path planning such as the A*-algorithm [65], [67], Voronoi diagrams [23]
or hybrid trajectory planning [34], [117]. Moreover, research on adaptive or dynamic

131

https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.411
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.411

5. Dynamic risk-aware path planning

path planning for ASV or MASS including environmental disturbances (i.e. wind,
waves and currents) have accelerated in recent years, such as energy optimization
and path smoothing with respect to sea currents [64], [118], mixed-integer linear
programming [73], A* and repulsive vector fields [62], harmonic potential fields [60]
for obstacle avoidance and increased safety [66], as well as grounding safety domains
[28] and COLREGs-compliant collision avoidance for safe autonomous navigation
[76], [119].

However, the notion of safe navigation noted in the literature is largely depen-
dent on the definition of inherent system risks, and is still a somewhat ambiguous
concept with respect to quantitative path planning and optimal control in an en-
vironment with grounding hazards. It is suggested that risk perception should
largely be based on system uncertainty or lack of knowledge, rather than probabil-
ities [2]. Thus, several recent works utilize risk-based or risk-aware approaches for
autonomous navigation, such as risk-based MPC for anti-grounding [38], rapidly-
exploring random trees (RRT) [120] for grounding-aware collision avoidance, and
verification of COLREGs-compliant vessel behavior for collision avoidance [33],
[121]. There is however much potential left to be explored within the domain of
safe navigation, with respect to the utilization of risk within (dynamic) path plan-
ning and optimal control.

Significant research efforts on PSO for safe autonomous maritime navigation has
emerged in recent years. In this work, however, the scope of the risk-aware PSO
approach is limited to grounding or allision avoidance only, for the purpose of a
proof-of-concept study. Nevertheless, it is argued that the approach discussed with
respect to risk-based anti-grounding in general may be extended to additionally
consider collision avoidance of dynamic obstacles (e.g. nearby vessels in motion) in
future research.

PSO has since its initial introduction in 1995 loosely based on the social flock
behavior of birds, evolved into a wide array of algorithm variations and method-
ologies [14]. Due to the computational nature of the PSO method, the cost or
fitness function provided to the algorithm may in general take any form. This is
most notably in contrast to the gradient-based MPC method which – while compu-
tationally fast for feasible problems – requires a sufficiently smooth cost function to
achieve satisfactory convergence rates and robust performance. Thus, non-smooth
and mixed-integer cost or fitness functions may be utilized in the PSO algorithms,
enabling a larger and more complex range of optimization objectives both related
to resource consumption and formulation of risk or safety concerns.

Within this particular scope, similar recent works on standard or extended PSO
methods for robot path planning or MASS navigation with respect to static obsta-
cles include the following:

132

5.1. Introduction

a) Adaptive PSO for distance-based path planning toward an end target while
avoiding static obstacles [15]

b) PSO path planning using distances between the start and target location as
well as intermediate waypoints, including static obstacle avoidance [16]

c) Energy-efficient PSO path planning in which the energy consumption with
respect to environmental forces is weighted against the path length [17]

d) PSO combined with the sine cosine algorithm for safe MASS navigation us-
ing a cost function which includes the terms path length, grounding risk,
bathymetry (depths), and path smoothness [18]

e) Two-part global path planning and multi-objective path following using a cost
function also including path length, path smoothness and grounding risk, as
well as economic cost and safety risk [19]

5.1.2 Novel contribution

This chapter presents a dynamic waypoint planning algorithm for path following
based on PSO, using a fitness function with risk-related objectives. The approach
may be summarized as follows. With heavy focus on modularity, simplicity and ver-
ifiability within each control module in the hierarchy of a larger ANS, autonomous
navigation is presumed split into several independent algorithms or control loops.
Hence, it is assumed that a coarse (global) pre-planned path or route is already
defined and provided to the algorithm. However, no assumptions related to the
efficiency, safety or optimality of the provided route is made.

Moreover, the output of the method is a new risk-aware sequence of waypoints,
distributed along the pre-planned path (in this work distinctly denoted as the orig-
inal route vertices) defined by the provided route of consecutive line segments. The
distribution of the resulting waypoints is optimized with respect to a fitness func-
tion including explicit risk-based terms. These waypoints are subsequently used
by a standard guidance algorithm, i.e. path following using a LoS PID controller.
This PSO-based structure may allow for both computation parallelization for per-
formance increases, and more complex and dynamic risk-aware behavior utilizing
discrete parameters or measurements of e.g. weather conditions or similar environ-
ment variables such as non-smooth operational modes, compared to solvers which
require continuous or differentiable cost functions.

In order to further demonstrate the novel contribution of this work with respect to
the current literature, the method is compared to those of the listed similar works:
Though based on the same principle, the simple PSO path planning approaches
of a), b) and c) do not consider risks nearby grounding obstacles, which may
lead to unacceptable (i.e. dangerous) solutions with respect to safe navigation. In
contrast, the approaches of d) and e) consider aspects of risk and safety through
the use of linear distance weighting, with respect to static obstacles as well as
bathymetry data in the PSO fitness function. However, several improvements may
be made to the structure of both the fitness function and the utilization of ENC
data, which will be presented and discussed throughout this work. Thus, the main

133

5. Dynamic risk-aware path planning

goal of this work is to introduce a problem formulation which improves upon the
approaches presented in [18] and [19], for increased performance and safety within
MASS navigation.

5.2 Method

Particle swarm optimization is an iterative computational method based on
weighted individual and social behavior among a swarm (collection) of candidate
solution particles, given a set of defined learning parameters. The two main groups
of PSO alternatives consist of variations using a local neighborhood (local best),
and those using a global neighborhood (global best). Though there is no conclusive
research declaring one PSO algorithm superior to the other for constrained prob-
lems [122], the global approach is chosen in this work due to the problem structure
of the presented case study (see Section 5.5.2).

5.2.1 Algorithm initialization

The variables of the PSO algorithm are denoted as follows:

• ρ = the ship route (path) to be followed, i.e. a collection of J line segments
Lj defined by static vertices (pre-planned route vertices), j ∈ {1, ..., J}.

• K = the number of new waypoints along each path segment Lj ∈ ρ, which
partitions each line segment into K line subsegments ljk, k ∈ {1, ...,K}.

• wjk = a dynamic waypoint to be optimized, corresponding to each line
(sub)segment ljk.

• ϕjk(wjk) = a specific objective function for each waypoint wjk, defined J ·K
times.

• G = a collection of convex grounding obstacle polygons, provided by an ENC
module (Section 5.3.1).

• B = the spatial lower (minimum) and upper (maximum) bounds of all par-
ticles in the 2D NE plane, in this work equal to the boundaries of the visual
environment constructed by the ENC module.

• S = an integer denoting the particle swarm size, i.e. the number of particles
contained within each swarm.

• Pk = the set of S particles p for each waypoint, where each p contains a 2D
waypoint particle wp (point), a 2D particle velocity vp, the local best particle
wb, and the local best cost cb of wb, calculated from ϕjk(wjk).

• σ = the set of all J ·K particle swarms sw, where each sw contains all particles
Pk, the cost function ϕjk(wjk), the global best swarm cost cg, and the global
best 2D swarm point wg corresponding to each waypoint.

• N = an integer denoting the number of iterations to be repeated by the main
loop of the PSO algorithm.

• θ = [w, c1, c2], a vector of PSO hyper-parameters.

134

5.2. Method

Algorithm 5 PSO-Initialization
Input: ρ, ϕjk, B, G, K, S
Output: σ particle swarms for J ·K waypoints

procedure PSO-Init(ρ, ϕjk, S,B,G,K)
σ ← ∅ empty set of particle swarms
for each line segment Lj ∈ ρ do

for each route partition ljk ∈ Lj do
ϕjk(wjk)← ϕjk wrt. wjk91, wjk+1, Lj , G
Pk ← ∅ empty set of particles for each wjk

for each s between 1 and S do
wp ← random waypoint particle wrt. B
vp ← random particle velocity wrt. B
cb ← ∞ as minimum known local cost
wb ← wp as best known local particle
Pk ← add particle p(wp, vp, cb, wb)

end for
cg ←∞ initial minimum global swarm cost
wg ← ∅ best global swarm state with cg
sw ← swarm with (Pk, ϕjk(wjk), cg, wg)
σ ← add waypoint swarm sw

end for
end for

end procedure

Algorithm 5 and the notation of Figure 5.1 outline the procedure for construct-
ing the particle swarms σ for PSO in the context of the case study presented in
this chapter. The resulting collection of optimizable particle swarms σ are along
with θ and N provided to the general main loop PSO detailed in Algorithm 6 of
Section 5.5.

During initialization, any line segment of a ship route ρ is considered. Next, a

ljk

Lj

wj,k+1

wj+1,k

wjk

wj,k91
∆dG∆dG

G

∆dj+1,k

Lj+1

ρ

Figure 5.1: An overview of the notation used in Algorithm 5.

135

5. Dynamic risk-aware path planning

distinct objective (fitness) function is defined with respect to the nearby grounding
obstacles G and each line segment partition ljk, given as

ϕjk(wjk) = λ(∆dk−1 +∆dk+1) + ε∆djk + µe−ζ∆dG (5.1)

where ∆dk−1 and ∆dk+1 are the absolute distances (minus half of the line segment
length ljk) between wjk and the previous and next waypoints k − 1 and k + 1, re-
spectively, ∆djk is the distance between wjk and the original route line segment Lj ,
∆dG is the minimum distance between the nearest individual polygon in G, and λ,
ε, µ and ζ are tuning parameters. Thus, a unique objective function is constructed
for each individual waypoint wjk to be optimized along each line segment of the
original ship route ρ, as well as the exponential cost of (5.1) for anti-grounding.

An initially empty set to hold the set of particle swarms is defined as σ, and
is expanded as follows. For each route partition j, k . . . , S number of candidate
particles Pk are constructed, with each particle p containing the attributes wp,
vp, cb and wb. Here, wp is the initial waypoint location of the particle, vp is the
initial particle velocity, both uniformly randomized within the spatial bounds B
defined by the ENC environment. Moreover, cb is the best known local fitness (i.e.
minimum cost) of the particle yet seen and wb is the corresponding best known
local waypoint location wp which produced the best known fitness, to be updated
throughout the PSO iterations.

In addition to the best known local fitness and waypoint seen by each particle
p, the best known global fitness and waypoint location are denoted as cg and wg,
respectively. These variables are shared by all candidate particles Pk of each particle
swarm sw, and are also updated during the main loop. Each of the constructed
swarms sw are added to the set of all swarms corresponding to each waypoint wjk

to be optimized. Thus, the initial variables of the PSO procedure are defined.

5.2.2 PSO main loop

From Algorithm 5, the collection of J · K particle swarms σ of size S with dis-
tinct objective functions ϕjk and candidate particles Pk, are used to optimize all
corresponding waypoints for each line segment partition ljk such that a complete
global solution Wg = {wg

1 , w
g
2 , ..., w

g
JK} is returned after N iterations. The general

procedure for a standard PSO implementation for waypoint planning is presented
as Algorithm 6 in Section 5.5.

The result of the PSO is returned as the set Wg of all best known global states wg

from every swarm sw in σ, which is the optimal solution after N iterations. See
Section 5.5.3 for more detailed discussion related to PSO initialization and tuning
with respect to the hyper-parameters of θ.

136

5.2. Method

Figure 5.2: Block diagram of the two ANS alternatives.

5.2.3 Guidance and control

The overall ANS structures for risk-aware navigation as discussed in this work are
shown in Figure 5.2, and the simulations of Section 5.3 demonstrate and discuss
the performance of the system alternatives.

The speed of the ship is held constant, for simplicity. Thus, the control problem at
the lower level is course keeping, which is readily controllable using well-established
methods such as PID control. Note however that due to the modular structure of
this approach, a supervisory ANS may also employ an independent ship speed
controller to ensure that the ship is able to sufficiently follow the risk-aware path
resulting from the optimized waypoints.

The optimal waypoints of Wg computed by the PSO algorithm are subsequently
used as inputs to a simple kinematic line-of-sight PID controller for MASS path
following, based on the introductory geometric equations of [93]:

δ(t, wjk) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kdė(t) (5.2)

where e(t) = χ(t) − χΘ(wjk), and δ(t, wjk) is the controlled rudder
angle of the ship. χ(t) is the current course angle of the ship, and
χΘ(wjk) = arctan(yw − ys, xw − xs) is the current target course calculated from
wjk = Pw(xw, yw) and the current ship center position Ps(xs, ys). Kp, Ki and

137

5. Dynamic risk-aware path planning

Kd are the proportional, integral and derivative tuning coefficients of the con-
troller, tuned such that the ship automatically steers toward the target position
wk along ρ. It may be noted that no assumption in general is made by the PSO
method regarding the selection of the chosen target waypoint at any given time
during simulation and/or operations, with respect to the path following algorithm
subsequently applied to the resulting waypoints. Thus, the independent and mod-
ular structure assumed within the ANS furthermore promotes the utilization of
well-known schemes for verifiable control problems and solutions, such as the ones
mentioned in this work.

5.3 Results

Several example simulations of PSO runs produced by Algorithms 1 and 2 imple-
mented in Python are presented in this section, applied to a specific ENC envi-
ronment located north-west of the Norwegian city of Ålesund, for the purpose of
demonstration. The ENC data as well as methods for geometric computations with
respect to points, lines and polygons, as well as environment and vessels visualiza-
tions are provided by the SeaCharts ENC package [37].

5.3.1 ENC environment and visualization

In contrast to the 3D environments used in the similar works of d) and e) from
Section 5.1.1, the ENC environment is in this work structured as a 2D plane for
computational efficiency. It is argued that this structure vastly reduces the com-
putational load within the PSO algorithm, as the problem of safe navigation for a
surface vessel by definition is naturally restricted to a 2D domain. Consequently,
there is no practical reason to perform 3D distance calculations on ocean depths
deeper than some static safety threshold (with respect to the maximum ship draft
and shallows), if the ocean bed gradients or topography is not otherwise considered
with respect to e.g. prediction of ocean current dynamics. The computational com-
plexity required for such considerations should not be included within the main
loop of the PSO algorithm, and may rather be moved to a separate and indepen-
dent ANS module for e.g. analysis and/or prediction of environmental forces in
future works.

Similarly, it is argued that it is not necessary to differentiate between too shallow
waters, the shoreline or other static obstacles with respect to grounding or allision
risks. For this purpose, the SeaCharts ENC package provides a significantly more
efficient environment in which any (polygon) area of insufficient depth for naviga-
tion are consolidated into a single set of 2D grounding obstacles without loss of
relevant information, constructed in its entirety before the PSO initialization. Thus,
the minimum distance ∆dG of (5.1) to any nearby grounding obstacle is readily
computed by a simple call of the distance function provided through SeaCharts
by the dependency library Shapely [83] for efficient geometric calculations.

138

5.3. Results

5.3.2 Risk-aware waypoint re-planning

In this section, a visualization of an optimal waypoint distribution produced by
the PSO algorithm is presented, as well as a comparison visualization showing the
end result trajectories of the PSO algorithm and PID controller versus those of
a gradient-based MPC solver. Additional discussions concerning the initial values
and convergence rates of the PSO run are presented in Section 5.5.

Figure 5.3 demonstrates a PSO run using the objective function (5.1), i.e. including
the risk cost term µ · exp (−ζ∆dG). As noted, the purpose of the risk term is
to enable anti-grounding behavior with respect to the set of grounding obstacles
G provided by the ENC module. The original ship route path ρ is shown with
green disks as the pre-planned vertices, and green straight line segments drawn
between them. The optimal re-planned waypoints solution with respect to the
grounding obstacles are similarly shown as light yellow disks with straight line
segments between them, highlighted by a black border. The grounding obstacles
considered in this example are shown in red as two convex polygons surrounding
two islands nearby the ship route.

Figure 5.3: Example demonstration of risk-aware waypoint re-planning, in which a risk-
based cost term is added to the objective function.

139

5. Dynamic risk-aware path planning

Notice how the weighting of the distances between each waypoint in yellow and the
grounding obstacles generates behavior similar to evasive maneuvers, shown by the
significant deviations from the original straight line segment. This is considered an
appropriate and desired result, ultimately verifying the effect of the risk term.

Next, Figure 5.4 shows a comparison visualization of a yellow trajectory with black
borders generated by the path following controller when given the re-planned path
shown in Figure 5.3, against two additional ship trajectories shown in white. These
are produced by a gradient-based MPC scheme utilizing a similar risk-based cost
function for anti-grounding [38]. The two white trajectories are in general gener-
ated with the same parameters, with the only difference being the values given to
the sensitivity constant ζ of the exponential risk cost term, assessed as edge case
demonstrations for sufficiently safe autonomous navigation in this environment.

Moreover, Figure 5.4 shows actual trajectories, i.e. the resulting simulation runs
which utilize the LoS PID controller (with constant speed) and a receding horizon
MPC for comparison. Thus, in this context, the optimal path generated by the PSO

Figure 5.4: A trajectory generated by the risk-aware waypoint planning and PID guid-
ance approach of Figure 5.3, compared with two other trajectories produced by an MPC
scheme using a gradient-based solver.

140

5.3. Results

based on the original ship route is provided as the input to the PID controller, which
together produce a trajectory output (Figure 5.2).

The MPC, however, calculates an optimal trajectory directly from the original ship
route. The first white example demonstration of the MPC trajectory closest to the
original pre-planned path is given ζ = 0.3, which generates a trajectory in which
the ship only barely avoids the convex polygons in red. The second example is
given ζ = 0.07, effectively reducing the rate of decay (weighting) applied to the
distance measure between the ship center and the grounding obstacle, which in
turn results in higher risk cost evaluations closer to the obstacles. It is apparent
that the optimal waypoint placements computed by the PSO method as well as the
resulting trajectory produced by the PID guidance controller primarily are located
between the two MPC boundary trajectories, providing further confirmation of the
validity of the risk-aware PSO approach.

Note, however, that the objective function (5.1) does not contain an explicit term
related to path or waypoint smoothness, in contrast to the similar works of d)
and e) of Section 5.1.1. The reason for this is two-fold: The inherent distance
weighting between each consecutive waypoint acts as a self-smoothing mechanism,
due to the iterative PSO cost updates in which each waypoint are adjusted with
respect to its previous and subsequent neighbor. Moreover, it is argued that the
significance of path smoothness of an (emergency) evasive maneuver should be
negligible compared to the importance of simply avoiding the grounding obstacle in
its entirety – particularly if the approach is extended to include collision avoidance
of dynamic obstacles such as moving vessels. No distributive priority weighting
is thus shared between path smoothness and grounding avoidance. Rather, the
parameters of the exponential term should be appropriately tuned with respect to
the ship dynamics and environment resolution, such that the trajectory generated
by the path following algorithm given the resulting PSO waypoints is sufficiently
smooth during normal operations.

5.3.3 Problem parameterization and alternatives

Several additional comments may be made with respect to the choice of parameteri-
zation and general performance of the approach compared to available alternatives:
The cost function (5.1) essentially formulates the problem to be solved, i.e. safe
navigation along a path. Next, the problem solution is parameterized as K = 20
two-dimensional waypoints, resulting in 40 parameters to be optimized along the
original route. In this work, the structure of these waypoints is also utilized by the
PSO solver itself, i.e. 20 independent particles of 2 dimensions which are weighted
with individual cost functions with respect to its neighbors. However, the parame-
terization used by the PSO may also have been structured as a single solution of a
waypoint collection with 40 dimensions. In this case, the resulting particle swarms
would consist of complete path solutions, and may be subject to be solved by other
methods such as genetic algorithms. It is however argued that this structure is less
intuitive (see Section 5.5), and the utilization of such parameterizations and e.g.
other evolutionary algorithms (EA) is left for future works.

141

5. Dynamic risk-aware path planning

The PSO algorithm is not guaranteed to find the optimal solution, and is indeed
subject to potential convergence to local minima, similar to nonlinear MPC and
artificial potential fields. However, the chosen PSO structure alleviates this issue
through a diversified initialization of particles that should cover the expected so-
lution space. The “best known global particle” is shared across all particles in the
swarm, which may help steer a larger selection of candidate solutions toward the
true global minimum if it is found.

Moreover, the initialization of the PSO particles (the initial positions of the way-
points) has a critical impact on the optimal solution generated by both the PSO
and the MPC solvers. However, the consideration of alternative paths e.g. around
the island due to different initial conditions are considered outside the scope of this
work. See Section 5.5 for more comments on aspects of the PSO performance.

5.4 Conclusion

In this work, a method for dynamic risk-aware waypoint planning based on PSO was
presented. The resulting sequence of optimal waypoints with respect to grounding
obstacles as computed by the PSO algorithm, was subsequently used as inputs to
a simple PID course controller for path following. This two-part modular structure
is employed in order to facilitate a standardized and interchangeable hierarchy of
potentially parallel, verifiable and robust controllers within a larger supervisory
ANS for safe MASS navigation. Moreover, the performance of the PSO path re-
planner was considered well-suited for the purpose of anti-grounding, compared to
that of an analogous implementation using a gradient-based MPC solver including
the same exponential risk term from previous works. Ultimately, the approach may
be regarded as an adequate alternative to gradient-based controllers for safe MASS
navigation, when utilizing more complex (i.e. mixed-integer or non-smooth) cost
functions for risk-aware control.

5.5 Appendix: The PSO Algorithm

Algorithm 6 presents the general procedure of a standard PSO, and Algorithm 7
presents the standard subroutine for updating the velocities of each swarm particle
within the main loop.

For each iteration i = 1, ..., N , the fitness (i.e. objective cost) of every particle
p ∈ Pk within each particle swarm sw ∈ σ is evaluated with respect to its distinct
objective function ϕjk, denoted as cp. If cp is less than the current best known
local cost cb, the new cost replaces it as the best known local cost for that particle.
Moreover, if cp is less than the current best known global cost cg, the new cost
value also replaces the global best known cost for any particle across all swarms in
σ. Both the local and global best known waypoints wb and wg are thus dynamically
updated during runtime.

142

5.5. Appendix: The PSO Algorithm

Algorithm 6 PSO-MainLoop
Input: σ, θ, N
Output: best global solution Wg after N iterations

procedure PSO-Main(σ, θ,N)
while iteration < N do

for each waypoint swarm sw ∈ σ do
Pk ← current particles of swarm sw
ϕjk ← specific cost function of swarm sw
for each waypoint particle p ∈ Pk do

wp ← current waypoint location
cp ← evaluate local cost ϕjk(wp)
if cp < cb of p then

cb ← cp new best local fitness
wb ← wp new best local waypoint
p← update particle with cb, wb

end if
if cp < cg of sw then

cg ← cp new best global fitness
wg ← wp new best global waypoint
sw ← update swarm with cg, wg

end if
end for
for each particle p ∈ Pk do

vp ← update ParticleVelocity(p, wg, θ)
wp ← add particle velocity vp to wp

p← update particle with wp, vp
end for

end for
end while
Wg ← complete solution of all K global bests wg

end procedure

After each objective function evaluation, the current velocity and state of each
particle p is updated. The velocity is computed through the ParticleVelocity pro-
cedure presented in Algorithm 7, in which the hyper parameters w, c1 and c2 are
used as weights to adjust the direction and magnitude of the new particle velocity,
with respect to the previous value. The difference between the local and global best
known state wb and wg is weighted with the cognitive constant c1 and the social
constant c2 respectively, as well as two uniformly random variables r1 and r2 be-
tween 0 and 1, with both terms added to the inertia constant w multiplied by the
previous particle velocity vp to produce the updated velocity vp+1. The updated
state of the particle is simply the sum of the previous state wp and the calculated
particle velocity vp. The global best waypoint particles Wg are lastly returned as
the PSO solution.

143

5. Dynamic risk-aware path planning

Algorithm 7 ParticleVelocity
Input: p, wg, θ
Output: updated weighted particle velocity vp+1

procedure PV(p, wg, θ)
w ← particle inertia weight ∈ θ
c1 ← cognitive weight ∈ θ
c2 ← social weight ∈ θ
wp ← state vector of particle p
wb ← local best state vector of particle p
r1 ← first uniformly random value ∈ [0, 1]
r2 ← second uniformly random value ∈ [0, 1]
∆b← wb − wp local best difference
∆g ← wg − wp global best difference
vp+1 ← wvp + c1r1∆b+ c2r2∆g

end procedure

5.5.1 Choice of parameterization and algorithm

Several alternative methods for risk-aware path adjustment or re-planning were
considered. Though the well-established A* algorithm and RRT* are suitable for
fast optimal path planning in large search spaces from a start point toward an end
goal, they are considered less appropriate for path adjustment or re-planning in
the case where an optimal or near-optimal pre-planned path is given.

The structure and principles of other EA compared to that of PSO are more similar,
and are particularly suited for combinatorial problems. However, methods such
as e.g. differential evolution and genetic algorithms are generally dependent on a
valid and efficient function for recombinations and mutations between candidate
solutions in order to explore the search space. Consequently, it is considered more
appropriate to utilize the inherent concepts of PSO particle velocities and fitness
for this particular application.

5.5.2 PSO performance and convergence

The convergence rate of the computed PSO solutions may be evaluated with respect
to the resulting global best solution, in order to further assess the performance
of the PSO method. The initial global best known waypoints are in this work
given completely random start values for demonstration of robustness. It may also
be noted that some of these values can be initialized onto obstacles, as the cost
rises even higher inside obstacles due to negative distances within the exterior
boundary of a polygon. Though the cost is non-negligible if grounding polygons are
nearby, the increased cost of the risk term is relatively insignificant with respect
to the initial best global costs present in the system during PSO initialization.
Nevertheless, the algorithm is considered feasible, with respect to computational
time during real-time navigation: The PSO optimization for Figures 5.3 and 5.4
with N = 100 and S = 300 was applied to the considered segment of length 2.3 km,

144

5.5. Appendix: The PSO Algorithm

and was computed within 13 seconds – using the random waypoint initialization
approach for the purpose of demonstration.

Though the nominal route is assumed optimal or near-optimal, grounding risks are
implicitly always present in an environment with inherent uncertainties, such as
e.g. weather conditions, tides, winds or currents, and the potential for unexpected
events such as e.g. the sudden presence of unmapped grounding hazards such as
moored vessels, and failures or faults onboard the vessel. Thus, the main application
of the proposed system is to continuously adapt the nominal route with small
alterations, in order to adhere to changes that were introduced into the environment
after the route was originally planned. Rigorous handling of uncertainty aspects
such as e.g. reduced safety margins with respect to estimated time to grounding
due to winds or currents will be addressed in future works.

5.5.3 PSO initialization and hyper-parameters

The random initialization of particle candidates of each particle swarm (recall that
one swarm corresponds to one waypoint) does in general favor particle exploration.
However, the PSO consequently has a large initial cost due to being located far
away from the low-cost regions around the pre-planned path (as defined through
the defined cost function), and the initial values of two subsequent runs will by
construction always be random, potentially leading to unstable results between
runs and higher convergence rates. The monotonic nature of the cost gradient is
nevertheless easily verified during runtime through visual inspection of e.g. a cost
graph, and is a direct consequence of the fact that new global best particles by
definition always have a lower cost or better fitness compared to the last.

Another approach is to give the initial global best particles e.g. the exact optimal
placements along the original straight path segment of the ship route (analogous to
the concept of "warm start" of e.g. gradient-based solvers). Assuming no grounding
obstacles are present, the initial cost would in this case be vastly reduced, and the
convergence rate accordingly improved. Moreover, it is argued that particle explo-
ration is not the primary objective of the PSO re-planner, as the main function of
the risk-aware re-planned path is merely to lightly adjust a presumed optimal or
near-optimal pre-planned path due to online risk-related influences such as chang-
ing weather conditions, nearby vessels, unforeseen events or disturbances. Due to
this obvious increase in performance with the above scope in mind, this approach
is recommended as the favored initialization method for future works.

Ultimately, one may achieve satisfactory performance for a large selection of op-
timization problems by careful tweaking of the PSO hyper-parameters of Algo-
rithm 7. Candidate particles are during optimization thus allowed to probe pre-
viously not yet evaluated fitness values of unvisited states through semi-random
exploration, while simultaneously approaching both previously seen local and global
minima. In the simulation of Figure 5.3, w = 0.75, c1 = 1.0, and c2 = 2.0.

145

Chapter 6

Autonomous planning and
machinery management

This chapter is based on the publication

[42] S. Blindheim, B. Rokseth, and T. A. Johansen, “Autonomous Machinery
Management for Supervisory Risk Control Using Particle Swarm Optimiza-
tion,” Journal of Marine Science and Engineering, vol. 11, no. 2, p. 327, 2023.
doi: https://doi.org/10.3390/jmse11020327

The method and simulations were developed by S. Blindheim in collaboration with
B. Rokseth, under the supervision of T. A. Johansen. The first draft was written
by S. Blindheim, and was revised by B. Rokseth and T. A. Johansen.

6.1 Introduction

An important prerequisite for the realization of autonomous ships is that safe and
reliable performance of guidance and navigation tasks is ensured. One possible way
of achieving this is to develop risk-based guidance and navigation control systems
that uses risk models as part of their decision-making process. Collision avoidance
and obstacle avoidance for autonomous guidance and navigation is a topic that
recently has received much attention, see for example [123]–[134]. However, reliable
obstacle and collision avoidance is not the only concern that should be addressed.
Another important aspect of the guidance and navigation task is the grounding
risk. Grounding accidents are commonly classified into powered grounding and
drifting grounding. Groundings where the ship drifts aground as a consequence
of machinery failures are classified as drifting groundings, while groundings that
occur due to navigational errors, are referred to as powered groundings [135]. The
powered groundings can be seen as part of the obstacle avoidance problem, where
the seabed or shore is considered as an obstacle, [136]–[141], while the drifting
groundings are not covered by the literature with respect to obstacle avoidance.

147

https://doi.org/https://doi.org/10.3390/jmse11020327

6. Autonomous planning and machinery management

Drifting grounding is a problem that, in principle, could be addressed by avoiding
to sail close to the shore when there is onshore wind. This increases the probability
that grounding (following a mechanical or electrical failure) can be prevented by
dropping anchor or restoring sufficient propulsion and steering capability. There
is, however, limited work on autonomous ships where the guidance and naviga-
tion problem is studied in terms of drifting grounding avoidance or risk reduction.
[38] presents a decision-making algorithm to plan suitable trajectories (minimized
grounding risk) in situations where the ship unexpectedly experiences reduced ma-
neuverability due to e.g. thruster faults. [36] propose a control system for auto-
matically selecting the most appropriate operating mode for a hybrid machinery
system in order to minimize the drifting grounding risk and fuel consumption.

In this work, a supervisory control algorithm is proposed, which integrates the
machinery system mode selection problem with the guidance and navigation prob-
lem, based on data of ENC from [37]. The main reason why it is of interest to
integrate these two control problems is that the controlled states (the ship trajec-
tory and machinery system mode) are important influencing factors for the drifting
grounding risk. In general, benefits may be achieved by considering several distinct
control problems that share the common feature that they somehow affect the risk
associated to the same loss scenario, as this potentially results in an extended or
improved set of possible actions for reducing the risk. Thus, the proposed hypothe-
sis is that the potential for reducing the grounding risk at a reasonable operational
cost will improve if the two control problems are merged into a single optimiza-
tion problem weighting both aspects simultaneously, compared to only optimizing
for purely spatial and distance-based grounding risks in previous works [41] (see
Section 6.3.5). It is argued that this structure may increase the number of ways in
which the control algorithm can make safe decisions, and thus a reasonably safe
decision may be computed at a lower operational cost, such as fuel consumption
and expected costs based on grounding probabilities.

While the proposed control algorithm in [36] successfully identifies the optimal op-
erating modes, the choice of MSO mode has a limited impact on both the grounding
risk and the fuel consumption. Here, it is instead proposed to model the grounding
risk and explicitly address the trade-off between fuel consumption and grounding
risk in an optimization framework.

A more reliable operational mode is generally more costly in terms of fuel con-
sumption. When the ship is sailing such that loss of the propulsion power may
cause the ship to drift aground in a short amount of time (i.e. close to land while
the environmental forces acting on the ship is directed toward the shore), a reliable
mode of operation is considerably safer. In this context, a grounding event occurs
if the time it takes to drift aground is shorter than the time it takes to recover
propulsion capabilities. An alternative way of achieving equal levels of safety is to
change the route e.g. such that the ship is sailing further away from grounding
obstacles (i.e. the shore or shallow waters) or such that the environmental forces
acting on the ship is not directed toward grounding obstacles, or there is more time
to recover from a machinery fault.

148

6.2. Materials and methods

6.2 Materials and methods

6.2.1 Problem definition and approach

In the proposed framework, autonomous ships are following routes defined by a se-
quence of waypoints. Each waypoint (WP) is described with longitude and latitude
coordinates. As illustrated in Figure 6.1, it is assumed that a separate global plan-
ning process has prepared a pre-planned route for the entire voyage. This global
planning is normally performed onshore when the voyage is planned. Next, a ten-
tative pre-planned route is generated and optimized or adapted online. Thus, the
ship re-evaluates the part of the tentative route that falls within a given prediction
horizon, while sailing.

The re-planning process consists of two tasks: The first one, referred to as "Level
1 route planning" in Figure 6.1, is carried out to generate a number of proposed
feasible routes. This is achieved by first using the most recent sensor data and ENC
data to check if the part of the tentative route that falls within the prediction hori-
zon passes over objects or too shallow waters that were not identified as obstacles
in the planning stage, e.g. if a fish farm has appeared that was not present on the
map during voyage planning or the water depth is different due to tides. If not,
the tentative route is considered a feasible route. If, on the other hand, there is an
obstacle in the way, two alternative routes (one on each side of the obstacle) will be
generated (see Section 6.6). In principle, 2N options exists if there are N obstacles
being considered. It may be noted that this level of re-planning or online avoid-
ance maneuvers may also be applied directly to avoid areas with opposite or dense
maritime traffic, nearby vessels or other dynamic obstacles in future works. This
could build on preliminary results that combines anti-grounding and anti-collision
while considering the traffic rules at sea (COLREGs), albeit without considering
MSO and failure modes, as presented in [29].

