
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Sander Strand Engen

Hybridising Classical and Post-
Quantum
Cryptography in WireGuard

Master’s thesis in Communication Technology and Digital Security
Supervisor: Professor Colin Boyd
Co-supervisor: Assistant Professor Bor de Kock
January 2023





Sander Strand Engen

Hybridising Classical and Post-
Quantum
Cryptography in WireGuard

Master’s thesis in Communication Technology and Digital Security
Supervisor: Professor Colin Boyd
Co-supervisor: Assistant Professor Bor de Kock
January 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology





Title: Hybridising Classical and Post-Quantum Cryptography in Wireguard
Student: Engen, Sander Strand

Problem description:

Whitfield Diffie and Martin Hellman’s namesake algorithm Diffie-Hellman (DH)
and its variations have been the standard for Public Key Cryptography following
its publication in 1976 [DH76]. The algorithm’s security properties are based on
the assumption that the underlying Discrete Logarithm problem is computationally
intractable on classical computers. This however is not the case for quantum comput-
ers. In 1994, Peter Shor published a method for solving the Discrete Logarithm (DL)
problem on a quantum computer [Sho94], hence known as Shor’s Algorithm. DH
and its variations have seen continued use even though it has been considered broken
for decades, on the assumption that the existence of quantum computers with the
necessary strength to efficiently apply Shor’s Algorithm is a far-away reality. In recent
years, this assumption no longer holds water. Developments in quantum computing
has lead researchers to assume that this post-quantum paradigm is probable to be
reached within the next 30 years [SR20].

However, cryptographers have not been idle in the decades since Shor’s Al-
gorithm was discovered. The field of Post-Quantum Cryptography aims to develop
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Abstract

Due to the uncertainty of the security properties of post-quantum asym-
metric cryptosystems, early adoption of post-quantum cryptography
should be done through the use of hybrid systems, where the post-quantum
cryptosystem is implemented in tandem with a classical cryptosystem,
and the system maintains its security properties as long as at least one
of its two components are considered secure.

This thesis describes a method for implementing such a hybrid cryp-
tosystem through the use of an XOR-then-MAC combiner, and outlines
the proccess of implementing this hybrid cryptosystem in the userspace
Rust implementation of the VPN protocol WireGuard, called BoringTun.
With this implementation, the thesis presents performance metrics de-
rived from using different post-quantum components along with a key
encapsulation mechanism constructed using ECDH.

The results show that this hybrid implementation increases the time
to complete a handshake by a factor of three to four times that of a
handshake performed with ECDH. The thesis concludes that lattice-
based cryptography is best suited for this application, with the NTRU
cryptosystem outperforming the other candidates with respect to the
NIST standardisation process’ security category V. Further it shows
that putting a hybrid cryptosystem into use is feasible today, without
impacting the end user experience significantly.





Sammendrag

På grunn av usikkerheten rundt sikkerhetsegenskapene til post-kvante
kryptosystemer bør tidlig adopsjon av post-kvante kryptografi bli utført
ved å bruke hybride systemer, hvor et post-kvante kryptosystem blir
implementert i kombinasjon med et klassisk kryptosystem, og hvor syste-
met opprettholder sine sikkerhetsegenskaper så lenge minst en av de to
komponentene er ansett som sikker.

Denne oppgaven beskriver en metode for å implementere denne typen
hybride kryptosystem ved å bruke en XOR-så-MAC kombinator, og be-
skriver arbeid utført for å implementere dette hybride kryptosystemet i
brukerområde-implementasjonen av VPN-protokollen WireGuard i Rust,
BoringTun. Gjennom testing av denne implementasjonen beskriver oppga-
ven ytelsesberegninger for bruk av forskjellige post-kvante komponenter i
kombinasjon med en nøkkelenkapsuleringsmekanisme konstruert ved å
bruke ECDH.

Resultatene viser at denne hybride implementasjonen øker tiden for å
gjennomføre et handshake med en faktor på tre til fire ganger tiden for et
handshake utført med kun ECDH. Oppgaven konkluderer med at gitter-
basert kryptografi egner seg best for applikasjonen, og at kryptosystemet
NTRU gir bedre resultatet enn andre kandidater med tanke på NIST’s
standardiseringsprosess sin sikkerhetskategori V. Videre viser den at det
å sette i bruk et hybrid kryptosystem i dag er gjennomførbart, uten å ha
store konsekvenser for brukeropplevelsen.
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Chapter1Introduction

This chapter will introduce some of the key concepts related to post-quantum
cryptography and the project as a whole. With these concepts in mind, it aims to
provide motivation for researching the project detailed in this thesis. Finally, this
chapter will introduce the research questions that will be discussed.

1.1 Public Key Cryptography

Before the digital age that we live in today, the field of cryptography was more or
less limited to the study of what we now call symmetric cryptography, where two
or more communicating parties have access to the same secret key, which is used
for both encryption of plaintext and decryption of ciphertext. With the emergence
of computer-based communications, two main problems arose with this type of
cryptographic system.

The first problem with this type of system was that for a number of parties n,
each party needs to keep track of n(n − 1) symmetric keys. With an increasing
number of parties, the amount of keys quickly becomes unmanageable due to the
polynomial rate of growth. The second problem is that a symmetric key needs to
be shared securely before the parties can exchange encrypted messages. Without
a perfectly secure channel, ironically being what the system is intended to create,
sharing this secret is impossible.

The solution to these two, along with a myriad of other related problems, was
published in 1976 by Diffie and Hellman [DH76]. Their namesake algorithm Diffie-
Hellman (DH) created an asymmetric cryptosystem based on the computational
hardness assumption of the Discrete Logarithm (DL) problem. The system allowed
for a party to keep track of a single key pair; a public key for encryption of messages
intended for themselves, and a private key to decrypt those messages. A party could
now request the public key of the recipient, encrypt their message and transmit it

1



2 1. INTRODUCTION

across a public channel, with the recipient being the only party able to decrypt it.
We call this scheme a Public Key Exchange (PKE).

1.2 Post-Quantum Cryptography

Since its invention, DH and its variation Elliptic Curve DH (ECDH) have been
one of, if not the most important building blocks of secure communication across
the internet. However, assumptions have a tendency to be proven false. The
computational hardness assumption for DL was broken in 1994 when Peter Shor
discovered an algorithm that solved the Integer Factorisation (IF) problem [Sho94],
and subsequently the DL problem in polynomial time. The catch that has kept DH
in use all this time is that Shor’s Algorithm requires a quantum computer to realise
its efficiency.

Cryptographic schemes based on the IF and DL problems have continued to
see widespread use throughout the years since Shor’s Algorithm’s discovery, on the
assumption that a quantum computer with sufficient strength to realise the algorithm
is a far-away reality. Recent developments in quantum computing is starting to
indicate that this assumption no longer is valid. Researchers believe that this point
will be reached within the next 30 years [SR20], making way for the field of Post-
Quantum (PQ) Cryptography, which aims to replace current cryptographic schemes
with new ones based on different mathematical primitives than the IF or DL problem.

There is an increasing need to put quantum-resistant cryptosystems into use
sooner than later. You don’t need to don a tinfoil hat to assume that several private
and nation state actors are collecting massive amounts of encrypted data that might
very well be forcefully decrypted in the near future, and information that is sensitive
today will still remain sensitive in 30 years. A prime example of an actor capable
and willing of doing this is the United States National Security Agency (NSA) with
their surveillance program PRISM, leaked in 2013 by Edward Snowden [GP13].

To facilitate a transition to PQ schemes, the US National Institute of Standards
and Technology (NIST) initiated a standardisation process for quantum-resistant
algorithms in 2016 [Nat16], with a focus on both PKE and Signature schemes.
Currently, the process is in its fourth round of evaluation, with submitted algorithms
mainly falling into two categories, Code-based or Lattice-based. Code-based schemes
rely on the computational hardness assumption of the Syndrome Decoding (SD)
problem [OS09], while Lattice-based schemes rely on the Shortest Vector Problem
(SVP) [MR09].
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1.3 Hybrid Key Exchange

The standardisation process has been going on for several years. Even though some
selections have been made, how long we have to wait before a PQ ciphersuite is
standarised and put into use is still unclear. The pressing need to transition to PQ
schemes has however not gotten any less urgent.

