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Abstract

Collection of biological data proceeds at a rate greater than ever thanks to advances
in high throughput technologies. This has created large amounts of data to be
systematized and interpreted. Networks represent the entities in question and the
connections between them, and have proven to be one of the most useful means of
storing and representing such knowledge. There are two major tasks when working
with biological networks: (1) inference of the network from experimental data and
(2) application of network models which utilize the networks in order to make
predictions about the system’s behavior. In this doctoral thesis, we will cover three
applications of biological networks: microbial co-occurence, differential gene co-
expression, and genome-scale metabolic models.

Microbial communities represent a vibrant field of study, primarily due to its rel-
evance to human medicine. In addition, ensuring a good microbial community is
important in rearing of fish larva in aquaculture. It has been shown that selecting
for K -strategist bacteria over opportunistic r-strategists has the potential to dra-
matically improve fish health and survival. Therefore, in Paper I, we analyze a
dataset of bacteria in seawater reactors being exposed to - and K -selection with
the selection regimes being switched halfway in the experiment. From the gen-
erated microbial co-occurrence networks, we observe that most associations are
found between bacteria which are taxonomically related and most likely share the
same environmental preferences. Furthermore, the microbial communities do not
show signs of resilience to changes in the selection regime, so over time, signatures
of past selection regimes are wiped out.

Faulty regulation of genes is often seen in diseases such as cancer, allergy and
chronic fatigue. By measuring and comparing gene expression in sick patients and
healthy controls, we can summarize the gene co-expression in a differential gene
co-expression network. This helps to understand the gene regulatory mechanisms
of the diseases and may result in novel targeted treatments. In paper II, we intro-
duce the R package csdR which is an efficient and user-friendly implementation
of the existing CSD (Conserved, Specific, and Differentiated) algorithm for differ-
ential co-expression. This package is available in the Bioconductor repository and
is shown to be orders of magnitude faster than the original CSD implementation.

Genome-scale metabolic models (GEMs) cover the metabolic conversions of an
organism represented by a network of reactions and metabolites. These models
are generated from the enzymes present in the organism’s genome and can be used
to predict metabolic fluxes through methods such as Flux Balance Analysis (FBA).
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Over time, many varieties and extensions of FBA have been developed. This in-
cludes incorporating enzyme constraints, accounting for time dynamics and taking
the ambient temperature into consideration. In paper III, we assess a Bayesian
modeling approach for inferring parameters for a temperature and enzyme con-
strained genome-scale metabolic model (etcGEM). We show that the existing pro-
cedure is unstable and therefore implement an alternative evolutionary algorithm.

GEMs are often used for genetic engineering and selection of organisms with de-
sired properties. In Paper IV we use automatically reconstructed GEMs of five
non-Saccharomyces yeast strains in order to evaluate their ability to produce wine
with reduced alcohol content. This includes Metschnikowia pulcherrima which has
already proven to be a good candidate for this task. Our results suggest that the de-
sired properties of Metschnikowia pulcherrima is partially due to having Complex
I of the electron transport chain which is missing in the other yeast strains.

A recurring problem encountered throughout the thesis is a lack of sufficient data
to make reliable models and predictions. As a result, the supply of data is a more
limiting factor than the algorithms used to analyze the data. However, we hope
that these challenges can be alleviated by continued efforts into improvements to
collection and management of biological data. This includes measures such as
laboratory automation and collaborations on data management. In particular, we
find the current formats for exchanging genome-scale models insufficient for deal-
ing with FBA extensions such as dynamic FBA and enzyme constrained FBA in
a reproducible manner. Hence, we encourage further development into the SBML
standards for genome-scale models.
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Chapter 1

Introduction

1.1 Why do we care about networks?

In order to feed a growing world population, new means of producing food are re-
quired. This includes aquaculture of new fish species such as Atlantic cod (Gadus
morhua)[1]. However, initial attempts to produce cod by aquaculture has suffered
from considerable difficulties, limiting its adoption[2, 3]. This is to a great extent
due to high mortality of the cod larva during the first mounts after hatching[3]. It
has been suggested that a major cause of this mortality is predominance of oppor-
tunistic bacteria in the rearing environment, causing dysbiosis and considerable
stress to the fish[4, 5, 6].

Climate change has resulted in warmer and sunnier summers in wine producing
regions. This has resulted in increased amounts of sugar in the mature grapes. In
turn, when the grape must is fermented by brewing yeast, the result is wine with
increased alcohol content[7]. Not only does this stronger wine cause health issues
and higher taxation, the increased alcohol content negatively affects the sensory
profile[8, 9, 10].

Moving over to the field of medicine, cancer is a major cause of death and suf-
fering. More refined and personalized approaches have been developed for cancer
treatment the last years with decent success. Still, we lack a good understanding
of the causes and progression of cancer and having the ability to cure any patient
is a distant vision[11, 12, 13].

All of these problems have in common that they can partially be described, and
hopefully solved, by network science. A network is a collection of nodes and links
interconnecting the nodes. Besides being a pure mathematical concept, any system
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which has entities with some connections between them can be represented as a
network.

In the case of the rearing a cod larva, a network can be constructed of the interac-
tions between the bacteria surrounding the fish. Using the network, we can gain
understanding of the interplay between the bacteria, the fish and their environment.
As a result, we can create favorable rearing conditions for the fish and thus help
increase survival[14, 5]. Similarly, a metabolic network can be created of the yeast
metabolism and guide us to metabolic engineering approaches for reducing the al-
cohol output of the wine fermentation process[15, 16]. Finally, for understanding
the causes and development of cancer, networks can be created of the gene co-
expression in sick and healthy patients. These networks can in turn be compared
and analyzed in order to obtain understanding into the causes of the disease and
suggest therapeutic interventions[17, 18].

As the preceding examples illustrate, network science can be defined as the study
of the network representation of systems in order to gain understanding and make
predictions of the phenomena occurring in the systems[19, 20]. In this context,
a network-based model is a conceptual or computational model where the con-
stituents of the model are represented as a network or a collection of networks. In
statistics, we speak of two different, yet related processes; inference and prediction[21].
Inference is the process by applying data to create or parametrize a model, whereas
prediction is the process of forecasting results based on a model. Often for network
models, scientists do both. Research and data collection is required for creating
the network model, but the true benefits from the model comes when it is used for
studying the properties and making predictions about the system in question.

1.2 Structure of this thesis

In this thesis, we will go through various applications of networks in biology. Even
if the areas of applications differ, the overall procedure is similar: data is gener-
ated from experiments on the system in question. Modern high-throughput omics
technologies such as DNA sequencing and mass spectroscopy have made it fea-
sible to collect large amounts of data in a single experiment[22]. These data are
then handed directly to the modeler or stored in databases for further use. From
the experimental data, a network is created with dedicated computational tools
(inference). After construction, the structure of the network is analyzed and in-
tegrated with other data. This produces information which can explain the be-
havior of the system in question. In turn, the new understanding can help the re-
searchers come up with questions and hypothesis which can be tested in follow-up
experiments[23, 24].
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The first topic of this thesis is co-occurrence networks of microbial communi-
ties. In our case, we will focus on aquatic bacterial communities as running ex-
periments and sampling from such environments is relatively easy. Until high-
throughput sequencing was introduced, there was no easy method for character-
izing all bacteria living in a natural environment, and research was focused on
qualitative production capabilities of the community as a whole and isolation of
individual strains. Today however, it is possible to get almost complete coverage
of a bacterial community[25]. The primary motivation behind such studies is to get
an understanding of the community in question and to provide an overview of the
ecological role of each organism and the interplay between the organisms (interac-
tions). Even if the real ecological interactions between bacteria is difficult to infer
from quantification of the present organisms, statistical methods[26, 27, 28] are
used to provide a meaningful representation of the community. Networks gener-
ated from such statistical methods can then be used to pinpoint the underlying eco-
logical structure of the community. In paper I, we will use network inference and
analysis for studying the microbial community dynamics in seawater chemostats.

Just like modern advances in sequencing technology has enabled creation of net-
works of microbial communities, novel high-throughput techniques, such as microarray[29,
30], RNAseq[31, 32], and Liquid Chromatography—Mass Spectrometry(LC-MS)[33]
have enabled comprehensive studies of gene expression. Genes are expressed in
different conditions and shed light on the underlying physiological and regula-
tory processes in the organism. For instance, if two genes are always expressed
together, it might mean that the same regulation applies to both genes and that
they are involved in the same process. Gene co-expression analysis is thus widely
used in genetic studies for finding regulatory mechanisms, obtaining insight into
relationships between genotypes and phenotypes, and associate diseases with the
genes which trigger them[34]. One of the methods used in this context is the CSD
(Conserved, Specific, and Differentiated) algorithm for differential co-expression
analysis[35]. In paper II, we present the R package csdR which provides an effi-
cient implementation of the CSD algorithm.

The third and final topic of this thesis is genome-scale metabolic modeling. A
genome-scale metabolic model (GEM) is in its most basic sense a network of the
reactions and metabolites presents in an organism. Unlike the two aforementioned
applications of networks, the topology of GEMs is usually not created as a result
of statistical inference. Most reactions taking place in living organisms are cat-
alyzed by enzymes. Consequently, the basic approach for constructing metabolic
model is based on finding the enzymes of the organism and determining which
reaction(s) they catalyze[36]. The term genome-scale is used to emphasize that
the model is supposed to cover all reactions catalyzed by the enzymes encoded
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Table 1.1: A comparison of the types of networks covered in this thesis.

Field of  Nodes Edges Method of Common methods
study network for description

inference and prediction
Microbial Microbial Co- Similarity Module detection,
co- OTUs occurrence  measures to phylogentic
occurrence (species)  associations find all-to-all clustering

associations

followed by

significance

testing
Gene dif- Genes Differential ~ Similarity Module detection,
ferential co- measures to gene enrichment
co- expression find all-to-all analysis
expression (three associations

different followed by
types) selection of

the strongest

links
Genome-  Metabolites (Enzymatic) Reconstruction Flux Balance
scale reactions from genome  Analysis (FBA),
metabolism annotations Flux Variability

and literature Analysis (FVA)

in the genome[37]. However, creating genome-scale metabolic models is not a
straight-forward task. Genome annotations may be missing, some reactions occur
without enzyme catalysis, and some enzymes utilize alternative substrates (under-
ground metabolism)[38, 39]. Over time, the scope and details captured by GEMs
have widened[40, 41]. This includes including enzymatic constraints, time dynam-
ics, and accounting for temperature dependence. In paper III, we will assess the
properties of an enzyme and temperature constrained metabolic model (etcGEM).
Also, in paper IV we will present a study of the properties of automatically gener-
ated models of non-Saccharomyces yeasts which includes temporal dynamics and
enzyme constraints.

In Table 1.1 we compare the three topics in terms of the networks we generate and
analyze.



Chapter 2

Network inference for microbial
communities

2.1 Microbial communities

Microorganisms are found in almost all natural and man-made habitats and play
a crucial role for all living organisms[42]. We call the collection of all microor-
ganisms present in a habitat a microbial community. Even though microorgan-
isms encompasses both prokaryotes (including bacteria and archaea), viruses and
unicellular eukaryotes, we will limit our discussion to prokaryotes for practical
purposes and refer to them as bacteria. On a global scale, microorganisms are es-
sential actors in recycling of nutrient elements such as nitrogen, phosphorus and
carbon[43]. Hence, despite the microorganisms being the most primitive living
entities, they provide functions which larger organisms cannot conduct on their
own. Besides being part of nutrient utilization on a global scale, the microbes also
affect and benefit macroorganisms more directly. A prime example of this is how
the microorganisms in ruminants live in symbiotic relationship with their hosts
and help degrading cellulose, enabling cows and sheep to digest grass[44]. Most
commonly, services such as nutrient recycling and symbiotic nutrient degradation
are not carried out by a single type of organism, instead being a feature of the
microbial community as a whole. This community consists of the populations of
different types of microorganisms.

2.1.1  Why are microbial communities different?

The composition of a microbial community is defined by which bacteria are present
and in what abundances. According to the quote “Everything is everywhere, but,
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the environment selects” by Lourens Gerhard Marinus Baas Becking, the inven-
tory of bacteria ready to colonize a habitat is static, but the environment deter-
mines which bacteria will be able to establish themselves in the community as
a result of selection pressure[45, 46]. Although modern studies in biogeography
have challenged the notion of global dispersal of all microorganisms[47], the com-
mon understanding is still that the environment is the most important factor for the
composition of the microbial community. For instance, an underwater geothermal
vent features entirely different nutrients and adaptational challenges compared to
the rumen of a cow, so the microbial communities of these two habitats are totally
different from each other.

Furthermore, microbial communities are not static over time and change both due
to external pressure and intrinsic activities carried out by the community itself.
This process of change in a microbial community is referred to as community dy-
namics[48]. For instance, the microbial community in a lake will adapt over the
seasons as availability of inorganic nutrients, sunlight and carbon sources will vary.

2.1.2 r-and K-strategists

Alfred J. Lotka provided a classical ordinary differential equation (ODE) model for
describing the populations dynamics of living organisms[49]. His logistic equation
for population growth is as follows:

AN _ Ny <1—g), 2.1)

where N is the population size and r, K are parameters. According to this equa-
tion, the population will stabilize to the carrying capacity K in the long run. The
parameter r is referred to as the specific growth rate and determines how fast the
population grows when N << K. This equation has given rise to the concept of
r and K life strategies[50]. An r-strategist is an organism which is optimized for
fast growth and proliferation, but struggles when competing for limiting resources
(high r, low K). On the contrary, a K -strategist reproduces slowly, but is better
at competing for limited resources and thus dominate crowded environments (low
r, high K). Even though this concept was originally applied for macroorganisms,
Andrew and Harris[51] started to apply it for microorganisms. r-strategist bacte-
ria, such as Vibrio natriegens, prefer unstable environments where nutrients are in
excess and there is little competition for resources. In contrast, K -strategist bacte-
ria, such as Pelagibacter ubique, prefer stable environments where nutrient supply
is a limiting factor.



2.1. Microbial communities 7

2.1.3 Implications for fish health

The health of fish is affected by the microbiota surrounding them and colonizing
their surfaces and intestines, especially at early life stages[52, 53]. For this reason,
survival of fish larva in aquaculture has shown enormous variability depending on
the microbes in their rearing environment[ 14, 54, 55]. Most fish pathogens causing
disease are r-strategists[51, 5]. Still, in many cases of mass fish death, no apparent
pathogen could be pinpointed as the cause. Conversely, known pathogens can be
detected in small quantities without causing any apparent harm. This has lead to
the hypothesis that predominance of opportunistic cause disease when in excess
through dysbiosis in fish without being true pathogens[5, 54]. This means that the
opportunists can be present in small quantities without causing disease, but cause
disease when they predominate the microbial community. Furthermore, research
has suggested that it is not the bacterial load per se which contributes to the dys-
biosis, but rather the composition of the microbial community and predominance
of opportunistic r-strategists[56, 57].

Understanding of r- and K selection regimes has provided insight in how aqua-
culture systems should be designed[5]. A flow-through aquaculture system im-
ports water from an external source at intake and discharges the water after pass-
ing through the rearing tanks. Since the incoming water is oligotrophic, the mi-
crobial carrying capacity is increased dramatically when feed is added to rearing
tanks. This causes selection for r-strategists which are more likely to cause dys-
biosis and death to the fish[58, 5]. To prevent such situations, strategies such as
microbially matured water system (MMS)[59] and recirculating aquaculture sys-
tem (RAS)[60] have been proposed in order to improve the quality of the micro-
biome. In a MMS system, the incoming water passes through a biofilter which
seeds the water with non-opportunistic bacteria and thus reduces the potential for
r-strategists to proliferate[59]. For a RAS system, the water is recirculated in the
system and the water is only exchanged to a limited degree. Hence, a properly op-
erated RAS creates a large advantage for K -strategists as the microbial population
is close to the carrying capacity throughout the cycle and thus there is little room
for r-strategists to proliferate[61, 5].

2.1.4 Microbial interactions and their importance for microbial communities

In a community, the bacteria are constantly affecting the life of each other. Hence,
an ecological interaction is an effect that one microorganism has on another[28,
62]. Interactions are typically classified according to the net effect on the two
actors involved (Figure 2.1). For two bacteria A and B, A positively interacts with
B if B is getting a benefit of A’s presence. Conversely, A negatively interacts with
B if B suffers from a detrimental effect due to A’s presence. A neutral interaction is
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Parasitism or predation

Commensalism Amenalism
=
+ Positive (win)
; = Megative (loss)

Mutualism - ElEg------ 00} -- Bl - Competition 0 Neutral

B Species1
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Figure 2.1: Wheel of microbial interactions showing the different forms of pairwise eco-
logical interactions between two types of organisms where the effect for each of the two
species involved is shown. For instance, amenalism adversarially affect one of the species
(-), whereas the other species is not affected (0). Figure is taken from [28] with permis-
sion.

characterized by being an interaction where there is no net effect of being present
in the same location. Note that interactions are asymmetrical in nature as the
effect of A on B may not be the same as the effect of B on A. An example of
this is parasitism where A is a parasite on B. B has then a positive interaction on
A, whereas B is negatively affected by the interaction. We call the relationship
between A and B mutualistic or cooperative if both A and B benefit from the
interaction. This is the case in cross-feeding where A produces a compound which
is essential for B, while B produces another compound which is essential for A.
The opposite of mutualism is competition where A and B are negatively affected
by each other presence. This often occurs when competing for the same limiting
nutrients.

In our discussion of r- and K -selection, the K -strategists negatively affect the r
strategists by being better for competing for resources[5, 51]. We know that cer-
tain biogeochemical pathways such as nitrification and methanogenesis depend on
mutalistic interactions and that biogeochemical processes are due to the commu-
nity as a whole rather than each of the species in isolation[63, 64]. Still, we do
not know how ecological interactions between bacteria contribute to community
assembly, stability and robustness to external perturbations. These are the main
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questions assessed in Paper I. Are the bacterial communities more based on collab-
oration (positive interactions) than competition (negative interactions)? Are there
any specific interactions which can be exploited in order to favor the prevalence of
K -strategists in aquaculture environments?

2.2 Bacterial systematics

Given the large variety of bacteria in existence, we need to systematize and struc-
ture the diversity in a systematic and hierarchical manner. Hence, a taxonomy
is required for naming, describing and classifying bacteria. Taxonomical ranks
are used for placing organisms into the taxonomy and follows a strict hierarchi-
cal order, meaning all organisms within a taxon at a certain rank also share the
same taxonomical assignment for the ranks above. For bacteria, the standard set
of ranks, in ascending order are Domain, Phylum, Class, Order, Family, Genus,
and Species[65]. For instance, the gut bacterium species Escherichia coli belongs
to the domain Bacteria, the phylum Proteobacteria, the class Gammaproteobacte-
ria, the order Enterobacterales, the family Enterobacteriaceae and the genus Es-
cherichia.

The International Code of Nomencalture of Prokaryotes[66] contains the guide-
lines for assigning scientific names to prokaryotic organisms. Moderns taxonomy
is based on phylogeny, the representation of evolutionary history and relation-
ship between organisms. The ideal of a phylogentically defined taxon is that it
is monophylic, meaning that all individuals of the taxon decent from a common
ancestor and that no other taxon on the same level contains decedents of this same
ancestor[67]. This history can be recorded in a phylogentic tree which is a graph-
ical representation of the evolutionary history of a collection of organisms[68].
Thus, every branch of the tree is intended to contain all and the only organisms
decending from a single ancestor and the length of the branches are supposed to
represent the phylogentic distance.

2.2.1 The 16S ribosomal RNA gene as a marker

Since the millions of years of bacterial evolution have not been observed directly,
researchers have to look for markers of the evolutionary history. Classical bac-
teriology used phenotypic and morphological characteristics to systematize and
determine bacteria. These classical approaches did however result in major in-
consistencies with the phylogenic history[69]. When genome sequencing became
available, this revolutionized the field of bacterial systematics as evolution would
be analyzed with respect to changes in the genome.

The 16S ribosome RNA gene has proven to a good candidate for reconstructing
phylogenies[70, 25]. It is universally distributed among all prokaryotes. Further-
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more, it contains both regions which are conserved enough to be used as target
sites for primers in addition to regions which are variable enough for differentia-
tion to be done at genus level. These variable regions are usually very similar in
closely related organisms and more different for distantly related organisms. Fi-
nally, the 16S rRNA gene is generally not believed to be exchanged by horizontal
gene transfer[71].

The most direct approach to analyze the 16S sequence is to use amplify a specific
section of the 16S rRNA gene using polymerase chain reaction (PCR) and then
sequence it [72]. Originally, this was done through Sanger sequencing and worked
well for pure cultures. However, for samples from natural environments this tech-
nique could not be used directly. Techniques such as T-RFLP[73], DGGE[74] and
clone libraries[75] were developed for dealing with samples containing multiple
sorts of bacteria, but either only gave a granular view of the microbial community
or suffered from low throughput. After the advent of high-throughput sequencing,
16S amplicons stemming from a community of bacteria could be sequencing di-
rectly. This has made it possible to capture the entire diversity of the microbial
community in a sample[76, 77, 78].

2.2.2 The species concept for bacteria

The species is the basic unit of taxonomic classification. Still, the species concept
for prokaryotes is fuzzy and difficult because many of the species definitions ap-
plied for animals and plants are impossible or difficult to apply for microorganisms[69,
65]. According to the Prokaryote Code[66], in order to get a microbial species ap-
proved, there must exist a type strain which viable cultures are deposited in at least
two separate locations. For this reason, the species concept is closely linked to
studies done on pure cultures of isolates. Having bacteriology being based on stud-
ies of pure cultures works well for handbooks[79] for isolating, identifying, han-
dling and storing of bacterial strains. The Prokaryote Code does not specify which
criteria to apply for delimitating a species from strains within a species. DNA-
DNA hybridization[80] was long the preferred method for defining new species,
but there has been a development into using 16S rRNA similarity[81] and more
recently average nucleotide identity[82] for this task.

2.2.3 Operational Taxonomical Unit (OTU)

For analyzing bacteria diversity in natural environments, adhering strictly to the
Prokaryote Code’s species concept by isolating and cultivating bacteria, is not a
sound approach. First, it is observed that for many natural environments, only a
small fraction of the bacteria can be grown and identified through such culture-
dependent methods, referred to as “The Great Plate Count Anomaly”[83]. More-
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over, since these studies involve a large number of different organisms, charac-
terizing and quantifying all the bacteria would be too labor intensive and time
consuming even if they were all cultivable. As these diversity analyses usually are
based on the 16S rRNA gene, an operational definition of the taxonomical relat-
edness is applied instead. Thus, all reads with an 16S similarity above a certain
threshold (usually 97 or 98%) are grouped into a single Operational Taxonomical
Unit (OTU)[84].

2.2.4 Typical workflow for 16S microbial community analysis

We will now briefly explain how the 16S microbial community analyses typically
are conducted[85, 86, 87]: DNA from the samples is isolated and the V3-V4 re-
gion of the 16S-rRNA gene is amplified by PCR using primers with wide cover-
age. Typically, the primers also contain sequencing specific primers in addition to
barcodes labeling the sample. The amplicons are run on an electrophoresis gel,
purified and pooled together. This amplicon library is then sequenced on a bench-
top sequencing machine such as Illumina MiSeq. When the sequencing data is
collected, it is fed through bioinformatics pipelines such as USEARCH[88]. This
bioinformatics pipeline trims away adapter sequences, demultiplexes reads origi-
nating from different samples, filters away low quality read, clusters the sequenc-
ing reads into OTUs and assigns taxonomical classification to the OTUs. The result
of the pipeline is usually an OTU table showing the number of reads for each OTU
in each sample.

2.3 Microbial datasets

In Paper I we analyze the selection-switch dataset[85] which stems from an ex-
periment with laboratory-scale mesocosms inoculated with seawater. The reactors
were subject to different selection regimes which were switched halfway during
the experiment.

