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Preface
This Master´s Thesis concludes a M.Sc. degree in Cybernetics and Robotics at NTNU Trond-
heim with a specialization in Navigation and Control of vehicles. The thesis is conducted without
external funding.
This master thesis is not a direct continuation of the author’s specialization project. The author’s
specialization project focused on a cloud-based pipeline Reinforcement Learning Research with
a focus on reproducibility, scalability and collaboration.
The thesis builds upon the gym-auv software framework and the Master Thesis of Eivind Meyer
[26], where publications such as [28], [27] and [21] are other contributions.
The reader of this work is expected to have knowledge at the level of a M.Sc. student or higher
within Dynamical Systems and Differential Equations, probability theory as well as the fun-
damentals of Deep Learning. Knowledge of Reinforcement Learning and Stochastic Sequential
Models is also beneficial, but an introduction to these preliminaries is also provided in the thesis.

Trondheim, 2023-01-27
Kristian Brudeli
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Abstract
This master thesis presents an application of the model-based DreamerV2 deep reinforcement
learning agent for path-following and collision avoidance for autonomous surface vessels. The
vessel learns a world model describing the dynamics of itself and its surroundings, which it uses
to learn the task of path-following and collision avoidance.
The learned neural network world model can also be used to predict the future sensor inputs of
the vessel given a sequence of actions. This may allow for greater human interpretability, as
the model may be used for visualizing predicted future sensor inputs, which is not an inherent
capability of prior work using model-free reinforcement learning methods.
Experimentally testing our approach on a path-following and collision avoidance benchmark, our
vessel has a success rate of 76.8%. We show the agent’s capability to predict up to 45 seconds
into the future, given a sequence of actions. The relative position of larger static obstacles and
the path is typically predicted well, but the trained model struggles with smaller obstacles and
moving vessels.
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Sammendrag
Denne masteroppgaven presenterer en applikasjon av den modellbaserte forsterkningslæringsagen-
ten DreamerV2 for banefølging og kollisjonsunngåelse med autonome overflatsfartøy. Fartøyet
lærer gjennom interaksjon med omgivelsene en verdensmodell som predikerer dynamikken til
seg selv og omgivelsene, som brukes til å lære å løse oppgaven.
Den lærte verdensmodellen kan også brukes til å rekonstruere fremtidige sensormålinger gitt en
sekvens med pådrag. Dette kan gi økt menneskelig tolkbarhet, da modellen har mulighet til å
forespeile fremtidige sensormålinger, noe tidligere tilnærminger som bruker modellfri forsterkn-
ingslæring ikke har mulighet til.
Ved evaluering av modellen finner vi at den etter å trenes klarer å løse oppgaven med en suksess-
rate på 76.8%. Vi viser modellens evne til å predikere fremtidige observasjoner i en tidshorisont
på 45 sekunder. Posisjonen til båten i forhold til banen som skal følges og større statiske hin-
dringer blir som regel predikert relativt godt, men den sliter med små statiske hindringer samt
bevegelsen til andre skip.
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Chapter 1

Introduction

Models of dynamical systems are the basic building blocks in the field of engineering cyber-
netics. Traditionally, hand-engineered models of systems form the basis of control systems by
providing an understanding of the system that may be used to design rudimentary control systems
such as PID controllers, while stricter performance requirements may lead to the engineering of
more advanced controllers. Models of system dynamics also enable the creation of state estima-
tors such as Kalman filters, which are widely used in control systems due to their ability to use
the dynamics models to accurately estimate states.

In recent years, Deep Learning has solved problems previously deemed infeasible. From predict-
ing the structure of proteins [20], generating images [31] [32] and videos [35] from text prompts.
Large Language Models such as GPT-3 are able to learn the patterns of grammar, syntax, and
tone of human language, solving tasks they were not explicitly trained to do through instruction
[5].

Deep Reinforcement Learning uses Deep Learning to tackle problem settings where an agent
interacts with a simulated or real-life environment, learning to solve tasks by maximizing the
rewards it gets from the environment. Using this approach, one might do everything from solving
continuous control benchmarks to more impressive feats such as beating humans at Go [34], real-
time strategy games such as StarCraft 2 [40], Dota 2 [30] to realistic racing simulators such as
Gran Turismo[12].

Further, creating safe, reliable, and affordable autonomous surface vessels is a topic of particular
interest. The possibilities of such technology are significant. For instance, Yara claims that its
autonomous container vessel Yara Birkeland replaces 40,000 truck trips every year, and reduces
CO2 and NOx emissions [41]. Autonomous vessels may also be used in other settings, such
as passenger ferries in urban environments [3] or for small vessels collecting data about the
seabed[38].

1
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1.1 Related work
Several efforts have been made at NTNU in recent years to solve such problems with Reinforce-
ment Learning. Meyer et. al. provided an approach applying the model-free Proximal Policy
Optimization (PPO) algorithm to solve the task of simultaneous Path-Following and Collision
Avoidance in a stochastically generated environment consisting of both static and moving ob-
stacles [26] [28]. Meyer et.al. also encoded the Convention on the International Regulations
for Preventing Collisions at Sea into the reward function to reinforce behavior compliant with
the convention [27]. Outside the domain of surface vessels, similar approaches have also been
applied to Autonomous Underwater Vehicles (AUVs) [19] and to quadcopter drones [25].
Although we only consider Deep Reinforcement Learning approaches in this work, many algo-
rithms to solve the problem of path-following and collision avoidance are available. We find
[39] to give a comprehensive overview.

1.2 Motivation
Given the importance of models in traditional control theory and the capability of deep learning
to learn complex relationships and tasks, we wish to find out what model-based Reinforcement
Learning can accomplish.
While many of the Reinforcement Learning applications show impressive performance on the
tasks they set out to solve, they are not satisfactory when it comes to their ability in showing
their understanding of the situation. Using model-free reinforcement learning, they can provide
the actions they intend to take and the expected value of these actions, but cannot tell what they
expect the consequences of their actions to be. However, this is a feature of the RSSM model
used in this work. An example of this is shown in fig. 1.1.
This thesis applies the model-based DreamerV2 Reinforcement Learning agent to the problem
of path-following and collision avoidance. By interacting with an environment, it seeks to the
dynamics and rewards of previously unseen environments. Notably, they are trained to be able
to predict and reconstruct future observations in their environments. Through this capability,
they can also communicate their intended behavior to humans, it provides an important step in
the right direction for these methods to be able to eventually build trust among their users.
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1.3 Outline
Our work has the following structure

• Background: We introduce the preliminaries of Reinforcement Learning and sequential
stochastic models before introducing the Dreamer agent. We also present the model of the
"Otter" Unmanned Surface Vehicle used in our experiments.

• Method: We present the Reinforcement Learning environment originally introduced in
[26], and present our adaptions to the observation space and reward function. We also
present a more structured approach to reward function tuning than what is presented in
prior work, which we use to tune our reward function. Finally, we introduce the environ-
ment configuration and hyperparameters for the Dreamer agent used in the experiments.

• Software pipeline: We present our improvements to the software simulation framework,
including a new renderer implementation used to make image observations. We summa-
rize our significant efforts to increase the code quality of the framework. Additionally, we
give a summary of our attempt to extend a non-official implementation of the Dreamer
agent because it seemingly had desirable features.

• Experiments and Results: We show the final performance of our agent through metrics,
behavior in episodes, and its ability to predict future observations given actions.

• Discussion: We discuss the design choices of our experiments, and point out our hy-
potheses of the causes of the failure modes of our model.

• Summary, Conclusion, and Recommendations for Further Work: We summarize our
work and propose recommendations for further research in the field.

Figure 1.1: The Recurrent State Space Model used in Dreamer and PlaNet is able to generate
accurate predictions of future observations in its environment. Given a short context of observa-
tions and the sequence of actions taken, a trained model can predict unseen future observations
given the actions. This capability can both enhance trust in autonomous systems and enable
timely intervention in situations where the predicted behavior is not satisfactory. Figure: [15]
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Chapter 2

Background

2.1 Equations of Motion for Unmanned Surface Vessel

Figure 2.1: NED and Body coordinate frames.

This work uses a 3-DoF maneuvering model for the state and dynamics of the marine vessel.
To simplify our experiments, we assume that the environment has

• No motion in roll, pitch or heave.
• No current or wind.
• Negligible actuator dynamics. The actuators apply the commanded forces without delay.
• No earth curvature or earth-induced coriolis effects.

5
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As shown in [10], the dynamics of the vessel are governed by the equations

�̇� =𝐑(𝜓)𝜈 (2.1)
𝐌�̇�+𝐂(𝜈)𝜈+𝐃(𝜈)𝜈 =𝐁𝐟 (2.2)

Here, 𝜂 =
[

𝑥𝑛 𝑦𝑛 𝜓
]

denote the coordinates in the NED frame and 𝜈 =
[

𝑢 𝑣 �̇�
]

, represent
surge, sway and yaw rate. 𝐌 is a coefficient matrix for mass, 𝐂(𝜈) represents Coriolis effects,
while 𝐃(𝜈) represents dampening forces of water.
Where the mass matrix 𝐌, the coriolis-centripetal acceleration matrix 𝐂 and linear damping
matrix 𝐃 are given by

𝐌=

⎡

⎢

⎢

⎢

⎢

⎣

𝑚 0 0

0 𝑚 0

0 0 𝐼𝑧

⎤

⎥

⎥

⎥

⎥

⎦

𝐂(𝜈) =

⎡

⎢

⎢

⎢

⎢

⎣

0 −𝑚𝑟 −𝑚𝑥𝑔𝑟

𝑚𝑟 0 0

𝑚𝑥𝑔𝑟 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(2.3)

𝐃(𝜈) =𝐃𝐋+𝐃𝐍(𝜈) 𝐃𝐋 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑋𝑢 0 0

0 −𝑌𝑣 0

0 0 −𝑁𝑟

⎤

⎥

⎥

⎥

⎥

⎦

𝐃𝐍(𝜈) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0

0 0 0

0 0 −10 ⋅𝑁𝑟|𝑟|

⎤

⎥

⎥

⎥

⎥

⎦

(2.4)

We use an adapted version of the Otter model made by prof Thor I. Fossen [11]. The Otter
Unmanned Surface Vehicle (USV) developed by Maritime Robotics, which features a propul-
sion system composed of two propellers, as may be seen in fig. 2.2. The forces exerted by the
propellers are defined by the equation 𝜏 =𝐁𝐟 , where 𝐁 represents the force configuration matrix
and 𝐟 =

[

𝐹1, 𝐹2
]⊺ denotes the force vector. The matrix 𝐁 effectively encodes that the propellers

both produce forward force and that a moment induced by the difference in forces between the
propellers. The force configuration matrix may be seen in eq. (2.5).