The problem is that even though these new PQ schemes seem promising, they
have not withstood the years of scrutiny that DH has, and there is an uncertainty
whether their security assumptions are correct. To mitigate this problem while still
implementing PQ schemes, some researchers have suggested using a hybrid scheme
during this transitional period [GCR22].

A hybrid scheme entails combining a post-quantum scheme with a scheme that is
susceptible to Shor’s algorithm in a way that preserves the security properties of the
combined system as long as one of the component algorithms remains secure. By
combining a variation of DH with a PQ scheme in this way, one can at the very least
ensure that the scheme is secure in a pre-quantum paradigm, and hopefully secure in
a PQ paradigm assuming the PQ scheme stays unbroken.

In fact, a promising PQ candidate was just recently proven susceptible to an
attack performed on a classical computer. Supersingular Isogeny-based DH (SIDH)
[CCH+19] was assumed quantum-secure and stood out amongst other standardisation
candidates with a small key size and the possibility to apply a PKE transmission
pattern that was analogous to DH, as opposed to the Key Encapsulation Mechanism
(KEM) applied by the other candidates. In august 2022, Castryck and Decru
published a highly efficient classical attack on SIDH which rendered the entire scheme
insecure [CD22], based on a 1997 theorem by Kani [Kan97].

The case of SIDH proves that this type of hybrid approach is not only prudent,
but necessary while PQ schemes are being scrutinised. There is a clear possibility,
if not a guarantee, that other assumed quantum-resistant schemes will be broken
either by a classical or theoretic quantum attack throughout this process.

1.4 Research Questions

This thesis will be presenting a version of the VPN protocol WireGuard with a hybrid
scheme as its handshake component, for the purpose of testing how such a scheme
would work in a real world setting, and what effects it would have on the application
as compared to the original, classically secure version. With this implementation we
will be testing performance metrics of the hybrid implementation and discuss the
results with respect to the following research questions:
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– How does a hybrid setting impact WireGuard’s performance?

– Which post-quantum primitive provides the best performance metrics in a hy-
brid setting in WireGuard while adhering to WireGuard’s original performance
goals?

– Is the computational trade-off from implementing post-quantum cryptography
through a hybrid mechanism proportional to the security benefits gained, and
thereby making an early transition feasible?



Chapter2Background

This chapter aims to lay the groundwork for understanding the interworkings of the
research project. It describes research and theory related to the field of post-quantum
cryptography, and details component mechanisms to construct a hybrid cryptosystem
consisting of a classical and a post-quantum component cryptosystem.

2.1 Post-Quantum Cryptography

Post-quantum cryptography is a field of research that aims to develop cryptographic
algorithms that resists attacks from quantum computers. The following subsections
will detail quantum computing as a concept and the current state of technological
developments, the consequences for modern cryptography and cryptographic schemes
utilising computational problems that avoid them.

2.1.1 Quantum Computing

The field of quantum computing has been steadily growing since the proposition of a
Turing machine that could operate under the laws of quantum mechanics by Benioff
in 1980 [Ben80]. The prevailing method of realising such a machine is through the use
of quantum logic gates that together can create a quantum circuit [SW95], analogous
to how classical computers are built on transistor logic gates that together create a
digital circuit.

The main difference between a quantum computer and a classical computer
is related to how they deal with memory and units of information. In classical
computing, information is stored and manipulated as binary units, represented with
[1]s and [0]s. Through the use of the quantum mechanical property of superposition,
quantum computers replace the bit with a qubit, which exists in a superposition
of the classical bits [1] and [0]. In simple terms, this means that the information
exists with a certain probability of being either in state [1] or [0], and collapses into
existing as one of the states according to that probability when measured.

5
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In essence, this allows a quantum computer to store multiple values in a single
qubit. By preparing a number of qubits in an exponential number of specific
superpositions, quantum computers can then perform a computation on those inputs
instantly. These computations allow for quantum algorithms to be implemented. A
quantum algorithm is an algorithm that utilises a quantum mechanical property such
as superposition or entanglement to realise a considerable algorithmic complexity
speedup when performed on a quantum computer as opposed to a classical computer.

One example of such an algorithm is the Quantum Fourier Transform (QFT),
which is a quantum equivalent of the Discrete Fourier Transform (DFT) [Cop94]. The
QFT uses a quantum register, a series of qubits in prepared superpositions, as input
and performs a Fourier transformation as its output. While the DFT requires O(n2n)
gates, the QFT uses the property of the input being 2n to require just O(n2) gates,
which equates to an exponential increase in efficiency. Following the discovery of
the QFT by Coppersmith in 1994, several quantum algorithms have been developed
making use of its efficiency.

Bringing quantum computers out of the theoretical world and into the real world
is however not an easy task. To create a quantum computer one would need to be
able to isolate and manipulate particles small enough to be susceptible to quantum
mechanics such as electrons or ions, with high precision. Current implementations
such as IBM’s Quantum System One requires very rare superconducting materials
such as niobium [IBM22b] to achieve this ability.

One of the largest challenges with manipulating quantum particles is quantum
decoherence, which results in quantum computers being increasingly error-prone
the longer an operation takes to complete [CLSZ95]. These particles are inherently
unstable unless perfectly isolated from outside interactions such as radiation. In the
real world perfect isolation is impossible as components of the quantum processor
itself can be the source of these interactions.

A way to mitigate this issue is to use several qubits for error correction. When
talking about qubits, it’s common to differentiate between physical and logical qubits.
A physical qubit is the physical device emulating a two-state quantum system, for
example an ion trapped in an electromagnetic field, along with mechanisms to
manipulate its quantum mechanical properties and to measure them. A logical qubit
is an abstract construction of multiple physical qubits that is able to perform as
specified when doing a quantum computation. To construct a single logical qubit,
one would need at least 1000 physical qubits according to current estimates to ensure
stability and error correction [FMMC12].

Despite these challenges, progress is being made in the construction of quantum
computers. In the case of IBM’s Quantum System, their 433-qubit processor, IBM
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Osprey, was unveiled in November 2022 [CN22], a year after the unveiling of the
127-qubit IBM Eagle. In addition to this, IBM has indicated that their research
will lead to the announcement of a 1121-qubit processor in 2023 through their
development roadmap [IBM22a], which could possibly realise the first implementation
of a generalised logical qubit.

If the yearly increase in qubits in IBM’s quantum processors remains a continuing
trend, there seems to be an exponential growth per year, reminiscent of Moore’s
Law which implies that computational power for classical processors doubles every
two years. If there is in fact a quantum equivalent of Moore’s Law, the quantum
supremacy where quantum algorithms are able to outperform classical algorithms
for applicable problems with realistic parameters may very well arrive sooner than
expected.

2.1.2 Shor’s Algorithm

The same year as Coppersmith’s discovery of the QFT, mathematician Peter Shor
applied it to make another discovery that would have serious consequences for
asymmetric cryptography. Combining the efficiency of the QFT with modular
exponentiation through repeated squarings, Shor developed an algorithm capable of
finding the prime factors of an integer with algorithmic complexity of approximately
order O((log n)3)) when performed on a quantum computer [Sho94]. Compared
to the General Number Field Sieve (GNFS), the fastest known classical integer
factorisation algorithm which runs in sub-exponential complexity, Shor’s algorithm
provides an exponential speedup.

Shor’s algorithm works in simple terms by first reducing the problem of factoring
to order-finding [Wol87]. It then uses the QFT through initialising the input as a
quantum superposition of pairs of integers of the form (r, xr mod N), where N is
the integer the algorithm is trying to factor, x being a random number not divisible
by N ’s factors, and r being possible periods. When collapsing the QFT, interference
cancels out all periods other than the true period r. One can then find a factor of N

by computing the greatest common divisor (GCD) of r − 1 and N .

By reducing the algorithmic complexity from sub-exponential to polynomial, the
problem of factorisation goes from being computationally intractable to trivial. In
essence, a factorisation that would take thousands of years to solve on a classical
computer could be performed on a quantum computer in a couple of minutes. As a
consequence, Shor’s algorithm practically breaks several cryptosystems.