The second task of the tentative route re-evaluation is to optimize the proposed
route alternatives (see "Level 2 route planning" in Figure 6.1). This is achieved
by first generating a new set of intermediate waypoints, essentially increasing the
resolution and smoothness of the original tentative route alternative. Next, the new
waypoints are adjusted with respect to resource consumption and grounding risk,
in which the latitude, longitude and MSO mode for all waypoints of each proposed
feasible route are the decision variables available for optimization (Figure 6.1).
Specifically, each adjustment is considered in terms of the total resulting cost, which
is a function of the fuel consumption, the grounding risk (using a risk model), and
the deviation from the estimated time of arrival (ETA) through calculations of the
measured states of the sailing process.

The cost related to each proposed control output (adjustment) is estimated through
the simulated states from a ship simulator and the probability of grounding from a
risk model, and the selected control output of the Level 2 route planner is applied
to a sailing process controller - which in turn yields the next measured and/or
initial ship states for the subsequent simulation (see the respective modules in

149

6. Autonomous planning and machinery management

Figure 6.1: An overview of the overall control strategy and structure of the implemented
system.

150

6.2. Materials and methods

Figure 6.1). Thus, the optimization loop of the Level-2 route planning process is
to utilize current measured states from the sailing process as inputs, predict future
states using a ship simulator, use these predicted states to estimate grounding risks
using a risk model, and weigh these risks against other economic or environmental
factors using a cost function to produce an optimized series of waypoints. In this
work, an optimization algorithm based on PSO is used to search for the set of
control outputs that results in the lowest overall cost across the receding horizon.
PSO was proven to be effective for solving a simplified version of this problem in
[41], and was also chosen for solving similar problems related to unmanned aircraft
[142], [143]. Note that in this proof of concept it is not claimed that PSO is the
best method to solve the optimization problem, and it is recommended to study
alternative methods such as genetic algorithms in future work.

Figure 6.2 illustrates the relationship between various factors affecting the cost,
as well as the terms that the cost function is composed of. First, the fundamental
factors such as ship speed (and available top speed), environmental forces and in-
frastructure along the shore affects the ETA, grounding risk and fuel consumption
as shown in the figure. The position (longitude and latitude) of each waypoint af-
fects the target ETA, i.e. if a WP is moved such that the distance the ship has to
sail to reach the target is changed, the ETA and the fuel consumption may change
accordingly. Moreover, the grounding risk may change if a waypoint is moved such

Cost

Infrastructure
along shore

Environmental
forces

ETA Grounding
risk

Fuel
consumption

WP
location

Machinery
system con�g

Factors not controlled (or controlled
from elsewhere) in�uencing the cost

Cost in�uencing factors under direct control of
the proposed control system

Ship
speed

Top
speed

Figure 6.2: An overview of the cost influencing factors as structured in this work.

151

6. Autonomous planning and machinery management

that the distance between the ship and obstacles is changed, or the duration of
exposure to disturbances with respect to e.g. a downwind obstacle changes. In-
terestingly, the top speed of the ship additionally indirectly affects the ETA. An
example may be that longer exposure to increased risks near obstacles of a narrow
strait due to a lower available top speed compared to a different ship, can alter the
resulting optimal waypoint distribution along a route alternative. The MSO mode
(Machinery system config in Figure 6.2) directly affects the fuel consumption, pos-
sible top speed, and additionally the grounding risk because the MSO modes are
different in terms of robustness against drifting grounding. Ultimately, the ETA,
the grounding risk, and the fuel consumption affect the cost to be minimized.

Level 1 route planning

The level 1 planning algorithm from previous works [37] is presented and summa-
rized in Section 6.6. It is used to generate pair-wise alternative routes on each side
of static grounding obstacles, if any such obstacle crosses the global pre-planned
voyage path. Note, however, that the computed paths are only concerned with
purely spatial avoidance of any obstacle boundary in the horizontal plane, and is
subsequently evaluated, adjusted and optimized with respect to resource consump-
tion and risks by the level 2 route planner.

Level 2 route planning

Due to the uncontrolled factors shown in Figure 6.2, an estimate of expected costs
has to be formulated and computed during sailing, based on probabilities and
available online (and offline) data. The cost estimate is from Figure 6.2 given by
an ETA, a fuel consumption estimation, and an estimated grounding risk rG, and
ultimately serves as the optimization variable for the level 2 route planner. The
computation processes for these estimated terms are presented in the following
sections.

Table 6.1: Overview of the system variables used in this work

f propulsion/steering forces C Coriolis matrix δ rudder angle
k proportional coefficient D damping matrix η ship pose
m steering moments E easting ν ship velocity
p ship position F propulsion force ω rotational velocity
r yaw rate J Jacobian matrix ψ ship heading
u surge velocity M mass matrix τ forces & moments
v sway velocity N northing Θ ship orientation

P power ζ tuning variable
R rotational matrix

152

6.2. Materials and methods

6.2.2 Modeling

The ship simulator

A three degrees of freedom (DoF) ship model is proposed, for the purpose of state
predictions within the optimization algorithm. The ship’s position pn

b/n is described
by N (north) and E (east) coordinates, and ψ is the ship’s heading. As seen in
(6.1), its time derivative is a rotation transformation of the ship´s forward (surge)
velocity, sideways (sway) velocity and yaw rate are given as u, v and r, respectively.
Based on [93], the ship dynamics can be modeled by the notation as presented in
Table 6.1, and the following relationship definitions and equations:

pn
b/n =

[
N
E

]
vb
b/n =

[
u
v

]
Rn

b (Θnb) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
Θnb =

[
ψ
]

ωb
b/n =

[
r
]

η =

[
pn
b/n

Θnb

]
ν =

[
vb
b/n

ωb
b/n

]
JΘ(η) =

[
Rn

b (Θnb) 0
0 1

]

ṗn
b/n = Rn

b (Θnb)v
b
b/n Θ̇nb = ωb

b/n η̇ = JΘ(η)ν (6.1)

f b
b =

[
F

−ksway δ u

]
mb

b =
[
−kyaw δ u

]
τ =

[
f b
b

mb
b

]

Ḟ = −k
ζ
F +

1

ζ
P k =

Pmax

Fmax
(6.2)

where (6.2) represents the propulsion force dynamics. Here, ζ is a tuning parameter,
F and Fmax are the input and maximum propulsion forces, and P and Pmax are
the input and maximum power available for propulsion, respectively. This model
may be found online at GitHub [144].

Equation (6.3) relates the inertial force given by the 3 by 3 mass matrix M (includ-
ing hydrodynamic added mass) times the acceleration in surge, sway and yaw, with
the other forces acting on the vessel. The Coriolis and centripetal forces CRB(ν)ν
and CA(νR)νR as described in [145] are included, where νR is the ship’s veloc-
ity vector relative to a water particle floating with the current, and linear and
nonlinear damping terms are described by DLνR, and DNL(νR)νR. This gives

Mν̇ = −CRB(ν)ν −CA(νR)νR −DLνR −DNL(νR)νR + τwind + τ (6.3)

where τwind and τ represents the wind forces and control forces acting on the ship.

In the presented algorithm, environmental forces are considered as input, and it
is not within the scope of this work to provide algorithms for weather or current

153

6. Autonomous planning and machinery management

forecasting given the terrain and bathymetry. In general, the optimization should
include margins when defining the cost function and constraints in order to ac-
count for the uncertainty in these forecasts, given the mentioned challenges. In this
way, the control system will make robust decisions by taking into account such
uncertainty bounds. The example in this work utilizes simple models of the envi-
ronmental forces which do not include considerations of being close to obstacles
or varying depths, for simplicity and clarity when demonstrating the effects of the
novel contribution as a proof of concept. The extension to use more complex and
accuracy models (if available) is straightforward since the proposed framework is
flexible with respect to the format of the provided information (i.e. no requirements
have been made for deterministic operations, smoothness or continuity).

The risk model

The purpose of the risk model is to estimate the grounding risk Rk
G given in (6.4)

for each simulated future scenario k. In this work, the drifting grounding risk model
presented in [36] is defined as follows:

Rk
G = P (Gk) · CG (6.4)

It is used as a measure of the grounding risk, where P (Gk) denotes the probability
of experiencing a grounding event Gk during a future prediction horizon in scenario
k (if the scenario k were to be executed), and CG is the cost per grounding.

This model uses ENC data and the position, heading, velocity and yaw rate of a
ship as well as nearby grounding obstacles at some time instance t to calculate
the probability that a grounding scenario may occur, and can be used as an online
real-time risk model for a ship. Note that the grounding obstacles (hazards) are
constructed according to [37], in which the desired minimum depth may be selected
by the operator. Thus, one may include considerations such as ship size and the
water depth in the area around the ship by selecting a minimum depth with an
added safety margin.

In this work, the ship’s instantaneous states and relevant ENC data are fed into
the risk model at regular intervals (e.g. every 30 seconds) to produce an estimate
of the probability of grounding in the next time interval, applied repeatedly across
a receding horizon of e.g. 1 hour to predict future probabilities into an imagined
scenario. Thus, the model will be used to evaluate the probability of grounding
during a potential future scenario k corresponding to a set of proposed control
outputs. In this case, predicted ship states and ENC data corresponding to scenario
k is produced by the ship simulator.

The grounding risk model is illustrated in Figure 6.3, and deals specifically with
the case where the loss of propulsion power may cause the ship to drift aground if
propulsion power is not restored in time to prevent it. It is structured as a bow-
tie diagram, with unexpected component failures as the triggering events, loss of
propulsion power (LOPP) as the hazardous event, and grounding as the considered
consequence. This diagram thus conforms with the scope of this work, i.e. online

154

6.2. Materials and methods

C
o
n
s
e
q
u

e
n
c
e
s
:

G
ro

u
n
d
in

g

Tr
ig

g
e
ri

n
g
 e

v
e
n

ts
:

Hazardous
event:

Proactive barriers:

Two DGs running in PTI
mode such that loss of
single DG will cause
LOPP

Reactive barriers:

Restore propulsion
power before
grounding occurs

U
n
e
x
p
e
c
te

d
 e

v
e
n

ts
c
o
m

p
o
n
e
n
t

fa
il
u
re

s

Loss of
propulsion
power

MSO mode

Environmental
forces

Time it would
take to recover

from loss of
propulsion power

WP
position

Time it would
take to ground
given loss of

propulsion power

Figure 6.3: Illustration of the collision risk grounding model.

navigation before a potential loss of propulsion event is considered with respect
to grounding risks. Moreover, the MSO modes affect both the engine recovery
time during LOPP as well as the potential for unexpected component failures,
and may act as proactive barrier if selected appropriately. Lastly, environmental
forces (disturbances) and the waypoint positions distributed along the navigated
trajectory or path affect the time it would take to ground the ship if an hazardous
event occurs.

Figure 6.4: Block diagram illustrating the main principles of the risk model. TTG-sim:
The simulated "Time-To-Grounding" prediction, in which xP

K(ti) are the predicted black-
out trajectories at any time instant ti, and ∆tkG(ti) are the simulated TTG predictions.

155

6. Autonomous planning and machinery management

Figure 6.4 shows the implementation and structure of the risk model. The haz-
ardous event of Figure 6.3 serves as the key element in the risk model, in which
the probability of a LOPP event occurring is combined with a time-to-grounding
(TTG) prediction to calculate the accumulating grounding probability distribution
across the prediction horizon, based on the future predicted ship states as inputs.
This probability is ultimately multiplied with the cost of grounding to produce the
total grounding risk Rk

G.

The probability of grounding

There may be significant transients in Rk
G over the duration of a prediction horizon.

To capture the effect of these transients, the prediction horizon is subdivided into
n time intervals. P (Gk) can be formulated as

P (Gk) =
n∑

i=1

P (Gi,k) (6.5)

where Gi,k denotes the event of grounding during time interval i in scenario k.
It is only possible to ground once during the prediction horizon. Therefore, the
probability of grounding during a specific interval i in the prediction horizon must
account for the possibility that a grounding already occurred earlier in the predic-
tion horizon.

The notation P (Gi,k|Ḡ1,k, Ḡ2,k, ..., Ḡi−1,k) := P (Gi,k|Ḡi−,k) used in (6.6) is de-
fined as the conditional probability of grounding during the interval i in scenario
k, given that it did not occur prior to the ith interval in scenario k, and Ḡj,k is the
complementary event of Gj,k. Thus, the probability of grounding during the time
interval i in the prediction horizon k can be formulated as

P (Gi,k) =

P (Gi,k|Ḡi−,k)

i−1∏
j=1

(1− P (Gj,k)) , if i > 1

P (G1,k), if i = 1

(6.6)

Next, each time interval in the prediction horizon k is considered. To simplify the
notation, the indices i and k are not included in the following derivation. A potential
grounding scenario can be subdivided into a scenario that leads to loss of propulsion
power (a LOPP scenario), and a recovery scenario. If a LOPP scenario occurs, a
grounding follows if a recovery scenario cannot be successfully executed within the
time it takes the ship to drift aground. A LOPP scenario can be described by a
set of triggering events, while a recovery scenario is described by a set of startup
events. In the model, a set of potential LOPP scenarios is associated to each MSO
mode. Moreover, a set of potential recovery scenarios are associated to each LOPP
scenario in each MSO mode. That is, the possible ways of recovering the system
after LOPP depends on the scenario that caused the LOPP event and the state of
the system (MSO mode) when the LOPP event occurred.

156

6.2. Materials and methods

Consider the power and propulsion system illustrated in Figure 6.5 as an example.
The system can be operated with two propellers, each with its independent power
source. It is assumed that one power source and propeller is sufficient to prevent
the ship from grounding. As shown in the fault tree in Figure 6.6, a potential LOPP
scenario, in this case, is that both power sources are lost (i.e. the set containing the
two events "ME1 stops" and "ME2 stops"). The event tree in Figure 6.6 illustrates
the two corresponding potential recovery scenarios, namely either the recovery
scenario in which ME1 is restarted, or the recovery scenario where ME2 is restarted.
If the ship is operated with only one online power source, e.g. ME1, then a LOPP
scenario is described by the event "Loss of ME1", while the potential recovery
scenarios becomes "Restart ME1" or "Start ME2". In general, the event of starting
a component and the event of restarting a component are distinguished from each
other. Whether one is restarting a component (after unexpected loss) or starting a
component may e.g. affect the probability of success.

The probability of experiencing the particular LOPP scenario S consisting of trig-
gering events et is denoted P (S), see (6.7). If the triggering events can reasonably
be modeled as independent events, and the ship is operated in a mode where S is
a potential scenario, then

P (S) =
∏
et∈S

P (et). (6.7)

In this chapter, the triggering events et are modeled as exponentially distributed
events with constant frequencies of occurrence λt, as defined in (6.8). Thus, the
probability of experiencing the event et during a time interval ∆t is

P (et) = Fexp(∆t;λt) = 1− e−λt∆t. (6.8)

A set Er of possible recovery scenarios following a particular LOPP scenario in a
given machinery system configuration is referred to in a recovery event tree, where
each possible recovery scenario ri is a branch on the event tree (as exemplified
in Figure 6.6). The probability of not succeeding in recovering the system, given

ME1 ME2

Figure 6.5: Example power and propulsion system with two propellers using independent
ME power sources.

157

6. Autonomous planning and machinery management

LOPP

AND

ME1
stops

ME2
stops

LOPP-scenario

Restart ME1
in time

Restart ME2
in time

yes

no yes

no

Recovery

Recovery

Grounding

Potential recovery scenarios

Figure 6.6: A potential set of two grounding scenarios for the example system.

the occurrence of LOPP, is equal to the probability that none of the possible
recovery scenarios in Er succeed within the time it takes the ship to drift aground.
The probability P (G|L) = 1 − P (Er|L) of not succeeding in recovering before
grounding can be calculated directly from the event tree according to the standard
event tree methodology, (e.g. in Figure 6.6, the probability of grounding given
LOPP would be the product of the two probabilities of not restarting main engine
(ME) in time and not restarting M2 in time). To achieve this, it is necessary to
find the probability P (er) of each recovery event er occurring before grounding
(e.g. restarting ME1 in Figure 6.6). It is noted that the time ∆tr it takes from
LOPP occurs to event er occurs (e.g. M1 is successfully restarted), is a random
variable. Thus, the probability that the event occurs before a grounding occurs
(i.e. before the time ∆tG elapses), is given by the cumulative distribution of ∆tG,
P (∆tr < ∆tG) = Fer (∆tG) and a nominal probability of success pr associated
with the event (e.g. the probability that it is possible to restart ME1 given infinite
time),

P (er) = Fer (∆tG) · P (r). (6.9)

The time ∆tG it would take to ground given the occurrence of LOPP, is found
by simulating that the ship drifts without propulsion (and steering), subject to
environmental forces. This is achieved by using the TTG simulator for predictions
as illustrated in Figure 6.4. This prediction uses the same model as described in
Section 6.2.2, but without propulsion and steering. Lastly, the TTG prediction is
initialized by using the predicted ship state each time that LOPP is simulated to
occur.

The cost of grounding

The cost of grounding is a function of the ship state vector x, as illustrated in
Figure 6.4. In general, the cost of grounding can have a large range of contributions.
In this research, it is proposed to divide the contributions into costs associated with:

158

6.3. Results

• Cship := damage to the ship. This depends on the system states x, such
as impact speed and location of grounding (i.e. the type of surface the ship
grounds into), as well as the sea state, S (i.e. large waves may cause a more
violent impact) to be used in the cost function.

• Crecovery := rescue fee that must be paid to recover the ship. This may
depend on the constant parameters of the ship such as the length of the ship,
but also the system states x, and in particular the location of the ship (e.g.
if it is far from civilization and the nationality of the rescue team).

• Ccargo := damage to or loss of cargo. This may be set as a fixed parame-
ter according to the value of the cargo, as well as being dependent on the
magnitude and nature of the impact.

• Cenvironment := environmental damages such as oil spill in the ocean. This
may depend on fixed parameters such as the amount of oil carried by the
ship, but also the system states x, and in particular the location of the ship
(e.g. the sensitivity of the marine area) and weather conditions.

• Cinfrastructure := damage to infrastructure on the shore such as fish farms,
harbors, promenades, and so forth. This cost may depend on the system states
x, (e.g. location of the impact and whether or not there are infrastructure
there to be damaged).

• Creputation := loss of reputation due to loss of or damage to cargo or major
delays in delivery. This may be modeled as a fixed quantity.

The total cost of grounding may then be estimated as

CG = Cship(x,S) + Crecovery(x) + Ccargo

+ Cenvironment(x) + Cinfrastructure(x) + Creputation.
(6.10)

This concludes the methodology of this work, and will in the following sections be
implemented in a simulation study, serving as the foundation for the results and
discussion in which the proposed approach presented in this chapter is validated
and assessed.

6.3 Results

In this section, a simulation study is presented. The objective is to test and demon-
strate the proposed control algorithm for autonomous ship control. The control
system is implemented on a simulation model of a coastal cargo ship with a length
overall (LOA) of 81.5 meters and a beam of 16 meters and a displacement of 5335
tons.

6.3.1 The machinery management system

The ship is equipped with a hybrid-electric propulsion system. There is one pro-
peller that is powered from a gearbox. The gearbox can be powered either from the

159

6. Autonomous planning and machinery management

ME, or from a hybrid shaft generator (HSG). The HSG converts electrical power
from an electrical bus that can be powered from two identical diesel generators
(DGs). There are several ways in which the propulsion system can be operated.
In this case study, only the three predefined MSO modes; power take out (PTO),
mechanical (MEC) and power take in (PTI) are considered.

As illustrated in Figure 6.7(a), PTO refers to a mode where the ME is responsible
for the main propulsion, as well as auxiliary electrical loads. In this case, both
DGs are offline and the HSG functions as a generator, transforming mechanical
power from the gearbox to electrical power. In MEC mode, (see Figure 6.7(b))
the auxiliary electrical loads are served by one of the DGs instead of the HSG.
Thus, the HSG is off, and all the power produced by the ME is used for propulsion.
Finally, as seen in Figure 6.7(c), PTI mode uses the DGs to provide power for
propulsion. In this case, the HSG is acting as an electrical motor, transforming the
electrical power from the DGs into mechanical power on the gearbox.

The main engine is a marine diesel engine with a maximum continuous rating
(MCR) of 2160kW, while the two diesel generators are rated at 590kW each.

(a) PTO-mode where the ME is re-
sponsible for both propulsion and elec-
trical loads.

(b) MEC-mode where the ME is re-
sponsible for propulsion and a DG is
used for auxiliary electrical loads.

ME

Gear-
box

HSG

(c) PTI-mode where two DGs are re-
sponsible for main propulsion and aux-
iliary electrical loads.

Figure 6.7: Diagrams of the machinery system’s layout in the three operational modes.
Green color indicates online components and the arrows indicate the direction of energy
flow (power) [36].

160

6.3. Results

6.3.2 Risk model setup

Table 6.2 presents the possible scenarios (consisting of a LOPP scenario and a set
of possible restoration scenarios) that can occur in each MSO mode. The LOPP-
scenarios and restoration scenarios are described in terms of triggering events and
restoration events, respectively.

The expected rate of occurrence for each triggering event is presented in Table 6.3,
and the restoration events and their parameters are given in Table 6.4. Here, the
nominal probability refers to the probability of success of a recovery event given
infinite amounts of time. The mean time, standard deviation and minimum time,
are parameters in the restoration events success time, where mean time refers to
the mean time given that it will start (i.e. assuming that the nominal probability
is one). A lognormal distribution is assumed, where the minimum time parameter
refers to a time interval. As an example, "Start ME" takes at least 20 seconds,
according to the parameters in Table 6.4.

6.3.3 Environment setup and route planning

For proof of concept, a simple simulation environment is created using the ENC
package SeaCharts [37] in Python 3.10. An area of approximately 14 square kilome-
ters west-northwest of the Norwegian city of Ålesund is chosen for the simulation
study, shown in Figure 6.8. This environment showcases an interesting scenario in

Table 6.2: Description of the possible scenarios in each MSO mode

MSO mode LOPP-scenarios Possible restoration scenarios
PTO "ME stops" "Restart ME"

"Start DG1" AND "Start HSG"
"Start DG2" AND "Start HSG"

MEC "ME stops" "Restart ME"
"Start HSG"

PTI "DG1 stops" AND "DG2 stops" "Restart DG1"
"Restart DG2"
"Start ME"

"HSG stops" "Restart HSG"
"Start ME"

Table 6.3: Overview of considered triggering events and rates of occurrence

Triggering event ME stops DG1 stops DG2 stops HSG stops
Failure rate 3e-9 6e-9 6e-9 2e-9

Table 6.4: Overview of restoration events and their statistical parameters

Recovery Start Restart Start Restart Start Restart Start Restart
events ME ME DG1 DG1 DG2 DG2 HSG HSG
Nominal prob. 1 0.4 1 0.5 1 0.5 1 0.8
Mean time 50 50 35 35 35 35 12 12
Std. deviation 1.4 1.4 1 1 1 1 1 1
Minimum time 20 20 14 14 14 14 3 3

161

6. Autonomous planning and machinery management

which one may choose between two different paths on either side of an island, and
is considered well suited for a proof of concept.

The tentative ship route or path to follow is shown in Figure 6.8 as green line
segments connected by "links" at each given waypoint, as generated by the global
voyage planner of Figure 6.1. Notice however how one of the green line segments
are intersecting an island, highlighted by the red color where the island crosses
the globally planned line segment. This setup is specifically chosen to demonstrate
that if a planned tentative route is somehow inaccurate or incomplete such that
grounding obstacles are present along the route, one may utilize e.g. the Level-1
route planner from [37] to generate alternative feasible routes on opposite sides of
the obstacle in question. Moreover, one may analogously extend the anti-grounding
algorithm to also encompass collision avoidance of dynamic obstacles, through e.g.
the concept of (polygonal) adaptive safety domains [28] constructed around e.g.
nearby vessels. Thus, it is argued that the approach shows significant flexibility
and adaptability. Section 6.6 contains a summary of the planning algorithm, as
well as a visual demonstration of each algorithm step.

Figure 6.9 shows the result of the Level-1 path planning performed on the ship
route of Figure 6.8, as generated by Algorithm 8 from Section 6.6. First, the green
line segments are checked for intersections with any grounding obstacles in the en-
vironment, which in this case yields the red streak as shown in Figure 6.8. Second,
the convex hull of the intersected grounding obstacle (island) is extracted, and an
added buffer of a 50m safety margin is applied in all directions from the obstacle
exterior boundary, in addition to the already added 10 m buffer and vertex simplifi-
cation process performed during the construction of the polygons of the SeaCharts

Figure 6.8: Visualization of the simulation study area and ship route using the SeaCharts
package [37].

162

6.3. Results

Figure 6.9: End result visualization of the Level-1 route planning algorithm [37].

ENC. This yields the two convex polygons highlighted around each of the islands
south in the environment.

It is important to notice that one should be careful with this "hard" static safety
margin. If this buffer around each grounding obstacle is too large, the subsequent
path following or guidance controller may have trouble with navigation through
extremely narrow straits, or one may even risk closing the strait in its entirety,
losing the possibility of navigating through it as a route alternative. Thus, it is ar-
gued that the buffer should be somewhat conservative, and that the path following
algorithm or controller is expected and required to be capable of operating in the
interior of the feasible domain, as opposed to at the boundaries of hard constraints
such as the grounding obstacle exteriors. Nonetheless, the Level-1 alternative route
path planner is indeed a linear optimization algorithm operating on the vertices
and line segments of each grounding obstacle polygons, essentially generating an
approximate ship path to be used both during initialization and as part of the cost
function of the Level-2 route planning optimizer of Figure 6.1.

In Figure 6.9, the red disk within the path waypoint link to the east shows the
start point of the simulation study. Conversely, the red disk to the west is the next
target path waypoint. Algorithm 8 iterates through each of the grounding obstacle
vertices, and checks if the point is visible (i.e. accessible along a straight unin-
terrupted line) from the reference point. The first reference point is thus the red
east-most starting point, and the distances between each vertex visible from the
reference location and the green line segment are measured. The visible vertex far-
thest away from the path is selected as the first alternate waypoint, and the process
is repeated with each newly generated waypoint as the visibility reference location.
This generates a new collection of line segments on each side of the grounding

163

6. Autonomous planning and machinery management

obstacle, and these alternative paths are in Figure 6.9 shown in yellow and pink.
Notice how the generated yellow path originally intersected with the larger island
to the south-west, which prompted another sub-run of the algorithm such that the
new intersection is considered in the final path alternatives. See Section 6.6 for
more details on this procedure.

6.3.4 Particle swarm optimization

The waypoint (route) optimizer used in this simulation study is a risk-aware PSO
waypoint planning algorithm which is extended, based on previous works [41].
Compared to other methods such as MPC [38], PSO is not subject to any special
cost function construction or feasibility concerns in order to generate solutions (not
guaranteed to be optimal). Thus, one may utilize highly discontinuous or discrete
cost definitions, allowing for more complex general optimization.

The principle behind PSO is to randomly generate an initial swarm of N-
dimensional solution particles, and repeatedly update the particle positions with
respect to semi-random particle velocities based on their performance measured by
the cost function. The technique is widely covered in the literature, and the reader
is referred to previous works for more in depth background on PSO [41].

A simple demonstration case is shown in Figure 6.10, in which only the 2D XY-
coordinates of the path waypoints in the horizontal plane are optimized through
purely distance-based and spatial costs from the ad hoc risk-aware implementation
discussed in [41]. The same green line segments, start and target in red from Fig-
ure 6.9 are considered, as well as the newly generated route alternatives – here,
shown in gray on each side of the smaller island.

Figure 6.10: PSO demonstration of 2D waypoints along the ship route.

164

6.3. Results

The alternate paths are subsequently split into 20 sub-segments, corresponding
to 19 waypoints shown in yellow and pink, respectively. The first line segment
corresponds to the given start waypoint. These intermediate waypoints are used
directly as the 2D particles to be optimized by the PSO, with respect to any
nearby grounding obstacles. The cost function is a sum of simple path-related
costs such as total path length and waypoint distances to the original path, as
well as a simple risk-aware exponential function applied to the grounding obstacles
[41]. The latter term weighs small distances between the ship position and nearby
obstacles very highly compared to far-away locations, essentially adding a dynamic
"soft constraint" which prevents the optimized path from crossing obstacles.

It is clear how the yellow and pink waypoints simulate increased risk-aware be-
havior with respect to the nearby islands, if followed by a navigation or guidance
controller (see e.g. Figure 6.13). Furthermore, one may also note how the lack of
hard constraints keeps the problem well-behaved, even in the more narrow strait
between the two islands shown in yellow. If e.g. the safety margins discussed pre-
viously had been increased as a substitute for the distance-based "interior" cost
inside the feasible region, one could end up with sharp and even infeasible paths
between narrow straits such as the one shown. The magnitude of the obstacle
avoidance costs are exaggerated for visibility in this proof of concept.

6.3.5 Risk cost formulation

The formulation of the final risk-aware cost function is subject to many consider-
ations. Figure 6.11 presents a visualization in which the same intermediate yellow
and pink waypoints from the Figure 6.10 are shown in the colors yellow and cyan
(replacing the pink for visibility), respectively. Here, the ends of the green line
segments replace the initial route "links", and denote the original red start and
target locations. The increased risks simulated by the exponential term in the cost
function is readily apparent from the overlapping contour polygons shown around
each grounding obstacle, increasing in intensity and color from light yellow to dark
red within the obstacle interiors. The optimized waypoints in yellow and cyan are
seen traversing over or along the "hills and valleys" of the risk contours around the
obstacles, and there is a strong correlation between the risk contour magnitudes
and the resulting waypoints arrangement.

Obstacles previously hidden from sight also become apparent in this view, as every
land area, shores and/or seabed depths more shallow than 10 m are included as
(convex) red obstacle interiors. Thus, these obstacles also contribute to the spatial
optimization, but are in this scenario negligible if sufficiently far away from the
considered waypoints. This effect can be verified by comparing the colored inter-
mediate waypoints with the previous alternate line path segments of Figure 6.10:
There is no considerable discrepancy between the optimized waypoints and the
Level-1 planned paths when no grounding obstacles are nearby the original path,
as a direct consequence of the exponential nature of the risk cost term.

These distance-based risk awareness contours of Figure 6.11 resembles artificial po-

165

6. Autonomous planning and machinery management

Figure 6.11: Contours visualization of the distance-based grounding risk cost term used
in this work.

tential (repulsion) fields, which is another popular approach used for path planning
for e.g. unmanned autonomous vehicles. This method is however prone to becoming
stuck in local minima and may show poor performance in narrow passages such as
the isle strait considered here, and these issues must also be recognized and han-
dled when using PSO. The sum of additional path-related costs are valuable in this
regard, strongly related to the previous point with respect to the negligible diver-
gence between the Level-1 routes and the optimized waypoints further away from
obstacles: By enforcing large costs associated with straying away from the original
path (as well as increasing the total path length), the (near-) optimal placements of
each waypoint are semi-forced along the original path. This approach does however
place more responsibility onto the Level-1 planner in order to achieve satisfactory
solutions, which is considered appropriate following that the global planned path
is already assumed to be near-optimal in this study.

In previous works, a scalar cost with respect to environment (wind) disturbances
was used in conjunction with the static distance-based grounding obstacle costs to
account for the increased risks present when obstacles are located down-wind (or
down-stream) of the ship [38], [41]. Figure 6.12 shows a comparison view of the effect
this extra cost term has on the waypoint distribution across each route alternative.
The yellow and pink waypoint paths of Figure 6.10 are here denoted in orange
and magenta, respectively, and the new resulting waypoints of each alternative
including the added scalar product cost term are shown in yellow and pink.

For simplicity, only wind disturbances are included in the proof of concept demon-
stration. In the upper-right corner of Figure 6.12, the wind direction and wind
velocity of the disturbance forces are shown as 250° and 10 m/s, respectively. It is

166

6.3. Results

Figure 6.12: Comparison of the scalar product grounding risk cost used in previous
works.

clear how the scalar product of the wind direction and the direction to each ground-
ing obstacle weighs more heavily onto the waypoint costs, effectively shifting them
in approximately the opposite direction. Though the PSO algorithm is entirely
sample-based and not gradient-based, the direction of the extra perturbations of
the spatial waypoint locations are very similar, as expected. See the visualizations
and discussions presented in the previous works for more details [38], [41].

Some interesting effects are seen on a few waypoints. On the pink path, one can see
how WP3 is more eastward, and WP7 is almost completely northward compared
to their magenta counterparts, due to the scalar product of the closest point on the
nearby grounding obstacle and the wind direction. Most notably, WP3 of the yellow
path demonstrates a slightly unintended effect of using this risk cost formulation.
Here, the wind direction (in this example) compared to the direction of the nearest
potential point of grounding as seen from the ship, is such that the scaled extra
cost of the exponential scalar product term is sufficient to noticeably move the
waypoint southward unnecessarily. Though the risk cost scaling in these examples
are exaggerated greatly for visual clarity, effectively resulting in less efficient routes
around the islands, there is evident potential for improvements.

Thus, a new risk cost formulation is presented in this chapter, which utilizes a ship
model and the concept of TTG in order to produce more precise and appropriate
waypoint planning solutions. It is argued that this cost formulation reflects realistic
scenarios to a higher degree, more accurately incorporates the dynamics (i.e. the
trajectory) of the ship, and is considered a natural addition to the cost function
given the new scope which also includes machinery management considerations.
The final cost function is presented in Section 6.3.9.

167

6. Autonomous planning and machinery management

6.3.6 Path following and trajectory control

The output of the Level-2 route planner of Figure 6.1 is ultimately given as input
to the ship’s guidance system, which in turn controls the trajectory of the ship
toward the resulting waypoints. Figure 6.13 shows an example simulation of tra-
jectories produced by a LoS guidance controller, following the paths generated by
both alternative sets of waypoints. Here, the speed of the ship is set constant, for
simplicity. Most strikingly, the yellow trajectory is noticeably faster than its coun-
terpart in pink. Its end position is readily seen in the figure being located farther
along the path, after the same number of sampled time intervals.

In the example trajectories shown in Figure 6.13, the yellow trajectory is faster than
the pink trajectory, but intuitively it does also involve higher levels of grounding
risks – as apparent in Figure 6.11. This leads to the very purpose of this chapter,
and is indeed the main research question to be considered: How can both the
efficiency and risk aspects of ship paths or trajectories be weighted such that the
resource consumption is minimized during a successful mission execution, while
simultaneously achieving safety?

