
ISBN 978-82-326-7046-8 (printed ver.)
ISBN 978-82-326-7045-1 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:171

Martin Karresand

Digital Forensic Usage of the
Inherent Structures in NTFS

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2023:171
M

artin Karresand

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Gjøvik, June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Martin Karresand

Digital Forensic Usage of the
Inherent Structures in NTFS

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Martin Karresand

ISBN 978-82-326-7046-8 (printed ver.)
ISBN 978-82-326-7045-1 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:171

Printed by NTNU Grafisk senter

Abstract

Digital forensic investigators have for a long time been burdened by an increasing
amount of data to handle. Many solutions have been proposed. A yet unexplored
feature is to use the inherent structures left by the allocation algorithm. These struc
tures can be used to build a map of the allocation activity at different positions in a
file system. The map can be used to plan and optimize the search for valuable data.
We therefore have studied the inherent structures in the New Technology File Sys
tem (NTFS) as a proofofconcept to explore the possibility to create such a map. The
map can increase the efficiency of many digital forensic processes, which has been
verified experimentally for sampled hashbased carving. In file carving the map can
help both during fragment extraction, as well as during file reassembly. Our research
can also be used to verify time stamps and categorize the writing type of files based on
the allocation pattern. It furthermore brings new knowledge to the research fields of
external fragmentation and data recovery.

i

Preface

This dissertation is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). The presented work was carried out at the Faculty of Information Technology
and Electrical Engineering, Department of Information Security and Communication
Technology (IIK) at NTNU from 2017 until 2022. The work was supervised by Asso
ciate Prof. Dr. Geir Olav Dyrkolbotn and Prof. Dr. Stefan Axelsson. This research
received funding from the Research Council of Norway programme IKTPLUSS, under
the R&D project “Ars Forensica”, grant agreement 248094/O70.

iii

Acknowledgments

This PhD thesis would not have been written without the continuous support of my two
supervisor, Associate Professor Geir Olav Dyrkolbotn and Professor Stefan Axelsson.
I would like to thank them dearly for keeping me and my research on track and hav
ing faith in me when the going was tough. They both are very good role models and
have always given me support, encouragement, and inspiration to bring my research
forward.
Likewise Associate Professor Frank Breitinger, Professor Jessica Steinberger and

Associate Professor Hanno Langweg in the assessment committee helped me to sig
nificantly increase the quality of the thesis through their apprehensive, excellent and
highly valuable reviews.
I would also like to thank my colleagues at the Swedish Defence Research Agency

(FOI), my friends at the Swedish National Forensic Centre (NFC), my past and present
fellow PhD candidates at Norwegian University of Science and Technology (NTNU)
in Gjøvik, and Professor Katrin Franke, head of the NTNUDigital Forensics group and
opponent on my licentiate thesis in 2008. You inspired me to embark on this journey.
Thank you all!
There is also my best friend Sassa, who has always been there for me. This thesis

and PhD project, and my life, had not been what it is today without you. I have enjoy
every minute of our friendship. Domo arigato gozaimasu, Sassasan!
And last but not least I would like to thank my fantastic and beloved wife and our

wonderful children. You stood by me no matter what. You have endured years of
hardship with a husband and father who always had his mind somewhere else, deeply
buried in some strange scientific problem and with no time for you. Now I am finally
back and I hope to be able to make up for at least some of the lost time. And that
goes for the rest of my relatives too, so here I am, signed, sealed, delivered, I’m yours
(again)!

v

Relevant Publications

The following publications directly contribute to the thesis. They can be found in
Part II.

Article A M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkolbotn.
“Creating a Map of User Data in NTFS to Improve File Carving.” In: Ad
vances in Digital Forensics XV. Cham: Springer International Publishing, 2019.
Chap. 8, pp. 133–158. ISBN: 9783030287528. DOI: 10.1007/9783
030287528_8

Article B M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Using NTFS Cluster Allo
cation Behavior to Find the Location of User Data.” In: Digital Investigation 29
(2019), S51–S60. ISSN: 17422876. DOI: 10.1016/j.diin.2019.04.018

Article C M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Disk Cluster Allocation
Behavior in Windows and NTFS.” in: Mobile Networks and Applications 25.1
(Feb. 2020), pp. 248–258. ISSN: 15728153. DOI: 10.1007/s11036019
014411

Article D M. Karresand, G. Dyrkolbotn, and S. Axelsson. “An Empirical Study of
the NTFS Cluster Allocation Behavior Over Time.” In: Forensic Science Inter
national: Digital Investigation 33 Supplement (July 2020), p. 301008. ISSN:
26662817. DOI: 10.1016/j.fsidi.2020.301008

A licentiate thesis has previously been defended by the author. That work is of
relevance to the current PhD project.

• M. Karresand. “Completing the Picture — Fragments and Back Again.” Licen
tiate thesis. Linköping Institute of Technology, Linköping University, Sweden,
May 2008

In addition to the above publications the following peerreviewed articles of rele
vance to the PhD project have been published by the author.

• M. Karresand and N. Shahmehri. “File Type Identification of Data Fragments
by Their Binary Structure.” In: Proceedings from the Seventh Annual IEEE
Systems, Man and Cybernetics (SMC) Information Assurance Workshop, 2006.
Piscataway, NJ, USA: IEEE, 2006, pp. 140–147. DOI: 10.1109/IAW.2006.
1652088

vii

https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1016/j.fsidi.2020.301008
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1109/IAW.2006.1652088

Relevant Publications

• M. Karresand and N. Shahmehri. “Oscar — File Type and Camera Identifica
tion Using the Structure of Binary Data Fragments.” In: Proceedings of the 1st
Conference on Advances in Computer Security and Forensics, ACSF. ed. by J.
Haggerty and M. Merabti. Liverpool, UK: The School of Computing and Math
ematical Sciences, John Moores University, July 2006, pp. 11–20

• M. Karresand and N. Shahmehri. “Oscar — File Type Identification of Binary
Data in Disk Clusters and RAM Pages.” In: Security and Privacy in Dynamic
Environments, Proceedings of the IFIP TC11 21st International Information
Security Conference (SEC 2006), 2224 May 2006, Karlstad, Sweden. Vol. 201.
Lecture Notes in Computer Science. Springer, 2006, pp. 413–424. DOI: 10.
1007/0387334068_35

• M. Karresand and N. Shahmehri. “Oscar — Using Byte Pairs to Find File Type
and Camera Make of Data Fragments.” In: Proceedings of the 2nd European
Conference on Computer Network Defence, in conjunction with the First Work
shop on Digital Forensics and Incident Analysis (EC2ND 2006). Ed. by A. Blyth
and I. Sutherland. Springer Verlag, 2007, pp. 85–94. DOI: 10.1007/9781
846287503_9

• M. Karresand and N. Shahmehri. “Reassembly of fragmented JPEG images
containing restart markers.” In: Proceedings 4th Annual European Confer
ence on Computer Network Defense, EC2ND 2008. 2008, pp. 25–32. DOI:
10.1109/EC2ND.2008.10

From 2001 and onward the author has also written or coauthored a number of other
articles and technical reports. A selection of these can be found in Appendix G.

viii

https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1109/EC2ND.2008.10

Contents

Abstract i

Preface iii

Relevant Publications vii

List of Figures xv

List of Tables xvii

Acronyms xix

I. Overview 1

1. Introduction 3
1.1. Problem Description . 6
1.2. Theoretical Assessment of the Map Effect 9
1.3. Aim and Goal . 12
1.4. Scope and Delimitations . 12
1.5. Research Questions . 13

1.5.1. Prerequisites . 14
1.5.2. Research Questions . 14
1.5.3. Significance of Research Questions 15

1.6. Outline of Thesis . 16

2. Background 19
2.1. Storage Media and Structuring . 19
2.2. File System . 21
2.3. Fragmentation . 21
2.4. Data Allocation . 22
2.5. File Writing Concepts . 24
2.6. NTFS . 24
2.7. Encryption . 26
2.8. Virtualization . 28

ix

Contents

2.9. Maps and Their Sciences . 29

3. Related Work 31
3.1. File Fragment Carving . 32

3.1.1. The Licentiate Thesis Work 32
3.1.2. Other Fragment Carving Research 34

3.2. HashBased Carving . 35
3.3. Digital Stratigraphy . 37

3.3.1. Digital Archaeology . 39
3.3.2. Digital Geology . 40

3.4. NTFS Fragmentation . 41
3.5. NTFS Data Allocation Process . 47
3.6. Data Recovery . 49
3.7. Data Mapping . 51

4. Experimental Setup 55
4.1. Motivation . 55
4.2. Static Areas . 56

4.2.1. Data Collection . 57
4.2.2. Data Analysis . 59
4.2.3. Map Evaluation . 60

4.3. Repeated File Operations . 60
4.3.1. Platform . 61
4.3.2. Implementation . 63
4.3.3. Map Creation . 67

4.4. Writing Type Behavior . 68
4.4.1. Virtual Hardware . 68
4.4.2. Process Description . 68
4.4.3. Implementation . 69
4.4.4. Bitmap Manipulation . 69

4.5. HDD vs. SSD Allocation Differences 71
4.6. BitLocker Allocation Changes . 72

5. Result 73
5.1. HDD vs. SSD Allocation Differences 73
5.2. BitLocker Allocation Changes . 74

6. Summary of Work 77
6.1. Article A: Creating a Map of User Data in NTFS to Improve File Carving 79

x

Contents

6.2. Article B: Using NTFS Cluster Allocation Behavior to Find the Loca
tion of User Data . 80

6.3. Article C: Disk Cluster Allocation Behavior in Windows and NTFS . 82
6.4. Article D: An Empirical Study of the NTFS Cluster Allocation Behav

ior Over Time . 83
6.5. Map Examples . 84

6.5.1. Static Areas . 85
6.5.2. Allocation Activity . 88
6.5.3. Advanced Map Attributes 88

7. Contributions 91
7.1. File Fragment Carving . 91
7.2. HashBased Carving . 92
7.3. Digital Stratigraphy . 93
7.4. NTFS Fragmentation . 93
7.5. NTFS Data Allocation Process . 93
7.6. Data Recovery . 94
7.7. Data Mapping . 94

8. Conclusion and Future Work 97
8.1. Conclusion . 97
8.2. Future Work . 98

Bibliography 101

II. Included Publications 123

A. Creating a Map of User Data in NTFS to Improve File Carving 125
A.1. Introduction . 126

A.1.1. Related work . 127
A.1.2. Contribution . 130

A.2. Experimental Setup . 132
A.2.1. Data Collection . 133
A.2.2. Implementation . 136
A.2.3. Evaluation . 136

A.3. Result . 137
A.4. Discussion . 141
A.5. Conclusion and Future Work . 144
A.6. Bibliography . 145

xi

Contents

B. Using NTFS Cluster Allocation Behavior to Find the Location of User
Data 153
B.1. Introduction . 154

B.1.1. Background . 156
B.1.2. Related work . 157

B.2. Experiment . 159
B.2.1. Platform . 160
B.2.2. Implementation . 162
B.2.3. Map creation . 166

B.3. Result . 166
B.4. Discussion . 173
B.5. Conclusion and future work . 175
B.6. Acknowledgment . 176
B.7. Bibliography . 176

C. Disk Cluster Allocation Behavior in Windows and NTFS 183
C.1. Introduction . 184

C.1.1. Background . 185
C.1.2. Related work . 187

C.2. Experimental setup . 188
C.2.1. Virtual hardware . 188
C.2.2. Process description . 188
C.2.3. Bitmap manipulation . 190

C.3. Result . 191
C.3.1. Block writing . 192
C.3.2. Stream writing . 198

C.4. Discussion . 201
C.5. Conclusion and future work . 204
C.6. Bibliography . 204

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time 209
D.1. Introduction . 210

D.1.1. Background . 211
D.1.2. Related work . 212

D.2. Experiment . 214
D.3. Result . 218
D.4. Discussion . 235
D.5. Conclusion and future work . 238
D.6. Acknowledgements . 239
D.7. Bibliography . 239

xii

Contents

III. Appendices 243

E. Extended Introduction 245
E.1. Forensics . 245
E.2. Digital Traces . 246
E.3. Digital Forensics . 247
E.4. Forensically Sound . 250
E.5. Digital Forensic Models . 252
E.6. Digital Forensic Challenges . 253
E.7. File Carving . 254
E.8. Bibliography . 258

F. A Layman’s Introduction 265

G. Extended Publications 267

xiii

List of Figures

1.1. Model of I/O ecosystem . 5
1.2. Efficiency improvement calculation 10

4.1. File system fill . 65

6.1. Relationship between publications and research questions 78
6.2. Map of static areas; full partitions 86
6.3. Map of static areas; first 5 GB of partitions 87
6.4. Map of the allocation activity . 89
6.5. Map of the allocation activity over time 90

A.1. Probability of unique hashes . 138
A.2. Part of $DATA attribute of $MFT file 140

B.1. File system fill . 164
B.2. Frequency of cluster allocation; all machines 168
B.3. Frequency of cluster allocation; same operations 170
B.4. Frequency of cluster allocation 256 GiB 171
B.5. OS file position . 172

C.1. Fragment size decrease for Windows 7 using BM 7:1 layout 192

D.1. All OS mean allocation with standard file op 220
D.2. All 256 GiB with standard file operations 221
D.3. Win 7 maximum allocation using standard file operations 222
D.4. Win 10 maximum allocation using standard file operations 223
D.5. Win 7 median allocation . 224
D.6. Windows 7 mode allocation . 225
D.7. Windows 10 mode allocation . 226
D.8. Win 7 standard deviation of allocation 227
D.9. Win 10 standard deviation of allocation 228
D.10.Windows 7 number of fragments . 229
D.11.Windows 10 number of fragments 230
D.12.Windows 7 median stats . 231
D.13.Windows 10 median stats . 232

xv

List of Figures

D.14.Windows 7 max sequence size . 233
D.15.Windows 10 max sequence size . 234

xvi

List of Tables

1.1. Efficiency calculation . 12

3.1. Categorization of related work in file carving 33
3.2. Files per fragment interval and per specific fragment rate 42
3.3. Distribution of the number of fragments in files 44
3.4. Four types of storage patterns . 46
3.5. File carving/data recovery tools . 50
3.6. Data recovery live Linux distributions 51

4.1. Details of hashed computers . 58
4.2. Windows types in file ops experiment 61
4.3. File operation settings . 64
4.4. Unallocated areas after the BM 7:1 manipulation 70
4.5. Modified areas of BM 10:2 . 71

5.1. Last User Journal Update Sequence Number increments 73
5.2. BitLocker file allocation differences 74
5.3. New files in BitLocker . 75

A.1. Partition sizes and 0x00 fill . 135
A.2. Evaluation result . 141

B.1. Windows version in experiment . 161
B.2. File operations . 162
B.3. File operation settings . 163

