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Abstract

Many feasibility and optimization problems can be expressed as linear programs
when the decision variables form linear constraints and objective functions. In-
teger programs; a subclass of problems where one or more decision variables
have to be integer, is appearing a great deal in various industries. Examples of
use are within production planning, where one cannot produce fractional wares,
or within scheduling, where each variable is required to be binary, and, for
example, corresponds to assigning a vehicle to a route or not. Integer program-
ming is NP-Complete, and it is therefore made many optimization solvers, both
commercial and open source, for use in industries. For the commercial ones it
is hard to know the exact methods in use, but for the open source we see that
there often are similar procedures in use, applied to every problem. By crafting
procedures of recognition, we hope to find that more tailored algorithms can
speed up the process of solving specific problem classes. In this research we will
therefore explore how one can make a seamless layer of recognition procedures
for deciding which algorithms to use, while still being able to use a solver for
problems not recognized by this system. For interacting with solvers one may
use an algebraic modeling language (AML) in order to formulate the problems
at a higher level, and we argue that a plugin at this level will be able to make
the problem solving as fast, or faster on certain problem domains, as an open
source solver. We will produce the prototype MipFlex, which makes use of Ju-
lia’s AML JuMP. We will explore how the layout can be flexible and extendable,
and compare how the prototype effects execution time over different problem
classes and solvers. We will also dive into a specific recognition procedure in
order to have a specific use case for MipFlex.

Keywords—MipFlex, mixed integer programming, optimization solvers, JuMP, recog-
nition procedures.
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Chapter 1

Introduction

The main focus of this work is to explore the possibility and results of imple-
menting a module which provides the possibility of inserting recognition and
solving procedures of different types of linear programs, while still being able
to connect existing linear programming solvers to the module, which can work
simultaneously on the problem, or take main control if the problem class is not
recognizable by the specific procedures. In this section we discuss why and how
this could be helpful within different fields of work, and what already exists for
working with these kind of problems.

Linear programs (LP’s) appear when one considers problems where the vari-
ables form linear constraints, and possibly containing a linear objective function
to maximize or minimize. These types of problems appear in a lot of different do-
mains, and examples are graphical problems, such as network and flow problems
within transportation of goods, optimization within microeconomics, decision
problems connected to time slot management, and production scheduling, for
example, within hydro-power[5]. Obviously it has a lot of use-cases, and it is to
no surprise that there exist several commercial and properly maintained solvers
for linear programming, such as Gurobi[15] and CPLEX[11], for use in differ-
ent businesses. There are also several open source solvers, such as HiGHS[1],
GLPK[21], Cbc[9], and SCIP[7].
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Often one would need to constrain some or all of the solution variables to
be integers. Such mixed integer linear problems (MILP’s) are proven to be
NP-hard, meaning that there exists no polynomial-time algorithm solving the
general problem, unless P=NP. However, there exist different heuristics that
can improve the solution time if one know certain information from before,
and different solvers have settings to help with heuristics. Gurobi support for
feasibility heuristics, and is arguably one of the solvers with most customization
possibilities. There exists several general MIP heuristics[6]. The open source
solver SCIP has implemented a lot of such heuristics, and is one of the fastest
open-source solver. However, these open source solvers does not have ways of
entering custom procedures that can be run whenever it recognizes a specific
problem, or send more detailed information about the nature of the problem,
which an algorithm could use beneficially. Instead the use of general algorithms,
which are exponential in the number of variables and constraints for integer
programs, will be used in the solvers, where one could instead have used well-
known graph algorithms of polynomial complexity.

Our aim is to implement an open source module which can be integrated
with solvers. Thus one have the possibility to search for known sub-classes of
problems, or send in data about a problem class already known, which can then
be used to apply specific algorithms instead of generic branch-and-bound type
solver algorithms. We aim to make it extendable, so that further recognition
and solver procedures can be added by need, and flexible, so that one can
choose which recognition procedures to run. We will then test if it can give any
improvement compared to existing open source solvers, and show that in certain
cases it can be quite useful. We finish by exploring some ideas of additional
implementation which could make this module even more useful.
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Chapter 2

Background and Preliminaries

In this chapter we will introduce some basic concept of integer programming,
and show some examples of how it is used in order to illustrate how important
it is in industries. We will also examine existing technologies when it comes to
representation and solving of linear programs, and discuss how we can use these
to possibly extend the flexibility of open source optimization.

2.1 Integer Programming

Linear programs can be expressed in several ways, but a maximization problem
on standard form is given as

max
x∈Rn

cTx,

subject to Ax ≤ b (2.1)
x. ≥ 0,

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and 0 is an n-dimensional vector of
only zeros. The last inequality is meant to be taken element-wise, so that each
element of x should be greater than zero. So there ism linear constraints defined
by A and b, plus the n constraints of non-negativity, and we want to find an
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x of real numbers such that no constraints are violated, and, if several such
solutions exists, take the one which maximizes the objective function.

Integer programming (IP) is a special case of LP, where all variables are
limited to only take on integer values. If only some of the variables are con-
strained to integer values, the problem is called a mixed integer program (MIP).
There are a lot of interesting results regarding linear programming, especially
connected to its dual and the number of solutions, which can be used in different
solution procedures, however, the scope for this thesis does not include theory
connected to duality of LP’s.

An example of the use of integer programming is the transportation problem.
Assume we have a company producing indivisible goods, such as cinnamon buns.
Every day the n different bakeries have different production capacities given by
b1, b2, . . . bn, while the m grocery stores selling them have different demands
given by g1, g2, . . . gm. Since the distance between different supply and demand
venues differs, it is estimated a cost of transport, given as cost per cinnamon
bun on a given route, between pairs of bakeries and grocery stores. If there is no
viable transportation route between two venues, then no cost is calculated and
it is considered impossible to transfer goods between these units. This makes
up a directed bipartite graph.

This problem can be modeled as a linear problem as follows. Consider the
graph G with vertex set V = B

⋃
G of size n + m, where B and G are the

disjoint sets of bakeries and grocery stores. Let the edge set E be every directed
viable route from a bakery to a grocery store, and let the cost of these routes
be denoted cij , where i ∈ B and j ∈ G. Let fij denote the transportation of
buns per day from bakery i to grocery store j. The problem becomes to meet
the demand with the available resources while minimizing cost:
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min
∑

(i,j)∈E

cijfij ,

subject to
∑

{j|(i,j)∈E}

fi,j ≤ bi, ∀i ∈ B

−
∑

{i|(i,j)∈E}

fi,j ≤ −gj , ∀j ∈ G

fij ≥ 0 ∧ fij ∈ Z, ∀(i, j) ∈ E.

If the transport costs and the production capacity of bakeries are both integer
values, then it can be shown that basic feasible solutions are integer. Basic
feasible solutions (BFS’s) are feasible solutions with a minimal set of non-zero
variables, and the famous Simplex[12] algorithm searches for optimal solutions
by moving from BFS to BFS. However, if the transport costs are fractional, it
may not find a default integer solution, and one may need to cut the solution
space in half at several points and make a search tree for an integer solution.
This can take exponential time. However, the family of problems and methods
used can impact the running time a lot, thus using heuristic and knowledge
about the problem can be crucial.

Another example is within decision problems, where the variables are re-
stricted to take on either 1 or 0. For a simplified example for financing projects,
let there be three possible projects a company can take on, and all will take two
years. Each year the cost of each project is estimated, and the available capital
is given. The gain in revenue after completion is also estimated per project.
The data could look something like table 2.1.

Year 1 Year 2
Project Gain Cost Cost

1 0.3 0.2 0.4
2 0.2 0.1 0.3
3 0.23 0.12 0.3

Available capital 0.35 0.65

Table 2.1: Example data connected to an decision problem.
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If we let xi represent project number i, where i ∈ [1, 3], we can make a
representation of the problem, where a solution with xi = 0 means we do not
take on project i, while we take it on if xi = 1. In this example we can only
finance the projects with the yearly available capital, and we want to find the
combination of affordable projects which will maximize profit.

Maximize 0.3x1 + 0.2x2 + 0.23x3

Subject to
0.2x1 + 0.1x2 + 0.12x3 ≤ 0.35

0.4x1 + 0.3x2 + 0.3x3 ≤ 0.65

where xi ∈ {0, 1}∀i.

For this example, we can simply check all the 23 possibilities, list which
are feasible, calculate the objective value for those, then choose the optimal
solution. However, when the list of variables increase, this will take exponential
time, so a faster algorithm is needed.

It is shown that LP’s can be solved in strongly polynomial time[24], whereas
IP’s can be proved to be NP-hard by a reduction from the minimum vertex cover
problem. Since IP is a special case of MIP, MIP is at least as hard as IP, and
so is also NP-hard. Binary linear optimization problems, as the example from
table 2.1, are specializations of IP, and some of these can be solved strongly
polynomial, while some cannot[22]. As such it could be beneficial to recognize
instances where there is a strong polynomial algorithm, or very special instances
of IP or MIP where it is known to be easier approaches.
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2.2 Algorithmic Modeling Languages

An optimization solver accepts input on specific formats, and often it is nei-
ther easy to read for a human, nor compact. Algorithmic Modeling Languages
(AML’s) are helpful tools when dealing with optimization solvers, as they allow
for problems to be written in a logical mathematical way for the user, and trans-
late it into accepted input for the solver. Some AML’s are made independently
with their own syntax, like the commercial AMPL and GAMS, while others are
embedded in their own programming languages, such as YALMIP and CVX for
Matlab, and PuLP and Pyomo for Python, which makes it easy for users to
manipulate and create different models from data directly within the language,
and use the results in their application. However, embedded AML’s have to fol-
low the rules of its native language’s syntax and grammar, or find workarounds,
which can be a challenge for making it expressive and easy to use.

For storing a sparse matrix, a common method used for when the model is
being built is to store two arrays representing each row. One array specifies the
indices of the non-zero variables, and the other stores the value of these respec-
tively. AML’s in interpreted languages often use operator overloading to achieve
this, overloading the basic operators on variables, building the final expression
by combining sub-expressions, which can result in many intermediate memory-
allocations. AMPL is quite effective memory-wise as it statically determines
how many elements it needs, typically by passing through the expression twice,
determining the final storage required at the first pass, then determining the
values to store at the second pass. JuMP[13] tries to mimic the latter approach
through metaprogramming using syntactic macros, which substitute elements
of the syntax tree, instead of lexical tokens as done for macros in C. The macros
are evaluated only once at compile time, possibly within execution time by use
of just-in-time compilation, so it introduces no extra runtime overhead. JuMP
can also utilize multiple dispatch, a feature of Julia, so that no matter the type
of variable received, there is a function defined for it. These macros make it
possible for significantly fewer memory allocations than operator overloading
does, and in fact, the authors of JuMP show that JuMP performs on the same
order of magnitude as commercial AML’s, while overloading AML’s built on
Python are slower by a factor of 10. These results were measured from the time
used to build in-memory models and reporting them as MPS (Mathematical
Programming Structure) and LP formats, all performed on the same machine.
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From the promising benchmarks of JuMP’s performance, it seems logical to
use Julia’s JuMP for our AML, as it is open source, intuitive to use, and opens
up for constructing a plugin within the same native language.

In 2019 JuMP was completely rewritten, intorducing MathOptInterface[17]
(MOI), in order to support the big diversification in expected data structures
from the solvers. The problem JuMP had taken on, of translating LP’s or
non-linear programs (NLP’s) into a standard form for any solver to use, had
gotten much harder because of the widening of the field in general, and the
many independent solvers available. Not only are they different in the intended
problems to solve, e.g. MIP, NLP, conic programs, etc., there are also solvers
for the same type of problems, expecting the input in different formats, even
though the logical representations are equivalent.

For example, some solvers may want the constraints in a less-than manner as
we saw in eq. (2.1), while others may want it with equality, which is the starting
point for most Simplex algorithms. Achieving equality from an inequality is a
matter of introducing slack variables, so that

a1x1 + a2x2 + · · ·+ anxn ≤ b

becomes
a1x1 + a2x2 + · · ·+ anxn + s = b ∧ s ≥ 0,

where the a’s are real constants, and the x′s and the s are real variables.

From a greater-than inequality, one can either convert it to a less-than in-
equality by multiplying by −1 on both sides, and then add the slack variable.
Alternatively one can directly add a surplus variable, which should be less than
zero, or subtract a surplus variable which should be greater than zero. Some
solvers may want a vector containing elements representing ≤, ≥ and =, in or-
der to identify the bounds of the constraints, while others again may want both
a lower and upper bound for each constraint.

In order to solve this problem of high variety in solver standards, the JuMP
developers decided to rewrite the system to be more flexible, not just from the
solver side, but also from the user side. If a user could to write a problem
in less-than inequalities, and additionally be able to send it to two different
solvers requiring greater-than and qualities respectively, it would benefit the
user greatly. The result of this rewriting was the introduction of an intermediate
abstract data structure they named MathOptInterface (MOI).
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MOI is made to hold mathematical optimization data in a general way, and
easy to interpret. The idea is that every constraint is represented as a Function-
in-Set pair. More information on which functions and sets are supported can
be found in the documentation.

Another highly convenient feature, the idea that made the new implementa-
tion of JuMP so flexible, is the rewriting system called bridges. Basically bridges
translates problems into equivalent forms, so that a user can send in the prob-
lem, and then bridges will be applied in order to try and translate the problem
into a version acceptable by the solver to be used. The solver developers may
specify which bridges can be used.

If the problem is big, and there are many different forms of the problem,
it may take additional overhead to use bridges. In [17] they offer benchmarks
showing that the runtime increases by a factor of 4 for use with GPLK, and 4-7
for SCS. But one have the choice to bypass bridging if one wish to speed things
up, and then the overhead is around a factor of 1-2.5 compared to not using
MOI, which is almost nothing at all.

MOI introduced MathOptFormat, a file format making it easy to store and
read big collections of data. As part of this file format a concrete description
of MOI was provided as a JSON schema, which serializes MOI models. It is a
concrete description of the functions and sets of MOI, and serves as a canonical
representation that may be updated iterative as more functions and sets are
supported.
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2.3 Linear Programming Solvers

There are a number of available solvers aimed at solving optimization programs,
directed at different types of problems. For example, some aim at general linear
or non-linear problems, whereas some are specified to work on specific forms
of non-linear programs, such as quadratic programs or second-order conic pro-
grams. We are focusing on the solvers intended for linear programming with
mixed integer constraints, which we can divide into commercial and open source
solvers. Among the commercial ones, we find solvers like Gurobi, CPLEX,
MOSEK and FICO Xpress. Since commercial solvers are highly optimized while
not being very transparent regarding their exact algorithms, we focus more on
the open source MIP solvers with support for JuMP. If we can help enhanc-
ing the use of those, it will be a good start, and highly practical for use in
open source projects. The open source solvers with API suport for JuMP are
currently GLPK (GNU Linear Programming Kit), HiGHS (Linear optimization
software), Cbc (COIN-OR Branch and Cut), and SCIP (Solving Constraint
Integer Programs).

The branch-and-cut algorithm [2] is a fairly common method for most MIP-
solvers, and we present the workings of the one used by GLPK. The idea is
to maintain a current bound on the objective function value, then search for
better ones by making a search tree. This idea by itself is called branch-and-
bound. By introducing cutting planes, as will be described below, we get the
branch-and-cut method.

