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Abstract—Visual inspection of Polysomnography (PSG)
recordings by sleep experts, based on established guidelines, has
been the gold standard in sleep stage classification. This approach
is expensive, time-consuming, and mostly limited to experimental
research and clinical cases of major sleep disorders. Various
automatic approaches to sleep scoring have been emerging in the
past years and are opening the way to a quick computational
assessment of sleep architecture that may find its way to the
clinics. With the hope to make sleep scoring a fully automated
process in the clinics, we report here an ensemble algorithm
that aims at not only predicting sleep stages but of doing
so with an optimized minimal number of EEG channels. For
that, we combine a genetic algorithm-based optimization with a
classification framework that minimizes the number of channels
used by the machine learning algorithm to quantify sleep stages.
This resulted in a sleep scoring with an F1 score of 0.793
for the fully automated model and 0.82 for the model trained
on 10 percent of the unseen subject, both with only 3 EEG
channels. The ensemble algorithm is based on a combination
of extremely randomized trees and MiniRocket classifiers. The
algorithm was trained, validated, and tested on night sleep
PSG data collected from 7 subjects. Our approach’s novelty
lies in using the minimum information needed for automated
sleep scoring, based on a systematic search that concurrently
selects the optimal-minimum number of EEG channels and the
best-performing features for the machine learning classifier. The
optimization framework presented in this work may enable new
flexible designs for sleep scoring devices suited to studies in the
comfort of homes, easily and inexpensively. In this way facilitate
experimental and clinical studies in large populations.

Index Terms—Polysomnography, NSGA, Machine Learning,
sleep scoring, EEG

I. INTRODUCTION

The quality of sleep is crucial for the overall health of
human beings and is becoming one of the top public health
concerns. Altered sleep patterns affect people’s daily perfor-
mance and several health issues are closely associated with
poor sleep quality. Some neurological diseases, cardiovascular
and metabolic disorders, and weakened immune systems have
been associated with sleep-related disorders [1]–[3]. Early
detection of sleep pattern alterations may prevent the further
evolution of these disorders. The first step in any sleep
study is the annotation of the different sleep stages, which is
typically performed by visual examination of PSG recordings
as the gold standard of sleep assessment [4], [5]. PSG mon-
itors brain activity (EEG), muscle activity (EMG), and eye
movements (EOG) and it typically requires that the patients
sleep overnight at the hospital or sleep laboratory while their

signals are being recorded. The annotations of stages are then
performed manually by well-trained human experts, a lengthy
and tedious task that also generates considerable inter-rater
variability [6]. Many different automatic scoring approaches
based on machine learning and deep learning algorithms have
been proposed over the years with reasonably good scoring
accuracies [7]–[13], but as of today, automatic scoring is not
a widespread practice in sleep clinics. Besides accuracy, the
adoption of automatic sleep scoring depends among other
things, on some practical aspects of the implementation such
as the associated computational costs when using all the PSG
channels, and the simplicity of the recording device [8], [14].
Many alternative methodologies based on reduced channels
or EEG-only channels are discussed in the literature and they
obtain reasonably high annotation accuracy of sleep stages
[8]. However, most of these reduced channels were typically
selected a priori based on the experience of the experts.
A systematic selection of the optimal channels that contain
the most relevant information to increase the classification
accuracy, searching on the entire high-density EEG space (e.g.
128ch), has not been investigated until now. Collecting the
minimum information needed for automated sleep scoring may
facilitate its adoption in clinics in the future. This work aims
at providing such a methodology by combining optimal EEG
channel position selection with optimally selected features for
the machine learning algorithms, to achieve reasonably high
scoring accuracy with a minimal number of EEG channels.
Selecting the position of the EEG channels based on their
contribution to classification accuracy will warrant the minimal
information required for the task while significantly reducing
the computation and increasing the likelihood of real-time
implementations. This optimization-based automated sleep
scoring algorithm may also be used as a platform for designing
new and simplified sleep scoring devices that can facilitate
sleep studies at home while retaining high accuracy and by that
accelerating experimental research and sleep studies across
large populations.