C.1. Unallocated areas after the BM 7:1 manipulation 190
C.2. Modified areas of BM 10:2 . 191
C.3. The 11 largest free areas in BM 10:0 194
C.4. The 8 block write operations using BM 10:0 194
C.5. The 19 block write operations using BM 10:1 196
C.6. The 21 largest free areas in BM 10:3 197
C.7. The 3 block write operations using BM 10:3 197
C.8. The number of fragments and sizes using BM 7:1 199
C.9. The number of fragments and sizes using BM 10:0 200

xvii

List of Tables

C.10.Accumulated amount of first fragment sizes for stream writing 201

D.1. Windows versions in experiment . 216

E.1. The matrix of data deposition vs. content/metadata 247

xviii

Acronyms

5WH who, what, when, where, why and how 154

AFF4 Advanced Forensics Format v.4 . 52

API Application Programming Interface . 42

ASCII American Standard Code for Information Interchange 21

BFD Byte Frequency Distribution . 256

CNN Convolutional Neural Network . 34

CPU Central Processing Unit . 15

CRATE Cyber Range And Training Environment 239

DFaaS digital forensics as a service . 210

DMA Direct Memory Access . 26

DFRWS Digital Forensic Research Workshop 247

DoD Department of Defense . 248

EFS Encrypting File System . 4

xix

Acronyms

ELM Extreme Learning Machine . 35

EXT4 fourth extended filesystem . 214

FAM Factory Access Mode . 155

FAIR Findability, Accessibility, Interoperability, and Reusability 57

FAT File Allocation Table . 213

FBE File Based Encryption . 26

FDE Full Disk Encryption . 4

FFA FirstFree Algorithm . 48

FNN FeedForward Neural Network . 34

FFS Fast File System . 41

FOI Swedish Defence Research Agency . 216

FRS File Record Segment . 25

FTL Flash Translation Layer . 155

GPT GUID Partition Table . 19

GPU Graphics Processing Unit . 157

xx

HDD hard disk drive . 4

HFS+ Hierarchical File System Plus . 36

JPEG Joint Photographic Experts Group . 32

LBA Logical Block Addressing . 209

LCN Logical Cluster Number . 20

LPVA Logical Partition Volume Address . 212

MAC Media Access Control . 15

MBR Master Boot Record . 26

MFT Master File Table . 211

NFC National Forensic Centre . v

NIC Network Interface Controller . 15

NIJ National Institute of Justice . 252

NIST National Institute of Standards and Technology 248

NTFS New Technology File System . 210

NTNU Norwegian University of Science and Technology v

xxi

Acronyms

OS operating system . 210

PUP Parallel Unique Path . 257

RAM Random Access Memory . 212

RDC Real Data Corpus . 133

RoC Rate of Change . 32

SED Self Encrypting Drive . 4

SHA1 Secure Hash Algorithm 1 . 215

SSD solidstate drive . 238

SVM Support Vector Machine . 257

TPM Trusted Platform Module . 26

TxF transactional NTFS . 26

UEFI Unified Extensible Firmware Interface 28

VCN Virtual Cluster Number . 20

VDL valid data length . 213

VM Virtual Machine . 13

xxii

XTS XEX Tweakable blockcipher with ciphertext Stealing 27

xxiii

Part I.

Overview

1

1. Introduction

DrWatson finds Sherlock Holmes crawling on his knees in the corner of
a large parking lot, carefully examining every square meter of the ground
in a strictly sequential pattern.
— What are you doing?
— I dropped ProfessorMoriarty’s smartphone when I exitedmy car over

there.
— But why are you searching here, then?
— Patience, my dear Watson! I will eventually reach my car and find

the phone.

Sherlock Holmes would definitely benefit from a map showing where to find Mori
arty’s smartphone. The map should show the probability of the phone’s placement
at different positions within the parking lot. When Holmes finally finds the (proba
bly broken) phone he would also benefit from a map of the phone’s internal storage,
showing the most probable position of Moriarty’s incriminating data.
Sherlock Holmes’s crime fighting colleagues around the world would definitely ben

efit from maps of digital storage media content, because they do like Holmes’s did in
the parking lot and search the media sequentially [1]. The application area of a map can
actually be expanded to anyone searching within digital data. Having access to a map
showing the probable position of the sought after data would mean a real improvement.
Conti et al. [2] have declared that

maps of binary objects can be used to assist humans in navigating to re
gions of interest. They can also be used to highlight certain desired regions
and filter those that are less important to the analyst. [2, p. S4]

Already 2,500 years ago the Chinese general Tzu pointed out the importance of sit
uational awareness, i. e. having access to information on your status, surroundings and
enemies [3]. Information dominance is key to success and consequently who knows
more wins. A common artifact laden with useful information is the map. Maps can for
example be used for

decision making, for navigation, for education, for recreation, for infor
mation and for a host of further applications. [4, p. 1]

3

1. Introduction

Hence you cannot have situational awareness without access to a good map.
Currently the situational awareness in the digital forensic process is decreased by the

fact that not all available information is used. A yet unexplored source of information
is the inherent structures caused by the file system allocation algorithm [5, 6]. The
approach is of special interest to file carving, but most fields dealing with retrieval of
digital data from storage media will benefit.
This thesis study the concept of creating a map of the allocation activity in a generic

(storage media) partition or volume1. The concept is meant to be used for creating
generic maps of specific combinations of a file system, operating system (OS), usage
model, file system age, etcetera.
The file data allocation process, and hence themapping concept, is applied at the log

ical level of a partition in the I/O ecosystem (see Figure 1.1). The concept is therefore
independent of the partitioning of the storage media, the storage media type (hard disk
drive (HDD), solidstate drive (SSD) or any other media format). Neither is it affected
by Full Disk Encryption (FDE), because FDE is transparent to the file data allocation
process [7]. FDE is either implemented in hardware by the storage media controller
(called Self Encrypting Drive (SED)), or software based block device encryption (for
example BitLocker, dmcrypt and FileVault [8]). Also software based stacked file sys
tem encryption (for example Encrypting File System (EFS) and eCryptfs) is working
transparently to the file data allocation process. It creates an encrypted container, which
is regarded as an ordinary file by the I/O ecosystem.
The partition maps can be used in any wellperformed digital forensic process to

speed up the access to relevant stored data. They can also be reused in many different
situations, in the same way as a geographical map. The speed increase is achieved
by reading blocks of data in the most relevant order based on the information in the
map. In this way the probability of finding relevant data early in the process is in
creased, without skipping any data. To test the applicability of the mapping concept
New Technology File System (NTFS) is used as a proofofconcept.
There are (at least) two schemes used for data block (disk sector) addressing at the

logical level of the I/O ecosystem. The Logical Block Addressing (LBA) is used for
addressing the full storage media through the storage media controller. The Logical
Partition Volume Address (LPVA) is used within a partition (see Figure 1.1). The map
ping concept works at the LPVA level.
The mapping concept is future proof, because for each new hardware generation a

new map can be created based on the same concept. The inherent structures created in
a partition by the allocation algorithm(s) forms the foundation of the mapping concept.

1Sometimes the terms partition and volume are defined differently (see Section 2.1). However, we will
refer to both terms as a (storage media) partition in the thesis, as not to confuse the reader with other
uses of the term “volume”.

4

Figure 1.1.: A theoretical model of the I/O ecosystem and the placement of the thesis
work (the green rectangle with the text “File data allocation”). Three types
of storage encryption are also shown. Without encryption the process fol
lows the big arrows. When using encryption the process instead passes the
specific encryption type box. Neither the encryption types, nor the storage
media type, affects the file data allocation step.

5

1. Introduction

General applicability is achieved by using a black box model, where the actual alloca
tion pattern is studied, regardless of how it was created and by what I/O ecosystem. As
long as it is possible to identify the partition boundaries in a storage media the concept
can handle any I/O system and partition layout. We also show, as a proofofconcept,
how NTFS partitions can be identified in storage media.
In case of a digital forensic investigation, an investigator has to fully understand how

data is arranged and placed; otherwise, interpretation of the data is questionable. This
is certainly true and might seem to contradict the use of a black box model. However,
interpretation of data is done for individual files and the black box model is applied
at the file data allocation level, below the file level (see Figure 1.1). The file data
allocation level is important for the file carving process to enable the file fragments
to be properly reassembled. Such knowledge can for example be used to improve the
ability to identify, collect and reassemble file fragments from broken file systems. It is
also applicable to a wide range of research fields within and outside of digital forensics.
Using a black box model does not interfere with the actual allocation pattern, it only
hides the inner workings of the I/O ecosystem. Consequently our mapping concept is
generically applicable.
An example of the generic applicability of the mapping concept is shown using the

recently introduced 4 KiB Master File Table (MFT) records in NTFS. Due to them the
$MFT file can now be four times as large as when using 1 KiB records. This will pos
sibly affect the placement of the maximum allocation activity, both through its larger
size, but also through a higher allocation activity from the MFT records themselves,
for example due to resident files. However, as long as the mean file size is much larger
than an MFT record the bulk of the allocation activity will take place outside of the
$MFT file and consequently not affect the mapping concept. Furthermore, the map
ping concept uses a black box model and can therefore handle any new formats by
simply creating a new map incorporating the change.
The rest of the chapter presents the problem description, a theoretical assessment of

the map effect, the aim, goal, scope and delimitations of the project. Also the research
questions are given and motivated. The chapter is ended with an outline of the thesis
itself. Readers needing a more thorough introduction to digital forensics and related
research fields are recommended to read Appendix E in addition to Chapter 2. There
is also a layman’s introduction to the area in Appendix F.

1.1. Problem Description

Most fields related to digital forensics are burdened by the constantly increasing amount
of data to handle [1, 9–20]. In the digital forensics field the situation has led to an in
creasing backlog of cases [1, 21, 22]. The negative effects of the backlog are noticeable

6

1.1. Problem Description

and the backlog is

already a hindrance frequently encountered in modern policing. Con
tributing factors to the backlog include the volume of cases, the volume of
data, limited resourcing, limited manpower, alongside an overly arduous
digital forensic process. [1, p. 5]

The increase in the amount of data to handle is driven by the digitalization of soci
ety [5]. Another factor is the growing capacity of storage media [23] in combination
with their (relatively) slow interfaces [24, 25]. The field is also burdened by the tradi
tion of searching storage media sequentially [1].
The reason for the sequential search strategy is the fact that the read speed of a disk

is higher in sequential mode, than in random mode. Each read operation require the
full chain of instructions to be processed. For HDDs there is also an extra movement
of the disk head added to the processing time [26, 27].
The random read speed penalty has lead to a focus on developing faster algorithms.

There is however a limit on the possible algorithmic improvements. Further develop
ment is therefore getting harder and harder. Meanwhile there are valuable resources
wasted due to inefficient digital forensic processes [1, 21].
The increasing influx of cases, larger storage media sizes and higher number of items

per case is also affecting the working environment of the digital forensic investigators.
Therefore

[w]e can conclude that the pressure of cases, which leads to an increase
in the total volume each examiner is asked to investigate in the same time,
is one of the factors behind the delay of investigation. [28, p. 14]

The current situation with increasing backlogs is also affecting the rule of law, which
is one of the corner stones of democratic societies. Consequently

[s]uch delays in processing evidence are harmful and will inevitably
bog down the criminal justice system, giving offenders time to commit
additional crimes and causing immeasurable damage to falsely accused
individuals. [22, p. 1353]

When different digital forensics practitioners were asked to list the significant chal
lenges of the field most of them listed problems surrounding data recovery, structuring
of data, data reduction and unusual patterns in data [29]. The listed challenges show the
need for information on how data are actually structured by the allocation algorithm.
Within file carving, a key component of digital forensics, the processing time is

a major problem [30]. The situation can be compared to the famous needle in the
haystack. Only that this time the needle is broken into pieces, there are volumes of
irrelevant needle fragments present and the haystacks are growing.

7

1. Introduction

To reassemble a file the investigator first has to find all the file’s fragments and
nothing but the file’s fragments. This is done through data type identification or hash
comparisons. Then the correct order of the file’s fragments has to be found [5, 31].
Consequently the increasing amount of data causes an explosion in fragment identifi
cation and ordering operations [32–38].
Yet another problem facing a digital forensic investigator is how to handle broken

or corrupt storage media [5, 31]. Either (a part of) the data blocks are unreadable, or
the file system is broken, or both alternatives. The consequences are affecting both the
processing time, amount of extracted data and reliability of the results.
The situation gives rise to several consequences:

• The data acquisition process requires the integrity of the source and destination to
be checked, usually by hashing the data. An intermittent reading error causes the
hashing process to abort. Therefore the storage media either has to be omitted
from the investigation, or its evidential value is diminished (the process is no
longer forensically sound).

• The evidential value of any lost parts of the storage media is unknown.

• There is currently no way of knowing where to focus the remaining read op
erations of a failing disk without using the file system. This causes extra read
operations, further damaging the disk.

• Reassembly of carved file data is done based on the the assumption of low frag
mentation, a homogeneous data structure of the specific file type and a sequential
allocation of the fragments. This assumption is seldom true [39].

The use of FDE can be compared to a broken or corrupt storage media from a digital
forensic investigator’s point of view. However, in the case of FDE the media can be
seen as completely broken, because all data are unavailable. This is an increasing
problem and has been for at least 15 years. Currently the best ways of mitigating FDE
are to perform live (onscene) forensic acquisition or persuade the suspect to give up
the encryption key [9, 40–42].
The problems presented above limits the ability of the digital forensic investigator to

fully utilize the evidence. It also prolongs the time taken to analyze the data and will in
the end decrease the evidence value of the investigation. This leads to a selffulfilling
loop where the citizens’ trust in the legal system is eroding.
By also utilizing information on the behavior of the allocation algorithm the effi

ciency of the forensic process will increase. Information on the allocation activity in
different positions of a partition can greatly speed the investigative process up. This
is for example important during live forensics of encrypted storage media, where time
might be short for different reasons.

8

1.2. Theoretical Assessment of the Map Effect

The allocation activity can be translated to the probability of finding user data in
different positions of generic storage media. In that way the process can be focused to
the areas where it matters most, without first reading a large amount of irrelevant data.
The map format presents the information in a well known and accessible format.
Once again the need for a better understanding of the data allocation process and the

resulting inherent structures is highlighted. Without situational awareness any critical
mission is a lost cause, hence the idea of a map showing the allocation activity at differ
ent positions in a generic partition is well worth exploring. A map can be used to first
plan the work, then tackle and finally conquer the massive amount of data. Exactly in
the same way as a map would be used in classical warfare.

1.2. Theoretical Assessment of the Map Effect

Searching for something where it is more probable to find is better than searching
based on any other parameter, as in the case with Sherlock Holmes and the dropped
smartphone. This is the essence of the PhD thesis. The thesis transfers the concept to
the digital forensic field of file carving and uses Windows NTFS as a proofofconcept
implementation. However, the concept is applicable to any file system that allocates
storage media blocks in a deterministic way. It can also be used in any situation where
knowledge on the allocation frequency at different positions in a file system (partition)
is beneficial.
A typical application area for amap is the digital forensic field of hashbased carving.