The algorithm is given in pseudocode in algorithm 1. Note that the inden-
tations here marks when a statement ends.
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Algorithm 1 Branch-and-Cut
Branch-and-Cut(MIP,Lazy, Cuts)
1: zbest := +∞
2: xbest := 0
3: add the pair (MIP, zbest) to list L
4: while L not empty
5: select a pair (P, z) from L
6: use known LP-algorithm to solve P without integer constraints,
7: and obtain solution x with objective value zP from this
8: if P infeasible or zP ≥ zbest
9: remove (P, z) from L

10: continue
11: if any set of constraints C ⊂ Lazy violates solution
12: extend P with C
13: goto 6
14: if x is an integer solution
15: if solution is unbounded
16: return solution x, zP , ”unbounded”
17: zbest := zP

18: xbest := x
19: remove any pairs (P, z) ∈ L with z ≥ zbest
20: continue
21: if any set of constraints C ⊂ Cuts violates solution
22: extend P with C
23: goto 6
24: take a fractional x ∈ x and let x∗ be its fractional value
25: let P1 = P

⋃
(x ≤ bx∗c)

26: let P2 = P
⋃
(x ≥ dx∗e)

27: add (P1, z
P ) and (P2, z

P ) to L
28: remove (P, z) from L
29: if zbest 6= +∞
30: return optimal solution xbest, zbest, ”optimal”
31: else
32: return ”infeasible”
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Assume that we work with a minimization problem. One starts by setting
the best known solution to infinity, zbest = +∞, then adds the LP program to
a list, L, of active search nodes.

The algorithm selects a program from the problem set L. If there are none,
the algorithm terminates and will check what the current best bound is. If there
is a program in L, the algorithm then relaxes the integer constraint, solving the
relaxed LP, most often with the use of the Simplex method or the interior-point
method. Simplex, developed by Dantzig, is known for being very efficient in
practice, but its worst case runtime is exponential. It often uses many rela-
tively small cost iterations, where it searches vertices of the polyhedron the
constraints make up, as the constraints in theory are convex cutting planes in
a Rn space, where n is the number of variables. The interior-point-method is
an approximation algorithm based on Newton’s method, where one typically
adds a logarithmic barrier function to the objective function. Since the first
and second derivatives are required for this method, each iteration can be more
expensive than for the Simplex method, but it typically converges faster to an
answer.

If the objective value of the relaxed LP, zP , is worse than zbest, in minimiza-
tion meaning zP ≥ zbest, then the current branch of the search tree is removed
from the node set, and a new problem from the list is selected, if possible. The
same happens if there are no feasible solutions to the relaxed LP. However, if
there is a zP with zP ≤ zbest, the algorithm continues to the next step.

A user may mark constraints in the original problem as lazy, meaning that
they don’t think the constraints will restrict the optimal solution, but it still
needs to be fulfilled. An example could be that you never have more storing
capacity than one million units, but you are fairly sure you would never have
material enough to produce more than a hundred thousand units either way.
You still need to fulfill the requirement, but it would likely not affect the result.
Constraints marked as lazy will be removed from the initial problem of the
procedure, and will be stored in a lazy pool. If, at a point after finding a
relaxed solution, the algorithm detects that any of those lazy constraints violate
the solution, they are added back in so that the relaxed solution can be better
estimated, and possible integer solutions violating the lazy constraint can be
ruled out.
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When a relaxed solution that do not violate any lazy constraints is found,
a check for integrality is made, checking if the optimal solution to the relaxed
version also is optimal for the integer version. If it is an integer feasible solution,
the best upper bound is updated, zbest := zL, together with what the variables
are set to in this solution. Then branches with zP ≥ zbest are pruned from the
search tree, including the current search branch, since no better solution can be
found in this search space, and goes back to the set of problems, L, to search
further.

If any variable in a solution is fractional, there are possibilities for adding
cutting planes. Cutting planes are constraints that make the relaxed solution
invalid without removing any feasible integer solutions, thereby forcing the re-
laxed version to give an even better estimate next time it is solved. The user
can set options for which kind of cuts to be generated, but common for them is
that they aim at cutting away as much of the solution space as possible without
removing feasible integer solutions.

After resolving the relaxed LP with cutting planes, and again checking for
integrality but not obtaining it, one chooses a fractional variable to branch
upon. If x is the chosen variable with value x∗ at the relaxed solution, one
creates two sub-problems, where one has the constraint x ≤ bx∗c, and the other
has x ≥ dx∗e. By doing this we know that if there exist an optimal solution
to the problem, one of the sub-problems will contain it, as no feasible solution
will be ruled out. These problems are added to the set L, together with the
current best solution to the fractional problem in this branch, while the current
problem is removed from the set. Then one chooses a new problem of L to
search further.

When the list of active programs, L, is empty, one checks what zbest is set
to. If it still is +inf it means that the original problem has no feasible solution.
Otherwise the last stored integer feasible solution is an optimal one. If the
objective function is unbounded from below, a LP-relaxation will be unbounded,
and so the algorithm can terminate and report this if it happens.

GLPK offers the user to add specific callback routines which can be used to
tailor different behavior of the solver if wanted. The callbacks are connected
to different event flags, and are mostly meant to tweak the current algorithm,
not to use any specific recognition procedures. Examples of callback routines
are requests for sub-problem selection when choosing a new one from L, request
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for prepossessing of the problem, request for heuristic approaches to reach an
integer solution from a fractional solution, request for cut generation, or for
which variable to branch upon. Many of these events can also be set to be
handled by predefined procedures beforehand. For example, backtracking using
the best projection heuristic is set to default for choosing new problems from L,
but it can be switched to depth or breadth first through an option. Similarly,
common cut generators, such as Gomory cuts or MIR (mixed integer rounding)
cuts, can be set to be used.

Cbc (COIN-OR branch-and-cut) is also, as the name suggests, a branch-and-
cut solver. It can make use of the cut-generation library Cgl, also a COIN-OR
project[18].

SCIP advertises on their web page that it is "currently one of the fastest
non-commercial solvers for mixed integer programming and mixed nonlinear
programming, and it uses branch-cut-and-price. Branch-and-price is a special
case of branch-and-bound where the relaxation is done by the column generation
method. This method considers a subset of the original variables, hoping that a
sub-problem can find good bounds to the solution. Further, a pricing function
is formed with the current solutions to the sub-problem and its dual. It is
formed such that minimizing this function over the unused variables (in case
of a minimization problem) will give variables that can improve the bound if
included in the sub-problem. This, together with cuts in the branch-cut-and-
price method, is used to improve the bounds.

HiGHS is the last open source MIP solver which has support for JuMP, and
it uses branch-and-bound, so we see that all these solvers use more or less a
variation of the same method.
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2.3.1 Previous Benchmarking

In order to help with research on real-world LP’s and MIP’s, a benchmarking
library, MIPLIB[14], was made by Robert E. Bixby, E.A. Boyd, and R.R. In-
dovina in 1992. The most recent update to the library was in 2017, where they
received 5,721 submissions from different partners in the industry. From these
initial submissions they created two subsets; a small benchmark set, and a big-
ger collection. The benchmark set was narrowed down to only 240 instances via
a number of processes, one of which being that they measured different features
of the problems and tried to choose problems in order to cover a large spectrum
of each feature. In addition, each instance in the benchmark set was solvable by
the union of available code at time of creation, and were also chosen in a way
that make them easier for testing with regards to numerical stability.

H. Mittelmann[16] has regularly tested MIPLIB against current commercial
and open source solvers. His results from MIPLIB2017[19] is summarized on his
web page when running the code with a "limit of 2 hours on an Intel i7-11700K,
8 cores and 8 threads, 64GB, 3.6Ghz". Figure 2.1[20] presents the mean of these
run times. It does not include GLPK, but all the other MIP solvers we have
looked at, in addition to the commercial solvers Gurobi, COPT and SCIP with
CPLEX, are included.

Figure 2.1: Mittelmann’s benchmarks of MIPLIB2017.
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From this we can see that the commercial solvers with no doubt outperforms
the open source ones. The number of unsolved instances will of course increase
run time as the max-time then is used. However, if one inspects the table[19] of
runtimes for when 8 threads is used, one can see that whenever all solvers solve
the problem, the commercial solvers are generally much faster. As we do not
know what kind of recognition procedures these commercial solver may have, it
is not that constructive to compare a new structure of recognition procedures
against these. Thus, as mentioned, we stick to looking at the open-source solvers.

2.3.2 Preprocessing and Presolving

Presolving techniques are generally techniques to improve the representation of
a MIP in some fashion. This could be to tighten bounds, remove redundant
bounds, or recognize easy infeasibility criteria. There are several texts on this
issue (e.g. [23]), and most solvers have some of these by default, while others
can be chosen.

GLPK can for example tighten bounds of some variables, or remove bounds
of some redundant constraints during preprocessing. SCIP has it connected
presolving library, PaPILO, which is used as default since version 7.0 of SCIP.
PaPILO can also be linked to, among others, HiGHS or Gurobi, and it provides
parallel presolve routines for LP’s and MIP’s.

How solvers do prepossessing of a problem could be helpful to look at, in
that if we do the same in our module, we start at the same ground as any solver
with preprocessing capabilities. However, one can also argue that if the solvers
do this, why do the same work in parallel? Unless preprocessing could help
the recognition procedures drastically, we could let the solvers handle it, and
let our module implement unused methods instead. Exploring how different
preprocessing methods would impact the time taken by recognition and solving
procedures could be interesting to look at in a later iteration of the module. An
optional preprocessing feature could for example be implemented.

We see from the creation of MIPLIB2017 that they skip most presolving
when providing the benchmark set, as this is one aspect to test the solvers on.
However, not presolving at all may hide features of a problem. For example,
the size of the problem may be a great deal smaller in the case when variables
turns out to be fixed after simple presolving, or the feature collector may state
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that a problem is a MIP when in fact there is only one integer variable that has
to be fixed after presolving, in which case it would be unreasonable to classify
it as a MIP. Thus a balanced approach was taken, using only trivial presolving
via SCIP 5.0. They define this trivial presolving as "removal of redundant
constraints and fixed variables, activity-based bound tightening, and coefficient
tightening".

As we will explain later, we decided to do very basic presolving routines
when building our representation of the problem, which constitutes removing
redundant inequalities and removing variables that could be substituted by a
constant right away. The former may occur if, for example

a1x1 + a2x2 + · · ·+ anxn ≤ b1 ∧ a1x1 + a2x2 + · · ·+ anxn ≤ b2,
where b1 ≤ b2.

In such a case the second inequality does not add any information with its
weaker bound, and we can remove it. The latter could happen if

xi ≤ b ∧ xi ≥ b,

which would result in fixing xi to b in the solution, as well as substituting this
fixed value in for xi in all inequalities including it. Remark that this could, in
special cases, lead to more redundant inequalities or fixed variables, and so it
may be necessary to do presolving in several passes.

Infeasibility can also be decided right away if some bounds contradict each
other, for example as in

a1x1 + a2x2 + · · ·+ anxn ≤ b1 ∧ a1x1 + a2x2 + · · ·+ anxn ≥ b2,
where b1 < b2.

As all these types of bound checking turned out to be natural during the
model representation step of our application, we decided to do this before recog-
nition procedures are run. However, a parallelization of operations not needed
in order to run recognition procedures could be experienced with. The following
chapter will discuss more of the implementation, and design decisions, of the
module created.
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Chapter 3

Concept and Design

In this chapter we will describe how the module was created, and how the
interface can be used. We will discuss pros and cons of different implementation
decisions, and why we landed on the ones in the final implementation. The
codebase can be found at [3], where the version we are discussing here has the
commit hash ea6c9cd79799c369e6de4f12f6282ea5a1ee324f.

3.1 The Interface.

In the JuMP documentation it is strongly advised against implementing a solver
interface for JuMP unless you really have to. If we could pretend our module was
a solver, since it in theory would behave in the same way by either recognizing
structures within the MIP before applying a connected algorithm, or by sending
the problem to another solver, it would be ideal for it to seamlessly interact with
JuMP via a solver interface.

However, as we realized this would be quite a task as the deeper workings
of JuMP and MOI are not easy to get into without help from experts (it is
recommended to join different forums if you decide to endeavor into this task).
We decided that a more independent implementation would be enough in order
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to discover if the concept will be a helpful tool, and if it will be suited for
wrapping within a solver API at a later stage. Still, we will try to tie it strongly
to the JuMP API, so that the usage of additional recognition algorithms would
not provide much more work for a user already using JuMP for optimization.

The general method for optimizing linear programs with JuMP is to initi-
ate a model with a solver optimizer object, either as a constructor argument,
or attached to the model later with the set_optimizer() function. One can
use specific macros to add variables, objective function, and constraints to the
model. As we have seen, the general types of the constraints are function-in-
set, where the function and set types supported are listed in ??. For our use,
we will generally want the ScalarAffineFunction, which is a real polynomial,
in LessThan, which specify a constant the function should be less or equal to.
Optionally one can set optimizer attributes through set-er functions. In the end
one would call optimize!() with the JuMP model as argument, in order to start
the solver on the problem.

For example, creating and solving the problem

Maximize x+ 3y

Subject to
4x+ 5y ≤ 25.3

x ≤ 3.2

where x, y ≥ 0 ∧ x, y ∈ Z

with the GLPK solver, with a time limit of 20 seconds, one would do the fol-
lowing.

Listing 3.1: Creating and solving a MIP.
using JuMP, GLPK
model = Model(GLPK.Optimizer)
@variable(model, 0 <= x <= 3.2, Int)
@variable(model, y >= 0, Int)
@objective(model, Max, x+3y)
@constraint(model, 4x+5y <= 25.3)
set_optimizer_attribute(model, "tm_lim", 20 * 1000)
optimize!(model)

Different solvers support different attributes, so how to use set_optimizer() is
up to each solver to define, and need to be looked up in the solver’s API doc-
umentation. This is one way JuMP, through Julia’s multiple dispatch feature,
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unifies API’s while still providing flexibility for each solver. Thus, if one would
make a solver API for our module at a later stage, choosing or setting recognition
procedures would be intuitively done through set_optimizer_attribute().

It is also possible to load problems from file, for example from a file in MPS
format. The way to do so is to use MathOptInterface’s submodule FileFormats.
If we want to create a model with data from the file file.mps, we can import it as
a special file model, and copy the data from this to an empty JuMP Model, with
or without a solver attached. The following code in Listing 3.2 demonstrates it.
Note that it is common practice to shorten the name of MathOptInterface to
MOI within the code as well.

Listing 3.2: Reading a model from file.
using JuMP, MathOptInterface
const MOI = MathOptInterface
# Initiate empty MPS model:
file_model = MOI.FileFormats.Model(format = MOI.FileFormats.FORMAT_MPS)
# Read data from file into MPS model:
MOI.read_from_file(file_model, "file.mps")
# Initiate an empty Model with GLPK solver attatched:
model = Model()
# Copy the data of the MPS model to the JuMP Model.
# Returns an index map, mapping corresponding variables of each model:
MOI.copy_to(model, file_model)

The flexibility of how one may create a model is something we want to keep
at the user’s end. Thus we need to figure out how we can accept and work with
the model when our module receives it.

