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Abstract

The rapid growth of digital twins (DTs), built upon Internet of Things (IoT) and
Industrial IoT systems, demands a large variety of networked sensors’ solutions.
Indeed, networked sensors enable various sophisticated applications of DT by
gathering/integrating sensor data, meanwhile, sensor failures can potentially un-
dermine DT representativeness and cause serious consequences. In this thesis, we
propose three generic sensor fault detection, isolation and accommodation (SF-
DIA) architectures capable of promptly detecting sensor failures, identifying faulty
sensors, and replacing their faulty data with reliable estimations.

More specifically, the first modular architecture is built upon a series of neural
network (NN) estimators and a classifier, which allows the selection of the most
suitable models among diverse NN models with respect to the application. Estim-
ators correspond to virtual sensors of all unreliable sensors (to reconstruct normal
behavior and replace the isolated faulty sensor within the system), whereas the
classifier is used for detection and isolation tasks.

This architecture is enhanced further to fully exploit the spatio-temporal correla-
tion of sensor data and provide real-time detection, isolation and accommodation
of multiple faulty sensors. A multi-dimensional classifier in the enhanced archi-
tecture is responsible for interpreting residual signals (from previous stages) to
detect and identify faulty sensors, and provide feedback to a controller block. The
controller is policing inputs-outputs of two banks of NNs which are providing
estimations and predictions of all unreliable sensors within the system, thus sup-
porting nearly-instantaneous SFDIA performance.

In the third proposed architecture, for the first time, we address the problem of
SFDIA in large-size networked systems. Current available machine-learning solu-
tions are either based on shallow networks unable to capture complex features
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from input graph data or on deep networks with overshooting complexity in the
case of large number of sensors. To overcome these challenges, we propose a new
framework for sensor validation based on a deep recurrent graph convolutional
architecture (DRGCA) which jointly learns a graph structure and models spatio-
temporal inter-dependencies. the proposed two-block DRGCA (i) constructs the
virtual sensors in the first block to refurbish anomalous (i.e. faulty) behavior of un-
reliable sensors and to accommodate the isolated faulty sensors and (ii) performs
the detection and isolation tasks in the second block by means of a classifier.

A detailed performance evaluation on different real-world datasets is conducted.
Results prove the effectiveness of the proposed architectures in detection, isolation
and accommodation of faults. Performance comparison shows their superiority
over state-of-the-art machine-learning-based architectures.
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Chapter 1

Introduction

Industry 4.0 identifies the current fourth industrial revolution, whose aim is an in-
creased level of automation through the effective combination of the Internet of
Things (IoT), cyber-physical systems and cloud computing technologies [1]. Un-
der the umbrella of Industry 4.0, digital twins (DTs) have garnered striking interest
over the last few years through the process of industry digital transformation [2].
DTs are designed to create a digital model of (complicated) assets or processes.
Fundamentally, a DT can be defined as a digital profile that mirrors a physical
object or process, i.e. the physical twin, and provides a bidirectional interaction
between the physical and digital parts. Leveraging DTs, operators can simulate
complex systems behaviour, test/predict asset changes in specific scenarios, and
remotely control/monitor/steer systems. DTs have been widely employed in vari-
ous sectors such as industry [3], health care [4] and smart cities [5, 6], where their
capabilities to visualize and treat with a perpetual stream of real-time sensor data
is enabling new opportunities.

While DTs are highly dependent on data collected by sensors, the latter are unfor-
tunately prone to errors. Faulty data may lead to system instability and eventually
jeopardize system reliability with possible noxious outcomes ranging from loss or
critical damage to the asset (viz. financial and time loss) and/or environmental
hazardous impact to serious injury to people or death in the worst case. Failure
sources can be classified into three types [7, 8, 9, 10]:

• Hardware/software failure — the sensor itself is inaccurate or faulty due to
its bad quality, being out of lifetime, bad calibration, and/or software failure;

• Typical harsh environment/condition — the system operates under a setting
in which sensor survival is difficult and its performance deteriorates rapidly;

1



2 Introduction

Figure 1.1: The SFDIA system.

• Malicious cyber-attack — an attempt is perpetrated to abuse or take advant-
age of the system functionality.

To ensure the successful rollout of a DT, it is crucial to continuously monitor and
regulate received sensory data before feeding the DT with them.

From this perspective, in this thesis, we have tried to address sensors failure by
the Sensor Fault Detection, Isolation and Accommodation (SFDIA) frame-
work as a key response for deploying DTs while assuring reliable performance
(see Fig. 1.1). SFDIA indeed consists of three parts:

• Fault detection, i.e. determining sensor fault(s) within the system’s sensor
network;

• Fault isolation, i.e. identifying specific faulty sensors and block their meas-
urement feeding to DT;

• Fault accommodation, i.e. feeding DT with some other replaced trustworthy
data.

We used deep neural networks (NNs) with novel architectures to improve the SF-
DIA performance in stationary scenarios.

There are several issues with the current research on the SFDIA problem. The
conducted research in the literature mainly focuses on the development of
SFDIA solutions for dependent DTs, where the framework is established for
one specific application, while possible development of flexible frameworks can
easily adapt to different scenarios/applications. Successful implementation of all
three tasks of detection, isolation, and accommodation is one of the challenges
in the SFDIA applications. Except for a few works, most research on the SFDIA
problem is mostly conducted on fault detection [11, 12] and does not foresee all
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three tasks in their original formulation to insure real-time transfer of reliable
data into DTs. Unlike previous, the explosion of the IoT in recent years and
hundreds/thousands of sensors distributed all over the physical twin has raised
the importance of scalable solutions for large-size networked systems to run
possible simulations, what-if analysis, study specific scenarios and/or generate
possible feed-backs/improvements on the physical twin. Equally important, the
performance of current data-driven methods heavily depends on the dimensional-
ity, and heterogeneity of the system. What’s more, the computational complexity
increases exponentially with the system network size and usually, this is paired
with performance degradation and weak generalization.

1.1 Scope and Objective
In this study, we developed multiple robust and optimized SFDIA schemes to ad-
dress the above issues of sensor failure in DT systems. In particular, this thesis is
aiming at investigating signal processing and machine learning (ML) algorithms
for three tasks of sensor fault detection, isolation and accommodation [13] in sta-
tionary situations to preserve the reliability and robustness of sensor-based sys-
tems. Accordingly, once a failure(s) has been detected/identified from the process
loop it will be accommodated (replaced) with some other trusted data. We consider
the three following objectives when designing SFDIA schemes to achieve reliable
data transfer to DTs:

O1 Allowing flexible deployment of diversified ML techniques with a modular
design; Enabling to adapt to various different applications and to better un-
derstand the commonalities and differences between ML modules, while ab-
stracting from their specific technical details.

O2 Enabling integration of in-field and real-time raw data into DTs; Ensuring that
the models process incoming data and generate decisions within narrow time
windows.

O3 Strong generalization and scalability, i.e. capability to properly capture com-
plex features within the data; The high dimensionality of datasets in big data
applications leads to a more complex feature engineering.

1.2 Methodology
The thesis deals with state-of-the-art signal processing and ML algorithms (e.g.
multi-layer perceptrons (MLPs) and graph NNs) and optimization tools to develop
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methods for SFDIA purposes possibly based on safety requirements and assess
their performance on relevant use cases. We present motivations in line with
the needs of the SFDIA literature, and the methods proposed in this thesis are
compared to other state-of-the-art approaches. The developments, validation
and analysis of the proposed methodology are conducted through numerical
experiments using real-world and publicly available datasets, with applications in
different scenarios, for the sake of a complete and reproducible assessment.

1.3 Thesis Contributions
This thesis proposes three ML frameworks for sensor validation to address ob-
jectives O1, O2 and O3. In view of the previous discussion, some of the state-
of-the-art methods are restricted to a given vertical domain (e.g. aircraft [14],
vehicle [15] or HVAC system [16] monitoring), thus lacking a general formula-
tion. Differently, proposed frameworks allow the development of general SFDIA
schemes to be easily adapted to different application domains [3, 17]. Secondly,
part of the literature evaluates corresponding proposals on private (e.g. [18, 19])
or simulated (e.g. [20, 16, 14]) measurement data, thus precluding reproducibility
and convincing evaluation, respectively. The datasets and NNs in the proposed
architectures are publicly-available, which helps reproducibility and further ad-
vances on the topic. In detail, the main contributions of this thesis are summarized
as follows.

C1 Modularity and Real-Time Implementation: First, we presented modular
SFDIA (M-SFDIA) scheme consist of a set of estimators (each associated to
a sensor) providing residual signals as well as replacements (estimates) for
faulty data. Therein a supervised classifier is trained to make detection &
identification decisions upon the residual signals by leveraging their (possibly-
nonlinear) relationships. Indeed, the proposed modular approach allows the
implementation of diversified ML techniques for different modules and a more
flexible deployment, also taking computational/hardware limitations into ac-
count, addressing both O1 and O2. The contributions of Publications P1, P2,
P4 and P6 can be summarized as follows.

• A novel machine-learning-based architecture for SFDIA is proposed.
The proposed architecture jointly takes advantage of the temporal cor-
relation of the measurements and of both reliable and unreliable sensors
within the system to achieve a higher sensor validation performance.

• The performance of different NN-based virtual sensors and classifiers
used within the M-SFDIA architecture are investigated and compared.
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• The performance of the proposed approach (in terms of probabilities
of detection, false alarm, correct classification, misclassification, etc.)
is evaluated on different real-world datasets [21, 22, 23] corrupted with
synthetically-generated sensor faults (bias and drifts) and compared with
the state-of-the-art techniques [11, 24]. Synthetically-generated sensor
faults have been considered to perform a systematic performance assess-
ment of the proposed architecture. The focus of generated faults is on
weak faults, which are very hard to detect and usually ignored in the
literature [25, 26, 27, 28, 29].

• The designed M-SFDIA architecture for SFDIA in a Carbon capture and
storage (CCS) system is discussed and evaluated.

• The impact of different hyperparameters, such as the number of layers
and the number of nodes per layer, is assessed for the considered scen-
arios.

C2 Performance Improvement: The M-SFDIA architecture enhanced to fully
explore (viz. learn) spatial and temporal dependence in sensory data and to
directly address both O1 and O2 research objectives. Differently, the en-
hanced architecture relies on the novel use of a pair of regressors for each
sensor performing estimation and prediction operations, along with a con-
trolled feedback loop policing propagation of faults throughout the architec-
ture. Hence, the joint adoption of regressors and the controlled fault propaga-
tion enables the proposed architecture to ultimately exploit spatio-temporal
correlation within the system, thus supporting nearly-instantaneous fault de-
tection and isolation performance. The contributions of Publications P3 and
P5 can be summarized as follows.

• A real-time and modular data-driven SFDIA architecture is developed,
fully exploring spatio-temporal correlation within the system. The pro-
posed architecture consists of five building blocks (controller, estimators,
predictors, residual calculator, classifier) arranged in four layers. Con-
versely, each predictor plays a complementary role (to the estimator) by
using only previous data from the sensor under consideration to obtain
an analogous virtual measurement.

• The proposed approach employs MLP NNs for both regression (estim-
ation and prediction) and classification modules to capture and process
analytical redundancy relations while keeping a reasonable complexity
at the operational stage. In the latter case, a multi-task MLP NN (i.e.
each sensor condition is seen as a binary classification task) is designed
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for detecting and (if any) identifying multiple faulty sensors via a single
NN.

• Moreover, classifier decisions, residual signals and virtual measurements
are exploited by a a specifically-designed controller to make correc-
tions on sensor models inputs and improve overall system performance
both for detection and isolation tasks. Specifically, in a feedback loop,
the controller is in charge of replacing corrupted input data and, con-
sequently, avoiding propagation of faults throughout the architecture.

C3 Scalability: To address the dimensionality limitations (O3) of the state-of-the-
art techniques over large-scale IoT networks, we propose a new framework for
sensor validation based on a deep recurrent graph convolutional architecture
(DRGCA) which jointly learns a graph structure of system and models spatio-
temporal inter dependencies. More specifically, the proposed two-block ar-
chitecture (i) constructs the virtual sensors in the first block to refurbish an-
omalous (i.e. faulty) behaviour of unreliable sensors and to accommodate the
isolated faulty sensors and (ii) performs the detection and isolation tasks in
the second block by means of a classifier. Accordingly, the contributions of
the Publications P7 can be summarized as follows.

• We present the use of an enhanced graph convolutional network (GCN),
termed AGCRN, to model virtual sensors. The AGCRN captures close-
grained spatio-temporal correlations in graph data based on the two mod-
ules and a recurrent design.

• To the best of our knowledge, this is the first attempt to propose the use of
GCN-based design in the SFDIA framework. Our proposed DRGCA has
capabilities for the detection, isolation and accommodation of unknown
fault types without any pre-modifications.

• This is also the first attempt to address and successfully perform all three
tasks of detection, isolation and accommodation of sensor faults within
the SFDIA framework within the challenging scenario of large-scale IoT
networks.

• The performance of the proposed approach in terms of mean absolute
error (MAE), root mean square error (RMSE), mean absolute percentage
error (MAPE) and probabilities of detection, false alarm, and correct
identification is evaluated on publicly-available datasets [30, 31].

1.3.1 List of Publications

The following works were conducted by the author of the dissertation in line with
the research objectives presented in Section 1.1. These works are documented in
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papers P1 to P7 and comprise the contributions listed in Section 1.3. The list is
composed of seven papers, of which six were published or accepted for publica-
tion, and one was submitted during the course of the Ph.D.

• P1: [32] H. Darvishi, D. Ciuonzo, E. R. Eide and P. Salvo Rossi, "A Data-
Driven Architecture for Sensor Validation Based on Neural Networks," 2020
IEEE SENSORS, 2020, pp. 1-4;

• P2: [33] H. Darvishi, D. Ciuonzo, E. R. Eide and P. Salvo Rossi, "Sensor-
Fault Detection, Isolation and Accommodation for Digital Twins via Modu-
lar Data-Driven Architecture," in IEEE Sensors Journal, vol. 21, no. 4, pp.
4827-4838, 2021;

• P3: [34] H. Darvishi, D. Ciuonzo and P. Salvo Rossi, "Real-Time Sensor
Fault Detection, Isolation and Accommodation for Industrial Digital Twins,"
2021 IEEE International Conference on Networking, Sensing and Control
(ICNSC), 2021, pp. 1-6;

• P4: [35] H. Darvishi, D. Ciuonzo and P. Salvo Rossi, "Exploring a Modular
Architecture for Sensor Validation in Digital Twins," 2022 IEEE Sensors,
2022, pp. 1-4;

• P5: [36] H. Darvishi, D. Ciuonzo and P. Salvo Rossi, "A Machine-Learning
Architecture for Sensor Fault Detection, Isolation and Accommodation in
Digital Twins," in IEEE Sensors Journal, vol. 23, no. 3, pp. 2522-2538,
2023;

• P6: [37] A. Chawla, Y. Arellano, M. V. Johansson, H. Darvishi, K. Shaheen,
M. Vitali, F. Finotti, P. Salvo Rossi, "IoT-based Monitoring in Carbon Cap-
ture and Storage Systems," in IEEE Internet of Things Magazine, vol. 5, no.
4, pp. 106-111, 2022;

• P7: [38] H. Darvishi, D. Ciuonzo and P. Salvo Rossi, "Deep Recurrent
Graph Convolutional Architecture for Sensor Fault Detection, Isolation and
Accommodation in Digital Twins," Submitted to IEEE Sensors Journal,
2023;

1.3.2 Papers Not Included in the Thesis

• P8: [39] M. Goodarzi, M. A. Sebt and H. Darvishi, "Target and Image Eleva-
tion Angles Separation Algorithm for Low-Angle Tracking with Monopulse
Antenna," 2020 28th Iranian Conference on Electrical Engineering (ICEE),
2020, pp. 1-4;
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• P9: [40] H. Darvishi, M. A. Sebt, D. Ciuonzo, and P. Salvo Rossi, “Tracking
a Low-Angle Isolated Target via an Elevation-Angle Estimation Algorithm
Based on Extended Kalman Filter with an Array Antenna,” Remote Sensing,
vol. 13, no. 19, p. 3938, Oct. 2021;

• P10: [41] S. P. Talebi, H. Darvishi, S. Werner and P. Salvo Rossi, "Gradient-
Descent Adaptive Filtering Using Gradient Adaptive Step-Size," 2022 IEEE
12th Sensor Array and Multichannel Signal Processing Workshop (SAM),
2022, pp. 321-325;

• P11: [42] M. A. Sebt, M. Goodarzi and H. Darvishi, "Geometric Arithmetic
Mean Method for Low Altitude Target Elevation Angle Tracking," in IEEE
Transactions on Aerospace and Electronic Systems, 2023;

1.4 Thesis Outline
This thesis begins by providing the fundamentals of GCNs and the background
necessary for the research developed presented here. Chapter 2 provides a literat-
ure review regarding the related work, the fundamentals of graph convolution and
GCNs, and the description of the datasets and the framework for fault generation.
Chapter 3 proposes three general SFDIA architectures and describes the different
blocks of each SFDIA architecture for fault detection, isolation and accommod-
ation in detail, and later highlights and compares the numerical performance for
the datasets with different setups. Finally, Chapter 4 presents the conclusions and
final remarks, and future works for the topics discussed in the thesis. In the second
part of the thesis, the research articles which are the scientific contribution of the
dissertation are presented.



Chapter 2

Background

This chapter reviews the background of SFDIA systems, followed by parts from
the theoretical framework. Specifically, relevant literature, technical concepts,
sensor faults description, and working datasets are introduced. Specifically, a
literature review and a brief introduction of different deep neural architectures
which are employed in this thesis are presented in Section 2.1. We formalize
the concepts of graph convolution, and graph neural network in Section 2.2.4.
Later on, sections 2.3, 2.4 and 2.5 present the framework for fault generation and
provide a description of sensors classification and the datasets, respectively.

2.1 Background on SFDIA systems
In the last years, the main advancements in sensor fault diagnosis technology have
relied on the milestone concept of redundancy which embraces a wide spectrum
of design solutions, e.g. redundancy can be accomplished by either hardware
or analytical schemes. Within the class of hardware-based approaches (also re-
ferred to as physical-based approaches), multiple identical sensors (i.e. sensing
the same physical parameter) along with a voting scheme (or more sophisticated
techniques, see [43]) are employed to detect, isolate and accommodate sensor fail-
ures [44, 45, 46]. If the difference (namely, the residual signal) between the meas-
ured signal of a sensor and each other sensor in the set is considerably high, the
aforementioned sensor is declared faulty and its data is replaced with those from
the remaining (identical) sensors. For instance, the aforementioned assumptions
apply to the case of homogeneous wireless sensor networks (WSNs), where neigh-
boring nodes are assumed to measure roughly the same parameter [43]. Conven-
tional physical-redundancy approaches however cannot handle cases with simul-

9



10 Background

taneous failures of identical sensors, as they do not capitalize the statistical depend-
ence of measurements originating from other sensor types [44, 45]. Moreover, in
many applications, it is impractical to implement these approaches due to space
and/or weight and/or cost constraints [45].

Accordingly, it is not surprising that methods adopting analytical redundancy have
gained increasing attention within the research on SFDIA [47, 48, 28]. Unlike
physical redundancy, the latter approaches exploit correlations and functional re-
lationships within the system instead of introducing additional (redundant) hard-
ware. Still, it is worth highlighting that the above two philosophies are not mu-
tually exclusive and hybrid approaches can be pursued toward the sophisticated
design of fault-tolerant DTs. Analytical redundancy can be usually implemented
by either model-based or data-driven techniques.

Model-based SFDIA have been mostly investigated in the context of power sys-
tems [49], e.g. using electrical dynamics equations [47] or Luenberger observ-
ers [50]. Some other methods have focused on the detection and accommodation
of proportional-type faults in nonlinear systems [51, 52]. Unfortunately, those
methods (a) usually result in high complexity, (b) require an explicit, application-
dependent, formulation of the analytical redundancy relationship among sensors
and (c) are seldom able to handle multiple sensor faults simultaneously. On
the contrary, data-driven approaches relying on historical data have recently re-
ceived large interest, starting from simpler methods (e.g. auto-regressive models
with exogenous inputs (ARX) [53]) to more complicated (non-linear) learning ap-
proaches (e.g. random forest (RF) [20], support vector machines (SVMs) [11, 12]
and NNs [26, 32]). Indeed, data-driven techniques do not require exact knowledge
of the mathematical model for sensor fault diagnosis.

Specifically, SVM-based classification was one of the relevant attempts to de-
tect sensor faults in WSNs, in both batch [11] and online forms [12], which
showed relatively small computational costs, but limited performance. Successive
works [54, 15] have also employed the SVM approach to allow both detection and
identification of faults: a binary classifier was trained from the residuals of each
sensor. Specifically, in the former case [54], the residual signals were generated
by comparing the true measurements with a single (global) observer designed by
including fault models. Conversely, in the latter case [15], a residual was obtained
from each (correlated) sensor pair via an ARX model, thus providing multiple
classification outputs for a given sensor then aggregated at a higher level.

A second important class of approaches for SFDIA relies on the well-known Au-
toencoder (AE) NN [55, 48, 56, 16]. Indeed, the AE is an unsupervised learning
technique capable of learning and extracting hidden representations from raw data
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and it is thus suited for fault detection. Hence, once trained, the AE can provide
a reconstructed estimate of the sensors’ measurements, thus allowing straightfor-
ward computation of residuals (i.e. the difference between inputs and outputs of
the AE). Specifically, an AE-based (aided by exogenous inputs) sensor valida-
tion scheme for a heating, ventilation and air conditioning system was proposed
in NNs [16]. Detection and identification are simply performed by comparing
overall and per-sensor residuals to a given threshold. A similar AE-based SF-
DIA method is presented in [48] for an air quality controlling system, with iden-
tification scheme performed via a more involved sensor validity index. In both
works [16, 48] accommodation is simply performed by using the AE output asso-
ciated to the sensor(s) declared as faulty. Differently, a more sophisticated proposal
uses an additional denoising AE (a supervised learning technique) to perform the
accommodation task [56], namely to clean faulty data. Despite their simplicity,
AE-based SFDIA approaches can suffer however from degraded performance un-
der weak-faults, as the latter type of faults does not considerably impact correla-
tions in data.

MLP NNs (including variants) have also been proved to perform satisfactorily for
a number of relevant sensor fault diagnosis tasks [28, 14, 57], including heavy-
duty diesel engines and aircrafts, based on a sensor-centric viewpoint. Indeed,
in all the aforementioned works, one MLP estimator per each sensor is designed
(solely on the basis of other sensors’ measurements) and detection/identification is
based on the evaluation of the residual vector. Accommodation is then performed
by using the estimator(s) associated to the sensors declared as faulty. Specifically,
the proposal in [14] adopts fully-connected cascade (FCC) NNs (i.e. MLPs al-
lowing direct connections across different hidden layers) for the sensor estimator
design, while [28] considers a hybrid structure with a linear NN and resource al-
location network (a variant of well-known radial basis function NN) for the same
task. More recently, a plain MLP estimator (exploiting the sole spatial correlation
among sensors) has been proven to provide reliable detection with low false-alarm
rate as well [57].

A different rationale is pursued in [26], where a single Deep belief network (a
Bayesian type of NNs) has been trained (in a supervised fashion) to detect a
faulty condition whereas sensor identification is naively carried out based on
the maximum deviation from data mean-value. Along the same lines, a general
approach is presented to detect and identify sensor faults using either a single
Recurrent NN (RNN) or an MLP [18] for predicting next-step measurements
and comparing them with actual ones. A disentanglement regularization term on
the NN loss function is introduced to help the algorithm cope with propagation
of faults to non-faulty sensors in the identification stage. Unfortunately, the
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accommodation stage is not taken into account in the above work. Interestingly,
also a dynamic Bayesian network has succeeded in sensor fault detection and
accommodation exploiting spatial and temporal correlations in the context of
intelligent connected vehicles [19]. Still, its training difficulty (in terms of both
parameter and structure learning) appears limiting in large-scale sensor systems.

2.2 Preliminaries
In the following, we focus on the different deep neural architectures which are
employed for SFDIA, in the literature and this work. Before doing so, we need to
introduce some notation.

Notation - IN denotes the identity matrix of size N ; 1a×b denotes the matrix
of all ones of size [a × b]; 0N denotes the null vector of length N ; {·}T refers
to the transpose operator, [·; ·] refers to concate operation, | · | indicates the
absolute operation, ⊙ denotes the entry-wise (Hadamard) product, � denotes
the tensor product (whose meaning is specified each time is adopted), ∗ denotes
the convolution operator, ∥·∥p denotes the p-norm, ∈ is the set membership, and
O(·) denotes the Landau notation. U(a, b) (resp. Ud(a, b)) denotes a uniform
(resp. discrete-uniform) probability density function (PDF) with support [a, b]
(resp. {a, a + 1, . . . , b}); N (b, c) (resp. N (µ,Σ)) denotes a Gaussian (resp.
multivariate Gaussian) PDF with mean b and variance c (resp. with mean vector µ
and covariance matrix Σ); B(p) denotes a Bernoulli distribution with parameter p.

2.2.1 Multi-Layer Perceptron (MLP)

It is a class of feedforward NNs that can model an arbitrary nonlinear mapping
f : Ri×1 → Rj×1 between an input and an output vector. The NN is made of an
arbitrary number of hidden layers, each consisting of an affine matrix operation on
inputs, plus an entry-wise activation function. Considering a non-linear activation
function e.g., Sigmoid function, rectified linear unit (ReLU) [58], the relationship
between input and output data, will be a non-linear estimator. This makes the
MLP a powerful tool for SFDIA problems which eases the implementation of
sensor validation schemes for highly non-linear systems. For a given set of
features (i.e. input) and a set of labels (i.e. output), the MLP can train a function
approximator f(·) for either classification or regression tasks.
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2.2.2 Convolutional Neural Network (CNN)

CNNs have been massively applied in many data-driven applications. A CNN is
a specialized NN, inspired by visual mechanism of living organisms, designed
for working with one-, two- and three-dimensional data. This is accomplished by
chaining convolutional layers, each comprising a set of translation-invariant filters
(kernels) with a limited extent (the “receptive field”). These layers are convolved
with the input with the aim of extracting features of a certain input region. The
aim of the convolutional layer is to extract high-level features from the input
data that makes CNN able to capture the spatio-temporal correlations. In this
work, one-dimensional CNNs have been used due to their appeal in (multivariate)
time-series modeling.

2.2.3 Recurrent Neural Network (RNN)

This is a type of NN with attributes adapted to work for time series data or data
that involves sequences. RNNs support processing of sequential data by allow-
ing loopy connections, as opposed to feedforward NNs. RNNs have been utilized
in many speech technology areas including fault diagnosis [59], speech recogni-
tion [60], and language modeling [61]. They are distinguished by their “memory”
concept which helps them to store previous states to influence the current input for
generating the output. It takes a sequence of n elements (i[0], . . . , i[n]) as input,
loops through these and outputs a value o[n]. In each loop, the hidden layer ac-
quires the "memory" from the previous loops. Still, vanilla RNNs are not able to
model long-term dependencies affecting the output. Hence, two variants of vanilla
RNNs are used in almost every application:

1. Long-Short Term Memory (LSTM): first introduced by Hochreiter and
Schmidhuber, 1997, it is still assiduously developed by researchers [62].
LSTM has the capability to cope with the RNN problem of modeling long-
term dependencies [62].

2. Gated Recurrent Unit (GRU): The GRU is a newer generation of RNNs
presented by Cho et al. [63]. Despite the higher performance of LSTM over
vanilla RNNs, excessive computational complexity for training an LSTM
network is its main drawback [63]. The GRU is a simplified variant of LSTM
using fewer training parameters: therefore it requires less memory and runs
faster. Indeed, in each LSTM unit there are three gates associated to the cell
state (forget, input, output) whereas in the GRU there are only two gates
(reset and update).
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2.2.4 Graph Convolutional Network (GCN)

In the following, the notion of graph convolution is recalled. Then, in Sec. 2.2.4.2,
the actual implementation of graph convolutional layers is refreshed.

2.2.4.1 Convolution operation on graphs

The topological structure of a set of networked sensors can be described as an
undirected graph G(V, E , A), where V is a finite set of N nodes (i.e. sensors), E is
a set of edges that represents the connections between nodes, and A ∈ RN×N is
the adjacency matrix describing the connectivity of graph G.

The graph Laplacian L ∈ RN×N is a key operator in graph analysis [64], defined
as L ≜ (D −A), namely the difference between the adjacency matrix A and the
diagonal degree matrix D (where dii =

∑
j aij). The normalized graph Laplacian

matrix LG = (IN −D− 1
2AD− 1

2 ) is a real symmetric positive semidefinite matrix
with a complete set of orthonormal eigenvectors {ui}Ni=1 ∈ RN (also known as
Fourier functions) associated with real non-negative eigenvalues {λi}Ni=1 repres-
enting the frequencies of the graph. Moreover, the graph normalized Laplacian
spectrum [65] is contained in the span of {λi}Ni=1 ∈ [0, 2]. The graph normalized
Laplacian is always diagonalizable by the Fourier basis U =

[
u1 · · · uN

]
∈

RN×N i.e. LG = UΛUT , where Λ = diag(λ1, ..., λN ) ∈ RN×N . The
Fourier graph transform F of a signal x ∈ RN is defined by the Fourier basis
F(x) = UTx and its inverse F−1(x) = UF(x).

Spectral convolution on the graph G is defined [66] as the signal x filtered by graph
filter gθ, i.e.

gθ ∗ x ≜ F−1(F(gθ)⊙F(x)) = U(UT gθ ⊙UTx)

=
[
U ĝθ(Λ)UT

]
x , (2.1)

where ĝθ(Λ) ≜ diag(UT gθ) is the spectral graph filter (in diagonal matrix form)
parameterized by θ ∈ RN in the Fourier domain to avoid the elementwise opera-
tion, namely

ĝθ(Λ) =




ĝθ1(λ1) 0 . . . 0
0 ĝθ2(λ2) . . . 0
...

...
. . .

...
0 0 . . . ĝθN (λN )


 . (2.2)
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2.2.4.2 GCN layer

The defined filtering operation gθ ∗ x has a quadratic computational complexity
O(N2) due to the matrix multiplication with the Fourier basis U in Eq. (2.1).
Also, eigendecomposition of LG is required (once) for carrying out spectral con-
volutions on G. Then for large graphs (i.e. N ≫ 1), both these operations can
become computationally expensive. Equally important, there is no guarantee of
spatial localization [67] of the graph filter ĝθ(Λ) (i.e. a non-smooth filter). Spa-
tial decay is an advantageous property to extract multi-scale patterns. The graph
filter ĝθ(Λ) can become a non-smooth spectral filter, while smoothness in the fre-
quency domain corresponds to rapid spatial decay in the vertex domain.

Chebyshev polynomial approximation: To tackle the localization problem,
ĝθ(Λ) can be approximated by a truncated expansion up to order K of Cheby-
shev polynomials [68] {Tk(x)}Kk=0, namely ĝθ′(Λ) ≈ ∑K

k=0 θ
′
kTk(Λ̃). In the lat-

ter approximation, Λ̃ denotes the rescaled matrix Λ̃ ≜ (2Λ/λmax − IN ) (where
λmax denotes the largest eigenvalue of LG), while θ′k represents the kth Chebyshev
coefficient (θ′ ∈ RK+1). The Chebyshev polynomials can be efficiently computed
via the recurrence relation Tk(x) = 2xTk−1(x) − Tk−2(x) with T0(x) = 1 and
T1(x) = x. Although the graph filter is now K-localized with respect to the Kth-
order polynomials of the Laplacian, the learning complexity is still not addressed
because of the multiplication of the eigenvector matrix U .