We also analyzed the Tara dataset[89] which stems from natural seawater samples
taken from most of the world’s oceanic regions without publishing our results.
Finally, we considered the Carbon-Cycle dataset[90] which stems from samples
taken in the Trondheimsfjord at various depths and seasons, combined with mea-
surements of chemical composition of the seawater. An overview of the datasets
can be found in Table 2.1.

2.4 Methods for analyzing microbial interactions

The most direct way of inferring interactions between microbes is through co-
culture studies. Here, the growth of the two microbes in co-culture is compared
to the growth rate of each microbe in a pure culture[91, 28]. Even though co-
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Table 2.1: Overview of the microbial abundance datasets discussed in this thesis.

Name Number of samples Number of OTUs Source
Selection-Switch 202 1537 [85]
Tara 128 35 650 [89]
Carbon-Cycle 12 1939 [90]

culture studies is considered the gold standard for determining interactions, it has
numerous caveats making it difficult to apply in practice. First, only a fraction of
natural bacteria can be grown in isolation. Second, replicating the natural context
of the interaction is often difficult. Finally, natural environments consist of far
more species than can be isolated and co-cultured. For these reasons, co-culture
experiments is often an infeasible approach for untangling the numerous possible
interactions in natural microbial communities. Instead, the most common meth-
ods for inferring microbial interactions are based on co-occurrence of all bacteria
present in the environment. The most common and natural way to represent and
model interactions is a network where the nodes are the different species (OTUs)
of bacteria, while the interaction are the links between the nodes[27, 28, 26].

2.4.1 Co-occurrence based approaches

Various approaches exist for such network inference[27]. The simplest of these
methods are based on similarity and dissimilarity measures such as Bray-Curtis
similarity or Kullback-Leibler distance, where the pairwise similarity between vec-
tors of OTU abundances are calculated and the most similar OTUs are grouped
together using guilt by association. Some varieties of this method instead ap-
ply correlation metrics such as Person’s product-moment correlation coefficient
or the non-parametric Spearman rank coefficient[92]. Applying correlation- or
similarity-based metrics on 16S microbial datasets has some bespoke challenges.
First of all, the datasets are sparse, as most OTUs are present in a few samples
only. This means that presence of shared zeros may cause two OTUs to appear
more correlated than ecological theory would suggest[93]. Second, 16S sequenc-
ing typically only yields relative estimates of microbial abundances. Hence, the
dataset becomes compositional with a sum-to-one constraint which distorts the
underlying data[94, 95]. Therefore, correlation-based or dissimilarity-based meth-
ods are typically combined with different types of heuristics designed to deal
the mentioned problems with microbial datasets. These heuristics include log-
transforming abundances[93], applying shrinking methods[96, 97] and automated
determination of the inclusion threshold for interactions[98]. Additionally, there
exists various other approaches such as sparse graphical models which use more



2.4. Methods for analyzing microbial interactions 13

advanced statistical methods in order to generate a network of interactions[99].
2.4.2 Time series based approaches

A different class of microbial interaction inference methods are based on the gen-
eralized Lotka-Volterra (gLV) equation[100] which describes the community dy-
namics as a system of differential equations. These approaches require that the mi-
crobial data come from a time series and have the added benefit that the behavior of
the system can be predicted in addition to being described. Depending on the ap-
proach, the OTU abundances are typically discretized and the gLV coefficients are
found by solving a linear system[101, 102, 103], or the abundances of microbes are
approximated by spline and forward-difference methods and maximum-likelihood
or Bayesian algorithms are then applied to estimate the coefficients[104].

2.4.3 ReBoot

For Paper I, we chose to use a correlation- or similarity-based network inference
method named ReBoot (Permutation-Renormalization and Bootstrap)[94]. While
not being one of the most advanced methods for inferring microbial interactions,
it has the benefit of being relatively simple to understand and customize.

The ReBoot approach is an enhancement to the basic similarity-based network
approaches as it can estimate statistical significance of each of the resulting links,
and applies heuristics such as bootstrapping and renormalization. As illustrated in
Figure 2.2, the ReBoot method repetitively measures the similarity of abundances
of each possible pair of OTUs under two conditions. Under the first condition, the
samples of the original data are selected by bootstrapping[105] and the similarity
of the relative abundance vectors of the two OTUs are calculated. For the other
condition, the sample labels are randomly permuted (swapped) for one of the two
OTUs before measuring the similarity of the relative abundances of the two OTUs.
Permuting the samples breaks the sum-to-zero constraint of compositional data
which is why ReBoot uses renormalization after permutation in order to retain the
sum-to-zero constraint after permutation.

By taking the mean similarity obtained from bootstrapping the data and comparing
it with the similarity when the samples are randomly permuted, we obtain a p-
value reporting the probability of the association to be generated by chance. As
all possible pairs of OTUs are checked as possible candidates for interactions, we
have an extreme case of multiple testing. Hence, a p-value reported is only valid
when considering a pair of OTUs in isolation, but not in context of constructing an
interaction network. Hence, the Benjamini-Hochberg-Yekutieli procedure[106] is
used to convert the p-values into g-values which represent the false discovery rate
and are valid when considering all interactions at once.
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Figure 2.2: Graphical overview of the ReBoot method. The raw read counts are normal-
ized, yielding relative abundances. From the relative abundances and each pair of OTUs,
a bootstrap distribution and a compositional null distribution are estimated. These two
distributions are compared and tested for significance. The figure is taken from [94] under
license CC-BY-4.0.

By applying a threshold on the g-values to consider or specifying the number of
links to include, a network can be constructed. Because all the OTUs are compared
symmetrically, this network is undirected, meaning that the method has the down-
side of not being able to represent asymmetric interactions such as amenalism and
parasitism. We refer to a link in such a network as an inferred interaction. The
original idea was that these inferred interactions should represent the ecological
interaction between the microbes. However, the presence of an inferred interac-
tion does not automatically imply that a real ecological interaction is present[107]
and the results must therefore we interpreted with caution.

When creating a ReBoot data analysis pipeline there are many different options
available which may influence the results:

* There exist many similarity measures such as Pearson correlation, Spearman
correlation, Kendall correlation, cosine similarity, and Bray-Curtis similar-
ity. Unlike the original paper introducing the ReBoot method[94], we con-
sider the results for each similarity measure independently instead of merg-
ing the networks for different similarity measures.

* Rare OTUs should be filtered out prior to analysis [108], the reason being
that rare OTUs may cause noise, spurious correlations and reduced statistical
power. Hence, how to set the threshold for filtering the rare OTUs is an
important choice to make.
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e OTU tables obtained from 16S sequencing do by default only provide esti-
mates of the relative abundance of an OTU within a sample. This means that
it is harder to accurately compare OTU abundances across samples[95]. For
datasets where estimations of total cell count is available through qPCR or
flow cytometry, absolute abundances can nevertheless be estimated from the
relative abundances. This is the case for both the selection-switch dataset
and the Tara dataset, giving us the opportunity to compare analysis of rela-
tive and absolute abundances. When handling datasets with estimated abso-
lute abundances, renormalization of reads is counter-productive, so it should
be turned off in these cases.

* Random noise can be added to the abundances during bootstrapping in order
to distort patterns of shared zeros and limited resolution in the data. Espe-
cially the non-parametric similarity measures such as the Spearman corre-
lation suffer from the fact that common zeros lead to a high degree of sim-
ilarity for OTUs present in a few samples only. In our case, the noise is
normally distributed with a standard deviation proportional to the resolution
of the sequencing data.

The ReBoot implementation used in this thesis is based on the ccrepe R[109]
package[110]. However, in order to enhance performance and pipeline the afore-
mentioned variations of the ReBoot algorithm, we adapted the original code into
a package named micInt (https://github.com/AlmaasLab/micInt). A
graphical summary of the pipeline employed in Paper I (as well as for the Tara
dataset) is shown in Figure 2.3.

2.4.4 Similarity measures

For the ReBoot algorithm the choice of the similarity measure is important. Math-
ematically speaking, a similarity measure is a function which reports how sim-
ilar two vectors of observations are[111]. In our research, we tried out a vari-
ety of similarity measures, but focused on the Pearson product-moment correla-
tion coefficient[112] and the Spearman rank coefficient[92] as they are commonly
used, and yet have different properties. The Pearson correlation determines linear
relationships and reports perfect similarity (r = 1) if the two abundance vectors
follow a straight line with a positive slope and perfect dissimilarity (r = —1) if the
straight line has a negative slope. On the other hand, the Spearman correlation is
a non-parametric measure and is defined as the Pearson correlation of the ranks of
the observations in the vector. This means that all data which form a monotonic
increasing (but not necessarily linear) relationship will be reported as completely
similar, whereas data which form a monotonically decreasing relationship will be
reported as completely dissimilar[113].
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Figure 2.3: Flowchart of the data processing pipeline for Paper I. The OTU table is first
filtered in order to remove rare OTUs. Subsequently, the table is preprocessed either by
renormalization or scaling by total cell counts. This preprocessed OTU table is fed to
ReBoot together with similarity measures and generators of random noise. The resulting
matrix of g-values is filtered, the involved OTUs are presented in a network and module
detection is run. The module assignments are then used to label the OTUs in the phyloge-
netic tree. Figure adapted from [111] with permission.
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2.5 How to interpret microbial interaction networks

2.5.1 Network modules

In a network, a collection of nodes which is more interconnected with itself than
the rest of the network, is called a community or module. We will refer to this
concept as network module as not to confuse it with the term microbial commu-
nity. The nodes in a module and the links between them constitute a subgraph,
meaning that it is a network by itself if considered in isolation. There exists vari-
ous module concepts and definitions of what a module is[114, 20]. The main idea
is that a tightly interconnected part of a network might have something in com-
mon and therefore is worth studying. For a social network this can correspond to
a workplace or a school class and in a scientific co-publishing network, this may
correspond to a field of study such as mathematics or chemistry.

We will focus on the hierarchical network module concept where the network is
partitioned into multiple layers of modules[20]. On one extreme, the entire net-
work itself is a module, and on the other extreme, the individual nodes themselves
are modules. However, we are generally interested in dividing the network into
modules which reside between these extremes. This requires us to decide on a
criterion determining which partitioning is the best one.

2.5.2 The walktrap algorithm

Just as there are various definitions of what a network module is, there are also
a wide range of tools for finding modules[20]. The main classes of methods for
hierarchical module detection are divisive and agglomerative algorithms where
the former infer modules top-down and the latter infer the modules bottom-up.
Divisive algorithms start with the entire network and recursively split the network
into smaller and smaller pieces, where some kind of optimality criterion is satisfied
at each step. By contrast, agglomerative algorithms merges nodes and smaller
modules together until a certain optimality threshold is reached.

The walktrap algorithm[115] is an agglomerative method where short random
walks among the edges of the network are used to estimate the probability that
the walk stays inside a module. Probabilities P;; (probability of ending up at node
J given start at node ¢) are first estimated. These probabilities serve as a starting
point for clustering the nodes in a hierarchical tree by Ward clustering[116]. Where
to cut the tree and thus obtain a module decomposition is decided by the modular-
ity score of each of the possible cuts. The cut having the largest modularity score
is chosen as the final module decomposition. As the estimation of the transition
probabilities F;; are estimated by a Monte-Carlo method, the results may vary de-
pending on random seed, but with a sufficiently high number of random walks, the
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stochastic effects should be minimal.
2.5.3 Network modules for ReBoot networks

While the most intuitive approach is to assume that each link in a ReBoot net-
work corresponds to some direct ecological between two bacteria, the results tell
a different story. As Paper I shows, we end up with networks consisting of mostly
positive inferred interactions where there are tightly clustered modules of related
bacteria. Instead of telling us about the ecological interactions, the resulting net-
works are more indicative of habitat preferences, an observation reported in other
studies[117, 118]. This effect is robust to the level of applied noise, similarity
measure and the rate of filtering rare OTUs. In addition, using other and more
sophisticated tools than ReBoot may not help the problem either as inferring eco-
logical interaction from co-occurence data has been shown to be difficult despite
efforts to make the inference algorithms more robust[119, 120].

Results from the Tara dataset tell a similar story even though the dataset is very
different in nature. Another finding evident in the Tara dataset is that due to a
large number of samples and OTUs, there is a cognitive overload of interactions
having low g-values. Depending on the settings, it is easy to get more than 1 000
000 interactions having a g-value of less than 0.05. Therefore, it is more sensible
to pick a certain number of edges for network visualization than setting a specific
g-value threshold.

When focusing on the network modules, we also see tendencies of phylogentic
clustering (Figure 2.4 and 2.5). The main distinction is between cluster 3 and 6
which mostly contain Proteobacteria and Cyanobacteria, respectively. In mod-
ule 3, the SARI11 clade including Candidatus Pelagibacter dominates, whereas
Prochlorococcus and Synechococcus are the dominant genera in module 6. Eco-
logically, the SAR11 clade is the most dominant order of heterotrophic microor-
ganisms in the oceans and have widespread geographical distribution[121, 122].
On the other hand, Prochlorococcus and Synechococcus are the oceans’ most abun-
dant primary producers[123]. Hence, the most significant interactions seem to
cluster the most abundant groups of organisms together. The observation could
make sense in the respect that phototropes are found in the same samples when
sunlight is abundant, whereas heterotrophes are found together when organic car-
bon and other nutrients are available.

Still, our findings defy the competitive exclusion principle stating that if two species
compete for the same resources, one of the species will out-compete the other[124].
The fact that far more planktonic species co-exist in natural environment than
there are resources available, is referred to as the ’paradox of the plankton™[125]
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and numerous theories and models have been suggested in order to explain this
discrepancy[126]. One of the popular theories in this field is Hubbell’s neutral-
ity theory which states that different competitors are almost ecologically equiva-
lent and therefore selection is not predominant enough to ensure co-exclusion[127,
128].

During our research, we noticed that a relatively high number of samples are
required in order to obtain sufficient statistical power for network construction.
This was not a problem for the selection-switch and Tara datasets which contained
more than a hundred samples each. However, the carbon-cycle dataset having only
twelve samples proved to be insufficient for any meaningful interaction network
construction.
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Figure 2.4: Module labeled network (computed by the Walktrap algorithm with 20 steps)
of the 400 most significant interactions in the Tara dataset with Spearman similarity, abso-
lute abundances, low noise level and low filtering threshold. Blue edges indicate positive
interactions, whereas red edges indicate negative interactions. The node-sizes are scaled
logarithmically according to overall mean abundance.
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Figure 2.5: The OTUs shown as nodes in figure 2.4 in a phylogentic tree together with the
class level taxonomical assignment. Notice that there is some inconsistencies between the
phylogentic tree and the assigned taxonomy.
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Chapter 3

Network inference for gene
co-expression

3.1 What is gene expression?

A gene in a living organism is understood as an inherited construct with a spe-
cific function[129]. For our discussion, we will limit ourselves to protein coding
genes, this is coding regions in the DNA which are translated into a functional
protein[130]. The genome encoding the genes is generally static over the entire
lifespan of the organism and cells of multicellular organisms usually contain the
same genome. However, organisms respond to their environment and exhibit cell
differentiation by altering the gene expression which is a dynamic entity. A gene
is expressed if it is actively transcribed and translated from the genome. Hence,
the gene expression is the key determinant differentiating nerve cells and muscle
cells[131]. Also, gene expression reflects the state of the human body because
different situations demand different responses. For this reason, gene expression
of a person recently having eaten a meal is different from that of a person how is
starving[132].

Genetic background, intrinsic factors such as age and environmental disturbances
all affect the gene expression. In certain cases, these factor lead to malfunctioning
in regulation of gene expression, and diseases can arise as a consequence. In many
cases, such as in cancer, allergy, type 2 diabetes, and chronic fatigue there is not a
single gene responsible for the development of the disease, but still dysfunctional
regulation of a gene compared to other genes can lead to disease progression[133].
Thus, obtaining insight into the orchestration of the gene expression, referred to as
gene co-expression can shed light on the causes and progression of diseases[134].

23
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Hopefully, this will help implement measures and treatments in order to prevent or
treat the diseases in question[135].

3.2 How is gene expression measured?

According to the central dogma of molecular biology[136, 137], the information
flow in a living organism starts from the DNA comprising the genome, to messen-
ger RNA (mRNA) relaying the genetic information, and finally to protein which
carries out the function encoded in the genome. Hence, gene expression stud-
ies target either the proteins directly or the mRNA containing the transcripts for
building the proteins. As with microbial co-occurence networks, high-throughput
modern omics technologies have enabled large-scale analyses of gene expression.

For detecting mRNA transcripts, the mRNA from the samples has typically been
isolated, converted to cDNA through reverse transcriptase and analyzed on a DNA
microarray[29, 30]. A DNA microarray is a chip on which fluorescent gene probes
are attached. When a sample is presented on the chip surface, cDNA match-
ing the probes hybridizes and changes the level of fluorescence. This effect is
then recorded for each probe on the chip on an automated scanner, thus report-
ing the level of expression for each gene. In the recent years, the cDNA has
been sequenced directly through high-throughput sequencing in a technique called
RNAseq[31, 32]. This has largely replaced DNA microarray as it is more sensitive
and provides more information of gene expression.

For proteomics analyses, approaches based on mass spectrometry (MS) have be-
come the most popular for large scale analyzes[138, 139]. Here, proteins are usu-
ally fractionated and partially degraded to peptides before sent into the mass spec-
trometry apparatus. Here, the peptides are exposed to an ion source which adds
electric charge to the peptide, turning them into ions. The fragment ions are then
deflected by a magnetic field before the fragment hits a detector. This allows the
mass spectrometer to determine the mass to charge (m/z) ratio of the peptide.
The resulting data are assembled and mapped back to the proteins encoded in the
genome, providing an estimate of the protein composition of the sample.

3.3 What is a differential gene co-expression network?

Once the gene expression data are acquired, the data must be presented such that
researchers can make sense of it. Organizing the data into gene co-expression net-
works (GCNs) is by far the most common approach in this regard. In a GCN, the
genes are nodes and the links represent co-expression between the genes. Typi-
cally, the expression values are evaluated by similarity measures and each pairs of
genes having a similarity or dissimilarity above a certain threshold is connected by
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a link, see Figure 3.1.

Further analyses of the network are usually necessary for drawing conclusions.
This includes identification of network modules, finding hub genes and enrichment
analysis. The R package WGCNA (Weighted Correlation Network Analysis)[140]
is currently the most popular computational tool for such analysis and support
creating a co-expression network in addition to module reporting.

Differential gene co-expression is an extension of gene co-expression by compar-
ing gene co-expression across two or more different conditions[34, 141]. This
extension is supposed to capture regulatory patterns which are difficult to capture
by simple co-expression network analysis alone. This is because knowing how
gene regulation in a healthy individual works helps us to differentiate unhealthy
gene regulation from healthy gene regulation. In a typical setting, two datasets are
analyzed, one with sick patients and one with healthy controls. With the under-
lying idea being that dysfunctional regulation of the genes contribute to disease
development, the co-expression networks for each of the conditions are compared
and used to generate a differential co-expression network. This differential GCN
is then further analyzed for features which may explain the different phenotypes
between the sick patients and the healthy controls.

Currently, there exists several different computational tools for differential gene
co-expression analysis. One key characteristic of these algorithms is what metrics
they use to infer differentially expressed genes. These include[135]:

* Changes in correlation coefficient across conditions
* Changes in entropy across conditions
* Expected conditional F'-statistic

¢ Interaction test

As aresult, the tools vary considerably in what kind of output they provide. Some
tools report rankings of genes which are differentially co-expressed, whereas other
give the full network of differentially expressed genes. Also, the tools differ
in respect to how they treat signed changes of co-expression, meaning that the
two genes are co-expressed in both conditions, but the sign of co-expression dif-
fers. Some of the tools treat such sign changes the same as loss of co-expression,
whereas other tools identify this as conserved co-expression.



26 Network inference for gene co-expression

Co-expression Network construction Module definition

Gene 13 expression
Q

——— >

Co-expressed ,7 @
/

gene module

R=008 R=040
Geone 8 expression . >

/

te ' R=079 . R=096
Gene 3 expression Gene 3 expression

Gene 11expression
Gene 6 expression

~ @@ S

Guilt-by-association

Regulatory network
predictions / \ identification
Finding hub

Differential co-expression
genes Enrichment  analyses
analyses

Potential disease Disease-associated
gene module

Figure 3.1: Example of a gene co-expression workflow. The co-expression of each gene
pair is analyzed and the relationships being stronger than a certain threshold are then in-
cluded as links in the co-expression network. From this network, genes of interest can be
isolated through guild-by-association (i.e. a gene is considered important if it is connected
with certain other genes). Furthermore, modules can be detected, allowing for finding
sets of tightly co-expressed genes. Other types of analyses include finding hub (highly
connected) genes, enrichment analysis (finding phenotypes or biological processes which
occur more frequently than expected by chance), prediction of the regulatory network be-
hind the gene co-expression, and differential co-expression analysis. Figure taken from
[135] under license CC-BY-4.0.
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3.4 The CSD algorithm

The CSD algorithm[35] (Conserved, Specific, and Differentiated) is a method
for differential gene co-expression analysis and quantifies differences in gene co-
expression among two different conditions. It is designed to discriminate be-
tween conserved co-expression (Conserved), loss of gene expression (Specific)
and change of sign of co-expression (Differentiated). The procedure is as follows:

1. Treat the two datasets independently and calculate the Spearman correlation
pl92] between the expression levels of every pair of genes. This process
is repeated by resampling in order to estimate the standard error o for the
correlation.

2. The two datasets are combined in order to produce Conserved (C), Specific
(S) and Differentiated (D) scores for each gene pair. Given the gene co-
expression p; and ps in the two conditions and the associated estimation of
standard deviation o1 and o9, these values are given by:

c=lotrl G.1)
o7+ 05
D— ||01\+|P2|—|Pl+02||’ (32)

2 2
Vo + o5

g _ el —lp2ll (3.3)
V4 U% + a%

The C'— value indicates to what extent two genes have the same co-expression
across the two conditions, the D— value indicates whether the two genes are
co-expressed with opposite signs under the two conditions, whereas the S—
value indicates whether the genes are co-expressed in one condition, but not
in the other. This logic is illustrated in Figure 3.2. The result of this stage
is a table where each gene pair is an entry and contains the values of p1, p2,
o1, 092, C, S and D.

3. The gene pairs with the highest values (according to some thereshold) for C,
S and D are selected and tables containing the gene pairs with the highest
values for C, S and D are produced. These tables are interpreted as net-
works where the nodes are genes and the links are the gene pairs in these
tables. External network analysis and visualization tools are thereafter used
to interpret the networks and provide biological knowledge.

Earlier, there existed two implementations of CSD. This includes the original im-
plementation introducing the method[35] (https://github.com/andre-voigt/
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Figure 3.2: The scores Conserved (C), Specific (S) and Differentiated (D) for a gene pair
depend on the gene co-expression values p; and ps under the two conditions. A high or
low value for both p; and po result in a high C-score (upper right and lower left in the
figure). A high value for either p; or py and a corresponding low value for the other co-
expression value result in a high D-score. Finally, a high or low value for one of p; or ps
and a close to zero value for the other co-expression value result in a high S-score (middle
of the top, left, right and bottom faces). Figure taken from [35] under license CC-BY-4.0.
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csD). Itis provided as a collection of three programs each carrying out one of the
steps of the CSD procedure and are expected to be used in tandem. The pro-
gram for part 1 is written in C++, whereas the two others programs are written in
Python. The other implementation, named CSD C++ (https://githuxb.com/
magnusolavhelland/CSD-Software) is the result of a Master’s thesis[142]
and is written in C++, aiming for maximal performance.

3.5 The csdR package

Paper II introduces csdR which is an R package written with the performance,
interoperability and user-friendliness in mind. In addition to R, the C++ inter-
face Rcpp[143, 144, 145] and the parallelism interface openMP[146] is used
for writing performance critical code. The package is available on Bioconductor
(https://doi.org/doi:10.18129/B9.bioc.csdR) which is a comprehen-
sive repository of R packages. Residing on Bioconductor makes the package easy
to find and install[147].