Figure 3.1 shows an overview of the components we landed on. Already
existing is the JuMP.Model type, where the Model() constructor can be called by
its own or with an optimizer factory, as we see in Listing 3.1 and Listing 3.2. An
Optimizer is the interface to a solver, and it holds the pointers to the solver’s
inner representation of the model. A great amount of functions which take an
Optimizer as an argument has to be implemented by the solver developers if they
want to make the solver usable with JuMP. When a user calls different functions
on a Model object, underlying functions can thus be called on the Optimizer

in order to be able to set and read different attributes, solve the model, and
get information about the results. In addition we have the MathOptInterface

(MOI) layer, which works on more detailed and unsafe elements of the Model,
which an average user not necessarily has to use. When a Model is created, a
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direct_model() function is called, which works on MOI’s backend type to store
the data if an optimizer is not attached, or with an Optimizer if an optimizer
is provided. As we saw in Listing 3.2, MOI also contains a lot of submodules
which can be used for different tasks. FileFormat is one of them, another is the
Bridge module which we will discuss in more detail, and there are others, for
example one to help with benchmarking of wrappers.

Figure 3.1: Concept diagram for MipFlex.

Since we are not wrapping JuMP, we work around this by creating the
AlgoModel struct from a JuMP model. It will contain the JuMP Model, a rep-
resentation of the model which is easier for us to work on directly, a vector of
recognition procedures which should subtype a new type we named Algorithm, a
solution struct, and a status enumeration type. The code definition of AlgoModel
will look like the following.
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Listing 3.3: AlgoModel struct.
mutable struct AlgoModel

@atomic status::TerminationStatus
jump_model::Union{JuMP.Model,Nothing}
rep::Union{LPRep,Nothing}
algorithms::Union{Vector{Algorithm},Nothing}
@atomic solution::Solution

end

The constructor is made quite generic, so that one can initiate it without any-
thing, with a JuMP model, with one or more algorithms, or with a combination
of a JuMP model and one or more algorithms. For anything not set, the cor-
responding field will just contain nothing. The status will always be initiated
as Trm_NotCalled, while the solution will be a new initiated Solution object, as
defined below. The status and solution fields of AlgoModel have the @atomic

macro in front, which indicates per-field atomicity when used in multithreading.
We will explain briefly how this work in section 3.1.3.

The Solution struct is given as
mutable struct Solution

@atomic primal_status::SolutionStatus
@atomic x::Union{Vector{Float64},Nothing}
@atomic objective_value::Union{Float64,Nothing}
@atomic algorithm_used::Union{Algorithm,Nothing}

end

where the constructor initiates everything to nothing except the primal status,
which will be set to Sln_Unknown. If a solution is found using one of the Algorithm
objects, which we will explain how to create in section 3.1.2, then it is stored in
the Solution struct. If a feasible or optimal solution is found, then it is set as the
vector x. It is important to note that the indices in this vector is connected to
the dictionary var_to_name, which is part of the LPRep object of AlgoModel, which
we will in section 3.1.1. This dictionary has keys from 1 through the number of
variables, and the entries are the names of the variables of the original model.
If "2 => t" is an entry in this dictionary, it means that the variable with name
t in the original model has a solution value in x[2] if a solution is set, where
this x is the vector in the AlgoModel struct. The objective value should be set
to a value whenever x is set and an objective function was given. Whether or
not the objective function value is optimal, or just one of possibly many feasible
solutions, can be discovered through reading the status of the SolutionStatus
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enum. Finally, if a solution was found by one of the Algorithm objects, then the
algorithm setting the solution should be reported in algorithm_used.

The TerminationStatus and SolutionStatus enums are very similar to what
Tulip[4] uses, which is an LP solver written completely inside Julia, in contrast
to most other solvers which are typically written in C++. Other solvers, however,
use similar status, and we decided to incorporate the ones Tulip uses, with some
extra added. It should be noted that SolutionStatus is to be used for both
primal and dual solutions, but as it stands, we decided to only add a solution
field for the primal solution. A possible extension is to add a solution field for
the dual problem as well.

Listing 3.4: Status of AlgoModel and the primal solution.
"""
Termination status
"""
@enum(TerminationStatus,

Trm_NotCalled,
Trm_Unknown,
# OK statuses
Trm_Optimal,
Trm_PrimalInfeasible,
Trm_DualInfeasible,
Trm_PrimalDualInfeasible,
Trm_Feasibility,
Trm_Infeasibility,
# Limits
Trm_IterationLimit,
Trm_TimeLimit,
# Errors
Trm_MemoryLimit,
Trm_NumericalProblem,
# Others
Trm_SolverUsed

)
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"""
SolutionStatus
"""
@enum(SolutionStatus,

Sln_Unknown,
Sln_Optimal,
Sln_FeasiblePoint,
Sln_Infeasible,
Sln_InfeasiblePoint,
Sln_InfeasibilityCertificate,
Sln_SolverUsed

)

For the TerminationStatus we can, for example, use Trm_Unknown in the case of
a recognition procedure not recognizing a problem, say something about what
kind of solution it is based on the dual, or report if the procedure reached some
limit on the time or number of iterations. We added the statuses Trm_Feasibility
and Trm_Infeasibility for use where either an objective function is not set, or
when a recognition procedure is meant to be used only for looking for feasibility
and does not take the objective function into account. These do not explain if
it is the dual or primal problem which has a feasible solution, but for now we
only work with the primal. The statuses ending in SolverUsed are set whenever
a solver has solved the problem. In this case the user would need to use get-ers
on the JuMP-model in order to find the solution. A solver would take over if

1. It has been connected to the JuMP-model, and

2. no algorithm of the AlgoModel object has found a solution if run sequen-
tial, or

3. the solver finds a solution faster in parallel.

An Optimizer can be added to the model after creation by either calling
set_optimizer(model::JuMP.Model,optimizer), or
set_optimizer(algoModel::MyModule.AlgoModel,optimizer). The thing is, since
all references is made to the same JuMP-Model unless it is copied, calling either
would update it. We added the function for the type AlgoModel simply for
intuition, and in the case there would be any copying of models in a later
release.
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Whenever we have a AlgoModel created with a connected JuMP-model, and
possible several Algorithm subtypes, we can call optimize!() on the AlgoModel

object. If the program is initiated with 1 thread, it will apply the algorithms in
the order they were added to the AlgoModel. If several threads are running, it
will apply algorithms in parallel. As mentioned, whenever a solver is attached,
it will be used to optimize the problem either in the end when sequential, or in
parallel with the algorithms.

We will, in section 3.1.2, go through how an Algorithm subtype should be
created, but in general, creating a new Algorithm subtype require the imple-
mentation of
optimize!(model::AlgoModel, algorithm::Subtype)

where Subtype is a subtype of Algorithm. AlgoModel’s optimize!(), i.e. the func-
tion where the signature only is defined by the single argument of an AlgoModel

model, can thus use optimize!() on all the algorithms in turn, and on a solver
if connected.

Whenever a solution is reached, appropriate statuses and solution fields
should be set, ideally all other processes stop, and the function return. The
parallel components are not fully created that way yet, so as of now, every
thread run to completion. However, the multiple dispatch feature of Julia is
used so that optimize!() is merely extended to be used on more types of mod-
els, where the arity and types of the arguments determine which function to be
called.
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An example of creating and solving a model is as follows.

Listing 3.5: Example use of our MipFlex module.
using JuMP, MipFlex, GLPK

model = Model(GLPK.Optimizer)
@variable(model, x <= 5, Int)
@variable(model, y <= 11, Int)
@variable(model, z == 3, Int)
@variable(model, a, Int)
@constraint(model, -y+4z <= 1)
@constraint(model, 3x+2y+z+2a <= 3)
@constraint(model, x-2y+5z+0.3a <= -4)
@constraint(model, 4x+9y-2z <= 0)

algorithm_vector = [.....]
algo_model = AlgoModel(model, algorithm_vector)
optimize!(algo_model)

where algorithm_vector is of type Vector{{Algorithm}, and is initiated to hold
specific algorithms, also known as recognition procedures, which the user wants
to try. We will show an example of such a recognition procedure in the next
chapter.

3.1.1 Getting a Representation of the Model.

When not wrapping JuMP, it can be quite the challenge to read parameters of
the model directly, as there is really no support from manually getting out the
problem other than printing it, or using a combination of MOI get-ers and field
access. For example, if one would want to look at the data of all constraints of
the form ScalarAffineFunction in LessThan, that is, any polynomial required
to be less than a constant, then one would need to do the following. First one
can get a list of indices corresponding to the constraints matching this type of
function-in-set
c_ids = MOI.get(lpmodel, MOI.ListOfConstraintIndices{

MOI.ScalarAffineFunction{Float64},
MOI.LessThan{Float64}
}())
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From these indices, one can get information about inequality i by calling
specific get-ers on the backend of the model, which is a lower level type of a
MOI model. If we want information about the terms of the affine function, we
can call
con_fun = MOI.get(backend(model), MOI.ConstraintFunction(), c_ids[i])

From here we found no specific get-ers of the MathOptInterface implementation
to get the actual data of the terms, and so we would need to use the struct’s
actual field names. There is a potentially major drawback of using the field
names directly in our module. Since no function is provided, it was probably
not in the developers mind that external users should access these fields, and
so, if the field names get altered in a later release of MathOptInterface, we end
up getting an error in the part of our code using it. However, as we are both
aware of this, and at the same time make this module mainly as a workaround
for the much bigger project of actually wrapping JuMP, we decided to take on
this possible risk. As long as we know which version of JuMP it works with,
we can always update our code as newer releases of JuMP or MathOptInterface
are deployed.

So, continuing the example, a ConstraintFunction has terms, where each
term has a variable and a coefficient field, where again variable has a value

field. The coefficient is typically some real number representing the coefficient
of the variable in this constraint, while the value refers to which index this
specific variable is stored under. One can use the var_to_name dictionary of an
AbstractModel type in order to get a mapping between variable index and the
name registered within the model. Note that the naming strategy has nothing
to do with what index a variable gets in the model. Also note that var_to_name
is not even mentioned in the documentation of neither JuMP or MOI, and so
we see again that we need to be aware of changes to the code since it was not
intended for regular use. In order to get the variable index and the value of the
coefficient of term j of constraint i, we can thus set
variable_index = con_fun.terms[j].variable.value
coefficient = con_fun.terms[j].coeficcient

where con_fun comes from the previous derivation above.
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We see that it is not very straightforward to access the data of a model
directly when not wrapping JuMP. This is one of the reasons why we decided
to extract and save the data of the model in an own structure whenever an
AlgoModel is created. In this way, any algorithm can use this ready data. For
an even more flexible setup, one could let each algorithm-object provide its own
function for extraction of data, if algorithm creators would want to customize
this process further. However, at this stage we decided a pre-made model at an
agreed upon form would be enough. This duplication of the model does come
at a cost, both in processing time and memory usage. All the data has to be
processed and stored both when a JuMP model is created, and also when the
AlgoModel is created from this model. In addition, all the data is copied, so we
double the memory usage. This could be a problem for very large LP’s, so if
used in larger scale, a wrapped module to use the same memory locations, as
JuMP has intended for its solvers, would be beneficial. Altering the code to
pass some data by reference may be preferable in cases of a lot of data as well.

When constructing a more accessible structure of the model data, we make
use of the MathOptInterface.Utilities.@model macro, which makes it possible
to define a custom ModelLike type, which implements the MOI model inter-
face. By setting is_optimizer=false, it becomes a GenericModel type, which
is a subtype of AbstractModelLike. As mentioned above, one can for exam-
ple extract the var_to_name dictionary form this kind of type. The @model

macro makes it possible for us to define which types of Function-in-Set con-
straints we support. By applying bridges, we can accept any data that can be
transformed into the form specified. We wanted to do it as simple as possi-
ble, so we only allow MOI.ScalarAffineFunction-in-MOI.LessThan. For limiting
the types of VariableIndex-in-Set constraints, that is, every constraint possibly
added when a new variable is added to the model, we needed to implement
MOI.supports_constraints() in order to forbid all the forms we did not want to
accept.

So we created the new type LPModel with the @model macro, constricted
the constraints to be MOI.ScalarAffineFunction-in-MOI.LessThan, and made a
function for making a LPModel from a JuMP.Model. This function applies the
MOI.Bridges.full_bridge_optimizer to an empty LPModel to define which bridges
can be used for transforming constraints into the allowed forms specified by
LPModel. Then it copies the JuMP-model into this LPModel. This assures that
either the JuMP model is converted into the accepted constraints, or an excep-
tion will be raised. The full_bridge_optimizer contains most bridges except
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for some specific non-linear ones, so the ones included are enough for our use.

When copying the data of a JuMP.Model into a LPModel, indirect calls to
MOI.supports_constraints() are used in order to determine which variable con-
straints are supported, and then transform the variable constraints into ac-
cepted forms if possible. Variable constraints are stored in their own type of
constraints, so a conversion for these has to be done separately. The version
of MOI.SupportsConstraints() with LPModel as the input type will then be
ran, namely the one we implemented in order to have control of which variable
constraints to accept. The function defines which constraint types we do not
directly accept, and we implemented it as follows

Listing 3.6: Variable constraints not supported.
function MOI.supports_constraint(

::LPModel{T},
::Type{MOI.VariableIndex},
::Type{<:Union{MOI.Interval{T},MOI.Semicontinuous{T},
MOI.Semiinteger{T},MOI.ZeroOne}}) where T
return false

end

The variable constraint sets not listed as types in this function will thus be sup-
ported by LPModel. They are MOI.GreaterThan{T}, MOI.LessThan{T}, MOI.EqualTo{T},
and MOI.Integer.

For example, we do not accept a variable to be stored as an own interval
type, and so such a constraint will be converted into a MOI.LessThan and a
MOI.GreaterThan. That is, we get the transformation

x ∈ [a, b] → x ≥ a ∧ x ≤ b,

where a, b ∈ R, and x is a variable of some LP. As a clarification, MOI.LessThan
and MOI.GreaterThan are defined as containing the connected constant, so that
it is actually less-or-equal and greater-or-equal.

Similarly, MOI.ZeroOne can be converted to our model by requiring the vari-
able to be integer, less or equal to 1, and greater or equal to 0. A semicontinous
or semiinteger set cannot, in most cases, be supported by our model, as these
are defined as an interval of reals or integers, respectively, together with the set
containing only zero. Whenever zero is not contained in the interval, this union
cannot be represented with our definition, and so a MOI.UnsupportedConstraint
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exception will be thrown. This is something we easily can adjust in a later
iteration, but for this prototype we keep it fairly simple.

At this stage we know the possible forms of all the constraints, and so it
is much easier to extract the data. For making the further job of constructing
Algorithm subtypes a bit easier, we defined a struct LPRep to hold the necessary
data for an algorithm. When constructing LPRep some simple preprocessing and
cleaning up is also done.

The LPRep has quite a lot of fields, so we will start by describing each
shortly.

• is_consistent::Bool

– A boolean set to false whenever simple inconsistencies are found.

– Such an inconsistency can be that a single variable is required to be
both less than a constant, a, greater than a constant b, and a < b.

• var_count::Int64

– The number of variables in the model.

