
ISBN 978-82-326-7104-5 (printed ver.)
ISBN 978-82-326-7103-8 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:201

Bor de Kock

From Lattice Crypto to Lættis
Krypto: Various Approaches to
Post-Quantum Key ExchangeD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2023:201
Bor de Kock

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Trondheim, June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Bor de Kock

From Lattice Crypto to Lættis
Krypto: Various Approaches to
Post-Quantum Key Exchange

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Bor de Kock

ISBN 978-82-326-7104-5 (printed ver.)
ISBN 978-82-326-7103-8 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:201

Printed by NTNU Grafisk senter

Lattice crypto
Cryptography based on lattices, mathematical groups
constructed out of linear combinations of vectors.

Lættis krypto
Cryptography that is amusing, funny or even a bit ridiculous.

3

4 From Lattice Crypto to Lættis Krypto

Acknowledgements

I owe an infinite amount of thanks to Colin Boyd, who has been my main super-
visor, my main source of support, inspiration and whatever else I needed during
the past four years. I consider myself fortunate to have had a supervisor that I
could “connect” with, on more than just an academic level. It’s probably not
an NTNU recomendation to spend a significant part of all supervisory meetings
discussing the various Norwegian symphony orchestras and whatever concerts
were happening in Trondheim every weekend, but I’m happy that we did. I am
also very thankful to Kristian Gjøsteen, who ‘adopted’ me while Colin was on
sabbatical. I’m honestly not sure how I had gotten through the first year of my
PhD without you.

One of the cryptographers I look up to the most theorized that “a PhD student
is a student, up until the last year of their PhD” [vV18]. It’s not a secret that I
have enjoyed my time in Trondheim, and that I explored almost everything the
(allegedly) best student city in Scandinavia has to offer. That was not the plan at
all: I thought I was done with student life after finishing my time in Eindhoven,
and moved to Trondheim to focus on more adult hobbies, such as my engage-
ment for classical music. I applied to play the bass in the symphony orchestra
at Studentersamfundet, and largely by accident that organization became my
home away from home during the past four years. Samfundet is where I spent
way too many hours organizing, discussing, making music, dancing, and drink-
ing the occasional beer. A very tough period during the last couple of years was
the corona pandemic, when The Netherlands was hit quite hard and I was not
able to travel to see my friends and family — but I got to play the bass in Spring
Awakening, and we sold out a week’s worth of shows. Not in the least Samfun-
det is where I learned the Norwegian language, got to know Norwegian culture
like no one else, and met many, many amazing people.

Based on the stories I tell, it’s probably easy to forget that I actually do spend a
lot of time in the big orange house at O.S. Bragstads plass 2. I think there are

5

6 From Lattice Crypto to Lættis Krypto

only few academic environments that are so friendly as the Trondheim branch
of the IIK department, where we eat lunch together every single day, get served
pizza every week, and spend all year looking forward to the most absurd office
Christmas party in this part of Europe. An honorable mention goes to the ad-
ministration and the technical staff, who seem to have a solution to whatever
problem we manage to put ourselves into. I am also very thankful to NaCl, our
cryptography research group, where the travel budget is always negotiable but
the cake-baking schedule is not.

I am truly grateful that many of my co-workers, cryptographers or not, have
become my friends over the years, including former office mates, people with
completely different research interests, support staff and those that have left the
department since I arrived in Trondheim. When work is tough and none of my
ideas seem to work out, there is always someone hanging around the coffee
room to take my mind off whatever is bothering me. Going to work still feels
like being part of some sort of big adventure, and going on conference trips still
feels like going on a big cryptography summer camp with my friends.

On that note I owe many thanks to the cryptographic community as a whole,
which I am proud to be a part of. A special thanks goes to all the co-authors
of the works in this dissertation — but I also want to mention my almost-co-
authors Tjerand Silde and Julia Hesse. I have really enjoyed doing research with
you, although it did not lead to a publication so far.

The title of this dissertation has a technical meaning: during the last years I have
moved my focus from cryptography based on lattices, to cryptography that is
lættis: amusing, funny, or slightly odd. It also works on a meta level: I moved to
Trondheim to do something clearly defined, structured and probably solvable
somehow — but to the people outside of my bubble it looks like I have gotten
myself into some intriguing Norwegian insider joke. I consider myself very
fortunate that it ended up this way.

The biggest thanks of all goes to my family, especially my parents, Anne-Karin
and Bertus, who have supported me through everything in life. Ik weet dat
jullie het niet altijd leuk vinden dat ik zo ver weg ben, en dat de afgelopen jaren
niet altijd zo makkelijk zijn geweest als we voor ogen hadden toen ik deze keuze
maakte. Maar weet dat ik jullie ook elke dag mis, en dat ik het nóóit had volge-
houden als ik niet wist hoe trots jullie zijn op mij en op alles wat ik de afgelopen
jaren heb uitgespookt.

Bor de Kock
Trondheim, spring 2023.

Abstract

Key exchange is a cryptographic mechanism: it enables two or more parties to
agree upon a shared key that is known only to them, even in the presence of
an adversary that has access to all communication between the parties. In post-
quantum key exchange we assume that this adversary additionally has access to
a large-scale quantum computer that they can run computations on when trying
to find the secret key. Several key exchange protocols that remedy this have been
proposed in recent years, but a definitive solution is yet to be found.

This dissertation consists of four contributions that approach the issue of post-
quantum key exchange from different angles. In the first contribution we cre-
ate a new key exchange protocol using CSIDH, the Commutative variant of Su-
persingular Isogeny-based Diffie-Hellman. The protocol we introduce comes
with an optimally tight security proof, due to CSIDHs similarity to classical (pre-
quantum) Diffie-Hellman. The second contribution uses evolving symmetric
keys to achieve the security properties typically found in public-key systems.
In this work we provide five new protocols that all provide very small message
sizes, and are proven to be secure in a new, strong, security model.

For the third contribution we use KEM, a primitive closely related to key ex-
change, as a modular component. We show that we can systematically build au-
thenticated key exchange protocols, using KEM, digital signatures and Message
Authentication Codes as modular building blocks. For the final contribution we
build a non-interactive key exchange protocol based on lattice-cryptography.
This is a construction that has been folklore for at least a decade, but has always
been thought too impractical for real-world usage. We implement a passively
secure variant of the scheme and show that it is significantly more practical than
it was believed to be.

7

8 From Lattice Crypto to Lættis Krypto

Sammendrag på norsk

Nøkkelutveksling er en kryptografisk mekanisme som gjør det mulig for to el-
ler flere deltagere å bli enige om en delt nøkkel som bare de kjenner, selv om en
motstander har tilgang til all kommunikasjon mellom deltagerne. I post-kvante
nøkkelutveksling antar vi i tillegg at motstanderen har tilgang til en kvantedata-
maskin av vesentlig størrelse, som hen kan benytte til å utføre beregninger for å
finne den hemmelige nøkkelen. Flere nøkkelutvekslingsprotokoller er foreslått
for å beskytte mot dette, men en endelig løsning har enn så lenge ikke blitt fun-
net.

Denne doktoravhandlingen består av fire bidrag som ser på spørsmålet rundt
post-kvante nøkkelutveksling fra ulike vinkler. I det første bidraget skaper vi
en ny nøkkelutvekslingsprotokoll ved bruk av CSIDH, den kommutative varian-
ten av en Diffie-Hellman-protokoll basert på supersingulære isogenier mellom
elliptiske kurver. Vår protokoll kommer med et optimalt bevis, der vi benytter
likhetene mellom CSIDH og klassisk (pre-kvante) Diffie-Hellman. Det andre bi-
draget bruker symmetriske nøkler som med evolusjon oppnår sikkerhetsegen-
skapene vi vanligvis finner i systemer basert på offentlige nøkler. I dette arbei-
det presenterer vi fem nye protokoller som alle gir meldinger av veldig liten
størrelse, og som alle er bevist sikre i en ny, sterk sikkerhetsmodell.

I det tredje bidraget bruker vi KEM, et primitiv tett relatert til nøkkelutveksling,
som modulær komponent. Vi viser at vi kan sette sammen autentiserte nøkkel-
utvekslingsprotokoller på systematisk vis ved bruk av KEM, digitale signatu-
rer og meldingautentiseringskoder (MAC) som byggeklosser. I det siste bidraget
skaper vi en nøkkelutvekslingsprotokoll uten interaksjon, der vi benytter kryp-
tografi basert på gitre. Dette er en konstruksjon som har vært kjent i krypto-
grafimiljøet minst et tiår, men som alltid har blitt ansett som for upraktisk for
realistisk bruk. Vi implementerer en passivt sikker variant av protokollen, og vi-
ser at den er vesentlig mer praktisk gjennomførbar enn det som har vært antatt
hittil.

9

10 From Lattice Crypto to Lættis Krypto

Samenvatting in het Nederlands

Sleuteluitwisseling is een cryptografisch mechanisme: het stelt twee of meer
partijen in staat een gedeelde sleutel overeen te komen die alleen bij hen be-
kend is, zelfs in de aanwezigheid van een tegenstander die toegang heeft tot
alle communicatie tussen de partijen. In post-kwantumcryptografie doen we de
aanname dat de afluisterende tegenstander daarnaast ook toegang heeft tot een
kwantumcomputer van significant formaat, waarop diegene berekeningen kan
uitvoeren om de geheime sleutel te proberen te vinden. Om dit tegen te gaan
zijn er de afgelopen jaren verschillende sleuteluitwisselingsprotocollen ontwik-
keld, maar een uiteindelijke oplossing is nog niet gevonden.

Dit proefschrift bestaat uit vier bijdragen, die het vraagstuk rond post-kwantum
sleuteluitwisseling vanuit verschillende hoeken benaderen. In de eerste bij-
drage creëren we een nieuw sleuteluitwisselingsprotocol dat gebruik maakt van
CSIDH, de commutatieve variant van een op supersingulaire isogenieën tussen
elliptische krommen gebaseerd Diffie-Hellmanprotocol. Ons protocol is voor-
zien van een optimaal strak bewijs, waarbij gebruik wordt gemaakt van de ge-
lijkenissen tussen CSIDH en klassiek (pre-kwantum) Diffie-Hellman. De tweede
bijdrage maakt gebruik van evoluerende symmetrische sleutels om de beveili-
gingseigenschappen te bereiken die we normaal juist in systemen met publieke
sleutels vinden. In dit werk presenteren we vijf nieuwe protocollen, die allemaal
werken met zeer kleine berichten tussen de partijen, en die bovendien bewezen
veilig zijn in een nieuw, sterk beveiligingsmodel.

In de derde bijdrage gebruiken we KEM, een primitief dat sterk aan sleuteluit-
wisseling gerelateerd is, als modulair component. We tonen aan dat we op sys-
tematische wijze geauthenticeerde sleuteluitwisselingsprotocollen kunnen sa-
menstellen, waarbij we KEM, digitale handtekeningen en berichtauthenticatie-
codes (MAC) als bouwstenen gebruiken. In de laatste bijdrage creëren we een
sleuteluitwisselingsprotocol zonder interactie waarbij we gebruik maken van
cryptografie gebaseerd op roosters in de euclidische ruimte. Dit is een construc-

11

12 From Lattice Crypto to Lættis Krypto

tie die volgens de overgave al minstens een decennium bekend is, maar altijd
beschouwd werd als te onpraktisch voor realistisch gebruik. We implemente-
ren een passief-veilige variant van het protocol en tonen aan dat dit significant
efficiënter is dan tot nu toe werd aangenomen.

Contents

1 Introduction 15
1.1 Motivation . 16
1.2 Open problems . 17
1.3 Overview of published works . 18
1.4 Outline . 19

2 Background 21
2.1 Key Exchange . 21
2.2 Post-quantum cryptography . 23

2.2.1 Lattice-based cryptography 24
2.2.2 Supersingular Isogeny-based cryptography 25

2.3 AKE with Symmetric Keys . 26
2.4 Concluding remarks . 27

2.4.1 Comparison to open problems in the field 28
2.4.2 Future work . 29
2.4.3 Regarding real-world security 30

A Practical Isogeny-Based Key-Exchange with Optimal Tightness 37

B Symmetric Key Exchange with Full Forward Security and Robust Syn-
chronization 73

C Modular Design of KEM-Based Authenticated Key Exchange 143

D SWOOSH: Practical Lattice-Based Non-Interactive Key Exchange 189

13

14 From Lattice Crypto to Lættis Krypto

Chapter 1

Introduction

The field of cryptography deals with topics related to secure communication,
including encryption and authentication. Within this field, key exchange is the
primitive that deals with the very first step of a secure conversation: how do two
parties agree on a shared secret if their conversation is public? Although cryp-
tography with pre-shared keys dates back thousands of years, key exchange
mostly became a relevant problem around the advent of large-scale computing
and the internet, in the late 20th century. Diffie and Hellman essentially solved
the problem in 1976 with the introduction of what became known as Diffie-
Hellman protocol [DH76]. We briefly explain the textbook version: within a
known group G with generator g, Alice and Bob choose secret keys a and b re-
spectively, and exchange their ephemeral public keys A = ga and B = gb. Now
since Ab = Ba, Alice and Bob can both compute a shared secret. Since we know
computing discrete logarithms is hard (i.e. when u = vw, it is hard to find w
given only u and v), we know that it is not feasible for an attacker to find the
shared secret, or the value of a and b given only the public messages A and
B.

Although the protocol has undergone some changes over the years, for instance
replacing numbers in discrete groups with fast elliptic curve computations such
as Curve25519 [Ber06], Diffie-Hellman is still secure enough to be in use on the
internet today. The reason we consider Diffie-Hellman and its alternatives se-
cure, is what we call its computational hardness: DH is not unbreakable, but
breaking it is so hard that we cannot feasibly do it, even given all the computer
power in the world.

The introduction of quantum computing will fundamentally change this: in the

15

16 From Lattice Crypto to Lættis Krypto

1980s a quantum computer was proposed, and subsequently, Shor and Grover
showed that this computer, if built on a large enough scale, would be able to
break most cryptographic systems in use today [Sho94, Gro96].

The field we denote as post-quantum cryptography works on exactly this tran-
sition: how can we change the cryptographic systems and algorithms we have
been using for half a century, so that they achieve the same security goals using
a completely different approach?

The research project that has led to this publication was originally called Post-
Quantum Key Exchange. The resulting dissertation does not provide one defini-
tive answer on how we should do key exchange in a post-quantum world, nor
does it claim that one cryptographic problem is better than the others: instead
we explore various ways post-quantum key exchange can take place, depend-
ing on the restrictions posed by the situation that we’re in, the hardware that we
use or the security goals that we try to achieve. The full title reflects that both
our field in itself, as well as my understanding of it, has broadened through the
years — and that in cryptography, the best solutions often are a little bit amus-
ing.

1.1 Motivation
The field of post-quantum cryptography is relatively new, but the time pres-
sure is enormous. Physicists estimate that a large enough quantum computer
will be available within decades, which means that new systems will need to
be available as soon as possible. Designing, implementing and standardizing
cryptographic systems takes time, and there also needs to be time to roll out the
system to users [BL17].

Various initiatives have been started to move towards a ‘quantum safe’ inter-
net: perhaps most prominently the United States National Institute of Standards
and Technology (NIST) is currently aiming to standardize post-quantum meth-
ods for key establishment, as well as a digital signature scheme. This focus on
public-key schemes is due to the fact that the impact of the quantum computer is
significantly larger on public-key cryptography than it is on symmetric schemes,
where AES with larger key-sizes are expected to remain secure. The first round
of this standardization process (“The NIST competition”) started with the sub-
mission of proposals roughly a year before this project, and has in summer 2022
led to one proposed key encapsulation mechanism (KEM) for standardization
[SAB+20], with four additional KEMs labeled for possible future standardiza-
tion [ABB+22, ABC+22, AAB+22, JAC+22]. The NIST competition has not only
led to the proposal of interesting KEM-candidates, but also to a large influx of

Various Approaches to Post-Quantum Key Exchange 17

papers related to these KEMs in the form of attacks, analyses, implementations
and improvements. In that sense, this is a truly exciting time to work on KEM
research.

Pessimistically, we can note that we in a sense already are too late. Large-scale
actors such as nation-state adversaries are currently storing large quantities of
data with the goal of decrypting it as soon as possible [O’N21]. For some data
currently considered secret, this is not an issue, while it can be problematic for
military information and other state secrets.

1.2 Open problems
We can classify the open problems in our research field as follows.

1. Primitives. Gaining better insights in the mathematical background of
post-quantum cryptographic primitives, through reductions and other forms
of provable security. Examples of primitives that are currently being used
and that can be researched are

(a) supersingular isogenies on elliptic curves [JDF11], which uses paths
walked in the graph of isogenies between elliptic curves;

(b) code-based cryptography, based on known-hard problems in coding
theory. An example is the McEliece scheme [EOS06], which is based
on decoding a general linear code;

(c) multivariate cryptography [DS04], which is based on the hardness
of solving systems of multivariate equations. An example of such a
system is the Unbalanced Oil and Vinegar scheme [KPG99];

(d) lattice-based cryptography like the New Hope scheme [ADPS16a],
which is based on the hardness of the Ring-Learning With Errors
problem;

2. Cryptanalysis. Research related to the feasible attacks on post-quantum
cryptographic primitives and how these can be optimized. There are dif-
ferent types of attacks for each class of cryptographic primitive mentioned
above, and we can differentiate between attacks on a scheme’s mathemat-
ical security, versus attacks on an implementation. In lattice-based pro-
tocols we can for instance break the underlying mathematical problems
by apply lattice-reduction and enumeration attacks [LP11]. By improving
these kinds of attacks we get a better insight into how secure our schemes
actually are and what our parameter choices need to be for a scheme to
be secure in the real world. When it comes to attacking implemented

18 From Lattice Crypto to Lættis Krypto

schemes, an important type of cryptanalysis is formed by side-channel at-
tacks. Here we try to obtain information about a cryptographic key by
measuring variations in e.g. power consumption or running time[Koc96].

3. Instantiations. How we can improve the primitives or instantiations. Ex-
amples of this include:

(a) finding a suitable post-quantum alternative of the Diffie-Hellman key
exchange [DH76], which plays a central role in the cryptography from
before the post-quantum era;

(b) creating key-encapsulation mechanisms based on those key exchange
protocols, which is the type of transformation that a large number of
NIST-proposals [Kim16] rely on for their protocol;

(c) investigating the possibility of transforming existing two-party pro-
tocols such that they are usable for other purposes, for instance group
key exchanges and password-based key exchanges;

(d) investigating other security properties of the proposed key exchanges,
for example forward secrecy, forward anonymity, plausible deniabil-
ity and so on.

(e) investigating how the results obtained on cryptographic attacks relate
to the design and parameter choices of the protocols, and seeing how
these attacks can be mitigated through improving these choices.

4. Tight security. Insights into how closely specific instances of protocols
relate to the theory, and applying the theory to see how we can improve the
security and efficiency of these instances by making different parameter
choices.

These open problems have served as the starting point for the work in this dis-
sertation — but the scope of the field is so large that we have not been able to
address (let alone solve) all of them. In Section 2.4 we look at how the results
obtained in the various papers align with these open problems.

1.3 Overview of published works

The main contribution covered in this thesis consists of the following four pa-
pers, in chronological order:

A. Practical Isogeny-Based Key-Exchange with Optimal Tightness [dKGV20]
Bor de Kock, Kristian Gjøsteen and Mattia Veroni

Various Approaches to Post-Quantum Key Exchange 19

Published at the International Conference on Selected Areas in Cryptogra-
phy, SAC 2020: Selected Areas in Cryptography pp 451–479 (LNSC, vol-
ume 12804).

B. Symmetric Key Exchange with Full Forward Security and Robust Synchroniza-
tion [BDdK+21]
Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager and
Lise Millerjord
Published at the International Conference on the Theory and Application
of Cryptology and Information Security ASIACRYPT 2021: Advances in
Cryptology – ASIACRYPT 2021 pp 681–710 (LNSC, volume 13093)

C. Modular Design of KEM-Based Authenticated Key Exchange [BdKM23]
Colin Boyd, Bor de Kock and Lise Millerjord
Accepted for publication at ACISP 2023 (the 28th Australasian Conference
on Information Security and Privacy).
A manuscript is made public on the Cryptology ePrint Archive under
number 2023/167.

D. SWOOSH: Practical Lattice-Based Non-Interactive Key Exchange [GdKQ+23]
Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta and Pe-
ter Schwabe
The work is in submission. A manuscript is made public on the Cryptol-
ogy ePrint Archive under number 2023/271.

In all works except Paper D. we follow the mathematical tradition of listing au-
thors in alphabetical order of last name.1 Papers A. and B. have been published
at peer-reviewed venues, and the full version is included as part of this thesis.
Papers C. and D. are at the time of writing in submission: the version included
in the thesis is a manuscript or pre-print, and these are not expected to be the
final versions of these articles.

All works that are included in this thesis are available publicly through the cryp-
tology ePrint archive, and are released under a Creative Commons-license.

1.4 Outline
This dissertation has the form of a paper collection. In this introductory chapter
we have given the motivation and a brief introduction to the field, after which
we have mentioned the original goals of the projects and introduced the papers
in this dissertation.

1See the 2004 AMS Statement on The Culture of Research and Scholarship in Mathematics: http
s://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

20 From Lattice Crypto to Lættis Krypto

In the next chapter, we give the necessary technical context to understand the
field we work in, and explain how the technical contributions in the dissertation
relate to this context, and the cryptographic research field in its entirety. The
second part contains of the four papers that were written during the course of
this project.

Chapter 2

Background

We now introduce the context for the various papers that this dissertation con-
sists of, and explain how these papers fit together.

2.1 Key Exchange
Introduced in the previous chapter, key exchange is the technology used to agree
upon a shared secret, between two parties, on a publicly available net. Besides
the obvious correctness aspect (do both parties compute the same key?), there are
various other properties we are interested in.

Security definitions and experiments. As the various works in this thesis con-
sider different models and settings, we defer to the specific papers for the formal
definitions of security in each case, but as an example we can consider the per-
haps most basic key exchange experiment: We execute a key exchange protocol,
and make a transcript of all messages. Now we give this transcript to our ad-
versary A, along with a key k̂. Depending on a coin flip, k̂ is either the real key
from the execution, or a randomly generated one. Can A tell whether k̂ is real
[KL14]?

Authentication. We use the term authenticated key exchange (AKE), to denote
a key exchange protocol that authenticates the users with respect to each other:
party A is convinced that party B is indeed the person who they claim to be (and
vice-versa).

21

22 From Lattice Crypto to Lættis Krypto

Interactivity. Non-interactive key exchange (NIKE) is a class of key exchange al-
gorithms that does not require interaction, i.e. the parties communicate asyn-
chronously. When instantiating key exchange with a new partner, this means a
party can simply download that partner’s public key, derive a shared secret and
send an encrypted message before going offline again. When the other partner
comes online, they are then able to derive the shared secret and decrypt the mes-
sage. NIKE is very easy to achieve in the pre-quantum world — Diffie-Hellman
is for instance a NIKE almost by default.

Symmetric cryptography. Symmetric cryptography is in some sense the “op-
posite” of the public-key cryptography most of this work is about: it is the cryp-
tographic field that uses a previously agreed upon key to encrypt a stream of
data, and decrypts it with the same key. Because of this difference, we often
denote public-key cryptography as asymmetric cryptography.

In reality symmetric and asymmetric cryptography are often used hand-in-hand:
we use key exchange to agree on a shared secret which we then use to derive a
symmetric key, or as input to a next step. This way we achieve the efficiency
of symmetric cryptography, combined with the interesting practical aspects and
security properties of public-key cryptography. We therefore often use a prim-
itive called a key encapsulation mechanism (KEM), which informally has the goal
to output a shared secret to both parties such that they can engage in further
communications using a different scheme.

Paper C. Modular Design of KEM-Based Authenticated Key Ex-
change

Authenticated key exchange (AKE) can be built up using various strategies:
the most straightforward approach is taking a key exchange mechanism and
applying an authenticator to it. Perhaps the most common way of doing this
traditionally is using signatures, but using a KEM, a MAC or another authen-
tication method is also possible: in a post-quantum context this is extremely
relevant, since KEMs can be more efficient than signatures. In addition, the
post-quantum field is moving rapidly and our understanding of the vari-
ous algorithms changes constantly: the NIST competition works as a catalyst
given its focus on KEMs and signatures. It is therefore also important to be
less dependent on one specific authentication algorithm.

In this work we abstract the various KEMs and authenticators: using this
model and the various modular proofs we provide it is then possible to de-
rive various protocols for authentication and key exchange. Some of these
systematically built-up protocols already exist in the literature, others are
new.

Various Approaches to Post-Quantum Key Exchange 23

Although this paper does not introduce any new post-quantum primitives,
it creates a model in which such primitives can be rolled out in an effective
manner; it thus lays the ground work for new, post-quantum, systems yet to
be developed.

2.2 Post-quantum cryptography

As introduced in Chapter 1, post-quantum cryptography or PQ-crypto is the
field of research that focuses on introducing new cryptographic algorithms that
are able to resist the kinds of attacks that become possible when our adversaries
get access to a large-scale quantum computer. Post-quantum cryptography is
a field that emerged during the previous decades. Although no quantum com-
puter large enough to break practical cryptography has been built to date, its
capabilities have been known since the 1990s. In 1994 Shor introduced an al-
gorithm for the efficient prime factorization of large numbers, and a variant for
the computation of the discrete logarithm. As an example, the factorization of a
large number N = pq with p and q prime can be done in O(n3 log n) operations,
using Shor’s algorithm on 2n + 3 physical quantum bit operators (qbits). Grover’s
algorithm, introduced in 1996, can attack even more cryptographic systems, but
it will only speed up computations from N to

p
N [Sho94, Gro96, BL17].

Within the scope of public-key cryptography, Shor’s algorithm is the largest
issue. While we can secure a symmetric protocol like AES simply by pick-
ing larger key size, protocols like RSA and Diffie-Hellman are considered com-
pletely broken and need to be replaced.

Research in post-quantum key exchange can roughly be divided into four “fam-
ilies” of mathematical problems: (1) supersingular isogeny-based cryptography,
(2) code-based cryptography, (3) multivariate cryptography and (4) cryptogra-
phy based on lattices.

During summer 2022, NIST presented its the result of the third round of its com-
petition. In ‘our’ category Public-key Encryption and Key-establishment Algorithms
the candidate for standardization is CRYSTALS-KYBER, a lattice-based scheme
[SAB+20]. Candidates for a fourth round of further research are three code-
based schemes (BIKE [ABB+22], Classic McEliece [ABC+22] and HQC [AAB+22])
and the (since then retracted) isogeny-based scheme SIKE [JAC+22].

In this work we focus on schemes based on supersingular isogenies, and lat-
tices.

24 From Lattice Crypto to Lættis Krypto

2.2.1 Lattice-based cryptography

A lattice is a mathematical structure consisting of points in a multidimensional
plane, formed by composing base vectors from a given set. Interestingly enough
lattices pose various hard computational challenges, for instance finding the
nearest lattice point to a given vector in our plane (the closest vector problem),
or finding the shortest vector that exists in a given lattice (the shortest vector
problem). If the lattice is of a high enough dimension, these problems are be-
lieved to be computationally infeasible to solve even by using a quantum com-
puter.

Following the analogy above, where we built the Diffie-Hellman exchange (a
scheme) upon the discrete logarithm problem (a primitive) to create a KEM,
our goal with lattice cryptography is to build new schemes using these lattice
problems as the underlying hard problems.

Lattice-based cryptography is often based on a problem called Learning With
Errors (LWE), and its variants Ring-LWE and Module-LWE. R-LWE rose to early
prominence as a possible post-quantum scheme after an early scheme called
New Hope [ADPS16b] was implemented into Google Chrome during a 2016
test run. [Lan16b, Lan16a]

Although LWE-based schemes are versatile and can be used for many applica-
tions, they generally require some sort of (interactive) reconciliation. Using LWE
for non-interactive key exchange (NIKE) has long been considered impractical,
although the theoretical possibility of LWE-based NIKE has for a while been
considered a ‘folklore’ idea, for instance by Lyubachevski in a 2017 Stack Ex-
change post [Lyu17].

In 2018, De Kock [dK18] made a first attempt at finding parameters that would
make RLWE-based NIKE possible, but the work did not satisfy real-world secu-
rity requirements. A 2020 work [GKRS20] showed the limitations of real-world
lattice cryptography, and denotes that a non-interactive LWE-based scheme is
impossible for many modulus-to-noise-ratios.

Paper D. SWOOSH: Practical Lattice-Based Non-Interactive Key Ex-
change

In this work we show that these ineffeciency concerns are smaller than they
were thought to be: we propose parameters for an LWE-based scheme, which
we show to be secure and correct in both the passively and actively secure
setting. The work comes with an implementation of the scheme’s passively
secure version, which is competitive in terms of running time and message
size. Moving the work into an active setting requires a transformation using

Various Approaches to Post-Quantum Key Exchange 25

NIZKs: we have not implemented this in this version of the work.

2.2.2 Supersingular Isogeny-based cryptography

A different approach to post-quantum key exchange is cryptography based on
isogeny problems. A supersingular isogeny is a relationship between two super-
singular elliptic curves over finite fields: we can draw what is called an isogeny
graph where every point represents a curve and every edge is an isogeny.

Until recently, isogeny-based cryptography was considered the most interest-
ing direct translation of Diffie-Hellman to the post-quantum setting. In what is
denoted Supersingular Isogeny-based Diffie-Hellman (SIDH), one of the NIST can-
didates under the name Supersingular Isogeny Key Exchange (SIKE), the two par-
ties move between two curves in the isogeny graph, each using their own route
(walking the graph). What made the scheme interesting is that such a graph walk
is easy for a participant who, informally speaking, knows ‘which route to take’
— but computing the route between two given points was considered compu-
tationally infeasible. The resulting scheme closely mimics the structure of the
Diffie-Hellman key exchange, and its interesting features like non-interactivity
would therefore be easy to achieve in a post-quantum setting using SIKE. In
addition, SIKE had among the smallest keys of any post-quantum candidate,
making it extremely attractive for all kinds of use cases.

We speak in the past tense since a devastating attack on SIKE was published in
summer 2022, and the scheme is now considered insecure [CD22].

In the work below we work with a variant of SIDH called CSIDH (Supersingular
Isogeny-Based Diffie Hellman with Commutative group actions – pronounced
seaside). Although CSIDH is an example of a scheme that does not fall victim to
the new attack on SIKE, it is not as implementation-ready as SIKE was and is not
a contender in the NIST competition: concretely we know that the parameters
proposed in the original CSIDH paper are not secure enough for real-world use
[Pei20].

More fundamentally, one can claim that the suddenly appearance of an attack on
SIKE has demonstrated how little developed this research field still is — without
underselling the novelty of this new attack, it was fundamentally based on a the-
ory that has existed since 1997, but that no one so far applied to these schemes
[CD22]. Whether even a provably secure isogeny-based scheme will ever be con-
sidered reliable enough for real-world adoption is therefore a different question
altogether.

26 From Lattice Crypto to Lættis Krypto

Paper A. Practical Isogeny-Based Key-Exchange with Optimal Tight-
ness

The commutative property of CSIDH makes it possible to obtain a security
proof based on random self-reducibility, which is what we use in this work:
this essentially means transforming any hard instance of a problem to a ran-
dom, average-hardness instance, performing the computation we want to,
and then transforming the result back to the instance we were trying to look
at. Because this is possible we obtain an optimal proof for CSIDH, that is,
a proof with the smallest possible loss. This is important when implement-
ing theoretical cryptographic protocols in a practical way, as the loss tells us
how the real-world parameter size for a protocol relates to the hardness of
the underlying mathematical problem. The smaller the loss, the smaller the
parameters can be chosen, and the more efficient our system will become in
practice.

It should be remarked that a paper by Kawashima et al. obtained an almost iden-
tical result in parallel with ours [KTAT20]: a preprint version of that work was
submitted to ePrint less than a week after our result was published there.

As mentioned above, a series of papers presenting attacks on isogeny-based
cryptosystems were published summer 2022, however it should be remarked
that these are not applicable to our work. There have been various other devel-
opments related to our work, for instance a 2022 paper which proves the security
of our protocol in the quantum random oracle model (QROM) [DHK+22], while
our proofs are in the ROM.

2.3 AKE with Symmetric Keys
In Section 2.1 we briefly discussed symmetric cryptography as a technology
complementing public-key cryptography: it is computationally fast and its mes-
sage complexity is small, but we lack some of the advantages we get when us-
ing a KEM, such as perfect forward secrecy: the guarantee that compromising
a long-term secret will not enable an attacker to obtain the session keys that are
used.

In 2019, Avoine et al. proposed a new protocol called Symmetric-Key Authenti-
cated Key Exchange (SAKE) [ACF20]: it aims to create a protocol based on symmetric-
key cryptography which is able to guarantee the same security properties as we
traditionally obtain using public-key cryptography, most notably perfect for-
ward secrecy. In the same work they also introduce SAKE-AM, for aggressive
mode, which inverts the roles of initiator and responder.

Various Approaches to Post-Quantum Key Exchange 27

Paper B. Symmetric Key Exchange with Full Forward Security and Robust
Synchronization

We introduce five new protocols in which the parties use evolving keys —
keys can be updated either using a linear derivation method or by means of
puncturable pseudorandom functions. Although this solves several security
issues, it also introduces a challenges with respect to correctness, and new at-
tack vectors. In the above-mentioned scenario with low-power IoT-devices,
for which these protocols are very suitable, an adversary can cause problems
by forcing the different parties’ out of sync on purpose or by forcing a party to
update their key continuously until the power is drained. We formalize these
new properties in a new model, and prove our different protocols secure in
these models. The protocols are in terms of both security and (message) effi-
ciency an improvement compared to the state of the art.

The paper is very different than the others in terms of approach and result,
but still fits within the scope of post-quantum key exchange: migrating to
an (inherently post-quantum) symmetric algorithm instead of the usual pre-
quantum key exchange algorithms is an effective way of securing ourselves
against a quantum adversary in this setting.

SAKE and SAKE-like protocols have several interesting use cases: an exam-
ple are Internet of Things (IoT) type settings with low-energy devices, where
a public-key system would be considered too energy inefficient.

Another interesting application for the work is PSK-mode in TLS 1.3. In PSK-
mode devices can be pre-loaded with a server communication key, but it is also
used to agree on a ‘next-session key’ between a client and server after they per-
formed the full authentication handshake the first time. Applying a SAKE /
PSK-AKE protocol to this TLS mode is a relevant follow-up work to the paper
introduced above.

2.4 Concluding remarks

The works above have improved our understanding of post-quantum cryptog-
raphy. Here, we give some concrete suggestions for closely related future work,
and conclude by briefly elaborating on how the theoretical results of this work
should be seen in the larger context of obtaining more secure cryptographic sys-
tems for the real world.

28 From Lattice Crypto to Lættis Krypto

Prob. 1 Prob. 3

Prob. 4

Paper B.
Paper C.

Papers A. and D.

Figure 2.1: Relating the individual works to the various open problems.

2.4.1 Comparison to open problems in the field

In Section 1.2 we gave an overview of some open problems in our field. The
contributions listed in this dissertation are all focused on the construction of
new cryptographic schemes, but do not relate to the objectives in the same way.
In Figure 2.1 we compare how the various papers stack up to the open questions
as they were defined in the first chapter. At a first glance, we see that the papers
are in a sense closely related — they all live in the intersection between two or
three of the main questions: but in this chapter we have seen that the variation
between the works is larger than at first appearance. For instance, Paper A.
focuses on tight security to make better parameter choices (goal 4) possible —
while Paper D. uses parameter choices in order to make new security properties
(goal 3d) achievable. Where Paper A. uses isogenies, Paper D. uses lattices, and
where A. uses a tight proof to convince the reader of its efficiency, Paper D. uses
estimations and an implementation.

There are several open problems that did not end up being addressed in this
project. In the list in Chapter 1, we for instance included cryptanalysis (Problem
2, and briefly mentioned constructions related to group key exchange and pass-
words (Problem 3c). Although these topics did not end up within the scope of

Various Approaches to Post-Quantum Key Exchange 29

this thesis, research into them is important: there simply was not enough time
to do it all.

2.4.2 Future work

There is still a lot to be done: as remarked at the start of this chapter, the papers
in this dissertation contribute to the total sum of key exchange knowledge that
we have, but none of them proposes a definitive solution for this problem.

The following open questions are perhaps the most natural ones, taking our
contributions as the starting point:

• Our NIKE from Paper D. is provided with an implementation of only the
passively secure version. As pointed out in the paper, an implementation
of the NIZK proofs [LNP22] that we use to lift the protocol from passive
to active security does currently not exist. Creating this actively secure
version strengthens the case for our scheme (and the analysis of its effi-
ciently).

• Papers A. and B. do not come with an implementation. For Paper A., a
proof-of-concept implementation like the original CSIDH paper provides
[CLM+18] would be helpful to say more about the real-world practicality
of the scheme — although the caveats concerning isogeny-based schemes
mentioned above certainly apply.

• The results of Paper B. are currently mostly focused towards small-scale
internet of things devices, while there is certainly relevance for more generic
application in TLS 1.3. The complexity of the TLS key schedule makes it
challenging to simply “plug in” a proof-of-concept implementation as a
non-expert. Collaborating with authors who have this expertise would be
an interesting follow-up point.

• Perhaps the most theoretical work is Paper C. It provides several new
protocols, that should be instantiated (for instance with concrete proto-
cols from the NIST competition), implemented and compared with other
works in the literature.

Additionally, there are many avenues we did not explore in this project. The
potential of code-based cryptography is large, with several strong candidates in
the NIST competition. Analyzing those proposals and comparing them with our
results is a potential follow-up.

30 From Lattice Crypto to Lættis Krypto

2.4.3 Regarding real-world security
An interesting discussion point with all of the results in this work, and with
cryptographic research in general, is how theoretical results translate to real-
world security. For Papers B. and D., this translation is perhaps the most obvi-
ous: they both provide a very specific solution to a specific problem. For Paper
C. the distance to a real-world application is definitively the largest, as the con-
tribution in this work will first of all enable the design of new protocols — if and
when that happens, these will have to go through the normal kinds of scrutiny
and will additionally have to be compared to existing protocols out there. For
Paper A. the question of real-world security has perhaps the most paradoxical
answer: the tight proof means that we understand the real-world security of the
protocol very well, but only in relation to the security of CSIDH itself. What
kinds of attacks and developments will appear in that direction is unclear —
and so is the future of isogeny-based cryptography in general.

Having said that: cryptography remains one of perhaps few fields where highly
theoretical mathematics is used to solve a very concrete, societal problem, and
where the theoretical results we obtain can be used in practice within a time-
frame of sometimes only months. Not only in a post-quantum context, we see
that cryptographers regularly spark new life into decades or even centuries old
problems and theories, and find use cases for obscure mathematics that no one
ever thought would have a real-world application. In addition to this paradox,
there is also the question of what cryptographic security really means. We have
seen in the case of SIKE that the understanding we have of our underlying prim-
itives is not always as good as we believe it to be — but sometimes the crypto-
graphic problem isn’t really cryptography-related either. An example of a large
cryptographic vulnerability discovered in 2015 was the Logjam attack, which
affected a significant part of all internet traffic: partially because of a new attack
strategy, but mostly because of bad implementation choices [ABD+15].

Bibliography

[AAB+22] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loı̈c
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Ga-
borit, Edoardo Persichetti, Gilles Zémor, Jurjen Bos, Arnaud Dion,
Jerome Lacan, Jean-Marc Robert, and Pascal Veron. HQC. Tech-
nical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-c
ryptography/round-4-submissions.

[ABB+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron,
Tim Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor,
Valentin Vasseur, Santosh Ghosh, and Jan Richter-Brokmann.
BIKE. Technical report, National Institute of Standards and Tech-
nology, 2022. available at https://csrc.nist.gov/Projects/pos
t-quantum-cryptography/round-4-submissions.

[ABC+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid,
Jan Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Per-
sichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub
Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Clas-
sic McEliece. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/projects
/post-quantum-cryptography/round-4-submissions.

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pier-
rick Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger,
Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin Van-
derSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zim-

31

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

32 From Lattice Crypto to Lættis Krypto

mermann. Imperfect forward secrecy: How Diffie-Hellman fails
in practice. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015: 22nd Conference on Computer and Communi-
cations Security, pages 5–17, Denver, CO, USA, October 12–16, 2015.
ACM Press.

[ACF20] Gildas Avoine, Sébastien Canard, and Loı̈c Ferreira. Symmetric-
key authenticated key exchange (SAKE) with perfect forward se-
crecy. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-
RSA 2020, volume 12006 of Lecture Notes in Computer Science, pages
199–224, San Francisco, CA, USA, February 24–28, 2020. Springer,
Heidelberg, Germany.

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum key exchange - A new hope. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016: 25th
USENIX Security Symposium, pages 327–343, Austin, TX, USA, Au-
gust 10–12, 2016. USENIX Association.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum Key Exchange-A New Hope. In USENIX
Security Symposium, pages 327–343, 2016.

[BDdK+21] Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Tibor Jager,
and Lise Millerjord. Symmetric key exchange with full forward se-
curity and robust synchronization. In Mehdi Tibouchi and Huax-
iong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
Part IV, volume 13093 of Lecture Notes in Computer Science, pages
681–710, Singapore, December 6–10, 2021. Springer, Heidelberg,
Germany.

[BdKM23] Colin Boyd, Bor de Kock, and Lise Millerjord. Modular Design
of KEM-Based Authenticated Key Exchange. Cryptology ePrint
Archive, Paper 2023/167, 2023. https://eprint.iacr.org/2023
/167.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed
records. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006: 9th International Conference on Theory and
Practice of Public Key Cryptography, volume 3958 of Lecture Notes in
Computer Science, pages 207–228, New York, NY, USA, April 24–26,
2006. Springer, Heidelberg, Germany.

[BL17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography.
Nature, 549(7671):188–194, 2017.

https://eprint.iacr.org/2023/167
https://eprint.iacr.org/2023/167

Various Approaches to Post-Quantum Key Exchange 33

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery at-
tack on SIDH (preliminary version). Cryptology ePrint Archive,
Report 2022/975, 2022. https://eprint.iacr.org/2022/975.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
and Joost Renes. CSIDH: An efficient post-quantum commuta-
tive group action. In Thomas Peyrin and Steven Galbraith, edi-
tors, Advances in Cryptology – ASIACRYPT 2018, Part III, volume
11274 of Lecture Notes in Computer Science, pages 395–427, Brisbane,
Queensland, Australia, December 2–6, 2018. Springer, Heidelberg,
Germany.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6):644–654,
1976.

[DHK+22] Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kun-
zweiler, Jonas Lehmann, and Doreen Riepel. Group action key en-
capsulation and non-interactive key exchange in the QROM. In
Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptol-
ogy – ASIACRYPT 2022, Part II, volume 13792 of Lecture Notes in
Computer Science, pages 36–66, Taipei, Taiwan, December 5–9, 2022.
Springer, Heidelberg, Germany.

[dK18] Bor de Kock. A non-interactive key exchange based on ring-
learning with errors. Master’s thesis, Eindhoven University of
Technology, 2018.

[dKGV20] Bor de Kock, Kristian Gjøsteen, and Mattia Veroni. Practi-
cal isogeny-based key-exchange with optimal tightness. In Orr
Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors,
SAC 2020: 27th Annual International Workshop on Selected Areas in
Cryptography, volume 12804 of Lecture Notes in Computer Science,
pages 451–479, Halifax, NS, Canada (Virtual Event), October 21-23,
2020. Springer, Heidelberg, Germany.

[DS04] Jintai Ding and Dieter Schmidt. Multivariable public–key cryp-
tosystems. Cryptology ePrint Archive, Report 2004/350, 2004.
https://eprint.iacr.org/2004/350.

[EOS06] D. Engelbert, R. Overbeck, and A. Schmidt. A summary of
McEliece-type cryptosystems and their security. Cryptology ePrint
Archive, Report 2006/162, 2006. https://eprint.iacr.org/2006
/162.

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2004/350
https://eprint.iacr.org/2006/162
https://eprint.iacr.org/2006/162

34 From Lattice Crypto to Lættis Krypto

[GdKQ+23] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Mala-
volta, and Peter Schwabe. Swoosh: Practical Lattice-Based Non-
Interactive Key Exchange. Cryptology ePrint Archive, Paper
2023/271, 2023. https://eprint.iacr.org/2023/271.

[GKRS20] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki.
Limits on the efficiency of (ring) LWE based non-interactive key
exchange. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020: 23rd International Conference
on Theory and Practice of Public Key Cryptography, Part I, volume
12110 of Lecture Notes in Computer Science, pages 374–395, Edin-
burgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, page 212–219, New York, NY,
USA, 1996. Association for Computing Machinery.

[JAC+22] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig
Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian
LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir
Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina,
and Aaron Hutchinson. SIKE. Technical report, National In-
stitute of Standards and Technology, 2022. available at https:

//csrc.nist.gov/Projects/post-quantum-cryptography/

round-4-submissions.

[JDF11] David Jao and Luca De Feo. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. In International
Workshop on Post-Quantum Cryptography, pages 19–34. Springer,
2011.

[Kim16] Kevin Kimball. Announcing Request for Nominations
for Public-Key Post-Quantum Cryptographic Algorithms.
https://www.federalregister.gov/documents/2016/12/20/2016-
30615/announcing-request-for-nominations-for-public-key-post-
quantum-cryptographic-algorithms, December 2016.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy, Second Edition. CRC Press, 2014.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Neal Koblitz, editor,
Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes

https://eprint.iacr.org/2023/271
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

Various Approaches to Post-Quantum Key Exchange 35

in Computer Science, pages 104–113, Santa Barbara, CA, USA, Au-
gust 18–22, 1996. Springer, Heidelberg, Germany.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil
and Vinegar signature schemes. In Jacques Stern, editor, Advances
in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in
Computer Science, pages 206–222, Prague, Czech Republic, May 2–
6, 1999. Springer, Heidelberg, Germany.

[KTAT20] Tomoki Kawashima, Katsuyuki Takashima, Yusuke Aikawa, and
Tsuyoshi Takagi. An efficient authenticated key exchange from
random self-reducibility on CSIDH. In Deukjo Hong, editor, ICISC
20: 23rd International Conference on Information Security and Cryptol-
ogy, volume 12593 of Lecture Notes in Computer Science, pages 58–84,
Seoul, Korea, December 2–4, 2020. Springer, Heidelberg, Germany.

[Lan16a] Adam Langley. CECPQ1 results.
https://www.imperialviolet.org/2016/11/28/cecpq1.html,
November 2016.

[Lan16b] Adam Langley. Intent to Implement and Ship: CECPQ1 for TLS.
https://groups.google.com/a/chromium.org/forum/#!topic/security-
dev/DS9pp2U0SAc, July 2016.

[LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon.
Lattice-based zero-knowledge proofs and applications: Shorter,
simpler, and more general. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, Advances in Cryptology – CRYPTO 2022, Part II, vol-
ume 13508 of Lecture Notes in Computer Science, pages 71–101, Santa
Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Ger-
many.

[LP11] Richard Lindner and Chris Peikert. Better Key Sizes (and Attacks)
for LWE-Based Encryption. In Aggelos Kiayias, editor, Topics in
Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the RSA Con-
ference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceed-
ings, volume 6558 of Lecture Notes in Computer Science, pages 319–
339. Springer, 2011.

[Lyu17] Vadim Lyubashevsky. Converting NewHope/LWE key exchange
to a Diffe-Hellman-like algorithm. Crypto Stack Exchange, 2017.
[Online:] https://crypto.stackexchange.com/questions/481

46/converting-newhope-lwe-key-exchange-to-a-diffe-hellm

an-like-algorithm.

https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm
https://crypto.stackexchange.com/questions/48146/converting-newhope-lwe-key-exchange-to-a-diffe-hellman-like-algorithm

36 From Lattice Crypto to Lættis Krypto

[O’N21] Patrick Howell O’Neill. The US is worried that hackers are stealing
data today so quantum computers can crack it in a decade. Tech-
nology Review, 2021.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Can-
teaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, Part II, volume 12106 of Lecture Notes in Computer Sci-
ence, pages 463–492, Zagreb, Croatia, May 10–14, 2020. Springer,
Heidelberg, Germany.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptograph

y/post-quantum-cryptography-standardization/round-3-sub

missions.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete log-
arithms and factoring. In Proceedings 35th Annual Symposium on
Foundations of Computer Science, pages 124–134, 1994.

[vV18] Christine van Vredendaal. Exploiting mathematical structures in cryp-
tography. PhD thesis, Mathematics and Computer Science, June
2018. Proefschrift.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Appendix A

Practical Isogeny-Based
Key-Exchange with Optimal
Tightness

37

Practical Isogeny-Based Key-exchange

with Optimal Tightness

Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

NTNU – Norwegian University of Science and Technology, Trondheim, Norway.
{bor.dekock,kristian.gjosteen,mattia.veroni}@ntnu.no

Abstract. We exploit the Di�e-Hellman-like structure of CSIDH to
build a quantum-resistant authenticated key-exchange algorithm. Our
security proof has optimal tightness, which means that the protocol is
e�cient even when instantiated with theoretically-sound security param-
eters. Compared to previous isogeny-based authenticated key-exchange
protocols, our scheme is extremely simple, its security relies only on the
underlying CSIDH-problem and it has optimal communication complex-
ity for CSIDH-based protocols. Our security proof relies heavily on the
re-randomizability of CSIDH-like problems and carries on in the ROM.

Keywords: Post-quantum, isogenies, key-exchange, provable-security, tight-
ness, re-randomization.

1 Introduction

Authenticated key-exchange protocols allow two parties to collaborate in order to
create a shared secret key, providing each of them with some assurance on the
identity of the partner. Authentication can be achieved in two ways: implicitly, if
the algebraic properties of the scheme imply that the only user who can compute
the shared key is the intended one, or explicitly, by receiving a confirmation
that the interlocutor has actually computed the key. The latter implies the use
of a second mechanism which provides authentication, like a signature scheme,
a KEM or a MAC. Even if explicit authentication might seem a stronger and
preferable feature, in the real world it does not add much to the security of the
protocol. First of all, it does not guarantee that the partner holds the shared key
for all the time between the key confirmation and the use of the key. Moreover,
the generation of signatures or the use of KEMs and MACs produces evidence of
participation to a key-exchange, while implicit authentication does not. Finally,
the schemes relying on implicit authentication typically require less computations
and message exchanges compared to those involving an explicit authentication
mechanism, with a significant profit in computational cost and communication
e�ciency.

Practical Isogeny-Based Key-exchange with Optimal Tightness 39

The security proof limits the advantage of an adversary in breaking the scheme
to the probability of solving some mathematical hard problem. Deploying a cryp-
tographic algorithm should always be done in a theoretically sound way: the size
of the concrete parameters must be large enough to guarantee the required �
bits of security. If on one hand any security proof asymptotically guarantees the
desired security level, on the other hand we want to use the smallest param-
eters possible, in order to obtain the most e�cient implementation under the
given security constraints. It is therefore extremely relevant to measure the so-
called tightness of the proof by computing its security loss L(�), which should
be as small as possible. The parameters on which we focus are, in particular, the
number of users running the protocol and the number of sessions per user; both
quantities are typically approximated to 216. Note that, nowadays, security proofs
[JKSS12,KPW13,BFK+14] for a widely deployed protocol such as TLS have a
quadratic loss in the number of sessions, fact that is not taken into account for
the implementation.

In 2019 Cohn-Gordon et al. [CCG+19] developed a key-exchange protocol with
an nearly (but optimally) tight security proof. In particular, the security loss is
linear in the number of users and constant in the number of sessions per user.
The schemes in the latter paper base their security on the Strong-DH assumption
and its variants, defined over cyclic groups of prime order. The re-randomization
of Di�e-Hellman problems plays a fundamental role in achieving the optimal
tightness of the proofs, and thus it is a desirable feature that we cannot disregard.
The tightness and practicality of these schemes raise an interesting question: is
it possible to adapt the protocols (together with their security proofs) in order
to make them quantum-safe?

In 1997, Peter Shor [Sho97] published a quantum algorithm for integer factor-
ization and one for computing discrete logarithms, both running in polynomial
time. As soon as a large-scale quantum computer will become available, the in-
formation security based on primitives like the RSA cryptosystem and the Di�e-
Hellman key-exchange will be breached. In order to address this quantum threat,
many researchers have focused their attention on post-quantum cryptography.
The goal is to find new cryptographic primitives which can be implemented on
classical computers, still guaranteeing security against both classical and quantum
adversaries. In 2016, NIST announced a world-wide competition for new post-
quantum standards in public-key encryption and digital signature algorithms. 69
submissions were accepted in the first round, 26 made it to the second step, and
7 finalists were announced on July 22, 2020. The search for new post-quantum
cryptographic standards is still ongoing.

Supersingular-Isogeny based Di�e-Hellman (SIDH) [JD11] is one of the promis-
ing candidates in the search for post-quantum cryptographic protocols. Key-
exchange protocols based on isogenies are unique in the sense that they pro-

40 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

vide key-sizes roughly similar to those of pre-quantum alternatives, but they
are also known for being more complex (algebraically) compared to some of the
post-quantum alternatives. An example of a scheme that is based on SIDH is
SIKE [JAC+19], which is one of the 26 candidates in the second round of NIST’s
2016 competition for post-quantum cryptographic protocols. Even if SIKE is not
among the finalists announced in July 2020, NIST has shown high interest on
isogeny-based cryptography, encouraging further research on this field [AASA+].

Although SIDH-based schemes have been around for a few years now, there
are still open questions about the security behind them. In particular, random
self-reducibility of SIDH problems seems very hard to achieve. A di↵erent isogeny-
based scheme is CSIDH [CLM+18]: introduced in 2018, it o↵ers a much more
flexible and adaptable algebraic structure. In this paper we show how to obtain an
optimally tight security proof for a CSIDH-based key-exchange protocol, making
use of random self-reducibility. This kind of re-randomization plays a fundamental
role in the tight proofs of, for instance, the classical Di�e-Hellman key-exchange,
but is also used in modern schemes: Cohn-Gordon et al. [CCG+19] exploit this
property to construct a tightly-secure AKE protocol.

The protocol we introduce is, to our knowledge, the best proven-secure re-
sult for isogeny-based key-exchange protocols. The proofs presented here draw
on the proofs from Cohn-Gordon et al. [CCG+19], but with changes to the re-
randomization strategy, since re-randomization in the isogeny case is di↵erent
from the one in the cyclic group case. Both e�ciency and tightness are a signif-
icant improvement over the state of the art, and can lead to the deployment of
schemes with more e�cient parameter choices obtaining high security at compu-
tational costs which are as low as possible.

1.1 Our contributions

In section 3.2 we adapt protocol ⇧ by Cohn-Gordon et al. [CCG+19] to the
isogeny setting, obtaining the first implicitly authenticated CSIDH-like protocol
with weak forward secrecy, under only the Strong-CSIDH assumption. This is
the first scheme with a security proof (moreover with optimal tightness) in the
same setting as CSIDH. The protocol requires each user to perform 4 ideal-class
evaluations, and its security proof, shown in Appendix B, has a tightness loss
which is linear in the number of sessions performed by a single user.

The adaptation we perform is, however, not entirely straightforward. In the
new setting we have only one operation, namely the multiplication of ideal classes,
while in the original protocol re-randomization is achieved via two operations (ad-
dition and multiplication of exponents). This leads to a di↵erent re-randomization
technique which relies one the random self-reducibility of the computational
CSIDH problem shown in appendix 4.1.