Both of the older CSD implementations have hard-coded the procedure for file
operations. Besides adding complexity to the codebase, coding file operations di-
rectly into the source code opens a larger potential for errors due to unexpected
input formats. For CSD C++, the vagueties about the accepted file format caused
serious file reading problems to the extent that we gave up benchmarking the im-
plementation for Paper II. Fortunately, this did not make cause any severe problems
for the the orignal CSD implementation.

The original CSD implementation passes the results from one step in the pipeline
to the next step through files. The size of the intermediate files in a typical CSD
analysis is often on the magnitude of tens of gigabytes and much larger than the
input and the end result. This consumes large amounts of disk space and file oper-
ations slows down the process. csdR avoids these problems by not including any
file operation code. All computations are done on R datastructures which gives
larger flexibility in import of data and downstream handling of the results. Typi-
cally, the user will offload reading and writing of data to preexisting R procedures
for data import and export.

In terms of computational performance, the most demanding part is first step of the
algorithm where the co-expression of the gene pairs are computed with resampling.
If there was no need for calculating the standard deviation of the co-expression, this
step could be skipped, saving the bulk of the computational burden. Some studies
have suggested that not normalizing the C'-, S- and D-values by the standard devi-
ations does not alter the results to a large degree[148]. Also, calculating standard
deviations is omitted by CoDiNA, a multi-condition variety of CSD[149]. How-
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ever, for csdR we chose to retain the conservative approach of estimating standard
errors.

In csdR, the resampling is done through bootstrapping of the entire dataset[105]
compared to a custom subsampling algorithm on the individual gene pairs in the
two other implementations. The way this resampling is implemented for csdR
saves large amounts of computational overhead compared to the original CSD im-
plementation. Even though csdR runs the bootstrap iterations sequentially due to
constraints on memory, it can still leverage parallelism as the Spearman correlation
is calculated by a heavily optimized and multithreaded implementation.

Unfortunately, Paper II shows that csdR fails to achieve a parallel speedup higher
than a factor 2.72, no matter how many CPU cores are available. This demonstrates
that there must be another bottleneck in the system. Given the fact that the CPU
has to load and store gigabytes of data for each bootstrap iteration, we believe
that this bottleneck is the bandwidth to system memory. Still, the performance
of csdR is suffcient to conduct realistic analyses within a day compared to the
original implementation where weeks could pass before the results were ready.



Chapter 4

Genome-scale metabolic models

4.1 What is a genome-scale metabolic model?

The collection of all chemical conversions taking place inside a living organism is
called the metabolism. As the goal of bioengineering often is to make the organ-
isms produce or consume a compound of interest or carry out a specific process,
the metabolism of is usually the most important focus in bioengineering. The bio-
chemical reactions themselves are difficult to measure directly as they happen on a
microscopic scale and cannot be isolated from the environment in which they oc-
cur. Still, the metabolic compounds inside an organism and its surroundings can be
isolated and detected[150], and thus shed light on the reactions taking place inside
the cell. The process of creating an in silico model of the metabolism occurring
inside a cell is referred to as metabolic reconstruction[151].

Most biological reactions are catalyzed by enzymes. These enzymes can too be
isolated and studied for their catalytic properties[152]. Furthermore, the enzymes
are encoded in the organism’s genome, so the enzymes and hence the organism’s
metabolic capabilities can be predicted by the genome sequence. As a conse-
quence, the common starting point for metabolic reconstruction is to sequence the
genome of the organism. The genome is then annotated for the enzymes it encodes.
Gene-reaction rules are then used to associate the enzymes with the metabolic re-
actions they encode. The resulting listing of the organism’s metabolic capabilities
is referred to as a genome-scale metabolic model (GEM)[36, 151]. In addition, a
good metabolic model should also include non-enzymatic reactions such as diffu-
sion and non-catalyzed reactions.

For modeling purposes, GEMs often include pseudo-reactions which are not real

31
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Figure 4.1: A small example of a metabolic network. X through X5 denotes metabolites,
whereas the arrows denote reactions with their corresponding fluxes vy through v7.

metabolic reactions per se, but are still included in order to account for biological
effects. Some of the most common applications of such pseudo-reactions relate to
biomass production (growth), enzyme pools (for enzyme-constrained models), and
non-growth associated maintenance (NGAM)[153, 154]. NGAM simulates the
ATP demand for the cell in order to maintain homeostasis and is thus implemented
as an ATP hydrolysis function through which a minimum flux is required. We will
discuss production of biomass and enzyme pools later in this chapter.

A toy metabolic network is shown in Figure 4.1.
metabolites and seven reactions and has the reaction representation:

R7:

4 X,
X1 B X,
2 Xy
Xo+ X34
Xi+X, 5
X5 8
X, 5

X4

X

5

This network contains five

4.1)
4.2)
(4.3)
(4.4)
4.5)
(4.6)
4.7)

We note that reactions R; and R3 produce metabolites without requiring partici-
pation of other metabolites. These are called import reactions. Conversely, reac-
tions Rg and R7; consume metabolites without producing any metabolites and are
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hence called export reactions. Collectively, import and export reactions are called
exchange reactions. vi,...,v; denominates how fast the reactions run (usually
reported in milimoles per gram dry weight per second) and are called the fluxes of
the reactions. The stochiometric matrix of the model is a mathematical represen-
tation of the network where the metabolites constitute the rows and the columns
are the reactions. Entry (i, 7) in the stochiometric matrix S gives the coefficient of
metabolite 7 in reaction j. By convention S; ; is positive if the metabolite is pro-
duced in the reaction and negative if the metabolite is consumed in the reaction. In
our example, the stochiometric matrix is given by:

Ri Rs Rz R4 Rs Rg Ry

X1 1 -1 0 0 -1 0 O
X2 0o 1 0 -1 0 0 O
S = X; 0o 0 1 -1 0 0 O 4.8)
X4 o o o0 1 -1 0 -1
X5 o 0 o0 o0 1 -1 0

4.2 Flux Balance Analysis (FBA)

Once the network of reactions is known, the next problem is to use it to pre-
dict and explain metabolic behavior. The most direct approach for modeling the
metabolism is having a mechanistic differential equation based model of the reac-
tions and the metabolites[155]. However, this approach requires large amounts of
knowledge into the kinetics of the system and how the processes are regulated.
For this reason, mechanistic models are more common for small, well-studied
metabolic and signaling pathways, whereas creating genome-scale mechanistic
models of entire organisms is usually infeasible[156]. Constraint-based methods
provide viable alternatives to mechanistic models for larger models as they usually
require less data[157]. Of the constraint-based methods, Flux Balance Analysis
(FBA) [158, 159, 160, 157] is one of the most popular ones. It relies on two basic
assumptions:

1. (Quasi) Steady-state: We assume that the internal concentration of metabo-
lites does not change. This means that the consumption of a metabolite
equals its consumption. Even though cells in real life can change internal
metabolite concentrations, the steady-state assumption still is a good ap-
proximation in many situations such as under exponential growth. Note that
this does not imply that the cell is in chemical equilibrium which means that
there is no net chemical conversion and all fluxes are zero. In fact, a cell
which has reached chemical equilibrium is dead[161].
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2. Optimal regulation: Even though the details of internal regulation of metabolism

is unknown, we nevertheless assume that evolution has shaped the regulation
to maximize a certain objective linked to the organism’s survival and prolif-
eration. Hence, we talk about the objective function, the function of fluxes
to maximize given the constraints of the model are respected. The most
popular approach for microorganisms is to assume that the objective for the
organism is to grow as quickly as possible and thus maximize production
of biomass. The biomass reaction is a pseudo-reactions which purpose is
to simulate the consumption of metabolites, co-factors and energy currency
molecules in order to make more cell material.

421 Mathematical formulation

Using the notation from the toy metabolic network, we can describe the FBA
framework mathematically:

For all 7, we have

dX;
= > Si v, (4.9)
J
or on a vectorized form:
dX

The steady state assumption of FBA requires that

d X;
=0 4.11
a1 (4.11)
for all ¢ or equivalently
dX
—— =0 =0. 4.12
a1 < Sv (4.12)

The objective function is given by a linear combination c of the fluxes':

'Non-linear objective functions are in theory possible to define, but are rare in practice due to
computational issues
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Z =clv (4.13)

Also, we set bounds on the reactions to limit the fluxes, such that for each reaction
7, there exist flux bounds vé»b and U}‘b such that:

ol <y <ot (4.14)

In the default FBA setting, only the import reactions are constrained to a certain
number, the reason being is that uptake rates are relatively easy to measure ex-
perimentally, whereas the fluxes for internal reactions are not. Otherwise, the flux
bounds are most commonly set to unlimited or high numbers which for all practical
purposes gives an unlimited flux. The exception of this rule is that many reactions
are considered irreversible and only run in a certain direction, hence their fluxes
are only allowed to take on positive or negative values.

The entire FBA problem can then be formulated as a linear program (LP):

Maximize Z =cTv
Subjectto: Sv =0 (4.15)
Vi < v < yub

4.2.2 Solution space of FBA

The set of flux vectors v which satisfy the equality and inequality constraints in
equation 4.15 is called the solution space of the problem. Geometrically, the solu-
tion space is a convex polytype in a high-dimensional room. If the solution space
is empty, i.e. no v exists such that the constraints can be satisfied, we refer to the
problem as infeasible and no solution can be obtained.

The simplex algorithm is the classical method for solving LP problems such as
the one in equation 4.15. Variations and enhancements of the simplex algorithm
are used in efficient LP solvers such as CPLEX or Gurobi in order to obtain an
ideal solution to the problem. Usually, the FBA problem possesses degeneracy,
meaning that there is more than one point in the solution space yielding the max-
imal objective value. Still, LP solvers usually only report one of these optimal
solutions[162].

4.2.3 Flux Variability Analysis (FVA)

Sometimes it is not desirable to only obtain one of many possible optimal solu-
tions from a degenerate FBA problem. This is often the case with dynamic FBA
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simulations (Paper IV) which are sensitive to which solutions are chosen from de-
generate problems. There are two main strategies for dealing with the challenge of
degeneracy:

* Add secondary objectives or constraints in order to narrow down the solution
space. Parsimonious flux balance analysis[163] is a prime example of this
methodology which picks the optimal solution having the minimum absolute
sum of reaction fluxes. In Paper IV we solve the challenge of degenerate
solutions by applying multiple objectives for each of the exchange fluxes in
lexicographical order[164, 165].

* Explore the diversity of optimal solutions. This includes approaches such as
flux sampling[166] and flux variability analysis (FVA)[167, 168].

We will explain FVA in more depth:

In FVA, the optimal value of the objective function Z,; is first found through
FBA. Then, the algorithm goes through each reaction in the model individually
and queries the minimum and maximum fluxes which are obtainable under the
optimal FBA objective value:

Maximize/Minimize v;
Subject to: Sv=0
cTv = Zyy;
vib <v <v" forie{l,...,n}

(4.16)

Often in practice, the constraint cTv = Zy; is relaxed to cTv < (1 — €)Zy;
where € is a small positive number (typically 0.01). This is done in order to avoid
numerical problems. Even though FVA can find the allowed range of values for
each flux in the space of optimal solutions, we still obtain no information on how
the fluxes are coupled. For instance, imagine reactions R; and Ry have [1, 5]
and [8, 10], respectively as their FVA ranges. Then we know there is an optimal
solution where I?; has the value 3 and there exists an optimal solution where R
has the value 9. However, we don’t know whether there exists any optimal solution
which satisfies both R; = 3 and Ry = 9 simultaneously.

4.2.4 How FBA is used

By its nature, FBA gives a quantitative prediction of the resulting fluxes. Hence,
FBA is often used in bioprocess engineering to predict the growth rate, consump-
tion of substrate and excretion of waste products given the nutrient environment[169].
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In addition to the quantitative flux predictions, FBA is often used qualitatively
where the feasibility of the FBA problem is checked. Often, infeasible problems
are due to errors or missing reactions in the model. As such FBA is used to val-
idate and test genome-scale reconstructions rather than just being a result of the
reconstruction process[36]. This is utilized in a reconstruction process referred to
as gap-filling where changes (often addition of missing reactions) in the metabolic
model are made to improve its quality[170].

Another other major source of infeasible models is missing nutrients in the sim-
ulated growth medium. Experimental results may determine that the organism is
able to grow in some environments and not in others[171]. This can be applied in
gap-filling as a model which is infeasible in an environment where it should grow,
most certainly has missing reactions. Conversely, a model which is feasible in
an environment where it does not grow experimentally often has reactions which
should be removed from the model.

Furthermore, FBA is used to predict effects of gene knock-outs and changes to the
growth medium[172, 173]. This includes attempts to couple production of a de-
sired compound with the organism’s growth[174]. However, exposing the organ-
ism to a genetic makeup or an environment to which it has not evolved to adapt,
often invalidates the optimality principle of FBA. This is because the regulatory
mechanisms inside the cell have not been optimized for the new environment or
genetic background and may therefore not achieve optimality.

The problem of non-optimality can be mitigated by adaptive laboratory evolution
(ALE) where microorganisms being exposed to genetic or environmental changes
will be allowed to evolve for generations. Evolution will then usually rewire the
regulation of metabolism and thus help the organism approach optimality[174,
175]. In addition, there exists heuristics designed to predict metabolic behavior
immediately after environmental and genetic disturbances[176, 177, 178].

4.3 Extensions of FBA

Since its inception, a plethora of FBA varieties and extensions have been developed[40].
Although a complete listing of all varieties is out of scope, we will discuss FBA
extensions following the organization in Table 4.1. Additionally, we will illustrate

the difference between FBA, ecFBA and etcFBA in Figure 4.2.

4.3.1 Enzymatic constraints (ecFBA)

Baseline FBA considers only constraints related to uptake of metabolites and nu-
trients. This way, the cell is effectively thought of as a chemical factory which
converts some input metabolites into cell material (growth) and metabolites which
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Figure 4.2: Baseline FBA, ecFBA and etcFBA are incrementally more complex model
frameworks. Baseline FBA (panel (a)) only involves the stoichiometry of the reactions
and enforces a steady-state assumption. ecFBA (panel (b)) adds the enzyme as a pseudo-
reactant. The enzyme has a fixed catalytic rate and is drawn from a finite enzyme pool
which is shared with the other enzymes in the model. etcFBA (panel (c)), adds temperature
dependence of the enzymes through a thermodynamic equation.
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Table 4.1: Classification of FBA varieties presented in this thesis. The prefix ec is short
for Enzyme Constrained, the prefix d is short for Dynamic and the prefix etc is short for
Enzyme and Temperature Constrained.

No internal Internal enzyme constraints
constraints
Fixed catalytic | Temperature-
rate dependent
catalytic rate
No time dependence FBA ecFBA etcFBA
Static time dFBA decFBA detcFBA
dependence

are excreted. However, metabolic enzymes also have limitations on how much flux
they can catalyze. This becomes evident when considering the Crabtree effect in
yeast or overflow metabolism in Escherichia coli. Both Saccharomyces cerevisiae
and E. coli have a facultative aerobic metabolism. This means that they can use
oxygen for respiration, but are able to utilize energy sources through fermentation
when oxygen supply falls short. Growing on glucose, full respiration yields water
and carbon dioxide as the final products and has a superior energy yield per unit
of glucose than fermentation to ethanol. Still, it can be observed that even though
oxygen is available, fermentation steps in and supplements respiration[179, 180].
This is referred to as the Crabtree effect or overflow metabolism and surely pro-
vides a lower energy yield for the same amount of glucose consumed, so this would
be judged as a wasteful process by import-constrained FBA, appeartly violating the
principle of growth rate maximization.

Among modelers, a common explanation for the observed fermentative metabolism
in presence of oxygen that it is due to internal enzyme constraints. Respiration of
glucose requires more enzymes than fermentation and these enzymes are costly to
produce and there is a physical limit to how much enzyme the cell can accommo-
date. Combined with the fact that the enzymes are only able to catalyze a certain
number of conversions per time unit, the resporatory enzymes constitute a bot-
tleneck in utilizing glucose when this nutrient is in excess. The protein cost for
the efficient fermentative enzymes however, is much lower. This means that even
though the yield of fermentative metabolism is much lower per molecule of glu-
cose, the energy generating flux can still be higher than for respiration, allowing
for faster growth[181, 15].

For incorporating internal enzyme constraints into a GEM, two key ingredients are
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needed: the molecular weight of the enzymes and their catalytic rates (kcq:). The
molecular weight can be inferred from the amino acid sequence and is therefore
easy to extract from genomic data. Errors can still occur resulting from post-
translational modification and the presence of catalytic enzymes comprising mul-
tiple subunits. On the other hand, determining the enzyme catalytic rates for an
entire GEM can be tricky. Databases such as Sabio-RK[182] and BRENDA[183,
184] contain catalytic data derived from experiments, but do not cover all enzymes
and usually only provides broad coverage for model organisms such as E. coli and
S. cerevisiae. In addition, the database measurements are conducted in vitro with
the enzyme in isolation. Given that enzymes are affected by a multitude of factors
such as temperature, pH, ionic strength, other metabolites and regulatory enzymes,
it is often difficult, if not impossible to reproduce the natural environment of the
enzymes. Hence, database measurements of catalytic rates can be off the real bio-
logical rates by several orders of magnitude[185].

Efforts have been made in order to apply machine learning and experimental omics
data for obtaining better predictions of in vivo catalytic rates[186, 187]. Some of
these refined approaches include extensive experimental data such as proteomics
and fluxomics. In a similar fashion, there exists a method which combines deep
learning and a Bayesian approach to calibrate k.4+s with experimental data[188].
However, the Bayesian approach used in this paper is very similar to the one pre-
sented by Gang Li et al.[189] and studied in Paper 111, so we therefore suspect that
it suffers from the same instability issues as demonstrated in Paper III.

FBA with Molecular Crowding (FBAWMC)[190] was the first attempt to create
an enzyme constrainted FBA model (ecFBA). Here, it is assumed that the cell
only can hold a limited density of proteins in their cytoplasm and the capacity for
catalytic enzymes therefore is limited.

Later approaches have instead operated on the assumption that it is the amount
of protein mass allocated to the enzymes, not the spatial crowing which causes
the limitation for catalytic conversion. The GECKO[191] approach illustrated in
Figure 4.3 assumes that each enzyme is in limited supply and provides this enzyme
as a pseudo-metabolite to the reactions. Note that this extension of FBA still has
the same overall mathematical representation as shown in equation 4.15. This is
important because it allows for using existing FBA tools and data formats without
modification.

One problem with the GECKO formalism is that each enzymes has its own re-
source pool. This may be useful when proteomics data are available to mea-
sure the concentration of each enzyme, but often experiments are done without
determining the protein composition. The MOMENT[192] method relaxes this
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assumption by having a single pool from which all enzymes are drawn in quan-
tities corresponding to their molecular weights. A further development of MO-
MENT, sMOMENT[193] gives equivalent predictions, but uses a simpler formu-
lation while allowing adding constraints for usage of individual enzymes. sMO-
MENT is based on the notion that the size of the protein pool is limited by a con-
stant P. Given the concentration g; of enzyme ¢, and its molecular weight MW,
we obtain:

> gi- MW; < P. (4.17)

Taken into account that the maximal flux which can be catalyzed by enzyme 1 is
given by v; < g; - kcat,i» We obtain:

M .
> i Wi o p (4.18)

Equivalently, we can define an additonal pseudo-reaction R p,, which yields:

MW,
- Zvi : + VpPool = 0; Vpoor < P. (4.19)

kcat,i

4.3.2 Time dependence (dFBA)

The standard FBA formulation only treats the cell metabolism in an instant. How-
ever, the microbes themselves change their own environment through their metabolism.
This is of importance in a wine fermentation setting where the yeast consumes
sugar and produces ethanol, so the behavior of the yeast will certainly change
over time. Tracking these kinds of time dynamics can be done through dynamic
FBA (dFBA). In addition to the wine fermentation study in Paper IV, dFBA has
been applied to study diauxic growth where an organism consumes two differ-
ent metabolites in sequence[194] and for guiding design of industrial biotechno-
logical processes[195]. Two main strategies exist for creating a dynamic FBA
model[196]:

* The dynamic optimization approach assuming that the organism will maxi-
mize its biomass across a certain time span. The primary shortcoming with
this method is that the problem must be discretized into timesteps in advance
and is computationally challenging to solve.
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Figure 4.3: Illustration of how GECKO mathematically incorporates enzyme constraints
into a FBA model. This is done by augmenting the stochiometric matrix where the en-
zymes are included in the matrix as well as the metabolites. The upper left quadrant of the
matrix is identical to the stochiometric matrix in baseline FBA and hence the upper part of
the matrix enforces the steady state assumption of the metabolites without considering the
enzymes. The lower part of the augmented stochiometric matrix represents the enzyme
mass constraints and ensures that the catalytic rate through a reaction never exceeds the
enzyme concentration multiplied by the reaction turnover number. The figure is adapted
from [191] under license CC-BY-4.0.
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* The static optimization approach considering that the organism is in a quasi
steady-state at all time points and biomass production is maximized given
the current environment. This assumption can be motivated by the notion
that the internal regulation of metabolism acts on a shorter time-scale than
changes in the external environment. Computationally, this approach is
more tractable as it allows the standard FBA problem in equation 4.15 to
be integrated into an ODE solver for computing a solution of the problem.

We will for the remainder of the thesis focus on the static optimization approach.
This can be characterized as an ODE system where the state variables are:

e w: A vector of the external metabolite concentrations.

* X, the total biomass of the organism in the system.

The uptake constraints v'® (w(t)) and v*® (w(t)) of the FBA problem are now de-
pendent on the microenvironment the cells can feel and hence the external metabo-
lite concentrations, such that at any given time ¢, the flux vector v(¢) must obey

v (w(t)) < v(t) < v (w(t)) (4.20)
Given these constraints, the flux vector v(¢) is the one maximizing the growth rate:

w(t) =cTv(t) (4.21)

In turn, the rate of change for the biomass is given by:

—— =u(t)- X() (4.22)

and the external metabolite concentration

Y~ X(0) & (v(1) (423)

g is typically a linear function of the exchange fluxes of the solution, meaning that
there exist a matrix A such that

g(v) =Av (4.24)
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4.3.3 Temperature dependence (etcFBA, Paper lll)

Temperature is one of the most important factors to consider in enzyme kinetics.
The temperature dependence of enzymes is the primary reason why food is pre-
served at low temperatures and high temperatures are used to kill germs. Life only
thrives in a certain temperature range. If the temperature becomes too low, the
enzymatic reactions will occur too slowly to be noticable, whereas high temper-
atures denaturate the enzymes and irreversibly destroy them. Also, an effect of
temperature on heat capacity capacity of enzymes[197, 198] is believed to reduce
the catalytic rate of enzymes without the effect of denaturation at sufficiently high
temperatures. Li ef al.[189] were the first to study the effect of temperature depen-
dence on GEMs and proposed which enzymes limited the growth of the organism
at high temperatures. Their approach, called enzyme and temperature constrained
FBA (etcFBA), is an extension to ecFBA and assumes that the k.4 of an enzyme
changes with temperature:

kT _actm
e RT

keat(T) o , (4.25)

where G#(T) is the change of free energy from the ground state to the transition
state of the reaction given by:

T
AGHT) = AHE + ACH(T —Tp) =T (AS}O +ACH (T>> ., (426)
0
where (relative to the transition state):

« AH, %0 is the change of enthalpy at a constant temperature 7
. AC}D is the change in heat capacity

. AS%O is the change of entropy at a constant temperature 7

Keep in mind that these parameter are not the same as the AH and AS of the over-
all reaction, which are independent of the enzyme. In addition to the temperature
dependence of k.4, some of the enzyme pool is modeled to be unavailable due to
denaturated enzymes. The amount ([E]y) of enzyme being present in the native
(non-denaturated) state is given by:

[ElN = —zgay [Els (4.27)
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where [E]; is the total amount of the enzyme and G, (T) is the free energy of
denaturation given by:

T
AG(T) = AH* + AC, (T — Tg;) — TAS* — TAC,, (T) . (4.28)
S

where AH*, AS* and AC,,,, are the enthalpy, entropy and heat capacity change
of the denaturation, respectively. In addition to the enzymes, the model introduced
by Li et al. captures the effect that heat stress increases demand for ATP mainte-
nance, this is: The NGAM is a function of temperature NGAM = f (7') which
the authors pre-defined based on experimental data.