Sampling is currently used to speed the process up, but a higher speed (lower sampling
frequency) means a lower detection rate. The use of a mapwill introduce the possibility
to vary the sampling frequency over the partition and in that way improve the efficiency
of the carving.
If we do not know where to increase or decrease the sampling frequency we have to

use a static sampling frequency, which is the current situation in hashbased carving.
The sampling frequency is chosen to give the optimal balance between speed and de
tection rate calculated over the whole partition. Figure 1.2 shows the static sampling
frequency as a dashed red line. To theoretically estimate the efficiency improvement
we assume we have a map that looks like the solid green line in Figure 1.2 (it is inspired
by Figure 6.4). The map enables us to use a dynamic sampling frequency that follows
the allocation frequency distribution of the map.
As can be seen in Figure 1.2 the static sampling frequency leads to over sampling

at the beginning and end of the partition, and under sampling in the middle. Over
sampling wastes time and under sampling decreases the detection rate. Consequently
the use of our mapping concept increases the speed and/or the detection rate of hash
based carving.

9

1. Introduction

Figure 1.2.: A theoretical example showing the differences between a static and dy
namic sampling frequency for hashbased carving. The time taken for
collecting one sample is the same for both methods. The static sampling
frequency is over sampling at the start and end of the partition, and under
sampling at themiddle. This is based on the assumption that the green solid
line might also represent the allocation behavior of a generic partition. The
figure shows a theoretical example and therefore does not contain any val
ues on the X and Y axes. Even though the figure shows a line diagram
the fictive values of the axes represent discrete LPVAs on the X axis and
samples on the Y axis.

10

1.2. Theoretical Assessment of the Map Effect

Although the line diagram in Figure 1.2 only represents a theoretical usage model
of a map, it still shows the principle and possible improvements of using the mapping
concept. As long as the allocation activity of a file system is deterministic and generates
a nonuniform allocation activity distribution, the mapping principle will improve any
process where stored data are read without the use of the file system.
Based on Figure 1.2 the theoretical improvements of the mapping concept can be

calculated. There are three typical use cases, where the static sampling frequency is
either

1. set at the low starting value of the dynamic sampling frequency,

2. set at the maximum of the dynamic sampling frequency, or

3. set at a level giving an equal total amount of samples as the dynamic sampling
frequency.

The areas under the curves in Figure 1.2 represent the total samples used for each
sampling type. It is therefore possible to use the area difference to calculate the devi
ation from the optimal sampling rate (the dynamic sampling curve), compared to the
actual amount of samplings for the static sampling. The equations for calculating the
over sampling ratio, So, and under sampling ratio, Su, as well as the distance d can be
seen in Equations (1.1) to (1.3).

d =
c(r − q)

r
(1.1)

So =
a(q − p) + 0.5q(c− d)

q(a+ b+ c)
(1.2)

Su =
b(r − q) + 0.5d(r − q)

q(a+ b+ c)
(1.3)

From Figure 1.2 we estimate a = 8, b = 16, c = 32, p = 4 and r = 20. The
rest of the variable values, as well as the over and under sampling rates, are shown in
Table 1.1.
As can be seen in Table 1.1 40% of the samples are wasted when using static sam

pling with the same detection rate as for the maximum of the dynamic sampling. When
we use the same total amount of samples for the two sampling models the static sam
pling wastes 26.7% of the samples and get a detection rate 26.7% lower than the dy
namic sampling. These results are based on theoretical estimations of the real world
and consequently only give an indication of the possible improvement using the map
ping concept (a dynamic sampling rate) compared to a static sampling rate.

11

1. Introduction

Table 1.1.: The over and under sampling when using static sampling relative to dy
namic sampling based on Figure 1.2. The values of d and q are also given.

Static
sampling level d, q So [%] Su [%]

Low d = 25.6, q = 4 11.4 205.7
Maximum d = 0, q = 20 40 0
Equal d = 12.8, q = 12 26.7 26.7

1.3. Aim and Goal

The aim of the research is to improve the digital forensic process by exploring the
inherent structures left in a partition by the allocation algorithm. The concept can be
generalized to a study of the allocation behavior and the patterns it leaves within storage
media. Using that knowledge the idea is to create a map of the allocation behavior at
different positions within a generic partition, regardless of the OS and file system.
Any extra knowledge gained during the process is meant to accompany the map

and further improve the digital forensic process. Ideally the map should be usable in
any situation where knowledge on the allocation pattern and behavior of a system is
beneficial. The concept is therefore meant to be applicable also outside of the digital
forensic field.
The goal of the research is to construct a proofofconcept map of the allocation

activity at different positions in an generic NTFS formatted partition. During that pro
cess the feasibility of a map will be explored. Any features related to the allocation
process will be studied alongside the feasibility study. To improve the applicability
of the proofofconcept results live data from real computers will be used as much as
possible. Preferably the result should have a wide coverage of application areas.
By constructing a map we will give the digital forensics community a versatile tool

with many areas of application. We have not yet found any other research pursuing the
same idea. Our work will therefore open a new, yet unexplored, area of research.

1.4. Scope and Delimitations

The research presented in the thesis is delimited to studies of NTFS, which is the de
fault file system in the Microsoft Windows OS [43–45]. In January 2023 Microsoft
Windows had a market share of more than 74% for desktop computers [46].

12

1.5. Research Questions

The mobile phone market is larger than the desktop computer market and would
therefore seem natural to use as a proofofconcept. However, the storage media of
a mobile phone is much harder to access at the low levels of the OS stack required
in our experiments, than the storage media of a desktop computer. Consequently we
find NTFS formatted desktop computer storage media to be the best alternative for a
feasibility study of the mapping concept, with accompanying proofofconcept imple
mentations.
Our study on static areas2 in NTFS is delimited to 30 unrelated real world NTFS

formatted main partitions3 of Microsoft Windows home and office computers. This
limits the foundation of the research, which would preferably have been much bigger
to secure the statistical significance of the results. Increasing the number of computers
would possibly result in a decreased (or even zero) number of fully static areas. How
ever, the collected data set is enough to prove the feasibility of the mapping concept.
We used a limited amount of Virtual Machines (VMs) and file operations for the ex

periments on allocation behavior. Even though the significance of the results therefore
might be challenged, they are large enough to work as proofofconcept. The results
show that it is possible to create a map of the allocation activity at different positions
of a partition. The focus of the research has been a high level of authenticity. We have
used a framework that makes the experiments easy to extend. An extension would add
better redundancy and higher resolution, but the overall configuration would be the
same.

1.5. Research Questions

The research gap presented in Section 1.1 gives rise to the following question:

Can the inherent structures introduced by the allocation algorithm of a
file system be used to improve the digital forensic process and if so, how?

As described earlier in Chapter 1 the how can be answered by the introduction of a map
showing the allocation activity within a partition.
The scope of the question is large because of the many different file systems and

allocation algorithm implementations currently existing. However, as long as the data
allocation algorithm used in a file system does not change, the mapping concept can
2A static area is defined as an area containing the same data at the same position in different partitions
containing the same type of file system.

3We use the term main partition to represent the partition in which the OS resides. This partition is
called the boot partition by Microsoft. From Microsoft Windows 7 and onward the partition with the
boot loader is called the system partition and is separate from the boot partition. Before Windows 7
the system and boot partitions were the same [47].

13

1. Introduction

be used for any file system. Consequently it is possible to use a single file system as
a proofofconcept. We have chosen to use NTFS because of its ease of access and its
dominant market share for computers.
This section first presents the prerequisites for the formulation of the research ques

tions, which then are presented in a separate section. Furthermore, the significance
of each of the research questions and their connections to the contribution of the PhD
project are discussed. The contributions of the research is presented in Chapter 7.

1.5.1. Prerequisites

To be able to create a map of the allocation activity in a NTFS formatted partition some
prerequisites have to be fulfilled. First of all we must know if there are any structures to
be used at all. We also need to know if they are generic, i. e. if the structures are present
regardless of OS version, size of the partition, use case of the file system, etcetera.
Secondly we need to know the distribution of the allocation activity over the file

system. The map will be of no value if the distribution is even. At the same time
the distribution should be as generic as possible. The same is true for the structures
presented above.
It is also desirable to have a better understanding of the detailed allocation behavior

at the file level. Are there any differences depending on file type, writing behavior, file
size, etcetera? Such information will for example give typical fragment sizes, changes
of the sizes, and distances between fragments. The information can direct the inves
tigator to the most probable positions of the remaining fragments of a file. It will
furthermore indicate the proper ordering of the fragments during reassembly.
It is also good to get a better understanding of the allocation behavior over time

and different OS versions. Is the distribution fixed or varying during the life time
of a partition. Does it vary between different versions of Microsoft Windows? By
incorporating information on the aging of a file system the precision of the map will
be higher. The situation can be compared to the slow movement of the magnetic poles
of the earth, the tectonic movements, the lithospheric flexure movement due to the last
glaciation, etcetera.

1.5.2. Research Questions

Different OSs might use differing allocation algorithms and hence cause their own
specific data patterns. However, the proposed mapping principle is the same, only
the allocation activity in different areas vary. Due to the market share of Microsoft
Windows, NTFS is used as the foundation for the research. The main research question
of the PhD project therefore can be formulated as:

14

1.5. Research Questions

How can the inherent structures created by the allocation algorithm
be used to create a map showing the allocation activity at different posi
tions in the NTFS formatted main partition of a generic Microsoft Win
dows computer?

The main research question gives rise to a number of new research questions. They
together cover the prerequisites for the creation of a map. All questions are answered
in the publications (see Part II) written during the PhD project. The restrictions of the
main research question are implicit for all new questions. The new questions are:

RQ:1 What generic (static4) structures are there?

RQ:2 How is the allocation activity distributed?

RQ:3 What differences in allocation behavior are there at the file level?

RQ:4 How does the allocation activity distribution vary between different Microsoft
Windows versions?

RQ:5 How does the allocation activity distribution vary over time?

The answers to Research questions RQ:1 to RQ:5 together show if and how the main
research question can be answered. Themotivation for each research question and their
significance for the main research question is discussed in Section 1.5.3.

1.5.3. Significance of Research Questions

Research question RQ:1 is based on the assumption that there are too many parameters
affecting the life of a Microsoft Windows computer to generate any common structures
in a generic NTFS partition. Typical parameters are unique hardware configurations,
for example serial numbers of the Central Processing Unit (CPU) and theMedia Access
Control (MAC) address of the Network Interface Controller (NIC). There are also
unique user settings, as well as user behavior affecting the computer. If the hypothesis
on the lack of file system structure is true, a map cannot be created. If the hypothesis
is false, i. e. there are static areas in a generic NTFS formatted main partition, the
foundation for a map is present.
The hypothesis behind Research question RQ:2 is based on the assumption that the

allocation activity is evenly distributed over the file system. If the hypothesis is true
there are no allocation differences to base a map on. If the hypothesis is false, there are
4The term static is used to describe an area containing the same data at the same position in different
partitions (and even in different hardware). Please observe that the version of the OS in the computers
might also differ.

15

1. Introduction

areas with higher allocation activity and it is possible to create an allocation activity
map.
Data can be written in two ways, either as a stream of unknown size or as a big

block with known size. The hypothesis behind Research question RQ:3 is based on
the assumption that functions in the OS and file system hide how data are written.
Therefore the system will always show the same allocation behavior, regardless of the
type of writing.
If the hypothesis behind Research question RQ:3 is true the map would be of less

value due to a lack of important information. If the hypothesis is false, i. e. there are
differences in how block versus stream written data are allocated, a more versatile map
will be produced. This for example benefits the file carving field, where identification
and reassembly of file fragments will be easier. The information will also indicate the
causal order of files, which can be used to check the validity of time stamps.
The hypothesis behind Research question RQ:4 is based on the assumption that there

are no differences in allocation behavior between different versions of Microsoft Win
dows (fromWindows 7 and up). The version number of NTFS has been the same since
Windows XP [48, 49]. Hence NTFS is a well established file system with an already
fully optimized allocation algorithm.
If the hypothesis behind Research question RQ:4 is true it is not possible to connect

a NTFS partition to a specific Microsoft Windows version. If the hypothesis is false,
it would be possible to identify the OS version used in connection with a partition, for
example when attributing a disputed storage media. The information can also be used
to create a specific map for each OS version and in that way increase the precision of
the map.
The hypothesis behind Research question RQ:5 is based on the assumption that

NTFS is not subject to aging effects. Consequently there should not be any differences
in the behavior between early and latter allocations. The idea is that the allocation ac
tivity will be evenly distributed until the partition is fully utilized and then concentrated
to areas where files have previously been deleted.
If the hypothesis behind Research question RQ:5 is true it will not be possible to

estimate the age of a file system from the allocation pattern alone. If the hypothesis is
false it will be possible to create maps adjusted for the age of a file system, as well as
estimate the file system’s age from the allocation pattern.

1.6. Outline of Thesis

In Part I of the thesis Chapter 2 gives a short background of the work and Chapter 3
presents a selection of related work relevant to the PhD project. Chapter 4 then presents
details of the experiments executed in the PhD project, with Chapter 5 presenting the

16

1.6. Outline of Thesis

results of the experiments on allocation differences between HDDs and SSDs, as well
as the differences induced by the use of BitLocker FDE. In Chapter 6 the publications
of the PhD project are listed and set into context. Chapter 7 presents the contributions
of the PhD project. The conclusions drawn from the research work and suggestions for
future work are given in Chapter 8.
Part II of the thesis presents the articles published during the PhD project. The arti

cles are complete, but have been adjusted to the layout of the thesis and also had some
minor editorial changes. The changes are described in the introductory text preceding
each article.
Part III contains an extension of the background on digital forensics with related

fields in Appendix E, as well as a layman’s introduction for noncomputer scientists
in Appendix F. Lastly an extended list of publications by the author is presented in
Appendix G.

17

2. Background

This chapter should give the reader the necessary background needed to understand the
rest of the thesis. It covers storage of data, file systems, data allocation, NTFS and the
sciences surrounding maps.