II. MATERIALS AND METHODS

A. Polysomnographic (PSG) Data

The sleep dataset used for training and testing was recorded
at the Human Sleep Lab of the International Institute of Inte-
grative Sleep Medicine. It is obtained through PSG recordings
from 7 subjects, each with 136 channels, 128 EEG channels, 2



Fig. 1. The distribution of sleep stages for each subject and the whole dataset.
The number of epochs are in parentheses

mastoid channels, 3 Electromyography (EMG) channels, and
3 Electrooculography (EOG) channels. The sampling rate for
the dataset is 1024 Hz. The average age of the seven subjects
is 22.4 ± 0.8 years, with the age range of 22-24, and a number
of epochs of 6955. It includes 3 males, with average age of
22.0 ± 0.0 years and age range (22), and 4 females, with
average age of 22.8 ± 1.0 years, and age range of 22-24.
The EEG channels are located according to the biosemi128
configuration1. All datasets were scored by a sleep expert in
30 second epochs according to the AASM rules [4].

The distribution of the sleep stages for each subject and
for the entire dataset can be seen in figure 1. All the subjects
combined exhibit a fairly normal sleep stage distribution [15],
apart from a slightly higher occurrence of N1 and wakefulness,
but this is partly due to subjects 3 and 4 exhibiting a higher
frequency of N1 and subject 4 having an unusual distribution,
almost uniformly distributed among all the stages.

B. Performance Evaluation

The performance of a classifier can be determined through
different performance measures. Commonly, accuracy is uti-
lized, which is the fraction of predictions the model got
right. The accuracy as a performance measure is sensitive to
class imbalance: e.g. If a subject had 50 percent of epochs
belonging to the N2 class a classifier that only predicted N2
would achieve an accuracy of 50 percent. Because of the class
imbalance for this classification problem other performance
measures are necessary to provide a more nuanced picture.

Two other important measures are precision and recall.
Precision is a measure of how many predictions are actually

1https://biosemi.com/pics/cap 128 layout large.jpg

positive of all the positive predictions, while recall is a
measure of how many of all the positive cases are predicted
as positive. Precision and recall can be calculated for binary
classification problems while for multiclass classification they
can be calculated per class. These two metrics are generally
competing metrics, predicting every epoch as one class will
give this class a high recall score, but a low precision score.
These two measures can be combined into the F1 score which
is the harmonic mean of precision and recall. Thus, a high
F1 score will reflect a low number of both false positives and
false negatives. To summarize the performance of the F1 score
(computed per class) the weighted F1 score was used. This is
calculated through weighing the F1 score per class, by their
frequency.

1) Training,Validation and testing: Cross-validation is a
technique used to evaluate the performance of a machine-
learning model. It is commonly applied to predictive models,
because it is easy to implement and generally it has a lower
bias than other methods, such as a simple train and test split.
The objective of cross-validation is to test the model’s ability
to predict new data that was not used in estimating it, and
to identify problems like overfitting and selection bias. An
extension of Cross-Validation is the k-fold Cross-Validation.
The k parameter refers to the number of subsets that the
input data is split into. Then the result of the model is often
summarized as the mean of all the subsets.

The k parameter shall be chosen carefully as a poorly chosen
k may result in high bias and high variance. The choice
of k is usually 5 or 10 as these values have been shown
empirically to yield test error rate estimates that suffer neither
from excessively high bias nor from very high variance [16].

K-fold Cross-validation works by shuffling the dataset ran-
domly, then dividing the shuffled dataset into k folds. Then, for
all the k- folds the data is trained on the k-1 complementary
folds and evaluated on the last fold.

A problem that might occur when utilizing this method is
that new data might be qualitatively different from the data
the model was trained on. In this study, the dataset consists of
seven different subjects for which a 10-fold- cross-validation
and a 7-fold-cross validation were used. When using 10-fold-
cross validation, all of the k-1 folds include data from all seven
subjects, thus not reflecting a real-world example. The effect
of including some epochs from the subject expected to predict
will result in a better performance than it would be realistic
for predicting whole new and unseen subject data. Thus, to
reflect real-world performance, a 7-fold Cross-Validation was
chosen, in which one fold is one subject.