Public-key cryptography is essential to how confidentiality and authenticity is
maintained in the major part of today’s digital communication. PKE algorithms
such as DH and RSA are widely used in several internet protocols. Every time you
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open a webpage, an HTTPS connection is made, invoking one of the aforementioned
algorithms through the use of Transport Layer Security (TLS) [Res18]. DH and
RSA are built upon the assumption that respectively the DL and IF problem are
computationally intractable.

Similar to how the order-finding problem is a reduction of the IF problem, the
IF problem is a reduction of the DL problem [Wol87]. As a result, Shor’s algorithm
renders the security assumptions of both DH and RSA broken when subjected to an
attack from a sufficiently strong quantum computer. Despite the progress in quantum
computing, a quantum computer strong enough to break for example RSA with 2048
bits of security in less than 24 hours would require at least 4098 logical qubits [GM19].
This would presumably equal more than 100 million physical qubits, which is several
orders of magnitude more than the 433 physical qubits of the state-of-the-art IBM
Osprey.

Since the discovery of Shor’s algorithm, cryptographic algorithms based on
susceptible computational problems have seen continued use for several decades, on the
assumption that the existence of quantum computers of sufficient strength wouldn’t
be a reality in the foreseeable future. However, in recent years the developments in
quantum computing have been accelerating. Extrapolating the progress in recent
years, one can assume that a quantum computer capable of factoring a 2048 bit RSA
key will be a reality within the next 30 years [SR20].

2.1.3 NIST Standardisation process

It’s becoming clear that quantum computers with a large amount of processing
power have gone from being theoretical, to a complicated engineering challenge,
to an approaching inevitability. The rapid approach of the quantum supremacy
with the realisation of Shor’s algorithm’s potential has been motivating the field
of Post-quantum Cryptography (PQC). Creating a new public-key cryptography
infrastructure to resist quantum computer attacks is not a simple task, and a deadline
is starting to become apparent.

Since the discovery of Shor’s algorithm, researchers have been developing algo-
rithms based on different, quantum-resistant computational problems to DL and IF.
With a lot of possible schemes being researched and developed, the US National
Institute of Standards and Technology (NIST) initialised a process to establish a
standard for post-quantum key exchange algorithms and signature schemes in 2016
[Nat16].

In the NIST process’ call for proposal [Nat16], they define five categories for
different security levels. Each category corresponds to computational resources
required to break the security definitions for existing symmetric block ciphers or
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NIST Level Symmetric Equivalent Computational cost
I 128-bit Block Cipher 2143

II 256-bit Hash function 2146

III 192-bit Block cipher 2207

IV 384-bit Hash Function 2210

V 256-bit Block cipher 2272

Table 2.1: NIST security levels given in [Nat16].

hash functions. Table 2.1 shows the symmetric primitive with equivalent security
definitions, along with the computational cost for an attack that breaks the level,
given in the amount of classical logic gates required.

In the case of key exchange algorithms, the NIST process has throughout three
rounds of evaluation whittled down the number from several dozen potential suitors to
a handful. The relevant submitted schemes that have been submitted throughout the
process can roughly be categorised into three categories, based on what problem they
base their complexity assumption upon: Lattice-based, Code-based and Isogeny-based
schemes.

2.1.4 Lattice-based Schemes

One of the most promising quantum-resistant computational problems that can be
used for cryptography is the Shortest Vector Problem (SVP) [MR09]. In simple
terms, the SVP asks to find the shortest non-zero vector in a vector space, given a
lattice basis for the vector space and a norm, usually the euclidean norm.

Formally, the SVP is defined as following: Given a lattice basis B, find a nonzero
vector v ∈ L(B) such that ||v|| = λ1(L(B)), where λ1(L) denotes the length of the
shortest vector of the lattice L. By additionally restricting the coefficients to be
integers, this problem becomes computationally hard, with no known speedups using
quantum computing.

The best known methods of solving or approximating the SVP are lattice enumer-
ation and lattice sieving [Yas21]. Algorithms based on these methods are known to be
of at least exponential complexity order, making them computationally intractable.
Using problems that can presumably be reduced to the SVP, such as the Learning
with Errors (LWE) or Learning with Rounding (LWR) problem, allows the creation
of a quantum-resistant public key cryptosystem. This is due to their functionality
as trapdoors, ie. easily computable one-way functions with computationally hard
inverses [CK17].
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Lattice-based schemes stand out among the other categories by having relatively
short keys, allowing for more efficient transmission across the communication medium.
In addition to efficient key sizes, some of these schemes are able to outperform private-
key computations more efficiently than classical PKE algorithms such as RSA.

Several lattice-based schemes have been submitted to the NIST process. The
lattice-based algorithm Kyber [BDK+18] was selected as the first standardised
post-quantum key exchange algorithm in July 2022, following the third round of
the process. With a lattice-based scheme selected for standardisation, trust in the
security assumption for schemes based on the SVP remains strong.

The schemes NTRU [HRSS17] and Saber [DKSV18] were also considered during
the third round of submissions, but were taken out of consideration for the fourth
round of submissions as a result of Kyber being standarised.

2.1.5 Code-based Schemes

Code-based cryptography is probably the field within post-quantum cryptography
that has existed for the longest time. Schemes within this category base their
computational complexity assumption on the problem of finding the closest codeword
to another, minimising the hamming distance, given a vector and a linear code. This
is a problem within Coding Theory known as decoding a linear code over a noisy
channel, and is known to be computationally hard [OS09], with the most efficient
solution algorithms working in exponential complexity order.

The most well-known code-based scheme is the McEliece cryptosystem, developed
in 1978 by Robert McEliece [McE78]. In essence, the scheme works by a receiving
party providing a generator for a public linear code and a given number of allowed
errors, and retaining a secret efficient decoding algorithm. Another party may
then compute a product of the generator and a message, and randomly add errors
according to the allowed number, resulting in a ciphertext. The receiving party may
then decode the message using their secret decoding algorithm.

A modified McEliece cryptosystem from the original 1978 scheme [BCL+17] has
been one of the candidates for the NIST process throug all the three completed rounds,
along with other code-based schemes such as HQC [MAB+18]. A disadvantage
with code-based schemes is that they often require larger public and private keys,
making them highly inefficient when transmitting over a communication channel.
Some schemes try to alleviate this problem using different methods to reduce these
parameters, such as HQC with Quasi-Cyclic codes, but they still remain larger than
their lattice-based competitors.
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2.1.6 Isogeny-based Schemes

Though most of the submitted schemes of the NIST fall into either the lattice-
based or code-based categories, there are some exceptions. Supersingular Isogeny
Diffie-Hellman Key Exchange (SIDH/SIKE) [CCH+19] progressed through the three
completed rounds of the process and showing promise in comparison to its competitors
due to its ability to be used non-interactively, akin to the properties of the ECDH
key exchange it aimed to be a quantum-resistant replacement of.

SIDH used secret isogenies between elliptic curves as its private keys as opposed
to the elliptic curve scalars used in ECDH. Through this method, SIDH avoided
being susceptible to being broken by Shor’s algorithm by relying on isogeny walks
instead of exponentiation. Though not susceptible to Shor’s algorithm, weaknesses
in SIDH’s construction proved it not to be bullet-proof.

In August 2022, Castryck and Decru published an efficient attack on SIDH [CD22]
exploiting information about auxiliary torsion points and properties of the starting
curves shared publicly by the communicating parties, and thereby completely breaking
the security of SIDH extremely efficiently using a classical computer. Though some
isogeny-based schemes such as CSIDH might not be susceptible to the attack, trust
in these types of schemes was severely reduced by the attack, and how it suddenly
and completely broke SIDH. If new and better isogeny-based schemes might rise
from the ashes of SIDH remains to be seen.

2.2 Key Encapsulation Mechanisms

Symmetric cryptosystems usually outperform asymmetric cryptosystems for encryp-
tion and decryption computations. Asymmetric schemes are mostly just used to
transmit or otherwise agree upon a symmetric key for use in secure communication
outside of the initial handshake. For this reason, all of the post-quantum schemes
submitted to the NIST process are constructed as a Key Encapsulation Mechanism
(KEM), instead of a key agreement protocol.