Practical Isogeny-Based Key-exchange with Optimal Tightness 41

We obtain a significant improvement over the state of the art of isogeny-based
key-exchange protocols. Compared to one of the latest scheme, from “Strongly
Secure Authenticated Key Exchange from Supersingular Isogenies” [XXW+19],
we obtain better e�ciency and tightness. Moreover, unlike this latter scheme,
our protocol does not require any authentication mechanism. This allows us to
rely on the same class (and a smaller number) of hardness assumptions, and to
avoid the use of signatures, which are tricky and expensive [DG19] to produce
in the isogeny setting. Compared to the CSIDH protocol, which lacks a security
proof and for which authentication seems hard to achieve, our ⇧-SIDE protocol
has implicit authentication at the cost of a few more ideal-class evaluations. As
shown in section 6, our ⇧-SIDE protocol is competitive with other post-quantum
candidates, once instantiated with theoretically-sound parameters.

1.2 Related work

In the last years, a lot of research has been conducted on SIDH-based schemes.
For example, Galbraith [Gal18] has shown how to adapt generic constructions
to the SIDH setting, and he introduced two new SIDH-AKE protocols. Similar
results were achieved by Longa [Lon18], except for the introduction of the two
new schemes. Assuming a straightforward adaptation, a few other protocols have
a non-quadratic tightness loss. For example KEA+ [LM06] has a linear loss in
the number of participants multiplied by the number of sessions, assuming the
hardness of the Gap-DH problem. Although, it does not achieve wPFS and takes
O(t log t) time only when instantiated on pairing-friendly curves.

In their recent paper, Xu et al. [XXW+19] propose SIAKE2 and SIAKE3, a
two-pass and a three-pass AKE respectively. SIAKE2, whose security relies on the
decisional SIDH assumption, has a rather convoluted construction: they design a
strong One-Way CPA secure PKE scheme, which is then turned into a One-Way
CCA KEM through the modified FO-transform and finally used as a building
block for the AKE scheme. The three-pass AKE SIAKE3 is obtained by modifying
the previously designed KEM, once a new assumption (the 1-Oracle SI-DH, an
analogue of the Oracle Di�e-Hellman assumption in which only one query is
allowed) is made. Compared to this scheme, our result is simpler and it has a
tighter security proof, smaller communication complexity and improved overall
e�ciency.

2 Preliminaries

In this section, we first recall the definition of tightness for security reductions.
Then we provide the reader with key-concepts and results which are indispensable
to understand the constructions of SIDH and CSIDH. Good references regarding

42 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

elliptic curves and isogenies are Silverman [HS09], Washington [Was08] and De
Feo [Feo17]; the original papers introducing SIDH and CSIDH are Jao-De Feo
[JD11] and Castryck et al. [CLM+18], respectively.

2.1 Tight reductions

When comparing schemes, one should always consider protocols once they have
been instantiated with theoretically-sound parameters, which guarantee the de-
sired level of security. These parameters (such as the bit-length of the prime
defining a base field or the key size) strongly depend on the security proof corre-
lated with the protocol. A security proof usually consists of

– a security model, in which we describe an adversary by listing a set of queries
that it can make (and therefore specifying what it is allowed to do);

– a sequence of games leading to a reduction, in which an adversary A against
the protocol is turned into a solver B for an allegedly hard problem.

The “quality” of a reduction can be measured by computing its security loss: if
tA and ✏A are the running time and the success probability of A respectively,
and tB and ✏B respectively are the running time and the success probability of
B, then we define the security loss L as

tA
✏A

= L
tB
✏B

. (1)

If L is constant, then we say that the reduction is tight. Having a tight proof
is as relevant as building an e�cient protocol, because this leads to deploy the
smallest possible parameters when concretely instantiating a protocol.

In some cases, however, it is impossible to obtain a tight reduction. In a simple
scheme the adversary is run only once, in comparison to other protocols which use
the Forking Lemma in order to run multiple copies of the adversary. A linear loss
in the number of participants to the protocol is unavoidable for simple schemes,
while applying the Forking Lemma leads to a non-tight proof. We therefore focus
on optimal tightness whenever tightness is unachievable: the L in Equation (1)
turns out to be not constant, but one proves that it is impossible to decrease
its order. We rely on the same strategies adopted in the paper by Cohn-Gordon
et al. [CCG+19] to prove the lower bound on the tightness loss, applying their
variant of the meta-reduction techniques by Bader et al. [BJLS16].

Many available schemes, which are actually taken into account for standard-
ization processes, have quite non-tight security reductions. Let µ be the number
of users running the protocol and let k be the number of sessions per user. HMQV
[Kra05], a classically secure protocol in the random-oracle model under the CDH

Practical Isogeny-Based Key-exchange with Optimal Tightness 43

assumption, has security loss O
�
µ2k2

�
. If we consider a generic signed KEM ap-

proach, we get a O
�
µ2k2

�
loss in addition to the signature scheme loss. In many

cases, parameters are chosen in a non theoretically-sound way, while tightness
loss should always be considered when comparing protocols.

2.2 Elliptic curves, isogenies and endomorphism rings

Let Fp be a finite field for a large prime p and let E be an elliptic curve over
Fp. We say that E is supersingular if and only if it has order #E(Fp) = p + 1.
Consider the isomorphisms of elliptic curves, i.e. all the invertible algebraic maps.
Any two elliptic curves over the algebraic closure Fp are isomorphic if and only
if they have the same j-invariant. Thus we can use isomorphisms to define an
equivalence relation between elliptic curves and identify an equivalence class by
the j-invariant of the curves in the class.

Let E1 and E2 be two elliptic curves defined over Fp and let 0E1 , 0E2 denote the
respective points at infinity. An isogeny from E1 to E2 is a morphism � : E1 ! E2

such that �(0E1) = 0E2 . For any isogeny � : E1 ! E2 there exists a dual isogeny
�̂ : E2 ! E1 such that �̂ � � = [deg(�)]E1 and � � �̂ = [deg(�)]E2 . An isogeny
is essentially determined by its kernel: given a finite subgroup G ⇢ E(Fp) there
exist a unique (up to isomorphisms) elliptic curve E2 ' E1/G and a separable
isogeny � : E1 ! E2 such that ker(�) = G. The isogeny � has degree ` equal
to the cardinality of its kernel, and we call it an `-isogeny. Given the kernel
of an isogeny, we can exploit Vélu’s formulae [Vél71] to compute the isogeny
� together with the codomain curve E2 in O(` log(p)2) bit operations. This is
the best approach when ` is small enough and p is shorter than a few thousand
bits. Any separable isogeny defined over Fp can be written as the composition of
isogenies of prime degrees.

An endomorphism is an isogeny from E to itself; the set of endomorphisms
of E, together with the zero map and equipped with pointwise addition and
composition, forms the endomorphism ring End(E). We denote by Endp(E) the
ring of endomorphisms defined over Fp. For ordinary curves Endp(E) = End(E),
while for supersingular curves Endp(E) ⇢ End(E). In particular, End(E) is
an order in a quaternion algebra, whilst Endp(E) is an order in the imaginary
quadratic field Q(

p
p). A classical result by Deuring [Deu41] reveals that End(E)

is a maximal order in Bp,1, the quaternion algebra ramified at p and at 1.

2.3 The ideal class group action

We hereafter provide the reader with the basic definitions and known results
regarding ideal class group action. In particular, this section gravitates around a
recurring sentence in isogeny-based cryptography:

44 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

“The ideal class group of an imaginary quadratic order O acts freely via
isogenies on the set of elliptic curves with Endp(E) ' O.”

We will then focus on the computational aspects, essential to understand CSIDH.

Algebraic foundations. An algebra A is a vector space over a field K equipped
with a bilinear operation. If the bilinear operation is associative, then we say that
A is an associative algebra. Given a unitary ring R, a left R-module RM consists
of an abelian group (M,+) and a scalar multiplication R ⇥R M �!R M which
satisfies left/right distributivity, associativity and neutrality of ring’s unit. Let R
be an integral domain (a commutative unitary ring without zero-divisors) and let
K be its field of fractions; a left R-module RM is a lattice in the vector space V
over K if RM is finitely generated, R-torsion free and an R-submodule of V . An
order is a subring O of a ring A such that 1) A is a finite dimensional algebra
over Q, 2) O spans A over Q (i.e. QO = A), 3) O is an integer lattice in A.

The ideal class group. Let K be a finite extension of Q of degree 2, which
is called a quadratic number field, and let O ✓ K be an order. The norm of an
O-ideal a ✓ O is defined as N(a) = |O/a|, which is equal to gcd({N(↵) | ↵ 2 a}).
Norms are multiplicative: N(ab) = N(a)N(b). A fractional ideal of O is an O-
submodule of K of the form ↵a, where ↵ 2 K⇤ and a is an O-ideal. Fractional
ideals can be multiplied and conjugated in the obvious way, and the norm extends
multiplicatively to fractional ideals. A fractional O-ideal is invertible if there
exists a fractional O-ideal b such that ab = O. If such b exists, we denote a�1 = b.
All the principal fractional ideals ↵O where ↵ 2 K⇤ are invertible.

The ideal class group of O, defined as cl(O) := I(O)/P (O), is the quotient
of the set of invertible fractional ideals I(O) by the set of principal invertible
fractional ideals P (O): For any M 2 Z \ {0}, every ideal class [a] has an integral
representative of norm coprime to M . There is a unique maximal order of K
with respect to inclusion, which is called the ring of integers and is denoted by
OK. The conductor of O in OK is the index f = [OK/O]. Every O-ideal of norm
coprime to the conductor is invertible and factors uniquely into prime ideals.

The class group action. Let E``p(O) be the set of supersingular elliptic curves
over Fp with Endp(E) isomorphic to an order O in an imaginary quadratic field
and let E 2 E``p(O). Given an O-ideal a, we define the action of a on E as
follows:

1. we consider all the endomorphisms ↵ in a,
2. we compute the a-torsion subgroup E[a] = \↵2aker(↵) = {P 2 E(Fp) :
↵P = 0E 8↵ 2 a},

Practical Isogeny-Based Key-exchange with Optimal Tightness 45

3. we compute the isogeny �a : E ! Ea ' E/E[a].

It is common practice to denote the action of a on E by a ⇤E.
A fundamental result in isogeny-based protocols is theDeuring correspondence

between the set of maximal orders in Bp,1 and the set of elliptic curves: fixing
a supersingular elliptic curve E0, every `-isogeny ↵ : E0 ! E corresponds to an
ideal a of norm `, and vice-versa. Since Ea is determined (up to isomorphism) by
the ideal class of a, finding di↵erent representatives of an ideal class corresponds
to finding di↵erent isogenies between two fixed curves.

We can rewrite any ideal a of O as the product of O-ideals a = (⇡pO)ras,
where ⇡p is the p-th Frobenius endomorphism and as 6✓ ⇡pO. This defines an
elliptic curve a ⇤E and an isogeny �a : E �! a ⇤E of degree N(a) as follows:

– the separable part of �a has kernel \↵2asker(↵);
– the purely inseparable part consists of r iterations of Frobenius.

The isogeny �a and the codomain a⇤E are both defined over Fp and are unique
up to Fp-isomorphism. Directly from this construction it is clear that multiplying
ideals and composing isogenies are equivalent operations.

Let E``p(O,⇡) be the set of elliptic curves defined over Fp whose endomor-
phism ring is isomorphic to O such that the Frobenius endomorphism ⇡p cor-
responds to ⇡. As explained by Castryck et al. [CLM+18], we get the following
fundamental result:

Theorem 1. Let O be an order in an imaginary quadratic field and ⇡ 2 O such
that E``p(O,⇡) is non-empty. Then the ideal class group cl(O) acts freely and
transitively on the set E``p(O,⇡) via the map

cl(O)⇥ E``p(O,⇡) �! E``p(O,⇡)

([a], E) �! [a] ⇤E.

From now on, we drop the class notation“[a]” in favor of a simpler “a” by
considering any integral representative in the class.

The structure of the class group. The class group cl(O) is a finite abelian
group whose cardinality is asymptotically #cl(O) ⇠

p
|�|. As argued by CSIDH’s

authors [CLM+18], computing the exact structure of the class group requires a
lot of computational e↵ort. The best known algorithm (by Hafner and McCurley
[HM89]) for computing the structure of the class group is subexponential in �,
which is typically very large for CSIDH (about the size of p). Therefore, the
authors opt for heuristics which allow to find a very good approximation.

We are interested in the primes for which there exist distinct prime ideals l, l
of O such that `O = ll. If ` is such a prime, we say that it splits in O; ` is called an

46 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

Elkies primes in the point-counting setting. The ideal l is generated as (`,⇡��),
where � 2 Z/`Z is an eigenvalue of ⇡p on the `-torsion, and its conjugate is
l = (`,⇡�⇡/�), where p/� is any integral representative of that quotient modulo
`. The prime ` splits in O if and only if � is a non-zero square modulo `. The
CSIDH protocol is carefully designed such that a long list of primes (74 in the
512-bit implementation) are Elkies primes.

Computing the group action. According to the heuristics which are assumed
in CSIDH, any element of the group can be represented as the product of small
primes ideals. We can compute l ⇤E, the action of a prime ideal l = (`,⇡� �) on
E, in three di↵erent ways:

(a) by using the modular polynomials [?]:
1. find Fp-rational roots of the modular polynomial �l(X, j(E)), which are

the j-invariants of the two possible codomains;
2. compute the kernel polynomials �(x) 2 Fp[x] for the corresponding iso-

genies;
3. determine which of the options is the correct one by checking if ⇡p(x, y) =

[�](x, y) modulo �(x) over the curve;
(b) by using the division polynomials [Was08, XI.3]:

1. factor the `-th division polynomial l(E) over Fp;
2. match the irreducible factors with the right Frobenius eigenvalues;
3. use Kohel’s formulae to compute the codomain;

(c) by using Vélu’s formulae:
1. find a basis of the `-torsion points and compute the eigenspaces of ⇡p;
2. apply Vélu’s formulae to a basis point of the correct eigenspace to com-

pute the codomain.

In CSIDH, the authors opt for the last method, which is the fastest when the
necessary extension fields (in which the basis points lie) are small.

When � = 1 the curve has a rational point defined over the base field Fp. If
we also have that p/� = �1, the other eigenspace of Frobenius endomorphism
modulo ` is defined over Fp2 , so both codomains can be easily computed using
Vélu’s formulae over the base field, switching from a curve to its quadratic twist
if necessary. The parameters of the implementation are decided such that p ⌘ �1
(mod `) for many di↵erent primes `: in this case, � = 1 automatically implies
p/� = �1.

3 Isogeny-based key-exchange protocols

Isogeny-based cryptography is a class of allegedly quantum-resistant schemes
resulting from NIST’s competition. Two of the most peculiar features that dis-
tinguish them from the other candidates are the use of shorter keys and the

Practical Isogeny-Based Key-exchange with Optimal Tightness 47

deployment of more sophisticated algebraic structures. In this section, we first
provide an overview of CSIDH (pronounced “seaside”) [CLM+18], a key-exchange
protocol which does not take part in NIST’s competition but is extremely inter-
esting and promising. Then we introduce our new protocol ⇧-SIDE (pronounced
“pie-side”), a translation if the protocol ⇧ [CCG+19] in the CSIDH setting.

3.1 CSIDH

What follows is an outline of the CSIDH protocol, whose underlying algebraic
structures are briefly explained in section 2.3. We dwell in particular on the
aspects which are relevant to our results.

Parameters. Fix a large prime p = 4 · `1 · `2 · · · · `n� 1 where `i are small distinct
odd primes. p is designed such that p ⌘ 3 (mod 4), in order to

– easily write down supersingular elliptic curves over Fp;
– make use of the Montgomery form of elliptic curves in the implementation.

The starting curve for each execution of the protocol is the supersingular
elliptic curve in Montgomery form E0 : y2 = x3 + x over Fp. In this case the
characteristic equation of the Frobenius endomorphism is ⇡2

p
= �p, which implies

that the Fp-rational endomorphism ring Endp(E0) is an order in the imaginary
quadratic field Q(

p
�p); in particular, Endp(E0) = Z[⇡]. The resulting `i-isogeny

graph is a disjoint union of cycles. Moreover, since ⇡2
� 1 ⌘ 0 (mod `i) for each

i = 1, . . . , n, the ideals `iO split as `iO = lili = (`i,⇡� 1)(`i,⇡+1) (so all the `i
are Elkies primes). Furthermore, the kernel of �li is the subgroup generated by
a point P of order `i which lies in the kernel of ⇡ � 1. Analogously, the kernel of
�li is generated by a point Q of order `i that is defined over Fp2 but not in Fp

and such that ⇡(Q) = �Q.

Sampling ideals and computing their action. Although we want to sample uni-
formly at random from the ideal class group cl(O), it is preferable not to compute
its exact structure because of the large size of the discriminant�. By heuristically
assuming that

– the ideals li do not have very small order,
– the ideals li are evenly distributed in the class group,

two ideals le1
1
le2
2
· · · len

n
for small ei will rarely lie in the same class. The ei are

sampled from a short range {�m, . . .m} for some integer m such that 2m+ 1 �
n
p
#cl(O). Since the prime ideals li are fixed, we represent any ideal

Q
i
lei
i

(which
will be the user’s secret key) as a vector (e1, e2, . . . , en) 2 [�m,m]n.

Since ⇡2
⌘ �p ⌘ 1 (mod `i), the eigenvalues of all `i-torsion subgroups are

+1 and �1. This allows us to e�ciently compute the action of li by using method
3. in section 2.3.

48 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

Representing and validating Fp-isomorphism classes. SIDHmisses a key-validation
protocol, and countermeasures are expensive. We recall how the authors of CSIDH
solve the problem for their protocol. First of all, they provide a result [CLM+18,
Proposition 8]) which states that, for the chosen p and supersingular elliptic curve,
the Montgomery coe�cient uniquely represents the class of elliptic curves result-
ing from the evaluation of an ideal. Secondly, to prove that an elliptic curve is
supersingular (and thus #E(Fp) = p+1), it is enough to find a pointQ 2 E whose
order is a divisor of p + 1 greater than 4

p
p (by Hasse’s theorem, we have only

one multiple of that divisor in the interval [p+1� 2
p
p, p+1+2

p
p], which must

be the group order by Lagrange’s theorem). They therefore provide an algorithm
which takes a point at random and computes its order. With high probability
(increasing with `i), this will tell in only one step if the curve is supersingular
or not. If x-only Montgomery arithmetic is used, a random point P is obtained
by randomly picking x 2 Fp, and there is no need to di↵erentiate points in Fp

and in Fp2 (in the second case, the point will correspond to an Fp-rational point
in the quadratic twist, which is supersingular if and only if the original curve is
supersingular).

The CSIDH protocol. We first describe how to perform the Setup and the key-
generation, then we schematise the simple structure of key-exchange protocol.

Setup. In this phase we set up the global parameters of the key-exchange
protocol. In particular, we fix:

– n distinct odd primes `i, corresponding to n isogeny-degrees;

– a large prime p = 4 · `1 · `2 · · · `n � 1;

– the supersingular elliptic curve E0 : y2 = x3 + x over Fp with endomorphism
ring O = Z[⇡].

Key generation. The private key is an n-tuple (e1, . . . , en) of integers, ran-
domly sampled from a range {�m, . . . ,m} such that 2m+1 � n

p
#cl(O), repre-

senting the ideal class a = le1
1
le2
2
. . . len

n
2 cl(O). The public key is the Montgomery

coe�cient A 2 Fp of the elliptic curve a ⇤E0 : y2 = x3 + Ax2 + x, obtained by
applying the action of a to the curve E0.

Practical Isogeny-Based Key-exchange with Optimal Tightness 49

Algorithm 2: CSIDH, the non-interactive key-exchange protocol.

Alice Bob

sskA : a 2 cl(O) sskB : b 2 cl(O)

spkA : EA = a ⇤E0 spkB : EB = b ⇤E0

retrieve EB and check retrieve EA and check

its supersingularity; its supersingularity;

KA = a ⇤ EB KB = b ⇤ EA

KA = ab ⇤ E0 = KB

3.2 Our protocol: ⇧-SIDE

Algorithm 3: ⇧-SIDE protocol.

Alice: PA 2 Fp Bob: PB 2 Fp

sskA : a 2 cl(O) sskB : b 2 cl(O)

spkA : EA = a ⇤ E0 spkB : EB = b ⇤E0

retrieve EB and check

its supersingularity;

eskA : f
$
 � cl(O)

epkA : EF = f ⇤E0 retrieve EA and check

EF its supersingularity;

eskB : g
$
 � cl(O)

epkB : EG = g ⇤E0

EG

ctxt = PA k PB k EA k EB k EF k EG

KB = H(ctxt k g ⇤EA k b ⇤EF k g ⇤EF)

KA = H(ctxt k a ⇤EG k f ⇤EB k f ⇤EG)

50 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

Just like in CSIDH, we fix a large prime p = 4 · `1 · `2 · · · `n � 1 for odd and
distinct primes `i. Then we consider the supersingular elliptic curve E0 : y2 =
x3 + x defined over Fp, with endomorphism ring O = Z[⇡]. We recall that a
key-pair (a, EA) can be correctly (with heuristic assumptions) formed as follows:

1. for i = 1, 2, . . . , n, sample the exponent ai
$
 � {�m, . . .m}, where m is the

smallest integer such that 2m+ 1 � n
p
#cl(O);

2. construct the fractional ideal a = la1
1

· la2
2

· · · lan
n
. The ideal class a will play

the role of secret key;
3. evaluate the action of the ideal class a on the elliptic curve E0, obtaining

the curve EA = a ⇤E0; EA is the Montgomery curve defined by the equation
y2 = x3 +Ax2 + x over Fp and EA will be the public part of the key pair.

The implementation-oriented reader should always remember that each elliptic
curve should be represented using its Montgomery coe�cient. For the sake of
notation we will refer to the curve instead.

Let P be the set of participants to the key-exchange protocol. We assume that
each party in P holds a static secret key ssk and a static public key spk, the latter
registered at a certificate authority CA. The certificate authority, upon registering
a public key, does not require a proof of knowledge on the corresponding secret
key. We do not demand that public keys di↵er from party to party, but we allow
each party to register only one public key.

Suppose now that two parties Alice and Bob (uniquely identified as PA and
PB) in the set P want to establish a shared key. Here we have to distinguish
between the initiator of the protocol (in our example Alice) and the responder.
At the beginning of the session, upon retrieving Bob’s public key, Alice samples
an ephemeral secret key eskA = f, computes the ephemeral public key epkA =
EF and sends the result to PB . Upon receiving EF , Bob first checks that it is
supersingular and that its Montgomery coe�cient is not in {±2}; if so, he in turn
samples an ephemeral secret key eskB = g, computes the ephemeral public key
EG and sends it to Alice. Alice herself verifies the validity of EG. Each of them
can now obtain the session key K: given access to an hash function H, they can
locally compute

K = H(PA k PB k EA k EB k EF k EG k ag ⇤E0 k bf ⇤E0 k fg ⇤E0).

3.3 The SIDH case

A question naturally arises: if ⇧ can be adapted to the CSIDH setting, why
can’t we do the same in the SIDH setting? On one hand, it is surely possible to
translate the protocol itself, since SIDH has a Di�e-Hellman-like structure too.
The adaptation would require a di↵erent parameter choice, allowing two extra

Practical Isogeny-Based Key-exchange with Optimal Tightness 51

sets of basis points, and the exchange of four extra image points (the images
of the peer’s basis points via the ephemeral isogeny) in order to allow the two
parties to compute the common key.

On the other hand, in this case the security proof wouldn’t hit the optimality
bound in the tightness loss. As it will be clarified in the next section, a property
that plays a fundamental role in this sense is the random self-reducibility of
the computational problem. In the next section we provide a formal proof of this
feature in the CSIDH case. At our knowledge, there exists no evidence that SIDH
shares this property, and it is rather unlikely to find a way to prove it.

4 Random self-reducibility

According to a fundamental definition by Blum and Micali, later rephrased by
Naor [NR97], a problem f is random self-reducible if solving it at any given
instance x can be reduced in polynomial time to the solution of f at one or more
random instances yi. In order to achieve random self-reducibility, there are two
conditions that have to be satisfied:

– the generation of the random instances y1, . . . yn has to be performed non-
adaptively;

– the instances y1, . . . yn must be uniformly distributed.

Random self-reducible problems are extremely relevant for cryptographic pur-
poses. First of all, they are used in worst-case to average-case reductions: a worst-
case instance of the problem can be used to generate a set of random instances,
so that solving f on the random instances allows us to solve f at the worst-case
instance in polynomial time. In the early ’80s, Goldwasser and Micali exploited
random self-reducibility of mathematical problems to construct cryptographic
algorithms for probabilistic encryption [GM82] and pseudorandom generation
[BM82]. Even more, if the group G and its generator g are properly chosen,
the random self-reducibility of the discrete logarithm problem guarantees passive
security of the plain Di�e-Hellman key-exchange protocol.

4.1 Random self-reducibility on CSIDH

It is folklore that the key-recovery problem in CSIDH is random self-reducible,
while SIDH-based problems are not. De Feo and Galbraith [DG19] provide a short
proof of random self-reducibility of CSIDH; hereafter, we prove this property more
verbosely, in a fashion that resembles the classical proof of re-randomizability for
the Computational Di�e-Hellman problem. A fundamental role is played by the
commutative action of cl(O) on the set of elliptic curves with endomorphism ring

52 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

g

A

X

B

Y

Z
0

Z

·g
↵

·g
�

E0

EA

ET

EB

EU

ETU

EAB

t⇤

u⇤

Fig. 1: Rerandomization graphs for Computational Di�e-Hellman and
Computational-CSIDH problems.

Practical Isogeny-Based Key-exchange with Optimal Tightness 53

isomorphic to O. The presence of a commutative action is a very strong element
of resemblance with the Di�e-Hellman protocol.

Let us start with the definition of the Computational CSIDH problem. Let G
be the set of elliptic curves defined over Fp.

Problem 1 (Computational-CSIDH problem). Given n distinct odd primes `i
and a large prime p = 4 · `1 · `2 · · · `n � 1, let E0 2 G be the supersingular elliptic
curve in Montgomery form y2 = x3 + x. Given two valid CSIDH public keys
A,B 2 Fp, where A is the Montgomery coe�cient of the elliptic curve EA = a⇤E0

and B is the one of EB = b ⇤E0, find the Montgomery coe�cient Z 2 Fp of the
elliptic curve EA,B = ab ⇤E0.

Theorem 2. The computational-CSIDH problem is random self-reducible. In
other words, given any two random elliptic curves ET = t⇤E0 and EU = u⇤E0, for
any algorithm B which solves the computational-CSIDH problem with advantage

AdvComp�CSIDH

G (B) = Prob
⇥
B(ET , EU) = Z 0

| ET

$
 � G, EU

$
 � G

⇤

there exists an oracle algorithm A
B that, for any input EA, EB 2 G, outputs the

correct solution to the corresponding computational-CSIDH problem with advan-
tage AdvComp�CSIDH

G (B), and has roughly the same running time.

Proof. Let EA = a⇤E0 and EB = b⇤E0 be the two elliptic curves corresponding to
the Montgomery coe�cients A and B; we can construct the following algorithm:

A
B(EA, EB)

t, u
$
 � cl(O)

ET t ⇤EA = t0 ⇤E0, EU u ⇤EB = u0 ⇤E0

Z 0
 B(ET , EU)

return Z of [t�1u�1] ⇤EZ0

In other words, the algorithm proceeds as follows. First of all, we pick uni-
formly at random two isogeny classes t, u 2 cl(O): they are defined as t =
lt1
1
lt2
2
. . . ltn

n
2 cl(O) and u = lu1

1
lu2
2

. . . lun
n
2 cl(O) where each exponent ti, uj

is picked uniformly at random from the set {�m, . . . ,m}. Then we evaluate the
action of t on EA and the action u on EB , obtaining two random elliptic curves
ET , EU 2 G. Finally, we submit the new random instance to the algorithm B,
which outputs Z’, the Montgomery coe�cient of the elliptic curve EZ0 . Since

EZ0 = t0u0 ⇤E0

= (ta)(ub) ⇤E0

= (tu)(ab) ⇤E0

= (tu) ⇤EA,B ,

54 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

we can easily retrieve the Montgomery coe�cient Z of the elliptic curve EA,B =
t�1u�1

⇤EZ0 . The advantage of the algorithm A
B can be calculated as follows:

Prob[AB(EA, EB) = Z] = Prob


t, u

$
 � cl(O) : B(t⇤EA, u⇤EB) = (ta)(ub) ⇤E0

�
.

By construction, the ideal classes t and u can be considered as sampled uniformly
at random from cl(O) (for the heuristics assumed in CSIDH), and therefore the
elliptic curves ET = t ⇤EA and EU = u ⇤EB are independent and uniformly
distributed on G. Therefore, the oracle consulted by A

B receives a well formed
instance, so we can conclude that

Prob[AB(EA, EB) = Z] = Prob


B(ET , EU) = taub ⇤E0

�� t, u $
 � cl(O)

�

= AdvComp�CSIDH

G (B).

As pointed out in section 2.3, we can e�ciently compute the action of the
ideal classes l and l�1 by using Vélu-type formulae. Therefore we can conclude
that, if B runs in t-time, then the algorithm A

B runs in (t+ �)-time, where � is
the small running time required to sample elements and evaluate the action of
ideal classes.

5 Security of ⇧-SIDE

In this section, we define some allegedly hard problems in the CSIDH setting.
The definition of our security model and the full proof can be found in Appendix
B. The structure of the proof is similar to the one for protocol ⇧[CCG+19], but
we have made a number of changes, mostly related to the new re-randomization
technique. A straightforward adaption would have not been possible by simply
substituting exponentiations with class group evaluations.

5.1 Hard problems

In section 4.1, we have seen that the Comp-CSIDH problem consists in finding the
Montgomery coe�cient Z 2 Fp of the elliptic curve ab⇤E0 given the Montgomery
coe�cients of the curves EA = a⇤E0 and EB = b⇤E0. In order to keep the notation
as simple as possible, we will formulate the next problems referring to the elliptic
curve itself, instead of its Montgomery coe�cient. The reader should always keep
in mind that, when it comes to the implementation, each elliptic curve will be
represented by its Montgomery coe�cient, which lies in Fp. We start with defining
a decisional problem:

Practical Isogeny-Based Key-exchange with Optimal Tightness 55

Problem 2 (Decisional-CSIDH problem). In the CSIDH setting, let a, b, r
$
 �

cl(O) be three elements randomly sampled from cl(O) and let b
$
 � {0, 1} be the

result of a fairly tossed coin. If b = 0 set EZ = r ⇤E0, otherwise set EZ = ab ⇤E0

and run the adversary on input (EA = a ⇤E0, EB = b ⇤E0, EZ). We define the
advantage of A in solving the decisional CSIDH problem over cl(O) as

AdvDec�CSIDH

cl(O)
(A) :=

����Prob
⇥
A(EA, EB , EZ) = b

⇤
�

1

2

����.

In other words, the decisional problem is hard if the adversary succeeds with
a negligible probability in distinguishing among a properly computed session key
and a random key. Trivially, if we can solve the computational variant of problem
then we can also solve its decisional variant. But does the opposite hold?

Problem 3 (Gap-CSIDH problem). In the CSIDH setting, let a, b
$
 � cl(O) be

two elements randomly sampled from cl(O), corresponding to the curves EA =
a ⇤E0 and EB = b ⇤E0. Suppose that the adversary A is given access to a
Dec-CSIDH oracle D(·, ·, ·), which outputs 1 if queried on a valid CSIDH triplet
(EA, EB , EAB) and 0 otherwise. We define the advantage of A in solving the
Gap-CSIDH problem over cl(O) as

AdvGap�CSIDH

cl(O)
(A) := Prob

⇥
A(EA, EB) = EA,B, providing A access to D(·, ·, ·)

⇤

The security of protocol⇧ [CCG+19] relies on the Strong-DH problem [ABR01],
a variant of the Gap problem in which the adversary is granted access to a more
limited decisional oracle.

Problem 4 (Strong-CSIDH problem). In the CSIDH setting, let a, b
$
 � cl(O)

be two elements randomly sampled from cl(O), corresponding to the curves EA =
a ⇤E0 and EB = b ⇤E0. Let D be an oracle for the decisional CSIDH problem.
Suppose that the adversary A is given access to a decisional oracle with fixed first
input DX(·, ·) := D(EX , ·, ·), which outputs 1 if queried on a valid CSIDH triplet
(EX , EY , EXY) and 0 otherwise. We define the advantage of A in solving the
Strong-CSIDH problem over cl(O) as

AdvSt�CSIDH

cl(O)
(A) := Prob

⇥
A(EA, EB) = EA,B, providing A access to DX(·, ·)

⇤

Rerandomizability of the Gap-CSIDH and the Strong-CSIDH problems fol-
lows directly from Theorem 4.1. The full security proof, which strongly relies on
these problems, is provided in Appendix B. Based on the current state of the art,
there is no reason to believe that the above problems can be easily solved.

56 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

6 Comparison

Comparing the e�ciency of our scheme with other post-quantum schemes is hard.
First of all, many schemes do not have a security proof [Ber19] (and thus we
cannot define theoretically-sound parameters); secondly, it is highly non-trivial
to convert the concrete analysis into security parameters for many schemes.

Castryck et al. [CLM+18] describe an implementation for a 128-bit security
level that requires about 106 ·106 clock cycles to compute the group action. Since
our protocol ⇧-SIDE requires four group action computations, we have a total
cost of about 400 · 106 clock cycles, ignoring hashing and other cheap operations.

The most natural target for comparison is SIKE [JAC+19]. The original ⇧-
protocol can also be generalized to SIKE, but one would probably not attempt
to build it on top of the defined KEM, but use the underlying isogeny instead.
Table 2.1 from SIKE [JAC+19] suggests that an isogeny computation using the
optimized implementation (which probably matches the CSIDH implementation
best) requires roughly 50·106 clock cycles for the 128 bit security level (SIKEp434),
which becomes roughly 200 · 106 clock cycles for the generalized ⇧-protocol,
significantly faster than the CSIDH-based version.

Now suppose we instantiate the protocol with 216 users and 216 sessions per
user. In this case, the apparent security level of our protocol falls to about 110 bits.
The SIKE-based protocol with the standard security proof will have a quadratic
security loss. This means that in order to get a similar theoretically-sound secu-
rity level from the SIKE-based protocol, we need to switch to SIKEp610. Again,
Table 2.1 from SIKE [JAC+19] suggests that an isogeny computation using the
optimized implementation requires roughly 160 · 106 clock cycles. The general-
ized ⇧-protocol then requires roughly 640 ·106 clock cycles, which is significantly
slower than the CSIDH-based version. According to this approximate analysis,
the CSIDH-based version is faster than the corresponding SIKE-based protocol
when instantiated with theoretically-sound parameters. However, to properly de-
termine which is faster, comparable optimized implementations would be needed.

Another natural comparison target is the Strongly secure AKE from Super-
singular Isogenies by Xu et al. [XXW+19] referred to in section 1.2. For their
two-pass protocol SIAKE2 and their three-pass protocol SIAKE3, the numbers of
cycles are approximately 7 ·109 and 6 ·109, respectively [XXW+19, Table 6]. Our
protocol is significantly faster, by about an order of magnitude.

7 Conclusions and open problems

In this paper we have shown that it is possible to construct post-quantum isogeny-
based key-exchange protocols with optimal tightness, without compromising e�-
ciency and key-size. The protocol is an easy adaptation of protocol ⇧ [CCG+19],

Practical Isogeny-Based Key-exchange with Optimal Tightness 57

where we substitute exponentiations in cyclic groups with actions of ideal classes
on elliptic curves. The adaptation of the proof, which requires random self-
reducibility of the computational-CSIDH problem, could not be done trivially.
Indeed, we have had to exploit a di↵erent re-randomization technique for the
computational challenge, since we only have one group operation on ideal classes
against two operations (addition and multiplication) on exponents. We have
shown that the resulting scheme is competitive with other isogeny-based pro-
tocols, which lack a security proof or have a larger tightness loss.

Our protocol is proven secure in the Random Oracle Model. In a crucial step
we use the Strong-CSIDH oracle to detect if the adversary queries the hashing
oracle on an input which contains the solution to a given computational-CSIDH
challenge. If we allow the adversary to make quantum queries, the target solution
might be hidden in the superposition of states. We believe that collapsing the
input state after the oracle’s answer is not invalidating our security proof, since
we do not need to reprogram the oracle. We leave the proof of security in the
QROM as future work.

A stronger security notion can be achieved by adding the static-static term
in the session-key computation, or by applying the NAXOS trick [LLM07]. But
security against state compromise (ephemeral key reveal) increases the tightness
loss, since we cannot tightly deal with state reveal queries. How to move to a
stronger security model without losing in tightness is still an open problem.

We have seen how the flexible algebraic structure at the basis of CSIDH
can be exploited to remodel protocol ⇧ in the isogeny setting. Nevertheless,
the simplicity of this scheme might be further exploited. Other quantum-hard
problems might be used to translate the scheme in other algebraic contexts.
Adaptions in this direction are left for further research.

As a last remark, we would like to clarify that our scheme is not a↵ected by
the algorithm recently published by Castryck et al. [CSV20]. This attack, which
breaks some instances of the Decisional CSIDH problem, does not work when
p ⌘ 3 (mod 4), as per our protocol.

References

AASA+. Gorjan Alagic, Jacob Alperin-Sheri↵, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Nistir 8309. https:
//doi.org/10.6028/NIST.IR.8309.

ABR01. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle di�e-
hellman assumptions and an analysis of dhies. volume 2020, pages 143–158,
04 2001.

Ber19. Daniel J. Bernstein. Comparing proofs of security for lattice-based encryp-
tion. IACR Cryptology ePrint Archive, 2019:691, 2019.

58 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

BFG+19. Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and
Douglas Stebila. Towards post-quantum security for signal’s x3dh hand-
shake. Cryptology ePrint Archive, Report 2019/1356, 2019. https://

eprint.iacr.org/2019/1356.
BFK+14. Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo

Pironti, Pierre-Yves Strub, and Santiago Zanella Béguelin. Proving the TLS
handshake secure (as it is). In Juan A. Garay and Rosario Gennaro, edi-
tors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 235–255, Santa
Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

BJLS16. Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibil-
ity of tight cryptographic reductions. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
273–304, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

BM82. Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo random bits. In 23rd FOCS, pages 112–117, Chicago,
Illinois, November 3–5, 1982. IEEE Computer Society Press.

CCG+19. Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, H̊akon Jacobsen, and
Tibor Jager. Highly e�cient key exchange protocols with optimal tightness.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 767–797, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

CLM+18. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An e�cient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 395–427, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany.

CSV20. Wouter Castryck, Jana Sotáková, and Frederik Vercauteren. Breaking the
decisional di�e-hellman problem for class group actions using genus theory.
Cryptology ePrint Archive, Report 2020/151, 2020. https://eprint.iacr.
org/2020/151.

Deu41. Max Deuring. Die Typen der Multiplikatorenringe elliptischer Funktio-
nenkörper. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, 14:197–272, 1941.

DG19. Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures
from class group actions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

Feo17. Luca De Feo. Mathematics of isogeny based cryptography. CoRR,
abs/1711.04062, 2017. http://arxiv.org/abs/1711.04062.

Gal18. Steven D. Galbraith. Authenticated key exchange for SIDH. Cryptology
ePrint Archive, Report 2018/266, 2018. https://eprint.iacr.org/2018/

266.
GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play

mental poker keeping secret all partial information. In 14th ACM STOC,
pages 365–377, San Francisco, CA, USA, May 5–7, 1982. ACM Press.

Practical Isogeny-Based Key-exchange with Optimal Tightness 59

HM89. James Lee Hafner and Kevin S. McCurley. A rigorous subexponential al-
gorithm for computation of class groups. Journal of The American Mathe-
matical Society, 1989.

HS09. Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106. 2009.

JAC+19. David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik,
and Geovandro Pereira. SIKE. Technical report, National Institute of
Standards and Technology, 2019. available at https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions.

JD11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, pages 19–34,
Tapei, Taiwan, November 29 – December 2 2011. Springer, Heidelberg, Ger-
many.

JKSS12. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the se-
curity of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 273–
293, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg,
Germany.

KPW13. Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security
of the TLS protocol: A systematic analysis. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 429–
448, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany.

Kra05. Hugo Krawczyk. HMQV: A high-performance secure Di�e-Hellman proto-
col. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
546–566, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Heidel-
berg, Germany.

KTAT20. Tomoki Kawashima, Katsuyuki Takashima, Yusuke Aikawa, and Tsuyoshi
Takagi. An e�cient authenticated key exchange from random self-
reducibility on csidh. Cryptology ePrint Archive, Report 2020/1178, 2020.
https://eprint.iacr.org/2020/1178.

LLM07. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security
of authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, ProvSec 2007, volume 4784 of LNCS, pages 1–16, Wollongong, Aus-
tralia, November 1–2, 2007. Springer, Heidelberg, Germany.

LM06. Kristin Lauter and Anton Mityagin. Security analysis of KEA authenticated
key exchange protocol. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and
Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 378–394, New
York, NY, USA, April 24–26, 2006. Springer, Heidelberg, Germany.

Lon18. Patrick Longa. A note on post-quantum authenticated key exchange from
supersingular isogenies. Cryptology ePrint Archive, Report 2018/267, 2018.
https://eprint.iacr.org/2018/267.

60 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of e�cient
pseudo-random functions. In 38th FOCS, pages 458–467, Miami Beach,
Florida, October 19–22, 1997. IEEE Computer Society Press.

Sho97. Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, Oct 1997.

Sut13. Andrew V. Sutherland. On the evaluation of modular polynomials. Tenth
Algorithmic Number Theory Symposium (ANTS X), MSP Open Book Series
1, pages 531–555, 2013.

Vél71. J. Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie
des Sciences, Série I, 273:238–241, 1971.

Was08. Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptogra-
phy, Second Edition. Chapman & Hall/CRC, 2 edition, 2008.

XXW+19. Xiu Xu, Haiyang Xue, Kunpeng Wang, Man Ho Au, and Song Tian.
Strongly secure authenticated key exchange from supersingular isogenies. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 278–308, Kobe, Japan, December 8–12, 2019.
Springer, Heidelberg, Germany.

Practical Isogeny-Based Key-exchange with Optimal Tightness 61

Appendix

A Security model

Suppose that we have a certificate authority CA, a set of parties P := {Pi}
µ

i=1

and an adversary M. The parties can communicate with each other and with
CA by using an unauthenticated network. CA can be seen as a globally trusted
party, or register, who holds and distributes the static public keys of the parties
in P. At any time, a new player can join in P by communicating his static public
key to the CA, and the register can grow indefinitely. As we mentioned before,
we do not require di↵erent parties to hold di↵erent public keys, and neither we
demand any proof of knowledge of the related secret key. Our protocol is implicitly
authenticated and, as such, no identification or proof of knowledge of any secret
information is required. The only constraint we impose is that each member can
commit to only one static public key at a time.

Each Pi is represented as a set of oracles {⇡1

i
,⇡2

i
, . . . ,⇡k

i
}, one for each of the

k sessions the user can participate to. Each oracle ⇡s

i
= (P s

i
, s

i
,Ks

i
, sents

i
, recvs

i
,

roles
i
) maintains an internal state consisting of:

– the identity of the intended peer P s

i
which is supposedly taking part to the

key-exchange session;
– s

i
2 {;, accept, reject}, which indicates whether the session key has not been

computed yet, or if it has been accepted or rejected;
– the session key Ks

i
, which is not empty if and only if s

i
= accept;

– sents
i
, the collection of all the messages sent by the oracle;

– recvs
i
, the collection of all the messages received by the oracle;

– the role roles
i
of the oracle (init or resp).

sents
i
and recvs

i
together form the view views

i
of Pi of the session s.

We now define the attribute for indicating two oracles that allegedly partici-
pated to the same key-exchange session. Two oracles ⇡s

i
and ⇡t

j
are called partner

oracles if

1. P s

i
= Pj and P t

j
= Pi, i.e. if they are the intended peer of each other;

2. s

i
= t

j
= accept, i.e. they both accepted the session key;

3. views

i
= viewt

j
, i.e. the messages sent and received by Pi match with the ones

respectively received and sent by Pj during the key-exchange session;
4. they have specular roles.

Slightly simplifying the definition, an oracle is fresh if and only if its session
key has not been revealed, its partner oracle has not been corrupted or tested
and the partner’s session key has not been revealed. We will later constrain the
adversary to test only fresh oracles. A party is honest if all its oracles are fresh,
i.e. if it has not been corrupted yet.

62 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

In this model, the adversary A has full control over the network and interacts
with the oracles through queries that allow it to

– activate an oracle ⇡s

i
and assign a role by sending it a message on behalf of

a peer Pj ;
– reveal the long-term secret key of a user Pi. This query provides the target

user with the attribute of corrupted and all its oracles will answer ? to each
later query;

– register the long-term public key for a new user. No knowledge of the corre-
sponding secret key is required and the public key is distributed to all other
users;

– reveal the session key ks
i
stored in the internal state of any oracle ⇡s

i
. The

target oracle is now said to be revealed.
– test an oracle ⇡s

i
, which outputs ? if s

i
6= accept. If s

i
= accept it then out-

puts a key, which is either the session-key or one picked at random, according
to a previously defined random bit. The key, may it be real or the random,
is consistently issued in case of further tests.

Note that the adversary cannot query on the ephemeral key of any session.
We work in the Real-or-Random model: when tested, each oracle will output

a real session key or a random key, according to a bit sampled at the beginning
of the security game. If b = 0 each oracle tested during the game will output a
random key, while if b = 1 each tested oracle will output the real session key.

Once the environment has been set up, we run the following AKE security
game G⇧(µ, k), with µ honest parties and at most k sessions per user:

1. at first we toss a coin b
$
 � {0, 1}. We also set up µ parties, providing each

of them with a long-term key pair (ski, pki) and with k oracles;
2. we then run the adversary A, which knows all the public keys and can make

any number of the previously defined queries. The only restriction is that an
oracle must be fresh when it is tested;

3. at some point, A will eventually output b0, its guess on the initial bit b. If the
tested oracles are fresh and b0 = b, then A wins the security game.

An adversary can try to break the system in three di↵erent ways: it can
trick two oracles into computing di↵erent session keys (event breakSound), break
the unicity of the partnership relation between two oracles (event breakUnique) or
successfully guess b0 = b (event breakKE). We formalise these ideas in the following
definition.

Definition 5. In this security model, a protocol ⇧ fails if at least one of
breakSound, breakUnique and breakKE occurs while running game G(µ, k). Given

Practical Isogeny-Based Key-exchange with Optimal Tightness 63

an adversary A, we define its advantage against the AKE security of protocol ⇧
as

AdvAKE

⇧
(A) := max

⇢
Prob[breakSound], P rob[breakUnique], P rob[breakKE]�

1

2

�

and we say that it (t, ✏A, µ, k)-breaks the AKE security of ⇧ if it runs in time t
and has advantage AdvAKE

⇧�SIDE
(A) � ✏A.

B The security proof

As in the proof by Cohn-Gordon et al. [CCG+19], we prove the following:

Theorem 3. Consider an environment running ⇧-SIDE together with an ad-
versary A against AKE security of ⇧-SIDE. Then there exist 3 Strong-CSIDH
adversaries B1,B2,B3 such that A’s advantage AdvAKE

⇧�SIDE
(A) is at most

µ ·AdvSt�CSIDH

cl(O)
(B1) +AdvSt�CSIDH

cl(O)
(B2) + µ ·AdvSt�CSIDH

cl(O)
(B3) +

µk2

N

where µ = |P| is the number of parties, k is the maximal number of AKE-sessions
per party and N is the order of cl(O). The run-time of adversaries B1,B2,B3 is
almost the same as A and they make at most as many queries to the Strong-
CSIDH oracle as A does to the hash oracle H.

The proof structure is analogous to the one of ⇧, rephrased and adapted to
our setting. It consists of six di↵erent games: Game 0 is the AKE experiment,
while the other five games involve the following oracle types:

– type I: an initiator oracle which has received the response from a responder
oracle (honest when the response is received) and with which it agrees on the
transcript ctxt;

– type II: an initiator oracle whose intended peer is honest until the oracle
accepts;

– type III: a responder oracle triggered by an honest initiator, with which it
agrees on ctxt and which is still honest when it receives the response;

– type IV: a responder oracle whose intended peer is honest until the oracle
accepts;

– type V: an oracle (whether initiator or responder) whose intended peer is
corrupted.

At the time of starting an AKE session, an initiator oracle cannot be entirely
sure about the intended peer’s honesty: we cannot tell if it is of type I or type II.
This uncertainty vanishes when it receives the response and it comes the time to

64 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

Oracle Init. Resp.
Honest partner Honest partner Corrupted Agreement

(before acceptance) (after acceptance) partner on ctxt

Type I

Type II

Type III

Type IV

Type V

Table 1: Oracle types, defined by role, partner’s honesty and agreement on ctxt.

compute the session key. This aspect will be taken in account during the definition
of the security games.

We now define six di↵erent security games, which will lead to the definition of
the three adversaries B1,B2,B3 in Theorem 3. In each game we will have to look
at the input to the hash function; for future references, we indicate the general
form of the input to the hash oracle involving a key-exchange session between
parties PA,PB as

PA k PB k EA k EB k EF k EG kW1 kW2 kW3 (2)

For i = 0, 1, . . . , 5 we denote with Sj the event “Game i outputs 1”, which will
indicate a success for the adversary in breaking protocol ⇧-SIDE (i.e. at least
one of the events breakSound, breakUnique and breakKE happens during Game i).

Game 0. In this game, we simply run the usual AKE security game: the adversary
can corrupt some players, reveal some session keys (but not any ephemeral secret
key) and delay/redirect messages. When it will be ready, it will pick a fresh
oracle and make a query test on its session key. Game 0 will output 1 whenever
the adversary breaks the AKE security of protocol ⇧-SIDE:

Prob[S0] = Prob[breakKE].

Game 1. In this game we abort if the same ctxt is computed by two non-
partnered oracles. We can upper-bound the probability of this event with the
probability that the following conditions are simultaneously verified:

1. two oracles ⇡s

i
,⇡t

i
belong to the same user Pi;

2. they pick the same ephemeral secret key during their respective sessions;
3. they are involved in two key-exchange sessions with the same user Pj (since

the identity of the intended peer is part of the ctxt).

Practical Isogeny-Based Key-exchange with Optimal Tightness 65

Recalling that we have µ users engaging in at most k sessions, we get that

|Prob[S1]� Prob[S0]| 
µk2

N

and thus, since in this game the unicity of the partner oracle cannot be broken,
we can conclude that

Prob[breakUnique] 
µk2

N
.

Game 2. In this game we modify how each oracle computes the session key:
instead of computing the input to the hash oracle H, it checks if the adversary
has queried the oracle on that same input, and behaves consequently: if the answer
is yes, then it stores that hash value as the session key (i.e. it properly computes
the key), otherwise it picks a key at random and stores that one instead. Note
that, when it comes the time for an initiator oracle to compute the session key,
the oracle type is fully determined.

A type I oracle (an initiator oracle with a definitely honest partner oracle with
which it agrees on the ctxt) will store the key computed by the corresponding
responder oracle.

Each type II or type V initiator oracles of party PA has to check if the input

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG

has been object of any oracle query. If so, it sets its session key to the correspond-
ing hash value (previously stored by the responder oracle), otherwise it picks a
session key at random (answering consistently to any following hash query on
that same input).

Each type III, IV or V responder oracle of a party PB in a session with PA

will check if any queries have been made on input

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF .

If so, it stores the same result; otherwise, it stores a random key. In any case,
each later hash query is consistently answered with the stored session key.

We cannot observe the exact time in which the key derivation oracle is queried
for the first time, thus Game 2 outputs 1 whenever Game 1 outputs 1, and vice
versa. We can therefore conclude that

Prob[S2] = Prob[S1].

Game 3. In this game (which is a variant of Game 2) we modify how a type IV
oracle (a responder oracle whose intended peer is honest until the oracle accepts)
chooses the session key. What it does is 1) to pick a random key; 2) to wait for

66 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

the adversary to possibly corrupt the intended peer PA; 3) only then modify the
hash oracle with the random key k.

We can now define the following events:

– L (for Long-term key), in which the adversary queries the hash oracle on
input

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF

before the long-term secret key of any initiator oracle is revealed;
– LA is the same event as L, but for a specific intended peer PA. Trivially

Prob[L] =
P

i
Prob[Li];

– CA(for Corruption), in which the adversary queries the hash oracle on input

PA k PB k EA k EB k EF k EG k g ⇤EA kW2 kW3

before peer PA is corrupted; therefore we have Prob[LA]  Prob[CA].

In order to obtain a bound on Prob[CA] (and thus a bound on Prob[L]), we
construct an adversary B1 against the Strong-CSIDH problem.

Definition 6. [Adversary B1] Consider now an adversary B1 which is given
a Comp-CSIDH challenge (ES , ET) and is given access to a DS(·, ·) oracle.
First of all, it chooses a user PA uniformly at random and sets its long-term
public key to EA = ES . Then it sets the ephemeral public key of a type IV

oracle to be r ⇤ET , for a random r
$
 � cl(O). Finally, it runs Game 2. If B1

corrupts PA, the experiment aborts.
We need to recognise the hash queries that involve the user PA (happen-

ing in Game 2) and those involving the type IV oracle of any party PB . In
particular,

1. consider hash queries of the form

PA k PB k EA k EB k EF k EG kW1 k b ⇤EF k f ⇤EG

involving user PA as initiator. We do not know PA’s secret key a = s, so
we have to recognise if W1 is actually EAG = s ⇤EG. This can be done
by checking if DS(EG,W1) = 1;

2. consider hash queries of the form

PB k PA k EB k EA k EF k EG k b ⇤EG kW2 k f ⇤EG

involving user PA as responder. Again, we do not know PA’s secret key
a = s, but this time it is W2 = a ⇤EF that we cannot compute; thus we

Practical Isogeny-Based Key-exchange with Optimal Tightness 67

have to recognise if W2 is actually s ⇤EF . This can be done by checking
if DS(EF ,W2) = 1;

3. consider hash queries of the form

PA k PB k EA k EB k EF k EG k g ⇤EA kW2 kW3

involving the type IV oracle and user PA. We have to recognise if W1 is
actually rt⇤EA = g⇤ES . This can be done by checking if DS(EG,W1) = 1.
Whenever we succeed and we find that W1 = ESG = s ⇤EG, since we
computed EG = r ⇤ET , we output

EZ = r ⇤W1 = rs ⇤EG = rsr ⇤ET = rrsET = s ⇤ET = EST .

We have just described an adversary B1 which succeeds whenever event LA occurs
in Game 2. LA can occur only before PA is corrupt, and thus B1’s game would
have gone through. We can therefore define the upper bound

AdvSt�CSIDH

cl(O)
(B1) �

1

µ

µX

i=1

Prob[CI] �
1

µ

µX

i=1

Prob[LI] =
1

µ
Prob[L]

from which we get that
��Prob[S3]� Prob[S2]

��  Prob[L]  µ ·AdvSt�CSIDH

cl(O)
(B1)

the first element at the right-hand side of the inequality in Theorem 3.

Game 4. In this game a type III oracle (a responder oracle triggered by an
honest initiator, with which it agrees on the ctxt and which is still honest when
it receives the response) chooses the session key at random without modifying
the key derivation hash oracle. Consider an oracle belonging to user PB with
static secret key b and ephemeral secret key g whose intended honest peer PA

has static secret key a. The adversary can find out this change only if (call this
event L) it makes a query of the form

PA k PB k EA k EB k EF k EG kW1 kW2 k g ⇤EF .

This leads us to the following inequality:
��Prob[S4]� Prob[S3]

��  Prob[L].

Similarly to what we did in the previous game, we want to bound Prob[L] by
constructing an adversary B2 against the Strong-CSIDH problem.