6.3.7 Time-to-grounding (TTG) predictions

As noted in the discussion related to Figures 6.3 and 6.4, the principle of "time-
to-grounding" is simply to predict when (if) a ship would experience a grounding
event if a LOPP (machinery failure) scenario occurs at a given time instant along
the planned path, given the current or expected environment (weather) conditions.

Figure 6.13: Path following simulation example, based on a simple line-of-sight guidance
controller.

168

6.3. Results

Figure 6.14 presents a demonstration of the TTG predictions. The wind velocity is
10 m/s, and the currents velocity is 1 m/s. Here, the orange and green collections
of ship poses are not simulation trajectories, but rather the ideal ship poses defined
for each waypoint distributed evenly along the original paths. This shows how an
initial ship yaw angle or heading is needed for each (ideal) waypoint in order to
predict TTG. The angles are calculated using the angle between the previous and
the next (neighboring) waypoints, for each individual waypoint. The yellow and
pink colored ship poses denote the predicted trajectories during a LOPP scenario
corresponding to each ship pose of the orange and green routes, across a horizon
of 10 min.

The predicted future trajectories with no propulsion and steering are simulated by
the ship model, and include the ship dynamics and initial ship speed before loss
of propulsion power. As expected given a wind direction of 250°, the ship in the
orange trajectory is predicted to drift south-west toward the south-west island, and
the ship in the green trajectory would firstly hit the smaller island. Moreover, as
the accumulated probability of grounding only increases (and is defined) given that
a grounding event has not occurred, the future predictions are ended if any part of
the ship intersects with a grounding obstacle. These intersections are shown as red
ship poses. Note that the red grounding events may be asynchronous with respect
to the regular sampling intervals of predicted ship state (pose), across the LOPP
scenario horizon.

Figure 6.14: Time-to-grounding predictions shown for a LOPP scenario occurring along
the trajectories.

169

6. Autonomous planning and machinery management

6.3.8 MSO mode selection and fuel consumption

The TTG predictions are used to inform the optimization during the PSO run,
i.e., to select the most suitable MSO mode as well as the waypoint locations during
optimization. This is due to the fact that each MSO mode have different fuel con-
sumption rates when active, and have different restoration properties. The result-
ing time values of the TTG predictions are subsequently translated into grounding
probabilities, and then expected costs through the rate of failure probabilities and
restoration rates of Tables 6.2 to 6.4. These costs are ultimately weighted against
all other costs defined by the path following cost function, and the PSO outputs
three-dimensional (3D) solution particles consisting of the X and Y coordinates
of each waypoint, and the selected MSO mode to be used for the following time
interval.

Figure 6.15 presents an alternative view of the ideal sailing routes and LOPP
blackout predictions of Figure 6.14, in which additional directed arrows denote how
the 2D cost gradients of the waypoint locations in the horizontal plane are affected
by the TTG predictions and resulting estimated costs. The altered locations of the
optimized waypoints would in turn increase the total fuel consumption, assuming
that the original path is near-optimal. It is intuitive that since the risks for a
grounding event occurring increases along the direction of the wind disturbance,
a purely spatial cost function would move the waypoint locations away from the
predicted points of impact [38], [41]. However, in this work, the MSO mode selection
also plays an important role.

In this figure, the trajectories are unchanged for the purpose of conceptual demon-
stration and comparison to later results. For this example, both trajectories ex-

Figure 6.15: Spatial waypoint risk gradients demonstrations.

170

6.3. Results

perience proximity to higher grounding probabilities for an approximately equal
amount of time. However, in general, this is not necessarily the case, and the fuel
consumption along the complete trajectories are highly dependent on both the spe-
cific MSO mode selected, and the accumulated time spent in the mode. Thus, it
may sometimes be more economically prudent to simply move the route waypoints
further away from the grounding obstacles, as an alternative to disrupt the ma-
chinery to go into another (i.e. safer but also more costly) MSO mode. This joint
combination of spatial path optimization and operational mode cost minimization
during operations is considered the novel contribution of this work.

6.3.9 The complete cost function and simulations

Based on the discussions and intermediate results of the previous sections, the final
complete cost function is formulated as follows:

Ck(ϖ,m) = Cpath(ϖ, k) + Cgrounding(ϖ, k,m) + Cmso(ϖ, k,m) (6.11)

Cpath(ϖ, k) = µ1||ϖ −ϖref
k ||

2 + µ2

(
||ϖ −ϖref

k−1|| − ||ϖ −ϖref
k+1||

)6

(6.12)

Cgrounding(ϖ, k,m) = CG

(
µ3

∑
σ∈O

e−dmin(ϖ,σ)ζ1 + µ4P (G)
)

(6.13)

Cmso(ϖ, k,m) = Cconsumption · µ5||ϖ −ϖref
k+1|| (6.14)

where ϖk = P (x, y) is a 2D waypoint corresponding to the kth line segment along
a route alternative, and x, y, k and m are the x- and y-coordinates of a waypoint,
the line segment number and the selected MSO machinery mode, respectively.

The second term of Cpath is raised to a larger (even) power than the first to more
strongly encourage distributing the waypoints with equal distances between each
other, compared to being close to the ideal reference waypoint along the route.∑

σ∈O e
−dmin(ϖ,σ)ζ1 is the total sum of the negatively scaled minimum distances

to every grounding obstacle raised to the power of e, which serves as an exponential
barrier function for nearby grounding obstacles irrespective of the heading of the
ship or any disturbances.

P (G) is the accumulative grounding probability function from (6.5), and
Cconsumption is the estimated fuel cost per meter traveled. For simplicity, it is
for (6.11) assumed that the variable costs defined in (6.10) are held constant for
the entire optimization horizon, i.e. CG is static based on a set of assumptions
related to the current surrounding environment. The reference waypoints ϖref

denote the ideal waypoint locations evenly spread across all line sub-segments

171

6. Autonomous planning and machinery management

along a route alternative if left completely unaltered by grounding risk costs, i.e.
Cpath = Cgrounding = 0 (see the pink waypoints 8 to 19 in Figure 6.12). In this
work, the PSO setup used 30 candidate particles in each particle swarm (one for
each of the 20 line segments), and was run for 100 iterations. The following hyper-
parameters of the PSO was used: The inertia weight was set to 0.75, the cognitive
weight was 1.0, the social weight was 2.0, and the velocity limit was 1.0.

Using the path following guidance controller, the resulting optimized WP distri-
butions and trajectories of each route alternative are shown in Figure 6.16. The
green trajectory follows the resulting PSO route in pink, and the orange trajectory
follows the yellow route. The target ship heading each time interval is calculated
by drawing line segments between the optimized waypoints, and extracting the
target coordinates by intersecting the resulting path by a circular horizon radius of
200 m. Thus, the generated ship trajectory is entirely independent of the distance
between each optimized waypoint of the PSO, and the smoothness of the path to
follow may be improved simply by increasing the number of waypoints to optimize.

The cyan waypoints on both routes denote where the most robust but costly MSO
mode is selected for a specific WP interval (MEC), and the cyan ship pose shows
where the ship has this mode active during its voyage in order to reduce the ex-
pected costs of grounding due to the TTG simulations. All other waypoints are
given their original colors when using the most economical MSO mode (PTO).
These results show how e.g. WP10 of the yellow route and WP6 of the pink route
are allowed closer to the nearby obstacles compared to e.g. Figure 6.12 (demon-
strating the approach of previous works [41]), as the cost function now integrates
and considers the ship dynamics.

Figure 6.16: The resulting route trajectories using the complete cost function with TTG
predictions.

172

6.3. Results

Moreover, it may be noted that the MEC mode is still selected also for the line
segment following WP9, for the purpose of demonstration - the MSO mode selection
algorithm may utilize more advanced mode management mechanisms than simply
choosing the most economical at each interval. It is also apparent that WP9 in
this example is moved away from the nearby obstacle, leading to the normal PTO
mode being selected. Though such mode switching generally is unwanted due to
additional startup/switching costs, this outcome is included here for completeness
only; a more sophisticated behavior may be tweaked and fine-tuned as desired.

Graphs of estimated (expected) grounding and fuel costs of each route, as well as
the total accumulating costs along each alternative, are presented in Figure 6.17.
Expected costs for grounding shows the µ4 term of Cgrounding (6.13) for each way-
point, and are shown as blue bars. It may be noted that as the scaling coefficients
for grounding events are constant in this work, the value of the blue bars may serve
as proxy visualizations for the grounding probabilities P(G) experienced during the
TTG simulations of each waypoint - i.e., a taller bar means a larger expected rate
of grounding occurrences, which are noticeably different for each mode due to their
inherent restoration capabilities. Expected (additional) costs for added fuel con-
sumption with respect to the optimal path are denoted as the green bars on top.
The three different MSO modes PTO, MEC and PTI are denoted by zero, halved

Figure 6.17: The weighted MSO mode costs of each waypoint interval and accumulated
route costs.

173

6. Autonomous planning and machinery management

and fully streaked bars, respectively. The total heights (sum) of these bars are the
total expected costs of each MSO mode selection, for each waypoint.

It is apparent how each MSO mode are proportionately related to different fuel
cost rates and grounding risk probabilities (due to different restoration rates), e.g.
PTO has a lower fuel cost but also a larger grounding risk scaling associated with
it, compared to that of MEC. During optimization, the mode with the lowest total
cost is simply chosen for each route line segment between optimized waypoints.
Note that the cost coefficients used in this work are ad hoc for a proof of concept,
and are consequently only meaningful relative to each other. Thus, both Y axes
are normalized between 0 and 1.

Definite indications of increased grounding risks and thus expected costs are clearly
visible for WP 6, 7, 8, 9 and 10 for the yellow path, and WP 3, 4, and 5 for the
pink path. This is in line with the visual information shown of the environment
in Figure 6.16, i.e. the nearby grounding obstacles affect the costs as expected.
One may also note that despite being as close to the obstacles as the mentioned
points, WP 11 of the yellow path and WP 6 and 7 of the pink path are not affected
in the same way, due to the general direction of the TTG predictions as a result
of the given disturbances. Moreover, there is a noticeable difference between the
expected fuel cost of WP 9 in the yellow path compared to its two neighbors.
This also corresponds to the visually apparent location shift of the waypoint, in
which the increased fuel costs of moving the waypoint in this situation were less
expensive than the expected grounding costs for this specific interval. One possible
explanation for this result may be that the expected TTG for this interval is less
than the shortest minimum time required for all available restoration events, which
significantly increases the grounding risk for that initial waypoint location.

The yellow and pink lines are the accumulating costs of each respective route, used
to select the most efficient route. Ultimately, the pink route with its resulting green
trajectory was chosen due to the lowest total expected cost across the entire (pre-
dicted) simulation run. This result shows how the fastest route may not always be
considered the most cost-effective within a specific environment and set of condi-
tions, and thus a slightly longer but more effective and/or safer route is generated
and selected as the optimal choice.

6.4 Discussion

It is recommended that the methodology and proof of concept presented in this
work should be implemented and tested in a practical implementation in future re-
search. Moreover, testing of different combinations of various PSO hyper-parameter
settings, number of particle candidates and number of iterations should be inves-
tigated and assessed in order to achieve improved performance.

The structure and tuning of specific terms in the complete cost function have a
significant impact on the resulting solutions. In fact, the behavior or final waypoint

174

6.4. Discussion

distribution across each route alternative is by definition entirely dependent on both
the cost function formulation and its inherent weighting coefficients. As such, the
choices made with respect to the individual terms of the cost function must be
thoroughly assessed. The sub-parts of (6.10) may in future research be weighted
dynamically with respect to the ship state or predicted states. However, CG is in
this proof of concept given a constant value for simplicity.

The Cpath term (6.12) consists of only path-related costs, which keep the way-
point distribution close to the original route alternative (the first term) as well as
distributing the waypoints evenly across the full length of the original route. The
values of both the exponents and its weights (µ1, µ2) is however highly flexible,
and may be adjusted to accommodate various levels of strictness with respect to
the path following aspect of the cost function as deemed most fitting by the human
operators. Furthermore, it may be noted that though the TTG simulations are
time-dependent during the LOPP simulations, Cpath is not. This is a deliberate
choice made in order to enable utilization of parallel computing techniques, due
to each waypoint being fully independent from all other variable waypoints during
optimization as a result of only using the ideal (static) reference waypoints ϖref

in this cost term. However, it may be argued that the PSO optimization instead
may be structured such that the cost of each WP is dynamically calculated with
respect to the best known costs of each PSO WP neighbor instead of the static
references. Though this structure is not parallelizable, it may potentially achieve
even more optimal waypoint distributions in future works.

Next, the Cgrounding term (6.13) is comprised of both the exponential anti-
grounding costs as well as the weighted TTG-based accumulative probabilities of
grounding if a LOPP event occurs. Though these terms are quite different in their
form and the resulting effects of each consequently are difficult to compare directly,
both are considered necessary to formulate as such in order to achieve desired be-
havior. The first term is included solely to serve as a strong barrier function for
the purpose of extra safety, which may override any insufficient tuning or if any
unexpected or unaccounted for events may occur. Thus, the term is exponentially
defined, even though the resulting costs close to grounding obstacles are difficult to
define explicitly or compare to more practical probability- and expected costs-based
terms. This formulation may also be thoroughly examined in later research.

Similarly to the path-related cost formulation, the Cmso term (6.14) is based on
fuel consumption with respect to the next ideal waypoint, as opposed to a perhaps
more intuitive parameters such as total distance traveled, or time. This somewhat
indirect form is also chosen in order to enable parallel computing, eliminating the
need to include the variable waypoints during optimization, which vastly reduces
the computational complexity. It is argued that though the resulting cost is not
accurate in terms of actual fuel consumption estimated during the voyage, it is a
useful measure of how much extra consumption is required for any waypoint change
with respect to the ideal route alternative. This is considered appropriate within
the scope of this study, due to the pre-computed reference path being assumed
near-optimal.

175

6. Autonomous planning and machinery management

Note that the implementation and cost formulation in this work do not include
any additional cost terms for switching of MSO modes, nor any considerations
of time delays or other time-dependent variables related to e.g. cold-starting an
engine. These factors were not handled in this proof-of-concept study, but are
however considered natural and appropriate additions to further research efforts or
industrial applications.

There are many uncertainties related to both the measurement of states and pre-
dicting future states, and the models used to calculate these states. The manage-
ment of such uncertainties is an important consideration of optimization problems
such as the one presented in this work. In general, one may add additional safety
margins to mitigate potential damages if the accumulated errors due to uncertain-
ties lead to an accident. In addition, the models used for environmental factors
were kept simple in this study. Future work should also include and implement
more comprehensive and accurate models for calculation of environmental forces
or physical effects, such as varying ocean depths and disturbance dynamics (winds,
waves and currents) in order to reduce the amount of uncertainties present in the
system.

Lastly, the results as presented in Figures 6.16 and 6.17 are highly subject to the
tuning of the cost function coefficients, and should be acknowledged as such. More-
over, the results are assessed and validated by human evaluation of the behavior
of simulated trajectories in a challenging scenario, which is subjective and subject
to bias. The environment and cost function weights of this study are to a large
degree chosen or established in order to show-case interesting behavior relevant to
the proposed methodology, and is consequently biased toward this particular con-
figuration. The method for tuning and assessment should thus be comprehensively
investigated in future works.

6.5 Conclusion

This work proposes a methodology and proof-of-concept simulation study which
utilizes PSO for simultaneous selection of machinery operational modes combined
with waypoint re-planning based on grounding risks calculated from spatial dis-
tances and "time-to-grounding" simulations, such that both safety and efficiency
may be considered more accurately during optimization compared to previous
works. The results show that a slower route with respect to time and distance trav-
eled may still be considered more cost-effective in terms of expected costs when
also recognizing grounding risks along a route.

There are nevertheless several limitations that could be addressed in future work.
As mentioned, the method could be extended for collision avoidance with dynamic
obstacles and following the traffic rules at sea. Moreover, while the choice of PSO as
an optimization engine is effective, other methods such as genetic algorithms should
be considered as well. Although it is straightforward to define safety margins to
account for uncertainty in models and input data, a more systematic method for

176

6.6. Appendix: The Level-1 route planning algorithm

determining the uncertainty levels and setting the safety margins would be useful.
For an industrial implementation, hazard analysis should be used to obtain a more
complete overview of the scenarios that potentially can lead to accidents, and to
get more insight into which factors may affect the risk, and how. The proposed
framework fully supports the implementation of a more comprehensive risk model,
and is thus considered a promising approach to serve as the foundation to future
works on joint machinery management and autonomous navigation.

6.6 Appendix: The Level-1 route planning algorithm

The following is a summary of concepts from previous works [37]:

A simple path planning algorithm for constructing a tree of possible route alterna-
tives between two waypoints is presented in Algorithm 8. The algorithm is given a
set of grounding obstacle polygons G, a safety distance ∆ds, an initial starting way-
point σ, and a single end target waypoint χ to which a path with several potential
route alternatives is to be planned. Figure 6.18 shows an example in which a vessel
intends to navigate around a collection of smaller isles, i.e. the set of red grounding
obstacles G. The start point σ is represented by the vessel hull in white, and the
end point χ is denoted by the green disk. The initial route path ρ intersecting G

Algorithm 8 PlanRoutes
Input: grounding obstacles G, safety distance ∆ds,

start point σ, end point χ
Output: binary tree R of alternative routes from σ to χ

procedure PlanRoutes(G, σ, χ)
H ← convex hulls of all polygons in G
I ← dilate H by ∆ds
J ← spatial unions of all polygons in I
K ← convex hulls of unions J
ρ← straight line segment from σ to χ
R← new tree of line nodes with root ρ
while ∃P ∈ K intersects ∃ρ ∈ R do

P ← largest intersecting polygon
ρ← remove intersecting line from R
V ← visible vertices of P
Λ, Γ← group V into left and right wrt. ρ
λ, γ ← vertices of Λ and Γ farthest from ρ
δ ← start point of ρ
α1,2 ← linear line segments from δ to χ via λ
β1,2 ← linear line segments from δ to χ via γ
R← add α1,2 and β1,2 as new line nodes

end while
end procedure

177

6. Autonomous planning and machinery management

Figure 6.18: Path planning end result visualization of two alternative routes around an
obstacle.

is shown as a green line from σ to χ. In this example, G is defined by extracting
all nearby areas of seabed depths < 10 m.

An initialization phase of six steps sets up the algorithm before the main loop is
initiated, and consists of the following. The convex hulls H of all polygons in G
are computed by accessing the Shapely property convex_hull, and the resulting
new set of polygons H are subsequently dilated by the safety distance ∆ds (here
defined as 50 m), using the Shapely method buffer to produce the polygon set
of I. The next step calculates the spatial unions J of all polygons in I using the
Shapely method unary_union, such that any overlapping polygons are merged,
producing the highlighted convex polygon. The convex hulls K of J are lastly
computed similarly to the first step, yielding the final set of polygons to be used in
the main loop. Lastly, the initial green line segment ρ is defined by the start point

178

6.6. Appendix: The Level-1 route planning algorithm

σ and the end point χ, and a new binary tree R with ρ as its root node is created.

After initialization, the main loop of the algorithm identifies the largest (if any)
polygon P ∈ K that intersects with any line segment ρ ∈ R and extracts all visible
vertices V of P , filtered by line-of-sight checks. Next, these vertices are split into
two sets of left and right (Λ and Γ, respectively) based on their positions with
respect to the line segment ρ. These are shown in Figure 6.18, given the colors
pink and magenta, and yellow and orange, respectively.

The vertices with the maximum distance from ρ in each group (shown in Figure 6.18
as cyan perpendicular arrows from ρ to each respective vertex) are selected as the
new intermediate route waypoints λ and γ, i.e. the minimum distance required to
circumnavigate the visible part of the obstacle P at each iteration. These waypoints
shown in yellow and pink are used to construct two separate splines of straight lines
α and β consisting of two linear line segments each, from σ to χ via λ and γ. These
new line segments are subsequently added to the root node of the R tree, leaving
two new leaf nodes of line segments sharing the same end target point at χ. If
any of the line segments in the resulting tree intersects with any polygon P of K,
this process is repeated for that particular line segment, potentially creating more
branching nodes along its respective route alternative.

The end result of the algorithm is presented as the pink and yellow line segments
with several intermediate waypoints, generated by repeated iterations of the al-
gorithm loop. These path alternatives may subsequently be used by other naviga-
tional optimization schemes, e.g. to select the optimal path with respect to resource
consumption or time.

179

Part IV

Concluding remarks

181

Chapter 7

Conclusion

This chapter is comprised of three concluding sections. Section 7.1 presents a
summary focusing on differences and similarities between each contribution, and
Section 7.2 discusses each contribution with respect to the proposed research ques-
tions and future work. Some final concluding remarks are presented in Section 7.3.

7.1 Summary

This thesis presents a collection of contributions which serve to increase the knowl-
edge within the field of risk-aware decision-making and control of autonomous
ships. Three individual parts within this area constitute the main matter: Part I
describes an ENC API called SeaCharts, which later has been adopted and used
by other research and projects. Part II focuses on using MPC for online risk-aware
path planning during both normal conditions and machinery faults, and a method-
ology for transforming the results of an STPA into an optimal control problem
to be solved by this MPC approach is presented. Part III considers PSO as an
alternative to MPC for path re-planning, leading to plans that can be executed by
established guidance algorithms and controllers.

Chapter 2 is considered an independent and more general contribution, that is
separate but still utilized by all of the subsequent chapters. Though the SeaCharts
API in practice was developed in parallel with some of the other contributions,
the published work and resulting API is a standalone product which is not lim-
ited to just being a foundation for the rest of this thesis. The chapter discusses
its implementation, and demonstrates example usage for a wide range of various
applications. The SeaCharts ENC Python package is the end result of this contri-
bution, and has been employed by several works since its development, e.g., [29],
[36], [43], [146].

With respect to the chapters presented in Part II, there are intentionally quite a
few similarities between Chapter 3 and Chapter 4. The purpose of Chapter 3 is to
demonstrate a proof of concept for autonomous ship navigation with anti-grounding

183

7. Conclusion

and resilience to machinery faults using MPC as a foundation for future work, while
the goal of Chapter 4 is to validate the proof of concept by providing a systematized
methodology which can be used to formulate a numerical optimal control problem
to be solved by the MPC algorithm previously proposed. Specifically, Chapter 3
emphasizes the mathematical definitions and algorithms in order to implement
MPC, which the subsequent chapter references directly. It is also heavily focused
on demonstrating the considered machinery failures, and the effect they have on the
MPC path planner during such scenarios. Moreover, the grounding obstacles are
in Chapter 3 approximated to be strictly circular for a simplified proof of concept.
In Chapter 4 however, the grounding obstacles are general polygons, and several
sections of the chapter are dedicated to the discussion related to this aspect in
addition to the general focus on STPA and operational safety. While the result
of Chapter 3 is a demonstrated proof of concept using MPC for dynamic path
planning during machinery faults, the result of Chapter 4 is a novel methodology
which attempts to bridge the gap between qualitative risk analysis and numerical
optimal control. Chapter 4 is ultimately considered the natural next iteration of
the proof of concept demonstrated in Chapter 3.

Chapter 5 of Part III considers an alternative approach to that of the previous chap-
ter, by investigating the use of a sampling-based optimization method (PSO) for
an analogous control problem, for the explicit purpose of categorical comparison.
The similarities in results between Part II and Chapter 5 are thus straightforward,
and the comparison between the two is indeed the core topic throughout. The
differences lies within the approach used to achieve the same autonomous behav-
ior, which again, is the very purpose of Chapter 5. It is demonstrated that the
two approaches have different strengths and weaknesses: The MPC approach is
generally faster and more robust if a smooth dynamic model is available. PSO is
however more suitable for non-smooth and mixed-integer problems, and may lead
to more flexible decision-making capabilities. This is considered the main objective
of Chapter 5, and the result is a demonstrated proof of concept for dynamic path
re-planning which shows that behavior similar to previous works based on MPC
may also be achieved using this method. Nevertheless, it is important to consider
the available processing power, as the cost function used by the PSO may quickly
become expensive based on the chosen (or required) hyperparameters of the solver.

Chapter 6 is the main contribution of Part III, and is along with the ENC API
considered one of the two main end results of this thesis. The purpose of this chapter
is to illustrate how the versatility of the PSO method may be utilized to achieve
higher levels of risk-aware decision-making. Here, model-based predictions are used
within the sampling-based PSO to predict grounding hazards along a receding
horizon, and this flexibility is acknowledged as one of the main advantages of PSO.
The results show that the behavior of the autonomous ship following the path
generated from this combined approach is in line with the behavior typical of human
operators. It is ultimately proposed that future works investigate the feasibility of
using complete MPC algorithms as individual cost sub-processes weighted within
in a PSO approach, in order to further increase the capabilities of high-level risk-
aware decision-making.

184

7.2. Discussion on research questions and future work

7.2 Discussion on research questions and future work

RQ 1 How can the utilization and visualization of ENC data be made fast and
user-friendly in the research and development process for autonomous ship
control and decision-making?

Chapter 2 contributes towards RQ 1 by providing an open-source API which en-
ables researchers to access, visualize and utilize ENC data to more efficiently de-
velop algorithms and methods for mission planning and control of autonomous
ships in future works.

The ENC API package is however considered only a first draft of what could
become a larger software tool for research on autonomous ships, if it is adopted
and continuously developed. Examples for future work on the API are additional
utility features such as standardized shape drawing methods or map scale legends,
adding support for more map features such as fish farms, including navigational
lights, indicators or visualization for traffic densities and COLREG compliance,
applications for collision avoidance, internal implementations of various guidance
and control algorithms for benchmarking, other map projections, simplifying the
installation process, as well as expanding the roster of supported spatial database
formats. The list of possibilities for further utility development and additional
extensions is undoubtedly longer than this.

RQ 2 How can autonomous ships a) be proactively controlled such that grounding
hazards are predicted and avoided on a voyage while subject to uncertain
disturbances, and b) be prepared for unexpected machinery faults such as
loss of steering or propulsion?

Chapter 3 contributes towards RQ 2 by demonstrating a proof of concept of dy-
namic risk-based navigation algorithm with inherent emergency management capa-
bilities, which avoids grounding hazards both during normal conditions and when
machinery faults unexpectedly occurs, such as impaired steering and loss of propul-
sion.

This chapter served as a simple proof of concept which laid the groundwork for
later research as presented in this thesis. Nevertheless, there are several additions
or considerations not covered here which may be investigated as future work. First,
the method used simple circles as grounding obstacles, and later chapters utilized
polygons for distance calculations. However, there is still unexplored potential in
using such circles, given their rapid distance calculations with respect to other
points compared to more complex polygons. It may be interesting as a proposal for
future work to transform large polygons into smaller tightly packed circles, and e.g.
apply a line-of-sight type of filter to eliminate significant amounts of unnecessary
data in order to vastly reduce the computational complexity.

Another proposal is to replace the ad hoc risk function presented in the chapter

185

7. Conclusion

by probabilistic risk models. This is somewhat related to the improvements imple-
mented in Chapter 4 and Chapter 6, in which more complex risk-aware decision-
making may be achieved by utilizing suitable models for risk. In a similar vein,
there is virtually no limit to the number of additional cost terms (risk-based or
otherwise) which may be added to the control problem. One example may be other
formulations analogous to the AMM sub-system considered in Chapter 6.

RQ 3 How can the results of qualitative risk analysis methods such as STPA
be utilized and systematically structured into a numerical optimal con-
trol problem for autonomous ship navigation, such that grounding hazards
are identified, mathematically formulated and avoided through numerical
optimization?

Chapter 4 contributes towards RQ 3 by developing a step-wise methodology which
takes the results of an STPA and transforms them into mathematical equations and
inequalities, which subsequently are structured into a numerical optimal control
problem to be solved by an MPC approach.

Bridging the cap between qualitative risk analysis methods and quantifiable control
problems is a rather unexplored challenge. Thus, the methodology is considered a
foundation for future work, rather than a complete framework for constructing e.g.
MPC formulations out of STPA results. It is moreover noted that although MPC
based on nonlinear programming was used for demonstration in this work, other
solvers or algorithms may readily be used to handle the resulting cost function,
such as e.g. PSO. The method is moreover applicable to other applications than
autonomous ships.

Another obvious challenge is the terminology and/or wording used regarding the
concepts for costs or risks. It will be different between e.g. operators, system de-
signers and corporate managers, and it is often difficult to reach consensus. It is
suggested that global efforts should be made to standardize and define such critical
terminology in future work.

Furthermore, the proposed cost term structure resulting from the methodology
should be investigated and tested extensively. Similarly to the previous chapter,
the potential for other improvements with respect to the resolution, amount and
quality of the environmental data may be examined in order to achieve faster
computations without loss of generality. The additions previously mentioned for
Chapter 3 may in general also be included as recommendations for future work
here as well.

RQ 4 How can the planned routes generated by established voyage planners be
modified to give a navigation path during complex real-time transit con-
ditions, such that unexpected hazards and changing environments are ac-
counted for en route?

186

7.2. Discussion on research questions and future work

Chapter 5 contributes towards RQ 4 by presenting a more flexible online path
re-planning method utilizing PSO, which may employ the use of established path
following or guidance algorithms after re-planning. This alternative method based
on PSO is compared to the previous MPC approach of that used nonlinear program-
ming, and demonstrates analogous behavior, enabling the use of more complex (e.g.
non-smooth as well as combined continuous and discrete) cost functions in future
works.

Future work based on this chapter may include the parameterization proposition
as discussed in the contribution, as well as the possibility of using solvers based
on e.g. multi-objective evolutionary algorithms [147] or other sampling methods in
place of PSO.

Another important consideration is to assess the quality of the solutions generated
by the PSO algorithm, as optimal solutions are not guaranteed. Both the initializa-
tion of the first (random) solution as well as the PSO algorithm (meta-)parameters
are key to achieving satisfactory results. It is recommended to examine other cost
formulations than the ones discussed in this work, and to look into distinct planning
algorithms which can generate adequate initial solutions when using PSO.

RQ 5 How can model-based predictions for ship dynamics and onboard machinery
management systems be combined with a sampling-based path planning
algorithm and established path following algorithms in order to reduce
overall risks and expected mission costs?

Chapter 6 contributes towards RQ 5 by proposing an approach for combining and
utilizing a model-based autonomous machinery management approach with the
sampling-based and risk-aware PSO voyage re-planner method from Chapter 5
in the same cost function, which increases the ability of the resulting ANS to
consider and optimize resource consumption and grounding risks through both
MSO selection and route re-planning or selection.

As mentioned in the discussion of this contribution, it is suggested to apply and
test the proposed method in a practical implementation. Similarly to the previous
contributions, the tuning of cost coefficients plays an essential part in the perfor-
mance of the algorithm. This tuning is largely dependent on the model (dynamics)
of the system, and is usually different on a case-by-case basis. It is recommended
that a systematic approach to this tuning process is developed in future works.

The structure of the presented cost terms are as noted for Chapter 4 highly subject
to the specific application, and the choice of structure is explained in the discussion
of Chapter 6. It is suggested to add additional cost terms for switching of MSO
modes, which consider the physical time delays related to e.g. restarting an engine
with respect to its state at that point in time.

187

7. Conclusion

Lastly, the effects of measurement and prediction uncertainty for internal states
should be examined more systematically. For this purpose, additional safety mar-
gins may be added in various ways, more accurate or complex mathematical models
may be utilized, and their individual effects on the overall system may be assessed.

7.3 Concluding remarks

The objective of this thesis was to add to the knowledge within the field of risk-
aware decision-making and control of autonomous ships. A need for standardized
software tools for rapid prototyping, simulation and evaluation of autonomous ships
was identified, and an open-source API for ENC was developed. Proof of concept
demonstrations for risk-aware decision-making and control of autonomous ships
using MPC and PSO is presented, and a novel methodology for transforming the
results of qualitative risk analysis into a numerical optimal control problem is
proposed. The main result of the thesis is a dynamic joint path planning, route
selection and AMM optimization algorithm, which applies simultaneous resource
consumption and risk minimization to achieve safer and more efficient autonomous
navigation.

It is suggested that further work within the field of autonomous ships may employ
the presented ENC API for efficient experimentation, testing and assessment, and
that the proposed methodology and risk-aware algorithms may be used as a foun-
dation for the development of standardized optimal control approaches for practical
and industrial implementations of decision-making systems for autonomous ships.
Specifically, a promising direction may be to investigate the implementation and
performance of a hybrid ANS, in which the top-level PSO planner accepts as input
and utilizes the real-time optimal solutions of internal MPC solvers as distinct deci-
sion variables. Moreover, this thesis presents promising algorithms, methodologies
and software which may assist further research considering risk management in con-
junction with autonomous systems and optimal control. Ultimately, the proposed
methods show significant potential for risk-aware decision-making and control of
autonomous ships, and may serve as building blocks for future research efforts.

188

Appendix A

Risk-based control system for
autonomous ships

A.1 Introduction

Although conventional ships have control systems for navigation, maneuvering, and
power management, they are designed to rely on human input and supervision on-
board. For example, Dynamic Positioning (DP) systems are used to maintain a
ship´s position or to maneuver the ship at low speeds with good accuracy. Nev-
ertheless, a human operator must specify the mission and be ready to take over
control if the automatic system fails. Power management systems (PMS) also have
a high degree of automation to control electric power generation, power distribu-
tion, and prevent blackouts on ships.

There is currently no automation system that monitors or controls the complete
ship’s operation, replacing the crew onboard. For example, engine control systems
may monitor the engine and shut it down if there is a failure, even if this compro-
mises the safety and integrity of the ship. An example is the Viking Sky incident,
where the diesel generators were automatically shut down due to low lubrication
oil levels in a severe sea state, which led to a complete blackout and nearly caused
the cruise ship with almost 1400 people onboard to ground in storm conditions
[148].

In general, for a ship to operate safely and autonomously, its control systems must
be able to assess risk (currently the task of the crew onboard conventional ships).
Hence, [7] propose a control system framework that can assess and manage risk,
replacing some of the cognitive judgments that the crew would normally make
while sailing to improve the autonomous ship´s decision-making. [149] describe
how risk analysis methods can be integrated with control systems and identify four
areas for implementing this. Another approach is further demonstrated in [150].
A risk model represented by a Bayesian Belief Network (BBN), which is based
on a systems theoretic process analysis (STPA), assesses navigational risks for an

189

A. Risk-based control system for autonomous ships

autonomous cargo ship while sailing as part of a supervisory risk controller (SRC)
for high-level control of the ship. This risk model provides information that can
be used as a basis for selecting the control mode, machinery mode, and setting
control objectives while sailing. [151], [152] presented a similar control system for
autonomous underwater vehicles (AUVs) for under ice operations. In this case, the
SRC was used to set the altitude set-point, velocity set-point, and control strategy
such that the AUV could avoid collision while performing under-ice mapping with
sufficient accuracy.