𝐁=

⎡

⎢

⎢

⎢

⎢

⎣

1 1

0 0

−𝑙1 −𝑙2

⎤

⎥

⎥

⎥

⎥

⎦

(2.5)
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Figure 2.2: Illustration of the Otter USV

Symbol Value Description
𝑚 55.0 Mass [kg]
𝐼𝑧 13.75 Yaw-axis Moment of Inertia [kg ⋅ m2]
𝑥𝑔 0.2 Distance from CO to CG [m]
𝑙1 -0.395 Left thruster moment arm [m]
𝑙2 0.395 Right thruster moment arm [m]
𝐿 2 Length [m]
𝐵 1.08 Breadth [m]

Table 2.1: Otter model parameters
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2.2 Sequential Stochastic Models
Predicting the future exactly and without uncertainty is typically not possible. Therefore, having
models that can both predict and express the uncertainty of the future is desirable.

2.2.1 Markov assumption

The Markov Assumption eq. (2.6) is common for stochastic sequential models. Given exact
knowledge of the current state-action pair (𝑠𝑡,𝑎𝑡), no information about prior time steps 𝑠1∶𝑡−1
or actions 𝑎1∶𝑡−1 can improve the knowledge of the distribution over the next state 𝑠𝑡+1. A model
that fulfills the Markov assumption is said to be Markovian.

𝑝(𝑠𝑡+1 ∣ 𝑠𝑡,𝑎𝑡) = 𝑝(𝑠𝑡+1 ∣ 𝑠1∶𝑡,𝑎1∶𝑡) (2.6)

2.2.2 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) is a framework for modeling decision-
making problems in which an agent must make decisions based on incomplete information.
POMDPs modify the fully observable Markov Decision Process (MDP) by allowing for state
variables that aren’t observed directly, known as latent variables [36]. In other words, the agent’s
observations are not always sufficient to fully determine the system’s current state. The model
is Markovian, as we see in eq. (2.8).

Prior: 𝑝(𝑠0) (2.7)
Transition model: 𝑝(𝑠𝑡+1 ∣ 𝑠𝑡,𝑎𝑡) (2.8)
Emission model: 𝑝(𝑜𝑡 ∣ 𝑠𝑡) (2.9)
Reward model: 𝑝(𝑟𝑡+1 ∣ 𝑠𝑡,𝑎𝑡) (2.10)
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Figure 2.3: The structure of a Partially Observable Markov Decision Process (POMDP). The
state 𝑠𝑡 is influenced by the previous state 𝑠𝑡−1 and the previous action 𝑎𝑡−1. Similarly, the reward
depends also depends on the previous state and action. The observation 𝑜𝑡 only depends on the
corresponding state 𝑠𝑡.
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2.3 Reinforcement Learning
Reinforcement Learning deals with learning how to act upon an environment to maximize ex-
pected rewards now and in the future. We denote 𝑠 ∈ 𝑆 as the states, 𝑎 ∈ 𝐴 as the actions, and
𝑅 ∶ 𝑆 ×𝐴×𝑆 →  as the reward function, with 𝑟𝑡 = 𝑅(𝑠𝑡,𝑎𝑡, 𝑠𝑡+1)1. The stochastic policy 𝜋
may be used to sample actions based on the current state, i.e., 𝑎𝑡 ∼ 𝜋(⋅ ∣ 𝑠𝑡). We assume that the
environment’s reward function and dynamics are unknown to the agent. [1]

Figure 2.4: Loop showing the standard reinforcement learning setup. An agent takes actions 𝑎
and the environment returns states 𝑠 and rewards 𝑟.

To formulate Reinforcement Learning as a clearly defined optimization problem, one must de-
cide how to summarize the current and future rewards as a single number. This scalar is referred
to as the return 𝑅(𝜏). The finite-horizon undiscounted return is denoted by eq. (2.11), while the
infinite-horizon discounted return is denoted by eq. (2.12) [1].

Finite horizon: 𝑅(𝜏) =
𝑇
∑

𝑡=0
𝑟𝑡 (2.11)

Inifinite horizon, discounted: 𝑅(𝜏) =
∞
∑

𝑡=0
𝛾 𝑡𝑟𝑡 0≤ 𝛾 < 1 (2.12)

1The seminal work by [36] defines the reward function as (𝑠𝑡+1, 𝑟𝑡+1) ∼ 𝑝(𝑠𝑡+1, 𝑟𝑡+1 ∣ 𝑠𝑡,𝑎𝑡) to highlight the
interdependence between the state transition 𝑠𝑡 → 𝑠𝑡+1 and the reward received. In this work, we seek to keep the
equations and implementations as similar as possible to avoid confusion. Therefore, we stick to the definition used
in the API of the commonly used gym library by research institute OpenAI, i.e. (𝑠𝑡+1, 𝑟𝑡) ∼ 𝑝(𝑠𝑡+1𝑟𝑡 ∣ 𝑠𝑡,𝑎𝑡). [4]
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2.3.1 Value and Advantage functions

Value functions denote the expected return in the current state. There are multiple variations
of value functions. The on-policy value function 𝑉 𝜋(𝑠) eq. (2.13) gives the expected return if
we start in state 𝑠 and apply actions from the policy 𝜋. The on-policy action-value function
𝑄𝜋(𝑠,𝑎) eq. (2.14) is similar and gives the expected return if the action 𝑎 is done in the current
state 𝑠 while using actions from the policy 𝜋 in future time steps. The optimal value function
𝑉 ∗(𝑠) eq. (2.15) gives the expected return of an agent that starts in state 𝑠 and follows an optimal
policy 𝜋∗, i.e. a policy that maximizes the expected reward. Similarly, the optimal action-value
function 𝑄∗(𝑠,𝑎) eq. (2.16) denotes the expected reward if an arbitrary action 𝑎 is taken in state
𝑠, while optimal actions are taken thereafter.

𝑉 𝜋(𝑠) = E𝜏∼𝜋

[

𝑅(𝜏 ∣ 𝑠0 = 𝑠)
]

(2.13)
𝑄𝜋(𝑠,𝑎) = E𝜏∼𝜋

[

𝑅(𝜏 ∣ 𝑠0 = 𝑠,𝑎0 = 𝑎)
]

(2.14)
𝑉 ∗(𝑠) = max

𝜋
E𝜏∼𝜋

[

𝑅(𝜏 ∣ 𝑠0 = 𝑠)
]

(2.15)
𝑄∗(𝑠,𝑎) = max

𝜋
E𝜏∼𝜋

[

𝑅(𝜏 ∣ 𝑠0 = 𝑠,𝑎0 = 𝑎)
]

(2.16)

From this, we also see that these are related, for instance, we have that

𝑉 𝜋(𝑠) = E𝑎∼𝜋

[

𝑄(𝑠,𝑎)
]

(2.17)
𝑉 ∗(𝑠) = argmax

𝑎

[

𝑄∗(𝑠,𝑎)
]

(2.18)

The advantage function 𝐴𝜋(𝑠,𝑎) describes the difference of the expected return of taking the
action 𝑎 in state 𝑠 compared to the expected return of sampling an action from the policy 𝜋,
given that subsequent actions are sampled from same policy 𝜋. In other words, the advantage
function lets us assess the actions while taking into account that some states already have a
higher expected return, essentially isolating the effect of the action on the return. [1]

𝐴𝜋(𝑠,𝑎) =𝑄𝜋(𝑠,𝑎)−𝑉 𝜋(𝑠) (2.19)
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2.3.2 Model-free methods

Model-free methods approach the reinforcement learning problem by trying to learn a mapping
from states to action directly, and optimize in order to maximize the expected rewards without
learning the dynamics.

Value-based methods

Value-based methods approximate value functions, and uses them to pick actions 𝑎. In principle,
if we knew the optimal value-action function𝑄∗(𝑠,𝑎), it could then be used as an optimal policy.
This would be done by using the value function to find actions 𝑎∗ = argmax𝑎𝑄∗(𝑠,𝑎) for the
current state 𝑠 at every time step and apply them to the environment. While this may work well
with discrete action spaces, it may often be challenging to do in large, continuous action spaces.

Policy optimization

Policy optimization tries to optimize the policy 𝜋 directly. If we sample actions 𝑎𝑡 ∼ 𝜋𝜃(𝑠𝑡) from
a parameterized policy 𝜋𝜃, we may use stochastic gradient descent to optimize 𝜃. If we have a
stochastic policy 𝜋𝜃 with a loss function of its expected return 𝐽 (𝜋) = E𝜋[

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡], it can be
shown to have the gradient

∇𝜃𝐽 (𝜃) = E𝜋𝜃 [𝑅𝑡∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡)] (2.20)

Actor-critic methods

Actor-critic methods combine ideas from value-based methods and policy optimization. For
instance, by learning both a policy 𝜋𝜃 and an on-policy value function 𝑉 𝜋(𝑠), one may calculate
an advantage estimate �̂�𝜋𝜃 to find out how good the return of the action was compared to the
expected return of the policy. In other words, by reinforcing actions that perform better than
expected, we iteratively improve the policy’s performance.

