
How to calibrate a model

Let us take Resch’s master thesis as an example on how to use scripting in Abaqus.

Figur 1: A snapshot of the configuration for tension parallel to grain.

In my CAE file I have four different configurations (ignore Lateral0 and Lateral90) of
the experiment from Resch’s master thesis, shown in figure 2. The number 0 or 90 determines
if the applied force is parallel or perpendicular to the grain, and C or T determines whether it
is in compression or tension.

Figur 2: Model tree.

The materials are all saved in the file, as shown in figure 3, in the same manner as usual.
The steel and wood material are constant and are not included in the Python script. The
fictitious material is included in the script, as figuring out the correct coefficients is part of
the calibration.

Figur 3: Materials.

1



When making the model in Abaqus, I recorded everything from start to finish using the
Macro Manager, resulting in a macro that has all the interesting parts saved in a Python file.
From there on it was a matter of just figuring out what does what, and remove everything that
was unnecessary. Figure 4, for example, shows the Python code that changes the engineering
constants for the fictitious material. modelAbaqus is a variable used to tell Abaqus which
model from the model tree in figure 2 to choose. Similarly, such a variable could be used
instead of ’FictitiousMaterial’, but since all the models in the model tree have the same
materials, this can be left hard-coded in the script. Notice also the variable modifier which
will be discussed later.

Figur 4: A snapshot code specifying the coefficients for the fictitious material.

Using Python to run Abaqus files

So how do we use Python to run a simulation in Abaqus? There are probably many ways to
do this, but I have chosen the following. First, I have one script with all the various functions
you want your calibration model to have. I have called this script abaqusCommands.py,
and you can see a snapshot of it in figure 5. This script is made in such a way that you can
run it in Abaqus, using the File > Run Script... function, with all the constraints that entails.
For example, it needs to import the same libraries as your Abaqus macro’s, and it is very
easy to get errors.

The openJob function instructs Abaqus to open the .cae file. In this case, I have all models
saved in one file, and there is no need to parameterise this. Next, the specifyCoefficients
function is used to specify all parameters. Notice that the function takes in five arguments,
modelAbaqus, modifier, embeddedLength, stiffness, and redInt.

Figur 5: Important functions from abaqusCommands.py

2



• modelAbaqus is a string that specifies which model to use,

• modifier is a float that is multiplied with the shear moduli of the ficitious material,
usually between 0 and 1,

• embeddedLength is an integer that specifies how deep you want the rod to be embed-
ded in the wood,

• stiffness is an integer used to specify the cohesive stiffness property of the cohesive
zone, and

• redInt is a boolean (True/False) that specifies whether to use full or reduced integra-
tion.

There are not that many variables that need paramterising in this thesis. Apart from the
ability to specify engineering constants (shown in figure 4), you also see the ability to specify
the embedded length of the rod. This is used by translating the two parts that make up the
rod: ’RodCoreOuter-1’ and ’RodCoreInner-1’. Notice here that the model already has
the rod embedded by 110 mm. At the bottom you can see the functionality for specifying
cohesive stiffness properties, Knn, Kss and Ktt .

Figur 6: Running the simulation

Figure 6 shows the bit of code that instructs Abaqus to create and run a simulation,
or a job as Abaqus calls it. It only needs to know what to call file, the filename, and
of course it needs to know which model to run, modelAbaqus. Notice that the function
waitForCompletion() is included in the last line. This is important for the next bit of code,
which is concerned with printing the results to a file. Before this can happen, the job needs to
be completed to avoid errors. *Add part about what to do if you want to add functions*

Fetching results

The next part is all about getting the relevant results from the simulation. When you are in
the Result section of Abaqus, you are inspecting an ODB file, or the output database, where
you can basically get all kinds of interesting information about stresses, forces, strains and
displacements of every single node in your model. For this thesis, we were only interested in

3



the concentrated force on a single node, in addition to the relative displacement between four
pairs of nodes. The openResults function is partially displayed in figure 7. Other than the
two first lines, concerned with opening the ODB file, the function is a messy copy from the
recorded macro. Basically, it takes the XY data from the selected nodes (in this case, hard-
coded into the script for convenience), and writes them to a file using the writeXYReport
function. The file is saved as filename.rpt (bears a resemblance to .txt file) in the chosen
directory, for later processing. The results printed to file can be seen in figure 8. This is
Abaqus’ default way of reporting. How to process it will be covered later.