C. Channel and Feature Optimization

In this work, the entire space of 128 EEG channel positions
was used as search space for minimizing the information
required to obtain a high-accuracy classification. Most studies
that report a reduced number of channels start from the
reduced subset of the given PSG channel configuration used
for recording. Here the recordings were done with 128 EEG
channels, and the NSGA-II was used for an optimized search.
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The goal is to achieve the highest F1 score while at the same
time identifying the minimum number of EEG channels. This
approach of minimizing the number of electrodes has proven
to be effective to identify subsets of channels while retaining
high accuracy in multiple problems [17], [18]. Using the
NSGA-II algorithm, the number of channels was constrained
to 5,4,3,2,1. The F1 score was determined by using the
extremely randomized trees algorithm with a reduced number
of features (10)

The features included, mean, average power of the EEG
bands (5), Petrosian fractal dimension, permutation entropy,
analytic entropy, and Higuchi fractal dimension. These features
were chosen as they yielded a high F1 score on their own,
when using a sequential feature selection.

In parallel to the optimized search of channels by the
NSGA algorithm, every channel was also individually used
to calculate the F1 per class per channel. This was done to
have an oversight over the best EEG channels per class. The
result of this is displayed in the heatmap of Figure 3, where
all the values are normalized through the use of the Scaled
Robust Sigmoid to accentuate the differences.

Then, to select the best features per class, the NSGA-II al-
gorithm was again used. For each class, the objective function
aimed to minimize the number of features and maximize the
F1 score.

The algorithm returned the optimal features after 350 gener-
ations. The total number of features were 145, 48 per channels
and the spindle feature.

D. Architecture of the Scoring Methodology

In this work, we used a supervised approach to Machine
Learning to solve the problem of automatic sleep scoring.
The model was trained on the labeled data by the sleep
expert. The proposed classifier model is an ensemble between
extremely randomized trees and MiniRocket classifiers. The
extremely randomized trees model is presented first together
with the steps implemented to improve its performance, then
the MiniRocket model with its respective improvements. The
overall architecture of the methodology implemented in this
work is illustrated in figure 2, where the input is the raw EEG
data, and the output the predicted classes.

Extremely Randomized Trees: The Extremely randomized
tree algorithm was chosen as it has been successfully used for
sleep stage classification and testing proved this classifier to
perform better than other classifiers like SVMs and Nearest
Neighbors [19].

A few parameters can be tuned to optimize the performance
of this classifier. They are the number of estimators or the
number of trees in the forest, and the function to measure the
quality of the split. The number of estimators was gradually
increased until the accuracy flattened out. 250 estimators were
found to be an optimal point as more estimators would increase
the model complexity. To tune these parameters the Gini
impurity algorithm was used.

Sleep stages appear often in specific sequences after
another and this dependence between subsequent epochs

can be used to provide extra information to the model. This
principle has been implemented through LSTM layers in
deep learning models. A previous study [19], time-shifted
the hand-extracted features one step forward and one step
backward, which resulted in a 3-4 percent increase in accuracy
in that study. This time-shifting was utilized for the N3 and
REM classes.

Feature Extraction: The first step for building the model
with this classifier was feature extraction. Feature extraction
techniques can be linear and non-linear and in turn be in
the time domain, frequency domain, and a hybrid of both.
A variety of features are reported in the literature for sleep
stage classification [20]. The approach in this paper consists
of extracting a large number of features and then selecting
the features that give the highest accuracy/F1 per class and at
the same time reducing the number of features to reduce the
dimensionality of the data to make it more computationally
accessible. To reduce the number of features, an optimization
technique based on the NSGA-II algorithm was used [21]. This
technique makes possible to represent the data in a reduced
dimensional space retaining almost the same information and
resulting in a enhanced performance of the classifier.

Figure 2 illustrates the sequence of the step-by-step proce-
dures the input data passes through until the highest F1 score
is identified.