2.3.3 Model-based methods

Model-based Reinforcement Learning methods learn a model of the environment to solve the
Reinforcement Learning problem. Although model-free methods such as Proximal Policy Op-
timization (PPO) [33] often learn mappings from states 𝑠𝑡 to actions 𝑎𝑡 to perform tasks quite
well, they do not learn the dynamics of the environment, e.g. they cannot predict state transitions
such as 𝑠𝑡+1 = 𝑓 (𝑠𝑡,𝑎𝑡).
The dynamics of an environment are conditionally independent of the policy given the actions.
This means that if we take an action 𝑎𝑡 in the state 𝑠𝑡, the transition 𝑠𝑡+1 ∼ 𝑓 (𝑠𝑡,𝑎𝑡) does not
depend on how the action 𝑎𝑡 was chosen. Similar arguments also apply to the reward. Because
of this, model-based methods may often also work with off-policy data, as the estimates of the



2.3. REINFORCEMENT LEARNING 13

dynamics and rewards of the environment may be improved through rollouts collected using
other policies. We note that some model-free agents, like DQN [29] also can learn from off-
policy data, but only learns value models and not dynamics models.

2.3.4 Exploration vs. Exploitation

An important problem that must be tackled in reinforcement learning problems is the exploration
vs. exploitation trade-off. As the agent does not have any prior knowledge of its environment,
it must learn how to optimally operate in an environment by interacting with it. In this context,
exploitation refers to taking actions that maximize the current expected return according to the
policy. However, it is unlikely that the optimal behavior is immediately apparent for the policy
𝜋 to exploit. This calls for exploration, i.e. intentionally deviating from what is expected to be
the optimal behavior to increase the chance of getting unintended behavior not suggested by our
current policy.
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2.4 Dreamer
DreamerV2 is a model-based Reinforcement Learning algorithm that learns a world model from
experiences, which is then used to learn how to act in the environment through imagined experi-
ences. In other words, instead of learning behaviors through real interactions with the environ-
ment, its behaviors are learned through training on a neural network world model. This section
explains the most important aspects of the DreamerV2 agent. We aim to point out some impor-
tant details that are covered in the original papers but may be overlooked by someone who is
new to stochastic sequential models. Still, we refer readers to the original paper [16] as well as
the papers leading up to it [15] [14] for a more thorough introduction.

2.4.1 Modes of operation

Dreamer has several modes of operation, which are repeated during training. Dreamer typically
collects some specified amount of experience (such as some number of time steps or a complete
episode) using environment rollouts before it trains for some predefined time using world-model
learning and actor-critic learning. It then repeats the cycle, alternating between collecting more
experiences and training.

• Environment rollouts The agent collects experiences from the environment to use for
world-model learning later. See fig. 2.5.

• World model learning The RSSM world model is trained from previous experiences
without interaction with the environment. See fig. 2.6a.

• Actor-critic learning The agent uses the RSSM world model to simulate imagined tra-
jectories that only take place inside the world model, not the actual environment. These
imagined trajectories are used to learn behavior through actor-critic learning. See fig. 2.6b.

Figure 2.5: Environment rollout mode.
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(a) World-model learning mode.

(b) Actor-critic learning mode.
Figure 2.6: Dreamer modes of operation.
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2.4.2 Recurrent State-Space Model

Dreamer uses a Recurrent State-Space Model (RSSM) as its world model. The RSSM was
originally introduced in [15], which used it together with MPC-style planning to solve control
tasks. Dreamer uses this model to learn an actor-critic policy through imagined trajectories.

Recurrent model: ℎ𝑡 = 𝑓𝜙(ℎ𝑡−1,𝑧𝑡−1,𝑎𝑡−1) (2.21)
Representation model: 𝑧𝑡 ∼ 𝑞𝜙(𝑧𝑡 ∣ ℎ𝑡−1, 𝑜𝑡) (2.22)
Transition predictor: �̂�𝑡 ∼ 𝑝𝜙(�̂�𝑡 ∣ ℎ𝑡) (2.23)
Observation predictor: �̂�𝑡 ∼ 𝑝𝜙(�̂�𝑡 ∣ ℎ𝑡,𝑧𝑡) (2.24)
Reward predictor: �̂�𝑡 ∼ 𝑝𝜙(𝑟𝑡 ∣ ℎ𝑡,𝑧𝑡) (2.25)
Continue predictor: 𝑐𝑡 ∼ 𝑝𝜙(𝑐𝑡 ∣ ℎ𝑡,𝑧𝑡) (2.26)

The Recurrent State Space Model (RSSM) models its environments similarly to a POMDP. We
give a summary of its components.

• Recurrent model: The recurrent model predicts the deterministic part of the transition
model eq. (2.8). This deterministic part of the state is denoted ℎ𝑡. It uses a Gated Recurrent
Unit (GRU), a type of Recurrent Neural Network.[7]

• Representation model: The representation model uses the deterministic part of the pre-
vious hidden latent state ℎ𝑡 and the current observation 𝑜𝑡 to represent 𝑧𝑡, the stochastic
part of the latent state. 𝑧𝑡 is also referred to as the posterior.

• Transition model: If the observation 𝑜𝑡 is not available to calculate the stochastic latent
state 𝑧𝑡, we make �̂�𝑡, an approximated prediction of the stochastic part of the latent state.
�̂�𝑡 is also referred to as the prior.

• Observation predictor: The observation predictor uses the latent state (ℎ𝑡,𝑧𝑡) to pre-
dict/reconstruct the observation �̂�𝑡. The observation is typically an image or a feature
vector. This is similar to the emission model in a POMDP eq. (2.9).

• Reward predictor: Similarly, the reward predictor uses the latent state (ℎ𝑡,𝑧𝑡) to predict
the reward �̂�𝑡.

• Continue predictor: The trajectories 𝜏 are not of fixed length and may end at any of the
time steps. This may, for instance, be due to the agent being destroyed or if it completes
the task. The continue predictor predicts whether this will happen at some time step. We
will explain the use of this later in section 2.4.7.
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The latent state of the model consists of a deterministic part ℎ𝑡 and a stochastic part 𝑧𝑡. The
combination of these two parts allows the model to predict trajectories where the dynamics are
primarily deterministic but may also have some uncertainty or process noise. The deterministic
part of the latent state, ℎ𝑡, is a fixed-size vector. 𝑧𝑡, the stochastic state, is a vector of reparame-
terized categorical distributions.

2.4.3 Environment rollouts

The algorithm collects data for its replay buffer from running the policy with additive exploration
noise. However, it is worth noting that although Dreamer collects data for the replay buffer using
the policy, the policy is trained using imagined trajectories from the world model, which we will
explain later in section 2.4.6. This differs from conventional Deep Reinforcement Learning
algorithms such as PPO, SAC, or DQN that directly use environment interactions (either online
or offline by using a replay buffer) to learn their value functions and policies.

Figure 2.7: Components used by Dreamer during environment rollouts. Environment rollouts
are the only time Dreamer interacts with the environment. No parameters are trained during
environment rollouts. Tuples of actions, observations, rewards, and continuation labels (𝑎,𝑜,𝑟, 𝑐)
are collected and added to a replay buffer for world-model learning later.
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2.4.4 Parameter sets

Before going into the different stages of how Dreamer is trained, we pause to point out how
each stage optimizes only over one set of parameters. To highlight this, we color the parts of
the model trained during a stage. Parts of the model that are used but not optimized over are
colored gray. We point out that we might still calculate the gradients through the frozen (gray)
parameters to optimize other (colored) parameters. This is most notably done in fig. 2.9, where
we differentiate through the world-model parameters 𝜙 to optimize the actor parameters 𝜓 .

Symbol Name Colors in illustrations when trained
𝜙 RSSM ⬛⬛⬛⬛⬛⬛
𝜓 Actor ⬛
𝜉 Critic ⬛

Table 2.2: Parameter sets
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2.4.5 World Model Learning

In the general case, the world model in Dreamer is trained according to the loss function

(𝜙) =𝐸𝑞𝜙(𝑧1∶𝑇 ∣𝑜1∶𝑇 ,𝑎1∶𝑇 )
[ 𝑇
∑

𝑡=1
−ln𝑝𝜙(𝑜𝑡 ∣ ℎ𝑡,𝑧𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Observation log loss

−ln𝑝𝜙(𝑟𝑡 ∣ ℎ𝑡,𝑧𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Reward log loss

−ln𝑝𝜙(𝑐𝑡 ∣ ℎ𝑡,𝑧𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Continue log loss

+𝛽𝐾𝐿
[

𝑞𝜙(𝑧𝑡 ∣ ℎ𝑡, 𝑜𝑡) ∣∣ 𝑝𝜙(𝑧𝑡 ∣ ℎ𝑡)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Prior/posterior KL divergence loss

]

(2.27)

This formulation allows for a wide range of spaces to be modeled by the loss, e.g., continuous
or discrete observations. We consider a special case that will be relevant later, where the ob-
servations and rewards are continuous and modeled using univariate Gaussian distributions. In
this case, the loss reduces to eq. (2.28).