A solution to this problem is to directly learn the function of the normalized
Laplacian gθ′(LG) [66]. Indeed, exploiting

(
UΛUT

)k
= UΛkUT , the equal-

ity UTk(Λ̃)UT = Tk(L̃) holds, where L̃ ≜ (2LG/λmax − IN ). Accordingly,
graph convolution can be approximated as

gθ′ ∗ x ≈
K∑

k=0

θ′k
[
U Tk(Λ̃)UT

]
x =

K∑

k=0

θ′kTk(L̃)x (2.3)

where Tk(L̃) ∈ RN×N is the Kth order Chebyshev polynomial. The filtering
operation is reduced to O(K|E|) operations.

Linear formulation of GCN: With first-order approximation (one-hop localiza-
tion, i.e. K = 1) of Eq. (2.3) and further assuming1 λmax ≈ 2 and θ = θ′0 = −θ′1,
a layer-wise linear convolution operation can be defined to create a graph-based
convolutional NN model, i.e.

gθ ∗ x = θ (IN +D− 1
2AD− 1

2 )x → θ (D̃− 1
2 ÃD̃− 1

2 )x (2.4)

1These assumptions are made to constrain the number of trainable parameters (viz. reduce num-
ber of operations) and to address overfitting. Change in scale can be adapted by NN in the training
phase.
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with Ã ≜ A + IN and d̃ii ≜
∑

j ãij . The last expression means that the matrix
operation has been replaced with the so-called re-normalization trick [69]. Cap-
italizing the above result, the GCN layer for a graph signal X ∈ RN×C with C
features per node and F filters is formulated as:

Z = D̃− 1
2 ÃD̃− 1

2XΘ , (2.5)

where Θ ∈ RC×F is the learnable-filter parameter matrix (i.e. the GCN weight
matrix), and Z ∈ RN×F is the convolved signal matrix. Accordingly, the compu-
tational complexity of the GCN operation is O(FC|E|) due to a sparse multiplic-
ation (with D̃− 1

2 ÃD̃− 1
2 ). Hence, in general, the GCN layer can be expressed in

its implicit form as:

Z = GCNΘ(X;G) , (2.6)

The aforementioned layer assumes the knowledge of the graph structure via the
matrix D̃− 1

2 ÃD̃− 1
2 .

2.3 Sensor Fault
A fault in a system refers to a complete (or partial) malfunction and manifests over
a permanent (or transient) time span. As shown in Fig. 2.1, the most common
types of sensor faults in a sensor network are defined (a detailed discussion of
sensor faults is found in [70, 71]). Depending on the characteristics of sensor data,
faults can be classified as follows:

1. Bias fault: also known as offset fault, the deviation from nominal values is
given by an additive constant bias;

2. Drift fault: sensor readings drift with a small slope from nominal values
(drift faults are more subtle since they appear gradually over time and their
effect is not very apparent);

3. Noise fault: an increased noise level in sensor readings (when noise power
is much larger than usual, it is an indication of sensor malfunctioning).

4. Freeze fault: also known as stuck-at fault, the sensor readings stuck at a
constant value (i.e. the variance of the readings becomes zero);

The impact of sensor faults would affect stability, reliability and accuracy of the
system depending on the specific application. Hence, to fully utilize the expected
properties of the DT, it is essential to continuously evaluate and amend sensor data.
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(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Figure 2.1: Types of sensor faults.

We consider transient synthetically-generated bias, drift, noise, and freeze fault
types. Bias fault represents sudden faults, while drift fault well represents
gradually-appearing faults. Finally, noise faults well represent sensors subject
to external disturbances. It is worth highlighting that the practice of modeling
simulated faults superimposed to real data is a common practice in the evaluation
of SFDIA systems (e.g. [11, 18, 56]), as (i) real faulty measurements are sporadic
and very hard to obtain and (ii) simulated faults also allow quantifying accom-
modation performance. This is also to highlight the generality of the proposed
architectures in accommodating diversified faulty conditions. Details about the
modeling of each fault type are provided.
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2.3.1 Bias Fault

This fault type manifests as an additive constant vector b ∈ RC inserted to the
normal operation of generic nth sensor for M consecutive samples, i.e.

xb
n[k] =

{
xn[k] + b , 0 ≤ k −m < M

xn[k] , otherwise
(2.7)

where m denotes the starting time instant of the fault, C is the number of features
per sensor, xn[k] and xb

n[k] are the normalized healthy and possibly bias-faulty
readings at time step k, respectively.

2.3.2 Drift Fault

For this type of fault, an additive term drifts gradually to the bias level vector b in
M samples and then remains at the same value for K samples (M > K), namely:

xd
n[k] =





xn[k] +
(k−m+1)

M b , 0 ≤ k −m < M

xn[k] + b , M ≤ k −m < M +K

xn[k] otherwise

(2.8)

where xd
n[k] is the possibly drift-faulty readings at time step k.

2.3.3 Noise Fault

This fault type is also considered to evaluate the performance of the proposed
architecture in unseen fault scenarios. Specifically, a zero-mean additive Gaussian
noise vector w[k] ∼ N (0C , σ

2
g IC) is added for M consecutive samples, i.e.

xg
n[k] =

{
xn[k] +w[k] , 0 ≤ k −m < M

xn[k] otherwise
(2.9)

where xg
n[k] is the possibly noise-faulty readings at time step k and σ2

g represents
the noise variance.

2.3.4 Freeze Fault

For freeze-type faults, sensor output stuck at previous reading for M consecutive
samples as follows

xf
n[k] =

{
xn[m− 1] , 0 ≤ n−m < M

xn[k] , otherwise
(2.10)
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where xf
n[k] is the possibly-faulty readings at time step k.

2.3.5 Random Fault Generation

The four types of faults considered in this work are synthetically gener-
ated [11, 18, 56] according to the corresponding models detailed above on the
top of the real measurement data. Unless otherwise stated, the fault level b (note
that b reduces to a scalar since C = 1) is generated as b = (2sb − 1) · ab where
sb ∼ B(1/2) and ab ∼ U(0.2, 0.4) to represent weak faults. The variance for
noise faults is similarly generated as σ2

g ∼ U(0.2, 0.4). The fault lengths are
specified via the parameters M and K (see Eqs. (2.7), (2.8), (2.9) and (2.10)),
which are assumed uniformly distributed as M,K ∼ Ud(3, 11) to represent
transient faults2. The random distribution of faults helps both the estimator and
classifier to better generalize during the training phase and prevents focusing on a
specific fault level/length. To verify the robustness of the proposed architectures
against simultaneous faults, up to three concurrent faulty sensors were considered
for the (fault-)generation process.

2.4 Sensors Classification
In the proposed methods, it is assumed that the sensors are divided into two sets:
(i) the set of unreliable sensors SU , containing sensors that are vulnerable to
faults; and (ii) the set of reliable sensors SR, which, depending on the working
system, include sensors whose flawless functionality can be guaranteed [33].
This (ideal) level of reliability could be associated to: a meta-sensor modeling a
group of identical sensors (enjoying hardware redundancy), high-quality sensors,
a proper design and safe working environment, a device being at the middle of
life span [72], or context measurement information which is assumed to have
significantly higher reliability than the considered networked sensor system. In a
more general sense, any reliable source of data correlated with unreliable sensors
could be included in the set of reliable sensors. In the following, without loss of
generality, it is assumed SU = {1, . . . , NU} and SR = {NU + 1, . . . , N}, where
NU and N denote the number of unreliable sensors and total number of sensors,
respectively. Also, for compactness, NR denotes the cardinality of the reliable set
SR (i.e. NR = N −NU ).

2Under freeze fault, the fault length (M ) is uniformly distributed between 100 and 400 consec-
utive samples due to smooth oscillating (WSN and PMSM) data-sets (which are presented in the
following). Smaller fault lengths cause negligible faults on the working datasets.
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2.5 Working Datasets
Three real-world datasets are applied to the proposed SFDIA system to evaluate
the qualification of the system in different scenarios. There are several publicly-
available datasets which applied to the proposed SFDIA systems to evaluate the
qualification of the systems in different scenarios. Sensors in all datasets collect a
single parameter (flow rate, pressure, etc.), i.e. C = 1. Before feeding the datasets
to the proposed architectures, sensors readings in each dataset are normalized
using min-max scaling on the training set to avoid polarization during the learning
process. Finally, the entire rows containing missing values are ignored from the
datasets. No other pre-processing has been considered, such as feature extraction,
to help the learning procedure of our models. Although, for noisy datasets,
smoothing techniques (e.g. moving average, Savitzky-Golay filter or quadratic
regression) or low-pass filtering can be performed allowing the important patterns
of data to stand out. Tab. 2.1 summarizes the statistics of each dataset. They will
briefly be described in the following.

2.5.1 Air Quality (AQ) Dataset

The first dataset contains hourly-averaged measurements of an array of 5 metal
oxide chemical sensors embedded in a gas multi-sensor device deployed on the
field in an Italian city along with gas concentrations references from a certified
analyzer [21]. The device was located in a polluted area, at road level of the city.
AQ dataset was recorded during Mar. 2004-Feb. 2005.

Measurements contain carbon monoxide (CO), non-metanic hydrocarbons
(NMH), nitrogen oxides (NOx), nitrogen dioxide (NO2) and ozone (O3) gas
concentrations, as well as measurements of temperature and humidity. For
our analysis, the ground truth hourly-averaged concentrations provided by a
co-located reference certified analyzer along with absolute humidity are ignored.
Accordingly, in our numerical analysis, the five gas sensors are considered as
the unreliable set (NU = 5), whereas temperature and relative humidity are
considered as the reliable set (NR = 2).

2.5.2 WSN Dataset

The second dataset used in our evaluation has been collected at the University of
North Carolina at Greensboro [22]. A labeled dataset collected from a single-
hop and a multi-hop WSN using TelosB motes. The dataset consists of 4 sensors
located indoor and outdoor measuring humidity and temperature. Measurements
were collected during 6 hours at 5 seconds intervals. Anomalies indicated with
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label "1" in the original dataset were introduced to two sensors by using a water
kettle which increased the temperature and humidity.

In what follows, only the multi-hop dataset with 4 temperature (T1 to T4)
measurements is used as unreliable set (NU = 4), and data with the indicated
label "1" were ignored from this dataset. No reliable set is considered for this
dataset (NR = 0).

2.5.3 Permanent Magnet Synchronous Motor (PMSM) Dataset

The third dataset comprises several sensor data measurements from a permanent
magnet synchronous motor collected by the LEA department at Paderborn Univer-
sity [23, 73]. Data-set measurements include ambient temperature, coolant tem-
perature, voltage q and d components, current q and d components, motor speed,
torque, rotor temperature, stator yoke temperature, stator tooth temperature, and
stator winding temperature. Original measurements contain 52 sessions, with each
session being 1 ∼ 6h long and sampled at intervals of 0.5 seconds.

We have considered a sample interval of 15 seconds3 (by down-sampling) and
ignored the ambient and rotor measurements. Summation of q and d components
of voltage and current are treated as final voltage and current measurements. The
reliable set consists of 3 stator temperatures4 (NR = 3), and other remaining
measurements form the unreliable set (NU = 5).

2.5.4 DeFACTO Dataset

DeFACTO is a highly instrumented experimental facility of SINTEF research
company that includes a 139 meters long horizontal loop and a 90 meters deep
vertical U-tube, enabling the study of both horizontal and vertical flow phenomena
relevant to transport phenomenon for CCS [37]. The carbon dioxide (CO2) loops
operate at up to 160 bar, the vertical section has a tight heat transfer system that
allows operation at temperatures between 5°C and 35°C. The experimental studies
comprise steady-state liquid or gas flow and transient phenomena, including
rapid depressurization and cavitation. We use the SINTEF dataset for experiment
conducted at the DeFACTO facility on Dec. 13, 2021. Measurements were col-
lected during 1337 minutes at 5 seconds intervals. We only used the temperature
measurements from the 6 temperature sensors installed on the surface of the CO2

3In the paper [36], the readings were sampled with 1.5 s-intervals and the first 55k readings were
picked after sampling.

4In the paper [36], only the stator yoke temperature is assumed to belong to the reliable set SR

(thus NR = 1).
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pipeline DeFACTO.

Table 2.1: Datasets description. The reliable sensors in each dataset are highlighted in
italic.

Dataset Samples NU NR Attributes

AQ 8991 5 2
Multivariate, time-series; CO, NMH, NOx,
NO2 and O3 gas concentrations, as well as
measurements of temperature and humidity

WSN 4589 4 0
Multivariate, time-series; four temperature
sensors: two indoor, two outdoor

PMSM 55000 5
3 (1
in
P5)

Multivariate, time-series; coolant temper-
ature, voltage and current (summation of q
and d components), motor speed, torque and
3 stator temperatures

DeFACTO 16042 6 0
Multivariate, time-series; six temperature
sensors: installed on the surface of the CO2

pipeline DeFACTO

PeMSD8 17856 170 0
Multivariate - Graph shape, time-series;
traffic flow readings, with 277 edges

Water Tank 26998 100 0
Multivariate - Graph shape, time-series;
pressure readings, with 388 edges

2.5.5 PeMSD8 Dataset

This real-world dataset contains traffic data collected in San Bernardino, Califor-
nia, during Jul.-Aug. 2016 [30]. The traffic data consists of all detector-based
point data captured by the California Department of Transportation (CalTrans)
performance measurement system5 (PeMS). The traffic flow is collected by
N = 170 sensors on eight roads in San Bernardino with a time interval of 5
minutes.

2.5.6 Water Tank Dataset

This dataset6 collects measurements from a network of N = 100 water tanks con-
nected through pipelines [31]. Tanks pressure is measured using pressure sensors
to indicate the level of water in the tanks. When a tank’s water level goes below

5https://pems.dot.ca.gov/
6https://github.com/IndustrialNetwork/GraphDataset
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a certain threshold, tank starts to refill until it is full. The flow rate between two
connected tanks is a non-linear function of the pressure and distance between the
tanks. We use the first three measurements’ logs of the dataset which roughly
contains 27k samples.



Chapter 3

Sensor Fault Detection, Isolation
and Accommodation

In this chapter, the contributions of thesis for the SFDIA problem are described
briefly. Section 3.1 presents a summary of the works Publications P1, P2, P4 and
P6, in which we proposed a modular ML-based framework for sensor validation,
termed M-SFDIA. Section 3.2 describes the extended M-SFDIA architecture and
provides the performance comparison of the proposed scheme with other methods
via numerical results, which is taken from Paper P3 and P5. In Section 3.3, the
final proposed data-driven SFDIA architecture is presented and the functionalities
of each block are illustrated and results from Paper P7 are presented.

3.1 Modular-SFDIA (M-SFDIA) Architecture
In view of the previous discussion in Sec. 2.1, some proposals are restricted to
a given vertical domain (e.g. aircraft [14], vehicle [15] or HVAC system [16]
monitoring), thus lacking a general formulation. Secondly, part of the liter-
ature evaluates corresponding proposals on private (e.g. [18, 19]) or simulated
(e.g. [20, 16, 14]) measurement data, thus precluding reproducibility and convin-
cing evaluation, respectively. Thirdly, a number of the discussed works evaluate
their proposals only on a single fault type (e.g. bias [18, 48] or drift [28]). Equally
important, some architectures are only limited to fault detection [11, 12]. On the
other hand, some recent proposals do not foresee all three tasks in their original
formulation, e.g. the identification and accommodation tasks in [56] and [18], re-
spectively. Still, even when all three tasks can be carried out, in some cases only
spatial correlation [28, 57, 16] is used to accommodate faulty measurements. Fi-

24
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Figure 3.1: Block diagram of the M-SFDIA system.

nally, some approaches have a limited modularity [56, 48, 18].

Accordingly, the proposed framework allows the development of a general SFDIA
scheme to be easily adapted to different application domains. The proposed archi-
tecture jointly takes advantage of the temporal correlation of the measurements
and of both reliable and unreliable sensors within the system to achieve a higher
sensor validation performance.

3.1.1 System Architecture for M-SFDIA Scheme

The block diagram of the proposed M-SFDIA scheme is shown in Fig. 3.1, where
similar blocks and similar data are reported in the same color. The input to the
system is the set of measurements from all sensors. The system is based on three
stages: (i) the first stage is made of NU virtual sensors (representing estimation
of unreliable sensors); (ii) the second stage is made of NU analogous residual-
computation units; and (iii) the third stage is made of a (multi-task) classifier. The
classifier at the third stage is performing detection and isolation, while accommod-
ation is done by exploiting the estimators’ output.
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More specifically, at the first stage, the virtual sensor s ∈ SU receives as input
the measurements from all sensors excluding sensor s (i.e. (SU ∪ SR − {s}) for
time instant n and Lv previous time instants (i.e. a sliding window), and produces
as output an estimate of the measurement of sensor s ∈ SU , whose nth sample is
denoted ys[n].

Then, at the second stage, the residual-computation unit s ∈ SU receives as input
the measurement xs[n] of sensor s ∈ SU and the corresponding estimate ys[n]
from the virtual sensor s ∈ SU and produces as output a measure of dissimilarity of
the pair, whose nth sample is denoted es[n]. Residual measurements are reflecting
inconsistencies between the normal and faulty sensor operating status of unreliable
sensors.

At the third stage, the classifier receives as input the dissimilarity measures from
all the sensor pairs in the unreliable set SU for time instant n and Lc previous time
instants, and produces as output a decision vector about if and which sensor has un-
dergone a failure. According to Fig. 3.1, the nth (soft-) decision vector is denoted
d[n] = (d1[n], d2[n], . . . , dNU

[n])T where di[n] ∈ [0, 1], i = 1, . . . , NU denotes
the probability of the ith sensor (corresponds to a specified unreliable sensor) be-
ing faulty. Ideally, a vector d[n] with all elements set to 0 denotes the event that
no sensor has been declared in failure, while the set of unreliable sensors SU is
mapped bijectively into the first NU positive integers with an arbitrary labeling
function. The final decision is made based on whether the maximum element of
vector d[n] exceeds a given threshold γ.

It is implicitly assumed that in the case that sensor s ∈ SU is declared in failure,
its measurement xs[n] is replaced with the estimate ys[n] from the corresponding
virtual sensor. It is apparent how the considered architecture implements all the
tasks of an SFDIA system: i.e. decision vector d[n] with an over threshold element
represents the detection task; after a fault is detected, the specific sensor index i
corresponding to the maximum element di[n] of the decision vector performs the
isolation task and replacing xs[n] with ys[n] employs the accommodation task,
with the sensor s identified through the inverse labeling function. In what follows,
we detail each of the three aforementioned stages.

3.1.1.1 Virtual sensor

An MLP NN, with (Lv + 1)(NU + NR − 1) inputs, 1 output, and Hv hidden
layers, each with Nv hidden nodes, has been considered for the implementation of
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the generic virtual sensor, i.e.

ys[n] = f (Hv ,Nv)
s (xU,s[n], . . . ,xU,s[n− Lv]

,xR[n], . . . ,xR[n− Lv]) , (3.1)

where fs represents the MLP-based function model of the sth sensor. Each
MLP has been trained using the Nesterov-accelerated adaptive moment estimation
(Nadam) optimization algorithm using real-world datasets [74, 75]. The Nadam al-
gorithm takes advantage of properties of the adaptive moment estimation (Adam)
algorithm and incorporates Nesterov Accelerated Gradients into Adam. Hyper-
bolic tangent (Tanh) and identity activation functions are employed in hidden lay-
ers and the output layer, respectively. The mean square error (MSE) loss function
is used for loss calculation in training phase.

The MLP is a simple architecture with proved performance of estimating nonlin-
ear behavior [76, 77]. Numerical results show the excellent performance of MLP
architecture. However, in the case of further requirement of extrapolating the long-
term impact of the temporal dimension for time series datasets, more complicated
architectures (e.g. CNN, RNNs and GRU networks [78, 79, 35]) are expected to
present more appropriate results for the implementation of each virtual sensor. The
modular design of this proposal allows exploring different types of NN models to
select the most suitable NN models according to the application [35]. The pub-
lication P4 [35] focuses on exploring the optimized model selection for SFDIA of
WSN dataset. Data description, data pre-processing (in order to make it suitable
for model training) and data contamination procedure (via synthetically-generated
faults) are described in the next section.

3.1.1.2 Residual computation

For dissimilarity measure, we simply considered the error between the estimated
value and the actual value, i.e.

es[n] = ys[n]− xs[n]. (3.2)

In fault-free condition, it is expected that the residual measurements es[n] be equal
to zero, but in practice, it always contains non-zero values due to noise and imper-
fect estimation of sensor output. Hence, the classifier is introduced to discriminate
faulty measurements from non-faulty measurements via pattern analysis of resid-
ual signals.
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Table 3.1: Computational complexity of the MLPs constituting the proposed SFDIA ar-
chitecture.

Layers MLP Complexity

first hidden
layer

virtual sensor O(LvNUNv + LvNRNv)

classifier O(LcNUNc)

other hidden
layers

virtual sensor O(N2
v )

classifier O(N2
c )

output layer
virtual sensor O(Nv)

classifier O(NUNc)

in total
virtual sensor O(LvNUNv + LvNRNv +HvN

2
v )

classifier O(LcNUNc +HcN
2
c )

3.1.1.3 Classifier

An MLP NN, with NU inputs, NU discrete output, and Hc hidden layer with Nc

hidden nodes, has been considered for the implementation of the classifier, i.e.

d[n] = g(Hc,Nc)(eU [n], . . . , eU [n− Lc]). (3.3)

where eU [n] is a vector of the dissimilarity measurements of the unreliable set
at time instant n. Since there is a certain level of correlation between temporal
samples of residual signals, Lc previous time instants are also fed to the classifier
to exploit the temporal correlation among measurements.

The binary cross-entropy loss function along with the same optimization algorithm
(Nadam) and activation function (Tanh) for hidden layers as in the virtual sensors
are employed in the classifier. Moreover, NU sigmoid activation function is used
at the output layer of the classifier. The fault-signal generation is described in the
next section.

3.1.1.4 Computational complexity

The computational complexity of the proposed M-SFDIA structure is calculated
hereunder in terms of the big-O notation for one input sample. The computational
complexity for each layer of the virtual sensor and classifier is specified in Tab. 3.1.

It is worth noticing that in Tab. 3.1, the impact of Tanh and sigmoid operations for
virtual sensors and the classifier has been neglected. Finally, with respect to the
computational complexity of both MLPs and assuming equal number of hidden
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layers (Hv = Hc = H), nodes per hidden layer (Nv = Nc = Ng) and time
delays (Lv = Lc = L), the computational complexity involved with the proposed
architecture is approximately O(LN2

UNg + LNRNUNg + HNUN
2
g ). Thus,

the proposed architecture has polynomial complexity, and the complexity grows
quadratically as a function of the number of nodes per layer (Ng) and number of
unreliable sensors (NU ).

3.1.2 Numerical Results

In this section, performance of the proposed M-SFDIA architecture is examined
and compared with recent research works by using the aforementioned real-world
datasets. Each dataset is divided into three parts. On each dataset, we used 70%
of data for training MLPs (training set), 15% for validating (validation set) and
the last 15% block of data for testing purposes (test set). Early stopping method
is used to avoid over-fitting during the training phase [80]. In this method, error
on the validation set is monitored and if after 20 consecutive epochs validation set
error did not improve, the training process is stopped.

In addition, to better understand the effect of fault strength on detection accuracy,
strong fault signals with maximum level b uniformly distributed between 0.6 and
0.9 are considered for comparison with weak fault signals. A more detailed con-
figuration for the proposed M-SFDIA scheme can be found in Publication P2 [33]
and P4 [35].

3.1.2.1 Virtual sensors performance

Performance of the configuration with Hv = 1 hidden layer, Nv = 10 nodes
per hidden layer and Lv = 10 is considered acceptable (details are in publication
P2 [33]), thus in the following, we will refer to this specific configuration. The 2D-
PDF plots of the estimated and actual values for virtual sensors in configuration
1 × 10 are shown in Fig. 3.2, both for the training and the test sets. It is worth
noticing that the test set of the WSN dataset exceeds the defined normalization
lower-bound which is the result of normalization on the training set.

3.1.2.2 Classifier fault detection and classification performance

Synthetically-generated faults have been added to the unreliable set of sensors to
emulate faulty sensors. A classifier with Hc = 2 hidden layers, Nc = 15 nodes
per hidden layer, and a memory of Lc = 10 has been trained.

The probabilities of detection and false-alarm are two important metrics for eval-
uating the performance of a detector. Accordingly, in Fig. 3.3, fault detection per-
formance is investigated in terms of both metrics by using the well-known receiver
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(a) Training set (b) Test set

Figure 3.2: Averaged performance of the virtual sensors in configuration 1 × 10 and
Lv = 10 in terms of 2D PDFs of the estimated and actual values.

operating characteristic (ROC) curves (i.e. by varying the threshold γ). Results
highlight that, although the classifier is facing weak fault signals, it is still capable
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Figure 3.3: ROC curves of proposed SFDIA structure for all datasets under bias and drift
faults.

to detect them with a very high probability for negligible false-alarm probability.
Detection probability of bias faults is noticeably higher than drift faults over dif-
ferent false-alarm rates. This is originally due to the ramp-up phase of drift faults
which takes the classifier more samples to detect faults. As illustrated in Fig. 3.3,
WSN dataset has somewhat lower performance in comparison with the other two
datasets (in case of drift faults). It is mainly because of very weak fault levels
on this dataset according to its sensors’ variation domains (see Tab. II in paper
P2 [33]). Conversely, detection performance of proposed architecture under strong
faults is significantly higher than the detection performance under weak faults as
shown in Fig. 3.3, which highlights the importance of detection and isolation of
weak faults.

Figs. 3.4 and 3.5 demonstrate the effect of using time-delayed samples on the
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Figure 3.4: Detection performance of the classifier in configuration 2 × 15 for different
number of previous time instants Lc in terms of ROC on each data-set.

classifier in the case of drift fault. There are certain improvements in detection
performance and averaged classification (isolation) performance1 when temporal
correlation exists in sensor measurements. However, as it can be seen in both
Fig. 3.4.(b) and 3.5.(b), the performance slightly reduces with increasing number
of time delays (Lc = 15) due to the negligible temporal correlation between older
samples and current sample in the measurements. Besides, in this scenario, in-
creasing the window size should potentially lead to a performance improvement,
however, a larger number of nodes in the hidden layers might be required to handle
properly the increased number of input nodes. Differently, with a fixed network
structure, increasing the window size might in practice saturate the learning cap-

1Averaged classification performance is the average of correct classification probability on all
sensors in the dataset. Non-fault occurrence is considered a separate class.
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Figure 3.5: Averaged classification (isolation) performance of the classifier in configur-
ation 2 × 15 for different number of previous time instants Lc in terms of ROC on each
dataset.

ability.

3.1.2.3 Performance comparison

Table 3.2 compares the proposed architecture with two state-of-the-art techniques
previously outlined in Sec. 2.1: (i) the SVM classifier [11] and (ii) the FCC NN
[14] with 6 nodes. The SVM classifier has no control over the probability of false-
alarm since it does not have any threshold mechanism. Hence, to provide a fair
comparison, we tuned the threshold on the proposed architecture and on the FCC
technique to achieve the same probability of false-alarm as the SVM classifier,
and compared the probability of detection for all techniques in Tab. 3.2. Ap-
parently, the detection performance of the proposed architecture outperforms the
SVM technique for all fault types. The performance gap between these two tech-
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Table 3.2: Detection accuracy of the proposed architecture compared to the SVM classifier
and the FCC technique on the test set.

Dataset Architecture Metrics
Bias (%)

Weak Strong

Drift (%)

Weak Strong

AQ
Pf 2.82 0.01 2.32 0.17

SVM Pd 79.2 98.0 70.4 88.8
FCC Pd 98.5 - 85.2 87.9

M-SFDIA Pd 97.5 98.9 84.1 95.9

WSN
Pf 22.7 0.15 21.7 1.0

SVM Pd 95.9 98.5 88.2 90.3
FCC Pd 100 - 94.4 96.3

M-SFDIA Pd 100 98.9 98.2 94.2

PMSM
Pf 0.05 0.06 0.11 0.15

SVM Pd 34.9 92.3 31.8 77.7
FCC Pd 15.9 99.7 25.0 50.8

M-SFDIA Pd 58.1 99.8 56.0 96.2

niques in terms of detection accuracy becomes more evident under weak faults.
More specifically, under weak drift fault for the PMSM dataset, the performance
improvement in fault detection of the proposed architecture over the SVM tech-
nique is approximately 24.2%. The main reason lies in the fact that the SVM
classifier takes raw-sensor data as input while the M-SFDIA architecture exploits
the estimations of each sensor and feeds the residual data as input to the classi-
fier which contains easy-to-interpret information about faults. The FCC technique
exhibits similar detection performance as the proposed architecture over AQ and
WSN datasets, while on the PMSM dataset, the proposed architecture turns out to
be a better-performing SFDIA solution. In Tab. 3.2, the detection accuracy of the
FCC technique with respect to the corresponding probability of false-alarm was
not available for the WSN and AQ datasets under strong bias faults (as can be seen
also in Fig. 3.6(a)). It is worth mentioning that the detection performance on the
training set resembles those shown for the test set in Tab. 3.2.

As for the isolation task, the proposed architecture achieves significant gains over
the FCC technique as observed in terms of classification performance shown in
Fig. 3.6. More specifically, the proposed architecture takes advantage of MLP
classifier while the FCC technique merely uses a sliding window mechanism. The
relevance of the proposed architecture as an effective SFDIA scheme is apparent.

Finally, as for the accommodation task, Fig. 3.7 compares the accuracy of the
virtual sensors which reveals better estimation capability of the MLPs from the
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Figure 3.6: Averaged classification (isolation) performance comparison in terms of ROC
for the test set on each dataset.

proposed architecture against the FCC NNs. The improvement is mainly due to
the capability of the proposed technique to exploit temporal correlation. Finally, it
is worth noticing that the isolation and accommodation performances of the SVM
technique cannot be compared due to its incapability to classify and estimate faulty
sensors.

3.1.2.4 Modular analysis

This section explores the impact of using different types of NN building blocks on
M-SFDIA architecture to achieve the optimum configuration. Fig. 3.8 displays the
statistics (median value, 95% confidence interval, and outliers) of the RMSE in
the fault-free situation on the test set for each virtual sensor. MLPvs has the highest
median over two out of four sensors (S3 and S4), while GRU-RSvs and CNNvs

outperform on average the other counterparts and provide the lowest RMSE value.
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Figure 3.7: Accommodation performance comparison in terms of PDF of the error signals
on each dataset.

S1: Indoor S2: Indoor

S3: Outdoor S4: Outdoor

Figure 3.8: Box-plot of estimation RMSE for each virtual sensor on WSN dataset.
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(a) Detection Performance. (b) Isolation Performance.

Figure 3.9: Detection and isolation performance of different classifier models by using
ROC curves on WSN dataset.