The classification model is trained on 1) one feature at a
time and 2) using the NSGA-II algorithm on all the extracted
features to identify an optimal set of features. The approach
of comparing the different individual features is conducted
by using the 7-fold Cross-Validation where one fold is one
subject. When comparing all the features at once, with NSGA,
a more standard 10-fold Cross-Validation is used as this is
simpler to implement. Figure 3 shows a heat map of the F1
score across all five classes when features were evaluated one
at a time.

Close inspection of these heat maps indicates that some
parts of the brain are better suited to extract discriminating
information than others. The differences are not extreme, but
substantial enough to be noticed.

Resampling: PSG data are unbalanced with respect to the
5 sleep stages, with fewer epochs for stage W and N1 than
for N2, N3 and REM. Resampling is a technique that can be
used to obtain a more balanced set of data [22].

Downsampling: The raw EEG data sampled at 1024
Hz was downsampled to different frequencies to observe
any performance difference. The features extracted at 500Hz
perform better for almost all features compared to the features
extracted at 100Hz, except for the Petrosian fractal dimension
and the permutation entropy where the accuracies were higher
for the 100 Hz signal. Another aspect when comparing the
different frequencies is the computational cost, extracting
features on a 500Hz signal leads to longer computational
times. This becomes most apparent when calculating the
largest Lyapunov exponent and the correlation dimension D2.



Fig. 2. The architecture of the proposed Ensemble Machine Learning Methodology when training the model on 10% of unseen data. For the MiniRocket the
one channel per classifier was the best-performing channel from A14, B9, and C19 chosen by the NSGA algorithm.

TABLE I
COMPARISON BETWEEN DIFFERENT LEVELS OF PREPROCESSING

Level of
preprocessing 100 Hz 100 Hz

normalized
128 Hz
filtered

128 Hz
filtered

normalized
500 Hz 500 Hz

normalized

F1 score 0.831 0.817 0.802 0.801 0.842 0.817
Number of

features 15 20 31 42 21 42

They were deemed unfeasible for the 500 Hz signal as it took
more than a day to extract these on a 28-core CPU. Thus,
these two features were only extracted at 100Hz.

Normalization: Standardization and normalization are
approaches often used in data preprocessing. Standardization is
a process where the values are transformed such that the mean
of the values is 0 and the standard deviation is 1. The features
were also normalized per subject, using the Scaled Robust
Sigmoid (SRS) [23], to make the model more general and
robust to outliers and to handle interpersonal differences. SRS
is a nonlinear transformation that uses median and interquartile
ranges instead of the mean and standard deviation. SR is robust
against the influence of outliers, and it scales the transformed
data into a range between 0 and 1.

To choose which level of preprocessing and resampling
is best for accuracy purposes, again the NSGA algorithm
was utilized. The performance measure used was the 10-fold
Cross-Validation on the full 5-class classification problem. The
results can be seen in the table I.

MiniRocket: After experimenting with different SoTA
models, MiniRocket [24] was found to be the best in terms
of performance and runtime. When tuning the MiniRocket
hyperparameters and architecture, the number of convolutional
kernels was set to 10000. Both 5000 and 15000 convolu-
tional kernels were tested, 5000 decreased the performance
by around 2 percent for both the accuracy and F1 score while
15000 increased performance by around 1 percent for both

the accuracy and F1 score, but almost doubled the runtime.
Thus, for a good accuracy/runtime trade-off 10000 kernels
were chosen, or 9996 specifically as it has to be a multiple of
84.

To achieve fast learning of the MiniRocket models Fastai’s
implementation of Leslie Smith’s first cycle policy was utilized
[25]. Training this network is a difficult global optimization
problem, where choosing the correct learning rate is crucial
for the performance. If the learning rate is low, then training
it can take a long time and if the learning rate is high it can
hinder convergence. In addition, the learning rate is rarely
static, it often starts with a higher learning rate to speed
up the training and then gradually goes down so that an
optimum can be found. Adaptive learning is computationally
expensive and learning rate schedulers are set before training
starts and thus they will not be able to adapt to the particular
problem. Cyclical learning rates combats both these problems
by oscillating between reasonable minimum and maximum
bounds. A version of a cyclical learning rate is the 1cycle
policy where there is just one cycle that alternates between
two learning rate steps, and for each cycle the learning rate
decreases even further for the next epochs, several orders lower
than its initial value [26].