Relevant risk factors have also been discussed in [153]. A framework to identify
navigational risk factors for autonomous ships is presented, but without any fur-
ther application. [154] combine Failure Mode and Effects Analysis (FMEA) with
evidental reasoning and Bayesian Networks to quantify the risk level of major
hazards related to autonomous ships. [155] propose to use STPA to identify poten-
tial hazards for autonomous ships and discuss some methods for finding additional
quantitative data to use in a risk model, but without building and using the model.
STPA is also used in [156] for hazard analysis on autonomous passenger ferries. This
work suggests safety controls to mitigate the identified hazards when designing the
ship. [157] use STPA to develop a model to analyze safety and make design recom-
mendations for autonomous vessels. [158] propose a framework to model the ship
control structure, based on STPA that can be useful to describe the functionality
of the system.

Risk models have also been used to predict the loss of AUVs during missions [159]–
[161] and to manage uncertainty in these missions [162]. However, none of these
models are connected or implemented as part of the control system. Other papers
have discussed risk as part of collision avoidance, but use risk as a very general
term and lack a direct link to risk analysis and risk modeling [131], [163]–[167].
Combining some selected risk aspects with Model Predictive Control (MPC) has
also been proposed for collision avoidance systems [168], [169] and emergency man-
agement but the risk metrics that are used in these studies are not based on risk
assessment and are simplified so that they can be used in an MPC application [38].

A quantitative risk model can provide good and useful information about an au-
tonomous control system if it includes reliable information about the ship’s position
and its surroundings. One option is to use tools such as Simultaneous Localization
and Mapping (SLAM) that can be used for AUVs [170]–[172] operating in areas
where localization and mapping are challenging. Mapping the environment is un-
necessary for autonomous ships because position data are available from global
navigational satellite systems (GNSSs), such as position and speed measurements,
and electronic navigational charts (ENC) are available. GNSS measurements are
already used in control systems, such as in DP controllers to provide position and
speed measurements. ENC data have been used in decision-making systems, such
as path planners, for ship navigation [173]. The data can then be used directly
in the planner, with limitations on extracting and presenting the data. To address
these limitations, [37] developed an open-source application programming interface
(API) to process and display the data with high accuracy and in short computation

190

A.1. Introduction

time. Their paper shows how the API can be used for certain tasks, such as path
planning based on a dynamic risk optimization. A simple risk metric based on wind
speed and direction, and the distance to land is used when planning the route.

Developing better control systems is an important step towards realizing autono-
mous ships, which in turn is expected to improve safety at sea [1], [174]. However,
it is important to demonstrate that these ships are safe in operation to achieve
approval from the authorities and public acceptance. This means that autonomous
ships need to be tested in various scenarios and environmental conditions. Today,
verification, validation, and certification in the maritime industry depend on type of
ship and operation. On advanced offshore installations and ships, the ship and con-
trol systems are thoroughly tested through simulations, scale testing, sea-trials, and
Hardware-in-the-Loop (HiL) testing. Extensive and thorough tests are necessary
to get the systems approved by class societies and coastal states [175]. Suppliers
usually test individual components on less advanced ships during commissioning
and sea-trials.

The shift towards autonomous ships presents several challenges with respect to
verification and testing. Both the complexity and criticality of the software sys-
tems increase. In addition, the control system interacts with a highly dynamic and
unstructured operative environment, which causes the span of possible scenarios
to become enormous. Autonomous systems typically use machine-learning software
to some extent, which introduces its own set of challenges (see [176]). Therefore,
there is a need for new methodology to formalize and scale the verification and
testing efforts to new levels.

Several recent works have aimed to address these challenges. For example, [8] pro-
pose a test system for autonomous navigation systems (ANSs) and show how it can
be used to verify the performance of a collision avoidance system. [177] present an
Autonomous Simulation-based testing framework and show how it can be used to
verify a collision avoidance system. [178] propose a quantitative evaluation method
to evaluate obstacle avoidance methods for unmanned ships. These studies indicate
that although the test systems work, they only work through testing a very limited
part of the control system. They also lack a description of how the testing should
be integrated into the design process for autonomous ship control systems.

To summarize the gaps identified in the current literature, it is necessary integrate
risk with control systems intended for autonomous ships to improve its high level
decision-making. In addition, these control systems need access to data from ENCs,
and they need to be verified in a formal and systematic manner to ensure the
necessary safety and performance. Hence, the overall objective of this work is to
present a novel and interdisciplinary methodology to develop an SRC for high
level control of autonomous ships that bridges risk modeling, optimization, ENC,
and formalized verification to achieve safer and more intelligent performance of
autonomous ships.

The proposed methodology is tested and compared to an existing conventional-

191

A. Risk-based control system for autonomous ships

manned ship for different coastal routes to assess how the SRC handles failures
in the ship’s machinery and propulsion system. The main scientific contribution
is the demonstration of how the intelligence of an autonomous control system
can be improved by combining thorough risk analysis and modeling, detailed data
from navigational charts, and novel verification methodology. Compared to exist-
ing control systems, this new approach makes it possible to handle a wider range
of operations and situations, which reduces the need for human intervention and
supervision. Even though the application in this work is focused on autonomous
surface ships, it is expected that the methodology will have relevance for other
autonomous applications. A similar methodology might also be used to assist op-
erators by providing additional decision support by assessing how the risk level
changes leading to safer ship operations.

The rest of this work is organized as follows. Section A.2 presents the methodology
for building and setting up the controller. Section A.3 describes the case study.
Section A.4.1 and section A.4.2 present the results from the case study. Sections
A.4.3-A.4.7 discuss how risk can be included in control systems, how to use ENC
data, how to test the system, and it also describes some uncertainties in the con-
troller and risk model. Section A.5 concludes this work and outlines further work
towards highly autonomous ships.

A.2 Method

The SRC controller is developed through a five-step process, as shown in Figure
A.1. The SRC enables the controller to make risk-informed decisions that empha-
size both safety and efficiency when operating the ship. These decisions can (for
example) determine the ship’s operating machinery mode, control mode, or the
speed reference for the proposed control system.

The ship and the operation are first described in detail and analyzed using an
extended STPA to identify hazardous events that need to be included in the risk
model. Thus, the STPA results are used as the basis for building the online risk
model in step 2, which is represented here in terms of a BBN. The justification
for using STPA combined with BBN is presented in [7]. For situation awareness,
the risk model uses data from the ship’s sensors and the control system to assess
the current conditions. The ENC module is used to extract data from navigational
charts with information about the area surrounding the ship. The ENC model is set
up in step 3 based on the design requirements to provide the necessary data to the
risk model and SRC. The SRC is then developed in step 4 based on the requirements
identified in the system analysis and the STPA (step 1), and using data from both
the risk model and ENC. Finally, the controller is verified against the performance
requirements using the automatic simulation-based testing methodology.

A.2.1 Step 1: System description and STPA

To setup and build the control system, the ship and operation have to be described
and analyzed, such as in terms of a CONOPS (concept of operations). This starts

192

A.2. Method

3) ENC module

1) System description

and STPA

2) Online risk

model

4) Supervisory Risk

Controller

5) Automatic

simulation-based

testing methodology

STPA

results

Risk cost

Data

requirements

System

requirements

System

requirements

Navigation

data

Navigation

data

Controller

Verified

control system

Figure A.1: Methodology flowchart

by clearly describing the ship, how it is controlled, its technical condition, and char-
acterization of the operation that it is used for. In terms of control, it is important
to know what type of controllers the ship has or will have, how they are connected,
and their different responsibilities. Human operators or supervisors (e.g., onshore
in a control center) must also be described with information about how they can
control or affect the ship. Describing the ship’s operation requires a clear statement
of why and where the ship is sailing, as well as its operating modes. For example,
a coastal cargo ship sailing along the Norwegian coast may be very different to a
passenger ferry sailing between islands in the Mediterranean Sea.

The decisions or control actions relevant for the SRC must also be specified. These
are important to consider because they are the only options for the SRC to affect
the control of the ship. After describing the ship, STPA can be used to identify
potential hazards, causal factors, and safety constraints. The STPA follows the
steps defined in [11] but is expanded to also explicitly consider the consequences
of the hazardous events and system-level hazards as follows:

a) Define the system

b) Identify hazardous events and system-level hazards

c) Identify unsafe control actions (UCAs)

d) Develop loss scenarios

e) Analyze consequences

193

A. Risk-based control system for autonomous ships

The description of the ship can be used as a basis for the first step of STPA, and
is a basis for defining the control structure and assigning responsibilities to the
different controllers in the system. The next step is to identify hazardous events
and to identify UCAs. These are subsequently described in loss scenarios that may
lead to UCAs. Scenarios also include how decisions, such as selecting the wrong
control mode or using machinery systems with failures, can lead to UCAs. The
decisions are included in the same way as risk influencing factors (RIFs). The final
part is to describe and classify the potential consequences of the hazardous events
(e.g., through cost estimations).

A.2.2 Step 2: Online risk model

The online risk model is built based on the STPA results and follows the emerging
top-down structure, like the results of the analysis, as shown in Figure A.2. The
BBN has six main types of nodes:

• Consequences

• Hazardous events

• System-level hazards

• UCAs

• RIFs

• Decisions

The end node in the BBN is the consequences. These are caused by the hazardous
events, under given conditions. The hazardous events are caused by one or more

Consequences

Hazardous
event

System-level
hazard 1

System-level
hazard 2

UCA 1 UCA 2 UCA 3

High-level
RIF 1 High-level

RIF 2

Input RIF 1

Input RIF 2

Input RIF 3

Input RIF 6

Input RIF 4

Input RIF 5

Decision 1

Decision 2

Intermediate
node

Figure A.2: Example BBN structure, showing how the STPA is linked to the BBN and
how different nodes are related (adopted from [7]).

194

A.2. Method

system-level hazards identified in the STPA. The next is the UCAs that lead to
system-level hazards. UCAs get an input from RIFs that describe the loss scenarios
and the conditions where hazardous events have negative consequences. RIFs can
be both high-level RIFs (H-RIFs) and input RIFs (I-RIFs), as shown in Figure A.2.
For a more detailed description of mapping STPA results to a BBN, the reader is
referred to [7] or [150]. For a detailed description of BBNs in general, the reader is
referred to [179].

The BBN is converted to an online risk model by deciding how to update the BBN
as the ship sails with online information. This links specific nodes to sensors and
systems onboard the ship, and then decides which data are necessary, including
the ENC module. Decisions made in the SRC are also included in the BBN to
model how they affect the risk picture and consequences. The BBN can also have
intermediate nodes to group I-RIFs and decisions to reduce the number of nodes
that are connected to each H-RIF. This is more important for larger and more
complicated BBNs.

A.2.3 Step 3: ENC module

The ENC module extracts and manipulate data from electronic navigational charts.
These data are necessary in the risk model to describe the surroundings and con-
ditions around the ship. The ENC module is based on the open-source Python
package SeaCharts [37]. This package use FGDB 10.0 data sets with 2D data of
the relevant areas. These are then processed as the application starts, so that they
can be stored as shapefiles, where only the relevant depth layers and land areas are
stored. This allows for much faster processing because it reduces the time neces-
sary for computation and/or querying. The data is stored as polygons for various
water depths and land areas. The stored shapefiles can then be queried to find the
distance to points where the ship can collide or ground, and assess how much space
the ship needs to maneuver.

The ENC module is set up by first loading the necessary maps for the relevant area.
The next step is to define and load relevant layers for the ENC module, depending
on the ship and data needed in the control system. This is achieved by defining
the minimum water depth that the ship must maintain for safe sailing. To avoid
unnecessary quantities of information in the risk model, a planning horizon is set in
the ENC to decide how far the ENC should look ahead of the ship. This limits the
data size that the ENC must query and reduces the computation time. Connecting
the ENC module with the risk model is done by connecting the relevant nodes
and updating them with data from the ENC, such as distance to land and shallow
areas, combined with position and speed measurements from the GNSS system.

The current ENC module does not account for navigation markers, as this is not
currently implemented in the SeaCharts package. This is discussed more in Section
A.4.5. For a detailed description of the package and all functions, the reader is
referred to [37].

195

A. Risk-based control system for autonomous ships

A.2.4 Step 4: Supervisory risk controller

The controller is set up as an SRC to make high-level decisions or set control
objectives. One option is to use costs as a means for implementing the inputs from
the risk model into the decision-making. For other potential options, see [149].

For an autonomous ship controller, decisions can be made based on four costs:
the risk cost from the online risk model, fuel cost based on the expected fuel
consumption, operation costs (other than fuel), and the cost of not starting new
missions. The total cost is calculated using Equation A.1 as a function of the
decisions, d, such as setting the speed reference and deciding how the machinery
should be operated:

C(d) = R(d) + F (d) +O(d) + L(d) (A.1)

The risk cost, R(d), gives the expected cost from the consequences described in the
risk model and account for factors such as weather conditions, ship speed, traffic
conditions, etc. Fuel cost, F (d), describes the expected cost of fuel of operating
the ship under the current conditions. Operation cost, O(d), describes the costs
of operating the ship, outside of fuel cost, such as maintenance, insurance, and
manning costs. L(d) describes the potential loss of future income caused by the
time used. The cost function is set up such that fuel cost, operation cost, and
potential loss of future income increase if the ship takes a longer time to reach the
final waypoint.

The controller checks each possible set of decisions to find the set with the lowest
cost. The decisions can vary depending on the ship and can include selecting what
machinery mode to use, how the ship should be controlled, and which speed ref-
erence to follow. The SRC configures the control of the ship according to the set
with the lowest cost.

A.2.5 Step 5: Automatic simulation-based testing methodology

Step five verifies the controller against a set of design requirements related to
safety and efficiency. The verification process is performed using the automatic
simulation-based testing methodology from [177]. This methodology automatically
runs simulations where the vessel is sailing along its planned route, while varying
scenario parameters. The methodology formulates requirements using the Signal
Temporal Logic (STL) formal specification language, which enables automatic eval-
uation of the simulations against the requirements [180]. The result of evaluating a
simulation against an STL requirement is an STL robustness score that describes
how robustly the requirement is satisfied. If the STL score is greater than zero,
then the requirement is satisfied. If it is less than zero, then the requirement is
violated.

196

A.3. Case study: Supervisory risk control of an autonomous cargo ship

The methodology selects the simulations to run from a test space that is defined by
a set of scenario parameters with corresponding parameter spaces. The test space
can, for example, be based on scenarios that are identified in the STPA [13], [35],
[181] to test the controller in specific situations. A Gaussian Process (GP) model
[182] is used to predict the STL robustness score as an unknown function of the test
case parameters. The GP model estimates the expected value and the uncertainty
of STL robustness over the entire parameter space of a test case. The GP model
is iteratively updated by running simulations and observing the resulting STL
robustness score. The estimates of the GP model are then used to adaptively guide
the test case selection towards cases with low STL robustness or high uncertainty.
This results in efficient coverage of the parameter space or alternatively efficient
falsification if the controller does not satisfy the requirements.

The testing terminates in a verified state if the lower confidence interval of the GP is
greater than zero for the entire parameter space. For example, using 99% confidence
intervals, a verification would indicate that there is at least a 99% probability
that the system satisfies the requirement for the entire test space of the test case.
Alternatively, if a test case that does not satisfy the requirements is identified, then
the verification terminates in a falsified state, returning the corresponding counter-
example. For a more detailed explanation of the automatic simulation-based testing
methodology, the reader is referred to [177].

A.3 Case study: Supervisory risk control of an autonomous
cargo ship

The method for building the SRC is tested in a case study that simulates an
autonomous ship operating along the Norwegian coast to assess how the SRC
manages and controls the ship in comparison to an existing conventionally-manned
ship. The first part of the case study will analyze how the SRC adjusts the speed
and configures the ship to maintain control. This is then compared performance-
wise to a conventional ship in similar conditions, using position and speed data
from the ship navigation system. The second part will study how the SRC handles
failures in the machinery and propulsion system.

In the case study, it is assumed that the chart and GNSS measurements are suf-
ficiently accurate to be used in the control system. It is also assumed that the
time necessary to start up machinery can be neglected. There are still some delays
and thruster dynamics included, such that engines and generators cannot change
the load immediately. This is deemed sufficient to show how the SRC functions.
Some of the potential ways to include these aspects in the SRC will be discussed
in Section A.4.3.

The ship simulation uses a simplified kinetic model without wave forces. This makes
it easier to simulate and test the system, while it also changes the ship’s movement
such that the ship drifts more. This makes it more difficult to control the ship,
especially in tight turns, without reducing the speed much more than conventional

197

A. Risk-based control system for autonomous ships

ships. Although the focus in this work is the design and testing of the SRC, it still
provides sufficient results to show that the proposed methodology works.

A.3.1 Step 1: Describing the ship and operation

The autonomous ship that is considered in the case study is an 80 m long and 16
m wide cargo ship that is sailing along the Norwegian coast. Although the ship
is operated unmanned, it has a human supervisor onshore that can monitor and
take control remotely if necessary. The ship has an autonomous control system, as
shown in Figure A.3, with an SRC as the high-level controller, an ANS to control
the navigation, and an autonomous machinery management system (AMMS) to
manage the machinery. The ANS has two ship operating (SO) modes: (i) DP and
(ii) autopilot (AP), with a corresponding controller for each mode. The DP con-
troller is used during low-speed maneuvering and station keeping, while the AP
controller is used for transit at higher speeds. When the ship is operated in DP-
mode, it utilizes the main propeller, bow tunnel thruster, and aft tunnel thruster
to control the ship’s speed, position, and heading. The AP controller uses the main
propeller and rudder to control the ship.

The ship is equipped with a Liquefied Natural Gas (LNG) fueled main engine, a
hybrid shaft generator (HSG), and two diesel generators. The HSG can be used
as a generator to produce electricity when the main engine is used or an electric
engine when diesel generators can be used to produce electricity.

The AMMS is used to control the machinery system depending on the machinery
system operating (MSO) mode. The ship has three MSO-modes: power take out
(PTO) mode, where the main engine provide propulsion and the HSG is used
as a generator to provide electricity; power take in (PTI) mode, where the diesel
generators produce electricity, and the HSG is used as an electrical engine to propel
the ship; and the mechanical (Mech) mode is where the main engine provides
propulsion and the diesel generators produce electricity.

The SRC is responsible for selecting SO-modes and MSO-modes. It also sets the
reference speed for the ANS to follow.

The STPA in the case study is based on a workshop with 12 relevant system
experts who identified UCAs for the autonomous cargo ship. The participants have
5-30 years of experience from academia and industry working with risk assessment,
testing, verification and validation, marine technology and maritime operation, and
ship control system design. The workshop where conducted over three sessions. The
first two where used to identify UCAs that were discussed and processed by the
participants in the third. The result from the workshop was a report sent out
to the participants. The main purpose of the workshop was to not only identify
how switching between different machinery modes can lead to insufficient power
capacity and power losses but also to identify when the wrong SO-mode used by
the ANS could lead to accidents.

198

A.3. Case study: Supervisory risk control of an autonomous cargo ship

Supervisory Risk Controller (SRC)

Human supervisor

Machinery system

Autonomous Navigation

System (ANS)

Autonomous Machinery Management

System (AMMS)

Ship motions

Navigation sensors

Heading, speed, SO-mode
MSO-mode

Commanded forces

Thrust commands

Control forces

Heading, speed, route info

Alarm signal, heading, position,

speed, SO-mode, MSO-mode
Supervisory control

Humans

(Emergency)

Guidance and

optimization

Control execution,

physical ship, sensors
Sensor data Sensor data

Motions

Machinery health state

Machinery health state

Weather

data

Figure A.3: Hierarchical control structure (adopted from [150])

The STPA in the workshop considered a slightly different control structure with a
remote operation center (ROC) that is responsible for planning, monitoring, and
supervising the ship. The ANS and AMMS determine the SO- and MSO-mode,
respectively, according to the sailing plan. An SRC in the control system was not
included. The results from the workshop have therefore been developed further to
account for the different ship control structure considered in this case study.

This case study assumes that the human supervisor plans the mission and the
SRC then executes this plan. The human supervisor is also responsible for taking
remote control of the ship if notified by the SRC. Selecting SO- and MSO-mode is
now done by the SRC, and not the ANS and AMMS. The ANS controls the ship
in either AP- or DP-mode depending on the SO-mode. The AMMS manages the
machinery system according to the MSO-mode decided by the SRC. The AMMS
also contains thrust allocation that computes individual thrust commands, based
on the commanded forces from the ANS.

Since the workshop did not include an SRC, the control structure is modified
to include this with the associated control actions. However, because setting SO-
mode, MSO-mode, and the ship speed were considered when identifying UCAs in
the workshop, the results can still be used with some modifications to account for
the differences.

199

A. Risk-based control system for autonomous ships

The SRC has a set of process variables that are used to make decisions, as follows:

• PV-1: Active MSO-mode
• PV-2: Available power and thrust
• PV-3: Machinery system status
• PV-4: Active SO-mode
• PV-5: Ship’s navigational states
• PV-6: Weather conditions
• PV-7: Traffic conditions
• PV-8: Route information

The case study focuses on the following hazardous event (HE) and system-level
hazards (H), as follows:

• HE1: The ship grounds or has contact with the seafloor
• H1: The ship violates the minimum separation distance to the shore
• H2: The ship sails in water that is too shallow

The workshop identified a total of 60 UCAs. However, including all these would
make the risk model more complicated to build and evaluate. Therefore, the case
study focuses on five different UCAs, as shown in Table A.1, to reduce the size and
complexity of the risk model. These are chosen to have a good basis for specifying
scenarios where the decision-making in the SRC, such as setting SO-mode or speed
reference, can lead to hazardous events and identify RIFs that affect this.

Nine scenarios are defined to describe the situations that can cause UCAs and
hazards, as presented in Table A.2.

Table A.1: Unsafe control actions

UCA Description

UCA-1 A command is given to change MSO-mode to PTO when the health
state of the ME is reduced

UCA-2 A command is given to change MSO-mode to Mech when the diesel
generators do not function,
or are unable to provide the rated power to the DC bus

UCA-3 A command is given to change MSO-mode to PTI, resulting in insuf-
ficient power for the main propulsion

UCA-4 A command is given to change SO-mode to transit/AP when the ship
is in harbor/tight areas

UCA-5 A command is given to change SO-mode to maneuvering/DP when
the speed is higher than the maximum
maneuvering speed

200

A.3. Case study: Supervisory risk control of an autonomous cargo ship

Table A.2: Scenarios

Scenario Description UCA

SC-1 MSO changed to PTO because PTI delivers insufficient
amount of power but the health

UCA-1

state of the ME is reduced, leading to insufficient power
production

SC-2 MSO changed to PTO because the extra power in Mech is
not

UCA-1

necessary but the health state of the ME is reduced, leading
to insufficient power production

SC-3 MSO changed to Mech because PTO is not producing suf-
ficient power for propulsion but the diesel

UCA-2

generators fail or provide less power than expected, leading
to insufficient power on the DC bus

SC-4 MSO-mode is changed to from PTO to PTI due to an un-
derestimate of the power necessary,

UCA-3

leading to insufficient power to the ship
SC-5 MSO-mode is changed to from Mech to PTI due to an

underestimate of the power necessary,
UCA-3

leading to insufficient power to the ship
SC-6 SO-mode is changed to transit while still in harbor due to

inaccurate/incorrect measurements
UCA-4

of the ship states
SC-7 SO-mode is changed to transit while still in harbor due to

wrong understanding of the area around
UCA-4

the ship
SC-8 SO-mode is changed to maneuvering with too high speed

due to faulty speed estimates/measurements
UCA-5

SC-9 SO-mode is changed to maneuvering with too high speed
due to a wrong limit set in the controller

UCA-5

The extended STPA in this work also considers the consequences from the haz-
ardous event and the expected resulting costs. The consequences are divided into
damage to own ship, damage to others´ property, and harm to humans. Conse-
quences are classified as either severe, significant, minor, or no consequences [183].
Fatalities or serious injuries to humans or extensive damage to the ship or other
ships/objects where assistance is necessary are considered severe consequences.
Less serious/minor injuries to humans and damage that needs repairs outside of
planned maintenance are considered significant consequences. Insignificant or no
injuries to humans and damage that can be fixed in the next planned maintenance
are considered minor consequences. Severe consequences cost 4 550 640 USD, sig-
nificant 455 064 USD, minor 45 506.4 USD, and no consequences lead to zero cost.
The costs are estimated based on [184], [185], and [183].

201

A. Risk-based control system for autonomous ships

M
E

st
at

e
H

SG
st

at
e

PT
O

D
G

1
st

at
e

D
G

2
st

at
e

PT
I

M
ec

h
M

SO
-m

od
e

Po
w

er

M
P

st
at

e
ST

 s
ta

te

AP

AT st
at

e
BT

 s
ta

te

D
P

SO
-m

od
e

Pr
op

ul
si

on

Fa
ile

d
0%

O
k

10
0%

H
-R

IF
-1

: M
ac

hi
ne

ry
 h

ea
lth

st
at

e

Po
w

er
 M

an
ag

em
en

t
Sy

st
em

 re
lia

bi
lit

y

AP
pe

rfo
rm

an
ce

/
ac

cu
ra

cy
D

P
pe

rfo
rm

an
ce

/
ac

cu
ra

cy

C
ur

re
nt

W
in

d
sp

ee
d

W
in

d
di

re
ct

io
n

W
ea

th
er

co
nd

iti
on

s

C
on

tro
lle

r
pe

rfo
rm

an
ce

/
ac

cu
ra

cy

Po
or

0%
Su

ffi
ci

en
t

7%
G

oo
d

93
%

H
-R

IF
-2

: E
st

im
at

io
n

of
 n

ec
es

sa
ry

 p
ow

er

Sp
ee

d
re

fe
re

nc
e

Sh
ip

 s
pe

ed

O
bs

ta
cl

e
de

ns
ity

Tr
af

fic
de

ns
ity

D
is

ta
nc

e
to

 c
lo

se
st

gr
ou

nd
in

g
ha

za
rd

C
on

ge
st

ed
w

at
er

s
C

on
tro

l
of

 s
hi

p

H
ig

h
0%

M
ed

iu
m

1%
Lo

w
99

%

H
-R

IF
-3

: N
av

ig
at

io
na

l
co

m
pl

ex
ity

/s
itu

at
io

n

Ye
s

1%
N

o
99

%

U
C

A-
1:

 A
 c

om
m

an
d

is
 g

iv
en

 to
ch

an
ge

 M
SO

-m
od

e
to

 P
TO

w
he

n
th

e
he

al
th

 s
ta

te
 o

f t
he

 M
E

is
 re

du
ce

d

Ye
s

1%
N

o
99

%

U
C

A-
2:

 A
 c

om
m

an
d

is
 g

iv
en

 to
 c

ha
ng

e
M

SO
-m

od
e

to
 M

ec
h

w
he

n
th

e
di

es
el

ge
ne

ra
to

rs
 d

o
no

t f
un

ct
io

n,
 o

r a
re

 u
na

bl
e

to
 p

ro
vi

de
 th

e
ra

te
d

po
w

er
 to

 th
e

D
C

 b
us

Ye
s

1%
N

o
99

%

U
C

A-
3:

 A
 c

om
m

an
d

is
 g

iv
en

 to
ch

an
ge

 M
SO

-m
od

e
to

 P
TI

, r
es

ul
tin

g
in

 in
su

ffi
ci

en
t p

ow
er

 fo
r t

he
 m

ai
n

pr
op

ul
si

on

G
N

SS
 s

ys
te

m

R
ad

ar

AI
S

N
av

ig
at

io
na

l
in

st
ru

m
en

ts

Po
or

0%
Su

ffi
ci

en
t

9%
G

oo
d

90
%H

-R
IF

-4
:

M
ea

su
re

m
en

t/e
st

im
at

io
n

of

th
e

sh
ip

's
 n

av
ig

at
io

na
l s

ta
te

s

Fo
g

Sn
ow

R
ai

n

Vi
su

al
 c

on
di

tio
ns

Po
or

1%
Su

ffi
ci

en
t

7%
G

oo
d

92
%

H
-R

IF
-5

: S
itu

at
io

na
l a

w
ar

en
es

s

Ye
s

5%
N

o
95

%

U
C

A-
4:

 A
 c

om
m

an
d

is
 g

iv
en

 to
 c

ha
ng

e
SO

-m
od

e
to

 tr
an

si
t w

he
n

th
e

sh
ip

 is
 in

ha
rb

ou
r

Sh
ip

de
si

gn
pr

oc
es

s

Po
or

0%
Su

ffi
ci

en
t

6%
G

oo
d

94
%

H
-R

IF
-6

: R
el

ia
bi

lit
y

of
 th

e
sh

ip
's

 c
on

tro
l s

ys
te

m

Ye
s

2%
N

o
98

%

U
C

A-
5:

 A
 c

om
m

an
d

is
 g

iv
en

 to
 c

ha
ng

e
SO

--
m

od
e

to
 m

an
eu

ve
rin

g
w

he
n

th
e

sp
ee

d
is

 h
ig

he
r t

ha
n

th
e

m
ax

im
um

 m
an

eu
ve

rin
g

sp
ee

d

Ye
s

4%
N

o
96

%

H
1:

 T
he

 s
hi

p
vi

ol
at

es
 th

e
m

in
im

um
se

pa
ra

tio
n

di
st

an
ce

 to
 th

e
sh

or
e

Ye
s

4%
N

o
96

%

H
2:

 T
he

 s
hi

p
sa

ils
 in

 w
at

er
 th

at
 is

 to
o

sh
al

lo
w

Im
pa

ct
 s

pe
ed

Ty
pe

 o
f s

ho
re

Bo
th

2%
G

ro
un

di
ng

1%
Se

ab
ed

1%
N

o
96

%

H
E:

 T
he

 s
hi

p
gr

ou
nd

s
or

 h
as

 c
on

ta
ct

 w
ith

 th
e

se
ab

ed

Se
ve

re
0%

Si
gn

ifi
ca

nt
0%

M
in

or
1%

N
on

e
99

%

H
ar

m
 to

 H
um

an
s

Ty
pe

 o
f s

ea
be

d

Se
ve

re
0%

Si
gn

ifi
ca

nt
1%

M
in

or
1%

N
on

e
98

%

D
am

ag
e

on
 o

th
er

s
pr

op
er

ty

Se
ve

re
0%

Si
gn

ifi
ca

nt
1%

M
in

or
2%

N
on

e
97

%

D
am

ag
e

on
 o

w
n

sh
ip

Se
ve

re
0%

Si
gn

ifi
ca

nt
0%

M
in

or
1%

N
on

e
98

%

C
on

se
qu

en
ce

s

C
os

t
27

64
6C

os
t

Figure A.4: BBN risk model showing an example of the risk cost. For more detailed
information about the BBN, please contact the corresponding author.

202

A.3. Case study: Supervisory risk control of an autonomous cargo ship

A.3.2 Step 2: Building the online risk model

The STPA is used as the basis to build the online risk model based on the method-
ology in [7], as shown in Figure A.4. The output from the risk model is the expected
cost from the consequence. The BBN has four nodes describing the consequences:
one general consequence node and one for damage to own ship, damage to others
property, and harm to humans; one node describes the hazardous event, and one
node describes each of the system-level hazards. The two system-level hazards de-
pend on the five UCAs considered in the STPA. Each of these correspond to one
node in the BBN.

The nine scenarios described in the STPA are used as the basis to define the six
H-RIFs in the BBN. The list of H-RIFs, with the corresponding scenarios are shown
in Table A.3. Each of the high-level RIFs are analyzed further to find I-RIFs, as
shown in Table A.4.

In addition to the I-RIFs and decisions in Table A.4, the type of seabed and
shore affect the consequences directly. Intermediate nodes are used between I-
RIFs/decisions and H-RIF nodes to reduce the number of inputs to each node.
This reduces the size of conditional probability tables (CPTs) and makes it easier
to define these. CPTs and states are defined based on the work in [150], [186],
[187], discussions with crew working on different ships, and control engineers from
Kongsberg Maritime. A full list of all nodes, with parent nodes, is shown in Tables
A.5 and A.6.

The BBN is converted to an online risk model by linking I-RIFs to the control
system so they can be updated as the ship sails. Nodes describing the state of
machinery parts are updated with information from the AMMS. If the machinery
is well functioning and well maintained, then the probability of failure is very low,
9 · 10−7. In future works, this is intended to be updated as the ship sails since
machinery components are more likely to fail as components age, but this is not
modeled in the current case study.

Table A.3: Risk influencing factors

High-level RIF Description Scenario(s)

H-RIF-1 Machinery health state SC-1,SC-2,SC-3
H-RIF-2 Estimation of necessary power SC-1,SC-2,SC-3,SC-4,SC-5
H-RIF-3 Navigational complexity or situ-

ation
SC-1,SC-2,SC-3,SC-4,SC-5

H-RIF-4 Measurement/estimation of the
ship’s navigational states

SC-6, SC-8, SC-9

H-RIF-5 Situation awareness SC-7, SC-8
H-RIF-6 Reliability of the ship’s control

system
SC-9

203

A. Risk-based control system for autonomous ships

Table A.4: Input to H-RIFs

High-level RIF Description Input RIF/Decision

H-RIF-1 Machinery health
state

ME state, HSG state, DG1 state, DG2
state, BT state,
AT state, MP state, ST state, MSO-
mode (Decision node),
SO-mode (Decision node)

H-RIF-2 Estimation of neces-
sary power

PMS, AP performance/accuracy, DP
performance/accuracy,
SO-mode (Decision node)

H-RIF-3 Navigational com-
plexity or situation

Traffic, Obstacles, Current, Distance to
grounding hazard,
Wind speed, Wind direction, SO-mode
(Decision node)
Speed reference (Decision node)

H-RIF-4 Measurement or es-
timation of ship’s

GNSS system, Radar, AIS, SO-mode
(Decision node)

navigational states AP performance or accuracy, DP per-
formance or accuracy

H-RIF-5 Situation awareness GNSS, Radar, AIS, Visual conditions
H-RIF-6 Reliability of the

ship’s control system
SO-mode (Decision node), AP perfor-
mance or accuracy, DP performance or
accuracy, Ship design process

Nodes describing the control system and sensors are given a static value based on
[150], [186], [187]. Weather nodes are linked to sensors where these exist, such as
wind and current, or weather forecast and historical data [188]. These nodes are
designed to be updated in real-time depending on the available data. Traffic use
data is drawn from the automatic identification system (AIS), which is used to
transmit the identity, position, course, and speed to nearby vessels using the very
high frequency (VHF) band. Obstacle density and distance to grounding hazards
are taken from the ENC. The seabed and shore are described with data from [189]
over the relevant area. The values used in input nodes describe the probability over
the planned mission.