(𝜙) =𝐸𝑞𝜙(𝑧1∶𝑇 ∣𝑜1∶𝑇 ,𝑎1∶𝑇 )
[ 𝑇
∑

𝑡=1
‖𝑜𝑡− �̂�𝑡‖2
⏟⏞⏞⏟⏞⏞⏟

Observation log loss

+ ‖𝑟𝑡− �̂�𝑡‖2
⏟⏞⏞⏟⏞⏞⏟

Reward log loss
−𝑐𝑡 ln(𝑐𝑡)+ (1− 𝑐𝑡) ln(1− 𝑐𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Continue log loss

+𝛽𝐾𝐿
[

𝑞𝜙(𝑧𝑡 ∣ ℎ𝑡, 𝑜𝑡) ∣∣ 𝑝𝜙(𝑧𝑡 ∣ ℎ𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Prior/posterior KL divergence loss

+const]
]

(2.28)

In eq. (2.28) 𝑐𝑡 ∈ {0,1} are the true continue labels and 𝑐𝑡 ∈ (0,1) are the estimated probabilities
that the corresponding episodes end at time step 𝑡.
We see that the loss function reduces to the mean-squared error between the actual values and
predictions for the continuous observations and rewards, while the binary continue predictor
uses the mean binary cross-entropy loss. A constant is also present in the loss but is irrelevant
during optimization.
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Figure 2.8: World model learning. Trajectories are sampled from the replay buffer, and the
model jointly learns the world model through eq. (2.27). Predictions of rewards �̂�, continue
predictions 𝑐 and observations �̂� are made and trained towards their true values. Latent state
priors �̂�𝑡 ∼ 𝑝(�̂�𝑡 ∣ ℎ̂𝑡) and posteriors 𝑧𝑡 ∼ 𝑝(𝑧𝑡 ∣ ℎ𝑡, 𝑜𝑡) are kept similar through minimizing KL-
divergence. This regularizes the dynamics model, keeping the transition and representation
models similar.
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2.4.6 Actor-Critic Learning

Dreamer learns behavior purely through imagined trajectories predicted by its world model with-
out reconstruction. A visualization of the involved components may be seen in fig. 2.9. The
approach samples observations from the replay buffer as initial states, encoded into latent states
𝑧𝑡 using the representation model eq. (2.22). The rest of the trajectories are predicted using the
transition predictor eq. (2.23), with actions �̂�𝑡 sampled from the policy 𝜋𝜓 .
The actor-critic approach of Dreamer has multiple benefits compared to conventional policy
learning, such as sample efficiency and parallelizability.
In model-free RL methods, the only way to collect more experience is through more interactions
with the environment. In model-based RL, we may use the world model to simulate or "imagine"
experiences in an environment, thus learning behaviors without actually interacting with the
environment, increasing sample efficiency.
As we use a fixed-size model in the RSSM and implement it using tensor operations, it is mas-
sively parallelizable using accelerators such as GPUs or TPUs. We imagine trajectories from
each of the 𝐵 ⋅𝐿 time steps sampled from the replay buffer. With the hyperparameters in the
original paper,𝐵⋅𝐿= 2500 trajectories are imagined in parallel on a single GPU for𝐻 = 15 time
steps each, such that 37500 time steps are imagined across trajectories each iteration. Although
the model can reconstruct imagined trajectories, this is not done during actor-critic learning.
Only the predicted latent states (ℎ̂1∶𝐻 , �̂�1∶𝐻 ) are needed to predict the rewards �̂�1∶𝐻 , values
𝑉1∶𝐻 and discount rate predictions �̂�1∶𝐻 used for learning the policy 𝜋𝜓 .
The value targets in DreamerV2 are 𝑉 𝜆-targets [36], but with predicted discounts. 2

𝑉 𝜆
𝑡 =

{

�̂�𝑡+ �̂�𝑡((1−𝜆)𝑣𝜉(�̂�𝐻 ))+𝜆𝑉 𝜆
𝑡+1 if 𝑡 <𝐻

�̂�𝑡𝑣𝜉(�̂�𝐻 ) if 𝑡=𝐻
(2.29)

The critic loss is given by

(𝜓) =𝐸𝑝𝜙,𝑝𝜓

[𝐻−1
∑

𝜏=1

1
2
‖𝑣𝜉(𝑠𝜏)− sg(𝑉𝜆(𝑠𝜏))‖

]

(2.30)

Here, sg is the "stop gradient"-operator. The actor loss differentiates through the dynamics, as
the value for each time step is a weighted sum of rewards and values as seen in section 2.4.6.

2Our equation corrects a typo from the original paper where the reward was added to the bootstrapped value
for 𝑉 𝜆

𝐻 . The original author discusses the typo and confirms the correction in a discussion related to the official
implementation of DreamerV2 on GitHub. [13]
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Furthermore, the actor loss is given by

(𝜉) =𝐸𝑝𝜙,𝑝𝜓

⎡

⎢

⎢

⎢

⎢

⎣

𝐻−1
∑

𝑡=1

(

−𝜌 ln𝑝𝜓 (�̂�𝑡 ∣ �̂�𝑡)sg(𝑉 𝜆
𝑡 −𝑣𝜉(�̂�𝑡)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Reinforce

−𝑉𝜆(𝑧𝜏)
⏟⏟⏟

Dynamics backprop

−𝜂𝐻
[

𝑎𝑡 ∣ �̂�𝑡
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Entropy bonus

⎤

⎥

⎥

⎥

⎥

⎦

(2.31)

2.4.7 Continuation prediction

Dreamer imagines trajectories of a fixed-length horizon 𝐻 . To account for the possibility that
the episode ends, the world model predicts continuation3 labels 𝑐1∶𝐻 . We shift the predicted
continuation labels to the right and drop the last one, as a label 𝑐𝑡 = 0 indicates that the next
predicted discount rate �̂� should be zero. As the initial state of each imagined trajectory is
sampled from the replay buffer, as shown in fig. 2.6b, we use the actual continue label 𝑐1 for the
first time step. We use these to construct predicted discount rates �̂�1∶𝐻 according to

�̂�𝑡 = 𝛾
(

1−𝐸𝑝𝜙,𝑝𝜓
[

𝑐𝑡−1 ∣ ℎ̂𝑡−1, �̂�𝑡−1
]

)

(2.32)

3The original DreamerV2 paper refers to this as discount prediction. In practice, it is implemented as a binary
predictor for if the episode ends, which motivates our choice to call it continuation prediction.
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(a) Actor learning.

(b) Critic learning.
Figure 2.9: Actor-Critic Learning. We roll out imagined trajectories from posterior states and
use the actor to pick actions. The value function is learned to predict the values during imagined
rollouts as specified in the critic loss eq. (2.30). The actor is optimized to maximize the value
targets, which is done by backpropagation through the dynamics model. The same imagined
rollouts are used in actor learning and critic learning, but they are shown separately here to
emphasize that the actor and critic train on their own parameters to maximize their own losses.
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Chapter 3

Method

In this chapter, we describe the design of the Reinforcement Learning environment and the Path-
Following and Collision Avoidance task to be solved. We introduce our observation function
and reward function, how we chose the parameters of the reward function as well as some details
about the experiment setup.
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Figure 3.1: Illustration of the Reinforcement Learning environment. The environment consists
of a randomly generated path, surrounded by randomly placed static circular obstacles, as well
as dynamic obstacles moving in predetermined paths. A new, randomly generated scenario is
trained on in each episode. As we see, static obstacles often lie in the path, while dynamic ob-
stacles may cross the path, meaning a trivial solution such as a Line-of-sight heading autopilot
alone is not sufficient to solve the environment reliably without collisions. Scenario and visual-
ization code is courtesy of [26].
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3.1 Observation function
Our observations 𝑜 consist of two parts. The first is a low dimensional vector 𝑜𝑑 consisting of
vessel dynamics and path-following features from guidance, navigation and control theory. The
second, 𝑜𝑟 is a top-down image of the environment produced by a renderer of the simulation
environment.1

𝑜𝑡 = [ 𝑜𝑑𝑡
⏟⏟⏟

Dense

, 𝑜𝑟𝑡
⏟⏟⏟

Image

] (3.1)

Figure 3.2: Path following states. In the figure, the course angle 𝜒 is not aligned with the heading
angle 𝜓 due to a non-zero sway velocity 𝑣≠ 0. The path angle 𝜋p refers to the path angle at the
look-ahead point 𝐩(�̄�+Δ𝐿𝐴)

1We use 𝑜𝑟 for renderer rather than 𝑜𝑖 for image to avoid confusion where 𝑖 is seen as an index variable.
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3.1.1 Dense navigation observations

Our observation function’s dense component includes vessel dynamics and path-following fea-
tures. The first six elements are similar to prior work by [26][21][22], while the addition of the
path progression 𝛼�̄� is novel. For completeness, we quickly recapitulate the navigation quantities
from prior work here.
We let 𝐩(𝜔) = [𝑥𝑛𝑑 ,𝑦

𝑛
𝑑]
𝑇 denote a path parameterized by 𝜔. For a position in the NED frame, the

closest point is then denoted by

�̄�= argmin
𝜔

‖[𝑥𝑛,𝑦𝑛]𝑇 −𝑝𝑑(𝜔)𝑇 ‖ (3.2)

Further, we let the heading error �̃� be defined as the difference between the heading and the
heading pointing towards the look-ahead point at 𝐩(�̄�+Δ), as defined in eq. (3.3).

�̃� = atan2 (𝑦𝑑(�̄�+ΔLA)−𝑦𝑛, 𝑥𝑑(�̄�+ΔLA)−𝑥𝑛)−𝜓 (3.3)

Additionally, we also use the look-ahead heading error �̃�LA, which indicates the heading rel-
ative to the angle of the path at the look-ahead point eq. (3.4). The look-ahead heading error
indicates the direction of the path further ahead, which may be useful when an obstacle needs
to be circumvented, and the shortest detour is sought.

�̃�LA = 𝜋p(�̄�+ΔLA)−𝜓 (3.4)
𝜋p(𝜔) = atan2

(

𝑦′𝑝(𝜔),𝑥
′
𝑝(𝜔)

)

(3.5)

We also define the signed cross-track error, 𝑦𝑝𝑒 as

𝑦𝑝𝑒 =−(𝑥𝑛−𝑥𝑛𝑝(�̄�)) sin(𝜋p(�̄�))+ (𝑦𝑛−𝑦𝑛𝑝(𝜔))cos(𝜋p(�̄�)) (3.6)

As discussed in section 2.4.7, Dreamer predicts continuation flags 𝑐1∶𝑇 in imagined trajectories
during actor-critic-learning. These are used to disregard rewards received after the predicted end
of an episode when estimating values. The episode ends when 𝛼�̄� > 0.99 or the vessel is within
a certain radius of the final waypoint. From the first six features in table 3.1 alone, predicting
the end of the episode would be hard. Therefore, we include the progress 𝛼�̄� to help the model’s
continuation predictions. We note that including this as a feature may be redundant when also
using image observations as the agent may see that the path ends, but it should nevertheless
increase the accuracy of these predictions.
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We let �̄� denote the path length parameter of the closest point on the path, while 𝜔end denotes
the path length at the goal at the end of the path. Then, 𝛼�̄� ∈ [0,1] denotes the path progress

𝛼�̄� =
�̄�
𝜔end

(3.7)

Symbol Name
𝑢 Surge velocity
𝑣 Sway velocity
�̇� Yaw rate
�̃� Heading error
�̃�𝐿𝐴 Heading error relative to look-ahead point
𝑦𝑝𝑒 Cross-track error
𝛼�̄� Path progress

Table 3.1: Navigation features used in 𝑜𝑑 .
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3.1.2 Renderer image observations

Figure 3.3: Renderer image observation

Color Name
⬛ Static obstacle
⬛ Vessel obstacle
⬛ Own vessel
⬛ Own vessel trajectory so far
⬛ Path
⬛ Traversable water

Table 3.2: Color encoding of objects in image.