A KEM is a construction that uses asymmetric cryptography to encapsulate
a symmetric key for a symmetric key encryption scheme (SKE), such as AES or
ChaCha, and potentially additional information used for symmetric cryptography or
padding. In most cases, the KEM derives information from the asymmetric scheme
to generate the symmetric key.

KEMs are made up of three main components: A key-generation function KeyGen,
an encapsulating function Encaps, and a decapsulating function Decaps. Required
inputs and outputs for these functions are shown in algorithms 2.1, 2.2 and 2.3
respectively.
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Algorithm 2.1 KEM.KeyGen()
1: return (pk, sk)

Algorithm 2.2 KEM.Encaps(pk)
1: return (c, shk)

Algorithm 2.3 KEM.Decaps(sk, c)
1: return shk′

The key-generation function generates two keys; a public key and a private key.
The public key is then sent to a recipient who derives a symmetric key, usually from
a shared secret generated through combining the recipient’s private key with the
initiator’s public key, and encapsulates it using the encapsulating algorithm with the
initiator’s public key. The responder then sends the encapsulation to the initiator,
who uses their private key and the responder’s public key with the decapsulating
algorithm to retrieve the symmetric key.

By using the KEM construction, a secure system can be easier abstracted without
selecting a specific algorithm, and thereby provides flexibility for developers. In
addition, KEM’s provide efficiency for sharing symmetric keys, requiring only two
messages to establish a symmetric key: The transmission of a public key, and in
response transmitting the encapsulated symmetric key using a shared secret derived
from the initiator’s public key and the responder’s private key.

2.3 Hybrid Scheme

DH and its derivatives have several years of research and scrutiny behind them, and
apart from the quantum threat of Shor’s algorithm, these schemes have maintained
their security properties throughout. This is however not the case for the supposed
quantum-resistant schemes. The field of post-quantum cryptography is not considered
mature, with the attack on SIDH proving that promising candidates might very well
be broken with further scrutiny.

Nevertheless, there is a need to put quantum-resistant schemes into use today.
Information that is sensitive today is highly likely to be sensitive 30 years into
the future. Personal information, economic data and medical information are some
examples of data that is often transmitted with the assurance of the security properties
of PKE schemes. An adversary might collect encrypted data containing these types
of information today, with the intent of decrypting it using future methods and using
that information with malicious intent.
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With the uncertainty surrounding the security properties of supposed quantum-
resistant algorithms along with the need to put these algorithms into use, researchers
have suggested the use of post-quantum algorithms in a hybrid setting during the
transitional period to quantum supremacy [GCR22]. This entails combining a post-
quantum algorithm with a classical algorithm like ECDH in a way that ensures the
security of the system as long as at least one of the component algorithms remains
secure. That way, if the assumed post-quantum algorithms are broken through the
use of a classical computer, akin to what happened to SIDH, the security properties of
the classical component would at least preserve security against a classical adversary.

Defining how a system is secure is no easy task however, and when combining
several schemes into one, security proofs for the component algorithms might not
hold up unless the combination is done in a way that preserves those properties. To
define security properties in a systematic way, the concept of semantic security is
frequently used when providing proofs for cryptographic algorithms.

Semantic security is in modern security proofs most frequently defined through one
of two definitions. Indistinguishability under a chosen plaintext attack (IND-CPA)
entails that it is computationally infeasible for an attacker to distinguish between
two different ciphertexts that were created from two different plaintexts, even if the
attacker is able choose the plaintexts to be encrypted. In essence, ciphertexts should
be indistinguishable from random noise, and as long as the encryption scheme is
pseudo-non-deterministic, this property holds.

Indistinguishability under a chosen ciphertext attack (IND-CCA) is similar, but in
addition the attacker may request decryption of ciphertexts other than the challenge.
If a scheme is considered IND-CCA secure, it follows that it is IND-CPA secure
as well, and IND-CCA is considered the standard for secure cryptosystems. When
combining schemes, this is the property we would like to preserve.

Bindel et. al. [BBF+19] presents a method that allows a combined scheme to
preserve the IND-CCA property as long as one of the constituent schemes and a
Message Authentication Code (MAC) are IND-CCA secure, and provides a formal
proof for this property. The method consists of performing an XOR operation on
the symmetric keys generated by two KEMs and then calculating a MAC on the
concatenation of the key encapsulations.

As all post-quantum cryptosystems submitted to the NIST process are required
to be IND-CCA secure, and ECDH is IND-CCA secure with respect to a classical
attacker, this method perfectly fits for application as a combiner for a hybrid scheme.
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2.4 Wireguard

The Virtual Private Network (VPN) protocol WireGuard was developed and released
by Donenfeld in 2015 with the aim of providing a VPN protocol with an emphasis of
simplicity and auditability as compared to existing alternatives such as OpenVPN
and IPsec [Don17]. In recent years, WireGuard has started to emerge as the preferred
VPN protocol for many adopters, with several VPN service providers, such as
NordVPN [Juo22] and ProtonVPN [Pro21], transitioning due to better performance
results, and the protocol being integrated in the mainline Linux kernel in 2020.

To establish a symmetric key, WireGuard uses ECDH in its handshake to arrive at
a shared secret. As a result, WireGuard is susceptible to an attack from an adversary
with a sufficiently strong quantum computer that is capable of implementing Shor’s
algorithm efficiently.

After the handshake is performed, WireGuard uses ChaCha20-Poly1305 for
symmetric key encryption, and Blake2s for hashing and message authentication
purposes. Even though Grover’s algorithm [Gro96] on a quantum computer might
provide a quadratic speedup, both of these algorithms are still considered quantum-
safe as long as the symmetric key length is doubled to achieve the same level of
security. This essentially makes the asymmetric handshake component the only part
of WireGuard that is particularly susceptible to a quantum computer attack.

2.4.1 Noise Protocol

WireGuard achieves a relatively small codebase compared to its alternatives through
multiple methods. Of note, it implements its public key exchange through the use of
the Noise Protocol framework [KNB19]. Noise uses set structures of tokens repre-
senting cryptographic primitives and message patterns to systematically implement
cryptographic features, such as key exchange handshakes and message exchanges.
Specifically, WireGuard uses the Noise_IKpsk2 pattern for its handshake.

In figure 2.1, the message token s defines that a static key share is being performed.
In the case of WireGuard, this static key serves as the identifier of a party, and is
pre-authenticated outside of the communication band. In practice, this may be done
through some key distribution mechanism or simpler mechanisms such as a secure
email transfer.

In message A, an initiator requests a handshake with a responder by sending a
message containing their ephemeral public key e, their identity and static public key
s. Of note, this static public key is already assumed known by the responder, and is
not sent in plaintext, but encrypted and hashed so that the responder may verify it,
for the purpose of identity hiding.
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Figure 2.1: The Noise_IKpsk2 pattern.

Further, the token es signifies that they are calculating a shared secret using
their ephemeral private key and the responders static public key, while the token ss

indicates that they are calculating a shared secret using their static private key and
the responder static public key.

The responder then calculates an equivalent es shared secret with their static
private key and and the initiators ephemeral public key, and ss shared secret with
their static private key and the initiators static public key, before responding with
message B.

In message B, the responder replies with their ephemeral public key e, and
indicates that they are calculating a shared secret ee using the initiators ephemeral
public key and their ephemeral private key, as well as the calculation se indicating a
shared secret using the initiators static public key and their own ephemeral private
key. The psk token indicates that a pre-shared symmetric key is to be used as
additional keying material, which is optional in WireGuard.

The shared secrets ee, es, se, ss and optionally psk are throughout the handshake
combined into a session key using a key derivation function (KDF). The result of
these calculations is a symmetric session key that incorporates the properties of the
different shared secrets. Multiple properties are gained from mixing the ephemeral
and static secrets, with the main ones being resistance against key-compromise
impersonation and replay attacks, along with perfect forward secrecy which ensures
that session keys stay uncompromised even if static secrets are compromised [Don15].