Figur 7: Code used to open the results from the simulation.

Figur 8: The output in .rpt file.

Running Abaqus in the terminal

Figure 9 shows all the previously discussed functions neatly collected in a single function,
called quickJob, which is meant to do everything from start to finish. If you were to call
this function in your Python script, nothing would happen. That’s because these are all
instructions that must be run in Abaqus. You could use File > Run Script..., select, and
run this Python file, but there would be no way to provide the arguments needed to run the
various functions. It would also mean that you would have to open Abaqus every time you
wanted to run a script, which is not very efficient.

The solution is to exploit the fact that Abaqus can run through the terminal, or Command
Promt (CMD) as it is called on Windows. Let’s say your file is called script.py, and you

4



Figur 9: Pulling it all together.

wanted to run the script without opening Abaqus first. You can open CMD and type the
following:

abaqus cae script="script.py"

This would be the exact same as pressing File > Run Script... and selecting the script.
It would, however, still open the Abaqus window, which gets in the way of automating the
process. The solution is to use the noGUI functionality:

abaqus cae noGUI="script.py"

This would run the same script, but without opening the Abaqus window. Unfortunately,
we still have not solved the problem of passing the arguments to the functions, and still
involves a bit of manual labour. Luckily, you put all that in a Python script.

import os

os.system(’cmd /c abaqus cae noGUI="script.py"’)

These two lines in the Python script will allow you to run Abaqus from while only
having your IDE open. In figure 10 you can see my runCommand function, used to perform
this task. All the arguments have been discussed before, except for noGUI=True, which is
included so that I have the ability to decide if I want to open the Abaqus GUI or not, with the
default setting being that it does not open.

Figur 10: The function used to run Abaqus.

Notice also that all the arguments are saved in the variable app. These are all appended
to the command used to run Abaqus. Here is an attempt to explain the process. Let’s say you
have a Python script called runCommand.py, containing one function called runCommand().
At the end of the system command, you add three arguments: arg1, arg2, and arg3. These
will be used in the script called script.py.

5



def runCommand():

os.system(’cmd /c abaqus cae noGUI="script.py" arg1 arg2 arg3’)

In the called script.py, let’s say you have a function called runJob(), which takes in three
arguments. The command line arguments added at the end of runCommand() can then be
used in runJob().

import sys

def runJob(filename, modelAbaqus, stiffness):

arg1 = sys.argv[-3]

arg2 = sys.argv[-2]

arg3 = sys.argv[-1]

runJob(arg1, arg2, arg3)

This is how I manage to run Abaqus in my IDE. In figure 11 you see the end of the script
that runs in Abaqus. Six arguments are saved in appropriate variables, and lastly, the function
quickJob, also shown in figure 9, is called. Done this way, the script abaqusCommands.py
is fit to run in Abaqus without producing errors, as all arguments are passed to it from the
script in figure 10.

Figur 11: The last lines of abaqusCommands.py

Processing results

So now we know how to run Abaqus without any manual labour. Let us now turn our attention
to how you could automate the process even further, or just produce informative plots. Figure
8 shows the RPT file. In this case, the model has 25 frames, resulting in the leftmost column
showing 25 steps. Then there is the concentrated force, which is gradually increased to 164N
per node, and the rest are the displacements. I have created a Python script that reads the data
from this file, cleans it up and calculates the relative displacements, and finally saves that in
a CSV file. It is very possible to calculate, for example, the stiffness, compare that to some
predetermined acceptable value, and write code to increase or decrease some variable based

6



on that – thereby automating the calibration process. I decided it was easier test intervals,
and just plot them.

7