The loss function plays a relevant role in assessing the
performance of a model. Sleep scoring is a classification
problem that, like many others, must deal with an imbalanced
distribution of classes. There are several approaches to deal
with a class imbalance. Earlier mentioned is the oversam-
pling of minority classes. This approach is not applicable for
MiniRocket as this takes the time series directly as input.
Methods for creating an artificial sample of a time series exist,
but was deemed outside the scope of this study. Undersampling
is also an option, but with the already limited dataset, this was
not tried. The use of the Focal Loss objective function was
proposed in [27] to deal with class imbalance. This is based
on giving more weight to all the hard (false negatives) samples



than the easier ones (true negatives). The degree to which this
is done is decided by the gamma hyperparameter. The alpha
parameter is a weighing factor per class, this is usually set
by the inverse class frequency. The Focal Loss was combined
with Dice Loss to combat class imbalance. During testing, the
class weighting factor was proven to be aggressive, giving the
smaller classes a very high recall, but a low precision score.
Thus, all the weights were increased by 1 such that the relative
difference would be smaller. For the 5 class classification
problem introducing the new Loss function performed equally.
However, for the one vs all strategy introducing a new loss
function improved considerably the performance for some of
the classes in some of subjects. For subject 6, classifying REM
against the other classes using Cross Entropy Loss resulted in
an F1-score of 0.76, while when using the new loss function
an F1 score of 0.85 was achieved.

Preprocessing: For the input to this model the data was
first decomposed in sub-bands using the Fourier Decompo-
sition Method (FDM) [28]. The following frequency bands
were extracted: [30-48] Hz, [12-30] Hz, [8-12] Hz, [4-8] Hz,
[0,4] Hz, [0.5-2] Hz, [2-6] Hz, [12-14] Hz. These bands were
selected based on the AASM manual to represent the delta,
theta, alpha and beta waves. Additional bands were added,
0.5-2 Hz for slow wave activity, 30-48 Hz for differentiating
the wake stage based on [29], 2-6 Hz to detect sawtooth waves
and 12-14 Hz to detect sleep spindles.

The FDM improved the accuracy for MiniRocket by a
substantial margin. On the raw signal from the A28 channel,
the model achieved an accuracy of 0.686930 and an F1 score
of 0.686317. After decomposition with FDM, signal from the
A28 channel achieved an accuracy of 0.806560 and an F1
score of 0.799751. Thus, using the FDM was the chosen
method.

Channel Selection: As opposed to the Extremely ran-
domized trees model, the MiniRocket model did not improve
by a significant margin when using more channels. Among a
set of three channels chosen by using the NSGA (A14, B9,
C19), the binary classifiers for the N2, N3, and REM classes
are trained on data extracted from the C19 channel. While
the N1 classifier was trained on the A14 channel and the WK
class was trained on the B9 channel. This choice is motivated
on the F1-score of the Extremely randomized trees models
which were trained on one channel for all the five classes and
the N1 binary classification model got the highest score on
the A14 channel and the WK binary classification model got
the highest score on the B9 channel. The rest of the classes
performed best on the C19 channel.

III. RESULTS

A. Classification Performance

As indicated in section II-B, to measure the quality of
the automatic scoring, the F1 score was found to be the
most suitable, as it represents a balance between recall and
precision. Figure 3 illustrates the F1 scores computed over all
5 classes on the validation/testing of the dataset for all stages
of sleep. All stages show high performance except for N1.

Fig. 3. Heatmap of F1 score across all five classes and per each class when
features were tested one at a time.

We consider this to be within reasonable levels considering
the low human inter-scorer agreement for N1 [30].