In total, there are six thermodynamic parameters which affect the temperature de-
pendence. Direct measurement of these parameters is difficult. Using additional
data such as k., at optimum temperature and various heuristics, Li et al. reduced
the problem to three parameters:

* Ti,pt: Temperature optimum of enzyme
e T:n: Melting temperature of enzyme

. AO}D: As mentioned earlier, the change in heat capacity from the initial state
to the transition state

T,pt and T}, can be measured relatively easily by in vitro enzyme assays. However,
such measurements do not exist for all of the enzymes in the ecGEM?7.6 model
employed by Li et al.. Furthermore, experimental determination of AC]:ED were
missing. Finally, the experimentally determined values also needed correction to
account for in vivo effects. For these reasons, Li et al. developed a Bayesian
approach to infer the parameters. This Bayesian approach is based on the following
components:

* Priors consisting of experimentally determined values of the enzyme param-
eters where available and imputed values in the other cases.

* Experimental data from aerobic batch, anaerobic batch and chemostat ex-
periments under varying temperatures.

* A statistical model of the parameters. In this case the marginal distribu-
tion for each of the parameters is assumed to be independent and normally
distributed.
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* A distance function which accepts a proposed parameter set, run etcFBA on
a set of scenarios and compares the results with the experimental data. The
output is an R? value indicating the fitness with the experimental data. The
fitness increases with R? which has a maximum value of 1.

* A sequential Monte-Carlo-based approximate Bayesian calculation method.
This calculation method is seeded with the priors and uses the distance func-
tion to approximate the posterior distribution of the parameters. This poste-
rior distribution is defined as all parameter sets for which R? > 0.9.

This Bayesian approach is the focus of Paper III, where we analyze the inference
process and discuss how the design of each of these components affect the inferred
parameters.

4.3.4 Combinations of extensions (decFBA)

Even though adding time dynamics, enzyme constraints and temperature depen-
dence to FBA can be portrayed as separate processes, they can be combined in
order to create more complex models. A temperature dependent GEM as we dis-
cussed in the previous subsection, is by default an enzyme constrained model be-
cause the temperature acts through the enzymatic constraints. In Paper IV, we
take advantage of the fact that using an ecFBA model within the dFBA formalism
yields a dynamic enzyme constrained FBA (decFBA) model without requiring any
new ideas. For instance, Moreno-Paz et al.[15] demonstrated combining the en-
zyme constrained model Yeast8[199] with dynamic FBA to model the growth and
metabolism of S. cerevisiae in batch and fed-batch reactors. The results matched
experimental data to a great extent.

4.4 Automated tools for GEM reconstruction (Paper 1V)

4.4.1 Creation of model

Although the genome sequence is the primary source of information about the
metabolic capabilities, using an automated tool[200] to reconstruct a metabolic
model only results in a draft model which is not suited to yield reliable results at
its own. For creating a high-quality model, manual curation is required[201]. This
includes filling metabolic gaps due to insufficient annotations and non-enzymatic
reactions, ensuring reaction reversibility is correct, and adding export and import
reactions. Hence, the process of curating a GEM often becomes a tiresome and
time-consuming task.

For the reasons mentioned, such careful manual curations are only done on a hand-
ful of organisms. This raises problems when applying GEMs to non-model organ-
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isms. Such situations typically arise when studying ecological interactions be-
tween several organisms[202] or while screening a range of non-model organisms.
The latter situation is present in Paper IV where five non-Saccharomyces strains
are considered. While in theory, a manually curated model can be constructed for
every single organism in question, this is often infeasible given the available time
and resources.

Manual curation cannot be avoided altogether if the goal is to produce high qual-
ity GEMs. However, there exist semi-automated tools which reduces the manual
labor burden when creating GEMs[203]. One of these tools is CarveME[204] in
which a well curated universal model is used as a template for creating GEMs
for a group of organisms i.e. yeasts. From the universal model, a model for a
specific organism is constructed by “carving” out the reactions annotated in the
genome. Subsequently, having a high quality universal model makes creation of
models of multiple organisms within the group much easier. Due to the simplifi-
cation CarveME provides when creating models for related organisms, we applied
CarveME in Paper IV for creating models of the non-Saccharomyces yeast strains.
An example of such a model is visualized in Figure 4.4.

4.4.2 Incorporation of enzyme constraints

Generation of an enzymed constrained model is usually done by augmenting an ex-
isting GEM with enzyme constraints. Although public databases such as Uniprot[206],
BRENDA[183, 184] and Sabio-RK[182] contain protein masses and enzyme cat-
alytic constants, retrieving this data for every enzyme in a GEM is tedious and
time-consuming if done manually. For this reason, tools such as GECKOMAT/[191]
and AutoPACMEN][193] have been developed for automatically retrieving these
parameters and incorporate them into GECKO and sMOMENT models, respec-
tively.

For Paper IV, we chose to apply AutoPACMEN. This package accepts a GEM
with EC numbers and UniProt IDs as identifiers and fetches protein masses and
kcqt values automatically from databases. Even though the automation saves a lot
of work, it is not perfect. Heuristics must be in place to pick the k.4 value from
a related organism when there is no measurement of the organism in question and
EC numbers lacking k.q; values are inferred from the closest EC numbers. Even
though autoPACMEN allows for specifying enzyme complexes with appropriate
stochiometry, this would require lots of manual work and was not carried out in
Paper IV.
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Figure 4.4: The SMOMENT GEM of Metschnikowia pulcherrima from paper IV visu-
alized by ModelExplorer[205]. The GEM is shown as a bipartite network where the re-
actions are light green nodes whereas the metabolites are dark green nodes. The yellow
polygons delimit the model cell compartments: the cytosol, the nucleus, the endoplasmatic
reticulum, lipid particle, the Golgi apparatus, mitochondrion, and a pseudo compartment
for the enzyme pool.



Chapter 5

Conclusion

5.1 Summary of the work

Dealing with different types of biological networks in this thesis, we found that
there were recurring classes of challenges. All of these topics are well known
within the scientific community, yet they materialized in different ways when
working with the data, running the computations, and analyzing the results. We
will discuss each of these topics in turn from the perspective of this thesis.

5.1.1 Computational performance

The concern of computational performance is twofold. First, an algorithm’s de-
mand for processing power, memory, and specialized hardware may require more
powerful and expensive computers. This puts an additional burden on users to ob-
tain access to sufficient hardware. Second, requesting computational resources, or
waiting days for the computational analyses to complete, elevates the threshold for
putting the algorithms into use. The latter is especially true for exploratory analy-
ses when the analysis often is re-run with different parameters or slightly different
algorithms.

As shown in this thesis, minor changes in implementation details can have large
impact on performance, and thus alleviating the requirements for computer hard-
ware and time. In paper II, we showed that csdR provided a 33 times speedup
compared to the original CSD implementation. This difference is primary due to
two optimizations: (1) avoiding re-calculating observation ranks for each gene pair
and (2) offloading calculation of correlations to a highly optimized routine.

Likewise, we showed in Paper III that the processing power used by the Bayesian
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calculation methods is mostly spent on applying changes to the model before opti-
mization. The main culprit of the original implementation using CobraPy, was that
CobraPy calls the solver to update the model for every modification being done.
However, updating the solver only needs to be done at few times when preparing
the model. In the improved version, ReFramed’s option of not updating the solver
is thus used to avoid unnecessary overhead, reducing the time consumption by a
factor of 8.5.

In some cases, there exist optimized algorithms for specific types of problems
which perform much better than the more general ones. One example of this was
the alignment the 16S sequences of the 1 537 OTUs in the Selection-Switch dataset
(Paper I). Using the de novo multiple alignment algorithm MUSCLE[207] imple-
mented in MEGA X[208], the alignment took approximately a day. However, the
SINA[209] aligner is specialized for 16S sequences and uses a predetermined in-
dex of aligned sequences. Due to these customizations, we were able to align the
sequences in a matter of seconds instead of hours.

5.1.2 Interpretation of results

Interpreting results for computational methods can sometimes be a challenging
endeavour, and care must be taken in order to avoid leaping to erroneous conclu-
sions. This is evident in Paper I where the inferred interactions did not correspond
to ecological interactions as originally expected, but rather which bacteria have the
same environmental preferences.

Furthermore, results generated from insufficient data or poor algorithms can be
misleading. An example of this is the Bayesian calculation method studied in
Paper III. Being a Bayesian calculation method, its target is to assess the uncer-
tainty of the inferred parameters, and yet fails to do so. This in turns means that
researchers trusting the method are likely to obtain misleading predictions.

A major challenge of Paper IV was to make sound conclusions from simulations
which were confounded with large amounts of uncertainty. The models are auto-
matically generated from a curated universal yeast model, and thus, were not indi-
vidually manually curated, nor did we have enough high quality data to calibrate
the models. Hence, it is unlikely that the curves of Paper IV can be reproduced in
a laboratory setting. Still, we believe that the results sheds light on the ability of
Metschnikowia pulcherrima to respire sugar more efficiently than the other yeasts,
and therefore, helps explaining why this yeast is a good candidate for production
of wine with lower alcohol content.
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5.1.3 Requirements for sufficient data

All network inference algorithms and network models need data to function. The
data must be of a certain quality for the algorithm to make use of it, and there must
be a a sufficient quantity of data in order to arrive at reliable predictions. The Tara
and the Selection-Switch datasets consist of 128 and 202 samples respectively,
which is enough to generate interaction networks with ReBoot. However, when
trying to generate ReBoot networks for the Carbon-Cycle dataset, with only 12
samples, we did not obtain any sensible results. This suggests that, even though
the quality of the Carbon-Cycle dataset was sufficient, quantity was not.

Furthermore, the CSD algorithm discussed in Paper II, requires gene expression
profiles of approximately 100 patients in order to give decent results. For experi-
mentalists working with research animals such as mice, obtaining such large sam-
ples sizes is usually infeasible. In effect, CSD is restricted to large-scale clinical
studies and requires large coordinated efforts to make usable data available.

The need for more data is also evident in Paper III, where the training datasets
for inferring thermodynamic parameters are insufficient for trustworthy estimates.
This is not very surprising, given that 2,292 parameters were estimated based on
only 16 or 22 data points, where either growth rate or exchange fluxes of ethanol,
carbon dioxide, and glucose are measured.

5.2 Opportunities for future work

5.2.1 Improved collection and dissemination of data

Given the large demand for data of high quality, future efforts must be put into
facilitating high throughput experiments and store the data in a way which enables
reuse and interoperability. In this thesis, none of the raw data were specifically
produced for the papers written, but were taken from databases or earlier studies.
High throughput experiments are often expensive to conduct and emphasis should
therefore be put into designing experiments to be as efficient as possible given the
data collected, and making the experimental data easily available for future use.

Analyses of data already collected takes place inside computers which are pro-
grammable and as a consequence, pipelines for analyzing large amounts of data
can be automated in an arbitrary manner. Hence, the limiting factors are the ana-
lyst’s ability to program the pipelines and the computer’s processing power. Run-
ning and collecting data from experiments however, cannot be done just by speci-
fying the protocol, but require manual work. This is the primary reason why it is
usually easier to analyze generated data than to create the data in the first place.
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Conducting experiments for high throughput data for a large number of samples
would be more feasible if the process of running the experiment, collecting and
preparing the samples was automated, and thus required less manual time and
effort. For instance, the Selection-Switch dataset[85] used in Paper I could have
been easier to produce and provide better time resolution if sampling, extraction of
DNA and PCR amplification was automated by laboratory machinery. Automated
platforms for collection and preparation of samples for high throughput analy-
ses do exist. However, the commercial solutions available are usually expensive
and hard to customize to lab-specific workflows, limiting their adaptation. Still,
much progress have been done into making Do-it-yourself (DIY) approaches for
laboratory automation available for the general researcher[210, 211, 212]. We be-
lieve that more emphasis and research into laboratory automation is likely to make
large-scale experiments with high throughput more feasible.

Increasing throughput in the laboratories is necessary, but not sufficient for gen-
erating high-quality data. Initiatives are also needed at a higher level in order to
coordinate and standardize the creation of research data. This ensures that there
is an agreement among researchers about which types of data are generated, how
it is collected and stored, and how it is made available for future use. In this
respect, collaborations for human medical studies have seen the most success as
large-scale efforts such as the The Trgndelag Health Study (HUNT)[213], The
Cancer Genome Atlas Program (TCGA) and UK Biobank provide systematic col-
lection, curation, storage and dissemination of experimental results at a large scale.
This has enabled researchers to use tools such as genome-wide association studies
(GWAS)[214] which has proven to be an invaluable tool for finding genetic risk
factors for diseases. However, the mentioned resources are restricted to human
medical data and parallels to these efforts do not, to your knowledge, exist outside
this field of study.

Certainly, there exist initiatives and databases designed to convey knowledge for
other organisms as well, such as Saccharomyces cerevisiae genome database[215]
for information on Saccharomyces cerevisiae, SILVA[216] for 16S rRNA sequences,
and BiGG models[217] for genome-scale models. While some of these databases
are of high quality, the coverage and quality are variable, and some databases are at
the risk of being discontinued or no longer receiving updates. Also, there are some
kinds of data for which there not yet exits any good and comprehensive databases.
This includes data from yeast fermentation experiments and analyses of micro-
bial communities. As such, the raw data for Paper I and III in this thesis are not
indexed in any public database and thus must be accessed in an ad-hoc manner
through general data repositories without opportunities for good indexing.

In an ideal world, all research data of importance should be stored and indexed in a
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structured manner. The FAIR principles (Findability, Accessibility, Interoperabil-
ity, and Reusability)[218] communicate the ideals for how scientific data should
be stored and managed. However, the scientific community as a whole is currently
far from conforming to these guidelines. Still, we believe that continued efforts
into coordination of data generation, management, and storage has the potential
to improve data availability and reuse. The ongoing push from scientific journals
and funding bodies into data management will likely help accelerate the data lit-
eracy of researchers[219, 220, 221] and contribute to a culture of accessible and
interoperable research data.

5.2.2 Standards and tools for handling FBA extensions

The Systems Biology Markup Language (SBML)[222] is a standard for exchang-
ing quantitative models of biological systems. It is supported by various software
tools and packages, and is widespread for working with and exchanging GEMs.
The format is based on XML and has been revised and extended, the recent revi-
sion being Level 3 Version 2[223]. While we found the current SBML format sat-
isfactory for baseline FBA models, we consider SBML insufficient when working
with dFBA and ecFBA. We think there is large room for improvements of SBML
in these areas which could make exchanging and working with FBA extensions
easier.

SBML supports both kinetic models and constraint-based models, but a model
defined in SBML cannot integrate both simultaneously. dFBA models integrate
constraint-based models for determining the fluxes based on the external envi-
ronment and a kinetic model of how the external environment is affected by the
constraint-based model. Therefore, implementations of dFBA typically rely on
scripts which keep track of the interaction between the nutrient environment and
the constraint-based model. This approach is often tailor-made for each application
as in Paper IV. In effect, porting dFBA models to other programming languages
and modeling frameworks requires considerable amounts of manual work and is
error-prone. Recently, however, progress has been made on this topic, as there now
exists a suggested format for incorporating dFBA into SBML models[224], but ac-
ceptance of such a standard and widespread software support most likely remains
years into the future.

In a similar manner, the current SBML standard has poor support for enzyme con-
strained models. Currently, sSMOMENT stores proteins constraints in the SBML
file by adding the enzyme usage as a pseudo-metabolite to the reactions. This
generates models which are reproducible for all constraint-based modelling frame-
works which support SMBL. However, the stoichiometry of pseudo-metabolites in
the reactions is due to both protein mass, saturation factor, and turnover numbers.
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Most often, protein mass is known with a far higher confidence than the turnover
number, but the way the model is stored in SBML makes it difficult to disentangle
these two numbers, for instance when running parameter inference or knocking
out isoenzymes with different turnover numbers.

For etcGEMs, the shortcomings of SBML and the modelling tools which use them,
become even more evident, as etcGEMs are built on top of enzyme constrained
models and contain additional parameters. Hence, the current etcGEM imple-
mentation created by Li et al.[189] is difficult to understand, modify, and repro-
duce. When working on Paper III, we found it challenging that the computational
model did not allow extracting and setting k..; values directly. Thus, cumbersome
workarounds were required for modifying effective k.4; values based on the ther-
modynamic parameters of the model. COBREXA[225], a novel constraint based
framework, has implemented support for sSMOMENT and GECKO models by in-
corporating the protein masses and k.q; values for each of the isoenzymes in each
reaction. Still, COBREXA does not provide any specific format for reading and
writing this information to file.

The good news is that SBML Level 3 is extensible and allows users to implement
their own packages, supporting new types kinds of annotations. There also exists
a software tool named Deviser (https://github.com/sbmlteam/deviser)
to facilitate the process of creating new packages. Implementing an SBML pack-
age does not, by itself, solve the aforementioned problems or shortcomings of the
SBML standard. Any such extension must gain enough acceptance in the scien-
tific community and be implemented by many enough software tools that it be-
comes practical to create, read, and distribute SBML files with the extensions for
dFBA and ecGEMs. Still, we believe that the demand for interoperability and re-
producibility, in addition to the growing complexity of genome-scale metabolic
models, will cause a high demand for domain-specific SBML packages. In turn,
we believe that this demand will result in SBML packages for dFBA and ecGEMs
to be implemented and widely used.
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Robust bacterial co-occurence
community structures are
independent of r- and K-selection
history

Jakob Peder Pettersen?!, Madeleine S. Gundersen® & Eivind Almaas%?**

Selection for bacteria which are K-strategists instead of r-strategists has been shown to improve fish
health and survival in aquaculture. We considered an experiment where microcosms were inoculated
with natural seawater and the selection regime was switched from K-selection (by continuous feeding)
to r-selection (by pulse feeding) and vice versa. We found the networks of significant co-occurrences
to contain clusters of taxonomically related bacteria having positive associations. Comparing this with
the time dynamics, we found that the clusters most likely were results of similar niche preferences

of the involved bacteria. In particular, the distinction between r- or K-strategists was evident.

Each selection regime seemed to give rise to a specific pattern, to which the community converges
regardless of its prehistory. Furthermore, the results proved robust to parameter choices in the
analysis, such as the filtering threshold, level of random noise, replacing absolute abundances with
relative abundances, and the choice of similarity measure. Even though our data and approaches
cannot directly predict ecological interactions, our approach provides insights on how the selection
regime affects the composition of the microbial community, providing a basis for aquaculture
experiments targeted at eliminating opportunistic fish pathogens.

In aquaculture, the fish is in close contact with its environmental microbiome'. Fish larvae are at an especially
vulnerable life stage, with high death rates causing economic problems in the aquaculture industry??. Research
during the last decades has uncovered that the bacterial composition of the larval environment affects their sur-
vival, and both detrimental and favourable host-microbe interactions have been identified. This interplay strongly
suggests that one may manipulate the larval environmental microbiome to improve their health and survival**.

A viable approach for microbiome control is to select against opportunistic pathogens and select for favour-
able bacteria. This approach is based on the concept of r- and K-strategists, introduced in microbial ecology
by Andrews and Harris®. Most opportunistic bacteria are r-strategists, meaning that they grow rapidly when
resources are in surplus. If the opportunistic strain is pathogenic, such environments facilitate its prolifera-
tion and may subsequently lead to fish disease. However, r-strategists compete poorly when the environment
is resource-limited. In such a competitive environment, the slow-growing K-strategists will quickly dominate
due to their high resource-acquiring affinities and high yields'”. Thus, resource availability is a crucial variable
to manage in aquaculture. Stable resource availability promotes K-selection, whereas fluctuating availability
promotes r-selection’.

Since it is unclear, due to lack of experimental evidence, whether selecting for K-strategists will make a
recurring set of bacteria co-occur or whether competition results in co-exclusion among the K-strategists, we
wanted to investigate this problem using co-occurrence network analysis. Furthermore, we also wanted to study
the extent to which r-strategists co-occur with K-strategists. Earlier studies have suggested that using similarity
measures for network inference could determine bacterial niches, describe a microbial community’s response
to environmental disturbances, predict ecological keystone organisms, and explain changes in a microbial com-
munity over time®~'2. We hypothesized that such a tool could partition bacteria based on their growth preferences
and be useful to characterise and identify which bacteria are r-strategists and which are K-strategists. When a
microbial community is subjected to external disturbances, it may change composition permanently, it may be
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resistant (insensitive to the disturbance), or it may “remember” its original state and be resilient (return to its
original state after initially changing)'’. We were interested in investigating whether r- and K-selection will give
the microbial communities memory, and whether the selection regime would provide resistance or resilience
against changing external factors.

Given our research questions, we found the dataset from Gundersen et al.'* to be particularly useful. This is
a 2 x 2 factorial crossover microcosm experiment that tested varying feeding regime and resource availability
(high/low). Briefly, half of the microcosms were pulse-fed resources which promotes the growth of r-strategists,
whereas the other half received a steady, continuous supply of nutrients promoting K-strategists. We hereafter
refer to these selection regimes as r- and K-selection. The bacterial communities were sampled and characterised
through 168 ribosomal RNA gene sequencing (16S-RNA)”!'>!6 at 18 time-points over a 50 day period.

What made the Gundersen dataset'* particularly suited for our analysis, was that approximately halfway
into the experiment (i.e. between day 28 and 29), the r- and K-selection regimes were switched such that each
microcosm was subjected to both selection regimes. While the original paper on the dataset focused on study-
ing the effect of the selection regimes and resource availability on ecological community assembly, our work
uses network analysis to gain a more detailed understanding of the community dynamics than solely comparing
samples can provide.

Results

To investigate the bacterial community structure and dynamics in r- and K-selected communities, we assessed the
co-occurrence patterns of 1,537 operational taxonomic units!” (OTUs) observed in the microcosm experiment.
This 16S-rRNA gene dataset consisted of 202 samples from 12 microcosms cultivated over 50 days. Note that, 6
of the microcosm were r-selected, and 6 were K-selected. Between day 28 and 29, the r/K-selection regime was
switched such that r-selected communities now were K-selected (the RK-group) and vice versa (the KR group).
Furthermore, the microcosms varied by the amount of resources supplied, high (H) and low (L). However,
exploratory analysis of the dataset did not indicate any relevant effect of the resource supply, and hereafter we
will only focus on the r- and K-selection regimes.

Similarity measurements and network inference.  We assessed the co-occurrence patters between the
OTUs using two similarity measurements and varying levels of random noise, OTU filtering, and type of abun-
dance (relative/absolute). In contrast to many other 16S-rRNA microbiome datasets, we estimated the bacterial
community’s absolute abundances using flow cytometry.

Here, we present the results for the Spearman correlation measure with a low level of random noise, low
OTU filtering threshold and absolute abundances (see the Methods’ section for more details). We decided to
focus on the rank-based Spearman correlation because it is widely applied for detecting associations'®'®!°. We
will later discuss the robustness of these results by contrasting and comparing with other similarity measures
and parameter choices.

From an ecological perspective, an interaction between two microbes is an effect which one microorgan-
ism has on another. This includes cross-feeding, biofilm formation, and parasitism®*!. However, in further
discussion, unless stated otherwise, we will use the term interaction in a network-theoretic perspective, where
we apply a “guilt by association” heuristic. This means that, we define two OTUs to have a positive interaction if
they co-occur in the same samples to a larger degree than expected by random chance. Conversely, we define two
OTUs to have a negative interaction if they co-occur more rarely than expected by random chance!®*>**. Even
if there cannot be any direct ecological interactions between the bacteria in different microcosms, the network
concept of interactions still enables us to infer associations across samples collected from different microcosms.