68 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

Definition 7. [Adversary B2] Consider now an adversary B2 which is given
a Comp-CSIDH challenge (ES , ET) and is given access to a DS(·, ·) ora-
cle. It runs Game 3., re-randomizing the challenge as follows: 1) it sets the
ephemeral public key of type I and II oracles to EF = r ⇤ES for a ran-

dom r
$
 � cl(O); 2) it sets the ephemeral public key of type III oracles to

EG = r0 ⇤ET for a random r0
$
 � cl(O).

In this game, since we embed the challenge in two ephemeral keys, all the
static secret keys are known to the adversary. We need therefore to recognise
two types of hash oracle queries:

1. hash queries for type II oracles of the form

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG

given the knowledge of the static secret keys, the only information to be
detected is whether W3 = f ⇤EG = rs ⇤EG or not. The answer can be
obtained by performing the oracle query DS(EG, rW3);

2. hash queries for type III oracles of the form

PA k PB k EA k EB k EF k EG kW1 kW2 k g ⇤EF

given the knowledge of the static secret keys, the only information to be
detected is whether W3 = g⇤EF = r0t⇤EF or not. The answer can again
be obtained by performing the oracle query DS(EG, [rW3).

If the Strong-CSIDH oracle outputs 1, then we output

EZ = r�1r0
�1

W3 = rr0fg ⇤E0 = rr0rsr0t ⇤E0 = rrr0r0st ⇤E0 = EST .

We have just described an adversary B2 which succeeds whenever event L
occurs in Game 2. From this fact we get that

��Prob[S4]� Prob[S3]
��  Prob[L]  AdvSt�CSIDH

cl(O)
(B2)

the second element at the right-hand side of the inequality in Theorem 3.

Game 5. In this game a type II oracle (an initiator oracle whose intended peer
is honest until the oracle accepts) chooses a random key EK and modifies the
key derivation hash oracle only if the intended peer is corrupted. Consider an
oracle belonging to user PA with static secret key a and ephemeral secret key f:
if the adversary corrupts the intended peer PB , the hash oracle will output E : k
whenever it is queried on input

PA k PB k EA k EB k EF k EG k a ⇤EG k f ⇤EB k f ⇤EG.

Practical Isogeny-Based Key-exchange with Optimal Tightness 69

Analogously to what we did in Game 3, we define the following events:

– L: a query on the above input happens before the long-term secret key of any
responder oracle is revealed. It follows that

��Prob[S5]� Prob[S4]
��  Prob[L];

– LB : same as L, but for a specific intended peer PB . Trivially, Prob[L] =P
i
Prob[Li];

– CB : a query on input

PA k PB kEA kEB kEF kEG kW1 kW2 kW3 W2 = f ⇤EB = b ⇤EF

happens before user PB is corrupted; therefore we have Prob[LB]  Prob[CB].

As we did in the previous games, we want to find an upper bound on Prob[L].

Definition 8. [Adversary B3] Consider now an adversary B3 which is given
a Comp-CSIDH challenge (ES , ET) and is given access to a DS(·, ·) oracle. It
runs Game 4., it embeds the challenge as follows: 1) it sets the static public
key of a uniformly-at-random user PB to EB = ES ; 2) it sets the ephemeral
public key of type I and II oracles whose intended peer is PB to EF = r⇤ET

for a random r
$
 � cl(O).

If the adversary corrupts party PB , the game aborts, since the corre-
sponding static secret key is unknown. We need therefore to recognise three
types of queries made to the hash oracle:

1. hash queries for which PB acts as responder

PA k PB k EA k EB k EF k EG k g ⇤EA k b ⇤EF k g ⇤EF .

Given that both b = s and t are unknown, the only information we
cannot compute and that has to be detected is whether W2 = b ⇤EF =
b ⇤ES . The answer can be obtained by performing the oracle query
DS(EF ,W2);

2. hash queries for which PB acts as initiator:

PB k PA k EB k EA k EF k EG k b ⇤EG k f ⇤EA k f ⇤EG

(note that, in this case, the second part of the challenge has not been
embedded in EF). The only information to be detected is whether W1 =
b⇤EF = b⇤ES , and the answer can be obtained by performing the oracle
query DS(EG,W1);

70 Bor de Kock, Kristian Gjøsteen, and Mattia Veroni

3. hash queries defining event CB , i.e. made before the user PB is corrupted:

PA kPB kEA kEB kEF kEG kW1 kW2 kW3 W2 = f⇤EB = b⇤EF

We have to recognise if W2 is actually f ⇤EB = rt ⇤EB , and this can be
done by checking if DS(EF ,W2) = 1.

If the Strong-CSIDH oracle outputs 1 and realise that W2 = s ⇤EF =
srt ⇤E0, then we output

EZ = r�1W2 = rsrt ⇤E0 = rrst ⇤E0 = EST .

We have just described an adversary B3 which succeeds whenever event LB occurs
in Game 5. LB can occur only before PB is corrupt, and thus B3’s game would
have gone through. We can therefore upper bound

AdvSt�CSIDH

cl(O)
(B3) �

1

µ

µX

i=1

Prob[CI] �
1

µ

µX

i=1

Prob[LI] =
1

µ
Prob[L]

from which we get that

��Prob[S5]� Prob[S4]
��  Prob[L]  µ ·AdvSt�CSIDH

cl(O)
(B3)

the third and last element at the right-hand side of the inequality in Theorem 3.

Concluding the proof. Following from how we constructed each game in the proof,
whenever the games do not abort because of adversarial corruption, the adversary
is provided with a random session key, completely independent of every key and
sent message. Therefore

Pr[S5] =
1

2
.

We have seen in Game 1. that

Prob[breakUnique] 
µk2

N

and, due to the perfect correctness of the scheme,

Prob[breakSound] = 0.

We can therefore exploit the bounds on adversarial winning probabilities to
prove Theorem 3: given an adversary A against protocol ⇧-SIDE, we have built

Practical Isogeny-Based Key-exchange with Optimal Tightness 71

three adversaries B1,B2,B3 against Strong-CSIDH such that A wins with advan-
tage AdvAKE

⇧�SIDE
(A) at most

µ ·AdvSt�CSIDH

cl(O)
(B1) +AdvSt�CSIDH

cl(O)
(B2) + µ ·AdvSt�CSIDH

cl(O)
(B3) +

µk2

N

where µ is the number of participants to the protocol.
The tightness loss L = O(µ) that we achieve in this security proof is optimal

for simple protocols such as ours. The arguments adopted by Cohn-Gordon et al.
[CCG+19] still hold in our setting and the adaptation is straightforward.

72 From Lattice Crypto to Lættis Krypto

Appendix B

Symmetric Key Exchange with
Full Forward Security and
Robust Synchronization

73

An extended abstract of this paper appears in the proceedings of the 27th International
Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT 2021, LNCS 13093, © IACR 2021.
https://doi.org/10.1007/978-3-030-92068-5_23. This is the full version.

Symmetric Key Exchange with Full Forward
Security and Robust Synchronization

Colin Boyd1 Gareth T. Davies2 ID Bor de Kock1 ID

Kai Gellert2 ID Tibor Jager2 Lise Millerjord1

1NTNU – Norwegian University of Science and Technology, Trondheim,
Norway

2Bergische Universität Wuppertal, Wuppertal, Germany

December 1, 2021

Abstract

We construct lightweight authenticated key exchange protocols based on pre-
shared keys, which achieve full forward security and rely only on simple and effi-
cient symmetric-key primitives. All of our protocols have rigorous security proofs
in a strong security model, all have low communication complexity, and are partic-
ularly suitable for resource-constrained devices.

We describe three protocols that apply linear key evolution to provide different
performance and security properties. Correctness in parallel and concurrent proto-
col sessions is difficult to achieve for linearly key-evolving protocols, emphasizing
the need for assurance of availability alongside the usual confidentiality and authen-
tication security goals. We introduce synchronization robustness as a new formal se-
curity goal, which essentially guarantees that parties can re-synchronize efficiently.
All of our new protocols achieve this property.

Since protocols based on linear key evolution cannot guarantee that all concur-
rently initiated sessions successfully derive a key, we also propose two constructions
with non-linear key evolution based on puncturable PRFs. These are instantiable
from standard hash functions and require O(C · log(|CTR|)) memory, where C is

This work was supported by Deutscher Akademischer Austauschdienst (DAAD) and Norges forskn-
ingsråd (NFR) under the PPP-Norwegen programme. Colin Boyd and Lise Millerjord have been supported
by NFR project number 288545. Tibor Jager and Gareth T. Davies have been supported by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant
agreement 802823.

74

the number of concurrent sessions and |CTR| is an upper bound on the total number
of sessions per party. These are the first protocols to simultaneously achieve full
forward security, synchronization robustness, and concurrent correctness.

Contents

1 Introduction 74

2 Preliminaries 80

2.1 Message Authentication Codes . 80
2.2 Pseudorandom Functions . 81

3 Authenticated Key Exchange in the Symmetric Setting 82

3.1 Execution Environment . 82
3.2 AKE Security . 84
3.3 Concurrent Execution Synchronization Robustness 86

4 Linear Key Evolution 88

4.1 Key Derivation via Linear Evolution 89
4.2 LP3: a Three-Message Protocol . 91

4.2.1 AKE-M of LP3 . 93
4.2.2 Bounded Gap: Non-Concurrent Setting. 97
4.2.3 Bounded Gap: Concurrent Setting. 99
4.2.4 wSR of LP3. 100

4.3 LP2: A Two-Message Protocol with Fixed Roles 102
4.3.1 AKE-M of LP2 . 103
4.3.2 wSR of LP2 . 107

4.4 LP1: A One-Message Protocol with Fixed Roles 110
4.4.1 AKE-R of LP1 . 111
4.4.2 wSR of LP1 . 116

5 Non-Linear Key Evolution 118

5.1 Puncturable Pseudorandom Functions 118
5.2 PPRF-based Symmetric AKE . 119
5.3 PP2: a Two-Message Protocol with Fixed Roles 120

5.3.1 AKE-M of PP2 . 120
5.3.2 SR of PP2 . 124

5.4 PP1: a One-Message Protocol with Fixed Roles 127
5.4.1 AKE-R of PP1 . 128
5.4.2 SR of PP1 . 128

5.5 Instantiation . 129

75

1 Introduction

Authenticated key exchange protocols based on pre-shared long-term symmetric keys
(PSK-AKE) enable two parties to use a previously established symmetric key, agreed
upon via out-of-band communication, to (mutually) authenticate and derive a shared
session key. Prominent examples of such protocols are the PSK modes of TLS 1.3 and
prior TLS versions, but these examples still make use of public-key techniques for key
derivation, even if authentication uses symmetric keys. PSK-AKE protocols can be sig-
nificantly more efficient than classical public-key AKE protocols, particularly when they
can be constructed exclusively based on symmetric key primitives (“symmetric AKE”)
for both authentication and key derivation. Therefore such protocols are especially desir-
able for performance-constrained devices, such as battery-powered wireless IoT devices,
where every computation and every transmitted bit has a negative impact on battery life.
More generally, such protocols may be preferable in “closed-world” applications, such
as industrial settings, where pre-sharing keys may be easier and more practical than de-
ploying a public-key infrastructure. Furthermore, protocols based purely on symmetric-
key techniques, such as hash functions and symmetric encryption, also achieve security
against quantum attacks by adjusting security parameters appropriately.

Forward Security in Symmetric AKE Protocols. Forward security is today a stan-
dard security goal of key exchange protocols. It requires that past session keys remain
secure, even if the secret long-term key material is compromised. Note that this is only
achievable if past session keys are not efficiently computable from a current long-term
key. Forward security is comparatively easily achievable if public key cryptography is
used. For instance, a classical approach is to use ephemeral keys for key establishment,
such as the Diffie-Hellman protocol or, more generally, a key encapsulation mechanism
(KEM). Independent long-term keys can then be used for authentication via digital sig-
natures or another KEM.

The only currently known way to avoid public key techniques and use only symmet-
ric key primitives is based on the “derive-then-evolve” approach, where first a session
key is derived from a long-term key, and then the long-term key is evolved. This key
evolution prevents efficient re-computation of prior session keys which yields forward
security. Both steps can be implemented with simple key derivation functions. There are
two common ways to use this approach:

1. Synchronized key evolution. In this case, both parties evolve their long-term keys
in “epochs”, e.g., once per day. Note that this approach cannot achieve “full”

foward security, but only a weaker “delayed” form. This is because all session
keys of the current epoch can be computed from the current long-term secret,
so forward security only holds for session keys of past epochs. Moreover, this
approach requires synchronized clocks between parties, even to achieve correct-
ness. For many applications this seems impractical, in particular for cheap low-

76

performance devices, for which symmetric AKE protocols are particularly rele-
vant.

2. Triggered key evolution. In this case the protocol ensures that both parties advance
their key material during protocol execution. This approach directly achieves
“full” forward security for every session, and therefore seems preferable. How-
ever, this apparently simple approach turns out to be much less trivial to realize
than might be expected, because both parties must remain “in sync”, such that cor-
rectness is guaranteed even in presence of concurrent sessions or message loss due
to network failures or active attacks. This approach has similarities with ratchet-

ing [ACD19], but there are significant differences in our setting as discussed under
Related Work below.

Concurrency and Key-Evolving Protocols. The possibility of running concurrent
protocol sessions in parallel is a standard correctness requirement for protocols, and
reflected in all common AKE security models, such as the BR and CK models [BR94,
CK01] and their countless variants and refinements. The main technical challenge of
key evolution is to achieve full forward security while maintaining correctness in the
presence of parallel and concurrent protocol sessions.

Even if we assume that all parties are honest and that all messages are transmitted
reliably (i.e., without being dropped because of an unreliable network or influence from
an adversary) this is already highly non-trivial and we do not know of any currently
existing forward-secure symmetric AKE protocol which achieves correctness and full
forward security in such a setting. The difficulty is essentially that one session might
advance a key “too early” for another concurrent session to be completed, which breaks
correctness. No such difficulty appears in classical forward-secure public key protocols,
since long-term keys are usually static and different sessions use independent random-
ness. So it turns out that, somewhat surprisingly, forward security and correctness is
more difficult to achieve for symmetric AKE.

To complicate matters even further, note that the assumption of honest parties and
reliable message transmission is very strong and may not be realistic for many appli-
cations. Therefore we actually want to achieve forward security and “synchronization
robustness” in the presence of an adversary which intentionally aims to break synchro-
nization, e.g., by adaptively dropping or re-ordering messages. Such an adversary is
attacking availability properties of the AKE protocol, an important aspect of security
usually omitted from key exchange security models. The development of techniques to
ensure availability for stateful key exchange is an unsolved foundational problem.

Our Contributions. In this work we develop several new lightweight forward-secure
symmetric AKE protocols with different efficiency and correctness properties. Table 1
summarizes the main security and efficiency properties of our new protocols. This in-

77

Table 1: Overview of our protocols and comparison to SAKE [ACF20]. The number
in the protocol name indicates the total number of messages per protocol run, “R only”
means that only the responder authenticates its communication partner. The third column
considers the communication complexity, where C is the number of counter values that
are sent, M the number of MACs, and N the number of nonces. Sync. Rob. indicates
the achieved level of synchronization robustness, Bd. Gap whether the gap between two
parties is bounded (for non-concurrent executions), CC whether concurrent correctness
is achieved, and FS whether full forward security is achieved.

Protocol Auth. (C, M, N) Sync. Rob. Bd. Gap CC FS

SAKE (5) [ACF20] mutual (0,4,2) + ID 7 3 7 3
SAKE-AM (4) [ACF20] mutual (0,4,2) + ID 7 3 7 3

LP3 mutual (3,3,2) weak 3 7 3
LP2 mutual (2,2,0) weak 7 7 3
LP1 R only (1,1,0) weak 7 7 3

PP2 mutual (1,2,0) full 3 3 3
PP1 R only (1,1,0) full 3 3 3

cludes the first protocols that provably achieve synchronization robustness, a formal
availability security notion we introduce, and correctness in the presence of concurrent
sessions. More concretely we achieve the following.

Security model. We describe a security model suited to forward-secure symmetric AKE
capturing entity authentication (one-sided and mutual), indistinguishability of es-
tablished keys, and forward security. Our model follows a standard approach for
AKE protocols based on the Bellare-Rogaway model [BR94], adapted to the re-
quirements of symmetric AKE with evolving keys.

Synchronization robustness. We formalize a new property called synchronization ro-

bustness (SR), which is trivially achieved for traditional AKE protocols with fixed
long-term keys, but turns out to be a crucial feature for key-evolving protocols
such as forward-secure symmetric AKE. Essentially, SR captures whether parties
in a protocol can efficiently re-synchronize their states in order to complete a suc-
cessful protocol run. This should even hold if an adversary controls the network
and/or some of the parties.
We define two flavours. Both consider an active adversary that may execute ar-
bitrary protocol sessions to manipulate the state of parties, and whose goal is to
manipulate the state such that a subsequent protocol execution fails.

78

In weak SR the ‘target’ protocol session must then be executed without adver-
sarial interaction (similar to the corresponding requirement in Krawczyk’s weak
forward security [Kra05]). “Full” SR allows the adversary arbitrary queries be-
tween messages of the ‘target’ session, even to parties of the oracles involved in
the ‘target’ session.

Linear key evolving protocols. We define the notion of linear key evolution, which
makes the classical “derive-then-evolve” approach concrete. We argue that proto-
cols based on linear key evolution can only achieve weak SR and cannot achieve
concurrent correctness.
We construct three different protocols (LP1, LP2, LP3, cf. Table 1), all of which
achieve weak SR. Most interestingly, LP3 even achieves a “bounded gap” prop-
erty, which means that no active adversary in control of the network is able to
force the state of two parties to differ by more than one key evolving step, so that
a party is always able to catch up quickly, if necessary. For all three protocols we
show that in a setting where concurrent runs between two parties are allowed, this
number of steps required to catch up is bounded in the number of concurrent runs.
To this end, we apply a new approach to precisely analyze the state machine of
a protocol. Furthermore, we also show two extremely lightweight protocols LP1
and LP2, which provide one-sided and mutual authentication, respectively, and
where the communication complexity is only one (resp. two) MAC and one (resp.
two) counter value.

Full SR and concurrent correctness. This leads to the question of whether and how
full synchronization robustness and concurrent correctness (CC) can be achieved.
We propose the use of puncturable pseudorandom functions (PPRFs) to apply a
“non-linear” key evolving strategy, and we construct two protocols PP1 and PP2,
which both achieve full SR and CC.
Since PPRFs can be efficiently instantiated from cryptographic hash functions,
both protocols are extremely lightweight. PP1 achieves one-sided authentication
with a single counter value and a single MAC, PP2 mutual authentication with one
counter and two MACs. Furthermore, while repeated puncturing PPRFs may lead
to large secret keys [AGJ19, AGJ21] we take advantage of the stateful nature of
symmetric AKE protocols to instantiate the PPRF such that secret key size is at
most logarithmic in the number of sessions.

Hence, we offer a versatile catalogue of lightweight and forward-secure symmet-
ric AKE protocols with significantly stronger correctness and security properties. This
includes the first protocols to achieve concurrent correctness and full synchronization ro-
bustness, or weak SR with bounded gap. Which of these protocols is best for a particular
application depends on the nature of the security and functionality requirements. Further,
in LP3 the parties exchange nonces: we recognize that in some applications sufficient

79

randomness will not be available and so we prove the protocol secure for any nonce
generation procedure, which could be random selection or (stateful) use of a counter.

Related Work. Bellare and Yee [BY03] analyzed forward security for symmetric-key
primitives, specifically pseudo-random generation, message authentication codes and
symmetric encryption. They provide constructions using key evolution which are similar
to the linear key evolution that we employ, and their protocols use some techniques from
key-evolving schemes such as prior work on forward-secure signatures [BM99]. Their
work does not deal with key exchange.

Brier and Peyrin [BP10] gave a tree-based protocol for key establishment, with the
stated aim of improving the DUKPT scheme defined in ANSI X9.24 [ANS09]. The idea
in DUKPT is that the client device (payment terminal) is highly constrained in terms of
memory, yet needs to derive a unique key per transaction from an original pre-shared
key, by applying a PRF (based on Triple-DES) to a counter and the base derivation
key. Their work involves formalizing the specific problem faced in the payment ter-
minal setting, and their scheme assumes an incorruptible server: a far weaker security
model than the one that we consider. A similar security assumption was used by Le et
al. [LBdM07], who presented a protocol for use in the context of Radio Frequency Iden-
tification (RFID), where the server keeps two values of the key derivation key to deal
with potential synchronization loss.

Li et al. [LSY+14] analyzed the pre-shared key ciphersuites of TLS 1.2, using an
adaption of the ACCE model of Jager et al. [JKSS12]. In this setting, Li et al. presented a
formalization of the prior AKE-style models, but where parties could share PSK material
with other parties in addition to their long-term key pairs.

Dousti and Jalili [DJ15] presented a key exchange protocol called FORSAKES,
which is based on synchronized time-based key evolution. Their protocol requires 3
messages and assumes perfect synchronicity of parties to achieve correctness, and as we
have already mentioned their approach can only obtain delayed forward security. A dis-
cussion of delayed forward security and more generally the various challenges involved
in defining forward security was given Boyd and Gellert [BG20].

The concept of evolving symmetric keys is reminiscent of Signal’s double ratchet
[ACD19], a well-known example of a symmetric protocol with evolving keys. Signal
employs a Diffie-Hellman-ratchet, which adds new key material at every step through
multiple Diffie-Hellman exchanges along the way. At every step of this main ratchet
a separate linear key evolving ratchet is ‘branched off’, which is similar to how linear
evolution works in our protocols — however, a critical difference is that in our scenario
we evolve the key shared across different sessions as opposed to evolving a key within
one session as happens in the Signal protocol. It is this difference which leads to the
complexity of managing synchronization between sessions which run concurrently. In
addition to this difference, which anyway makes Signal unusable for our setting, use of
Diffie-Hellman in the Signal ratchet means that there is a vector for quantum attacks,

80

while our protocol is purely based on symmetric primitives.
Another primitive conceptually similar to PPRFs is puncturable encryption, which

was introduced by Green and Miers in 2015 [GM15], and has since led to several follow-
up constructions of puncturable encryption [GHJL17, DJSS18, CRSS20, SSS+20, DGJ+21].
However, all those constructions rely on expensive public-key techniques (such as bilin-
ear pairings) and are thus impractical in the context of this work.

Comparison with Avoine et al. [ACF20]. In Table 1 above we have mentioned two
protocols named SAKE and SAKE-AM that were presented by Avoine et al. [ACF20]
(henceforth ACF20). Their paper was the first to provide key exchange protocols that
attain forward security via linear evolution. Their system assumptions are largely the
same as ours, with the crucial difference that our models are equipped to capture paral-
lel executions. The security model of ACF20 explicitly disallows concurrent sessions,
which not only yields a weak security notion, but also sidesteps the major difficulty
of achieving even correctness in the presence of concurrent sessions in key-evolving
symmetric-key protocols. Indeed, the protocols from ACF20 completely break down
when executed concurrently, allowing an adversary to prevent the parties from comput-
ing any session keys in future sessions. We consider this an unrealistic and impractical
restriction for many applications. Therefore we introduce the new notion of synchro-
nization robustness, which formally defines the ability of key-evolving protocols to deal
with concurrent executions, including in adversarial environments.

We embrace the use of (explicit) counters to acquire linear key evolving protocols
that are conceptually simpler and require fewer messages than those provided by ACF20,
in a way that additionally provides (weak) synchronization robustness. In any protocol
that uses PSK evolution to achieve forward security a party must update the key state
after a successful protocol run, and in embedded devices this requires writing to persis-
tent storage. Our protocols require the updating (writing) of one key and one counter
per session, while SAKE and SAKE-AM require updating two keys. Since a sequen-
tially evolving key can also be seen as an implicit counter, conceptually the distinction
between counters and evolving keys seems to be minor. The storage overhead of our
protocols compared to ACF20’s protocols is the (usually 8-byte) counter, while the lin-
ear key evolving protocols in our paper and ACF20 require storage of two keys (usually
16 or 32 bytes).

We note that ACF20 remarked that the parties could use separate PSKs for con-
current executions, however this solution requires an a priori bound on the number of
possible concurrent sessions that could occur and a corresponding multiplication in key
storage: none of our protocols require this. Further, implementing their approach would
require a modification of their protocols, since parties need to know which PSK to use,
and the security of these modified protocols is not proven.

81

2 Preliminaries

We denote the security parameter as �. For any n 2 N let 1n be the unary representation
of n and let [n] = {1, . . . , n} be the set of numbers between 1 and n. We write x $

 � S

to indicate that we choose element x uniformly at random from set S . For a probabilistic
polynomial-time algorithm A we define y $

 � A(a1, . . . , an) as the execution of A (with
fresh random coins) on input a1, . . . , an and assigning the output to y. The function
NextOdd(x) takes as input an integer and ouputs the next odd integer greater than x,
i.e. whichever element of {x+1, x+2} is odd. Our protocols require the use of counters,
and integer |CTR| is the largest possible counter value. Furthermore, we write [n]⇥ [n]\
(i⇤, j⇤) as a shorthand for {(i, j) 2 [n]2} \ {(i⇤, j⇤) with i < j}.

2.1 Message Authentication Codes

Throughout this paper we assume that all MACs are deterministic. This is to reduce com-
plexity in our proofs, however most MACs used in practice are deterministic [CMA05,
GMA07, HMA08, ISO11, KMA16].

Definition 1 (Message Authentication Codes). A message authentication code consists
of three probabilistic polynomial-time algorithms MAC = (KGen,
Mac,Vrfy) with key space KMAC and the following properties:

• KGen(1�) takes as input a security parameter � and outputs a symmetric key
K
MAC
2 KMAC;

• Mac(KMAC,m) takes as input a key K
MAC
2 KMAC and a message m. Output is a

tag �;

• Vrfy(KMAC,m,�) takes as input a key K
MAC
2 KMAC, a message m, and a tag �.

Output is a bit b 2 {0, 1}.

We call a message authentication code correct if for all m, we have

Pr
KMAC $ �KGen(1�)

⇥
Vrfy(KMAC,m,Mac(KMAC,m)) = 1

⇤
= 1.

We define MAC security as strong existential unforgeability under chosen message
attack, where the adversary has access to a verification oracle. In the more common
version of this game, which we denote SEUF-CMA-1, the adversary must stop running
after it submits its first verification query: this is a subcase of our more general definition.
Bellare et al. [BGM04] showed that in the strong unforgeability case these definitions
are equivalent up to a loss factor Q.

82

GSEUF-CMA-Q
MAC (A)

1 : K
MAC $
 � KGen(1�)

2 : Q,V ;

3 : A
OMac(·),OVrfy(·,·)(1�)

4 : if 9(m,�) 2 V \ Q

5 : return 1

6 : return 0

OMac(m)

7 : � Mac(KMAC
,m)

8 : Q := Q [{(m,�)}

9 : return �

OVrfy(m,�)

10 : b Vrfy(m,�)

11 : if b = 1

12 : V := V [{(m,�)}

13 : return b

Figure 1: The SEUF-CMA-Q security experiment for message authentication code
MAC. A can make Q queries to OVrfy.

Definition 2 (MAC Security). The advantage of an adversary A in the SEUF-CMA-Q
security experiment defined in Fig. 1 for message authentication code MAC is

AdvSEUF-CMA-Q
MAC (A) := Pr

h
GSEUF-CMA-Q
MAC (A) = 1

i
.

2.2 Pseudorandom Functions

Definition 3 (Pseudorandom Functions). A pseudrandom function is a deterministic
function y = PRF(k, x) that takes as input some key k 2 KPRF and some element of a
domain DPRF, and returns an element y 2 RPRF.

GPRF-sec
PRF (A)

1 : b
$
 � {0, 1}

2 : kPRF
$
 � KPRF

3 : g
$
 � {F : DPRF ! RPRF}

4 : b
⇤ $
 � A

Of (·)(1�)

5 : if b⇤ = b

6 : return 1

7 : return 0

Of (x)

8 : if b = 1

9 : y f(kPRF, x)

10 : else

11 : y g(x)

12 : return y

Figure 2: The PRF-sec security experiment for pseudorandom function PRF. {F :
DPRF ! RPRF} is the set of all functions from DPRF to RPRF.

Definition 4 (PRF Security). The advantage of an adversary A in the PRF-sec security

83

experiment defined in Fig. 2 for pseudorandom function PRF is

AdvPRF-sec
PRF (A) :=

����Pr
⇥
GPRF-sec
PRF (A) = 1

⇤
�

1

2

���� .

3 Authenticated Key Exchange in the Symmetric Setting

In this section we describe our model for authenticated key exchange with forward secu-
rity in the symmetric setting. Our model follows the standard approach of AKE protocols
based on the Bellare-Rogaway model [BR94], adapted to the requirements of symmetric
AKE with evolving keys. This includes definitions for entity authentication (one-sided
or mutual), key indistinguishability, and forward security. Furthermore, we define the
property of synchronization robustness, which is a crucial feature for forward-secure
symmetric key exchange protocols. Parts of our formalization take inspiration from the
models of Jager et al. [JKSS12].

Differences to public-key AKE models. The most notable difference in the symmet-
ric key setting is that each pair of parties is initialized with shared key material, which
is specified before the actual protocol is run. This key material typically includes MAC
keys or key derivation keys that have been established in an out-of-band communication
(e.g., chosen during the manufacturing process of devices). In order to achieve forward-
security via “key evolving techniques” in the symmetric key setting, we additionally
have to provide (sessions of) parties with the ability to modify the party’s key mate-
rial. As a consequence, the shared key material of two parties will not always be equal:
While one party might evolve their key before preparing the first protocol message, the
responder can (at the earliest) evolve after it has received that message.

3.1 Execution Environment

We consider a set of n parties {P1, . . . , Pn}, where each party is a potential protocol
participant. We refer to parties by Pi or by their label i if context is clear. Initially, each
pair of parties (Pi, Pj) with i 6= j share a common secret PSKi,j , which is the initial
key material generated during protocol initialization (e.g., MAC keys or key derivation
keys). Note that this key material may evolve over time and that PSKi,j and PSKj,i may
not necessarily be equal at all times.

We model parallel executions of a protocol by equipping each party i with q 2 N
session oracles ⇡1

i
, . . . ,⇡q

i
. Each session oracle represents a process that executes one

single instance of the protocol. All oracles have access to the “global key material” PSK
(including the ability to modify the key material PSK). Moreover, each oracle maintains
an internal state consisting of the following variables:

84

Variable Description
↵ execution state 2 {uninitialized, negotiating, accept, reject}
pid identity of the intended partner 2 {P1, . . . , Pn}

⇢ role 2 {Initiator,Responder}
sk session key 2 Ks [? for some session key space Ks

 freshness of session key 2 {exposed, fresh}
sid session identifier
b security bit 2 {0, 1}

Additionally, we assume that each oracle has an additional temporary state variable,
used to store ephemeral values or the transcript of messages. As initial state of the oracle,
we have ↵ = uninitialized and  = fresh and b $

 � {0, 1}. Note that pid and ⇢ are set
when the adversary interacts with the respective oracles and that sid and sk are defined
as the protocol/adversary progresses.

As usual, if an oracle derives a session key then it will enter the execution state
accept. If an oracle reaches the execution state reject, then it will no longer accept
any messages. Later on when we describe protocols, the event Abort will identify points
at which this action would be triggered.

To begin any of the experiments in this section, the challenger initializes n parties
{P1, . . . , Pn}, with each pair of parties sharing symmetric key material PSK as specified
by the protocol.

An adversary interacts with session oracles ⇡s

i
by issuing the following queries. Sev-

eral of these queries add output to an oracle transcript (defined below) which is available
to the adversary.

• NewSessionI(⇡s

i
, pid) initializes a new initiator session for party Pi with intended

partner pid. Specifically, this query assigns pid, ⇢ = Initiator and ↵ = negotiating

to ⇡s

i
, creates the first protocol message and adds this to transcript of ⇡s

i
.

• NewSessionR(⇡s

i
, pid,m) initializes a new responder session for party Pi with

⇢ = Responder and intended partner pid, and delivers a protocol message to
this oracle. Specifically, it assigns pid and ⇢ = Responder to ⇡s

i
and processes

message m. The message m and consequent protocol messages (if any) are added
to its transcript, and the execution state is set to negotiating.

• Send(⇡s

i
,m) delivers message m to oracle ⇡s

i
. This input message, and conse-

quent protocol messages (if any), are added to this oracle’s transcript.

• RevealKey(⇡s

i
) reveals session key sks

i
and sets ⇡s

i
. to exposed.

• Corrupt(Pi, Pj) (issued to some oracle of Pi or Pj) returns PSKi,j . If the query
Corrupt(Pi, Pj) is the ⌧ -th query issued by A, we say that all oracles ⇡i with
pid = j are ⌧ -corrupted. (i.e., party Pi becomes ⌧ -corrupted with respect to the
other party Pj). An uncorrupted oracle is considered as +1-corrupted.

85

• Test (⇡s

i
) chooses sk0 $

 � Ks, sets sk1 = ⇡s

i
.sk and returns skb. This oracle can

only be queried once, and the query making this action is labelled ⌧0.

The adversary must call NewSessionI or NewSessionR in order to specify a role and
intended partner identifier for each oracle it wishes to use. Afterwards, the adversary
can use the Send query to convey messages to these oracles.

3.2 AKE Security

To define entity authentication we use matching conversations [BR94] for oracle part-
nering, which requires a definition of an oracle’s transcript: Ts

i
is the sequence of all

messages sent and received by ⇡s

i
in chronological order. The standard definition of

matching conversations, reflects that the party that sends the last message cannot be
sure that the responder received that protocol message. We use this definition for entity
authentication.

Note that an oracle ⇡s

i
only has a transcript, Ts

i
, if ⇡s

i
.↵ 6= uninitialized. Tran-

script Tt

j
is a prefix of Ts

i
if Tt

j
contains at least one message and messages in Tt

j
are

identical to and in the same order as the first |Tt

j
| messages of Ts

i
.

Definition 5 (Partial-transcript Matching conversations [JKSS12, Def. 3]). ⇡s

i
has a

partial-transcript matching conversation to ⇡t

j
if

• Tt

j
is a prefix of Ts

i
and ⇡s

i
has sent the last message(s), or

• Ts

i
= Tt

j
and ⇡t

j
has sent the last message(s).

However, standard matching conversations are not strong enough to define key in-
distinguishability in a symmetric setting and leave room for a trivial attack (intuitively,
this is due to the “asynchronous evolution” of the global key material PSK). Consider
an adversary that uses the above execution environment to execute some protocol be-
tween two (sessions of two) parties. The adversary forwards all messages but the last
one between both parties. At this point the party that sent the last message must have
reached the accept state and applied some one-way procedure to its key material PSK in
order to achieve forward security. However, the other party still needs to receive the final
message in order to derive the session key and update its version of the key material. If
the adversary were now to use Test on the accepting party while using Corrupt on the
other party, this leads to a trivial distinguishing attack in standard key indistinguishabil-
ity games (e.g., in [JKSS12]). Hence, we need to introduce a slightly stronger notion
of matching conversations to precisely capture when Corrupt queries are allowed: the
conversation is only deemed to be matching if all messages were delivered.

Definition 6 (Guaranteed Delivery Matching conversations). ⇡s

i
has a guaranteed deliv-

ery matching conversation to ⇡t

j
if Ts

i
= Tt

j
.

86

As usual, we say that the adversary breaks entity authentication if it forces a fresh
oracle to accept maliciously, and breaks key indistinguishability if it can distinguish
from random an established key that it cannot trivially access.

Definition 7 (Entity Authentication). Let ⇧ be a protocol. Let GEnt-Auth
⇧

(A) be the
following game:

• The challenger initializes n parties and their keys;

• A may issue queries to oracles NewSessionI, NewSessionR, Send, RevealKey,
Corrupt and Test as defined above;

• Once A has concluded, the experiment outputs 1 if and only if there exists an
accepting oracle ⇡s

i
such that the following conditions hold:

1. both Pi (w.r.t. Pj) and intended partner Pj (w.r.t. Pi) were not corrupted
before query ⌧0;

2. there is no unique ⇡t

j
, with ⇢s

i
6= ⇢t

j
, such that ⇡s

i
has a partial-transcript

matching conversation to ⇡t

j
.

Define the advantage of an adversary A in the Ent-Auth security experiment GEnt-Auth
⇧

(A)
as

AdvEnt-Auth
⇧

(A) := Pr
⇥
GEnt-Auth
⇧

(A) = 1
⇤
.

An oracle ⇡s

i
accepting in the above sense ‘accepts maliciously’.

Later on we separate the analysis of an initiator oracle accepting maliciously from
a responder oracle accepting maliciously. Further, we will present protocols that only
provide one-sided authentication: this requires separation of the AKE definition. To this
end, we use the following notation:

AdvEnt-Auth
⇧

(A) = AdvEnt-Auth-I
⇧

(A) + AdvEnt-Auth-R
⇧

(A).

Definition 8 (Key Indistinguishability). Let ⇧ be a protocol. Let GKey-Ind
⇧

(A) be the
following game:

• The challenger initializes n parties and their keys;

• A may issue queries to oracles NewSessionI, NewSessionR, Send, RevealKey,
Corrupt and Test as defined above;

• Once A has output (i, s, b0) to indicate its conclusion, the experiment outputs 1 if
and only if there exists an oracle ⇡s

i
such that the following holds:

1. ⇡s

i
accepts, with a unique oracle ⇡t

j
, such that ⇡s

i
has a partial-transcript

matching conversation to ⇡t

j
, when A issues its ⌧0-th query;

87

2. A did not issue RevealKey to ⇡s

i
nor ⇡t

j
(so s

i
= fresh) and ⇢s

i
6= ⇢t

j
;

3. Pi (w.r.t. Pj) is ⌧i-corrupted and Pj (w.r.t. Pi) is ⌧j-corrupted, with ⌧i, ⌧j >
⌧0;

4. at the point of query ⌧j , oracle ⇡t

j
had a guaranteed delivery matching con-

versation to ⇡s

i
, and

5. b0 = ⇡s

i
.b.

Define the advantage of an adversary A in the Key-Ind security experiment GKey-Ind
⇧

(A)
as

AdvKey-Ind
⇧

(A) :=

����Pr
h
GKey-Ind
⇧

(A) = 1
i
�

1

2

���� .

We assume that all adversaries in the Key-Ind game are valid, meaning that they
terminate and provide an output in the correct format (i.e. (i, s, b0) 2 [n]⇥ [q]⇥ {0, 1}).
Later on in our proofs we will follow the game-hopping strategy, and in doing so we
will often simplify exposition by additionally assuming adversaries that do not trigger a
trivial win (in the Key-Ind game or any subsequent modifications of this game).

We define AKE security in three flavors, distinguished by the level of entity authen-
tication that is achieved by the protocol. An adversary breaks the AKE security of a
protocol if it wins either the entity authentication game, or the key indistinguishability
game.

Definition 9 (Authenticated Key Exchange). Let ⇧ be a protocol. The advantage of
an adversary A in terms of AKE-M (mutual entity authentication), resp. AKE-I (initia-
tor authenticates the responder), resp. AKE-R (responder authenticates the initiator) is
defined as follows:

AdvAKE-M
⇧

(A) := AdvKey-Ind
⇧

(A) + AdvEnt-Auth-I
⇧

(A) + AdvEnt-Auth-R
⇧

(A).

AdvAKE-I
⇧

(A) := AdvKey-Ind
⇧

(A) + AdvEnt-Auth-I
⇧

(A).

AdvAKE-R
⇧

(A) := AdvKey-Ind
⇧

(A) + AdvEnt-Auth-R
⇧

(A).

We do not specify any protocols that provide AKE-I alone in this paper, however it
is defined here for completeness.

3.3 Concurrent Execution Synchronization Robustness

We now describe a novel property for key exchange protocols. The goal is to cap-
ture, in a formal manner, how robust a protocol is in the event of adversarial control
of the network and/or some of the parties. We seek a definition that asks: after an
adversary has had control of the communication network (by executing arbitrary Send

88

and NewSessionI/NewSessionR queries), can an honest protocol run be executed suc-
cessfully? Specifically, if it is possible for the parties to lose synchronization (due to
dropped messages or adversarial control) such that the parties cannot, in one protocol
run, regain synchronization and compute the same key, then the protocol does not meet
this property.

Our formalization follows the execution environment of the Ent-Auth and Key-Ind
games described above, and allows an adversary to specify the protocol run (that it is
attempting to ‘interrupt’) at the end of its execution by specifying two oracles. The chal-
lenger awards success if the two parties (specifically those two oracles) did not accept
with the same session key. We define two flavours: a weaker version wSR in which the
‘target’ protocol run must be executed without any other messages interleaved, and a
stronger version SR which allows arbitrary queries in between messages of the ‘target’
run, even to parties of the oracles involved in the ‘target’ run (though of course not to
the two oracles).

We define an honest protocol run (via adversarial queries) between two oracles (with
initial state set to uninitialized) as follows: a NewSessionI query was made that
produced a protocol message m1, a NewSessionR query was made to the other oracle
with input message m1, and if this query produced a protocol message m2 then this value
was given as a Send query to the other oracle, and so on, until all protocol messages
have been created and delivered, if possible. In the event that any of these queries fails
(returns?) the honest protocol run aborts. This honest protocol run can be thought of as
a genuine attempt to execute a protocol execution.

Definition 10 ((weak) Synchronization Robustness). Let ⇧ be a protocol. Let GwSR
⇧

(A)

with boxed text or GSR
⇧
(A) with dashed boxed text be the following game:

• The challenger initializes n parties and their keys;

• A may issue queries NewSessionI, NewSessionR and Send as defined above;

• Once A has output (i, j, s, t) to indicate its conclusion, the experiment outputs 1
if and only if the following conditions hold:

1. ⇡s

i
.pid = Pj and ⇡t

j
.pid = Pi;

2. ⇡s

i
.sk 6= ⇡t

j
.sk or both values are ?;

3. an honest protocol run was executed between ⇡s

i
and ⇡t

j
;

4. no queries were made by A to interrupt the protocol execution between ⇡s

i

and ⇡t

j
.

4. no protocol messages in the transcripts of ⇡s

i
and ⇡t

j
were sent to any other

oracles before they were delivered in the honest run.

89

Define the advantage of an adversary A in the XX security experiment GXX
⇧

(A), for
XX 2 {wSR, SR}, as

AdvXX
⇧

(A) := Pr
⇥
GXX
⇧

(A) = 1
⇤
.

Notes on the definitions.

• Condition (4.) in the SR experiment states that for each genuine protocol message
in the ‘target’ session, A must not have provided this message to any other oracles
before that message is delivered as part of the ‘target’ run. This prevents a trivial
attack where A delivers the final protocol message to two oracles: first to some
other oracle than the ‘target’ oracle (but of the same party), then to the target
oracle. When the (genuine) protocol message is delivered to the party for the
second time the target oracle would abort. The parties have still created exactly
one key for this genuine protocol run, and so condition (4.) essentially fixes the
allowable output oracles as the ones that are processing protocol messages for the
first time. (Replay attacks are not an issue in the wSR setting, since the execution
must be uninterrupted and so any action made after that run has occurred has no
impact on A’s chances of winning.)

• We do not allow Corrupt queries in this definition: in all of the protocols in this
paper we assume pairwise shared key material (and specifically, no keys that are
used by a party for communication with multiple other parties). This means that
the adversary is not allowed to corrupt the parties in the target run with respect to
each other, and that all other Corrupt queries will be of no benefit to an attacker.
A similar argument follows for RevealKey queries. This simplifies the security
experiment, while capturing the property that we wish to assess.

• In an alternative formulation of our definitions, the target protocol run could
be performed by the challenger as an Execute query as seen in past literature
[BPR00]. We avoid this approach for two reasons. First, in the SR case, in order
to support interleaving, the adversary would have to call the challenger to initiate
each stage of the execution (i.e. k + 1 times for a k-message protocol), and this is
notationally awkward. Secondly and perhaps more importantly, our model allows
the adversary to attempt to win its game in multiple protocol runs, and output the
oracles which provides the best chance of success. Thus to retain the strength of
the definition we would require multiple Execute queries, resulting in a model that
looks very similar to what we have presented here.

4 Linear Key Evolution

In this section we present a number of protocols that use linear key evolution to derive
session keys. All of these protocols achieve wSR. It is not hard to see that full robust-

90

ness (SR) is not achievable with linearly evolving protocols. To win the SR game the
adversary makes a new complete protocol run after the target run has started and the ses-
sion key is computed at one party, but before the session key is computed at the second
party. This means that when the target session completes, the long-term key has already
evolved and the key will be computed with the wrong version of the long-term key at the
second party. Either the session will fail at the second party or the key will be different
at the two parties. (There is a third case when the key is independent of the long-term
key, but in that case the protocol fails to achieve key indistinguishability.)

The first linear key evolving protocol that we present, LP3, exchanges three short
messages and has the attractive property of bounding the gap between the counters of
the two parties. We present two further protocols which are even more efficient at the
cost of some restrictions. LP2 is a two-message protocol but in order to maintain mutual
authentication we insist that parties running LP2 have fixed their role as either initiator or
responder (not an unreasonable assumption in many application scenarios). Our simplest
protocol, LP1, has only a single message but, in addition to requiring fixed roles, like
any other one-message protocol it can only achieve unilateral authentication. For all of
our protocols we provide theorems guaranteeing authentication, key indistinguishability
and weak synchronization robustness (wSR) security.

Syntax and Conventions. All protocols in this paper use message authentication codes
to ensure that parties can only process messages that are meant for them. This means
that party A stores a key K

MAC
AB

(static) for MAC and key derivation key kCTR
AB

(evolving)
to communicate with B, and K

MAC
AC

and kCTR
AC

to communicate with C, etc. We describe
the key derivation process in more detail in Sec. 4.1.

In LP2 and LP3, the party sending the protocol message includes its own identity in
the MAC computation: this stops redirection/reflection attacks of protocol messages to
the sending party. For LP1 this is not necessary since the sending party advances after
sending its protocol message, meaning that its state is ahead and therefore it is unable to
process messages that it has already sent.

4.1 Key Derivation via Linear Evolution

Before looking at specific protocols, we define what we mean by linear key evolution
and present an abstract security definition for it. Party A holds a key derivation key

kCTR
AB

for use in communication with party B, where the value CTR is an integer that
defines the current key state, which is the number of times the key has evolved since its
creation. After a party has participated in a key exchange run and computed a session
key, it will apply a function Advnc to this key derivation key in order to obtain the next
key derivation key and update the counter. This process is detailed in Fig. 3a. Looking
ahead, forward security will be obtained if the function that computes kCTR+1

AB
from kCTR

AB

is one-way: this stipulation ensures that an adversary corrupting a party has no way to

91

k0
AB

k1
AB

k2
AB

k3
AB

. . .

sk0
AB

sk1
AB

sk2
AB

sk3
AB

"ad"

"ad"

"ad"

"ad"

"der"

"der"

"der"

"der"

(a) Linear key evolution scheme.

GKEvol
PRF (A)

1` $
 � A(1�); k0 $

 � KPRF; b $
 � {0, 1}

for j 2 {0, . . . , `} do

kj+1 = PRF(kj
,"ad")

sk
j = PRF(kj

,"der")

if b = 1

sk
⇤ := sk

`

else

sk
⇤ $
 � RPRF

b
0 $
 � A(sk0

, . . . , sk
`�1

, sk
⇤
, k`+1)

(b) The GKEvol
PRF (A) security experiment.

Figure 3: Linear key evolution and the corresponding experiment.

move upwards in the figure.
The initial “key derivation key” (KDK) is k0

AB
. Subsequent KDKs are derived using

a pseudorandom function PRF with KPRF = RPRF as

ki+1

AB
= PRF(ki

AB
,"ad") (1)

and session keys are derived as

ski
AB

= PRF(ki
AB

,"der")

where "ad"(“advance”) and "der"(“derive”) are constant labels used for domain sep-
aration.

Furthermore, for convenience, we define a function Advnc which performs multiple
key derivations, if necessary. That is, Advnc(ki

AB
, i, z) takes an i-th key derivation key

for some counter i and an integer z, and applies PRF iteratively z times to obtain the
(i+ z)-th KDK such that (1) is satisfied, and sets i := i+ z. For example:

ki+z

AB
, i+ z Advnc(ki

AB
, i, z).

Security. For the security proofs of our protocols it will be convenient to have an
abstract security definition for such a key derivation scheme, which we will show to be
implied by the security of the PRF. To this end, Fig. 3b represents a security experiment
for the linear key evolution scheme that we describe. The adversary A outputs an integer
1` (in unary, to ensure that the number ` is polynomially bounded for any efficient A),
and the adversary’s task is to distinguish sk` from random, when given all prior session
keys sk0, . . . sk`�1 and the ‘next’ key derivation key k`+1.

92

Definition 11. The advantage of A in in the KEvol security experiment defined in Fig. 3b
for pseudorandom function PRF is defined as

AdvKEvolPRF (A) :=

����Pr [b = b0]�
1

2

���� .

We now prove the following straightforward theorem.

Theorem 1. Let PRF be a pseudorandom function. For any adversary A against the

KEvol security of PRF, there exists an adversary B against the PRF-sec of PRF such

that

AdvKEvolPRF (A)  ` · AdvPRF-sec
PRF (B).

PROOF. The proof is a straightforward hybrid argument. Let H0 be the original ex-
periment. For i 2 {1, . . . , `} let Hi be an experiment which proceeds exactly like H0,
except that kj and skj�1 are chosen uniformly random for all j  i, while all other keys
are generated exactly as in the original experiment.

Let Xi denote the event that b = b0 in Hi. Then we have

Pr[X0] = AdvKEvolPRF (A) and Pr[X`] =
1

2

because the key sk⇤ is always uniformly random in H`, independent of the hidden bit b.
We now construct an adversary B such that

|Pr[Xi]� Pr[Xi+1]|  AdvPRF-sec
PRF (B) (2)

for all i 2 {0, . . . , `�1}, which yields the claim. B proceeds exactly like Hi, except that
it defines ki = O("ad") and ski�1 = O("der"), where O is the PRF oracle provided
by the PRF security experiment. If A outputs b0 such that b = b0, then B outputs 1,
otherwise 0. Note that if O implements a “real” PRF, then B perfectly simulates Hi for
A, whereas if the oracle implements a “random” function, then it perfectly simulates
Hi+1, which yields (2).

4.2 LP3: a Three-Message Protocol

Intuition. In Fig. 4 we present a three-message protocol called LP3, which puts a
bound on how far initiator and responder can be out of sync, allows either party to initi-
ate communications, and provides mutual authentication. After the first message is sent
by an initiator, the responding party advances to catch up if they are behind. Then they
respond, and the initiator does the same if they are behind. A third message confirms
that both parties are now in sync again, and only after that a session key is established.
We make use of state analysis proofs to show that the gap between the two states will
be bounded even if messages are lost on the way (Lemma 6) and extend this proof to a

93

Initiator Responder

(CTRAB , k
CTR
AB , K

MAC) (CTRBA, k
CTR
BA , K

MAC)

. .
NA

$
 � GenN

�1 Mac(KMAC
, A k NA k CTRAB) NA,CTRAB ,�1

if Vrfy(KMAC
, A k NA k CTRAB ,�1) = 0

Abort

z1 CTRAB � CTRBA

if z1 > 0

kCTR
BA ,CTRBA Advnc(kCTR

BA ,CTRBA, z1)

NB
$
 � GenN

NB ,CTRBA,�2 �2 Mac(KMAC
, B k NA k NB k CTRBA)

if Vrfy(KMAC
, B k NA k NB k CTRBA,�2) = 0

Abort

z2 CTRBA � CTRAB

if z2 > 0

kCTR
AB ,CTRAB Advnc(kCTR

AB ,CTRAB , z2)

�3 Mac(KMAC
, A k NA k NB k CTRAB

k "conf") CTRAB ,�3

skAB := KDF(kCTR
AB ,"der") if Vrfy(KMAC

, A k NA k NB k CTRAB

kCTR
AB ,CTRAB Advnc(kCTR

AB ,CTRAB , 1) k "conf",�3) = 0

Abort

z3 CTRAB � CTRBA

if z3 6= 0

Abort

skAB KDF(kCTR
BA ,"der")

kCTR
BA ,CTRBA Advnc(kCTR

BA ,CTRBA, 1)

Figure 4: LP3, a three-message protocol.

scenario where concurrent runs are allowed (Lemma 7). We then show that the number
of concurrent runs is a bound on the gap that can occur. We show in Theorem 8 that
this also implies that the protocol achieves weak synchronization robustness (wSR). The
protocol uses MACs and nonces to achieve mutual authentication (AKE-M). The func-
tions Advnc and KDF, for PSK advancement and session key derivation respectively, are
implemented using a PRF as described in Fig. 3a and Sec. 4.1.

State. The protocol uses nonces on both the initiating (NA) and responding (NB) sides.
Local session state keeps track of these, and so it is only necessary to send NA in the
first protocol message and only NB in the second message. The nonce generation pro-
cedure is denoted GenN, and this process could be, for example, random selection of a
bitstring of some fixed length, or a (per-recipient) counter maintained by the party (note
however that this counter is distinct from CTR, which tracks the key derivation key’s

94

evolution stage). This choice depends on the application scenario, and this abstraction is
for cleaner proofs. In the absence of a hardware RNG, random nonces require memory
to be allocated for code of a software CSPRNG, while maintaining a counter requires
writing to persistent storage (though such writes must be made anyway in linear key
evolving protocols). The probability of a collision in random selection from NS can be
bounded by coll[qN,GenN] 

q
2
N

2|NS|
, and the collision probability of a (per-recipient)

counter of size |NS| that is called qN times is

coll[qN,GenN] =

⇢
0 for 0  qN  |NS|� 1,
1 for qN � |NS|.

We do not specify the additional counters required to make LP3 deterministic, so it is
specified here as a protocol with random nonces.

4.2.1 AKE-M of LP3

Theorem 2 (AKE-M of LP3). Let ⇧ be the two-message protocol in Fig. 4, built using

MAC = {KGen,Mac,Vrfy} and PRF, with n parties. Then for any adversary A against

the AKE-M security of ⇧ that makes a maximum of q queries that initiate new sessions

for each party (with q < |CTR|), there exists an adversary B2.1 against the SEUF-CMA-
Q of MAC and an adversary B2.2 against the KEvol security of KDF such that

AdvAKE-M
⇧

(A)  n2
·

⇣
4AdvSEUF-CMA-Q

MAC (B2.1) + 4coll[q,GenN] + q · AdvKEvolPRF (B2.2)
⌘
.

We form a bound for each of the three ways in which an adversary can break AKE-M
security, namely Ent-Auth-R, Ent-Auth-I and Key-Ind, and then sum these bounds.
There are two MAC security terms, for entity authentication of responder and initiator,
and so 2 · AdvSEUF-CMA-Q

MAC (B2.1) bounds these two terms by fixing B2.1 to be whichever
of B2.1r and B2.1i has greater advantage.

We now give intuition regarding the Ent-Auth proofs. Note that since q < |CTR|, if
there is no collision in the generation of NA for party A then all first protocol messages
are unique. Further, after receiving a first protocol message a responder always generates
a nonce, thus if no nonce collisions occur, sending the same first protocol message to two
(or more) different responder oracles will result in distinct transcripts. This rules out the
possibility of multiple oracles with non-unique matching conversations accepting, in
either Ent-Auth-R or Ent-Auth-I. To conclude our proofs, we need to show that the only
way an adversary can force an oracle to accept and for there not to exist any other oracle
with a matching transcript, the adversary must forge a MAC message.

For Lemma 3 (Ent-Auth-R), a responder oracle accepts when it receives (what it be-
lieves to be) a third protocol message, and so to win there must not exist any oracle with
the same partial transcript as this accepting oracle. This accepting oracle’s transcript

95

must consist of (i) an input first protocol message, (ii) the resulting second protocol mes-
sage, and (iii) the third protocol message that resulted in accept being reached. Since
the MAC is calculated on both nonce values and the counter value, the first and third
input messages to the accepting oracle must have been generated by an oracle of the
communication partner. So the only viable route to victory if a forgery has not occurred
is if these messages came from different oracles: and since the nonces are stored as part
of the session state, this victory could only occur in the event of a nonce collision.