DreamerV1 [14] and DreamerV2 [16] were constructed for use with image observations. There-
fore, we provide a renderer observation from the simulation framework to create a 64×64 RGB
image as a part of the observation.
In fig. 3.3, we see the image observations used in this work. The image is centered w.r.t. the
agent such that the bow of the vessel always points towards the top of the image, regardless of the
heading angle 𝜓 . We encode the obstacles, path, and water using colors according to table 3.2.
In our experiments, we use the underlying state of the environment to provide these images.
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We note that this approach is similar to a (non-probabilistic) occupancy grid [9] incorporating
information about both obstacles and the task (i.e., the path to be followed) in the environment.
We use 𝑊𝑖𝑚𝑔 ×𝑊𝑖𝑚𝑔 = 64× 64 pixel RGB images, which shows an area of 2𝑅𝑖𝑚𝑔 × 2𝑅𝑖𝑚𝑔 =
320𝑚× 320𝑚. This implies that each pixel spans 5𝑚× 5𝑚. If we want to increase either the
range of the image or the accuracy, the number of pixels would need to be increased further.
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3.2 Reward function
The reward function mathematically specifies the desired behavior of the agent. Its design is
therefore critical for the agent to learn to balance the tasks of path-following and collision avoid-
ance.
In our work, we use a reward function similar to the one proposed in [26] for the collision
avoidance part but introduce a new path reward function.

3.2.1 Collision avoidance reward function

We use the same collision avoidance reward as in [26], but include a scaling coefficient 𝛽colav > 0.
The scaling coefficient is needed as we find that in addition to the relative trade off between 𝑟path

𝑡
and 𝑟colav

𝑡 , the absolute scale matters. We let 𝑥𝑖 ∈ (0,1) denote the closeness of an obstacle, while
𝑣𝑦 is the component of the velocity towards the agent. The collision avoidance reward function
component is then given by

𝑟𝑐𝑜𝑙𝑎𝑣𝑡 = 𝛽colav

∑𝑁
𝑖=1

𝜁 (𝜃𝑖)
1+𝛾𝜃 ∣𝜃𝑖∣

exp(𝛾𝑣max(0,𝑣𝑖𝑦)− 𝛾𝑔𝑥𝑖))
∑𝑁
𝑖=1

𝜁 (𝜃𝑖)
1+𝛾𝜃 ∣𝜃𝑖∣

(3.8)

3.2.2 Path-following reward function

Prior work [26] [27] introduces the value function eq. (3.9), while [21] introduces eq. (3.10).

𝑟path,a
𝑡 =

(

𝑢
𝑈𝑚𝑎𝑥

cos �̃� + 𝛾𝑟

)

(exp (−𝛾𝜖 ∣ 𝜖 ∣)+ 𝛾𝑟)− 𝛾2𝑟 (3.9)

𝑟path,b
𝑡 = 𝑢

𝑈max
1+cos �̃�

2
1

|𝑦𝑝𝑒|+1
(3.10)

While both of these show good results, we argue that the path reward function can be simplified
further. The path rewards are all based on line-of-sight guidance, which is meant to balance
progression along the path while gradually decreasing the cross-track-error |𝑦𝑝𝑒|. We define the
course 𝜒 = atan2(�̇�𝑛, �̇�𝑛), and the desired course 𝜒𝑑 = atan2(𝑦𝑑(�̄�+ΔLA)−𝑦𝑛, 𝑥𝑑(�̄�+ΔLA)−𝑥𝑛),
which is directed towards the look-ahead point. We then propose a new, simpler path reward
function based on minimizing the course error 𝜒 = 𝜒𝑑 −𝜒 .

𝑟𝑝𝑎𝑡ℎ𝑡 = 𝛽path

√

𝑢2+𝑣2 cos𝜒
𝑈𝑚𝑎𝑥

(3.11)
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Figure 3.4: Plot showing the direction corresponding to 𝜒 = 0 at different points around the path.
A look-ahead distance of Δ= 150 [m] is shown in the plot, and is also used in the experiments.

We include a tuning parameter 𝛽path > 0, as well as a scaling parameter 𝛽−𝑝𝑎𝑡ℎ > 1, which disin-
centives going backwards.2 Then, we have that

𝑟path
𝑡 =min

(

𝑟path
𝑡 , 𝛽−path𝑟

path
𝑡 )

)

(3.12)

2Although not mentioned in [26], we find a similar scaling of negative rewards (also including closeness penal-
ties) in the implementation.
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3.2.3 Resulting reward function

Adding these together, this leads to the reward function

𝑟total
𝑡 =

{

𝑟collision if collision
𝜆𝑟path
𝑡 +(1−𝜆)𝑟colav

𝑡 + 𝑟exists otherwise (3.13)

However, we found that Dreamer often struggles with large magnitudes in the rewards. The
original Dreamer agent operated on environments from the Deepmind Control Suite, where all
rewards are in the range 𝑟𝑡 ∈ [0,1]. DreamerV2 primarily used Atari environments, but limits
the range of the rewards using a tanh-function. We found it necessary to also limit the rewards
this way, leading to the rewards provided to the agent being given by

𝑟𝑡 = tanh(𝑟total
𝑡 ) (3.14)
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3.3 Reward function tuning using recorded trajectories
The reward function presented in section 3.2.2 includes many parameters that may be adjusted
to encourage different behaviors. One approach that may come to mind is to train an agent,
examine its behavior, and tune the reward function to see if the new agent exhibits the desired
behavior. However, the feedback cycle in such an approach is slow. Depending on the problem,
training an agent may typically take hours to days in wall-clock time3 to perform. This makes
tuning a reward function by training agents to maximize them an endeavor that may take days
to weeks before being aligned with our interests.
Our environment is fairly easy for a human to solve. The action space is small, consisting of
only two continuous inputs4. Further, our renderer provides a top-down view of the environ-
ment which is sufficient for a human player to navigate through the environment while avoiding
obstacles. The reward function is also deterministic with respect to the state of the environment.
Because of these factors, we may record the underlying state of our environment and tune the
reward function afterwards without having to recreate the situations for every change.
In our work, we repeat these two steps until a reward function that suits our needs is acquired.

• Collection of episodes through human play: Using keyboard input and a rendering of
the environment as output, we imitate different behaviors where we are interested in the
corresponding reward.

• Reward function tuning: Using the recorded underlying state of our trajectories, we
visualize the rewards of different classes to tune the reward function to be aligned with
intended behavior.

DreamerV1 and DreamerV2 have numerical instability issues when dealing with large-magnitude
rewards. In [26], a value of 𝑟collision =−10000 was used. Although this clearly and simply speci-
fies that collisions are undesirable, we find that it is not numerically stable to train Dreamer with
large-magnitude rewards like this. Therefore, extra care should be taken to avoid misalignment
between our intended goal and the one we specify in our reward function. As we showed in the
previous section, we apply the tanh-function per step to our rewards, such that the following
equation holds

−𝜋
2
< 𝑟𝑡 <

𝜋
2

(3.15)

3I.e. real-world run time of the training, not the amount of experience collected within the simulation environ-
ment.

4For comparison, the "Dog" tasks in Deepmind Control Suite [37] has a high-dimensional action space consist-
ing of 38 continuous actions at every time step. Achieving close to optimal rewards for a human using keyboard
inputs in these environments would be very challenging if not impossible.
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3.3.1 Reward function tuning design choices

To tune our reward function while adhering to these limits, we need to design our reward function
in a way that avoids exploits of the reward function. We propose tuning the reward function such
that the returns 𝑅(⋅) satisfy

𝑅(𝜏backwards)<𝑅(𝜏circle) ≈𝑅(𝜏still)< 0<𝑅(𝜏progress)<𝑅(𝜏success) (3.16)
Where we let the trajectories be classified according to table 3.3.

𝜏backwards The agent moves in the opposite direction of the goal
𝜏circle The agent continuously moves in a circle
𝜏still The agent barely moves or stays completely still throughout

the episode
𝜏progress The agent achieves progress towards the goal but isn’t able

to reach it due to collision or truncation
𝜏success The agent reaches the goal without colliding

Table 3.3: Trajectory classes of interest.

This classification is somewhat crude and doesn’t consider the internal ranking of individual
trajectories within the different classes. While also satisfying the inequalities above, the reward
function should obviously also incentivize other desired behavior, such as staying close to the
path and keeping a safe distance from obstacles while being efficient in reaching the goal.
To justify the inequalities above, we point out our hypotheses of some subtle exploits of what
might happen during training if the inequalities above are not met in table 3.4.
We tune our reward function using these design choices and find the parameters shown in ta-
ble 3.5.

Hypothetical scenario Possible exploit
𝑅(𝜏progress)< 0 If the return for progress along the path is negative, the agent

may maximize the return by learning to end the episode by
intentionally colliding, avoiding the additional negative re-
wards accumulated when trying to solve the task.