2.1. Storage Media and Structuring

The storage media is (mostly) divided into one or more partitions. The layout is held
in a partition table placed at the beginning of the storage media [50]. Modern GUID
Partition Table (GPT) based partition tables can contain a large number of partitions,
but the Microsoft Windows implementation only allows up to 128 partitions [51]. A
partition is a collection of consecutive sectors of a storage media.
A volume is created from one or more storage locations and may or may not have

consecutive addresses allocated to it. It therefore can consist of several partitions from
different storagemedia, but can also be divided into several partitions. The confusion is
manifested by Carrier in a figure where a volume contains three partitions, each holding
a volume[50, p. 58]. However, often the two terms are used as synonyms [50]. We use
the term partition for both partitions and volumes in the thesis to avoid confusion with
other uses of the term “volume”.
The physical construction of an HDD and SSD differs greatly. A major construc

tional difference is the wear leveling used in SSDs, where data is regularly moved
around to even out the wear on vital components. However, at the logical, file sys
tem, level (see Figure 1.1) the storage media controller hides the underlying hardware
differences [52–57]. van der Meer et al. writes:

Wear leveling, a technique employed by SSD firmware to extend the
lifetime of the device, distributes file blocks evenly over the physical stor
age. However, this is handled transparently by the firmware and thus does
not affect allocation of blocks at the file system level. [53, p. 2]

Kumar writes the following regarding the wear leveling process:

To make things consistent with the operating system, the controller will
remap the block’s logical address on the fly. [52, p. 7]

19

2. Background

The fact that the storagemedia type is not affecting the file data allocation pattern has
also been proven experimentally (see Sections 4.5 and 5.1). The allocation patterns for
the test files were identical in the HDD and SSD. The only major difference between
the partitions were the time stamps of the files.

Storage media is divided into blocks of data called sectors, allowing shorter ad
dresses to be used by addressing the blocks instead of separate bytes. This allows larger
capacity storage media to be used without exhausting the address space. The size of
the sectors are mostly based on multiples of 2, with 512 as the de facto standard [58],
but large (newer) disks often use 4 KiB sectors [59, 60].

The file system can use a logical sector size different from the size of a storage media
sector. Consequently a disk with 512 B storage blocks might have a logical block size
of 4 KiB and vice versa [60, 61]. The actual physical size of a sector is slightly larger
than the logical, because each sector has a checksum attached to it to enable detection
(and possibly correction) of errors. This process is handled by the disk controller and
therefore is transparent to the user [62].

The storage media controller converts between the addresses given by the OS and
the LBA addresses of the storage media. The partitions have their own logical address
space called LPVA [50]. A LPVA address is an abstraction of the underlying physical
layer of the storage media to simplify the work of the file system. The LBA addresses
are measured in disk sectors from the physical start of the storage media. The LPVA
addresses are instead measured in disk sectors from the start of a partition. The address
types might correspond, but need not do [50].

The Microsoft Windows term for an LPVA is Logical Cluster Number (LCN) [48].
Microsoft also uses the term Virtual Cluster Number (VCN) for the addresses of the
data blocks within a file. Consequently a VCN is unique only to its file and is used
to keep track of the ordering of the file data blocks [48]. Since LCN (and VCN) are
Microsoft specific terms the term LPVAwill be used throughout the thesis to maintain a
general applicability of the mapping concept. However, NTFS usually use data blocks
(clusters) of 4 KiB, while disk sectors might be either 512 bytes or 4 KiB. Consequently
an LCN address might be eight times lower than an LPVA.

The storage media controller is also used to hide damaged parts of the storage media
from the file system. In HDDs the addresses of the damaged parts are held in the Glist
and Plist. The Plist contains damaged sectors found during postmanufacture testing.
The Glist is used for sectors that become corrupt during the use of the disk [63, 64].
Similar functionality can be found in SSDs [65].

20

2.2. File System

2.2. File System

A file system is an integral part of an OS. Its main function is to keep track of the files
in the computing device [66]. Files are often divided into two types. System files are
files that are part of or created by the OS of the computing device. User files are files
that are created by processes induced by the user(s) of the computing device [66].
Files are also divided into binary files (allowing all possible symbols) and text files

(containing only printable symbols) [66]. Text files often contain only symbols from
the American Standard Code for Information Interchange (ASCII) character set. This
is currently being replaced by Unicode, which includes 149,186 characters as of ver
sion 15.0 [67]. The Unicode character set covers symbols from most languages of the
world [68].
The data held in a file system are divided into metadata and file data. The metadata

of each file are usually held in a file record (a system file or data base). The metadata
of a file contain for example the file name, parent directory, time stamps and pointers
(addresses) to the positions of the file’s data [66]. The storage media arranges data
in sectors. However, file systems sometimes use their own data blocks, which might
differ in size from the storage media sectors. For example Microsoft Windows NTFS
uses a block called cluster, which usually is 4 KiB in size [69]. The NTFS address
space is therefore measured in clusters instead of sectors.
The file records are often held in a table, for example called File Allocation Ta

ble (FAT) and MFT in Microsoft’s FAT32 and NTFS respectively, and inode table in
Linux’s ext2 [70, 71]. The file table is searched when a file should be located and its
file meta data record is retrieved. Then the pointers to the blocks holding the files data
are used to read the file into Random Access Memory (RAM). Often the file table is
held in RAM to minimize the file system I/O [66].
The files held in the file system are usually organized into a hierarchical (tree) struc

ture of directories. Each level in the tree can hold files, even at the root of the tree.
The directories are also containing metadata, for example their name, as well as time
stamps and addresses of the file records held within the directory [66].
To keep track of which blocks are currently occupied with data a bitmap is used.

The bitmap contains one bit per logical block. If a block is allocated (occupied) the
corresponding bit is set to 1 and vice versa. This function allows the file system to
quickly find free blocks to allocate when data are added [66].

2.3. Fragmentation

During the file data allocation process the avoidance of fragmentation is of utter im
portance. There are two types of fragmentation occurring in file systems, internal and

21

2. Background

external. Internal fragmentation occurs when the size of a file is not evenly divisible
by the size of the smallest storage block to be used. Therefore an extra data block has
to be allocated to store the remainder of the file [58]. Using NTFS as an example a
4,097 B large file will be stored in two 4 KiB clusters, wasting 4,095 B of space. The
same situation might occur in other file system too, using even bigger blocks of data.
External fragmentation occurs when a file does not fit into any of the remaining

unallocated areas and has to be split into several pieces. The allocation algorithms
differ in how well they handle external fragmentation. A higher fragmentation rate
leads to lower access speed [58].
SSDs are less affected by external fragmentation than HDDs, which have moving

parts. An HDD has a typical seek time of 15 ms and an SSD 0.1 ms. Consequently
even mild external fragmentation is noticeable on HDDs. An SSD has to suffer from
heavy external fragmentation before the delay is being noticeable [72].
There are different reasons for file system fragmentation, for example low disk

space, file editing, appending data to files, file system forced fragmentation and wear
leveling in flash based storage media. The file system forced fragmentation occurs in
UNIX file systems built on extents. Wear leveling creates fragmentation, but not on
the LPVA level of the file system, only at lower layers [73–75].
Knowledge on the effect of data fragmentation is important in digital forensics.

When carving files scattered blocks of data need to be identified and reassembled using
only information derived from the fragments themselves. The fragmentation destroys
some of the ordered structures created by the allocation algorithm. At the same time
the data fragmentation leads to a more efficient use of the available storage. The frag
mentation also affects the map creation process by scattering the allocation activity
over the partition. Consequently it decreases the resolution of the map.

2.4. Data Allocation

There are three main algorithms used to allocate free space in computer storage. The
algorithms are contiguous, linked and indexed allocation. Contiguous allocation allo
cates a file as one contiguous block of storage media sectors or file system blocks. This
method is only suitable for system where files are never deleted of modified [58]. A
typical example is a CCTV recording system working in a roundrobin fashion.
Linked allocation creates a linked list of a file’s data. This strategy can handle all

types of file operations. However, a reading error will break the linked list, causing the
rest of the file’s data to be lost [58].
The indexed allocation strategy is currently the most popular. It works by using a

separate index of the positions of a file’s data blocks. The strategy handles external
fragmentation well, but might still require regular defragmentation. There is also a

22

2.4. Data Allocation

risk of disk space being wasted due to internal fragmentation. A typical example is a
small file requiring a full index metadata block to hold just a few index posts [58, 66,
76].
When new file data are allocated different algorithms are used depending on the OS

and file system. The internal interactions between the different parts of the I/O ecosys
tem for a combination of OS and file systemmight be complex. However, by regarding
them as a black box their combined internal behavior can be studied regardless of their
complexity. The black box principle is used in this thesis to make the mapping con
cept independent of the OS and file system combinations and their inner workings. The
concept builds on the observable file data allocation behavior of an OS and file system
in combination.
The more popular allocation algorithms are first fit, next/nearest fit, best fit, worst fit

and quick fit [58, 66, 76]. They might be differently implemented in different OSs and
file system drivers, but the main principles of their functions remain. The following
list presents their specific features:

First fit starts the search for free space at the first position in the file system. The goal
is to find a free space large enough to hold the entire file. If none of the free
spaces are large enough, a fragment of the file is written at the first free area and
the search continues for the next free area. The procedure is repeated until all
fragments of the file are written to disk [58, 66, 76].

The first fit allocation strategy causes the first part of the file system to be more
heavily utilized than the rest. Eventually the area of maximum allocation activity
will move when the partition is filled up. The active allocation area will therefore
slowly progress towards the end of the disk.

Next fit (also called nearest fit [76, p. 544]) is similar to the first fit allocation strategy.
However, the search for free space is started from the position of the last alloca
tion position. In that way the allocations are evenly spread over the file system.
The writing speed is also improved in HDDs due to less head movements [66].

The next fit algorithm fragments files for the same reason as first fit [66]. How
ever, the LPVAs of fragments might wrap around using next fit, especially when
the file system is heavily utilized.

Best fit allocates the free space best fitting the new file. This lowers the amount of
wasted space and keeps the free areas as small as possible [58, 66, 76]. When
the large free spaces are used up new files will be fragmented.

All free spaces must be known in advance to enable the selection of the best
fitting space [58, 66, 76]. This can be solved by a sorted list kept in RAM.

23

2. Background

Worst fit is the opposite strategy to best fit. It allocates new files to the worst fitting
free space. i e. the biggest of those large enough to fit the file. In this way the
areas of remaining free space are kept as large as possible, but are still used.
Therefore the probability of keeping smaller files unfragmented increases com
pared to best fit. The strategy is slow unless a sorted list of free spaces are kept
in RAM [58, 66].

Quick fit use several lists of free blocks. Each list covers a certain size range. The
search for the best fitting free space is therefore extremely fast [66]. However,
the use of multiple lists makes file deletion complex. The lists must then be
searched for adjacent free spaces tomerge. Without merging them the file system
quickly becomes fragmented. Quick fit is suitable when the file sizes are fairly
even [66].

The listed strategies are generally applicable and for example also used for allocation
in RAM. The first fit and best fit algorithms generally have a better storage utilization
than worst fit. The first fit algorithm is the fastest during normal use [58, 66].

2.5. File Writing Concepts

Files can be written to disk in two ways; either as a stream of data, or as a single
block [77]. During stream writing the final size of the file is unknown. Consequently
the free space allocation cannot be optimized. This often leads to file fragmentation,
but the effect is diminished by the internal buffering of theOS. During blockwriting the
OS knows the file’s size in advance and can optimize the allocation accordingly[78].
The specific write behavior is application dependent. A word processor normally

use block writing and streaming media from the internet use stream writing. Block
writing might also be used for temporary backing up files in case of a power loss or
hardware failure. However, the exact behavior has to be decided individually for each
application[78].

2.6. NTFS

This section gives a brief overview of Microsoft NTFS. A “$” sign preceding a term
indicates that it is a file name. Consequently the term MFT represents the concept
of a file table as used in NTFS and the term $MFT represents the file containing the
MFT[48]. Readers interested in a detailed description of the I/O ecosystem ofNTFS are
recommended to read the book Windows Internals part 2 by Allievi et al. [48]. Also
for example Carrier [50] and Tanenbaum and Bos [66] have information on NTFS,
although somewhat dated.

24

2.6. NTFS

NTFS is the default file system of current Microsoft Windows versions [43–45, 50].
In NTFS everything is regarded as a file, even the MFT itself. It can be fragmented
and distributed over the partition. Its starting address is given in the boot sector of the
partition [48, 50].
Each file in the file system has at least one record in the MFT. A record is called a

File Record Segment (FRS) by Microsoft [79], a file record by Allievi et al. [48] and
an MFT entry by Carrier [50]. We will call themMFT records, because that is the most
common term according to Google and it is also sometimes used by Allievi et al. [48,
p. 663]. An MFT record can either be 1 or 4 KiB in size [48] and the first 42 bytes
contain a record header [50]. The rest of the space is filled with file related data held
in file attributes [48, 50]. If the metadata of a file require more space than available in
a single MFT record multiple MFT records can be used. The original MFT record is
called base record and contains links to the the extra MFT records [50]. In that case
the attribute of the base record containing the links is called an attribute list [48].
Microsoft uses an index allocation strategy for the file system metadata [69, 80].

The risk of internal fragmentation during index allocation is mitigated by storing the
data of smaller files within the MFT records1 themselves. Such files are called resident
files [69].
Microsoft Windows XP is said to use the best fit allocation strategy for NTFS [50].

However, experimental results have shown that a first fit strategy is used for newly
formatted partitions. The strategy is switched to the best fit when the file system is
more heavily used [84, 85].
When formatting a NTFS partition 12.5% of the space is reserved for the MFT. The

smallest allocatable unit in NTFS is called cluster and is usually 4 KiB in size [69].
Consequently there can be either one or four MFT records in a cluster. Using 4 KiB
MFT records will cause the $MFT to grow faster, but the 12.5% reserved space will be
the same and the $MFT will still grow with one MFT record (one allocation) per file.
There is room for more than 30,000,000 files (4 KiB MFT records) within the reserved
space in a 1 TB partition. As long as the mean size of the files is much larger than an
MFT record the main part of the allocation activity will take part outside of the $MFT.
Consequently the size of the MFT records is not affecting the mapping concept or our
results to any greater extent.
NTFS uses the $Bitmap file to keep track of the allocation status of each cluster.

Record 0 is the MFT itself and record 1 is a backup of the first four records of the

1The maximum size of an internal $Data attribute in an MFT record varies depending on the size of
the other attributes. Most sources give a maximum internal $Data attribute size of 600 to 700 bytes
for 1 KiB MFT records [50, 81–83]. Microsoft reports a 900 byte limit for 1 KiB records [69]. The
attributes of a 4 KiB MFT record will probably not grow exactly four times in size. Consequently the
maximum residential file size will probably be approximately 3.6 KiB for 4 KiB records. However,
we have not been able to verify that experimentally nor theoretically.

25

2. Background

MFT. The $Bitmap file is record number 6 and record 8 is a list of bad clusters [50].
The I/O process of NTFS is protected by a journaling system, where each operation

(called transaction) is made atomic. Consequently either the file operation is executed
in its entirety, or not at all. The transactional model of NTFS is called transactional
NTFS (TxF) [48].

2.7. Encryption

Dataatrest encryption is important to protect stored data from unauthorized access.
The simplest proctection is offered by encrypting individual files, which are protected
as long as they are encrypted. A better solution is to either encrypt the storage media,
or create a encrypted container holding all files that need protection. There are three
main types of dataatrest encryption functions affecting more than one file at a time.