Fig. 3.9 shows the probabilities of detection and classification with respect to the
probability of false-alarm (set via γ) for different classifiers2, i.e. the ROC curves,
when synthetically-generated weak-bias faults are superimposed. The probability
of detection (resp. classification) refers to the probability that the system correctly
detects (resp. isolates) the faulty sensor(s). In the latter case, we consider the
average probability of classification over all the unreliable sensors.

The baseline MLP-based M-SFDIA has the worst performance. Specifically,
GRU-CNNcl and CNNcl models achieve the highest performance (in terms of de-
tection and isolation): ≥ 95% (resp. ≥ 90%) detection/isolation rate under false-
alarm rate of 10−2 (resp. of 10−3). It is apparent that CNNs and RNNs are better
at capturing more complex spatio-temporal dependencies in the data.

By using GRU-RS models as virtual estimators and GRU-CNN model for the clas-
sifier, we achieved detection and isolation probabilities of about 0.95 for false-
alarm probability equal to 10−3, which is ≈ 3× better than the performance of
the baseline configuration. The performance gain is due to better handling of the
spatio-temporal dependencies in the data.

3.1.2.5 M-SFDIA performance on CCS systems

CCS is critical for climate-change policies and strategies targeting global warming
within the Paris Agreement. Further, the proposed M-SFDIA framework has
also been validated for the emerging CCS technology. A preliminary set of
results are provided in Fig. 3.10, which demonstrates the efficacy of the proposed
architecture in detecting the synthetically-generated bias faults. The results are
performed using the real measurements from the temperature sensors installed on

2Dashed lines refer to the baseline M-SFDIA [33] and the state-of-the-art AE architecture [56].
Solid curves refer to different classifiers using the same residual-signals (i.e. computed via
GRU-RSvs).
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Figure 3.10: Detection and classification performance of the M-SFDIA scheme on the
DeFACTO dataset.

the surface of the CO2 pipeline DeFACTO (described in publication P6 [37]) with
simulated faults. Figure 3.10 shows encouraging performance, however, these
results are to be considered preliminary as more critical operational conditions
need to be explored.

3.2 Real-Time and Modular SFDIA Architecture
Although the M-SFDIA has a promising modular architecture (from the estimat-
ors’ design viewpoint), its main limitation is that it does not completely exploit
the temporal correlations among sensors within the monitored system. Equally
important, the M-SFDIA decision logic is designed to detect, isolate and accom-
modate only a single faulty sensor at a time.

In this section, the major motivation is to propose a machine-learning-based SF-
DIA architecture to exploit complete spatial and temporal correlations in the data
collected from the sensors, which is in line with contributions C2 (in Sec. 1.3). To
this end, a pair of regressors are employed for each sensor to perform estimation
and prediction operations of sensor measurements in the system. In the former
case (M-SFDIA), each estimator is leveraging readings from other sensors only to
obtain a virtual measurement. Conversely, each predictor plays a complementary
role (to the estimator) by using only previous data from the sensor under consid-
eration to obtain an analogous virtual measurement. Hence, their joint adoption
enables the proposed architecture to ultimately exploit spatio-temporal correlation
within the system, thus supporting nearly-instantaneous fault detection and isol-
ation performance. Moreover, a controller in a feedback loop is preserving the
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Figure 3.11: Block diagram of the second proposed SFDIA architecture.

performance of the proposed SFDIA architecture when faults occur.

The block diagram of the proposed SFDIA architecture is shown in Fig. 3.11. It
consists of five building blocks (controller, estimators, predictors, residual calcu-
lator, classifier) arranged in four layers, whose function is explained as follows.
The first layer contains two parallel blocks, the estimators block and the predict-
ors block, each providing a virtual measurement for all the unreliable sensors in
the system either regressed via other sensors’ observations (i.e. the estimator) or
based only on previous measurements of the same sensor under consideration (i.e.
the predictor). The second layer is responsible for the computation of a discrep-
ancy measure between the true and each calculated virtual measurement, usually
in the form of a function of the residual signals. The third layer is fed with the
aforementioned discrepancy measures and is able to perform a multidimensional
classification to (a) detect a faulty condition and (b) identify the corresponding
faulty sensors. Finally, the fourth layer controls the inputs of the blocks in the first
layer in order to preserve estimators’ and predictors’ accuracy, by avoiding error
propagation.

The present architecture improves over the proposed M-SFDIA in [33] where
the main novelty is the introduction of the controller and the predictors. Despite
the addition of these two modules, it is worth remarking that the proposed
architecture retains the advantages of modularity and real-time implementation.
Indeed, regarding the former property, the proposed approach allows the im-
plementation of diversified ML techniques for different modules and a more
flexible deployment, also taking computational/hardware limitations into account.
Differently, regarding the latter property, each of the proposed modules can be
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flawlessly implemented in real-time since they are all based on a sliding window
implementation. Finally, given the adoption of MLP-based solutions for the
estimators/predictors (Sec. 3.2.1) and the classifier (Sec. 3.2.3), the proposed
implementation also retains simplicity. The following subsections detail each of
the four layers constituting the proposed approach.

3.2.1 First Layer: Estimation & Prediction

The first layer aims to model the unreliable sensors within the system and is based
on two subsystems: (a) a bank of estimators and (b) a bank of predictors.

The bank of estimators is composed of NU estimators (each associated to an unre-
liable sensor), each providing the estimation x̂s[n] of the measurement (at current
time step n) from its corresponding unreliable sensor s ∈ SU . Each estimator
receives as input the vector x(s) collecting all existing sensors readings (from cur-
rent time step n back to Le previous time steps using a sliding window mechanism)
except the one from the sensor to be estimated {SU ∪ SR − s}, i.e.

x̂s[n] = f (Hv ,Nv)
s (x(s)[n], . . . ,x(s)[n− Le]) , (3.4)

Previous time samples are fed into the estimators in order to exploit the temporal
correlation among the input signals.

The bank of predictors operates a complementary approach. Each of the NU

predictors provides a prediction x̃s[n] of the measurement (at current time step n)
from its corresponding unreliable sensor s ∈ SU . Each predictor receives as input
the readings xs[·] of the sensor to be predicted (from previous time step n−1 back
to Lp previous time steps using a sliding-window mechanism), i.e.

x̃s[n] = g(Hv ,Nv)
s (xs[n− 1], . . . , xs[n− Lp]) , (3.5)

where g
(Hv ,Nv)
s (·) denotes the function model of the MLP-based predictor for the

sth sensor.

3.2.2 Second Layer: Residual Evaluation

The second layer computes the square of residual signals i.e. the difference of
sensors reading with their respective estimation or prediction values, namely

eE,s[n] = (xs[n]− x̂s[n])
2, (3.6)

eP,s[n] = (xs[n]− x̃s[n])
2, (3.7)
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for each unreliable sensor s ∈ SU . Residual signals are used as input to
the classifier in the third layer as they contain effective information for fault
classification. It is worth noticing that the proposed SFDIA architecture enjoys
modularity and generality: thus other discrepancy measures (other than that used
in Eqs. (3.6) and (3.7)) may be adopted without any substantial change in the
subsequent layers.

3.2.3 Third Layer: Classification

An MLP classifier, meant to work in real-time, is used for fault de-
tection and the identification of the faulty sensors. Denoting eU [n] =
(eE,1[n], . . . , eE,NU

[n], eP,1[n], . . . , eP,NU
[n])T the residual vector containing the

residual signals of all NU sensors at time step n, the input of the classifier is
the collection of residual vectors from Lc previous time steps up to current time
step n, namely eU [n], . . . , eU [n − Lc]. Conversely, a decision vector d[n] =
(d1[n], d2[n], . . . , dNU

[n])T represents the output of the classifier and identifies
which among the unreliable sensors are suspected to be in failure, i.e.

d[n] =h(Hc,Nc)(eU [n], . . . , eU [n− Lc]) , (3.8)

where h(Hc,Nc)(·) denotes the function model of the MLP-based classifier, being
Hc and Nc are the number of hidden layers and the number of neurons of the
classifier, respectively.

Similar to M-SFDIA decision logic, di[n] = 1 (resp. di[n] = 0) represents the
situation in which the system declares with maximum confidence the ith sensor
to be faulty (resp. fault-free). As a consequence, a vector d[n] = 0NU

indicates
healthy operation of all the sensors within the system at time n.

Therefore, faulty sensors are identified via a threshold-based logic for each of the
components of the decision vector. The considered threshold will be denoted γ in
what follows. Different from M-SFDIA approach, herein faulty sensors are detec-
ted and identified/isolated when the entries of the decision vector d[n] exceed the
threshold γ. Specifically, maxNU

s=1 ds[n] ≷ γ is used for detection. Accordingly,
for the identification task, the set of identified faulty sensors (denoted with IU ) is
obtained as IU ≜ {s ∈ SU : ds[n] > γ}.

It is worth mentioning that, from overall SFDIA system perspective, the measure-
ments from the sensors declared faulty are replaced (viz. accommodated) with
their corresponding estimates in order to preserve system utility.
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3.2.4 Fourth Layer: Control

The role of the control block is to preserve the performance of the proposed SF-
DIA method when faults occur. Referring to Fig. 3.11, this block operates at the
beginning of each time step, and controls inputs-outputs of both estimators and
predictors regarding the latest residual signals and the decision vector d[n− 1].

The symbol ϕE,s (resp. ϕP,s) denotes the average residual signal for the sth es-
timator (resp. predictor) computed with a moving average over a window of size
Lr starting from time step n − 1 while excluding the identified faulty time steps.
The signal ϕE,s (resp. ϕP,s) of the unreliable sensor s is used by the controller as
a metric to define the estimation (resp. prediction) accuracy of the corresponding
estimator (resp. predictor).

In the first step, after applying the proposed SFDIA scheme at time step (n − 1),
the elements of the decision vector d[n − 1] larger than a predefined threshold
υ identify faulty sensors for the controller. Then, the following process will be
conducted at the beginning of each time step n. To keep the discussion simple, we
will generically refer to sth sensor as the one identified as faulty.

As for the predictor controlling scheme, if the estimator’s average residual signal
ϕE,s is smaller than a certain value τ (i.e. the system tolerable level of deviation),
the estimator output x̂s[n− 1] replaces the respective sensor input xs[n− 1] to the
corresponding predictor. In other words, the predictor in Eq. (3.5) will be then fed
as:

x̃s[n] = g(Hv ,Nv)
s ( x̂s[n− 1]︸ ︷︷ ︸

replacement

, . . . , xs[n− Lp] ), (3.9)

This logic is intended to use only those estimates whose quality is better than the
faulty-data within the sth predictor.

As for the estimator controlling scheme, if the predictor’s average residual signal
ϕP,s smaller than both (i) the system tolerable level of deviation τ and (ii) ϕE,s, the
predictor output x̃s[n] is obtained and replaces the respective sensor input xs[n]
(updates all estimators’ input vectors except x(s)[n]) to the estimators. In other
words, we have ∀s⋆ ∈ S, s⋆ ̸= s:

x̂s⋆ [n] = f (Hv ,Nv)
s⋆ ( x̃(s⋆)[n]︸ ︷︷ ︸

replacement

, . . . ,x(s⋆)[n− Le]) , (3.10)

where the vector x̃(s⋆)[n] collects all existing sensors readings except for s⋆ and
with sth reading being replaced by x̃s[n]. Otherwise, if ϕE,s is smaller than the
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system tolerable level of deviation3, the estimator output x̂s[n] is obtained and
replaces the respective sensor input xs[n] (updates all input vectors except x(s)[n])
to the estimators. Specifically, ∀s⋆ ∈ S, s⋆ ̸= s:

x̂s⋆ [n] = f (Hv ,Nv)
s⋆ ( x̂(s⋆)[n]︸ ︷︷ ︸

replacement

, . . . ,x(s⋆)[n− Le]) , (3.11)

where the vector x̂(s⋆)[n] collects all existing sensors readings except for s⋆ and
with sth reading being replaced by x̂s[n]. This logic is intended to replace the
input faulty-data with estimates/predictions whose accuracy are better than the in-
put faulty-data (i.e. x(s)[n]) to all estimators (except the corresponding sensor s
estimator). We highlight that, in all three cases, no architectural modification (i.e.
varying input size for the estimators and predictors) is required for the blocks of
the proposed SFDIA method. Conversely, in the case of no-fault detected, this
block merely slides the window forward in time to update both ϕP,s and ϕE,s by
using the recent residual signals eU [n− 1].

It is worth remarking that substitution of faulty inputs with either estimated or
predicted values maintains estimators’ and predictors’ accuracy (by avoiding error
propagation) and results in better accommodation performance as well as increased
detection rate.

The detailed configuration of NN models and training summary of the proposed
architecture is given in publication P5 [36].

3.2.5 Numerical Results

The effectiveness of the second proposed architecture for detection, isolation and
accommodation of sensor faults has been assessed by means of a comprehensive
analysis conducted on the three previously-described real-world datasets. Then,
the working principle of the two relevant SFDIA baselines used for comparison is
recalled (Sec. 3.2.5.1). Finally, the SFDIA performance is reported and discussed
(Sec. 3.2.6).

3.2.5.1 Considered baselines

Results of the proposed approach in terms of detection, identification and accom-
modation performance are compared with two state-of-the-art architectures: (i)
M-SFDIA [33] and (ii) AE [56].

Similar to the proposed method, our previous M-SFDIA proposal is able to detect
3In other words, the corresponding estimator is providing better accuracy than the corresponding

predictor, i.e. ϕE,s < ϕP,s and ϕE,s < τ .
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and isolate faulty sensors from patterns within the input residual signals. However,
solely a bank of estimators is used to derive the residual signals, and to accommod-
ate unreliable sensors in M-SFDIA method. Additionally, the controller block is
absent in M-SFDIA. Furthermore, the original M-SFDIA’s decision logic was de-
signed to detect, isolate and accommodate only up to one faulty sensor. For this
reason and for the sake of a fair comparison, the same decision logic as the pro-
posed method was used (see Sec. 3.2.3) to enable the M-SFDIA method to detect,
isolate and accommodate multiple sensors simultaneously.

Conversely, the AE-based architecture devised in [56] is based on a two-stage
approach. Specifically, the first stage is represented by a (standard) AE to learn
data correlations among sensors, and detect anomalies (viz. faults) by tracking
the MSE between input and output of the AE. As for the accommodation task, a
second stage based on a (supervised) denoising AE is then used to clean faulty
data. It is worth noticing that the identification task for AE architecture was not
addressed in the original work [56]. Indeed, in the aforementioned AE-based
method, the overall MSE of input and output (reconstructed) vector of the first
AE is compared to a predefined threshold for fault detection only. As opposed
to the aforementioned decision logic, herein (for the sake of a fair comparison)
the squared error between the corresponding input and output for each entry
(viz. unreliable sensor) is traced. Then, this error is compared with a predefined
threshold σ, enabling the AE method to both detect & identify the faulty sensors4.
Specifically, similar to the proposed method, maxNU

s=1 eAE,s[n] ≷ σ is used
for detection, where eAE,s[n] is the squared error for the sth unreliable sensor.
Accordingly, for the identification task, the set of identified faulty sensors is
obtained as IU ≜ {s ∈ SU : eAE,s[n] > σ}.

3.2.6 Performance Analysis and Comparison

First, in Fig. 3.12, detection and classification (i.e. detection plus isolation) per-
formance of the proposed architecture in the absence of the controller block is
being evaluated by means of the corresponding ROC curves. More specifically,
the results show a clear performance improvement achieved by the proposed ar-
chitecture w.r.t. the M-SFDIA architecture for both (i) detection and (ii) classific-
ation tasks. Regarding the former, the probability of detection for the M-SFDIA
(resp. proposed) architecture approaches a value of ≈ 0.93 (≈ 0.98). The above
results are obtained by setting the false-alarm probability to Pf = 10−2. Con-

4Numerical results (not shown for brevity) based on the original detection logic as [56],
namely

∑NU
s=1 eAE,s[n] ≷ σ (and a matched identification logic, i.e. IU ≜

{s ∈ SU : eAE,s[n] > σ/NU}) highlighted worse performance than the considered variant, due
to the inability to cope with weak (and transient) faults.
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Figure 3.12: Detection performance and averaged correct classification performance of
proposed architecture in the absence of the controller by using ROC curves for WSN
dataset.

versely, regarding the classification task (under the same false-alarm constraint),
the M-SFDIA (resp. the proposed) architecture achieves a probability of correct
classification close to 0.90 (resp. 0.98). The above results highlight ideal identific-
ation performance for our approach, i.e. no additional errors caused by identifying
the correct source of fault. More analysis for the proposed scheme in the absence
of the controller block can be found in Publication P3 [34].

Fig. 3.13 illustrates fault detection performance in terms of probability of detection
vs. probability of false-alarm in the presence of the controller block. In this case, a
fault rate5 FR = 0.1 is considered. Also, ROC performance is reported separately
for each of the three datasets and for all four fault typologies considered. It is
evident that the proposed architecture outperforms the two baselines for all four
fault types. Specifically, the best detection rate is attained on AQ dataset when bias
faults are present. Also, for all architectures, detection accuracy under bias faults
appears to be generally higher than the other types of faults. Moreover, as can be
seen, AE architecture fails to detect freeze faults on the WSN dataset. Indeed, drift
and freeze faults are “trickier” to detect since they slowly appear in the system and
have a less-appreciable effect on spatio-temporal correlations within the system.

Delving into real-time performance of SFDIA architectures, in Tab. 3.3 a detection
delay analysis6 for the fixed false-alarm rate of 10−2 is reported. Specifically, the
expected detection delay is evaluated, defined as the average number of samples
needed by an SFDIA architecture to detect a faulty sensor. The latter delay is
indeed another important indicator of the SFDIA framework performance, which
has a crucial effect on DTs functionality. In the experiments, the fault rate is set

5Fault rate refers to the ratio between the number of faulty and non-faulty samples.
6Every span of simultaneous faults is considered as a unified fault.
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(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Figure 3.13: Detection performance in terms of ROC curves for all architectures over
different fault types.
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Table 3.3: Detection delay Analysis. Results refer to bias and drift faults and are in the
format avg. (± std.) delayed samples obtained for a fault rate FR = 0.5.

Dataset Fault type Proposed M-SFDIA AE

AQ Bias 0.06 (± 0.30) 0.39 (± 1.11) 0.50 (± 1.33)

Drift 1.77 (± 1.69) 2.33 (± 2.09) 4.04 (± 2.84)

WSN Bias 0.28 (± 0.91) 0.84 (± 1.47) 0.31 (± 1.08)

Drift 0.72 (± 1.12) 2.12 (± 2.14) 2.73 (± 2.12)

PMSM Bias 0.10 (± 0.53) 1.24 (± 1.94) 3.61 (± 3.62)

Drift 0.67 (± 1.21) 3.40 (± 2.68) 8.30 (± 4.85)

to FR = 0.5 to generate a sufficient number of fault events allowing to obtain a
reliable estimate of the aforementioned metric. Results highlight that the proposed
architecture achieves the lowest detection delay in comparison to the state-of-the-
art for all datasets and fault types considered. Specifically, the average detection
delay for the proposed architecture is confined below 1 sample (except for the AQ
dataset with drift fault-types), whereas the other two architectures always require
a longer span to detect fault(s) within the system. The most evident performance
difference is observed on the PMSM dataset for drift faults (boldface in Tab. 3.3).
Indeed, in the latter case, the proposed architecture detects weak faults on aver-
age after 0.67 samples whilst MSFDIA and AE architectures take on average 3.40
and 8.30 samples to detect the same faults, respectively. The reported difference
corresponds to a faster detection for our proposal of more than 5× and 12× than
the MSFDIA and AE architectures, respectively. The reduced detection delay of
the proposed architecture is mainly due to the joint exploitation of estimation and
prediction blocks (cf. Sec. 3.2.1), as they provide complementary (residual) in-
formation for the classifier.

The corresponding sensor-averaged identification performance (under the same
fault rate) is depicted in Fig. 3.14. Here in Fig. 3.14, the proposed architecture
performs even better over other methods since it manages to reduce fault propaga-
tion within the architecture itself and avoid functionality degradation using the
controlling block. Replacing faulty sensors with their estimates or predictions by
the controller provides the classifier with easier interpretative residual signals.

The accommodation performance in terms of the RMSE is shown in Fig. 3.15,
where fault rate FR = 0.1 is considered. Herein the term error means the dif-
ference between sensor healthy values before adding the fault and the accommod-
ated values provided by the SFDIA architecture (or the original values, in the case
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(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Figure 3.14: Averaged identification (isolation) performance in terms of ROC curves for
all architectures over different fault types.
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Figure 3.15: Comparison of accommodation performance in term of RMSE (Pf = 10−2).

(a) Detection Sensitivity (b) Identification Sensitivity

Figure 3.16: Impact of threshold (υ) on the detection and identification accuracy (Pf =
10−2). Threshold υ = 1 associated to a zero-effect of the controller (i.e. off-circuit
controller).

of an undetected/unidentified fault). First of all, it is apparent that the proposed
architecture outperforms the M-SFDIA architecture by presenting more accurate
replacements for faulty data. The reason is that the proposed architecture relies
on a combined estimator/predictor pair for each sensor and a controller block to
continuously improve the accommodation performance by modifying their inputs
based on the decision vector obtained from the classifier in a closed-loop fash-
ion. Conversely, the M-SFDIA architecture does not take advantage of these ex-
cessive data. Finally, the proposed architecture outperforms AE-based SFDIA on
all three available datasets (except for PMSM-Noise), with a higher improvement
(viz. RMSE reduction) in the case of WSN dataset.
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To deepen the investigation of the controller block, a sensitivity analysis was
also performed, focusing on detection and identification performance of the
proposed architecture, by varying the threshold υ during the test phase. More
specifically, Fig. 3.16 shows the detection and identification performance of
the proposed method with respect to the threshold υ. To better apprehend the
impact of the threshold υ, the detection and identification performance of the
state-of-the-art counterparts were reported as a lower bound. Results highlight
quite smooth performance trends on the three datasets with respect to the threshold
υ. Interestingly, the predefined threshold υ = 0.9 based on the validation set is
pretty near to the optimum value on the test set.

3.3 Deep Recurrent Graph Convolutional Architecture
(DRGCA)

Although data-driven approaches have received large attention in the recent years
since they do not require an explicit formulation of the relationships between
sensors (as opposed to model-based approaches, e.g. [81, 82]), they suffer sev-
eral disadvantages:

• the performance of basic ML methods heavily depends on the non-linearity,
dimensionality, and heterogeneity of the system;

• shallow NNs suffer weak generalization, i.e. they are unable to properly
capture complex features within the data;

• weak scalability, i.e. the computational complexity increases exponentially
with the system network size and usually this is paired with performance
degradation.

M-SFDIA deep networks proposed so far, besides difficulties of optimization, have
limitations in dealing with non-Euclidean spatial structures (e.g. traffic systems)
due to modularity design. In this section, we propose a data-driven-based DRGCA
for SFDIA of large-scale IoT networks. Recently, Graph NNs (GNNs) have gained
significant attention as a promising graph-based paradigm to perform fault detec-
tion. GNNs are capable to exploit effectively both temporal and spatial correlations
among neighboring nodes (sensors) in large-size IoT systems, thus providing ex-
cellent accuracy in fault diagnosis. GCNs are feed-forward NNs with convolution
operation generalized to graphs of arbitrary structure [83]. GCNs have been used
successfully for drug synthesis, action recognition, image classification, link pre-
diction, load prediction, and fault diagnosis [84, 85, 86, 87]. Although GNNs have
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Figure 3.17: Block diagram of the conceptual SFDIA framework, which consists of two
main blocks: estimation and classification.

been recently considered for anomaly detection [88], they are mostly unexplored
within the SFDIA framework. Some recent works have explored GNN classifiers
for fault detection and classification of power transformers [86], graph deviation
networks (GDNs) for sensor anomaly detection [89], and adaptive graph convolu-
tional recurrent network (AGCRN) for traffic forecasting [90].

In this work, we exploit the AGCRN in a denoising configuration (i.e. recon-
struction of data from falsified input) as the building block for developing reliable
virtual sensors. This configuration also assists the NN to better explore existing
inter-dependencies among neighbouring sensors. Subsequently, the residuals (i.e.
the difference between the readings from the real sensors and the virtual sensors)
are concatenated and processed by a classifier in order to detect and identify the
presence of faulty sensor(s). Furthermore, the virtual readings are employed to
accommodate the isolated (viz. identified) faulty sensor(s). Accordingly, this
research is aligned with research objective O3 and the main contributions of this
work are summarized under contributions C3 (in Sec. 1.3).

3.3.1 Proposed DRGCA for SFDIA

We consider a large-size sensor system made of N correlated sensors, i.e. N ≫ 1,
each measuring C parameters. The measured parameters of nth sensor at time k
are denoted with xn[k] ∈ RC , while the matrix X[k] = {x1[k], . . . ,xN [k]}T ∈
RN×C collects the recordings of all the N nodes at same time instant. While
observing the stream of measurements . . . ,X[k−1],X[k],X[k+1], . . ., a subset
of these sensors (corresponding to the rows of these matrices) may be subject to
weak and transient faults. Employing SFDIA is necessary to make DTs reliable
when operating under faulty conditions.

As shown in Fig. 3.17, the proposed SFDIA architecture is made of two NN-based
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blocks: (i) the estimation block and (ii) the classification block. Finally, the ar-
chitecture is topped with (iii) a threshold-based decision & accommodation logic.
The input to the estimation block of the proposed architecture is the set of readings
from all the sensors within a sliding window. The estimation block models vir-
tual sensors of all the sensors within the system. The classification block provides
probabilistic predictions on the faulty condition of each sensor on the basis of the
residual between each sensor and its corresponding virtual sensor. The decision
process detects faulty conditions and identifies faulty sensors: once the faulty
sensor(s) is (are) identified, the proposed architecture isolates the faulty sensors
(i.e. position in failure status) and accommodates their measurements with the
associated virtual readings to the DT throughout the process. High-level specific-
ation for each block is provided in what follows.

3.3.1.1 Estimation Block

This block aims to model the sensors (i.e. design the virtual sensors) within
the system and is composed of a single multi-dimensional estimator providing
the estimates X̂[k] ∈ RN×C of the present readings (at time k). The es-
timator receives as input a series of previous (time-correlated) sensors readings
{X[k− 1], . . . ,X[k−Me]} over a window of size Me, a tunable hyperparameter
of the proposed estimator. Equally important, it is designed to capitalize the spatial
correlation among sensors via the graph G, i.e.

X̂[k] = fς(X[k − 1], . . . ,X[k −Me];G(ς)) , (3.12)

where fς(·) : RN×C×Me → RN×C denotes the function model of the NN-based
estimator which models the current sensors readings and ς collects its trainable
parameters. The notation G(ς) in Eq. (3.12) underlines that we aim at learning
also the graph structure of the system during the training phase.

3.3.1.2 Classification Block

As shown in Fig. 3.17, the classification block is made of an NN-based classifier
meant to work in real-time to detect fault(s) and also identify the faulty sensor(s).
To accomplish this task, the classifier relies on the concept of residuals, i.e. the
absolute difference between sensors reading and their associated virtual reading,
namely

∆[k] = |X̂[k]−X[k]| , ∆[k] ∈ RN×C , (3.13)

where the absolute operation | · | should be interpreted elementwise. We high-
light that DRGCA relies on a decoupled design between estimation/classification
blocks: thus other discrepancy measures other than Eq. (3.13) may be adopted
without substantial changes in the subsequent layers.
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Accordingly, the proposed classifier collects a concatenated sequence of residuals
as inputs, namely {∆[k],∆[k − 1], . . .}, and based on the above inputs, a soft
decision vector d[k] =

[
d1[k] · · · dN [k]

]T is provided as the output at time
k. Therein, each element of the decision output dn[k] ∈ [0, 1], n = 1, . . . , N ,
refers to a pseudo-probability of the nth sensor to be faulty at the corresponding
time instant. More specifically, the considered classifier is modeled as follows:

d[k] =hϑ(∆[k], . . . ,∆[k −Mc + 1]) , (3.14)

where hϑ(·) : RN×C×Mc → RN denotes the function model of the NN-based
classifier and ϑ collects the classifier trainable parameters. The model accepts
residuals using a sliding window mechanism with a memory of size Mc, a tunable
hyperparameter of the proposed approach.

3.3.1.3 Decision Process

The value of decision element dn[k] is assumed to represent accurately the ar-
chitecture confidence in declaring the nth sensor to be faulty at time k, with
dn[k] = 0 (resp. dn[k] = 1) being the utmost confidence on declaring the nth
sensor non-faulty (resp. faulty). Consequently, fault detection is performed by
checking if any entries of the decision vector d[k] exceed a given threshold γ,
namely maxNn=1 dn[k] > γ. Consistently, fault identification is based on the set of
indices I ≜ {n ∈ {1, . . . , N} : dn[k] > γ}. Finally, the declared faulty sensors
after identification are accommodated (viz. isolated and replaced) by their associ-
ated virtual sensors in real-time to preserve the DT functionality. More specific-
ally:

xs[k] → x̂s[k] ∀s ∈ I (3.15)

where x̂s[k] denotes the sth row of X̂[k], i.e. the sth virtual sensor. We under-
line that the proposed SFDIA architecture runs in “open loop”, i.e. accommodated
measurements are not fed back into the estimation block. This is to grant de-
coupled design and avoid complex transients when a fault is detected/identified.

The following two subsections are devoted to the definition of the NNs (including
their training phase) implementing the estimation (fς(·), Sec. 3.3.2) and the
classification blocks (hϑ(·), Sec. 3.3.3), respectively.

3.3.2 NN-Based Estimation

In the proposed DRGCA, the AGCRN layer is adopted as the stepping stone for
the design of the estimation block (and thus model the whole set of virtual sensors)
in the proposed SFDIA architecture [90]. Indeed, AGCRN addresses three strict
limitations of GCNs, via the following advancements:
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Node-specific patterns: GCN-based models are designed to effectively capture
the shared spatial patterns (i.e. inter-dependencies) among sensors within the sys-
tem. Indeed, having shared learnable-filter parameters Θ ∈ RC×F is quite useful
to reduce the number of parameters while remaining on obtaining the prominent
shared dependencies among sensors. Except for the shared patterns, the GCN fails
to apprehend possible diversified node-specific patterns. On the contrary, assign-
ing trainable parameters on each node level (i.e. a tensor Θ ∈ RN×C×F with non-
parametric dependence) would fit the bill, but unfortunately, drastically increases
the network size. Hence, to reach a reasonable compromise, Θ is factorized as
Θ = Eg �Wg, where: (i) Eg ∈ RN×l is a node embedding matrix, where l ≪ N
is the embedding dimension; (ii) Wg ∈ Rl×C×F is a weight pool tensor.7 Simil-
arly, the additive learnable bias matrix B ∈ RN×F is factorized as B = EgBg,
where Bg ∈ Rl×F denotes the bias pool matrix. Specifically, we have:

Z =
(
D̃− 1

2 ÃD̃− 1
2X

)
� (Eg � Wg) +EgBg . (3.16)

where the entries of Z are obtained by interpreting the tensor product �
as {Z}ik =

∑
j

(
D̃− 1

2 ÃD̃− 1
2X

)
ij
(EgWg)ijk, where

(
D̃− 1

2 ÃD̃− 1
2X

)
∈

RN×C and (EgWg) ∈ RN×C×F .