𝑅(𝜏progress)<𝑅(𝜏circle) The agent is unlikely to learn to reach the goal through
chance alone. If continuously going in circles consistently
gives a higher return than progressing toward the goal with-
out reaching it, the agent is likely to try to exploit this be-
havior. This may then cause the agent to never learn to solve
the task.

Table 3.4: Possible reward exploits if the inequalities in eq. (3.16) are not fulfilled.
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Symbol Value
𝛾𝜃 10.0
𝛾𝑥 0.1
𝛾𝑣𝑦 1.0

𝑟collision -500
𝜆 0.5
𝛽path 1.5
𝛽−path 2.0
𝛽colav 0.2
𝑟exists 0.55

Table 3.5: Rewarder parameters used in experiments
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Figure 3.5: Cumulative rewards of some recorded trajectories after reward shaping. We use more
trajectories than these to make sure we do not overfit our reward function to a few trajectories
but only show a few here for clarity.
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3.4 Termination and truncation
As the episodes may end in the real environment, we also need to be able to predict the contin-
uation markers 𝑐1∶𝐻 in imagined rollouts. In conventional Reinforcement Learning algorithms,
the sampled data tells us when an episode terminates, i.e., there is no data from after it ends. In
Dreamer, we imagine trajectories of the fixed length 𝐻 during actor-critic learning. This has to
be accounted for, which is done through the continuation model.
However, we wish for the imagined trajectories to only estimate the ends of episodes associated
with a terminal event. This is also because we wish for the continue labels to be something
that the agent can predict, which is hard to do when the conditions of truncation are not directly
observable to the agent. There are two terminal events in our case, collisions and reaching the
goal. Truncation is done if the episode is too long, or the cumulative reward is under a threshold.
We point out that the environment rollout still ends, and we reset the environment if the episode
is truncated. However, they are intentionally not marked as terminal events in the continuation
markers 𝑐, s.t. the value function targets treat them like the episode goes on.

Situation Continue label 𝑐
Collision 0

Reached goal 0
Episode return below threshold 1

Surpassed max time steps 1
All other time steps 1

Table 3.6: Labels used to train the continue predictor.

3.5 Encoder and Decoder Neural Networks
In our experiments, we use the standard architecture from DreamerV2 [16] to encoder our ob-
servations. The 2D encoder/decoder architecture is shown in fig. 3.6.
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3.6 Experiment setup
We summarize the configuration of our experiments in table 3.7.

Symbol/Name Value Description
𝛼𝜙 1 ⋅10−5 World model learning rate
𝛼𝜓 1 ⋅10−5 Policy learning rate
𝛼𝜉 1 ⋅10−5 Critic learning rate
𝐵 50 Batch size
𝐿 50 Batch length
𝐻 15 Imagination horizon
𝑃 50 000 Prefill timesteps
𝛾 0.995 Discount rate
𝜆 0.95 Value weighting parameter
𝑛free 1.0 Free nats
𝑁deter 200 Deterministic state size
𝑁stoch 200 Stochastic state size
𝑇every 10 Time steps between training iterations
𝛽 1.0 KL-divergence loss scale

Table 3.7: DreamerV2 Hyperparameters used in experiments

Symbol Parameter Value Comment
Vessel model Otter Described in section 2.1

𝑁𝑟𝑎𝑦𝑠 Number of rangefinder rays 256 Used for reward calculation
Δ𝑡 Simulation time step 1 [s]
𝑇max Maximum allowed time steps 2000 [s] Episode is truncated if exceeded
𝑅min Minimum cumulative return -2000 Episode is truncated if 𝑅(𝜏) falls below
ΔLA Look-ahead distance 150 [m]
𝑅𝑖𝑚𝑔 Image range 160 [m] Allows seeing look-ahead point
𝑊𝑖𝑚𝑔 Image height/width 64 [px]

Table 3.8: Environment configuration used in experiments



3.6. EXPERIMENT SETUP 39

(a) DreamerV2 2D encoder architecture.

(b) DreamerV2 2D decoder architecture.
Figure 3.6: Encoder/Decoder architectures. The convolutional network in the encoder decreases
the size of the image while increasing the number of channels, which is concatenated with the
features from the dense encoder to create the embedding 𝑒. The transposed convolutional net-
work reconstructs the features from the latent state (ℎ𝑡,𝑧𝑡). The network uses the Exponential
Linear Unit (ELU) activation function[8].
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Chapter 4

Software Pipeline

In this chapter, we detail the software components used in our experiments. We also detail our
efforts in extending the gym-auv simulation framework, which entailed over 5000 changed lines
of source code. We also discuss our initial choice of using and extending an unofficial Dreamer
implementation before we eventually decided to use the official implementation. The code used
in this work is available on GitHub [6].

4.1 Simulation environment
The master thesis continues the work by Meyer [26] in gym-auv, and implements several im-
provements. The improvements include significant performance gains, as well as improvements
in overall code quality. Notably, a new renderer has been written, which provides significantly
cleaner and more extensible code. We also show our optimization procedure for the rangefinder
sensors, which are not used as observations in our experiments but are still used to calculate the
collision avoidance rewards.

41
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4.1.1 Renderer

As our experiments depend on image observations, maintainable and extendable renderer code
was a priority during our work. We found that the output of the existing renderer was mostly
satisfactory, but the code was hard to read and modify. The previous renderer was based on the
pyglet library, which we found hard to use as it interfaced directly into OpenGL for drawing
simple geometric shapes. The new renderer is written using the pygame package. pygame is
also used in the classical control environments in [4], and has a simpler interface for mainte-
nance and expansion. This provides an interface that should feel familiar to developers in the
Reinforcement Learning community.
The Renderer is based on 3 simple constructs. Geometries 𝑔 represent the boundaries of ob-
stacles, vessels or terrain. Transformations apply a combination of translations, rotations and
scaling to a geometry and return a new geometry in another coordinate frame. Factories are
pure functions that produce geometries from the environment state. A high-level overview of
the rendering pipeline is shown in fig. 4.1

Figure 4.1: Summary of the structure of the renderer pipeline. The environment state is sent into
factories, which make geometry objects for the agent vessel, obstacles, etc. Geometry objects
in the NED-frame {𝑔𝑛𝑖 }𝑖=1∶𝑁 are converted into body-frame. Together with geometry objects
in the body frame {𝑔𝑏𝑖 }𝑖=1∶𝐵, these are scaled, centered and rotated depending on the desired
output into the rendering frame. These geometry objects are then converted into an RGB image
𝑜𝑟.
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Figure 4.2: Our new renderer has a similar output to the original one in the environment but has
a significantly cleaner code base. The renderer is implemented in a mostly stateless style, which
we find easier to work with. This makes it simpler to reason about and avoids the complexities of
circular dependencies with the environment, which the original suffered from. Simpler renderer
code makes it easier to experiment with different image observations 𝑜𝑟.
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4.1.2 Rangefinder simulator optimization using enclosing circles

Although we do not include rangefinder measurements in our observations, they are still used
to calculate rewards in our experiments. Calculating the collisions between simulated sensor
rays and obstacles is a major bottleneck of the gym-auv simulation framework. A run-time
profiler found that almost all of the run-time was spent calculating the intersection between
every ray and every obstacle. These expensive calculations were made regardless of whether it
was geometrically possible that they may collide or not. This is a (𝑁𝑟𝑁𝑜) operation, where
𝑁𝑟 and 𝑁𝑜 are the numbers of rays and obstacles respectively. To improve the run-time of the
simulator, we optimize this bottleneck by pruning the search space.

Figure 4.3: Figure showing the distance 𝑑, the radius 𝑅 of an enclosing circle and the angle 𝛼.
We can find the angle 𝛼 using 𝛼 = sin−1 𝑅𝑑 and use it to find the rays that should be simulated for
this obstacle.

We wish for our code to work for all shapes in the shapely package and use methods provided
in the library. We decided to solve this in a 2-step process. We first find the minimum rotated
rectangle, which is readily available for all shapes in the shapely library. Then, we find the
enclosing circle as the one that touches all the corners of the minimum rotated rectangle. In
the second stage, we find which rays should be simulated per obstacle. To accomplish this, we
use some simple trigonometry, as shown in fig. 4.3. In the case where our rangefinder sensor is
inside the enclosing circle (i.e., |𝑅𝑑 | < 1), we do not restrict the simulation of rays and simulate
rangefinder ray collisions with all rays for the obstacle. Finally, the exact calculations for the
ray intersections are made for the possible ray-obstacle pairs using the shapely library, as in
the previous implementation. This means that while improving the run time of the rangefinder
simulation, we have no loss of accuracy.
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(a) Find enclosing circles for non-circular obstacles. (b) Find rays that coincide with enclosing circles.

(c) Simulate only these rays. (d) Set other rays to max range.

Figure 4.4: Using a simple heuristic, we limit the search space of the rangefinder sensors, avoid-
ing unnecessary computation.
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Figure 4.5: Our approach of pruning the search space with enclosing circles gives slight to sig-
nificant speed-ups depending on the number of surrounding obstacles. Experiments have deter-
ministic trajectories and are repeated 10 times. Testscenario1-v0 has on average 1 to 2 obstacles
within the sensor range, while TestScenario2-v0 has 20 to 50. The "brute force" comparison
does not make an approximation of the geometry as is done in [26], where it is referred to as a
"virtual environment". The improved performance should allow the framework to scale to the
use of more sensor rays and more complex terrain in the future when simulating rangefinders.
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4.1.3 Other improvements to simulation framework

• Increased type safety: Our contributions significantly increase the type safety of the en-
vironment implementation. This makes further development of the code base significantly
easier for several reasons. Firstly, type annotations make it possible for developer tooling
(such as linters, code completion, etc) to easily understand the code. For instance, warn-
ings are made about problems that may not be obvious to the developer, without the need
of running the code. However, it is worth noting that Python does not check the type hints
on its own as in strictly typed, compiled languages. The developer is responsible for using
tooling that ensures type safety.