• con_count::Int64

– The number of polynomial constraints in the model. This count does
not include constraints on single variables.

– Note that the original model may have had more constraints origi-
nally, but after preprocessing, this number is altered to reflect the
numbers of rows in A (see below) of LPRep.

• sense::MOI.OptimizationSense

– What kind of optimization we are looking at. Are we looking for
a feasible solution, or is there an objective function to maximize or
minimize?

– Default is MOI.FEASIBILITY_SENSE, but MOI.MAX_SENSE or MOI.MIN_SENSE
is set whenever an objective function is given.

• c::Vector{Float64}

– Coefficient of each variable in the objective function.
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– Variable with index i will have its corresponding coefficient at index
i within this vector.

• obj_constant::Float64

– The constant term of the objective function, if there is any.

• A::SparseMatrixCSC{Float64, Int64}

– A sparse matrix representing the left-hand-side of the constraints of
the LP.

– It is column major, and so getting a column of values is the most
efficient.

• b::Vector{Float64}

– A vector representing the right-hand-side of the constraints. It can
be thought of as a column vector.

– Index j of b represents the right-hand-side of the constraint with
left-hand-side consisting of row j of matrix A.

• At::SparseMatrixCSC{Float64, Int64}

– A sparse matrix equal to the transpose of A from above.

– Whenever we want to examine rows of A, it is faster and easier to
look up corresponding columns of At. This convenience is sacrificed
for memory usage.

• greater_than::Dict{Int64, Float64}

– Dictionary containing variable indices as keys, and lower bounds as
values.

– If greater_than[i] = j, it means that variable with index i is re-
quired to be greater or equal to the value j.

• less_than::Dict{Int64, Float64}

– A dictionary similar to greater_than, but now the values are upper
bounds instead.

• integer::Dict{Int64, Bool}
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– A dictionary where the keys indicates which variables has to be in-
teger.

– A dictionary is used mainly because it then is consistent with the
other variable constraint data types in LPRep, and it is a dynamic data
structure, so that the preprocessing can be done without knowing
how many elements it is required to hold.

• equal_to::Dict{Int64, Float64}

– Dictionary containing variable indices as keys, and values they have
to be equal to as values.

– During preprocessing, combining less_than and greater_than can for
example result in new variables having to be equal to a value. Thus
this flexible data structure is handy.

• var_to_name::Dict{Int64, String}

– The aforementioned dictionary holding the variable indices as keys,
and the names given when the JuMP model was created.

Any recognition procedure working on a LP should be able to get the desired
data from this. Our current implementation assumes direct access to all fields,
except when setting the solution and termination status, which should be done
through dedicated functions to assure atomicity, and avoid race conditions when
multithreading.

It is probably most inconvenient to retrieve data from the sparse matrices.
However, as each constraint often have few variables involved, a sparse matrix
representation will save a lot of space and time when working with big problems,
as there often are a lot more zero entries than non-zero. The Compressed Sparse
Column (CSC) Sparse Matrix Storage of the JuMP module SparseArrays is
used, and there are some useful functions one can employ in order to get and
alter the data of a sparse matrix. A vector of all the nonzero elements of A can
be returned when calling nonzeros(A), where A is a SparseMatrixCSC. A vector
of corresponding row indices can be retrieved with rowvals(A). This means
that rowvals(A)[i] gives the index of which row nonzeros(A)[i] lays in, where
i is an integer in the range of nonzero values of A. The function nzrange(A, j)

gives the range of all indices that points to values belonging to column j of
A. Thus, if i ∈ nzrange(A, j), then the value nonzeros(A)[i] is located at
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coordinate (rowvals(A)[i], j) within A, where the first coordinate indicates
row number, and the second column number. From this structure it follows
that going through each column in a matrix is easy. A an example from JuMP,
we can do the following.
A = sparse(I,J,V)
rows = rowvals(A)
vals = nonzeros(A)
m, n = size(A)
for j = 1:n

for i in nzrange(A, j)
row = rows[i]
val = vals[i] # value of (row, j)
# perform sparse wizardry...

end
end

Going through rows would be much harder, as we would need to do something
as
A = sparse(I,J,V)
rows = rowvals(A)
vals = nonzeros(A)
m, n = size(A)
for i = 1:m

row_i = findall(v -> v==i, rows)
for index in row_i

for j = 1:n
if index in nzrange(A, j)

val = vals[index] # value in (i,j)
# perform sparse wizardry...

end
end

end
end

Here we need to call nzrange(A, j) n times per element instead of only n times,
as well as search up all indexes of elements residing in row i before starting.
Thus we need m times more calls to nzrange(A, j). In addition, it is less intuitive
for a programmer to apply the latter approach, and with these arguments we
will justify saving the transpose of A in LPRep. If we need to search through
rows of A, we simply search through columns of At. It is worth mentioning
that making At directly from A is not that simple, but it is very simple when
constructing the matrices. We only need to switch the first two vector arguments
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of the sparse(R,C,V) function, where R and C represent row and column indices
respectively, and V indicates the values.

As mentioned under the num_constraints field, this number can differ from
the initial input of constraints. We also have the is_consistent field, where this
field set to false indicates a detected inconsistency. These results comes from
the simple preprocessing of the initial problem.

The preprocessing consists of first applying a simple consistency check on
the SingleVariable restrictions. Secondly, if any variable with index i has to
be bound to a specific value, we substitute this out of the constraint matrix, A,
and update this matrix to not include column i, but rather move these constant
values of this column to the right hand side, changing the vector b accordingly.
Whenever such a pass is done, any row of constraints can end up with only one
variable left, and if this is the case, we update the less_than or greater_than

dictionary if this bound is to be stricter than the previous one. We also remove
the rows of only 1 variable, as the dictionaries with single variables will then
hold this information. At this step we should do a new consistency check on the
variables. There is also a possibility that a stricter bound results in a less_than

and a greater_than value for the same variable index to become equal, meaning
we have a new variable that has to be equal to a certain value. Thus we need
another pass of substituting out these potentially new bound variables. We
continue to do such passes until no more constraints contain only one variable,
or no constraints are left. However, whenever a consistency check has detected a
flaw, it will set the is_consistent flag to false, and stop building LPRep, setting
all the fields except is_consistent to nothing.

The consistency check performs four simple checks. The first three tests are
done for every variable whose index is contained in both the less_than and the
greater_than dictionary. The first test simply checks whether

less_than[i] < greater_than[i],

which will obviously make the set of possible values for this variable to be empty.

Then we have some tests for whenever the two bounds (upper and lower)
are equal,

less_than[i] == greater_than[i],

in which case the variable has to be equal to this new value. Let c be this value.
If a different value is already set in equal_to[i], we reach a contradiction, and
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thus is_consistent is set to false. If integer[i] is set, then we also need to
check if c is integer, and assign false to is_consistent if not. Finally we update
the variable dictionaries as follows
equal_to[i] = less_than[i]
delete!(greater_than, i)
delete!(less_than, i)

since we now rather has an equality constraint.

The third case we inspect is whenever

greater_than[i] < less_than[i].

The only thing we need to check here, is if integer[i] is set, and then the
interval [greater_than[i], less_than[i]] has to contain at least one integer.
The way we check this is to see if neither bound is integer, and if rounding
down each bound to nearest integer provide the same number. In this case both
bounds are between two integers, and so the interval defined by them cannot
contain any integers, in which case is_consistent is set to false.

The final check is to see whether a variable that is required to be equal to a
value, also has either a lower or upper bound. If so, we check if either

less_than[i] < equal_to[i],

or
equal_to[i] < greater_than[i],

which will lead to contradictions.

We see that this kind of presolving is very basic, none concerning constraints
with more than one variable. Since our goal is more concerned with recognition
procedures, we will rather let the presolving be simple, since it always will run
before any recognition procedures can start, and thus should not take too long
time. We will rather focus on how we could add recognition procedures. Such
procedures could for example run other types of presolving methods. However,
if such procedures where to alter the representation of the problem in AlgoModel

directly for other recognition procedures to use, then some may break since they
in general would expect the form we have described. If the procedures are run
in parallel, altering the LPRep directly without any form of communication can
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also undermine other procedures. So at this stage, any recognition procedure
should only work on a local copy of the data.

One potential weakness of the current design is that for any small change to
the model, one would need to build the entire LPRep from scratch. This can be
done using the update!(a::AlgoModel) function if the inner JuMP model should
be changed. The documentation of how to make a solver wrapper addresses this
matter for optimizes as well, and prompts developers to choose if they should
have support for incremental modification of the model or not. Incremental
modification allows for the user to add single variables or constraints without
needing to rebuild the entire problem, and alter data after an optimize!() call.
Obviously the solver has to have support for this in order to make an interface
for it, and not all solvers support this. JuMP also go on recommending to not
support this feature if it is the first time the developer has implemented an
interface for a solver. From this we gathered that it may not be the simplest
task to support incremental changes, so we let this be a possible upgrade in the
future.

3.1.2 Adding Recognition Procedures

Now we have a skeleton for our code, and an agreed upon representation of the
problem. Thus we only need to document how a user can add her recognition
and solving procedure. There are some requirements so that the interface can
work, but we also have some suggestions for how to structure the code in order
to make the process more intuitive.

Let us make an example where one would like to implement a recognition
procedure which we call MyAlgorithm. First we have to declare a struct which
will be a subtype of Algorithm. The subtyping is mostly for readability, but
also to make sure that nothing else than Algorithm objects can be put into the
AlgoModel. You have to decide whether or not the procedure needs additional
information. If so, add the needed fields to the struct. Say that we want to be
able to pass a time limit on the total time this algorithm uses. Then we can for
example do the following
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Listing 3.7: Creating an algorithm.
struct MyAlgorithm <: Algorithm

time_limit::Union{UInt128, Nothing}
end
MyAlgorithm() = MyAlgorithm(nothing)

This will make sure that if no limit is passed, it is saved as nothing. In the
implementation of the algorithm we can check for the limit, and if it is not set,
we can either use a default limit, or no limit, depending on what behavior we
would want.

Secondly, the bare minimum is to implement the function

Listing 3.8: Implementing optimize function.
optimize!(algo_model::AlgoModel, algorithm::MyAlgorithm)

This procedure is meant to look through the LP of algo_model, see if the data
matches a specific pattern, and run a tailored algorithm for this case. If the
algorithm does not recognize the problem, and thus cannot set any solution,
it should set the termination status to Trm_Unknown, and the solution status to
Sln_Unknown through the following functions.

Listing 3.9: Setting status.
set_trm_status!(model, Trm_Unknown)
set_sln_status!(model, Sln_Unknown)

These set-ers are made to make sure that race conditions do not occur if the
program is run in parallel and several procedures find an answer at the same
time.

If an answer is found, corresponding termination status and solution should
be set. Whenever an an algorithm is only concerned with feasibility vs infeasibil-
ity, then use the corresponding termination statuses. If both the primal and the
dual has one optimal solution, Trm_Optimal is used, whereas when one is bounded
and the other is infeasible, the Trm_PrimalInfeasible or Trm_DualInfeasible are
used, indicated which is infeasible. If both are infeasible, use
Trm_PrimalDualInfeasible.
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A solution can be set with

Listing 3.10: Setting solution.
set_solution!(model::AlgoModel,

primal_status::SolutionStatus,
x::Union{Vector{Float64}, Nothing},
objective_value::Union{Float64, Nothing},
algorithm_used::Union{Algorithm, Nothing})

where the order of variables in x should be the same as they have indices in the
columns of A in lprep of the AlgoModel. The objective value will then be

dot(lprep.c, x) + lprep.obj_constant

where dot is the scalar product operation. Do also log the algorithm object that
optimize!() was called with when the solution is set. That way the user will
know which of the procedures recognized the problem and found the solution.
Make sure to return true whenever a solution is set, and false otherwise. The
main optimize!() on an AlgoModel object will continue calling optimize!() on
algorithm objects until it receives true.

When implementing the optimize!() function, we recommend gathering ev-
erything that has to do with recognizing a specific problem into a recognize
function, taking in the model and your algorithm object as arguments. That
way the you can start by a simple call to recognize in order to see if the prob-
lem structure you are looking for is found. If the problem is not recognized as
a matching structure, return false immediately. If it recognized, continue on
with the intended algorithm in order to find a solution.

Note that it is not implemented any get-ers for the lprep object at this stage.
For now we let the recognition procedure retrieve all the fields directly. For a
larger deployment one would want to have get-ers, in the case where one would
alter the inner code, so that user’s code not will break. However, as this is a
prototype, we let that task be postponed to a later stage.
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3.1.3 Parallel Components

Being able to let an AlgoModel object run optimize!() in parallel on all the
Algorithm objects connected to it, and on the JuMP model if a solver is attached,
would be very beneficial, as the thread first finding a solution could halt the
other processes. In that way, a procedure which could find the solution relatively
fast, does not have to, in the worst case, run after all the other recognition
procedures.

At this stage of the development, we have only included a check, in the
optimize!(::AlgoModel) function, of how many execution threads are currently
active in Julia. If there are more than 1 thread, then the code looping through
different versions of the optimize!() functions, on the algorithms and on the
JuMP model, will be run with macros from the Julia Threads package, making
sure that the tasks are divided among threads. The fields containing the solution
and status are initiated and set via the @atom macro, making sure the altering of
fields are done atomically. In addition, the termination status is checked before
setting it, so that threads do not try to do this at the same time. However, we
have not currently tested and made sure that there are no potential concurrency
issues, so per now, this feature is mostly a prototype. The @threads macro
provide no easy way of killing off threads from other threads either, which
would be crucial in a parallel application. The whole point is to reduce running
time, and stop when the first procedure finds an answer to the LP.
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3.1.4 Notes on Testing

When developing the code, we have made sure to constantly write unit tests
during implementation, trying to cover all functionality. However, when running
through MIPLIB’s benchmark set, there did arise some problems not being
accounted for in the unit tests. Thus testing on a bigger set of real world
problems was a good way of complement the unit tests.

One issue that came forth when testing on MIPLIB, was that for a cer-
tain problem (specifically bab2.mps), AlgoModel returned Trm_Infeasible, even
though the problem was hard but feasible. It turned out that it was deemed
infeasible during the preprocessing stage when doing the passes of substituting
bound variables in the constraint matrix, and rewriting the constraints. The
issue here was that when checking whether or not

less_than[i] < greater_than[i],

for a variable with index i, then, even though these values were supposed to
be equal in theory, lack of precision, due to floating point arithmetic during the
rewriting of constraints and bounds, lead to evaluating the statement above to
be true. This in turn sets the is_consistent flag to false, which will lead to a
registration of an infeasible solution.

This behavior, of course, breaks the reliability and logic of the code drasti-
cally. How we temporally have fixed it is checking whether or not

less_than[i] ≈ greater_than[i]

first, and if so, deem the bounds equal. If, on the other hand, two comparable
bounds should happen to not be theoretically equal, but still within the range
of the approximation binary operation to be deemed equal, then we will have
a problem with this workaround. Further work on this MipFlex should address
this matter, and see if there should be rewritten, or included, some kind of error
estimate in the returned solution.
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Chapter 4

Recognition Procedures

We reduced the scope of this project to looking into details of one type of
recognition procedure. Discussion of more possibilities are discussed in the end
of this text.