A.3.3 Step 3: Setting up the ENC module

The ENC module is set up to extract data from electronic navigational charts for
use in the online risk model and the rest of the control system. The ENC module
here includes charts covering the areas around Brønnøysund and Rørvik in Norway,
which are relevant for the type of ship in the case study. The module is set up to
consider everything shallower than 5 m as shallow areas or land where the ship
cannot navigate safely. The rest of the chart is divided into layers of 10 m, 20
m, 50 m, 200 m, 350 m, and 500 m. This distribution is considered a reasonable
combination of chart resolution and efficiency in the control system.

204

A.3. Case study: Supervisory risk control of an autonomous cargo ship

The obstacle density is based on the distance to the closest shallow point (i.e., areas
with less than 5 m water depth) and the percentage of obstructed water around the
ship. The water depth of 5 m is the same as the max draft of the ship. Using this
water depth is considered sufficient for assessing the portion of obstructed water
in this work. Shallow areas are consequently areas with too little water depth for
the ship to sail in, which should be avoided with sufficient safety margins. The
percentage of obstructed water is calculated by considering a disk with radius 1400
m and finding the portion of the disk with land and shallow water. The radius is
set through testing to ensure that the disk gives a good picture of the sea area
surrounding the ship, without being unnecessarily large.

The ENC module checks the area around the ship every 15 seconds and updates
the input to the online risk model. Updating every 15 seconds ensures that the
control system has updated data, while limiting the computation time necessary
to check the ENC module.

A.3.4 Step 4: Building the supervisory risk controller

The SRC is the high-level controller that manages and controls the ship. The SRC
uses data from the risk model and ENC, combined with operational measurements
from the ANS and AMMS, such as position, speed, and machinery status to make
decisions. The SRC has four main objectives: selecting the SO-mode, selecting the
MSO-mode, setting the reference speed for the ship to follow, and notifying the
human supervisor when the situation becomes too severe to continue.

The SRC is implemented as a switch that checks the cost function, as shown in
Equation A.1, for each set of decisions. The risk cost is calculated using Equation
A.2. This takes the probability of the different consequences, Pr(), estimated in the
online risk model described, multiplied with the expected cost for each consequence,
C(), as described in Section A.3.1:

R(d) =Pr(severe)Csevere + Pr(significant)Csignificant

+ Pr(minor)Cminor + Pr(none)Cnone

(A.2)

The fuel cost is calculated as the specific fuel cost (SFC) multiplied by the expected
sailing time. The SFC is taken from a look-up table, depending on wind speed, ship
speed, current speed, and MSO-mode. The look-up table is made by simulating the
machinery under different conditions to estimate how much fuel is used to sail a
set distance. The fuel prices are taken from [190] at 1 343.5 USD/ton for LNG and
684.5 USD/ton for diesel. This table provides a cost per distance that is multiplied
with the planned sailing distance, as shown in Equation A.3:

F (d) = SFC(wind, speed, current,machinery) ∗ distance (A.3)

205

A. Risk-based control system for autonomous ships

Operation costs are calculated using Equation A.4. This includes manning in the
ROC, maintenance from wear and tear on the machinery, insurance of the ship,
lubrication oil, spare parts, and logistics. These are estimated based on conventional
ships of the similar size and type, and using data from [107] to be 341.3 USD/h
for the current ship. This is similar to the fuel cost in normal transit with a speed
of 5− 7 m/s (9.7− 13.6 knots):

O(d) = Costoperating ∗ distance/speed (A.4)

The cost of potential future loss is calculated with Equation A.5. This cost is the
loss of income if the ship is unable to take on any new missions before finishing the
current route, which is set to 910.1 USD/h:

L(d) = Costfutureloss ∗ distance/speed (A.5)

The cost function, including the ratio between the different terms, is discussed in
Section A.4.7. The controller estimates the cost of sailing a distance equal to the
initial route distance. This is constant for the whole route which keeps the weight
between the different cost terms constant.

The alarm is implemented such that a human supervisor can take over control
remotely of the ship if necessary, but unnecessary alarms also need to be avoided.
To achieve an acceptable balance, the alarm trips if either the risk cost exceeds
9 267.70 USD, or the probability of the hazardous event exceeds 0.5. The cost limit
is set between minor and significant consequences because it is better to have the
human supervisor check the ship, than having an emergency later on. The SRC is
implemented to lower the speed to limit the risk cost because impact speed directly
affects the consequences. However, this can cause situations where the probability
of a hazardous event is too high to continue due to environmental conditions, even
though the risk cost is low because the speed is reduced to the minimum. Thus, a
probability limit of 0.5 is used to notify the human supervisor in these situations.

If the SRC changes the ship’s control configuration, then it is paused for 30 seconds
before checking again. Implementing a time delay in the switching logic ensures that
the controller reacts to changes but avoids situations where it gets stuck switching
between different modes (e.g., DP and AP) without stabilizing, which is also called
chattering [191].

A.3.5 Step 5: Verifying the control system

After setting up the SRC, verification is done by first determining how to test
the system and which requirements to verify against. The autonomous ship should
follow the route through Brønnøysund that is shown in Figure A.5. The route
follows the same path as a conventional ship and those described in [192]. This is

206

A.3. Case study: Supervisory risk control of an autonomous cargo ship

0 m

1 m

5 m

10 m

100 m

500 m

Figure A.5: Route used in the verification process

207

A. Risk-based control system for autonomous ships

used to check the ship in situations where the controller is expected to adjust the
speed reference, without using much longer time than conventional ships. The ship
has to lower the speed reference early enough to slow down when entering narrow
and tight areas, and increase it when it opens up again.

To test safety, the ship should maintain a minimum distance of 5 m to shallow areas
or provide an alarm to the human supervisor at least 5 min before the minimum
distance is violated. Having a minimum distance of 5 m is not realistic for a real
ship. However, to account for extra drift caused by simplifications in the simulator
this is used to get results reasonable results that can be compared to conventional
ships. These assumptions are discussed further in Section A.4.8. The following
verification focus on wind and how this affect the ship. However, the process is the
same for other disturbances, such as current.

To verify that the controller is efficient, the ship should at maximum use 140 min
on the whole route segment under consideration in the case study or provide an
alarm to the human supervisor. This time limit is set based on the time existing
manned ships used on the same route. Both the safety and efficiency requirements
are tested in wind speeds ranging from no wind to 20 m/s and from all directions.
Other factors (e.g., current, waves, and machinery failures) are not considered in
the verification. This simplifies the verification but still gives sufficient results for
further testing of the control system. The route is chosen to get a good variation
between open water and more narrow straights with tight turns.

The verification is performed using the automatic simulation-based testing method-
ology that was introduced in Section A.2.5. This methodology selects and simulates
interesting combinations of wind speed and wind direction to verify or falsify the
system. The system is verified to satisfy the safety requirement (minimum distance
to shallow) in 161 simulations, and the efficiency requirement (maximum allowed
sailing time) in 97 simulations. The STL robustness surfaces for safety and effi-
ciency are shown in Figures A.6(a) and A.6(b), respectively. The STL robustness

(a) Safety verification (b) Efficiency verification

Figure A.6: Robustness surfaces resulting from the two verification runs

208

A.4. Results and discussion

score is normalized to the interval [−1, 1]. Figure A.6(a) shows that the robustness
score in the case study is always above 0. Similarly, Figure A.6(b) shows that the
robustness is always above 0 and is close to 1 when it reaches the final waypoint
early or trips an alarm because the risk cost or grounding probability becomes too
high.

The verification shows that the control system makes the autonomous ship follow
the route and it also reaches the end of the route in reasonable time in wind speeds
of up to 8 m/s. Above this, the planned route forces the ship very close to land in
certain spots, which means that it notifies the human supervisor. When the wind
speed exceeds 10 m/s, the route leaves too little space for the ship to maneuver.
This can cause problems with certain wind conditions. However, the control system
provides an alarm to the human supervisor with enough time to pass the safety
requirement. Overall, the verification shows that the proposed control system works
in the planned route but it is limited by not being able to change the route in
accordance with the environmental conditions.

A.4 Results and discussion

A.4.1 Comparing the controller with the maneuvering of a
conventional ship

After building and setting up the controller, the autonomous ship is simulated
along two different routes to compare it against an existing conventional ship. The
first route is through Rørvik and the second is through Brønnøysund. The route
through Brønnøysund is similar to the one used in the verification (Figure A.5)
but with different start and end points. The start and end points are changed
because the GNSS data from the conventional ship is only available for part of the
route. The purpose is to see how the SRC sets the speed reference, MSO-mode,
and SO-mode, and compare this to how conventional ships operate along the same
routes in similar weather conditions. The existing ship is equipped with a similar
machinery and control system as the autonomous ship but with a crew who decides
MOS-mode, SO-mode, and speed reference.

The conventional ship sailed through Rørvik and Brønnøysund in the fall of 2021
with a wind speed between 5−7 m/s. The routes followed by the conventional ship
are plotted with GNSS data taken from the control system aboard the conventional
ship. The route through Rørvik is planned by placing waypoints along the route
that the autonomous ship can follow. The GNSS data for Brønnøysund contain
some measurements that place the route over land. The cause of these are not
certain but it only affects the data between point 0.5 and 0.7. Therefore, the route
was re-planned by placing waypoints along the same route into Brønnøysund but
following the route recommended in [192] through and after Brønnøysund. The
routes are shown in Figures A.7 for route one and A.10 for route two with the
conventional ship in red and the autonomous ship in yellow.

209

A. Risk-based control system for autonomous ships

Conventional ship
Autonomous ship

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure A.7: Map of route one through Rørvik. The conventional ship’s route is shown
in red and the autonomous ship’s route is shown in yellow.

To compare the two ships, the risk model and SRC need position, speed, MSO-
mode, and SO-mode from the conventional ship. Position and speed are recorded in
the ship’s control system. Ship speed is fed directly to the SRC to find the expected
fuel cost and is used as input to the risk model. Position data is used in the ENC
module to get the distance to the closest grounding hazard and obstacle density.
MSO-mode is set to PTO and SO-mode to AP after discussing how the conventional
ship is operated with the crew. This provides a cost that can be compared to the
autonomous ship. The SRC uses a constant distance when calculating costs, as
explained in Section A.3.4. The plots therefore show the costs of sailing a distance
equal to the distance of the whole route, d0, estimated at each point.

210

A.4. Results and discussion

Comparison on route one through Rørvik

On route one, the conventional ship starts with a speed of 5.25 m/s, before in-
creasing to 6.5 m/s. The speed is then maintained at 6.5− 6.75 m/s the rest of the
distance. The autonomous ship starts with a speed of 5 m/s. This is later increased
to 7 m/s as the ship sails into more open water. Along the rest of the route, the
speed varies between 5 m/s and 7 m/s as it passes through more narrow parts of
the route and in more open areas. Overall, the autonomous ship varies the speed
more as the environmental conditions change, compared to the conventional ship.

The cost is shown in Figure A.8 for the conventional ship and in Figure A.9 for the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

2000

4000

6000

8000

10000

12000

14000

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.8: Conventional ship’s costs on route one

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

2000

4000

6000

8000

10000

12000

14000

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.9: Autonomous ship’s costs on route one

211

A. Risk-based control system for autonomous ships

autonomous ship. The plots show the expected costs of sailing the full route, d0. The
conventional ship has a higher risk cost (blue line) because it maintains a higher
minimum speed. Fuel (yellow line), operation (green line), and potential future
loss (red line) costs are almost the same but they vary more for the autonomous
ship because the expected time varies more corresponding to more changes in the
speed. For the conventional ship, both fuel and operation costs are almost constant
because the speed is kept more or less constant along the whole route. In contrast,
the speed of the autonomous ship is changed more, which leads to more changes
in fuel and operation costs. The conventional ship uses 96 minutes on the whole
route and the autonomous ship uses 103 minutes.

Comparison on route two through Brønnøysund

The routes differ slightly more through Brønnøysund, due to the errors in the
position data from the conventional ship. This means that the autonomous ship
sails around 1 km longer. The conventional ship maintains a speed of around 6.75
m/s before it reaches the narrow parts of the route between 0.5 and 0.6 on the
route shown in Figure A.10. In the narrowest part, the speed is reduced to 3 m/s,
it is then increased to 6.75 − 7 m/s as the area opens up. The autonomous ship
has a speed of 7 m/s in open water. This is reduced to 5 m/s when it reaches
the first narrow straits between points 0.4 and 0.5. It then returns to 7 m/s for a
short time in the more open area, before it is reduced to 4 m/s through the narrow
harbour area. Overall, the autonomous ship makes more changes to the speed, but
maintains a higher minimum speed.

The cost is shown in Figure A.11 for the conventional ship and Figure A.12 for the
autonomous ship. Fuel (yellow line), operation (green line), and potential future
loss (red line) costs are virtually the same along the whole route. The risk cost is
similar along the first part where both ships follow the same route, but is much
higher for the conventional ship in the middle part of the route. This is caused by
the inaccuracies in the GNSS data collected on the conventional ship showing the
ship sailing very close and over land, and the conventional ship not reducing the
speed between points 0.4 and 0.5. This combination results in a significantly higher
risk cost compared to the autonomous ship. Fuel cost is similar for both ships with
a reduced fuel consumption when the speed is reduced in the most challenging
part of the route. Operation cost is also similar, but with a higher top for the
conventional ship since it reduces the speed more.

A.4.2 Controlling the ship with machinery and propulsion
failures

The second part of the case study tests how the control system manages the au-
tonomous ship when the health of the main engine and steering system is worsened.
This is modeled by increasing the probability of failure for these elements in the
risk model. The SRC then chooses the best way to operate the ship based on this
information. The routes are the same as shown in Figure A.7 for route one and

212

A.4. Results and discussion

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Conventional ship
Autonomous ship

Figure A.10: Map of route two through Brønnøysund. The conventional ship’s route is
shown in red and the autonomous ship’s route is shown in yellow.

213

A. Risk-based control system for autonomous ships

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

0

20000

40000

60000

80000

100000

120000

140000

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.11: Conventional ship’s costs on route two. The risk cost is here significantly
higher since the position data used to estimate the costs include some incorrect measure-
ments placing the ship both very close and on land as shown in Figure A.10.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

0

2000

4000

6000

8000

10000

12000

14000

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.12: Autonomous ship’s costs on route two

Figure A.10 for route two. The weather is also the same, which ensures that the
results can be compared to how the ship is managed when all systems function.

Machinery and propulsion failures on route one through Rørvik

In both cases, the failure happens when the ship has sailed approximately 8 % of
the route, close to point 0.1 on the figures. When the main engine fails, the SRC
changes MSO-mode to PTI, which only uses the HSG and diesel generators for
power production. The speed reference is also reduced to 4 m/s because the diesel
generators produce less power than the main engine. This ensures that the ship

214

A.4. Results and discussion

still has sufficient power to maneuver. The SO-mode is AP along the whole route
in this case.

When the steering machinery fails, the speed is lowered significantly such that the
tunnel thrusters can provide steering for the ship and SO-mode is changed to DP.
The MSO-mode is Mech for the whole route. The speed reference switches between
2 m/s and 3 m/s, depending on the number of islands and obstacles around the
ship.

Figures A.13 and A.14 show the costs calculated by the SRC. Overall, the cost is
maintained at a similar level as when everything is working by adjusting how the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

0

2000

4000

6000

8000

10000

12000

14000

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.13: Costs with failure on main engine on route one

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

0

2500

5000

7500

10000

12500

15000

17500

20000

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.14: Costs with failure on steering machinery on route one

215

A. Risk-based control system for autonomous ships

speed is operated. The risk cost is controlled by reducing the speed, compared to
how the ship is operated when all systems function as intended, and by switching to
MSO-modes and SO-modes with functioning components. Operation and potential
future loss is increased because the ship uses a longer time with lower speed.

Machinery and propulsion failures on route two through Brønnøysund

The main engine fails between point 0.3 and 0.4, and the steering machinery fails
between point 0.2 and 0.3. When the main engine fails, the speed is reduced sig-
nificantly to account for the reduced power production. The MSO-mode is also
changed to PTI, which do not use the main engine. The SO-mode is AP along the
whole route.

When the steering machinery fails, the speed is reduced to 2 m/s and SO-mode is
changed to DP, to get more effect from the tunnel thrusters and maintain control
of the ship. When the ship has passed the narrowest parts of the route, the speed
is increased to 3 m/s.

Similar to route one, the costs that are shown in Figure A.15 for the main engine
and Figure A.16 are similar as when everything is functioning by reducing the
speed and changing MSO-mode and SO-mode. The biggest difference compared to
the cost when all systems function is the time used to finish the route. The time
and the time dependent costs, operation costs and potential future loss increase
when the ship sails at a lower speed. This is most visible after the ship has finished
with the most challenging parts of the route, around 0.4-0.5. However, because the
speed was reduced in the narrow and tight parts with all systems functioning as
well, the max cost is still at the same level.

Data from conventional ships operating with failures but switching to modes that
function without the failed components are limited, although this is a logical way
to mitigate failures. In a conventional ship, the failed components can be fixed by
the crew or the ship can be maneuvered to the closest harbor for repairs. On an
autonomous ship without a crew, the only option is to maneuver to harbor and get
it fixed there or in case of severe failures transport a repair crew to the ship offshore.
Because this route change is not included in the SRC and the redundancy of the
machinery systems onboard the autonomous ship was not compromised entirely,
the ship continues to sail towards the final waypoint. With the current control
system, this is a reasonable solution. Deviating from the planned route to get to
shore and repair damaged equipment, which would be viable solutions in case of
critical machinery failures and total loss of propulsion, and notifying the human
supervisor are topics for further research that could improve the control system
further.

A.4.3 Risk modeling and implementation in the control system

The proposed control system uses a BBN-based risk model to assess the risk. The
model is based on an extended STPA of the ship. STPA provides a systematic way

216

A.4. Results and discussion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

0

2000

4000

6000

8000

10000

12000

14000
Co

st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.15: Costs with failure on main engine on route two

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized distance [-]

0

2500

5000

7500

10000

12500

15000

17500

Co
st
 [U

SD
]

Costs estimated in the SRC
Risk cost
Fuel cost
Operation costs
Potential future loss
Total cost

Figure A.16: Costs with failure on steering machinery on route two

to analyze the ship and identify causal factors that can lead to hazardous events.
The results of the STPA also provide a logical way to build and structure the BBN.
However, the results depend on the data used and the quality of the analysis.

Another potential challenge using STPA is to decide the refinement level. The
refinement level generally depends on the purpose of the STPA. More details mean
more data, but it can also make the risk model and the corresponding calculations
too time consuming. In this current work, the analysis considers one hazardous
event only, two system level hazards, and five UCAs. The scenarios include causal
factors, such as wind, obstacles, and the main parts of the machinery system.
The scenarios could have been more detailed and could have included information

217

A. Risk-based control system for autonomous ships

about how machinery parts fail. However, because the purpose of the analysis in
this work is to build an SRC, the level of detail is considered to be sufficient because
the controller does not provide detailed control actions to the different parts of the
machinery systems. An example of this could be saying that the main engine can
only produce limited power because the cooling system is only partially functioning,
although in this situation limited power is necessary to maintain control of the ship.
Enabling the controller to make such decisions would be an interesting topic for
further research to continue to develop the control system.

When building the BBN risk model, the overall structure is determined by the
STPA. However, because the STPA is qualitative, it provides very little data for
setting up states defining CPTs. Hence, they are generally based on other sources,
such as literature, previous works, and expert judgement. The CPTs can also be
adjusted later to put more weight on specific risk factors. Given that the CPTs are
based on different sources, they contain a certain degree of uncertainty, as discussed
in Section A.4.7.

To convert the risk model into an online risk model, the risk model is connected
to the rest of the control system. This means that all of the nodes in the BBN
that can be measured by the control system or sensors should be updated when
the ship is sailing. The risk model should be updated often to describe the current
sailing conditions. However, updating it too often increases the computation time
in the control system. There is also a limit to how quickly the controller can update
the decisions. In the case study, the risk model and SRC is paused for 30 seconds
if the SO-mode, MSO-mode, or speed reference is changed. This delay allows the
controller to evaluate if the decisions influence the ship and to avoid chattering,
where the controller is stuck switching back and forth between different decisions,
such as during DP and AP.

The control system can be expanded further by including more dynamics in the ship
model. The case study assumes that machinery parts can be started immediately,
which is not the case. Although the specific time necessarily varies for different
engines, it will have to be included when making decisions. This type of dynamics
could be included in the control system as limits to how often decisions can be
changed. The risk model can also be modified to include starters for the different
machinery parts. For example, for the main engine to function, both the starter
and engine would be necessary.

Similar dynamics can be included for changing load on the machinery and the speed
of the ship. In particular, reducing the speed of the ship takes time, depending on
the size of the ship. The ship simulator includes a time delay on load changes and
uses some time to change the speed of the ship. However, the SRC does not account
for this specifically when it makes decisions. Therefore, including more dynamics
in the control system and risk model is an interesting topic for further research.

218

A.4. Results and discussion

A.4.4 Challenges with measuring risk in the cost function

The proposed control system uses a cost function to make decisions about MSO-
mode, SO-mode, and speed reference. This cost function estimates the cost of
operating and sailing the ship, and the potential cost of hazardous events. The
cost of sailing and operating the ship is straightforward to calculate and use in a
cost function because it is already measured as cost. However, to combine this with
risk cost is a bigger challenge. The STPA analysis can identify potential hazardous
events but is only a qualitative analysis that does not consider likelihood of these
events or the following cost.

This work addresses this problem by extending the analysis to consider conse-
quences and classifying these in terms of cost. The STPA results and consequences
are modeled in a BBN to give a likelihood of the consequences. The likelihood is
multiplied with the consequence cost to give a risk cost to use in the cost function.
Decisions are then made based on the current time, without considering how this
can change in the future. Risk could be alternatively assessed by simulating how
changing conditions and decisions affect the cost over a longer time. This would
make the SRC more like an MPC, which could find the optimum set of decisions
to minimize the cost over a longer time period. However, this would mean running
a lot of simulations to check all potential combinations. Investigating this further
could be subject for further research.

A.4.5 Risk modeling and integration with the ENC module

In the proposed control system, information about grounding obstacles is important
for the risk model because it allows the model to assess the area around the ship.
This information, and other data about the relevant area, is available in ENCs.
The ENC module is an efficient tool for extracting and filtering this information to
enable it to be used to describe the navigation area in the risk model. The control
system uses the distance to the closest area where the ship can ground and the
density of such areas as inputs to the risk model. Together with weather and traffic
data, this determines how challenging it is to maneuver the ship.

The ENC module used in this work do not account for navigational markers, as
this is not currently implemented in SeaCharts. For an autonomous ship, knowing
where different navigational markers and their meaning is an important part of
operating safely. The proposed control system itself can utilize this information in
the risk model to get a better understanding of the environment when this become
available with the SeaCharts package. However, the current ENC module is still
considered sufficient to demonstrate that the proposed control system works.

The ENC module also provides an efficient way to plot the ship during testing,
and is used when testing the control system to see how well the ship follows the
route and identifies problems in specific areas. Compared to just using the position
data, without grounding obstacles and land, this approach makes it much easier to
understand and/or verify how the ship maneuvers.

219

A. Risk-based control system for autonomous ships

Data from the ENC module can also be used to add more functions to the control
system, such as route planning. In addition, a planning algorithm can use the
ENC module to check if the route maintains the necessary distance to land and
grounding obstacles. When combined with AIS data, this can enable the planner
to account for other ships and use this information to avoid collisions. This is an
interesting extension of the control system that would reduce the need for human
supervision and control even further. This point is left open as a relevant topic for
further research.

A.4.6 The efficiency of testing and verification of control
systems in operation

In this work, the proposed control system is verified against the design requirements
using the automatic simulation-based testing framework that was introduced in
Section A.2.5. Using this approach significantly increases the efficiency of building
sufficient verification evidence for the control system. [177] show that this reduces
the number of simulations necessary to verify the scenario compared to a regular
grid search, which is a large time saver when doing several design iterations and
verifying the scenario after each iteration.

The robustness surface resulting from a verification run with the automatic test-
ing framework enables us to quickly get an overview of the performance of the
SRC system at different regions of the scenario space. This overview is actively
used in the design process to iteratively adjust the control system. Compared to
the alternative of running simulations manually and evaluating the resulting time
series, this offers a significant reduction in the workload. Furthermore, using STL
to evaluate the system also gives a robustness score to show not only that it is
verified, but also how well the system performs.

It is also worth noting that the verification process considers a specific route and
area. These can be planned such that the route includes different environments,
such as open water, coastal waters with many islands, or tight harbor areas. The
results from the verification should then be valid for other routes with similar
characteristics, as shown in the case study. However, if the system is only tested in
a distinct environment, such as open water without obstacles, then it cannot say
anything about how the controller handles other environments.

An interesting extension of the automatic testing framework is to also use it in
an online setting and integrate it more closely with the SRC system. This online
verification system could repeatably start verification runs at fixed time intervals.
A verification run would attempt to verify safe operation for a finite time-horizon
ahead and for a set of uncertain scenario parameters, such as environmental con-
ditions, traffic, or internal components failures. It would achieve this by running
simulations with the current situation as an initial condition and then intelligently
selecting the scenarios to simulate using the Gaussian process model. The simula-
tor should have an exact (software-in-the-loop) replica of the SRC system, thereby
also evaluating how future choices of the SRC system will affect the performance

220

A.4. Results and discussion

in the different scenarios. The result from a verification run would be used as a
robustness map for future scenarios. This robustness map, when combined with
data on the probability of the different scenarios, could then be used by the SRC
system to make risk-based decisions. The concept of an online verification system
operating in closed loop with the SRC system appears to be very interesting be-
cause it enables the SRC system to consider multiple future scenarios and at the
same time evaluate how its decisions would affect future behavior.

Another interesting extension is to use the STPA directly to define safety require-
ments and simulation scenarios; see, for example, [13]. In the current work, the
scenarios are set up to test the ship in a wide range of wind conditions and in very
different areas. However, testing similar scenarios to those that the STPA iden-
tified when controlling the ship is challenging. Therefore, testing in more specific
scenarios based on the STPA is left for further research.

A.4.7 Uncertainties and sensitivity in the data and models in
the case study

The proposed control system combines existing control systems, such as DP and
autopilots, with an online risk model in an SRC. The DP and autopilot are well
described in the literature and are used on conventional ships. However, the use
of an online risk model in an autonomous ship system and the concept of a cargo
ship sailing without humans onboard is a novel concept. This means that data
describing this is very limited, and mostly based on concepts and plans for these
types of ships.

To get sufficient data in the case study, a combination of data from traditional
manned ships, concepts for autonomous ships, geographic, and weather data is
used. The quality of geographical and weather data is good with little uncertainty.
However, the case study considers a simplified environment and not all conditions
that a real ship would experience. For example, the wind measurements are taken
over a long period but only at a general location. The wind is therefore assumed
to be the same along the whole route, even though it will likely vary significantly
between different locations. Similarly, the charts that are used are the same as ships
use for navigation today but are simplified to only consider shallow areas and land,
and not other ships or navigational marks. Although these simplifications make
it possible to test the system, they also lead to uncertainties in the results (e.g.,
how the system can handle more obstacles such as other ship traffic and more local
variations in wind conditions).

The STPA used in the paper is based on a workshop with academic industry
experts. This helps to identify relevant information for the case study, but the
quantitative risk models and corresponding calculations could still have limitations
affecting the risk costs.

The input uncertainty will have a different effect on the overall uncertainty, de-
pending on the sensitivity of each input node. If a node has high sensitivity, then

221

A. Risk-based control system for autonomous ships

0

10000

20000

30000

40000

50000

60000

70000

M
ach

in
ery

Contr
olle

r p
erf

orm
an

ce

Pow
er M

an
ag

em
ent S

ys
te

m

W
eat

her

O
bst

ac
le

s

D
is
ta

nce
 to

 o
bst

ac
le

s

Tr
a

c

G
N

SS
 a

cc
ura

cy

Rad
ar AIS

Vis
ual

 c
ondi

ons

D
esi

gn
 p

ro
ce

ss

Se
ab

ed ty
pe

Sh
ore

 ty
pe

Sp
eed

C
o

st
 [

U
S

D
]

Sensi vity analysis

Figure A.17: Sensitivity analysis, showing the effect on the risk cost of setting nodes in
the best and worst states.

changing it will change the risk cost more compared to nodes with lower sensitivity.
Nodes with high sensitivity have the same effect on the uncertainty in the risk cost.
Figure A.17 shows the effect that each node has on the risk cost when setting the
node in the best and worst state. This shows that the weather conditions have the
biggest potential effect on the risk cost. Other input nodes with a noticeable ef-
fect on the risk cost are GNSS accuracy, machinery status, controller performance,
and obstacles. However, it is important to note that other factors than weather
still give a high risk cost, especially combinations of multiple factors. Figure A.11
shows that the risk cost increases a lot when the GNSS data puts the ship very
close to land without reducing the speed. The machinery and control system data
are based on multiple sources that describe the system’s reliability, and thus have
less uncertainty. For weather and obstacles, the main source of uncertainty is the
previously mentioned simplifications.

Another source of uncertainty in the risk model is the sensitivity of each input, or
how much each input affect the risk cost. It is difficult to say how much weight
should be on each input but it is possible to make some general remarks about it
based on Figure A.17. For an autonomous ship to function properly, it needs well-
functioning machinery, power, and control systems. It also makes sense that sensors
providing situation awareness influence the ship, and that weather and obstacles
affect the decision-making process. The sensitivity analysis and case study show
that all these have a significant effect on the risk cost.

222

A.4. Results and discussion

The fuel cost, operation cost, and loss of future income also affect the uncertainty
in the case study. Because the SRC makes decisions based on the total cost, the
balance between different cost elements affect the decisions and the results. The
fuel cost is calculated using a lookup table of how much fuel the ship uses in
different environmental conditions and speeds. The table is made by simulating
the ship to derive the fuel consumption. These simulations use simplified models
of the machinery system, but they still give numbers similar to those for existing
ships and engines. Both operation costs and loss of future income are estimated
based on the type of ship and operation.

Based on the tests, the balance between safety and efficiency is good. The balance
between the different costs is also reasonable. Fuel and operation costs are at the
same level. The potential loss of future income is slightly higher than the sum
of fuel and operation costs because the ship should have a higher income than
just covering the expenses. The results can be improved further by advancing the
models, and by getting more and better data, but this is left for future work.

A.4.8 Simplifications in the ship simulator and testing

The proposed methodology and control system is tested using a simplified ship
simulator. The simulator is based on the models given in [91]. This provides a good
tool to test the ship’s control systems. However, the models include simplifications
that affect the ship’s behavior and control. Not including wave forces is one such
simplification. The most commonly used approach to include waves takes a 3D
model of the ship and tests it in a hydrodynamic program. However, the data to
make this 3D model is missing for the ship in the case study, and therefore the
ship is simulated without waves. Similarly, the simulations consider a simplified
propulsion system and use approximations in the kinematic and kinetic equations.

In testing, the simulator works sufficiently to test the proposed methodology and
SRC. However, the ship is difficult to control when turning, especially using the
autopilot. Therefore, the minimum distance used in the safety verification, Section
A.3.5, is only 5 m. In real life, the ship should stay further away from land. This
would also add more safety margins to the ship draft and more clearance under the
keel. Although the system has been tested with a larger minimum distance, it then
fails the safety verification at much lower wind speeds. The ship can be operated
in DP-mode, which offers much better control at lower speeds using the tunnel
thrusters to both control heading and sideways position. However, this would mean
sailing at unreasonable low speeds when compared to the conventional ship. To get
comparable data, the autonomous ship is allowed to operate with smaller margins
in the simulations. Given that the focus of the paper is the method for developing
the SRC and how this make high level decisions, this is deemed sufficient. Testing
with more accurate ship models is left for further work.

Accuracy in the position data is another challenge when testing the proposed
methodology. The case study assumes that the GNSS data is accurate for use in the
ship control system. However, GNSS accuracy can be a challenge for autonomous

223

A. Risk-based control system for autonomous ships

ships, especially when sailing between tall mountains where the signal quality can
be affected by bad satellite coverage and signals reflecting off the mountains. How
accurate the data is will vary depending on the location, but is something that
should be addressed when setting the limits in the system verification and the
control system. However, it is still sufficient for testing the SRC and the method-
ology for building this. Combining GNSS measurements with other sensors, such
as radar, LIDAR, sonar, and cameras is an option for improving the accuracy by
measuring the distance to land and other objects, instead of just using the GNSS
position. However, this is considered to be outside the scope of this work and is
left for further work.

A.5 Conclusions

This work presents a control system with risk-based decision-making capabilities
to enable the smarter and safer operation of autonomous systems. The proposed
control system uses an online risk model, which is represented by a BBN, to eval-
uate the operational risk, through an SRC. An ENC module is used to provide
accurate data of the environment to both the risk model and the rest of the con-
trol system. The online risk model provides decision support in the SRC, which
can make high level decisions. The control system has been verified against design
requirements for safety (minimum distance) and efficiency (maximum time) using
a novel formalized verification method. The combination of the SRC with ENC
and formalized verification leads to a risk-based control system that can control
autonomous ships in a safe and efficient manner, which currently does not exist.