We wanted to create a network of the pairwise associations between the OTUs and thus had to determine
which edges to include. Selecting a hard threshold for the g-value for an interaction to be statistically significant
(for instance atg < 0.05), is not an easy choice?. We, therefore, illustrate the number of significant interactions
over a range of threshold g-values up to 0.05 (Fig. 1). From this figure, we see that there is no obvious cutoff.

There were in total 3250 interactions having g < 0.05, of which 1679 were 0.05 > g > 10~ and 639 with
q < 1071°, Therefore, we determined 500 edges to be a reasonable balance between selecting high-significance
edges and a network with lower average node connections. With this setting, the effective g-value threshold
became 5.0 - 10~ '3, The resulting network modules were labelled using the walktrap algorithm with 20 steps®
(Fig. 2).

Phylogenetic clustering within the modules. The co-occurance network analysis clustered the OTUs
into four distinct modules (Fig. 2). Also, two OTUs were not assigned any module (shown as colourless nodes
inside module 3) as they were connected to the rest of the network with negative interactions only. Module 3 and
4 stood out as the most interesting modules for two reasons. First, they had the largest number of nodes. Second,
there were negative links between the modules, suggesting mutual exclusion between modules. For these two
main modules we observed a large number of positive links within the modules, but negative edges between
them. Therefore we wondered whether the modules were phylogenetically clustered. Indeed, we observed a clear
pattern between OTU module membership and phylogenetic classification (Fig. 3 and Supplementary Table S1).
Module 3 consisted primarily of Alphaproteobacteria (including Rhodobacteraceae) and Flavobacteria, whereas
most OTUs in module 4 were Gammaproteobacteria (including Colwellia and Vibrio). Hence, we see that within
each module, the OTUs were most often phylogenetically related.

Temporal trajectories of the microbial communities. After having observed the network modules,
we were interested in understanding the co-occurrence structures and how it influenced community dynamics.
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Figure 1. The cumulative number of significant interactions as a function of the critical g-value threshold
considered. The solid line signifies positive interactions detected, while the dashed line represents the number of
negative interactions.

Figure 2. Module-labelled network of the 500 most significant interactions in the r/K-selection-switch
dataset. Each of the 86 nodes is an OTU, while each edge corresponds to a statistically significant association
between the OTUs. Blue solid edges indicate positive interactions, whereas red dashed edges indicate negative
interactions. The node-sizes are scaled logarithmically according to overall mean abundance.

To investigate the community dynamics within the microbial communities, we plotted the Bray-Curtis PCoA-
ordinations of the samples and observed the successional trajectories of each microcosm (Fig. 4).

From this time trajectory plot, we compared the panels diagonally and observed that microcosms undergoing
K-section converged towards the upper-left area in the plot, whereas microcosms under r-section converged
the middle-right area. This effect seemed independent of the experimental period and of pre-existing experi-
mental conditions. A PERMANOVA analysis showed that the current selection regime was most important for
the community composition (R? = 0.344 and p < 10~°) compared to the minor effect of the overall selection
group (R? = 0.084 and p = 0.017), see Methods for details. Consequently, in this respect the communities did
not seem to have any memory-effect that gave rise to resistance against changes in composition. As the /K-
selection regimes resulted in clustered communities, we aimed at investigating how the network arose from
these dynamics.
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Figure 3. The phylogentic tree of the 86 OTUs from Fig. 2. together with the class level taxonomical
assignment. Point colour indicates module membership, whereas the shape indicates class level taxonomical
assignment. Notice that there are some inconsistencies between the phylogenetic tree and the assigned
taxonomy.

r/K-strategist network patterns. We further investigated what influenced the dynamics of the commu-
nity, and conversely the dynamics’ contributions to the overall network network in Fig. 2. For this, we visualised
the rank-based z-scores of the OTU abundances (see Methods for details) for selected days during the experi-
ment for high resource supply (Fig. 5). For low resource supply, the results were very similar and is thus not
discussed any further (see Supplementary Fig. S1 for further details).

There were some obvious patterns that were apparent when investigating the temporal networks, especially
with regards to module 3 and 4. The abundance of the OTUs in module 3 increased during K-selection, while
the ones in module 4 had the opposite trend and had high abundances during r-selection. Hence, within each
module, the OTUs had coordinated abundance patterns leading to positive inferred interactions. On the other
hand, between module 3 and 4, the abundance patterns were anti-coordinated such that we obtained negative
interactions.

We expected the dataset to display two time periods of instability: The first at the start of the experiment
when the microbial community would adapt to lab-culture conditions, and the second disturbance instability
after switching the selection regime, after day 28. During these unsteady periods, we expected more instability
and less coordination between OTUs belonging to the same module. This in turn, would contribute to negative
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Figure 4. PCoA ordination of Bray-Curtis distances between samples showing the time trajectories for each
microcosm. The single ordination was faceted vertically based on the state of selection regime at the time of
sampling (being r or K-selection), and horizontally to highlight temporal trends. Solid and dotted lines indicate
high (H) and low (L) resource supply, respectively. The labels indicate the day of sampling, whereas the line
colours are purely to visually distinguish the replicate time series.

interactions or weaken the positive ones. However, this expectation was only partially fulfilled because we
observed negative edges within modules in Fig. 5 also outside the two predicted periods of instability. One
potential factor contributing to instability at the beginning of the experiment, was the fact that the oligotrophic
seawater was introduced to high amount of nutrients, favouring r-strategists to proliferate even if the feeding
was continuous.

Network robustness. If our results were different when changing parameters, the conclusions would be
less likely to give us any real insight into how the communities actually behave. Therefore, we checked the robust-
ness of the chosen parameters, changing one at a time while keeping all other parameters constant. Increasing
the levels of random noise from low to medium (see Methods section) did not give any substantial difference in
terms of significant interactions. Some cosmetic changes were visible due to different color labeling of communi-
ties and orientations of plots (details in Supplementary Section S2). Exchanging estimated absolute abundances
with relative ones gave higher proportion of negative interactions and different assignments of OTUs into mod-
ules (see Supplementary Section S3). However, the greater trends in the results stay the same, such as clustering
based on phylogeny and the considerable change in the community behaviour after switching selection regime.

Selecting a more stringent OTYU filtering cutoff only has a minor consequence on the results, at the level of
cosmetic changes in the plots (see Supplementary Section S4 for details). On the other hand, we notice a more
pronounced effect when replacing the Spearman correlation by Pearson correlation. This is not surprising, since
Spearman is non-parametric and Pearson measures degree of linear co-occurrence. In this case (Pearson), we got
far fewer negative significant interactions for the same g-value, none of which are among the 500 most significant
ones. Still, modules of phylogenetically related OTUs are present, and the selection regime still seems to explain
the modules (Supplementary Section S5).

Discussion

In literature, challenges of microbial datasets such as sparsity, compositionality and habitat filtering have been
addressed and solutions proposed for finding ecological interactions?>?-°. Despite the fact that predictions
from ecological interaction-inference tools have been successfully validated in some cases®**!, any universally
accepted gold standard of finding ecological microbial interactions is not yet agreed upon. Furthermore, some
reviews assessing existing methods for inferring ecological interactions have demonstrated that current methods
have far too low predictive power, and more refined approaches specifically designed to cope with difficulties
in microbial datasets have failed to perform better than the basic ones!**%. Hence, we believe that our choice

Scientific Reports |

(2021) 12:23497 | https://doi.org/10.1038/s41598-021-03018-z nature portfolio



www.nature.com/scientificreports/

Figure 5. Dynamic visualisation of the network in Fig. 2, for (a) the RK selection group and (b) the KR
selection group for high (H) resource supply. Nodes are coloured according to the corresponding OTUs’
abundance compared to its overall mean for all sampling days, represented by its z-score. Orange, grey and black
nodes mean higher, about the same or lower abundance than its mean, respectively. The edges are coloured

by the product of the nodes’ z-scores. This means that blue and red edges contribute to positive and negative
association across the time series, respectively. The grey edges indicate that no major contribution to neither
positive nor negative association is made. As we want to emphasize the orange and black nodes, the nodes with
higher absolute z-scores are larger.
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of using the relatively simple ReBoot?? procedure is reasonable, even though the approach in and of itself is
somewhat coarse-grained.

We observed that our correlation networks clustered the OTUs according to taxonomy and niche preferences
as a result of selection for K- and r-strategists. The finding that taxonomy and niche preferences dominate co-
occurrence patterns is in line with work by Chaffron et al.** who produced similar results from samples stored
in a ribosomal RNA database. Along the same line, Bock et al** also noted that many of the interactions in a
correlation network occur between closely related species when studying bacterial and protist communities in
European lakes. Bacteria with similar niches are expected to be competitors and, hence, have negative interac-
tions with each other. However, the effect of habitat filtering will create positive correlations between species with
similar niches that are often stronger than those arising from ecological competition!***3¢, The same reasoning
goes for taxonomical relatedness, as closely related organisms often belong to the same niche and have similar
functions. This favours positive interactions within modules, whereas we, to a lesser extent got negative interac-
tions between modules where the growth requirements are different.

Moreover, we have not undertaken any attempt to deal with indirect interactions. This means that two OTUs
can appear with a strong (correlation) link even though they have no direct effect on each other, but instead
interact with a third OTU. Consequently, it is challenging to determine causality when working with inferred
interactions. Also, such indirect effects can be caused by environmental variables and biological entities not taken
into account, such as protists and bacteriophages.

For reasons mentioned above, our results are not meant to directly represent real ecological interactions.
Nevertheless, our results are interesting from a fish-health perspective, as they show that selection regime can
control community composition. In terms of - and K-selection, literature consider the orders Alteromonadales
and Vibrionales represented in module 4 as r-strategists, whereas the Rhodobacteraceae in module 3 are consid-
ered K-strategists®. Additionally, Vibrio strains are known to cause disease in fish, whereas Rhodobacteraceae
bacteria have been shown to protect against Vibrio infections through competition®-*!. This agrees with and
extends prior knowledge that K-selection is a potent tools for improving fish health and survival'’.

The long-term behaviour of the community did not appear to depend on its prehistory. Potentially, this means
that changing the microbiota from a detrimental to a healthy state in a running aquaculture facility requires
the same measures as ensuring a healthy microbiota for a new facility. Furthermore, the trustworthiness of the
results is strengthened by their robustness to changes in parameter settings, such as filtering cut-off, amount of
random noise, type of abundance, and similarity measure.

This experiment was conducted in an artificial setting without any fish of which the health could be tracked.
Furthermore, we do not know whether up-scaling and broader exposure could change the workings of the micro-
bial community. Therefore, follow-up studies could be implemented in realistic aquaculture settings, perhaps
such as a RAS facility, to investigate whether switching between K-selection and r-selection will yield the same
community dynamics as described in this paper. Additionally, such an experiment would provide opportunity
to investigate possible connections between the state of the microbial community and the health of the fish.

We acknowledge that there exist alternative approaches one could follow. For instance, treating the OTUs as
discrete units is a bit misleading. As the results show, closely related OTUs often occur together, so it could make
more sense to treat the bacteria as a taxonomical continuum. A novel approach based on amplicon sequence
variants (ASVs) avoids the clustering of OTUs altogether by considering each individual unique read as an own
entity*?. The phylogenetic relatedness between ASV's could then be used as a constraint for finding co-occurrence
patterns. In addition, incorporating environmental information, such as organic nutrient load, salinity, and
temperature, would be useful because this allows us to better predict how the desired K-selection should be
obtained. Joint Species Distribution Models (JSDMs)**** might have this useful potential to account for both
species interaction, environmental factors, and taxonomical relatedness. However, its use in microbial ecology
is still in its early stages and time dynamics are not yet embedded into the framework*>6.

Methods

Selection-switch experiment. The dataset used for this article is previously published'*, but we include
a brief summary for completeness: Natural seawater was collected and used to inoculate microcosms in a 2 x 2
factorial crossover design with 3 replicates conducted for 50 days, which were sampled 18 times during the
experiment. Half of the microcosms were given high (H) resource supply, whereas the other half were given
low (L) resource supply. The factor of resource supply level was constant throughout the experiment. The other
factor was the selection regime, which meant that the microcosms were either given continuous supply of nutri-
ents (favouring K-selection, and hence the designation K) or being pulse-fed with nutrients after diluting the
contents of the microcosms with growth medium (favouring r-selection, designated R). The active selection
regime was switched at the experimental halfway point (between days 28 and 29), yielding two selection groups
designated as RK and KR.

DNA was extracted from the collected samples, and the V3-V4 region of the bacterial 16S-rRNA gene was
amplified with PCR using broad-coverage primers and the index sequences were ligated. The amplicon library
was pooled and sequenced with two runs on an Illumina MiSeq machine. The reads are available at the European
Nucleotide Archive with accession number ERS7182426-ERS7182513.

The USEARCH pipeline*” (v11) was used to remove low-quality reads and cluster the reads into OTUs at 97%
similarity level. Finally, the taxonomy of the OTUs was determined by the Sintax classifier using data from the
RPD training set (v.16) where the confidence threshold was set to 80%.

Quantification of bacterial density. For each sample, the bacterial density was quantified using flow
cytometry (BC Accuri C6)'. In brief, the bacterial communities were diluted in 0.1x TE buffer, mixed with 2x
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SYBR Green II RNA gel stain (ThermoFisher Scientific) and incubated in the dark at room temperature for 15
minutes. Then, each sample was measured for 2.5 minutes at 35 uL min~! with an FL1-H (533/30 nm) threshold
of 3000. We gated the bacterial population as those events with an FL1-A > 10*and FSC-A < 10°. The raw flow
cytometry data files are available at https://doi.org/10.6084/m9.figshare.15104409.

Alignment and phylogentic tree. The selection-switch dataset was acquired directly from the authors“.
This dataset consists of a total of 206 samples. Two of these samples were taken from the communities from
which the reactors were inoculated, whereas the other samples were taken from the microcosms with 17 time
points x 4 regimes x 3 replicates. We discarded the inoculum samples for further analysis. The OTU reference
sequences were aligned with SINA version 1.6.1*® using the SILVA Release 138 NR 99 SSU dataset*. Using this
aligment, the phylogentic tree was constructed by neighbour-joining using MEGA X*° with default parameters.

Filtering and preprocessing. The mean number of reads per sample was 63,460 with standard devia-
tion 31,411. For our analysis, we wanted to estimate the abundance of each OTU as accurately as possible and
therefore skipped any correction for unequal sequencing depth. Read counts for each OTU in each sample
were divided by the total number of reads for the sample, generating relative abundances. Thereafter, all OTUs
having a maximum abundance (across all samples) below a certain threshold, were removed. Three levels of
filtering thresholds (as count proportions) were applied: High level at 5 - 1073, medium level at 1- 1073 and
low level at 5 - 107, The purpose of the filtering was to remove rare OTUs in order to avoid noise and spuri-
ous correlations'!. For obtaining estimates of absolute abundances, the relative abundances were scaled by the
estimate of total bacterial cell density for each sample. The phyloseq package (version 1.36.0)°' and the R
programming language (version 4.1.1)** facilitated this procedure. In addition, we wrote an R-package named
micInt (version 0.18.0, available at https://github.com/AlmaasLab/micInt) to facilitate and provide a pipeline
for the analysis.

Similarity measures and addition of noise. For this study, we used two similarity measures, the Pear-
son correlation and the Spearman correlation. A similarity measure, as referred to in this article, can be thought
of as a function f : R” x R" — D where D = [—1,1]. In this regard, f (x,y) is the similarity of two abundance
vectors x and y belonging to different OTUs, where f (x,y) = 1indicates perfect correlation, f(x,y) = 0 indi-
cates no correlation and f (x,y) = —1lindicates perfect negative correlation. Noise was added to distort patterns
of double zeros, which otherwise could result in spurious correlations. Given two vectors x and y of abundances,
normally distributed noise was added to each of the abundance vectors, and the similarity measure has invoked
thereafter: Given a similarity measure f, the similarity between the abundance vectors after adding noise is given
by:

froy) =f(x+eny+ey), )

where &, and &) are random vector where all components are independent and normally distributed with mean
zero and variance y2. The level of noise y was determined by the smallest non-zero relative abundance xmin in
the dataset and a fixed constant s called the magnitude factor, such thaty = s - xpin. For no noise, s = 0, for low
noise s = 1, for middle noise s = 10 and for high noise s = 100.

Network creation. Significance of the pairwise OTU associations were determined by the ReBoot proce-
dure introduced by Faust et al.** and shares the underlying algorithm used in the CoNet Cytoscape package®.
This approach accepts a dataset of microbial abundances and a similarity measure, and evaluates for each pair
of OTUs in the dataset the null hypothesis Hy: “The association between the OTUs is caused by chance” By
bootstrapping over the samples, the similarity score of each pair of OTUs is estimated, forming a bootstrap
distribution. By randomly permuting the pairwise abundances of OTUs and finding the pairwise similarity
scores, a bootstrap distribution is formed. The bootstrap and permutation distribution are then compared with a
two-sided Z-test (based on the normal distribution) to evaluate whether the difference is statistically significant.
For this, the z-value, p-value and g-value (calculated by the Benjamini-Hochberg-Yekutieli procedure®®) are pro-
vided for each pair of OTUs in the dataset. Our ReBoot approach is based on the R-package ccrepe (version
1.28.0), but is integrated into the micInt package with the following major changes:

e The original ReBoot uses renormalization of the permuted abundances to keep the sum-to-constant con-
straint. Whereas this is reasonable to do with relative abundances, our modified version enables turning this
feature off when we analyse data with absolute abundances.

e Optimizations have been made to memory use and CPU consumption to enable analyses of large datasets.

e In contrast to the usual ReBoot procedure, networks generated by the different similarity measures are not
merged by p-value, but kept as they are.

For our analysis the number of bootstrap and permutation iterations was set to 1000. All OTUs being absent in
more than n - 10~ » samples, where 7 is the total number of samples, were excluded through the errthresh
argument but still kept for renormalization (if turned on). The associations were made across all samples, even
the ones belonging to a different selection group or resource supply.
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Dynamic PCoA visualization.  All samples in the dataset were used for PCoA ordination, where the Bray-
Curtis distance metric between the samples was applied before creating the decomposition. After the ordina-
tion was computed, the samples were divided into four facets based on their combination of current selection
regime and resource supply. Finally, all samples belonging to the same microcosm were connected by a line in
chronological order and the line was given a separate style based on the resource supply and coloured to visually
distinguish it from the two other replicate microcosm within the same facet.

Permutational multivariate analysis of variance. Sequential PERmutational Multivariate Analysis of
VAriance (PERMANOVA) of the samples was conducted on the absolute abundances, where only the sam-
ples from day 28 and 50 were included. These sample points correspond to time just before the experimental
selection-regime crossover and a point at the end of the experiment. These days were selected because they were
the most likely to capture the composition of stable communities in contrast to transient ones. The procedure
was carried out by the function adonis from the R package vegan (version 2.5-7) with 10 permutations. The
dependent data given to the function was the matrix of one minus the Spearman correlation of the samples (in
order to resample dissimilarity), while the independent variables were the selection group (first variable) and the
current selection regime (second variable).

Network visualization. The networks were plotted by the R package igraph (version 1.2.6)*. Network
modules were found by the walktrap® algorithm implemented in igraph with the setting steps=20, includ-
ing the positive edges only. Later, the negative edges were added and the networks plotted with the community
labelling.

The time dynamics of the networks were visualised by taking the former network and adjusting the node
colour and size, as well as the edge colour. For this, a certain combination of selection group (i.e RK) and resource
supply (i.e H) was chosen. Further, let x; ; x be the abundance of OTU k at sampling day i in microcosm j. As
there are three replicates, we have that j = 1,2, 3. If the underlying network was created by Pearson correlation,
we denote the day mean x;,_i as the average over the replicates, this is:

_ Xilk Xk + Xigk

Xi, k 3 2)
The time series mean of OTU k, x_ x is the mean of these daily means over all sampling days,
N
X = LimLTk @)

N

where N denotes the number of sampling days. Furthermore, we have the associated standard deviation oy as
given by:

(%6 — X.,.,k)z- (4)

-

The z-value of the abundance of OTU k at day i is then:

Xik — X,k
Ok ’

Zik =

©)

This value is used in the mapping of the node sizes and colours. The node for OTU k at sampling day i has
the sizea+ b - |z,v,k , where a and b are constants. Furthermore, the same node is coloured:

e Blackifz;x < —1. This indicates that the OTU that day had a lower abundance than the average.
® Greyif—1 < zj; < 1. This indicates that the OTU that day had about the same abundance as the average.
® Orangeif zj; > 1. This indicates that the OTU that day had a higher abundance than the average.

Furthermore, the edge colour are dependent on the product of the two participating nodes. Hence, the edge
between OTU k and OTU [ at day i will have the colour:

® Redifz - zijy < —0.3. This shows a contribution to a negative interaction.
® Grayif—0.3 <z - zijy < 0.3. This shows no major contribution of neither a positive nor negative interaction.
® Blueifzj - z;y > 0.3. This shows a contribution to a positive interaction.

Our approach is motivated by the fact that the Pearson correlation py of the day means of OTU k and OTU [
is given by:

1 N
Pkl = 3 ;Zi,k “Zj]. (6)

For the Spearman correlation, the visualization is based on the rank of each of the OTU abundance values
in a sample. Hence, instead of using the raw abundances x; in the calculation of the day mean, the ranks r;
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are used instead, and all subsequent calculations and mappings are the same. In a scenario when there is only
one replicate, the quantity pi; would then be the Spearman correlation of the abundances of OTU k and OTU 1.

Data availability

The micInt package used for the analysis is available at GitHub https://github.com/AlmaasLab/micInt. The raw
flow cytometry data files are available at https://doi.org/10.6084/m9.figshare.15104409 The scripts used the ana-
lyse the data and create the figures are available on GitHub at https://github.com/yaccos/Microbial-co-occurence.
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Abstract

Background: Differential co-expression network analysis has become an important
tool to gain understanding of biological phenotypes and diseases. The CSD algorithm
is a method to generate differential co-expression networks by comparing gene co-
expressions from two different conditions. Each of the gene pairs is assigned conserved
(Q), specific (S) and differentiated (D) scores based on the co-expression of the gene
pair between the two conditions. The result of the procedure is a network where the
nodes are genes and the links are the gene pairs with the highest C-, S-, and D-scores.
However, the existing CSD-implementations suffer from poor computational perfor-
mance, difficult user procedures and lack of documentation.

Results: We created the R-package csdR aimed at reaching good performance
together with ease of use, sufficient documentation, and with the ability to play well
with other tools for data analysis. csdR was benchmarked on a realistic dataset with
20,645 genes. After verifying that the chosen number of iterations gave sufficient
robustness, we tested the performance against the two existing CSD implementations.
csdR was superior in performance to one of the implementations, whereas the other
did not run. Our implementation can utilize multiple processing cores. However, we
were unable to achieve more than ~2.7 parallel speedup with saturation reached at
about 10 cores.

Conclusion: The results suggest that csdR is a useful tool for differential co-expres-
sion analysis and is able to generate robust results within a workday on datasets of
realistic sizes when run on a workstation or compute server.

Keywords: R, Genome-scale, Co-expression, Gene network, Network

Introduction

Experimental high-throughput techniques, such as microarray and RNA sequencing,
allow for large-scale assays of gene expressions. Correlation-based network approaches
have been used for analysing a wide variety of gene-expression data in humans, iden-
tifying both individual genes and clusters of genes with prominent relationships to the
phenotype (disease) in question [1-4]. More recently, there has been a realization that
differential co-expression analyses, i.e. the study of changes in the correlations rather

than just a test for their presence or absence in the conditions, may identify important

©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit httpz/
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http/creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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genes [5, 6]. This may be of interest for the study of diseases, as a central goal is to iden-
tify genes contributing to differences between sick patients and healthy controls.