Learned adjacency matrix: the graph convolution operation (i.e. Eq. (2.5)) is
completely dependent on the pre-defined adjacency matrix Ã (as D̃ can be readily
obtained from the former) to capture the spatial dependencies. The adjacency mat-
rix is usually obtained by utilizing (intuitive) notions of similarity and/or distance
functions [91, 92]. Unfortunately, the pre-defined graph generated in the afore-
mentioned fashion is unable to contain domain knowledge of spatial dependencies
and, equally important, is not related to the considered task. AGCRN learns the
spatial dependencies by introducing an embedding matrix Ea ∈ RN×la . Then,
multiplication of randomly-initialized embedding matrix Ea and its transpose ET

a

would infer the GCN about the spatial inter-dependencies between nodes, i.e.

D̃− 1
2 ÃD̃− 1

2 = softmax(ReLU(EaE
T
a )) , (3.17)

where la is the node embedding dimension, ReLU(·) function is used to force non-
negative matrix and softmax(·) function is utilized to normalize column-wise the
final adaptive matrix.

Complex temporal correlations: AGCRN integrates the (node-specific and

7We underline that in such case Θ is obtained as a matrix-tensor multiplication between Eg

and Wg by contracting the second dimension of the matrix with the first dimension of the tensor
according to Einstein notation, i.e. {Θ}ikℓ =

∑
j {Eg}i,j {Wg}j,k,ℓ.
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graph-adaptive) GCN layer with the concept of GRU [90] to capture also the com-
plex and long-term temporal correlations.

Capitalizing the aforementioned advancements, the AGCRN layer is then formally
defined as

Â = softmax(ReLU(EET )) (3.18)

Z[k] = σ
(
Â[X[k];H[k − 1]] � (E � Wz) +EBz

)

R[k] = σ
(
Â[X[k];H[k − 1]] � (E � Wr) +EBr

)

Ĥ[k] = tanh
(
Â[X[k];R[k]⊙H[k − 1]] �

(
E � Wĥ

)
+EBĥ

)

H[k] = Z[k]⊙H[k − 1] + (1N×F −Z[k])⊙ Ĥ[k] ,

where E ∈ RN×l, Wz ∈ Rl×(C+F )×F , Wr ∈ Rl×(C+F )×F , Wĥ ∈ Rl×(C+F )×F ,
Bz ∈ Rl×F , Br ∈ Rl×F and Bĥ ∈ Rl×F are the trainable parameters of the
AGCRN. In the GRU-inspired layer of Eq. (3.18), the matrices Z[·] ∈ RN×F ,
R[·] ∈ RN×F and Ĥ[·] ∈ RN×F represent the update gate, the reset gate, and
candidate activation matrix, respectively. In the above equation the tensor products
E�Wz , E�Wr and E�Wĥ have analogous meaning as Eg�Wg in Eq. (3.16).
The same reasoning applies for the products Â[X[k];H[k − 1]] � (E � Wz),
Â[X[k];H[k−1]]�(E � Wr) and Â[X[k];R[k]⊙H[k−1]]�

(
E � Wĥ

)
when

compared with
(
D̃− 1

2 ÃD̃− 1
2X

)
� (Eg � Wg) in the same Eq. (3.16). Accord-

ingly, the AGCRN output at time k is represented by the matrix H[k] ∈ RN×F .
The matrix Â ∈ RN×N is the (estimated) pseudo-Laplacian of graph G, whereas
σ(·) and tanh(·) are the (entry-wise) sigmoid and hyperbolic tangent activation
functions, respectively. In order to reduce the number of learning parameters,
AGCRN unifies the embedding matrices associated to node-specific patterns and
graph structure (i.e. Eg and Ea) into a single embedding matrix E.

To achieve accurate virtual sensors, the corresponding NN-based estimator fς(·)
is thus composed as follows. We stack two AGCRN layers to be able to extract
complex spatial and temporal correlations among sensors. The output (viz. in-
put) of the first (resp. second) ACGRN layer is the evolution of the state matrix
H1[k −Me], . . . ,H1[k]. Conversely, from the output of the second AGCRN, we
extract only the most recent form of the state matrix, i.e. H2[k] (a usual practice
when stacking multiple recurrent layers). A two-dimensional convolutional layer8

is then applied at the output of the second AGCRN layer to directly project the

8One-dimensional convolutional layer and linear layers were observed to perform considerably
worse than the two-dimensional convolutional layer.
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representation from H2[k] ∈ RN×F (number of sensors by number of AGCRN
features) to obtain the estimate X̂[k] ∈ RN×C (number of sensors by number of
node parameters).

The MAE loss function is utilized to train the estimator, i.e.

Lest (ς) =
1

w

w−1∑

j=0

∥∥∥X̂j(ς)−Xj

∥∥∥
1
, (3.19)

where w is the number of samples in each batch, Xj denotes the fault-free
readings of sensors and X̂j(ς) refers to the corresponding estimate. The estim-
ation block is learned in the so-called denoising configuration: the NN is then
trained to predict the fault-free X[k] even in the presence of faulty sensors. Such
configuration helps the model learn the latent representation of data and make
a robust recovery of the clean original data. Finally, the Adam optimization
algorithm [93] is used to optimize the above loss.

3.3.3 NN-Based Classification

In the proposed DRGCA, a deep feed-forward (viz. MLP) classifier was
selected to implement the mapping hϑ(·). Specifically, the input tensor
{∆[k], . . . ,∆[k −Mc + 1]} is flattened into a single vector with NCMc entries.
The considered MLP is made of Hc = 2 hidden layers, each with Nc = 2N
neurons, where N denotes the number of sensors. Tanh activation function (i.e.
tanh(·)) is applied to each neuron in both hidden layers. Finally, the MLP net-
work is terminated with N neuron outputs with sigmoid activation function (i.e.
σ(·)) to provide a pseudo-probability output within [0, 1]. The N outputs are the
entries of the soft decision vector d[k].

To train the classifier and make it able to implement both detection & identification
tasks, a loss capitalizing multitask learning is employed. In the following, each
learning task is associated with the classification of the operating condition for the
corresponding sensor. Specifically, a weighted sum of the losses of the N binary
(fault/no-fault) detection tasks associated with the unreliable sensors is minimized,
i.e.

Lcl

(
ϑshared, {ϑn}Nn=1

)
≜

N∑

n=1

ρn Ln (ϑshared,ϑn) (3.20)

where ϑ = {ϑshared,ϑ1, . . .ϑN}. In the above formula, the weight ρn indicates
the preference level of the nth task (i.e. detection of a fault at nth sensor). It is
worth noticing that the multitask objective function allows the proposed classifier
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to solve multiple learning tasks at once (i.e. via a single NN). Accordingly, in the
above expression, ϑshared represents the vector of shared parameters of the MLP
common to all the N different tasks (i.e. those corresponding to the Hc = 2 hidden
layers), whereas ϑn indicates the vector of parameters which are task-specific for
nth learning task (i.e. those corresponding to the nth output).

Uniform weighting is adopted (ρn = 1/N ) and a binary cross-entropy (BCE) loss
function for all the N binary tasks L1(·), . . . ,LN (·) is used, i.e.

LBCE
n (ϑshared,ϑn) =− 1

w

w−1∑

j=0

{
yjn ln djn(ϑshared,ϑn) + (3.21)

(1− yjn) ln
(
1− djn(ϑshared,ϑn)

)}

where yjn is the 0/1 representation of the true (i.e. labeled) fault status and djn
denotes the entry of classifier output of nth sensor. Finally, w is the number of
samples in each batch.

We underline that the overall loss is minimized by leveraging Nadam optimization
algorithm [74]. More details about the proposed architecture configurations,
and the training process of the NN-based estimation and classification block are
summarized in the paper P7 [38].

3.3.4 Numerical Results

In this section, we present the results of comprehensive experiments to demon-
strate the effectiveness of the proposed DRGCA. Also, the proposed architecture
is compared with several state-of-the-art methods9.

Baselines: We compare our SFDIA architecture against five state-of-the-art SF-
DIA and anomaly detection methods:

• AE-based architecture addressed in [56] which is detailed in Sec. 3.2.5.

• FCC NN is used in a modular architecture to model the virtual sensors [14].
FCC NN is chosen instead of the popular MLP NN due to efficiency in
terms of number of neurons and input size required for the SFDIA problem.
Fault detection and identification are performed by evaluating the residual
between each sensor and the corresponding FCC NN estimate.

9We modified the configuration of some baselines for sake of fair comparison (see Tab. II in
paper P7).
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• Our previous M-SFDIA proposal with modified decision logic as decribed
in Sec. 3.2.5.

• Optimized M-SFDIA (OM-SFDIA) is the optimized class of M-SFDIA
architecture which selects the best configuration of NN modules for SFDIA
among various variants (see P4 [35]). OM-SFDIA is enhanced to handle
more complex spatio-temporal patterns in the data by using GRU model as
virtual estimators and a CNN model for the classifier.

• GDN is a novel attention-based approach, which detects anomalies from a
learned graph of relationships between sensors [89]. The GDN method was
merely designed for anomaly detection purposes. We used our decision logic
(see Sec. 3.3.1.3) upon the GDN graph attention-based output to enable this
method to detect and isolate multiple simultaneously faulty sensors.

We also compared the proposed architecture with an SVM-based classifier [11].
Surprisingly, the SVM method entirely failed in detecting the faults on both
datasets, thus we do not report those performances in the following. Other
parameters settings & implementation details are provided in P7 [38].

Table 3.4: Virtual sensors performance.

Datasets Models Metrics
MAE RMSE MAPE [%]

PeMSD8
AE 26.52 38.99 12.76

FCC 20.64 33.81 14.41
M-SFDIA 20.63 33.83 19.76

OM-SFDIA 18.84 33.35 14.64
GDN 24.24 36.57 14.68

DRGCA 13.28 21.47 8.85
Gain [%] +29.51 +36.50 +30.64

Water Tank
AE 12.37 16.38 24.57

FCC 15.50 20.00 30.77
M-SFDIA 11.98 16.68 23.91

OM-SFDIA 12.47 16.67 24.91
GDN 6.63 9.12 14.35

DRGCA 0.50 0.76 1.00
Gain [%] +92.25 +91.67 +93.03

Results & Analysis: Virtual sensors performance of our proposal vs. other
baselines are reported in Tab. 3.4 for both the considered datasets. Overall, our
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proposed method clearly marks the best performance in all metrics as summar-
ized in Tab. 3.4. Underlined values refer to the best-performing baselines on each
metric. We can observe that both the graph-based methods, GDN method and
our proposal, outperform other baselines on the Water Tank dataset, which indic-
ates the effectiveness of GCN-based architecture in capturing spatial correlations.
Nevertheless, the proposed architecture illustrates significant improvements (i.e.
above 90% over GDN), thanks to its recurrent design. Better virtual sensors also
imply higher accommodation performance, since these virtual measurements re-
place the real faulty sensors measurements upon classifier identification. There are
no existing baselines that are as stable as our proposal. For instance, AE illustrates
reasonably low MAPE on the PeMSD8 dataset, but failed on other metrics and
the other dataset. On the contrary, our proposal shows reliable estimations in all
cases.

Focusing our investigation toward detection and identification (viz. isolation) per-
formance, in Fig. 3.18 we report the ROC curves. The probability of identifica-
tion indicates the probability that SFDIA architecture correctly identifies the actual
faulty sensor(s). The proposed DRGCA significantly outperforms all the baseline
methods on both datasets, demonstrating its capability to detect and isolate sensor
faults on graph data. The main reason behind this is that our proposal captures the
faults and sensors’ patterns by jointly utilizing spatio-temporal correlations due
to its graph convolutional and recurrent design. The AE, M-SFDIA, OM-SFDIA,
and FCC methods, regardless of their approved performance on small-size sens-
ory networks [56, 14, 35, 33], show relatively poor detection performance because
these methods have limited capability to discriminate faults from high-dimensional
graphs. We notice that all the baseline methods almost failed to identify the correct
faulty sensor(s), while the proposed architecture identifies faulty sensor(s) with
bold confidence on both datasets. Moreover, our proposal obtains more consid-
erable performance gains on detection and identification in the water tank dataset
compared to which in the PeMSD8 dataset. We observe that the Water Tank dataset
has a more spatial connection degree (# edges = 388 and # sensors = 100) than the
PeMSD8 (# edges = 277 and # sensors = 170) dataset, which may lead to stronger
spatial correlations.

As a complementary analysis over unsupervised performance of the proposed ar-
chitecture, in Fig. 3.19, we analyze the proposed architecture performance in situ-
ations that the architecture is not specifically trained for (i.e. without any supervi-
sion). In Fig. 3.19, we trained both NNs in our SFDIA architecture on bias fault
type, while tested its (a) detection and (b) identification performance on unseen
drift and noise fault types. Surprisingly, both detection and identification perform-
ances on unseen fault types are relatively close to the performances on trained
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PeMSD8 - Bias Fault PeMSD8 - Drift Fault

Water Tank - Bias Fault Water Tank - Drift Fault

(a) Detection.
PeMSD8 - Bias Fault PeMSD8 - Drift Fault

Water Tank - Bias Fault Water Tank - Drift Fault

(b) Identification.

Figure 3.18: ROC curves on two graph-shape benchmark datasets. Sub-figures (a) and (b)
show the detection performance, where the chance line is included, and the identification
performance, respectively. Curves closer to the top-left corner indicate better performance
(the closer the curve to the chance line, the less accurate the detection performance).
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PeMSD8 PeMSD8

Water Tank Water Tank

(a) Detection. (b) Identification.

Figure 3.19: Unsupervised (a) detection and (b) identification performance of the pro-
posed architecture over unknown fault types (i.e. drift and noise fault) in terms of ROC
curves. Both the estimator and classifier are trained over the bias fault type.

fault-type. This is basically because the proposed technique models the virtual
sensors in the denoising configuration, this helps the estimator to focus on sensors’
inter-dependencies and sensor-specific patterns rather than focusing on fault-type
patterns. Moreover, perfect virtual sensors result in interpretable residual signals
which further help the classifier to easier differ between faulty and non-faulty re-
sidual patterns.



Chapter 4

Conclusions and Future Works

The thesis aimed to tackle the SFDIA problem using data-driven approaches. The
primary work was to present a general robust SFDIA architecture with the capab-
ility to adapt with different applications, while some state-of-the-art methods were
restricted to a specified domain. Equally important, some architectures were only
limited to the first fault detection task, or did not foresee all three tasks in their
original formulation. Accordingly, we proposed M-SFDIA architecture which is
capable of jointly taking advantage of the temporal correlation of the measure-
ments and of both reliable and unreliable sensors within the system to achieve a
higher sensor validation performance with respect to state-of-the-art methods. The
classifier at the third stage of M-SFDIA architecture detects and isolates the faulty
sensor from patterns within the input residual signals. The bank of estimators at
the first stage allows to accommodate unreliable sensors by replacing the meas-
urements from the identified faulty sensors. Estimators are also used at the second
stage to derive the residual signals for the classifier.

In the scope of developing SFDIA schemes for real-world systems, we extended
the M-SFDIA architecture with the major motivation to exploit complete spatial
and temporal correlations in the data collected from the sensor to increase the over-
all accuracy. Complementary to the M-SFDIA architecture, we proposed a pair of
regressors employed for each sensor to perform estimation and prediction opera-
tions of sensor measurements in the system. Moreover, a controller in a feedback
loop is presented to preserve the performance of the proposed SFDIA architecture
when faults occur. Our contribution represents a stepping stone towards the devel-
opment of (modular) DTs based on sensor systems/networks in IoT contexts. The
(four) designed layers of the extended design consist of estimation&prediction,
residual, classification and controlling blocks. The controlling block is placed to
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track the classifier’s decision output in order to boost overall system performance.
This is accomplished by stopping fault propagation chain at the first layer by modi-
fying estimators and predictors inputs with respect to the classifier’s decision.

At the last part, we tackled the SFDIA problem of large-size networked IoT sys-
tems via a deep learning approach. This approach represents an opening gate to-
ward transferring reliable data into DTs of large-size sensor systems/networks.
We proposed a two-block architecture for SFDIA framework: in the first block,
an estimator models virtual sensors and provides replacements for the identified
faulty sensors within the system; in the second block, a classifier detects and iden-
tifies the faulty sensors. It is worth highlighting that the denoising design and the
classification upon the residuals empower the proposed DRGCA to maintain its
performance under unseen fault types.

We provided wide numerical analyses for comprehensive evaluation and com-
parison of the proposed architectures with other state-of-the-art methods. The
proposed methods were trained and tested on different real-world and publicly-
available datasets for the sake of a complete and reproducible assessment. For the
sake of generalization, four types of faults were considered in this thesis: bias,
drift, noise, and freeze. The proposed architectures yielded notably higher de-
tection and isolation performance compared to the state-of-art counterparts under
different fault types.

Future work can be focused on four aspects. First, including dynamic risk analysis
in the design of IIoT systems in order to meet safety requirements when deploying
DTs for safety-critical applications. A novel framework for risk management that
improves real-time data collection, evaluates the performance of safety barriers
and the overall impact on the system risk, and monitors and predicts risk changes
and related decision support may assist safety and security standards.

Second, investigating non-stationary scenarios and the impact of diversity and re-
dundancy in the graph. A non-stationary condition occurs when the deployment
condition differs from the training condition. The change often results in a drop in
performance. Dealing with non-stationarity is one of modern machine learning’s
greatest challenges.

Third, the investigation of reinforcement-learning algorithms for optimized con-
troller design of the second proposal. The goal of reinforcement-learning is to
acquire a policy function (a mapping from a state to an action) of a computer
agent. Reinforcement-learning is able to find optimal policies using previous ex-
periences without the need for previous information on the mathematical model,
which makes this approach more applicable than other control-based systems.
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Fourth, the application of explainable artificial-intelligence algorithms in interpret-
ing (and improving) the proposed SFDIA approaches.
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Abstract—In this paper, we propose a novel sensor validation
architecture, which performs sensor fault detection, isolation
and accommodation (SFDIA). More specifically, a machine-
learning based architecture is presented to detect faults in sensors
measurements within the system, identify the faulty ones and
replace them with estimated values. In our proposed architecture,
sensor estimators based on neural networks are constructed for
each sensor node in order to accommodate faulty measurements
along with a classifier to determine the failure detection and
isolation. Finally, numerical results are presented to confirm the
effectiveness of the proposed architecture on a publicly-available
air quality (AQ) chemical multi-sensor data-set.

Index Terms—Fault tolerance, neural networks, sensors.

I. INTRODUCTION

With the new wave of digitalization, digital twins are at
the core of the development process within Industry 4.0.
Accordingly, sensors constitute the driving force for the
accomplishment of this concept [1]. However, sensors are
prone to failure and faulty data may negatively affect func-
tionalities of the monitored system. Accordingly, SFDIA is
a crucial practice since it can hinder faulty sensors from
leading systems to catastrophic consequences. In this context,
numerous approaches have been developed in the literature
related to the use of analytical redundancy techniques for
sensor fault detection and isolation. Such techniques can be
mainly categorized into two groups: model-based methods and
data-driven (or more generally model-free) methods.

The most widely used model-based methods comprise
(multiple-model) Kalman filter [2], [3] and observer-based
[4] approaches. Despite their appeal, model-based methods
require an accurate mathematical model of the system, whose
constitutive parameters are difficult to apply in the presence
of nonlinearities. On the other hand, data-driven methods for
SFDIA schemes have attracted significant attention by the
scientific community due their ease of implementation and
capabilities to capture nonlinear behavior by learning from
historical data [5]–[9]. Data-driven methods include neural
networks (NNs) and other machine-learning approaches [6],
[8]–[10], hidden Markov models [11], fuzzy logic [12] and
principal component analysis [13], whose successful applica-
tion has been demonstrated to manifold systems. These com-

0This work was partially supported by the Research Council of Norway
under the project SIGNIFY within the IKTPLUSS framework.

Fig. 1: The proposed system architecture for SFDIA.

prise diesel-engines, gas-turbines, wireless sensor networks
and air-crafts.

In this work, we propose a machine-learning-based frame-
work for sensor validation with different applications. The pro-
posed architecture takes advantage of reliable and unreliable
sensors’ measurements as well as their temporal correlation.
Synthetically-generated weak bias faults were added to a data-
set of a chemical multi-sensor device to evaluate the presented
SFDIA architecture. The benefits of the proposed approach are
the flexibility in terms of the application domain, the capability
to promptly deal with weak faults and (not explored here) with
simultaneous faults of multiple sensors.

The outline of this manuscript is the following. Sec. II
describes the proposed machine-learning based SFDIA archi-
tecture. The description of the considered multi-sensor data-
set used in this work and numerical results are provided in
Sec. III. Some final remarks are given in Sec. IV.

Notation – Lower-case bold letters and bold numbers denote
vectors and (·)T , denotes transpose operator.

II. PROPOSED SFDIA ARCHITECTURE

In this section, we briefly describe the three-layer system
architecture (illustrated in Fig. 1). More specifically, we con-



sider a system monitored via (NR + NU ) different sensors.
Sensors measurements constitute the input of the proposed
SFDIA system, where measurements are divided into two
sets: NR reliable sensors (set SR), which represent supportive
data, and NU unreliable sensors (set SU ), which are prone to
failure. Still, we underline that the present architecture does
not necessarily require the presence of reliable sensors.

A. Estimation Layer

According to Fig. 1, input sensors data enter the first
layer with NU independent sensor estimators, namely virtual
sensors. Each virtual sensor receives all sensors’ data except
for the sensor under estimation from time instant n to n−m
(i.e. using a sliding window of length m + 1) as input and
estimates the measurement of the sensor under estimation at
time n as output. Outputs of the estimators are exerted to
replace the isolated faulty data by the SFDIA system at the last
layer. A classic multilayer perceptron (MLP) [7] architecture
is considered for each virtual-sensor implementation.

B. Error Computation

The estimated measurement from each virtual sensor is then
subtracted from the respective unreliable sensor measurement
in the second layer to obtain NU error signals, collected
within e(n). Error signals measure the dissimilarity between
the normal and faulty status of unreliable sensors, wherein the
case of perfect estimation and no faulty sensors e(n) = 0.

C. Classification Layer

The last stage of the proposed architecture consists of a
classifier which aims at (i) detecting and (ii) identifying faulty
measurements from the set of unreliable sensors SU . In detail,
the classification stage accepts the error vectors inputs at
time instants n to n − k, namely e(n), . . . , e(n − k) (i.e. a
sliding window of length k + 1). The error vectors are used
by the classifier as a metric for fault detection and isolation.
Accordingly, the decision vector output is in the format
d(n) = [d0(n), d1(n), . . . , dNU

(n)]T (with d(n) ∈ [0, 1]).
Therein, {d0(n) = 1} denotes the event that no sensor failure
is present, while other decision elements {di(n) = 1} with
i = 1, . . . , NU indicate failure on the ith unreliable sensor.

More specifically, the classifier is made of a two-layer
MLP with a softmax output activation function and NU + 1
output nodes. The classifier softmax output gives a decision
vector representing the probability distributions of the vector
of potential outcomes. Thus, decision element with the highest
probability represents the occurred event

im = argmax
i∈0,...,NU

di(n) ,

where im points to the largest element of the decision vector
(i.e. it represents the event with the highest probability of
occurrence). Finally, if an unreliable sensor is declared in
failure, its measurements are replaced with the estimated
values from the corresponding virtual sensor.

Briefly, im = 0 vs. im 6= 0 represents the detection
task, being equivalent to “no fault detected” {d0(n) = 1}

Fig. 2: correlation matrix of sensor pairs for AQ data-set.

vs. “fault detected” {d0(n) = 0}. In the case im 6= 0, the
specific values of im performs the isolation task and replacing
faulty sensor measurements with corresponding virtual sensor
estimates employs the accommodation task.

III. DATA-SET DESCRIPTION AND NUMERICAL RESULTS

The proposed architecture is applied to an air quality (AQ)
data-set with 5 metal oxide chemical sensors embedded in
an AQ chemical multi-sensor device installed on the field
in an Italian city [14]. Hourly averaged measurements of
the multi-sensor device consisting of carbon monoxide (CO),
Non-Metanic Hydrocarbons (NMH), Nitrogen Oxides (NOx),
Nitrogen Dioxide (NO2) and ozone (O3) gas concentrations
are considered as unreliable set. Moreover, measurements of
temperature (Temp) and humidity (Hu) in the AQ data-set are
used within reliable set in this study. Accordingly, we have:

SU = {CO,NMH,NOx,NO2,O3} (NU = 5)

SR = {Temp,Hu} (NR = 2)

Measurements of both sets are normalized via min-max nor-
malization within the range [0, 1]. In addition, we dropped
missed data before processing the data-set.

Our experimental analysis is carried out by dividing the
data-set into a training set accounting for 85% of the first
part of data-set and a test set accounting for the remaining
15%. The holdout validation method is used to prevent over-
fitting to some extent. Synthetically-generated bias faults are
added to the AQ data set to verify the proposed architec-
ture performance. To represent weak faults, we considered
positive and negative additive bias faults. The bias absolute
level ranges within [20, 40]% of each sensor measurements’
variation domain on the train set. Five MLP virtual sensors
(estimators) with one single hidden layer (made of 10 neurons)
are trained to provide estimation of the NU = 5 unreliable



(a) synthetically generated faults

(b) sensors’ outputs

Fig. 3: Output of different stages of the proposed SFDIA
architecture for bias faults over one week of the test set.

metal oxide chemical sensors. Differently, two hidden layers
with 15 neurons per layer are considered for the classifier.
Also, the size of the sliding window is assumed to span 10
samples for both the estimators and the classifier (i.e. m = 10
and k = 10).

Fig. 2 shows the correlation coefficient between different
sensor pairs. Indeed, a higher correlation between sensor pairs
would lead to more accurate estimators (viz. virtual sensors) in
the first layer. As a result, this would imply a higher-precision
classifier, since error signals represent difference in actual and
virtual sensors’ measurements. Results highlight significant

Fig. 4: Normalized confusion matrix for all classes during the
test period. Numbers are in percent.

dependencies among different pairs, which indicates the fea-
sibility of our data-driven SFDIA.

The output of several parts of SFDIA architecture for
one week of test set is shown in Fig. 3. More specifically,
Fig. 3(a) monitors the faults on different sensors where the
proposed architecture successfully detects and identifies all
faults without delay in the system (dashed line) with only two
false declaration samples (false positive) in the first and fifth
days. As can be seen in Fig. 3(b), after fault identification,
system accommodates isolated faulty data with its estimation
to ensure the fault-free performance of the system.

Finally, the (normalized) confusion matrix on the test set
is presented in Fig. 4. The confusion matrix shows excellent
accuracy of the proposed architecture, i.e. classification rate
about 96.5%. All classes show high precision over 90%, with
the lowest precision exhibited on O3 and NOx sensors with
values 93.75% and 93.64%, respectively.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

This manuscript presented a machine-learning based archi-
tecture for SFDIA scheme in real-time operation. MLP-based
virtual sensors provided appropriate estimates of unreliable
sensors to replace corresponding corrupted measurements in
presence of faults, while an MLP-based classifier was re-
sponsible for detection and isolation of faults. The proposed
architecture is validated by real-world data from AQ mon-
itoring sensors, and results illustrate the prompt detection,
isolation and accommodation of sensors’ failures with less
than 2.6% of faults on average remained undetected on the test
set. Future directions will include the use of deep networks
for the modules of the proposed SFDIA and type-of-fault
classification.
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Abstract— Sensor technologies empower Industry 4.0 by enabling
integration of in-field and real-time raw data into digital twins.
However, sensors might be unreliable due to inherent issues and/or
environmental conditions. This paper aims at detecting anomalies
in measurements from sensors, identifying the faulty ones and
accommodating them with appropriate estimated data, thus paving
the way to reliable digital twins. More specifically, we propose a
general machine-learning-based architecture for sensor validation
built upon a series of neural-network estimators and a classifier. Es-
timators correspond to virtual sensors of all unreliable sensors (to
reconstruct normal behaviour and replace the isolated faulty sensor
within the system), whereas the classifier is used for detection
and isolation tasks. A comprehensive statistical analysis on three
different real-world data-sets is conducted and the performance of
the proposed architecture validated under hard and soft synthetically-generated faults.

Index Terms— Digital Twin, Fault Tolerance, Industry 4.0, Internet of Things, Machine Learning, Sensor Validation.

I. INTRODUCTION

INDUSTRY 4.0 identifies the current fourth industrial rev-
olution, whose aim is an increased level of automation

through the effective combination of the Internet of Things
(IoT), cyber-physical systems and cloud computing technolo-
gies [2]. Within this concept, sensors play a crucial role by
measuring different physical parameters, thus enabling moni-
toring, controlling and decision-support capabilities [3]. While
systems are highly dependent on data collected by sensors,
the latter are unfortunately prone to errors. These errors can
occur because of several reasons such as a harsh working
environment, low battery level, limited life span (aging),
improper calibration and hardware failures [4]. Corrupted data
from sensors with failures may negatively affect both simple
and more advanced functionalities of the system and result
in overall system performance degradation and increased risk
level. This would lead to consequences ranging from financial
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losses to serious safety issues (including life losses).

Reliable sensor measurements are vital for effective control
and action-taking chain, and early reaction to faulty scenarios
plays a critical role in risk management strategies while
increasing safety and reliability. More specifically, a properly-
working system should be able to perform: (i) detection
(promptly detecting a fault condition within the system); (ii)
isolation (identifying the faulty sensor) and (iii) accommoda-
tion (replacing the faulty data with some other trusted data).
Accordingly, in this paper we propose a machine-learning-
based framework for sensor validation. This framework al-
lows developing a general sensor-fault detection, isolation,
and accommodation (SFDIA) scheme to be easily adapted
to different application domains, e.g. renewables in maritime
scenarios [5]. In detail, the contributions of this paper are:

1) A novel machine-learning-based architecture for SFDIA
is proposed. The proposed architecture jointly takes ad-
vantage of the temporal correlation of the measurements
and of both reliable and unreliable sensors within the
system to achieve a higher sensor validation perfor-
mance.

2) The focus of generated faults is on weak faults, which
are very hard to detect and usually ignored in the
literature [6]–[10].

3) The performance of the proposed approach (in terms
of probabilities of detection, false alarm, correct
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classification, misclassification, etc.) is evaluated on
three different real-world data-sets [11]–[13] corrupted
with synthetically-generated sensor faults (bias and
drifts) and compared with two state-of-the-art tech-
niques [14], [15]. The data-sets considered are publicly-
available: this fosters reproducibility and further ad-
vances on the topic. Synthetically-generated sensor
faults have been considered to perform a systematic
performance assessment of the proposed architecture.

4) The impact of different hyperparameters, such as the
number of layers and the number of nodes per layer, is
assessed for the considered scenarios.

The rest of this paper is organized as follows. Sec. II
provides a literature review regarding the related work. In
Sec. III we introduce the proposed general SFDIA architecture
and describe the different blocks for fault detection, isolation
and accommodation. Then, in Sec. IV, we present the data
description, contamination and pre-processing related to three
independent data-sets with different applications. Accordingly,
Sec. V highlights and compares the numerical performance for
all the data-sets with different setups.

Finally, in Sec. VI we provide some concluding remarks
and highlight future directions of research.

Notation - Lower-case bold letters denote vectors, (·)T is the
transpose operator, and O(·) indicates the Landau notation.