The proposed control system is first compared to experimental data from an ex-
isting conventional ship in a case study along two coastal routes. This shows that
the novel controller makes similar decisions to adjust the speed and maintain safe
operation as the conventional ship, without using significantly more time to reach
the end destination. It also shows that the controller took less risks than the con-
ventional ship, mainly by adjusting the speed earlier when maneuvering in narrow
areas, while maintaining a higher minimum speed than the conventional ship. This
will make a bigger difference for routes that changes a lot, such as the route through
Rørvik. However, it will still have an effect on routes with less variation between
open water and narrow straits. The second part of the case study tests how the
SRC handles failures in the machinery and propulsion system. This shows that the
SRC changes MSO-mode and SO-mode to continue safely to the final waypoint.

Further work includes adding more functions to the control system to increase
autonomy, such as safe and reliable auto-docking. This will enable the ship to
leave harbor, sail to a second location/harbor, deliver goods, and then return and
dock in harbor again. This would be a typical cargo ship or passenger operation
and would thus be an important step towards achieving highly autonomous ships.
Route planning to enable the control system to change route depending on the risk
level and environmental conditions, and looking at how a similar system can be
used for decision support to human operators are also natural parts of future work.

224

A.5. Conclusions

Appendix: BBN connections

Tables with an overview of child/parent nodes in the BBN.

Table A.5: BBN Nodes, Input-RIFs are only listed as parent nodes

Node description Parent node(s)

Cost Consequences
Consequences Harm to humans, Damage on own ship, Damage on other

ships/objects
Damage on other
ships or objects

HE, Impact speed, Type of seabed, Type of shore

Damage on own ship HE, Impact speed, Type of seabed, Type of shore
Harm to humans HE, Impact speed, Type of shore
HE H1, H2
H1 UCA-1, UCA-2, UCA-3, UCA-4, UCA-5
H2 UCA-1, UCA-2, UCA-3, UCA-4, UCA-5
UCA-1 H-RIF-1, H-RIF-2, H-RIF-3
UCA-2 H-RIF-1, H-RIF-2, H-RIF-3
UCA-3 H-RIF-2, H-RIF-3
UCA-4 H-RIF-4, H-RIF-5
UCA-5 H-RIF-4, H-RIF-5, H-RIF-6
H-RIF-1 Power, Propulsion
H-RIF-2 Power management system reliability, Controller perfor-

mance/accuracy
H-RIF-3 Weather conditions, Control of ship, Congested waters
H-RIF-4 Controller performance/accuracy, Navigational instru-

ments
H-RIF-5 Navigational instruments, Visual conditions
H-RIF-6 Controller performance/accuracy Ship design process
Power PTO, PTI, Mech, MSO-mode
Propulsion AP, DP
Weather conditions Current, Wind direction, Wind speed

225

A. Risk-based control system for autonomous ships

Table A.6: BBN Nodes, Input-RIFs are only listed as parent nodes

Node description Parent node(s)

Control of ship Weather conditions, SO-mode, Ship speed, Propulsion
Congested waters Obstacle density, Distance to closest grounding hazard,

Traffic density
Controller perfor-
mance or accuracy

AP performance/accuracy, DP performance/accuracy,

SO-mode, Weather conditions
Ship speed Controller performance or accuracy, Speed reference
Navigational instru-
ments

AIS, Radar, GNSS system

Visual conditions Wind speed, Fog, Rain, Snow
PTO ME state, HSG state
PTI HSG state, DG1 state, DG2 state
Mech ME state, DG1 state, DG2 state
AP MSO-mode, MP state, ST state
DP MSO-mode, MP state, BT state, AT state
Impact speed Ship speed

226

Appendix B

Ship collision avoidance and
anti-grounding

B.1 Introduction

B.1.1 Background

Autonomous ships will require a high level of data processing in order to have
adequate situational awareness and to make deliberate decisions. This requires effi-
cient and robust algorithms, and well chosen platforms to enable fast computation.
When facing a hazardous situation in e.g. confined space with multiple static and
dynamic obstacles, the need to evaluate a larger set of future control behaviours
or trajectories for the autonomous ship and other obstacles will be necessary, such
that a risk minimizing or collision-free trajectory is possible to find. Furthermore,
the collision-free planned trajectory should comply to the Convention on the In-
ternational Regulations for Preventing Collision at Sea (COLREGS) [193] when
possible. However, evaluating the risk associated in any of these control behaviours
can be computationally expensive. Thus, to meet run-time requirements, a colli-
sion avoidance (COLAV) planning algorithm which scales well in the evaluation
of different control behaviours will be both beneficial and necessary in such cases.
Increased robustness can then also result as a consequence of being able to evalu-
ate more vessel behaviour scenarios and situational information in the system at
run-time.

A Scenario-Based Model Predictive Control (SB-MPC) [194] approach is here a vi-
able option that can incorporate most of the elements needed in a robust COLAV
planning algorithm, such as anti-grounding, dynamic obstacle avoidance and multi-
ship adherence to COLREGS when possible. This is because of its flexibility in the
formulation of its optimization problem, with different control objectives and pos-
sible integration of constraints, and which has a rich theoretical foundation. The
sampling-based method is also flexible in the prediction models used to generate
own-ship and dynamic obstacle prediction scenarios. The problem with this ap-
proach however, and especially for the probabilistic version (PSB-MPC) [195], is

227

B. Ship collision avoidance and anti-grounding

that the optimization problem in the COLAV planning algorithm scales poorly with
an increasing set of considered own-ship avoidance maneuvers, static obstacles and
dynamic obstacles with their own alternative prediction scenarios. The prediction
of the collision risk with respect to all dynamic and uncertain obstacles involved,
and calculating distances to all static obstacles for anti-grounding purposes, has
exponentially increasing computational cost as the optimization problem increases.

B.1.2 Literature review

Many studies on maritime collision avoidance exists today, and are mainly sum-
marized in review papers such as [71], [72], [196], [197], whereas we here focus
on deliberative COLAV planning methods having dynamic obstacle avoidance and
COLREGS adherence in addition to anti-grounding in their algorithms. For a gen-
eral overview on planning algorithms, see [198].

In this article, deliberative refers to the COLAV algorithm planning efficient tra-
jectories that adheres to the COLREGS when deemed possible, and avoid collision
well before risky situations occur. Following the COLREGS blindly in any type of
situation will not be sufficient, as was shown in [199] and also discussed in [200],
[201]. Thus, the deliberate COLAV planning algorithm should in general also con-
sider the intention uncertainties of nearby dynamic obstacles. Further note that
with COLREGS compliance, we mean compliance with the COLREGS rules 8, 13
- 17 on taking early and apparent action, and the correct action in overtaking,
head-on and crossing situations with either give-way or stand-on obligations, re-
spectively. These are the rules most relevant and common to consider for automatic
COLAV planning. However, a complete COLAV system should consider the full
rule set.

A lattice-based trajectory planner using A* search for finding collision-free trajec-
tories is introduced in [202], where non-adherence to the COLREGS, trajectory
deviation and collision risk with respect to static and dynamic obstacles is penal-
ized in the cost function. An intention based motion model is used for dynamic
obstacles, which relies on learning the positional prediction uncertainty for a given
scene when used in calculating collision probabilities. The details on this model is
not given, and results on how the planner scales in run-time with increasing lattice
grid density, dynamic and static obstacles are however not given.

The work in [203] introduces a hierarchical system with three levels. The top level
trajectory planner uses lattice-based A* search combined with an Optimal Control
Problem (OCP) method for generating collision-free trajectories with respect to
static obstacles. A mid level MPC-based COLAV planning algorithm modifies this
trajectory to adhere to the COLREGS and avoid collisions with respect to dynamic
obstacles. Lastly, a low-level reactive COLAV sampling-based planning algorithm
acts as a fail-safe in case the levels above can not handle the situation. The system
does however assume straight line trajectories for dynamic obstacle predictions
without uncertainty, which does not coincide with real-time vessel behaviour in
hazardous situations. Furthermore, scalability and run-time properties with an

228

B.1. Introduction

increasingly complex situation is not discussed.

In [204], a field-test verified A-star search trajectory planner is developed, which
attempts to find a COLREGS-compliant and collision-free trajectory with respect
to dynamic and static obstacles in a lattice. To predict nearby dynamic obstacle
trajectories, the planner employs Monte-Carlo (MC) simulation using fuzzy logic
and the trajectory history of the obstacle to find a set of probable trajectories,
where the most probable one is considered for collision avoidance. As in [203],
the method does not consider the prediction uncertainty associated with dynamic
obstacles. Furthermore, the computational efficiency of the planner only tested
for a set of 500 possible own-ship trajectories and one expected dynamic obstacle
trajectory, which can be inadequate in highly congested scenarios.

Candeloro et. al. 2017 [23] propose a global and local lattice-based trajectory plan-
ner which uses Voronoi Diagrams to generate a set of static obstacle collision-free
waypoints, from where a continuous trajectory is generated using Fermat‘s Spiral.
The method considers local replanning windows for taking detected dynamic and
static obstacles into account, and predicts dynamic obstacle motion with the Con-
stant Velocity (CV) model [205]. A convex hull representing the dynamic obstacle
uncertainty up until time to Closest Point of Approach (CPA) is created from using
the position estimates and error covariances from a Kalman filter, which is then
regarded as an area to avoid in the planner. This may however be overly conser-
vative, due to the unrealistic uncertainty growth in the CV model [206]. How the
local replanning run-time scales with increasing windows size, dynamic and static
obstacles is not considered.

Nonlinear MPC for static and dynamic obstacle collision avoidance with environ-
mental disturbance rejection was proposed in [207]. A deterministic CV model was
used for the dynamic obstacle prediction, which will not be the case in real-time
hazardous maritime situations where ships will maneuver. Furthermore, how the
MPC scales with static and dynamic obstacles was not considered.

Chiang and colleagues [208] introduces a sampling-based static and dynamic ob-
stacle considerate trajectory planner with COLREGS-compliant COLAV planning
algorithm based on Rapidly exploring Random Trees (RRT), where a joint simu-
lator is used to predict both the own-ship and dynamic obstacle motion. Potential
fields are used in the prediction to ensure that all the vessels have collision-free
trajectories with respect to each other and static obstacles. The method is shown
to have beneficial run-times feasible for real-time. However, the underlying as-
sumption in the prediction is however that ships will always perform deterministic
COLREGS-compliant maneuvers if possible, which is not necessarily true in prac-
tice.

Collision avoidance within a distributed flocking control strategy based on MPC
was considered in [209], with respect to nearby dynamic vehicles in the flock and
static obstacles. The computational efficiency or scalability of the method was how-
ever not discussed, and the states of all vehicles involved are assumed deterministic.

229

B. Ship collision avoidance and anti-grounding

B.1.3 Contributions

In this work, an implementation of the sampling-based PSB-MPC algorithm on
a GPU platform which facilitates efficient anti-grounding and dynamic obstacle
avoidance is introduced. The main contribution of the article compared to current
state-of-the-art static and dynamic obstacle COLAV planning algorithms is the
description of a parallelization algorithm for efficient cost evaluation of possible
own-ship trajectories in the PSB-MPC, taking into account dynamic obstacle un-
certainties and complex static obstacles in maritime hazardous situations. The al-
gorithm is feasible for real-time, as the MPC cost function evaluation scales linearly
with increasing numbers of dynamic obstacles with their own prediction scenarios
and also static obstacles, due to the parallelization. Static obstacles are read in from
Electronic Navigational Chart (ENC) data and processed into simplified polygons
using the Ramer-Douglas-Peucker (RDP) algorithm [210]. The efficiency of the
parallelized implementation makes it possible for the COLAV planning algorithm
to consider more dynamic obstacle prediction scenarios and own-ship trajectories,
and more complex static obstacle maps for elevated situational awareness and bet-
ter trajectory planning. Furthermore, a side contribution of the article is that the
dynamic obstacle prediction scheme in [195] is updated to use a kinematic model
with incorporated Line-of-Sight (LOS) guidance for more realistic trajectories.

B.1.4 Article structure

The article is organized as follows. Section B.2 gives background information about
the PSB-MPC, with prediction models, cost function structure and grounding haz-
ard extraction and representation. An outline of a sequential implementation of the
algorithm is also given. A parallelized implementation of the PSB-MPC is given in
Section B.3. Finally, Section B.4 show simulation results with the PSB-MPC, and
Section B.5 concludes the work.

B.2 The PSB-MPC COLAV planning algorithm

The Probabilistic Scenario-based Model Predictive Control (PSB-MPC) is an op-
timization-based COLAV planning method that samples a finite set of possible own-
ship trajectories, represented by control behaviours. This is illustrated in Figure
B.1, where we note that the control behaviours selected are arbitrary.

Formally, a control behaviour l in the PSB-MPC represents a sequence [(U l
m,1, χ

l
m,1)

..., (U l
m,nM

, χl
m,nM

)] consisting of speed multiplicative factors Um and additive
course angle offsets χm. The sequence represent nM sequential avoidance maneu-
vers. The parameter nM can in general be a variable, but will be considered fixed
in this work. The sequence of speed and course modifications are applied to the
autopilot references Ud and χd in speed and course angle at different time steps in
the finite prediction horizon, which in turn generates a specific own-ship trajectory.
Each control behaviour is evaluated by a cost function Hl(·), which penalizes prob-
abilistic collision risk, grounding risk, COLREGS violation and nominal trajectory

230

B.2. The PSB-MPC COLAV planning algorithm

Figure B.1: PSB-MPC illustration, with the own-ship running the algorithm in blue.
Nearby dynamic obstacles are shown in cyan and brown. Grounding hazards are shown
in beige. Candidate control behaviours predicted in the MPC are also shown, where the
color from red to green represents their cost, with green being the lowest. Thus, the green
candidate trajectory is the optimal one. The nominal trajectory goes straight north-east
through the confined environment.

231

B. Ship collision avoidance and anti-grounding

deviation. The optimal one is selected as

l∗(t0) = argmin
l
Hl(t0) (B.1)

where t0 is the current time, and it is the first avoidance maneuver represented
by U l

m,1 and χl
m,1 that is applied by the autopilot through the modified guidance

references Uc = U l∗

m,1 ·Ud and χc = χl∗

m,1+χd. The open loop optimization based on
(B.1) is repeated at regular intervals to account for more information in a moving
horizon fashion as is common in MPC, and thus closes the loop. More discussion
around feasibility and constraint satisfaction in the PSB-MPC can be found in
[168].

B.2.1 Prediction models

For deliberate COLAV planning algorithms, the own-ship prediction model can be
selected to be complex or simple depending on how much vessel information one
has. The PSB-MPC can easily handle complex ship motion models in its framework.
However, as the kinematic uncertainty associated with the ship motion prediction
increases substantially with time, having a simple model to capture the approxi-
mate own-ship behaviour is often adequate for deliberative COLAV planning algo-
rithms, where the low-level vessel control systems (autopilot) can compensate for
model inaccuracies and disturbances. As predictions of vessel motions over longer
time horizons are inherently uncertain, due to environmental disturbances, future
maneuvering decisions and unforeseen events, especially in hazardous situations,
we argue that there is limited gain in using an overly complex model. On the other
hand, for reactive collision avoidance methods and lower level motion control with
shorter prediction horizons, it will be more important to consider the ship dynamics
accurately. Thus, as the PSB-MPC is flexible in the choice of the own-ship pre-
diction model, it will not be described here but in the simulation study in Section
B.4.

Therefore, the following text will detail the model used for dynamic obstacles. To
create trajectories simulating the ship motion for the own-ship and dynamic obsta-
cles forward in time, we use Euler‘s method for numerical integration. Specifically,
the integration is done over the prediction horizon with discrete predicted times
tk ∈ D(t0) = {t0, ..., t0 + k∆mpc, ..., Tmpc}, with ∆mpc as the time step and Tmpc

as the prediction horizon.

As one most often do not have information on the underlying dynamic obstacle
vessel or object, their motion models should be simple. The preliminary PSB-MPC
used the Ornstein-Uhlenbeck (OU) process [211] in order to predict the motion of
dynamic obstacles, and allows for alternative obstacle prediction scenarios [169].
However, the trajectories only specify a single change in course, and are thus not
necessarily realistic. A more realistic approach as shown in Figure B.2 is now used,
where more avoidance like maneuvers are used.

232

B.2. The PSB-MPC COLAV planning algorithm

t0

v0

t0

vi

rct

Figure B.2: Head-on scenario with obstacle i in green and own-ship in blue. Their
velocity vectors vi and v0, respectively, are also shown. The updated prediction scheme
using LOS guidance allows for the obstacle to make realistic alternative maneuvers to
port and starboard. The stationary time spacing between trajectories is determined by
rct.

233

B. Ship collision avoidance and anti-grounding

The predicted obstacle motion is implemented using the following kinematic model

xik+1 = xik + U i
kcos(χ

i
k)

yik+1 = yik + U i
ksin(χ

i
k)

χi
k+1 = χi

k +
1

Tχ
(χi

d,k − χi
k)

U i
k+1 = U i

k +
1

TU
(U i

d,k − U i
k)

(B.2)

where the superscript i is used for dynamic obstacles. The above kinematic model is
combined with Line-of-Sight (LOS) guidance [212] to predict the following of a nom-
inal obstacle path parameterized by nwps waypoints WPS : [p1, ...,pz, ...,pnwps],
where pz = [xwp

z , ywp
z]T is waypoint z ∈ {1, 2, ..., nwps}. In the case of straight line

paths, the LOS guidance method considers waypoint segments from pz to pz+1,
and finds the path tangential angle

αz = atan2(ywp
z+1 − ywp

z , xwp
z+1 − xwp

z) (B.3)

and path-fixed frame referenced path deviation ϵk with rotation αz as

ϵik = RT
αz
(pi

k − pz) (B.4)

where pi
k = [xik, y

i
k]

T is the position of obstacle i at time tk. The rotation matrix
Rαz

is given by

Rαz
=

[
cos(αz) −sin(αz)
sin(αz) cos(αz)

]
(B.5)

The along-track error sik and cross-track error eik, see [91] for more details, makes
up the path deviation ϵik = [sik, e

i
k]

T , where the latter error is used with (B.3) to
calculate the desired obstacle COG as

χi
d,k = αz + arctan

(
− e

i
k

∆i

)
(B.6)

with ∆i as the lookahead distance, dependent on the obstacle ship type. See [212]
for illustrations and more information. The combination of a kinematic model used
with LOS guidance allows for a lightweight prediction of alternative dynamic obsta-
cle maneuvering scenarios. By also specifying a speed profile through a desired SOG
U i
d,k in addition to the LOS guidance, one goes from path-generation to trajectory

generation for the dynamic obstacles [91].

The PSB-MPC normally gets dynamic obstacle information from the tracking sys-
tem, where their state estimates have an associated kinematic uncertainty, typically
represented through a covariance matrix P i(t0). The obstacle kinematic uncer-
tainty is here predicted forward in time heuristically using an OU-process [206]
with mean velocity taken as the current state estimated velocity:

P i
k+1 = P i

0 +Σ1 ◦Σ2(tk+1 − t0) (B.7)

234

B.2. The PSB-MPC COLAV planning algorithm

with P i
k as the predicted covariance and

Σ1 =

σ2
x

γ3x

σxy
γxγy

σ2
x

2γ2x

2σxy
γx

σxy
γxγy

σ2
y

γ3y

2σxy
γy

σ2
y

2γ2y
σ2
x

2γ2x

2σxy
γy

σ2
x

γx

2σxy
γx + γy

2σxy
γx

σ2
y

2γ2y

2σxy
γx + γy

σ2
y

γy

(B.8)

as the stationary process noise part of the process, with σx, σxy and σy as the
OU model Wiener process noise parameters. The parameters γx and γy are the
reversion strength parameters, which determines the convergence rate of the OU-
process towards its mean velocity. The expression for Σ2(tk+1 − tk) can be found
in [211]. The symbol ◦ in (B.7) denotes the Hadamard product. The reason behind
the usage of the OU-process for uncertainty prediction is its more limited growth in
covariance compared to e.g. using a CV model [211]. The 3σ positional uncertainty
is heuristically bounded by rct in the prediction, such that each obstacle trajec-
tory has a tube uncertainty with approximate radius rct. As for the own-ship, the
parameters for the obstacle prediction are all dependent on the type of ship, ship
control system, ship captain etc., and should be estimated using available data
about the obstacle.

In this article we assume that the nominal obstacle trajectory is a straight line from
its current course, and create waypoints on this line. Vessel to vessel communica-
tion or e.g. road map methods [213] may be used to predict the nominal obstacle
trajectories in more confined spaces where the straight line trajectory assumption is
restrictive. An illustration of the uncertainty prediction together with the dynamic
obstacle trajectory is shown for a case with a non-straight line obstacle trajectory
in Figure B.3.

B.2.2 Grounding hazards

The grounding hazards considered in the PSB-MPC are parameterized as two-
dimensional polygons. In this article, polygons are read in from shapefiles using
the C based library Shapefile C Library, which are generated using the Electronic
Navigational Chart processing module in SeaCharts corresponding to the relevant
map region considered [37]. If real-time sensor data is available, this can also be
used to update the polygons used in the MPC.

Because electronic map data can have high accuracy, larger polygons extracted can
have tens of thousands of vertices. However, for collision avoidance, this level of
detail is not necessary, and the polygons should thus be simplified in order to save
computation time in the algorithm. One of the earliest and most common curve
simplification methods that can be used for polygon simplification is the RDP al-

235

http://shapelib.maptools.org/
https://github.com/simbli/seacharts

B. Ship collision avoidance and anti-grounding

Figure B.3: Dynamic obstacle prediction illustration with an obstacle in purple. Three
prediction scenarios are shown, all starting at t0, where the vessel is depicted in full purple
with its tracked estimation error covariance represented around it as a 3σ probability
ellipse in light blue. The nominal predicted obstacle trajectory is shown with the grey
dotted line, whereas the alternative scenarios are spaced rct apart.

236

B.2. The PSB-MPC COLAV planning algorithm

Algorithm 9 The Ramer-Douglas-Peucker curve simplification algorithm.

1: function RDP(Points , ϵrdp)
2: dmax ← 0, j ← 1, end ← length(Points).
3: for i = 2, .., end do
4: d← perpendicularDistance(Points [i],

Points [1],Points [end])
5: if d > dmax then
6: j ← i, dmax ← d
7: end if
8: end for
9: if dmax > ϵrdp then

10: rResults1 =RDP(Points [1, .., j], ϵ)
11: rResults2 =RDP(Points [j, .., end], ϵ)
12: newPoints = {rResults1[1, ..,

length(rResults1)− 1], rResults2}
13: else
14: newPoints = {Points [1],Points [end]}
15: end if
16: return newPoints
17: end function

gorithm [210]. The method recursively simplifies a curve of points by consecutively
considering its line segments, pruning away points which are further away from
the considered line segment than a specified threshold ϵrdp. The distance tolerance
parameter ϵ should be chosen as not to overly simplify the polygons, preserving as
much structure as possible. The method is summarized in Algorithm 9. A graphical
illustration of the algorithm can be found in https://en.wikipedia.org/wiki/Ramer-
Douglas-Peucker_algorithm. The distance from the own-ship center to nearby poly-
gons is used in the PSB-MPC grounding cost. It is obtained by using a point to
polygon calculation method [214], using the ray intersection method for determin-
ing if the own-ship center point is inside the polygon, which is suitable for both
convex and concave polygons.

B.2.3 Cost function reformulation

We consider the following restructuring of the PSB-MPC cost function

Hl(t0) = Hl
do +Hl

colregs +Hl
so +Hl

p (B.9)

for a control behaviour l, where the four terms are the cost associated with dynamic
obstacles, COLREGS violation, static obstacles or grounding hazards and trajec-
tory tracking, respectively. The dynamic obstacle related cost is here reformulated
to

Hl
do =

ndo∑
i=1

wiHl,i
do (B.10)

237

https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm

B. Ship collision avoidance and anti-grounding

where wi represent the weight of the cost from obstacle i, in general influenced
by factors such as distance, bearing, nearby grounding hazards and vessel-vessel
communication. If no prior information is used, it is set to wi = 1. The dynamic
obstacle i cost is given by

Hl,i
do =

ni
ps∑

s=1

Pi
sC

l,i
s (B.11)

where nips is the number of prediction scenarios for the obstacle, Pi
s represent

the associated prediction scenario probabilities from an intention inference module
[169], and Cl,i

s is the cost involving prediction scenario s for obstacle i, given as

Cl,i
s = max

k
ζiCl,si,kP̂

l,i,s
c,k exp(−tk/Td) (B.12)

which is taken as the maximum of the probabilistic collision risk, involving the
relative kinetic energy term Cl,si (t) = Kcoll||vi

k−vk||2 between the obstacle i velocity
vi
k and own-ship velocity vk, with parameter Kcoll, [194]. P̂l,i,s

c,k is the collision
probability estimate calculated using the Cross-Entropy method, see [195] for more
details. The track loss modifier ζi, [215] takes into account cases when dynamic
obstacle tracks are lost for some time. Lastly, an exponential discounting term
with time constant Td gives lower weighting of collision events far ahead in the
future.

The intention uncertainty of a dynamic obstacle is represented through the sce-
nario probabilities Pi

s for each considered obstacle prediction scenario. Given a
representable set of obstacle prediction scenarios, we are able to cover most antic-
ipated obstacle maneuvering cases because we predict the uncertainty for each of
the scenarios. These probabilities of different target ship plans or trajectories are
typically inferred by an intention model as in [169], [216], and can be used for hav-
ing elevated situational awareness in the planner. Furthermore, the probabilities
are an adequate way of taking into account intention information, as they are easy
to interpret, can be used to define risk and leads to a natural way of weighting the
collision risk associated with different decision candidates for an obstacle ship. The
downside is that one needs a validated intention inference model, and a sufficient
set of dynamic obstacle prediction scenarios in order to have meaningful estimates.

To favor COLREGS compliance in multi-ship situations, the COLREGS related
cost is now separated into its own term in the PSB-MPC, and given as

Hl
colregs = κ

ndo∑
i=1

wiµl,i (B.13)

where κ is a tuning parameter and

µl,i =

ni
ps∑

s=1

Pi
sµ

l,i
s (B.14)

238

B.2. The PSB-MPC COLAV planning algorithm

with µl,i
s ∈ {0, 1} as the indicator of the own-ship following control behaviour l

violating COLREGS with respect to obstacle i in prediction scenario s, calculated
as in [194] for head-on, overtaking and crossing situations. The parameters wi and
dynamic obstacle scenario probabilities are again used for weighting purposes. The
new formulation now penalizes COLREGS breaches with respect to all dynamic
obstacles, and allows for better handling of compliance in multi-ship situations.

The static obstacle related cost or grounding cost is parameterized as

Hl
so = max

j
Hl,j

so (B.15)

where

Hl,j
so = max

k
(G1 +G2ϕ

l
j,kV

2
w)

× exp(−(G3|dl0j,k − dsafe|+G4tk))
(B.16)

inspired by [38], where G1 to G4 are tuning parameters, Vw the estimated wind
speed, ϕlj,k = max(0,ωj ·Ll

0j,k) with ωj as the wind direction unit vector. Ll
0j,k is

the unit vector pointing from the own-ship to the static obstacle j, and dl0j,k the
corresponding distance. dsafe is the circular own-ship safety zone.

The trajectory deviation cost is given as

Hl
p =

1

nM

nM∑
M=1

f(·) + 1

nM − 1

nM∑
M=2

h(·) (B.17)

with f(·) and h(·) as the control deviation and change cost, respectively. More
details on the different terms involved in the cost function can be found in [33],
[168], [169], [194], [215].

B.2.4 Standard PSB-MPC implementation

As the PSB-MPC is a finite set MPC, the solution to the non-convex Mixed Integer
Nonlinear Program (MINLP) in (B.1) is parameterized by the chosen discrete set
of own-ship control behaviours. The benefit of the finite-set MPC formulation is
that by brute force iterating over the set of control behaviours we are able to find
a global solution, which would be hard in the case if numerical optimization was
used.

Implementing the cost evaluation in the PSB-MPC on a sequential computing
platform will involve loops over the own-ship control behaviours, where loops over
static and dynamic obstacles in their set of prediction scenarios are found within.
This would look something like the method outlined in Algorithm 10. One can see
that this implementation involves several nested for loops, especially the one over
dynamic obstacles and their prediction scenarios. In addition, one must also loop
over the number of discrete samples tk ∈ D(t0) in the predicted trajectories. Thus,
the MPC problem will scale poorly with increasing number of control behaviours,
static and dynamic obstacles.

239

B. Ship collision avoidance and anti-grounding

Algorithm 10 Standard PSB-MPC cost evaluation on a sequential processing
platform, assuming all obstacle prediction scenarios are generated beforehand.
1: Initialize optimal control behaviour to l∗ = 1.
2: for l = 1, .., ncbs do
3: Predict the own-ship trajectory following control behaviour l.
4: Calculate the trajectory related cost Hl

p using (B.17).
5: for j = 1, .., nso do
6: Calculate the static obstacle j grounding cost Hl,j

so using (B.16).
7: end for
8: Calculate total grounding cost Hl

so using (B.15).
9: for i = 1, .., ndo do

10: for s = 1, .., ni
ps do

11: Calculate probabilistic collision cost Cl,i
s from (B.12) and COLREGS

indicator µl,i
s in (B.14).

12: end for
13: Calculate dynamic obstacle i cost Hl,i

do using (B.11).
14: end for
15: Calculate total dynamic obstacle cost Hl

do using (B.10).
16: Calculate control behaviour cost Hl(t0) = Hl

do +Hl
colregs +Hl

so +Hl
p.

17: if Hl(t0) < Hl∗(t0) then
18: Set l∗ = l.
19: end if
20: end for

B.3 Parallelized PSB-MPC implementation

The nature of the finite set MPC described in the above section makes it possi-
ble to independently evaluate the cost associated with the control behaviours, and
thus apply parallelism in the main part of the algorithm. Furthermore, all obstacle
prediction scenarios are assumed to be independent of the own-ship control be-
haviour and can be generated beforehand. This is deemed reasonable as we take
into account maneuvering uncertainty in the obstacle prediction.

When considering large amounts of situational information and a dense set of pos-
sible own-ship trajectories, evaluating the cost of an own-ship control behaviour
sequentially will not make the COLAV planning algorithm real-time feasible. Par-
allelizing the cost evaluation will allow for more refined own-ship decision making,
as more own-ship trajectories can be considered. Also, more static obstacles and
prediction scenarios for dynamic obstacles can then be considered, resulting in in-
creased situational awareness for the own-ship. The limiting factor here will then
be how many threads that can be scheduled on the parallel computation platform.

A naive way of cost function evaluation parallelization would be to schedule GPU
threads to evaluate the cost (B.9). However, this is a big task for a single thread,
as it among others involves going through all static and dynamic obstacles in all

240

B.3. Parallelized PSB-MPC implementation

their prediction scenarios to find the total cost. This equates to a nested for loop
over obstacles, prediction scenarios and discrete time samples in the code that
implements the MPC as in Algorithm 10, and will scale poorly with an increase
in the number of obstacles and number of prediction scenarios nips for dynamic
obstacles. As GPU cores have limited processing power compared to CPU cores,
their tasks should be as lightweight as possible.

Two of the main bottlenecks in the cost evaluation is calculating the distance to
static obstacles and the estimation of collision probabilities. The first bottleneck is
readily apparent when considering large polygons with tens of thousands of vertices.
However, the RDP algorithm will reduce the number of vertices in a polygon and
thus alleviate computational effort. Reducing the number of time steps to evaluate
the grounding cost can also aid in fixing this problem.

For the second bottleneck, giving each thread the job of estimating collision proba-
bilities associated with only a pair of trajectories will give higher throughput, at the
cost of scheduling more threads on the GPU and therefore having higher memory
demands. However, as GPU technology continue to improve with respect to single
core processing power and device memory, this is deemed a worthy trade-off. Fur-
thermore, the calculation efficiency using the Cross-Entropy method for collision
probability estimation [195] is increased by estimating P̂l,i,s

c ≈ 0 when the predicted
distance between the own-ship and an obstacle is larger than dsafe+4σi

largest, where
σi
largest is the standard deviation along the axis where obstacle i has the largest

predicted positional uncertainty.

Thus, a way to solve the bottlenecks in (B.1) utilizing parallel processing can be
done in two steps: First schedule ncbs threads to predict the own-ship trajectory
and calculate the trajectory related cost (B.17) for each control behaviour l =
1, 2, .., ncbs. Then, schedule

nct = ncbs · (nso +
nobst∑
i=1

nips) (B.18)

threads that evaluates the cost (B.16), (B.12) and the COLREGS violation in-
dicator in (B.14). The total cost (B.9) is finally stitched together afterwards on
the CPU. This way, no GPU thread has run-times dependent on large nested for-
loops, and the MPC-problem scales better with increasing number of obstacles and
dynamic obstacle prediction scenarios. This approach of using parallelization to
solving (B.1) can be summarized in Algorithm 11. Here, “parfor” denotes a parallel
for loop.

Note that how the PSB-MPC algorithm is implemented both on the CPU and GPU
will have big impacts on the run-time results obtained in this article. Hardware,
programming language and software libraries used will be significant factors here.
An alternative to the structure in Algorithm 11 would be to have separate kernels to
evaluate the static and dynamic obstacle partial costs. This could be better suiting
for a setup with multiple GPUs, as the two kernels could then be run concurrently.

241

B. Ship collision avoidance and anti-grounding

Algorithm 11 Parallelized PSB-MPC cost evaluation, assuming all obstacle pre-
diction scenarios are generated beforehand.
1: Schedule ncbs GPU threads, transferring all the required data for own-ship

trajectory prediction and calculating (B.17).
2: parfor l = 1, .., ncbs do
3: Predict the own-ship trajectory following control behaviour l, save trajec-

tory in GPU memory for use by the subsequent processing.
4: Calculate the trajectory related cost Hl

p using (B.17).
5: Return the results to CPU memory.
6: end parfor
7: Schedule nct GPU threads, transferring all the required data needed for partial

static and dynamic obstacle cost evaluation.
8: parfor ct = 1, .., nct do
9: Extract control behaviour l, static obstacle j or dynamic obstacle i and

prediction scenario s to consider.
10: Calculate the grounding cost Hl,j

so using (B.16) or Cl,i
s using (B.12) and the

indicator µl,i
s , depending on if a static or dynamic obstacle is considered in the

thread.
11: Return the results to CPU memory.
12: end parfor
13: Use all the calculated Hl,j

so to calculate Hl
so using (B.15).

14: Use all the calculated Cl,i
s and µl,i

s plus other relevant data to calculate Hl
do

using (B.10) and Hl
colregs using (B.13).