Being based on a DH variant key-exchange, the Noise_IKpsk2 pattern doesn’t
directly lend itself to usage with post-quantum cryptosystems. The first problem
that arises is that the handshake pattern has to be modified to be based on a KEM
triple of algorithms instead of the public and private key exchange scheme used by
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the pattern.

The second problem isn’t directly apparent from the Noise_IKpsk2 pattern,
but is a result of the static and ephemeral secrets exchanged through the pattern.
WireGuard uses these secrets to compute a chaining key that incorporates their
properties. To create a hybrid implementation of WireGuard one would have to
create a chaining key that incorporates components that achieve the same properties
through the use of a KEM construction. As KEMs are inherently ephemeral, creating
an equivalent to the ss shared secret is especially difficult.

2.4.2 Post-Quantum WireGuard

In 2021, Hülsing et al. [HNS+21] presented a fully post-quantum implementation of
WireGuard called PQ-WireGuard, which uses a combination of Classic McEliece to
replace the static component and a tweaked implementation of Saber that removes
the Fujisaki-Okamoto transform to create a lightweight IND-CPA version of Saber for
the ephemeral component. This implementation avoids Classic McEliece’s inherent
problem of extremely large key sizes by having them as pre-shared static keys, and
considers IND-CPA to be adequate security for the ephemeral component.

PQ-WireGuard relies on the assumption that both Saber and Classic McEliece
are and remain secure both under a classical and post-quantum paradigm. While
Classic McEliece might be the post-quantum scheme that has existed for the longest
without being broken, it has glaring problems in respect to performance and key
sizes, while Saber is still a relatively new scheme and might very well be broken given
further scrutiny and new discoveries.

As opposed to PQ-WireGuard, this project aims to research an alternative
implementation that ensures security against a classical adversary should the assumed
quantum-secure component be broken, in addition to the assumed properties against a
quantum adversary that PQ-WireGuard provides, given the post-quantum component
remains unbroken. Additionally, it aims to develop a version with flexibility in regards
to which post-quantum KEM that should be used for testing purposes.



Chapter3Research Methodology

This chapter will describe the method in which the research project was performed.
It will go into detail how the hybrid algorithm was designed and implemented as
a handshake component in the BoringTun implementation of the VPN protocol
WireGuard. Further, it will describe how testing results were gathered.

3.1 Algorithm Design

The following subsections describe how a KEM is constructed using ECDH, and how
this construction can be combined with a post-quantum KEM to create a hybrid
KEM.

3.1.1 From ECDH to ECKEM

To create a hybrid cryptosystem that uses ECDH in combination with a post-quantum
KEM, the ECDH component has to be redefined to work as a KEM instead of being
simply a key agreement scheme. The main components required to create a KEM
from ECDH is a KDF and an encapsulation mechanism. Fittingly, WireGuard
already uses HKDF as its KDF with Blake2s as its HMAC function which works
adequately for a KDF, and ChaCha20 can serve as the encapsulation mechanism.

Algorithm 3.1 ECKEM.Encaps(pk, sk)
1: k ← SharedSecret(pk, sk)
2: shk ← KDF (k)
3: c← SymmetricEncryption(shk, k)
4: return (c, shk)

Key generation works exactly the same as in ECDH, with a pair of public and
private keys being generated. For encapsulation, the responder derives a shared key
from the shared secret generated by the initiator’s public key and the responder’s
private key using the KDF. This shared key is then used to encapsulate a generated

17



18 3. RESEARCH METHODOLOGY

KEM key with the symmetric cryptosystem, which produces a ciphertext that is sent
to the initiator, along with the responder’s public key.

Algorithm 3.2 ECKEM.Decaps(pk, sk, c)
1: k′ ← SharedSecret(pk, sk)
2: shk′ ← SymmetricDecryption(c, k′)
3: return shk′

For decapsulation, the same shared secret is generated with the initiator’s private
key and the responder’s public key, and the shared key is derived through the KDF.
The initiator then decapsulates the KEM key with the shared key. The end result is
both parties having the same symmetric key. Following, this KEM-like construction
of ECDH will be referred to as ECKEM.

With two KEMs, our ECKEM described and a post-quantum KEM (PQKEM),
a combined hybrid KEM (HKEM) can be constructed. As the combination method,
the XOR-then-MAC combiner as described in Bindel et al. [BBF+19] will be used,
specified according to using ECKEM and a PQKEM selection as the component
algorithms.

3.1.2 Key Generation

Algorithm 3.3 HKEM.KeyGen()
1: pkECKEM , skECKEM ← KeyGenECKEM ()
2: pkP QKEM , skP QKEM ← KeyGenP QKEM ()
3: pkHKEM ← (pkECKEM , pkP QKEM )
4: skHKEM ← (skECKEM , skP QKEM )
5: return (pkHKEM , skHKEM )

The hybrid key generation algorithm (Algorithm 3.3) does not require any ad-
ditional operations to retain the security properties of the component KEMs. The
main purpose of the key generation algorithm is to generate two pairs of public and
private keys, one from the ECKEM and one from the PQKEM, and output these
keys according to the definition of a KEM.

In the HKEM construction, the public keys from the two KeyGen algorithms
are concatenated into a single key tuple, pkHKEM . Similarly, the private keys are
concatenated into a single key tuple skHKEM . These key tuples are then output
from the hybrid KeyGen algorithm as the public and private key.
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Algorithm 3.4 HKEM.Encaps(pkECKEM , pkP QKEM )
1: (cECKEM , kECKEM ||kMAC−EC)← EncapsECKEM (pkECKEM )
2: (cP QKEM , kP QKEM ||kMAC−P Q)← EncapsP QKEM (pkP QKEM )
3: kHKEM ← kECKEM ⊕ kP QKEM

4: kMAC ← (kMAC−EC , kMAC−P Q)
5: c← (cECKEM , cP QKEM )
6: τ ←MACkMAC

(c)
7: return ((c, τ), kHKEM )

3.1.3 Key Encapsulation

The hybrid encapsulation algorithm (Algorithm 3.4) takes as input the public key
tuple of the initiator. The encapsulation algorithm of the two component KEMs
generate two keys and two ciphertexts containing these keys, encrypted with the
corresponding public keys extracted from the initiator’s public key tuple. These keys
are then separated into two components each, a KEM key and a MAC key for each
component. A bitwise XOR is then performed on the two KEM keys.

The MAC keys and the ciphertexts are concatenated into a single hybrid MAC
key and ciphertext, and the ciphertext gets signed using the MAC function, in our
case Blake2s, with the hybrid MAC key. The algorithm outputs the ciphertext
concatenated with the signed tag, and the hybrid KEM key. The encapsulated key
along with the tag is sent to the initiator, while the KEM key is kept secret by the
responder.

3.1.4 Key Decapsulation

Algorithm 3.5 HKEM.Decaps((skECKEM , skP QKEM ),((cECKEM , cP QKEM ), τ))
1: k′

ECKEM ||k′
MAC−ECKEM ← DecapsECKEM (skECKEM , cECKEM )

2: k′
P QKEM ||k′

MAC−P QKEM ← DecapsP QKEM (skP QKEM , cP QKEM )
3: k′

HKEM ← k′
ECKEM ⊕ k′

P QKEM

4: k′
MAC ← (k′

MAC−EC , k′
MAC−P Q)

5: if MVfk′
MAC

((cECKEM , cP QKEM ), τ) = 0 : then
6: return ⊥
7: else
8: return k′

HKEM

The hybrid decapsulation algorithm (Algorithm 3.5) works as the inverse of the
encapsulation algorithm, and takes as input the received ciphertext along with the
tag, and the initiator’s private key tuple. The algorithm uses the decapsulation
algorithms of the component KEMs with their respective private keys to extract the
KEM and MAC key components from the received ciphertexts.
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The algorithm then constructs the hybrid KEM key and MAC key in the same
way as the encapsulating algorithm. It then checks the ciphertext against the tag
and the constructed MAC key, and rejects the handshake if the verification fails. A
failure of the verification would indicate that the received message has been either
forged or tampered with in some way. Finally, given a successful verification, the
algorithm outputs the composite KEM key to the initiator, resulting in both parties
having the same shared secret hybrid KEM key.