Stacked file system encryption (or File Based Encryption (FBE)) is a software based
container function creating a large encrypted file with a virtual file system inside.
The virtual file system can then be mounted and used as an ordinary disk for file
storage. The container stays encrypted as files are read, written and modified
through the container software, which acts as a proxy between the user and the
storage (the encrypted container) [86, 87]. Typical examples of stacked file sys
tem encryption softwares are Microsoft’s EFS [88] and eCryptfs [87] in Linux.

Block device encryption (or FDE) is a software based function that encrypts a full
storage media or partition. As for the container format the encryption or de
cryption is done onthefly when data is written to or read from the encrypted
block device [86]. This type of encryption is often combined with a hardware
module called a Trusted Platform Module (TPM) used to handle the encryption
keys [89]. Typical examples of block device encryption software is Microsoft’s
BitLocker, dmcrypt in Linux and FileVault in MacOS [8].

Hardware based encryption (or SED) performs encryption of the complete storage
media. The encryption process and keys are all handled inside the storage media
controller. The keys are not stored permanently outside of the controller, a fact
that mitigates a number of attacks against the SED (cold boot, Direct Memory
Access (DMA) and evil maid attacks for example). In that way also the Master
Boot Record (MBR) and all partitions can be encrypted without affecting the
boot process of the digital device [8, 86].

All three encryption types work either above (FBE) or below (FDE and SED) the
file data allocation layer. In other words,

26

2.7. Encryption

FDE and the underlying block device work with the disk sector as an
atomic and independent encryption unit, which means that FDE can be
transparently placed inside the disk sector processing chain. [7, p. 1]

Furthermore,

FDE concerns data at rest stored in the disk only. Data is encrypted
before being stored in the disk and decrypted after being loaded from the
disk which means that the disk should always store encrypted data. [86,
p. 2][90, p. 13]

It is also stated that current FDE, which is length preserving and uses standard encryp
tion algorithms,

[…] significantly simplifies disk encryption management as the disk
mapping does not change with encryption.
[…]
Moreover, in a disk, each sector is addressed by the Logical Block Ad

dress (or LBA) and to simplify the integration of encryption, this mapping
is kept intact when data is encrypted. [91, p. 1]

Consequently the file allocation process is neither affected by the use of FDE, nor SED
and FBE. This has also been confirmed experimentally for FDE (see Section 4.6).
A weakness of standard block device encryption is the fact that two storage media

sectors with equal content might get the same encrypted content (deterministic encryp
tion). That can help an attacker to guess the content with higher probability. Likewise
there is no cryptographically sound protection against unauthorized modifications of
the encrypted data (authentication of encryption) [91]. The standard cryptographic so
lution would be to store a salt in each sector, but that would be hard in already used
storage media, because each sector is fully occupied by data [90, 92, 93].
In current block device encryption there are som features implemented that some

what mitigates the risk of deterministic encryption and authentication of encryption.
This is done through the encryption mode used by the FDE. Currently XEX Tweak
able blockcipher with ciphertext Stealing (XTS)2 is the most commonly used mode. It
has acceptable resistance to deterministic encryption and acceptable authentication of
encryption [86, 90, 91].
BitLocker is the default FDE in Windows and is automatically enabled in Microsoft

Windows 8.1 and above for all computers supporting Modern Standby [94]. However,
the encryption is not activated until the user logs into a Microsoft or an Azure Active
Directory account. For the automatic encryption to work the following requirements
will have to be fulfilled (they are valid for Windows 10, version 1709 and above) [95]:
2XEX stands for XorEncryptXor.

27

2. Background

• A TPM v. 1.2 or v. 2.0 chip must be present

• Unified Extensible Firmware Interface (UEFI) Secure Boot is active

• Platform Secure Boot is active

• DMA is protected

Furthermore, the BitLocker setup requires the storage media to be partitioned into (at
least) two partitions. This has been the standard partitioning scheme at installation
since Microsoft Windows 7 [96].

2.8. Virtualization

Virtualization is used to enable several independent virtual computers to be run simul
tanueous on the same hardware. In that way the hardware can be used more efficiently.
The foundation of the virtualization is the hypervisor, which isolates the virtual com
puters from each other. The computers need not run the sameOS and can have different
virtual hardware configurations. There are two types of hypervisors [97]:

Layer 1 hypervisors, also called bare metal hypervisors, act as a thin software layer
between the hardware and the virtual computers. The hypervisor acts as an OS,
so no other software is needed for the virtualization, making layer 1 virtualization
almost as fast as running the virtual computers directly on real hardware. Layer
1 hypervisors are therefore often used in cloud computing and enterprise envi
ronments. Examples of layer 1 hypervisors are Xen, Hyper V and KVM [98].

Layer 2 hypervisors are easier to use and have a wider range of functionality than
layer 1 hypervisors. However, they need a separate OS to run, because they
are implemented as standard software. This makes them slower than layer 1
hypervisors and therefore often are used in private computers and nonenterprise
environments. Typical examples of layer 2 hypervisors are VirtualBox, VMWare
Workstation and QEMU [98].

Oracle’s VirtualBox, a layer 2 virtualization software, supports BitLocker encryption
on its virtual disks from version 7.0.0, since a virtual TPM and Secure Boot module
have been implemented [99]. However, automatic activation of BitLocker requires the
“Modern Standby” standard to be fulfilled and the term “Modern Standby” is not used
in the VirtualBox User Manual v. 7.0.6, not even the string “tandby”3 is present [100].
Consequently a VirtualBox virtual disk running Windows 8.1 or higher will not be
3The search was done using Firefox internal search function, which does not implement wildcards.
Therefore the “S” was left out to avoid possible case sensitivity.

28

2.9. Maps and Their Sciences

BitLocker encrypted unless the user manually enables it, at least in theory. We have
not verified this experimentally.
The TRIM command is used in SSDs to help the garbage collection and wear level

ing processes of the storage media controller to optimize the performance of the disk.
TRIM is sent by the file system to tell the controller that a block of data is no longer
needed and can be erased when appropriate [101]. VirtualBox allows a guest OS to
send TRIM commands, which are forwarded to the physical disk. However, this is
only applicable to dynamic virtual disks. A static virtual disk does not implement
TRIM, even if the required flags nonrotational and discard are used, since
its size is static and cannot be shrunken [102–104].

2.9. Maps and Their Sciences

Maps are used in a wide range of situations, frommushroom picking excursions to large
military battles. They contain a large amount of valuable information and also have
an information linking function, creating new (aggregated) information. Traditionally
maps are printed on paper, but digital maps are rapidly taking over [105].
Amap has twomain features: position and its attributes. The position is fundamental

and orientates the projection in space. The attributes of the position are then added.
These can for example be height above sea level, terrain type, vegetation, population,
or climate type. The oldest verified maps date back to the Babylonian era. What is
believed to be a hunting map has been found engraved on a mammoth tusk, which is
dated to 25,000 BC [106].
The topography field studies the surface of objects. The hills and depressions of

land are together called reliefs. The reliefs are subdivided based on physical features
such as height, form, size, slope, etcetera. In maps the height of a piece of land is often
depicted using contour lines [107].
A cartographer maps the reliefs and features of a space as accurate as possible. Usu

ally cartographers create maps of the Earth, but any space (virtual or real) is possible
to map [108].
The geological stratigraphy field studies the history of our planet through the layers

within its crust. The field is currently divided into eight groups based on the speed
of creation of different layers. These time intervals can vary from a few seconds to
108 years. Traditionally stratigraphy deals with structures that are formed in 102–107
years [109].

29

3. Related Work

We have not been able to find any other work directly matching the PhD project, i. e.
using the allocation activity of a generic NTFS partition to predict the probability of
finding (user) data in different areas of a real NTFS partition (see Section 3.5). This
chapter therefore presents a selection of research fields in separate sections. The selec
tion is based on the main contributions of our work. To expand the search we have also
looked outside of the digital forensics field. Therefore for example the Usenix File and
Storage Technologies (FAST) conference has been scanned for relevant work on file
allocation, but none has been found.
The set of articles presented in each section is not exhaustive. The articles are chosen

to give an overview of the relevant research fields. The file fragment carving section
starts with a summary of the work done during the licentiate studies [39, 110–114].
The related work within the file carving research field can be categorized in different

ways (see Appendix E.7). We therefore have chosen to use a simple division into file
fragment carving and hashbased carving and present the work in chronological order.
This is done to help the reader get an overview of the development of the research
fields. A scientific categorization of the articles based on a taxonomy by Poisel et al.
[115] can be seen in Table 3.1. The authors have divided the research field into five
classes:

Signaturebased approaches build on the concept of magic numbers, i. e. specific
byte sequences in the header and footer of files. For example a JPEG file starts
with 0xFFD8 and ends with 0xFFD9. The category also include methods from
the hashbased carving field.

Statistical approaches utilize different statistical metrics for classification, for ex
ample entropy or the Byte Frequency Distribution (BFD).

Computational intelligence based approaches use machine learning and artificial
intelligence for classification. Typically algorithms such as kNearest Neighbor
and Support Vector Machine (SVM) are used.

Approaches considering the context use information from surrounding fragments
for classification. The method is based on the assumption that the external frag
mentation is low in most file systems.

31

3. Related Work

Other approaches contain for example methods to visually separate data types and
methods based on combinations of the other approaches.

The category signaturebased approaches in the taxonomy by Poisel et al. corre
sponds to the hashbased carving category used by us. Our file fragment carving cate
gory corresponds to a combination of the statistical approaches and computational in
telligence based approaches in the taxonomy. Please observe that the work by Ali and
Mohamad [132] contains components from the signaturebased, statistical and compu
tational intelligence based approaches in the taxonomy and therefore is categorized as
other approaches. We categorize the work as filefragment carving due to its direct
use of fragment data.

3.1. File Fragment Carving

The section first presents the research work done during the licentiate studies. Then
the rest of the related work within the file fragment carving field is presented.

3.1.1. The Licentiate Thesis Work

During the licentiate studies different features for data type categorizationwere studied.
The goal was to find simple, fast and accurate algorithms suited for high entropy data.
The main part of the work was done on Joint Photographic Experts Group (JPEG) files.
The evaluated features are histograms of single and byte pairs respectively (the BFD

and 2gram algorithms). Also the rate of change between bytes in a data block is in
cluded (the Rate of Change (RoC) algorithm) [39, 110–114]. All algorithms work on
NTFS clusters (4 KiB blocks of data). In this way the risk of getting two or more file
types in one data block is decreased. However, remnants of deleted file data at the end
of an NTFS cluster might still confuse the algorithms.
The 2gram algorithm has the highest detection rate for JPEG data fragments. The

algorithm creates a histogram by moving a two byte long sliding window one byte at a
time over the data block. The algorithm is trained on 1 MiB data blocks to compensate
for the large set of possible byte pairs ((28)2 = 65, 536). The values are then scaled to
fit a 4 KiB data block.
The 2gram algorithm is the most complex of the three. It is suitable for structured

file types where specific byte combinations should be present or missing in a file. The
BFD and RoC algorithms handle eight times smaller data blocks than the 2gram al
gorithm. The BFD is insensitive to byte order. It can classify data types where only a
subset of the byte values are of importance. The RoC algorithm incorporates both the
order and value of the bytes. It is suitable for data types with causal structures, rather
than specific value sequences.

32

3.1. File Fragment Carving

Table 3.1.: The articles in Sections 3.1 and 3.2 structured in accordance with the tax
onomy proposed by Poisel et al. [115].

Category Articles

Signaturebased approaches Garfinkel and McCarrin [32]
Garfinkel et al. [37]
Tridgell [116]
Kornblum [117]
Dandass et al. [118]
Collange et al. [38]
Foster [36]
Young et al. [35]
Canceill [119]
Taguchi [120]
Hirano et al. [121]
GutierrezVillarreal [122]
Roussev and Garfinkel [123]
Garcia [124]

Statistical approaches Karresand [39]
Karresand and Shahmehri [110]
Karresand and Shahmehri [111]
Karresand and Shahmehri [112]
Karresand and Shahmehri [113]
Karresand and Shahmehri [114]
Veenman [125]
Calhoun and Coles [126]
Ahmed et al. [127]

Computational intelligence based approaches Li et al. [128]
Fitzgerald et al. [129]
Bhatt et al. [130]
Bhat et al. [131]

Approaches considering the context
Other approaches Ali and Mohamad [132]

33

3. Related Work

The three algorithms were tested in different settings to evaluate their performance
regarding fragment identification. The algorithms were also used detect the camera
make and model of a JPEG data fragment, although with poor results. The licentiate
project showed that it is possible to identify and reassemble fragments of JPEG images
containing restart markers with simple means.

3.1.2. Other Fragment Carving Research

Veenman [125] use the entropy of data, histograms and Kolmogorov complexity of
4 KiB file fragments to determine their type. The result show that histograms have the
highest detection rate versus false positives of the chosen algorithms.
Calhoun and Coles [126] compare different statistical metrics (the frequency of

ASCII codes, entropy, mode, mean, standard deviation and correlation between ad
jacent bytes) in file carving situations. The authors also classify data based on the
longest common substrings and subsequences between fragments.
Ahmed et al. [127] use the byte frequency distribution together with the cosine sim

ilarity metric for data classification. Their result is improved relative the use of the
Mahalanobis distance metric.
Li et al. [128] use a SVM in combination with the byte frequency distribution to clas

sify data. The authors find that the best results are achieved using the byte frequency
distribution alone.
Fitzgerald et al. [129] use combinations of statisticalmetrics (for example histograms

of one and two byte sequences, entropy and Kolmogorov complexity) to create feature
vectors. These are fed into a SVM for classification. The authors’ method outperforms
many previous methods. However, they do not evaluate the contribution of each of the
chosen feature vectors, but instead leave it as future work.
Bhatt et al. [130] use SVMs in a hierarchical structure to improve the efficiency

of file fragment classification. The SVMs at the top level are trained on general file
types. The specificity then increases towards the bottom. The best parameter is the
mean of the BFD, twice as important as the length of streaks of equal bytes, which
comes second. The principle achieves good results for .csv, .png, .swf, .txt and
.xml files. The worst results are achieved for .doc, .jpg, .pdf and .ppt files [130].
Bhat et al. [131] use histograms of byte pairs (2grams) when carving files. Their

framework use a FeedForward Neural Network (FNN) to classify the fragments. A
Convolutional Neural Network (CNN) is shown to give worse results than an FNN.
The authors also test the framework using single byte histograms, which are not as
good as the byte pairs. The result show that the latter reach an accuracy of ≥ 89% for
all file types except .xls and .doc [131].
Ali and Mohamad [132] use a combination of structure (signature) and content (sta

tistical) based approaches to reassemble file fragments. To extract the correct frag

34

3.2. HashBased Carving

ments a combination of entropy, BFD and RoC is used together with an Extreme Learn
ing Machine (ELM). The classification accuracy is > 90% for both the JPEG image
databases used (Digital Forensic Research Workshop (DFRWS) 2006 and 2007). Half
of the images from the DFRWS 2006 database were completely revcovered and the rest
were partially recovered. From the DFRWS 2007 database one image was completely
recovered, eleven partially recovered and one unreadable [132].