A similar argument applies for Lemma 4 (Ent-Auth-I), except now the accepting or-
acle computes a session key after receiving a valid second protocol message. Again that
second protocol message must have come from a genuine invocation of NewSessionR
by the intended partner if no forgery has occurred, and thus that oracle’s transcript is a
prefix of the accepting oracle’s transcript.

Lemma 3 (Ent-Auth-R of LP3). For any adversary A, the probability that there exists

an oracle with ⇢ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-R
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B2.1r) + coll[q,GenN]

where all quantities are defined as stated in Theorem 2.

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game.

Pr
⇥
GEnt-Auth
⇧

(A) = 1
⇤
= Pr

⇥
GA

0
= 1

⇤

Game 1. This game is the same as Game 0 except that we assume all nonces generated
by NewSessionI and NewSessionR queries are different, and abort otherwise. The only
way an adversary can notice the difference between these games is by making nonces
collide, so we can write the following:

Pr
⇥
GA

0
= 1

⇤
 Pr

⇥
GA

1
= 1

⇤
+ coll[q,GenN].

Game 2. In this game we guess which responder will be the first to accept maliciously
and its partner identity, and abort if this guess is wrong. The game is the same as Game 1
except that the challenger guesses (i⇤, j⇤) $

 � [n] ⇥ [n], and if an oracle ⇡s

i
(for some

s) accepts maliciously with ⇡s

i
.⇢ 6= Responder or i⇤ 6= i or j⇤ 6= ⇡s

i
.pid, then the

challenger aborts.
Pr

⇥
GA

1
= 1

⇤
= n2

· Pr
⇥
GA

2
= 1

⇤

In order for an adversary to win without an abort in Game 2, it must make a responder
oracle (of party i⇤) accept maliciously, with no initiator oracle (of party j⇤) having a
matching conversation.

96

We construct a reduction B2.1r that is playing against the SEUF-CMA-Q security of
MAC that simulates the environment for an underlying adversary A that attempts to win
in game Game 2.

The reduction generates (initial) key derivation keys for all pairs of parties, and au-
thentication keys for all pairs of parties except i⇤ and j⇤. When responding to queries by
A regarding all other parties, the reduction will honestly provide messages as specified in
the protocol specification and the Ent-Auth game. For any query made between oracles
of parties i⇤ and j⇤, the reduction will use its OMac oracle and provide the received value
in its simulation for A. For example, to initialize initiator oracles ⇡j⇤ , the reduction calls
N GenN, checks the current state counter CTRj⇤i⇤ and calls OMac(j⇤ kNkCTRj⇤i⇤).
If A provides any value that it has not been given by a prior protocol message as input
to a Send query from i⇤ to j⇤ or j⇤ to i⇤, then the reduction sends this to its OVrfy oracle
in the SEUF-CMA-Q game. The simulation of Game 2 is perfect and any win for A
directly corresponds to a valid signature forgery, so we can write

Pr
⇥
GA

2
= 1

⇤
 AdvSEUF-CMA-Q

MAC (B2.1r).

Summing these terms gives the bound in the statement of Lemma 3.

Lemma 4 (Ent-Auth-I of LP3). For any adversary A, the probability that there exists

an oracle with ⇢ = Initiator that accepts maliciously can be bounded by

AdvEnt-Auth-I
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B2.1i) + coll[q,GenN]

where all quantities are defined as stated in Theorem 2.

PROOF. Games 0, 1 and 2 are as in the proof of Lemma 3. The reduction B2.1i is as in
the proof of Lemma 3, except that now we are guessing which initiator will be the first
to accept maliciously (and its intended partner), and so the abort occurs if a responder
oracle accepts maliciously. The loss of n2 incurred by selection of parties is the same.

The proof of key indistinguishability is very similar to that of Lemma 12 and the
game hops proceed following the same strategy. Again we use a reduction to the KEvol
security of PRF.

Lemma 5 (Key-Ind of LP3). For any adversary A and (any fixed) entity authentica-

tion adversary B2.1, the probability that A answers the Test challenge correctly can be

bounded by

AdvKey-Ind
⇧

(A)  AdvEnt-Auth
⇧

(B2.1) + n2
· q · AdvKEvolPRF (B2.2)

where all quantities are defined as stated in Theorem 2.

PROOF. Let b0 be the bit output by A in each game, and b be the bit sampled as part of
the Test query.

97

Game 0. This is the original Key-Ind game.

Pr
h
GKey-Ind
⇧

(A) = 1
i
= Pr

⇥
GA

0
= 1

⇤

Game 1. This game is the same as Game 0, except the challenger aborts and chooses
b0 $
 � {0, 1} if any oracle accepts maliciously.

Pr
⇥
GA

0
= 1

⇤
 Pr

⇥
GA

1
= 1

⇤
+ AdvEnt-Auth-R

⇧
(B2.1)

At this stage, the oracle to which A asks its Test query has a unique partner oracle with
a matching conversation.

Game 2. This game is the same as Game 1, except the challenger guesses the two
parties involved in the Test query via (i⇤, j⇤) $

 � [n] ⇥ [n], and additionally guesses
the counter value which identifies the key derivation key state of the session key in the
Test query. If A issues a Test(⇡s

i⇤) query with i⇤ 6= i or j⇤ 6= ⇡s

i⇤ .pid (for some s), or
the session key computed via Test(⇡s

i
), i.e. ski⇤j⇤ is not equal to KDF(kCTR

⇤

i⇤j⇤ ,"der"),
then the challenger aborts. Note that the challenger does not guess which oracle of i⇤
the Test query will be made to, only the counter value linked to the session key in that
query.

Pr
⇥
GA

1
= 1

⇤
 n2

· q · Pr
⇥
GA

2
= 1

⇤

At this stage, if the challenger has guessed correctly then the Test query will be asked
to an oracle after the key derivation counter has been advanced a fixed number of times,
and this oracle has unique partner with a matching conversation.

Game 3. This game is the same as Game 2, except that when the challenger runs KDF
on the key derivation values used in the Test query, the challenger instead responds with
a random key from the session key space. Noticing this change results in an adversary
that is successful in the KEvol game for PRF, so we can write

Pr
⇥
GA

2
= 1

⇤
= Pr

⇥
GA

3
= 1

⇤
+ AdvKEvolPRF (B2.2).

The reduction B2.2 is detailed in Fig. 5. B2.2 initially guesses the target parties in the
Test session and the counter value associated with the Test session, as per the previous
game hop.

For this reduction the challenger determines how an oracle should process each
Send(⇡s

i
) query using a label MsgNr 2 {1, 2, 3} as follows. If ⇡s

i
.⇢ = Responder

and the message is of the form N,CTR,� then MsgNr 1. If ⇡s

i
.⇢ = Initiator

then MsgNr 2. If ⇡s

i
.⇢ = Responder and the message is of the form CTR,� then

MsgNr 3. For all other query types or improperly formatted messages, the challenger
returns ? and sets ⇡s

i
.↵ reject

98

In the event that B2.2 is in the ‘real’ version of its own game, where it receives a
genuine evaluation of the function KDF, B2.2 perfectly simulates Game 2 for A, and
otherwise it perfectly simulates Game 3.

At this stage, the Test query is asked on a key that is randomly chosen, and thus
independent of the protocol and the security game. Consequently,

Pr
⇥
GA

3
= 1

⇤
=

1

2
) Adv3

⇧
(A) = 0.

4.2.2 Bounded Gap: Non-Concurrent Setting.

We will now prove that the “gap” between the state of the two parties in LP3 is bounded
in the non-concurrent setting, that is:

Lemma 6. Let A and B be respectively the initiator and the responder of a single —

non-concurrent — LP3-run. Let �AB be the gap between A and B with respect to the

evolution of the master keys of both parties. Then �AB 2 {�1, 0, 1}, assuming MAC-

security.

The messages in LP3 are counted in a natural way, as indicated in Fig. 6a. For this
non-concurrent setting the proof is similar to [ACF20, Lemma 1] . Then the notation
“(CTRAB , CTRBA)” means that, when the run ends, the last valid message received
by A has index CTRAB , and the last valid message received by B has index CTRBA.
We call a (CTRAB ,CTRBA)-run a run where the last message received by A is mes-
sage CTRAB , and the last message received by B is message CTRBA. By convention
CTRAB = 0 means that no message has been received by A. In Fig. 6b, we define the
states to be the different values of �AB . The transitions are the possible messages. An
example: if our protocol instance is in state �AB = �1, and B responds to message 1
with message 2, i.e. transition (2, 1) in the state diagram, the initiator will advance twice
and the state will be �AB = 1. A then sends the third message: transition (2, 3) takes
place and we end up in state �AB = 0 since this third message will cause the responder
to advance.

PROOF. We prove Lemma 6. The protocol is initialized with �AB = 0 and the first step
is sending message 1: either the message never reaches the responder, or the message is
received correctly. In either case neither party advances, so �AB = 0 — i.e. transition
(0, 1) in Fig. 6b is fired. If the protocol now terminates we end up in state 0, while
sending and receiving message 2 would cause the initiator to advance, or in terms of the
state diagram, fire (2, 1) and transition to �AB = 1.

Because we restrict ourselves to non-concurrent executions, the only possible option
no matter the state is to advance with one message or terminate and start from (0, 1).

99

Reduction B2.2 playing GKEvol
KDF (B2.2)

1 : i
⇤
, j

⇤ $
 � [n]; CTR⇤ $

 � [q]

2 : for i, j2 [n] do

3 : CTRij = CTRji 0

4 : K
MAC
ij = K

MAC
ji

$
 � KMAC

5 : forn⇥ [n] \ (i⇤, j⇤) do

6 : k0
ij = k0

ji
$
 � KPRF

7 : output CTR⇤

8 : receive(sk0
, . . . , sk

CTR⇤
�1

, sk
⇤
, kCTR⇤+1)

9 : kCTR⇤+1
i⇤j⇤ kCTR⇤+1

10 : A
oracles

11 : When A calls Test(⇡s
i) do

12 : if i 6= i
⇤ or j

⇤
6= ⇡

s⇤
i⇤ .pid

13 : return Abort

14 : return ⇡
s
i .sk

15 : (i⇤, s⇤, b0) $
 � A(⇡s

i .sk)

16 : return b
0

NewSessionI(⇡s

i
, pid)

17 : ⇡
s
i .⇢ Initiator

18 : ⇡
s
i .↵ negotiating

19 : ⇡
s
i .pid pid // =j

20 : N GenN

21 : �1 Mac(KMAC
, i k N k CTRij)

22 : m
0
 N,CTRij ,�1

23 : return m
0

NewSessionR(⇡s

i
, pid,m)

24 : ⇡
s
i .⇢ Responder

25 : ⇡
s
i .↵ negotiating

26 : ⇡
s
i .pid pid

27 : do Send(⇡s
i ,m)

Send(⇡s

i
,m) // pid =j

28 : if MsgNr = 1

29 : if Vrfy(KMAC
, j k Nj k CTRji,�1) = 0

30 : return Abort

31 : z1 CTRji � CTRij

32 : if z1 > 0

33 : kij ,CTRij Advnc(kij ,CTRij , z1)

34 : Ni GenN

35 : �2 Mac(KMAC
, i k Nj k Ni k CTRij

36 : m
0
 Ni,CTRij ,�2

37 : return m
0

38 : if MsgNr = 2

39 : if Vrfy(KMAC
, j k Ni k Nj k CTRji,�2) = 0

40 : return Abort

41 : z2 CTRji � CTRij

42 : if z2 > 0

43 : kij ,CTRij Advnc(kij ,CTRij , z2)

44 : �3 Mac(KMAC
, i k Ni k Nj k CTRij k "conf")

45 : m
0
 CTRij ,�3

46 : return m
0

47 : else // MsgNr =3

48 : if Vrfy(KMAC
, j k Nj k Ni k CTRjik"conf",�3) = 0

49 : return Abort

50 : z3 CTRji � CTRij

51 : if z3 6= 0

52 : return Abort

53 : if MsgNr 2 {2, 3}

54 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

55 : if CTRij < CTR⇤

56 : ⇡
s
i .sk sk

CTRij

57 : if CTRij = CTR⇤

58 : ⇡
s
i .sk sk

⇤

59 : s
⇤
 s

60 : CTRij CTRij + 1

61 : else

62 : ⇡
s
i .sk KDF(kCTR

ij ,"der")

63 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

64 : ⇡
s
i .↵ accept

Figure 5: Reduction B2.2 for the proof of Lemma 5. If at any time A

causes an oracle to accept maliciously, then B2.2 simply does Abort. B2.2

provides A with access to oracles = NewSessionI(·, ·, ·),NewSessionR(·, ·),
Send(·, ·, ·),RevealKey(·),Corrupt(·, ·), however RevealKey and Corrupt are omitted
for space reasons: they are exactly as in Fig. 9 (Key-Ind proof of LP2).

100

Init. Resp.

a
1

2
b

c
3

d

(a) Numbering of states for the proofs of
Lemmas 6 (1, 2, 3) and 7 (a, b, c, d).

0

�1

1

(0,0),(0,1),(2,3)

(2,1)

(0,0),(2,1)

(2,3),(0,1)

(0,0),(0,1)
(2,3) (2,

1)

(b) Synchronization state for LP3 in the
non-concurrent setting.

Figure 6: Different states for LP3, and transitions between them.

Adding all possible transitions to the state diagram, we observe that there are no reach-
able states other than 0 and 1. Since the protocol does not have fixed roles we can reach a
state�1 by changing roles after we reached state 1. From there, there are two transitions
that bring us back to states 0 and 1. Since we assume that MACs cannot be forged, these
are the only reachable states, thus �AB 2 {�1, 0, 1} always holds.

4.2.3 Bounded Gap: Concurrent Setting.

We will now extend Lemma 6 to the concurrent setting.

Lemma 7. Let A and B be respectively the initiator and the responder of C concurrent

LP3-runs. Let �AB be the gap between A and B with respect to the evolution of the

master keys of both parties. Then �C  �AB  1 + C, assuming MAC-security.

To illustrate the (in a sense) multidimensional effect of concurrent runs on the pro-
tocol, we will now use a different message labelling convention. Fig. 6a defines the
different states the protocol execution can be in. The state diagram in Fig. 7 now uses
these four possible protocol states as diagram states — a message between state a and b
is thus necessarily message 1. The internal state of the four ‘macro states’ in the diagram
now represents the value of �AB .

Observe that for the transitions from a to b and from b to c, i.e. the sending of
messages 1 and 2, respectively, the evolution of �AB depends on the actual value of a.
For all transitions caused by message 3, the change is systematic:

1. Any transition from c to d will decrease �AB by 1;

101

�1

n

0

1

2

3

m

�1

n

0

1

2

3

m

�1

n

0

1

2

3

m+ 1

1

0

�1

2

3

m

n� 1

a b c d

Figure 7: Synchronization state for LP3 in the concurrent setting.

2. any transition from b to c will increase �AB by at least 1.

Additionally there are two ‘resets’, since

3. any transition from a to b will set �AB to 0, if the gap is 1 or more;

4. any transition from b to c will set �AB to 1, if the gap is 0 or less.

PROOF. We prove Lemma 7. In Lemma 6, the normal range is shown to be �AB 2

{�1, 0, 1}. Extensions beyond this range are possible when the condition in 1. or 2.
above occurs during a run, so each consecutive run can influence �AB with �1 or +1
at most. Since we assume MAC-security, the adversary cannot influence the protocol
with messages other than those authentically sent during one of the runs. Inductively,
we conclude �C  �AB  1 + C.

4.2.4 wSR of LP3.

We now argue that LP3 obtains weak synchronization robustness (wSR), the property
that captures how well a protocol can recover from network errors and interleaving
of protocol runs. In the wSR game the adversary can make arbitrary NewSessionI,
NewSessionR and Send queries, and at its conclusion it outputs the identifiers of two
oracles: it is said to win the wSR game if these oracles engaged in an uninterrupted pro-
tocol run but did not compute the same session key. As such, a proof of wSR must argue
that whatever values of party state exist before the target protocol run occurs, neither of
the parties will abort and both will arrive at the same session key.

Our general approach for proving robustness of all of the protocols in this paper is to
separate adversaries that win the wSR game via forging a MAC value, and those that do

102

not produce a forgery during their execution. LP1 (Fig. 11) and LP2 (Fig. 8) have fixed
roles and as a result the initiator’s counter value must always be at least the size of the
responder’s counter value for the protocol to have correctness. Thus a MAC forgery can
force the responding party’s counter value to be arbitrarily large, and the target protocol
run will cause at least one party to abort, and the adversary wins the wSR game. LP3,
on the other hand, is actually not vulnerable in the sense of synchronization robustness
if a MAC forgery does occur. This is due to LP3 being designed to have correctness for
all starting (integer) counter values, since in any session, both parties can catch up from
being arbitrarily far behind.

We formally prove this below, however to see this visually, consider Fig. 7 for the
execution of a single protocol run, i.e. from a to d. For any initial state difference
a, the state c after the second protocol message has been processed is always 1 (the
initiator computes a session key and advances once), leading to state difference 0 after
the responder processes the final protocol message (deriving a session key and advancing
once).

Theorem 8 (wSR of LP3). Let ⇧ be the three-message protocol in Fig. 4, built using

MAC = {KGen,Mac,Vrfy} and PRF with n parties. Then for any adversary A against

the wSR security of ⇧, AdvwSR
⇧

(A) = 0.

PROOF. The only places where Abort occurs in the protocol description (Fig. 4) are
after MAC verification failures: in the target protocol session all messages are honestly
generated so this cannot occur (assuming perfect correctness of MAC). As a result, the
only route to victory in the wSR game for an adversary is to make the parties compute
different session keys. This occurs if the parties compute session keys but have differ-
ent counter values once all three protocol messages have been delivered and processed:
following the notation and arguments in Lemma 7, this is the same as showing that
� = 0 after a (2, 3) session for any starting delta value. More precisely, let A and B
be the parties involved in the target session where A sends the first protocol message,
let �pre

AB
be the gap between A and B with respect to the evolution of the master keys of

both parties and the point before the target session begins (i.e. before the adversary calls
NewSessionI for the target session), and let �post

AB
be the gap after the target session has

occurred. Fig. 6b shows that �post
AB

= 0 for �pre
AB
2 {�1, 0,�1}, so to complete the proof

we need to show that this also holds for arbitrary �pre
AB

.
If �pre

AB
2 {1, 2, . . . , }, i.e. CTRAB is ahead of CTRBA by �pre

AB
= z1 steps, then

the first protocol message processing by B results in B advancing its counter CTRBA

by �pre
AB

steps, leading to state difference 0. This means that A will not advance on
receiving the second protocol message and both parties will compute a session key for
state CTRAB and then advance once, and so �post

AB
= 0.

If �pre
AB
2 {�1,�2, . . . , }, i.e. CTRBA is ahead of CTRAB by ��pre

AB
= z2 steps, B

does not advance in processing the first message, however A does advance by ��pre
AB

=
z2 steps on receiving the second protocol message. Again this leads to state difference

103

0 and here a session key is computed for state CTRBA and then both parties advance
once, so �post

AB
= 0.

This concludes the proof, since any initial state will lead to the target protocol run
computing the same session key for the involved parties.

4.3 LP2: A Two-Message Protocol with Fixed Roles

In Fig. 8 we present a two-message protocol, LP2, with linear key evolution. The roles
of initiator and responder are fixed, so the same party initiates every session: this is
enforced by CTRAB � CTRBA (for A initiating).

Initiator Responder

CTRAB , k
CTR
AB , K

MAC CTRBA, k
CTR
BA , K

MAC

. .
z0 NextOdd(CTRAB)� CTRAB

kCTR
AB ,CTRAB := Advnc(kCTR

AB ,CTRAB , z0)

�1 Mac(KMAC
, A k CTRAB) CTRAB ,�1

if Vrfy(KMAC
, A k CTRAB ,�1) = 0

Abort

z1 CTRAB � CTRBA

if z1 < 0

Abort

kCTR
BA ,CTRBA Advnc(kCTR

BA ,CTRBA, z1)
CTRBA,�2 �2 Mac(KMAC

, B k CTRBA)

if Vrfy(KMAC
, B k CTRBA,�2) = 0 skAB KDF(kCTR

BA ,"der")

Abort kCTR
BA ,CTRBA Advnc(kCTR

BA ,CTRBA, 1)

z2 CTRBA � CTRAB

if z2 6= 0

Abort

skAB KDF(kCTR
AB ,"der")

kCTR
AB ,CTRAB Advnc(kCTR

AB ,CTRAB , 1)

Figure 8: LP2, a two-message protocol with fixed roles.

Achieving weak synchronization robustness (wSR) is slightly more complicated in
LP2 than it was in LP3. If we were to adapt LP3 to a two-message protocol by simply
dropping the last message and having the responder accept (thus, deriving a session key
and advancing its state), we could end up in a situation where we break the requirement
that the responder should never advance past the state of the initiator. In this hypotheti-
cal protocol, the initiator will initiate the key exchange, but will not derive a session key
until it has authenticated the responder. The responder, however, will authenticate the

104

initiator upon receiving the first protocol message (rather than waiting for a key confir-
mation message as in LP3) and produce the second protocol message, after which it will
immediately derive a session key and advance its state. Thus, if this second protocol
message is not delivered, the responder will have advanced its state, but the initiator has
not, contradicting our requirement that CTRAB � CTRBA.

In order to avoid this in LP2, the initiator A will always advance to the next odd value
of its counter at the beginning of each session. How many steps the initiator advances
depends on what has happened earlier. If a complete session has been executed as A’s
previous action, A starts by advancing once, so that its state counter is ahead of B. If
in the previous session A never processed the second protocol message, A will advance
twice at the beginning of the next session, in order to catch up to B and move ahead.
The reasoning behind this is the separation of A’s counter set: if the counter is an even
integer then A has most recently received a message (and derived a key), whereas if it is
an odd integer then A most recently sent a (session opening) protocol message. In both
cases, advancing to NextOdd(CTRAB) will have the desired effect.

With this simpler protocol we are able to achieve most of the desired properties from
SP3, but with a more lightweight protocol. Fixing the roles makes this possible, and
this demonstrates the fine balance between forward security and (weak) synchronization
robustness. In the event that the reduced communication complexity of LP2 compared
to LP3 is desirable when choosing a protocol, but if the application demands that either
party can initiate, it is possible to run LP2 in duplex mode. In duplex mode, both parties
keep separate key derivation keys and counters for initiating and responding such that
both parties can have both roles without violating the condition CTRAB � CTRBA.

4.3.1 AKE-M of LP2

Theorem 9 (AKE-M of LP2). Let ⇧ be the two-message protocol in Fig. 8, built using

MAC = {KGen,Mac,Vrfy}, and PRF, with n parties. Then for any adversary A against

the AKE-M security of ⇧ that makes a maximum of q queries that initiate new sessions

for each party (with q < |CTR|
2

), there exists an adversary B9.1 against the SEUF-CMA-
Q of MAC and an adversary B9.2 against the KEvol security of PRF such that

AdvAKE-M
⇧

(A)  n2
·

⇣
4 · AdvSEUF-CMA-Q

MAC (B9.1) + q · AdvKEvolPRF (B9.2)
⌘
.

We form a bound for each of the three ways in which an adversary can break AKE-M
security, namely Ent-Auth-R, Ent-Auth-I and Key-Ind, and then sum these bounds.
There are two MAC security terms, for entity authentication of responder and initiator,
and so 2 · AdvSEUF-CMA-Q

MAC (B9.1) bounds these two terms by fixing B9.1 to be whichever
of B9.1r and B9.1i has greater advantage.

We now give intuition regarding the Ent-Auth proofs. Note that since q < |CTR|
2

,
all first protocol messages are unique, and thus the first message in every transcript is
unique. Further, after receiving a first protocol message a responder always advances its

105

state (at least) once, and so delivering that same first protocol message to any oracle of
the same responder party will trigger the if z1 < 0 branch and result in Abort. This
rules out the possibility of multiple oracles with non-unique matching conversations
accepting. To conclude our proofs, we need to show that the only way an adversary
can force an oracle to accept and for there not to exist any other oracle with a matching
transcript, the adversary must forge a MAC message.

For Lemma 10 (Ent-Auth-R), a responder oracle accepts when it receives a first
protocol message, and so to win there must not exist any oracle with the same partial
transcript as this accepting oracle. Since the MAC is calculated on the the counter value
and the communicating parties’ identities, the input message to the accepting oracle must
have been generated by an oracle of the communication partner (in which case there is a
matching conversation and the adversary has not won) or the adversary has produced a
MAC forgery (in the SEUF-CMA-Q sense.

A similar argument applies for Lemma 11 (Ent-Auth-I), except now the accepting
oracle computes a session key after receiving a valid second protocol message. Again if
no forgery has occurred that second protocol message must have come from a genuine
invocation of NewSessionR by the intended partner (with the first protocol message of
the accepting oracle provided as input), and thus that oracle’s transcript is a prefix of the
accepting oracle’s transcript. Specifically, if an initiator session was instantiated after
the first protocol message of the accepting oracle was produced then z2 6= 0 and we
have a contradiction since this oracle could not then reach accept.

Lemma 10 (Ent-Auth-R of LP2). For any adversary A, the probability that there exists

an oracle with ⇢ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-R
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B9.1r)

where all quantities are defined as stated in Theorem 9.

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game.

Pr
⇥
GEnt-Auth
⇧

(A) = 1
⇤
= Pr

⇥
GA

0
= 1

⇤

Game 1. In this game we guess which responder will be the first to accept maliciously
and its partner identity, and abort if this guess is wrong. The game is the same as Game 0
except that the challenger guesses (i⇤, j⇤) $

 � [n] ⇥ [n], and if an oracle ⇡s

i
(for some

s) accepts maliciously with ⇡s

i
.⇢ 6= Responder or i⇤ 6= i or j⇤ 6= ⇡s

i
.pid, then the

challenger aborts.
Pr

⇥
GA

0
= 1

⇤
= n2

· Pr
⇥
GA

1
= 1

⇤

We construct a reduction B9.1r that is playing against the SEUF-CMA-Q security of
MAC that simulates the environment for an underlying adversary A that attempts to win

106

in game Game 1. The reduction generates (initial) key derivation keys for all pairs of par-
ties, and authentication keys for all pairs of parties except i⇤ and j⇤. When responding
to queries by A regarding all other parties, the reduction will honestly provide messages
as specified in the protocol specification and the Ent-Auth game. For any query made
between oracles of parties i⇤ and j⇤, the reduction will use its OMac oracle and provide
the received value in its simulation for A. For example, to initialize initiator oracles ⇡j⇤ ,
the reduction checks the current state counter CTRj⇤i⇤ and calls OMac(j⇤ k CTRj⇤i⇤).
If A provides any value that it has not been given as an initialization query as input to a
NewSessionR query from i⇤ to j⇤, then the reduction sends this to its OVrfy oracle in the
SEUF-CMA-Q game. The simulation of Game 1 is perfect and any win for A directly
corresponds to a valid signature forgery, so we can write

Pr
⇥
GA

1
= 1

⇤
 AdvSEUF-CMA-Q

MAC (B9.1r).

Summing these terms gives the bound in the statement of Lemma 10.

The second proof is very similar, and considers malicious acceptance by an initiator,
i.e. as a result of a full protocol run of two messages. We only detail significant changes
and note that our term collection is exactly the same.

Lemma 11 (Ent-Auth-I of LP2). For any adversary A, the probability that there exists

an oracle with ⇢ = Initiator that accepts maliciously can be bounded by

AdvEnt-Auth-I
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B9.1i)

where all quantities are defined as stated in Theorem 9.

PROOF. Games 0 and 1 are exactly as in the proof of Lemma 10. The reduction is as
in the proof of Lemma 10, except that now we are guessing which initiating party will
be the first to accept maliciously (and its intended partner), and so the abort occurs if a
responder oracle accepts maliciously. The loss of n2 incurred by selection of parties is
the same.

Again, the next step is a reduction that plays against SEUF-CMA-Q of the MAC
scheme MAC. However, the reduction of course must behave slightly differently, since
it must send to its own OVrfy oracle any message that was called as a Send query for
the targeted initiator oracle, but which was not given as an output protocol message by a
NewSessionR query (to responder oracle j⇤). Further, we need to ensure that the forgery
attempt is on an oracle that does not have a matching conversation with any others: in the
proof of Lemma 10 this was straightforward since there was only one unique message
in question, but here the transcripts that we are interested in consist of (up to) two flows
between each oracle. This is just a matter of bookkeeping, and as before B9.1i forwards
all attempted forgeries to its own verification oracle, so any query that would have caused
A to win the entity authentication game (in the simulation that A is experiencing) also
corresponds to success in the game that B9.1i is playing.

107

Lemma 12 (Key-Ind of LP2). For any adversary A and (any fixed) entity authentica-

tion adversary B9.1, the probability that A answers the Test challenge correctly can be

bounded by

AdvKey-Ind
⇧

(A)  AdvEnt-Auth
⇧

(B9.1) + n2q · AdvKEvolPRF (B9.2).

where all quantities are defined as stated in Theorem 9.

PROOF. Let b0 be the bit output by A in each game, and b be the bit sampled as part of
the Test query.

Game 0. This is the original Key-Ind game.

Pr
h
GKey-Ind
⇧

(A) = 1
i
= Pr

⇥
GA

0
= 1

⇤

Game 1. This game is the same as Game 0, except the challenger aborts and chooses
b0 $
 � {0, 1} if any oracle accepts maliciously.

Pr
⇥
GA

0
= 1

⇤
 Pr

⇥
GA

1
= 1

⇤
+ AdvEnt-Auth

⇧
(B9.1)

At this stage, the oracle to which A asks its Test query has a unique partner oracle with
a matching conversation.

Game 2. This game is the same as Game 1, except the challenger guesses the two
parties involved in the Test query via (i⇤, j⇤) $

 � [n] ⇥ [n], and additionally guesses
the counter value which identifies the key derivation key state of the session key in
the Test query. Note that session keys are only derived for counters equal to odd in-
tegers in {1, 3, . . . , q}, so the challenger chooses CTR⇤

i⇤j⇤ from this set. If A issues a
Test(⇡s

i⇤) query with i⇤ 6= i or j⇤ 6= ⇡s

i⇤ .pid (for some s), or the session key computed
via Test(⇡s

i
), i.e. ski⇤j⇤ is not equal to KDF(kCTR

⇤

i⇤j⇤ ,"der"), then the challenger aborts.
Note that the challenger does not guess which oracle of i⇤ the Test query will be made
to, only the counter value linked to the session key in that query.

Pr
⇥
GA

1
= 1

⇤
 n2

· q · Pr
⇥
GA

2
= 1

⇤

At this stage, if the challenger has guessed correctly then the Test query will be asked
to an oracle after the key derivation counter has been advanced a fixed number of times,
and this oracle has unique partner with a matching conversation.

Game 3. This game is the same as Game 2, except that when the challenger runs KDF
on the key derivation values used in the Test query, the challenger instead responds with

108

a random key from the session key space. Noticing this change results in an adversary
that is successful in the KEvol game for PRF, so we can write

Pr
⇥
GA

2
= 1

⇤
= Pr

⇥
GA

3
= 1

⇤
+ AdvKEvolPRF (B9.2).

The reduction B9.2 is detailed in Fig. 9. B9.2 initially guesses the target parties in the
Test session and the counter value associated with the Test session, as per the previous
game hop. In this reduction, instances of return Abort indicate that the adversary
has done something that the reduction cannot respond to (since it has been ruled out by
earlier game hops) and thus the reduction must abort. Instances of return ? indicate
that the adversary has done something that it is not allowed to do, for example doing
RevealKey on a non-existent session key or delivering an invalid message to a(n orcale
of a) party. In this case the reduction stops the action of the query, and if instructed
by the model in Section 3, sets the execution state ↵ of the queried oracle to reject.
Finally, return x indicates that B9.2 gives value x to A as a result of one of A’s queries.

In the event that B9.2 is in the ‘real’ version of its own game, where it receives a
genuine evaluation of the function KDF, B9.2 perfectly simulates Game 2 for A, and
otherwise it perfectly simulates Game 3.

At this stage, the Test query is asked on a key that is randomly chosen, and thus
independent of the protocol and the security game. Consequently,

Pr
⇥
GA

3
= 1

⇤
=

1

2
) Adv3

⇧
(A) = 0.

4.3.2 wSR of LP2

We now argue that LP2 obtains weak synchronization robustness (wSR). A proof of
wSR must argue that whatever the adversary does before the target protocol run occurs,
during the target protocol run itself neither of the parties will abort and both will arrive
at the same session key. Protocol LP2, like LP1 (Fig. 11), only has correctness when the
initiator’s counter is at least the size of the responder’s counter, i.e. CTRAB � CTRBA

– this inequality is guaranteed in our protocol by MAC security. By inspection, if an
adversary forges a MAC on A k CTRAB for some CTRAB larger than the current value
of CTRBA and delivers this MAC as part of a protocol message to an oracle of B, then
any subsequent protocol run will cause B to Abort and thus will be a winning target
protocol run for this adversary.

The formal proof is below, but here we outline the proof idea. We first define an event
E13 that is triggered if the adversary in the wSR game forges a MAC, i.e. produces a
message-tag pair that verifies correctly that it has not seen before, and the challenger
aborts if this occurs: bounding this event is of course straightforward. Then, we must
argue that if a MAC forgery has not occurred then there are in fact no viable routes to

109

Reduction B9.2 playing GKEvol
KDF (B9.2)

1 : i
⇤
, j

⇤ $ � [n]; CTR⇤ $ � {1, 3, . . . , q}

2 : for i, j2 [n] do

3 : CTRij = CTRji 0

4 : K
MAC
ij = K

MAC
ji

$ � KMAC

5 : forn⇥ [n] \ (i
⇤
, j

⇤
) do

6 : k
0
ij = k

0
ji

$ � KPRF

7 : output CTR⇤

8 : receive(sk0
, . . . , sk

CTR⇤�1
, sk

⇤
, k

CTR⇤+1
)

9 : k
CTR⇤+1
i⇤j⇤ k

CTR⇤+1

10 : A
oracles

11 : When A calls Test(⇡s
i) do

12 : if i 6= i
⇤ or j

⇤
6= ⇡

s⇤
i⇤ .pid

13 : return Abort

14 : return ⇡
s
i .sk

15 : (i
⇤
, s

⇤
, b

0
) $ � A(⇡

s
i .sk)

16 : return b
0

NewSessionI(⇡s

i
, pid)

17 : ⇡
s
i .⇢ Initiator

18 : ⇡
s
i .↵ negotiating

19 : ⇡
s
i .pid pid // =j

20 : z0 NextOdd(CTRij)� CTRij

21 : k
CTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , z0)

22 : �1 Mac(KMAC
, i k CTRij)

23 : m
0
 CTRij ,�1

24 : returnm
0

NewSessionR(⇡s

i
, pid,m)

25 : ⇡
s
i .⇢ Responder

26 : ⇡
s
i .↵ negotiating

27 : ⇡
s
i .pid pid

28 : do Send(⇡s
i ,m)

Corrupt(Pi, Pj)

29 : if (i, j) = (i
⇤
, j

⇤
) _ (j

⇤
, i

⇤
)

30 : if CTRij  CTR⇤

31 : return Abort

32 : return kij

RevealKey(⇡s

i
)

33 : if ⇡
s
i .↵ 6= accept

34 : return?

35 : if (i, s) = (i
⇤
, s

⇤
)

36 : return Abort

37 : ⇡
s
i . exposed

38 : return ⇡
s
i .sk

Send(⇡s

i
,m) // pid =j

39 : Parse m as CTRji,�

40 : if Vrfy(KMAC
ij , j k CTRji,�) = 0

41 : return?

42 : if ⇡
s
i .⇢ = Responder

43 : z1 CTRji � CTRij

44 : if z1 < 0

45 : return?

46 : k
CTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , z1)

47 : �2 Mac(KMAC
ij , i k CTRij)

48 : m
0
 CTRij ,�2

49 : returnm
0

50 : else

51 : z2 CTRij � CTRji

52 : if z2 6= 0

53 : return?

54 : if (i, j) = (i
⇤
, j

⇤
) _ (j

⇤
, i

⇤
)

55 : if CTRij < CTR⇤

56 : ⇡
s
i .sk sk

CTRij

57 : if CTRij = CTR⇤

58 : ⇡
s
i .sk sk

⇤

59 : s
⇤
 s

60 : CTRij CTRij + 1

61 : else

62 : ⇡
s
i .sk KDF(kCTR

ij , "der")

63 : k
CTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

64 : ⇡
s
i .↵ accept

Figure 9: Reduction B9.2 for the proof of Lemma 12. If at
any time A causes an oracle to accept maliciously, then B9.2 sim-
ply does Abort. B9.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·).

110

victory in the wSR game. To see this, note that for the (uninterrupted) target session, if
z1 = CTRAB � CTRBA � 0 then B will always catch up to the counter value of A
(i.e. advance by z1 steps) and both parties will compute a session key for counter value
CTRAB . Note also that in the target session, it is not possible for the if z2 6= 0 to be
triggered after A receives the second protocol message since the counter value CTRBA

that B sends will always have caught up to CTRAB in the processing of the first protocol
message. Thus to conclude, we just need to show that, if a forgery has not occurred, it
is not possible for the adversary to force CTRAB < CTRBA. Every time the adversary
creates a new initiator session, the initiator’s counter is incremented by either 1 or 2
steps, whereas B can advance an arbitrary number of times to catch up to (what B thinks
is) A’s current counter state. Since the MAC includes party identification information
and the initiator’s counter value, in the absence of MAC forgeries the adversary cannot
produce a valid protocol message with verifying MAC for any counter larger than the
ones that it has seen as a result of genuine invocations of new protocol sessions.

Theorem 13 (wSR of LP2). Let ⇧ be the two-message protocol in Fig. 8, built using

MAC = {KGen,Mac,Vrfy} and PRF, with n parties. Then for any adversary A against

the wSR security of ⇧ that makes a maximum of q queries that initiate new sessions for

each party (with q < |CTR|
2

), there exists an adversary B13 against the SEUF-CMA-Q
of MAC such that

AdvwSR
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B13).

PROOF. We proceed using a sequence of games.

Game 0. This is the original wSR game.

Pr
⇥
GwSR
⇧

(A) = 1
⇤
= Pr

⇥
GA

0
= 1

⇤

Game 1. This game is the same as Game 0 except that we define an event E13, that
is said to occur if the adversary successfully forges a MAC while it is running, and the
challenger aborts if E13 occurs.

Pr
⇥
GA

0
= 1

⇤
= Pr

⇥
GA

1
= 1

⇤
+ Pr [E13]

We now bound the probability that E13 occurs. We construct a reduction B13 to the
SEUF-CMA-Q security of MAC with a verification oracle. First, the reduction guesses
which parties will be involved in the forgery that triggers E13, and then simulates the
environment of Game 0. To do this, B13 must select (initial) key derivation keys from
the appropriate keyspace and randomly pick MAC keys for all pairs of parties except
for the guessed parties i⇤ and j⇤. It is then simple to simulate all queries to oracles of
parties except communication between the guessed pair. Note that this choice of parties
involved in the forgery is independent of the parties that the underlying adversary A will
eventually output for the target protocol run.

111

For any query to an oracle of party i⇤ with pid = j⇤ or an oracle of j⇤ with pid = i⇤,
the reduction needs to forward queries to its own MAC and verification oracles. However
note that B13 knows the key derivation keys even for these parties, so responding to
queries is straightfoward except for its calls to OMac and OVrfy. The full reduction is
detailed in Fig. 10.

Pr [E13]  n2
· AdvSEUF-CMA-Q

MAC (B13)

At this point, the adversary cannot win via a MAC forgery.
A win can be obtained if either party in the target session aborts, or if the parties

compute different keys. If the target session begins with CTRAB � CTRBA, then
the parties will always compute the same key via skAB KDF(kCTR

AB
,"der") so

we only need to argue that the adversary cannot force the state CTRBA > CTRAB

without forging the MAC. Note that every intiator session advances its counter (and thus
key state) once either once or twice, while responder sessions (oracles) can advance
an arbitrary number of times. However, the responder only advances if it has received
and accepted a protocol message. For the responder to advance without the initiator
having done so, the adversary must deliver a valid message to the responder without
having called NewSessionI. This message must also have a counter value CTR0

AB
that

is greater than CTRAB (the actual counter value of A with respect to B, and a valid
MAC. Producing such a message that will be processed by B requires it to have a valid
MAC on A k CTR0

AB
. Since we assume that the adversary does not produce a MAC

forgery it must have seen this message before, which means it must have been output by
a NewSessionI query, and we have a contradiction. This concludes the proof.

4.4 LP1: A One-Message Protocol with Fixed Roles

In Fig. 11 we present a one-message protocol, LP1, with linear key evolution. Like
in LP2, the roles of initiator and responder are fixed, so the same party initiates every
session: i.e. CTRAB � CTRBA (for A initiating). Ensuring that the counter states of
the communicating parties is slightly simpler in LP1 than LP2, since we do not have to
worry about the responder advancing before the initiator. The initiator simply advances
once every time it participates in a session, and both parties advance exactly once after
computing a session key. If protocol messages are dropped then it may be necessary for
the responder to advance before it can compute the session key.

In Theorem 14 we show that LP1 achieves one-sided authentication (responder au-
thenticates initiator). Achieving weak synchronization robustness (wSR, Theorem 17)
is similar in LP1 and LP2, and is guaranteed by MAC security. Like with LP2, if both
parties need to be able to initiate then LP1 can be run in duplex mode.

112

Reduction B13 playing GSEUF-CMA-Q
MAC (B13)

1 : i
⇤
, j

⇤ $
 � [n]

2 : for i, j2 [n] do

3 : kCTR
ij = kCTR

ji
$
 � KPRF

4 : forn⇥ [n] \ (i⇤, j⇤) do

5 : K
MAC
ij = k

j,i
MAC

$
 � KMAC

6 : CTRij = CTRji 0

7 : A
oracles

NewSessionI(⇡s

i
, pid)

8 : ⇡
s
i .⇢ Initiator

9 : ⇡
s
i .↵ negotiating

10 : ⇡
s
i .pid pid // = j

11 : z0 NextOdd(CTRij)� CTRij

12 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , z0)

13 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

14 : �1 call OMac(i k CTRij)

15 : else

16 : �1 Mac(KMAC
ij , i k CTRij)

17 : m
0
 CTRij ,�1

18 : return m
0

NewSessionR(⇡s

i
, pid,m)

19 : ⇡
s
i .⇢ Responder

20 : ⇡
s
i .↵ negotiating

21 : ⇡
s
i .pid pid

22 : do Send(⇡s
i ,m)

Send(⇡s

i
,m) // pid =j

23 : Parse m as CTRji,�

24 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

25 : b call OVrfy(j k CTRji),�)

26 : if b = 0

27 : return ?

28 : else

29 : if Vrfy(KMAC
, j k CTRij ,�) = 0

30 : return ?

31 : if ⇡s
i .⇢ = Responder

32 : z1 CTRji � CTRij

33 : if z1 < 0

34 : return ?

35 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , z1)

36 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

37 : �2 call OMac(i k CTRij)

38 : else

39 : �2 Mac(KMAC
ij , i k CTRij)

40 : return m
0
 CTRij ,�2

41 : else

42 : z2 CTRij � CTRji

43 : if z2 6= 0

44 : return ?

45 : ⇡
s
i .sk KDF(kCTR

ij ,"der")

46 : ⇡
s
i .↵ accept

47 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

Figure 10: Reduction B13 for the proof of Theorem 13. B13 provides A with access to
oracles = NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

4.4.1 AKE-R of LP1

Theorem 14 (AKE-R of LP1). Let ⇧ be the one-message protocol in Fig. 11, built

using MAC = {KGen,Mac,Vrfy} and PRF, with n parties. Then for any adversary A

against the AKE-R security of ⇧ that makes a maximum of q queries that initiate new

113

Initiator Responder

(CTRAB , k
CTR
AB , K

MAC) (CTRBA, k
CTR
BA , K

MAC)

. .

�1 Mac(KMAC
,CTRAB) CTRAB ,�1

skAB KDF(kCTR
AB ,"der") if Vrfy(KMAC

,CTRAB ,�1) = 0

kCTR
AB ,CTRAB Advnc(kCTR

AB ,CTRAB , 1) Abort

z1 CTRAB � CTRBA

if z1 < 0

Abort

kCTR
BA ,CTRBA Advnc(kCTR

BA ,CTRBA, z1)

skBA KDF(kCTR
BA ,"der")

kCTR
BA ,CTRBA Advnc(kCTR

BA ,CTRBA, 1)

Figure 11: LP1, a one-message protocol with fixed roles.

sessions for each party (with q < |CTR|), there exists an adversary B14.1 against the

SEUF-CMA-Q security of MAC and an adversary B14.2 against the KEvol security of

PRF such that

AdvAKE-R
⇧

(A)  n2
·

⇣
2 · AdvSEUF-CMA-Q

MAC (B14.1) + q · AdvKEvolPRF (B14.2)
⌘
.

We form a bound for each of the two ways in which an adversary can break AKE-R
security, namely Ent-Auth-R and Key-Ind, and then sum these bounds.

We now give intuition regarding the Ent-Auth-R proof. Note that since q < |CTR|
2

,
all first protocol messages are unique, and thus the first message in every transcript is
unique. This rules out the possibility of multiple oracles with non-unique matching
conversations accepting. To conclude our proofs, we need to show that the only way an
adversary can force an oracle to accept and for there not to exist any other oracle with a
matching transcript, the adversary must forge a MAC message.

A responder oracle accepts when it receives a first protocol message, and so to win
there must not exist any oracle with the same partial transcript as this accepting oracle.
Since the MAC is calculated on the counter value and the communicating parties’ identi-
ties, the input message to the accepting oracle must have been generated by an oracle of
the communication partner (in which case there is a matching conversation and the ad-
versary has not won) or the adversary has produced a MAC forgery (in the SEUF-CMA-
Q sense).

Lemma 15 (Ent-Auth-R of LP1). For any adversary A, the probability that there exists

114

an oracle with ⇢ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-R
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B14.1).

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game.

Pr
⇥
GEnt-Auth
⇧

(A) = 1
⇤
= Pr

⇥
GA

0
= 1

⇤

Game 1. In this game we guess which responder will be the first to accept maliciously
and its partner identity, and abort if this guess is wrong. The game is the same as Game 0
except that the challenger guesses (i⇤, j⇤) $

 � [n] ⇥ [n], and if an oracle ⇡s

i
(for some

s) accepts maliciously with ⇡s

i
.⇢ 6= Responder or i⇤ 6= i or j⇤ 6= ⇡s

i
.pid, then the

challenger aborts.
Pr

⇥
GA

0
= 1

⇤
= n2

· Pr
⇥
GA

1
= 1

⇤

We construct a reduction B14.1 that is playing against the SEUF-CMA-Q security of
MAC that simulates the environment for an underlying adversary A that attempts to win
in game Game 1. The reduction generates (initial) key derivation keys for all pairs of par-
ties, and authentication keys for all pairs of parties except i⇤ and j⇤. When responding
to queries by A regarding all other parties, the reduction will honestly provide messages
as specified in the protocol specification and the Ent-Auth game. For any query made
between oracles of parties i⇤ and j⇤, the reduction will use its OMac oracle and provide
the received value in its simulation for A. For example, to initialize initiator oracles
⇡j⇤ , the reduction checks the current state counter CTRj⇤i⇤ and calls OMac(CTRj⇤i⇤).
If A provides any value that it has not been given as an initialization query as input to a
NewSessionR query from i⇤ to j⇤, then the reduction sends this to its OVrfy oracle in the
SEUF-CMA-Q game. The simulation of Game 1 is perfect and any win for A directly
corresponds to a valid signature forgery, so we can write

Pr
⇥
GA

1
= 1

⇤
 AdvSEUF-CMA-Q

MAC (B14.1).

Summing these terms gives the bound in the statement of Lemma 15.

The proof of key indistinguishability is very similar to that of Lemma 12 and the
game hops proceed following the same strategy. Again we use a reduction to the KEvol
security of PRF.

Lemma 16 (Key-Ind of LP1). For any adversary A and (any fixed) entity authentication

adversary B14.1, the probability that A answers the Test challenge correctly can be

bounded by

AdvKey-Ind
⇧

(A)  AdvEnt-Auth
⇧

(B14.1) + n2
· q · AdvKEvolPRF (B14.2)

115

where all quantities are defined as stated in Theorem 14.

PROOF. Let b0 be the bit output by A in each game, and b be the bit sampled as part of
the Test query.

Game 0. This is the original Key-Ind game.

Pr
h
GKey-Ind
⇧

(A) = 1
i
= Pr

⇥
GA

0
= 1

⇤

Game 1. This game is the same as Game 0, except the challenger aborts and chooses
b0 $
 � {0, 1} if any oracle accepts maliciously.

Pr
⇥
GA

0
= 1

⇤
 Pr

⇥
GA

1
= 1

⇤
+ AdvEnt-Auth-R

⇧
(B14.1)

At this stage, the oracle to which A asks its Test query has a unique partner oracle with
a matching conversation.

Game 2. This game is the same as Game 1, except the challenger guesses the two
parties involved in the Test query via (i⇤, j⇤) $

 � [n] ⇥ [n], and additionally guesses
the counter value which identifies the key derivation key state of the session key in the
Test query. If A issues a Test(⇡s

i⇤) query with i⇤ 6= i or j⇤ 6= ⇡s

i⇤ .pid (for some s), or
the session key computed via Test(⇡s

i
), i.e. ski⇤j⇤ is not equal to KDF(kCTR

⇤

i⇤j⇤ ,"der"),
then the challenger aborts. Note that the challenger does not guess which oracle of i⇤
the Test query will be made to, only the counter value linked to the session key in that
query.

Pr
⇥
GA

1
= 1

⇤
 n2

· q · Pr
⇥
GA

2
= 1

⇤

At this stage, if the challenger has guessed correctly then the Test query will be asked
to an oracle after the key derivation counter has been advanced a fixed number of times,
and this oracle has a unique partner with a matching conversation.

Game 3. This game is the same as Game 2, except that when the challenger runs KDF
on the key derivation values used in the Test query, the challenger instead responds with
a random key from the session key space. Noticing this change results in an adversary
that is successful in the KEvol game for PRF, so we can write

Pr
⇥
GA

2
= 1

⇤
= Pr

⇥
GA

3
= 1

⇤
+ AdvKEvolPRF (B9.2).

The reduction B14.2 is detailed in Fig. 12. B14.2 initially guesses the target parties in the
Test session and the counter value associated with the Test session, as per the previous
game hop.

116

Reduction B14.2 playing GKEvol
KDF (B14.2)

1 : i
⇤
, j

⇤ $
 � [n]; CTR⇤ $

 � [q]

2 : for i, j2 [n] do

3 : CTRij = CTRji 0

4 : K
MAC
ij = K

MAC
ji

$
 � KMAC

5 : forn⇥ [n] \ (i⇤, j⇤) do

6 : k0
ij = k0

ji
$
 � KPRF

7 : output CTR⇤

8 : receive(sk0
, . . . , sk

CTR⇤
�1

, sk
⇤
, kCTR⇤+1)

9 : kCTR⇤+1
i⇤j⇤ kCTR⇤+1

10 : A
oracles

11 : When A calls Test(⇡s
i) do

12 : if i 6= i
⇤ or j

⇤
6= ⇡

s⇤
i⇤ .pid

13 : return Abort

14 : return ⇡
s
i .sk

15 : (i⇤, s⇤, b0) $
 � A(⇡s

i .sk)

16 : return b
0

NewSessionI(⇡s

i
, pid)

17 : ⇡
s
i .⇢ Initiator

18 : ⇡
s
i .↵ negotiating

19 : ⇡
s
i .pid pid // =j

20 : �1 Mac(KMAC
,CTRij)

21 : m
0
 CTRij ,�1

22 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

23 : return m
0

NewSessionR(⇡s

i
, pid,m)

24 : ⇡
s
i .⇢ Responder

25 : ⇡
s
i .↵ negotiating

26 : ⇡
s
i .pid pid

27 : do Send(⇡s
i ,m)

Corrupt(Pi, Pj)

28 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

29 : if CTRij  CTR⇤

30 : return Abort

31 : return kij

RevealKey(⇡s

i
)

32 : if ⇡s
i .↵ 6= accept

33 : return ?

34 : if (i, s) = (i⇤, s⇤)

35 : return Abort

36 : ⇡
s
i . exposed

37 : return ⇡
s
i .sk

Send(⇡s

i
,m) // pid =j

38 : Parse m as CTRji,�1

39 : if Vrfy(KMAC
ij k CTRji,�1) = 0

40 : return ?

41 : z1 CTRji � CTRij

42 : if z1 < 0

43 : return ?

44 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , z1)

45 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

46 : if CTRij < CTR⇤

47 : ⇡
s
i .sk sk

CTRij

48 : if CTRij = CTR⇤

49 : ⇡
s
i .sk sk

⇤

50 : s
⇤
 s

51 : CTRij CTRij + 1

52 : else

53 : ⇡
s
i .sk KDF(kCTR

ij ,"der")

54 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

55 : ⇡
s
i .↵ accept

Figure 12: Reduction B14.2 for the proof of Lemma 16. If at
any time A causes an oracle to accept maliciously, then B14.2 sim-
ply does Abort. B14.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·).117

In the event that B14.2 is in the ‘real’ version of its own game, where it receives a
genuine evaluation of the function KDF, B14.2 perfectly simulates Game 2 for A, and
otherwise it perfectly simulates Game 3.

At this stage, the Test query is asked on a key that is randomly chosen, and thus
independent of the protocol and the security game. Consequently,

Pr
⇥
GA

3
= 1

⇤
=

1

2
) Adv3

⇧
(A) = 0.

4.4.2 wSR of LP1

The wSR security of LP1 is achieved in a similar manner to LP2 and we proceed to prove
the theorem.

Theorem 17 (wSR of LP1). Let ⇧ be the one-message protocol in Fig. 11, built using

MAC = {KGen,Mac,Vrfy} and PRF, with n parties. Then for any adversary A against

the wSR security of ⇧ that makes a maximum of q queries that initiate new sessions for

each party (with q < |CTR|), there exists an adversary B17 against the SEUF-CMA-Q
security of MAC such that

AdvwSR
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B17).

We now argue that LP1 obtains weak synchronization robustness (wSR). A proof of
wSR must argue that whatever the adversary does before the target protocol run occurs,
neither of the parties will abort during the target protocol run itself and both will arrive
at the same session key. Protocol LP1, like LP2 (Fig. 8), only has correctness when the
initiator’s counter is at least the size of the responder’s counter, i.e. CTRAB � CTRBA

— this inequality is guaranteed in our protocol by MAC security. By inspection, if an
adversary forges a MAC on CTRAB for some CTRAB larger than the current value of
CTRBA and delivers this MAC as part of a protocol message to an oracle of B, then
any subsequent protocol run will cause B to Abort and thus will be a winning target
protocol run for this adversary.

The formal proof is below, but here we outline the proof idea. We first define an event
E17 that is triggered if the adversary in the wSR game forges a MAC, i.e. produces a
message-tag pair that verifies correctly and that it has not seen before, and the challenger
aborts if this occurs: bounding this event is of course straightforward. Then, we must
argue that if a MAC forgery has not occurred then there are in fact no viable routes to
victory in the wSR game. To see this, note that for the (uninterrupted) target session, if
z1 = CTRAB � CTRBA � 0 then B will always catch up to the counter value of A
(i.e. advance by z1 steps) and both parties will compute a session key for counter value
CTRAB . Thus to conclude, we just need to show that, if a forgery has not occurred, it

118

is not possible for the adversary to force CTRAB < CTRBA. Every time the adversary
creates a new initiator session, the initiator’s counter is incremented by 1, whereas B
can advance an arbitrary number of times to catch up to (what B thinks is) A’s current
counter state. Since the MAC includes party identification information and the initiator’s
counter value, in the absence of MAC forgeries the adversary cannot produce a valid
protocol message with verifying MAC for any counter larger than the ones that it has
seen as a result of genuine invocations of new protocol sessions.