II. RELATED WORKS

First practices for sensor validation were based on hardware
redundancy [16]. These approaches used multiple sensors to
measure the same parameter at the same point as well as
a voting scheme to compensate sensors faults [16], [17].
However, hardware redundancy is unable to handle system
noise and has some other serious drawbacks in terms of cost,
weight, power consumption and size. Even more importantly,
it is sensitive to simultaneous failure of all redundant sensors
subject to the same harsh environmental conditions. Due to
these reasons, alternative approaches based on analytical re-
dundancy have gained more attention. Analytical-redundancy
approaches attempt to develop reliable virtual sensors based
on system model(s). More specifically, measurements collected
by real sensors are compared with the values from the virtual
ones to detect presence of faults and provide reliable measure-
ments for replacement [9], [15], [18]. Various model-based
and model-free (viz. data-driven) algorithms such as Kalman
filter (KF) [19], [20], hidden Markov model [21], artificial
neural networks (NN) [7], [22], and support vector machine
(SVM) [14] have focused on detection and isolation tasks
with application on aircraft sensor technologies, cyber-physical
systems and wireless sensor networks (WSNs).

Early KF-based algorithms for detection and isolation were
developed with an inherited drawback of being unable to deal
with non-linearities [19]. Extended KF and multiple hybrid
KFs were shown to overcome this issue through linearization
around the state estimate and piece-wise linear models, re-
spectively [20], [23]. Nevertheless, such solutions were heavily
dependent on domain knowledge about the system which is
not necessarily available.

As for data-driven approaches, multi-layer perceptron
(MLP) architectures were considered for reducing probabil-
ities of false alarm and miss detection through time-variant
thresholds-based tests [22]. A method based on the SVM
classifier was also proposed to detect faults through abnormal
behaviors in the last three data measurements [14]. However,
this method makes decision using redirected data to the server
which results in delayed fault detection. Since the SVM
classifier was only able to classify the faulty data, a deep belief
network [7] coupled with a maximum squared error method
for fault detection and isolation purposes was investigated. To
address large data requirement of data-driven approaches, fault
detection and isolation filters were derived in the state-space
representation form by estimating system impulse response
coefficients in the frequency domain via fast Fourier transform
of input/output signals [24].

In the context of industrial WSNs, a threshold-free error
detection (TED) method was developed [25]. TED relies on
both temporal and spatial correlation between sensor readings.
Recently, a method named TPE-FTED [10] based on an
adjustable step window was proposed for online learning the
changes of sensor readings in a dynamic environment. TPE-
FTED deals with fault detection and isolation problem as a
trajectory pattern extraction problem extracted from different
sensing states. Then, TPE-FTED starts pattern matching as
well as spatial-temporal constraint violation checking to detect
the faulty sensor.

In summary, model-based algorithms require good knowl-
edge of system model/ parameters and are difficult to imple-
ment in presence of nonlinearities. Conversely, data-driven al-
gorithms may represent a valid alternative to analytical model-
based algorithms: ease of implementation and capabilities to
capture non-linear behavior by learning from historical data
have increased attention toward data-driven algorithms for
SFDIA schemes [8], [9], [15], [26]–[28].

An SFDIA scheme based on MLPs by consociating one
main NN and a set of decentralized NNs has been proposed
to create a system for detecting failures of gyro sensors
of an aircraft [26]. Previous-time measurements of sensors
under estimation were also used as the input of MLP NNs.
A minimal radial basis function (MRAN) NN presented in
[27] was able to reduce NN complexity by ignoring hidden
neurons with less effect on the NN output. This algorithm was
relatively slow in detecting faults after the occurrence of the
faults. The performance of MLP and Extended MRAN NNs
on sensor failure accommodation scheme were evaluated and
compared through a study for failure on air data system [28].
This study showed similar performance of both NNs as online
estimators, with slightly better performance of MLP NN in the
training phase. SFDIA scheme presented in [15] employed
a fully connected cascade (FCC) NN with only one neuron
per layer connected to all previous layers. The proposed FCC
NN was able to perform efficiently with a limited number of
neurons and reduced computational complexity in comparison
to MLP NN.

A NN-based sensor validation scheme for heavy-duty diesel
engines was proposed using two banks of NN approximators
to generate a residual signal for isolating faults and to produce
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an approximation of faulty sensor measurements [9]. A hybrid
structure constructed of adaptive linear (ADALINE) NN for
linear dominant operating conditions as well as MRAN NN
for non-linear dominant operating conditions were considered
to decrease complexity and computational load. However, the
proposed scheme is still slow in detecting faults and requires a
high number of neurons to approximate sensor output. In [8],
the SFDIA approach based on artificial hydrocarbon networks
(AHN) over WSN was presented. AHN is exploited to predict
the temperature and detect the faulty sensor using in-field
sensors and comparing it with information from a web service.

A distributed spike fault detection method was presented
for linear time-invariant systems based on online learned pair-
wise relationships of sensors using auto-regressive with exoge-
nous input time-series model [29]. Another method utilized
a seasonal auto-regressive integrated moving average models
for forecasting surface temperature variation of concrete sewer
pipes [6]. Predicted values were used as a reference measure
for fault detection and replacement for faulty data. However,
the presence of faults and anomalies reduces the forecasting
performance of this method as it relies on previous measure-
ments of the faulty sensor.

III. SYSTEM ARCHITECTURE FOR SFDIA SCHEME

In the proposed SFDIA scheme, sensors are split into
two groups: the unreliable set SU with NU sensors that are
prone to failures, and the reliable set SR with NR reliable
sensors. Indeed, in some applications some sensors could be
more reliable because of sensor quality, hardware redundancy,
proper design and working environment, being at middle of
life time [30], or some other forms of protection in higher
architectural layers. The proposed SFDIA algorithm can also
handle the case of SR being the empty set (NR = 0). The
objective is to detect, identify and accommodate failure of
faulty sensors among the unreliable set whenever they happen.
In the following, xs[n] denotes the measurement from the
generic sth sensor at time instant n. Without loss of generality,
we number sensors 1 to NU those belonging to the unreliable
set, and NU + 1 to NU +NR those belonging to the reliable
set, then we denote xU,s[n] and xR[n] the vectors collecting
the measurements from the unreliable sensors with sth sensor
excluded and from the reliable sensors, respectively, at time
instant n.

The block diagram of the proposed SFDIA scheme is
shown in Fig. 1, where similar blocks and similar data are
reported in the same color. The input to the system is the set
of measurements from all sensors. The system is based on
three stages: (i) the first stage is made of NU virtual sensors
(representing estimation of unreliable sensors); (ii) the second
stage is made of NU analogous residual-computation units;
and (iii) the third stage is made of a (multi-task) classifier.
The classifier at the third stage is performing detection and
isolation, while accommodation is done by exploiting the
estimators’ output.

More specifically, at the first stage, the virtual sensor s ∈ SU
receives as input the measurements from all sensors excluding
sensor s (i.e. (SU ∪ SR − {s}) for time instant n and Lv

previous time instants (i.e. a sliding window), and produces
as output an estimate of the measurement of sensor s ∈ SU,
whose nth sample is denoted ys[n].

Then, at the second stage, the residual-computation unit
s ∈ SU receives as input the measurement xs[n] of sensor
s ∈ SU and the corresponding estimate ys[n] from the
virtual sensor s ∈ SU and produces as output a measure of
dissimilarity of the pair, whose nth sample is denoted es[n].
Residual measurements are reflecting inconsistencies between
the normal and faulty sensor operating status of unreliable
sensors.

At the third stage, the classifier receives as input the dis-
similarity measures from all the sensor pairs in the unreliable
set SU for time instant n and Lc previous time instants, and
produces as output a decision vector about if and which sensor
has undergone a failure. According to Fig. 1, the nth (soft-)
decision vector is denoted d[n] = (d1[n], d2[n], . . . , dNU

[n])T

where di[n] ∈ [0, 1], i = 1, . . . , NU denotes the probability
of the ith sensor (corresponds to a specified unreliable sensor)
being faulty. Ideally, a vector d[n] with all elements set to 0
denotes the event that no sensor has been declared in failure,
while the set of unreliable sensors SU is mapped bijectively
into the first NU positive integers with an arbitrary labeling
function. The final decision is made based on whether the
maximum element of vector d[n] exceeds a given threshold
γ. Nonetheless, the proposed SFDIA architecture (cf. Fig. 1),
can detect, isolate and accommodate more than one sensor
simultaneously. In this case, SFDIA scheme would present
better performance for large scale systems. However this issue
falls beyond the scope of this paper and will be explored in
future works.

It is implicitly assumed that in the case that sensor s ∈ SU
is declared in failure, its measurement xs[n] is replaced with
the estimate ys[n] from the corresponding virtual sensor. It is
apparent how the considered architecture implements all the
tasks of a SFDIA system: i.e. decision vector d[n] with an
over threshold element represents the detection task; after a
fault is detected, the specific sensor index i corresponding to
the maximum element di[n] of the decision vector performs
the isolation task and replacing xs[n] with ys[n] employs the
accommodation task, with the sensor s identified through the
inverse labeling function. In what follows, we detail each of
three aforementioned stages.

1) Virtual Sensor: An MLP NN, with (Lv+1)(NU+NR−1)
inputs, 1 output, and Hv hidden layers, each with Nv hidden
nodes, has been considered for the implementation of the
generic virtual sensor, i.e.

ys[n] = f (Hv,Nv)
s (xU,s[n], . . . ,xU,s[n− Lv]

,xR[n], . . . ,xR[n− Lv]) , (1)

where fs represents the MLP-based function model of the
sth sensor. Each MLP has been trained using the Nesterov-
accelerated adaptive moment estimation (Nadam) optimization
algorithm using real-world data-sets [31], [32]. The Nadam
algorithm takes advantage of properties of adaptive moment
estimation (Adam) algorithm and incorporates Nesterov Ac-
celerated Gradients to Adam. Hyperbolic tangent (tanh) and
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Fig. 1: Block diagram of the SFDIA system.

identity activation functions are employed in hidden layers and
the output layer, respectively. Mean square error (MSE) loss
function is used for loss calculation in training phase.

The MLP is a simple architecture with proved performance
of estimating nonlinear behavior [26], [28]. Numerical re-
sults show the excellent performance of MLP architecture.
However, in the case of further requirement of extrapolating
long-term impact of the temporal dimension for time series
data-sets, more complicated architectures (e.g. convolutional
neural networks, recurrent neural networks (RNNs) and long
short term memory networks (LSTMs) [33], [34]) are expected
to present more appropriate results for the implementation
of each virtual sensor. Data description, data pre-processing
(in order to make it suitable for model training) and data
contamination procedure (via synthetically-generated faults)
are described in the next section.

2) Residual Computation: For dissimilarity measure, we
simply considered the error between the estimated value and
the actual value, i.e.

es[n] = ys[n]− xs[n]. (2)

In fault-free condition, it is expected that the residual mea-
surements es[n] be equal to zero, but in practice, it always
contains non-zero value due to noise and imperfect estimation
of sensor output. Hence, the classifier is introduced to discrim-
inate faulty measurements from non-faulty measurements via

pattern analysis of residual signals.
3) Classifier: An MLP NN, with NU inputs, NU discrete

output, and Hc hidden layer with Nc hidden nodes, has been
considered for the implementation of the classifier, i.e.

d[n] = g(Hc,Nc)(eU[n], . . . , eU[n− Lc]). (3)

where eU[n] is a vector of the dissimilarity measurements of
the unreliable set at time instant n. Since there is a certain level
of correlation between temporal samples of residual signals,
Lc previous time instants are also fed to the classifier to exploit
the temporal correlation among measurements.

The binary cross-entropy loss function along with the same
optimization algorithm (Nadam) and activation function (tanh)
for hidden layers as in the virtual sensors are employed in the
classifier. Moreover, NU sigmoid activation function is used
at the output layer of the classifier. The fault-signal generation
is described in the next section.

Computational Complexity: The computational complexity
of the proposed SFDIA structure is calculated hereunder
in terms of the big-O notation for one input sample. The
computational complexity for each layer of the virtual sensor
and classifier is specified in Tab. I.

It is worth noticing that in Tab. I, the impact of tanh and
sigmoid operations for virtual sensors and the classifier has
been neglected. Finally, with respect to the computational
complexity of both MLPs and assuming equal number of
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TABLE I: Computational complexity of the MLPs constituting
the proposed SFDIA architecture.

Layers MLP Complexity

first hidden
layer

virtual sensor O(LvNUNv + LvNRNv)

classifier O(LcNUNc)

other hidden
layers

virtual sensor O(N2
v )

classifier O(N2
c )

output layer
virtual sensor O(Nv)

classifier O(NUNc)

in total
virtual sensor O(LvNUNv + LvNRNv +HvN2

v )

classifier O(LcNUNc +HcN2
c )

hidden layers (Hv = Hc = H), nodes per hidden layer
(Nv = Nc = N ) and time delays (Lv = Lc = L), the com-
putational complexity involved with the proposed architecture
is approximately O(LN2

UN + LNRNUN +HNUN
2). Thus,

the proposed architecture has polynomial complexity, and the
complexity grows quadratically as a function of the number of
nodes per layer (N ) and number of unreliable sensors (NU).

IV. DATA DESCRIPTION, PRE-PROCESSING, AND
CONTAMINATION

A. Data Description
Three real-world data-sets are applied to the proposed

SFDIA system to evaluate the qualification of the system in
different scenarios.

1) Air Quality (AQ) Data-Set: The first data-set contains
hourly-averaged measurements of an array of 5 metal oxide
chemical sensors embedded in a gas multi-sensor device
deployed on the field in an Italian city along with gas concen-
trations references from a certified analyzer [11]. The device
was located in a polluted area, at road level of the city. AQ
data-set was recorded during Mar. 2004-Feb. 2005.

Measurements contain carbon monoxide (CO), non-metanic
hydrocarbons (NMH), nitrogen oxides (NOx), nitrogen diox-
ide (NO2) and ozone (O3) gas concentrations, as well as
measurements of temperature and humidity. For our analysis,
the ground truth hourly-averaged concentrations provided by
a co-located reference certified analyzer along with absolute
humidity are ignored. Accordingly, in our numerical analysis,
the five gas sensors are considered as the unreliable set (NU =
5), whereas temperature and relative humidity are considered
as the reliable set (NR = 2).

2) Wireless Sensor Network (WSN) Data-Set: The second
data-set used in our evaluation has been collected at the
University of North Carolina at Greensboro [12]. A labeled
data-set collected from a single-hop and a multi-hop WSN
using TelosB motes. The data-set consists of 4 sensors located
indoor and outdoor measuring humidity and temperature.
Measurements were collected during 6 hours at 5 seconds
interval. Anomalies indicated with label ”1” in the original
data-set were introduced to two sensors by using a water kettle
which increased the temperature and humidity.

In what follows, only the multi-hop data-set with 4 tem-
perature (T1 to T4) measurements is used as unreliable set

(NU = 4), and data with the indicated label ”1” were ignored
from this data-set. No reliable set is considered for this data-set
(NR = 0).

3) Permanent Magnet Synchronous Motor (PMSM) Data-
Set: The third data-set comprises several sensor data measure-
ments from a permanent magnet synchronous motor collected
by the LEA department at Paderborn University [13], [35].
Data-set measurements include ambient temperature, coolant
temperature (CT), voltage q and d components, current q and
d components, motor speed (MS), torque (TRQ), rotor tem-
perature, stator yoke temperature, stator tooth temperature, and
stator winding temperature. Original measurements contain 52
sessions, with each session being 1 ∼ 6h long and sampled at
intervals of 0.5 seconds.

We have considered a sample interval of 15 seconds (by
down-sampling) and ignored the ambient and rotor measure-
ments. Summation of q and d components of voltage and
current are treated as final voltage (V) and current (C) mea-
surements. The reliable set consists of 3 stator temperatures
(NR = 3), and other remaining measurements form the
unreliable set (NU = 5).

B. Pre-processing

As commonly done in machine-learning applications, in
order to avoid polarization in the training due to different
ranges of different variables, measurements of each sensor
have been normalized such to span the range [0, 1] via min-
max scaling

x′s[n] =
xs[n]− xmin

xmax − xmin
, (4)

where x′s[n] represents the normalized measurements of the
sth sensor, whereas xmax and xmin are the minimum and
maximum of the training set for given sensor measurements.
It is worth mentioning, in the normalization process, xmax and
xmin are derived based on the training set of each data-set to
present the real-world condition. Besides normalization, entire
rows with missed data in data-sets are omitted. No other pre-
processing has been considered, such as feature extraction, to
help the learning procedure of the virtual sensors. Although,
for noisy data-sets, smoothing techniques (e.g. moving aver-
age, Savitzky-Golay filter or quadratic regression) or low-pass
filtering can be performed allowing the important patterns of
data to stand out.

In proposed architecture, instead of using all sensor except
the one under estimation as input of each virtual sensor, only
the most correlated sensors could be considered as input. This
would help containing complexity, specially for large-scale
systems, while ensuring acceptable performance. Correlation
matrix of all sensors could be obtained from the training set.
However, this issue is beyond the scope of this paper and will
not be here investigated. Architectures with different number
of hidden layers has been compared in order to verify if a deep
architecture can overcome the need for feature extraction for
the specific problem.
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C. Data Contamination

In order to build data-sets including sensor failures for
training the SFDIA classifier and testing its performance,
synthetic fault signals have been generated and injected to all
three data-sets. Failure of a sensor could manifest in several
ways [36]–[38]. The most common fault models are bias,
drift, freezing and random fault. In this paper, without loss
of generality, we considered bias and drift faults to represent
hard and soft failures, respectively. The mathematical model
for each of them is described in what follows.

1) Bias fault: In this type of failure (also known as step
fault), a constant bias b for M consecutive samples was added
to the sensor measurements, namely

xs[n] =

{
as[n] + νs[n] + b , 0 ≤ n−m < M

as[n] + νs[n] , else
(5)

where as[n] is the ideal (without fault) measurement of the sth
sensor and m is the starting time instant of the fault, while
νs[n] denotes the measurement noise. Sensor measurements in
all three data-sets are (naturally) including measurement noise
(i.e. they provide as[n] + νs[n]).

2) Drift fault: This additive fault happens in M +N consec-
utive samples when sensor output drifts up to the bias level b
with M time instants

xs[n] =





as[n] + νs[n] +
b(n−m+1)

M , 0 ≤ n−m < M

as[n] + νs[n] + b, M ≤ n−m < M +N

as[n] + νs[n], else

(6)

where N is the number of consecutive samples that the drift
fault remains at the saturated bias level b. Also, we considered
M > N to stress the effect of the drift.

V. NUMERICAL RESULTS

In this section, performance of the proposed SFDIA archi-
tecture is examined and compared with recent research works
by using the aforementioned real-world data-sets. Each data-
set is divided into three parts. On each data-set, we used 70%
of data for training MLPs (training set), 15% for validating
(validation set) and last 15% block of data for testing purposes
(test set). Early stopping method is used to avoid over-fitting
during the training phase [39]. In this method, error on the
validation set is monitored and if after 20 consecutive epochs
validation set error did not improve, the training process is
stopped.

We denote variation domain the size of the range spanned
by a sensor with reference to the training set. Maximum
level b of generated faults is assumed uniformly distributed
between 0.2 and 0.4 (i.e. accounting for 20 to 40 percent of
the corresponding variation domain) to represent weak fault
signals. Positive and negative faults are generated randomly.
Uniform distribution of maximum level b assures that the
classifier will not learn on a specific level. Table II reports
the variation domain for each sensor. The variation domain,
which is always less or equal to the true range of each sensor
(e.g. on WSN data-set in Tab. II, maximum variation domain

TABLE II: Variation domain for each sensor.

Data-set Sensors Variation Domain

AQ CO NMH NOx NO2 O3

1392 1830 2360 2118 2270

WSN T1 (°C) T2 (°C) T3 (°C) T4 (°C) -

3.57 3.72 2.23 1.99 -

PMSM CT V C MS TRQ

3.50 6.00 7.24 3.25 6.33
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(a) Training set (b) Test set

Fig. 2: Averaged performance of the virtual sensors for
different number of nodes Nv in terms of PDF of the error
signals on each data-set. Different configurations are denoted
with Hv ×Nv.

is 3.72°C while usually temperature sensors range are around
150°C or even higher), is used as criterion since the true ranges
were unknown. In addition, to better understand the effect of
fault strength on detection accuracy, strong fault signals with
maximum level b uniformly distributed between 0.6 and 0.9
are considered for comparison with weak fault signals.

A. Virtual Sensors Performance

Virtual sensors with Nv ∈ {5, 10, 15} nodes per hidden
layer and Hv ∈ {1, 2, 3} hidden layers have been trained and
compared. In detail, virtual sensors’ overall performance on
both training and test sets are shown in Figs. 2 and 3 in terms
of PDF of all sensors error signals (eU[n]) in each data-set.

The improvement of the performance with increasing the
number of nodes (Nv) and hidden layers (Hv) is apparent,
but variable for different data-sets. Fig. 2 seems to suggest
the improvements with respect to the number of nodes per
layer saturate approximately with Nv, while, as it can be seen
in Fig. 3, adding more layers has only a relevant effect on
the largest data-set (PMSM data-set). It must be said that
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Fig. 3: Averaged performance of the virtual sensors for
different number of hidden layers Hv in terms of PDF of
the error signals on each data-set. Different configurations are
denoted with Hv ×Nv.
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Fig. 4: Averaged performance of the virtual sensors in config-
uration 1× 10 for different number of previous time instants
Lv in terms of PDF of the error signals on each data-set.

deeper network structures require larger data-sets to update
their weights and biases, thus the saturation effect might be
due to the limited amount of available data. Fig. 4 illustrates
the impact of input window size Lv on the virtual sensors per-
formance. By employing delayed samples, the virtual sensors
can exploit the temporal correlation between data samples to
enhance estimation performance. However, the PMSM data-

(a) Training set (b) Test set

Fig. 5: Averaged performance of the virtual sensors in con-
figuration 1 × 10 and Lv = 10 in terms of 2D PDFs of the
estimated and actual values.

set has a very limited temporal correlation.
Performance of the configuration with Hv = 1 hidden

layer, Nv = 10 nodes per hidden layer and Lv = 10 is
considered acceptable, thus in the following, we will refer to
this specific configuration. The 2D-PDF plots of the estimated
and actual values for virtual sensors in configuration 1 × 10
are shown in Fig. 5, both for the training and the test sets. It
is worth noticing that the test set of the WSN data-set exceeds
the defined normalization lower-bound which is the result of
normalization on the training set.

B. Classifier Fault Detection and Classification
Performance

Synthetically-generated faults have been added to unreliable
set of sensors to emulate faulty sensors. Different configura-
tions for the classifier are compared in the following. Table III
lists the number of parameters (weights and biases) to be
trained during training phase in the classifier and each virtual
sensor for different configurations.

A classifier with Hc = 2 hidden layers, Nc = 15 nodes per
hidden layer and a memory of Lc = 10 has been trained. In
this configuration, according to Tab. III, a total number of 725
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Fig. 6: ROC curves of proposed SFDIA structure for all data-
sets under bias and drift faults.
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Fig. 7: Detection performance of the classifier for different
number of nodes per hidden layer Nc in terms of ROC on
each data-set.

trainable parameters of the classifier are required to be updated
through training phase over AQ and PMSM data-set1.

The probabilities of detection and false-alarm are two
important metrics for evaluating the performance of a de-
tector. Accordingly, in Fig. 6, fault detection performance

1The number of trainable parameters of the classifier is different for WSN
data-set due to different Number of unreliable sensors (NU = 4).
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Fig. 8: Detection performance of the classifier in configuration
2 × 15 for different number of previous time instants Lc in
terms of ROC on each data-set.
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Fig. 9: Averaged classification (isolation) performance of the
classifier in configuration 2 × 15 for different number of
previous time instants Lc in terms of ROC on each data-set.

is investigated in terms of both metrics by using the well-
known receiver operating characteristic (ROC) curves (i.e. by
varying the threshold γ). Results highlight that, although the
classifier is facing weak fault signals, it is still capable to detect
them with a very high probability for negligible false-alarm
probability. Detection probability of bias faults is noticeably
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TABLE III: number of trainable parameters (weights and
biases).

Virtual Sensora Classifiera

Nc, Hc, Lv Lc

Nv Hv 0 5 10 15 0 5 10 15

5 1 31 131 231 331 60 185 310 435
2 61 161 261 361 90 215 340 465

10 1 61 261 461 661 115 365 615 865
2 171 371 571 771 225 475 725 975

15 1 91 391 691 991 170 545 920 1295
2 331 631 931 1231 410 785 1160 1535

a No reliable sensor (NR = 0) and NU = 5 unreliable sensors considered
for calculations.

higher than drift faults over different false alarm rates. This is
originally due to the ramp up phase of drift faults which takes
classifier more samples to detect faults. As illustrated in Fig. 6,
WSN data-set has somewhat lower performance in comparison
with the other two data-sets (in case of drift faults). It is mainly
because of very weak fault levels on this data-set according
to its sensors’ variation domains (see Tab. II). Conversely,
detection performance of proposed architecture under strong
faults are significantly higher than the detection performance
under weak faults as shown in Fig. 6, which highlights the
importance of detection and isolation of weak faults.

The detection rate of the classifier with 5 and 15 nodes per
hidden layer is assessed in Fig. 7 in case of drift faults. It is
apparent from both train and test sets that 5 nodes per hidden
layer are not enough for distilling relevant features from the
data sequences. In general, the accuracy on test set is lower
than the accuracy on train set since the classifier is optimized
for the latter. Figs. 8 and 9 demonstrate the effect of using
time-delayed samples on the classifier in the case of drift fault.
There are certain improvements in detection performance and
averaged classification (isolation) performance2 when tempo-
ral correlation exists in sensor measurements. However, as it
can be seen on both Fig. 8.(b) and 9.(b), the performance
slightly reduces with increasing number of time delays (Lc =
15) due to the negligible temporal correlation between older
samples and current sample in the measurements. Besides, in
this scenario, increasing the window size should potentially
lead to a performance improvement, however a larger number
of nodes in the hidden layers might be required to handle
properly the increased number of input nodes. Differently, with
a fixed network structure, increasing the window size might
in practice saturate the learning capability.

Figure 10 shows the performance in terms of “multi-class
ROC” for each detected class for AQ data-set under drift
faults, i.e. no failure and sensor-1 to sensor-5 failures. More
specifically, each subfigure refers to a specific true sensor fault
and reports the curves of the probability of classification for
each possible fault (including the no-fault scenario represented
with a dashed line) obtained through varying the selected

2Averaged classification performance is the average of correct classification
probability on all sensors in data-set. Non-fault occurrence is considered as a
separate class.
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Fig. 10: Classification ROC curves for AQ data-sets under
drift faults.

TABLE IV: Detection and classification accuracy based on
Youden’s index.

Data-set Fault
Type γ

Pd

(%)
Pf

(%)
Pdi

a

(%)
Sensors Classification

Performance (%)

AQ

CO NMH NOx NO2 O3

Bias 0.109 95.2 1.1 91.3 94.8 99.8 93.0 68.5 99.9

Drift 0.1345 93.1 7.0 90.6 95.3 96.0 89.1 86.5 86.2

WSN

T1 T2 T3 T4 -

Bias 0.151 97.3 0.2 89.8 94.1 99.9 94.7 70.1 -

Drift 0.213 95.0 2.1 86.0 92.7 95.4 83.7 72.4 -

PMSM

CT V C MS TRQ

Bias 0.001 99.9 7.4 89.0 99.0 94.6 91.7 68.1 91.4

Drift 0.107 97.0 2.0 81.1 90.2 76.4 83.3 65.7 90.0
a Pdi = Averaged probability of correct classification on all sensors.

threshold3. The probability of correct classification for all
5 sensors reaches ≈ 95%. Also, it is apparent how good
detection and identification results are obtained at the expenses
of reduced misclassification rates. Apart from misclassification
with the none case, the case with NO2 sensor failure being
misclassified as a NMH sensor failure is the most difficult
misclassification case to avoid in AQ data-set. In all data-sets,
the results with bias faults are notably improved in comparison
to those with drift fault4.

There exists several criteria for setting the optimal threshold

3Plots are not depicted with respect to the selected threshold, but with
respect to the corresponding probability of false alarm. It is worth noticing
that well-known confusion matrices may be obtained from these plots by
selecting a desired point of operation (corresponding to a specific value of
the numerical threshold γ providing the classifier output).

4Classification performance on different sensors of other two data-sets as
well as bias faults are not shown for brevity.
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TABLE V: Detection accuracy of the proposed architecture
compared to the SVM classifier and the FCC technique on
the test set.

Data-set Architecture Metrics
Bias (%)

Weak Strong

Drift (%)

Weak Strong

AQ

Pf 2.82 0.01 2.32 0.17

SVM Pd 79.2 98.0 70.4 88.8
FCC Pd 98.5 - 85.2 87.9

Proposed Pd 97.5 98.9 84.1 95.9

WSN

Pf 22.7 0.15 21.7 1.0

SVM Pd 95.9 98.5 88.2 90.3
FCC Pd 100 - 94.4 96.3

Proposed Pd 100 98.9 98.2 94.2

PMSM

Pf 0.05 0.06 0.11 0.15

SVM Pd 34.9 92.3 31.8 77.7
FCC Pd 15.9 99.7 25.0 50.8

Proposed Pd 58.1 99.8 56.0 96.2

value to maximize the probability of detection. In this study
we selected Youden index J , i.e. maximization the vertical
distance between the 45-degree line (equality line) and the
point on the ROC curve [40]

J = max
γ

(Pd − Pf). (7)

where Pd is the probability of detection and Pf is the proba-
bility of false alarm.

Sensors classification performance on test sets of all data-
sets with Youden index criteria are summarized in Tab. IV.
Thresholds in Tab. IV are set by applying Youden index
criteria to ROC curves from training sets. Next, all recorded
probabilities are derived from test sets for obtained thresholds.
On the whole, the achieved accuracy with bias faults is com-
paratively higher than drift faults. The best detection accuracy
of 99.9% as well as very good detection accuracy of 97.3%
with the lowest false alarm rate of 0.2% respectively obtained
on PMSM and WSN data-sets under bias fault condition which
shows excellent detection performance of the proposed SFDIA
scheme. Moreover, good classification performance on most
sensors is evident with highest average correct classification
of 91.3%, with MS sensor on PMSM data-set as the hardest
classification case.

C. Performance Comparison
Table V compares the proposed architecture with two state-

of-the-art techniques previously outlined in Sec. II: (i) the
SVM classifier [14] and (ii) the FCC NN [15] with 6 nodes.
The SVM classifier has no control over the probability of
false alarm since it does not have any threshold mechanism.
Hence, to provide a fair comparison, we tuned the threshold
on the proposed architecture and on the FCC technique to
achieve the same probability of false alarm as the SVM
classifier, and compared the probability of detection for all
techniques in Tab. V. Apparently, the detection performance
of the proposed architecture outperforms the SVM technique
for all fault types. The performance gap between these two
techniques in terms of detection accuracy becomes more
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Fig. 11: Averaged classification (isolation) performance com-
parison in terms of ROC for the test set on each data-set.

evident under weak faults. More specifically, under weak drift
fault for the PMSM data-set, the performance improvement
in fault detection of the proposed architecture over the SVM
technique is approximately 24.2%. The main reason lies in
the fact that the SVM classifier takes raw-sensor data as input
while the proposed architecture exploits the estimations of
each sensor and feeds the residual data as input to the classifier
which contains easy-to-interpret information about faults. The
FCC technique exhibits similar detection performance as the
proposed architecture over AQ and WSN data-sets, while on
the PMSM data-set the proposed architecture turns to be better
performing. In Tab. V, the detection accuracy of the FCC
technique with respect to the corresponding probability of false
alarm was not available for the WSN and AQ data-sets under
strong bias faults (as can be seen also in Fig. 11(a)). It is worth
mentioning that the detection performance on the training set
resembles those shown for the test set in Tab. V.