3.2. HashBased Carving

Hashbased carving compares hashes of known file blocks and blocks from a suspects
disk. In that way also partially overwritten or damaged files can be identified. The
process is easily parallelized by dividing the storage media into chunks that are handled
independently on separate hardware.
A problem with hashbased carving is the tremendous amount of comparisons to

make. However, most of the calculations can be done in advance. The hashes of the
known file fragments only have to be calculated once. The hash and search algorithms
are also highly optimized and execute fast. Furthermore, a hash value is much smaller
than the corresponding raw data1. This effectively decreases the amount of data to
compare. However, there is a theoretical risk of hash collisions decreasing the relia
bility of the result [32–38].
Comparing small parts of many files to every data block of a storage media is time

consuming. Therefore sampling is sometimes used. The sampling frequency (the de
tection rate) is balanced with the block size, probable file sizes and the time taken by
the comparisons. A well balanced search will quickly find a suspicious file with high
probability, even if only one fragment has been found [32–38].
During the DFRWS 2006 Carving Challenge [133] Garfinkel [32] was one of the

first to use hashes for file carving purposes. By using hashes of parts of files from the
internet he could find equal hashes in the disputed image.
Garfinkel’s solution to the DFRWS 2006 challenge lead to the development of the

frag_find tool by Garfinkel et al. [37]. The authors discuss the optimal size of the
data blocks to hash. They furthermore elaborate on the suitable size of hashed blocks,
reaching the conclusion that 4 KiB blocks are the best [37]. Since the introduction of
Windows NT 4.0 the default minimum allocation unit in NTFS has been 4 KiB [48,
134].
Hashing and the comparison of file fragments can be traced back to the spamsum

tool created by Tridgell [116]. The spamsum tool inspired Kornblum [117] to study
1In reality the smallest amount of raw data to hash is one sector of 512 bytes, which is converted to a
hash value of (currently) at most 512 bits (SHA3512). Hence the data are compressed at least by a
factor of eight.

35

3. Related Work

piecewise hashing and what is now known as approximate matching. Dandass et al.
[118] further studied the concept of using hashes for file carving through an empirical
analysis of disk sector hashes. Collange et al. [38] introduced the term hashbased
carving and used a Graphics Processing Unit (GPU) to compare the hashes.
Foster [36] studies the file carving problem of data shared across files. She states that

“the block of NULs is the most common block in our corpus” [36, p. 15], relating them
to the NULL padding of files. The large amount of data to handle is also discussed.
Young et al. [35] extend the research from Foster’s article. Young et al. discuss the
optimal block size, how to handle a large amount of data, efficient hash algorithms,
good data sets to use for training and evaluation, and the problem of common file
blocks.
Random sampling can be used to improve the speed of hashbased carving [32, 36,

37]. A high sampling frequency increase the detection rate, but decrease the execution
speed. By regarding the problem as sampling without replacement a balance can be
found [119]. Canceill [119] study the parameters affecting random sampling. Apart
from the obvious external parameters disk capacity, sector size and amount of stored
data, the detection speed and rate are affected by the sampling block size, transaction
size and amount of transactions to check, according to Canceill. Taguchi [120] finds
that using 64 KiB data blocks is the fastest way to reach 90% confidence. However,
the value might change when the experiments are extended, according to Taguchi.
Hirano et al. [121] study the amount of unique 512 byte hashes in NTFS (Microsoft

Windows 8.1), Hierarchical File System Plus (HFS+) (MacOS X 10.9) and fourth ex
tended filesystem (EXT4) (CentOS 6.5). They find that there are 51% distinct sectors
in the NTFS partition. The HFS+ and EXT4 partitions contain 88.5% and 84.7% dis
tinct sectors respectively. Hirano et al. also find that there are 43.7% distinct files in
the NTFS partition. The HFS+ partition contains 96.5% distinct files and the EXT4
partition 94.3%.
GutierrezVillarreal [122] improves the filtering of data blocks with equal hashes

found in unrelated files (nonprobative blocks). He specifically studies the ad hoc rules
created by Garfinkel and McCarrin [32]. The rules cover histograms of 4 byte values,
the treatment of whitespaces, and ramping behavior in data sequences. Gutierrez
Villarreal improves the performance by replacing the three rules with one. This is
achieved by exchanging the 4byte histograms with 2byte histograms.
GutierrezVillarreal also finds that an entropy threshold can be used to detect for

example JPEG files. Furthermore, the same 131 byte large sequence (with different
alignment) is found in 10 out of the top 50 blockmatches in the database. Consequently
general filtering rules do not work, they have to be tailored for each specific file type.
The findings on tailored filtering to detect specific file types by GutierrezVillarreal

support the result by Roussev and Garfinkel [123]. They find that a number of file
types are too complex to be possible to detect using a generic method. Roussev and

36

3.3. Digital Stratigraphy

Garfinkel therefore study the structure of zlib, jpeg and mp3 compressed files and cre
ate successful detectors for them [123].
Garcia [124] use five digital forensic file data sets to study the occurrence of hash

collisions between fragments of size = 2x;x = [4, 5, 6, . . . , 12]. Two of the data
sets contain JPEG files. These files are also compressed using zip to study if the hash
collisions are transferred during compression. The files are furthermore stripped of
their headers to allow only the image data parts of the JPEG files to be compared.
Garcia also uses rolling hashes of the same sizes to further extend the study.
Garcia’s research shows that although the data sets all contain unique files there are

hash collisions both within and between the sets. The collisions are also transferred
to a high extent when the files are compressed. The collision are especially frequent
for fragments ≤ 64 bytes in size. The stripping of JPEG headers almost eradicates
the hash collisions. However, when using rolling hashes of ≤ 256 bytes there still are
collisions present [124]. Consequently there is a risk of misattribution in hashbased
carving.

3.3. Digital Stratigraphy

Digital stratigraphy studies the layering of storage media, like soil strata studied in ge
ology and archaeology. The layers occur when old data are overlayed with new data,
but remnants of the old data are (partially) preserved. Together the layers form a pattern
that can be used to create casual and temporal time lines. These can be used in digital
forensic investigations, information archiving and to recover lost data. Digital stratig
raphy is important for the creation of our map. A high number of layers corresponds
to a high allocation activity.
Casey [135] introduces the term stratigraphy in the digital forensic realm. This is

done to show the similarities between the works of an archaeologist, an arson investi
gator and a digital forensic investigator. All three professions have to work with frag
ments of an original item, which has deteriorated or beenwillfully destroyed. However,
the two first professions have well established methods and tools to interpret the layers.
Consequently the digital forensics field would benefit from adapting and incorporating
these methods, according to Casey.
Casey also points out the tools used by an archaeologist to determine a time line of

events or items as of special interest to the digital forensics field. He states that

how data is positioned and overlaid on the disk may give a sense of
when the document was created. [135, p. 15]

The statement is exemplified by a case where a blackmailer was caught because of this
phenomena. Parts of the blackmail letter were found in the slack space of another letter

37

3. Related Work

received by the blackmailer’s bankmanager at a later date. Hence data in an older strata
could be timestamped with the help of a newer strata [135].
Gladyshev and Patel [136] propose the use of finite state machines to model digital

forensic applications and processes. In that way it is possible to verify the soundness of
an action and to find a chain of actions leading to a specific state. Likewise the authors
write that the finite state machine can be used to backtrack the state of a file system
when a file has been deleted. However, they do not present any implementation or test
of such a function.
Jun and Guo [137] proposes the addition of a logging mechanism to Unix file sys

tems to create a current view of the stratigraphy of the file system. The model is pre
sented and validated through an example. Their model is also said to give temporal
information and casual ordering of the layers for specific files. However, Jun and Guo
leave the actual implementation of the model as future work. Furthermore, their model
requires an extra functionality added to the file systems in advance.
Casey further develops the concept of digital stratigraphy. He writes that

[s]tratigraphy is the scientific study of layers (a.k.a. strata) in geology
and archaeology with the aim of determining the origin, composition, dis
tribution, and time frame of each stratum. Applying this concept to data
stored on a disk can be fruitful in some investigations. [138, p. 506]

Casey continues by explaining that if remnants of a file is found in the slack space of
another file the first file is supposed to be older than the overwriting file, which is not
always true. Different file operations and maintenance of the file system might change
the order in which the files were written to disk. For example will a defragmentation
operation destroy the relationship [138].
However, a defragmentation operation can also help. Casey [139] presents a case

where a forged document was created after the file system was defragmented. How
ever, the forger gave it a date before the defragmentation took place. All files but the
forged document were found collected neatly together on disk. This showed that the
forged document was created after the defragmentation was run [139].
We can extend the use of the digital stratigraphy concept to also cover the behav

ior of the allocation algorithm. Casey [138] presents a case where one contiguously
written file is surrounded by fragments of another file. Due to the behavior of the allo
cation algorithm the contiguous file is likely to be written before the fragmented file,
according to Casey.
Darnowski and Chojnacki [140] backtrack the allocation history in a hypothetical

NTFS partition 10 blocks in size. They show how the layering of data can be used
to detect the previously allocated data blocks of a now deleted file. This is done by
reversing the latest steps taken by the allocation algorithm. The authors conclude by
stating that they

38

3.3. Digital Stratigraphy

hold a view that under certain assumptions it is possible to use NTFS
file allocation algorithm for efficient data recovery. [140, p. 39]

Casey [6] describes the next fit allocation strategy (called nextavailable in the arti
cle) used in for example the Microsoft Windows FAT12, FAT16, FAT32 file systems.
He also covers the best fit allocation algorithm used in NTFS. Casey points out that
the best fit strategy might allocate later parts of a file to lower LPVAs than earlier parts
of the file.
Casey focuses on NTFS’s behavior regarding valid data length (VDL) slack. This

type of slack occurs when the file system has allocated more space to a file than is
actually required [6]. This typically occurs when a file is not properly saved to disk after
being allocated space in the file system. Unused space within the file’s allocated space
is still regarded as file data. The space is therefore protected from being reallocated
and might even survive deletion of the file itself. VDL slack is currently not properly
handled by the digital forensic tools, according to Casey [6].
Casey [6] also deals with file tunneling, which occurs in NTFSwhen a newly deleted

file is replace by a new file with the same name. Themetadata of the old file are retained
and used for the new file instead. This causes the new content of the file to be seemingly
backdated. The file tunneling phenomena might occur regardless of the source of the
new file, according to Casey.
Harfield and Schofield [141] discuss the connection between archaeology and dig

ital forensics. Digital stratigraphy can be used to study malware development as well
as generally improve the cyber security of systems. However, digital stratigraphy is
neither defined nor explained by Harfield and Schofield. The article is written from an
archaeological point of view and treats the problem on a high level. The authors argue
that the field currently is focused on the technological side of the problem and would
benefit from a more heuristic (archaeological) point of view, where also the social side
of crime is incorporated [141].
Owens and Padilla [5] focus on the new challenges that meet archivists that work

with digital media and web content. New dynamic web technologies serve individ
ualized content to the visitor. Hence there are continuously different versions of the
information available at the same time. Owens and Padilla urge the archivists to be
as thorough when working with digital material, as with analogue material. The rapid
changes and concurrent versions of information challenge the historians and archivists
to make sense of the complex stratigraphy in digital sources [5].

3.3.1. Digital Archaeology

Ross and Gow [142] introduce the term digital archaeology in the late 1990’s. The
authors focus on data recovery and argue for more research efforts put into the field.

39

3. Related Work

They also see the need for an index of storage media quality and collection of best prac
tice information. Ross and Gow also recommend archivists, librarians and information
scientists to look outside of their standard sources of scientific news. In that way they
will gain knowledge on media investigations and durability of storage media [142].
Farmer and Venema [143] give a definition of digital archaeology, stating that

[d]igital archaeology is about the direct effects from user activity, such
as file contents, file access time stamps, information from deleted files,
and network flow logs.[143, p. 13]

They argue that digital information is destroyed by automatic processes run by the OS
in the same way as geological effects are destroying archaeological remains.
Graves [144] also discuss digital archaeology. The term is used by the authors as

a synonym for file carving and also to generally refer to the digital forensics field.
Graves recommends the concepts of archaeology to be applied in digital forensics.
The proposed concepts are not revolutionary from a digital forensics point of view.
The term digital archaeology could easily be exchanged with digital forensics and file
carving where applicable.
Pollitt [145] argues for the exchange of the term digital archaeology (and digital

geology, see Section 3.3.2) with themetaphors of history and historiography. He argues
for a paradigm shift, because the simple metaphors of archaeology restricts the field.
Also the lack of a solid theoretical foundation hinders the development, according to
Pollitt. He instead proposes the use of hermeneutic and narrative theories within the
domain.
The meaning of digital archaeology seems to change into the opposite meaning in

the mid 2010’s. The shift happens when archaeologists start to use the term to describe
the introduction of digital tools into their own domain. We have not found any strict
digital forensic use of the term after that.

3.3.2. Digital Geology

The term digital geology is rarely seen within the digital forensics domain. It is used
by Farmer and Venema [143] to state that

[d]igital geology is about autonomous processes that users have no di
rect control over, such as the allocation and recycling of disk blocks, file
ID numbers, memory pages, or process ID numbers.[143, p. 13]

Pollitt [145] also uses the term in a direct comment on the work of Farmer and Venema.
The term seems to disappear from the digital forensics domain sometime in the mid

2010’s. Unlike digital archaeology the term is not reused with a new meaning.

40

3.4. NTFS Fragmentation

3.4. NTFS Fragmentation

Smith and Seltzer [146] study the problem of achieving realistic file system aging in
experimental environments. Their method is said to be generically applicable, but is
only validated on the UNIX Fast File System (FFS). The proposed method utilizes
snapshots from real file systems collected during several months or even years of ac
tivity. Sequences of file operations are interpolated between the snapshots. Then an ad
hoc amount of short lived files are added. In that way Smith and Seltzer try to mimic
the fragmentation occurring in live file systems. After simulating a seven months long
usage period the proposed method underestimates the fragmentation rate by 7%, ac
cording to the authors. They also write that

[d]ecisions that a file system makes today (for example, which blocks
to allocate to a new tile) may affect the file system for months or years into
the future. [146, p. 204]

Douceur and Bolosky [147] present a study of different statistical metrics of file
system features, among themNTFS. Approximately 5.7 TB out of 11.1 TB of their data
belong to files from NTFS partitions. The result is however shown as an aggregation
of all file systems. It shows that the median file size is 4 kB, the median age of a file
is 48 days and that the file systems on average is half full [147].
Garfinkel [148] studies the problem of fragmentation from a file carving point of

view. The author uses the Garfinkel corpus2. He finds 2,143,553 complete files in 324
disks. Of these files 594,237 come from NTFS partitions and 72,574 (12.2%) of the
files are fragmented [148]. The included NTFS partitions contain 590 files (0.1%) that
are split into more than 1,000 fragments [148].
We have calculated the average number of files per fragmentation rate interval for

the NTFS files based on Table 2 in Garfinkel’s article [148, p. S4]. Both the number
of files per fragment interval, taken from the article, and the average number of files
per specific fragment rate are shown in Table 3.2.
As can be seen in the Avg files./interval column in Table 3.2 the distribution of files

with a specific number of fragments is continuously decreasing. This is an indication of
the allocation algorithm trying to avoid fragmentation. The behavior is not mentioned
in Garfinkel’s article.
Garfinkel furthermore reports that certain file types are more prone to fragmentation

than other. Email, media and certain system files related to logging are usually heavily
fragmented. However, the highest fragmentation rates are found in system .dll and
.cab files, which Garfinkel thinks is caused by system patches and upgrades.
2The Garfinkel corpus is said to originally contain 1,005 disk drives. Of them 750 are used in a survey
of credit card numbers. The disks are bought on the second hand market [149].