15: Finally, calculate (B.9) for all control behaviours using the previously calculated
terms Hl

do, Hl
colregs, Hl

so and Hl
p of the cost function, and extract the optimal

one l∗ giving minimal cost.

Lastly, because of the extra latency overhead due to porting data from the host
(CPU) to the device (GPU), as much memory as possible for the relevant data
needed on the GPU should be pre-allocated.

242

B.4. Simulation study

B.4 Simulation study

B.4.1 Own-ship model

In this article we also use a kinematic model with LOS guidance [212] and a constant
speed profile for the own-ship, as used for dynamic obstacles in Section B.2.1, to
predict any of the candidate trajectories shown in Figure B.1. Specific to the own-
ship, the model is restated as

xk+1 = xk + Ukcos(χk)

yk+1 = yk + Uksin(χk)

χk+1 = χk +
1

Tχ
(χd,k − χk)

Uk+1 = Uk +
1

TU
(Ud,k − Uk)

(B.19)

which describes the own-ship state
xk = [xk, yk, χk, Uk]

T motion at time tk. Again, the state consists of the
vessel surface position in Cartesian coordinates, course over ground (COG) and
speed over ground (SOG), respectively. The time constants TU and Tχ in speed and
course may be found by applying parameter identification methods using motion
data from the considered vessel.

For each own-ship control behaviour, the speed modifications ulm,M and course
modifications χl

m,M for all nM sequential maneuvers considered in the PSB-MPC
are applied to the LOS guidance references for speed and course at maneuver-
ing times tM ,M = 1, 2, ..., nM , evenly spaced througout the horizon with a time
spacing parameter tts for simplicity.

B.4.2 Setup

The GPU-based PSB-MPC is tested in two situations to illustrate that the COLAV
planning algorithm can tackle dynamic obstacles with uncertainties in addition
to grounding hazards. The first river scenario is chosen to test how the COLAV
planning method handles avoidance in confined spaces, whereas the second sce-
nario aims to test the algorithm performance in a longer time horizon with mul-
tiple dynamic obstacles in a mix of an open sea area and a narrow channel. The
setup with tracking system and parameters are similar to that in [195], where
the obstacle tracker is deliberately tuned conservatively to test the MPC robust-
ness against kinematic uncertainty. The situations are described below, with a
number of NMC = 50 Monte Carlo simulations used for each situation. A run-
time analysis considering the first situation is performed, comparing the CPU and
GPU implementations of the PSB-MPC, Algorithm 10 and 11, respectively. The
CPU version evaluates the PSB-MPC cost for all own-ship control behaviours se-
quentially on CPU cores. The simulations are performed on a work station with
an Intel(R) Core(TM) i9-10900K 3.70GHz processor, with 32 GB RAM and an
NVIDIA GeForce RTX 3090 GPU. C++ is used to implement the CPU version of
the PSB-MPC, whereas C++ and CUDA is used for the GPU version.

243

B. Ship collision avoidance and anti-grounding

1. Head-on scenario in Nidelva in Trondheim, Norway. The own-ship travels
upstream with constant speed 2m/s, whereas two dynamic obstacles trav-
els downstream with constant speed 2m/s. Vessels of lengths 5m are here
considered, and an own-ship safety zone of dsafe = 5m is used.

2. Multi-ship situation with grounding hazards near Sakshaug, Trøndelag in
Norway. Dynamic obstacle i = 1 is traveling from the south through Straumen
with constant speed 5m/s and ends up in an overtaking situation with respect
to the own-ship, whereas dynamic obstacle i = 2 travels east-west through
Straumen with constant speed 6m/s and ends up in head-on situations with
respect to the other vessels. Obstacle i = 3 travels with speed 7m/s east-west
from Straumen towards the own-ship in a head-on situation, and obstacle i =
4 just north-east of the own-ship travels south with speed 8m/s. The own-ship
travels with constant speed 7m/s. Vessels of lengths 10m are considered, and
an own-ship safety zone of dsafe = 10m is used. In addition to COLREGS
adherence with respect to multiple ships, the challenge here is voyage through
the narrow passage in Straumen, beneath the bridge which has two pylons
that the vessels have to avoid.

For simplicity, a uniform set of scenario probabilities Pi
s are defined for the dynamic

obstacles, which resembles a conservative case when no prior information from
intent inference is available. For the grounding hazards, only polygons within a
range dso are considered, to reduce computation time. Waypoints for the own-ship
are set in a way that a top level planner could generate, but with small margins
to static obstacles, such that the anti-grounding part of the PSB-MPC becomes
important. Furthermore, the waypoints are set such that a nominal collision-free
trajectory does not exist for all vessels involved.

The MPC is tuned such that anti-grounding and collision avoidance is prioritized
over adhering to COLREGS and following the nominal trajectory. Naturally, be-
cause river voyage is different from sea voyage, the PSB-MPC has a different tuning
for the two situations. Important parameters for the first situation tuning are given
in Table B.1.

B.4.3 The Nidelva situation

Results for the first situation are given in Figure B.4. The dynamic obstacles are
here assumed to be self-governing, running their own PSB-MPC algorithm to sim-
ulate human behaviour. The conservative tracking system tuning will create an
extra challenge for the COLAV planning algorithm, with higher kinematic obstacle
uncertainty. Despite this and nearby grounding hazards, all vessels involved are
able to avoid collision and grounding in addition to adhering to the COLREGS
rules 8, 13 and 16 related to clear actions, head-on situation and actions for give-
way vessels, respectively. The near constant minimum distance to the closest static
obstacle in the statistics is because the own-ship is closest to a grounding hazard
initially. Note that the map data for the river area do not include the piers at which

244

B.4. Simulation study

Table B.1: Important PSB-MPC parameters for the Nidelva situation.

Parameter Value Comment

ϵ 2m RDP distance threshold

TMPC 150 s Prediction horizon

Ts 0.5 s Prediction time step

Td 100 s Collision cost time discounting
parameter

nLOS
ps 5 Number of LOS prediction

scenarios

rct 10.0m Prediction scenario spacing

dso 200.0m Static obstacle consideration
range

nM 2 Number of sequential avoidance
maneuvers

uoffsets,1 {1.0, 0.5, 0.0} Surge offsets first maneuver

uoffsets,2 {1.0, 0.5} Surge offsets second maneuver

χoffsets,1 {−60,−45,−30,
−15,−10,−5, 0, 5, 10,

15, 30, 45, 60}

Course offsets first maneuver

χoffsets,2 {−60,−45,−30,
−15,−10,−5, 0, 5, 10,

15, 30, 45, 60}

Course offsets second maneuver

boats are docked, which would be taken into account through e.g. LIDAR data in
a real-time application.

For the situation in Nidelva, a run-time analysis was performed with respect to
the number of control behaviours ncbs for the MPC, and the number of dynamic
obstacle prediction scenarios nips considered. The number of control behaviours is
increased by increasing the number of sequential maneuvers nM in the horizon, and
by expanding the finite set of course and surge modifications. Both the CPU and
GPU implementations were run for NMC simulations for each parameter setting.
Figures B.5, B.6 and B.7 show a box-plot representation of the results. The GPU-
implementation of the PSB-MPC performs better than the CPU-version when the
number of control behaviours increase beyond a thousand. With ncbs < 1000 and
a scheduled number of threads nct < 5000, the overhead of launching the GPU
kernels becomes too large compared to the gain of parallelized cost evaluation.
This makes the CPU-implementation feasible for cases where typically nM = 1
and a small number of possible course and speed changes is enough, and only a

245

B. Ship collision avoidance and anti-grounding

(a) North east plot at multiple time instants for a sample run. Dynamic obstacles are shown in
green (i = 1) and blue (i = 2). The own-ship is shown in red.

0 100 200 300 400

Time [s]

0

20

40

60

80

100

D
is

ta
n

c
e
 [

m
]

Safety Zone

Closest static obst.

Obst. i=1

Obst. i=2

(b) Distance to static and dynamic obstacles for
the sample run.

0 10 20 30 40 50

MC run

0

5

10

15

20

25

D
is

ta
n

c
e
 [

m
]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

(c) Statistics on the minimum distance to the
obstacles over all NMC simulation runs.

Figure B.4: Results for the situation in Nidelva with multiple obstacles.

246

B.4. Simulation study

39 546 1014 7098 26754
0

50

100

150

200

T
im

e
 [

s
]

CPU

GPU

Figure B.5: Box-plot representation of the runtime results with respect to increasing
numbers of control behaviours ncbs, when keeping the number of dynamic obstacle pre-
diction scenarios constant at ni

ps = 1.

small number of static and dynamic obstacles are considered.

1 3 5 7 9 11 21 51 101 201
0

0.5

1

1.5

2

2.5

T
im

e
 [

s
]

CPU

GPU

Figure B.6: Box-plot representation of the runtime results with respect to increasing
dynamic obstacle prediction scenarios ni

ps, when keeping the number of own-ship avoid-
ance maneuvers constant at nM = 1 and a total number of control behaviours ncbs = 39.

247

B. Ship collision avoidance and anti-grounding

1 3 5 7 9 11 21 51 101 201
0

10

20

30

40

50

60

T
im

e
 [

s
]

CPU

GPU

Figure B.7: Box-plot representation of the runtime results with respect to increasing dy-
namic obstacle prediction scenarios ni

ps, when keeping the number of own-ship avoidance
maneuvers constant at nM = 2 and a total number of control behaviours ncbs = 1014.

Furthermore, one can see that the CPU implementation performs better than the
GPU implementation when considering increasing numbers of prediction scenarios
up until nips = 101 for dynamic obstacles, when using a low number of control
behaviours ncbs = 39. In this case, the GPU run-time is mainly caused by the
overhead of porting data back and forth between the host and device side. The
contrary result is the case when considering ncbs > 1000. This is again because a
CPU is optimized for fast sequential execution on fewer but more complex tasks,
whereas a GPU is optimized for execution of many simple tasks in parallel. A
similar result is obtained by increasing nobst while keeping nips constant, but will
not be reported here.

From Figures B.5 - B.7, an approximate linear scaling of the MPC run-time com-
plexity with increasing own-ship control behaviours, dynamic obstacle scenarios
and static obstacles can be found. For static obstacles represented as polygons, one
also have to take into account the added run-time complexity due to the number
of vertices in the polygons.

Also, tests to compare the run-time related to calculating predominantly the groun-
ding cost in the MPC on a CPU and GPU platform was performed, when the own-
ship is located in Nidelva standing still. No dynamic obstacles are considered, and
thus the calculation of the distance to static obstacles will be the bottleneck. The
largest static obstacle in the region is a polygon with 21962 vertices originally, and
has 1734 vertices after application of the RDP algorithm. The map environment
around Nidelva in Trondheim is illustrated in Figure B.8, where the static obstacle

248

B.4. Simulation study

Figure B.8: Map of the Trondheim region with Nidelva in the middle, with all relevant
polygons labelled with different colors. The own-ship position is the small red dot in
Nidelva in the middle.

j = 13 is the largest one with 21962 vertices. Information about the number of
vertices for each polygon is given in Table B.2.

The first test compares the run-time when only considering the largest polygon,
with and without usage of the RDP algorithm. This is a worst case scenario, as a
real-time anti-grounding system should preprocess large polygons such that only
the relevant local part is considered. We however include this test for completeness,
as it shows the importance of polygon preprocessing. Results are here given in
Figure B.9.

The results in Figure B.10 show a run-time analysis for increasing numbers of
static obstacles, after using the RDP for polygon simplification. Note that the
results considering an increasing number of static obstacles are strongly dependent
on the number of vertices for each obstacle, which varies from 3 to 1734 vertices
as seen from Table B.2 after using RDP on this environment. This is why there is
a sharp increase in average run-time when nso = 13, because the largest polygon
is then included in the consideration. An approximate linear run-time increase can

249

B. Ship collision avoidance and anti-grounding

Table B.2: Polygon vertices before and after applying RDP on the Nidelva environment.

Polygon Vertices before Vertices after
1 8 3
2 207 27
3 649 95
4 322 33
5 140 18
6 890 53
7 207 48
8 8 3
9 8 5
10 1633 187
11 2110 162
12 2483 143
13 21961 1734

however be found when considering polygons of fairly the same complexity. The
trend from these results is that the GPU implementation becomes more feasible
than the CPU one when the number of scheduled parallel threads nct surpasses
around 5000.

Before RDP After RDP
0

20

40

60

80

100

120

T
im

e
 [

s
]

CPU

GPU

Figure B.9: Box-plot representation of the runtime results with respect to the worst
case polygon scenario before and after applying RDP, when keeping the number of own-
ship avoidance maneuvers constant at nM = 2 and a total number of control behaviours
ncbs = 1014.

250

B.4. Simulation study

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8

10

12

T
im

e
 [

s
]

CPU

GPU

Figure B.10: Box-plot representation of the runtime results with respect to increasing
numbers of static obstacles nso, when keeping the number of own-ship avoidance maneu-
vers constant at nM = 2 and a total number of control behaviours ncbs = 1014.

B.4.4 The Sakshaug situation

Important parameters for the tuning are given in Table B.3, with results shown in
Figure B.11 and B.12. The first case show results when only the own-ship has a
COLAV planning algorithm, whereas the second case show results when all vessels
involved use the PSB-MPC. For the first case, waypoints for the obstacles are set
such that they will not collide with each other, but would collide with the own-ship
if no COLAV planning algorithm was used.

For both the first and second case, the own-ship has difficulties with overtaking
purple obstacle i = 1 while simultaneously avoid grounding and avoiding blue
obstacle i = 2 head-on, that adheres to both COLREGS rules 13 and 14 regarding
overtaking and head-on. Especially in the time period between t2 and t3, the own-
ship struggles with figuring out the side to overtake obstacle i = 1 on when entering
Straumen, hence the oscillations in the trajectory in this period. The black obstacle
i = 3 and green obstacle i = 4 are easier to avoid as the vessels are here less
constrained by land.

Thus, the own-ship is in general able to avoid collision with all obstacles in both
cases, but COLREGS adherence in the narrow passage is difficult to accomplish
with respect to all ships. This is mainly due to constant conservative intent infor-
mation being used, with uniform prediction scenario probabilities for dynamic ob-
stacle trajectories, essentially assuming that no dynamic obstacle will have specific
inclinations towards adhering to the COLREGS. Also needing to avoid grounding
in the narrow passage further restricts the PSB-MPC‘s ability to adhere to COL-

251

B. Ship collision avoidance and anti-grounding

Table B.3: Important PSB-MPC parameters for the Sakshaug situation.

Parameter Value Comment

ϵ 2m RDP distance threshold

TMPC 150 s Prediction horizon

Ts 1.0 s Prediction time step

Td 100 s Collision cost time discounting
parameter

nLOS
ps 5 Number of LOS prediction

scenarios

rct 20.0m Prediction scenario spacing

dso 800.0m Static obstacle consideration
range

nM 2 Number of sequential avoidance
maneuvers

uoffsets,1 {1.0, 0.5, 0.0} Surge offsets first maneuver

uoffsets,2 {1.0, 0.5} Surge offsets second maneuver

χoffsets,1 {−90,−75,−60,
−45,−30,−15, 0, 15, 30,

45, 60, 75, 90}

Course offsets first maneuver

χoffsets,2 {−90,−75,−60,
−45,−30,−15, 0, 15, 30,

45, 60, 75, 90}

Course offsets second maneuver

REGS in a safe manner. The algorithm is however able to keep safe distance to
all obstacles in all Monte Carlo simulation runs. The diversity of the environment
makes algorithm tuning challenging, as one can argue that the COLAV planning
algorithm parameters should be adaptive based on changes in the situation.

When the dynamic obstacles do not explicitly follow COLREGS in the first case,
the own-ship can be more excused for not doing the same with respect to all
vessels. For the second case, one see the potential for vessel-vessel communication
to explicitly reduce trajectory uncertainties and adhere to COLREGS, during the
passage through Straumen. Addressing these issues is the topic of future research
more focused on multi-ship COLREGS compliance in confined waters.

Regarding run-time complexity for this example, it will be similar as for the first
situation when considering increasing dynamic obstacles and their prediction sce-
narios. There will be a small increase in the run-time due to the Sakshaug situation
has larger and more complex static obstacles, although a smaller set than for the

252

B.4. Simulation study

(a) North east plot at multiple time instants for a sample run. Dynamic obstacles in purple
(i = 1), blue (i = 2), black (i = 3) and green (i = 4). The own-ship is shown in red.

0 100 200 300

Time [s]

0

100

200

300

400

500

600

D
is

ta
n

c
e
 [

m
]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

Obst. i=3

Obst. i=4

(b) Distance to static and dynamic obstacles for
the sample run.

0 10 20 30 40 50

MC run

0

50

100

150

D
is

ta
n

c
e
 [

m
]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

Obst. i=3

Obst. i=4

(c) Statistics on the minimum distance to the
obstacles over all NMC simulation runs.

Figure B.11: Results for the situation in Sakshaug with multiple obstacles in the first
case.

253

B. Ship collision avoidance and anti-grounding

(a) North east plot at multiple time instants for the sample run. Dynamic obstacles in purple
(i = 1), blue (i = 2), black (i = 3) and green (i = 4). The own-ship is shown in red.

0 100 200 300

Time [s]

0

100

200

300

400

500

600

D
is

ta
n

c
e
 [

m
]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

Obst. i=3

Obst. i=4

(b) Distance to static and dynamic obstacles for
the sample run.

0 10 20 30 40 50

MC run

0

20

40

60

80

100

120

140

160

180

200

D
is

ta
n

c
e
 [

m
]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

Obst. i=3

Obst. i=4

(c) Statistics on the minimum distance to the
obstacles over all NMC simulation runs.

Figure B.12: Results for the situation in Sakshaug with multiple obstacles in the second
case.

254

B.5. Conclusion

Nidelva situation is considered in the proximity of the own-ship. In total, run-time
results generated for this example would be fairly similar to the first simulation,
albeit with a bias on the static obstacle run-time complexity due to larger obstacles
considered.

B.5 Conclusion

The PSB-MPC COLAV planning algorithm presented in this article facilitates both
dynamic and static obstacle avoidance, with the most performance-critical part of
its algorithm implemented on the GPU. What separates it from current state-of-
the-art is the computational speed of the algorithm, where the cost evaluation is
parallelized such that the MPC problem scales approximately linearly with increas-
ing control behaviours, static and dynamic obstacles and prediction scenarios, as
shown in the run-time results presented. This makes the COLAV planner able to
consider more control behaviours and dynamic obstacle prediction scenarios effi-
ciently, which results in real-time capabilities and performance gains in cases where
large amounts of situational information and possible own-ship decisions have to
be considered.

In simulation, the COLAV planning algorithm is shown to handle both grounding
hazards and multiple dynamic obstacles in a safe manner, both in a narrow river
environment, and also in a mix of more open sea and narrow waters. However,
there is an inherent challenge in finding parameters that will make the algorithm
work robustly and adhere to COLREGS for multiple types of situations, especially
when the environmental constraints vary a lot.

Future work will involve making the PSB-MPC adaptive to the environment faced,
and utilize historical data for tuning the algorithm. Also, the dynamic obstacle pre-
diction and COLREGS penalization cost evaluation should be extended to consider
static obstacles, for better applicability in confined spaces.

255

References

[1] K. Wróbel, J. Montewka, and P. Kujala, “Towards the assessment of poten-
tial impact of unmanned vessels on maritime transportation safety,” Relia-
bility Engineering & System Safety, vol. 165, pp. 155–169, 2017.

[2] I. B. Utne, A. J. Sørensen, and I. Schjølberg, “Risk management of au-
tonomous marine systems and operations,” in International Conference on
Offshore Mechanics and Arctic Engineering, American Society of Mechani-
cal Engineers, vol. 57663, 2017, V03BT02A020.

[3] F. Goerlandt, “Maritime autonomous surface ships from a risk gover-
nance perspective: Interpretation and implications,” Safety science, vol. 128,
p. 104 758, 2020.

[4] IMO, Outcome of the Regulatory Scoping Exercise for the Use of Maritime
Autonomous Surface Ships (MASS), 2021.

[5] G. DNV, “Remote-controlled and autonomous ships,” Position Paper DNV
GL Høvik, Norway, 2018.

[6] K. Wróbel, P. Krata, J. Montewka, and T. Hinz, “Towards the Development
of a Risk Model for Unmanned Vessels Design and Operations,” The Inter-
national Journal on Marine Navigation and Safety of Sea Transportation,
vol. 10, no. 2, pp. 267–274, 2016.

[7] I. B. Utne, B. Rokseth, A. J. Sørensen, and J. E. Vinnem, “Towards super-
visory risk control of autonomous ships,” Reliability Engineering & System
Safety, vol. 196, p. 106 757, 2020.

[8] T. A. Pedersen, J. A. Glomsrud, E.-L. Ruud, A. Simonsen, J. Sandrib,
and B. H. Eriksen, “Towards simulation-based verification of autonomous
navigation systems,” Safety Science, vol. 129, p. 104 799, 2020.

[9] T. A. Johansen, “Toward dependable embedded model predictive control,”
IEEE Systems Journal, vol. 11, no. 2, pp. 1208–1219, 2017.

[10] T. A. Johansen, A. Cristofaro, and T. Perez, “Ship collision avoidance us-
ing scenario-based model predictive control,” IFAC-PapersOnLine, vol. 49,
no. 23, pp. 14–21, 2016.

[11] N. Leveson, Engineering a safer world: Systems thinking applied to safety.
MIT press, 2011.

257

References

[12] B. Rokseth, I. B. Utne, and J. E. Vinnem, “A systems approach to risk
analysis of maritime operations,” Proceedings of the Institution of Mechan-
ical Engineers, Part O: Journal of Risk and Reliability, vol. 231, no. 1,
pp. 53–68, 2017.

[13] B. Rokseth, I. B. Utne, and J. E. Vinnem, “Deriving verification objectives
and scenarios for maritime systems using the systems-theoretic process anal-
ysis,” Reliability Engineering & System Safety, vol. 169, pp. 18–31, 2018.

[14] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[15] H. S. Dewang, P. K. Mohanty, and S. Kundu, “A robust path planning for
mobile robot using smart particle swarm optimization,” Procedia computer
science, vol. 133, pp. 290–297, 2018.

[16] M. S. Alam, M. U. Rafique, and M. U. Khan, “Mobile robot path planning
in static environments using particle swarm optimization,” arXiv preprint
arXiv:2008.10000, 2020.

[17] F. Ding, Z. Zhang, M. Fu, Y. Wang, and C. Wang, “Energy-efficient path
planning and control approach of usv based on particle swarm optimization,”
in OCEANS 2018 MTS/IEEE Charleston, IEEE, 2018, pp. 1–6.

[18] H. Xue, “A quasi-reflection based sc-pso for ship path planning with ground-
ing avoidance,” Ocean Engineering, vol. 247, p. 110 772, 2022.

[19] X. Guo, M. Ji, Z. Zhao, D. Wen, and W. Zhang, “Global path planning and
multi-objective path control for unmanned surface vehicle based on modified
particle swarm optimization (pso) algorithm,” Ocean Engineering, vol. 216,
p. 107 693, 2020.

[20] J. Mkaka and J. Magaj, “Data extraction from an electronic S-57 stan-
dard chart for navigational decision systems,” Zeszyty Naukowe/Akademia
Morska w Szczecinie, pp. 83–87, 2012.

[21] Y. Yu, H. Zhu, L. Yang, and C. Wang, “Spatial indexing for effective visual-
ization of vector-based electronic nautical chart,” in 2016 International Con-
ference on Industrial Informatics-Computing Technology, Intelligent Tech-
nology, Industrial Information Integration (ICIICII), IEEE, 2016, pp. 323–
326.

[22] M. Wlodarczyk-Sielicka and N. Wawrzyniak, “Interpolating Bathymetric
Big Data for an Inland Mobile Navigation System,” Information Technology
and Control, vol. 47, no. 2, pp. 338–348, 2018.

[23] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, “A Voronoi-diagram-based
dynamic path-planning system for underactuated marine vessels,” Control
Engineering Practice, vol. 61, pp. 41–54, 2017.

[24] T. Wilson and S. B. Williams, “Adaptive path planning for depth-
constrained bathymetric mapping with an autonomous surface vessel,” Jour-
nal of Field Robotics, vol. 35, no. 3, pp. 345–358, 2018.

258

References

[25] B. C. Shah and S. K. Gupta, “Long-distance path planning for unmanned
surface vehicles in complex marine environment,” IEEE Journal of Oceanic
Engineering, vol. 45, no. 3, pp. 813–830, 2019.

[26] J. Larson, M. Bruch, and J. Ebken, “Autonomous navigation and obstacle
avoidance for unmanned surface vehicles,” in Unmanned systems technol-
ogy VIII, International Society for Optics and Photonics, vol. 6230, 2006,
p. 623 007.

[27] R. Szlapczynski and J. Szlapczynska, “A method of determining and visu-
alizing safe motion parameters of a ship navigating in restricted waters,”
Ocean Engineering, vol. 129, pp. 363–373, 2017.

[28] A. Bakdi, I. K. Glad, E. Vanem, and Ø. Engelhardtsen, “AIS-based multiple
vessel collision and grounding risk identification based on adaptive safety
domain,” Journal of Marine Science and Engineering, vol. 8, no. 1, 2020.

[29] T. Tengesdal, T. A. Johansen, T. D. Grande, and S. Blindheim, “Ship col-
lision avoidance and anti grounding using parallelized cost evaluation in
probabilistic scenario-based model predictive control,” IEEE Access, vol. 10,
pp. 111 650–111 664, 2022.

[30] Z. Li and J. Sun, “Disturbance Compensating Model Predictive Control
With Application to Ship Heading Control,” IEEE Transactions on Control
Systems Technology, vol. 20, no. 1, pp. 257–265, Jan. 2012.

[31] H. Zhou, L. Guvenc, and Z. Liu, “Design and evaluation of path follow-
ing controller based on MPC for autonomous vehicle,” in Chinese Control
Conference, CCC, 2017, pp. 9934–9939.

[32] B. O. H. Eriksen and M. Breivik, “MPC-based mid-level collision avoid-
ance for ASVs using nonlinear programming,” in 2017 IEEE Conference on
Control Technology and Applications (CCTA), IEEE, 2017, pp. 766–772.

[33] D. K. M. Kufoalor, T. A. Johansen, E. F. Brekke, A. Hepsø, and K. Trnka,
“Autonomous maritime collision avoidance: Field verification of autonomous
surface vehicle behavior in challenging scenarios,” Journal of Field Robotics,
vol. 37, no. 3, pp. 387–403, 2020.

[34] G. Bitar, A. B. Martinsen, A. M. Lekkas, and M. Breivik, “Two-stage op-
timized trajectory planning for asvs under polygonal obstacle constraints:
Theory and experiments,” IEEE Access, vol. 8, pp. 199 953–199 969, 2020.

[35] T. A. Pedersen, Å. Neverlien, J. A. Glomsrud, I. Ibrahim, S. M. Mo, M.
Rindarøy, T. Torben, and B. Rokseth, “Evolution of safety in marine sys-
tems: From system-theoretic process analysis to automated test scenario
generation,” International Conference on Maritime Autonomous Surface
Ships, 2022.

[36] B. Rokseth and I. B. Utne, “A risk-based autonomous mode control system
for the hybrid-electric machinery system of an autonomous ship,” Submitted
for publication to Safety Science, 2023.

259

References

[37] S. Blindheim and T. A. Johansen, “Electronic Navigational Charts for Visu-
alization, Simulation, and Autonomous Ship Control,” IEEE Access, vol. 10,
pp. 3716–3737, 2022. doi: https://doi.org/10.1109/access.2021.
3139767.

[38] S. Blindheim, S. Gros, and T. A. Johansen, “Risk-Based Model Pre-
dictive Control for Autonomous Ship Emergency Management,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 14 524–14 531, 2020, 21st IFAC World
Congress. doi: https://doi.org/10.1016/j.ifacol.2020.12.1456.

[39] J. Andersson, J. Åkesson, and M. Diehl, “Casadi: A symbolic package for
automatic differentiation and optimal control,” in Recent advances in algo-
rithmic differentiation, Springer, 2012, pp. 297–307.

[40] S. Blindheim, I. B. Utne, and T. A. Johansen, “Risk-Based Supervisory
Control for Autonomous Ship Navigation,” Journal of Marine Science and
Technology, pp. 1–25, 2023. doi: 10.1007/s00773-023-00945-6.

[41] S. Blindheim and T. A. Johansen, “Particle Swarm Optimization for
Dynamic Risk-Aware Path Following for Autonomous Ships,” IFAC-
PapersOnLine, 2022, IFAC CAMS. doi: https://doi.org/10.1016/
j.ifacol.2022.10.411.

[42] S. Blindheim, B. Rokseth, and T. A. Johansen, “Autonomous Machinery
Management for Supervisory Risk Control Using Particle Swarm Optimiza-
tion,” Journal of Marine Science and Engineering, vol. 11, no. 2, p. 327,
2023. doi: https://doi.org/10.3390/jmse11020327.

[43] T. Johansen, S. Blindheim, T. R. Torben, I. B. Utne, T. A. Johansen, and
A. J. Sørensen, “Development and testing of a risk-based control system
for autonomous ships,” Reliability Engineering & System Safety, vol. 234,
p. 109 195, 2023.

[44] B. D. MacRae, R. Stephenson, T. Leadholm, and I. Gonin, “Digital chart
database conversion into a system electronic navigational chart,” Environ-
mental Research Institute of Michigan Ann Arbor, Tech. Rep., 1992.

[45] A. Weintrit, “The electronic chart systems and their classification,” Annual
of Navigation, pp. 127–140, 2001.

[46] A. Weintrit, “Clarification, systematization and general classification of elec-
tronic chart systems and electronic navigational charts used in marine nav-
igation. Part 1-electronic chart systems,” TransNav: International Journal
on Marine Navigation and Safety of Sea Transportation, vol. 12, 2018.

[47] A. Weintrit, “Clarification, systematization and general classification of
electronic chart systems and electronic navigational charts used in marine
navigation. Part 2-electronic navigational charts,” TransNav: International
Journal on Marine Navigation and Safety of Sea Transportation, vol. 12,
2018.

[48] A. Palikaris and A. K. Mavraeidopoulos, “Electronic Navigational Charts:
International Standards and Map Projections,” Journal of Marine Science
and Engineering, vol. 8, no. 4, p. 248, 2020.

260

https://doi.org/https://doi.org/10.1109/access.2021.3139767
https://doi.org/https://doi.org/10.1109/access.2021.3139767
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1456
https://doi.org/10.1007/s00773-023-00945-6
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.411
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.411
https://doi.org/https://doi.org/10.3390/jmse11020327

References

[49] M. R. Mahmud, N. Ibrahim, A. A. RAHMAN, R. Othman, U. Din, and
A. H. Omar, “The development of a low-cost integrated marine navigation
system for leisure crafts and small boats,” Universiti Teknologi Malaysia,
2006.

[50] F. Zhu, Y. Zhang, and W. Sang, “Web Marine Spatial Information Service
Based on Electronic Nautical Charts,” in Eighth ACIS International Con-
ference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD 2007), IEEE, vol. 3, 2007, pp. 131–
136.

[51] G. Park, D. Park, and S. Park, “Design and implementation of display mod-
ule for electronic navigational chart data,” in 2014 International Conference
on IT Convergence and Security (ICITCS), IEEE, 2014.

[52] A. Weintrit, “Radar Image Overlay in ECDIS Display Versus Electronic
Navigational Chart Overlay on Radar Screen,” Prace Wydziału Nawiga-
cyjnego, no. 22, 2008.

[53] M. Waz and K. Naus, “Electronic Navigational Chart in aid of generation
of multi-dimensional radar display,” International Journal of Circuits and
Electronics, vol. 2, 2017.

[54] K. Naus and A. Makar, “Conception of spatial presentation of ENC,” in XIV
International Scientific and Technical Conference “The Part of Navigation
in Support of Human Activity on the Sea”. Naval University of Gdynia,
Gdynia, 2004.

[55] L. Hui, X. Shengwei, and Z. Yingjun, “Inland waterway three-dimensional
visualization based on 3D-GIS technology,” in 2008 IEEE International
Conference on Service Operations and Logistics, and Informatics, IEEE,
vol. 1, 2008, pp. 564–568.

[56] T. Liu, D. Zhao, and M. Pan, “Generating 3D depiction for a future ECDIS
based on digital earth,” The Journal of Navigation, vol. 67, no. 6, p. 1049,
2014.

[57] J.-C. Morgère, J.-P. Diguet, and J. Laurent, “Electronic navigational chart
generator for a marine mobile augmented reality system,” in 2014 Oceans-
St. John’s, IEEE, 2014.

[58] M. Lager, E. A. Topp, and J. Malec, “Remote Operation of Unmanned
Surface Vessel through Virtual Reality-a low cognitive load approach,” in
Proceedings of the 1st International Workshop on Virtual, Augmented, and
Mixed Reality for HRI (VAM-HRI), 2018.

[59] S. M. Smith, L. Alexander, and A. A. Armstrong, “The navigation surface:
A new database approach to creating multiple products from high-density
surveys,” The International Hydrographic Review, 2002.

[60] C. Shi, M. Zhang, and J. Peng, “Harmonic potential field method for au-
tonomous ship navigation,” in 2007 7th International Conference on ITS
Telecommunications, IEEE, 2007.

261

References

[61] Y. Liu and R. Bucknall, “Path planning algorithm for unmanned surface
vehicle formations in a practical maritime environment,” Ocean engineering,
vol. 97, pp. 126–144, 2015.

[62] R. Song, Y. Liu, and R. Bucknall, “A multi-layered fast marching method
for unmanned surface vehicle path planning in a time-variant maritime en-
vironment,” Ocean Engineering, vol. 129, pp. 301–317, 2017.

[63] Y. Liu and R. Bucknall, “Efficient multi-task allocation and path planning
for unmanned surface vehicle in support of ocean operations,” Neurocom-
puting, vol. 275, pp. 1550–1566, 2018.

[64] Y. Ma, M. Hu, and X. Yan, “Multi-objective path planning for unmanned
surface vehicle with currents effects,” ISA transactions, vol. 75, pp. 137–156,
2018.

[65] B. Shah and S. Gupta, “Speeding up A* search on visibility graphs defined
over quadtrees to enable long distance path planning for unmanned sur-
face vehicles,” in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 26, 2016.