4.1 System of Difference Constraints

4.1.1 The Basic Case

A difference constraint is a constraint on the form

x− y ≤ t, (4.1)

where x and y are variables, while t is some constant. We will start by looking
at the general case where variables and constants are in R. Constraints like
the one in eq. (4.1) can for example occur when x and y represent the time of
some events ex and ey respectively, and the constraint thus states that ex should
occur within time t of event ey.
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Equivalently, the expression

−x+ y ≤ −t, (4.2)
⇔ x ≥ y + t (4.3)

could express that event ex should occur after time t of the start of event ey.

Look at a system of m difference constraints over n different variables, that
is, where all constraints are of the form

xj − xi ≤ bk, where i, j ∈ [1, n], and k ∈ [1,m]. (4.4)

In matrix form we would get
Ax ≤ b,

where x ∈ Rn, b ∈ Rm, and A is a m×n matrix where row k would have one 1
at index j, one −1 at index i, and the rest of the entries being 0. Recognizing
a system of normalized difference constraints simply becomes checking if each
row of A contains exactly one 1 and one −1, while the other entries are zero.
If we have a sparse matrix representation, and easily can check each non-zero
values of every row, then this will take O(m) time.

For such a linear program of difference constraints one can define the related
constraint graph as follows.

Definition 1. Let Ax ≤ b be a system of difference constraints, with constraints
on the form Equation 4.4. The constraint graph, G = (V,E), is given as

V = {v0, v1, . . . , vn},
E = {(vi, vj)|xj − xi ≤ bk is a constraint} ∪ {(v0, vl) | vl ∈ V \ {v0}},
with i, j, l ∈ [1, n], k ∈ [1,m],

where the weight of each directed edge is given by
w(vi, vj) = bk, when xj − xi ≤ bk is a constraint, and
w(v0, vi) = 0, otherwise.

If the graph has no negative cycles, finding the shortest path from v0 to each
vertex will provide a solution to the linear program. In fact, the program will
be feasible if and only if there exist shortest paths in the difference constraint
graph.
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Proposition 4.1.1. Let G = (V,E) be a constraint graph formed from an LP
of difference constraints, as in Definition 1. The LP is feasible if and only if
there exists a shortest path to every vertex vi, i ∈ [1, n], from v0. Moreover, the
vector

xT = [δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn)]

is a solution to the LP, where δ(v0, vi) denotes the shortest distance from v0 to
vi.

Proof. We will start by showing that if there exists a solution to the shortest
path problem, then

xT = [δ(v0, v1), δ(v0, v2), . . . , δ(v0, vn)]

is a solution to the LP, and thus it is feasible.

Since a shortest path to vj is no greater than any other path to vj , specifically
a shortest path to any other vertex vi plus the edge from vi to vj , the triangle
inequality is a consequence. We have that

δ(v0, vj) ≤ δ(v0, vi) + w(vi, vj)

⇔ δ(v0, vj)− δ(v0, vi) ≤ w(vi, vj)
⇒ xj − xi ≤ bk is satisfied if xt = δ(v0, vt) ∀t ∈ [1, n].

Thus every LP constraint, which is bijectively mapped with shortest distances
in the graph, will be satisfied.

Now, for the other direction, assume, by sake of reaching a contradiction,
that the LP is feasible while there does not exist a solution to the shortest path
problem. Since there exists an edge (v0, vi), with w(v0, vi) = 0, for any edge
vi ∈ V \ {vi}, the shortest distance to any edge is at most 0. Thus, no solution
to the problem means that at least one edge is unbounded from below. This will
happen only if there exists a negative cycle in the graph, so that it can drive
the weight down infinitely.

Assume without loss of generality that a negative cycle is given by

v1 −→ v2 −→ . . . −→ vp −→ v1.
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By definition of a negative cycle the sum of all the edges are strictly less than
zero (

p−1∑
i=1

d(vi, vi+1)

)
+ d(vp, v1) < 0

⇔
p∑

k=1

bk < 0,

where we use the corresponding b’s of each edge. However, if we express the
sum of these b′s in relation to the inequalities of the linear program, we get that

(x2 − x1) + (x3 − x2) + · · ·+ (xp − xp−1) + (x1 − xp) ≤ b1 + b2 + · · ·+ bp

⇔ 0 ≤
p∑

k=1

bk,

which is not possible to obtain if there is a negative cycle. As such we have
reached a contradiction.

Proposition 4.1.1 suggests the use of Bellman-Ford for solving the system,
as it finds the shortest distance from the source, v0, to each vertex, as well as
determining if there exists any negative cycle reachable from the source vertex.
In this case it will detect any negative cycle, as all vertices are reachable from v0
by construction. The complexity of Bellman-Ford isO(V E) = O((n+1)(m+n)),
since we added a vertex v0 and edges from it to all the n other vertices. However,
these components were artificially imposed in order to simplify the arguments,
but we can observe that they are not needed in the actual algorithm. We know
that after a first relaxation, all vertices would gain the distance 0 from their edge
from v0. We also know that there are no incoming edges to v0, so no other path
via v0 would improve the distances. This implies that we can initiate all vertices
to have distance 0, and remove v0 and all its incident edges from further search.
One ends up running the algorithm over n vertices with m edges instead, and
the run time for solving the LP will be O(nm).
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Forms of Inequalities.

In theory, one could add as many inequalities one would like, and make an edge
for every single one of them. However, it is only necessary with the strictest
bound for the same linear combination of variables. That is, for xi and xj
having several upper bounds on xj − xi , we only need the lowest upper bound
in order to cover all of the restrictions.

xj − xi ≤ b1
xj − xi ≤ b2

...
xj − xi ≤ bc

m
xj − xi ≤ min

k∈[1,c]
bk.

The only other allowed linear combination for xi and xj when normalized, is
then xi − xj . Since we demand inequalities as input, this can be needed to
express equality, since

xj − xi ≤ bk ∧ xi − xj ≤ bk
m

xj − xi ≤ bk ∧ − (xj − xi) ≤ bk
m

xj − xi = bk,

or it can be a requirement creating a legal interval which (xi − xj) can reside
in:

xj − xi ≤ bk ∧ xi − xj ≤ bl
m

xj − xi ≤ bk ∧ xj − xi ≥ −bl
m

xj − xi ∈ [−bl, bk].

We can also observe that if bk < −bl, then the problem is automatically infea-
sible, as there are no legal values for the difference (xj − xi).
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In any case, for several inequalities of the type (xi − xj), we can do the
same as for (xj − xi), namely limit the amount of them to one, for the lowest
upper bound. Thus, for any two variables, we can have at most two inequalities,
resulting in two edges in the constraint graph, pointing in opposite directions.
The maximum number of inequalities is then two times the number of variable
combinations

2

(
n

2

)
= 2

n!

2!(n− 2)!
=

n!

(n− 2)!
= n · (n− 1) = O(n2),

and so the upper bound on Bellman-Ford runtime becomes O(n3).

Property of the Solution

It is typically not connected any specific objective function for maximization or
minimization over systems of difference constraints; one rather looks for feasi-
bility. However, if one looks at scheduling jobs, it would be nice to know what
the shortest amount of time one would need in order to finish all jobs. For ex-
ample, if the algorithm gives a feasible solution, it still might not be preferable
to get a solution where the different jobs are scheduled thousands of years apart
when they could be done in two hours. Luckily, since the Bellman-Ford uses
edge-lengths equaling the constraint bounds, which is typically mapped from
the time needed between job starts, it finds solutions as close to the bounds
as possible. More precisely, we are maximizing min{xi}, meaning that we are
using the maximum edge lengths possible without the difference constraints
being violated, but minimizing the distances over the graph in order for all
inter-dependent variables to fulfill all constraints. We could have gotten a legal
solution by setting edges less than the bk’s, since any lower value is also possi-
ble, but we set them equal to the bk’s, so that the edges between vertices will
be the larges we are allowed to have. Thus we are forcing out the maximum
value of the distances, while still having them as small as needed in order to
not violate the constraints. Observe further that max{xi} = 0. That is, the
maximum distance is 0 due to the initialization of distances and the fact that
updates can only strictly decrease the distances. In addition, at least one vertex
has to have distance 0, since if no vertex had a shortest distance of 0, then all
vertices would have a predecessor that were not v0. Reconstructing the path
from any vertex by using predecessors would never reach v0, contradicting the
fact that we are finding shortest distances from v0 with Bellman-Ford. Thus
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max{xi} = 0. Combining these observations, we get that

max(min{xi})
= min(−min{xi})
= min(0−min{xi})
= min(max{xi} −min{xi}),

and so, if there exists a feasible solution, the solution given by Bellman-Ford
minimizes the distance between the highest and lowest variable value. If these
values represent starting times of events, it means that the time between starting
the first and last task is minimized, spending the least amount of time, which
would be preferred.

4.1.2 Imposing Integrality Constraints

Now let us specify the problem further. What can one say about a system
of difference constraints when one restricts all or some of the variables in the
system to be integers? The closest we find regarding other work on this is an
exercise in Cormen[10](exercise 24.4-12) which asks for a solution to this exact
problem. As this is an exercise meant for students of the algorithmic course,
it may suggest that the solution should be quite straightforward to find and
prove, even though it is marked as a more demanding exercise. However, as we
started working with it, it did not seem quite as straight forward as one may
assume at first glance. Upon consulting the accompanying instructor’s Manual
of Magnus Hetland, we discovered that the solution is omitted from it. There
exists a GitHub page dedicated to collecting answers to the exercises of the
book, but here is only a short suggestion to the solution made, and no proof
backing it up. As these contributors are made up of others than the writer of the
book, and there are no solid proofs, we see it helpful to contribute with a more
solid argument for a solution to the problem. And as we will see, the solution
suggested on the GitHub page, regarding rounding down path lengths whenever
encountering a node corresponding to an integer variable, is not fully complete
either, as the behavior of negative cycles when rounding is not as expected. It
turns out that we have no guarantee that the problem is infeasible if it is not
found a solution after n − 1 iterations, as it is with Bellman-Ford, where n is
the number of nodes in the graph.
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Let us look at the problem. It is apparent that the path length depends on
the distances between vertices, d(vi, vj). If all the distances are integral, that is,
the vector b of the linear system Ax ≤ b has all entries integral, all distances
would be integral as well. One can see this by the fact that the Bellman-Ford
algorithm operates by propagating distances, and all integral distances would
result in all shortest paths being integral from this propagation.

When a bk is fractional, one has four possibilities regarding the corresponding
variables, xi and xj , in the inequality. Let us look at all of these cases:

1. Both variables have to be integers. In this case xj − xi has to be inte-
gral, and so rounding the upper bound, bk, down to the nearest integer,
bbkc, will not remove any legal solution.

2. Both variables can be fractional. Here there is no issue with the upper
bound being fractional, so we can let the inequality be as it is.

3. Only the "tail", xi, has to be integral. Since the corresponding graph
element for the inequality xj − xi ≤ bk results in a directed edge from
vi to vj of distance bk, it does not matter if a fractional shortest path
propagates after an integral path has been reached to the vertex vi.

4. Only the "head", xj, has to be integral. Here there is a potential prob-
lem, as there could be a fractional shortest path to vi, which could prop-
agate through (vi, vj) and remain fractional at vj . Could one still round
down the value at vj , without cutting away any solution for vj or other ver-
tices with distances propagating from vj? We will argue that the answer
to this is ’yes’. However, we can no longer guarantee that the algorithm
will conclude with infeasibility correctly after n−1 iterations, and we will
show an example of why it is so.

First, let us look at the regular Bellman-Ford, as it is presented in Cormen.
Let G = (V,E) be a graph, with a connected weight function w : E → R,
and a source vertex s. Let V and E be attributes of G, giving the vertex and
edge set of G respectively. Let d and p be attributes of each vertex, where d
is maintaining the upper bound of a shortest path found to the vertex from
the source, and where p is the predecessor vertex in such a path. The original
Bellman-Ford algorithm follows the following pattern in order to find shortest
path to all vertexes from the source.
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Algorithm 2 Bellman-Ford
Bellman-Ford(G,w, s)
1: for each vertex v ∈ G.V
2: v.d =∞
3: v.p = NIL
4: s.d = 0
5: for i = 1 to i = |G.V | − 1
6: for each edge (u, v) ∈ G.E
7: if v.d > u.d + w(u, v)
8: v.d := u.d + w(u, v)
9: v.p := u

10: for each (u, v) ∈ G.E
11: if v.d > u.d + w(u, v)
12: return false
13: return true

It is proved, for example in Cormen, that if the algorithm returns ’true’, then
there are no negative cycle reachable from the source, and for all vertices v ∈ V ,
v.d is the length of the shortest path from s to v. Furthermore, by recursively
following the parent attribute, p, from v until reaching s, it will give a path of
length v.d, where the length is given by summing up the weights of the edges
in the path. It is also proven that if the algorithm returns ’false’ then there is a
negative cycle reachable from the source, and there is no finite solution to the
problem.

The convergence property is used to show that the Bellman-Ford algorithm
will find all reachable shortest paths that exists after |G.V | − 1 iterations. Be-
cause of this guarantee, one can instead implement the algorithm as

50



Algorithm 3 Bellman-Ford, no final relax
Bellman-Ford(G,w, s)
1: for each vertex v ∈ G.V
2: v.d =∞
3: v.p = NIL
4: s.d = 0
5: changed = false
6: iterations = 0
7: do
8: changed = false
9: for each edge (u, v) ∈ G.E

10: if v.d > u.d + w(u, v)
11: v.d := u.d + w(u, v)
12: v.p := u
13: changed = true
14: iterations += 1
15: while changed and iterations < n
16: if changed
17: return false
18: return true

where one stops either after no more relax operations are needed, and thus a
result is reached, or the maximum number of iterations is done. If the maximum
number of operations is done, but one could still relax distances, then there has
to be a negative cycle, and no feasible finite solution exists.

Adjusted Bellman-Ford

Let us first assume that we can run infinitely many iterations, and argue that
if there is a solution to the integer problem, it will be found when we do the
suggested solution of rounding whenever relaxing along an edge with an integer
node as its head. We will do the following alterations to algorithm 3.
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Initialization. First off, as briefly touched upon, due to construction of the
constraint graph, all vertices will have a shortest path with a value of less or
equal to 0. This is because all vertices have a path from v0 of length 0, and
can only decrease in value in the relax operation of the algorithm. Thus it is
rational to start out with the d attribute set to 0 as an upper bound. It should
also be accepted to remove all edges from v0 from further search, as there are
no edges going back to v0 that can improve the distance via it. That is, the
condition for updating any vertex distance vi via v0,

vi.d > v0.d+ w(v0, vi),

will never happen. v0 is always 0, since there are no edges into v0 that can
update v0.d, w(v0, vi) = 0 from construction, and vi.d = 0 by initiation, and
can only decrease, since it can only be updated via the relax operation into
strictly smaller values. Using these observations, we will always have

vi.d ≤ v0.d+ w(v0, vi).

Further, we only need to know the length of the shortest path to each node in
order to have a solution to the LP, not which nodes these paths goes through.
Thus we omit storing the parent nodes. The new initialization becomes

1.)

G.E := G.E \ {(v0, vi) | i ∈ [1, n]}
G.V := G.V \ {v0}
for each vertex vi ∈ G.V

vi.d = 0.