3.2 Implementation Design

The following subsections describe considerations and decisions taken when designing
and implementing the hybrid cryptosystem in a userspace version of WireGuard.

3.2.1 Noise Protocol Changes

As mentioned in section 2.4.1, the Noise_IKpsk2 pattern assumes that a non-
interactive DH variant is used for the key exchange, and does not lend itself directly
to being used with KEMs. To make a version of the pattern that uses KEM
constructions instead of DH, the calculation tokens need to be replaced with keying
material that preserves the properties of the four static and ephemeral randomness
combinations.

PQ-WireGuard [HNS+21] with its KEM-based handshake serves as a model for
how to derive the keying material for all of the combinations except for the static-
static pairing through the use of key encapsulation. An encapsulated key is inherently
ephemeral as it is generated during the instance of performing the encapsulation.
Encapsulating such a key with the static public key and the ephemeral public key
of the other party provides the functionality of the ephemeral-static, ephemeral-
ephemeral and static-ephemeral shared secrets.

The main purpose of the static-static pairing in WireGuard’s implementation of
the Noise_IKpsk2 handshake is to prevent unknown-keyshare attacks [HRSS17]. To
provide a construction that mitigates this attack, the optional psk token is used to
indicate that a hashed XOR of the initiator and responder’s static public keys is to
be used as keying material. With the static public keys already being considered
secret and never transmitted in plaintext, this value additionally serves as material
to mix static-static randomness into the session key.

Figure 3.1 shows the new Noise pattern with changes from the Noise_IKpsk2
pattern indicated in blue. A new token, enc(ab), is introduced, indicating an
encapsulated key using the public key a originating from the communicating party b.
In this new pattern, the changed tokens no longer simply indicate a calculation to be
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Figure 3.1: Modified Noise_IKpsk2 pattern.

performed, but an actual value sent as part of the message along with an instruction
to decapsulate the value. The psk token is no longer optional, and indicates that the
hashed XOR of the static public keys should be mixed into the session key.

Figure 3.2: Key material equivalents with KEM-based construction.

With the new pattern, figure 3.2 shows the new key equivalents in bold, and
how they are derived respectively by the initiator and responder. In the figure,
ct denotes a ciphertext encapsulating a shared KEM key shk, spk a static public
key, ssk a static private key, epk an ephemeral public key and esk an ephemeral
private key. Subscript letters denote the originator of the key and subscript integers
chronologically differentiate the ciphertext encapsulations and shared KEM keys
generated throughout the handshake.

3.2.2 Post-quantum Algorithms Library

When testing for multiple different post-quantum cryptosystems, implementing each
cryptosystem that warrants testing from the ground up would be an insurmountable
and error-prone task. There are multiple software libraries that provide implemen-
tations of several NIST candidates, with the Open Quantum Safe (OQS) project’s
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liboqs library [SM17] being the most prominent option with implementations of
every current NIST candidate algorithm, along with several versions with different
parameters.

A problem arises when using an external library along with the C implementation
of WireGuard. This implementation is developed for the Linux kernel to improve
performance, but comes with the caveat of not being able to use the C standard
library of functions. Liboqs and other post-quantum algorithm libraries are all
dependent on the use of these functions.

This leaves two options. Either implementing several post-quantum algorithms
from scratch without the use of the C standard library, or making the implementation
based on a user-space implementation of WireGuard instead. Luckily, there are
several versions of WireGuard, with for example WireGuard-go [Don19], implemented
in the Go programming language, or Cloudflare’s Rust implementation of WireGuard,
BoringTun [Clo19], both of which are user-space implementations and open source.

3.2.3 BoringTun

The BoringTun implementation was the natural choice to build the hybrid imple-
mentation from. BoringTun provides increased performance metrics as compared
to WireGuard-go. Rust as a programming language provides several advantages
compared to Go with memory safety, simple integration with C libraries such as
liboqs and generally being a more accessible language to work with.

The main part of BoringTun that had to be modified was the handshake com-
ponent. The first task was to change the ECDH handshake construction to the
KEM-based construction described in section 3.2.1. With simple equivalents to
the session key components and a similar messaging pattern, this mainly entailed
changing the existing shared secret calculations to decapsulations, and populating the
handshake messages with additional values for the encapsulations when generating
handshake initiations and responses. Parameter declarations were changed from
ECDH-based keys and shared secrets to new keys and types defined by our new
module HKEM.

The second task was to construct the hybrid KEM mechanism. The ECKEM
component was constructed with HMAC with Blake2s as its KDF and ChaCha20
as the encapsulation mechanism as described in section 3.1.1. The key generation,
encapsulation and decapsulation algorithms were then constructed as described in
algorithms 3.3, 3.4 and 3.5 respectively, with Blake2s in keyed mode as the MAC
algorithm.

New structures for public and secret keys, shared secrets, MAC keys, MAC tags
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and ciphertexts were created as items that could be referenced through the use of
the HKEM module in the same way that the originial Boringtun implementation
references the x25519_dalek ECDH module.

The implementation had to be made with a simple mechanism for changing
the post-quantum component used in the hybrid algorithm. With KEMs being
constructed as a set triplet of algorithms with set inputs and outputs, the only factor
that would change apart from function calls between the different algorithms were
expected parameter sizes for values such as keys and ciphertext.

Otherwise, all liboqs KEM functions are referenced using foreign function in-
tegration with the templates OQS_KEM_{scheme}_{keypair/encaps/decaps},
where scheme is the algorithm and version, such as for example Kyber_1024. The
selected algorithms were instantiated with their parameter sizes and liboqs references
in separate modules and configured as feature selections upon compilation, defined
in the HKEM module.

3.2.4 Post-Quantum Algorithm Choices

When selecting which algorithms to use, there are two main considerations. The
first consideration is which version of the algorithm to use. The NIST candidates
have different versions with different parameters according to five security categories
defined in the standardisation process’ call for proposals [Nat16]. The highest level,
NIST level V, requires parameters that are capable of resisting an attack with
resources comparable to those required to break a block cipher with 256 bits of
security.

The NIST process is mainly focusing algorithms by their first three levels, which
at most is analogous to a block cipher with 192 bits of security. With the hybrid
system being designed to stay secure for several decades, and expecting computational
attacking capabilities to be significantly improved throughout those years, this project
will be testing algorithms with parameters according to NIST level V.

The second consideration is the public key and ciphertext sizes of the algorithms
with parameters according to NIST level V. These two values are the largest values
that are transmitted as part of a handshake and together make up most of the
datagrams of message A and B shown in figure 3.1. The sizes of the selected KEMs
from round 3 of the NIST process along with alternative candidates are shown in
table 3.1 with their NIST level V parameters.

With WireGuard being based on UDP, the maximum transmission unit (MTU)
for a datagram is constrained by the MTU for an IP packet, which is roughly 65 000
bytes [Pos81]. This limit practically rules out both Classic McEliece and FrodoKEM
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KEM PK (bytes) SK (bytes) Ciphertext (bytes)
Classic-McEliece-6688128 1044992 13892 240
Kyber1024 1568 3168 1568
NTRU-HPS-4096-821 1230 1590 1230
FireSaber 1312 3040 1472
FrodoKEM-1344-AES 21520 43088 21632
HQC-256 7245 7285 14469

Table 3.1: Public Key, Secret Key and Ciphertext sizes for NIST finalist and
alternative KEMs with NIST level V parameters [SM17].

as eligible, as both messages in the handshake would require fragmentation on the IP
layer, which is ill advised in under normal circumstances [BBH+20], and particularly
in cryptographic settings. IP fragmentation is particularly vulnerable to packets
being dropped, and WireGuard will not initiate a new session before 15 seconds have
passed since the last packet arrived [Don15], which would likely result in several
failed connections if these algorithms were to be used.

There is also a further constricting MTU of 1500 bytes for a link layer frame,
which results in about 1400 bytes of information per package when accounting for
headers. This limit is set to 1420 bytes in WireGuard by default. This segmentation
is done at the application layer. This provides a certain degree of reliability as
compared to IP fragmentation, but with larger packet sizes, more segmentation is
required leading to more frame headers, which again leads to more of the bandwidth
and processing time being used for fragmentation.