Figure 4 shows the F1 scores of each class for the
MiniRokcet model, the Extra Trees model and the ensemble
of the two. The NSGA algorithm is only implemented in the
Extra Tree model. These results indicate reasonable values of
F1 scores for all classes except for N1 class which has shown
to be the most difficult class to classify with high accuracy.

A technique that was tried was to train the model on a
portion of the unknown subject to see if the different subjects
had different characteristics and if those characteristics would
increase the overall performance of the model. This was tried
because the F1 score obtained through the 10-fold Cross-
Validation was not repeated with the 7-fold Cross-Validation,
and the difference is that the 10-fold Cross-Validation contains
epochs from all subjects. With the 10-fold Cross-Validation
the F1 score was 0.84 and for the 7-fold Cross-Validation the
F1 score was 0.79. This suggests that training on a portion
of the unknown subject can increase performance by several
percentage points.

B. Results of the NSGA Optimization

When using five channels the optimal F1 score was 0.826,
when using four channels the F1 score was 0.826, when
using three channels the F1 score was 0.821, when using two
channels the F1 score was 0.810 and when using only one



Fig. 4. F1 scores of each class for MiniRokcet model, Extra Trees model
and ensemble of the two. NSGA algorithm is implemented in the Extra Tree
model

channel the F1 score was 0.782. This is presented in figure 5.

Fig. 5. F1 scores of the 5 best EEG channels resulting from the NSGA
algorithm optimization (blue circles) compared to best 1-5 channels when
individually evaluated from F1 Heat map (yellow stars), Channels recom-
mended by AASM (inverted green triangle), channels used in the Sleep-EDF
dataset (red triangles), channels used for sleep scoring by Toranomon Hospital
(inverted violet triangle) and channels used by the Dreem device (brown
cross).

Since the objective of this study is to use a minimal set of
EEG channels, three channels were chosen as the difference

from two channels is larger than the difference between five
channels.

Fig. 6. Channel locations of the best 5, 4, 3, 2 and 1 channels.

IV. DISCUSSION

The results of channel selection using the NSGA optimiza-
tion algorithm shed some light on the impact of the number of
EEG channels on the classification performance. Not only the
number of EEG channels but their location on the scalp play
a role in the accuracy and this role depends on the selected
features and on the classification technique used. The result
is highly dependent on the parameters associated with the
methodology used (certain combinations of features will work
better with certain channels), the solution is not unique and
is highly parameterized. Reasonably good F1 scores can be
obtained for different channel combinations (50, 20, 10, 5,
etc) by constraining the solution space around those channel
numbers. These solutions represent local minima that all offer
similar values of F1 score which can be suitable for sleep
scoring. In this work, and with the idea to identify a minimum
set of optimized channels that can facilitate adoption in the
clinics, the optimization was constrained around 5 channels
with F1 scores as illustrated in figure 5. Several previous
studies report the use of different EEG channels with or
without EOG and EMG channels. Most of these works focus
on EEG single-channel with different single-channel proposals
[8]. This review paper shows that the classification perfor-
mance generally increases with a multi-channel approach
but is not significant and the results of this work confirm
the same. The work presented here is the first attempt to
systematically search for the optimal single and multi-channel
subsets for a low number of EEG-only channel combinations.
Figure 5 plots those solutions together with multi- and single-
channel reported in the literature (using different classification
methodologies). It is evident that when those reported channels
are evaluated with our proposed methodology, the accuracy is



inferior (for the same number of channels), which reveals the
strong dependency of the solution on the specific parameters
of the used classification method. In the same plot it can also
be observed that, as the number of NSGA channels increases
(4 to 5), there is only an incremental improvement of the
F1 score (the performance appears to plateau). However, the
improvement of the F1 score is more salient when channels
increase from 1 to 2, and 2 to 3, lowering down from 3 to
4 channels. Although many studies have shown that multi-
channel EEG with EMG and EOG leads to an increase in
performance, the improvement is often marginal, and adding
one more channel may compromise the computational cost
without leading to better performance. In clinical settings and
for home-based sleep devices, solutions with fewer channels
will be preferred and an important question still under debate
is ”which fewer channels to use?”. From previous works and
ours, we can say that there is no ”one-size-fit-all” solution and
that extensive training on larger datasets with high heterogene-
ity (including subjects with sleep disorders, local sleep, etc)
should be considered before deciding on a given multi-channel
combination. For example, a single-best channel or even a few
numbers of best channels might not be suitable for scoring
scenarios of local sleep or for scoring sleep on subjects with
sleep disorders [31], [32].