As for the isolation task, the proposed architecture achieves
significant gains over the FCC technique as observed in
terms of classification performance shown in Fig. 11. More
specifically, the proposed architecture takes advantage of MLP
classifier while the FCC technique merely uses a sliding win-
dow mechanism. The relevance of the proposed architecture
as an effective SFDIA scheme is apparent.

Finally, as for the accommodation task, Fig. 12 compares the
accuracy of the virtual sensors which reveals better estimation
capability of the MLPs from the proposed architecture against
the FCC NNs. The improvement is mainly due to the capability
of the proposed technique to exploit temporal correlation.
Finally, it is worth noticing that isolation and accommodation
performances of the SVM technique cannot be compared due
to its incapability to classify and estimate faulty sensors.
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Fig. 12: Accommodation performance comparison in terms of
PDF of the error signals on each data-set.

VI. CONCLUSION

In this paper, we presented a three-stage SFDIA architecture
with capability to adapt with different applications. The clas-
sifier at the third stage detects and isolates the faulty sensor
from patterns within the input residual signals. The bank of
estimators at the first stage allows to accommodate unreliable
sensors by replacing the measurements from the identified
faulty sensors. Estimators are also used at the second stage
to derive the residual signals for the classifier. An extensive
evaluation on three real-world data-sets from different appli-
cations indicated that the proposed SFDIA architecture attains
high probability of detection and correct classification with
low probability of false alarm in presence of weak bias and
drift faults.

The same architecture allows large flexibility with the com-
ponents in each layer (e.g. replacing the considered MLPs with
RNNs), thus might achieve further performance improvements
under specific circumstances. In addition, although not inves-
tigated in this work, the proposed architecture is potentially
capable of handling multiple simultaneous faults, a feature to
be considered in future works.
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Abstract—The development of Digital Twins (DTs) has
bloomed significantly in last years and related use cases are
now pervading several application domains. DTs are built upon
Internet of Things (IoT) and Industrial IoT platforms and
critically rely on the availability of reliable sensor data. To this
aim, in this article, we propose a sensor fault detection, isolation
and accommodation (SFDIA) architecture based on machine-
learning methodologies. Specifically, our architecture exploits
the available spatio-temporal correlation in the sensory data
in order to detect, isolate and accommodate faulty data via a
bank of estimators, a bank of predictors and one classifier, all
implemented via multi-layer perceptrons (MLPs). Faulty data are
detected and isolated using the classifier, while isolated sensors
are accommodated using the estimators. Performance evaluation
confirms the effectiveness of the proposed SFDIA architecture to
detect, isolate and accommodate faulty data injected into a (real)
wireless sensor network (WSN) dataset.

Index Terms—Digital Twin (DT), Industry 4.0, fault tolerance,
Internet of Things (IoT), neural networks, sensor validation.

I. INTRODUCTION

The adoption of digital twins (DTs) built upon the Inter-
net of Things (IoT) for industrial environments have grown
significantly with the recent wave of digitalization. DTs are
virtual representations of physical assets, which utilize the
equipped sensors’ data to elaborate and deliver real-time
insights, predictions and improved decisions.

However, due to harsh environment [1], hardware limita-
tion [2] and/or malicious attacks [3], [4], the data collected
by sensors within the system can be faulty. The occurrence of
sensor faults during normal system operation is inevitable and
might lead to system-performance degradation and, in worst
case when dealing with safety-critical systems, loss of lives.
Therefore, sensor fault detection, isolation and accommodation
(SFDIA) is an extremely important feature to implement in
DTs in order to ensure system reliability and safety.

The current research trend mainly focuses on analytical
redundancy, i.e. exploiting correlations within the system [5]
to avoid the deployment of additional sensing hardware. A
model-based SFDIA method was developed according to
electrical dynamics equations for current sensors of grid side

This work was partially supported by the Research Council of Norway
under the project SIGNIFY within the IKTPLUSS framework (project nr.
311902).

converters [6], where detection and isolation tasks were based
on residual generations and linear state observer logic, while
accommodation task was achieved by employing physical re-
dundancy for the single-fault scenario. Analogously, a sensor-
fault control strategy comprising of two sliding-mode ob-
servers and Luenberger observer was adopted for synchronous
motor drives and resulted in high computational complex-
ity [7]. Other model-based approaches have been developed
with use of Kalman filters [8], [9], Bayesian methods [10]
and observer-based methods [11]. Still, in general, it is seldom
practical to develop an accurate model of a system due to the
inherent complexity and variety of DTs’ applications.

On the contrary, data-driven approaches (e.g. support vector
machine [12], principal component analysis [13] and neural
networks (NNs) [5]) are able to overcome this problem as they
mostly rely on historical data. A multi-layer perceptron (MLP)
NN, a class of feed-forward NNs, is employed by a modular
SFDIA (M-SFDIA) method to diagnose faults in DTs [5], [14],
while a fully-connected cascade NN is exploited in [15] to
reduce the computational complexity. Also, alternative solu-
tions are developed via hybrid approaches, e.g. using banks of
NNs and adaptive linear networks, to reduce the computational
complexity [16]. Finally, an unsupervised method uses an
autoencoder (AE) NN as a classifier to detect faults and a
denoising AE to clean the faulty data [4]. However, AE-based
method is unable to perform the identification/isolation task
within the SFDIA scheme.

In this article, the major motivation is to propose a machine-
learning-based SFDIA architecture to exploit spatial and tem-
poral correlations in the data collected from the sensors.
To this end, two banks of MLP NNs are employed to
perform estimation and prediction of sensors measurements
in the system. Moreover, an MLP-based classifier is trained
to classify faulty sensors based on dissimilarities between
obtained predictions/estimates and actual sensors’ readings.
The proposed approach differs from our previous work (M-
SFDIA [5]) in that we here introduce a bank of MLP NN
predictors to better exploit the temporal correlations within
each sensor in the proposed architecture. On contrary to AE-
based architecture, the proposed architecture performs all three
tasks (detection, isolation, and accommodation) by exploiting



Figure 1: Block diagram of the proposed SFDIA architecture.

MLP modules. Moreover, the proposed architecture works on
a real-time basis capable to detect faults online (promptly) as
they occur. The considered SFDIA architecture is evaluated
through synthetically-generated weak bias faults which were
added to a real-world wireless sensor network (WSN) dataset
with four sensors measuring temperature and humidity [17].
Numerical results illustrate the superiority of the proposed
architecture compared to the M-SFDIA architecture.

The rest of this article is organized as follows. The proposed
SFDIA architecture is explained in Sec. II. Sec. III presents
the NNs’ configuration and the dataset description. Simulation
results and performance comparison are reported in Sec. IV.
Finally, Sec. V ends the paper and provides direction for
further study.

Notation - Lower-case bold letters indicate vectors, exp(·) is
the exponential function and (·)T denotes transpose operator.
U(a, b) (resp. Ud(a, b)) denotes a uniform (resp. discrete-
uniform) probability density function (PDF) with support
(a, b) (resp. {a, a + 1, . . . , b}), whereas B(p) denotes a
Bernoulli PDF with activation probability p.

II. SFDIA

The main idea of the proposed architecture is to exploit
temporal and spatial correlations among sensors in the system.
The block diagram of the proposed architecture is depicted
in Fig. 1. The proposed method is based on four functional
blocks: (a bank of) estimators (B1), (a bank of) predictors
(B2), a residual calculator (B3) and a classifier (B4). Each
block is described in what follows.

A. Estimators (B1) and Predictors (B2)

The two banks of estimators and predictors aim at modeling
sensors within the system. According to Fig. 1, both these
banks are equipped with K independent estimators and pre-
dictors, respectively. Herein, K denotes the number of faulty
sensors. Each estimator module provides an estimation x̂s[n]
of the measurement of its corresponding sensor s at current
time step n. Each sensor estimator receives x(s) as input,
i.e. the vector of all existing sensor readings except the one
from the sensor under estimation s using a sliding window

mechanism (from Le previous time steps up to the current
time step n).

Since each estimator module is not utilizing its correspond-
ing sensor readings, predictor modules are there to play a
complementary role. Specifically, each of the K predictors
produces a prediction x̃s[n] of its corresponding sensor s at
current time step n by receiving the readings xs as input, i.e.
readings from its corresponding (under prediction) sensor s
using a sliding window mechanism (from Lp previous time
steps up to time step n− 1).

B. Residual Calculator (B3)

This block calculates the residual signals of estimation and
prediction (namely ee,s[n] and ep,s[n]) for each faulty sensor
s = 1, . . . ,K as the squared difference of sensors readings
and their respective estimation and prediction values i.e.

ee,s[n] = (xs[n]− x̂s[n])2, (1)

ep,s[n] = (xs[n]− x̃s[n])2. (2)

Residual signals capture the dissimilarity and incongruity
between sensors readings vs. estimated and predicted values.
Residual calculator plays a data pre-processing role for the
classifier block by providing interpretable and parsed input.

C. Sensor-Fault Classifier (B4)

In the classifier block, a single MLP classifier is exerted
to detect and identify faulty sensors in a real-time manner.
Denoting e[n] = (ee,1[n], . . . , ee,K [n], ep,1[n], . . . , ep,K [n])T

the residual vector containing the residual signals of all K
sensors at time step n, the input of the classifier is the
collection of residual vectors from Lc previous time steps up
to current time step n, namely e[n], . . . , e[n − Lc]. A (soft-
)decision vector d[n] = (d1[n], d2[n], . . . , dK [n])T represents
the classifier output, where di[n] ∈ [0, 1], i = 1, . . . ,K
indicates the pseudo-probability (viz. confidence) for the i-th
sensor being faulty. Specifically, a decision element {di(n) =
0} indicates the highest confidence on sensor i being fault-
free, whereas a decision element {di(n) = 1} corresponds
to the highest confidence on the faulty behaviour for the
considered sensor. As a consequence, a vector d[n] with all
elements set to 0 indicates healthy operation of all sensors
within the system. Consequently, herein a faulty sensor is
detected and identified/isolated when the entries of the deci-
sion vector d[n] exceed a predefined threshold γ. Specifically,
maxKi=1 di[n] ≷ γ is used for detection, whereas (upon
detection) k̂ = argmaxKi=1 di[n] is used for identification.

Ultimately, isolated faulty sensors are accommodated with
the corresponding estimates from the estimators block to
preserve system performance. Although the proposed SFDIA
architecture can diagnose simultaneous faults of multiple sen-
sor (by a slight modification of the identification logic), this
issue is left to future work.



Figure 2: The generic structure of MLP.

III. MLP NNS AND DATASET SETUP

A. MLP NNs Setup

MLPs are feed-forward NNs capable to learn a function
h(·) : Rl → Rm by means of a set of known labeled
training samples, where l is the input dimension and m is
the output dimension, which are broadly used for regression
and classification tasks [18]. As shown in Fig. 2, MLPs are
made of an input layer, one or more hidden layers and one
output layer. Each neuron at the generic hidden/output layer
executes a biased weighted sum of its inputs and processes
the obtained value with an activation function to produce the
output value. MLP NNs with appropriate number of hidden
layers and number of neurons per hidden layer can model
functions of arbitrary complexity with sufficient accuracy.
In the following, we provide details about each MLP NN
configuration employed in the proposed architecture.

1) Estimators and Predictors: The considered MLP-based
estimators are made of (Le+1)(K−1) input nodes, one single
hidden layer with Nv hidden neurons, and one single output
node. MLP-based predictors are made of Lp input nodes and a
similar structure as the MLP-based estimators. Moreover, the
hyperbolic tangent (Tanh) function is used as the activation
function f(·) of the hidden layers, i.e.

f(z) = [exp(z)− exp(−z)] / [exp(z) + exp(−z)] , (3)

where z is the biased weighed sum of inputs to a neuron.
Differently, a linear activation function is used for the output
layer in all MLP-based estimators and predictors. Training
is done using the Nesterov-accelerated adaptive moment es-
timation (Nadam) [19] optimization algorithm with the mean
square error (MSE) loss function.

2) Classifier: The MLP-based classifier is made of
2K(Lc + 1) input nodes, two hidden layers with Nc hidden
neurons per hidden layer, and K output nodes. The Tanh
activation function is used for the hidden layers, and a logistic
(sigmoid) activation function g(·) is used for each neuron of
the output layer, i.e.

g(z) = 1 / [1 + exp(−z)] , (4)

Table I: Architecture Parameters

Parameter Estimator Predictor Classifier

No. of input nodes 33 10 88

No. of hidden layers 1 1 2

No. of nodes per hidden layer 10 10 15

No. of output nodes 1 1 4

Hidden layers activation Tanh Tanh Tanh
Output activation Linear Linear Sigmoid

Optimization algorithm Nadam Nadam Nadam
Loss function MSE MSE BCE

The Nadam optimization algorithm is employed for training
the classifier based on a loss capitalizing multitask learning.
Indeed, given the multitask nature of the employed archi-
tectures, the loss function to be minimized depends on the
specific parameters of the K binary fault-classification tasks.
Accordingly, we aim to minimize a weighted sum of the losses
of the K classification tasks considered, namely:

L (·) ,
K∑

k=1

λk Lk(·) (5)

with the usual binary cross-entropy (BCE) loss function used
for all the K binary tasks L1(·), . . . ,LK(·). Since our classi-
fier is in charge of solving multiple learning tasks at once, the
weight λk represents the preference level of the kth task in the
multitask objective function to be optimized. For simplicity, in
this work, we use (simply) uniform weighting, i.e. λk = 1/K
for k = 1, . . . ,K .

B. WSN Dataset

The proposed method is evaluated using a real-world
publicly-available WSN dataset generated at the University of
North Carolina [17]. More specifically, we considered four
sensors (K = 4): two indoor and two outdoor sensor nodes.
Each sensor is twofold and measures both humidity and tem-
perature for the time duration of six hours. Also, the original
dataset includes some anomalies which we have discarded
in our study in order to superimpose synthetically-generated
faults and perform a statistical analysis. Only temperature
measurements are considered in this study.

IV. NUMERICAL RESULTS

In this section, numerical performance on the WSN dataset
of the proposed SFDIA architecture are presented and com-
pared with those of the M-SFDIA proposed in our previous
work [5]. Our analysis is carried out by dividing the dataset
into a training set accounting for 85% of the samples and a
test set made of the remaining 15%. Also, 15% of the training
set is held out for validation purposes to avoid over-fitting
of the MLP NNs. Samples of each sensor in the dataset are
normalized to the range [0, 1] using min-max scaling, i.e.

x′s = (xs − xmin) / (xmax − xmin), (6)
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Figure 3: Weighted BCE loss of the classifier (cf. Eq. (5)) for
training and validation sets during the training phase.

where xmax and xmin are the minimum and maximum read-
ings in the training set for a given sensor s and x′s represents
the normalized reading of the sensor s.

Synthetic bias faults are generated and added to the WSN
dataset in order to validate the proposed architecture perfor-
mance. In order to avoid NNs from learning specific bias levels
and/or duration of the generated faults, the modulus (resp. the
sign) of the bias level has been generated as |b| ∼ U(0.2, 0.4)
(resp. sign(b) ∼ B(0.5)). Finally, the bias duration has been
generated as M ∼ Ud(3, 7). Then, a bias b is injected to the
normal operation data-sets for M consecutive samples as

x′s,b[n] =

{
x′s[n] + b , 0 ≤ n−m < M

x′s[n] , otherwise
(7)

where x′s,b[n] is reading of sensor s with possible bias faults
and m denotes the starting time instant of the fault. The
performance analysis of the proposed architecture on different
fault typologies (e.g. drift faults) is left to future work.

We considered Nv = 10 nodes per hidden layer and sliding
windows with size Le = Lp = 10 for all the estimators and
the predictors within the architecture, while the classifier was
implemented with Nc = 15 nodes per hidden layer and a
sliding window with size Lc = 10. The parameters of the
proposed architecture are summarized in Tab. I. For a fair
comparison, the same parameters have been chosen for the
M-SFDIA architecture [5].

Fig. 3 shows the trend of the weighted BCE loss for both
training and validation sets during the training phase of the
MLP-based classifier. Apparently, the validation loss settles
after ≈ 160 epochs (as highlighted in the plot), while the
training loss keeps decreasing for successive epochs. Early-
stopping mechanism [20] was used to stop the training phase
at this point and avoid over-fitting. Trends for the MSE loss on
training/validation sets during the training phase of the MLP-
based estimators and predictors resemble those shown for the
classifier and are omitted for brevity.

First, in Fig. 4 the temporal behavior of the fault detection
process is visualized over a portion of the test set. The
proposed architecture provides better detection performance
compared to the M-SFDIA due to a complete exploitation of
the spatio-temporal correlation within the sensor data. Indeed,
it is apparent how the M-SFDIA architecture exhibits missed
detection of several faults for a given probability of false
alarm, while the proposed architecture performs much better.

Fig. 5 illustrates detection and classification (i.e. detection
plus isolation) performance by means of the corresponding
ROC curves.1 More specifically, the results show a clear per-
formance improvement achieved by the proposed architecture
w.r.t. the M-SFDIA architecture for both (i) detection and
(ii) classification tasks. Regarding the former, the probability
of detection for the M-SFDIA (resp. proposed) architecture
approaches a value of ≈ 0.93 (≈ 0.98). The above results are
obtained by setting the false-alarm probability to Pf = 10−2.
Conversely, regarding the classification task (under the same
false-alarm constraint), the M-SFDIA (resp. the proposed)
architecture achieves a probability of correct classification
close to 0.90 (resp. 0.98). The above results highlight ideal
identification performance for our approach, i.e. no additional
errors caused by identifying the correct source of fault.

Fig. 6 focuses on a snapshots for visual comparison of
the accommodated output of both architectures for probability
of false alarm of Pf = 10−2 together with healthy and
faulty measurements. Again, the proposed method success-
fully accommodates more faulty data, and presents greater
accommodation performance. As a wrap-up, the PDFs of the
error signals (i.e. the difference between the accommodated
signals and the healthy signals) over the test set are shown in
Fig. 7, for Pf = 10−1 (top) and Pf = 10−2 (bottom). Though
both architectures use the same estimation outputs obtained
by the MLP-based estimators to accommodate the detected
faulty measurements, the proposed architecture provides better
final accommodation performance. This is generally due to the
higher detection and correct classification rates, which reflect
into a larger number of faulty measurements replaced with
corresponding reliable estimates.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced SFDIA architecture based on
machine-learning methods to empower design of DTs. We
compared the performance of our novel architecture with
a state-of-the-art M-SFDIA architecture using a real-world
publicly-available WSN dataset. Unlike the M-SFDIA archi-
tecture, the proposed architecture utilizes the entire spatio-
temporal correlations by introducing a block of MLP-based

1Receiver operating characteristics (ROC) curves show the trade-off be-
tween the probability of detection (resp. probability of correct classification)
and the probability of false alarm by varying γ, when assessing detection
(resp. identification) performance. In detail, the probability of detection refers
to the proportion of faulty samples that are correctly detected (i.e. true-
positive rate), while the probability of false alarm refers to the proportion
of healthy samples that are incorrectly identified as faulty (i.e. false-positive
rate). Finally, the probability of correct classification considers a correct event
if the detected fault is associated to the actual sensor undergoing failure.
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Figure 4: A snapshot of the test set for false alarm rate of Pf = 10−2.
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Figure 5: Detection performance and averaged correct classifi-
cation performance of both architectures by using ROC curves.

predictors. Estimators in both architectures exploit other sen-
sors data to estimate corresponding sensor reading, while
predictors in the proposed architecture play a complementary
role by using previous data of the corresponding sensors
and exploit better the available temporal correlation. Numer-
ical results showed that the proposed architecture achieves
better performance in term of probability of detection and
probability of correct classification for fixed probability of
false alarm. Moreover, the proposed architecture yields in-
ferior accommodation error than the M-SFDIA architecture.
In future works, we plan to exploit the classifier decisions to
avoid fault propagation into the proposed SFDIA architecture.
Future directions of research will include: (a) design of DTs
which are robust to communication channel uncertainties, (b)
the usage of explainable artificial intelligence techniques to
interpret (and improve) the proposed SFDIA approach and
(c) the capitalization of multimodal techniques for improved
estimators’ design.
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Abstract—Decision-support systems rely on data exchange
between digital twins (DTs) and physical twins (PTs). Faulty
sensors (e.g. due to hardware/software failures) deliver unreliable
data and potentially generate critical damages. Prompt sensor
fault detection, isolation and accommodation (SFDIA) plays a
crucial role in DT design. In this respect, data-driven approaches
to SFDIA have recently shown to be effective. This work focuses
on a modular SFDIA (M-SFDIA) architecture and explores the
impact of using different types of neural-network (NN) building
blocks. Numerical results of different choices are shown with
reference to a wireless sensor network publicly-available dataset
demonstrating the validity of such architecture.

Index Terms—Digital Twin, fault tolerance, neural networks,
sensor validation.

I. INTRODUCTION

Digital twins (DTs) are largely applied to objects [1],
systems [2], processes and services [3]. A DT requires data
about assets/processes to create a virtual representation of the
paired physical twin (PT), usually collected and provided in
real time by sensors. However, the data flow from PTs to DTs
is not necessarily reliable [4]–[6]: malfunctioning sensors can
harm the system leading to performance degradation or even
safety-critical issues. The relevance of sensor validation (i.e.
deployment of strategies for sensor fault detection, isolation
and accommodation (SFDIA) is thus apparent.

Recent advances on SFDIA mostly relies on analytical
redundancy [7], i.e. the use of virtual sensors using exploiting
data dependencies for monitoring purposes. Model-based SF-
DIA approaches are effective when physical representations
of the model/process parameters are available. Popular ap-
proaches build upon Kalman filters [8], [9], observers [10]
and Bayesian [11] methods, however complex non-linear
systems remain challenging to deal with. Data-driven SFDIA
approaches have gained attention due to their ability to handle
complex systems without the need for exact knowledge of the
underlying model. Popular approaches build upon principal
component analysis [12], support vector machine [13] and
neural network (NN) based methods [14]–[17]. A modular
SFDIA (M-SFDIA) scheme has been recently proposed in
[18], [19] based on multi-layer perceptron (MLP) blocks
connected in three layers. The M-SFDIA architecture ex-
ploits jointly temporal and spatial dependencies of the sensors

0This work was partially supported by the Research Council of Norway
under the Project 311902 (SIGNIFY) within the framework IKTPLUSS.

Fig. 1: Block diagram of the SFDIA system.

measurements. Accordingly, we here explore the impact of
different building blocks within the M-SFDIA architecture.
Specifically, the contributions of the paper are: (i) to in-

vestigate and compare the performance of different NN-based
virtual sensors used within the M-SFDIA architecture; (ii)
to compare the performance with a state-of-the-art SFDIA
system based on autoencoders (AEs) [20]. For performance
evaluation of the various structures, we considered a wireless
sensor network (WSN) publicly-available dataset [21]. Also,
synthetically-generated weak bias faults are superimposed to
the real-world wireless sensor network (WSN) dataset.
The rest of the paper is organized as follows: the basic

M-SFDIA architecture and related variations are presented
in Sec. II; numerical results and performance discussion are
found in Sec. III; Sec. IV provides some concluding remarks.1

II. M-SFDIA

We assume that K different sensors monitors the considered
PT, the first KU sensors being unreliable (i.e. vulnerable
to faults) and the remaining ones reliable (i.e. their ideal
functionality is guaranteed). Specifically, xk[n] denotes the
measurement by the kth sensor at time n. Accordingly,
x(−k)[n], k = 1, . . . ,KU , denotes the measurements at time
n by all the sensors except the kth unreliable sensor. Finally,
xk[n : n− L] (resp. x(−k)[n : n− L]) denotes the portion of
time series (resp. multivariate time series) containing L + 1
measurements up to time n.

1Notation - Lower-case bold letters indicate vectors; U(a, b) (resp.
Ud(a, b)) denotes a uniform (resp. discrete-uniform) probability density
function (PDF) with support (a, b) (resp. {a, a + 1, . . . , b}), whereas B(p)
denotes a Bernoulli PDF with activation probability p.



A. M-SFDIA Architecture

The system architecture is made of three layers (see Fig. 1):
The first layer contains KU independent virtual sensors, each
being a NN-based estimator receiving measurements from all
the sensors except the one under estimation and producing
sensor-measurement estimates, namely

x̂k(n) ≜ Vk(x(−k)[n : n− Lv] ) (1)

The second layer computes the difference between estimates
and actual measurements (i.e. residual signals), namely:

∆[n] ≜
[
(x̂1(n)− x1(n)) · · · (x̂KU

(n)− xKU
(n))

]T
(2)

The last layer is a NN-based classifier processing residual
signals of all sensors pairs and providing a decision vector
d[n] with elements dk[n] ∈ [0, 1], k = 1, . . . ,KU denoting
pseudo-probabilities of the sensors being faulty, namely

d[n] ≜ C (∆[n : n− Lc]) (3)

Lv (resp. Lc) in Eq. (1) (resp. (3)) denotes the size of a sliding
window selecting the inputs for the virtual sensors (resp.
calssifier). A faulty sensor is detected and identified when the
element(s) of the decision vector d[n] exceed(s) a predefined
threshold (γ): maxKU

k=1 dk[n] ≷ γ is used for detection,
while k̂ = argmaxKU

k=1 dk[n] is used for identification. Also,
accommodation is performed by replacing the identified faulty
sensor with the estimate from the corresponding virtual sensor.

B. NN-based Building Blocks

We considered different types of NN-based building blocks.
MLP: a class of feedforward NNs that can model arbitrary
nonlinear mappings f : Ri×1 → Rj×1. The NN is made of an
arbitrary number of hidden layers, each consisting of an affine
matrix operation and an entry-wise nonlinear activation. The
baseline M-SFDIA [19] uses MLP building blocks.
Convolutional NN (CNN): a specialized NN inspired by
visual mechanism. A sequence of convolutional layers (each
based on translation-invariant filters with limited extent) are
responsible for feature extractions with increased level of ab-
straction. One-dimensional CNNs have shown to be appealing
in (multivariate) time-series processing.
RNN: a class of NN suited for time series exploiting loopy
connections for keeping memory of sequential information.
Long-term dependencies in the data are usually captured when
using two advanced types of RNNs: long-short term memory
(LSTM) [22] and gated recurrent unit (GRU) [23].

III. NUMERICAL RESULTS AND DISCUSSION

A. WSN Dataset

The considered dataset was collected at the University
of North Carolina [21] and is a collection of two pairs
of temperature-humidity sensors placed outdoor and indoor.
Only the four fault-prone temperature measurements (hence
K = KU = 4) during normal operation are used. The dataset
is split into three subsets: 70%, 15% and 15% for training,

validation, and testing, respectively, and min-max scaling is
applied (with range extension learnt from the training set only).
Synthetically-generated bias faults are superimposed to the

dataset2. A bias fault b with level |b| ∼ U(0.2, 0.4) and
sign(b) ∼ B(0.5) is injected into the normalized dataset for
M ∼ Ud(2, 20) consecutive samples as

x′
k,b[n] =

{
x′
k[n] + b , 0 ≤ n−m < M

x′
k[n] , otherwise

(4)

where x′
k and x′

k,b are the “normalized” and the “polluted”
measurements of kth sensor, and m refers to the fault starting
time.

B. Models
The reference MLP-based M-SFDIA discussed in [19] is

compared with seven variants using the following building
blocks: CNN with a single convolutional layer (size-3 ker-
nel) and max-pooling layer (size-2 pad); GRU/LSTM with a
single unit; GRU-CNN/LSTM-CNN combining the previous
2 types; GRU-RS/LSTM-RS stacking 2 units of the second
type, following a return sequence (RS) mechanism.
In all networks, we consider 20 hidden nodes per hidden

layer and the size of the input window is Lv = Lc = 30. Vir-
tual sensors have a dense output layer with a single node and
linear activation, while the classifier has a dense output layer
with KU nodes and sigmoidal activation. Mean square error
(MSE) and binary cross-entropy are the loss functions used as
optimization metric for the virtual sensors and the classifier,
respectively. Virtual sensors were trained using healthy data,
while the classifier was trained based on a loss capitalizing
multitask learning using the polluted faulty data.3 We use the
superscripts (·)vs and (·)cl when NN building blocks refer to
virtual sensors or classifier, respectively.
Additionally, results of our approach in terms of detection,

identification and accommodation performance are compared
with a state-of-the-art AE-based architecture in [20]4.

C. Performance Analysis and Comparison
Estimation Performance: Fig. 2 displays the statistics (me-
dian value, 95% confidence interval, and outliers) of the root
mean squared error (RMSE) in the fault-free situation on the
test set for each virtual sensors. MLPvs has the highest median
over two out of four sensors (S3 and S4), while GRU-RSvs

and CNNvs outperform on average the other counterparts and
provide the lowest RMSE value.
Detection and Isolation Performance: Fig. 3 shows the
probabilities of detection and classification with respect to the
probability of false alarm (set via γ) for different classifiers5,

2A fault rate (ratio between the number of faulty and non-faulty samples)
equal to 0.2 is considered. The proposed M-SFDIA approach can handle
different types of faults, but those are not considered here for brevity.

3We leveraged the models provided by Keras Python API running on
TensorFlow 2 to implement, train and test the models.

4We modified the decision logic of the AE architecture in order to enable
the identification task which was not addressed in the original work.

5Dashed lines refer to the baseline M-SFDIA [19] and the AE architec-
ture [20]. Solid curves refer to different classifiers using the same residual-
signals (i.e. computed via GRU-RSvs).
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Fig. 2: Box-plot of estimation RMSE for each virtual sensor.

(a) Detection Performance

(b) Isolation Performance

Fig. 3: Detection and isolation performance of different clas-
sifier models by using ROC curves.

i.e. the receiver operating characteristic (ROC) curves, when
synthetically-generated weak-bias faults are superimposed.
The probability of detection (resp. classification) refers to the
probability that the system correctly detects (resp. isolates) the
faulty sensor(s). In the latter case, we consider the average
probability of classification over all the unreliable sensors.

The baseline MLP-based M-SFDIA has the worst perfor-
mance. Specifically, GRU-CNNcl and CNNcl models achieve
the highest performance (in terms of detection and isolation):
≥ 95% (resp. ≥ 90%) detection/isolation rate under false
alarm rate of 10−2 (resp. of 10−3). It is apparent that CNNs
and RNNs are better in capturing more complex spatio-
temporal dependencies in the data.
Accommodation Performance: In Fig. 4 the error between
the accommodated samples with actual non-faulty sensor
measurements as well as the difference between miss-detected
faulty measurements with actual non-faulty sensor measure-

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4
Error

MLP

CNN

GRU

LSTM

GRU_CNN

LSTM_CNN

GRU_RS

LSTM_RS

AE

N
et
w
or
ks

Fig. 4: Accommodation performance comparison in terms of
averaged distribution of the error signals for the fixed false
alarm probability of 10−2.
TABLE I: Run-Time Per-Epoch (RTPE in seconds) and Num-
ber of Trainable Parameters (TP) of the baseline and different
NN models. The RTPE is in the format avg. obtained over
3-folds.