• More robust numerical integration: To solve the non-linear equations of motion, we
use numerical integration methods from the scipy package. When changing our vessel
model from the Cybership II to the Otter as described in section 2.1, we found the existing
integration scheme to be numerically unstable with the new dynamics model. The prior
approach included a custom Explicit Runge-Kutta scheme implementation to solve these
equations. However, in our work, we use the odeint package in the scipy library to solve
these equations. This approach has several advantages. Firstly, it simplifies the code by
eliminating the need to implement our own integration method. Additionally, we improve
the accuracy of the simulation by solving intermediate time steps.
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4.2 Custom Dreamer algorithm implementation
Initially, we intended on using the rangefinder sensors as the measurements of our agent together
with a 1D convolutional network. As the Dreamer implementations we found natively only
supported dense or two-dimensional image observations, we wanted to find an implementation
that was readable and easy to extend to use with 1D convolutions.
Multiple implementations of Dreamer exists, each with its own strengths and weaknesses. The
most obvious one is the official implementation of DreamerV2 from the original author. We
initially avoided this implementation, as it lacked some features and had a code base that we
found hard to read. It often uses 1-character variable names, doesn’t use type hints, and provides
a very limited amount of comments.
At the beginning of our project, we spent much of our time customizing an implementation of
Dreamer provided in Ray RLlib [23] to support the custom encoder and 1D convolutions. We
found the code base in RLlib to be easier to read, and presumably easier to modify. It also had
more mature utility functions, like experiment tracking using Weights & Biases [2], configurable
checkpointing schemes, as well as hyperparameter optimization and experiment queueing and
parallelization using Ray Tune [24].
During these experiments, we realized that although the Dreamer implementation in RLlib was
an adaption of the original DreamerV1 agent, our finite-horizon episodic environment needed
features from DreamerV2 to function properly. We decided to implement some of these fea-
tures, such as continuation prediction, in our customized RLlib Dreamer implementation, which
is summarized in table 4.1. Eventually, we eventually found a critical bug in the RSSM im-
plementation provided in RLlib. The model didn’t properly perform world-model learning, and
considered its inputs as 𝐵 ⋅𝐿 one-step sequences rather than 𝐵 sequences of length 𝐿. As we
eventually questioned the overall correctness of the RLlib implementation and considered im-
plementing the Dreamer algorithm out of the scope of this project, we stopped using it, instead
focusing on the official implementation using image observations.
We have left out the experiments using 1D convolutions as we see them as inherently flawed due
to the errors in the Dreamer algorithm implementation in RLlib we based these experiments on.
They would not give a fair comparison to the experiments we present using image observations,
as much of the differences would be caused by problems with the Dreamer algorithm implemen-
tation. However, we encourage further research to research using rangefinder sensors with 1D
convolutional networks using the official implementation of DreamerV2 or DreamerV3.
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Functionality Original RLlib Official DreamerV2 Custom (Ours)
Tensor library PyTorch TensorFlow PyTorch
Image observations Supported Supported Supported
Dense observations Not supported Supported Supported
Custom models Limited configurability Configurable Configurable
Utility functions Generalized Project-specific Generalized
KL-balancing Not available Available Available
Discount rate prediction Not available Available Available

Table 4.1: Overview of features in our attempt to build upon the DreamerV1 implementation
available in RLlib to build a version closer to DreamerV2.
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Chapter 5

Experiments and results

The experiments were run on a 64-core AMD Ryzen Threadripper PRO 3995WX with 3 NVIDIA
RTX A5000 GPU cards and 512 GB RAM. We use a single environment instance and one GPU
per experiment. Although we experimented with a wide range of configurations during the
project, the results in this section use the hyperparameters given in table 3.7. We also provide
the training curves of the training run in our experiments in appendix B.
We focus our analysis on the following two research questions:

• Task performance: How well does Dreamer solve the task of path-following and colli-
sion avoidance?

• World model prediction accuracy: Is the model able to provide accurate, meaningful
predictions about the future state of the environment?
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5.1 Task performance
After 1.3 million time steps of training, we found the performance of the agent to have converged,
and we measure the performance of the agent over 500 episodes. Our agent was successful in
reaching the goal in 384 of the 500 episodes, giving a success rate of 76.8%. The average
path progression of the episodes was 83.7%, giving the episodes that failed an average path
progression of 29.7%1. In other words, they usually finished closer to the start of the path than
the end, but make some progress along the path on average. The overall collision rate was 22.4%,
meaning that almost all the failed episodes ended in a collision.
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Figure 5.1: Success rate in reaching the goal without collision during 500 episodes.

1As the successful episodes have a path progression of 100%, the rest have a progression of 0.873−1⋅0.768
1−0.768 =

0.297 = 29.7%
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5.1.1 Agent trajectories

We present three trajectories performed by a trained agent.

t = 0 [s] t = 50 [s] t = 100 [s] t = 150 [s] t = 200 [s]

t = 250 [s] t = 300 [s] t = 350 [s] t = 400 [s] t = 450 [s]

t = 500 [s] t = 550 [s] t = 600 [s] t = 650 [s] t = 700 [s]

t = 750 [s] t = 755 [s]

Figure 5.2: Example of a trajectory performed by a trained agent. The agent avoids the obstacles
along the way and keeps a slight distance from another vessel near the end.
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t = 0 [s] t = 50 [s] t = 100 [s] t = 150 [s] t = 200 [s]

t = 250 [s] t = 300 [s] t = 350 [s] t = 400 [s] t = 450 [s]

t = 500 [s] t = 550 [s] t = 600 [s] t = 650 [s] t = 700 [s]

t = 750 [s] t = 782 [s]

Figure 5.3: The trained agent successfully navigates through another environment.
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t = 0 [s] t = 50 [s] t = 100 [s] t = 150 [s] t = 200 [s]

t = 250 [s] t = 300 [s] t = 350 [s] t = 400 [s] t = 450 [s]

t = 498 [s]

Figure 5.4: The agent manages to avoid multiple obstacles at the beginning, but eventually ends
the episode by crashing into an obstacle near the path.
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5.2 Reconstructions of imagined trajectories

Figure 5.5: During the experiments done in section 5.2, we imagine trajectories from a short con-
text of the first five observations and actions (𝑜1,𝑎1),… , (𝑜5,𝑎5), and use the decoder to predict
the next 45 image observations (�̂�6,… , �̂�50) given actions (𝑎6,⋯ ,𝑎50). A context of one obser-
vation 𝑜1 and prediction of three reconstructed imagined observations (�̂�1, �̂�2, �̂�3) given actions
𝑎1,𝑎2,𝑎3 is shown in the figure.

5.2.1 Successful reconstruction

t = 1

Observation

t = 2 t = 3

Context

t = 4 t = 5

t = 1

Predictions

t = 2 t = 3 t = 4 t = 5

t = 6 t = 10 t = 15 t = 20 t = 25

Open loop prediction

t = 30 t = 35 t = 40 t = 45 t = 50

t = 6 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50

Figure 5.6: A mostly successful reconstruction.

First, we present an experiment where we find that reconstructing the observations works well.
The agent is able to reconstruct the path, and is able to predict how its actions makes the agent
move through the environment. Around 𝑡= 15, we see that a new obstacle appears in the actual
observation. Since the existence of this obstacle was not known from the context (𝑜1,⋯ , 𝑜5), it
is natural that the agent is not able to predict it.
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5.2.2 Disappearing obstacles in reconstruction

t = 1

Observation

t = 2 t = 3

Context

t = 4 t = 5

t = 1

Predictions

t = 2 t = 3 t = 4 t = 5

t = 6 t = 10 t = 15 t = 20 t = 25

Open loop prediction

t = 30 t = 35 t = 40 t = 45 t = 50

t = 6 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50

Figure 5.7: The white obstacle is absent from the reconstructions.

In another reconstruction using the same model, we find that the model does not consider the ob-
stacle that is clearly present in the context (𝑜1,⋯ , 𝑜5). The reason for this is not completely clear,
but the DreamerV3 paper [17], which was published shortly before the submission deadline of
this work, provides a possible explanation. They mention that the visual complexity matters for
how the hyperparameters should be tuned in DreamerV2. For instance, they claim that the KL-
divergence coefficient 𝛽 and the number of free nats should be tuned differently depending on
whether the environment is more visually complex, such as in fig. 1.1, or if it depends more on
individual pixels as in our experiments. DreamerV3 claims to have found a set of hyperparam-
eters that work well across environments, but we leave experiments using this agent as further
work.

5.2.3 Visual artifacts
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t = 6 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50

Figure 5.8: The reconstructions show visual artifacts around the red vessel.

In this reconstruction, we find that the model produces visual artifacts around the red vessel
obstacle, which worsen towards the end of the predictions. The artifacts are most apparent for
the vessel obstacle, which is understandable. The red vessel obstacle moves during the prediction
horizon, while the white static obstacles stand still.
This problem is influenced by how these reconstruction experiments are set up. The stochas-
tic nature of our experiment limits the predictive potential of our model. For instance, if we
compare our experiments to the "Walker" or "Hopper" environments in fig. 1.1, there are many
uncertainties in our environment. Our environment has randomly generated paths, as well as
randomly placed static and moving obstacles. On the other hand, the "Hopper" and "Walker"
environments do not have such uncertainties.
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5.2.4 Consistency of results

One undesirable feature we found is that the performance of the agent is not always consistent.
In another experiment with the same hyperparameters, reward function, observation function
wildly different results were found.2The agent learned a policy similar to a "bang-bang" con-
troller, providing max torque alternating between clockwise and anti-clockwise directions every
step.
We hypothesize that this behavior filled the replay buffer (i.e., the training data set for world
model learning) with trajectories that are harder to predict. No matter what is the cause of the
poor reconstructions, we see an example of these reconstructions in fig. 5.9.
However, this other agent was often able to solve the task even though its reconstruction error
was high. This other agent reached a success rate of 68.4% during the last 500 episodes of 1.85
million steps of training.

t = 1

Observation

t = 2 t = 3

Context

t = 4 t = 5

t = 1

Predictions

t = 2 t = 3 t = 4 t = 5

t = 6 t = 10 t = 15 t = 20 t = 25

Open loop prediction

t = 30 t = 35 t = 40 t = 45 t = 50

t = 6 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50

Figure 5.9: A typical reconstruction from a less performing training with the same hyperparam-
eters and a similar amount of training. The white obstacles are generally blurry, and none of the
vessel obstacles are reconstructed.