In this context, the flexibility offered by the NSGA al-
gorithm may be further exploited to identify more general
models and best-suited channels for various sleep scenarios.
One way of doing this is by optimizing the parameters of the
ML learning models, the length of epoch used, and even the
classifiers to be used for the given scenario, by allocating each
of them to a single chromosome of the NSGA.

The optimal features found by utilizing the NSGA algorithm
were slightly unexpected when compared to the results found
in previous studies. However, most of the features listed in
those studies were good at discriminating one class from
another and not one class from all the other classes which is
the case for sleep stage classification. The features listed were
also often described as discriminating sleep stages from one
another on their own, and the results found in this study could
indicate that a combination of different features outperforms a
single feature in discriminating between different sleep stages.
These combinations can be uncovered through the use of the
NSGA algorithm.

The combination of feature-classifier-epoch size-data set
characteristics will significantly impact the classification ac-
curacy. Possible explorations to extend the model capabilities
include unsupervised classification approaches similar to the
ones presented in [13], [29], [33]. For these, extensive training
using heterogeneous datasets will be necessary.

This study it shows that automatic sleep scoring is able to
reach a SoTA performance. Nevertheless, these approaches,
both the extremely randomized trees, and the MiniRocket
classifier reach a similar performance level and one should
question if it is possible to reach a higher level, based on
the inter-rating consistency [34]. This could mean that the
labels can be inconsistent and that the scoring standard is not

clear enough. The problem with the scoring standard had been
addressed in [13] and should be explored further. And a true
unsupervised data-driven approach should be the natural next
step.

As the field of machine learning is continuously expanding and
improving, there might come along new models which will
give a consistently high score, so this should also be explored
with new and improved machine learning models. Also, the
use of different loss functions might optimize the performance
of the SotA MiniRocket classifier.

Another approach could be to utilize architectures like DOSED
[35], to detect micro-architecture events with a high accuracy
and thus maybe score sleep through a flow chart following the
existing rules set by the AASM.

V. CONCLUSION

We demonstrated in this work that it is possible to achieve
reasonably good scoring accuracy of sleep stages with an
optimized minimum set of EEG channels identified by an
optimization procedure. The ensemble model, compared to
its single components independently, provided a quality of
scoring comparable to that of human experts. The optimization
routine offers a systematic way to select only EEG channels
that contain the most relevant information for accuracy.

The results obtained in this study are comparable to results
obtained by other studies, but the analysis of which channels
perform best is previously unseen and should be delved into
deeper.

Since the dataset of this study has a uniqueness when it
comes to the number of channels available and the sampling
frequency and these aspects of the dataset were utilized to
maximize the performance, the results are not directly com-
parable to the results obtained using other datasets. Although
the performance metrics were similar to the ones obtained in
the other studies, what this study has shown is that some tech-
niques utilized here that increase performance can be applied
to other sleep stage classification studies, like the ensemble
of classifiers that complement each other, the inclusion of
oversampling techniques or using different features per binary
classifier which is in turn combined through an all against one
approach.

However, based on the results of other automatic sleep stage
classification models and the inconsistency of human scoring,
some weakness of the established scoring rules might have
been uncovered. This could call for the implementation of an
unsupervised data-driven approach, which already has some
traction in the sleep study field.

With the added value of an optimization routine that ex-
tended the search space to the entire 128 channels to identify
optimal combinations of channel number and features, a road
is open for a more systematic search of fewer channels that
can facilitate on-line implementations and lead to the design of
new and reliable home-based sleep devices and to the adoption
of sleep devices in the clinics.
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