Apart from the previously mentioned schemes, the secondary MTU limit only
becomes somewhat of a problem for HQC-256, which requires at least 36 183 bytes of
data for the two ciphertexts and the ephemeral key in message B, just accounting for
the post-quantum component. This results in a segmentation into at least 26 packet
segments, which through preliminary testing resulted in several failed handshakes.
With Classic McEliece, FrodoKEM and HQC being eliminated, we are left with three
algorithms to test: Kyber, Saber and NTRU.

3.3 Testing

The following subsections describe the testing environment in which the testing was
performed, and the tools and methods used to gather the results.
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3.3.1 Testing Environment

With a hybrid implementation of BoringTun ready, we proceed to set up a testing
environment. A virtual Ubuntu workstation was set up on resources allocated from
NTNU’s Openstack implementation SkyHigh [Obr22], with the following specifica-
tions:

– OS: Ubuntu 22.04.1

– RAM: 4 GB Virtual DDR4-3200

– CPU: 4 Virtualised Intel Haswell Cores @ 2.0 GHz

The operating system was initialised as a minimal installation of Ubuntu, and
testing was done with a console terminal being the only application running on the
workstation, besides the BoringTun application being compiled and tested through
the use of the Rust package manager Cargo. During the tests, packets are sent
through a tunnel through localhost.

3.3.2 Testing Methodology

For testing, an internal benchmarking module was made for the handshake component
through the use of the Criterion package [AH22], which is used in the original
implementation of BoringTun. Criterion benchmarks an internal routine by first
performing a warmup by running the routine for a given time, before it performs
measurements for a set measurement time with a set sample-size.

The average time for a sample is calculated by dividing the time taken for a
sample to complete by the number of iterations of the routine performed by the
sample. For each sample completed, the number of iterations of the routine are
increased linearly by a factor calculated from the estimate of an iteration completion
during the warmup.

The results presented in the following chapter are results of benchmarks using a
measurement time of 300 seconds with a sample size of 100. The measured times
include both the runtime of algorithmic calculations and packet transmission.

The handshake consists of four message transmissions; Initiation with a hashed
static public key, message A and B shown in figure 3.1, along with a single confirma-
tion packet sent using the final session key.

The original implementation of Boringtun (version 0.5.2) [Clo19] was benchmarked
for comparison purposes, in addition to hybrid implementations using Kyber1024,
FireSaber and NTRU-HPS-4096-821 respectively as their post-quantum component.





Chapter4Results

This chapter presents the results of testing different post-quantum components in a
hybrid system in the form of performance metrics. Additionally, this chapter provides
supplementary data related to the post-quantum components that helps to explain
and analyse the results.

4.1 Test Results

Figure 4.1: Bar graph of average handshake completion times for different imple-
mentations of Boringtun.

Figure 4.1 shows a bar graph of the average time in milliseconds for a handshake to
complete over 100 Criterion samples. The original implementation of Boringtun had
an average time of 57.2 ms, and is significantly faster than the hybrid implementations.
Among the hybrid implementations, the NTRU–HPS-4096-821 version stands out
with an average time of 156.1 ms, while the FireSaber and Kyber1024 versions
perform quite similarly at 195.4 and 200.8 ms respectively.

27
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Figure 4.2: Box plot of sample data from different implementations of Boringtun.

Figure 4.2 shows a standard box plot of the distribution of all 100 Criterion
testing samples. From the medians in the plot being close to the averages in figure
4.1 and from the distributions having a low amount of skew, we can infer that the
results from each of the tests are relatively normally distributed.

The original implementation of Boringtun has a significantly lower variance in the
time it takes to complete a handshake. Among the hybrid implementations, NTRU
again outperforms with both a lower variance and median. FireSaber outperforms
Kyber by a margin on the average, but does so with greater variance.

4.2 Context data

The following subsections will present additional data that serves to put the gathered
results into context, and explain and discuss the results in Chapter 5.

4.2.1 KEM subroutine benchmarks

OQS provides up-to-date benchmarks for their KEM implementations in liboqs
[SM22]. Using this data, we can make estimates of how much the key generation,
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encapsulation and decapsulation calculations impact the time for a handshake to
complete.

Of note, OQS’s testing environment differs from this project’s testing environment
with a stronger processor. The benchmarking appears to be single-threaded and ran
on a single core with a nominal speed of 2.5 GHz, as opposed to similar execution
with a nominal speed of 2.0 GHz in this project’s testing environment. Accounting
for potential overclocking, it’s safe to assume that the corresponding times for this
project’s test environment are in reality larger by a factor between 1.25-1.5.

Figure 4.3: Average key generation routine completion time, from OQS benchmark
[SM22].

Figures 4.3, 4.4 and 4.5 respectively show the time for a key generation, en-
capsulation and decapsulation routine to complete in microseconds. As part of a
handshake in our hybrid implementation, key generation is called at two instances,
while encapsulation and decapsulation are called at three instances each.

The total time in microseconds for all eight of the post-quantum component
function calls is shown in figure 4.6 . In the case of all three post-quantum KEMs, the
calculations specifically related to that component amount to less than one percent
of the total handshake time, even when accounting for a increase in time averages by
a factor of 1.5.

4.2.2 Message size contributions

With KEM calculations having a negligible impact on the handshake completion
time, the differences in the test results might rather be explained by the sizes of
messages transmitted as part of the handshake. Using the values for the different
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Figure 4.4: Average encapsulation routine completion time, from OQS benchmarks
[SM22].

Figure 4.5: Average decapsulation routine completion time, from OQS benchmarks
[SM22].

KEM functions given in table 3.1, the post-quantum component’s contribution to
the message sizes can be calculated.

The figures in this section does not take into account the contribution from the
classical component, which in most cases produces an additional parameter of 32
bytes when a post-quantum parameter is generated.

Message A consists of an ephemeral public key, a ciphertext and a hashed static
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Figure 4.6: Total time for two key generation routines, three encapsulation routines
and three decapsulation routines, based on OQS benchmarks [SM22].

Figure 4.7: Total size contribution from the post-quantum component to the size
of message A in table 3.1.

public key with a size of 32 bytes. Figure 4.7 shows each post-quantum component’s
total contribution to the size of message A. Keeping in mind the 1420 byte limit in
the link layer, Kyber’s contribution to the message size requires fragmentation into
at least three datagrams, while Saber and NTRU need at least two. Considering the
additional data required for a MAC tag for the encapsulation, as well as classical
components, Saber’s implementation is likely to require fragmentation into at least
three datagrams, while NTRU remains at two.
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Figure 4.8: Total size contribution from the post-quantum component to the size
of message B in table 3.1.

Message B consists of one ephemeral public key, two ciphertexts and a 32
byte hash of the XOR of both static public keys. Figure 4.8 shows each post-
quantum component’s total contribution to the size of message B. Kyber and Saber’s
contributions require fragmentation into at least four datagrams, while NTRU requires
at least three. In this case, the additional data from two MAC tags and the classical
component is not likely to require additional fragmentation.

In total, Kyber and Saber’s implementation requires at least nine datagrams for a
full handshake: One for the sharing of the hashed static public key, three for message
A, four for message B and at least one for the final confirming message. NTRU’s
implementation requires at least seven datagrams for a full handshake: One for the
sharing of the hashed static public key, two for message A, three for message B and
at least one for the final confirming message.
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This chapter aims to discuss and analyse the gathered results with respect to the
research questions put forward in section 1.4. Further, it will discuss how the
project’s findings might contradict NIST’s assumptions when selecting Kyber as the
sole standardised lattice-based KEM.

5.1 Performance Impact

The results shown in figure 4.1 give a clear view of the performance cost of replacing
a classical system with a hybrid system as described in this project. Putting aside
latency and bandwidth, the time cost amounts to about three to four times as
much as that of a fully classical system for a handshake routine. This factor could
very well be different for other use cases than WireGuard, where for example static
components are unnecessary or authentication is done through a different method,
but it is unlikely to increase by a significant order of magnitude.

In the case of WireGuard and in most other cases, the purpose of the asymmetric
handshake is to establish a session key to be used for symmetric encryption of further
messaging. As a result, the handshake often represents only a small part of the traffic
it’s a part of.