There exist multiple methods for differential co-expression analysis [7, 8]. Some make
separate co-expression networks for both conditions and compare the networks in order
to score differential expressed genes [9-11]. Another major approach is based on scor-
ing gene pairs directly based on their differential expression between different condi-
tions [12-15]. The CSD approach [7] is of the second type and explicitly distinguishes
between three different kinds of differential co-expression, that of Conserved (C), Spe-
cific (S), and Differentiated (D), hence its name. Each pair of genes will have a score for
each of these three categories.

Previously, two implementations of CSD have been written. The first one (https://
github.com/andre-voigt/CSD) was written as part of the original CSD work [7]. It is
implemented in a combination of C++ and Python and is not focused on performance
and user-friendliness. The other implementation (https://github.com/magnusolavhella
nd/CSD-Software) is written in C++ and is fine-tuned for performance [16]. However,
practical experience has shown it difficult to use due to its strict and obscure require-
ments for input data format. CoDiNa [17] is an R package which implements a proce-
dure similar to CSD and allows for comparing data from more than two environments.
On the other hand, CoDiNa does not account for the variability in co-expression within

an environment.

Implementation

We will assume that the expression vectors of two genes A and B have Spearman corre-
lations of p; and py in the first and second condition respectively. Furthermore, we define
o1 and o7 as the corresponding standard deviations of the aforementioned Spearman

correlations, estimated by resampling. The values for C, S and D are then defined by:

+
c— |p1 /02\,

‘/6124-022 M

lpal = lpall

Jo? + o (2)

_ [lo1l + lp2l = |p1 + pall
Jrira ®

The CSD algorithm consists of three principal parts:

N

D

1 Calculation of the Spearman correlation between each pair of genes for each of the
two datasets individually. This is conducted with resampling to provide an estimate
of the variance of the correlation.

2 Comparison of the values of mean correlation and standard deviation from the two
conditions, allowing the computation of Conserved, Specific, and Differentiated

scores.
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3 Selection of the gene pairs with the highest values for C, S and D, and the generation
of a network from them. In typical disease-network analyses, this network is studied

further with tools such as module finding and enrichment analysis.

An example CSD network containing both C-, S- and D-links is shown in Fig. 1. A
link in a CSD-network indicates a relation between the genes across the two condi-
tions and is likely to be due to regulatory effects which are the same or different in the
two conditions. With this in mind, we can consider the CSD network a product of the
underlying gene regulatory network. This allows us to suggest regulatory mechanisms
which are the same for both conditions in addition to mechanisms which are different
in the two conditions. Hence, CSD can be used as a tool to point to possible gene-
phenotype relationships underlying the condition in question. In turn, the results
from CSD can be integrated with prior knowledge to shed more light on the genetic
basis for the condition and serve as a starting point for follow-up experiments.

csdR is an R [18] package which implements this procedure and is written to
achieve good performance, be well documented and user-friendly, and provide seam-
less integration with other tools in the R ecosystem. The source code is available on
GitHub (https://github.com/AlmaasLab/csdR). Parts of it are written with Rcpp [19—
21] in order to boost performance. The package is designed to utilize multicore pro-
cessors and processor SIMD (Single Instruction, Multiple Data) instructions through
its usage of openMP [22]. In addition, the package is available in Bioconductor release
3.14.

The data provided to the package must be numerical data organized in matrices by
sample and gene. In theory, any numerical measure of gene expression could be used. In
practice, normalized read counts from RNA-seq or proteomics studies are the most rele-
vant to use. Note that imputation of missing values is not implemented in the package. If

missing values are present in the raw data, an error message will be reported to the user.

oo

oo &
QP o f‘f§>

Fig. 1 An example CSD network taken from the csdR vignette. The nodes are genes and the edges C- (dark
blue), S- (green) and D-links (dark red)
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In the original implementation [7] and the CSD C++ implementation, the resampling
is done through an ad-hoc method termed independent subsampling, meaning that
no points are sampled together more than once and each subsample has a fixed size.
Instead, our implementation uses bootstrapping [23] which is a more common statis-
tical practice. This means that the data points are drawn with replacement, and each
bootstrap sample contains as many points as the original sample. Consequently, a data
point is likely to be picked more than once in the same sample or not being in the sam-
ple at all. Compared to indendent subsampling, bootstrapping may be conducted an
arbitrary number of times, which ensures stable results given a sufficiently large num-
ber of iterations. In addition, bootstrapping is easier to implement and allows for faster
computations.

As part of computing the Spearman correlation, the observational ranks of the genes
in each sample must be computed. In the original implementation, this rank is re-com-
puted for every gene pair. csdR optimizes this approach by first finding the ranks of all
genes before computing the all-to-all Pearson correlation of the ranks. For this computa-
tion, the efficient WGCNA version of cor is used [1, 24]. Internally, WGCNA: : cor () uses
matrix multiplication handled by BLAS (Basic Linear Algebra Subprograms). Because
this step is the major performance bottleneck, linking R against an optimized BLAS
library, such as OpenBLAS (http://www.openblas.net/), is strongly recommended.

In order to ensure numerically stable computation of the variance of the co-expres-
sions, Welford’s algorithm [25] is applied. For the final step of selecting edges with the
largest values of C, S and D, past implementations used random sampling to find the
importance cutoff. Our implementation however, uses the more direct approach of par-
tial sorting through the C++ STL functions std: :nth_element and std: :sort.

Results and discussion
For small datasets (order of 100 samples and 100 genes), all implementations are so fast
that the runtime is of no practical importance. We benchmarked the different imple-
mentation on a realistic dataset derived from RNA-seq of thyroid glands. The data for
the patients with thyroid cancer (case) consisted of 504 samples, while the control data-
set consisted of 399 samples. These datasets are the full versions of the down-scaled
datasets sick expression and normal expression provided in the package.
See https://github.com/AlmaasLab/csdR/blob/main/inst/script/download_preprocess.
md for more details on how the data were obtained and pre-processed. There were a
total of 20, 645 genes being compared, which resulted in 213, 097, 690 different gene
pairs. We ran the three implementations with importance level set to p = 107, This
resulted in C-, S- and D-networks with 213 edges each. For the two first implementa-
tions, the number of random selections was kept to 10%, and the size of the subsamples
set to 10. All benchmarked software was compiled with GCC version 9.3.0 using com-
piler flags ~-03 -march=native and run on 10 virtual 2.4 GHz Intel Broadwell pro-
cessors. For csdR, the benchmarks were conducted using R version 4.1.0 linked against
libopenblas version 0.3.15.

In order to determine the number of iterations for csdR, we investigated the robust-
ness of the highest ranking links across different random seeds. We ran 10 parallels with
different random seeds over 1000 iterations, identified the intersection of the highest
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Fig. 2 Cumulative overlap of the highest ranking links from csdR. The shared links are the intersection of 10
parallels run over 1000 iterations with different random seeds

Table 1 Running time (s) for CSD on the large datasets with 1000 iterations

Implementation Cores Step 1 Step 2 Step 3 Total
Original 1 1,261,628 4900 116,051 1,382,579
csdR 1 41,387 79 " 41,477
csdR 5 20,737 50 15 20,802
csdR 10 15,488 45 13 15,546
csdR 15 15,192 50 12 15,254

ranking gene pairs between these 10 parallels, and finally calculated the proportion these
shared gene pairs made up (Fig. 2). For all three link types, the recall across all 10 paral-
lels stabilised at approximately 70%, 80%, and 90% for the S-, D and C-links, respectively,
when the number of selected links exceeded 2500. For smaller numbers of links, there
are more random fluctuations. We observe that the S-links have the lowest rate of recall.
This observation can be attributed to the fact that gene pairs with large S-values have
low levels of co-expression in one of the conditions and their scores are therefore more
susceptible to random noise. We are of the opinion that the robustness at 1000 iterations
is sufficient for practical use, and this choice was therefore used in the benchmarking
process. Better robustness may be obtained by increasing the number of iterations at the
expense of run time.

For this benchmark, we were not able to use CSD-C+-+, as we were unable to reshape
the data into a format the program would accept. A custom format repair tool (https://
github.com/lars-as/csd_cs_ged_tools) was attempted, but did not resolve the issues. For
the other two implementations, the results are shown in Table 1. We notice that csdR is
much faster than the original implementation even on a single core. The original imple-
mentation is single-threaded and can thus not take advantage of multiple cores. For
csdR, running the algorithm on 5 cores instead of one reduces the time spent approxi-
mately by a factor two. Doubling the core count to 10 provides another reduction factor
of ~25% of the time. For 15 cores however, no performance gain beyond the margin of
error was observed. We suspect that the algorithm’s failure to scale to such a large num-
ber of cores is due to the system’s memory bandwidth being exhausted. Another result
worth noticing is the fact that only the first step in the CSD procedure determines the
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performance in practise. The contributions from step 2 and 3 were negligible except for
step 3 in the original implementation, which consumes up 8.4% of the overall time. In
terms of memory usage, csdR consumed approximately 30 GB of RAM on the bench-
marked datasets. Due to the fact that most laptops and many desktop computers have
less memory than this, csdR is more suited for powerful workstations or compute

servers.

Conclusions
We have shown that csdR is reasonably fast even for large datasets and provides suf-
ficiently robust results. In addition, it is more accessible to the common user and better

documented than the previous CSD implementations.

Availability and requirements

Project name: csdR

Project home page: https://github.com/AlmaasLab/csdR

Operating systems: Cross-platform

Programming language: R, C++11

Other requirements: R(>=4.1.0), R packages WGCNA, glue, matrixStats,
RhpcBLASctl and Rcpp

License: GNU General Public License v3.0

Any restrictions to use by non-academics: The terms of the GPL-3 license must be
respected.
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BLAS: Basic linear Algebra Subprograms; CSD: Conserved, Specific, and Differentiated; SIMD: Single instruction, multiple
data; WGCNA: Weighted correlation network analysis.

Acknowledgements
Thanks for to Kristin Salvesen for testing the software and André Voigt for helpful discussions.

Authors’ contributions
J.PP. developed, tested, and benchmarked the software and wrote the first draft of the paper. EA. supervised the project.
Both authors read and approved the final manuscript.

Funding
This work is funded by ERA CoBioTech project CoolWine and the Norwegian Research Council grant 283862.

Availability of data and materials
The scripts and datasets used for benchmarking are available for download at Figshare https://doi.org/10.6084/m9.figsh
are.16713121

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Pettersen and Almaas BMC Bioinformatics (2022) 23:79 Page 7 of 7

Author details

'Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim,
Norway. 2K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU- Nor-
wegian University of Science and Technology, Trondheim, Norway.

Received: 30 September 2021 Accepted: 7 February 2022
Published online: 19 February 2022

References
1. Langfelder P Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;(1),
559.

2. Najafzadeh L, Mahmoudi M, Ebadi M, Dehghan Shasaltaneh M, Masoudinejad A. Co-expression network analysis
reveals key genes related to ankylosing spondylitis arthritis disease: computational and experimental validation. Iran
J Biotechnol. 2021;19(1):74-85. https://doi.org/10.30498/1JB.2021.2630.

3. Voineagu |, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH. Transcrip-
tomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380-4. https://doi.
0rg/10.1038/nature10110.

4. Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights Alzheimer
disease pathways. Proc Natl Acad Sci. 2010;107(28):12698-703. https://doi.org/10.1073/pnas.0914257107.

5. delaFuente A. From differential expression’to differential networking'-identification of dysfunctional regulatory
networks in diseases. Trends Genet. 2010;26(7):326-33. https://doi.org/10.1016/j.tig.2010.05.001.

6. Chowdhury HA, Bhattacharyya DK, Kalita JK. (Differential) co-expression analysis of gene expression: a survey of best
practices. IEEE-ACM Trans Comput Biol Bioinform. 2020;17(4):1154-73. https://doi.org/10.1109/TCBB.2019.289317.

7. Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals pos-
sible genetic interactions in glioma. PLoS Comput Biol. 2017;13(9):1-34. https://doi.org/10.1371/journal.pcbi.10057
39.

8. KakatiT, Bhattacharyya DK, Barah P, Kalita JK. Comparison of methods for differential co-expression analysis for
disease biomarker prediction. Comput Biol Med. 2019;113:103380. https://doi.org/10.1016/j.compbiomed.2019.
103380.

9. Reverter A, Ingham A, Lehnert SA, Tan S-H, Wang Y, Ratnakumar A, Dalrymple BP. Simultaneous identification
of differential gene expression and connectivity in inflammation, adipogenesis and cancer. Bioinformatics.
2006;22(19):2396-404. https://doi.org/10.1093/bioinformatics/btl392.

10. Wu C, Zhu J, Zhang X. Integrating gene expression and protein-protein interaction network to prioritize cancer-
associated genes. BMC Bioinform. 2012;13(1):182. https://doi.org/10.1186/1471-2105-13-182.

11. Choi JK, Yu U, Yoo OJ, Kim S. Differential coexpression analysis using microarray data and its application to human
cancer. Bioinformatics. 2005;21(24):4348-55. https://doi.org/10.1093/bioinformatics/bti722.

12. YuH, Liu B-H, Ye Z-Q, Li C, Li Y-X, Li Y-Y. Link-based quantitative methods to identify differentially coexpressed genes
and gene pairs. BMC Bioinform. 2011;12(1):315. https://doi.org/10.1186/1471-2105-12-315.

13. Amar D, Safer H, Shamir R. Dissection of regulatory networks that are altered in disease via differential co-expression.
PLoS Comput Biol. 2013;9(3):1-15. https://doi.org/10.1371/journal.pcbi.1002955.

14. Gao X, Arodz T. Detecting differentially co-expressed genes for drug target analysis. Procedia Comput Sci.
2013;18:1392-401. https://doi.org/10.1016/j.procs.2013.05.306.

15. Fukushima A. Diffcorr: An r package to analyze and visualize differential correlations in biological networks. Gene.
2013;518(1):209-14. https://doi.org/10.1016/j.gene.2012.11.028.

16. Helland MO. Implementation and application of method for differential correlation network analysis. Master’s thesis,
NTNU - Norwegian University of Science and Technology. 2017. http://hdl.handle.net/11250/2465378

17. Morselli Gysi D, de Miranda Fragoso T, Zebardast F, Bertoli W, Busskamp V, Almaas E, Nowick K. Whole transcriptomic
network analysis using co-expression differential network analysis (codina). PLoS ONE. 2020;15(10):1-28. https://doi.
org/10.1371/journal.pone.0240523.

18. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria. 2019. R Foundation for Statistical Computing. https://www.R-project.org/

19. Eddelbuettel D, Frangois R. Repp: seamless R and C++ integration. J Stat Softw. 2011;40(8):1-18. https://doi.org/10.
18637/js5.v040.i08.

20. Eddelbuettel D. Seamless R and C++ Integration With Rcpp. Springer, New York, 2013. https://doi.org/10.1007/978-
1-4614-6868-4. ISBN 978-1-4614-6867-7

21. Eddelbuettel D, Balamuta JJ. Extending R with C4+: a brief introduction to Rcpp. Am Stat. 2018;72(1):28-36. https://
doi.org/10.1080/00031305.2017.1375990.

22. Chapman B, Jost G, van der Pas R. Using OpenMP: portable shared memory parallel programming. Scientific and
Engineering Computation. MIT Press, Cambridge. 2007. Books24x7, Inc

23. Bootstrap. Springer, New York, NY, 2008, pp. 51-54. https://doi.org/10.1007/978-0-387-32833-1_40.

24. Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw.
2012;46(11):1-17.

25. Welford BP. Note on a method for calculating corrected sums of squares and products. Technometrics.
1962;4(3):419-20. https;//doi.org/10.1080/00401706.1962.10490022.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



BIBLIOGRAPHY




Paper 111

Parameter inference for enzyme and temperature constrained
genome-scale models

Jakob Peder Pettersen, Eivind Almaas

Under review in

Scientific Reports






Parameter inference for enzyme and temperature
constrained genome-scale models

Jakob Peder Pettersen' and Eivind Almaas!->"

'Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology,
Trondheim, Norway

2K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU -
Norwegian University of Science and Technology, Trondheim, Norway

*Corresponding author: eivind.almaas@ntnu.no

ABSTRACT

The metabolism of all living organisms is dependent on temperature, and therefore, having a good method to predict temperature
effects at a system level is of importance. A recently developed Bayesian computational framework for enzyme and temperature
constrained genome-scale models (etcGEM) predicts the temperature dependence of an organism’s metabolic network from
thermodynamic properties of the metabolic enzymes, markedly expanding the scope and applicability of constraint-based
metabolic modelling.

Here, we show that the Bayesian calculation method for inferring parameters for an etcGEM is unstable and unable to estimate
the posterior distribution. The Bayesian calculation method assumes that the posterior distribution is unimodal, and thus fails
due to the multimodality of the problem. To remedy this problem, we developed an evolutionary algorithm which is able to
obtain a diversity of solutions in this multimodal parameter space.

We quantified the phenotypic consequences on six metabolic network signature reactions of the different parameter solutions
resulting from use of the evolutionary algorithm. While two of these reactions showed little phenotypic variation between
the solutions, the remainder displayed huge variation in flux-carrying capacity. This result indicates that the model is under-
determined given current experimental data and that more data is required to narrow down the model predictions. Finally, we
made improvements to the software to reduce the running time of the parameter set evaluations by a factor of 8.5, allowing for
obtaining results faster and with less computational resources.

Introduction

Temperature is a key effector of life, which is partially due to the consequence that temperature has on catalytic properties
of enzymes. For a long time, it has been known that enzymatic reactions slow down at low temperatures, whereas high
temperatures destroy the enzymes, rendering them non-functional. In recent research!2, it has also been acknowledged that
enzymes have lower catalytic rates at high temperatures due to changes in heat capacity. The effect of temperature on the
behaviour of microorganisms as a whole is evident. Freezing food stops spoilage by inactivating microorganisms, whereas
cooking kills them. In between these temperature extremes, there are observable effects which can be utilized commercially.
One example of this is yeast production of aroma compounds, which has been shown to depend on temperature>*, a finding
with potentially great impact on wine and beer brewing.

Until recently, no attempt has been made to computationally explain the temperature dependence of microorganismal
phenotypes by propagating the temperature dependence of metabolic enzymes to the entire metabolic network of an organism.
However, Gang Li e al.’ came up with an extension of an enzyme-constrained genome-scale metabolic model (ecGEM) which
can capture the temperature dependence of metabolism. This model is thus called an enzyme and temperature constrained
GEM (etcGEM). As most other models, the one by Li et al.® is based on sets of assumptions and parameters. In particular, this
model is based on model ecYeast7.6° (Saccharomyces cerevisiae strain S288C) and contains 764 metabolic enzymes and 2,292
parameters associated with enzymatic activity. For each of the enzymes, the following parameters must be determined: (1) 7,
the melting temperature; (2) T,,;, the temperature optimum; and (3) AC};, the change of heat capacity from the ground state to
the transitional state.

Given these parameters, it was demonstrated how an enzyme’s maximum catalytic rate k., (T) at a certain temperature
T could be estimated’. These temperature-dependent maximal catalytic rates were then fed into the enzyme-constrained
genome-scale model®’, and the metabolic flux rates were predicted using Flux Balance Analysis (FBA)®°. Furthermore, Li
and coworkers® used a Bayesian approach to infer the enzymatic parameters mentioned above from sets of training data: (1)
Maximal growth rates in aerobic batch cultivations'?; (2) Maximal growth rates in anaerobic batch cultivations'!; (3) Chemostat



cultivations which include measurements of exchange fluxes of carbon dioxide, ethanol and glucose'?2.

In the training data, the experimentally determined exchange fluxes were recorded for a range of temperatures, thus
generating a set of growth scenarios. The performance of a parameter set was assessed by predicting the flux rates in these
growth scenarios and comparing these fluxes rates with the experimental results. Hence, the R? score between the experimental
and modelled fluxes were used to assess the model’s goodness of fit.

For defining the Bayesian model, prior parameters have to be chosen for the enzymes. Li ef al.> did this through a custom
heuristic which was partially based on measured temperature optima and denaturation temperatures for enzymes. By training
the model with the Sequential Monte Carlo based Approximate Bayesian calculation method, an estimate of the posterior
distribution of parameter sets was found®. However, Li ef al. did not systematically investigate the stability of this calculation
method, nor whether it suffered from identifiability issues. Thus, it is unclear how metabolic flux results from the etcGEM can
be interpreted.

In this paper, we investigated the stability of the Approximate Bayesian calculation method algorithm by choosing multiple
different random seeds over different priors. We found that the Bayesian calculation method is inherently numerically unstable,
and thus, is unable to provide reliable results given its model assumptions. To rectify this problem, we implemented an
evolutionary search algorithm that is not built upon any assumption of structure of the underlying data. Finally, we improved
the execution time of the software package by almost a factor 10, making it feasible to execute on smaller-scale computational
infrastructures. However, for the available data there is an identifiability problem, in which solutions that equally match the
experimental data still differ in terms of fluxes through key metabolic reactions. We believe that the evolutionary algorithm will
resolve the identifiability problem if more experimental data, in particular data regarding internal fluxes, are included.

Results

Improvements to the running time of the algorithm

Running the Bayesian calculation method once for 500 iterations with the chosen hyperparameters consumed approximately
17,000 CPU hours (approximately corresponding to two weeks on a 48 core computer) using the implementation from Li
et al. Profiling showed that the particle evaluation procedure (see Methods) was the performance bottleneck, and excess
time consumption was caused by COBRApy’s'? internal routines to modify metabolic models prior to solving them. Hence,
preparing the models for optimization consumed far more time than the optimization proper. For this reason, we modified the
implementation to use the ReFramed package (https://github.com/cdanielmachado/reframed) for handling
the genome-scale model. We benchmarked the two versions on a computer running Intel Core i7-8565U using a single core
(Table 1). With our code improvements, the performance was boosted by factor of 8.5. As a consequence, the results of the
Bayesian calculation method could be obtained the day after starting it when running on a compute server. Still, only about
20% of the particle evaluation time was spent on optimization, so improvements within the ReFramed package has the potential
for increasing performance even more.

Assessing the stability of the Bayesian calculation method

In order to investigate the stability of the Bayesian calculation method for stochastic effects, we ran the Bayesian calculation
method with two different random seeds on the three training datasets. These runs of the Bayesian calculation method are
referred to as Bayesian simulation 1 and 2. Also, in addition to using the priors selected by Ref., we created three randomized
priors by permutation (see Methods for details) and repeated the process of assessing stability given these priors. Thus in total,
we ran the Bayesian calculation method eight times, yielding eight different populations of estimated posterior distributions.
The permuted priors yielded approximately the same rate of fitness convergence as the unpermuted priors (Figure 1 A and B
and Supplementary Figure S1). Between simulation 1 and 2 for the same priors, the differences were negligible.

Having observed that all priors do indeed result in parameter sets with high fitness, we next investigated whether these
solutions were similar. For this, we created a Principal Component Analysis'* (PCA) plot of the parameter sets obtained
under estimation (Figure 1 C and D with a more complete overview in Supplementary Figure S2). The estimated posterior
distributions, defined as the collection of particles having R> > 0.9, were different for every simulation even though the

Table 1. Comparing benchmark results for a full evaluation of a particle using all three conditions (aerobic, anaerobic and
chemostat). The numbers were averaged over 10 iterations.

Implementation Overall time [s] Percentage time in optimization [%]
Original version from Li et al. 106 0.837
Updated version with ReFramed 134 19.7
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convergence properties were similar. This means that the Bayesian calculation method is unstable for all four priors and that
there are identifiability issues causing the calculation method to converge at different locations in the parameter space.