[66] Y. Singh, S. Sharma, R. Sutton, D. Hatton, and A. Khan, “A constrained A*
approach towards optimal path planning for an unmanned surface vehicle in
a maritime environment containing dynamic obstacles and ocean currents,”
Ocean Engineering, vol. 169, pp. 187–201, 2018.

[67] R. Song, Y. Liu, and R. Bucknall, “Smoothed A* algorithm for practical
unmanned surface vehicle path planning,” Applied Ocean Research, vol. 83,
pp. 9–20, 2019.

[68] R. Goralski, C. Ray, and C. Gold, “Applications and benefits for the de-
velopment of cartographic 3D visualization systems in support of maritime
safety,” International Recent Issues about ECDIS, e-Navigation and Safety
at Sea: Marine Navigation and Safety of Sea Transportation, vol. 77, 2011.

[69] X. Gao, S. Shiotani, and H. Makino, “The Study of Effective Communication
of Water Depth Information for Prevention of Accidents in Marine Traffic,”
in 2012 Fifth International Conference on Emerging Trends in Engineering
and Technology, IEEE, 2012, pp. 265–269.

[70] O. A. V. Banda, S. Kannos, F. Goerlandt, P. H. van Gelder, M. Bergström,
and P. Kujala, “A systemic hazard analysis and management process for
the concept design phase of an autonomous vessel,” Reliability Engineering
& System Safety, vol. 191, 2019.

[71] A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, and T. I. Fossen, “Path plan-
ning and collision avoidance for autonomous surface vehicles I: a review,”
Journal of Marine Science and Technology, 2021.

[72] A. Vagale, R. T. Bye, R. Oucheikh, O. L. Osen, and T. I. Fossen, “Path
planning and collision avoidance for autonomous surface vehicles II: a com-
parative study of algorithms,” Journal of Marine Science and Technology,
2021.

262

References

[73] M. P. Vitus, S. L. Waslander, and C. J. Tomlin, “Locally optimal decomposi-
tion for autonomous obstacle avoidance with the tunnel-MILP algorithm,” in
2008 47th IEEE Conference on Decision and Control, IEEE, 2008, pp. 540–
545.

[74] R. Zhen, M. Riveiro, and Y. Jin, “A novel analytic framework of real-
time multi-vessel collision risk assessment for maritime traffic surveillance,”
Ocean Engineering, vol. 145, pp. 492–501, 2017.

[75] E. F. Brekke, E. F. Wilthil, B. H. Eriksen, D. Kufoalor, Ø. K. Helgesen, I. B.
Hagen, M. Breivik, and T. A. Johansen, “The Autosea project: Developing
closed-loop target tracking and collision avoidance systems,” in Journal of
Physics: Conference series, IOP publishing, vol. 1357, 2019.

[76] J. Zhou, C. Wang, and A. Zhang, “A COLREGs-Based Dynamic Navigation
Safety Domain for Unmanned Surface Vehicles: A Case Study of Dolphin-I,”
Journal of Marine Science and Engineering, vol. 8, no. 4, p. 264, 2020.

[77] J. M. Cordero and C. Kastrisios, “Characterizing free and open-source tools
for ocean-mapping,” ResearchGate, 2020.

[78] C. Barry, N. P. H. Branch, S. Legeer, G. Parker, N. A. H. Branch, and K.
VanSant, “Us office of coast survey’s re-engineered process for application of
hydrographic survey data to noaa charts,” in The 10th International User
Group Conference and Educational Sessions, Nova Scotia, Canada, Citeseer,
2005.

[79] L. Alexander and M. Huet, “Relationship of marine information overlays
(mios) to current/future iho standards,” International Hydrographic Orga-
nization, 2007.

[80] G. Masetti, B. R. Calder, and M. J. Wilson, Pydro white paper, 2017.

[81] Python Software Foundation, Python Package Index - PyPI.

[82] R. Renger, A. Cimetta, S. Pettygrove, and S. Rogan, “Geographic informa-
tion systems (GIS) as an evaluation tool,” American Journal of Evaluation,
vol. 23, no. 4, pp. 469–479, 2002.

[83] S. Gillies et al., Shapely: Manipulation and analysis of geometric objects,
toblerity.org, 2007.

[84] P. Wu, S. Xie, H. Liu, M. Li, H. Li, Y. Peng, X. Li, and J. Luo, “Autonomous
obstacle avoidance of an unmanned surface vehicle based on cooperative
manoeuvring,” Industrial Robot: An International Journal, 2017.

[85] T. D. Grande, “PSB-MPC Collision Avoidance with Anti-Grounding,”
NTNU ITK, 2021.

[86] Intel Corporation, Intel oneAPI Math Kernel Library, 2021.

[87] T. Keviczky, P. Falcone, F. Borrelli, J. Asgari, and D. Hrovat, “Predictive
control approach to autonomous vehicle steering,” in 2006 American Control
Conference, Aug. 2006, 6 pp.

263

References

[88] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “Design
and Development of an Optimal-Control-Based Framework for Trajectory
Planning, Threat Assessment, and Semi-autonomous Control of Passenger
Vehicles in Hazard Avoidance Scenarios,” in Springer Tracts in Advanced
Robotics (2011) 70(STAR), Springer, Berlin, Heidelberg, 2011.

[89] S. Samuelson and I. Yang, “Safety-aware optimal control of stochastic sys-
tems using conditional value-at-risk,” in 2018 Annual American Control
Conference (ACC), IEEE, 2018, pp. 6285–6290.

[90] Y. Chen, H. Peng, and J. Grizzle, “Obstacle avoidance for low-speed au-
tonomous vehicles with barrier function,” IEEE Transactions on Control
Systems Technology, vol. 26, no. 1, pp. 194–206, Jan. 2018.

[91] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, 2011.

[92] D. D. Morrison, J. D. Riley, and J. F. Zancanaro, “Multiple shooting method
for two-point boundary value problems,” Communications of the ACM,
vol. 5, no. 12, pp. 613–614, 1962.

[93] T. I. Fossen, M. Breivik, and R. Skjetne, “Line-of-sight path following of
underactuated marine craft,” in 6th IFAC Conference on Manoeuvring and
Control of Marine Craft (MCMC 2003), Girona, Spain, 2003.

[94] L. Grüne and J. Pannek, “Nonlinear model predictive control,” in Nonlinear
Model Predictive Control, Springer, 2017, pp. 45–69.

[95] I. B. Utne, I. Schjølberg, and E. Roe, “High reliability management and
control operator risks in autonomous marine systems and operations,” Ocean
Engineering, vol. 171, pp. 399–416, 2019.

[96] S. A. Shappell and D. A. Wiegmann, The human factors analysis and clas-
sification system–hfacs, 2000.

[97] M. A. Ramos, I. B. Utne, and A. Mosleh, “Collision avoidance on mar-
itime autonomous surface ships: Operators’ tasks and human failure events,”
Safety science, vol. 116, pp. 33–44, 2019.

[98] L. Layman, V. R. Basili, and M. V. Zelkowitz, “A methodology for exposing
risk in achieving emergent system properties,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 3, 22:1–22:28, Jun. 2014.

[99] K. Øien, I. Utne, and I. Herrera, “Building safety indicators: Part 1 – theo-
retical foundation,” Safety Science, vol. 49, no. 2, pp. 148–161, 2011.

[100] K. Øien, I. Utne, R. Tinmannsvik, and S. Massaiu, “Building safety indi-
cators: Part 2 – application, practices and results,” Safety Science, vol. 49,
no. 2, pp. 162–171, 2011.

[101] T. I. Bø and T. A. Johansen, “Dynamic safety constraints by scenario-based
economic model predictive control of marine electric power plants,” IEEE
Transactions on Transportation Electrification, vol. 3, no. 1, pp. 13–21, 2016.

[102] A. Veksler, T. A. Johansen, F. Borrelli, and B. Realfsen, “Dynamic position-
ing with model predictive control,” IEEE Transactions on Control Systems
Technology, vol. 24, no. 4, pp. 1340–1353, Jul. 2016.

264

References

[103] M. Rausand, Risk assessment: theory, methods, and applications. John Wi-
ley & Sons, 2013, vol. 115.

[104] M. Ludvigsen and A. J. Sørensen, “Towards integrated autonomous under-
water operations for ocean mapping and monitoring,” Annual Reviews in
Control, vol. 42, pp. 145–157, 2016.

[105] B. Rokseth, O. I. Haugen, and I. B. Utne, “Safety verification for au-
tonomous ships,” in MATEC Web of Conferences, EDP Sciences, vol. 273,
2019, p. 02 002.

[106] N. G. Leveson and J. P. Thomas, “Stpa handbook,” Cambridge, MA, USA,
2018.

[107] M. Stopford, Maritime economics, 3rd ed. Routledge, 2009.

[108] H. Kim, M. A. Lundteigen, A. Hafver, and F. B. Pedersen, “Utilization of
risk priority number to systems-theoretic process analysis: A practical solu-
tion to manage a large number of unsafe control actions and loss scenarios,”
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability, vol. 235, no. 1, pp. 92–107, 2021.

[109] D. Kiran, “Chapter 26 - failure modes and effects analysis,” in Total Quality
Management, D. Kiran, Ed., Butterworth-Heinemann, 2017, pp. 373–389.

[110] S. Wright and J. Nocedal, “Numerical optimization,” Springer Science,
vol. 35, no. 67-68, p. 7, 1999.

[111] E. J. Mishan, “Evaluation of life and limb: A theoretical approach,” Journal
of Political Economy, vol. 79, no. 4, pp. 687–705, 1971.

[112] F. Ackerman and L. Heinzerling, “Pricing the priceless: Cost-benefit anal-
ysis of environmental protection,” University of Pennsylvania Law Review,
vol. 150, no. 5, pp. 1553–1584, 2002.

[113] A. Richards, “Fast model predictive control with soft constraints,” European
Journal of Control, vol. 25, pp. 51–59, 2015.

[114] M. Alhajeri and M. Soroush, “Tuning guidelines for model-predictive
control,” Industrial & Engineering Chemistry Research, vol. 59, no. 10,
pp. 4177–4191, 2020.

[115] W. Edwards, G. Tang, G. Mamakoukas, T. Murphey, and K. Hauser, “Au-
tomatic tuning for data-driven model predictive control,” in 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), IEEE, 2021,
pp. 7379–7385.

[116] S. V. Rothmund and T. A. Johansen, “Risk-based obstacle avoidance in
unknown environments using scenario-based predictive control for an in-
spection drone equipped with range finding sensors,” in 2019 International
Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2019, pp. 221–
230.

[117] A. B. Martinsen, A. M. Lekkas, and S. Gros, “Optimal model-based tra-
jectory planning with static polygonal constraints,” IEEE Transactions on
Control Systems Technology, 2021.

265

References

[118] H. Niu, Y. Lu, A. Savvaris, and A. Tsourdos, “An energy-efficient path plan-
ning algorithm for unmanned surface vehicles,” Ocean Engineering, vol. 161,
pp. 308–321, 2018.

[119] R. Zaccone, “Colreg-compliant optimal path planning for real-time guidance
and control of autonomous ships,” Journal of Marine Science and Engineer-
ing, vol. 9, no. 4, p. 405, 2021.

[120] T. T. Enevoldsen and R. Galeazzi, “Grounding-aware RRT* for Path Plan-
ning and Safe Navigation of Marine Crafts in Confined Waters,” IFAC-
PapersOnLine, vol. 54, no. 16, pp. 195–201, 2021.

[121] A. Dallolio, T. K. Bergh, R. Pedro, H. Øveraas, and T. A. Johansen, “Enc-
based anti-grounding and anti-collision system for a wave-propelled usv,”
IEEE/MTS OCEANS Conference, India, 2022.

[122] A. P. Engelbrecht, “Particle swarm optimization: Global best or local best?”
In 2013 BRICS congress on computational intelligence and 11th Brazilian
congress on computational intelligence, IEEE, 2013, pp. 124–135.

[123] Y.-I. Lee and Y.-G. Kim, “A collision avoidance system for autonomous
ship using fuzzy relational products and colregs,” Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 3177, pp. 247–252, 2004.

[124] R. Zaccone and M. Martelli, “A collision avoidance algorithm for ship guid-
ance applications,” Journal of Marine Engineering and Technology, vol. 19,
no. sup1, pp. 62–75, 2020.

[125] J. Koszelew, J. Karbowska-Chilinska, K. Ostrowski, P. Kuczyński, E. Kul-
biej, and P. Wołejsza, “Beam search algorithm for anti-collision trajectory
planning for many-to-many encounter situations with autonomous surface
vehicles,” Sensors (Switzerland), vol. 20, no. 15, pp. 1–17, 2020.

[126] P. Chen, Y. Huang, E. Papadimitriou, J. Mou, and P. van Gelder, “Global
path planning for autonomous ship: A hybrid approach of fast marching
square and velocity obstacles methods,” Ocean Engineering, vol. 214, 2020.

[127] T. Statheros, G. Howells, and K. McDonald-Maier, “Autonomous ship col-
lision avoidance navigation concepts, technologies and techniques,” Journal
of Navigation, vol. 61, no. 1, pp. 129–142, 2008.

[128] Y.-I. Lee, S.-G. Kim, and Y.-G. Kim, “Fuzzy relational product for collision
avoidance of autonomous ships,” Intelligent Automation and Soft Comput-
ing, vol. 21, no. 1, pp. 21–38, 2015.

[129] T. Johansen, T. Perez, and A. Cristofaro, “Ship collision avoidance and col-
regs compliance using simulation-based control behavior selection with pre-
dictive hazard assessment,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 17, no. 12, pp. 3407–3422, 2016.

[130] G. Li, H. Hildre, and H. Zhang, “Toward time-optimal trajectory planning
for autonomous ship maneuvering in close-range encounters,” IEEE Journal
of Oceanic Engineering, 2019.

266

References

[131] H. Lyu and Y. Yin, “COLREGS-Constrained Real-Time Path Planning for
Autonomous Ships Using Modified Artificial Potential Fields,” Journal of
Navigation, vol. 72, no. 3, pp. 588–608, 2019.

[132] L. Song, H. Chen, W. Xiong, Z. Dong, P. Mao, Z. Xiang, and K. Hu,
“Method of emergency collision avoidance for unmanned surface vehicle
(usv) based on motion ability database,” Polish Maritime Research, vol. 26,
no. 2, pp. 55–67, 2019.

[133] L. Zhao and M.-I. Roh, “Colregs-compliant multiship collision avoidance
based on deep reinforcement learning,” Ocean Engineering, vol. 191, 2019.

[134] X. Liu and Y. Jin, “Reinforcement learning-based collision avoidance: Im-
pact of reward function and knowledge transfer,” Artificial Intelligence for
Engineering Design, Analysis and Manufacturing: AIEDAM, 2020.

[135] T. G. Fowler and E. Sørgård, “Modeling ship transportation risk,” Risk
Analysis, vol. 20, no. 2, pp. 225–244, 2000.

[136] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved path planning by
tightly combining lattice-based path planning and optimal control,” IEEE
Transactions on Intelligent Vehicles, vol. 6, pp. 57–66, 2020.

[137] H. Lyu and Y. Yin, “Fast path planning for autonomous ships in restricted
waters,” Applied Sciences (Switzerland), vol. 8, no. 12, 2018.

[138] F. Xiao and Y. Ma, “Artificial forces for virtual autonomous ships with
encountering situations in restricted waters,” Maritime Policy and Manage-
ment, vol. 47, no. 5, pp. 687–702, 2020.

[139] J. Zheng, W. Sun, Y. Li, and J. Hu, “A receding horizon navigation and
control system for autonomous merchant ships: Reducing fuel costs and
carbon emissions under the premise of safety,” Journal of Marine Science
and Engineering, vol. 11, no. 1, 2023.

[140] S.-W. Ohn and H. Namgung, “Requirements for optimal local route planning
of autonomous ships,” Journal of Marine Science and Engineering, vol. 11,
no. 1, 2023.

[141] X. Chen, M. Gao, Z. Kang, J. Zhou, S. Chen, Z. Liao, H. Sun, and A. Zhang,
“Formation of mass collision avoidance and path following based on artificial
potential field in constrained environment,” Journal of Marine Science and
Engineering, vol. 10, no. 11, 2022.

[142] A. Hovenburg, F. Andrade, C. D. Rodin, T. A. Johansen, and R. Stor-
vold, “Contingency path planning for hybrid-electric uas,” in Workshop on
Research, Education and Development of Unmanned Aerial Systems (RED-
UAS), Linköping, 2017.

[143] A. R. Hovenburg, F. A. de Alcantara Andrade, R. Hann, C. D. Rodin, T. A.
Johansen, and R. Storvold, “Long range path planning using an aircraft per-
formance model for battery powered sUAS equipped with icing protection
system,” IEEE J. Miniaturization for air and space systems, vol. 1, pp. 76–
89, 2020.

267

References

[144] B. Rokseth, “Ship in transit simulator,” https : / / github . com /
BorgeRokseth/ ship_ in_ transit_ simulator , Dec. 2022.

[145] A. J. Sørensen, S. I. Sagatun, and T. I. Fossen, “Design of a dynamic po-
sitioning system using model-based control,” Control Engineering Practice,
vol. 4, no. 3, pp. 359–368, 1996.

[146] I. B. Hagen, “On maritime collision avoidance,” 2022.

[147] J. Szlapczynska and R. Szlapczynski, “Preference-based evolutionary multi-
objective optimization in ship weather routing,” Applied Soft Computing,
vol. 84, p. 105 742, 2019.

[148] NSIA, “Interim report 12 november 2019 on the investigation into the loss
of propulsion and near grounding of viking sky, 23 march 2019,” Norwegian
Safety Investigation Authority, Tech. Rep., 2019.

[149] C. A. Thieme, B. Rokseth, and I. B. Utne, “Risk-informed control systems
for improved operational performance and decision-making,” Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, p. 1748006X211043657, 2021.

[150] T. Johansen and I. B. Utne, “Supervisory risk control of autonomous surface
ships,” Ocean Engineering, vol. 251, p. 111 045, 2022.

[151] J. E. Bremnes, C. A. Thieme, A. J. Sørensen, I. B. Utne, and P. Norgren, “A
bayesian approach to supervisory risk control of AUVs applied to under-ice
operations,” Marine Technology Society Journal, vol. 54, no. 4, pp. 16–39,
2020.

[152] J. E. Bremnes, P. Norgren, A. J. Sørensen, C. A. Thieme, and I. B. Utne,
“Intelligent risk-based under-ice altitude control for autonomous underwater
vehicles,” OCEANS 2019 MTS/IEEE Seattle, pp. 1–8, 2019.

[153] C. Fan, K. Wróbel, J. Montewka, M. Gil, C. Wan, and D. Zhang, “A
framework to identify factors influencing navigational risk for maritime au-
tonomous surface ships,” Ocean Engineering, vol. 202, p. 107 188, 2020.

[154] C. H. Chang, C. Kontovas, Q. Yu, and Z. Yang, “Risk assessment of the
operations of maritime autonomous surface ships,” Reliability Engineering
& System Safety, vol. 207, 2021.

[155] T. Johansen and I. B. Utne, “Risk analysis of autonomous ships,” e-
proceedings of the 30th European Safety and Reliability Conference and 15th
Probabilistic Safety Assessment and Management Conference (ESREL2020
PSAM15), pp. 131–138, 2020.

[156] O. A. Valdez Banda, S. Kannos, F. Goerlandt, P. H. A. J. M. van Gelder,
M. Bergström, and P. Kujala, “A systemic hazard analysis and management
process for the concept design phase of an autonomous vessel,” Reliability
Engineering & System Safety, vol. 191, p. 106 584, 2019.

[157] K. Wróbel, J. Montewka, and P. Kujala, “Towards the development of a
system-theoretic model for safety assessment of autonomous merchant ves-
sels,” Reliability Engineering & System Safety, vol. 178, pp. 209–224, 2018.

268

https://github.com/BorgeRokseth/ship_in_transit_simulator
https://github.com/BorgeRokseth/ship_in_transit_simulator

References

[158] M. Chaal, O. A. Valdez Banda, J. A. Glomsrud, S. Basnet, S. Hirdaris, and
P. Kujala, “A framework to model the stpa hierarchical control structure of
an autonomous ship,” Safety Science, vol. 132, 2020.

[159] M. Brito and G. Griffiths, “A bayesian approach for predicting risk of au-
tonomous underwater vehicle loss during their missions,” Reliability Engi-
neering & System Safety, vol. 146, pp. 55–67, 2016.

[160] T. Y. Loh, M. P. Brito, N. Bose, J. Xu, N. Nikolova, and K. Tenekedjiev, “A
hybrid fuzzy system dynamics approach for risk analysis of auv operations,”
Journal of Advanced Computational Intelligence and Intelligent Informatics,
vol. 24, no. 1, pp. 26–39, 2020.

[161] T. Y. Loh, M. P. Brito, N. Bose, J. Xu, and K. Tenekedjiev, “Fuzzy system
dynamics risk analysis (fusdra) of autonomous underwater vehicle opera-
tions in the antarctic,” Risk Analysis, vol. 40, no. 4, pp. 818–841, 2020.

[162] M. Brito, “Uncertainty management during hybrid autonomous underwa-
ter vehicle missions,” Autonomous Underwater Vehicles 2016, AUV 2016,
pp. 278–285, 2016.

[163] L. Hu, W. Naeem, E. Rajabally, G. Watson, T. Mills, Z. Bhuiyan, and I.
Salter, “Colregs-compliant path planning for autonomous surface vehicles: A
multiobjective optimization approach,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 13 662–13 667, 2017.

[164] H. Wang, F. Guo, H. Yao, S. He, and X. Xu, “Collision Avoidance Planning
Method of USV Based on Improved Ant Colony Optimization Algorithm,”
IEEE Access, vol. 7, pp. 52 964–52 975, 2019.

[165] J. Woo and N. Kim, “Collision avoidance for an unmanned surface vehicle
using deep reinforcement learning,” Ocean Engineering, vol. 199, p. 107 001,
2020.

[166] M. Li, J. Mou, L. Chen, Y. He, and Y. Huang, “A rule-aware time-varying
conflict risk measure for mass considering maritime practice,” Reliability
Engineering & System Safety, vol. 215, 2021.

[167] M. Gil, “A concept of critical safety area applicable for an obstacle-avoidance
process for manned and autonomous ships,” Reliability Engineering & Sys-
tem Safety, vol. 214, 2021.

[168] T. Tengesdal, E. F. Brekke, and T. A. Johansen, “On collision risk
assessment for autonomous ships using scenario-based MPC,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 14 509–14 516, 2020, 21st IFAC World
Congress.

[169] T. Tengesdal, T. A. Johansen, and E. F. Brekke, “Risk-based autonomous
maritime collision avoidance considering obstacle intentions,” in 2020 IEEE
23rd International Conference on Information Fusion (FUSION), 2020.

[170] J. Yin, Y. Wang, J. Lv, and J. Ma, “Study on underwater simultaneous
localization and mapping based on different sensors,” Proceedings of 2021
IEEE 10th Data Driven Control and Learning Systems Conference, DDCLS
2021, pp. 728–733, 2021.

269

References

[171] J. S. Willners, Y. Carreno, S. Xu, T. Luczynski, S. Katagiri, J. Roe,
È. Pairet, Y. Petillot, and S. Wang, “Robust underwater slam using au-
tonomous relocalisation,” IFAC-PapersOnLine, vol. 54, no. 16, pp. 273–280,
2021.

[172] S. S. Sandøy, J. Hegde, I. Schjølberg, and I. B. Utne, “Polar map: A dig-
ital representation of closed structures for underwater robotic inspection,”
Aquacultural Engineering, vol. 89, p. 102 039, 2020.

[173] J. Mąka and J. Magaj, “Data extraction from an electronic s-57 standard
chart for navigational decision systems,” Proc. Zeszyty Naukowe/Akademia
Morska Szczecinie, pp. 83–87, 2012.

[174] J. de Vos, R. G. Hekkenberg, and O. A. Valdez Banda, “The impact of
autonomous ships on safety at sea – a statistical analysis,” Reliability Engi-
neering & System Safety, vol. 210, 2021.

[175] IMO, MSC.1/Circ.1580: Annex: Guidelines for vessels with dynamic posi-
tioning systems, IMO, 2017.

[176] T. Torben, Ø. Smogeli, I. B. Utne, and A. J. Sørensen, “On formal methods
for design and verification of maritime autonomous surface ships,” Proceed-
ings of the World Maritime Technology Conference., 2022.

[177] T. Torben, J. A. Glomsrud, T. A. Pedersen, I. B. Utne, and A. J. Sørensen,
“Automatic simulation-based testing of autonomous ships using gaussian
processes and temporal logic,” Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, p. 1748006X211069277,
2022.

[178] G. Xiao, B. Ren, C. Tong, and X. Hong, “A quantitative evaluation method
for obstacle avoidance performance of unmanned ship,” Journal of Marine
Science and Engineering, vol. 9, no. 10, p. 1127, 2021.

[179] Fenton, N. and Neil, M., Risk Assessment and Decision Analysis with
Bayesian Networks. CRC Presss, 2019.

[180] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Lecture Notes in Computer Science, 2004, pp. 152–166.

[181] B. Rokseth and I. B. Utne, “Deriving safety requirement hierarchies for
families of maritime systems,” Transactions of the Royal Institution of Naval
Architects Part A: International Journal of Maritime Engineering, vol. 161,
A229–A243, 2019.

[182] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[183] IMO, “Revised Guidelines for Formal Safety Assessment (FSA) for Use in
the IMO Rule-Making Process,” IMO, Tech. Rep., 2018.

[184] EfficienSea, “Methods to Quantify Maritime Accidents for Risk-based deci-
sion making,” EfficienSea, Tech. Rep., 2012.

[185] The Norwegian Agency for Public and Financial Management, Guide in
socio-economic analysis, 2018.

270

References

[186] DNVGL, “DNV Report no 2003-0277 Annex II FSA 2003,” DNVGL group
technology & research, Tech. Rep., 2003.

[187] M. Hassel, I. B. Utne, and J. E. Vinnem, “An allision risk model for passing
vessels and offshore oil and gas installations on the norwegian continen-
tal shelf,” Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability, vol. 235, no. 1, pp. 17–32, 2021.

[188] Norwegian Meteorological Institute, Met, 2021.
[189] Norwegian Mapping Authority, Norgeskart, 2021.
[190] Ship & Bunker, Rotterdam Bunker Prices, 2022.
[191] V. Utkin and H. Lee, “Chattering problem in sliding mode control systems,”

IFAC Proceedings Volumes, vol. 39, no. 5, p. 1, 2006, 2nd IFAC Conference
on Analysis and Design of Hybrid Systems.

[192] Norwegian Hydrographic Service, The Norwegian Pilot Guide, 2018.
[193] I. M. O. (IMO), “COLREGS - International Regulations for Preventing Col-

lisions at Sea,” Convention on the International Regulations for Preventing
Collisions at Sea, 1972, 1972.

[194] T. A. Johansen, T. Perez, and A. Cristofaro, “Ship Collision Avoidance and
COLREGS Compliance Using Simulation-Based Control Behavior Selec-
tion With Predictive Hazard Assessment,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 12, pp. 3407–3422, Dec. 2016.

[195] T. Tengesdal, T. A. Johansen, and E. F. Brekke, “Ship collision avoid-
ance utilizing the cross-entropy method for collision risk assessment,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8,
pp. 11 148–11 161, 2022.

[196] C. Tam, R. Bucknall, and A. Greig, “Review of collision avoidance and
path planning methods for ships in close range encounters,” The Journal of
Navigation, vol. 62, no. 3, pp. 455–476, 2009.

[197] Y. Huang, L. Chen, P. Chen, R. R. Negenborn, and P. van Gelder, “Ship
collision avoidance methods: State-of-the-art,” Safety Science, vol. 121,
pp. 451–473, 2020.

[198] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[199] C. Chauvin and S. Lardjane, “Decision making and strategies in an inter-

action situation: Collision avoidance at sea,” Transportation Research Part
F: Traffic Psychology and Behaviour, vol. 11, no. 4, pp. 259–269, 2008.

[200] S. R. Clawson Jr, Overtaking or crossing? Don’t assume what other ship
will do, 2013.

[201] K. Woerner, M. R. Benjamin, M. Novitzky, and J. J. Leonard, “Quantify-
ing protocol evaluation for autonomous collision avoidance,” Autonomous
Robots, vol. 43, no. 4, pp. 967–991, Apr. 2019.

[202] B. C. Shah, P. Švec, I. R. Bertaska, A. J. Sinisterra, W. Klinger, K. von
Ellenrieder, M. Dhanak, and S. K. Gupta, “Resolution-adaptive risk-aware
trajectory planning for surface vehicles operating in congested civilian traf-
fic,” Autonomous Robots, vol. 40, no. 7, pp. 1139–1163, 2016.

271

References

[203] B.-O. H. Eriksen, G. I. Bitar, M. Breivik, and A. M. Lekkas, “Hybrid col-
lision avoidance for ASVs compliant with COLREGs rules 8 and 13-17,”
ArXiv, vol. abs/1907.00198, 2019.

[204] P. Agrawal and J. M. Dolan, “COLREGS-compliant target following for an
unmanned surface vehicle in dynamic environments,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015,
pp. 1065–1070.

[205] X. Rong Li and V. P. Jilkov, “Survey of maneuvering target tracking. part i.
dynamic models,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 39, no. 4, pp. 1333–1364, Oct. 2003.

[206] L. M. Millefiori, P. Braca, K. Bryan, and P. Willett, “Long-term vessel kine-
matics prediction exploiting mean-reverting processes,” in 2016 19th Inter-
national Conference on Information Fusion (FUSION), Jun. 2016, pp. 232–
239.

[207] M. Abdelaal, M. Fränzle, and A. Hahn, “Nonlinear model predictive control
for trajectory tracking and collision avoidance of underactuated vessels with
disturbances,” Ocean Engineering, vol. 160, pp. 168–180, 2018.

[208] H. L. Chiang and L. Tapia, “COLREG-RRT: An RRT-based COLREGS-
compliant motion planner for surface vehicle navigation,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 2024–2031, Jul. 2018.

[209] Y. Lyu, J. Hu, B. M. Chen, C. Zhao, and Q. Pan, “Multivehicle flocking
with collision avoidance via distributed model predictive control,” IEEE
Transactions on Cybernetics, vol. 51, no. 5, pp. 2651–2662, 2021.

[210] D. H. Douglas and T. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature,” Cartograph-
ica: The International Journal for Geographic Information and Geovisual-
ization, vol. 10, pp. 112–122, 1973.

[211] L. M. Millefiori, P. Braca, K. Bryan, and P. Willett, “Modeling vessel kine-
matics using a stochastic mean-reverting process for long-term prediction,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 5,
pp. 2313–2330, 2016.

[212] M. Breivik and T. I. Fossen, “Guidance laws for planar motion control,” in
Proc. 47th IEEE Conf. Decision and Control, Dec. 2008, pp. 570–577.

[213] B. Patle, G. Babu L, A. Pandey, D. Parhi, and A. Jagadeesh, “A review:
On path planning strategies for navigation of mobile robot,” Defence Tech-
nology, vol. 15, no. 4, pp. 582–606, 2019.

[214] C.-W. Huang and T.-Y. Shih, “On the complexity of point-in-polygon algo-
rithms,” Computers and Geosciences, vol. 23, no. 1, pp. 109–118, 1997.

[215] D. K. M. Kufoalor, E. Wilthil, I. B. Hagen, E. F. Brekke, and T. A.
Johansen, “Autonomous COLREGs-compliant decision making using mar-
itime radar tracking and model predictive control,” in Proc. 18th European
Control Conf. (ECC), Jun. 2019, pp. 2536–2542.

272

References

[216] S. V. Rothmund, T. Tengesdal, E. F. Brekke, and T. A. Johansen, “Intention
modeling and inference for autonomous collision avoidance at sea,” Ocean
Engineering, vol. 266, p. 113 080, 2022.

273

ISBN 978-82-326-7102-1 (printed ver.)
ISBN 978-82-326-7101-4 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:200

Simon Vinding Blindheim

Risk-aware decision-making and
control of autonomous ships

D
oc

to
ra

l t
he

si
s

D
octor al theses at N

TN
U

, 2023:200
Sim

on Vinding Blindheim

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

ng
in

ee
rin

g
Cy

be
rn

et
ic

s

	Summary
	Sammendrag
	Preface
	Contents
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Research questions
	1.4 Contributions overview

	I Electronic navigational charts
	2 Application programming interface
	2.1 Introduction
	2.2 Methods
	2.3 Example usage
	2.4 Discussion
	2.5 Conclusion

	II Model predictive control
	3 Autonomous ship emergency management
	3.1 Introduction
	3.2 Problem description
	3.3 Mathematical modeling
	3.4 Planning and decision-making
	3.5 Implementation and settings
	3.6 Results
	3.7 Conclusion

	4 Risk-based predictive supervisory control
	4.1 Introduction
	4.2 Background
	4.3 Modeling
	4.4 Methodology
	4.5 NLP and MPC formulation
	4.6 Results
	4.7 Discussion
	4.8 Future work and extensions
	4.9 Conclusion
	4.10 Appendix: Ship model and dynamics

	III Particle swarm optimization
	5 Dynamic risk-aware path planning
	5.1 Introduction
	5.2 Method
	5.3 Results
	5.4 Conclusion
	5.5 Appendix: The PSO Algorithm

	6 Autonomous planning and machinery management
	6.1 Introduction
	6.2 Materials and methods
	6.3 Results
	6.4 Discussion
	6.5 Conclusion
	6.6 Appendix: The Level-1 route planning algorithm

	IV Concluding remarks
	7 Conclusion
	7.1 Summary
	7.2 Discussion on research questions and future work
	7.3 Concluding remarks
	Appendices
	A Risk-based control system for autonomous ships
	A.1 Introduction
	A.2 Method
	A.3 Case study: Supervisory risk control of an autonomous cargo ship
	A.4 Results and discussion
	A.5 Conclusions
	Appendix: BBN connections

	B Ship collision avoidance and anti-grounding
	B.1 Introduction
	B.2 The PSB-MPC COLAV planning algorithm
	B.3 Parallelized PSB-MPC implementation
	B.4 Simulation study
	B.5 Conclusion

	References

	Blank Page