PROOF. We proceed using a sequence of games.

Game 0. This is the original wSR game.

Pr
⇥
GwSR
⇧

(A) = 1
⇤
= Pr

⇥
GA

0
= 1

⇤

Game 1. This game is the same as Game 0 except that we define an event E17, that
is said to occur if the adversary successfully forges a MAC while it is running, and the
challenger aborts if E17 occurs.

Pr
⇥
GA

0
= 1

⇤
= Pr

⇥
GA

1
= 1

⇤
+ Pr [E17]

We now bound the probability that E17 occurs. We construct a reduction B17 to the
SEUF-CMA-Q security of MAC with a verification oracle. First, the reduction guesses
which parties will be involved in the forgery that triggers E17, and then simulates the
environment of Game 0. To do this, B17 must select (initial) key derivation keys from
the appropriate keyspace and randomly pick MAC keys for all pairs of parties except
for the guessed parties i⇤ and j⇤. It is then easy to simulate all queries to the parties’
oracles, except communication between the guessed pair. Note that this choice of parties
involved in the forgery is independent of the parties that the underlying adversary A will
eventually output for the target protocol run.

For any query to an oracle of party i⇤ with pid = j⇤ or an oracle of j⇤ with pid = i⇤,
the reduction needs to forward queries to its own MAC and verification oracles. However
note that B17 knows the key derivation keys even for these parties, so responding to
queries is straightfoward except for its calls to OMac and OVrfy. The full reduction is
detailed in Fig. 13.

Pr [E17]  n2
· AdvSEUF-CMA-Q

MAC (B17)

At this point, the adversary cannot win via MAC forgery.
A win can be obtained if either party in the target session aborts, or if the parties

compute different keys. If the target session begins with CTRAB � CTRBA, then
the parties will always compute the same key via skAB KDF(kCTR

AB
,"der"), so

we only need to argue that the adversary cannot force the state CTRBA > CTRAB

119

without forging the MAC. Note that every intiator session advances its counter (and
thus key state) exactly once, while responder sessions (oracles) can advance an arbitrary
number of times. However, the responder only advances if it has received and accepted
a protocol message. For the responder to advance without the initiator having done
so, the adversary must deliver a valid message to the responder without having called
NewSessionI. This message must also have a counter value CTR0

AB
that is greater than

CTRAB (the actual counter value of A with respect to B, and a valid MAC. Producing
such a message that will be processed by B requires it to have a valid MAC on CTR0

AB
.

Since we assume that the adversary does not produce a MAC forgery it must have seen
this message before, which means it must have been output by a NewSessionI query, and
we have a contradiction. This concludes the proof.

5 Non-Linear Key Evolution

In the previous section, we have considered protocols that deploy a linear key evolving
mechanism. We have seen that the linearity of these mechanisms has significant down-
sides when the protocol runs multiple times in parallel between the same two parties.
Especially interleaving of messages might cause all but one protocol execution to abort,
which is an undesirable behavior.

In this section, we present a protocol that uses puncturable pseudorandom functions
(PPRFs) as a “non-linear” key evolution mechanism. We show that this protocol can es-
tablish many parallel sessions between two parties, while only requiring some additional
storage (logarithmic in the supported maximum number sessions) and computations (in
practice hash function evaluations logarithmic in the supported maximum number of
sessions).

5.1 Puncturable Pseudorandom Functions

We briefly recall the basic definition of puncturable pseudorandom functions (PPRF).
A PPRF is a special case of a pseudorandom function, where it is possible to compute
punctured keys, which do not allow evaluation on inputs that have been punctured. We
recall the definition of a PPRF and its security [SW14].

Definition 12 (PPRF). A puncturable pseudorandom function with key space KPPRF,
domain DPPRF, and range RPPRF consists of three probabilistic polynomial-time algo-
rithms PPRF = (Setup,Eval,Punct), which are described as follows:

• Setup(1�): This algorithm takes as input the security parameter � and outputs a
description of a key k 2 KPPRF.

120

• Eval(k, x): This algorithm takes as input a key k 2 KPPRF and a value x 2 DPPRF,
and outputs a value y 2 RPPRF, or a failure symbol ?.

• Punct(k, x): This algorithm takes as input a key k 2 KPPRF and a value x 2
DPPRF, and returns a punctured key k0 2 KPPRF.

Note that the puncturing procedure can also output an unmodified key (i.e. k0 = k).
This is for example reasonable if the procedure is called on an already-punctured value.

Definition 13 (PPRF Correctness). A PPRF is correct if for every subset {x1, . . . , xt} =
S ✓ DPPRF and all x 2 DPPRF \ S , it holds that

Pr


Eval(k0, x) = Eval(kt, x) :

k0
$
 � Setup(1�);

ki = Punct(ki�1, xi) for i 2 [t];

�
= 1.

The security experiment asks that an adversary cannot distinguish an evalution of a
real input (provided by the adversary) from a random output range element, even if the
adversary has access to an evaluation oracle and the key that results from puncturing on
the challenge input.

Definition 14 (PPRF Security). The advantage of an adversary A in the rand security
experiment Grand

PPRF(A) defined in Fig. 14 is

AdvrandPPRF(A) :=

����Pr
⇥
Grand
PPRF(A) = 1

⇤
�

1

2

���� .

5.2 PPRF-based Symmetric AKE

Intuition. The main idea of our PPRF-based protocol is to derive the session key via
an evaluation of the PPRF. That is, both parties share a PPRF evaluation key k, which
is used to derive session keys by computing Eval(k,NA) for some value NA (in our
protocols this will be a counter). After derivation of a session key, the PPRF key will
also be punctured at the value NA by computing k Punct(k,NA). Note that the new
key k cannot recompute Eval(k,NA) as it has been punctured for NA. This will be our
leverage to achieve forward security.

Additionally, the PPRF is an essential building block to achieve full synchronization
robustness in our protocols. Intuitively, the puncturing procedure of a PPRF does not
evolve its key “linearly” but rather enables fine-grained removal of evaluation capabili-
ties. This guarantees that every protocol run with some fresh value NA for Eval(k,NA)
will be completed successfully, even if other protocol runs with some value N0

A
6= NA

are executed in-between.

121

Our protocols. We present a one-message and a two-message protocol, based on
PPRFs. Both protocols have fixed roles, meaning the same party will always initiate
(and only this party is required to store the counter). The two-message protocol im-
plicitly authenticates both parties (and thus achieves mutual authentication), while the
one-message protocol inherently only achieves responder-only authentication (respon-
der authenticates initiator).

Another important aspect of our protocols is that they use counters to systematically
“exhaust” the PPRF. We will later discuss that this approach assists the efficiency of
tree-based PPRFs as discussed in Aviram et al. [AGJ19]. The number of session keys
that can be derived is equal to the size of the counter space.

5.3 PP2: a Two-Message Protocol with Fixed Roles

5.3.1 AKE-M of PP2

Theorem 18 (AKE-M of PP2). Let ⇧ be the two-message protocol in Fig. 15, built

using MAC = {KGen,Mac,Vrfy} and PPRF = (Setup,Eval,Punct) with n parties.

Then for any adversary A against the AKE-M security of ⇧ that makes a maximum of

q queries that initiate new sessions for each party (with q < |CTR|), there exists an

adversary B18.1 against the SEUF-CMA-Q of MAC and an adversary B18.2 against the

rand security of PPRF such that

AdvAKE-M
⇧

(A)  4n2
· AdvSEUF-CMA-Q

MAC (B18.1) + n2
· q · AdvrandPPRF(B18.2).

We form a bound for each of the three ways in which an adversary can break AKE
security, namely Ent-Auth-R, Ent-Auth-I and Key-Ind, and then sum these bounds.

There are two MAC security terms, for entity authentication of responder and ini-
tiator, and so 2 · AdvSEUF-CMA-Q

MAC (B18.1) bounds these two terms by fixing B18.1 to be
whichever of B18.1r and B18.1i has greater advantage.

Lemma 19 (Ent-Auth-R of PP2). For any adversary A, the probability that there exists

an oracle with ⇢ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-R
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B18.1r)

where all quantities are defined as stated in Theorem 18.

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game. We have

Pr
⇥
GEnt-Auth
⇧

(A) = 1
⇤
= Pr

⇥
GA

0
= 1

⇤
.

Note that that Theorem 18 requires that the adversary only initiates q < |CTR| sessions
(which can be guaranteed by choosing |CTR| exponential in the security parameter),

122

implying that the counter is never exhausted and thus, the initial protocol message sent
from initiator to responder is unique. This rules out the possibility of multiple oracles
with non-unique matching conversations accepting.

Game 1. In this game we guess which responder will be the first to accept maliciously
and its partner identity, and abort if this guess is wrong. The game is the same as Game 0
except that the challenger guesses (i⇤, j⇤) $

 � [n] ⇥ [n], and if an oracle ⇡s

i
(for some

s) accepts maliciously with ⇡s

i
.⇢ 6= Responder or i⇤ 6= i or j⇤ 6= ⇡s

i
.pid, then the

challenger aborts. We have

Pr
⇥
GA

0
= 1

⇤
= n2

· Pr
⇥
GA

1
= 1

⇤
.

We conclude our reduction by constructing a reduction B18.1r that is playing against
the SEUF-CMA-Q security of MAC that simulates the environment for an underlying
adversary A that attempts to win in game Game 1. Note that in Game 1, the only way
that an adversary can win without an abort occurring is if it makes a responder oracle (of
party i⇤) accept maliciously, and no initiator oracle (of party j⇤) has a matching conver-
sation. To do this, it must initialize an initiator oracle, resulting in some initial protocol
message, and then provide a different message to the responder oracle that causes the
responder oracle to accept. (If the messages were not different and the adversary for-
warded the genuine initial message, then the conversations would match.)

The reduction generates (initial) key derivation keys for all pairs of parties, and au-
thentication keys for all pairs of parties except i⇤ and j⇤. When responding to queries by
A regarding all other parties, the reduction will honestly provide messages as specified
in the protocol specification and the Ent-Auth game. For any query made between ora-
cles of parties i⇤ and j⇤, the reduction will use its OMac oracle and provide the received
value in its simulation for A. For example, to initialize initiator oracles ⇡j⇤ , the reduc-
tion sets N := CTRj⇤i⇤ , increments CTRj⇤i⇤ := CTRj⇤i⇤ + 1, and calls OMac(j⇤ k N).
If A provides a value that it has not been given as an initialization query as input to a
NewSessionR query from i⇤ to j⇤, then the reduction sends this to its OVrfy oracle in the
SEUF-CMA-Q game. The simulation of Game 1 is perfect and any win for A directly
corresponds to a valid signature forgery, so we can write

Pr
⇥
GA

1
= 1

⇤
 AdvSEUF-CMA-Q

MAC (B18.1r).

Summing these terms gives the bound in the statement of Lemma 19.

The second proof is very similar, and considers malicious acceptance by an initiator,
i.e. as a result of a full protocol run of two messages. We only detail significant changes
and note that our term collection is exactly the same.

123

Lemma 20 (Ent-Auth-I of PP2). For any adversary A, the probability that there exists

an oracle with ⇢ = Initiator that accepts maliciously can be bounded by

AdvEnt-Auth-I
⇧

(A)  n2
· AdvSEUF-CMA-Q

MAC (B18.1i)

where all quantities are defined as stated in Theorem 18.

PROOF. Games 0 is exactly as in the proof of Lemma 19. Game 1 is as in the proof
of Lemma 19, except that now we are guessing which initiator oracle will be the first
to accept maliciously (and its intended partner), and so the abort occurs if a responder
oracle accepts maliciously. The loss of n2 incurred by selection of parties is the same.

Again, the next step is a reduction that plays against SEUF-CMA-Q of the MAC
scheme MAC. However, the reduction of course must behave slightly differently, since
it must send to its own OVrfy oracle any message that was called as a Send query for
the targeted initiator oracle, but which was not given as an output protocol message by a
NewSessionR query (to responder oracle j⇤). Further, we need to ensure that the forgery
attempt is on an oracle that does not have a matching conversation with any others: in the
proof of Lemma 19 this was straightforward since there was only one unique message
in question, but here the transcripts that we are interested in consist of (up to) two flows
between each oracle. This is just a matter of bookkeeping, and as before B18.1i forwards
all attempted forgeries to its own verification oracle, so any query that would have caused
A to win the entity authentication game (in the simulation that A is experiencing) also
corresponds to success in the game that B18.1i is playing.

Lemma 21 (Key-Ind of PP2). For any adversary A and (any fixed) entity authentication

adversary A18.2, the probability that A answers the Test challenge correctly can be

bounded by

AdvKey-Ind
⇧

(A)  AdvEnt-Auth
⇧

(A18.2) + n2
· q · AdvrandPPRF(B18.2)

where all quantities are defined as stated in Theorem 18.

PROOF. Let b0 be the bit output by A in each game, and b be the bit sampled as part of
the Test query.

Game 0. This is the original Key-Ind game. We have

Pr
h
GKey-Ind
⇧

(A) = 1
i
= Pr

⇥
GA

0
= 1

⇤
.

Game 1. This game is the same as Game 0, except the challenger aborts and chooses
b0 $
 � {0, 1} if any oracle accepts maliciously. We have

Pr
⇥
GA

0
= 1

⇤
 Pr

⇥
GA

1
= 1

⇤
+ AdvEnt-Auth

⇧
(A21).

124

At this stage, the oracle to which A asks its Test query has a unique partner oracle
with a matching conversation. (Recall that we only consider adversaries that terminate
with valid outputs, and further if A does anything that would trigger a trivial loss in the
original Key-Ind game then it loses in all games in this proof.)

Game 2. This game is the same as Game 1, except the challenger guesses (i⇤, j⇤, s⇤) $
 �

[n] ⇥ [n] ⇥ [q], and if A issues a Test(⇡s

i
) query with (i⇤, s⇤) 6= (i, s) or j⇤ 6= ⇡s

⇤

i⇤ .pid
then the challenger aborts. We have

Pr
⇥
GA

1
= 1

⇤
= n2

· q · Pr
⇥
GA

2
= 1

⇤
.

Now ⇡s
⇤

i⇤ is the oracle to which the Test query will be asked, and this oracle has unique
partner ⇡t

⇤

j⇤ with a matching conversation.

Game 3. In this game, the challenger responds to the Test query with a random ele-
ment of KPPRF, the output space of PPRF.

We construct a reduction B18.2, detailed in Fig. 16 that runs an adversary that at-
tempts to distinguish Game 3 from Game 2, while B18.2 is playing the rand game.

Pr
⇥
GA

2
= 1

⇤
= Pr

⇥
GA

3
= 1

⇤
+ AdvrandPPRF(B18.2)

If b = 1 in the rand game then B18.2 perfectly simulates Game 2 for A, while if
b = 0 in the rand game then B18.2 perfectly simulates Game 3 for A.

The presentation in Fig. 16 is given for clarity, and omits a number of bookkeeping
tasks performed by B18.2, such as managing and updating execution state values, partner
identifiers, session key freshness values, security bit values and transcripts for all oracles.
Further, if A makes an invalid query, such as a Send query to an oracle that has already
entered ↵ 2 {accept, reject} then B18.2 replies with ?. Likewise if the adversary
submits a Test query to an oracle that has not entered into an accept state or either
it or its partner were corrupted before acceptance occurred, then B18.2 will do Abort.
Recall that since the MAC keys do not update, KMAC

ij
= K

MAC
ji

throughout, while the key
derivation keys kij and kji initially start as the same value but may differ as the protocol
progresses.

In Game 3 the adversary’s advantage of winning is zero, since a Test query will
always return a random key that is independent of the protocol,

Pr
⇥
GA

3
= 1

⇤
= 0.

125

5.3.2 SR of PP2

We will now prove that PP2 achieves full synchronization robustness (SR). Intuitively
we want to show that any adversary, making arbitrary message delivery queries between
any of the parties (and their session oracles), cannot cause an adversarially chosen but
honestly executed target protocol run to break down.

The robustness proof essentially needs three arguments: 1) the adversary cannot
forge protocol messages without breaking the security of the MAC, 2) replaying mes-
sages from the target protocol run to other oracles is not beneficial to the adversary, and
3) the correctness of the PPRF ensures that interleaving queries with nonce values dif-
ferent to the one used in the target session will not influence the successful computation
of a session key in the target session.

Theorem 22 (SR of PP2). Let ⇧ be the two-message protocol in Fig. 15, built using

MAC = {KGen,Mac,Vrfy} and PPRF, with n parties. Then for any adversary A

against the SR security of ⇧ that makes a maximum of q queries that initiate new sessions

for each party (with q < |CTR|), there exists an adversary B22 against the SEUF-CMA-
Q of MAC such that

AdvSR
⇧
(A)  n2

· AdvSEUF-CMA-Q
MAC (B22).

PROOF. We proceed using a sequence of games.

Game 0. This is the original SR game. We have

Pr
⇥
GSR
⇧
(A) = 1

⇤
= Pr

⇥
GA

0
= 1

⇤
.

Note that that Theorem 22 requires that the adversary only initiates q < |CTR| sessions
(which can be guaranteed by choosing |CTR| exponential in the security parameter),
implying that the counter is never exhausted and thus, the value N⇤ contained in the first
protocol message is unique.

Game 1. This game is the same as Game 0 except that we define an event E22, that
is said to occur if the adversary successfully forges a MAC while it is running, and the
challenger aborts if E22 occurs. We have

Pr
⇥
GA

0
= 1

⇤
= Pr

⇥
GA

1
= 1

⇤
+ Pr [E22] .

We now bound the probability that E22 occurs. We construct a reduction B22 to the
SEUF-CMA-Q security of MAC with a verification oracle. First, the reduction guesses
which parties will be involved in the forgery that triggers E22, and then simulates the
environment of Game 0. To do this, B22 must select (initial) PPRF keys from the ap-
propriate keyspace and randomly pick MAC keys for all pairs of parties except for the

126

guessed parties i⇤ and j⇤. It is then simple to simulate all queries to oracles of parties
except communication between the guessed pair. For any query to an oracle of party i⇤

with pid = j⇤ or an oracle of j⇤ with pid = i⇤, the reduction needs to forward queries
to its own MAC and verification oracles. The full reduction is detailed in Fig. 17.

We have
Pr [E22]  n2

· AdvSEUF-CMA-Q
MAC (B22).

Game 2. This game is the same as Game 1 except that we add an additional require-
ment to its winning condition: the adversary may not issue queries to interrupt the target
protocol execution between ⇡s

i
and ⇡s

j
. Note that this is the additional winning condition

required by the weak synchronization robustness experiment. We claim

Pr
⇥
GA

1
= 1

⇤
= Pr

⇥
GA

2
= 1

⇤
.

To prove the above equality, we need to take a closer look at the sequence of queries
made by A. Let ⇡s

i
and ⇡s

j
be the oracles of the targeted protocol execution. That is, the

adversary needs to query

NewSessionI(⇡s

i
, j)! m1, NewSessionR(⇡t

j
, i,m1)! m2, Send(⇡s

i
,m2)

during its runtime, where m1 contains some nonce N⇤. While the adversary has to
make those three queries in order, it may interleave the queries with queries of different
protocol executions. We make the following three observations:

• Sending the message m1 to any oracle apart from ⇡t

j
will either make the oracle

abort without any modification to kij , kji or CTRij , or make the adversary im-
mediately lose. We distinguish three cases. (i) m1 is sent to an oracle ⇡t

0

j0 with
j 6= j0. In this case the MAC cannot be verified and that oracle will abort with-
out any modification to kij , kji or CTRij . (ii) m1 is sent to an oracle ⇡t

0

j
with

t0 6= t before it is sent to ⇡t

j
. In this case the oracle ⇡t

0

j
would accept the mes-

sage, however, the adversary is now unable to output its intended oracles, since
the transcripts involve a message that was sent earlier. (iii) m1 is sent to an oracle
⇡t

0

j
with t0 6= t after it was sent to ⇡t

j
. In this case ⇡t

0

j
will abort after receiving

m1 (xB = ? since ⇡t

j
already computed kji Punct(kji,N⇤)), without any

modification to kji.

• Sending the message m2 to any oracle apart from ⇡s

i
will make the oracle abort

without any modification to kij , kji or CTRij . We distinguish two cases. (i) m2 is
sent to an oracle ⇡s

0

i0 with i 6= i0. In this case the MAC cannot be verified and that
oracle will abort without any modification to kij , kji or CTRij . (ii) m2 is sent to
an oracle ⇡s

0

i
with s0 6= s. In this case the uniqueness of N⇤ guarantees that the

MAC verification will fail and the oracle will abort without any modification to
kij or CTRij .

127

• Note that the adversary may not ‘replace’ m1 or m2 in the target protocol run as
this would immediately result in a loss for A, as the target protocol run would not
consist of an honest protocol run anymore.

We conclude that sending m1 or m2 to any oracles apart from A’s respective target
oracles will either have no impact on the keys of the target parties or the counter CTRij

and thus have no impact on the target protocol run, or make the target run ineligible in
the SR game.

It now remains to show that the adversary cannot use any queries of different protocol
runs to win the robustness experiment. We do this by “isolating” queries made during the
queries related to the target protocol run. We start with the observation that any queries
related to protocol runs with parties i0 6= i and j0 6= j does not have any influence over
the target protocol run. Hence, the adversary does not gain any advantage issuing those
queries in a way that interleaves with the target protocol run.

At this point, we need to consider the remaining possible queries for any oracle ⇡s
0

i

with s0 6= s or ⇡t
0

j
with t0 6= t, which can be interleaved with the target protocol run. The

adversary gains an advantage if it is capable of modifying the global session variables,
here (kij , kji, KMAC

ij
= K

MAC
ji

,CTRij), in such a way that the target protocol run aborts.
We show that there is no such possible query that influences the outcome of the target
session by a case distinction:

NewSessionI queries. Any NewSessionI query will cause the counter CTR of the ini-
tiator i to be incremented. However, since the counter is only relevant during the
generation of the first protocol message, and since the initial message m1 of the
target run has already been generated, this has no impact on the target protocol
run.

NewSessionR queries. Any NewSessionR query for ⇡t
0

j
with t0 6= t will either result in

the receiving oracle aborting the protocol run (either due to an invalid MAC or a
replayed first protocol message), or in puncturing kBA at some position N. Since
all values of N are unique and the adversary cannot re-use the first message of the
target run m1, the adversary cannot cause a puncturing operation on the value N⇤

contained in the target protocol run. The correctness of the PPRF then guarantees
that a consistent evaluation for N⇤ is possible as long as only values N 6= N⇤ have
been punctured.

Send queries. Any Send query for ⇡s
0

i
with s0 6= s, if it does not abort due to an invalid

MAC, will puncture kij (or another key belonging to i, though this does not assist
the adversary) at some position N. Any oracle ⇡s

0

i
with s0 6= s will always punc-

ture the PPRF key for some value N, which is not equal to the value N⇤ contained
in the target session. This is ensured by the uniqueness of the counter during the
adversary’s runtime and by the session storing its respective value N during initial-
ization. Hence, only the target initiator oracle ⇡s

i
is able to puncture the PPRF key

128

for the value N⇤. The correctness of the PPRF then guarantees that a consistent
evaluation for N⇤ is possible as long as only values N 6= N⇤ have been punctured.

We have now exhausted all possible options for the adversary to cause a disturbance
of the target protocol run, either via re-using values of the target protocol run before it
is concluded, or via interleaving any other protocol message during the target protocol
run. Both of which yield no advantage for the adversary. We hence have

Pr
⇥
GA

1
= 1

⇤
= Pr

⇥
GA

2
= 1

⇤
.

Bounding the advantage of A. It remains to bound the adversary’s advantage in
Game 2. Recall that 1) the adversary can now only execute a complete protocol run
between the target session, which has full matching transcripts and is not interrupted
by any other queries. Furthermore, for any protocol run between two fixed parties, the
value N⇤ is unique, which ensures that for any protocol run, the PPRF key remains not
punctured at N⇤. In this case, the correctness of PP2 ensures that the target protocol runs
will not abort and, in particular, will successfully derive the same session key. We get

Pr
⇥
GA

2
= 1

⇤
= 0.

5.4 PP1: a One-Message Protocol with Fixed Roles

In Figure 18 we give a one-message protocol that uses a PPRF in a very similar way
to our two-message protocol. Here we only get one-sided entity authentication, but the
proofs are very similar to the ones for the two-message protocol.

129

Initiator Responder

(kAB , K
MAC

,CTR) (kBA, K
MAC)

. .
NA CTR

�1 Mac(KMAC
,NA) NA,�1

CTR CTR+ 1 If Vrfy(KMAC
,NA,�1) = 0

xA Eval(kAB ,NA) Abort

if xA = ? xB Eval(kBA,NA)

Abort if xB = ?

skAB xA Abort

kAB Punct(kAB ,NA) skAB xB

kBA Punct(kBA,NA)

Figure 18: One-message symmetric AKE protocol that tolerates concurrent sessions,
using a Puncturable PRF PPRF = (Setup,Eval,Punct).

5.4.1 AKE-R of PP1

Theorem 23 (AKE-R of PP1). Let ⇧ be the one-message protocol in Fig. 18, built

using MAC = {KGen,Mac,Vrfy} and PPRF = (Setup,Eval,Punct) with n parties.

Then for any adversary A against the AKE-R security of ⇧ that makes a maximum of

q queries that initiate new sessions for each party (with q < |CTR|), there exists an

adversary B23.1 against the SEUF-CMA-Q of MAC and an adversary B23.2 against the

rand security of PPRF such that

AdvAKE-R
⇧

(A)  2n2
· AdvSEUF-CMA-Q

MAC (B23.1) + n2
· q · AdvrandPPRF(B23.2).

The Ent-Auth-R analysis is essentially the same as in Lemma 19 and leads to the
same term collection, since in PP1 the responder performs the same notable actions as
in PP2 (the creation of the second protocol message is not necessary).

Proving Key-Ind is also similar to that of Lemma 21, leading to the same term collec-
tion. The final reduction is slightly more straightforward than B18.2 since the only Send
queries that B23.2 needs to deal with are those that are part of NewSessionR queries.

5.4.2 SR of PP1

Theorem 24 (SR of PP1). Let ⇧ be the two-message protocol in Fig. 18, built using

MAC = {KGen,Mac,Vrfy} and PPRF, with n parties. Then for any adversary A

against the SR security of ⇧ that makes a maximum of q queries that initiate new sessions

130

for each party (with q < |CTR|), there exists an adversary B24 against the SEUF-CMA-
Q of MAC such that

AdvSR
⇧
(A)  n2

· AdvSEUF-CMA-Q
MAC (B24).

PROOF. The strategy for this proof is very similar to that of Theorem 22, and the term
collection is the same: only the reduction logic is different (since there are no second
protocol messages to deal with). The reduction B24 is detailed in Fig. 19. Note that
for one-message protocols, there are no Send queries that were not initially called by
NewSessionR, since those queries will always result in the oracle going to state accept
or reject (in other words, an oracle cannot ever be negotiating at the point an adver-
sary makes a query). However, formatting is maintained to provide easier comparison
with reduction B22.

5.5 Instantiation

It remains to discuss how PP2 can be instantiated with a PPRF and what impact the
PPRF has on its efficiency. A promising candidate is the Goldreich–Goldwasser–Micali
PRF [GGM86], which can be transformed to a PPRF [BW13, KPTZ13, BGI14]. We
give an intuitive explanation of the construction and refer the reader to [AGJ19] for a
more detailed description and analysis. This construction is especially suitable, as both
the PPRF evaluation and puncturing are solely based on hash function evaluations in
practice.

Intuition. The tree-based PPRF uses two functions H0 and H1 both mapping from
{0, 1}� to {0, 1}�. For every input x 2 {0, 1}� of the PPRF, the binary representation
of x prescribes the sequence in which H0 and H1 have to be repeatedly applied to x. For
example, Eval(01) = H1(H0(x)). Note that the evaluation of x corresponds to a path
through a binary tree, where each bit in x tells you whether to take a “left” or “right”
path. The result of an evaluation always corresponds to a leaf in the binary tree.

The initial PPRF key consists of the root node, which is initialized during key gen-
eration as a randomly chosen string. To puncture values (i.e., to puncture leaves of the
tree), we precompute and store all nodes on the co-path between the root and the leaf,
before deleting all parent nodes (including the root node) of the leaf. Note that this
procedure can be repeated for any of the leaves and note that it satisfies all puncturing-
relevant properties (i.e., re-computation of Eval(x) is not possible but the correctness of
the PPRF remains intact).

Memory Consumption. We briefly discuss the memory consumed by the PPRF dur-
ing the lifetime of PP2 (and PP1). First, note that the PPRF-based protocols deploy

131

counters, which (if all messages are delivered in sequence) ensure a systematic punctur-
ing from the leftmost leaf to the rightmost leaf of the binary tree. This yields the need
to to store at most log(|CTR|) tree nodes (i.e., at most one node per layer of the tree)
at any point in time. For C concurrent sessions, this bound increases to a maximum of
C · log(|CTR|) tree nodes.

The analysis gets slightly more difficult if an adversary actively drops protocols mes-
sages. Each dropped message will either cause the initiator or both parties to not punc-
ture at some position. One approach to tame the memory consumption in this case,
would be to always puncture on all values which are smaller than CTR � C.1 As we
never expect more than C sessions in parallel, this reduces additional memory caused
by lost messages. In this case, the memory consumption is again upper-bounded by
C · log(|CTR|) tree nodes.

Finally, note that in the one-message protocol PP1 (Sec. 5.4) the initiator always
punctures strictly in order and thus has to store at most log(|CTR|) tree nodes. This may
be particularly useful in an application where many low-end devices communicate with
a central server.

Case Study. To provide some intuition on how efficient our PPRF-based protocols
are, we present a brief toy example. Consider a sensor device that commences com-
munication with a central hub on average six times per hour, with an expected life-
time of 15 years. We can upper bound the expected number of sessions |CTR| by
220 (since 6 · 24 · 365 · 15 ⇡ 219.6), so an instantiation of the GGM-based PPRF
with H0 and H1 as the left and right halves of SHA-256 outputs respectively (a tree
node thus has size 16 bytes), produces a punctured key with size upper-bounded by
log(|CTR|) · 16 · C = 320 · C bytes. (More generally, |CTR| = 264 should suffice for
any conceivable application, in this case the upper bound on the key size is 1024 · C
bytes.)

For computation, in the worst case log(|CTR|) = 20 SHA computations are required
per evaluation/puncturing operation, and fewer on average (this depends on the position
in the tree; some puncture operations require no computations but only a deletion).

1Interestingly, the tree-based PPRF can puncture multiple values in one go by “chopping off” whole
branches of the tree, instead of puncturing all values one after another.

132

Reduction B17 playing GSEUF-CMA-Q
MAC (B17)

1 : i
⇤
, j

⇤ $
 � [n]

2 : for i, j2 [n] do

3 : kCTR
ij = kCTR

ji
$
 � KPRF

4 : forn⇥ [n] \ (i⇤, j⇤) do

5 : K
MAC
ij = k

j,i
MAC

$
 � KMAC

6 : CTRij = CTRji 0

7 : A
oracles

NewSessionI(⇡s

i
, pid)

8 : ⇡
s
i .⇢ Initiator

9 : ⇡
s
i .↵ negotiating

10 : ⇡
s
i .pid pid // = j

11 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

12 : �1 call OMac(CTRij)

13 : else

14 : �1 Mac(KMAC
ij ,CTRij)

15 : m
0
 CTRij ,�1

16 : return m
0

17 : ⇡
s
i .sk KDF(kCTR

ij ,"der")

18 : ⇡
s
i .↵ accept

19 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

NewSessionR(⇡s

i
, pid,m)

20 : ⇡
s
i .⇢ Responder

21 : ⇡
s
i .↵ negotiating

22 : ⇡
s
i .pid pid

23 : do Send(⇡s
i ,m)

Send(⇡s

i
,m) // pid =j

24 : Parse m as CTRji,�1

25 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

26 : b call OVrfy(CTRji,�1)

27 : if b = 0

28 : return ?

29 : else

30 : if Vrfy(KMAC
,CTRij ,�1) = 0

31 : return ?

32 : if ⇡s
i .⇢ = Initiator

33 : return ?

34 : z1 CTRji � CTRij

35 : if z1 < 0

36 : return ?

37 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , z1)

38 : ⇡
s
i .sk KDF(kCTR

ij ,"der")

39 : ⇡
s
i .↵ accept

40 : kCTR
ij ,CTRij Advnc(kCTR

ij ,CTRij , 1)

Figure 13: Reduction B17 for the proof of Theorem 17. B17 provides A with access to
oracles = NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

133

Grand
PPRF(A)

k
$
 � Setup(1�)

b
$
 � {0, 1}; Q := ;

x
⇤ $
 � A

OEval(·)(1�)

y0
$
 � RPPRF; y1 Eval(k, x⇤)

k Punct(k, x⇤)

b
⇤ $
 � A(k, yb)

return 1 if b = b
⇤ and x

⇤
/2 Q

return 0

OEval(x)

y Eval(k, x)

Q := Q [{x}

k Punct(k, x)

return y

Figure 14: The rand security experiment for puncturable PRF PPRF.

Initiator Responder

(kAB , K
MAC

,CTR) (kBA, K
MAC)

. .
NA CTR

�1 Mac(KMAC
, A k NA) NA,�1

CTR CTR+ 1 if Vrfy(KMAC
, A k NA,�1) = 0

Abort

xB Eval(kBA,NA)

if xB = ?

Abort

�2 Mac(KMAC
, B k NA)�2

if Vrfy(KMAC
, B k NA,�2) = 0 skAB xB

Abort kBA Punct(kBA,NA)

xA Eval(kAB ,NA)

if xA = ?

Abort

skAB xA

kAB Punct(kAB ,NA)

Figure 15: A symmetric AKE protocol PP2 that tolerates concurrent sessions, using a
puncturable PRF PPRF = (Setup,Eval,Punct).

134

Reduction B18.2 playing Grand
PPRF(B18.2)

1 : i
⇤
, j

⇤ $ � [n]; s
⇤ $ � [q]

2 : CTRi = 0 for all i 2 {1, . . . , n}

3 : for i, j2 [n] do

4 : K
MAC
ij = K

MAC
ji

$ � KMAC

5 : CTRij 0

6 : forn⇥ [n] \ (i
⇤
, j

⇤
) do

7 : kij = kji
$ � KPPRF

8 : A
oracles

9 : When A calls Test(⇡s
i) do

10 : if (i, s) 6= (i
⇤
, s

⇤
) or j

⇤
6= ⇡

s⇤
i⇤ .pid

11 : return Abort

12 : submit N⇤
, receive (k

⇤
, y

⇤
)

13 : (i
⇤
, s

⇤
, b

0
) $ � A(y

⇤
)

14 : return b
0

NewSessionI(⇡s

i
, pid)

15 : ⇡
s
i .⇢ Initiator

16 : ⇡
s
i .↵ negotiating

17 : ⇡
s
i .pid pid

18 : N CTRij

19 : CTRij CTRij + 1

20 : �1 Mac(KMAC
ij , i k N)

21 : m
0
 N,�1

22 : returnm
0

NewSessionR(⇡s

i
, pid,m)

23 : ⇡
s
i .⇢ Responder

24 : ⇡
s
i .↵ negotiating

25 : ⇡
s
i .pid pid

26 : do Send(⇡s
i ,m)

RevealKey(⇡s

i
)

27 : if ⇡
s
i .↵ 6= accept

28 : return?

29 : if (i, s) = (i
⇤
, s

⇤
)

30 : return Abort

31 : ⇡
s
i . exposed

32 : return ⇡
s
i .sk

Corrupt(Pi, Pj)

33 : if i 2 {i
⇤
, j

⇤
} or j 2 {i

⇤
, j

⇤
}

34 : if ⇡
s⇤
i⇤ .↵ 6= accept

35 : return Abort

36 : return kij

Send(⇡s

i
,m, pid = j)

37 : Parse m as N,�1

38 : if Vrfy(KMAC
ij , j k N,�1) = 0

39 : return?

40 : if (i, j) 6= (i
⇤
, j

⇤
) _ (j

⇤
, i

⇤
)

41 : xi Eval(kij ,N)

42 : else // embed
43 : if Test has not occurred
44 : xi call OEval(N)

45 : else

46 : xi Eval(kij ,N)

47 : kij Punct(kij ,N)

48 : endif

49 : if xi = ?

50 : return?

51 : skij xi

52 : ⇡
s
i .↵ accept

53 : if ⇡
s
i .⇢ = Responder

54 : �2 Mac(KMAC
ij , i k N)

55 : m
0
 N,�2

56 : returnm
0

57 : if (i, j) 6= (i
⇤
, j

⇤
) _ (j

⇤
, i

⇤
)

58 : kij Punct(kij ,N)

59 : endif

Figure 16: Reduction B18.2 for the proof of Lemma 21. N⇤ is the initial nonce sent
in the transcript between ⇡s

⇤

i⇤ and ⇡t
⇤

j⇤ . If at any time A causes an oracle to accept
maliciously, then B18.2 simply does Abort. B18.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·).

135

Reduction B22 playing GSEUF-CMA-Q
MAC (B22)

1 : i
⇤
, j

⇤ $
 � [n]

2 : for i, j2 [n] do

3 : kij = kji
$
 � KPPRF

4 : CTRij 0

5 : forn⇥ [n] \ (i⇤, j⇤) do

6 : K
MAC
ij = K

MAC
ji

$
 � KMAC

7 : A
oracles

NewSessionI(⇡s

i
, pid)

8 : ⇡
s
i .⇢ Initiator

9 : ⇡
s
i .↵ negotiating

10 : ⇡
s
i .pid pid // = j

11 : N CTRij

12 : CTRij CTRij + 1

13 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

14 : �1 call OMac(i k N)

15 : else

16 : �1 Mac(KMAC
ij , i k N)

17 : m
0
 N,�1

18 : return m
0

NewSessionR(⇡s

i
, pid,m)

19 : ⇡
s
i .⇢ Responder

20 : ⇡
s
i .↵ negotiating

21 : ⇡
s
i .pid pid

22 : do Send(⇡s
i ,m)

Send(⇡s

i
,m) // pid =j

23 : Parse m as N,�1

24 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

25 : b call OVrfy(j k N,�1)

26 : if b = 0

27 : return ?

28 : if ⇡s
i .⇢ = Responder

29 : �2 call OMac(i k N)

30 : return m
0
 N,�2

31 : else // simulate

32 : if Vrfy(KMAC
ij , j k N,�1) = 0

33 : return ?

34 : if ⇡s
i .⇢ = Responder

35 : �2 Mac(KMAC
ij , i k N)

36 : return m
0
 N, i,�2

37 : skji Eval(kij ,Nj)

38 : kij Punct(kij ,N)

Figure 17: Reduction B22 for the proof of Theorem 22. B22 provides A with access to
oracles = NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

136

Reduction B24 playing GSEUF-CMA-Q
MAC (B24)

1 : i
⇤
, j

⇤ $
 � [n]

2 : for i, j2 [n] do

3 : kij = kji
$
 � KPPRF

4 : CTRij 0

5 : forn⇥ [n] \ (i⇤, j⇤) do

6 : K
MAC
ij = K

MAC
ji

$
 � KMAC

7 : A
oracles

NewSessionI(⇡s

i
, pid)

8 : ⇡
s
i .⇢ Initiator

9 : ⇡
s
i .↵ negotiating

10 : ⇡
s
i .pid pid // = j

11 : N CTRij

12 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤)

13 : �1 call OMac(N)

14 : else

15 : �1 Mac(KMAC
ij ,N)

16 : m
0
 N,�1

17 : CTRij CTRij + 1

18 : skji Eval(kij ,Nj)

19 : kij Punct(kij ,N)

20 : return m
0

NewSessionR(⇡s

i
, pid,m)

21 : ⇡
s
i .⇢ Responder

22 : ⇡
s
i .↵ negotiating

23 : ⇡
s
i .pid pid

24 : do Send(⇡s
i ,m)

Send(⇡s

i
,m, pid = j)

25 : Parse m as N,�1

26 : if ⇡s
i .⇢ = Initiator

27 : return Abort

28 : if (i, j) = (i⇤, j⇤) _ (j⇤, i⇤) // embed

29 : b call OVrfy(N,�1)

30 : if b = 0

31 : return ?

32 : else // simulate

33 : If Vrfy(KMAC
ij ,N,�1) = 0

34 : return ?

35 : skji Eval(kij ,Nj)

36 : kij Punct(kij ,N)

Figure 19: Reduction B24 for the proof of Theorem 24. B24 provides A with access to
oracles = NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

137

Acknowledgements. In addition to the funding bodies acknowledged on page 1, we
would also like to thank Luke Mather for numerous helpful comments.

References

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Se-
curity notions, proofs, and modularization for the Signal protocol. In Yu-
val Ishai and Vincent Rijmen, editors, Advances in Cryptology – EURO-

CRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Science,
pages 129–158, Darmstadt, Germany, May 19–23, 2019. Springer, Heidel-
berg, Germany.

[ACF20] Gildas Avoine, Sébastien Canard, and Loı̈c Ferreira. Symmetric-key authen-
ticated key exchange (SAKE) with perfect forward secrecy. In Stanislaw
Jarecki, editor, Topics in Cryptology – CT-RSA 2020, volume 12006 of Lec-

ture Notes in Computer Science, pages 199–224, San Francisco, CA, USA,
February 24–28, 2020. Springer, Heidelberg, Germany.

[AGJ19] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols
and efficient forward security for TLS 1.3 0-RTT. In Yuval Ishai and Vin-
cent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 117–150, Darm-
stadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[AGJ21] Nimrod Aviram, Kai Gellert, and Tibor Jager. Session resumption protocols
and efficient forward security for TLS 1.3 0-RTT. Journal of Cryptology,
34(3):1–57, 2021.

[ANS09] Retail Financial Services Symmetric Key Management Part 1: Using Sym-
metric Techniques (ANSI x9.24). Standard, American National Standards
Institute, New York, USA, 2009.

[BG20] Colin Boyd and Kai Gellert. A Modern View on Forward Security. The

Computer Journal, 08 2020. https://doi.org/10.1093/comjnl/
bxaa104.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014: 17th In-

ternational Conference on Theory and Practice of Public Key Cryptography,
volume 8383 of Lecture Notes in Computer Science, pages 501–519, Buenos
Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

138

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verifica-
tion queries in message authentication and authenticated encryption. Cryptol-
ogy ePrint Archive, Report 2004/309, 2004. https://eprint.iacr.
org/2004/309.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme.
In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume
1666 of Lecture Notes in Computer Science, pages 431–448, Santa Barbara,
CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

[BP10] Eric Brier and Thomas Peyrin. A forward-secure symmetric-key deriva-
tion protocol - how to improve classical DUKPT. In Masayuki Abe, ed-
itor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture

Notes in Computer Science, pages 250–267, Singapore, December 5–9, 2010.
Springer, Heidelberg, Germany.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, Advances

in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-

puter Science, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer,
Heidelberg, Germany.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribu-
tion. In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93,
volume 773 of Lecture Notes in Computer Science, pages 232–249, Santa
Barbara, CA, USA, August 22–26, 1994. Springer, Heidelberg, Germany.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptol-

ogy – ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer

Science, pages 280–300, Bengalore, India, December 1–5, 2013. Springer,
Heidelberg, Germany.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptog-
raphy. In Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume
2612 of Lecture Notes in Computer Science, pages 1–18, San Francisco, CA,
USA, April 13–17, 2003. Springer, Heidelberg, Germany.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Birgit Pfitzmann, editor, Ad-

vances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes

in Computer Science, pages 453–474, Innsbruck, Austria, May 6–10, 2001.
Springer, Heidelberg, Germany.

139

[CMA05] (NIST SP)-800-38B. recommendation for block cipher modes of operation:
The CMAC mode for authentication. Special Publication. Standard, NIST,
2005.

[CRSS20] Valerio Cini, Sebastian Ramacher, Daniel Slamanig, and Christoph Striecks.
CCA-secure (puncturable) KEMs from encryption with non-negligible de-
cryption errors. In Shiho Moriai and Huaxiong Wang, editors, Advances in

Cryptology – ASIACRYPT 2020, Part I, volume 12491 of Lecture Notes in

Computer Science, pages 159–190, Daejeon, South Korea, December 7–11,
2020. Springer, Heidelberg, Germany.

[DGJ+21] David Derler, Kai Gellert, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom filter encryption and applications to efficient forward-secret
0-RTT key exchange. Journal of Cryptology, 34(2):1–59, 2021.

[DJ15] Mohammad Sadeq Dousti and Rasool Jalili. FORSAKES: A forward-secure
authenticated key exchange protocol based on symmetric key-evolving
schemes. Adv. Math. Commun., 9(4):471–514, 2015.

[DJSS18] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom
filter encryption and applications to efficient forward-secret 0-RTT key ex-
change. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in

Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes

in Computer Science, pages 425–455, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

[GHJL17] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key ex-
change with full forward secrecy. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part III, vol-
ume 10212 of Lecture Notes in Computer Science, pages 519–548, Paris,
France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[GM15] Matthew D. Green and Ian Miers. Forward secure asynchronous messag-
ing from puncturable encryption. In 2015 IEEE Symposium on Security and

Privacy, pages 305–320, San Jose, CA, USA, May 17–21, 2015. IEEE Com-
puter Society Press.

[GMA07] (NIST SP)-800-38D. Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. Special Publication. Standard,
NIST, 2007.

140

[HMA08] FIPS 198-1. the Keyed-Hash Message Authentication Code (HMAC). Stan-
dard, NIST, 2008.

[ISO11] ISO/IEC 9797-1:2011. Message Authentication Codes (MACs) – part 1:
Mechanisms using a block cipher. Standard, International Organization for
Standardization / International Electrotechnical Commission, 2011.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the se-
curity of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 273–293, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[KMA16] (NIST SP)-800-185. SHA-3 derived functions: cSHAKE, KMAC, Tuple-
Hash and ParallelHash. Special Publication. Standard, NIST, 2016.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013:

20th Conference on Computer and Communications Security, pages 669–
684, Berlin, Germany, November 4–8, 2013. ACM Press.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman pro-
tocol. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 546–566, Santa
Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.

[LBdM07] Tri Van Le, Mike Burmester, and Breno de Medeiros. Universally com-
posable and forward-secure RFID authentication and authenticated key ex-
change. In Feng Bao and Steven Miller, editors, ASIACCS 07: 2nd ACM

Symposium on Information, Computer and Communications Security, pages
242–252, Singapore, March 20–22, 2007. ACM Press.

[LSY+14] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. On
the security of the pre-shared key ciphersuites of TLS. In Hugo Krawczyk,
editor, PKC 2014: 17th International Conference on Theory and Practice

of Public Key Cryptography, volume 8383 of Lecture Notes in Computer

Science, pages 669–684, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Heidelberg, Germany.

[SSS+20] Shifeng Sun, Amin Sakzad, Ron Steinfeld, Joseph K. Liu, and Dawu Gu.
Public-key puncturable encryption: Modular and compact constructions. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, ed-
itors, PKC 2020: 23rd International Conference on Theory and Practice of

141

Public Key Cryptography, Part I, volume 12110 of Lecture Notes in Com-

puter Science, pages 309–338, Edinburgh, UK, May 4–7, 2020. Springer,
Heidelberg, Germany.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th Annual

ACM Symposium on Theory of Computing, pages 475–484, New York, NY,
USA, May 31 – June 3, 2014. ACM Press.

142

Appendix C

Modular Design of
KEM-Based Authenticated
Key Exchange

143

Modular Design of KEM-Based
Authenticated Key Exchange

Colin Boyd Bor de Kock Lise Millerjord∗

NTNU – Norwegian University of Science and Technology, Trondheim, Norway.

colin.boyd@ntnu.no, bor.dekock@ntnu.no, lise.millerjord@ntnu.no

Abstract

A key encapsulation mechanism (KEM) is a basic building block
for key exchange which must be combined with long-term keys in or-
der to achieve authenticated key exchange (AKE). Although several
KEM-based AKE protocols have been proposed, KEM-based modu-
lar building blocks are not available. We provide a KEM-based au-
thenticator and a KEM-based protocol in the Authenticated Links
model (AM), in the terminology of Canetti and Krawczyk (2001).
Using these building blocks we achieve a set of generic AKE proto-
cols. By instantiating these with post-quantum secure primitives we
are able to propose several new post-quantum secure AKE protocols.

1 Introduction

Authenticated key exchange (AKE) is a fundamental tool for establishing
secure communications. An important component in the design of AKE
protocols is Di�e–Hellman (DH) key exchange, due to its versatility and
potential for providing security properties such as forward secrecy. Today
many real-world AKE protocols are based on DH implementations, typ-
ically in elliptic curve groups; examples include TLS, IPSec, WireGuard
and the generic Noise Framework.

∗Millerjord is supported by the Research Council of Norway under Project No.
288545. Author list in alphabetical order; see https://www.ams.org/profession/

leaders/culture/CultureStatement04.pdf

144

Modular Design of KEM-Based Authenticated Key Exchange

The looming threat of quantum computers has brought about an in-
creasingly pressing need to find post-quantum secure replacements for DH,
which itself is well known to be broken by Shor’s quantum algorithm for
finding discrete logarithms [BL17]. In the absence of many promising
candidates for a post-quantum secure direct DH replacement, designs for
post-quantum AKE have tended to make use of key encapsulation mecha-
nisms (KEM). This approach aligns well with the research literature where
many post-quantum candidate KEMs have been proposed and also with
the prominent NIST post-quantum cryptography competition [AAC+22]
which requests primitives of only two types, namely a KEM 1 or a digital
signature. Although DH can be framed as a KEM, DH has special prop-
erties which prevent KEMs from being used as a drop-in replacement for
DH. For example, DH has the property that two parties can generate their
DH shares completely independently; this cannot be achieved in general
with KEMs, but rather one party must wait for the other party’s input.

Achieving the authenticated part of AKE has traditionally been done
by applying a digital signature scheme on the messages of a key exchange
protocol, but authentication can also be achieved in di↵erent ways, which
can be advantageous for several reasons: for instance to achieve a speed-up
or use less memory, as other works have demonstrated [SSW20].

Although the NIST competition for post-quantum secure cryptogra-
phy (PQ or PQ-crypto) has in 2022 led to the standardization of several
KEMs, only the CRYSTALS-Dilithium signature scheme was standardized
along with an open call for more schemes to be proposed [AAC+22]. To
achieve authentication without depending on this one scheme is a desirable
property. One of the main motivations for our work is to be flexible in the
use of cryptographic primitives so that as the security of post-quantum
KEMs or signatures becomes better understood, and as new primitives
are designed, it is easy to swap in and out di↵erent ones.

1.1 Modular design of AKE

Over the past decade, several key exchange protocols using post-quantum
candidate KEMs have been proposed, both authenticated [DAL+17] and

1Note that in some documents of the NIST competition [AASA+20], KEM is used as
an abbreviation for key establishment mechanism but we stick to the traditional name
in cryptographic research.

145

Modular Design of KEM-Based Authenticated Key Exchange

unauthenticated [DXL12, Pei15, BCD+16]. Some of these protocols have
been proposed based on specific KEM constructions and the security
proofs (where available) relate to specific computational assumptions. These
are essential constructions for instantiating protocols using abstract prim-
itives, but when using specific constructions as the basis of security for
AKE there is a loss of cryptographic agility. Our goal in this work is to
design generic AKE protocols where we can be as flexible as possible with
regard to choice of specific KEM instantiations and how they are used.

Our protocol designs are based on the modular approach of Bellare,
Canetti and Krawczyk [BCK98, HBN06] (hereafter referred to as BCK98)
and Canetti and Krawczyk [CK01] (hereafter referred to as CK01). This
approach entails defining protocols which are secure in a world which is
ideally authenticated and then compiling these protocols with authentica-
tors to achieve protocols secure in a world where adversaries completely
control the network. A brief introduction to this modular approach is
given in Sec. 2.2.

A significant benefit of the modular approach is the ability to “mix-
and-match” di↵erent components and to use di↵erent concrete instances
of the same component within one protocol instantiation. This leads to a
plethora of di↵erent concrete protocols with varying performance charac-
teristics. For example, in our abstract protocol combining our KEM-based
ideal-world protocol with our KEM-based authenticator, choosing from a
collection of, say, five di↵erent concrete KEMs for each usage, leads to
53 di↵erent concrete protocols. Not all of these will be of independent
interest, but many will have distinctive properties.

We remark that there already exist several protocol designs which are
generic in the sense that they can use any specific (secure) instance of
di↵erent cryptographic primitives such as non-interactive key exchange
(NIKE), signatures and/or KEMs [FSXY12, BJS15, JKRS21]. However,
such designs do not allow generic mixing of di↵erent generic primitives
as can be done with the modular approach. For example, the modular
approach can be used to replace a digital signature authentication method
which a MAC-based method in the case that a pre-shared key is available
in a particular application.

While the motivation for this work comes from the goal of achiev-
ing post-quantum secure AKE, we note that there is no requirement to

146

Modular Design of KEM-Based Authenticated Key Exchange

use (only) post-quantum secure components in instantiations. Interim
solutions combining post-quantum secure ideal KEMs with conventional
established primitives for authentication, will lead to more e�cient AKEs
secure against active attackers in the short-term and post-quantum adver-
saries into the future. Furthermore, we can provide hybrid secure AKEs
which remain secure until both conventional and post-quantum secure
components are broken. By using signature combiners or KEM combin-
ers [BHMS17, GHP18, BBF+19] we can plug hybrid-secure primitives into
any of our generic constructions.

1.2 Contributions

We regard the following as the main contributions of this paper:

1. We develop a new KEM-based authenticator and prove its security
as a valid authenticator in the CK01 definition, relying on the es-
tablished CCA-security definition for KEMs.

2. We frame the well-known method of using an ephemeral KEM as
a DH replacement as a protocol in the authenticated-links model
(AM) of CK01 and prove its security in that model, relying on the
established CPA-security definition for KEMs.

3. We derive e�cient and secure generic AKE protocols which can be
instantiated with any appropriately secure KEMs and also matched
with other primitives such as signatures. Some of these generic pro-
tocols are completely new, allowing new instantiations of concrete
protocols.

1.3 Related work

In 2017, De Saint Guilhem, Smart and Warinschi [dSW17] presented a
generic transformation to convert any two-round forward-secret, but only
passively secure, key agreement protocol into a three-round authenticated
key agreement protocol. Recognising the value of avoiding signatures for
authentication in the post-quantum setting, their transformation makes
use of generic CCA-secure public key encryption and a secure MAC. While
the approach of De Saint Guilhem et al. has clear parallels with ours, they

147

Modular Design of KEM-Based Authenticated Key Exchange

rely on encryption rather than the often more e�cient notion of KEMs.
Moreover, they do not allow mixing of di↵erent authentication methods
as we do, nor provide KEM-based concrete passively secure protocols.
Furthermore, their proofs require a key derivation function modelled as a
random oracle. Interestingly, they dismiss the CK01 modular approach
stating that it necessarily results in increased number of rounds; below we
will explain why this is not the case.

Several recent works show that KEM-based approaches are suitable
for replacing signatures in real-world applications. The KEMTLS proto-
col of Schwabe, Stebila and Wiggers [SSW20] is for instance a complete
reworking of the TLS 1.3 handshake without using signatures, showing
that this would in theory require only half the bandwidth compared to
a classical approach — with additional improvements to be gained if the
public keys are exchanged in advance [SSW21]. Some of these theoretical
improvements turned out to be less impactful when looking at a real-world
implementation [CFS+21].