We also discovered that the calculation of R? values for the chemostat dataset suffered from numerical instabilities unrelated
to the Bayesian calculation method. For the same particle and software version, the Gurobi solver could sometimes judge the
model infeasible given the parameters and sometimes it could find a feasible solution. However, given that a solution was found,
the results were consistent up to expected numeric accuracy. We therefore suspected that the inherent numerical instability in
calculation of the R? value for chemostat data in turn had made the Bayesian calculation method unstable. Given this concern,
we also ran the Bayesian calculation method without the chemostat data. We only used the priors suggested by Li et al. and
ran four different simulations with differing random seed. The results for this setup (Supplementary Figure S3 and S4) were
similar to the simulations including the chemostat dataset. Hence, the Bayesian calculation method was unstable also when
withholding the chemostat dataset.

Assessing enzyme-level stability of the Bayesian calculation method

To systematically study the phenotypic behaviour of particles in the estimated posterior distributions, we performed Flux
Variability Analysis (FVA)!3, see Methods for more details. While it is impossible to lock down a specific flux distribution due
to an infinite number of alternative optimal solutions, FVA uncovers the flux bounds of each individual reaction capable of
supporting optimal metabolic behaviour, in this case maximizing the growth rate given the model parameters. We decided to
focus the investigation of FVA results on six reactions that have important biochemical roles in the metabolic network:

Pyruvate dehydrogenase: A key reaction in connecting glycolysis to the TCA cycle and fatty acid synthesis

Fructose-bisphosphate aldolase: An intermediate reaction in glycolysis

Ferrocytochrome-c:oxygen oxidoreductase: The oxygen consuming reaction in the respiratory electron transport chain

Phosphoserine phosphatase: Reaction producing the amino acid serine from intermediates in the glycolysis

Shikimate kinase: Intermediate reaction in synthesis of folate and aromatic amino acids (phenylalanine, tyrosine and
tryptophan)

Growth: The growth (biomass) reaction is included for comparison with the other reactions. The calculated growth
should ideally be identical to the experimental ones, but some deviations occurred because the posterior particles did not
in general provide a perfect fit to the data.

We chose to focus on three simulations; Bayesian simulation 1 and 2 with original priors and Bayesian simulation 1 with
permuted prior set 1 (Figure 2). First, we observe that the flux through shikimate kinase had a narrow flux range and was highly
coupled with growth. This reaction is a part of the shikimate pathway for producing folate and aromatic amino acids. We suspect
that the resulting compounds have no functionality in the model except for being part of the biomass reaction. As no alternative
pathways for producing these compounds exist, the flux through the shikimate kinase reaction is thus locked at a certain
fraction of the growth rate. For the other reactions, there exists more variability among the solutions. Fructose-bisphosphate
aldolase and Ferrocytochrome-c:oxygen oxidoreductase are for some particles used extensively, but in other cases not at all, still
giving rise to approximately the same growth rates regardless. This means that the metabolic model uses alternative pathways
depending on the choice of enzyme thermodynamic parameters. The fluxes for Pyruvate dehydrogenase and Phosphoserine
phosphatase generally follow the trends of the growth curve, as for shikimate kinase. However, there are outliers deviating from
this pattern, again most likely due to availability of alternative pathways.

The results for the anaerobic dataset (Supplementary Figure S5) were similar, except for the fact that there was no flux
through the Ferrocytochrome-c:oxygen oxidoreductase reaction as there was no oxygen available to be consumed. We also ran
FVA on the results omitting the chemostat dataset when running the Bayesian calculation method (Supplementary Figure S6
and S7). These results also showed large variability within simulation results and across simulations.

A bimodal toy example
Given the observation that the Bayesian calculation method returned different parameter sets with high fitness, we suspected
that the fitness landscape of the temperature parameters was multimodal. Hence, we decided to test the Bayesian calculation
method on a toy problem with two parameters to infer; x and y.

We defined the fitness function as:

1
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Figure 1. Comparison of the effect of prior and random seed on the Bayesian calculation method. Panel A and B show
the training R? values for the unpermuted priors and permuted prior 1, respectively. An R? value of 1 corresponds to exact
correspondence between the training data and the model predictions. The shaded regions indicate the 5™ and 95" percentiles,
whereas the solid lines indicate the median (50™ percentile). Panel C and D show Principal Component Analysis (PCA) plots
of the parameter sets from the unpermuted priors and permuted prior 1, respectively. Each point is a candidate parameter set.
The prior points are the ones which served as a starting point for the calculation method, the estimated posterior points are the
ones which had R? > 0.9, whereas all other points are intermediate points stemming from the simulations. The axes are
identical for both panels and use the same ordination, making the panels directly comparable.
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Figure 2. FVA analysis for the aerobic dataset for six reactions and varying temperature when using estimated posterior
distributions obtained for the Bayesian calculation method. The midpoint panels show the FVA flux midpoint, this is: The
average of the maximum and minimum attainable flux given the optimization objective. The range panels show the absolute
difference between the maximum and minimum flux. The lines denote the mean midpoint or range value, whereas the error
bars span from the lowest to the highest observed value. The growth reaction is included for reference, and it will always
display an FVA range of zero as it is the optimization target.
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This fitness function assumes values from 0 to 1 where R? = 1 is only attained in the global maxima (x,y) = (1,1) and
(x,y) = (—1,—1). The function does not have any additional extrema, but it has a saddle point at (x,y) = (0,0).

As our priors, we assumed that x and y were independent and identically normally distributed with mean zero and standard
deviation 0.2. This is:

x,y ~N(0,0.2%) ()

Due to the symmetry of this problem, the true posterior distribution is equally centred around the two optima and we would
therefore expect the Bayesian calculation method to replicate this symmetric distribution. We ran the Bayesian calculation
method on this toy problem with a population size of 32 over 200 iterations with four replicates having different random seeds.
When plotting the final generation of particles (Figure 3 A), we realized that the Bayesian calculation method clustered all of its
points in a very small space close to one of the optima. Which of these two optima this was, varied based on the random seed,
but the same simulation never yielded points near both of the optima. In addition, only one of the four simulations actually
reached an optimum, whereas the three other simulations suffered from genetic bottlenecking, meaning that the variability in

the population of particles disappeared and caused premature convergence'.

Evolutionary algorithm

Given the instability of Bayesian calculation method and its inability to cope with multimodal fitness landscapes, we constructed
an evolutionary algorithm'”-?" as an alternative for inferring parameters. More specifically, we used a variation of CrowdingDE?!
which is designed to find alternative optima in a multimodal distribution®? (see Methods for details). Our choice of an
evolutionary method was motivated by how an evolutionary algorithm searches the parameter space and its ability to combine
existing solutions to create improved solutions?®. CrowdingDE has two major hyperparameters, the scaling factor F and the
crossover probability CF which both determine how crossover between individuals is done.

For testing the performance of the evolutionary algorithm, we used the previously mentioned toy example with the same
priors. As for the Bayesian calculation method, the population size was set to 32 and four replicate simulations were run
for 200 generations. The scaling factor was set to 0.5, the crossover probability was 0.5 and 16 new children were born
per generation. (Figure 3 B) As opposed to the Bayesian calculation method, the evolutionary algorithm diverged into two
subpopulations closing on the two optima, each consisting of approximately half the individuals. This shows that the chosen
evolutionary algorithm is able to find multiple optima during the same simulation. Note however, that the two subpopulations
had a considerable variability after 200 generation and thus did not suffer from genetic bottlenecking.

Encouraged by the results from the toy example, we applied the evolutionary algorithm on the problem of finding enzyme
parameters. We used the same prior as suggested by Li ef al. and chose to discard the chemostat dataset for these simulations
due to its associated instability. The population size was set to 128, the children born per generation was 64 and the simulation
were run for 1000 generations. We varied the hyperparameters scaling factor F' and crossover probability CF. Simulations
were conducted in replicate, meaning that for any combination of scaling factor and crossover probability, two simulations were
executed with differing random seeds.

All simulations produced particles with R> > 0.9 by 1000 generations (Supplementary Figure S8). However, there were
considerable variability in fitness among the particles in each simulation and only in two of the simulations (the ones with
F = 0.5 and CR = 0.99), the median population fitness exceeded R> = 0.9. Still, having a large span of fitness values inside the
same simulation is not a major disadvantage per se as one can selectively pick the individuals with high R%. At the same time,
having a large variability among the solutions is preferable to avoid genetic bottlenecking. The choice of hyperparameters also
affected the rate of convergence. From what we can assess, F' = 0.5 and CR = 0.99 yielded the best effect in this case (Figure 4
A), and we proceeded with the results from this hyperparameter combination. However, this does not necessarily mean that
better choices for the control hyperparameter do not exist, nor does it mean that these hyperparameter values are appropriate
given different experimental data sets®*.

We further extracted the particles from these two simulations having R? > 0.98 and created a PCA ordination (Figure 4 B).
From this ordination, we observed that the particles ended up in distinct clusters which we believe to be local optima of the
fitness function, similar to the situation in Figure 3 B. Furthermore, hierarchical clusters (Supplementary Figure S9) display the
particles in these discrete optima. Each simulation found a number of these optima, but the same optimum was not found by
both of the simulations. Still, there is no evident distinction between the populations from the two simulations as a whole. This
observation is most likely due to the fact that there are so many optima that it is not feasible for the evolutionary algorithm to
find all of them.

FVA analysis of the same particles (Figure 5 and Supplementary Figure S10) revealed that the populations of particles
from the two simulations did not show any large systematic differences. However, within the same population of solutions,
there were considerable variation and outliers. This points to usage of alternative pathways which the experimental data could
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Figure 3. Results of parameter inference on the toy example. Panel A and B show the final generation of particles for the
Bayesian calculation method and evolutionary algorithm, respectively. Each point represents an individual in the final
population. Each shape and colour (each shape is associated to exactly one colour) represents one of the four replicate
simulation. The global fitness optima of the problem are the points (—1,—1) and (1, 1), and are marked by dotted contours. For
Panel A, the particles from each simulation are so close that they are visually indistinguishable and therefore appear as a single
point.

not lock down based on the growth rates alone. The results for Ferrocytochrome-c:oxygen oxidoreductase under aerobic
condition illustrate this case; at temperatures below 37 °C there were moderate levels of agreement between the different
particles. However, at higher temperatures, the coupling disappeared, meaning that alternative pathways could take over and
attain approximately the same fitness.
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Component Analysis (PCA) plot of the particles having R> > 0.98.
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Figure 5. FVA analysis on the results from the evolutionary algorithm under aerobic conditions. The particles selected for this
analysis stem from the two simulations with F = 0.5 and CR = 0.99, considering only the particles with R? > 0.98. The
midpoint panels show the FVA flux midpoint, ie. the average of the maximum and minimum attainable flux given the
optimization objective. The range panels show the absolute difference between the maximum and minimum flux. The lines
denote the mean midpoint or range value, whereas the error bars span from the lowest to the highest observed value. The
growth reaction is included for reference, and it will always display an FVA range of zero as it is the optimization target.
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Discussion

We observed that computing R? values for the chemostat dataset resulted in numerical instability, while this problem was not
present for the other two datasets. This is likely due to the the three-stage procedure of first locking the growth rate of the model
to the dilution rate, then minimizing glucose uptake and setting it as a constraint for the model, before finally minimizing the
protein usage and then reporting the fluxes. Even if the resulting problem is mathematically solvable, the sharp constraints
still cause problems for the Gurobi LP solver, which for the same particle sometimes managed to find a feasible solution to
the problem, and sometimes not. Potentially, this challenge could be mitigated by reformulating the optimization problem
to obtain a growth rate and glucose uptake rate as close as possible (but not necessarily equal) to the target values>. Also,
Gurobi supports directly setting lexicographic objectives solved in sequence, an approach which hopefully does not possess the
aforementioned problem.

Our results point out that the outcome of the Bayesian calculation method is unstable and its result indeed depends on the
choice of random seed. It is important to note that this instability has nothing to do with the instability of R* computations for the
chemostat dataset. As illustrated by the toy example, even simple bimodal fitness functions can cause the Bayesian simulations
to suffer from genetic bottlenecking and failing to estimate the posterior distribution. Given the strong indications that the fitness
landscape for the thermodynamic enzyme parameters is multimodal, our results imply that the Bayesian calculation method
failed to converge to the true theoretical posterior distribution. This is a serious problem, as the usual statistical interpretations
of the Bayesian approach will lead to erroneous conclusions if applied to the results.

Each Bayesian simulation converged to a point cloud with no apparent higher-dimensional structure. This observation
makes sense, considering that the Bayesian calculation method creates new particles by sampling each parameter independently
from a normal distribution where the mean and standard deviation is determined by the past generation. Thus, the estimated
posterior points are likely to cluster in a high-dimensional cloud where the density of each parameter is normally distributed
and the spatial density is the product of the marginal densities of the parameters. Hence, the Bayesian calculation method
assumes an unimodal posterior distribution and will therefore fail when applied to a problem with a multimodal posterior
distribution. The failure of the chosen Bayesian calculation method does not imply that a Bayesian approach for etcGEMs
necessarily is bad, but it would require considerable refinements to the Bayesian calculation method to work with multimodal
posterior distributions?®?7.

The evolutionary algorithm produced results which were more robust to the choice of random seed. Simulations which were
run for the same combination of hyperparameters had similar development of R? values. Although the choice of hyperparameters
had large effects on the rate of convergence, we were only able to evaluate a small number of hyperparameters due to the
large computational burden associated with running the evolutionary algorithm on the problem in question. We may therefore
have missed out on more favourable hyperparameter combinations. Consequently, we see potential in using a self-adaptive
Differential Evolution algorithm which does not need predetermining niching hyperparameters®®.

For our preferred hyperparameter set F = 0.5 and CR = 0.99, we obtained a large variety of solutions and fitness values.
The particles with the highest fitness values were dispersed among many distinct optima in the fitness landscape. Due to the
high number of optima being present, the evolutionary algorithm was unable to find all of them in a single simulation. Yet,
unlike the Bayesian calculation method, the evolutionary algorithm did not appear to have any spatial bias with respect to where
these optima were localized in the parameter space.

The great variety of different particles of the evolutionary algorithm is not a weakness per se, but rather an indication
of the desired feature of exploring the parameter space and avoiding genetic bottlenecking. Still, the results reveal that the
identifiability of the parameter inference problem is poor. As revealed by FVA, there exists large variability between the
particles with high fitness with respect to the internal fluxes. Hence, the choice of metabolic pathways for yeast appear to be
sensitive to the thermodynamic properties of the enzymes even if the growth rate, metabolic network model topology, and
external conditions were kept the same. This phenotypic sensitivity to thermodynamic properties of the metabolic enzymes may
be a possible explanation for cellular metabolic heterogeneity observed in yeast cultures®®3. Still, we believe that the main
source for the lack of identifiability is a result of the external measurements being insufficient to account for the inner workings
of the yeast cell. In this respect, we believe that measurements of proteomics®' and fluxomics®?> will help narrow down the
solution space and provide more accurate predictions of metabolic behaviour. For instance, if we got direct measurement of a
reaction showing high variability between particles with our present data, such as Fructose-bisphosphate aldolase, we would be
able to rule out the particles not satisfying the measured fluxes of this reaction.

The application of such refined approaches strongly suggests that a strategy for including different kinds of data is needed.
Heckmann et al. inferred apparent k., values from large-scale proteomics and metabolomics data on a genome-scale level
using gene knock-out strains and machine learning. As a result, more accurate prediction of in vivo fluxes were obtained
compared to using k.., values measured in vitro®33*. We believe that this strategy can be adapted to the current etcGEM
framework and provide efficient integration of different kinds of data, thus allowing narrowing down the solution space and at
least partially alleviate the problem of identifiability.
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With our software improvements, running the inference algorithm is much faster than with the original implementation, yet
the problem is still so computationally expensive that workstation or server-grade hardware is required. This computational
burden is likely to increase when incorporating more experimental data to calibrate the parameters. Therefore, systematic
improvements should be implemented in the framework to minimize unnecessary overhead in order to hold the computational
burden at a manageable level.

Methods

Evaluation method for particles

A parameter set, referred to as a particle, is a collection of the three parameters T,,, T,,; and AC;f; for the 764 metabolic enzymes
of the ecYeast7.6 model. The goodness of fit for a particle was evaluated by the framework created by Li et al.>. In brief, this
evaluation procedure acted as a black box taking a particle as input and returning an overall R? value. In the assessment, each
particle was matched against experimental data from three experiments with Saccharomyces cerevisiae. These were:

* The aerobic dataset'? measuring growth rates of yeast at 8 temperatures between 16 °C and 42 °C under aerobic batch
fermentations.

* The anaerobic dataset'! measuring growth rates of yeast at 13 temperatures between 5 °C and 40 °C under anaerobic

batch fermentation. However, in our particle assessment, only 8 of the temperatures were used.

* The chemostat dataset'> measuring exchange fluxes of carbon dioxide, ethanol and glucose at 6 temperatures between
30°C and 38.5 °C in aerobic chemostats.

The parameters were used to adjust the effective catalytic rate k¢, (T') (which includes denaturation) for each enzyme in the
model and at each temperature 7. In addition, the model’s non-growth associated ATP maintenance (NGAM) was also adjusted
according to the temperature. Further details are published in Li ef al.>.

For the aerobic and anaerobic datasets, the model’s temperature-dependent parameters were tuned, and fluxes were predicted
by Flux Balance Analysis (FBA) calculations at the specific temperatures, and the biomass (growth) function was set as the
objective. For each of the aerobic and anaerobic datasets, the growth rates predicted by the model were compared with the
experimental growth rates, and an R? value was reported, yielding R2,, and R%,.

For the chemostat dataset, the procedure was somewhat different. Here, the temperature-dependent parameters were tuned
(as with the other datasets) before the growth rate of the model was locked to the dilution rate of the chemostat. Thereafter, the
model was optimized for minimum glucose uptake, and this uptake flux value was set as a constraint for the model. Finally,
the model was optimized for minimum protein pool usage, and exchange fluxes of ethanol, carbon dioxide, and glucose were
recorded. Once the three fluxes for all temperatures in the chemostat dataset were recorded, these values were compared to the
experimental ones, and th emo Was determined.

The overall R? for all datasets was calculated as the arithmetic mean of RZ,,, RZ,,, and th emo- This value was then returned
as the final result of the evaluation procedure. The higher the R? value, the higher correspondence exists between the modelled
solutions and the experimental results, where R> = 1 corresponds to the highest achievable fitness.

We optimized the evaluation procedure to use the ReFramed package instead of COBRApy'? in order to reduce overhead
related to modifying models. However, the results generated by our modified particle evaluation approach should be identical to
the results generated by the original code by Li et al. for all simulations.

Approximate Bayesian calculation method

The framework and code for the Sequential Monte Carlo based Approximate Bayesian calculation method was taken directly
from Li et al.’, and we used the same hyperparameters as in the original publication. For seeding the calculation method, priors
were needed for the values of T, T, and Ale for each enzyme. We used the same priors as Li et al.. These priors considered
the distribution of each parameter x; to be normally distributed

x; ~ N (u;,0;), 3)

and the marginal distribution of each parameter was independent. Some simulations were also run with permuted priors. This
meant that the labels of the enzymes were randomly shuffled and each enzyme thus got the values of 7, T;, and ACf, of
another enzyme before this new prior was used to seed the Bayesian calculation method. The computations were run for 500
iterations. The population size at the end of each iteration was 100. We generated 128 new particles for each iteration and
evaluated them according to the description in the previous section. The new particles were generated by computing the mean
and standard deviation for each parameter of the particle population and sampling new parameters from a normal distribution
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with the aforementioned mean and standard deviation. When creating new particles, we nevertheless made sure that they
obeyed the constraint 7,, > T, > OK. If this constraint was violated, the parameter was resampled. Selection of the particles
was implemented through truncation selection, meaning that the 100 best particles from the previous iteration were passed to
the next iteration while the rest were discarded.

Evolutionary algorithm

The evolutionary algorithm used in this paper for fitting enzyme parameters is based on the existing CrowdingDE?! algorithm
and was written from the ground up. Individuals in the evolutionary process were the parameter set particles discussed earlier.
The population size for each iteration (generation) was set to 128. The initial 128 individuals of the population were generated
by sampling from the same priors as those used by Li e al. The algorithm was run for 1000 generations. Each generation
consisted of the following steps carried out in sequence:

* Generation of children: At the beginning of each generation, 64 children were created as a weighted difference of
parent individuals. For each child, three parents Pj, P, and P; were selected at random from the population without
replacement, ensuring that the parents were unique. We refer to P; as the primary parent and P», P; as the crossover
parents. At first, each parameter for the child was initialized to the corresponding value for the primary parent, this is:

Uehitd ke = Mp . for 1 <i<M, “)

where M denotes the total number of enzyme parameters. For crossover, a random integer i € [1,M] was uniformly
drawn. A counter variable j was thereafter initiated to zero and the following procedure was repeated: A random number
r € (0,1) was uniformly drawn. If j > M or r > CR, where CR is referred to as the crossover probability, crossover was
cancelled and the algorithm advanced to commence the generation of the next child. Otherwise, crossover was performed
on parameter k =i+ j mod M:

Menitaj = ek +F (Upy g — ey k) » )

and j was incremented by one and the procedure was repeated for the next enzyme parameter. Updates to enzyme
parameters which violated the constraints 7,, > T, > 0K were reverted.

Evaluation of children: Each child particle was evaluated through the same procedure as mentioned above and their
respective R? values were reported. In our case, we withheld the chemostat dataset and therefore only averaged the R

5 rae
and R;,, values.

Replacement: For each child a generated in the same generation, the normalized parameter-space distance from the
child to the individuals in the current population was calculated:

M —uw
Dai=Y. <7“ o E ") ., ®)

k=1
where U, and p; ¢ are values for the enzyme parameter k for the two individuals, M is the total number of enzyme

parameters and oy is the empirical standard deviation of enzyme parameter k in the population at the end of the previous
generation. The closest individual b to the child a was then chosen as:

b= argminDy. !
1

If the individual (the child) a had a higher fitness than b, i.e. R2 > R, then b was discarded from the population and
replaced with a. Otherwise, b was kept in the population and the child a was discarded.

The two tuning parameters F (scaling factor) and CF (crossover probability) were tested with values Fe {0.5,1.0} and
CFe {0.9,0.99,0.999}. For each combination of these parameters, two replicate simulations were conducted with different
random seeds.

Ordinations

We used Principal Component Analyses (PCA) from scikit-learn (version 1.0)* to create ordinations of particles. The values
for each parameter were standardized, subtracting the mean and dividing by the population standard deviation before ordination.
The means and standard deviations were computed across all particles present in the ordination in question. As a result, the
presented ordinations in Figure 1 and Supplementary Figure S2 are comparable across the panels in the same figure. For
the Bayesian calculation method (Figure 1 and Supplementary Figure S4), all points generated during the simulations were
included to make the ordinations. However, for the evolutionary algorithm (Figure 4), only the points attaining R> > 0.98 from
the two simulations with F = 0.5 and CR = 0.99 were included in the ordination.
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Flux variability analysis

Flux variability analysis (FVA)' was conducted on particles having R> > 0.9 (for the Bayesian calculation method) or R? > 0.98
(for the evolutionary algorithm) in order to ensure that these particles had high fitness. From each simulation, 20 particles were
sampled randomly from the particles satisfying the aforementioned thresholds. For each sampled particle, FVA was run for
the aerobic and anaerobic datasets across the same temperatures used for determining R? in the parameter fitting process. For
the chemostat dataset, the numeric instability was too large to produce reliable results, and the chemostat dataset was thus
discarded for the analyses. The temperature and the parameters of the particles were first used to fix the effective k., values.
Subsequently, the metabolic model was optimized for maximal growth, and the lower bound of the growth reaction was locked
to the obtained growth rate. Thereafter, maximum and minimum fluxes through each reaction in the model were found given
the constraints. Instead of using the maximum and minimum fluxes directly, we converted them into flux midpoint (average of
maximum and minimum) and flux ranges (absolute difference between maximum and minimum). Results with missing or
infinite values were removed.

All flux ranges and flux midpoints with the same combination of simulation, reaction, dataset, and temperature were
aggregated to give the mean, minimum and maximum values. Usually, there were 20 such values for each combination, as 20
particles were sampled for each of these combinations. However, this number could be smaller due to removal of missing and
infinite values.