We will need to adjust the input data a bit, so we can know which nodes
of the graph that corresponds to variables with integer constraints. Name the
vertices of the graph so that vi is mapped from xi for i ∈ [1, n]. Let the
algorithm take in an additional list I of integers, corresponding to the indexes
of the variables that are to be integral. We will interchange between referring
to an integer vertex and an integer variable, where an integer vertex just means
one mapped from an integer variable from the construction of the constraint
graph. We will do the corresponding for the fractional case.
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Rounding. In order to simplify computation, the easiest is to round down
the relaxed upper bound at a node whenever the head of an edge is integral in
general. This will happen whenever case 1 or case 4 is true. If both vertices
of the edge, call it (x, y), is integral, that is, case 1 holds, then rounding down
after calculating the estimate at y will give the same effect as rounding down
the edge before calculating the estimate. Observe that

bc+ fc = c+ bfc, when c ∈ Z, f ∈ R,

as f ’s fractional part will be the value rounded down in both cases. Substituting
c with x.d, and f with w(x, y), shows us that this is the case as long as x.d ∈ Z.
The tail, x, should already have an integer estimate from either the start value
at 0, or from relaxing along another edge where x is the head. Since x is integral,
any relax-operation with it as its head would result in a rounding into an integral
value for x.d, since we construct the algorithm this way.

If only the head is integral, so that case 4 holds, rounding down the distance
at the head, we get what is suggested online as a solution to the Cormen exercise.
Why can we do this?

Any edge (vi, vj) with edge weight w(vi, vj) comes from a constraint
xj − xi ≤ bk. If vj is an integral node, then it means xj has to be integral in
the LP. Equivalently, we have that

xj ≤ xi + bk,

where the right hand side may be fractional. By setting

xj ≤ bxi + bkc,

we do not cut away any feasible solution from the solution space, as this is the
largest integral value xj can take on. Translating this back into the graph, we
correspondingly are allowed to end up with values given by

vj .d ≤ bvi.d+ w(vi, vj)c,

without removing any feasible solution of the original LP. As lower distance
estimates always are updated as

vj .d := bvi.d+ w(vi, vj)c,

it is consistent with the LP.

53



Further on, one would need to keep the rounded distance when propagating
further through the graph, even though the upcoming vertices could have taken
on a fractional value. To see this, assume that we round down an integer edge,
(vi, vj), but continue with the fractional, greater, value when finding the distance
to the next, fractional, vertex, vk, via (vj , vk). Thus the path to vj get some
distance bdc, while the path to vk would get the distance d + w(vj , vk). The
weight of the edge between vj and vk, w(vj , vk) = b, represent the maximum
distance between these nodes. That is,

vk − vj ≤ b (4.5)

Had we not rounded when propagating, we would have gotten that

vk − vj = (d+ w(vj , vk))− bdc (4.6)
= b+ (d− bdc) where (d− bdc) ∈ [0, 1) (4.7)

⇒ vk − vj ≥ b. (4.8)

Combining eq. (4.5) and eq. (4.8), we need to have that

vk − vj = b

⇒ d− bdc = 0

⇒ d = bdc.

Thus rounding down relaxed values whenever the head is integral, and keep-
ing these distances for further calculations of upper bounds on path lengths, is
necessary.

Whenever the head of an edge has an index contained in the set I, we know
this is an integer node. The relax operation of the altered algorithm will thus
look like

2.)

if j ∈ I
if vj .d > bvi.d + w(vi, vj)c

vj .d := bvi.d + w(vi, vj)c
else

if vj .d > vi.d + w(vi, vj)
vj .d := vi.d + w(vi, vj).
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If relax operations stops updating, then the LP is feasible. Let us
assume that the we can run the relax operations on all edges as many times
we want. Every time a relax is made, one "fixes" a difference constraint. More
precisely, one forces

vj .d ≤ bvi.d + w(vi, vj)c
⇔ xj ≤ bxi + bkc when xj integral, and
vj .d ≤ vi.d + w(vi, vj)

⇔ xj ≤ xi + bk when xj fractional,

immediately after the relaxation of edge (vi, vj). This is easy to see, as either
the relax operation did not update, and so the condition of the check did not
hold, meaning that we need to have

vj .d ≤ bvi.d + w(vi, vj)c or vj .d ≤ vi.d + w(vi, vj),

or it did update, meaning that we afterwards have

vj .d = bvi.d + w(vi, vj)c or vj .d = vi.d + w(vi, vj).

In either case, the less or equal to condition is true.

One cannot guarantee that updating some values will not violate others.
However, at the point when going through all the edges of the graph and no relax
update is issued, we know that every inequality is fulfilled, and it is guaranteed
that all the constraints of the LP is upheld. At this point the distances in the
graph is guaranteed to be a solution. So, in other words, if the algorithm stops,
we are guaranteed to have a solution.

On the other hand; if there exists a solution to the LP, will the algorithm
stop? Theoretically one could imagine that there is a solution, but that the relax
operations end up fluctuating the updated distances back and forth around a
solution without converging. However, if the path-relaxation property holds
even when rounding, then we know that if there exists a shortest from v0 to any
vertex vi, then the algorithm will also converge at the distance. The proof that
this holds is fairly similar to the proof for the original case of not rounding, and
we provide the argument in appendix A.
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When to conclude on infeasibility. At this point we know that if we allow
the algorithm to run as long as the relax operations will update distances, then
it will stop with an answer if and only if the LP is feasible. This is well and
good, but when can we determine that there is no solution? One may believe it
still is after n−1 iterations so that all simple paths are eventually relaxed (with
possibly intermittent relaxations) in order. It turns out that is is not necessarily
the case. Let us look at an example.

Figure 4.1 shows an example of a difference constraint graph where we imag-
ine we have substituted the source v0 and the edges {(v0, vi)|i ∈ [1, 6]}, all of
weight 0, with upper bounds of 0 at all nodes, and use all nodes as sources.
Thus it is ready for running the adjusted algorithm. We will show that there is
a shortest path traversing 9 edges, so that the algorithm stops after maximum
9 iterations.

v2

v3

v4

v5

v6 int

v1

-0.1

-0.1

-0.2 -0.3

0.6

0

Figure 4.1: An example constraint graph where v6 is integral, and the rest are
fractional. v0 and all its edges of distance 0 to the other nodes were discarded
before running the algorithm. Here the relax operations stops updating after 9
iterations, even though there are only n = 6 original nodes.
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The graph has the cycle

v2− > v3− > v4− > v5− > v6− > v2.

Disregarding v1 for a minute, starting from any point in the cycle and updating
along its edges, we will converge at

v2.d = 0.0

v3.d = −0.1
v4.d = −0.3
v5.d = −0.6
v6.d = 0.0

We see that the cycle stops updating after maximum 3 iterations following the
path from v2 to v5. As the integral offset when reaching v6 ends up with being
.0, and we do not round any fraction here, the cycle "settles" at summing up to
0.

But look at what happens if we follow the path from v1. The first round,
that is after maximum 5 iterations, we will have a negative .1 offset at v6, and
would round down to −1. We see this from following the path

v1− > v2− > v3− > v4− > v5− > v6,

where we get

v6.d = b−0.1− 0.1− 0.2− 0.3 + 0.6c = b−0.1c = −1.

At this point, however, this value will propagate further through the cycle
via maximum 4 more iterations,

v6− > v2− > v3− > v4− > v5,

and give the same fractional offsets as for the single cycle for every node, but
now moved down an integer. That is

v2.d = −1.0
v3.d = −1.1
v4.d = −1.3
v5.d = −1.6
v6.d = −1.0.
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When reaching v6, the offset is .0, and it settles at −1.

v6.d = b−1 + 0− 0.1− 0.2− 0.3 + 0.6c = b−1.0c = −1.

Since no node on the cycle can improve its value further from here, and v1
has no incoming edges, the algorithm stops at a solution:

v1.d = 0.0

v2.d = −1.0
v3.d = −1.1
v4.d = −1.3
v5.d = −1.6
v6.d = −1.0.

Since the maximum number of edges on a shortest path is 9, via the path

v1− > v2− > v3− > v4− > v5− > v6− > v2− > v3− > v4− > v5,

we need 9 iterations to be sure that these edges are relaxed in order and a
solution is found. Clearly

9 > (n− 1) = 5,

where 5 should be the bound for the number of iterations needed to guarantee
that any solution is found for the original Bellman-Ford. So we see from this
example that this is not the case anymore.

The example above is very simple. It contains only one cycle, only one
integer node, only one edge leading into the cycle, and none edges leading out.
When a colleague of Hetland, Halvard Hummel, looked at the matter, he found
another example where we could construct it to converge after n2 iterations.
This was a chain of multi-edged nodes, plus some nodes with incoming edges to
this chain, constructed in a way so that the updates would fluctuate back and
forth through this chain. This was another rather simple example, and so it is
hard to predict what happens if we combine a great number of interconnected
cycles. Can we still find an upper bound on the number of iterations needed to
guarantee that no solution can be found?
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For us it looks a bit too extensive to prove. A series of tests, where one runs
the algorithm on several different generated problems to see if one can observe
any significant patterns, or if the algorithm tends to terminate within a given
time in relation to the graph structure, would possibly be one way to go. We
restricted our scope to omit this for now, but it could be interesting to look at
in the future.

Note that when running such problems with open source solvers, it seems
that simple difference constraint problems often can be solved with preprocess-
ing methods. A such, maybe other recognition procedures would prove useful.
However, as we will see in chapter 5, for some cases our algorithm does indeed
solve difference constraints faster.

So when should we stop searching when implementing the algorithm? One
could use a limit on the time taken to run the algorithm, or a limit on the number
of iterations, in order to break out of the algorithm if it does not terminate with
an answer before this limit is reached. If we use the alterations from the pseudo-
code sections 1.) and 2.), together with a limit on the number of iterations, we
get the following adjusted Bellman-Ford algorithm.
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Algorithm 4 Adjusted Bellman-Ford
Bellman-Ford(G,w, s, I, limit)
1: G.E := G.E \ {(v0, vi) | i ∈ [1, n]}
2: G.V := G.V \ {v0}
3: for each vertex vi ∈ G.V
4: vi.d = 0
5: changed = false
6: iterations = 0
7: do
8: changed = false
9: for each edge (vi, vj) ∈ G.E

10: if j ∈ I
11: if vj .d > bvi.d + w(vi, vj)c
12: vj .d := bvi.d + w(vi, vj)c
13: changed = true
14: else
15: if vj .d > vi.d + w(vi, vj)
16: vj .d := vi.d + w(vi, vj)
17: changed = true
18: iterations += 1
19: while changed and iterations < limit
20: if changed
21: return Unknown
22: return true
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4.1.3 Moving the Solution

The output of algorithm 4 will always give solutions less than or equal to zero,
because the initial upper bounds on path lengths are set to zero, and we only
update when a better, decreased, path distance is found. If one would want
all the variables of a solution to be greater than or equal to zero, it is easy to
obtain this from the original output of the algorithm.

If the vector x∗ is a solution to the linear program, we can see that (x∗+ t),
for any constant t ∈ R added to each element of x∗, is also a solution. For any
constraint

xj − xi ≤ bk,

we have that

x∗j − x∗i ≤ bk ⇒ (x∗j + t)− (x∗i + t) = x∗j − x∗i ≤ bk, (4.9)

and thus it is possible to move all values of the solution by a constant term.

In fact, we can move the solution above or below any given constant. If
we need to move the solution above a constant, we make sure that the lowest
output is moved far enough so that all values are large enough. Similarly, when
moving all variables below a constant, we make sure that the greatest output is
moved far enough down.

More precisely, assume that we have a difference constraints problem where

xi ≥ c ∀i ∈ [1, n], (4.10)

were c ∈ R is a constant. Let x∗k be the lowest real number of the solution
x∗ ∈ Rn of the adjusted Bellman-Ford in algorithm 4. That is,

x∗k ≤ x∗i ∀x∗i ∈ x∗.

Find the minimum integer value, t ∈ Z, we have to add to x∗k in order for it
to be greater than c, that is

t = dc− x∗ke.

Let x′ denote the vector we get by adding t to every entry of x∗. Equation (4.9)
assures that the new values of x′ uphold the difference constraints. Further, we
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see that the constraints of eq. (4.10) are all upheld, as

x′i = x∗i + t

= x∗i + dc− x∗ke
≥ x∗i + (c− x∗k)
= x∗i − x∗k + c

= p+ c

≥ c ∀i ∈ [1, n],

because p ≥ 0 follows from that x∗k was a minimal value of the solution. Lastly,
since the group of integers is closed under addition, by rounding t up before
adding it to the solution, we preserve the integrality of the variables which are
constrained to be integers.

We can do the case when all variables has to be less than a constant in a
similar way.

The implementation for the case when all variables are required to be greater
or equal to zero, could then look like

1: if (Run algorithm 4) == true) ∧ (xi ≥ 0 ∀i ∈ [1, n] is a requirement)
2: min := 0
3: for i = 1 to i = |G.V | − 1
4: xi := vi.d
5: if xi < min
6: min := xi
7: end
8: end
9: min := |min|

10: if (there exist integer constraints)
11: min := dmine
12: end
13: for i = 1 to i = |G.V | − 1
14: xi := xi + |min|
15: end
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Since min = mini xi, and xi ≤ 0 ∀i, this would result in the minimum
value gaining 0, and the other values ending up greater than or equal zero. If
any variable is required to be integer, then the minimum variable value will be
contained in the interval [0, 1), succh that an integer is added to all variables of
the solution output. This way we guarantee that the integer variables remain
integer.

In other cases one might want some of the variables to be greater than zero,
and some variables less than zero. In order to achieve that, one would need a
solution where, when sorting the variable values in increasing order, one could
cut the set in two, where the greatest valued set would be the variables required
to be greater than zero. Then one can move the solution by a constant so that
these end up being greater than zero, and the other half less.

We can enforce the split of variables by introducing several new inequalities
to the LP, resulting in new corresponding mapped edges in the constraint graph.
Let A be the set of variables required to be greater than or equal to zero, and
let B be the set of variables required to be less than or equal to zero. By setting

xj ≤ xi ∀i ∈ A, j ∈ B
⇔ xj − xi ≤ 0 ∀i ∈ A, j ∈ B,

one enforce the sorted division of the two sets. If the problem is feasible, one
can move all values of the solution so that zero falls in the middle of the two
sets. Observe that it is allowed for variables at the boarder between the sets
to be equal, as they are allowed to equal zero. If any variable is required to
be integer, it is important that we make sure that it is possible to move the
variables by an integer, while the sets of variables still are such that zero falls
in the middle. If this is not possible, then the problem is infeasible.

We can, of course, generalize the reasoning above to hold for any bound, not
only zero. In the implementation, we accepted any bound, as long as it was the
same bound for every variable with a less_than or greater_than constraint. One
may find solutions for simple cases of different bounds for different variables,
but as for now we decided to only support up to one value for a bound.

Note that we add |A| · |B| new equations to the system, where |A|+ |B| = n,
when n is the number of variables. The most inequalities that can be added is
then (n2 )

2, since for any given perimeter the square maximizes the area. The
upper bound on the new number of inequalities will be [m+ (n2 )

2], so that the
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run time will be

O(n · (m+ (
n

2
)2)) = O(nm+ n3) = O(n3).