41

3. Related Work

Table 3.2.: The number of files per fragment interval, taken from the NTFS column
in Table 2 in [148], and a calculation of the average number of files per
specific fragment rate.

Fragments Files Avg # files./frag. rate

0 521,663 521,663
2 22,984 22,984
3 6,474 6,474
4 3,653 3,653

5–10 13,139 2,190
11–20 7,880 788
21–100 11,901 149

101–1,000 5,953 6.6
1,001– 590 NA

Garfinkel also checks the size of the gap between fragments for bifragmented files.
The gap sizes correspond to the smallest allocation block size of FAT and NTFS in
almost all cases. The author observes that

fragmentation does appear to go down as drive size increases, but that
many large drives have significant amounts of fragmentation. [148, p. S6]

A large drive, i. e. disk, is defined as > 20 GB by Garfinkel.
Cohen [150] describes the fragmentation phenomenon mathematically. This is done

by dividing a file into blocks of the same size s as the sectors of its disk. If the file is
traversed sequentially position x in the file corresponds to a position y in the sequence
of its allocated disk sectors, i. e. x (mod s) = y (mod s) [150, p. 122]. The property
means that a file is stored in correct order within the set of allocated disk sectors. How
ever, there is no requirement for the allocation sequence to be ordered. The property
fits any allocation algorithm, as long as the file is divided into equally sized blocks dur
ing allocation and the allocation is started from the beginning of the file. All allocation
strategies described in Section 2.4 fits that requirement, but have extra requirements
on the ordering of the allocated sectors.
The now discontinued tool PassMark Fragger [151] can be used to fragment indi

vidual files in a controlled manner. It uses standard file defragmentation Application
Programming Interfaces (APIs) and therefore should be safe to use. According to the
developer it is possible to control both the size of the fragments, the number of frag
ments, as well as the positions of the fragments [151].
Meyer and Bolosky [152] study space saving through deduplication. They find that

4% of the files from a series of real NTFS computer disks are fragmented. This is

42

3.4. NTFS Fragmentation

less than earlier reported by Garfinkel [148]. However, 25% of the files contain more
than 170 fragments. This indicates a low overall fragmentation rate, but a high rate for
individual files. The highly fragmented files appear to mostly be log files, according
to Meyer and Bolosky.
Pahade et al. [153] survey the available methods for multimedia file carving. Such

files are extra prone to fragmentation due to their larger than average size. The authors
focus on evaluating the performance of the surveyed algorithms and do not go deeper
into the fragmentation behavior of the file system. Pahade et al. use the PassMark
Fragger tool [151] on a 2GBNTFS partition and create different fragmentation patterns
in the form of

• nonfragmented files,

• linear fragmentation, where fragments of different files are concatenated,

• first fit fragmentation, where fragments of different files are position according
to the first fit allocation strategy,

• scattered files, where the file fragments are linearly allocated in accordance with
the layout used in RAM,

• random fragment files, where the file fragments are randomly allocated in ac
cordance with the layout used in RAM.

Apart from the different fragmentation patterns presented, Pahade et al. [153] do not
bring any new information on the matter.
Scanlon [1] proposes the use deduplication to speed the digital forensic process up.

Themore data put into the deduplication database, the higher the performance increase.
The proposed system increases the efficiency of the acquisition process by hashing only
parts of data blocks to detect duplication, instead of full blocks as usually done. The
analysis phase is made more efficient by centralization of the deduplication database.
By only having to read and analyze each new data block once the workload is reduced
for all involved law enforcement agencies [1].
Bahjat and Jones [84] study the temporal information hidden in the allocation pattern

of NTFS. A time frame for the life of a deleted file is found by using the timestamps of
existing files with fragments neighboring the deleted file’s fragments. The accuracy of
the method is given as 80% confidence within±20 days for the creation date and 90%
confidence within ±5 days for the deletion date. The accuracy is negatively affected
by heavy use of the file system, defragmentation and the type of file system, according
to Bahjat and Jones [84].
van der Meer et al. [154] study the problem of collecting realworld file system data

from users in a privacy preserving way. The authors also provide new information on

43

3. Related Work

the fragmentation rate of NTFS. To do this they collect fragmentation data from 220
privately owned realworld laptop computers together having 334 disks.
According to van der Meer et al. there are four possible fragmentation types. Our

interpretation of the fragmentation types is given in the below list. The principle behind
each fragmentation type is illustrated using the form [A,B,C,D,X], which is inspired
by Figure 1 [154, p. 2] in the article. The characters (data blocks) A to D belong to the
same file and X belongs to another file, or is unallocated. The fragmentation types are

• without fragmentation [A,B,C,D]

• noncontiguous fragmentation3 [A,X,B,C,D]

• outoforder fragmentation [D,A,B,C]

• outoforder and noncontiguous fragmentation [A,X,D,B,C]

van der Meer et al. show that 46% of the fragmented files in the collection are frag
mented outoforder. The distribution of files of inorder and outoforder fragmenta
tion is given in Table 3.3, inspired by [154, p. 4, Table II]. The values are the same,
but the layout is changed to improve the readability.

Table 3.3.: The distribution of the number of fragments for fragmented files [154, p. 4,
Table II]. The layout of the table is changed to improve the readability.

Fragments InOrder OutofOrder Total

2 41.84 14.92 56.76
3 7.92 10.29 18.21
4 2.15 6.43 8.58
5 0.77 4.25 5.02
6 0.29 2.67 2.96
7 0.13 1.27 1.40
8 0.07 0.90 0.97
9 0.04 0.65 0.69
10 0.04 0.49 0.53

≥ 11 0.34 4.55 4.89

As can be seen in Table 3.3 the amount of outoforder fragmented files is higher
than inorder for files having ≥ 3 fragments. Furthermore, the amount of outoforder

3This is called inorder fragmentation in the latter parts of the article.

44

3.4. NTFS Fragmentation

fragmented files relative to the inorder is increasing as the number of fragments in
creases [154]. This is expected. The more fragments, the higher the probability for an
outoforder allocation.
The increase in outoforder fragments as the number of fragments increases is in

line with the best fit allocation strategy. van der Meer et al. validate their outoforder
rates by checking the rates of file systems with more than 10,000 files and find them
to be approximately 40%. They also check with two newly created VMs and get out
oforder fragmentation rates of approximately 45% [154].
The fragmentation rate of 2.3% reported by van der Meer et al. is lower than the 6%

reported by [148]. Even thought the fragmentation rate is lower the actual amount of
fragmented data has increased, according to the authors. The reason is the increase in
storage media capacity during that period [154].
Cho [155] proposes a method to create a controlled fragmentation of files for exper

imental (and other) purposes. Judging from the flow chart [155, p. 14] in the article
the method first fills a newly created NTFS file system with a controlled number of
resident and nonresident files in a controlled number of directories. When the filling
phase ends a number of delete, copy and move operations are performed. The last step
is to evaluate the method by defragmenting the file system and checking the cluster
status to see the result [155]. The method does not seem to allow checking the alloca
tion status after each file operation, but can be used to prepare a file system for further
experiments.
van derMeer et al. [53] study the fragmentation rate of 220 realworld laptops, where

84% contain an SSD and 67% an HDD. They together contain 729 NTFS formatted
and unencrypted partitions. The study is focused on different fragmentation metrics of
NTFS. Of special interest is the outoforder fragmentation presented in the previous
article ([154]). The new article also extends the work from the previous article on a
privacy preserving method to study fragmentation in realworld computers. van der
Meer et al. also update the results on file fragmentation rates presented by Garfinkel
[148].
van der Meer et al. [53] update and rename the storage patterns that were previously

called fragmentation patterns [154]. The updated patterns can be seen in Table 3.4,
which is inspired by Figure 1 in [53, p. 2]. The definitions of the storage patterns are
similar, but they are now more stringent.
van der Meer et al. [53] describe two different types of file system fragmentation.

Fragmentation of free space refers to the remnants of free space left after a nonfitting
allocation. File fragmentation refers to the traditional definition of file fragmentation,
i. e. external fragmentation. The fragmentation types are used in the definition of two
fragmentation metrics. The authors first define the degree of fragmentation as:

definition 1 (degree of fragmentation). The degree of fragmented files is the number

45

3. Related Work

Table 3.4.: The four types of storage patterns of a file as given by van der Meer et al.
in Figure 1 in [53, p. 2]. The letters A and B depict nonoverlapping data
blocks of a file, where A starts at a lower LPVA than B. Please observe that
an inorder contiguously stored file is not fragmented.

Contiguous Noncontiguous

Inorder A B A · · · B

Outoforder B A B · · · A

of fragmented files divided by the total number of files. The total number of files [is]
defined as:
I. all MFT entries, OR
II. all MFT entries with data, OR
III. all MFT entries with blocks assigned, OR
IV. all MFT entries with ≥ 2 blocks assigned. [53, Definition 1]

van der Meer et al. prefer the last alternative (IV) for the total number of files, because
that is the most restrictive setting. By using that definition the degree of fragmenta
tion will never be underestimated [53]. They then define the percentage of internal
fragmentation of a fragmented file as:

definition 2 (% of internal fragmentation). The percentage of internal fragmentation
of a file f of at least 2 blocks is [the] ratio of the number of fragmentation points vs.
the number of blocks minus one, i.e.:

intfrag(f) = fragpoints(f)
blocks(f)− 1

· 100,

where blocks(f) denotes the total number of blocks of file f, and fragpoints(f) is the
number of times where, when reading a block of file f, the next block of f is not the next
block on disk. [53, Definition 2]

Finally the authors define the percentage of outoforder’ness of a fragmented file
as:

definition 3 (% of OoO’ness). The percentage of outoforder’ness of a fragmented
file (f) is the ratio of the number of times the next fragment occurs prior to the current
vs. the total number of fragmentation points, i.e.:

OoO[′]ness(f) = backfragpoints(f)
fragpoint(f) · 100,

46

3.5. NTFS Data Allocation Process

with fragpoint(f) defined as before, and where backfragpoints(f) denotes the number
of times the next block of file f is stored earlier on disk than the current block. [53,
Definition 3]

van derMeer et al. find that 74%of the files at least two blocks in size are smaller than
100 kB. They also find that 75% of all files 1 MB–100 MB in size are fragmented out
oforder. There is also a correlation between file size and fragmentation rate, although
not perfect. The average OoO’ness is 1

3 for files > 50 kB in size. A number of files
are extremely fragmented, having up to 20,000 fragments [53].
van der Meer et al. furthermore study fragmentation among different file types, such

as videos, images, documents and databases. They find that images are often frag
mented outoforder (with exception for .bmp, .png and .raw). For video files (.avi)
the fragmentation rate is low (1.8%), but a few .avi files are heavily fragmented.
Among the document files .pdf files have a higher fragmentation rate than standard
word processor files like .odt and .docx. van der Meer et al. furthermore report that
all databases are fragmented above average. They also find that generally 56.8% of the
files are split in two fragments and that 41.8% of all fragmented files are fragmented
inorder [53].
van der Meer et al. also study the size of the gaps in bifragmented files. To measure

the gaps three different distancemetrics are used. For inorder files the carving distance
is found to better show the peaks in number of spaces at power of two distances4. The
start of the first power of two gap is determined by the size of the first fragment, which
is in line with the NTFS allocation algorithm, according to van der Meer et al. The
general trend for gap sizes is however a decrease in size as the number of fragments
increases [53].
Furthermore, van der Meer et al. write that the correlation between the amount of

fragmentation and the utilization level of NTFS is 0.46 for both SSDs and HDDs.
Hence also less utilized partitions might be heavily fragmented, and vice versa.
Finally van der Meer et al. find that the top ten unfragmented file types are system

files that do not contain any user data. Also the most fragmented file types (≥ 1000
fragments) are system files with extensions such as exe, log, xml, dat and dll [53].

3.5. NTFS Data Allocation Process

The data allocation algorithm used by Microsoft Windows in combination with NTFS
is governing the placement of data at specific LPVA positions. Hence the allocation
algorithm is of key importance to the creation of a map of user data, because a good
4A power of two distance d is defined as d = 2n, where n ∈ Z+ and is measured in blocks (a block
corresponds to a Microsoft Windows cluster of 4 KiB) [53].

47

3. Related Work

understanding of the algorithm both increase the resolution of the map and also enables
a digital forensic investigator to understand the process that lead to the current state of
the file system. In that way it might (as suggested in a number of articles) be possible
to backtrack the state of the file system and make predictions on the casual ordering of
files.
Willassen [156] describes a method using a first fit allocation strategy to detect ante

dating of files. To do that a tool is built based on the method and then validated by four
subjects with different levels of computer knowledge. Two of the subjects are ordinary
computer users, one is a digital forensic investigator and one is an advanced computer
user with programming skills. None of the subjects managed to avoid detection of their
file antedating attempts [156].
Willassen concludes the article by presenting different methods that can be used

to create antedating not detectable by the tool, but also writes that the methods are
highly specialized and not applicable in real life. He also uses Locard’s exchange prin
ciple [157–161] to argue that there will be patterns left by manipulation that can be
detected [156].
A PhD dissertation byWillassen [162] presents the formal foundation of timestamps

and methods to improve their applicability in digital forensics. The author also formu
lates the criteria needed to use the allocation strategy of a file system for checking
timestamps. Furthermore, he briefly discusses the allocation strategy of NTFS and
states that it is best fit in Windows XP and that a first fit allocation strategy is used
within the MFT [162].
Willassen’s dissertation also contains a short section on the impossibility to use the

allocation pattern alone for time stamping of files, it is necessary to use an extra, ex
ternal, source of information in combination with the allocation pattern [162].
Darnowski and Chojnacki [77] study the allocation algorithms used for data block

allocation, as well as for allocating MFT records. Information on the two allocation
algorithms is found through a series of experiments on the writing behavior of NTFS.
Differently sized files are written and deleted in predetermined patterns and the effect
on the NTFS file system on a 4 GB USB thumb drive is analyzed using the WinHex
tool. The data allocation strategy is found to be best fit and theMFT allocation strategy
is shown to be first fit (called FirstFree Algorithm (FFA) in the article) [77].
All experiments in the article by Darnowski and Chojnacki are done as block writing.