Using KEM as a building block for AKE is also done in some other
purpose-specific works: examples of this include Post-Quantum Noise
[ADH+22], FSXY [FSXY12] and Post-Quantum WireGuard [HNS+20].
These are generic in the sense that any suitable KEMs can be used, but
they do not allow the flexibility of di↵erent authenticators that we obtain.
Specifically, they do not provide re-usable and interchangable components
for passive security and for authentication.

There exist many formal security models for AKE, amongst which
several are incomparable [Cre11] in the sense that any one model is often
neither stronger nor weaker than another. The modular approach that we
use [CK01] achieves security in the well-established model known widely
as the CK-model. This encompasses fundamental security properties of
session key indistinguishability against active attackers who can obtain
non-target session keys and adaptively corrupt non-target parties. For-
ward secrecy is also captured. This model can be adapted [Kra05] if other
security properties, such as ephemeral key leakage, are desirable.

1.4 Outline

After presenting necessary definitions, Sec. 2 gives an overview of the CK01
modular design methodology, including definitions such as message trans-

148

Modular Design of KEM-Based Authenticated Key Exchange

mission (MT) and session key indistinguishability (SK security), which we
use extensively throughout this work. This also includes an explanation
of how to optimise compiled protocols securely through the application of
what we call compressed authenticators.

In Sec. 3 we define a new KEM-based MT-authenticator and prove it
is a valid authenticator as long as the underlying KEM is CCA-secure,
and define a new KEM-based AM protocol, ⇧ which we prove SK-secure.

We then apply compressed authenticators to the authentic messages in
⇧ which results in a 3-message protocol ⇧’ secure in the unauthenticated
links model (UM), in Sec. 4. By removing repeated message fields from
⇧’ and combining parallel messages in the same direction, we also obtain
e�cient generic UM-secure protocols in this section.

Finally, in Sec. 5, we compare the new protocols with existing KEM-
based protocols from other works, and examine concrete instantiations of
our generic protocols by plugging in concrete KEMs.

2 Background

The main goal of this section is to present the background necessary to
understand the modular approach of (Bellare), Canetti and Krawczyk
[BCK98, CK01]. This includes our method to optimise, in a rigorous way,
protocols obtained through the approach.

2.1 Basic definitions

We use the following standard definitions for KEM, MAC, signatures etc.
throughout the paper. These can be found in, for example, the textbook
of Katz and Lindell [KL14].

Definition 1. A key encapsulation mechanism (KEM) is a tuple of PPT
algorithms (Gen, Encap, Decap) such that:

1. The key generation algorithm Gen takes the security parameter 1n

and outputs a public-/private-key pair (sk, pk): (sk , pk) Gen(1n).

2. The encapsulation algorithm Encap takes as input a public key pk. It
outputs a ciphertext c and a key k 2 {0, 1}l(n): (c, k) Encap(pk).

149

Modular Design of KEM-Based Authenticated Key Exchange

3. The deterministic decapsulation algorithm Decap takes as input a
private key sk and a ciphertext c, and outputs a key k or the special
symbol ? denoting failure: k Decap(sk , c).

We require correctness from the KEM: If (sk , pk) Gen(1n) and
(c, k) Encappk (1

n), and k0 Decapsk (c), then k0 = k except with
negligible probability.

Furthermore we show the CPA (resp. CCA) indistinguishability ex-
periment(s) for KEMs.

Definition 2. The CPA resp. CCA indistinguishability experiment pro-
ceeds as follows:

1. The key generation algorithm is run: (pk , sk) Gen(1n).

2. The encapsulation algorithm is run: (c, k) Encap(pk), with k 2
{0, 1}n.

3. A uniform bit b 2 {0, 1} is chosen. If b = 0, set k0 = k. Otherwise,
if b = 1, choose a uniform k0 2 {0, 1}n.

4. The experiments outputs (pk , c, k0) to A.

A is also given access to a decapsulation oracle, Decapsk (·), but
cannot query the decapsulation oracle on the ciphertext c.

5. A outputs a bit b0. If b0 = b, A wins and the experiment outputs 1.
Otherwise, A loses and the experiment outputs 0.

The advantage of the adversary A in the CPA CCA experiment is
defined to be:

Adv
CPA CCA
KEM (A) = 2 ·

��Pr
⇥
b0 = b

⇤
� 1/2

�� .

Definition 3. A message authentication code or MAC consists of three
probabilistic polynomial-time algorithms (Gen,Mac,MacVer) such that:

150

Modular Design of KEM-Based Authenticated Key Exchange

1. The key-generation algorithm Gen takes as input the security param-
eter 1n and outputs a key k with |k| � n.

2. The tag-generation algorithm Mac takes as input a key k and a
message m 2 {0, 1}⇤, and outputs a tag t. Since this algorithm may
be randomized, we write this as t Mack(m).

3. The deterministic verification algorithm MacVer takes as input a
key k, a message m and a tag t. It outputs a bit b, with b = 1
meaning valid and b = 0 meaning invalid. We write this as b :=
MacVerk(m, t).

It is required that for every n, every key k and output by Gen(1n) and
every m 2 {0, 1}, it holds that MacVerk(m,Mac(m)) = 1.

Definition 4. The existential unforgeability under chosen message attacks
(EUF-CMA) experiment for MAC(Gen,Mac,MacVer) proceeds as follows:

1. A key is generated: k Gen(1n).

2. The adversary A gets oracle access to Mack(·). Let Q be the set of
all queries A made to the oracle. The adversary eventually outputs
(m, t).

3. A wins if and only if

(a) MacVerk(m, t) = 1, and

(b) m /2 Q.

In that case the experiment outputs 1. Otherwise, the experiment
outputs 0.

The advantage of the adversary A in the EUF-CMA experiment is defined
to be:

AdvEUF-CMA
MAC (A) = Pr

h
GEUF-CMA
MAC (A) = 1

i
.

Definition 5. A (digital) signature scheme is a tuple of three PTT-
algorithms (Gen, Sign, SigVer) such that:

1. The key generation algorithm Gen takes the security parameter 1n

and outputs a public-/private-key pair (sk, pk): (sk , pk) Gen(1n).

151

Modular Design of KEM-Based Authenticated Key Exchange

2. The signing algorithm Sign takes as input a private key sk and a
message m from some message space (that may depend on pk). It
outputs the signature � and we write this as � Signsk (m).

3. The deterministic verification algorithm SigVer takes as input a pub-
lic key pk, a message m and a signature �. It outputs a bit b, with
b = 1 meaning valid and b = 0 meaning invalid. We write this as
b := SigVerpk (m,�).

We require correctness from the scheme: If (sk , pk) Gen(1n) then, ex-
cept with negligible probability, SigVerpk (m, Signsk (m)) = 1.

For brevity we often denote the key generation algorithms from the various
primitives as Gen(), omitting the security parameter.

2.2 Canetti–Krawczyk modular design

Themodular approach, arising originally in a 1998 paper of Bellare, Canetti
and Krawczyk [BCK98], is to first define protocols secure against a lim-
ited adversary which can then be promoted to protocols secure against
a realistic adversary using a generic compiler. In the authenticated links
model (AM) the adversary is not permitted to fabricate messages, but can
otherwise control the network and deliver messages out of order or to dif-
ferent parties from those intended. Compilers, or authenticators, can be
applied to messages in an AM protocol to obtain protocols in the unau-
thenticated links model (UM) where the adversary can alter or fabricate
messages limited only by the available computational power.

In both the UM and AM, adversaries control the execution of proto-
cols by initiating parties and then invoking parties with available queries,
including with message inputs. (In Sec. 2.4 we describe the available ad-
versarial queries.) Parties respond to input messages by following the
protocol definition and to other queries as defined by the query. Each
party computes local output which is available to the adversary. The local
output includes protocol decisions, such as whether a message is accepted
(see Sec. 2.4 for details).

Bellare et al. [BCK98] provide a theorem showing that a secure pro-
tocol, ⇧AM, in the AM maps to a secure protocol in the UM, ⇧UM, if the
mapping is defined by a valid authenticator. An authenticator is valid if

152

Modular Design of KEM-Based Authenticated Key Exchange

an observer, or distinguisher, is unable to distinguish between the world
where an adversary A is interacting with the ⇧AM and the world where
an adversary U is interacting with the protocol ⇧UM. This is captured in
the notion of protocol emulation in Definition 7.

Definition 6. The AM-UM distinguishing experiment, GAM-UM-dist
⇧AM-⇧UM

(D) pro-
ceeds as follows:

1. A uniform bit b 2 {0, 1} is chosen. If b = 0, D will interact with A

and the AM protocol ⇧AM. Otherwise, if b = 1, D will interact with
U and the UM protocol ⇧UM.

2. To conclude the experiment, D will halt and output b0.

3. The experiment will output 1 if and only if b = b0.

We define the advantage of the distinguisher D to be

AdvAM-UM-dist
⇧AM-⇧UM

(D) = 2 ·

����Pr
h
GAM-UM-dist
⇧AM-⇧UM

(D) = 1
i
�

1

2

���� .

Definition 7. Let ⇧UM and ⇧AM be protocols in the UM and AM models
respectively. We say that ⇧UM ✏-emulates ⇧AM in unauthenticated net-
works if for any UM-adversary U interacting with ⇧UM, there exists an
AM-adversary A interacting with ⇧AM such that for any distinguisher D

playing the AM-UM distinguishing game,

AdvAM-UM-dist
⇧AM-⇧UM

(D)  ✏.

An authenticator is a specific type of protocol compiler transforming
one protocol into another. The modularity of the approach relies on the
observation that an authenticator will actually preserve protocol security
as we will see in Sec. 2.4.

Definition 8 ([BCK98]). An authenticator is a compiler, C, that takes
an AM protocol ⇧AM as input and outputs a UM protocol ⇧UM, such that
⇧UM emulates ⇧AM.

153

Modular Design of KEM-Based Authenticated Key Exchange

2.3 MT-authenticators

Defining an authenticator for any protocol, regardless of the number of
messages, seems at first a di�cult problem. To deal with this, BCK98
[BCK98] define a simpler notion of an MT-authenticator, designed to au-
thenticate a single arbitrary message. They also showed that repeated
use of a valid MT-authenticator is a valid authenticator, so that protocol
messages can be treated separately.

A bit more formally we define MT as a message transmission protocol
in authenticated networks that works as follows: when Pi is activated with
(Pj ,m), party Pi sends the message (Pi,Pj ,m) to party Pj and outputs
“Pi sent m to Pj”. Upon receiving (Pi,Pj ,m), Pj outputs “Pj received m
from Pi”. Note that the quoted outputs are local outputs of the parties
and are critical in proving proper emulation; however, when we later show
compiled protocols we omit mention of these local outputs.

AnMT-authenticator, �, is a protocol that emulatesMT in unauthenti-
cated networks. Given a sequence ofMT-authenticators, ⇤ = (�1,�2, . . . ,�t),
the derived protocol compiler, C⇤, uses the next MT-authenticator to au-
thenticate the next message. More precisely, given a protocol ⇧ in the AM
with t messages, m1,m2, . . . ,mt the protocol ⇧0 = C⇤(⇧) in the UM is
defined as follows. For each message, mk, sent in ⇧, �k is run to send the
same message from the same initiator to the same recipient. Whenever a
party, Pj , outputs “Pj received m from Pi” in �k, then ⇧ is activated at
Pj with message mk from Pi. If ⇤ is a sequence of t MT-authenticators
then C⇤ is an authenticator. We restate this in Thm. 1 and give a sketch
of the proof, which is given in full in [BCK98].

Theorem 1 ([BCK98]). Let ⇤ = (�1,�2, . . . ,�t) be a sequence of t MT-
authenticators so that each �k ✏-emulates MT. Then the compiler, C⇤,
will be an authenticator such that for any protocol ⇧ in the AM, C⇤(⇧)
(t · ✏)-emulates ⇧ in the UM.

Proof. Let ⇧ be an AM protocol. Let U be a UM-adversary interacting
with C⇤(⇧). A runs U on a simulated interaction. Action requests from
U to parties in the UM can be mimiced by A in the AM and A relays its
results back to U . The only problem with the simulation could occur in
the case that U specifies that a message is received by some party Pj from
some party Pi in the UM, but that message is not in the set of messages

154

Modular Design of KEM-Based Authenticated Key Exchange

waiting for delivery in the AM. But this can happen with probability
bounded by ✏. Such an event could occur for any of the t messages and so
the probability that the simulation is correct is at least (1� ✏)t � 1� t · ✏.
Finally, any observer will be able to distinguish between the run of ⇧ in
the AM and C⇤(⇧) in the UM with advantage at most ✏0 = t · ✏.

Note that although we have assumed that each MT-authenticator has
the same security level ✏, the theorem is still true if the MT-authenticators
have di↵erent security levels ✏1, ✏2, . . . , ✏t and we take ✏ = maxk(✏k). In
the cases we are interested in, we will always have t = 2.

An example of an MT-authenticator is the encryption-based authenti-
cator [BCK98] shown in Fig. 1, where NB denotes a nonce and (eA, dA) an
encryption-decryption keypair. This is a valid MT-authenticator as long
as the public key encryption used is CCA-secure and the MAC is secure.
The protocol can be optimized in various ways, as we will show later.

Encryption-based MT-authenticator [BCK98]

Alice Bob

“Alice sent m to Bob” m NB
$
 � {0, 1}n

N0

B Decrypt
dA
(c) m, c = Encrypt

eA
(NB)

m, ⌧ = MacN0
B
(m,B) If MacVerNB(⌧,m,B) = 1

“Bob received m from Alice”

Figure 1: Bob authenticates message m from Alice.

There exist several other MT-authenticators defined in the literature
including signature-based [BCK98], MAC-based [CK01] and password-
based [HBN06]. We show, in compressed form, the signature-based MT-
authenticator later (Fig. 9). The modular approach allows combination of
any MT-authenticator together with any AM-protocol, resulting in auto-
matically secure UM protocols. Therefore adding any new building block,
either an MT-authenticator or an AM-protocol, results in several new pro-
tocols of potential interest.

155

Modular Design of KEM-Based Authenticated Key Exchange

2.4 SK-security

SK-security is the AKE security notion of CK01 [CK01], capturing session
key indistinguishability and correctness of the protocol. To define this
notion we need to state the capabilities of the adversary and the indis-
tinguishability experiment. Each protocol run at a party A is associated
with a session identifier s. In the AM the value s is an input at the start
of a run to the initiator party. Later we will see that session identifiers
can be replaced by protocol messages as long as parties can verify that
no incomplete sessions between the same parties have the same session
identifier. The state of a session consists of the following information:

• status – whether or not the session is complete, aborted, or still in
progress;

• any ephemeral key material needed to complete the protocol;

• the session key, sk , if the protocol is completed and has not expired.

The global state of a party may include long-term authentication keys
pkA, skA. As in most AKE models, we do not explicitly model distribution
of long-term keys. Furthermore, we assume that long-term public keys
are immediately available to any party that needs them. This may be too
strong an assumption in some real-world protocols, such as TLS, and we
remark further on this issue when we examine concrete protocols in Sec. 5.

Definition 9 (Matching sessions [CK01]). The two sessions (A,B, s, role)
and (A0,B0, s0, role0) are matching if A = B0, B = A0 and s = s0.

The adversary may issue the following queries, subject to certain restric-
tions we will see later.

• NewSession(A,B, s, r): the adversary issues the NewSession query to
party A, specifying its intended partner B, the session identifier2 s,
and the role r (initiator or responder) of A in the session. A will
follow the protocol definition and may return an output message
intended for B.

2We remark that instantiation of session identifiers di↵ers between the models. In
UM, s can be blank as the session identifier need not be determined by the adversary.

156

Modular Design of KEM-Based Authenticated Key Exchange

• Send(A,B,m): represents activation of A by an incoming message m
(possibly including a session identifier) from party B. A will follow
the protocol and may reject, accept, or return an output message
intended for B.

• Corrupt(A): the adversary learns the whole state of A including any
long-term keys. The corruption event is recorded in the local output
of A. Subsequently A can never be activated but the adversary can
take the role of A in the protocol.

• RevealKey(A,B, s): the adversary learns the session key accepted in
the session s by A with partner B, if it exists. The reveal event is
recorded in the local output of A.

• RevealState(A,B, s): the adversary learns the state information as-
sociated with session s at A, such as ephemeral keys. The reveal
state event is recorded in the local output of A.

• Expire(A,B, s): if there is a completed session s at A with B then any
session key associated with that session is deleted from the memory
of A. The Expire event is recorded in the local output of A.

• Test(A,B, s): this query can be asked only once and can only be made
to a completed session s at A with partner B. Furthermore there can-
not have been any of the following queries made: RevealKey(A,B, s)
or RevealState(A,B, s) or Corrupt(A) or Corrupt(B). If the bit b spec-
ified by the challenger is b = 1 then the session key is returned.
Otherwise b = 0 and a random key from the keyspace are returned.

Now we are in a position to define the SK-security experiment.

Definition 10. The key indistinguishability experiment, GKey-Ind
⇧ (A) is

defined as follows:

1. The challenger chooses a random bit b needed to define the Test query
response.

2. The challenger initialises n parties and any long-term keys.

3. A may issue queries as defined above.

157

Modular Design of KEM-Based Authenticated Key Exchange

4. Eventually A halts and outputs a bit b0 to indicate its guess for b,
based on the response to the Test query. The experiment outputs 1
if and only if b0 = b.

Definition 11. A key exchange protocol ⇧ is ✏� SK-secure if the following
holds for any adversary A:

1. two honest parties (i.e. uncorrupted parties who faithfully execute
the protocol instructions) completing matching sessions of the pro-
tocol ⇧ will output the same key, except with negligible probability,
and

2. the advantage of the adversary U in the key indistinguishability ex-
periment is:

AdvKey-Ind⇧ (A) = 2 ·
��Pr

⇥
b0 = b

⇤
� 1/2

��  ✏.

The final step needed to bring the modular approach together is to
show that emulation preserves SK-security. This was proven in CK01
and we restate it as Thm. 2 including concrete bouds. Note that using
emulation of an ideal key exchange process as a definition of security, the
original idea of BCK98, results in too strong a definition to allow some
well-known protocols to be proven secure [CK01, Appendix A].

Theorem 2 ([CK01]). Let ⇧ be an ✏ � SK-secure protocol in the AM
with t messages. Let C⇤ be the compiler based on MT-authenticators
�1,�2, . . . ,�t such that for any protocol ⇧ in the AM, C⇤(⇧) ↵-emulates
⇧ in the UM. Then protocol ⇧0 = C⇤(⇧) is an ✏0 � SK-secure protocol in
the UM with ✏0 = ✏+ ↵.

Proof. Assume to the contrary that there exists a UM adversary U that has
advantage ✏0 in the UM. Using U , we build an AM adversary, A, playing
the game of Defn. 10. When A receives its setup information consisting of
system parameters and public keys from its challenger, A sends the same
information to U . Then A invokes U and mimics its behaviour in the AM,
using its challenger to respond to the action requests when any party is
exposed.

When U sends a message to a party Pj from a party Pi in the UM,
A sends the same message between the same parties in the AM. The

158

Modular Design of KEM-Based Authenticated Key Exchange

emulation will be perfect unless U successfully sends a message m to some
party Pj from Pi but m was never sent by Pi. In this case we will say that
U made a forgery and we let forge be the event that a forgery happens at
any time during the run of U .

If forge occurs then A will abort the simulation and return a random
bit to its challenger. Note that this also defines a distinguisher D which
will always win in the case that forge occurs. If forge does not occur then
at some point U will ask its Test query for a session s. A then announces
session s for its own Test query in the AM, receives a real or random key,
and returns it to U . Eventually U will halt and output its bit which A

copies as its response. In this case, A wins whenever U wins.

Pr[A wins] = Pr[A wins|forge] · Pr[forge] + Pr[A wins|¬forge] · Pr[¬forge]

= 1/2 · Pr[forge] + Pr[B wins] · (1� Pr[forge])

� Pr[B wins]� 1/2 · Pr[forge]

We also implicitly defined a distinguisher, D, which wins when forge oc-
curs or wins with probability at least 1/2 when forge does not occur:
Pr[D wins] � Pr[forge]/2 + 1/2. Putting this together we get:

AdvKey-Ind⇧0 (U)  AdvKey-Ind⇧ (A) + AdvAM-UM-dist
⇧�⇧0 (D).

2.5 Optimising the UM protocol

Simple application of an MT-authenticator to each message of an SK-
secure AM protocol results in an SK-secure UM protocol as proven in
Thm. 2. However, such a protocol is far from optimal. The most obvious
drawback is that a two-message protocol, such as Di�e–Hellman, compiles
to a six-message protocol. The obvious way to optimise such a protocol
is to “piggyback” messages going in the same direction. The resulting
protocol may be secure, but formally this process may break the security
proof because it may alter the order of the local output of the parties,
allowing trivial distinguishability outputs of the AM protocol from the
outputs of the compiled UM protocol [HBN06].

Because of such issues, the modular approach of CK01 has been crit-
icised [dSW17] for not achieving e�cient protocols. There is some truth

159

Modular Design of KEM-Based Authenticated Key Exchange

in such criticisms — for example, when using signature- or encryption-
based authenticators it is not possible to achieve secure 2-message AKE
protocols which are often seen in the literature. Fortunately, rigorous op-
timisations are not di�cult to achieve, typically resulting in 3-message
protocols as e�cient as real-world protocols. Indeed, 3-message AKE pro-
tocols are necessary in any case to achieve desirable security properties
such as mutual entity authentication or key confirmation.

Hitchcock et al. [HBN06] designed a general technique for altering
message ordering in a security-preserving way. This involved defining an
intermediate model between the AM and UM, which they call the hybrid
model. Rather than use this more comprehensive approach, here we apply
simple techniques to allow optimisation of the number of messages and
re-use message components as session identifiers. Consequently, the draw-
backs of practical application of authenticators are removed resulting in
generic protocols as e�cient as standalone protocols.

Compressed authenticators. The first step is to compress the authen-
ticator to remove redundant elements. Notice that use of the authenticator
in Fig. 1 expands each message m from the AM into three messages in the
UM. However, sending m in all three messages is not actually needed
(to achieve security), so we can simplify the encryption-based authenti-
cator into a compressed version shown in Fig. 2. It is not hard to see
[BCK98, HBN06] that removal of the repeated m fields does not a↵ect
the security of the MT-authenticator. Depending on the application sce-
nario, the version in Fig. 1 may remain appropriate. The version in Fig. 2
is useful in a situation where Bob knows that some message, as yet un-
known, will be authentically received from Alice; this case typically occurs
in AKE protocols. Later we will see that to apply optimisation it is impor-
tant that the first message in Fig. 2 is independent of the message to be
authenticated, so that it can be generated and sent early in the protocol.

Session identifiers. In the original formulation of CK01, session iden-
tifiers are sent in each protocol run in the AM. These must be unique for
each active protocol run between the same parties, but it is not defined how
they should be obtained in practice. Although the only property required
of session identifiers is uniqueness, a natural way of obtaining them is to

160

Modular Design of KEM-Based Authenticated Key Exchange

Compressed Encryption-based MT-authenticator

Alice Bob

N0

B Decrypt
dA
(c) Encrypt

eA
(NB) NB

$
 � {0, 1}n

“Alice sent m to Bob” m, ⌧ = MacN0
B
(m,B)

If MacVerNB(⌧,m,B) = 1

“Bob received m from Alice”

Figure 2: Compressed version of MT-authenticator in Fig. 1.

use random values chosen by each party; in that case the probability that
session identifiers are not unique is negligible. In practice it may not be a
burden for each party to ensure that there are no other incomplete sessions
with the same identifier so that uniqueness is unconditionally guaranteed.

We assume that higher communication layers will provide a mechanism
to ensure that messages get delivered to the correct session. They can also
be explicitly added to the protocol messages if desired.

3 KEM-based building blocks

This section defines and proves security for the basic KEM-based MT-
authenticator and AM protocol, which will be brought together in Sec. 4
as components in defining generic e�cient KEM-based AKE.

3.1 KEM-based MT-authenticator

Fig. 3 illustrates our KEM-based MT-authenticator. The construction is
closely related to the encryption-based authenticator of BCK98.

Next we give a theorem that �KEM is secure, meaning that it emulates
MT in unauthenticated networks, as long as the KEM used achieves CCA
security.

Theorem 3. The KEM-based MT-authenticator, �KEM, in Fig. 3, when
instantiated with a CCA-secure KEM and a secure MAC scheme, ✏-emulates
protocol MT in unauthenticated networks such that ✏  l · (AdvCCAKEM(D) +

161

Modular Design of KEM-Based Authenticated Key Exchange

KEM-based MT-authenticator

Alice Bob

“Alice sent m to Bob” m (c, k) Encap(pkA)

m, c

k Decap(skA, c) m, ⌧ = MACk(m,B) If MacVerk(⌧,m,B) = 1

“Bob received m from Alice”

Figure 3: KEM-based MT-authenticator, �KEM: Bob authenticates m from
Alice.

AdvEUF-CMA
MAC (F)) where l = n2

P ⇥nM , nP is the number of parties that run
the protocol and nM is the maximum number of challenge messages that
can be sent by any party.

The proof of Thm. 3 follows closely the proof of Bellare et al. [BCK98,
Proposition 5]. We have included some extra details which we hope may
be useful to the reader.

Proof. Let U be a UM-adversary that interacts with �KEM. We con-
struct an AM-adversary A such that for any distinguisher D observing,
ViewMT

A (D)
s
= View�KEM

U (D).
First note that A can simply copy all of the outputs of U unless the

following event bad happens.

bad: U outputs “Q received m from P” for some parties P and Q, but
there was no previous output “P sent m to Q”.

If we assume that bad happens with probability ✏ then for any dis-
tinguisher D we must have Adv(D)  ✏. Thus from now on we focus on
bounding ✏. We construct an experiment involving multiple adversaries as
follows and illustrated in Fig. 4. We start by describing the purpose and
connections between the di↵erent entities. Afterwards we give details of
the security game.

162

Modular Design of KEM-Based Authenticated Key Exchange

C

CCA challenger

D

MAC challenger
Plays CCA game

F

UM challenger
Plays MAC game

U

UM adversary

Figure 4: Overview of the experiment in the proof of Thm. 3.

• U is the UM adversary running �KEM in such a way that event bad
will occur with probability ✏. When bad happens U will produce a
valid MAC for some session without knowing the decapsulation key
of the party P which should be producing the MAC.

• F is going to interact with U in order to simulate all of the parties in
the run of U . We will see that F can make the simulation perfect in
case bad happens only in a chosen target session. F also is playing
a forging game against the MAC scheme. Since F also receives
a ciphertext from its challenger it may not be playing the usual
EUF-CMA game, but in cases where that ciphertext is independent
of the MAC key the game F plays is equivalent to the EUF-CMA
game.

• D is acting as the challenger for F in the EUF-CMA game, providing
a MAC oracle. D is also playing the IND-CCA game from Def. 2
against the KEM. D will provide its challenge encapsulation to F .

• C is the IND-CCA challenger, providing the challenge encapsulation
and the decapsulation oracle.

The experiment proceeds as follows.

1. D starts the CCA indistinguishability experiment with C. The first
4 steps in Def. 2 are run between D and C so that D gets (pk , c⇤, k0)
where k0 is either encapsulated in c⇤ (b = 0) or is a key chosen
randomly in the range of Encap (b = 1).

2. D starts F by passing F the encapsulation c⇤. From now on D will
answer any MAC oracle queries by using the key k0 to compute the
correct MAC tag and returning it to F . The goal of F is to produce
a forgery (m⇤, t) which is a valid MAC (for key k0) which was never
returned by D following a MAC oracle query from F .

163

Modular Design of KEM-Based Authenticated Key Exchange

F is also provided with a decapsulation oracle for the key encapsu-
lated in c⇤. F will need this oracle in order to properly simulate the
parties for U . This oracle is available to D through the game that
D is playing with C so D can also simulate the oracle for F .

Note that there are two cases.

(a) The encapsulation c contains key k0, the key for the MAC that
F is attempting to forge. In this case F has received some
additional help in finding a forgery by knowing c and having the
decapsulation oracle for k0. Thus F is an aided oracle [BCK98]
and even though a correct forgery is produced and accepted by
D, this does not win the MAC security game in the EUF-CMA
sense.

(b) The encapsulation c contains a random key, independent of k0.
In this case F does not receive any useful help in finding a
forgery for k0. (Note that F could easily simulate the “help”
itself in this case.) Thus a forgery wins the EUF-CMA MAC
game in Def. 4.

3. F starts U and chooses two random parties P ⇤ and P and a randomly
selected session s at P . This is the session where F guesses that
event bad will happen. Note that the probability that bad happens
in session s is at least ✏/l where l = n2

P ⇥nM where nP is the number
of parties and nM is the maximum number of challenge messages
that can be sent by party P .

F chooses public key pairs for all parties except P ⇤ and assigns pk to
party P ⇤. F can now simulate all parties in the run of U as long as
U does not choose to corrupt P ⇤ or asks for a MAC for the message
used in the target session s with partner P ; however if either of these
two things happen then F will abort and D will return a random
bit as its guess for b0.

When simulating a session involving party P ⇤, but di↵erent from s,
F has to make use of the decapsulation oracle from D since it does
not have the private decapsulation key of P ⇤. Then F can obtain
the correct MAC key and provide the correct third message for P .
Also if F is asked by U to simulate a session where P ⇤ receives m, c⇤

164

Modular Design of KEM-Based Authenticated Key Exchange

from from party Q with m 6= m⇤ or Q 6= P , then F asks D for the
MAC tag in order to continue the simulation.

4. If bad does not happen in session s then F halts with no output and
then D returns a random bit at its guess for b0. With probability
at least ✏/l, event bad does happen in session s. Since party P ⇤

was never activated in this session, U will directly activate party P
with message m⇤ to send the second (challenge) message to party
P ⇤. Then F responds with m⇤, c⇤. When bad happens U will send
a MAC value t for message m⇤ to party P which is then passed to
F (who is simulating P). F then sends (m⇤, t) to D as its forgery
attempt. Note that U cannot ask for the MAC tag from P ⇤ directly
since P ⇤ is not involved in the run when bad happens, so the forgery
must originate from U .

5. U receives the putative forgery (m⇤, t) from F and checks its cor-
rectness using key k0. If MacVerk0(m⇤, t) = 1 then U decides that
encapsulation c contains key k0 and returns its guess b0 = 0 to C.
Otherwise U returns b0 = 1.

Analysis We consider two cases, each of which occurs with probability
1/2.

• If b = 0 then F will always return a correct MAC tag for key k0

when bad happens. In this case D will return b0 = 0 and so will win
the CCA game with C.

• If b = 1 then we have two possibilities.

1. If F returns an incorrect MAC tag for key k0 when bad happens
then D will return b0 = 1 and so will again win its CCA game
with C.

2. If F returns a correct MAC tag for key k0 then D will return
b0 = 0 and so will lose the CCA game with C. However, F got
no help in its forgery game and so can win the EUF-CMA game
against the MAC.

165

Modular Design of KEM-Based Authenticated Key Exchange

First note that

Pr[F wins] = Pr[F wins|bad] · Pr[bad] = Pr[F wins|bad] ·
✏

l

since Pr[F wins|bad] = 0. Also

Pr[D wins|bad] =
1

2
+

1

2
· (1� Pr[F wins|bad]) = 1� Pr[F wins] ·

l

2✏
.

Putting these together we get:

Pr[D wins] �

✓
1�

l

2✏
Pr[F wins]

◆
·
✏

l
+

1

2

⇣
1�

✏

l

⌘
=

1

2
+

✏

2l
�

1

2
Pr[F wins].

Finally we re-arrange to obtain: 2 ·
�
Pr[D wins]� 1

2

�
+ Pr[F wins] � ✏

l ,

and then by Def. 2 and 4, ✏  l ·
�
AdvCCAKEM(D) + AdvEUF-CMA

MAC (F)
�
.

Now that �KEM is proven to be an MT-authenticator we can invoke
Thm. 2 to conclude that �KEM can be used to authenticate messages in
an SK-secure AM protocol and results in a SK-secure UM protocol. In
order to optimise the resulting protocol we will want to use a compressed
version of the authenticator (see Sec. 2.5) as shown in Fig. 5.

Compressed KEM-based MT-authenticator

Alice Bob

c (c, k) Encap(pkA)

k Decap(skA, c) m, ⌧ = MACk(m,B) If MacVerk(⌧,m,B) = 1

“Alice sent m to Bob” “Bob received m from Alice”

Figure 5: �KEM, the compressed KEM-based MT-authenticator.

The security proof for the compressed authenticator is identical to the
proof for the full authenticator since the only di↵erence is the deletion of
plaintext messages in the UM which are ignored in the security proof.

Corollary 1. Theorem 3 still holds if the authenticator in Fig. 3 is re-
placed by the compressed KEM-based MT-authenticator, �KEM, in Fig. 5.

166

Modular Design of KEM-Based Authenticated Key Exchange

3.2 KEM-based AM protocol

In Fig. 6 we present a KEM-based protocol ⇧ that is SK-secure in the
AM. The protocol is a generalisation of the basic Di�e–Hellman AM
protocol of CK01 [CK01]. We assume that a setup with parameters for
the KEM are known already to all parties. The initiator A will be invoked
by the NewSession(A,B, s, r) query and responds with a new ephemeral
KEM public key pke. Upon receipt of (pke, s) the responder encapsulates
a new session key sk in c, and returns it to party A.

KEM-based AM-protocol

Alice Bob

(pk
e
, ske) Gen() pke, s (c, sk) Encap(pke)

sk 0
 Decap(ske, c) c, s

Figure 6: KEM-based protocol with any CPA-secure KEM (see Def. 2).

Theorem 4. Let A be an adversary against the SK-security of protocol
⇧ shown in Fig. 6. Let A interact with at most q sessions of ⇧ for each
pair of parties. Let n be the maximum number of parties involved in the
protocol run. Then the advantage of A can be bounded by: AdvSK⇧ (A) 
n2q · AdvCPAKEM(B).

Proof. The definition of SK-security has two requirements. The first re-
quirement is achieved by the correctness of the KEM. For the second
requirement we use adversary A against the sk -security of the protocol ⇧
to construct an adversary B against the CPA-security of the KEM. Adver-
sary B interacts with its challenger C in the GCPA

KEM(·) experiment.
First B is given (pk⇤, c⇤, k⇤) by C and should output b 2 {0, 1} guessing

if k⇤ is the real key (b = 1) or a random key (b = 0). Next A chooses
random parties A⇤ and B⇤ from the set of all (n possible) parties and for
these chooses a target session identifier s⇤ by choosing a unique value in
[1..q], where q is the maximum number of sessions at any party. Then B

invokes A and simulates all responses as follows.

167

Modular Design of KEM-Based Authenticated Key Exchange

• NewSession(A,B, r, s): if r is initiator then B checks whether A = A⇤,
B = B⇤, and s = s⇤ and if so B returns (pk⇤, s⇤) to A. Otherwise B

runs (pke, ske) Gen(), returns (pke, s) toA and stores (s,A,B, ske)
for answering later queries about session s.

• Send(A,B,m k s): if A is the responder in the run with session
identifier s then m is a public encapsulation key pke which can be
used by B to compute the correct response. If A is the initiator in
the run with session identifier s then B will accept. Note that if
A = A⇤, B = B⇤ and s = s⇤ then B does not have the decapsulation
key and cannot compute the session key.

• Corrupt(A): if A 2 {A⇤,B⇤
} then B aborts and returns a random bit

to C. Otherwise B returns any session key and ske value allocated
to A. Note that for this protocol there are no long-term keys.

• RevealKey(A,B, s): if A 2 {A⇤,B⇤
} and s = s⇤ then B aborts and

returns a random bit to C. Otherwise B returns the session key value
allocated to A with session identifier s (or ; if it is undefined).

• RevealState(A,B, s): if A = A⇤, B = B⇤ and s = s⇤ then B aborts
and returns a random bit to C. Otherwise, if A is the initiator in the
run with session identifier s then B returns the private ephemeral
key, ske, or ; if it is undefined.

• Expire(A,B, s): if there is a completed session s at A with B then B

will return a success flag to A or otherwise return a failure flag to
A.

• Test(A,B, s): if A = A⇤, B = B⇤ and s = s⇤ then B returns k⇤ to A.
Otherwise B aborts and returns a random guess for b.

As long as B does not abort then A will eventually halt and output its
bit b0. Then B sets b b0 and returns b to its challenger C.

If A chooses the target session as its test session then B wins whenever
A wins. This happens with probability at least 1/n2q. Note that this

168

Modular Design of KEM-Based Authenticated Key Exchange

necessarily means that B does not abort on any query. Then we have

Pr[B wins] �
1

2
·

✓
1�

1

n2q

◆
+ Pr[A wins] ·

1

n2q

or Pr[B wins]�
1

2
�

1

n2q

✓
Pr [A wins]�

1

2

◆
.

Thus the theorem statement follows.

4 Generic KEM-based AKE protocols

With the building blocks from Sec. 3 we now apply MT-authenticators
to AM protocols and optimise them to obtain protocols which are both
SK-secure in the realistic UM security model and e�cient in comparison
with other protocols in the literature. There is no restriction to apply the
new MT-authenticator in Fig. 5 only to the new AM protocol in Fig. 6; the
authenticator can be applied to any SK-secure AM protocol and any au-
thenticator can be applied to the KEM-based AM protocol. Furthermore,
we may apply di↵erent MT-authenticators to each of the messages in an
AM protocol [HBN06, Thm. 6] resulting in yet more ways to construct
di↵erent secure protocols.

Due to our field’s focus on post-quantum security in recent years, we
emphasise KEM-based and signature-based components in this section,
allowing us to apply any of the primitives from the NIST competition
library. We illustrate this usage with several di↵erent examples in this
section, applying both our new KEM-based authenticator and the existing
signature-based authenticator to achieve a variety of protocols. Another
example, also with potential for post-quantum security, is to apply the
MAC-based authenticator of CK01 to our KEM-based AM protocol. This
results in a protocol suitable for pre-shared key environments which is a
common scenario, for example in TLS and IPSec. Details of a MAC-based
generic protocol construction are available in Appendix 4.3.

4.1 Compiled KEM-based protocol and optimization

We start with the AM-secure protocol from Fig. 6 and then apply the
compiler consisting of application of the compressed MT-authenticator to

169

Modular Design of KEM-Based Authenticated Key Exchange

each of its two messages. This leads to the 4-message protocol of Fig. 7.

Generic authenticated KEM-based protocol (unoptimised)

Alice Bob

(pk
e
, ske) Gen() c1 (c1, k1) Encap(pkA)

k0
1
 Decap(skA, c1)

m1 (pk
e
k s)

⌧1 Mack0
1
(m1 k B) m1, ⌧1 m0

1
 (pk

e
k s)

If MacVerk1(⌧1,m
0

1
k B) = 0

Abort

(c2, k2) Encap(pkB)
c2 k0

2
 Decap(skB, c2)

(c⇤, k⇤) Encap(pk
e
)

m2 (c⇤ k s)

m0

2
 (c⇤ k s) m2, ⌧2 ⌧2 Mack0

2
(m2 k A)

If MacVerk2(⌧2,m
0

2
k A) = 0

Abort

k⇤ Decap(ske, c
⇤)

Figure 7: Generic 4-message protocol obtained by compiling the KEM-
based AM protocol with the compressed KEM-based MT-authenticator.

Messages 1 and 2 are the result of applying the compressed MT-
authenticator to authenticate the ephemeral public key pke generated by
Alice. Messages 3 and 4 are the result of applying the compressed MT-
authenticator to authenticate the encapsulated shared key c⇤ generated
by Bob. The di↵erence between m1 and m0

1 (resp. m2 and m0
2) in Fig. 7

is that both players have their own version of s — the MAC verifies the
integrity of both the message and the session.

To optimise the 4-message protocol in Fig. 7 we take four simple steps:

1. The messages that were numbered 2 and 3 will be sent in parallel as
a new message with number 2. This does not change the order or

170

Modular Design of KEM-Based Authenticated Key Exchange

contents of any messages.

2. The session identifier, s, will be constructed by the parties as part of
the protocol, instead of taking it as an external input to the protocol.
Recall that the only requirements on s are to be unique between the
parties amongst any incomplete protocol session between the two
parties. We choose s = c1 k c2 where c1 and c2 are the (randomised)
encapsulations (ciphertexts) generated by each party.

3. Repeated message fields and fields previously generated by message
receivers are removed from messages.

4. The protocol parties are re-labelled so that Alice becomes the pro-
tocol initiator.

Combining all of these steps we obtain the optimised protocol shown in
Fig. 8.

As far as we are aware, the precise protocol of Fig. 8 is new in the
literature. There are several existing protocols aimed also at achieving
AKE based only on KEMs [FSXY12, SSW20, HNS+20] or encryption
[dSW17]. Several of these are motivated by the desire to avoid signa-
tures, which tend to su↵er e�ciency disadvantages compared with KEMs
in the post-quantum examples from the NIST competition. The security
varies between of each these protocols. For example, the FSXY proto-
col [FSXY12] provides security against ephemeral key leakage whereas
KEMTLS [SSW20], like the protocol of Fig. 8, lacks this property. On the
other hand, our protocol does allow state reveals from non-target sessions.
KEMTLS is also designed to provide only one-way (server) authentication.
Making a judgement on which of these protocols is “better” is therefore
di�cult since it depends on the security requirements and implementa-
tion details. In Sec. 5 we compare e�ciency using concrete KEMs and
signature schemes to get a better feel for the relative e�ciencies.

4.2 Generic protocols using signatures

We now look at two further generic protocols which we can obtain by
using signatures in combination with our KEM-based AM protocol. We
will need to apply the compressed signature-based authenticator shown in
Fig. 9.

171

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol

Alice Bob

(c1, k1) Encap(pkB)
c1 (pk

e
, ske) Gen()

(c2, k2) Encap(pkA)

s c1 k c2

k0
1
 Decap(skB, c1)

s c1 k c2 pk
e
, ⌧1, c2 ⌧1 Mack0

1
(pk

e
k s k A)

If MacVerk1(⌧1, pke
k s k A) = 0

Abort

k0
2
 Decap(skA, c2)

(c⇤, k⇤) Encap(pk
e
)

⌧2 Mack0
2
(c⇤ k s k B) c⇤, ⌧2 If MacVerk2(⌧2, c

⇤
k s k B) = 0

Abort

k⇤ Decap(ske, c
⇤)

Figure 8: Optimised UM protocol from the KEM-based AM protocol and
the KEM-based MT-authenticator.

The authenticator �Sign is derived from the authenticator of BCK98 by
removing the unnecessary message components in exactly the same way as
for the encryption- and KEM-based authenticators. As before, the existing
proof that the full authenticator is a valid MT-authenticator [BCK98] still
holds.

The optimised protocol for the KEM-based AM protocol compiled with
the signature-based authenticator is shown in Fig. 10. The optimisation
follows the same process as described in Sec. 4.1. Although more general,
the resulting protocol has much in common with the signed Di�e–Hellman
protocol which has been widely known and deployed for many years and
is today the usual AKE in the latest version of TLS (though with only
one-sided authentication).

We have another way to authenticate the KEM-based AM protocol,
namely to authenticate its two messages with di↵erent MT-authenticators.
As far as we are aware there are no examples of such a protocol in the

172

Modular Design of KEM-Based Authenticated Key Exchange

Compressed Signature-based MT-authenticator

Alice Bob

NB NB
$
 � {0, 1}n

� SignskA
(m,B, NB) m,� If SigVerpkA

(�,m,B) = 1

“Alice sent m to Bob” “Bob received m from Alice”

Figure 9: �Sign, a compressed signature-based MT-authenticator.

existing literature. There can be practical usages, for example when sig-
natures are very expensive to generate but very cheap to verify. In such
a case, when a powerful server authenticates its AM message it can shift
computation away from a lightweight client by using the signature-based
authenticator, while the client can avoid generating signatures by using
a di↵erent KEM-based authenticator. In Fig. 14 we show the optimised
protocol using the KEM-based authenticator for the first message and the
signature-based authenticator for the second message. A mirror proto-
col results from using the two authenticators the other way around. For
completeness this optimised protocol is given as Fig. 11.

4.3 MAC-based MT-authenticator

Canetti and Krawczyk [CK01] present also a MAC-basedMT-authenticator
(interestingly described only in compressed form) as shown in Fig. 12. This
authenticator can be useful in scenarios where pre-shared keys exist such
as in many use-cases of TLS with lightweight entities and also in session
resumption in the latest TLS 1.3 version.

Since MACs are expected to remain secure in the post-quantum setting
it makes sense to combine this authenticator with our KEM-based AM
protocol to obtain a post-quantum secure AKE protocol suitable for pre-
shared key applications. Fig. 13 shows the resulting optimised protocol.

173

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with signature authentication

Alice Bob

NA
$
 � {0, 1}n NA (pk

e
, ske) Gen()

NB
$
 � {0, 1}n

s NA k NB

s NA k NB
pk

e
, NB ,�1 �1 SignskB

(pk
e
k s k A)

If SigVerpkB
(�1, pke

k s k A) = 0

Abort

(c⇤, k⇤) Encap(pk
e
)

�2 SignskA
(c⇤ k s k B) c⇤,�2 If SigVerpkA

(�2, c
⇤
k s k B) = 0

Abort

k⇤ Decap(ske, c
⇤)

Figure 10: Optimised UM protocol from the KEM-based AM protocol and
the signature-based MT-authenticator.

5 Concrete post-quantum secure AKE protocols

In the previous section we have presented optimised generic AKE protocols
which will be secure as long as the KEM, signature and MAC primitives
are instantiated with secure instances. Even restricting to a handful of
currently best-trusted post-quantum primitives, this leads to hundreds of
potential concrete protocols, bearing in mind that we have shown that
di↵erent KEMs and signatures can be mixed in the same protocol and
observing that the generic protocols are not symmetric between initiator
and responder. The question of whether the concrete instantiated proto-
cols are practical in terms of computational e�ciency and message size is
a natural one.

5.1 Comparison of di↵erent implementations

Tables 1a and 1b present the computational e�ciency of various KEMs
and signatures from the NIST competition. The figures are taken from

174

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with SIG/KEM authentication

Alice Bob

NA
$
 � {0, 1}n NA (pk

e
, ske) Gen()

(c1, k1) Encap(pkA)

s NA k c1

s NA k c1 pk
e
,�1, c1 �1 = SignskB

(pk
e
k A k s)

If SigVerpkB
(�1, pke

k A k NA) = 0

Abort

k0
1
 Decap(skA, c1)

(c⇤, k⇤) Encap(pk
e
)

⌧2 Mack0
1
(c⇤ k s k B) c⇤, ⌧2 If MacVerk1(⌧2, c

⇤
k s k B) = 0

Abort

k⇤0 Decap(ske, c
⇤)

Figure 11: Optimised UM protocol from the KEM-based AM protocol
and the signature-basedMT-authenticator used for authenticating the first
message, and the kem-based MT-authenticator authenticating the second
message.

two recent reports from ETSI [Sec21a, Sec21b]. They are not intended as
definitive e�ciency comparisons — indeed some of the figures have already
been improved upon — but rather to illustrate typical ballpark figures and
highlight the big variation between many of the existing proposals.

5.2 Computational cost

To give an impression of the computational costs of our new protocols
we summarize the number of public key operations needed in each of our
optimised protocols in the upper part of Table 2. The lower part of the
same table includes the number of similar operations for some prominent
existing protocols.

175

Modular Design of KEM-Based Authenticated Key Exchange

Compressed MAC-based MT-authenticator [CK01]

Alice Bob

NB
$
 � {0, 1}n

NB

⌧ MACk(m,B,NB)

m, ⌧

“Alice sent m to Bob” If MacVerk(�,m,B) = 1

“Bob received m from Alice”

Figure 12: �MAC, a compressed MAC-based MT-authenticator with shared
key k.

All of the protocols in Table 2 use three passes and three rounds.
However, they do not all have the same goals or assumptions. TLS and
KEMTLS only aim for server-side authentication while our protocol in
Fig. 13 assumes pre-shared keys. PQ-WireGuard [HNS+20] is a variant
of the WireGuard protocol using only KEMs. Its design is based on the
FSXY protocol [FSXY12]. All of the protocols in the lower half of Ta-
ble 2 use only KEMs, both for authentication and key exchange. When
comparing with our KEM-only protocol of Fig. 8 we see that the main
computational e↵ort is the same as in the three bottom protocols which
are all KEM-only protocols. We conclude that our protocols are compa-
rable in computation to existing ones. Another di↵erence between the
various protocols is on which side most computations are performed, e.g.
in Fig. 14 the initiator Alice encapsulates twice while Bob performs com-
putationally heavier decapsulations and generation of the ephemeral key.

The most obvious di↵erence between the upper and lower part of the
table is that our designs have the responder generating the ephemeral
KEM key while all existing protocols shown give this task to the initi-

3Using Di�e-Hellman as an ephemeral KEM. Unilateral authentication
4Unilateral authentication
5Assuming that our KEM-based AM protocol is used as the base protocol.
6Encryption is needed in the full protocol, not encapsulation

176

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with MAC authentication using pre-shared MAC key k

Alice Bob

NA
$
 � {0, 1}n NA (pk

e
, ske) Gen()

NB
$
 � {0, 1}n

s NA k NB

s NA k NB
pk

e
, NB , ⌧1 ⌧1 MACk(pke

k s k A)

If MacVerk(⌧1, pke
k s k A) = 0

Abort

(c⇤, k⇤) Encap(pk
e
)

⌧2 MACk(c
⇤
k s k B) c⇤, ⌧2 If MacVerk(⌧2, c

⇤
k s k B) = 0

Abort

k⇤ Decap(ske, c
⇤)

Figure 13: Optimised UM protocol from the KEM-based AM protocol and
the MAC-based MT-authenticator.

ating party. We do not believe that either option is inherently better,
rather it depends on the relative costs of generation, encapsulation and
decapsulation of the instantiating ephemeral KEM. For some well-known
KEMs (Table 1a), key generation is far more costly than encapsulation
or decapsulation. To minimise the overall protocol cost to both parties
it seems better to use an algorithm with more uniform cost for the three
KEM operations, but if it is desired to reduce the cost of one party at the
expense of the other then di↵erent algorithms can be better.

It can be argued that implementation is most e�cient when the same
concrete KEM is used for all three of the KEM instances in the all-KEM
protocols. This should be true at least with regard to the codebase needed
in any implementation. However, this may not be the case when it comes
to counting computation cycles. Recall that the AM protocol includes gen-
eration of an ephemeral public key, while the long-term keys are generated
only once before the protocol runs. Therefore it can make sense to use a
KEM with an e�cient key generation algorithm for the ephemeral KEM,
and a di↵erent one with a much less e�cient key generation algorithm
for the KEM using the long-term keys. PQ-WireGuard [HNS+20] does

177

Modular Design of KEM-Based Authenticated Key Exchange

Optimised KEM-based UM protocol with KEM/SIG authentication

Alice Bob

(c1, k1) Encap(pk
B
) c1 (pk

e
, ske) Gen()

NB
$
 � {0, 1}n

s c1 k NB

k1 Decap(skB, c1)

s c1 k NB
pk

e
, NB , ⌧1 ⌧1 Mack1(pke

k s k A)

If MacVerk1(⌧1, pke
k s k A) = 0

Abort

(c⇤, k⇤) Encap(pk
e
)

�2 SignskA
(c⇤ k s k B) c⇤,�2 If SigVer

pkA
(�2, c

⇤
k s k B) = 0

Abort

k⇤ Decap(ske, c
⇤)

Figure 14: Optimised UM protocol from the KEM-based AM protocol
and the KEM-based MT-authenticator used for the first message, and the
signature-based MT-authenticator for the second message.

exactly this, using Classic McEliece for the long-term KEM and a variant
of Saber for the ephemeral KEM. The size of its public key (Table 1a)
shows why using Classic McEliece for the ephemeral KEM seems to be a
bad idea.

Current known post-quantum signatures tend to be computationally
less e�cient than KEM constructions (Table 1b) where signing is much
more expensive than decapsulation in known algorithms. It is therefore
natural that KEM-based authentication currently is seen favourably. This
can change in the future, and the NIST focus on new post-quantum signa-
ture proposals may well lead to more e�cient post-quantum secure signa-
ture algorithms. To our knowledge, there is no analog to our KEM/Sig or
Sig/KEM protocols in the literature, neither are we aware of post-quantum
proposals for the pre-shared key case.

178

Modular Design of KEM-Based Authenticated Key Exchange

Table 1: The e�ciency of selected post-quantum algorithm proposals. Al-
gorithms Gen, Encap, Decap, Sign and SigVer, are measured in clock cycles
on a standard processor. Parameters public key size (pk), ciphertexts (en-
capsulations) (ct) and signatures (�) are measured in bytes.

(a) The e�ciency of various KEMs [Sec21a].

NIST security
Gen Encap Decap pk ct category

mceliece348864 36641040 44 350 134 745 261120 128 1
mceliece460896 117067765 117 782 271 694 524160 188 3
KYBER512 33856 45 200 59 088 800 768 1
KYBER1024 73544 97 324 115 332 1568 1568 3
ntruhps2048677 309216 83 519 59 729 930 930 1
ntruhps4096821 431667 98 809 75 384 1230 1230 3
LightSaber 45152 49 948 47 852 672 736 1
Saber 66727 79 064 76 612 992 1088 3

(b) The e�ciency of various signature schemes [Sec21b].

NIST security
Sign SigVer � category

Dilithium-3 269 000 118 000 3293 3
Dilithium-5 429 000 179 000 4595 5
FALCON-512 386 678 82 340 666 1
FALCON-1025 789 564 168 498 1280 5

Remark. We find it interesting to remark on a major di↵erence re-
garding the symmetry of the computation requirements between Di�e–
Hellman and the AM protocol (Fig. 6) which can be regarded as a gen-
eralisation. The computational requirements for Di�e–Hellman are the
same for both initiator and responder. In the AM protocol the initiator
runs Gen and Decap while the responder runs only Encap. Of itself this is
not significant, since Encap really has two purposes: to generate the new
key for the responder and to generate the encapsulation for the initiator.
Thus in the Di�e–Hellman case the cost of Encap is the same as the cost of
Gen plus the cost of Decap. However, in all the examples in Table 1a this is
nowhere close to being true. Indeed Encap is always significantly cheaper

179

Modular Design of KEM-Based Authenticated Key Exchange

Table 2: The number of public key operations for ours and existing pro-
tocols.

Initiator Responder
Gene Encap Decap Sign SigVer Gene Encap Decap Sign SigVer

Fig 8. KEM/KEM 0 2 1 0 0 1 1 2 0 0
Fig 10. Sig/Sig 0 1 0 1 1 1 1 0 1 1
Fig 14. KEM/Sig 0 2 0 1 0 1 0 2 0 1
Fig 11. Sig/KEM 0 1 1 0 1 1 1 1 1 0
Fig 13. MAC/MAC 0 1 0 0 0 1 0 1 0 0
TLS 1.33 1 0 1 0 1 0 1 0 1 0
KEMTLS4 [SSW20] 1 1 1 0 0 0 1 1 0 0
KEMTLS-pdk
[SSW21]

1 1 2 0 0 0 2 1 0 0

PQ-WireGuard
[HNS+20]

1 1 2 0 0 0 2 1 0 0

SSW175[dSW17] 1 16 2 0 0 0 2 1 0 0

Table 3: What comprises the messages sent in each protocol.

Message 1 Message 2 Message 3
Fig 8. KEM/KEM ct pk , ct , MAC ct , MAC
Fig 10. Sig/Sig N pk , N, � ct , �
Fig 14. KEM/Sig ct pk , N, MAC pk , MAC
Fig 11. Sig/KEM N pk , �, ct ct , MAC
Fig 13. MAC/MAC N pk , N, MAC ct , MAC

than Gen plus Decap, which may be important when deciding which party
take the role of initiator in a protocol run.