The last equality comes from the fact that m is bounded by O(n2), which we
argued under "Forms of Inequalities".

4.1.4 Implementations for Systems of Difference Constraints.

The implementation of difference constraints follows the flow of what was ex-
plained in section 3.1.2, while using the different algorithms in this chapter.

We made the Algorithm subtype DifferenceConstraints, and defined its
struct as follows

Listing 4.1: Difference constraints.
struct DifferenceConstraints <: Algorithm

limit::Union{UInt128, Nothing}
end
DifferenceConstraints() = DifferenceConstraints(nothing)

where limit is a number defined to be the number of iterations the Bellman-
Ford should cycle around and relaxing edges before it gives up, since we have
not found a proven limit for when we can conclude on infeasibility. If nothing
is set, then the default limit will be set to n − 1, where n is the number of
variables.

The code is structured into three files; optimize.jl, recognize.jl, and
bellman-ford-adjusted.jl. The optimize.jl file contains the definition of

optimize!(model::AlgoModel,difference_constraint::DifferenceConstraints)

This function checks if the single variable bounds are supported, as all existing
bounds should be equal for when moving the solution.

Then recognize(model, difference_constraint) is called, defined in
recognize.jl, which returns a boolean indicated if the model contains differ-
ence constraints. We extended it to return true when a subset of constraints
form difference constraints as well, since if it is infeasible, then we know the
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whole problem has to be infeasible as well. Thus a vector of indices corre-
sponding to the rows of A being difference constraints is returned, together
with a possible updated vector b, in the case where the constraints are normal-
ized. Further a graph is created via functions from the Julia packages Graphs

and SimpleWeightedGraphs. The graph data, indices indicating which variables
should be integers, and the iteration limit, is then sent to our implementa-
tion of bellman_ford_adjusted(), which is an implementation of algorithm 4.
This implementation can be found in bellman-ford-adjusted.jl. This function
returns true if the problem is feasible, false if it is infeasible, or throws an
CannotKnowError(), which we created for this use. If the optimize!() function
catches this error, it sets the termination status to Trm_IterationLimit, and
solution status to Sln_Unknown.
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Chapter 5

Practical Application and
Tests

5.1 Experimental Research Questions

In order for a module of recognition procedures to be useful, it should provide
faster answers for the specific problem classes than general open source solvers.
Of course, the performance of such recognition procedures will be dependent
on how they are implemented, but taken together with the preprocessing and
building of LPRep, it is still interesting to look at the example for difference
constraints.

Further, building the LPRep of an AlgoModel object could take some time.
Since this has to be done in addition to the building a JuMP model, it would be
interesting to see how long time this additional building would take by its own.
A long building time may infer a need for a different type of preprocessing or
storing of data.

When it comes to memory usage, the amount of memory used in LPRep is
potentially big compared to what is used in a JuMP model. The JuMP model
will be referenced by AlgoModel, not copied, so we need to consider the extra
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memory usage induced by LPRep, and how it grows related to how the memory
usage of a JuMP model grows. If the memory usage would grow exponentially
as a function of the JuMP model’s memory usage, for example, we need to
consider other ways of referencing the problem data.

To sum up we have formulated three research questions:

• RQ1: Does our recognition procedure perform better in Julia than wrapped
open source solvers when used on a subset of difference constraints?

• RQ2: How long time does our building and preprocessing of the model
compared to building the same JuMP model?

• ( RQ3: How much memory does AlgoModel use compared to a JuMP
model?

5.2 Experimental Setup

For our tests we used a computer with 16 GB RAM and a Intel Core i5 processor
with a 2,3 GHz Quad-Core. We used the BenchmarkTools package of JuMP in
order to time different operations.

Because we ended up being pressed on time, we did not generate the amount
of test problems we would like. However. we tried to diversify the problems
and time each a large number of times in order to minimize noise by computer
background processes. The problems we created, or downloaded, were divided
into four categories.

• 17 small created problems, where all the constraints are difference con-
straints.

– Of these are 10 feasible, and 7 infeasible.
– These problems can be found in the

benchmarking/difference_constraints_problems folder of the code
base.

• 7 small created problems, where a subset of the constraints of each problem
are difference constraints.
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– All of these are infeasible, because the subset of difference constraints
are infeasible.

– These problems can be found in the
benchmarking/difference_constraints_subset_infeasible folder of
the code base.

• 8 small created problems, where all have an inconsistency that AlgoModel
can detect with its preprocessing routine.

– These problems can be found in the
benchmarking/inconsistent_problems folder of the code base.

• 20 of the first benchmark problems of MIPLIB, taken in alphabetical order.

– These problems can be found on MIPLIB’s web page, in the MI-
PLIB2017 benchmark set.

he two first sets are divided since solvers’ presolving routines turned out to solve
difference constraints quite easy. Thus we wanted to see if recognizing subsets
of inconsistent difference constraints would be harder for the solvers than pure
difference constraints or not.

When we ran problems with the GLPK solver, it kept running without ter-
minatkng, even when we tried to exit the execution, so we had to force quit the
process. This happened for example when running
benchmarking/difference_constraints_problems/infeasible_1.mps in our project
repository. Even if we sat a time limit on the optimizer this happened, so we sus-
pect it could be some bug when it comes to JuMP and GLPK communicating.
Thus we ended up doing the tests with only HiGHS, Cbc, and SCIP.

For each expression we wanted to benchmark, we ran it 1000 times, and
then averaged the time and memory usage over these samples. That way we
can eliminate noise from background processes on the computer. Since the
building of the MIPLIB problems take a long time, we reduced this number to
10 times per run. Setting this parameter is done through setting the value of

BenchmarkTools.DEFAULT_PARAMETERS.samples

to the desired number.
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Further, a BenchmarkGroup object was made for each problem set. We looped
through the set in order to register every line of code which should be bench-
marked, then we tuned the set, and at this stage we let BenchmarkTool decide
the benchmarking parameters it deemed reasonable. Note that the number of
samples per code line may be set to something different than 1000 at this stage
due to the tuning process, though after inspection, it was not altered for most
trials.

Whenever we wanted to exclude the lookup time of an argument of a func-
tion, we added a $ in front of the corresponding argument. We did this when
calling optimize!() on created JuMP models, or AlgoModel models, so that only
the optimization was measured.

We also inspected (not in the code base) that all the results were equal,
in the sense that only correct answers were recorded from all the methods of
solving the LP’s.

5.3 Results

Because of the small sample size, the results may not be as reliable as one could
hope, so further work on more recognition procedures, and generation of a larger
set of test problems, would give even more insight. However these tests give us
a feel of how our module performs on certain problems. We decided to display
various scatter plots to get a view of the trends. The tests that were run can
be found in benchmarking/benchmark.jl.

5.3.1 RQ1

In fig. 5.1 we can see that for difference constraints, SCIP seems to be consis-
tently fast, while the others vary a bit, though HiGHS also perform reasonably
fast. This seems to be consistent with other sources, especially concerning SCIP.
We see that AlgoModel seem to solve some problems almost as fast as SCIP, while
for others it takes longer time than any other solver, so the speed seem to de-
pend a lot on the specific problem in question. However, compared to Cbc, the
worst run times of AlgoModel are in general less than the worst cases of Cbc,
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except the one spike at problem of index 11.

Figure 5.1: Running time for the first set of benchmarks, with a mix of feasible
and infeasible difference constraints.
X-axis: problem index. Y-axis: microseconds.

Since we suspected that detecting difference constraints subproblems within
the LP, and concluding on infeasibility whenever a subproblem is infeasible, is
harder than constraints being pure difference cobnstraints, we tested some of
these instances as well. However, as fig. 5.2 shows, the behaviors seems to be
the same as in fig. 5.1, namely, AlgoModel fluctuating between close to SCIP
and worst cases of Cbc. Why the runtime increased from sample 4 and on could
be due to an interfering factor, for example increased background processes or
memory use, or it could simply be related to the problems tested. Since the
different tests are run separately, it could be that some factor only affected the
time when AlgoModel ran, but since 1000 samples was run per reported value,
and fig. 5.1 shows no similar trends of longer times towards the end of processing,
it is as likely it is just the nature of the problems. So in general it seems like
a recognition procedure could compete with a solver for some problems, and so
a parallel procedure might be useful, though it has to be weighed against the
additional time taken to build the AlgoModel object.
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Figure 5.2: Run time for the second set of benchmarks, with infeasible problems
due to a subset of infeasible difference constraints.
X-axis: problem index. Y-axis: microseconds.

5.3.2 RQ2 and RQ3

When it comes to building the models, we timed
MOI.copy_to(Model(), $file_model)

and
AlgoModel($model, DifferenceConstraints())

where file_model is a MOI.Utilities.GenericModel object which is an interme-
diate representation of the model when read from file. We do not time this
reading, as it would have to be done for any model creation. We rather time the
creation of an empty JuMP model, as the first argument of copy_to(), and the
initialization of this model with the data of file_model, which is done with the
MOI.copy_to() function. We compare this to the creation of an AlgoModel object
with DifferenceConstraints() as a recognition procedure. The first argument,
model, is an already created JuMP model. We do not time the lookup of the
arguments containing the data, as denoted with a $ preceding these arguments.

From fig. 5.3 through fig. 5.6, we see that both time, memory, and allocations
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for creating an AlgoModel vs a JuMP Model are related in a similar way. It seems
that even very big problems, where

m+ n > 160000,

there can be instances where the creation of a JuMP model and a AlgoModel

costs roughly the same amount of time and resources (as indicated by the second
to last red dot on fig. 5.3, where it actually overlaps the blue dot). However,
this means that the time needed to use AlgoModel will at best double the time
of using just a JuMP model.

In fig. 5.6 we mapped allocation against problem index as well, in order
to see if there are any reason for some model creations to take longer time.
In fact, the spike of allocation in the tenth problem turns out to correspond
to the creation of bab2.mps, which we already have encountered issues with,
as discussed in section 3.1.4, where the substitution of fixed variables caused
floating point precision issues. It is thus natural that these problems takes longer
to build, as the preprocessing procedures of substituting variables is running.
This shows that if the problem is so that substituting variables is necessary,
possibly in several passes, it will take longer time to construct the inner LPRep

representation.

It is difficult to land on a definite decision about how good the design of
the module is with this data, because faster recognition procedures may jus-
tify the extra building time. When SCIP almost always performs better than
DifferenceConstraints(), it is better to only use a JuMP model with SCIP
attached.
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Figure 5.3: Time it takes to build a model, compared to the combined num-
ber of variables and constraints in the model. X-axis: problem size. Y-axis:
microseconds.

Figure 5.4: Memory usage given problem size.
X-axis: problem size. Y-axis: kilobytes.
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Figure 5.5: Allocations vs problem size.
X-axis: problem size. Y-axis: alocations.

Figure 5.6: Allocations vs problem index.
X-axis: problem index. Y-axis: allocations.
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5.3.3 Preprocessing

Comparing simple inconsistency checks, namely the ones we can detect during
the building of the AlgoModel, would be interesting to time and compare against
other solvers on the same problems. However, as this preprocessing is strongly
tied to the building of the model, it is difficult to extract out and only time the
preprocessing part of the code.

If we compare the time when calling optimize!() only, we see, in fig. 5.7,
that it is very fast. This is as expected, as it narrows down to checking a flag
is_coinsistent. SCIP is almost as fast, as shown in fig. 5.8, which is gained
from zooming in on fig. 5.7. It could be interesting to figure out when SCIP
does its preprocessing as well, and see if the process of attaching SCIP.Optimizer

to a model, through set_optimizer(), would add any extra time compared to
HiGHS and Cbc, in case of early preprocessing at initialization. Of course, since
we in general not have inspected how and when the different solvers do their
preprocessing, it is difficult to compare and comment on this data. Though it
is interesting to see how SCIP seems to be exceptionally fast on most tests.

Figure 5.7: Time taken to detect simple inconsistencies through optimize!().
X-axis: problem index. Y-axis: microseconds.
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Figure 5.8: Time taken to detect simple inconsistencies through optimize!().
Zoomed in.
X-axis: problem index. Y-axis: microseconds.
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Chapter 6

Discussion and Future Work

As we have seen, it seems like a module such as MipFlex could be helpful for
certain problem classes, and so introducing more recognition procedures, and
making the parallel component more robust, could have a great potential.

There exist interesting articles to be explored for implementing new recog-
nition procedures. One such is on how to convert LP’s to network problems[8]
in O(rn) time, where r is the number of rows, and n is the number of nonzero
entries of A. Since most network problems can be solved in polynomial time,
such a transformation would be beneficial for sparse constraint matrices.

Another idea is to let an Algorithm object take in special information about
the problem from the user, for example that the problem is a maximum flow
problem. In that case, the algorithm does not have to recognize the problem,
but can start applying Ford-Fulkerson right away. However, this may be a naive
example, as going through the creation of an Algorithm and JuMP model would
be unnecessary and induce extra work. However, the idea of sending known
information or heuristics through Algorithm objects is an interesting idea to
explore.

When it comes to the implementation, several improvements could be made.
The obvious one is to make sure that running the procedures in parallel never
will incur race conditions. In addition, returning whenever a solution is found,
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instead of waiting for other threads to finish, is a crucial requirement for a suc-
cessful use of parallelity. There are several other forms of possible enhancements
as well. One could include solution data concerning the dual of the LP. One
could implement prioritizing flags for each Algorithm object, so that when the
code is run sequential, the module knows in which order to call optimize!() on
the algorithms attached. One could look into when and how solvers do prepro-
cessing, and improved our implementation on this aspect. And of course, more
types of constraints, especially variable constraints could be supported. For sus-
tainability, more get-er functions should be provided for Algorithm developers.
If one also could support incremental changes to the model, not having to build
the LPRep from scratch every time the JuMP model is updated, processing time
could be saved.

Wrapping the module within a solver interface would make it easier to read
the problem data, in-memory, without constructing an internal copy of the data,
which in turn would typically half the time of model construction. The only
reason for not doing this is the warning from JuMP of how big a task this is.
However, we believe a wrapped MipFlex would improve both the ease of use, as
well as the speed of the module. The JuMP interface is build, after all, to work
with fast solvers, and not be a bottleneck in the process. Thus we believe that
a natural step forward could be to write a JuMP wrapper for the functionality
of a module like MipFlex.
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Appendix A

Adjusted Bellman-Ford
terminates iff LP feasible.

A.0.1 Disclaimer

This section is not cleaned up, as we did not manage to conclude our reasoning.
Appendix A is only included as a possible help for others that may want to prove
that the adjusted Bellman-Ford algorithm in algorithm 4 actual will terminate
if there exists a solution, and if there exists an upper bound on the number of
iterations.

A.0.2 Incomplete Sketch of a Possible Proof.

We will here focus on providing a more formal argument for the statement that
if the the LP is feasible, then the algorithm will eventually return TRUE.

Proposition A.0.1. Let Ax ≤ b be a system of difference constraints over the
field R, with n variables and m constraints. Assume an arbitrary amount of
variables are constrained to be integers, and let I denote the set of indices of
these integral variables. Let G = (V,E) be the LP’s corresponding constraint
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graph.