2There was one very slight change in the renderer, where we limit the dark blue trail of the agent to only show
the last 100[𝑠]. We do not believe this is the sole cause of the differences, but rather hypothesize that differences
between training runs (which we also saw during other experiments) caused the problems.



Chapter 6

Discussion

6.1 Realism of access to renderer image observations
In our experiments, we create image observations using the underlying state of the environment.
In a real system, the underlying state is not directly available to the agent. However, we argue
that estimating these states in a real system is not entirely unreasonable. Autonomous vessels are
often equipped with sensor fusion systems for target tracking and situational awareness, which
may provide similar information. Additionally, static obstacles can often be known ahead of
time through access to a map of the areas it operates in. Something similar to the renderer
image may be constructed if information about obstacles’ shapes, positions, and velocities as
well as a map is available. However, our renderer image shows all information in the image and
does not consider the occlusion of objects located behind other objects from the perspective of
the agent.

6.2 Cross-track error and choice of look-ahead point
In section 3.2, we introduced a new and simpler reward function based on the product of speed
and course error. Although we have confidence in that this formulation of the reward function has
some merit, we believe that our choice of look-ahead point is not optimal. For instance, we see
in fig. 5.3 that the agent consistently cuts the corners of the path. This behavior is incentivized
in corners as moving straight towards the look-ahead point, which is on the other side of the
corner, is optimal w.r.t. the path reward. When using Line-of-sight guidance for curved paths,
[10] proposes the use of a look-ahead point along the path tangent rather than one along the path.
Although our agent still mainly moves along the path, we recommend further work to experiment
with using the path tangent as the look-ahead point for better cross-track performance.
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(a) Path tangent look-ahead point. (b) Along-path look-ahead point (ours).
Figure 6.1: Using the path-tangent to to provide the look-ahead point point may prevent the
agent from cutting corners, thus reducing the cross-track error.

6.3 Model interpretability

Algorithm Parameter Count
PPO (Meyer et. al. [26]) 12.8 k

DreamerV2 (Ours) 18 M
Table 6.1: Approximate parameter counts for different reinforcement learning agents. The
Dreamer agent has several orders of magnitude more parameters.

As we showed in section 5.2, our model-based reinforcement learning agent may predict future
observations of its environment. While we believe that even more accurate predictions of the
future may be possible and offer interpretability, these models still come with another trade-
off. In table 6.1, we see the number of trainable parameters in our world model compared to
the policy and value networks in prior work by [26]. Our model has more than 10000× the
parameters of prior work, and it is likely infeasible to prove how such a model would behave
well in all situations.
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6.4 Misalignment of world-model loss function
We hypothesize that the world model loss may not be completely aligned with our objective of
solving the task. As we see in eq. (2.28), the reconstruction losses for image-observations and
reward functions are mean-squared errors. At every time step, there are many more pixels in the
image than the single scalar reward, and they have similar orders of magnitude due to limiting
the range of the reward using the tanh-function. This may cause the world-model to implicitly
prioritize predicting the pixels of the image well on average rather than learning features that are
important to the task. A similar problem is mentioned in the DreamerV2 paper [16]. They point
out that the algorithm performs poorly in the "Video Pinball" game, where the most important
object (the ball) occupies only a single pixel in the image.
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Chapter 7

Conclusions and Recommendations for
Further Work

7.1 Summary and Conclusions
In our work, we show how a path-following and collision avoidance task may be framed for
use with the model-based DreamerV2 Reinforcement Learning agent. We show how one might
incorporate both path-following features as a vector and an overview of the situation as a low-
resolution image and use these to navigate through a challenging environment with a success rate
of 76.8%. We have also shown a method for tuning our reward function, and made significant
improvements to the gym-auv simulation environment.
From our experiments, we find that the agent is often able to choose intelligent behavior in
the environment, but is seemingly also limited by the world model’s failure rate of correctly
perceiving obstacles. As DreamerV3[17], the newest version of the Dreamer agent claims to
provide hyperparameters that work well across a wide range of environments, we believe that
our setup has the potential for higher performance in further work.
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7.2 Recommendations for Further Work

7.2.1 Model-based Reinforcement Learning using Rangefinder sensors

In this work, we showed how we might adapt the simulation environment for use with the stan-
dard DreamerV2 [16] agent. However, one could instead use the rangefinder measurements with
a 1D Convolutional encoder and decoder. Such a sensor setup makes fewer assumptions about
the access to the environment state than our image observations and may be more applicable in
practice. We point out that using rangefinder or image observations is not mutually exclusive.
Multiple observation modalities may be encoded and concatenated in parallel, as we do with
dense and image observations in fig. 3.6.

7.2.2 New tasks using DreamerV3

DreamerV3 [17] is the follow-up paper of DreamerV2. It focuses on improving the robustness
and scalability of the model. DreamerV3 robustifies the agent to work with diverse environ-
ments w.r.t. reward scaling and observation fidelity, solving a wide range of tasks with the same
hyperparameters. They also show favorable scaling properties of the model, with larger mod-
els showing higher data efficiency and capability. The DreamerV3 paper was released close to
the deadline of this work, but the implementation is currently not available. We leave apply-
ing DreamerV3 to the gym-auv environment as well as other environments UAVs, quadcopter
drones or quadrupedal robots as further work.

7.2.3 Kinematics-informed World Models

Although randomly initialized neural networks may learn complex non-linear functions, they do
not possess our prior knowledge of physics. While all the papers written about Dreamer and its
predecessor PlaNet use the RSSM model, we might also use these algorithms with other models.
Thor I. Fossen models Rigid-body systems such as marine vessels in their most general form
using the following equations [10]

Kinematics: �̇� = 𝐉𝚯(𝜂)𝜈 (7.1)
Kinetics: 𝐌�̇�+𝐂(𝜈)𝜈+𝐃(𝜈)𝜈+𝐠(𝜈)+𝐠𝟎 = 𝜏 (7.2)

These equations differ as the kinetics is an approximated model, while the kinematics are exact.
The first equation describes the kinematics of the system, i.e. how the velocities and angular
velocities 𝜈 relate to the derivative �̇� through the matrix 𝐉𝚯. However, the second equation
is slightly more complex, describing the kinetics of the system. Kinetics relate the forces and
moments of the environment to �̇�, the acceleration and angular acceleration vector.
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The main takeaway from this is that one might use the exact kinematics relation in a model while
approximating the kinetics using a neural network. Rearranging the kinetics equation to isolate
�̇� on the left side and model of accelerations and angular accelerations from the physics of on
the right-hand side, we get:

�̇� =𝐌−𝟏(−𝐂(𝜈)𝜈−𝐃(𝜈)𝜈−𝐠(𝜈)−𝐠𝟎+ 𝜏) (7.3)

We hypothesize that �̇� may be learned jointly by a neural network 𝑓𝜃, such that the equations
reduce to:

�̇� = 𝐉𝚯(𝜂)𝜈 (7.4)
�̇� = 𝑓𝜃(𝜂,𝜈,ℎ,𝑎) (7.5)

To implement these equations in practice, they must be discretized. One might do this by ex-
plicit Runge-Kutta methods, or through simpler approaches such as Euler integration. Then, the
predictions �̂� and �̂� according to the model are given by:

�̂�[𝑘+1] ≈ (𝐈+𝐉𝚯(�̂�[𝑘])) ⋅Δ𝑇 ) �̂�[𝑘] (7.6)
�̂�[𝑘+1] ≈ 𝑓𝜃(�̂�[𝑘], �̂�[𝑘], ℎ̂[𝑘],𝑎[𝑘]) ⋅Δ𝑇 (7.7)

Importantly, if implemented in an auto-differentiation framework such as TensorFlow or Py-
Torch, this model is still differentiable. Assuming we have access to good ground-truth labels
𝜂𝑡𝑟𝑢𝑒 and 𝜈𝑡𝑟𝑢𝑒 as well as the actions 𝑎 performed, we might train the network by minimizing the
distance between the predictions and ground truth values by optimizing the parameters of the
kinetics prediction network, which are denoted by 𝜃, that is:

min
𝜃

1
𝑁

𝑁
∑

𝑖=1
‖�̂�[𝑘+1]− 𝜂𝑡𝑟𝑢𝑒[𝑘+1]‖2+‖�̂�[𝑘+1]− 𝜈𝑡𝑟𝑢𝑒[𝑘+1]‖2 (7.8)

Doing this, we get a model closely resembling the rigid-body system that might be used to
optimize over reward functions using these states. This model architecture might be used to solve
tasks by training an actor-critic-style agent differentiating through the dynamics as in Dreamer,
MPC style planning with the Cross-Entropy Method as in PlaNet [15], or a hybrid as is given in
TD-MPC [18].
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Appendix A

Acronyms

ASV Autonomous Surface Vehicle
COLREG Convention on the International Regulations for Preventing Collisions at Sea
CPU Central Processing Unit
GAN Generative Adversarial Network
GAE Generalized Advantage Estimation
GNC Guidance, Navigation, and Control
GPU Graphics Processor Unit
KL Kullback-Leibler (Divergence)
ML Machine Learning
MPC Model Predictive Control
PlaNet Planning Network
PPO Proximal Policy Optimization
RL Reinforcement Learning
RL Reinforcement Learning
RSSM Recurrent State Space Model
TD Temporal Difference
TRPO Trust Region Policy Optimization
TPU Tensor Processing Unit
VAE Variational AutoEncoder
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Appendix B

DreamerV2 Training Curves
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Figure B.1: Dreamer V2 training curves (1/2).
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Figure B.2: Dreamer V2 training curves (2/2).
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