5.3 Communications cost

In Table 3 we take an inventory of the message fields in each of our ab-
stract protocols. Due to the optimisation techniques explained earlier, the
number of fields sent and received by each party is three in all cases. In-
formally, at least, this is a minimum since the ephemeral public key needs
to communicated and then used in the response, and each of these two
messages must be authenticated using a fresh value chosen by the other
party.

180

Modular Design of KEM-Based Authenticated Key Exchange

The size of these fields depends on the parameters of the concrete
primitives chosen. In July 2022, NIST announced a first list of selected
candidates as a result of its Post-Quantum Cryptography competition
[AAC+22], pointing out CRYSTALS-Kyber as their selected KEM and
CRYSTALS-Dilithium as their selected signature algorithm. Using the
real-world e�ciency of the Kyber KEM and the Dilithium signature scheme,
in Tables 1a and 1b and naively adding up these numbers, all messages
in our Fig. 14 protocol would be under under 5 kB for Kyber-1024, which
definitely is practical. Another look at the ephemeral public key sizes in
Table 1a shows why the choice of Saber in PQ-WireGuard [HNS+20] is an
obvious one. We note that before its recent demise, SIKE looked an even
more promising candidate to minimise the ephemeral key size.

Just as for computation e�ciency, currently accepted post-quantum
secure signature candidates do not look attractive for communications
e�ciency as shown in Table 1b. To minimise signature size FALCON is a
better choice than Dilithium, but requires a trade-o↵ with computation.

We reiterate that Table 3 assumes that authentic long-term public
keys are available to all parties by some external channel. This fits some
real-world protocols (such as WireGuard) but not others (such as TLS).
Post-quantum signatures used to certify the long-term public keys can
be chosen independently of other concrete choices in the protocol. This
choice will obviously a↵ect both the computation for each party and the
size of the protocol messages. Although registration of public keys can
avoid use of post-quantum signatures [GHL+22], it seems necessary to use
signatures to achieve usual certificate properties.

6 Conclusion and future work

As summarized in Sec. 1.2, the main contributions of this work are the
new KEM-based authenticator and corresponding security proof, the new
proofs in the AM-model and the derivation of several new generic AKE
protocols. We hope that the flexibility of protocol designs can be useful in
fitting AKE protocols to di↵erent application use cases and that as new
concrete KEMs and signature schemes are developed the generic protocols
will yield new and interesting instantiations. Some of the ways to extend
the work are the following.

181

Modular Design of KEM-Based Authenticated Key Exchange

• Adding additional security properties; for example, application of
the twisted-PRF trick [FSXY12] can likely be added to an AM-
protocol to secure against ephemeral leakage.

• Check whether use of hybid-KEMs (secure against conventional ad-
versaries based on traditional assumptions and secure against post-
quantum adversaries based on new assumptions) can be usefully
applied to obtain hybrid-secure AKE [BBF+19].

• Since the modular approach does not naturally lead to tight reduc-
tions, it would be useful to improve on this, although in the end
it may be necessary to complement new protocol designs obtained
from the modular approach with a monolithic proof in a stronger
model for some concrete protocol.

• Applying an authenticator just to one message (from a two-message
AM protocol) will allow for unilateral authentication such as is com-
mon in TLS. The security and e�ciency of such a generic protocol
deserves analysis.

• Real-world implementations of the generic protocols is also left to
future work — obviously this would be a prerequisite for future adap-
tation, and give us a more concrete comparison of their e�ciency in
the real world.

References

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang,
Thinh Dang, John Kelsey, Jacob Lichtinger, Carl Miller,
Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson,
Daniel Smith-Tone, and Yi-Kai Liu. Status Report on the
Third Round of the NIST Post-Quantum Cryptography Stan-
dardization Process. Technical report, National Institute of
Standards and Technology, 2022. available at https://csrc.
nist.gov/publications/detail/nistir/8413/final.

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheri↵, Daniel Apon, David
Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller,

182

Modular Design of KEM-Based Authenticated Key Exchange

Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson,
and Daniel Smith-Tone. Status Report on the Second Round
of the NIST Post-Quantum Cryptography Standardization
Process. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/
publications/detail/nistir/8309/final.

[ADH+22] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter
Schwabe, and Florian Weber. Post quantum noise. Cryp-
tology ePrint Archive, Report 2022/539, 2022. https://

eprint.iacr.org/2022/539.

[BBF+19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian
Goncalves, and Douglas Stebila. Hybrid key encapsulation
mechanisms and authenticated key exchange. In Jintai Ding
and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, pages 206–
226. Springer, Heidelberg, 2019. doi:10.1007/978-3-030-

25510-7_12.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov,
Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan,
and Douglas Stebila. Frodo: Take o↵ the ring! Practi-
cal, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 1006–1018. ACM Press, October 2016. doi:10.1145/

2976749.2978425.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular
approach to the design and analysis of authentication and
key exchange protocols (extended abstract). In 30th ACM
STOC, pages 419–428. ACM Press, May 1998. doi:10.1145/
276698.276854.

[BHMS17] Nina Bindel, Udyani Herath, Matthew McKague, and Dou-
glas Stebila. Transitioning to a quantum-resistant public key
infrastructure. In Tanja Lange and Tsuyoshi Takagi, editors,

183

Modular Design of KEM-Based Authenticated Key Exchange

Post-Quantum Cryptography - 8th International Workshop,
PQCrypto 2017, pages 384–405. Springer, Heidelberg, 2017.
doi:10.1007/978-3-319-59879-6_22.

[BJS15] Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round
key exchange with strong security: An e�cient and generic
construction in the standard model. In Jonathan Katz, editor,
PKC 2015, volume 9020 of LNCS, pages 477–494. Springer,
Heidelberg, March / April 2015. doi:10.1007/978-3-662-

46447-2_21.

[BL17] Daniel J Bernstein and Tanja Lange. Post-quantum cryptog-
raphy. Nature, 549(7671):188–194, 2017.

[CFS+21] Sof́ıa Celi, Armando Faz-Hernández, Nick Sullivan, Goutam
Tamvada, Luke Valenta, Thom Wiggers, Bas Westerbaan,
and Christopher A. Wood. Implementing and measuring
KEMTLS. Cryptology ePrint Archive, Report 2021/1019,
2021. https://eprint.iacr.org/2021/1019.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange
protocols and their use for building secure channels. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 453–474. Springer, Heidelberg, May 2001.
doi:10.1007/3-540-44987-6_28.

[Cre11] Cas Cremers. Examining indistinguishability-based security
models for key exchange protocols: the case of CK, CK-
HMQV, and eCK. In Bruce S. N. Cheung, Lucas Chi Kwong
Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, ASI-
ACCS 11, pages 80–91. ACM Press, March 2011.

[DAL+17] Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy RV,
and Michael Snook. Provably secure password authenticated
key exchange based on RLWE for the post-quantum world.
In Helena Handschuh, editor, CT-RSA 2017, volume 10159 of
LNCS, pages 183–204. Springer, Heidelberg, February 2017.
doi:10.1007/978-3-319-52153-4_11.

184

Modular Design of KEM-Based Authenticated Key Exchange

[dSW17] Cyprien Delpech de Saint Guilhem, Nigel P. Smart, and Bog-
dan Warinschi. Generic forward-secure key agreement with-
out signatures. In Phong Q. Nguyen and Jianying Zhou,
editors, ISC 2017, volume 10599 of LNCS, pages 114–133.
Springer, Heidelberg, November 2017.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple prov-
ably secure key exchange scheme based on the learning with
errors problem. Cryptology ePrint Archive, Paper 2012/688,
2012. https://eprint.iacr.org/2012/688. URL: https:
//eprint.iacr.org/2012/688.

[FSXY12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and
Kazuki Yoneyama. Strongly secure authenticated key ex-
change from factoring, codes, and lattices. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 467–484. Springer, Heidelberg,
May 2012. doi:10.1007/978-3-642-30057-8_28.

[GHL+22] Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth,
Douglas Stebila, and Greg Zaverucha. Proof-of-possession
for KEM certificates using verifiable generation. Cryptology
ePrint Archive, Report 2022/703, 2022. https://eprint.

iacr.org/2022/703.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM
combiners. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 190–218.
Springer, Heidelberg, March 2018. doi:10.1007/978-3-

319-76578-5_7.

[HBN06] Yvonne Hitchcock, Colin Boyd, and Juan Manuel González
Nieto. Modular proofs for key exchange: rigorous opti-
mizations in the Canetti-Krawczyk model. Appl. Algebra
Eng. Commun. Comput., 16(6):405–438, 2006. doi:10.1007/
s00200-005-0185-9.

[HNS+20] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian
Weber, and Philip R. Zimmermann. Post-quantum Wire-

185

Modular Design of KEM-Based Authenticated Key Exchange

Guard. Cryptology ePrint Archive, Report 2020/379, 2020.
https://eprint.iacr.org/2020/379.

[JKRS21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge.
Tightly-secure authenticated key exchange, revisited. In Anne
Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 117–
146. Springer, Heidelberg, October 2021. doi:10.1007/978-
3-030-77870-5_5.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography, Second Edition. CRC Press,
2014. URL: https://www.crcpress.com/Introduction-

to-Modern-Cryptography-Second-Edition/Katz-

Lindell/p/book/9781466570269.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Di�e-
Hellman protocol. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 546–566. Springer, Heidelberg,
August 2005. doi:10.1007/11535218_33.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryp-
tology ePrint Archive, Paper 2015/939, 2015. https://

eprint.iacr.org/2015/939. URL: https://eprint.iacr.
org/2015/939.

[Sec21a] ETSI Technical Committee Cyber Security. Quantum-
safe public-key encryption and key encapsulation.
ETSI TR 103823, ETSI, October 2021. URL:
https://www.etsi.org/deliver/etsi_tr/103800_

103899/103823/01.01.01_60/tr_103823v010101p.pdf.

[Sec21b] ETSI Technical Committee Cyber Security. Quantum-
safe signatures. ETSI TR 103616, ETSI, September 2021.
URL: https://www.etsi.org/deliver/etsi_tr/103600_

103699/103616/01.01.01_60/tr_103616v010101p.pdf.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-
quantum TLS without handshake signatures. In Jay Ligatti,

186

Modular Design of KEM-Based Authenticated Key Exchange

Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1461–1480. ACM Press, November
2020. doi:10.1145/3372297.3423350.

[SSW21] Peter Schwabe, Douglas Stebila, and Thom Wiggers. More
e�cient post-quantum KEMTLS with pre-distributed pub-
lic keys. In Elisa Bertino, Haya Shulman, and Michael
Waidner, editors, ESORICS 2021, Part I, volume 12972
of LNCS, pages 3–22. Springer, Heidelberg, October 2021.
doi:10.1007/978-3-030-88418-5_1.

187

188 From Lattice Crypto to Lættis Krypto

Appendix D

SWOOSH: Practical
Lattice-Based Non-Interactive
Key Exchange

189

S�����: Practical La�ice-Based Non-Interactive Key Exchange

PHILLIP GAJLAND, Max Planck Institute for Security and Privacy and Ruhr-University

Bochum

BOR DE KOCK, NTNU – Norwegian University of Science and Technology

MIGUEL QUARESMA, Max Planck Institute for Security and Privacy

GIULIO MALAVOLTA, Max Planck Institute for Security and Privacy

PETER SCHWABE, Max Planck Institute for Security and Privacy and Radboud University

The advent of quantum computers has generated a wave of interest for post-quantum cryptographic schemes,
as a replacement for currently used cryptographic primitives. In this context, lattice-based cryptography has
emerged as the leading paradigm to build post-quantum cryptography. However, all viable replacements of
the classical Di�e-Hellman key exchange require additional rounds of interactions, thus failing to achieve
all the bene�ts of this protocol. Although earlier work has shown that lattice-based Non-Interactive Key
Exchange (NIKE) is theoretically possible, it has been considered too ine�cient for real-life applications.

In this work, we provide the �rst evidence against this folklore belief. We construct a practical lattice-based
NIKE whose security is based on the standard module learning with errors (M-LWE) problem in the quantum
random oracle model. Our scheme is obtained in two steps: (i) A passively-secure construction that achieves
a strong notion of correctness, coupled with (ii) a generic compiler that turns any such scheme into an
actively-secure one. To substantiate our e�ciency claim, we present an optimised implementation of our
construction in Rust and Jasmin, demonstrating its applicability to real-world scenarios. For this we obtain
public keys of approximately 220KBs and the computation of shared keys takes than 12 million cycles on an
Intel Skylake CPU at a post-quantum security level of more than 120 bits.

1 INTRODUCTION

A key exchange is a cryptographic primitive that allows two users to agree on a common secret key
over an insecure channel, such as the Internet. If the protocol consists of a single, asynchronous
message from each party, then we refer to it as a Non-Interactive Key Exchange (NIKE). The seminal
work of Di�e and Hellman [34] introduced the well-known NIKE scheme that marked the birth
of public-key cryptography; each party sends a single group element 6G (or 6~ , respectively) and
the shared key can be derived by computing (6~)G = (6G)~ . From a theoretical stand-point NIKE
implies the existence of public key encryption (PKE), key encapsulation mechanism (KEM), and
even authenticated key-exchange (AKE) when combining the results of [23] with [41]. Moreover,
in practice, the Di�e-Hellman key exchange lies at the heart of protocols such as Transport Layer
Security (TLS) [71], the Signal protocol, or the Noise protocol framework [66].

190 Manuscript submitted to ACM

The looming threat of quantum computers, combined with the discovery of e�cient quantum
algorithms for factoring integers and computing discrete logarithms [75], has motivated the
cryptographic community to explore solutions based on new mathematical structures, departing
from protocols based on the Di�e-Hellman key exchange. In particular, lattice-based
cryptography [70] has emerged as the leading paradigm for constructing post-quantum
cryptographic schemes. As a result of NIST’s recent standardisation process, three, of the four
algorithms that were selected for standardisation, are lattice-based [58, 69, 72].

While e�cient lattice-based key exchange protocols exist [5, 21, 72], they are all qualitatively
di�erent from the standard Di�e-Hellman-style key exchange, in the sense that they require
additional rounds of interaction. For many applications, where interaction is already built-in, these
protocols are perfectly �ne substitutes for the Di�e-Hellman (that is not post-quantum secure).
However, in many scenarios of interest, the non-interactive nature of NIKE protocols is crucial
(we discuss concrete examples in further detail in Section 1.1). Unfortunately, despite almost two
decades of research on the subject, an e�cient lattice-based NIKE remains elusive. Perhaps more
worryingly, a recent work [46] has shown theoretical barriers on the e�ciency of lattice-based
NIKE, calling into question whether it is even possible to build a practical scheme at all. Thus, the
current state of a�airs, leaves open the following question:

Is lattice-based non-interactive
key exchange feasible in practice?

In our work we seek to answer this question in the a�rmative, and show that lattice-based NIKE
can be made e�cient enough to be used in practice, whilst maintaining post-quantum security.

1.1 NIKE vs. KEMs

While the Di�e-Hellman (DH) key exchange happens to be non-interactive, most post-quantum
approaches to key exchange are interactive key-encapsulation mechanisms (KEMs). Intuitively,
the di�erence is as follows. In a NIKE, any user � can use their secret key B:� together with the
public key ?:⌫ of a user ⌫ to derive a shared key :�⌫ . At the same time, and without interaction
with �, user ⌫ can compute the same shared key :�⌫ by combining their secret key B:⌫ with the
public key ?:� of user�. However, in a KEM, this key-derivation becomes a two-stage, inherently
asymmetric and interactive process. First, � invokes an encapsulation routine that accepts ?:⌫ as
input and produces as output the shared key :�⌫ , and a ciphertext 2C , which they send to ⌫. User
⌫ then invokes the decapsulation routine that takes as input 2C and secret key B:⌫ to produce the
same shared secret :�⌫ .

Some protocols employing DH do not actually make use of the non-interactive nature and
can thus be migrated to post-quantum KEMs in a straight-forward manner. Probably the most
prominent example is TLS, which uses the DH key exchange with ephemeral keys on both sides

191

for forward secrecy and has been updated to o�er post-quantum security by using KEMs in
multiple papers [15, 22, 64] and real-world deployments [53–55, 78].

Other protocols do make use of the non-interactive nature of DH and their migration to post-
quantum primitives is thus much more involved. A common pattern in these protocols is that
they use static DH keys for authentication. One example is OPTLS by Krawczyk and Wee [52],
a proposal that eliminates the need for handshake signatures in TLS. The idea was picked up
in the post-quantum setting in the KEMTLS proposal by Schwabe, Stebila, and Wiggers [73].
Like OPTLS, also KEMTLS eliminates the need for handshake signatures, but unlike OPTLS uses
static KEM keys for authentication. This comes at the expense of requiring more communication
round-trips until full server authentication is achieved. This can be problematic for some protocols
like HTTPS that allow the server to send early payload data before the handshake is �nished.
Similar issues with delayed authentication when moving from DH to KEMs were identi�ed in the
migration of WireGuard to the post-quantum setting in [48] and in the the recently proposed
post-quantum version of the Noise protocol framework [9].

These examples all manage to migrate from the DH setting to the KEM setting at the cost of
further communication round trips, and without having to move to signature-based authentication
or engaging even more involved cryptographic primitives. If communicating parties cannot be
assumed to be online at the same time, this approach is doomed to fail. A prominent example of
precisely this asynchronous communication setting is the Signal secure-messaging protocol and
speci�cally the X3DH protocol [60] that is invoked when a user � starts their communication
with a (possibly o�ine) user ⌫. The X3DH protocol uses a combination of ephemeral, static, and
semi-static DH keys to achieve forward secrecy, mutual authentication, and o�ine deniability
without the need for direct interaction between � and ⌫. There have been multiple attempts
to migrate X3DH to the post-quantum setting [25, 26, 36, 47, 76] but they all either assume the
existence of a reasonably e�cient post-quantum NIKE, or fail to achieve the same security and
privacy as the pre-quantum version from a single simple asymmetric primitive.

1.2 Our Contributions

In this work, we demonstrate the practical feasibility of lattice-based non-interactive key exchange.
We propose a new scheme, that we call “S�����”, based on the hardness of the M-LWE problem.
We show a proof of its security, both in the passive and active setting, and provide parameter
sets for the former with over 120-bits of security against quantum adversaries (using the best
known attacks that incorporate recent advances in lattice cryptanalysis). Our contributions can
be succinctly summarised as follows.

(1) We propose a new construction of NIKE based on the hardness of the M-LWE problem.
Our construction is based on the standard template [35, 57], but with a new tweak that

192

allows us to prove a strong notion of correctness (which, in turn, is necessary to achieve
active security) in the quantum random oracle model (QROM). Somewhat interestingly,
our use of the random oracle appears to be di�erent from the Fiat-Shamir [40] and the
Fujisaki-Okamoto [42, 43] transformations, and may thus be of independent interest.

(2) We propose a compiler to generically lift a passively secure NIKE to an actively secure
scheme, using non-interactive zero-knowledge (NIZK) proofs. While this approach is
folklore, to the best of our knowledge it has never appeared explicitly in the literature.
Furthermore, the exact notion of passive security needed for the proof to go through,
turns out to be surprisingly subtle to identify.

(3) We carefully select parameters for the passively secure NIKE and instantiate the scheme
with parameters achieving 120 bits of security against quantum adversaries The resulting
scheme we call “Passive-S�����” and the full scheme including the NIZK “S�����”.

(4) We provide an implementation of Passive-S����� written in a combination of Rust and
Jasmin, and show that the public keys of Passive-S����� are smaller than the ones of the
smallest parameter set of Classic McEliece [1], an interactive KEM selected for round 4 of
the NIST-PQC competition. We also demonstrate that in terms of speed, Passive-S�����
outperforms CSIDH [30], the only currently known (and realistic) post-quantum NIKE,
by orders of magnitude.

1.3 Related work

Post-quantum NIKE. While interactive KEMs appear to be much more e�cient in a post-
quantum world than NIKEs, this does not mean that there are no previous proposals for post-
quantumNIKE. In [19], Boneh and Zhandry show a construction using iO to construct a multiparty
NIKE from pseudorandom generators. Given the impractical performance of iO, the result is mainly
of theoretical interest. Much more practical was supersingular-isogeny Di�e-Hellman (SIDH) [32,
50]. However, in 2016, this construction was shown to be susceptible to active attacks [44]. This
could be solved by employing the Fujisaki-Okamoto transform [42] in the NIST PQC candidate
SIKE [49], but this came at the expense of turning the NIKE into an interactive KEM. Another
approach to restoring the active security of SIKE was presented in [10]. This approach preserved
the non-interactive nature of SIDH, but required many parallel protocol executions and thus
massively increased computation time and message sizes. In 2022, all of these approaches based
on SIDH were made obsolete by the Castryck-Decru attack against SIDH [29].

In 2018, Castryck, Lange, Martindale, Panny, and Renes proposed CSIDH, a di�erent approach
for constructing an isogeny-based NIKE [30]. CSIDH is not a�ected by the Castryck-Decru attack,
and is arguably the most plausible candidate for practical post-quantum NIKE thus far, although
the post-quantum security of concrete parameters is subject of debate [16, 20, 65]. Multiple works

193

have considered the e�cient and secure implementation of CSIDH, currently the fastest approach
is a variant called CTIDH [11]. We provide a performance comparison of our proposal to CTIDH
in Section 6.2.

Lattice-based NIKE. The idea of lattice-based NIKE using the approach we use for S�����
is not new; in [57] Lyubashevsky calls it “folklore (since at least 2010)”. An attempt at selecting
parameters was made in [33]. However, the proposed scheme did not formally consider passive
security, nor active security. Furthermore, the selected parameters resulted in a correctness error
that would not even allow the transformation into an actively secure scheme through the use of
NIZK proofs that we use for S�����.

In fact, prior to our work, lattice-based NIKE was widely considered impractical and this was
even substantiated by theoretical evidence. The work of [46] discovered information theoretic
barriers in constructing lattice-based NIKE with non-interactive reconciliations. In particular,
they showed that any natural candidate of lattice-based NIKE with polynomial modulus-to-noise
ratio would necessarily incur an inverse-polynomial correctness error. However, we stress that
our work does not contradict the theorem of [46]. As the authors of [46] observe, non-interactive
reconciliation is possible, if we consider (M-)LWE instances with super-polynomial modulus-to-
noise ratio. This is indeed the regime of parameters that we adopt in our work.

2 TECHNICAL OUTLINE

We give a self-contained overview of our approach for constructing a fast lattice-based NIKE. The
following is somewhat informal and glosses over many important details, as it is only intended
for an intuitive understanding of our approach. The reader is referred to the respective technical
sections for precise statements.

The Basic Blueprint. Before delving into the speci�cs of our approach, it is useful to recall the
folklore construction of lattice-based key exchange between Alice and Bob. Let G be a random
public # ⇥ # matrix over some ring R@ and j a noise distribution. The protocol proceeds as
follows; Alice samples Æs1 and Æe1 from j# , and computes her public key as Æs>1 G+ Æe>1 . Bob samples
an independent Æs2 and Æe2 from j# , and computes his public key asGÆs2 + Æe2. After asynchronously
obtaining each other’s public keys, Alice and Bob can compute an approximate shared key as

Æs>1 (GÆs2 + Æe2) ⇡
�
Æs>1 G + Æe>1

�
Æs2 .

A simple calculation shows that the shared keys computed by both parties are identical with
the exception of the error terms Æs>1 Æe2 and Æe

>
1 Æs2 for Alice and Bob, respectively. To correct these

errors, known schemes in the literature are based on encryption or interactive reconciliation,
which can be realised quite e�ciently. However, if we insist on a NIKE protocol, no further

194

interaction is allowed, and Alice and Bob must correct the errors locally. That is, we need to
devise a non-interactive reconciliation function Rec such that

Rec
�
Æs>1 (GÆs2 + Æe2)

�
= Rec

� �
Æs>1 G + Æe>1

�
Æs2
�
.

Note that, thus far, we have assumed that both Alice and Bob compute their keys according to
the speci�cation of the protocol, i.e., we implicitly only considered passive attacks. However, for
the security of the �nal scheme, it will be necessary to handle parties that may behave arbitrarily.
In what follows, we show how we tackle these two challenges separately, in a way that preserves
the e�ciency and security of the scheme.

Challenge I: Non-Interactive Reconciliation. A natural approach for correcting the errors
introduced by the noise terms, is to derive the key by rounding the coe�cients of the resulting
ring element. In fact this is the approach that we adopt in this work, however there are still
new ideas required to simultaneously achieve all of the following objectives: (i) security from
the hardness of the standard module learning with errors (M-LWE) problem, (ii) reducing the
correctness error to negligible, and (iii) maintaining the concrete e�ciency of the construction.
Here, we stress that a negligible correctness error is not just a matter of convenience, but that a
non-negligible correctness error translates to an attack against the scheme: Loosely speaking, this
is because the attacker can observe whenever the key agreement fails, therefore learning some
information about the secret key of the honest party. Let us now focus on making the rounding
approach work for non-interactive reconciliation. A simple calculation shows that the error terms
cause a correctness error, only when the term Æs>1 GÆs2 falls into a danger interval

(⇤ =
h@
4
± V23#

i
[

3@
4

± V23#

�
,

where V is a bound on the norm of the noise distribution and 3 is the degree of R@ . It is tempting
to conclude that, if @ is su�ciently large, then this event only happens with negligible probability.
However, this analysis is imprecise as it does not take into account adaptive attacks, where the
adversary chooses their secret key intentionally to make this event more likely. To prevent this,
and obtain a provably secure scheme, we add a random shift r to the term Æs>1 GÆs2 to ensure that
their sum Æs>1 GÆs2 + r is indeed uniformly distributed in R@ . Note that such r does not need to be
kept private, although it is important that it is sampled independently of the keys. Our idea is to
sample r as the output of a hash function (modelled as a random oracle) on input the two public
keys. This allows us to achieve two goals simultaneously:

• Both parties can recompute the shift r without the need of further interaction.
• We can show that Æs>1 GÆs2 + r is indeed uniformly sampled, even if the adversary has

quantum access to the random oracle.
195

In summary, we are able to build a non-interactive reconciliation mechanism so that the scheme is
provably secure (in the passive settings) against the standard M-LWE assumption, in the QROM.
In fact, we are also able to show a strong notion of correctness, namely that the adversary cannot
cause a reconciliation error, even if it is allowed to choose both secret keys. This strong notion of
correctness will be useful when lifting the scheme to the active setting.

Challenge II: From Passive to Active Security. The above discussion concerns keys that are
guaranteed to be well-formed (passive security). However, in real-world scenarios we have to deal
with attackers that can behave arbitrarily. In the stronger notion of active security [28, 41] the
adversary is given access to various oracles that allow him to register honest keys, register corrupt
keys (ones to which he does not know the corresponding public key), or reveal the shared key
between an honest key and a corrupted one. Ultimately the adversary wins if he can distinguish
between a random key and a shared key, that was derived from two honestly generated key pairs.

In order to prove the active security of our scheme we present a compiler that generically lifts
our scheme to the active setting using non-interactive zero-knowledge (NIZK) proofs. Here it is
crucial that our scheme satis�es the aforementioned strong notion of correctness, since the only
thing that the NIZK guarantees is that the keys are in the support of the honest distributions, but
otherwise they may be chosen arbitrarily. For technical reasons, we require a NIZK that satis�es
the strong property of simulation-sound online-extractability. We refer the reader to Section 5 for
more details.

Putting Everything Together. Overall, we obtain a passively secure construction in the QROM
assuming the hardness of the Module-LWE (M-LWE) problem (for the active settings, we
additionally require a NIZK proof). Compared to Ring-LWE (R-LWE), M-LWE gives us greater
�exibility over the choice of parameters, when implementing our scheme. However, this
introduces an additional complication: Unlike the case for R-LWE, where single polynomials are
considered and their multiplication is commutative, in the case of M-LWE we work with matrices
where the matrix multiplication is not generally commutative. For the general case of two parties
without prede�ned roles in a protocol, there is no way to know ahead of time whether to left
multiply or right multiply. This means that each public key is e�ectively duplicated by adding a
left multiplied key and right multiplied key. However, we argue that in many cases, when parties
have prede�ned roles in a protocol, such as a server or client, this issue can be resolved (the
server could “go right” and the client “left” or vice versa). We defer a more detailed discussion of
this to Section 5.3.

Our parameters are selected as to provide more than 120 bits of post-quantum security, taking
into account recent advances in lattice cryptanalysis. Wework over the ringR@ B Z@ [-]/(-3 +1)
with 3 = 256. Along with our public matrix G 2 R#⇥#

@ , where # = 32, this gives us a lattice
196

dimension of 8192. In order to reduce the correctness error to reasonable levels, @ had to be
su�ciently large. We choose @ = 2214 � 255, a prime that is simultanously NTT-friendly and close
to a power-of-two making for more e�cient �eld arithmetic. Furthermore, we use ternary noise
sampled from a centred binomial distribution, for the sake of e�ciency.

Finally, we provide an open-source implementation of Passive-S����� in Rust and Jasmin,
which employs numerous optimisations rendering competitive benchmarks. Due to the modular
fashion of our implementation we note that it can easily be tailored to use di�erent parameters or
be incorporated with suitable NIZKs. We defer a more detailed discussion to Section 6.

3 PRELIMINARIES

In this Section we introduce our notation and review some quantum preliminaries along with the
relevant lattice-based hardness assumptions.

3.1 Notation

We start by de�ning some standard notation used throughout the paper.

Sets, Vectors, Polynomials and Norms. For integers 0,1, where 0 < 1, [0,1] denotes the set
{0,0 + 1, . . . ,1}. For any positive V 2 Z, we de�ne the set [V] B {�V, . . . ,�1, 0, 1 . . . , V}, and
let G $ S denote the uniform sampling of G from the set S. Let Z@ denote the ring of integers
modulo a prime @. We de�ne R B Z[-]/(-3 + 1) to be the ring of integer polynomials modulo
-3 + 1, for 3 a power of 2, and R@ B Z@ [-]/(-3 + 1) the ring of integer polynomials modulo
-3 + 1 where each coe�cient is reduced modulo @. We assume that that, for any # , a uniformly
sampled # -dimensional square matrix over R@ is invertible with probability 2 , for some constant
0 < 2  1. For concreteness, we conservatively set this constant to be 2 = 0.5. Bold upper case
letters G and bold lower case letters with arrows Æa denote matrices and column vectors over R@ ,
respectively; for row vectors we use the transpose Æb>.

For a polynomial f 2 R@ , let Æ5 2 Z3@ denote the coe�cient vector of f , and 58 2 Z@ the 8th

coe�cient. However, we denote the constant coe�cient by 5̃ B 50 2 Z@ . For an element 58 2 Z@ ,
we write |58 | to mean |58 mod @ |. Let the ✓1 and ✓? norms for f = 50 + 51- + . . . + 53�1-

3�1 2 R@

be de�ned as

kf k1 B max
083�1

|58 | and kf k? B
?

vut3�1’
8=0

|58 |? ,

respectively. If Æf = (f1, . . . ,f:) 2 R:
@ , then

��� Æf���
1
B max

18:
kf8 k1 and

��� Æf���
?
B ?

vut :’
8=1
kf8 k?? .

197

By default
��� Æf��� B ��� Æf���

2
.

Probabilities, Algorithms and Games. The support of a discrete random variable - is de�ned
as

sup(-) B {G 2 R : Pr[- = G] > 0}.

Algorithms are denoted by upper-case letters in sans-serif font, such as A and B. Unless otherwise
stated all algorithms are probabilistic and (G1, . . .) $ A(~1, . . .) is used to denote that A returns
(G1, . . .) when run on input (~1, . . .). When A has oracle access to B during its execution, this is
denoted by AB. For a probabilistic algorithm A, the notation G 2 A(~) denotes that G is a possible
output of A on input ~. We use code-based security games [13], where Pr[G) 1] denotes the
probability that the �nal output of game G is 1. The notation J⌫K, where ⌫ is a Boolean statement,
refers to a bit that is 1 if the statement is true and 0 otherwise.

3.2 �antum Preliminaries

We review some quantum preliminaries as stated in [37].

Qubits, n-qubit States and Measurement. A qubit |Gi B U0 |0i +U1 |1i is a unit vector in some
Hilbert spaceH . When U0 < 1 and U1 < 1, we say that |Gi is in superposition. An =-bit quantum
register |Gi B Õ2=�1

8=0 U8 |8i is a unit vector inH⌦= � C2= , that is Õ2=�1
8=0 |U8 |2 = 1 for U8 2 C. We

call the set {|0i , |1i , . . . , |2= � 1i} the computational basis and say that |Gi is entangled when |Gi
cannot be written as the tensor product of single qubits. Unless otherwise stated, measurements
are done in the computational basis. After measuring a quantum register |Gi = Õ2=�1

8=0 U8 |8i in
the computational basis, the state collapses and |Gi = ± |8i with probability |U8 |2.

Quantum Algorithms. A quantum algorithm A is a sequence of unitary operations *8 , where
unitary operations are de�ned to map unit vectors to unit vectors, while preserving the
normalisation constraint of quantum registers. A quantum oracle algorithm AO is de�ned
analogously, and can additionally query the oracle O before (or after) executing a unitary*8 . As
quantum computations need to be reversible, we model an oracle O : - ! . by a unitary *O

that maps |Gi |~i 7! |Gi |~ � O(G)i. For an oracle O, we write |Oi to denote that an algorithm
has quantum-access to*O.

Quantum Random Oracle Model. In the random oracle model [12], all parties have access to a
uniformly sampled random function H. Since quantum adversaries can evaluate hash functions
in superposition, we model quantum adversaries to have quantum access to random oracles [18].
Speci�cally, we assume that all algorithms have access to the unitary implementing the mapping:

|Gi |~i 7! |Gi |~ � H(G)i
198

where H is a uniformly sampled random function.

Query Depth and Query Parallelism. As in the work of [8] we consider the query depth ⇡ of
an adversary making a total of &H random oracle queries. This is important in practice because
for highly parallel adversaries we have ⇡ ⌧ &H. By setting ⇡ B &H we obtain the bounds for
sequential adversaries. We will use the following technical Lemma from [8].

L���� 3.1 (S����� �� ������������ ��������� [8, L��. 2]). Let H be a random function
drawn from a distribution such that Pr[H(G) = 1]  _ for all G . Let A be an adversary with query
depth ⇡ , making at most &H many queries to H. Then

Pr
h
H(G) = 1 : 1 $ AH

i
 4 · (⇡ + 2) · (&H + 1) · _.

3.3 Hardness Assumptions

The security of our scheme relies on the following variant of the Module-Learning With Errors
(M-LWE) [56, 70].

De�nition 3.2 (M-LWE@,=,<,j). The decisional Module-Learning With Errors problem (in its
Hermite normal form) with parameters =,< > 0 and an error distribution j over R@ is de�ned
via the game M-LWE1@,=,<,j depicted in Figure 1. Here, M-LWE1@,=,<,j is parameterised by a bit
1. We de�ne A’s advantage in M-LWE1@,=,<,j as

AdvM-LWE
@,=,<,j (A) B

�����
Pr[M-LWE0,A@,=,<,j) 1]
� Pr[M-LWE1,A@,=,<,j) 1]

����� ,
and say that M-LWE@,=,<,j is n-hard for all adversaries A satisfying AdvM-LWE

@,=,<,j (A)  n .

Game M-LWE1@,=,<,j

01 10 $ ARoR(1)

02 return J1 = 10K

Oracle RoR(1) // Once

03 if 1 = 0 :
04 G $ R=⇥<

@

05 Æs $ j<

06 Æe $ j=

07 return (G,GÆs + Æe)
08 elseif 1 = 1 :
09 G $ R=⇥<

@

10 Æu $ R=
@

11 return (G, Æu)

Fig. 1. Game defining M-LWE1@,=,<,j with adversary A.

199

Theoretic treatments of LWE-based schemes typically consider the modulus to be polynomial
in = and j to be the discrete Gaussian on ⇡Z,U ·@ over Z with mean 0 and standard deviation
f = U ·@/

p
2c for some U < 1. For these choices the work of [24, 70] showed that if U@ > 2

p
= then

worst-case GapSVP-Õ(=/U) reduces to average-case LWE. As such, many early implementations
sampled from a discrete Gaussian distribution, which turns out to be either fairly ine�cient [22] or
vulnerable to timing attacks [27, 39, 67]. Furthermore, the performance of the best known attacks
against LWE-based schemes does not depend on the exact distribution of noise, but rather on the
standard deviation (and potentially the entropy). This motivates the use of noise distributions
that we can easily, e�ciently, and securely sample from. One example is the centred binomial
distribution used by CRYSTALS-Kyber [72] and in [5].

4 DEFINITIONS

In this section we present a formal de�nition of a non-interactive key exchange along with its
security notions. A precise de�nition of non-interactive zero-knowledge proofs can be found
in Appendix A.1.

4.1 Non-Interactive Key Exchange

Following the work of [28, 41], we formally de�ne a non-interactive key exchange (NIKE). Through
the use of IDs, the security model proposed in [28] abstracts away all considerations concerning
certi�cation and public-key infrastructure.

De�nition 4.1 (Non-Interactive Key Exchange). A non-interactive key exchange NIKE is de�ned
as a tuple NIKE B (Stp,Gen, SdK) of the following PPT algorithms. Furthermore, we de�ne an
identity space IDS and a shared key space SKS.
?0A $ Stp(1_): Given the security parameter 1_ (encoded in unary), the probabilistic setup

algorithm returns a set of system parameters ?0A .
(B:, ?:) $ Gen(ID): Given an identity ID 2 IDS, the probabilistic key generation algorithm

Gen returns a secret/public key pair (B:, ?:).
: SdK(ID1, ?:1, ID2, B:2): Given an identity ID1 2 IDS and its corresponding public key

?:1 along with another identity ID2 2 IDS and its corresponding secret key B:2, the
deterministic shared key establishment algorithm SdK returns a shared-key : 2 SKS,
or a failure symbol ?. We assume that SdK always returns ? if ID1 = ID2.

Correctness. Informally, honest correctness states that shared keys derived by two honest
parties should be the same with overwhelming probability. Although our subsequent de�nition
of correctness implies honest correctness, we state both de�nitions here for completeness.

200

De�nition 4.2 (Honest Correctness). A non-interactive key exchange NIKE B (Stp,Gen, SdK)
has correctness error X (or is said to be X-correct), if for all ?0A 2 Stp(1_) and ID1, ID2 2 IDS it
holds that,

Pr

SdK(ID1, ?:1, ID2, B:2) < SdK(ID2, ?:2, ID1, B:1)

����
(B:1, ?:1) $ Gen(ID1)
(B:2, ?:2) $ Gen(ID2)

#
 X,

where the probability is taken over the random choices of Stp and Gen.

In this work we de�ne a stronger notion, semi-malicious correctness that captures the property
that two maliciously chosen key pairs (that are in the support of the key-generation algorithm)
will not cause the key exchange to fail. Since this property clearly implies honest correctness,
throughout the rest of this work we only focus on semi-malicious correctness. We formalise
semi-malicious correctness for NIKE relative to a random oracle H via the game SM-CORNIKE

depicted in Figure 2 and de�ne the advantage of an adversary A in SM-CORNIKE as

AdvSM-COR
NIKE,?0A (A) B Pr[SM-CORA

NIKE) 1] .

De�nition 4.3 (Semi-malicious Correctness). Let NIKE B (Stp,Gen, SdK) be a non-interactive
key exchange. In the quantum random oracle model, we say that NIKE is X (&H,⇡)-SM-COR
if for all ID1, ID2 2 IDS and for all (possibly unbounded) adversaries A of depth at most
⇡ , making at most &H queries (possibly in superposition) to the random oracle H, we have
AdvSM-COR

NIKE,?0A (A)  X (&H,⇡). 1

Game SM-CORNIKE

01 ?0A Stp(1_)

02

supp(Gen(ID1)) 3 (B:1, ?:1)
supp(Gen(ID2)) 3 (B:2, ?:2)

)
$ A |Hi (?0A)

03 return JSdK(ID1, ?:1, ID2, B:2) < SdK(ID2, ?:2, ID1, B:1)K

Fig. 2. Correctness game SM-CORNIKE for a non-interactive key exchangeNIKE defined relative to a random
oracle H with adversary A.

Passive Security. We formalise the notion of key indistinguishability with passive security
for a non-interactive key exchange NIKE, with respect to system parameters ?0A 2 Stp(1_) via
1Note that in the standard model our correctness de�nition can be considered a special case where the number of random
oracle queries is zero and hence X (&H,⇡) is a constant.

201

the game PasSec1NIKE,?0A depicted in Figure 3. In PasSec1NIKE,?0A , the adversary A provides two
identities ID1 and ID2 for which the public and secret keys are derived honestly. Given both
public keys, A has to distinguish the shared key from a random key. We de�ne the advantage of
adversary A in PasSec1NIKE,?0A as

AdvPasSecNIKE,?0A (A) B
�����
Pr[PasSec0,ANIKE,?0A) 1]
� Pr[PasSec1,ANIKE,?0A) 1]

����� .
De�nition 4.4 (Passive Security). LetNIKE B (Stp,Gen, SdK) be a non-interactive key exchange.

We say that NIKE is (n,&H)-PasSec relative to ?0A 2 Stp(1_) if for all ID1, ID2 2 IDS and for
all PPT adversaries A, making at most&H queries (possibly in superposition) to the random oracle
H, we have AdvPasSecNIKE,?0A (A)  n (&H).

Game PasSec1NIKE,?0A

01 (B:1, ?:1) $ Gen(ID1)
02 (B:2, ?:2) $ Gen(ID2)
03 :0 B SdK(ID1, ?:1, ID2, B:2)
04 :1

$ SKS
05 10 A |Hi (?:1, ?:2,:1)
06 return J1 = 10K

Fig. 3. Passive security game PasSec1NIKE,?0A for a non-interactive key exchange NIKE defined relative to a
random oracle H with adversary A.

Active Security.We formalise the notion of key indistinguishability with active security for a non-
interactive key exchange NIKE, with respect to system parameters ?0A 2 Stp(1_) via the game
ActSec1NIKE,?0A depicted in Figure 4. Observe that the ActSec notion de�ned here corresponds to
CKS-light which is polynomially equivalent to CKS and m-CKS-heavy in the work of [41]. The
original CKS notion was de�ned in [28]. Unsurprisingly our de�nition of active security implies
the former notion of passive security. The game starts by selecting a bit 1 uniformly at random
after which the adversary A is given access to four oracles. A’s queries may be made adaptively
and are arbitrary in number. The RegHonUsr and RegCorUsr oracles let A register honest and
corrupted user public keys, respectively. A may make multiple queries to RegCorUsr, in which
case only the most recent (2>AAD?C, ID,?, ?:) entry is kept. The RevCorQue oracle provides A
with a shared key between a pair of registered identities, subject only to the restriction that at
least one of the two identities was registered as honest. Depending on the bit 1, the TestQue

202

oracle returns either a random key or a shared key between two identities registered as honest.
Finally, the adversary outputs a guess bit 10 and wins the game if and only if 1 = 10. We de�ne
the advantage of adversary A in ActSec1NIKE,?0A as

AdvActSecNIKE,?0A (A) B
�����
Pr[ActSec0,ANIKE,?0A) 1]
� Pr[ActSec1,ANIKE,?0A) 1]

����� .

De�nition 4.5 (Active Security [28]). Let NIKE B (Stp,Gen, SdK) be a non-interactive key
exchange. We say that NIKE is (n,&H,&RHU,&RCU,&RCQ,&TQ)-ActSec relative to ?0A 2 Stp(1_) if
for all PPT adversaries A making at most; &H queries (possibly in superposition) to the random
oracle H,&RHU queries to RegHonUsr,&RCU queries to RegCorUsr,&RCQ queries to RevCorQue, and
&TQ queries to TestQue, we have AdvActSecNIKE,?0A (A)  n .

Game ActSec1NIKE,?0A

01 D B ?
02 K B ?
03 10 A|Hi, RegHonUsr(·), RegCorUsr(·,·), RevCorQue(·,·), TestQue(·,·)

04 return J1 = 10K

Oracle RegHonUsr(ID 2 IDS) // Twice in CKS-light

05 if (2>AAD?C, ID,?, ·) 2 D :
06 return ?
07 (B:,?:) $ Gen(ID)
08 D [{ (⌘>=4BC , ID, B:,?:) }
09 return ?:

Oracle RegCorUsr(ID 2 IDS,?:)

10 if (2>AAD?C, ID,?, ·) 2 D :
11 (2>AAD?C , ID,?, ·) B (2>AAD?C , ID,?,?:)
12 else :
13 D [{ (2>AAD?C , ID,?,?:) }

Oracle RevCorQue(ID1, ID2)

14 if (⌘>=4BC, ID1, ·, ·) 2 D ^ (2>AAD?C, ID2, ·, ·) 2 D :
15 return SdK(ID2,?:2, ID1, B:1)

16 elseif (2>AAD?C, ID1, ·, ·) 2 D ^ (⌘>=4BC, ID2, ·, ·) 2
D :
17 return SdK(ID1,?:1, ID2, B:2)

Oracle TestQue(ID1, ID2) // Once in CKS-light

18 if ID1 = ID2 :
19 return ?
20 if (⌘>=4BC, ID1, ·, ·) 2 D ^ (⌘>=4BC , ID2, ·, ·) 2 D :
21 if 1 = 0 :
22 : B SdK(ID1,?:1, ID2, B:2)
23 if 1 = 1 :
24 if (ID1, ID2,:) 2 K _ (ID2, ID1,:) 2 K :
25 return :

26 : $ SKS
27 K [{ (ID1, ID2,:) }
28 return :
29 return ?

Fig. 4. Game defining ActSec1NIKE,?0A for a non-interactive key exchange NIKE with adversary A.

5 CONSTRUCTION

We present our NIKE construction in two steps by introducing a scheme that only satis�es passive
security followed by a generic transformation that turns it into a scheme with active security.

203

Stp(1_)

01 R@ B Z@ [-]/(-3 + 1)
02 G $ GL(# , R@)
03 ?0A B (@,3, R@ ,# ,G)
04 return ?0A

Gen(ID)

05 Æs!, Æs' Cbd(·) // Samples Æs 2 R#
@

from j#

06 Æe!, Æe' Cbd(·) // Samples Æe 2 R#
@

from j#

07 B:! B Æs>! 2 R1⇥#
@

08 B:' B Æs' 2 R#
@

09 ?:! B Æs>!G + Æe>! 2 R1⇥#
@

10 ?:' B GÆs' + Æe' 2 R#
@

11 return
�
B:ID B (B:!, B:'),?:ID B

(?:!,?:')
�

SdK(ID1,?:1, ID2, B:2)

12 if ID1  ID2 :
13 r B H (ID1,?:1, ID2,?:2) 2
R@

14 parse ?:1 ! (?:!,?) C Æu>! 2
R1⇥#
@

15 parse B:2 ! (?, B:') C Æs' 2
R#
@

16 k0 B Æu>! Æs' + r 2 R@

17 else :
18 r B H (ID2,?:2, ID1,?:1) 2
R@

19 parse ?:1 ! (?,?:') C Æu' 2
R#
@

20 parse B:2 ! (B:!,?) C Æs>' 2
R1⇥#
@

21 k0 B Æs>' Æu' + r 2 R@

22 : B Rec(k0) 2 {0, 1}3
23 return :

Rec(k)

24 for 8 2 {0, . . . ,3 � 1} :
25 ki B Rnd(:8) 2 {0, 1}
26 return : 2 {0, 1}3

Rnd(:8)

27 if @
4  :8  3@

4 :
28 return 1
29 else :
30 return 0

Cbd(·)

31 for 8 2 {1, . . . ,# } :
32 for 9 2 {0, . . . ,3 � 1} :
33 0,1 $ {0, 1}
34 59 B 0 � 1
35 f8 B

Õ3�1
9=0 59- 9

36 return Æf B (f1, . . . , f#)

Fig. 5. Construction of passively secure non-interactive key exchangeNIKE B (Stp,Gen, SdK) with functions
Rec : R@ ! {0, 1}3 , Rnd : Z@ ! {0, 1} and Cbd : ; ! R#

@ , and random oracleH : IDS⇥
⇣
R1⇥#
@ ⇥ R#

@

⌘
⇥

IDS ⇥
⇣
R1⇥#
@ ⇥ R#

@

⌘
! R@ . Here GL(# , R@) denotes the set of invertible matrices over R@ .

5.1 Passive Se�ing

In this section we present our construction of a non-interactive key exchange with semi-malicious
correctness that satis�es key indistinguishability for honestly registered public keys (passive
security) in the random-oracle model. The scheme is depicted in Figure 5.

Correctness. In order to achieve better bounds in our proof of security, we show that our scheme
satis�es both honest correctness as well as the stronger notion of semi-malicious correctness
of De�nition 4.2 and De�nition 4.3, respectively. Although Theorem 5.1 implies Lemma 1, we will
use the latter and state its proof in Appendix B for sake of completeness.

L���� 1 (H����� C����������). For all (possibly unbounded) adversaries A the
non-interactive key exchange NIKE B (Stp,Gen, SdK) construction depicted in Figure 5 has
honest correctness error

X  4V232#
@

as per De�nition 4.2.

We show that the scheme satis�es the stronger notion of semi-malicious correctness in the
quantum random-oracle model.

204

T������ 5.1 (SM-COR �� NIKE). For all (possibly unbounded) adversaries A of depth ⇡

making at most&H queries (possibly in superposition) to the random oracleH, the non-interactive
key exchange NIKE B (Stp,Gen, SdK) construction depicted in Figure 5 has semi-malicious
correctness error

X (&H,⇡)  16 · (⇡ + 2) · (&H + 1) · V
232#

@

as per De�nition 4.3, where V is a bound on the maximum absolute value of the support of j .

P����. We are going to prove that the adversary cannot cause an error in the key-derivation,
i.e., a mismatch between the derived keys, even if he is allowed to choose both secret keys from
the support of the key generation algorithm. This trivially implies semi-malicious correctness.
Let (B:1, ?:1) and (B:2, ?:2) be the pairs returned by the adversary. Without loss of generality
we can consider B:1 = B:! and ?:2 = ?:' , i.e., only “one side” of the key. A key mismatch occurs
whenever

Rec
�
?:>! B:' + r

�
< Rec

�
B:>! ?:' + r

�
Rec

� �
Æs>!G + Æe>!

�
Æs' + r

�
< Rec

�
Æs>! (GÆs' + Æe') + r

�

Rec

©≠≠≠≠
´
Æs>!GÆs' + r| {z }
k¢2R@

+Æe>! Æs'
™ÆÆÆÆ
¨
< Rec

©≠≠≠≠
´
Æs>!GÆs' + r| {z }
k¢2R@

+Æs>! Æe'
™ÆÆÆÆ
¨
,

where r is the output of the random oracle on both public keys and Æe! and Æe' are sampled from
the noise distribution j# . By de�nition of the Rec function, this means that the term Æe>! Æs' (or,
equivalently, the term Æs>! Æe') is causing a rounding error on one of the coe�cients of k¢. We now
bound the size of the largest coe�cient of Æe>! Æs' as

��Æe>! Æs'��1 =

�����
#’
8=1

e!,8 s',8

�����
1


#’
8=1

��e!,8 s',8��1
 V23# ,

where the �rst inequality follows from the triangle inequality. The norm of Æs>! Æe' can be bounded
similarly. It follows that, in order for a key-derivation error to occur, at least one coe�cient of k¢

must be in the following interval

(¢ =
h@
4
± V23#

i
[

3@
4

± V23#

�
.

205

Next we de�ne a function � that, on input two public keys and two identities samples a uniform
r , it returns 1 if a key mismatch occurs, i.e.,

Rec
�
?:>! B:' + r

�
< Rec

�
B:>! ?:' + r

�
and 0 otherwise. The function checks this by (ine�ciently) recovering the secret keys and
comparing the results of the Rec functions (see equation above). Note that, since G is invertible,
the secret key is uniquely determined by the public key, and therefore this (ine�cient) function is
well de�ned on all inputs. Furthermore, note that the element

k¢ = B:>! GB:' + r

is uniformly distributed in R@ , since r
$ R@ . It follows that for any given input G :

Pr[� (G) = 1]  4V232#
@

.

Finally, observe that by de�nition a key mismatch happens if and only if the function � outputs 1
and consequently the adversary is able to �nd such accepting input. By Lemma 3.1, this happens
with probability at most 16 · (⇡ + 2) · (&H + 1) · V232# /@ for an adversary of depth ⇡ , making at
most &H quantum query to the random oracle. ⌅

On the Need for Random Oracles. An astute reader may wonder whether the usage of the
random oracle is needed at all to prove the above notion of correctness, since there does not
appear to be an immediate attack even if we omit the random oracle completely from the scheme.
It is plausible to conjecture that semi-malicious correctness holds even without the random
oracle. Informally, semi-malicious correctness boils down to showing that, for a given public key
?: 2 R#

@ , it is hard to �nd an s 2 R#
@ such that for no coe�cient of the product s>?: lies in the

interval (¢. Thus, the a bound in these settings would require one to estimate the hardness of this
version of the (inhomogenous) 1-dimensional short-integer-solution (SIS) problem. By relying
on the random-oracle heuristic, we are able to bypass this problem and obtain a construction in
the QROM that is: (i) unconditionally correct in any ring and (ii) whose security is based on the
well-established M-LWE problem. We leave the precise study of the hardness of this 1-dimensional
variant of the SIS problem as ground for future work.

Passive Security. Assuming the hardness of M-LWE, De�nition 3.2, we show that the scheme
satis�es passive security, De�nition 4.4, in the QROM.

T������ 5.2 (P������ S�������). For any PPT adversary A against NIKE B (Stp,Gen, SdK),
depicted in Figure 7, making at most &H queries (possibly in superposition) to H, there exist PPT

206

adversaries B1,B2 such that

AdvPasSecNIKE,?0A (A) 6 · Adv
M-LWE
@,# ,# ,j (B1) + 2 · AdvM-LWE

@,# ,#+1,j (B2) +
4V3
@

.

P���� �� T������ 5.2. Let A be an adversary against NIKE in the PasSec game. Consider
the sequence of games in Figure 6.

Game PasSec1NIKE,?0A

01 (B:1, ?:1) $ Gen(ID1)
02 ?:1

$ R1⇥#
@ ⇥ R#

@ //G1

03 (B:1, ?:1) $ Gen(ID1) //G4

04 (B:2, ?:2) $ Gen(ID2)
05 ?:2

$ R1⇥#
@ ⇥ R#

@ //G3

06 (B:2, ?:2) $ Gen(ID2) //G4
07 if ID1  ID2 :
08 r B H (ID1, ?:1, ID2, ?:2) 2 R@

09 parse ?:1 ! (?:!,?) C Æu>! 2 R
1⇥#
@

10 parse B:2 ! (?, B:') C Æs' 2 R#
@

11 k0 B Æu>! Æs' + r 2 R@

12 else :
13 r B H (ID2, ?:2, ID1, ?:1) 2 R@

14 parse ?:1 ! (?, ?:') C Æu' 2 R#
@

15 parse B:2 ! (B:!,?) C Æs>' 2 R
1⇥#
@

16 k0 B Æs>' Æu' + r 2 R@

17 :0 B Rec(k0) 2 {0, 1}3 //G0
18 e $ j //G2

19 :0 B Rec(k0 + e) 2 {0, 1}3 //G2
20 u $ R@ //G3

21 :0 B Rec(u) 2 {0, 1}3 //G3
22 :1

$ SKS
23 10 A |Hi (?:1, ?:2,:1)
24 return J1 = 10K

Fig. 6. Games G0, G1, G2, G3, G4 for the proof of PasSec of NIKE in Figure 5.

207

Game G0. This is the original PasSec1NIKE,?0A game so by de�nition

AdvPasSecNIKE,?0A (A) 
����Pr

h
GA
0) 1

i
� 1
2

����.