When running the tweaked Bellman-Ford on G, (ref adjusted bellman ford),
with a theoretically infinite limit on iterations, it will terminate with a shortest
path to each vertex if the original LP has a feasible solution. Shortest path, in
this context, is defined to be the smallest accumulated distance from one vertex
to another, following edges in the graph and rounding down to nearest integer
whenever a vertex is integral.

Moreover, if the algorithm terminates with the return value TRUE, the final
distance estimates will be shortest paths, and each shortest path will be a solution
to the LP. Specifically we have that

x = [v1.d, v2.d, . . . , vn.d]

will be a solution to the linear system of difference constraints.

Proof. We need to show that

The algorithm terminates with TRUE ⇐⇒ The LP is feasible.

(=⇒)
We already showed, in section 4.1.2, "If relax operations stops updating,
then the LP is feasible", that if the algorithm returns TRUE, then the final
distance estimates make up a solution to the LP. Thus we concern ourselves
with the other direction of the proof here.

(⇐=)
For the other direction we will divide this into two parts. First, if the LP is
feasible, then there exists shortest paths to all vertices in the constraint graph.
Secondly, if there exists shortest distances, then the algorithm will fins these
and return TRUE. So we have

1.) LP is feasible =⇒ All shortest paths exists.
2.) All shortest paths exists. =⇒ algorithm will terminate with TRUE.

1.) LP is feasible =⇒ All shortest paths exists.
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Assume LP is feasible but that not all shortest paths exists in the corre-
sponding constraint graph. Firstly, all nodes have distance 0 from the start
node v0 at initiation, so the only way for a path not to exist, is for it to be
unbounded from below, going towards an infinite negative value.

Assume first that there are no cycles in the graph, and that vk is a node with
no shortest path. If the graph has no cycles, look at all paths from v0 to vk.
This is possible because we have a finite number of nodes and edges, and any of
these paths will not come back with a better estimate, as there are no cycles.
Pick the minimum value of the rounded distance of these paths. We know that
the path p : v0− > vk with weigh 0 exists, so there will be at least one value
in the set. The minimum value will be a shortest path, and so vk must have a
shortest path.

Thus there has to be a cycle. Again assume vk has no shortest path. If there
are only simple paths with no cycles to it, we have the same situation as with
the no cycle graph, so then assume there is at least one cycle on at least one of
the paths to vk.

Start by assuming that there is only one cycle in the graph. We will gener-
alize with any number of cycles eventually.

vk has to be either in the cycle, or outside of it. First assume vk is in the
cycle. Now, if following the cycle one round would result in a greater value
when arriving at vk, we can always skip the cycle. That is, if vk is on the cycle,
follow the path until we reach vk, and do not follow the cycle, as it would only
increase the value.

TODO: Insert image and explain better? TODO: Maybe distinctly name
nodes v, and variables of LP x. If vk is not in the cycle, the cycle has to be on
the path between v0 and vk (else it would be a simple path from v0 to vk). Let
ve be the first node on the path that is a part of the cycle, and let vs be the
last node on the cycle before a simple path leads further to vk. If we just use
the path p : v0− >′ simplepath′− > ve− > · · · − > vs− >′ simplepath′− > vk,
then it is a simple path with a finite weight, so assume we use the cycle at
least once. It means we need to go a round from vs back to vs, so that we can
re-emerge out from the simple path to vk. If the length at vs after rounding and
following the cycle is greater than the first time we entered vs, then this greater
weight will either not affect vk, or accumulate and result in a greater value at
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vk than if we had not followed the cycle. It could not result in a lesser value
by adding the same edges of the exiting simple path, since the rounding down
cannot result in a lesser value when rounding down from a greater value. Thus
we can here as well "skip" the cycle.

Observe that if we follow a cycle once and obtaining a greater value, that is
vk.d1 ≤ vk.d2, where vk.d1 is the distance at a node on the cycle without having
followed the cycle, and vk.d2 is after following it one round, then following it
another round would result in a higher or equal value. That is, adding the same
values and rounding down at the same instances cannot result in any lower
number. Thus following the cycle more than once, when the first round does
not provide any improvement on the path length, would not work either.

Thus it has to be the case that when following the cycle it leads to a lesser
value in the path estimate, so that it would be beneficial to follow the cycle.

As we have demonstrated (ref fig), it is possible to follow a cycle once, gaining
a lesser value, and then it stabilizes. If this happens, then the path is finite. So
in order for it to be unbounded from below, we have to have the case that the
path value decreases strictly every single round.

Assume that given any intermediate value of a path on the cycle, following
it one round yields a strictly more negative value. Then, disregarding how we
entered the cycle and the values of incoming paths, following the cycle would
be beneficial. But then, since we know following the cycle from any value yields
a more negative value, then following it another round would be beneficial, and
so, for any path entering the cycle, it would be beneficial to keep following the
cycle because it would guarantee a more negative value. Thus, every path with
the cycle as a part of it would be unbounded from below. So without loss of
generality, assume vk is on the cycle. In particular, whatever value we have at
vk at any moment on any path, say v.d, after following one round, we will have
that

v.d2 < v.d,

where v.d2 is the value after updating along the cycle.

TODO: Argue about weight of cycle.

Now, let us observe all edges of the cycle in the corresponding LP formula-
tion. This corresponds to all inequalities vj − vi ≤ bk, where (vi, vj) is an edge
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in the cycle. Since a cycle starts and ends at the same node, all nodes will have
an even number of in and out edges. That is, every time we enter a node, we
will also leave it, and it is true for the start node, as we start by leaving it, and
enter it when there has been a cycle. Thus, by summing up the left hand side
of the inequalities of the cycle

vk− > vk+1− > · · · − > vk−1− > vk,

we get
(vk+1 − vk) + (vk+2 − vk+1) + · · ·+ (vk − vk−1) = 0,

as nodes gets opposite signs when being at a head and a tail.

For the proof of the non-rounding case, we summed the right hand side as
well, to find a bound on the edge sum of the cycle, that will eventually lead to
a contradiction. In order to do it here, we need to tighten the bound of each
inequality. Take a look at the following.

If both variables vj and vi of the inequality are integers, then the difference
cannot take a value between bk and bbkc, and so

(vintj − vinti ) ≤ bk ⇐⇒ (vintj − vinti ) ≤ bbkc,

where we denote a variable with the superscript of int whenever it is constrained
to be integer.

Now if only one of the variables in an inequality is constrained to be integer,
then we have two different cases. Let first vinti be the integer variable. Define

F (x) = |x| − b |x| c, ∈ R,

where |x| is the absolute value operator. F (x) then returns the fractional part
of x. If the numerical value of vj and (vj − vinti ) have both the same sign (that
is both positive or both negative), then the difference of the two numbers has
to be F (vj). If they have opposite signs, the fraction goes "via" zero, and so an
integer number added or subtracted will be left with (1− F (vj)).

2.) All shortest paths exists. =⇒ algorithm will terminate with
TRUE.
We will prove several properties and combine them into an argument for that
if all the shortest paths exists in the constraint graph, then the algorithm will
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terminate upon them and return TRUE. Since these properties are already
proved (ref Cormen) with fractional vertices, we will concern ourselves with
cases of integral vertices.

Triangle inequality. The triangle inequality for these types of shortest
paths will follow the same argument as for Bellman-Ford. That is, if there is a
shortest path p0,j from vertex v0 to vj , where vj is integral, then by definition
of "shortest", no matter what other path p′0,j from v0 to vj you find, possibly
rounding down a different factor on some of the same edges of p0,j , the distance
will be as great as, or greater than, p0,j , else it would not be a shortest path.
In particular, if p′0,j is starting with the shortest path to another vertex vi, and
then traversing (vi, vj) we will have that

δ∗(vj) ≤ bδ∗(vi) + w(vi, vj)c. (A.1)

Upper-bound property. The Upper-bound property states that during
the execution of the algorithm, v.d ≥ δ∗(v) for any vertex v, and that when
v.d = δ∗(v), it will never change. We know that there exist paths to all vertices
of distance 0 from v0, so any shortest path cannot be more than this. Thus, in
the beginning, v.d = 0 ≥ δ∗(v) for all vertices v. Since v0 has no edges going
into it, the distance to v0 cannot be improved by any path, and so we know that
δ∗(v0) = 0 from the start. By induction, assume that at some step during the
algorithm we update the d attribute of some vertex v. For not repeating proofs,
assume this is an integral vertex. From the algorithm, the updated value will
be given as

v.d = bu.d+ w(u, v)c,

via an edge from another vertex u. By the inductive hypothesis, we know that
u.d ≥ δ∗(u), so

v.d ≥ bδ∗(u) + w(u, v)c.

By the triangle inequality the right hand side is greater or equal to δ∗(v), and
so we end up with

v.d ≥ δ∗(v),

and so by induction the upper bound holds in all cases. From definition of the
algorithm, the update of d can only decrease its value, and so, when a shortest
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path value is found, it cannot decrease further since v.d ≥ δ∗(v). Thus, once
v.d = δ∗(v), v.d will never change its value.

Existence of shortest paths made up of shortest paths. Note that in
the original proof of Belmann-Ford, one proves that subp-aths of shortest paths
are shortest paths. However, this is not necessarily true with the rounding
case, as rounding can make a sub-path of greater length end up with the same
distance to a specific edge, as Figure A.1 shows. Here both the paths

p0,k : v0  vi  vj  vk

p′0,k : v0  vi  va  vj  vk

will be shortest path from v0 to vk, as both determines the weight −1 because
of rounding:

p0,k : d(vk) = b0 + 0 + (−0.1)c = −1
p′0,k : d(vk) = b0 + (−0.1) + (−0.8) + (−0.1)c = −1.

Thus p0,k is a shortest path, but the sub-path of p0,k

pi,j : vi  vj , with weight d(pi,j) = 0,

is not the shortest path from vi to vj , as

p′i,j : vi  va  vj , with weight d(p′i,j) = −0.1 + (−0.8) = −0.9

is shorter. However, as long as we can show that there exists at least one shortest
path p0,k, for any vk, which is such that any other node vx on this path gets its
shortest distance from v0 by using the same path p0,k up until vx, we can use
this property further in the proof.

v0 vi vj vk int

va

0 0

-0.1 -0.8

-0.1

Figure A.1: Sub-paths of shorter paths need not be shortest paths. We disregard
all the other 0 weighted edges from v0 for simplicity.
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To see why this is true, take any vertex vi, and look at all its in-edges. Let
Vi = {u ∈ G.V | (u, vi) ∈ G.E}, that is, all vertices at a tail of any in-edge to
vi. To minimize distance to vi, the best we can achieve can be written as

min
u
{δ∗(u) + w(u, vi) | u ∈ Vi} if vi fractional

min
u
{bδ∗(u) + w(u, vi)c | u ∈ Vi} if vi integral,

as using something greater than the shortest distance to any neighboring vertex
can only make the final sum equal or greater to what we achieved above. The
important aspect of the integral case is that if we have d(u) > δ∗(u), where
d(u), δ∗(u) ∈ R, then also [d(u)+w(u, vi)] > [δ∗(u)+w(u, vi)], where w(u, vi) ∈
R, and when rounding down these two real numbers, where one is greater than
the other, we can never end up with [d(u) + w(u, vi)] < [δ∗(u) + w(u, vi)]. The
"best" we can achieve is equality.

Let vj be the tail of one of the edges resulting in a shortest distance to vi. In
(ref) we use the shortest distance to vj , so let us find this. The shortest distance
to vj can be expressed as

min
u
{δ∗(u) + w(u, vj) | u ∈ Vj} if vj fractional

min
u
{bδ∗(u) + w(u, vj)c | u ∈ Vj} if vj integral,

where Vj is defined in a similar way as Vi. Again choose vk which is the tail of
one edge giving the minimum distance to vj .

Since we know that shortest paths exists, they cannot be infinite, and so a
final number of c vertices will make up the path to vi. Further on, all vertices
are reachable from v0 from construction. Thus we can continue in this fashion
until we end up with v0 as a tail vertex, which we argued has a shortest distance
of value 0. Using these vertices, in the opposite order as we picked them, will
construct a path p from v0 to vi, where each vertex on this path gain its shortest
distance from v0 via it.

Property after relaxing. Observe that immediately after relaxing a round-
ing edge (u, v) ∈ E, we have

v.d ≤ bu.d+ w(u, v)c.

That is, either we updated v.d so that v.d = bu.d+ w(u, v)c, or it did not
update, meaning we must have had v.d < bu.d+ w(u, v)c. We will use this to
show the convergence property for rounding edges.
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The convergence property. The convergence property states that if we
know that there is a shortest path from v0 to v where the last edge on this path
is (u, v), denoted by v0  u→ v, then if u.d = δ∗(u) prior to a relax call, then
v.d = δ∗(v) at all times after the call.

First off, since we know there is a path from v0 to v, then due to (ref "sub-
path" property), we know we can choose a path where every subpath from v0
is a shortest path. Choose such a path, p, and let u be the vertex prior to v on
p. Assume u.d = δ∗(u) at some point during the algorithm. Then the upper-
bound property secures that this will stay the same for the rest of the execution.
Let us assume the last edge, (u, v) is a rounding edge from a fractional to an
integral vertex. Then, after relaxing (u, v), we have from (ref prev prop) that
immediately after this relaxation,

v.d ≤ bu.d+ w(u, v)c
= bδ∗(u) + w(u, v)c
= δ∗(v),

where the last comes from the fact that this path is constituted from shortest
paths. However, by the upper-bound property we have v.d ≥ δ∗(v), and so we
must have that

v.d = δ∗(v).

The upper-bound property also ensures that this equality is maintained during
the rest of the execution of the algorithm.

The path-relaxation property. The path-relaxation property guarantees
our claim, that all vertices receives δ∗ at some point, and that the algorithm
then returns TRUE. This follows almost directly from the upper-bound prop-
erty(ref), the convergence property(ref), and existence of shortest path made
up of shortest paths(ref). If there is a shortest path from v0 to vk, then (ref)
guarantees that there exists a path p =< v0, v1, . . . , vk > where every vertex on
p also obtains its shortest distance with rounding, δ∗, on this path. If a sequence
of relaxation steps relaxes all edges on this path, (v0, v1), (v1, v2), . . . , (vk−1, vk),
in order, then vk.d = δ∗(v) after these steps and at all times after. To see this,
induction was used in Cormen(ref), and can be used here as well. For initial-
ization, d.v0 = 0. This is guaranteed to be minimized because of no incoming
edges, and by the upper-bound property it will stay the same during execution.
If we at any step have vi−1.d = δ∗(vi−1), and we relax edge (vi−1, vi), then by
the convergence property vi.d = δ∗(vi) after relaxation and at all times later.
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Since we know that there exits finite shortest paths to every vertex, we are
guaranteed that after the maximum length path, all vertexes have gained their
shortest path value. At this point, no further relax operation will be issued,
because

vj .d = δ∗(vj) ≤ bvi.d+ w(vi, vj)c, if vj integral
vj .d = δ∗(vj) ≤ vi.d+ w(vi, vj), if vj fractional,

and so CHANGED = FALSE in (ref algo), iterations will be less than limit
since we assumed to have infinite iterations available, and so the algorithm will
return TRUE.
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