Hierarchical clustering

Agglomerative hierarchical clustering®® was conducted on the particles from the evolutionary algorithm with F = 0.5 and
CR = 0.99 that satisfied R> > 0.98, as for PCA and FVA. We standardized each parameter value by subtracting the mean
value and divided by the standard deviation among the selected particles and also calculated pairwise Euclidean distances.
Hierarchical clustering was conducted by single (minimum distance) linkage in order to put emphasis on the detection of
discontinuities between clusters of particles. The results were presented in a dendrogram showing the particles as leafs. The
branches of the dendrogram were coloured according to which simulation the downstream branches corresponded to. Branches
containing particles from both simulations were left uncoloured (gray).
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Abstract

Background: Use of alternative non-Saccharomyces yeasts in wine and beer
brewing has gained more attention the recent years. This is both due to the
desire to obtain a wider variety of flavours in the product and to reduce the final
alcohol content. Given the metabolic differences between the yeast species, we
wanted to account for the differences by using in silico models.

Results: We created and studied genome-scale metabolic models of five different
non-Saccharomyces species. These were: Metschnikowia pulcherrima, Lachancea
thermotolerans, Hanseniaspora osmophila and Kluyveromyces lactis. It was found
that Metschnikowia pulcherrima, compared to the other species conducts more
respiration and thus produces less fermentation products, a finding which agrees
with experimental data. Complex | of the electron transport chain was predicted
to be present in the model of Metschnikowia pulcherrima, but absent in the
others. The importance of Complex | vanished when incorporating enzyme
constraints, but still Metschnikowia pulcherrima consumed glucose more
efficiently by respiration.

Conclusions: The results suggest that Complex | in the electron transport chain
is a key differentiator between Metschnikowia pulcherrima and the other yeasts
considered. Yet, there likely exists other features in the metabolic network which
differentiates Metschnikowia pulcherrima from the other yeasts. Further
experiments should be conducted to confirm the in vivo effect of Complex | in
Metschnikowia pulcherrima and its respiratory metabolism.

Keywords: Metschnikowia pulcherrima; SMOMENT; genome-scale models;
electron transport chain; Complex |; yeast; metabolic modelling; automated
reconstructions; enzymatic constraints; alternative pathways; decFBA

Background

In recent years, there has been increased interest in using alternative non-
Saccharomyces yeasts for beer and wine brewing[1, 2, 3, 4, 5]. In general, there are
two motivation for the pull towards fermentation by non-Saccharomyces strains:
First, wine producers want to reduce the resulting alcohol content. Second, some
brewers want more complex aroma compounds in the product and thus try to mimic
the rich taste of spontaneously fermented products. In this paper, our focus will be
on the desire for lower alcohol content.
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Climate change has resulted in warmer and sunnier summers in wine producing
regions, leading to higher sugar content in ripe grapes. When the must of high
sugar grapes are fermented, this leads to higher alcohol content in the product. As
a consequence, alcohol content of wine has risen by approximately 1% alcohol by
volume each decade since the 1980s in some wine producing regions|6, 7]. Whereas
approaches such as delusion of the must, earlier harvesting of the grapes and post-
fermentation removal of alcohol can bring down the resulting alcohol content, such
approaches come at the expense of deterring oenological qualities and breaking with
established standards for wine brewing|8].

In order to create wines with reduced alcohol content without losing the rich
flavours, aeration during the fermentation process has been proposed as a solution.
Unfortunately, using this approach with the canonical wine yeast Saccharomyces
cerevisiae has proven to be challenging. First of all, the most common strains of
Saccharomyces cerevisiae are Crabtree positive, meaning that they ferment glucose
to ethanol even when oxygen is available[9, 10, 11]. Furthermore, aeration often leads
to production of acetic acid which is considered an undesired by-product[11]. On
the other hand, many non-Saccharomyces yeasts have weaker tendencies for acetate
production and Crabtree effects[12, 13, 2]. Using non-Saccharomyces yeasts alone is
usually not a good option because stuck fermentations and poor resulting wine qual-
ity is often the result. However, sequential fermentation with non-Saccharomyces
strains followed by inoculation by Saccharomyces cerevisiae has proven to be a
viable approach for production of wine with reduced alcohol content[14, 15, 16].

Genome-scale metabolic models (GEMs) are viewed as a useful tool to study
and explain metabolism of an organism(17, 18]. For the model organism Saccha-
romyces cerevisiae there exist well curated models[19, 20] which has been used
for various purposes. One of the these applications is explanation of the Crabtree
effect using enzyme constrained models genome scale models (ecGEMs)[21, 22].
On the other hand, high-quality GEMs for non-Saccharomyces are harder to ob-
tain. However, tools which facilitate automatic generation of models from genome
sequences have been developed to ease construction of GEMs for non-model organ-
ism. A promising approach is carving[23] where models are created from a curated
universal model which serves as a database from which the reactions are selected.
Furthermore, for incorporation of enzymatic constraints, there currently exists tools
and frameworks|[24, 25] for automatically querying databases for protein masses and
catalytic rates and integrate these data into an ecGEM.

In this article, we will construct GEMs for five of the most commonly applied al-
ternative non-Saccharomyces yeast strains attempted for wine brewing[4]. These
are: Hanseniaspora osmophila, Kluveromyces lactis, Metschnikowia pulcherrima,
Torulaspora delbrueckii, and Lachancea thermotolerans. The models are automati-
cally constructed from genome sequences and carved form a curated universal yeast
model. Based on the GEMs, we will assess the whether physiological properties of
the yeasts can be predicted in silico.

Results

Complex | differentiates Metschnikowia pulcherrima from the other organisms
Genome-scale models of the five non-Saccharomyces yeast strains were created.
From these models, enzyme constrained (sMOMENT) models were made with
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AutoPACMEN|24] (see Methods for details). Key properties of the models are sum-
marized in Table 1. We first simulated the models with dFBA[26] over 12 hours
without enzymatic constraints (Figure 1) and included the Saccharomyces cere-
visiae model iND750(27] for reference. Here, the glucose was the sole carbon source,
initially set to 10mmol L= (1.8gL~') and the supply of oxygen was restricted
to 10mmol/g DW Biomass/h (corresponds to 180 mg/g WD /h). We observed that
the model for Metschnikowia pulcherrima was somewhat different than others as
it produced low levels of fermentation products (ethanol and acetate) compared
to the other models and had a higher final biomass yield for the same amount of
glucose. We also tried initiating the simulations with 1000 mmol L~ (180gL~!)
glucose which is a more realistic sugar concentration in grape must (Supplementary
Figure S1). This resulted in higher degree of fermentation due to the fact that bal-
ance between glucose and oxygen availability was shifted. Still, the same tendencies
of Metschnikowia pulcherrima to produce less fermentation productions and attain
higher biomass, were evident.

We first wanted of assess why the metabolism of Metschnikowia pulcherrima was
different from that of Kluyveromyces lactis and the other yeast strains at infinite
level of the enzyme pool. We investigated this issue by comparing the model of
Metschnikowia pulcherrima with the model of Kluyveromyces lactis and used the
GEM models without enzyme constraints. We considered using the Saccharomyces
cerevisiae model for this task, but it proved to be difficult because the reactions and
metabolite namespaces of the iND750 is different than for the non-Saccharomyces
strains.

Of the reaction in the Metschnikowia pulcherrima model, 191 were not present
in the Kluyveromyces lactis model. We therefore knocked out each of these
Metschnikowia pulcherrima reactions cumulatively in sequence and optimized for
biomass production given the initial nutrient concentration of the dFBA simula-
tions. Some of these reactions were essential and therefore reinserted into the model
before continuing. Of the considered reactions which were not essential, we observed
two reactions which altered the growth rate: Complex I in the respiratory electron
transport chain (NADH dehydrogenase) and mitochondrial Methylenetetrahydro-
folate dehydrogenase (NAD+). Of these reactions, removal of Complex I alone was
sufficient to produce the same growth as in Kluyveromyces lactis. Conversely, adding
the Complex I reactions to the Kluyveromyces lactis model yielded the same growth
rate as for Metschnikowia pulcherrima. On the other hand, removal of mitochon-
drial Methylenetetrahydrofolate dehydrogenase (NAD+) from the Metschnikowia
pulcherrima did not have any effect on its own, nor did addition of the same re-
action into the model of Kluyveromyces lactis. Therefore, we chose to focus on
Complex I when comparing the models.

According to the reconstructions, Metschnikowia pulcherrima was annotated with
Complex I whereas none of the other yeast strains had this reaction. Saccharomyces
cerevisiae, Kluveromyces lactis and many other yeasts do not have the canonical
Complex I of the electron transport chain, but instead feature alternative Type
IT NADH dehydrogenases which does not pump protons across the mitochondrial
membrane[28]. According to the model, Complex I pumps 4 protons across the
mitochondrial membrane for each molecule of NADH being reduced, whereas the
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alternative Type II NADH dehydrogenases do not possess the ability. This means
that Metschnikowia pulcherrima was able to create a larger proton motive force
(PMF) per mole of NADH being oxidized, which in turn increased the efficiency in
generation of ATP per mole of glucose.

In order to obtain further evidence that Complex I was indeed present in
Metschnikowia pulcherrima, we did a BLAST[29] search of the gene products in
the Metschnikowia pulcherrima model which were annotated to be associated with
Complex I functionality (EC number 7.1.1.2). Our query returned various Com-
plex I subunits which already were annotated in the TrEMBL database[30] as
Metschnikowia pulcherrima. However, all functional annotations of these proteins
were based on homology and not curated experimental results. This means that we
are confident that the presence of Complex I in Metschnikowia pulcherrima is not
an annotation error although wet lab experiments are required in order to get a
definitive answer.

We therefore suspected that by removing the advantage of protein pumping by
Complex I, the metabolism of Metschnikowia pulcherrima would become more sim-
ilar to the other yeast strains. We therefore artificially changed the stoichiometry of
the reaction such that 2 or 0 protons were pumped for each molecule of NADH be-
ing consumed. We ran dFBA simulations without enzyme constraints with the same
starting conditions and used Kluyveromyces lactis (lacking Complex I) as a base-
line(Figure 2). From the results, we observed that the glucose consummation and
biomass production were more or less identical for Metschnikowia pulcherrima and
Kluyveromyces lactis when the proton pumping was turned off. Also, for the par-
tially inhibited state of 2 protons pumped, the biomass yield and glucose consump-
tion was somewhere between the wild-type and inhibited state. For the production
of ethanol and acetate it was observed that the production of ethanol and acetate
decreased with the number of protons pumped by Complex I, yet Kluyveromyces
lactis still had a higher production of ethanol and acetate when no protons were
pumped.

Protein constrains result in changes in metabolic pathways

Considering that Complex I was a key differentiator for Metschnikowia pulcher-
rima with infinite amounts of enzymatic protein available, we next studied how
the activity of Complex I affected metabolism when the available enzyme pool was
constrained.

When comparing the models of Metschnikowia pulcherrima and Kluyveromyces
lactis under enzyme constraints, we found Metschnikowia pulcherrima to have a
marginally higher growth rate than Kluyveromyces lactis, but yet a much higher
consumption of glucose. Upon investigating this difference, we realized that this
was due to a wasteful mitochondrial membrane proton leakage in the Metschnikowia
pulcherrima model. However, when running Flux Variability Analysis (FVA)[31], we
found that far more efficient pathways were possible when requiring 99% of maximal
growth rate. Thus, we deemed the proton leakage to be physiologically implausible
even though some unicellular eukaryotes have been shown to have proton uncoupling
proteins[32]. We therefore corrected the model by knocking out the proton leakage
reaction before running any further sMOMENT simulations.
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When simulating the effect of Complex I stoichiometry of Metschnikowia pulcher-
rima with dynamic enzyme constrained FBA (decFBA)[21] (Figure 3), we could
not observe any major effect of the stoichiometry of Complex I for low availabil-
ity of enzymatic protein. However at the highest chosen protein pool, the biomass
yield was higher the more protons were pumped by Complex I. This is as expected
since decFBA becomes equivalent to dFBA when the available enzyme pool ap-
proaches infinity. For the second highest protein pool, the effects of stoichiometry
were marginal. Most likely this means that the model chooses other pathways when
availability of enzymatic protein is scarce and hence is not reliant of Complex I to
the same degree. Moreover, the production of acetate and ethanol was affected by
the number of protons pumped at the highest level of enzyme only.

Finally, we compared the the sMOMENT models of Metschnikowia pulcherrima
and Kluyveromyces lactis as to get an overview of how the species compare when
the access to enzymatic protein is restricted (Figure 4). As expected, the growth
rate increased with the protein availability, but only up to a certain point where
the substrate uptake rates became limiting. Also, the results show that while the
growth rate and biomass yield for Metschnikowia pulcherrima was higher than for
Kluyveromyces lactis at high availability of enzymatic protein. For lower levels of
the enzyme pool, the two strains grew almost as quickly until glucose was ex-
hausted. However, the biomass yield was higher for Metschnikowia pulcherrima, so
the final biomass was higher than that for Kluyveromyces lactis even at the low
levels of protein pool. In addition, the Metschnikowia pulcherrima produced less
acetate than Kluyveromyces lactis for all levels of the enzyme pool. Respiration is
energetically more efficient than fermentation in utilization of the carbon source
than fermentation[22], but comes with a higher protein cost per unit of ATP con-
sumed. For this reason, we would expect to observe less production of fermentation
products at high levels of enzymatic proteins which agree with our observations.

Discussion

In our resulting models, we found the GEM of Metschnikowia pulcherrima to be
different from the other models as it utilized glucose more efficiently, had a higher
biomass yield and produced less fermentation products. To a great extent, this
echoes recent research which suggest Metschnikowia pulcherrima as a good candi-
date for reducing alcohol content in wine[16, 15, 33]. The connection between the
three observed effects are quite straight forward. Respiration instead of fermenta-
tion gives better energy utilization of the substrate, less fermentation products and
better growth for the same amount of substrate consumed.

However, for some yeasts, having an extensive respiratory metabolism might not
be evolutionary beneficial for two reasons. First, having the availability to respire
is not an advantage when supply of oxygen is insufficient, which may be the case in
commercial wine fermentation tanks. Second, when high concentrations of glucose
are available, yeast may achieve higher production flux of ATP production through
ethanol fermentation than by respiration because respiration requires more protein
usage than fermentation[21, 22]. Indeed, we observed larger production of fermen-
tation products at low protein availability. Our results show that the presumed
presence of Complex I in Metschnikowia pulcherrima allows the organism to respire
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glucose more efficiently than the other yeast strains. Thus, Metschnikowia pulcher-
rima may be better adopted for respiration and will therefore prefer this mode
of metabolism. However, according to the decFBA simulations, the advantage of
Complex I at lower levels of the protein pool vanishes, but Metschnikowia pulcher-
rima still utilizes glucose better than Kluyveromyces lactis in these cases too. What
causes this effect, is yet to be investigated.

Still, the results from this study should be taken with a bit of caution. First of
all, errors could arise in the genome annotation and carving of the models. This
could produce reactions present in the model, but not the organism, and vice versa.
Furthermore, introducing enzyme constraints by AutoPACMEN was likely also a
major source of error. Database k.,; values have been shown to be variable and
often far from realistic in vivo values[34, 35, 36]. Additionally, the k.. coverage
for non-model organisms is low, such that Saccharomyces cerevisiae was likely the
closest available candidate for picking k..: values for many of the enzymes. In order
to correctly calculate enzyme constraints, all reactions have to be annotated with
their respective enzymes, and complexes with corresponding subunit stoichiome-
try have to be accounted for. In our models, such annotations were missing for
some important, reactions. Notably, the mitochondrial genome was not sequenced
for any of the non-Saccharomyces yeast strains and as such, enzyme constraints
were not imposed on proteins encoding by the mitochondrial genome. This is a ma-
jor shortcoming given that many of the expensive proteins involved in respiration
are electron transport proteins which are encoded by the mitochondrial genome.

Our choice of parameters for dFBA simulations were based on educated guesses
in lack of good data for calibration. Sanchez et al. used a enzymatic protein pool
of Pyyr = 0.448 g/gDW and saturation factor of o = 0.5 for their ecYeast7 model of
Saccharomyces cerevisiae. In our case, this would correspond to a simulated protein
pool of approximately 0.22g/gDW since we assumed full saturation. Still, some
enzymatic reactions were not accounted for in the sMOMENT models, so we think
a somewhat lower enzyme pool would make a fairer comparison. Glucose uptake
has been shown to vary considerably between different species of yeast and even
between different strains of Saccharomyces cerevisiae[37, 38]. From the available
data and literature[39], we consider our chosen parameters to be within a realistic
range.

Nevertheless, we acknowledge that glucose uptake and its balance to oxygen up-
take is crucial to the nature of the fermentation. Less oxygen available compared to
the consumption of glucose will favour fermentation at the expense of respiration.
Additionally, regulatory mechanisms not accounted for by our models most likely
also regulate the switching between fermentation and respiration[40]. Comparing
Figure 1 and Supplementary Figure S1, we observed that the glucose concentration
had a large effect on the production of fermented compounds, yet Metschnikowia
pulcherrima still had a stronger respiratory metabolism than the other yeasts for
high glucose concentrations. We did not account for the fact that supplying oxygen
is harder when the biomass concentration is high, making a fixed oxygen uptake of
10 mmol/gDW realistic in Figure 1, but unrealistic in Supplementary Figure S1.

Nevertheless, the model predictions for Metschnikowia pulcherrima should inspire
to further research and investigations into the nature of its respiratory metabolism.
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One of the central questions is whether our claim this yeast has Complex I is correct,
and if so, which phenotypic effects this enzyme has. Rotenone is known to be an
inhibitor of Complex I and would therefore be a useful tool to study the activity of
Complex I[41, 42]. Furthermore, systematic studies must be conducted in order to
assess how Metschnikowia pulcherrima behaves under varying availability of glucose

and oxygen.

Methods

Creation of the yeast models

The protein sequence of the five species was obtained from the NCBI database[43,
44, 45, 46, 47, 48]. We annotated the function of the proteins with EggNog mapper
V2[49] using Diamond[50] for the search of homologs in the EggNOG ortholog
database version 5.

For the automatic model reconstruction, we used the software package CarveFungi[51].

CarveFungi, based on the CarveMe algorithm|[23], creates a score for each reaction
in a universal metabolic model linking their EC numbers to the annotation of the
proteins obtained with EggNOG. The software contains a deep learning model to
predict the subcellular localization of fungal proteins. This prediction contributes to
the reaction score, assigning the reactions to a specific compartment in the model.
The reaction scores are then used by a Mixed-integer linear programming prob-
lem (MILP) to maximize the reactions present in the universal model with a high
score and to minimize the reactions with a low score while maintaining the network
connectivity and the model functionality.

The universal metabolic model used for the model reconstruction was created
by combining fungal reactions from public databases such as KEGG[52] and
Metacyc[53] and was manually curated using literature to make it atom-balanced
and simulatable adding exchanges and a biomass reaction extended from the one
present in the yeast consensus model[19)].

The automatically reconstructed metabolic models were produced as ensembles of
up to 25 models corresponding to alternative reconstructions from the same genome.
For our analysis, we turned each ensemble into a single consensus model where a

reaction was included if it was present in half or more of the models in the ensemble.

Incorporation of enzymatic constraints

sMOMENT models with enzyme constraints were generated by feeding the GEMs
into AutoPACMEN][24] version 0.6.1, applying default parameters. The BiGG
metabolite file used by AutoPACMEN was retrieved from the BiGG[54] website
(http://bigg.ucsd.edu/data_access, October 2020), while the BRENDA data
was downloaded from the BRENDA[55] website (https://www.brenda-enzymes.
org/download.php, October 2020). Before providing the models to AutoPAC-
MEN, the models are augmented by Uniprot identifiers using Uniprot’s API. Au-
toPACMEN retrieved kcq; values from SABIO-RK[56, 57] and protein masses from
Uniprot[30] using its built-in API interface (October 2020). AutoPACMEN’s model

calibrator was not used.
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dFBA and decFBA simulations

The models of the five non-Saccharomyces strains and the iND750 Saccharomyces
cerevisiae model[27] were simulated in silico with dynamic FBA (dFBA)[26, 21].
The COBRApy package (version 0.25.0)[58] was used to handle the models and
the resulting LP problems were solved by the Gurobi optimizer (version 9.1.2).
Glucose was the sole carbon source available with a maximum uptake flux deter-
mined by Michaelis-Menten kinetics: vy, < %,
take rate Viaz,gic = 10 mmol/gDW, the half-saturation constant K 4. = 5mmol

where the maximal up-

and [glc] was the glucose concentration in the medium which was initiated to
[glcJo = 10mmolL~! for all simulations expect for Supplementary Figure S1
where [glclo = 1000mmol L=1. The biomass concentration was as initiated to
[X], = 0.1gDW/L. Oxygen was available at a fixed rate of voxygen < 10 mmol/gDW.

Entities kept track of were the biomass, glucose, acetate, ethanol and glycerol.
The latter three components were included to keep track of the accumulation of
fermentation products from the yeast. However, none of the models produced any
glycerol for the conditions tested, so we ignored glycerol for clarity. Also, we wanted
to emphasize the combined production of ethanol and acetate. Therefore, the plots
featured a panel showing the sum of ethanol and acetate in the medium, while
another panel showed the acetate concentration. In order to block physiologically
implausible metabolic exports, the exports reactions for lactate (both stereoiso-
mers), dihydroxyacetate, D-ribulose and arabinitol were blocked. In order to obtain
as consistent physiologically plausible results as possible, lexicographic objectives
were applied when running FBA on the models in the following order:

1 Maximize production of biomass

2 Minimize consumption of glucose
3 Maximize excretion of ethanol
4 Maximize excretion of acetate
5 Maximize excretion of glycerol

The models were simulated using the static optimization approach and SciPy’s
solve_ivp function[59]. For the ODE solver, the BDF algorithm[60] was used with
an absolute and relative tolerance of 10~2. In cases where the optimization problem
because infeasible, the simulation was terminated, but results were padded such that
the final state of the system was imputed to all time-points beyond the termination.
This happened only if the model has unable to grow because the carbon source
(glucose) in the medium was depleted.

dFBA was run both for the original models generated with CarveFungi and the
sMOMENT models processed through AutoPACMEN. Upon running decFBA with
the sSMOMENT models, the level of the enzyme pool was adjusted. For the simula-
tions with sSMOMENT models, three different levels of the enzymatic protein pool
(0.1, 0.25, and 1.0 grams of protein per gram dry weight(g/gWD)) were chosen.
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Figure 1 dFBA simulations of the models without enzymatic constraints for the six yeast strains

starting with 10 mmol L~ glucose. %: Grams of dry weight per liter.
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Figure 3 decFBA simulations of the sSMOMENT model of Metschnikowia pulcherrima when
artificially changing the stoichiometry of the number of protons pumped by Complex | under
different levels of the protein pool. %: Grams of dry weight per liter.
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Figure 4 decFBA simulations of the sMOMENT models for Metschnikowia pulcherrima and

Kluyveromyces lactis under different levels of the protein pool. 5%: Grams of dry weight per
liter.
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541 Tables

Table 1 Properties of the models studied in this paper. The model for Saccharomyces cerevisiae was
taken from an external source[27] and did not have any corresponding enzyme constrained model.

Organism Reactions  Reversible reactions ~ Metabolites  Reactions drawing from protein pool
Metschnikowia pulcherrima 2049 610 1633 1310
Lachancea thermotolerans 2049 618 1647 1319
Torulaspora delbrueckii 1876 559 1510 1163
Kluyveromyces lactis 2131 621 1774 1401
Hanseniaspora osmophila 1556 520 1218 902

Saccharomyces cerevisiae 1266 436 1059 NA
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Figure S1 dFBA simulations of the models without enzymatic constraints for the six yeast strains
starting with 1000 mmol L~ glucose. gDW. Grams of dry weight per liter.
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