Game G1. In this game the half of ?:1 that is used in the key-derivation is replaced with a
uniform key. Without loss of generality we can consider either half of the key. Indistinguishability
follows from a reduction against theM-LWE problem, conditioned on thematrixG being invertible.
Since this happens with probability at least 1/2, we have that���Pr hGA

0) 1
i
� Pr

h
GA
1) 1

i ���  2 · AdvM-LWE
@,# ,# ,j (B1) .

Game G2. In this hybrid we modify the way we compute the shared key. Consider k0 as
computed in the SdK algorithm, we de�ne the shared key as Rec(k0 + e) where e $ j is a freshly
sampled ring element from the noise distribution. Note that the adversary can only detect a
change in this hybrid if

Rec(k0 + e) < Rec(k) .

Since k0 is uniformly sampled from R@ , the probability that any coe�cient is rounded to a
di�erent term is at most 4V3/@, which is also an upper bound on the distinguishing advantage of
the adversary. Thus we get ���Pr hGA

1) 1
i
� Pr

h
GA
2) 1

i ���  4V3
@

.

Game G3. In this game the half of ?:2 used in the key-derivation is replaced with a uniform
key, along with k0 + e that is replaced with a uniform ring element u. By another invocation of
the M-LWE assumption, again conditioning on G being invertible, we have that���Pr hGA

2) 1
i
� Pr

h
GA
3) 1

i ���  2 · AdvM-LWE
@,# ,#+1,j (B2) .

Game G4. In this game we revert the changes made to ?:1 and ?:2, and appealing again
to De�nition 3.2 we get���Pr hGA

3) 1
i
� Pr

h
GA
4) 1

i ���  4 · AdvM-LWE
@,# ,# ,j (B1) .

Observe that :0 and :1 are identically distributed and the adversary can only guess 10. Hence,

Pr
h
GA
4) 1

i
=

1
2
.

Collecting all probabilities yields the bound stated in Theorem 5.2.
⌅

208

5.2 Active Se�ing

Here we show how a non-interactive key exchange with passive security can be generically
transformed to one with active security. The transformation, depicted in Figure 7, requires a
simulation-sound NIZK with a straight-line extractor. The proof is deferred to Appendix B.

Stp(1_)

01 ?0A $ Stp0 (1_)
02 return ?0A

Gen(ID)

03 (B:0
ID
, ?:0

ID
) $ Gen0 (ID)

04 c $ ZK.Prv(?:0
ID
, B:0

ID
)

05 B:ID B B:0
ID

06 ?:ID B (?:0
ID
, c)

07 return (B:ID, ?:ID)

SdK(ID1, ?:1, ID2, B:2)

08 parse ?:1 ! (?:01, c)
09 if ZK.Ver(?:01, c) = 0 :
return ?
10 :0 B SdK0 (ID1, ?:01, ID2, B:2)
11 return :0

Fig. 7. Compiler for transforming a passively secure non-interactive key exchange NIKE0 B
(Stp0,Gen0, SdK0) with semi-malicious correctness into an actively secure non-interactive key exchange
NIKE B (Stp,Gen, SdK) .

T������ 5.3 (PasSec ��� SM-COR �� NIKE0
QROM
)

ZKPoK
ActSec �� NIKE). Let H : {0, 1}⇤ ! R@

be a random oracle and NIKE0 B (Stp0,Gen0, SdK0) a passively secure non-interactive key
exchange with semi-malicious correctness de�ned relative to ?0A 0 2 Stp0 (1_). Further, let
ZKPoK B (ZK.Prv,ZK.Ver) be a simulation-sound online extractabile zero-knowledge proof of
knowledge for the NP relation ' = (?:ID, B:ID). Then, for any ActSec adversary A against
NIKE B (Stp,Gen, SdK), depicted in Figure 7, there exist PPT adversaries B1,B2,B3.8 ,B03.8 ,B4
such that

AdvActSecNIKE,?0A (A) &RCU · AdvSSNDZKPoK (B1) + 2 · AdvSM-COR
NIKE0,?0A 0 (B2)

+&TQ ·&2
RHU

· AdvPasSecNIKE0,?0A 0 (B3.8)

+ 2 ·&TQ · AdvSM-COR
NIKE0,?0A 0 (B

0
3.8)

+ 2 ·&RHU · AdvZKZKPoK (B4),

where &RCU and &RHU, are the number of queries made by A to RegCorUsr and RegHonUsr,
respectively, and&TQ denotes the number of queries made by B8 to TestQue for 8 2 {0, . . . ,&TQ�1}.

5.3 Practical considerations

Halving the Key Size. Observe that the “left” and “right” components ?:! and ?:' of the public
key of the NIKE as speci�ed in Figure 5 are necessary because we work in the non-commutative
M-LWE setting. An easy way to halve the size of the public key would be to set # = 1, i.e., to

209

work in the R-LWE setting; this also eliminates the need for the case distinction in SdK. We
argue that for essentially all relevant applications of a NIKE, we can halve the public-key size
even without moving to the R-LWE setting. All that is required is that protocol participants (and
their associated NIKE keys) have di�erent roles, typically called initiator and responder or client
and server, and that these roles are clear from protocol context. This is certainly the case for the
application examples sketched in Section 1.1: The OPTLS handshake, like the TLS handshake,
clearly distinguishes the roles of client and server, so does the handshake in (post-quantum)
WireGuard. Also in X3DH the critical static-semistatic key exchange has clear roles that can be
used to distinguish between the “left” and “right” participant instead of transmitting both halves
of the key and using comparison of IDs. Note that this setting of a NIKE using keys with di�erent
roles is very similar to the ✓� and ✓⌫ keys of SIDH [50, § 3.2], when it was still considered as a
replacement for DH, i.e., before it was shown to not be actively secure in [44] and completely
broken in [29].

Based on these considerations, we stick to the M-LWE setting for the construction of S�����;
in our performance evaluation in Section 6 we report the size of only one public-key component.

Security of the NIZK. We highlight that our proof of active security, Theorem 5.3, requires
the strong property of simulation-sound online-extractability. Although constructions satisfying
such a strong notion exist [77], they tend to be less e�cient than alternatives satisfying weaker
notions of security. For instance, a proof of knowledge of an M-LWE secret satisfying simulation
soundness, but without online-extractability, using state of the art techniques [59] and appropriate
parameters is around 70 KB in size.

It appears likely that the need for the stronger notion is an artefact of the proof, and we
conjecture that our construction remains secure even if we use NIZKs that are simulation-sound
and extractable, although not online-extractable (such as the protocol in [59]). We are not the �rst
to make this additional assumption, in favour of a more e�cient scheme and similar heuristics
have already appeared in the literature, e.g., in [31]. While we cannot exclude that contrived
examples of NIZKs could make our compiler fail, we believe that all natural candidates of NIZKs
would lead to secure schemes.

Tangentially, we also mention that for some applications, the performance of the NIZK does
not a�ect the e�ciency of the shared-key computation, since it can be veri�ed once and for all for
a given public key: In any scenario where the public keys are distributed by some PKI, the NIZK
proof can be simply veri�ed by the PKI upon the registration of the key, and then immediately
discarded. The users would then trust the PKI to have veri�ed the NIZK on their behalf. Note that
this does not introduce any extra trust assumption, since the PKI is anyway trusted to provide
the correct public key. In these scenarios, the e�ciency of the NIZK only marginally impacts

210

the overall system performance, and thus justi�es ignoring the costs of the NIZK for shared-key
computation.

5.4 Parameter selection

Selecting parameters for the scheme in�uences several aspects, most notably the correctness
error and the hardness of M-LWE. In order to evaluate the security of our scheme we use the
Lattice-Estimator [2, 4, 68], to estimate the memory and CPU operations required to perform
various lattice attacks, including dual attacks, uSVP, the Coded-BKW attack, and solving using
Gröbner bases with the Arora-Ge attack. The estimator has been used to estimate the concrete
security for all LWE and NTRU based candidates of the NIST competition [3], and is regularly
updated to include the latest developments in lattice cryptanalysis2. However, we also take into
account practical considerations for the implementation when selecting our parameters, such as
the use of ternary secrets and noise sampled from a centred binomial distribution. For our scheme
with parameters = = 8192,@ = 2214 � 255 and X a ternary distribution, we estimate the hardness
of the M-LWE problem underlying S����� at 120 bits3.

The other way to attack S����� is, for an active attacker, to try to produce failures. We
consider a quantum attacker with a bounded query depth of ⇡ = 264 (i.e., what NIST considers to
be “the approximate number of gates that current classical computing architectures can perform
serially in a decade” [63, Sec. 4.A]) and a bound on the number of queries of 2120 (i.e., matching
the hardness of the underlying lattice problem). Applying Theorem 5.1 yields a success probability
(correctness error), after this amount of computation, of

16 ·
⇣
264 + 2

⌘
·
⇣
2120 + 1

⌘
· 256

2 · 32
2214

<
1
24

= X (&H,⇡),

i.e., considerably smaller than 1/2. Note that this analysis is conservative as it ignores the circuit
depth for the Grover oracle that an attacker would need to implement.

Generating an Invertible Matrix. In order to justify our conservative estimate that at least
50% of all matrices in R#⇥#

@ are invertible, we used Sage to generate 2000 random matrices and
checked if they are invertible. They were all invertible. We additionally veri�ed that the concrete
matrix used by our implementation (see Section 6) is invertible.6 IMPLEMENTATION AND PERFORMANCE EVALUATION

In order to demonstrate the practicality of S����� in terms of performance, we implement
the core part of the scheme, Passive-S�����, present benchmarks of this implementation, and
compare to other KEMs and (pre- and post-quantum) NIKEs. We caution the reader that all
implementation details and numbers we present in this section are for Passive-S����� only. To

2An up-to-date list of implemented works can be found https://lattice-estimator.readthedocs.io/en/latest/references.html.
3These numbers can be reproduced with the estimator — the version used in this work is at commit
96875622c6b0e6f98a91ddeecaaa17b66dbc5a87.

211

Parameter Description Value
V upper bound on kÆsk1 = kÆek1 1
@ prime modulus 2214 � 255
3 dim of R@ B Z@ [-]/(-3 + 1) 256
; # factors -3 + 1 splits into mod @ 128
height of the Gmatrix 32
= lattice dimension 8192

j noise distribution
? (�1)=25%
? (0)=50%
? (1)=25%

Table 1. Parameter selection for non-interactive key exchange NIKE.

obtain a full picture of the performance of S�����, the implementation will need to be augmented
with a future implementation of the NIZKP from [59]. As outlined in Section 5.3, the performance
impact of adding the NIZKP in terms of both size and computational e�ort depends on the
concrete application scenario and may be negligible if key-generation performance is not critical
and if NIZKP veri�cation can be outsourced to the PKI. The source code of our implementation is
publicly available4.

6.1 Implementation

Scheme (variant) Assumption Non-int. PQ Sizes (in bytes)
Ciphertext Public Key

CRYSTALS-Kyber [72] (Kyber-512) M-LWE 7 3 768 800
Classic McEliece [1] (mceliece348864) Binary Goppa Codes 7 3 96 261120
X25519 [14] DLOG 3 7 — 32
CTIDH [11] (CTIDH-1024) Supersingular Isogenies 3 3 — 128
Passive-S����� (this work) M-LWE 3 3 — 221184

Table 2. Public-key sizes for select NIKEs and public-key and ciphertext sizes of select post-quantum KEMs

As a NIKE, S����� is composed of two major functions, the key generation procedure and
the shared-key computation, the performance of which dictates the practicality of S�����.

In the case of the key generation, the matrixG is �xed and assumed to be in the NTT domain, so
performance is dictated by the sampling of the secret and error vectors, as well as the computation
of the public key which involves two NTT transformations, and a matrix multiplication followed
by a polynomial addition. As for the shared key computation, its performance is mainly dictated
by the random o�set computation, which requires the use of cSHAKE [51] and the polynomial
base multiplication required to calculate k0 (see Fig. 5). Similar to other schemes, the shared-key
derivation also performs rounding of the shared key, however its execution time is negligible. At
4https://github.com/MQuaresma/pswoosh, commit ID a580876 at the time of writing.

212

a high level, the architecture of our implementation is divided into two distinct parts: low-level
�eld arithmetic over F@ that is implemented using the Jasmin language [6, 7], and polynomial
arithmetic in R@ as well as the scheme itself, both of which are implemented in Rust.

The structure largely mimics the abstract speci�cation in Figure 5. The main di�erence is that,
like other lattice-based schemes [5, 72], we encode and transmit public keys in NTT domain.
This massively reduces the number of cycles required for shared-key computation. In addition,
as discussed in Section 5.3, we assume that the role of each party is well de�ned and thus only
compute one half of the key. We implement this by passing a Boolean �ag as an argument to key
generation and shared-key derivation to indicate which party is calling the respective function.
Finally, we implement the noise sampling in a slightly di�erent way than one might expect; we
will discuss this later in this section.

Zooming in on the low-level �eld arithmetic, the operations on integers modulo 2214 � 255
require multiple-precision integers since native scalar registers (64 bits in AMD64) are not large
enough to store a single �eld element. This arithmetic is implemented through libjbn5, a Jasmin
library that exposes big-integer arithmetic.

Polynomial Arithmetic. On top of this layer, operations in polynomial rings are implemented
using Rust, in addition to other functions such as reconciliation, matrix and noise generation.
Similar to other lattice-based schemes, one of the more critical (and easier) operations to optimise
(from a performance perspective) is polynomial multiplication. The naive algorithm for
multiplying two polynomials in R@ , sometimes called Schoolbook multiplication, involves
multiplying all pairs of coe�cients, calculating their sum and reducing modulo -3 + 1. However,
the complexity of this approach is quadratic in the number of coe�cients and thus quite costly.

The Number Theoretic Transform (NTT) provides a more e�cient approach for polynomial
multiplication with quasi-logarithmic time complexityO(3 log(3)) instead ofO

�
32

�
. For a detailed

discussion on the NTT refer to [74].
As is the case for other implementations [5, 72], we implement an in-place NTT which requires

bit-reversal operations in the forward and inverse transforms but uses less memory. Another
optimisation is to make the NTT a part of our scheme, which means the matrixG is sampled in the
NTT domain, and the secret and public keys are stored in the NTT domain. This results in the NTT
only being used three times, once for the shared key derivation and twice in the key generation
to convert the secret and error vectors, which are sampled in the normal domain to the NTT
domain before computing the public key. A common trick to speed-up the NTT transformation
when using Montgomery reduction [61], as is the case for libjbn, is the pre-computed constants
in Montgomery form Z · ' (mod @).

5See https://github.com/formosa-crypto/libjbn.

213

Noise sampling and matrix generation. Both the matrix generation and noise sampling
procedures use a seed, either set as a system parameter for G or as a secret input to a PRG in
the case of Æs and Æe, to produce a stream bytes from which the distributions are sampled. In the
case of matrix generation this is achieved via rejection sampling on the stream of bytes produced
by an extendable output function (XOF). The noise sampling procedure, used for generating
the secret key and the error vector, samples these vectors from a centred binomial distribution
using the output of a PRF with a random seed. As with other schemes where multiplication is
optimised using the NTT, the choice of (symmetric) primitive that underlies these functions tends
to be a deciding factor for the performance. We chose cSHAKE [51] based on Keccak [38] as the
underlying primitive for the XOF and AES256-CTR for the PRF used in noise sampling.

Similar to the NewHope scheme [5], for e�ciency reasons the secret and error vectors are
sampled from a centred binomial distribution rather than a discrete Gaussian distribution. Using
ternary noisemeans that each coe�cient can be generated from only 2 bits and thus, the generation
of a polynomial in R@ only requires (32 · 256 · 2)/8 = 2048 (pseudo-random) bytes. Intuitively,
our CBD de�nition in Figure 5 when 0 and 1 are sourced from a PRG, maps 001 and 111 to 0
mod @ with 50% probability, 101 to 1 mod @ and 011 to �1 mod @ with 25% probability each.
Our implementation di�ers from the speci�cation by applying signed reduction modulo 3 to each
two bit block and converting it to a congruent value in F@ , as opposed to using big integer �eld
arithmetic to map bits 0 and 1 to an element in F@ . Although this approach produces a di�erent
mapping (111 to �1 mod @, 001 and 101 to 0 mod @ and 011 to 1 mod @), the distribution of the
outputs is identical. Due to the size of our �eld elements, this approach results in a considerable
speed up in the noise sampling.

The random o�set used in our scheme is generated by performing rejection sampling on the
output of cSHAKE-256 [51].

6.2 Performance Evaluation

In this section we evaluate the performance of our scheme and compare it to others. We also
provide a comparison of key sizes and the properties of each scheme such as post-quantum
security, and whether they are non-interactive.

The benchmark results for Passive-S����� were obtained on an Intel Core i7-6500U (Skylake)
running on a single core with Hyper-threading and TurboBoost disabled. The Rust compiler
version used for the benchmarks was 1.62.16 and the Jasmin compiler version was 2022.09.0. We
report the median cycle counds of 10000 runs. In Table 3 we list the results and compare to the
cycle counts of CTIDH-1024 as reported in [11, Sec. 8] and of lib25519 [62], on Intel Skylake CPUs.

6The following build con�guration options/values were used: opt-level=3 and target-cpu=�native�.

214

As expected, the pre-quantum X25519 [14] scheme is orders of magnitude faster than Passive-
S����� for key generation. However, in many applications of NIKEs, keys are re-used many
times and what is more critical is the performance of shared-key computation. Here the gap
to pre-quantum X25519 is considerably smaller and Passive-S����� outperforms the only real
post-quantum competitor CTIDH by a factor of 48.

Operation X25519 CTIDH-1024 Passive-S�����
NTT — — 217 430
NTT�1 — — 262 992
Noise generation — — 89 776
Key generation 28 187 469 520 000 146 920 890
Shared key 87 942 511 190 000 10 612 666

Table 3. Cycle counts on Intel Skylake.

However, as shown in Table 2, CTIDH, Kyber, and X25519 have a public-key size several orders
of magnitude smaller than Passive-S�����. In this aspect, only Classic McEliece has a public key
size comparable to that of Passive-S�����, even when taking into account the expected size of
the proof of knowledge (see Section 5.3).

7 CONCLUSIONS

In this work, we constructed a NIKE based on the M-LWE problem, with a proof in the QROM.
Our scheme is based on the standard blueprint, but with an additional twist to guarantee
provable security for arbitrary rings. Our optimised implementation shows that our scheme
o�ers reasonable computational performance and key sizes that should be acceptable for most
applications. We view our work as the �rst evidence contradicting the folklore belief that
lattice-based NIKE is too ine�cient to be used in practice. As future work, we plan an
implementation of the full S����� scheme, i.e., including the NIZK proof. We also plan to
explore applications of our scheme to more complex protocols and to formally verify the
correctness of (parts of) our implementation.

REFERENCES
[1] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo

von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. 2022. Classic
McEliece. Technical Report. National Institute of Standards and Technology. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-4-submissions.

[2] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W. Postlethwaite, Fernando
Virdia, and Thomas Wunderer. 2018. Estimate All the LWE, NTRU Schemes!. In SCN 18: 11th International Conference
on Security in Communication Networks (Lecture Notes in Computer Science, Vol. 11035), Dario Catalano and Roberto De
Prisco (Eds.). Springer, Heidelberg, Germany, Amal�, Italy, 351–367. https://doi.org/10.1007/978-3-319-98113-0_19

215

[3] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W. Postlethwaite, Fernando
Virdia, and Thomas Wunderer. 2018. Estimate all the LWE, NTRU schemes! Cryptology ePrint Archive, Report 2018/331.
https://eprint.iacr.org/2018/331.

[4] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On The Concrete Hardness Of LearningWith Errors. Cryptology
ePrint Archive, Report 2015/046. https://eprint.iacr.org/2015/046.

[5] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-quantum Key Exchange - A New Hope.
In USENIX Security 2016: 25th USENIX Security Symposium, Thorsten Holz and Stefan Savage (Eds.). USENIX Association,
Austin, TX, USA, 327–343.

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In ACM CCS 2017: 24th Conference on Computer and Communications Security, Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 1807–1823. https://doi.org/10.1145/3133956.3134078

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, Vincent Laporte, Tiago
Oliveira, and Pierre-Yves Strub. 2020. The Last Mile: High-Assurance and High-Speed Cryptographic Implementations.
In 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 965–982.
https://doi.org/10.1109/SP40000.2020.00028

[8] Andris Ambainis, Mike Hamburg, and Dominique Unruh. 2019. Quantum Security Proofs Using Semi-classical
Oracles. In Advances in Cryptology – CRYPTO 2019, Part II (Lecture Notes in Computer Science, Vol. 11693), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 269–295. https:
//doi.org/10.1007/978-3-030-26951-7_10

[9] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter Schwabe, and Florian Weber. 2022. Post Quantum Noise. ,
97–109 pages. http://cryptojedi.org/papers/#pqnoise.

[10] Reza Azarderakhsh, David Jao, and Christopher Leonardi. 2017. Post-Quantum Static-Static Key Agreement Using
Multiple Protocol Instances. In SAC 2017: 24th Annual International Workshop on Selected Areas in Cryptography (Lecture
Notes in Computer Science, Vol. 10719), Carlisle Adams and Jan Camenisch (Eds.). Springer, Heidelberg, Germany, Ottawa,
ON, Canada, 45–63. https://doi.org/10.1007/978-3-319-72565-9_3

[11] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer, Benjamin Smith, and
Jana Sotáková. 2021. CTIDH: faster constant-time CSIDH. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2021, 4 (2021), 351–387. https://doi.org/10.46586/tches.v2021.i4.351-387 https://tches.iacr.org/index.php/
TCHES/article/view/9069.

[12] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Paradigm for Designing E�cient Protocols.
In ACM CCS 93: 1st Conference on Computer and Communications Security, Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM Press, Fairfax, Virginia, USA, 62–73. https://doi.org/10.1145/
168588.168596

[13] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and a Framework for Code-Based Game-
Playing Proofs. In Advances in Cryptology – EUROCRYPT 2006 (Lecture Notes in Computer Science, Vol. 4004), Serge
Vaudenay (Ed.). Springer, Heidelberg, Germany, St. Petersburg, Russia, 409–426. https://doi.org/10.1007/11761679_25

[14] Daniel J. Bernstein. 2006. Curve25519: New Di�e-Hellman Speed Records. In PKC 2006: 9th International Conference on
Theory and Practice of Public Key Cryptography (Lecture Notes in Computer Science, Vol. 3958), Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin (Eds.). Springer, Heidelberg, Germany, New York, NY, USA, 207–228. https:
//doi.org/10.1007/11745853_14

[15] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri. 2022. OpenSSLNTRU: Faster post-quantum
TLS key exchange. In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association, Boston, MA, 845–862.
https://www.usenix.org/conference/usenixsecurity22/presentation/bernstein

[16] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. 2019. Quantum Circuits for the CSIDH:
Optimizing Quantum Evaluation of Isogenies. In Advances in Cryptology – EUROCRYPT 2019, Part II (Lecture Notes
in Computer Science, Vol. 11477), Yuval Ishai and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Darmstadt,
Germany, 409–441. https://doi.org/10.1007/978-3-030-17656-3_15

216

[17] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-Knowledge and Its Applications (Extended
Abstract). In 20th Annual ACM Symposium on Theory of Computing. ACM Press, Chicago, IL, USA, 103–112. https:
//doi.org/10.1145/62212.62222

[18] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Scha�ner, and Mark Zhandry. 2011. Random
Oracles in a QuantumWorld. In Advances in Cryptology – ASIACRYPT 2011 (Lecture Notes in Computer Science, Vol. 7073),
Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer, Heidelberg, Germany, Seoul, South Korea, 41–69. https://doi.org/
10.1007/978-3-642-25385-0_3

[19] Dan Boneh and Mark Zhandry. 2014. Multiparty Key Exchange, E�cient Traitor Tracing, and More from
Indistinguishability Obfuscation. In Advances in Cryptology – CRYPTO 2014, Part I (Lecture Notes in Computer Science,
Vol. 8616), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 480–499.
https://doi.org/10.1007/978-3-662-44371-2_27

[20] Xavier Bonnetain and André Schrottenloher. 2020. Quantum Security Analysis of CSIDH. In Advances in Cryptology –
EUROCRYPT 2020, Part II (Lecture Notes in Computer Science, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer,
Heidelberg, Germany, Zagreb, Croatia, 493–522. https://doi.org/10.1007/978-3-030-45724-2_17

[21] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan,
and Douglas Stebila. 2016. Frodo: Take o� the Ring! Practical, Quantum-Secure Key Exchange from LWE. In ACM CCS
2016: 23rd Conference on Computer and Communications Security, Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna, Austria, 1006–1018. https://doi.org/10.1145/
2976749.2978425

[22] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-Quantum Key Exchange for the TLS
Protocol from the Ring Learning with Errors Problem. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, San Jose, CA, USA, 553–570. https://doi.org/10.1109/SP.2015.40

[23] Colin Boyd, Yvonne Cli�, Juan González Nieto, and Kenneth G. Paterson. 2008. E�cient One-Round Key Exchange in
the Standard Model. In ACISP 08: 13th Australasian Conference on Information Security and Privacy (Lecture Notes in
Computer Science, Vol. 5107), Yi Mu,Willy Susilo, and Jennifer Seberry (Eds.). Springer, Heidelberg, Germany,Wollongong,
Australia, 69–83.

[24] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. 2013. Classical hardness of learning
with errors. In 45th Annual ACM Symposium on Theory of Computing, Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum (Eds.). ACM Press, Palo Alto, CA, USA, 575–584. https://doi.org/10.1145/2488608.2488680

[25] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila. 2022. Post-quantum
Asynchronous Deniable Key Exchange and the Signal Handshake. In Public-Key Cryptography – PKC 2022, Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe (Eds.). Springer International Publishing, Cham, 3–34.

[26] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila. 2020. Towards Post-
Quantum Security for Signal’s X3DH Handshake. In SAC 2020: 27th Annual International Workshop on Selected
Areas in Cryptography (Lecture Notes in Computer Science, Vol. 12804), Orr Dunkelman, Michael J. Jacobson Jr.,
and Colin O’Flynn (Eds.). Springer, Heidelberg, Germany, Halifax, NS, Canada (Virtual Event), 404–430. https:
//doi.org/10.1007/978-3-030-81652-0_16

[27] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016. Flush, Gauss, and Reload - A Cache
Attack on the BLISS Lattice-Based Signature Scheme. In Cryptographic Hardware and Embedded Systems – CHES 2016
(Lecture Notes in Computer Science, Vol. 9813), Benedikt Gierlichs and Axel Y. Poschmann (Eds.). Springer, Heidelberg,
Germany, Santa Barbara, CA, USA, 323–345. https://doi.org/10.1007/978-3-662-53140-2_16

[28] David Cash, Eike Kiltz, and Victor Shoup. 2008. The Twin Di�e-Hellman Problem and Applications. In Advances in
Cryptology – EUROCRYPT 2008 (Lecture Notes in Computer Science, Vol. 4965), Nigel P. Smart (Ed.). Springer, Heidelberg,
Germany, Istanbul, Turkey, 127–145. https://doi.org/10.1007/978-3-540-78967-3_8

[29] Wouter Castryck and Thomas Decru. 2022. An e�cient key recovery attack on SIDH (preliminary version). Cryptology
ePrint Archive, Report 2022/975. https://eprint.iacr.org/2022/975.

[30] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. 2018. CSIDH: An E�cient Post-
Quantum Commutative Group Action. In Advances in Cryptology – ASIACRYPT 2018, Part III (Lecture Notes in Computer
Science, Vol. 11274), Thomas Peyrin and Steven Galbraith (Eds.). Springer, Heidelberg, Germany, Brisbane, Queensland,

217

Australia, 395–427. https://doi.org/10.1007/978-3-030-03332-3_15
[31] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel

Slamanig, and Greg Zaverucha. 2017. Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives.
In ACM CCS 2017: 24th Conference on Computer and Communications Security, Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 1825–1842. https://doi.org/10.1145/3133956.3133997

[32] Craig Costello, Patrick Longa, and Michael Naehrig. 2016. E�cient Algorithms for Supersingular Isogeny Di�e-Hellman.
In Advances in Cryptology – CRYPTO 2016, Part I (Lecture Notes in Computer Science, Vol. 9814), Matthew Robshaw
and Jonathan Katz (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 572–601. https://doi.org/10.1007/
978-3-662-53018-4_21

[33] Bor de Kock. 2018. A non-interactive key exchange based on ring-learning with errors. Master’s thesis. Master’s thesis,
Eindhoven University of Technology.

[34] Whit�eld Di�e and Martin E. Hellman. 1976. New Directions in Cryptography. IEEE Transactions on Information
Theory 22, 6 (1976), 644–654.

[35] Jintai Ding, Xiang Xie, and Xiaodong Lin. 2012. A Simple Provably Secure Key Exchange Scheme Based on the Learning
with Errors Problem. Cryptology ePrint Archive, Report 2012/688. https://eprint.iacr.org/2012/688.

[36] Samuel Dobson and Steven D. Galbraith. 2022. Post-Quantum Signal Key Agreement from SIDH. In Post-Quantum
Cryptography, Jung Hee Cheon and Thomas Johansson (Eds.). Springer International Publishing, Cham, 422–450.

[37] Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler, Jonas Lehmann, and Doreen Riepel. 2022. Group
Action Key Encapsulation and Non-Interactive Key Exchange in the QROM. Cryptology ePrint Archive, Paper 2022/1230.
https://eprint.iacr.org/2022/1230 https://eprint.iacr.org/2022/1230.

[38] Morris J. Dworkin. 2015. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. Technical Report.
National Institute of Standards and Technology. https://doi.org/10.6028/nist.�ps.202

[39] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2017. Side-Channel Attacks on BLISS Lattice-
Based Signatures: Exploiting Branch Tracing against strongSwan and Electromagnetic Emanations in Microcontrollers.
In ACM CCS 2017: 24th Conference on Computer and Communications Security, Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 1857–1874. https://doi.org/10.1145/3133956.3134028

[40] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to Identi�cation and Signature Problems. In
Advances in Cryptology – CRYPTO’86 (Lecture Notes in Computer Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 186–194. https://doi.org/10.1007/3-540-47721-7_12

[41] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. 2013. Non-Interactive Key Exchange. In
PKC 2013: 16th International Conference on Theory and Practice of Public Key Cryptography (Lecture Notes in Computer
Science, Vol. 7778), Kaoru Kurosawa and Goichiro Hanaoka (Eds.). Springer, Heidelberg, Germany, Nara, Japan, 254–271.
https://doi.org/10.1007/978-3-642-36362-7_17

[42] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure Integration of Asymmetric and Symmetric Encryption Schemes.
In Advances in Cryptology – CRYPTO’99 (Lecture Notes in Computer Science, Vol. 1666), Michael J. Wiener (Ed.). Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 537–554. https://doi.org/10.1007/3-540-48405-1_34

[43] Eiichiro Fujisaki and Tatsuaki Okamoto. 2013. Secure Integration of Asymmetric and Symmetric Encryption Schemes.
Journal of Cryptology 26, 1 (Jan. 2013), 80–101. https://doi.org/10.1007/s00145-011-9114-1

[44] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. 2016. On the Security of Supersingular Isogeny
Cryptosystems. In Advances in Cryptology – ASIACRYPT 2016, Part I (Lecture Notes in Computer Science, Vol. 10031),
Jung Hee Cheon and Tsuyoshi Takagi (Eds.). Springer, Heidelberg, Germany, Hanoi, Vietnam, 63–91. https://doi.org/10.
1007/978-3-662-53887-6_3

[45] Sha� Goldwasser, Silvio Micali, and Charles Racko�. 1985. The Knowledge Complexity of Interactive Proof-Systems
(Extended Abstract). In 17th Annual ACM Symposium on Theory of Computing. ACM Press, Providence, RI, USA, 291–304.
https://doi.org/10.1145/22145.22178

[46] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. 2020. Limits on the E�ciency of (Ring) LWE Based Non-
interactive Key Exchange. In PKC 2020: 23rd International Conference on Theory and Practice of Public Key Cryptography,
Part I (Lecture Notes in Computer Science, Vol. 12110), Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas (Eds.). Springer, Heidelberg, Germany, Edinburgh, UK, 374–395. https://doi.org/10.1007/978-3-030-45374-9_13

218

[47] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. 2021. An E�cient and Generic
Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable. In PKC 2021:
24th International Conference on Theory and Practice of Public Key Cryptography, Part II (Lecture Notes in Computer
Science, Vol. 12711), Juan Garay (Ed.). Springer, Heidelberg, Germany, Virtual Event, 410–440. https://doi.org/10.1007/
978-3-030-75248-4_15

[48] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zimmermann. 2021. Post-quantum
WireGuard. In 2021 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA,
304–321. https://doi.org/10.1109/SP40001.2021.00030

[49] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian
Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. 2017.
SIKE. Technical Report. National Institute of Standards and Technology. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions.

[50] David Jao and Luca De Feo. 2011. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve
Isogenies. In Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011, Bo-Yin Yang (Ed.). Springer,
Heidelberg, Germany, Tapei, Taiwan, 19–34. https://doi.org/10.1007/978-3-642-25405-5_2

[51] John Kelsey, Shu jen Change, and Ray Perlner. 2016. SHA-3 derived functions: cSHAKE, KMAC, TupleHash and ParallelHash.
Technical Report. National Institute of Standards and Technology. https://doi.org/10.6028/nist.sp.800-185

[52] Hugo Krawczyk and Hoeteck Wee. 2016. The OPTLS Protocol and TLS 1.3. In 2016 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, Saarbruecken, Germany, 81–96. https://doi.org/10.1109/eurosp.2016.18

[53] Kris Kwiatkowski and Luke Valenta. 2019. The TLS Post-Quantum Experiment. Post on the Cloud�are blog. https:
//blog.cloud�are.com/the-tls-post-quantum-experiment/.

[54] Adam Langley. 2016. CECPQ1 results. Blog post. https://www.imperialviolet.org/2016/11/28/cecpq1.html.
[55] Adam Langley. 2018. CECPQ2. Blog post. https://www.imperialviolet.org/2018/12/12/cecpq2.html.
[56] Adeline Langlois and Damien Stehlé. 2015. Worst-Case to Average-Case Reductions for Module Lattices. Designs, Codes

and Cryptography 75, 3 (2015), 565–599.
[57] Vadim Lyubashevsky. 2017. Converting NewHope/LWE key exchange to a Di�e-Hellman-

like algorithm. Crypto Stack Exchange. https://crypto.stackexchange.com/questions/48146/
converting-newhope-lwe-key-exchange-to-a-di�e-hellman-like-algorithm [Online:] https://crypto.stackexchange.
com/questions/48146/converting-newhope-lwe-key-exchange-to-a-di�e-hellman-like-algorithm.

[58] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien Stehlé, and Shi
Bai. 2022. CRYSTALS-DILITHIUM. Technical Report. National Institute of Standards and Technology. available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[59] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. 2022. Lattice-Based Zero-Knowledge Proofs and
Applications: Shorter, Simpler, and More General. In Advances in Cryptology – CRYPTO 2022, Part II (Lecture Notes in
Computer Science, Vol. 13508), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer, Heidelberg, Germany, Santa
Barbara, CA, USA, 71–101. https://doi.org/10.1007/978-3-031-15979-4_3

[60] Moxie Marlinspike and Trevor Perrin. 2016. The X3DH Key Agreement Protocol (Revision 1). Part of the Signal Protocol
Documentation. https://signal.org/docs/speci�cations/x3dh/x3dh.pdf.

[61] Peter L. Montgomery. 1985. Modular Multiplication without Trial Division. Math. Comp. 44, 170 (1985), 519–521.
[62] Kaushik Nath and Daniel J. Bernstein. 2022. lib25519. https://lib25519.cr.yp.to/.
[63] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography

Standardization Process. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-�nal-dec-2016.pdf.

[64] Christian Paquin, Douglas Stebila, and Goutam Tamvada. 2020. Benchmarking Post-quantum Cryptography in TLS. In
Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020, Jintai Ding and Jean-Pierre Tillich (Eds.).
Springer, Heidelberg, Germany, Paris, France, 72–91. https://doi.org/10.1007/978-3-030-44223-1_5

[65] Chris Peikert. 2020. He Gives C-Sieves on the CSIDH. In Advances in Cryptology – EUROCRYPT 2020, Part II (Lecture
Notes in Computer Science, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb,
Croatia, 463–492. https://doi.org/10.1007/978-3-030-45724-2_16

219

[66] Trevor Perrin. 2018. Noise Protocol Framework. https://noiseprotocol.org/noise.pdf (Revision 34 vom 2018-07-11).
[67] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. 2017. To BLISS-B or not to be: Attacking strongSwan’s

Implementation of Post-Quantum Signatures. In ACM CCS 2017: 24th Conference on Computer and Communications
Security, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA,
1843–1855. https://doi.org/10.1145/3133956.3134023

[68] Rachel Player. 2018. Parameter selection in lattice-based cryptography. Ph. D. Dissertation. Royal Holloway, University
of London.

[69] Thomas Prest, Pierre-Alain Fouque, Je�rey Ho�stein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. 2022. FALCON. Technical Report. National
Institute of Standards and Technology. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[70] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and cryptography. In 37th Annual ACM
Symposium on Theory of Computing, Harold N. Gabow and Ronald Fagin (Eds.). ACM Press, Baltimore, MA, USA, 84–93.
https://doi.org/10.1145/1060590.1060603

[71] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. https://doi.org/10.17487/RFC8446
[72] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.

Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding. 2022. CRYSTALS-KYBER. Technical Report. National
Institute of Standards and Technology. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[73] Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2020. Post-Quantum TLS Without Handshake Signatures. In ACM
CCS 2020: 27th Conference on Computer and Communications Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 1461–1480. https://doi.org/10.1145/3372297.3423350

[74] Gregor Seiler. 2018. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography. Cryptology ePrint
Archive, Report 2018/039. https://eprint.iacr.org/2018/039.

[75] Peter W. Shor. 1994. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In 35th Annual
Symposium on Foundations of Computer Science. IEEE Computer Society Press, Santa Fe, NM, USA, 124–134. https:
//doi.org/10.1109/SFCS.1994.365700

[76] Sara Stadler, Vitor Sakaguti, Harjot Kaur, and Anna Lena Fehlhaber. 2021. Hybrid Signal protocol for post-quantum
email encryption. Cryptology ePrint Archive, Report 2021/875. https://eprint.iacr.org/2021/875.

[77] Dominique Unruh. 2015. Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model. In Advances
in Cryptology – EUROCRYPT 2015, Part II (Lecture Notes in Computer Science, Vol. 9057), Elisabeth Oswald and Marc
Fischlin (Eds.). Springer, Heidelberg, Germany, So�a, Bulgaria, 755–784. https://doi.org/10.1007/978-3-662-46803-6_25

[78] Bas Westerbaan and Cefan Daniel Rubin. 2019. Defending against future threats: Cloud�are goes post-quantum. Post
on the Cloud�are blog. https://blog.cloud�are.com/post-quantum-for-all/.

A PROOFS FOR SECTION 4 (DEFINITIONS)

A.1 Non-Interactive Zero-Knowledge Proofs

Zero-Knowledge proofs [45] allow a veri�er to convince a prover of the validity of a statement
without revealing anything beyond that. In the random oracle model [12] zero-knowledge proofs
can be made non-interactive [17] by applying the Fiat-Shamir transformation [40].

De�nition A.1 (Zero-Knowledge Proof of Knowledge). A zero-knowledge proof of knowledge
ZKPoK for an NP language L 7 is de�ned as a tuple ZKPoK B (ZK.Prv,ZK.Ver) of the following
oracle algorithms.

7The language L is de�ned as the set of all yes-instances of the relation ', i.e. L = {G : 9 F s.t. ' (G,F) = 1}.
220

c $ ZK.PrvH (G,F): Given a statement G and a witness F , the probabilistic prover algorithm
ZK.Prv returns a proof c .

1/0 ZK.VerH (G, c): Given a statement G and a proof c , the deterministic veri�er algorithm
returns either 1 for accept or 0 for reject.

Similar to the work of [77] we assume a distribution RODist on functions, modelling the
distribution of our random oracle. That is, given a random oracle H : {0, 1}⇤ ! {0, 1}= , RODist
would be the uniform distribution on {0, 1}⇤ ! {0, 1}= .

ZKPoK Security Notions. Besides completeness, which captures that valid proofs are accepted
by the veri�er, a zero-knowledge proof of knowledge should ful�l two additional properties;
soundness ensures a cheating prover cannot convince the veri�er of a false proof, and zero-
knowledge conveys that the veri�er learns nothing from its interaction with the prover beyond
the fact that he knows a valid witness to the proof. We make this more precise with the following
de�nitions and note that we require the strong notion of simulation soundness with a straight-line
extractor [77], sometimes referred to as “online extractability” in the literature.

De�nition A.2 (Completeness). Completeness for a zero-knowledge proof of knowledge ZKPoK
of an NP language L is de�ned via the game CMPLTZKPoK depicted in Figure 8. For an adversary
A, we de�ne A’s advantage in CMPLTZKPoK as

AdvCMPLT
ZKPoK (A) B Pr[CMPLTA

ZKPoK) 1],

and say that ZKPoK is (n,&H)-CMPLT if for all quantum-polynomial-time adversaries A, making
at most &H queries (possibly in superposition) to the random oracle H, we have AdvCMPLT

ZKPoK (A) 
n (&H).

Game CMPLTZKPoK

01 H $ RODist

02 (G,F) $ A |Hi

03 c $ ZK.PrvH (G,F)
04 return JZK.VerH (G, c) = 0 ^ '(G,F) = 1K

Fig. 8. Game defining CMPLTZKPoK for a zero-knowledge proof of knowledge ZKPoK with adversary A.

For the following notions we additionally require a simulator ZK.Sim B (ZK.Sim1,ZK.Sim2)
that is split into two classical algorithms ZK.Sim1 and ZK.Sim2, where:

H $ ZK.Sim1: The probabilistic simulator algorithm ZK.Sim1 returns a circuit H which
represents the initial simulated random oracle.

221

Game ZK0
ZKPoK

01 H $ RODist
02 10 $ A |Hi,ZK.Prv(·,·)

03 return J10 = 0K

Game ZK1
ZKPoK

04 H $ ZK.Sim1
05 10 $ A |Hi,ZK.Sim02 (·,·)

06 return J10 = 1K

Procedure ZK.Sim02 (G,F)

07 if '(G,F) = 0 :
08 return ?
09 else :
10 return ZK.Sim2 (G)

Fig. 9. Games defining ZK1
ZKPoK for a zero-knowledge proof of knowledge ZKPoK with adversary A and

simulator ZK.Sim B (ZK.Sim1,ZK.Sim2) . The purpose of ZK.Sim02 (·, ·) is merely to serve as an interface
for the adversary who expects a prover taking two arguments G and F.

c $ ZK.Sim2 (G): Given a statement G the stateful simulator algorithm ZK.Sim2 returns a proof
c . Additionally, ZK.Sim2 is given access to the description of H and may replace it with
a di�erent description (i.e. it can program the random oracle).

De�nition A.3 (Zero-Knowledge [45]). Zero-knowledge for a zero-knowledge proof of knowledge
ZKPoK of an NP language L is de�ned via the game ZK1

ZKPoK, depicted in Figure 9, where
ZK1

ZKPoK is parametrised by a bit 1. For an adversary A, we de�ne A’s advantage in ZK1
ZKPoK as

AdvZKZKPoK (A) B
���Pr[ZK0,A

ZKPoK) 1] � Pr[ZK1,A
ZKPoK) 1]

���,
and say that ZKPoK is (q,&H)-ZK, if there exists a PPT simulator ZK.Sim B (ZK.Sim1,ZK.Sim2),
such that for all quantum-polynomial-time adversaries A, making at most&H queries (possibly in
superposition) to the random oracle H, we have AdvZKZKPoK (A)  q (&H).

De�nition A.4 (Simulation-Sound Online-Extractability [77]). Simulation-sound
online-extractability 8 for a zero-knowledge proof of knowledge ZKPoK of an NP language L is
de�ned via the game SSNDZKPoK, depicted in Figure 10. For an adversary A, we de�ne A’s
advantage in SSNDZKPoK as

AdvSSNDZKPoK (A) B Pr[SSNDA
ZKPoK) 1],

and say that ZKPoK is (k ,&H)-SSND relative to a simulator ZK.Sim B (ZK.Sim1,ZK.Sim2), if
there exists a PPT extractor ZK.Ext such that for all quantum-polynomial-time adversaries A,
making at most &H queries to the random oracle H, we have AdvSSNDZKPoK (A)  k (&H).

8Online-extractability is sometimes referred to as straight line extractability in the literature.

222

Game SSNDZKPoK

01 H $ ZK.Sim1
02 (G, c) $ A |Hi,ZK.Sim2 (·)

03 F $ ZK.Ext(H, G, c)
04 return JZK.VerH (G, c) = 1 ^ '(G,F) = 0 ^ (G, c) 8 0̃K

Fig. 10. Games defining SSNDZKPoK for a zero-knowledge proof of knowledge ZKPoK with adversary A,
simulator ZK.Sim B (ZK.Sim1,ZK.Sim2) and extractor ZK.Ext. Here, 0̃ denotes the set of all proofs returned
by ZK.Sim2 (·) (together with the corresponding statements).

B PROOFS FOR SECTION 5 (CONSTRUCTION)

L���� 1 (H����� C����������). For all (possibly unbounded) adversaries A the
non-interactive key exchange NIKE B (Stp,Gen, SdK) construction depicted in Figure 5 has
honest correctness error

X  4V232#
@

as per De�nition 4.2.

P����. The proof strategy is similar to the proof of Theorem 5.1, except that we can bound
the probability of any coe�cient of k¢ being in the interval

(¢ =
h@
4
± V23#

i
[

3@
4

± V23#

�

by 4V232#
@ , with a union bound over all coe�cients. ⌅

P���� �� T������ 5.3. Let A be an adversary against NIKE in the ActSec game. Consider
the sequence of games in Figure 11, where &TQ is the number of queries to TestQue.

Game G0. This is the original ActSec0NIKE,?0A game, where the bit 1 is �xed to 0, hence

Pr
h
GA
0) 1

i
= Pr

h
ActSec0,ANIKE,?0A) 1

i
.

Game G1. In this game we modify the RegCorUsr oracle so that the secret key gB:0
ID

is extracted
from the proof c of a public key ?: on Line 18, and stored with the identity ID. This requires the
strong notion of simulation-sound online-extractability, from De�nition A.4. If the extraction
fails, then by default gB:0

ID
= ?. I.e. the secret key is not stored, as in the original game. Therefore,���Pr hGA
0) 1

i
� Pr

h
GA
1) 1

i ���  &RCU · AdvSSNDZKPoK (B1).

223

Game G2. In this game we introduce a new condition for aborting: If at any point in the
simulation the adversary asks a query to the TestQue or to the RevCorQue oracles on two public
keys that cause a key mismatch, then abort the simulation. Note that this condition is e�ciently
testable, as the game knows all the secret keys. We can bound the probability of this event
happening with a reduction to the semi-malicious correctness property, De�nition 4.3, of NIKE0

by ���Pr hGA
1) 1

i
� Pr

h
GA
2) 1

i ���  AdvSM-COR
NIKE0,?0A 0 (B2) .

Game G3. In this game we modify the RevCorQue oracle on Line 29 and Line 34 to use the
secret key that was extracted when the corresponding public key was registered as a corrupt key.
Since the derived key is always the same for both secret keys, we get���Pr hGA

2) 1
i
� Pr

h
GA
3) 1

i ��� = 0.

GameG4.0. In this gamewemodify the RegHonUsr oracle and replace the zero-knowledge proof
of knowledge on Line 11 with a simulated proof. By the zero-knowledge property, De�nition A.3,
we get ���Pr hGA

3) 1
i
� Pr

h
GA
4.0) 1

i ���  &RHU · AdvZKZKPoK (B4).

Game G4.8 . This is identical to the previous game, except that the 8th query to TestQue is
answered with the bit 1 �xed to 1. We now state the following Lemma.

C���� (R��������). There exists a pair of adversaries B3.8 and B03.8 such that���Pr hGA
4.8) 1

i
� Pr

h
GA
4.8+1) 1

i ���  n, (1)

where
n = &2

RHU
· AdvPasSecNIKE0,?0A 0 (B3.8) + 2 · AdvSM-COR

NIKE0,?0A 0 (B
0
3.8).

P����. To prove the Claim, we modify the game to guess two identities ID¢ and ID
¢¢ that

were queried to the RegHonUsr oracle. As a �rst modi�cation, we no longer use the secret keys
corresponding to ID¢ and ID¢¢ to answer any oracle queries, except for the query involving both
ID

¢ and ID¢¢. Since key mismatches cannot happen, the resulting game is in fact identical to the
previous one.

Next, we further modify the game to no longer check for key mismatches in that involve the
public keys associated with ID

¢ and ID¢¢, this change is indistinguishable by another invocation
of the semi-malicious correctness.

Next, switch the bit for the 8th query. To show that this change is indistinguishable, we construct
a reduction B3.8 (for 8 2 {0, . . . ,&TQ�1}) against PasSec ofNIKE0. As a �rst step, the reduction sets
the public keys given by the challenger to be the keys associated with ID

¢ and ID¢¢. RegHonUsr,
224

RegCorUsr, and RevCorQue remain unchanged, and the only di�erence is in the case where the
TestQue oracle is queried on ID

¢ and ID
¢¢. For the latter queries, we consider two cases:

• The query involving both ID
¢ and ID

¢¢ is the 8th query. In this case we simply answer
with the key :1 provided by the reduction.

• The query involving both ID
¢ and ID

¢¢ is not the 8th query. In this case we abort the
execution.

Note that, if the reduction correctly guesses ID¢ and ID
¢¢ as being the identities queried in the

8th query of the TestQue oracle, then the second case does not happen and the reduction perfectly
reproduces the view of the adversary with the bit 1 = 0 (in case :1 is the real key) or with the
bit 1 = 1 (in case :1 is random). Since the reduction guesses correctly with probability at least
1/&2

RHU
, the bound follows.

As the �nal change to the experiment, we undo the �rst and second modi�cations done above,
namely, we check again for key mismatches for all keys and we no longer randomly sample two
identities. Indistinguishability follows by a similar argument. Overall, this yields Equation (1).

⌅

Game G4.&TQ�1. In this game the bit 1 is �xed to 1. Applying a standard hybrid argument,
yields ���Pr hGA

4.&TQ�1)1
i
�Pr

h
GA
4.0)1

i ���  &TQ · n .

Game G5. In this game we undo the changes made Games G2 and G3. Appealing to the
semi-malicious correctness, we obtain���Pr hGA

5) 1
i
� Pr

h
GA
4.&TQ�1) 1

i ���  AdvSM-COR
NIKE0,?0A 0 (B2) .

Game G6. In this game we undo the changes made to the RegHonUsr oracle in Game G4 and
replace the simulated proof with a real proof on Line 12. Appealing to De�nition A.3 again, we
get ���Pr hGA

6) 1
i
� Pr

h
GA
5) 1

i ���  &RHU · AdvZKZKPoK (B4).

Game G7. In this game we undo the changes made Game G1. Using a similar argument, we
obtain ���Pr hGA

7) 1
i
� Pr

h
GA
6) 1

i ���  &RCU · AdvSSNDZKPoK (B1).

Observe that this game is the original ActSec1NIKE,?0A game. Hence,

Pr
h
GA
7) 1

i
= Pr

h
ActSec1,ANIKE,?0A) 1

i
.

Collecting all probabilities yields the bound stated in Theorem 5.3.
225

Game ActSec1NIKE,?0A

01 D B ?
02 K B ?
03 1 B 0 //G0
04 1 B 1 //G4.&TQ

05 10 ARegHonUsr(·), RegCorUsr(·,·), RevCorQue(·,·), TestQue(·,·)

06 return J1 = 10K

Oracle RegHonUsr(ID 2 IDS)

07 if (2>AAD?C , ID,?, ·) 2 D :
08 return ?
09 (B: 0

ID
,?: 0

ID
) $ Gen(ID)

10 c $ ZK.Prv(?: 0
ID
, B: 0

ID
) //G0

11 c $ ZK.Sim2 (?: 0ID) //G4.0

12 c $ ZK.Prv(?: 0
ID
, B: 0

ID
) //G6

13 B:ID B B: 0
ID

14 ?:ID B (?: 0
ID
,c)

15 D [{ (⌘>=4BC, ID, B:ID,?:ID) }
16 return ?:ID

Oracle RegCorUsr(ID 2 IDS,?:)

17 parse ?: ! (?: 0
ID
,c)

18 gB: 0
ID

$ ZK.Ext(H,?: 0
ID
,c) //G1-G5

19 if (2>AAD?C , ID, ·, ·) 2 D :
20 (2>AAD?C, ID,?, ·) B (2>AAD?C, ID,?,?:)
21 (2>AAD?C, ID, ·, ·) B (2>AAD?C , ID, gB: 0

ID
,?:)

//G1–G5
22 else :
23 D [{ (2>AAD?C, ID,?,?:) }
24 D [

n⇣
2>AAD?C , ID, gB: 0

ID
,?:

⌘o
//G1–G5

Oracle RevCorQue(ID1, ID2)

25 if (⌘>=4BC, ID1, ·, ·) 2 D ^ (2>AAD?C, ID2, ·, ·) 2 D :
26 if SdK(ID2,?:2, ID1, B:1) < SdK(ID1,?:1, ID2, B:2) : //G2-
G4.&TQ�1

27 abort //G2-G4.&TQ�1

28 return SdK(ID2,?:2, ID1, B:1)
29 return SdK(ID1,?:1, ID2,gB:2) //G3
30 elseif (2>AAD?C , ID1, ·, ·) 2 D ^ (⌘>=4BC , ID2, ·, ·) 2 D :
31 if SdK(ID1,?:1, ID2, B:2) < SdK(ID2,?:2, ID1, B:1) : //G2-
G4.&TQ�1

32 abort //G2-G4.&TQ�1

33 return SdK(ID1,?:1, ID2, B:2)
34 return SdK(ID2,?:2, ID1,gB:1) //G3

Oracle TestQue(ID1, ID2)

35 if ID1 = ID2 :
36 return ?
37 if (⌘>=4BC, ID1, ·, ·) 2 D ^ (⌘>=4BC , ID2, ·, ·) 2 D :
38 1 B 1 //G4.8
39 if 1 = 0 :
40 if SdK(ID1,?:1, ID2, B:2) < SdK(ID2,?:2, ID1, B:1) :
//G2-G4.&TQ�1

41 abort //G2-G4.&TQ�1

42 : B SdK(ID1,?:1, ID2, B:2)
43 if 1 = 1 :
44 if (ID1, ID2,:) 2 K _ (ID2, ID1,:) 2 K :
45 return :

46 : $ SKS
47 K [{ (ID1, ID2,:) }
48 return :
49 return ?

Fig. 11. Games G0, G1, G3, G4.8 (for 8 2 {0  8  &TQ � 1), G6 for the proof of ActSec of NIKE in Figure 7.

⌅

226

ISBN 978-82-326-7104-5 (printed ver.)
ISBN 978-82-326-7103-8 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:201

Bor de Kock

From Lattice Crypto to Lættis
Krypto: Various Approaches to
Post-Quantum Key ExchangeD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2023:201
Bor de Kock

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

	Introduction
	Motivation
	Open problems
	Overview of published works
	Outline

	Background
	Key Exchange
	Post-quantum cryptography
	Lattice-based cryptography
	Supersingular Isogeny-based cryptography

	AKE with Symmetric Keys
	Concluding remarks
	Comparison to open problems in the field
	Future work
	Regarding real-world security

	Practical Isogeny-Based Key-Exchange with Optimal Tightness
	Symmetric Key Exchange with Full Forward Security and Robust Synchronization
	Modular Design of KEM-Based Authenticated Key Exchange
	Swoosh: Practical Lattice-Based Non-Interactive Key Exchange