In WireGuard, session keys are renewed through a new handshake every 165
seconds by default as long as the session remains active, though this interval can be
modified. Thus, the actual impact of the handshake heavily depends on how much
traffic is transmitted using the session key during those intervals. Nonetheless, this
impact is strictly decreasing with an increasing amount of traffic, and will never
exceed the factor the handshake time is increased by.

The main contributor to the time cost of a handshake appears to be the size of
the public key and the ciphertext of the post-quantum component, while the time to
perform calculations seems to be having a negligible impact. This is seen from the
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results shown in figure 4.6 in conjunction with figure 4.1, where even though Kyber
is generally the fastest to calculate and NTRU is the slowest, NTRU is fastest in
application, while Kyber is the slowest.

Specifically, how many datagrams a message packet has to be fragmented into
seems directly proportional to the time for a handshake to complete. Section 4.2.2
shows how both Kyber and Saber require fragmentation into at least nine datagrams
for an entire handshake, while NTRU requires seven. Comparing this fact to the
results figure 4.1, the similarity of the handshake times for Kyber and Saber and the
factor of which NTRU outperforms them makes perfect sense.

5.2 Post-quantum KEM comparison

WireGuard is in its design cryptographically opinionated. This entails that through
its design, it chooses specific cryptographic primitives for purposes such as key estab-
lishment, authentication, hashing and encryption. It does this to reduce complexity,
maintain a minimal codebase and to be able to decisively respond to newly discovered
vulnerabilities [Don17].

Following this design goal, for a quantum-resistant implementation of WireGuard,
a specific post-quantum primitive has to be chosen for the handshake component.
With SIKE being proven not secure and code-based schemes being massively ineffi-
cient with regards to their public key and ciphertext sizes, our current options are
unfortunately limited to lattice-based schemes.

Relying on the single computationally hard problem of solving the SVP means
that if one of these schemes are proven to not be secure, most likely all of them are.
If anything, this further motivates using post-quantum primitives in conjunction
with classical ones.

Among the post-quantum primitives tested throughout this project, NTRU stands
out as the clear victor for this use case. Being the only NIST candidate with both
public key and ciphertext sizes well below the MTU for the link layer with NIST
level V parameters, this seems likely to be the case for most other use cases as well.

With these results in mind, NIST’s decision to standardise Kyber and subsequently
stop considering other lattice-based primitives seems like a rushed one. NIST backs
their decision up by referring to Kyber’s faster calculation times, exemplified in figure
4.6, but fails to evaluate the schemes with the MTU of link layer datagrams in mind.

Unless the entirety of the internet infrastructure changes to allow for larger
datagram sizes, Kyber might in fact be the least efficient lattice-based option with
respect to NIST level V, like the results of this project exemplifies, even though it
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might outperform the others with NIST level III which the standardisation process
prioritises.

When designing a system that is expected to remain secure for several decades,
and potentially against active quantum attackers, I believe that NIST level III will
be inadequate. Subsequently, I reason that the ability for a post-quantum KEM to
keep its public key and ciphertext sizes well below the MTU limit of 1500 bytes for
all levels of security should be valued higher when considering standardisation.

5.3 Utility of hybrid cryptosystems

The usefulness of transitioning to a cryptosystem that incorporates post-quantum
security ultimately depends on the use case and the sensitivity of the information that
is to be encrypted. The implementation described in this project adds an additional
100-150 ms to the process of establishing a VPN session.

It’s worth noting that as most communication protocols utilise symmetric cryp-
tography for most of their traffic, the initial session establishment using asymmetric
cryptography serves as only a small part of the total traffic that is exchanged. It
is however the main instance where a user interacts with the system and expects a
response in the form of a session establishment, while the remaining security features
of the session are performed without specific user interaction.

Card et al. [CRM91] concludes that response times of 100 ms results in the user
experiencing that the system is reacting to input instantaneously, while a response
time of 1000 ms serves as the limit for when a user starts noticing a significant delay.
Every version of a hybrid system tested throughout this project stays within this
range with respect to their handshake component. Although a minor change in
latency might be noticed, the end user experience is not likely to be impacted in a
significant matter by implementing post-quantum security in this matter.

Thus, for instances where one wishes to encrypt information that might be
sensitive for the foreseeable future, such as medical and economic data, there is both
motivation to implement post-quantum security, utility gained from it and possibility
of implementation without negatively impacting the user experience in a significant
matter.

5.4 Findings

In NIST’s status report on the third round of the standardisation process [AAC+22]
they express that one of their most significant factors in their selection of Kyber
over NTRU is due to NTRU’s performance, particularly key generation, being less
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efficient. The results of this project show that this focus on the efficiency of the
calculations might be an improper prioritisation when selecting among post-quantum
cryptosystems, especially when it comes to lattice-based systems with very similar
metrics.

When it comes to putting these cryptosystems into real-world use, the size of
publicly transmitted parameters such as public keys and ciphertexts appears to be
the main contributor to the efficiency of the scheme by a significant margin. This is
especially significant when these sizes are close the MTU of 1500 bytes, which all
of the lattice-based schemes are when configured for NIST security level V. Kyber
being the only scheme among them that breaks this limit serves as a more significant
counterargument against its standarisation in place of Saber or NTRU than NIST
might have considered.
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6.1 Summary

This thesis presents an applicable method to implement post-quantum key-exchanges
in tandem with classical asymmetric key-agreement protocols such as ECDH by
constructing a hybrid system. Using this method to implement such a system in
a user-space version of WireGuard, it presents performance metrics with different
post-quantum KEMs as the post-quantum component.

The results show that among the post-quantum KEMs submitted to the NIST
standardisation process, NTRU outperforms all other algorithms with respect to
NIST’s security level V, performing handshake completions approximately 20% faster
than the other lattice-based algorithms Kyber and Saber.

Further, the results shed light on the importance of relatively small public key
and ciphertext sizes for the performance of a post-quantum KEM in a real-world
application. Particularly, it shows that KEMs with plaintext and ciphertext sizes
well below the MTU of 1500 bytes for the link layer perform significantly better than
KEMs that exceed that limit in today’s internet infrastructure.

Finally, the work shows that implementing post-quantum cryptography through
the use of a hybrid system is already feasible. Though it adds a significant impact on
the time required to establish a session, the impact amounts to fractions of a second,
which is unlikely to result in a significantly worse user experience.

Regrettably, this project was unable to analyse post-quantum components based
on other quantum-resistant problems than the SVP. Preliminary testing was done
with code-based schemes, but their excessively large parameters quickly proved to be
unmanageable, and resulted in an unreliable implementation that did not warrant
application. Initially, the option of testing SIKE was intended, but developments
resulting in the system being considered insecure while the project was underway
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eliminated the system from being an option.

In December of 2022, around the same time as results were gathered for this
project, both Saber and NTRU were removed from the liboqs repository [Ope23],
presumably due to Kyber being standardised and thereby removing other lattice-
based systems from consideration for standardisation. With the results of this project
showing a use case where Kyber has the worst performance metrics among the
lattice-based systems, these changes will hopefully be reverted before the next version
of liboqs is released.

In any case, the standardisation of Kyber and the removal of other lattice-based
cryptosystems from consideration might have been a rushed decision, with faulty
priorities. While Kyber may be perfectly adequate for certain applications, cases
such as the one shown in this project shows that other lattice-based schemes have
more merit in others, and should not be ruled out for further consideration.

6.2 Further Work

There are many more use cases where hybrid implementations should be further
analysed. Work has been done on testing hybrid systems in TLS and SSH [CPS19],
but many applications and network protocols still remain untested. Analysis with
different levels of security for different use cases could very well lead to different
conclusions.

WireGuard is special in how it is cryptographically opinionated, while most
systems have a degree of cryptographic agility, where the ciphersuite is negotiated
as part of the handshake. Further work into analysing how to negotiate different
combinations of key-agreement mechanisms while avoiding combinatorial explosion
is a research topic of interest.

Finally, the results from this project show that the impact and significance of
parameter sizes for post-quantum KEMs is a research topic that warrants further
study and experimentation.
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