Model
Virtual Sensor/AE

RTPE TP

Classifier/Denoising-AE

RTPE TP

MLP 0.0394 1901 0.0676 3004
CNN 0.0585 481 0.1555 1464
GRU 0.4021 1521 0.5516 1644
LSTM 0.3619 1941 0.5904 2084
GRU-CNN 0.2664 2741 0.4257 2864
LSTM-CNN 0.2511 3501 0.4318 3624
GRU-RS 0.8166 4041 1.1501 4164
LSTM-RS 0.7491 5221 1.2002 5364
AE 0.0618 41102 0.2797 41102

ments is considered when false-alarm probability is 10−2.
Both CNNcl and GRU-CNNcl present the smallest accommo-
dation error as: (i) they miss-detect less faults and (ii) they
rely on better virtual sensors.
Complexity Assessment: Tab. I compares the computational
complexity of the considered systems by showing the Run-
Time Per-Epoch (RTPE) of each architecture paired with the
corresponding number of Trainable Parameters (TP), which is
related to the theoretical complexity of the training phase. The
baseline MLPvs has the smallest RTPE, while the more com-
plex (and better performing) GRU-RSvs model takes longer
time to train. Also, it is worth noting that the baseline MLPcl

and the AE, despite exhibiting the worst performance, have
a larger number of TP than the best performing classifiers
(reported in bold in Tab. I).

IV. CONCLUSIONS

In this paper, different types of NN models were ex-
ploited within a common M-SFDIA architecture. To validate
the effectiveness of various configurations, we have injected
synthetically-generated weak bias faults to a publicly-available
WSN dataset. By using GRU-RS models as virtual estimators
and GRU-CNN model for the classifier, we achieved detec-
tion and isolation probabilities of about 0.95 for false-alarm
probability equal to 10−3, which is ≈ 3× better than the per-
formance of the baseline configuration. The performance gain
is due to better handling of the spatio-temporal dependencies
in the data.
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Abstract—Sensor technologies empower Industry 4.0 by enabling
integration of in-field and real-time raw data into digital twins.
However, sensors might be unreliable due to inherent issues and/or
environmental conditions. This paper aims at detecting anomalies
instantaneously in measurements from sensors, identifying the
faulty ones and accommodating them with appropriate estimated
data, thus paving the way to reliable digital twins. More specifically,
a real-time general machine-learning-based architecture for sensor
validation is proposed, built upon a series of neural-network estima-
tors and a classifier. Estimators correspond to virtual sensors of all
unreliable sensors (to reconstruct normal behaviour and replace the
isolated faulty sensor within the system), whereas the classifier is
used for detection and isolation tasks. A comprehensive statistical
analysis on three different real-world data-sets is conducted and the
performance of the proposed architecture is validated under hard and soft synthetically-generated faults.

Index Terms—Digital twin, Fault diagnosis, Machine learning, Neural networks, Sensor validation.

I. INTRODUCTION

D IGITAL TWINS (DTs) have recently emerged in several
industrial applications and exploit Internet of Things

(IoT) technology [1]. More specifically, most environments
have been pervaded by the extensive use of spatially-
distributed sensors, generating enormous amount of hetero-
geneous data over time, which requires advanced integrated
solutions involving sensing, communication, and processing
[2]–[4]. DTs represent one of the main products for building
advanced analytics over such data and extract relevant infor-
mation for prediction and effective control. DTs have been
widely employed in various sectors such as industry [5], health
care [6] and smart cities [7], [8], where their capabilities to
visualize and treat with a perpetual stream of real-time sensor
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data is enabling new opportunities. Leveraging sensor data
enables DTs to model system dynamics effectively for remote
monitoring and controlling, for safety and risk analysis and
for maintenance purposes. Since DTs rely on accurate sensor
data, system performance may be affected severely by sensor
failures. Sources of sensor faults are commonly found in: (i)
Hardware and inherited limitations - sensors are electronic
components and can collect inaccurate measurements or stop
working without any indication due to low production quality,
calibration issues, low battery level, end of life span, poor
connections [9]; (ii) Harsh environment - in real-world sce-
narios, sensors can be deployed in inaccessible and unattended
environments with possibility of unlikely situations which
would hinder sensors performance [10]; (iii)Malicious attacks
- faulty data can be injected by an attacker into a vulnerable
system [11], [12].

A fault in a system refers to a complete (or partial) malfunc-
tion and manifests over a permanent (or transient) time span.
As shown in Fig. 1, the most common types of sensor faults in
a sensor network are defined (a detailed discussion of sensor
faults is found in [13], [14]). Depending on the characteristics
of sensor data, faults can be classified as following:

1) Bias fault: also known as offset fault, the deviation from
nominal values is given by an additive constant bias;

2) Drift fault: sensor readings drift with a small slope from
nominal values (drift faults are more subtle since they
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(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Fig. 1: Types of sensor faults.

appear gradually over time and their effect is not very
apparent);

3) Noise fault: an increased noise level in sensor readings
(when noise power is much larger than usual, it is an
indication of sensor malfunctioning).

4) Freeze fault: also known as stuck-at fault, the sensor
readings stuck at a constant value (i.e. the variance of
the readings becomes zero);

The impact of sensor faults would affect stability, reliability
and accuracy of the system depending on the specific appli-
cation. Hence, to fully utilize the expected properties of the
DT, it is essential to continuously evaluate and amend sensor
data. From this perspective, prompt Sensor Fault Detection,
Isolation and Accommodation (SFDIA) is one key issue for
deploying DTs while assuring reliable performance. SFDIA
indeed consists of three parts:

• fault detection, i.e. determining sensor fault(s) within the
system’s sensor network;

• fault isolation, i.e. identifying specific faulty sensors and
block their measurement feeding to DT;

• fault accommodation, i.e. feeding DT with some other
replaced trustworthy data.

In what follows, related literature is reviewed by focusing
on recent progress on sensor fault diagnosis and SFDIA
approaches. It is worth highlighting that the following dis-
cussion leaves out the (huge) corpus of literature dealing
with soft/virtual sensor design (see, for instance, the excellent
survey [15]). Indeed, it should be noted the latter field is out
of the scope of this paper, as soft/virtual sensors are usually
meant to provide predictions only for analyzing, monitoring
and/or controlling purposes (corresponding to the first layer of
the proposed SFDIA architecture). Also, we emphasize that
this work focuses on sensor faults only, i.e. the monitored
physical process does not exhibit any anomaly while the
measurement data do (e.g. errors in data acquisition and/or
communication). Process fault detection and related analysis
is beyond the scope of this work.

A. Related Work

In the last years, the main advancements in fault diagnosis
technology have relied on the milestone concept of redun-
dancy which embraces a wide spectrum of design solutions,
e.g. redundancy can be accomplished by either hardware
or analytical schemes. Within the class of hardware-based
approaches (also referred to as physical-based approaches),
multiple identical sensors (i.e. sensing the same physical
parameter) along with a voting scheme (or more sophisti-
cated techniques, see [16]) are employed to detect, isolate
and accommodate sensor failures [17]–[19]. If the difference
(namely, the residual signal) between the measured signal of
a sensor and each other sensor in the set is considerably high,
the aforementioned sensor is declared faulty and its data is
replaced with those from the remaining (identical) sensors. For
instance, the aforementioned assumptions apply to the case of
homogeneous WSNs, where neighboring nodes are assumed
to measure roughly the same parameter [16]. Conventional
physical-redundancy approaches however cannot handle cases
with simultaneous failures of identical sensors, as they do not
capitalize the statistical dependence of measurements origi-
nating from other sensor types [17], [18]. Moreover, in many
applications, it is impractical to implement these approaches
due to space and/or weight and/or cost constraints [18].

Accordingly, it is not surprising that methods adopting
analytical redundancy have gained increasing attention within
the research on SFDIA [20]–[22]. Unlike physical redundancy,
the latter approaches exploit correlations and functional rela-
tionships within the system instead of introducing additional
(redundant) hardware. Still, it is worth highlighting that the
above two philosophies are not mutually exclusive and hybrid
approaches can be pursued toward the sophisticated design
of fault-tolerant DTs. Analytical redundancy can be usually
implemented by either model-based or data-driven techniques.

Model-based SFDIA have been mostly investigated in the
context of power systems [23], e.g. using electrical dynamics
equations [20] or Luenberger observers [24]. Some other
methods have focused on the detection and accommodation of
proportional-type faults in nonlinear systems [25], [26]. Unfor-
tunately, those methods (a) usually result in high complexity,
(b) require an explicit, application-dependent, formulation of
the analytical redundancy relationship among sensors and (c)
are seldom able to handle multiple sensor faults simultane-
ously. On the contrary, data-driven approaches relying on
historical data have recently received large interest, starting
from simpler methods (e.g. auto-regressive models with ex-
ogenous inputs (ARX) [27]) to more complicated (non-linear)
learning approaches (e.g. random forest (RF) [28], support
vector machines (SVMs) [29], [30] and NNs [31], [32]).
Indeed, data-driven techniques do not require exact knowledge
of the mathematical model for sensor fault diagnosis.

Specifically, SVM-based classification was one of the rel-
evant attempts to detect sensor faults in WSNs, in both
batch [29] and online forms [30], which showed relatively
small computational costs, but limited performance. Succes-
sive works [33], [34] have also employed the SVM approach
to allow both detection and identification of faults: a binary



DARVISHI et al.: A MACHINE-LEARNING-BASED ARCHITECTURE FOR SENSOR FAULT DETECTION, ISOLATION AND ACCOMMODATION 3

classifier was trained from the residuals of each sensor.
Specifically, in the former case [33], the residual signals
were generated by comparing the true measurements with a
single (global) observer designed by including fault models.
Conversely, in the latter case [34], a residual was obtained
from each (correlated) sensor pair via an ARX model, thus
providing multiple classification outputs for a given sensor
then aggregated at a higher level.

A second important class of approaches for SFDIA relies
on the well-known Autoencoder (AE) NN [12], [21], [35],
[36]. Indeed, the AE is an unsupervised learning technique
capable of learning and extracting hidden representations from
raw data and it is thus suited for fault detection. Hence,
once trained, the AE can provide a reconstructed estimate
of the sensors’ measurements, thus allowing straightforward
computation of residuals (i.e. the difference between inputs
and outputs of the AE). Specifically, an AE-based (aided
by exogenous inputs) sensor validation scheme for a heat-
ing, ventilation and air conditioning system was proposed in
NNs [36]. Detection and identification are simply performed
by comparing overall and per-sensor residuals to a given
threshold. A similar AE-based SFDIA method is presented
in [21] for an air quality controlling system, with identification
scheme performed via a more involved sensor validity index.
In both works [21], [36] accommodation is simply performed
by using the AE output associated to the sensor(s) declared
as faulty. Differently, a more sophisticated proposal uses an
additional denoising AE (a supervised learning technique) to
perform the accommodation task [12], namely to clean faulty
data. Despite their simplicity, AE-based SFDIA approaches
can suffer however from degraded performance under weak-
faults, as the latter type of faults does not considerably impact
correlations in data.

Multi-layer perceptron (MLP) NNs (including variants)
have also been proved to perform satisfactorily for a number of
relevant sensor fault diagnosis tasks [22], [37], [38], including
heavy-duty diesel engines’ and aircrafts, based on a sensor-
centric viewpoint. Indeed, in all the aforementioned works, one
MLP estimator per each sensor is designed (solely on the basis
of other sensors’ measurements) and detection/identification is
based on the evaluation of the residual vector. Accommodation
is then performed by using the estimator(s) associated to the
sensors declared as faulty. Specifically, the proposal in [37]
adopts fully-connected cascade NNs (i.e. MLPs allowing direct
connections across different hidden layers) for the sensor
estimator design, while [22] considers a hybrid structure with
a linear NN and resource allocation network (a variant of well-
known radial basis function NN) for the same task. More
recently, a plain MLP estimator (exploiting the sole spatial
correlation among sensors) has been proven to provide reliable
detection with low false-alarm rate as well [38].

A different rationale is pursued in [31], where a single Deep
belief network (a Bayesian type of NNs) has been trained (in a
supervised fashion) to detect a faulty condition whereas sensor
identification is naively carried out based on the maximum
deviation from data mean-value. Along the same lines, a gen-
eral approach is presented to detect and identify sensor faults
using either a single Recurrent NN (RNN) or an MLP [39]

for predicting next-step measurements and comparing with
actual ones. A disentanglement regularization term on the NN
loss function is introduced to help the algorithm coping with
propagation of faults to non-faulty sensors in the identification
stage. Unfortunately, the accommodation stage is not taken
into account in the above work. Interestingly, also a dynamic
Bayesian network has succeeded in sensor fault detection and
accommodation exploiting spatial and temporal correlations
in the context of intelligent connected vehicles [40]. Still, its
training difficulty (in terms of both parameter and structure
learning) appears limiting in large-scale sensor systems.

Recently, the sensor-centric viewpoint in [22], [37], [38]
has further been exploited to devise a modular SFDIA (M-
SFDIA) method based on MLP NNs in [32], [41], with focus
on supporting DTs. The proposed structure consists of a set
of estimators (each associated to a sensor) providing residual
signals as well as replacements (estimates) for faulty data.
Therein a supervised classifier is trained to make detection &
identification decisions upon the residual signals by leveraging
their (possibly-nonlinear) relationships. An experimental anal-
ysis on three real-world data-sets has demonstrated satisfactory
performance of M-SFDIA method. Although promising (from
the estimators’ design viewpoint), M-SFDIA architecture does
not completely exploit the temporal correlations among sen-
sors within the monitored system.

B. Paper Contribution

In view of the previous discussion, some proposals are
restricted to a given vertical domain (e.g. aircraft [37], ve-
hicle [34] or HVAC system [36] monitoring), thus lacking
a general formulation. Secondly, part of the literature eval-
uates corresponding proposals on private (e.g. [39], [40])
or simulated (e.g. [28], [36], [37]) measurement data, thus
precluding reproducibility and convincing evaluation, respec-
tively. Thirdly, a number of the discussed works evaluate
their proposals only on a single fault type (e.g. bias [21],
[39] or drift [22]). Equally important, some architectures
are only limited to fault detection [29], [30]. On the other
hand, some recent proposals do not foresee all the three
tasks in their original formulation, e.g. the identification and
accommodation tasks in [12] and [39], respectively. Still, even
when all three tasks can be carried out, in some cases only
spatial correlation [22], [36], [38] is used to accommodate
faulty measurements. Finally, some approaches have a limited
modularity [12], [21], [39]. Accordingly, the main contribu-
tions of this article are summarized as follows:

• A real-time and modular data-driven SFDIA architecture
is developed, fully exploring (viz. learning) spatial and
temporal dependence in sensory data. The proposed ar-
chitecture relies on the novel use of a pair of regressors
for each sensor, performing estimation and prediction op-
erations, respectively. In the former case, each estimator
is leveraging readings from other sensors only to obtain a
“virtual measurement”. Conversely, each predictor plays
a complementary role (to the estimator) by using only
previous data from the sensor under consideration to ob-
tain an analogous virtual measurement. Hence, their joint
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adoption enables the proposed architecture to ultimately
exploit spatio-temporal correlation within the system,
thus supporting nearly-instantaneous fault detection and
isolation performance.

• The dissimilarity measured by predictors (resp. estima-
tors) and measurements, referred to as residual signals,
are then used as the perfect candidate for designing a
reliable classifier able to perform both fault detection
(i.e. whether there is a fault in the whole sensor set) and
identification (i.e. which sensors are faulty).

• The proposed approach employs MLP NNs for both
regression (estimation and prediction) and classification
modules to capture and process analytical redundancy
relations while keeping a reasonable complexity at the
operational stage. In the latter case, a multi-task MLP
NN (i.e. each sensor condition is seen as a binary
classification task) is designed for detecting and (if any)
identifying multiple faulty sensors via a single neural
network.

• Moreover, classifier decisions, residual signals and virtual
measurements are exploited by a a specifically-designed
controller to make corrections on sensor models inputs
and improve overall system performance both for detec-
tion and isolation tasks. Specifically, in a feedback loop,
the controller is in charge of replacing corrupted input
data and, consequently, avoiding propagation of faults
throughout the architecture.

• The performance of the proposed SFDIA architecture is
assessed on three real-world (public) data-sets [42]–[44]
which are corrupted with (a) four relevant fault types
(bias, drift, noise and freeze) and (b) different levels of
faults (with special emphasis on weak faults, as they are
more difficult to detect).

• The proposal is compared with two state-of-the-art
machine-learning-based architectures [12], [41] from both
performance (in terms of detection delay and probabilities
of detection, false alarm, and correct identification, and
accommodation error) and computational complexity (in
terms of number of trainable parameters) standpoints.

The present work extends earlier conference paper [45],
which (a) presented only an intermediate version of the
proposed novel architecture (no controller block), (b) reported
a significantly-smaller experimental analysis (focusing only
on the WSN data-set [43]), (c) considered a smaller set of
baselines in the comparison and (d) assessed the effectiveness
of the SFDIA approach only on bias faults.
The remainder of this paper is structured as follows: in

Sec. II, the proposed data-driven SFDIA architecture is pre-
sented and the functionalities of each block are illustrated;
Sec. III describes the configuration of the NNs and the
related training process; the description of the data-sets and
the framework for fault generation are provided in Sec. IV;
Sec. V presents and discusses the numerical performance of
the proposed architecture in contrast with benchmarks from
the current literature. Finally, concluding remarks and future
directions of research are given in Sec. VI.
Notation - Lower-case bold letters indicate vectors; IN

denotes the null column vector of length N ; (·)T refers to the

Fig. 2: Block diagram of the proposed SFDIA architecture.

transpose operator, ∈ is the set membership, and O(·) denotes
the Landau notation.

II. SFDIA
The proposed method aims to exploit the full potential of

spatial and temporal correlation among sensors in a system.
Specifically, it is assumed that the sensors are divided into
two sets: (i) the set of unreliable sensors SU , containing
sensors that are vulnerable to faults; and (ii) the set of reliable
sensors SR, which, depending on the working system, include
sensors whose flawless functionality can be guaranteed [41].
This (ideal) level of reliability could be associated to: a
meta-sensor modeling a group of identical sensors (enjoying
hardware redundancy), high-quality sensors, a proper design
and safe working environment, a device being at the middle
of life span [46], or context measurement information which
is assumed to have significantly higher reliability than the
considered networked sensor system. In a more general sense,
any reliable source of data correlated with the unreliable
sensors could be included in the set of reliable sensors. In
the following, without loss of generality, it is assumed SU =
{1, . . . , NU} and SR = {NU + 1, . . . , N}, where NU and N
denote the number of unreliable sensors and total number of
sensors, respectively. Also, for compactness, NR denotes the
cardinality of the reliable set SR (i.e. NR = N −NU ).

A. Architectural Overview
The block diagram of the proposed SFDIA architecture is

shown in Fig. 2. It consists of five building blocks (controller,
estimators, predictors, residual calculator, classifier) arranged
in four layers, whose function is explained as follows. The
first layer contains two parallel blocks, the estimators block
and the predictors block, each providing a virtual measurement
for all the unreliable sensors in the system either regressed via
other sensors’ observations (i.e. the estimator) or based only on
previous measurements of the same sensor under consideration
(i.e. the predictor). The second layer is responsible for the
computation of a discrepancy measure between the true and
each calculated virtual measurement, usually in the form of a
function of the residual signals. The third layer is fed with the
aforementioned discrepancy measures and is able to perform a
multidimensional classification to (a) detect a faulty condition
and (b) identify the corresponding faulty sensors. Finally, the
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Fig. 3: Diagram detailing the estimators and predictors blocks.

fourth layer controls the inputs of the blocks in the first layer
in order to preserve estimators and predictors accuracy, by
avoiding error propagation.

The present architecture improves over the one proposed
in [41] where the main novelty is the introduction of the
controller and the predictors. Despite the addition of these
two modules, it is worth remarking that the proposed ar-
chitecture retains the advantages of modularity and real-time
implementation. Indeed, regarding the former property, the
proposed approach allows the implementation of diversified
ML techniques for different modules and a more flexible
deployment, also taking computational/hardware limitations
into account. Differently, regarding the latter property, each
of the proposed modules can be flawlessly implemented
in real-time since they are all based on a sliding window
implementation. Finally, given the adoption of MLP-based
solutions for the estimators/predictors (Sec. II-B) and the
classifier (Sec. II-D), the proposed implementation also retains
simplicity. The following subsections detail each of the four
layers constituting the proposed approach.

B. First Layer: Estimation & Prediction
The first layer aims to model the unreliable sensors within

the system and is based on two subsystems: (a) a bank of
estimators and (b) a bank of predictors.

As detailed in Fig. 3, the bank of estimators is composed of
NU estimators (each associated to an unreliable sensor), each
providing the estimation x̂s[n] of the measurement (at current
time step n) from its corresponding unreliable sensor s ∈ SU .
Each estimator receives as input the vector x(s) collecting all
existing sensors readings (from current time step n back to Le

previous time steps using a sliding window mechanism) except
the one from the sensor to be estimated {SU ∪ SR − s}, i.e.

x̂s[n] = f (Hv,Nv)
s (x(s)[n], . . . ,x(s)[n− Le]) , (1)

where f
(Hv,Nv)
s (·) denotes the function model of the MLP-

based estimator for the sth sensor, being Hv and Nv the num-
ber of hidden layers and the number of neurons, respectively.

Fig. 4: Diagram detailing the residual calculator block.

Previous time samples are fed into the estimators in order to
exploit the temporal correlation among the input signals.

The bank of predictors operates a complementary ap-
proach. Each of the NU predictors provides a prediction
x̃s[n] of the measurement (at current time step n) from
its corresponding unreliable sensor s ∈ SU . Each predictor
receives as input the readings xs[·] of the sensor to be predicted
(from previous time step n−1 back to Lp previous time steps
using a sliding-window mechanism), i.e.

x̃s[n] = g(Hv,Nv)
s (xs[n− 1], . . . , xs[n− Lp]) , (2)

where g
(Hv,Nv)
s (·) denotes the function model of the MLP-

based predictor for the sth sensor, again being Hv and Nv

the number of hidden layers and the number of neurons,
respectively.

C. Second Layer: Residual Evaluation
The second layer computes the square of residual signals

i.e. the difference of sensors reading with their respective
estimation or prediction values (see Fig. 4), namely

eE,s[n] = (xs[n]− x̂s[n])
2, (3)

eP,s[n] = (xs[n]− x̃s[n])
2, (4)

for each unreliable sensor s ∈ SU . Residual signals are used
as input to the classifier in the third layer as they contain
effective information for fault classification. It is worth notic-
ing that the proposed SFDIA architecture enjoys modularity
and generality: thus other discrepancy measures (other than
that used in Eqs. (3) and (4)) may be adopted without any
substantial change in the subsequent layers.

D. Third Layer: Classification
An MLP classifier, meant to work in real-time, is used

for fault detection and the identification of the faulty sen-
sors, and its detailed structure is shown in Fig. 5. Denoting
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Fig. 5: Structure of the MLP-based classifier block.

eU [n] = (eE,1[n], . . . , eE,NU
[n], eP,1[n], . . . , eP,NU

[n])T the
residual vector containing the residual signals of all NU sen-
sors at time step n, the input of the classifier is the collection
of residual vectors from Lc previous time steps up to current
time step n, namely eU [n], . . . , eU [n − Lc]. Conversely, a
decision vector d[n] = (d1[n], d2[n], . . . , dNU

[n])T represents
the output of the classifier and identifies which among the
unreliable sensors are suspected to be in failure, i.e.

d[n] =h(Hc,Nc)(eU [n], . . . , eU [n− Lc]) , (5)

where h(Hc,Nc)(·) denotes the function model of the MLP-
based classifier, being Hc and Nc are the number of hidden
layers and the number of neurons of the classifier, respectively.
More specifically, the sth entry of the decision vector, i.e.
ds[n] ∈ [0, 1], s = 1, . . . , NU , represents a pseudo-probability
for the sth unreliable sensor to be faulty. Apparently, ds[n] = 1
(resp. ds[n] = 0) represents the situation in which the system
declares with maximum confidence the sth sensor to be faulty
(resp. fault-free). As a consequence, a vector d[n] = 0NU

indicates healthy operation of all the sensors within the system
at time n.
Therefore, faulty sensors are identified via a threshold-

based logic for each of the components of the decision
vector. The considered threshold will be denoted γ in what
follows. Principally, herein faulty sensors are detected and
identified/isolated when the entries of the decision vector d[n]
exceed the threshold γ. Specifically, maxNU

s=1 ds[n] ≷ γ is used
for detection. Accordingly, for the identification task, the set
of identified faulty sensors (denoted with IU ) is obtained as
IU ≜ {s ∈ SU : ds[n] > γ}.
It is worth mentioning that, from overall SFDIA system

perspective, the measurements from the sensors declared faulty
are replaced (viz. accommodated) with their corresponding
estimates in order to preserve system utility.

E. Fourth Layer: Control

The role of the control block is to preserve the performance
of the proposed SFDIA method when faults occur. Referring to
Fig. 2, this block operates at the beginning of each time step,
and controls inputs-outputs of both estimators and predictors

regarding the latest residual signals and the decision vector
d[n− 1].
The symbol ϕE,s (resp. ϕP,s) denotes the average residual

signal for the sth estimator (resp. predictor) computed with a
moving average over a window of size Lr starting from time
step n − 1 while excluding the identified faulty time steps.
The signal ϕE,s (resp. ϕP,s) of the unreliable sensor s is used
by the controller as a metric to define the estimation (resp.
prediction) accuracy of the corresponding estimator (resp.
predictor).
In the first step, after applying the proposed SFDIA scheme

at time step (n−1), the elements of the decision vector d[n−1]
larger than a predefined threshold υ identify faulty sensors for
the controller. Then, the following process will be conducted
at the beginning of each time step n. To keep the discussion
simple, we will generically refer to sth sensor as the one
identified as faulty.
As for the predictor controlling scheme, if the estimator’s

average residual signal ϕE,s is smaller than a certain value
τ (i.e. the system tolerable level of deviation), the estimator
output x̂s[n−1] replaces the respective sensor input xs[n−1]
to the corresponding predictor. In other words, the predictor
in Eq. (2) will be then fed as:

x̃s[n] = g(Hv,Nv)
s ( x̂s[n− 1]︸ ︷︷ ︸

replacement

, . . . , xs[n− Lp] ), (6)

This logic is intended to use only those estimates whose
quality is better than the faulty-data within the sth predictor.

As for the estimator controlling scheme, if the predictor’s
average residual signal ϕP,s smaller than both (i) the system
tolerable level of deviation τ and (ii) ϕE,s, the predictor output
x̃s[n] is obtained and replaces the respective sensor input xs[n]
(updates all estimators’ input vectors except x(s)[n]) to the
estimators. In other words, we have ∀s⋆ ∈ S, s⋆ ̸= s:

x̂s⋆ [n] = f (Hv,Nv)
s⋆ ( x̃(s⋆)[n]︸ ︷︷ ︸

replacement

, . . . ,x(s⋆)[n− Le]) , (7)

where the vector x̃(s⋆)[n] collects all existing sensors readings
except for s⋆ and with sth reading being replaced by x̃s[n].
Otherwise, if ϕE,s is smaller than the system tolerable level of
deviation1, the estimator output x̂s[n] is obtained and replaces
the respective sensor input xs[n] (updates all input vectors
except x(s)[n]) to the estimators. Specifically, ∀s⋆ ∈ S, s⋆ ̸=
s:

x̂s⋆ [n] = f (Hv,Nv)
s⋆ ( x̂(s⋆)[n]︸ ︷︷ ︸

replacement

, . . . ,x(s⋆)[n− Le]) , (8)

where the vector x̂(s⋆)[n] collects all existing sensors readings
except for s⋆ and with sth reading being replaced by x̂s[n].
This logic is intended to replace the input faulty-data with
estimates/predictions whose accuracy are better than the input
faulty-data (i.e. x(s)[n]) to all estimators (except the corre-
sponding sensor s estimator). We highlight that, in all three
cases, no architectural modification (i.e. varying input size for

1In other words, the corresponding estimator is providing better accuracy
than the corresponding predictor, i.e. ϕE,s < ϕP,s and ϕE,s < τ .
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the estimators and predictors) is required for the blocks of the
proposed SFDIA method.

Conversely, in the case of no-fault detected, this block
merely slides the window forward in time to update both ϕP,s

and ϕE,s by using the recent residual signals eU [n− 1].
A pseudo-code of the controlling block process is given in

Algorithm 1. It is worth remarking that substitution of faulty
inputs with either estimated or predicted values maintains esti-
mators and predictors accuracy (by avoiding error propagation)
and results in better accommodation performance as well as
increased detection rate.

Algorithm 1 Controller

1: procedure CONTROLLER
2: Input: d, eU , and xs for all s ∈ SU ;
3: At starting of each time step n:
4: for s = 1 : NU do ▷ Corresponds to s ∈ SU

5: if ds[n− 1] > υ then ▷ Identified faulty
6: if ϕE,s < τ then
7: Feed x̂s[n− 1] instead of xs[n− 1] to the

prediction block as input;
8: if ϕP,s < ϕE,s and ϕP,s < τ then
9: Obtain x̃s[n] from Eq. (2);
10: Feed x̃s[n] instead of xs[n] to the estima-

tion block as input;
11: else if ϕE,s < τ then
12: Obtain x̂s[n] from Eq. (1);
13: Feed x̂s[n] instead of xs[n] to the estima-

tion block as input;
14: else ▷ Identified healthy
15: Update ϕE,s, ϕP,s using eU [n− 1];

III. NNS CONFIGURATION

The MLP is a feed-forward layered NN made up of an input
layer, an arbitrary number of hidden layers and an output layer,
where neurons are interconnected in forward direction from
the input to the output layer [47]. The MLP is a suitable NN
for regression and classification tasks and is capable to model
arbitrary non-linearities while exhibiting fine generalization on
unseen data [38], [41]. MLP NNs in the proposed SFDIA
architecture are trained using an optimization algorithm [48].

A. Estimators and Predictors
Each MLP-based estimator has been implemented with

(N − 1) · (Le + 1) inputs, Hv hidden layers with Nv neu-
rons each, and a single output. Conversely, each MLP-based
predictor has been implemented with Lp inputs, Hv hidden
layers with Nv neurons each, and a single output. For both
the estimators and predictors, the hyperbolic tangent has been
selected as the activation function for the hidden layers, while
the linear activation function has been selected for the output
layer.

Training was accomplished using the Nesterov-accelerated
adaptive moment estimation (Nadam) optimization algorithm
[49] over real-world data-sets. The mean square error (MSE)

loss function was considered as the relevant optimization
metric for both the estimators and the predictors. More
specifically, the MSE loss for sth estimator and predictor,
respectively, is defined as

Les,s(ϕs) =
1

w

w−1∑

j=0

(x̂j
s(ϕs)− xj

s)
2 (9)

Lpr,s(φs) =
1

w

w−1∑

j=0

(x̃j
s(φs)− xj

s)
2 (10)

where w is the number of samples in each batch, ϕi (resp.
φi) represents the vector of trainable parameters of the sth
estimator (resp. predictor). Finally, x̂j

s (resp. x̃
j
s) is the network

output associated to the sth estimator (resp. predictor), while
xj
s denotes the true measurement (viz. the labeled sample) of

sth sensor.

B. Classifier
The MLP-based classifier has been implemented with 2NU ·

(Lc + 1) inputs, Hc hidden layers with Nc neurons each,
and NU outputs. The hyperbolic tangent has been selected
as the activation function for the hidden layers, while a
logistic (viz. sigmoid) activation function has been selected
for each node in the output layer. In order to accomplish both
detection & identification tasks, a loss capitalizing multitask
learning is employed for training the classifier. Specifically, a
weighted sum of the losses of the NU binary (fault/no-fault)
classification tasks associated with the unreliable sensors is
minimized, i.e.

Lcl

(
θshared, {θs}NU

s=1

)
≜

NU∑

s=1

λs Ls (θshared,θs) (11)

In the above formula, the weight λs indicates the preference
level of the sth task (i.e. detection of a fault at sth unreliable
sensor). It is worth noticing that the multitask objective func-
tion allows the proposed classifier to solve multiple learning
tasks at once (i.e. via a single NN). Accordingly, in the above
expression, θshared represents the vector of shared parameters
of the MLP common to all the NU different tasks, whereas
θs indicates the vector of parameters which are task-specific
for sth learning task.

In this work uniform weighting is adopted, i.e. λs = 1/NU

for s = 1, . . . , NU , and a binary cross-entropy (BCE) loss
function for all the NU binary tasks L1(·), . . . ,LNU

(·). The
BCE loss for sth task is formally defined as

Ls (θshared,θs) =− 1

w

w−1∑

j=0

{
yjs ln djs(θshared,θs) + (12)

(1− yjs) ln
(
1− djs(θshared,θs)

)}

where w is the number of samples in each batch. Furthermore
djs is the entry of classifier output associated to sth sensor,
while yjs denotes (the 0/1 representation of) the true fault
status (viz. the labeled sample) of sth sensor. The same op-
timization algorithm (i.e. Nadam) as the estimators/predictors
is employed for training the aforementioned MLP-based clas-
sifier.
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C. Summary of the training phase

The whole training process of the proposed SFDIA architec-
ture is summarized in Algorithm 2. In detail, the estimators and
predictors (Sec. III-A) are trained only with healthy (fault-free)
data, according to the inputs specified via Eqs. (1) and (2),
respectively. A similar comment applies to the associated
validation set for estimators and predictors.

Conversely, the classifier block (Sec. III-B) is also trained
based on faulty training data, by including the controller and
residual evaluation blocks in an open-loop fashion. Indeed,
during the training process, the controller is given the classi-
fier label set (i.e. the binary-valued vector pattern collecting
true faulty/healthy condition for all the sensors) as input, in
the place of the classifier decision vector. This is to avoid
detrimental effects due to training instability of the classifier.
However, since perfect identification provided by the label
set may lead to overfitting, 25% of controller decisions are
randomly dropped out to help the classifier generalize better
during the training process. The corresponding validation set
for the classifier block includes faulty measurements as well.

Algorithm 2 Training Process

1: procedure INITIALIZE
2: Preparing training set and create a falsified copy;
3: Random weights and biases for all networks;
4: Set initial value of all other parameters to zero;
5: procedure ESTIMATORS AND PREDICTORS
6: Input: healthy training set; ▷ Fault free
7: while Epoch number < Max epoch or Validation loss

Not triggered do
8: for each epoch do
9: Calculate MSE;

10: Update weights and biases using Nadam opti-
mization;

11: Calculate validation loss;
12: procedure CLASSIFIER
13: Input: Falsified training set;
14: while Epoch number < Max epoch or Validation loss

Not triggered do
15: for each epoch do
16: Obtain x̂s x̃s for all s ∈ SU with respect to

the controller mechanism;
17: Calculate residual signals;
18: Feed residual signals to the classifier;
19: Calculate weighted BCE;
20: Update weights and biases using Nadam opti-

mization;
21: Calculate validation loss;

IV. DATA-SETS AND FAULTS SETUP

A. Data-sets Setup

For the sake of a complete evaluation, three real-world
data-sets (similarly as [41]) have been employed to assess
the proposed SFDIA architecture. Specifically, the air qual-
ity (AQ) data-set [42] includes readings from five chemical

sensors (assumed to be unreliable, namely NU = 5) which
are complemented by measurements originating from humidity
and temperature sensors (assumed to be reliable, i.e. NR = 2).
Such a sensor system is aimed at pollution-level evaluation in
an Italian city. The second data-set is related to a wireless sen-
sor network (WSN) with four unreliable sensors measuring
indoor and outdoor humidity and temperature [43]. Labeled
anomalies injected into the data-set were omitted and only
the temperature readings of the multi-hop section of data-set
are considered as unreliable readings (NU = 4, NR = 0) for
our analysis. The last data-set includes multiple sensors on a
permanent-magnet synchronous motor (PMSM) [44], [50].
Among the collected measurements2, (i) coolant temperature,
(ii) voltage and (iii) current (summation of q and d compo-
nents), (iv) motor speed and (v) torque are included in the
unreliable set SU (thus NU = 5), whereas the stator yoke
temperature is assumed to belong to the reliable set SR (thus
NR = 1).

Before feeding the data-sets to the proposed architecture,
sensors readings in each data-set are normalized using min-
max scaling on the training set to avoid polarization during the
learning process. Finally, the entire rows containing missing
values are ignored from the data-sets. Table I summarizes data-
sets description.

TABLE I: Data-sets description. The reliable sensors in each
data-set are highlighted in italic.

Data-set Samples NU NR Attributes

AQ 8991 5 2

Multivariate, time-series; carbon
monoxide (CO), non-metanic hydrocarbons
(NMH), nitrogen oxides (NOx), nitrogen
dioxide (NO2) and ozone (O3) gas
concentrations, as well as measurements of
temperature and humidity

WSN 4589 4 0 Multivariate, time-series; four temperature
sensors: two indoor, two outdoor

PMSM 55000 5 1

Multivariate, time-series; coolant temper-
ature, voltage and current (summation of q
and d components), motor speed, torque and
stator yoke temperature

B. Sensor Faults Modeling

The performance of the proposed SFDIA architecture is
evaluated under transient faults.

Also, with the aim of adapting and examining the proposed
architecture according to DTs’ needs, four different fault
types with varying severity levels were modeled, as detailed
hereinafter. It is worth highlighting that the practice of mod-
eling simulated faults superimposed to real data is a common
practice in the evaluation of SFDIA systems (e.g. [12], [29],
[39]), as (i) real faulty measurements are sporadic and very
hard to obtain and (ii) simulated faults also allow quantifying
accommodation performance. This is also to highlight the
generality of the proposed architecture in accommodating
diversified faulty conditions.

2The readings were sampled with 1.5 s-intervals and the first 55k readings
were picked after sampling.
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Bias faults: for each bias fault, a constant bias b injected to
the normal operation data-sets for M consecutive samples as
follows

xs,b[n] =

{
xs,h[n] + b , 0 ≤ n−m < M

xs,h[n] , otherwise
(13)

where xs,h[n] and xs,b[n] are the healthy and possibly-faulty
reading of sensor s ∈ SU , respectively, under bias fault.
Finally, m denotes the starting time instant of the fault.
Drift faults: as for drift fault, an additive term drifts to bias
level b in M samples and remains for K samples (M > K),
namely:

xs,d[n] =





xs,h[n] +
b(n−m+1)

M , 0 ≤ n−m < M

xs,h[n] + b , M ≤ n−m < M +K

xs,h[n] , otherwise

(14)

where xs,d[n] is the possibly-faulty reading of sensor s ∈ SU

under drift-type faults.
Noise faults: in the latter case, zero-mean additive Gaussian
noise w[n] ∼ N (0, c) is added to the sensor measurement for
M consecutive samples, i.e.:

xs,g[n] =

{
xs,h[n] + w[n] , 0 ≤ n−m < M

xs,h[n] , otherwise
(15)

where xs,g[n] is the possibly-faulty reading of sensor s ∈ SU

under noise-type faults and c is the variance of the noise.
Freeze faults: for freeze-type faults, sensor output stuck at
previous reading for M consecutive samples as follows

xs,f [n] =

{
xs,h[m− 1] , 0 ≤ n−m < M

xs,h[n] , otherwise
(16)

where xs,f [n] is the possibly-faulty reading of sensor s ∈ SU

under freeze-type faults.

V. NUMERICAL RESULTS

The effectiveness of the proposed architecture for detection,
isolation and accommodation of sensor faults has been as-
sessed by means of a comprehensive analysis conducted on the
three previously-described real world data-sets. The following
section first details the considered system setup and employed
parameters, for the sake of reproducibility (Sec. V-A). Then,
the working principle of the two relevant SFDIA baselines
used for comparison is recalled (Sec. V-B). Finally, the SFDIA
performance is reported and discussed (Sec. V-C).

A. System Setup and Parameters
Training and Evaluation Setup: MLP NNs within the pro-
posed architecture were trained using the first 70% and 15%
of samples of each data-set as train set and validation set,
respectively. The rest ending 15% of samples of each data-set
was used as test set for performance evaluation. A validation
process based on early stopping method [51] was employed
during the training phase to avoid over-fitting: the training
process was stopped if the loss on the validation set had

not decreased for 20 consecutive epochs or if the maximum
number of epochs was reached3.
Hyperparameter specification of proposed approach: As
in [41], a similar configuration for the classifiers and the
estimators was considered. More specifically, estimators and
predictors with Hv = 1 hidden layer, Nv = 10 nodes per
hidden layer and Lv = Lp = 10, along with a classifier with
Hc = 2 hidden layers, Nc = 15 nodes per hidden layer and
Lc = 10 were trained. Table II lists MLPs’ configurations and
corresponding hyper-parameters of the proposed architecture.
In addition, the predefined thresholds τ and υ are set to
0.15 and 0.9 for the controller, respectively. The threshold
τ needs to be adjusted with respect to the system tolerable
level of deviation as well as the estimators/predictors accuracy,
whereas threshold υ is selected heuristically according to the
system performance on the validation set.
Random generation of synthetic faults: The four types of
faults considered in this work are synthetically generated [12],
[29], [39] according to the corresponding models detailed in
Sec. IV-B on the top of the real measurement data described
in Sec. IV-A. Unless otherwise stated, the fault absolute level b
(with unbiased random positive and negative faults) and noise
variance c are assumed uniformly distributed between 0.2 and
0.4 to represent weak fault signals. The fault length (M and
K) is also assumed uniformly distributed between 3 and 11
consecutive samples to represent transient faults4. It is worth
stressing that the uniform distribution choice for the fault level
b (resp. the noise variance c) and the fault length (M and K)
helps the classifier to generalize better without focusing on a
specific fault level/length [37], [39]. To verify the robustness
of the proposed architecture against simultaneous faults, up to
three concurrent faulty sensors were considered for the (fault-
)generation process.
Training phase of classifier block: Fig. 6 shows the evolution
of the classifier loss function vs. number of epochs (during the
training phase) on both training (solid lines) and validation
(dashed lines) sets, under bias faults. Indeed, validation and
training losses under other fault types resemble those shown
under bias fault and are thus omitted for brevity. For complete-
ness, both the weighted (multitask) BCE (cf. Eq. (11)) and the
per-sensor BCE (cf. Eq. (12)) are reported in Figs. 6a and 6b,
respectively. As evident from the curves, the training phase on
WSN data-set stops after ≈ 260 epochs (“□” marker) by early-
stopping mechanism as the validation loss stops decreasing.
Conversely, the training phase on the other two data-sets stops
after reaching the maximum number (400) of epochs.

B. Considered Baselines

Results of the proposed approach in terms of detection,
identification and accommodation performance are compared

3We implement the proposed architecture and other baselines using Keras
Python API running on TensorFlow version 2.9.2 on MacBook pro M1 CPU
2.1-3.2 GHz with 16 GB memory.

4Under freeze fault, the fault length (M ) is uniformly distributed between
100 and 400 consecutive samples due to smooth oscillating (WSN and
PMSM) data-sets. Smaller fault lengths cause negligible faults on the working
data-sets.
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TABLE II: Configuration of the proposed architecture.

Parameter Estimator Predictor Classifier

No. of input nodes (N − 1) · (Lv + 1) Lp 2NU · (Lc + 1)

No. of output nodes 1 1 NU

No. of hidden layers 1 1 2

No. of nodes per hidden layer 10 10 15

Output activation Linear Linear Sigmoid

Hidden layers activation Tanh Tanh Tanh

Optimizer Nadam Nadam Nadam

Loss function MSE MSE BCE
Maximum epochs 400 400 400

Batch size 20 (50 for PMSM) 20 (50 for PMSM) 200

Learning rate 4 · 10−4 (10−3 for PMSM) 4 · 10−4 (10−3 for PMSM) 10−3
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(a) Weighted loss. (b) Per-sensor loss.

Fig. 6: Training and validation loss of the classifier during the
training phase under bias fault.

with two state-of-the-art architectures: (i) M-SFDIA [41] and
(ii) AE [12].

Similar to the proposed method, our previous M-SFDIA
proposal is able to detect and isolate faulty sensors from
patterns within the input residual signals. However, solely
a bank of estimators is used to derive the residual signals,
and to accommodate unreliable sensors in M-SFDIA method.
Additionally, the controller block is absent in M-SFDIA. Fur-
thermore, the original M-SFDIA’s decision logic was designed
to detect, isolate and accommodate only up to one faulty
sensor. For this reason and for the sake of a fair comparison,
the same decision logic as the proposed method was used (see
Sec. II-D) to enable the M-SFDIA method to detect, isolate
and accommodate multiple sensors simultaneously.

Conversely, the AE-based architecture devised in [12] is
based on a two-stage approach. Specifically, the first stage
is represented by a (standard) AE to learn data correlations
among sensors, and detect anomalies (viz. faults) by tracking

the MSE between input and output of the AE. As for the
accommodation task, a second stage based on a (supervised)
denoising AE is then used to clean faulty data. It is worth
noticing that the identification task for AE architecture was
not addressed in the original work [12]. Indeed, in the afore-
mentioned AE-based method, the overall MSE of input and
output (reconstructed) vector of the first AE is compared to
a predefined threshold for fault detection only. As opposed to
the aforementioned decision logic, herein (for the sake of a
fair comparison) the squared error between the corresponding
input and output for each entry (viz. unreliable sensor) is
traced. Then, this error is compared with a predefined thresh-
old σ, enabling the AE method to both detect & identify the
faulty sensors5. Specifically, similar to the proposed method,
maxNU

s=1 eAE,s[n] ≷ σ is used for detection, where eAE,s[n]
is the squared error for the sth unreliable sensor. Accordingly,
for the identification task, the set of identified faulty sensors
is obtained as IU ≜ {s ∈ SU : eAE,s[n] > σ}.

C. Performance Analysis and Comparison
Fig. 7 illustrates fault detection performance in terms of

probability of detection vs. probability of false alarm, i.e.
showing the receiver operating characteristic (ROC) curves.
In this case, a fault rate6 FR = 0.1 is considered. Also, ROC
performance is reported separately for each of the three data-
sets and for all four fault typologies considered. It is evident
that the proposed architecture outperforms the two baselines
for all four fault types. Specifically, the best detection rate is
attained on AQ data-set when bias faults are present. Also, for
all architectures, detection accuracy under bias faults appears
to be generally higher than the other types of faults. Moreover,
as can be seen, AE architecture fails to detect freeze faults on
the WSN data-set. Indeed, drift and freeze faults are “trickier”
to detect since they slowly appear in the system and have a
less-appreciable effect on spatio-temporal correlations within
the system.

5Numerical results (not shown for brevity) based on the original detection
logic as [12], namely

∑NU
s=1 eAE,s[n] ≷ σ (and a matched identification

logic, i.e. IU ≜
{
s ∈ SU : eAE,s[n] > σ/NU

}
) highlighted worse perfor-

mance than the considered variant, due to the inability to cope with weak
(and transient) faults.

6Fault rate refers to the ratio between the number of faulty and non-faulty
samples.
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(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Fig. 7: Detection performance in terms of ROC curves for all
architectures over different fault types.

Delving into real-time performance of SFDIA architectures,
in Tab. III a detection delay analysis7 for fixed false alarm
rate of 10−2 is reported. Specifically, the expected detection
delay is evaluated, defined as the average number of samples
needed by an SFDIA architecture to detect a faulty sensor. The

7Every span of simultaneous faults is considered as a unified fault.

(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Fig. 8: Identification (isolation) performance in terms of ROC
curves for the proposed architecture over different fault types.
Sensor numbers refer to sensor indices.

latter delay is indeed another important indicator of the SFDIA
framework performance, which has a crucial effect on DTs
functionality. In the experiments, the fault rate is set to FR =
0.5 to generate a sufficient number of fault events allowing to
obtain a reliable estimate of the aforementioned metric. Results
highlight that the proposed architecture achieves the lowest
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(a) Bias fault. (b) Drift fault.

(c) Noise fault. (d) Freeze fault.

Fig. 9: Averaged identification (isolation) performance in
terms of ROC curves for all architectures over different fault
types.

detection delay in comparison to the state-of-the-art for all
data-sets and fault types considered. Specifically, the average
detection delay for the proposed architecture is confined below
1 sample (except for the AQ data-set with drift fault-types),
whereas the other two architectures always require a longer
span to detect fault(s) within the system. The most evident

Fig. 10: Comparison of accommodation performance in term
of RMSE (Pf = 10−2).

performance difference is observed on the PMSM data-set for
drift faults (boldface in Tab. III). Indeed, in the latter case, the
proposed architecture detects weak faults on average after 0.67
samples whilst MSFDIA and AE architectures take on average
3.40 and 8.30 samples to detect the same faults, respectively.
The reported difference corresponds to a faster detection for
our proposal of more than 5× and 12× than the MSFDIA
and AE architectures, respectively. The reduced detection
delay of the proposed architecture is mainly due to the joint
exploitation of estimation and prediction blocks (cf. Sec. II-
B), as they provide complementary (residual) information for
the classifier.

TABLE III: Detection delay Analysis. Results refer to bias and
drift faults and are in the format avg. (± std.) delayed samples
obtained for a fault rate FR = 0.5.

Data-set Fault type Proposed M-SFDIA AE

AQ Bias 0.06 (± 0.30) 0.39 (± 1.11) 0.50 (± 1.33)

Drift 1.77 (± 1.69) 2.33 (± 2.09) 4.04 (± 2.84)

WSN Bias 0.28 (± 0.91) 0.84 (± 1.47) 0.31 (± 1.08)

Drift 0.72 (± 1.12) 2.12 (± 2.14) 2.73 (± 2.12)

PMSM Bias 0.10 (± 0.53) 1.24 (± 1.94) 3.61 (± 3.62)

Drift 0.67 (± 1.21) 3.40 (± 2.68) 8.30 (± 4.85)

Fig. 8 shows the identification performance from the indi-
vidual sensor perspective for the proposed architecture under
different fault types. The probability of identification refers
to the probability that SFDIA architecture correctly isolates
the corresponding faulty sensor(s), where the averaged value
is the average probability of identification over all unreliable
sensors in each data-set. Apparently, different sensors undergo
different performances, mostly depending on the level of
spatio-temporal correlation (implicitly) providing the available
redundant information within the system. The corresponding
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sensor-averaged identification performance (under the same
fault rate) is depicted in Fig. 9. Here in Fig. 8 and 9, the
proposed architecture performs even better over other meth-
ods since it manages to reduce fault propagation within the
architecture itself and avoid functionality degradation using the
controlling block. Replacing faulty sensors with their estimates
or predictions by the controller provides the classifier with
easier interpretative residual signals.

The accommodation performance in terms of root mean
square error (RMSE) is shown in Fig. 10, where fault rates
FR ∈ {0.1, 0.5} are considered. Herein the term error means
the difference between sensor healthy values before adding the
fault and the accommodated values provided by the SFDIA
architecture (or the original values, in the case of an unde-
tected/unidentified fault). First of all, it is apparent that the
proposed architecture outperforms the M-SFDIA architecture
by presenting more accurate replacements for faulty data. The
reason is that the proposed architecture relies on a combined
estimator/predictor pair for each sensor and a controller block
to continuously improve the accommodation performance by
modifying their inputs based on the decision vector obtained
from the classifier in a closed-loop fashion. Conversely, the M-
SFDIA architecture does not take advantage of these excessive
data. Finally, the proposed architecture outperforms AE-based
SFDIA on all the three available data-sets (except for PMSM-
Noise), with the higher improvement (viz. RMSE reduction)
in the case of WSN data-set.

The rest of analysis specifically focuses on bias and drift
faults as they well represent sudden (hard) faults and slowly
appearing (soft) faults, respectively. The impact of different
fault rates on the detection and (averaged) isolation per-
formance is assessed in Figs. 11 and 12, respectively. In
the above cases, two relevant false-alarm probability values
are considered, namely Pf = 10−1 and Pf = 10−2. As
expected, both detection and identification results reveal that
higher fault rates have a negative impact on the architecture
overall performance, as well as the considered baselines. Still,
while the proposed architecture is capable to preserve its de-
tection and isolation performance by incurring a milder detec-
tion/identification loss, both AE and M-SFDIA architectures
exhibit a higher degradation with the fault rate. This outcome
is mostly due to the estimators and predictors limiting the
impact of fault propagation within the proposed architecture.
For instance, referring to PMSM data-set, drift faults and
Pf = 10−2, a (harsh) fault-rate condition equal to 0.3 leads
to a detection probability ≈ 0.4 (resp ≈ 0.7) for AE (resp. M-
SFDIA). This corresponds to a 30% (resp. 10%) decrement
w.r.t. a fault-rate scenario equal to 0.1. On the contrary, our
architecture attains a detection probability ≈ 0.85 in the same
harsh condition, with a corresponding degradation (w.r.t. fault-
rate equal 0.1) equal to 0.05.

Figs. 13 and 14 compare the performance trend of different
architectures under versus the fault level b. Clearly, detection
and isolation performance for all architectures under strong
faults are higher than the case of weaker faults. However,
this in turn motivates the importance of developing techniques
suited for weak faults. Results demonstrate a clear advan-
tage of the proposed architecture over other architectures for

(a) Bias fault. (b) Drift fault.

Fig. 11: Impact of different fault rate on the detection accu-
racy.

(a) Bias fault. (b) Drift fault.

Fig. 12: Impact of different fault rates on the averaged
identification accuracy.

different fault levels, with performance improvement being
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(a) Bias Fault (b) Drift Fault

Fig. 13: Impact of different fault level (b) on the detection
accuracy.

extremely evident under weak faults. For instance, referring
to the case of bias faults with b = 0.2 on the PMSM data-
set and assuming Pf = 10−2, the proposed architecture
achieves correct-identification probability of 0.9 while the
AE architecture is below 0.1. The AE architecture mostly
exploits change detection in the correlation structure of the
signals and weak faults might have a negligible impact from
this perspective. Conversely, the combined use of estimators,
predictors and residual processing employed by the proposed
architecture is able to detect & isolate these “low-observable”
faults. Moreover, as the fault level increases, the proposed
architecture is overtaking the M-SFDIA architecture since the
proposed method mitigates propagation of strong faults within
the architecture by means of the controller block.

To deepen the investigation of the controller block, a sen-
sitivity analysis was also performed, focusing on detection
and identification performance of the proposed architecture,
by varying the threshold υ during the test phase. More
specifically, Fig. 15 shows the detection and identification
performance of the proposed method with respect to the
threshold υ. To better apprehend the impact of the threshold
υ, the detection and identification performance of the state-of-
the-art counterparts were reported as a lower bound. Results
highlight quite smooth performance trends on the three data-
sets with respect to the threshold υ. Interestingly, predefined
threshold υ = 0.9 based on the validation set is pretty near to
the optimum value on the test set.

Finally, to have a finer-grained view of the three archi-
tectures for detection & isolation tasks, Fig. 16 reports their

(a) Bias fault. (b) Drift fault.

Fig. 14: Impact of different fault level (b) on the averaged
identification accuracy.

(a) Detection Sensitivity (b) Identification Sensitivity

Fig. 15: Impact of threshold (υ) on the detection and identifi-
cation accuracy (Pf = 10−2). Threshold υ = 1 associated to
a zero-effect of the controller (i.e. off-circuit controller).

decision outcomes for a time-segment long 50 samples taken
from the PMSM data-set under bias fault (Pf = 10−2). Specif-
ically, for each time index n, “◦” symbol denotes the actual
(true) faulty sensors, whereas “None” is used in the case of a
healthy system. Then, for each architecture, the miss-detected
faults (denoted with red “∗” symbol) and the false-alarms (i.e.
sensors erroneously declared as faulty by the architecture when
the system is healthy, with blue “×” symbol) are highlighted.
Finally, when each SFDIA architecture declares a detection,
the corresponding identified faults are reported with a green
“+” symbol. The most eminent point in Fig. 16 is that, by
resorting to the proposed architecture, only one fault remained
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Fig. 16: Visualization of fault classification for all architec-
tures on PMSM data-set.

undetected whereas M-SFDIA and AE architectures miss-
detected 13 and 16 out of 24 faulty samples, respectively.
As mentioned earlier, the proposed architecture attains better
prompt detection & identification performance with respect
to its counterparts. For instance, according to Fig. 16, the
latter two architectures were only capable to identify only
one faulty sensor for the given snapshot when simultaneous
faults occurred, while the proposed architecture successfully
identified most of them.

D. Complexity Analysis
As the final stage of the numerical comparison, the proposed

approach is compared with the considered baselines in terms
of the relevant computational complexity involved, by looking
at both the (i) training and (ii) operational (testing) phases.

Regarding the training phase, the number of trainable
parameters associated with each architecture is summarized
in Tab. IV. Trainable parameters refer to weights and bi-
ases of each NN to be learned during the training phase
(through stochastic gradient descent by resorting to the back-
propagation technique) in the architecture. Clearly, the number
of trainable parameters grows with the complexity of the (sen-
sor) system to be accommodated, with the higher complexity
associated with AQ data-set on all three architectures. Also,

the info in the table highlights that the proposed architecture
has a comparable complexity with M-SFDIA while enjoying
shorter training times than the considered AE. Furthermore,
thanks to the modularity granted by the proposed approach,
different blocks of the considered architecture (e.g. estimators
and predictors) could be trained in a parallel fashion on
distributed (e.g. cloud) architectures.

Regarding the testing phase, the assumption of an equal
number of hidden layers (Hv = Hc = HJ ), time delays (Lv =
Lp = Lc = LJ ) and nodes per hidden layer (Nv = Nc = NJ )
is made, as considered in [41], where index J refers to the
joint value. Additionally, the impact of the activation functions
is neglected (for simplicity). Accordingly, the computational
complexity of the operational phase is analyzed in terms of
the well-known big-O (Landau’s) notation. First, it is worth
recalling that the computational complexity of M-SFDIA ap-
proximately equals O(LJN

2
UNJ+LJNRNUNJ+HJNUN

2
J)

for one input sample [41]. Furthermore, the complexity cost of
each predictor in the proposed architecture is approximately
O(LJNJ). Accordingly, the overall computational complexity
of the proposed architecture approximately equals the M-
SFDIA architecture. Indeed, the complexity is mainly dom-
inated by the computational cost of the estimators and of the
classifier, which is almost equal in both architectures [41]. In-
deed, the impact of the residual and controller block operations
is negligible in the overall cost.

TABLE IV: Number of NNs’ trainable parameters.

Data-set NU NR Proposed M-SFDIA AE
Est. Pre. Clf. Est. Clf. AE Denoising-AE

AQ 5 2 681 121 1985 681 1160 16945 16945
In total = 5995 4565 33890

WSN 4 0 351 121 1639 351 979 5470 5470
In total = 3527 2383 10940

PMSM 5 1 571 121 1985 571 1160 12250 12250
In total = 5445 4015 24500

For instance, for AQ data-set the computational complexity
for estimators block is O(3510), for the classifier block8 is
O(1740) and for the predictors block is O(550). This results
in a total computational complexity of O(5·103) and O(6·103)
for M-SFDIA and the proposed architecture, respectively. Still,
the proposed architecture attains substantially higher overall
SFDIA performance at the expense of a manageably higher
complexity (see Sec. V-C).

Conversely, for AE-based architecture (which is made of
two similar AEs with a three-fold compression factor [12]),
the computational complexity is O((452/81) · (LJ · (NU +
NR))

2). Accordingly, in the peculiar case of AQ data-set, the
computational complexity of the aforementioned architecture
is approximately O((452/81) · (10 · (5 + 2))2) ≈ O(3 · 104)
for one input sample. As a result, the complexity of the AE-
based architecture appears to be considerably higher than that
incurred by the proposed approach.

8The computational complexity for the classifier in M-SFDIA architecture
is O(990).
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VI. CONCLUSION

This article presented a four-layer architecture for SFDIA
based on MLP NNs. Our contribution represents a stepping
stone towards the development of (modular) DTs based on
sensor systems/networks in IoT contexts. The (four) designed
layers consist of estimation&prediction, residual, classification
and controlling blocks. The classifier block at the heart of
the architecture is in charge of detecting and identifying
faulty sensors based on residual signals provided by estimators
and predictors. Moreover, a controlling block is placed to
track the classifier’s decision output in order to boost overall
system performance. This is accomplished by stopping fault
propagation chain at the first layer by modifying estimators
and predictors inputs with respect to the classifier’s decision.

The proposed method was trained and tested on three real-
world and publicly-available data-sets (i.e. [41], [42], [50]) for
the sake of a complete and reproducible assessment. For the
sake of generalization, four types of faults were considered
in this study: bias, drift, noise and freeze. The proposed
architecture yielded notably higher detection and isolation
performance compared to the state-of-art M-SFDIA [41] and
AE [12] architectures, for all four fault types. Moreover, the
proposed architecture was shown to enjoy robustness against
different fault rates while other architectures’ performances
were affected considerably.

Future works will focus on (i) the study of DTs for sensors
operating under channel uncertainty, (ii) the design of SFDIA
architectures which scale well with the number of sensors,
(iii) the investigation of reinforcement-learning algorithms
for optimized controller design and (iv) the application of
explainable artificial-intelligence algorithms’ in interpreting
(and improving) the proposed SFDIA approach. Finally, more
sophisticated NN approaches (e.g. convolutional NNs, RNNs)
for each SFDIA module we will be also investigated with the
intent of improving detection, identification and accommoda-
tion performance under specific circumstances while meeting
the operational deployment constraints.
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volutional and recurrent neural networks for temperature estimation in
permanent magnet synchronous motors,” in IEEE International Electric
Machines & Drives Conference (IEMDC), 2019, pp. 1439–1446.

[45] H. Darvishi, D. Ciuonzo, and P. Salvo Rossi, “Real-time sensor fault
detection, isolation and accommodation for industrial Digital Twins,”
in IEEE International Conference on Networking, Sensing and Control
(ICNSC), 2021.

[46] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, T. A.
Tameghe, and G. Ekemb, “Wind Turbine Condition Monitoring: State-
of-the-Art Review, New Trends, and Future Challenges,” MDPI Ener-
gies, vol. 7, no. 4, pp. 1–36, April 2014.

[47] F. Rosenblatt, The perceptron: a theory of statistical separability in
cognitive systems (Project Para). Cornell Aeronautical Laboratory,
1958.

[48] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[49] T. Dozat, “Incorporating Nesterov momentum into Adam,” in Interna-
tional Conference on Learning Representations (ICLR), 2016.
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