However, they also shortly explain the behavior of the allocation algorithm during
stream writing, where the size of each written block of data is said to increase up to a
preset limit. The authors briefly mention the idea of backtracking a NTFS file system
from its current state using knowledge on the allocation algorithm’s behavior [77].
Chojnacki and Darnowski [163] continue the work presented in their earlier article

([77]) by creating a FiniteState Machine that mimics the data allocation behavior of
NTFS during block writing. The authors argue that the model can be used to backtrack

48

3.6. Data Recovery

the allocation behavior of a NTFS partition using additional information on the deleted
files. The model is able to exclude any data blocks that belong to the OS from the
analysis [163].
Bouma [164] presents a study of the effect of file operations on the timestamps in

NTFS in a Bachelor’s thesis from 2019. The work is mainly focused on how the MFT
is affected by the file operations, which includes how the allocation process of theMFT
is working. According to the author a first fit strategy is used and if there is no free
area to be allocated to a new MFT entry the $MFT file is extended by 256 KiB [164].
Furthermore, the method used to increment the 2 byte sequence numbers in theMFT

records (described by Carrier [50]) is wrong. Bouma has found that the number only
is incremented when a file is marked as deleted, not each time a file is allocated to an
entry [164].
Ghotge and Nema [165] from Microsoft published a white paper in 2004 describing

the preallocation process of NTFS. The whitepaper covers the allocation behavior
during stream writing5 according to Darnowski and Chojnacki [77] and Chojnacki and
Darnowski [163]. As the title of the article indicates the content seems to be directed to
the preallocation functionality of NTFS, where files of unknown size (during stream
writing) are to be written to disk. NTFS reserves space for the file in advance and then
fills the space as long as the stream is active (until the file ends) [77, 163].
In the Linux ext3 file system preallocation is used to reduce fragmentation and lower

the allocation work load on the system by doing fewer allocations of larger blocks at a
time, according to Silberschatz et al. [58]. The same reasons might be valid for NTFS
too.

3.6. Data Recovery

Data recovery [166, 167] is a multidisciplinary application field closely related to file
carving. The field also uses information, methods and tools from other file system and
digital storage related areas when needed. The difference to file carving is the scope of
the recovery. The focus in file carving is on single files or types of files, with a strict
requirement on a forensically sound process6. Data recovery aims at salvaging as much
data as possible and can accept that data might be changed or otherwise affected during
the process.
Data recovery is mostly applied outside of the digital forensics domain. It is used by

archivists, librarians and any other profession handling data that might be lost. There
5We have not been able to find the publication and therefore have to rely on second hand information,
thus the real reason for the stream writing allocation behavior in Microsoft NTFS is unknown to us.

6A forensically sound process is defined as “[t]he application of a transparent digital forensic process
that preserves the original meaning of the data for production in a court of law.” [168, p. 10]

49

3. Related Work

are also both commercial and open source software that can be used to recover data
from broken storage media, even by individuals and nonprofessionals. Many of the
tools are also used within the file carving field. Table 3.5 shows typical examples of
tools [169–171] used in both fields.

Table 3.5.: Typical tools used in both file carving and data recovery. The selection is
made using our own preferences and internet lists of the “top xx tools” in
data recovery. The table is not exhaustive.
Name OS

Mondo Rescue [172] Linux
GNU ddrescue [173] Linux
foremost [174] Linux
safecopy [175] Linux
extundelete [176] Linux
testdisk [177, 178] Windows,Linux,Mac
photorec [179] Windows,Linux,Mac
scalpel [180, 181] Windows,Linux,Mac
EaseUS Data Recovery Wizard [182] Windows,Mac
Disk Drill [183] Windows,Mac
Recuva [184] Windows

There are also live Linux distributions7 aimed at data recovery containing a suitable
set of tools. The distributions can be installed on aUSB stick, which then is used to boot
a computer that needs repairing. Please observe that this method only allows repairs
of logical defects. Many times these distributions are the work of a single enthusiast,
which has not the capacity for long term maintenance. The list in Table 3.6 contains a
selection of live Linux distributions for data recovery that are still actively maintained
(in 2022). The selection is based on material from DistroWatch.com [185].
Owens and Padilla [5], Dietrich andAdelstein [31], Ross andGow [142], and Farmer

and Venema [143] have written articles that relate to data recovery. Due to the multi
disciplinary qualities of the data recovery field the articles have already been presented
in other sections.

7A live Linux distribution is a fully functional OS held on a CD, USB or other type of storage media. The
live distribution can be booted and used without affecting or using any storage media on the booted
computer. In that way a computer with broken or corrupt storage media can still be booted and data
from the media can then be rescued.

50

3.7. Data Mapping

Table 3.6.: A list of actively maintained data recovery live Linux distributions in
2022. The distributions contain a large selection of data recovery (and
other digital forensic) tools. The selection is based on material from Dis
troWatch.com [185].

Name Main use

Kali [186] Penetration testing
ALT Linux Rescue [187] System recovery
Finnix [188] System recovery
GRML [189] System recovery
Kaisen Linux [190] System recovery
System Rescue CD [191] System recovery
Clonezilla Live [192] Media recovery
GParted Live [193] Media recovery
Parted Magic [194] Media recovery
Plop Linux [195] Media recovery

3.7. Data Mapping

The mapping of data in storage media is closely related to the subject of this thesis,
although the term as it is used in the related work articles comprise a wider meaning
than creating a map of the allocation activity of a generic storage media partition. In
the articles the term is for example used to describe activities related to finding all
fragments of a specific file, the high level activity of scanning the data of a disk and to
increase the speed of forensic acquisition and analysis by using the existing file system
to determine what LPVA areas to prioritize during the investigation.
Conti et al. [2] present a mapping of binary data in the form of twodimensional byte

maps, where each byte corresponds to a pixel in an image. The mapping can be applied
to any binary object to visualize its internal structure, even to full disk images. They
also propose that a database of data types (a fragment corpus) should be assembled to
enable identification of different data types in the map of a binary object. They restrict
the application to single objects, hence their mapping concept cannot be used to predict
and plan ahead in general situations, only in each specific case.
Key [196] describe an EnScript module for the EnCase software [197]. The module

is used to create a map of the recoverable sectors of a file found in a file system. It is
unclear if the module uses any information on the allocation pattern of the file system
when creating the map. It can handle situations where other tools do not work, for
example partially damaged files. However, the module is very CPU intensive and

51

3. Related Work

therefore can only create maps of a few files at a time, according to Key
Woods and Lee [198] mention that

disk images can be used to produce unified maps or hierarchies of both
allocated and unallocated space on the original device. [198, p. 2]

The concept is not further explained and it is unclear whether the maps show a hier
archical view of the file system or simply which (logical) sectors of the storage media
that are allocated (or not), in a similar fashion to the $Bitmap file of NTFS. Woods
and Lee use of the plural form of the storage media (disk images). This might indicate
that their maps indeed are generic representations of the allocation activity at different
logical addresses, making them similar to the mapping concept presented in this thesis.
Beek et al. [199] present the digital forensics as a service (DFaaS) system Hansken

and Baar et al. [200] have written about Hansken’s predecessor Xiraf. Both Hansken
and Xiraf utilize the concept of nonlinear extraction of data from images of suspects’
disks. The idea is similar to what is presented by Schatz [13] and Schatz [201]. The
principle is to first extract the MFT records of a NTFS partition. The records are then
used to find other interesting areas of the file system [199].
Beek et al. also suggest that the analysis process is used to influence the imaging

process by having specified parts being prioritized. The authors use file names and
other higher level metadata found in the MFT records to prioritize [199]. Hence the
method is dependent on a working file system and is therefore not file carving in a strict
sense.
The linear model used when reading disks during acquisition is limited by the lower

writing speed of a disk, especially HDDs. Schatz [13] describes a new approach where
the process of acquisition and analysis is nonlinear and concurrent using several des
tination disks. To keep track of what storage media areas have been acquired a map is
used. The map is virtual and a feature of the Advanced Forensics Format v.4 (AFF4)
forensic file format. The process requires fully readable file systems and working disks
and is meant to utilize the full transfer speed of the involved disks and interfaces [13].
The principle with a map showing already acquired data blocks ready for analysis is

later on used in a US patent from 2019, also by Schatz [201]. It describes a system for
utilizing the full speed of the data transfer interfaces of computer storage for forensic
activities [201].
Russinovich [202] presents the DiskView tool from theMicrosoft Sysinternals suite [203].

The tool can be used to view the allocation status of file data in NTFS. By clicking on
a cluster in the view information on the occupying file is given. The tool shows a mo
mentary view of the allocation status of clusters in a storage media (and its partition(s)),
but cannot give information on the allocation activity at different positions. The toolkit
is currently downloadable for free. There is also an online version available [203].
DiskView’s functions are comparable to parts of the Sleuth Kit toolkit [204].

52

3.7. Data Mapping

Gladyshev and James [11] study file carving from a decisiontheoretic point of view.
The authors suggest a model where storage media is sampled with a frequency based
on different properties of the disk and the file type that is to be found. In some specific
situations the carving model outperform standard linear carving algorithms, but the
solution is not generally applicable at the time of writing [11]. The model uses the
distribution of data on disk (in the relevant partition), but it is not clear whether it takes
advantage of any inherent structures introduced by the allocation algorithm.

53

4. Experimental Setup

As a part of the work to answer the research questions in Section 1.5.2 different ex
periments were executed. The following sections present the setup for each of the
experiments in chronological order.
There are different ways of (technically) naming Windows releases. However, the

terminology is not fixed, for example the terms version and build numbers are some
times mixed [205, 206]. The precision is also lower when using the (technical) version
numbers compared to the product names, for example Windows version 10.0 includes
at least five product names (Windows 10 and 11, plus Windows Server 2016, 2019 and
2022) [206]. Although the sameOS core might be used within different product names,
there can be features enabled in one product that is not included in another. These fea
tures might affect our experiments. We therefore have chosen to use the product names
in the thesis.

4.1. Motivation

We study NTFS, but the mapping concept is applicable to any combination of OS and
file system. However, the research results from the experiments are unique to NTFS
and only used as proofofconcept. They are therefore not directly transferable to any
other file system.
The easiest way to study the allocation algorithm of a file system would be to use

its source code. However, that is not feasible for (at least) three reasons. First of all
the creation of our map should not be dependent on the availability of the source code.
That would restrict the mapping concept to a subset of the existing file systems.
Furthermore, the compiled source code should give the same allocation behavior as

in a real system. However, we do not know if the behavior will match a real system
and the only way of guarantee that is to use a real system. Any deviation from the
actual behavior of a real system will possibly degrade the fidelity of the experiment.
Consequently the source code path is a detour on the way to the creation of the map.
The source code can also be used to create a model of the allocation behavior. How

ever, there is a risk of introducing errors during the modeling process. That would
cause the map to fail meeting

one of the main functions of the map — to provide truthful informa
tion. [207, p. 1]

55

4. Experimental Setup

The best, if not the only, way of reaching the highest fidelity is to study the behavior
of the allocation algorithm of a file system as implemented by its founder (Microsoft
in our case). And this should be done in settings as close as possible to the real world.
The best way is therefore to use a black box scenario, where the effect of the input on
the output of the algorithm is studied, nothing else. In that way any implementation
issues, bugs and unforeseen interactions of the components of the I/O ecosystem are
handled automatically. Hence using the source code is the wrong way to go.

4.2. Static Areas

To be able to determine if there are any static areas present in an NTFS formatted
main partition of a standard Microsoft Windows computer we first collect live data
from real computers. We then compare the hash values at different LPVA positions
in the partitions. This enable us to calculate the probability of finding unique data at
different positions in a generic partition. To do this we divide each partition into 128
equally sized areas and calculate the mean probability for each area. Finally the mean
of the means for the areas are calculated. The mean probability calculations are done
to generalize and scale the map into a usable format.
To protect the privacy of the user we use the Secure Hash Algorithm 1 (SHA1) al

gorithm to hash each 512 byte sector of all 30 NTFS formatted main partitions included
in the experiment. The hashing of data is done locally at each source computer and thus
only the resulting hashes leave the computers. The use of a hash value also decrease
the amount of data to handle. We use the SHA1 algorithm because it currently offers
the best balance between speed, collision risk and hash size among a selection of hash
algorithms. The choice is based on an empirical evaluation of the hashing speed in
modern hardware.
SHA1 maps 512 bytes of data onto a 20 byte long hash string and thus there is a

theoretical risk of collisions. If we apply the Birthday Paradox to our experimental
setup, the risk of a collision is approximately 1.1 · 10−28 and hence negligible. We
therefore assume a unique SHA1 hash represents a unique piece of data.
The theoretical risk of collisions comes from the fact that 512 bytes of data are com

pressed into a 20 byte long hash and therefore the results might contain false positives.
The problem can be viewed as a Birthday Paradox, whereN is the number of possible
hashes, n is the number of hashes, i. e. the total amount of sectors we have hashed (as
a worst case scenario), and P (Collision) the probability of a collision, which can be
calculated as

P (Collision) = 1− N !

Nn · (N − n)!

and with N = 2160 and n = 18, 210, 308, 798 the probability of at least one collision

56

4.2. Static Areas

is approximately

P (Collision) ≈ 1− e−n2/2N ≈ n2/2N ≈ 1.1 · 10−28.

Our approximation is based on Stirling’s approximation of factorials, which gives ac
ceptable results when dealing with very large numbers. Since the SHAttered [208, 209]
attack is 100,000 times faster than a brute force attack using the birthday paradox the
risk of an intentional collision is higher, but the attack is unfeasible in our situation.
Even though the SHA1 algorithm is broken [208, 209] from a cryptographic point

of view the risk of an intentional collision is also negligible, because the amount of
computing power required to create a collision is out of reach for the common user [208,
209]. Furthermore, such an attack would require an attacker to create a large amount of
collisions for a majority of the storage media in the source data of the map. It would be
much simpler to fill the disks with shared and unique data in an intentional pattern. This
is however mitigated by collecting the source data from nonrelated sources. Finally
the mapping process is not limited to the use of SHA1, any hashing algorithm will do,
as long as all mapping data is hashed using the same algorithm.

4.2.1. Data Collection

A convenience selection is used to collect the live data. We do not use the Real Data
Corpus (RDC) because the time stamps on the RDC web site [210] indicate that the
last update of the data set is made in 2011. Therefore our data set is more up to date,
containing also versions 8 and 10 of Windows1.
We collect data from 30 partitions of 26 computers (23 consumer grade and 3 office

grade). The data are collected using the dcfldd disk imaging tool set to log the hash
of every 512 byte disk sector to a file. We also retreive the partition layout of each
disk. The included computers use three different language packs (Swedish, Finnish,
English) and the OS types range from Microsoft Windows 7 to Windows 10, cover
ing the Enterprise, Professional, Ultimate, Home and Educational products. Some of
the computers have been upgraded from an earlier Windows version to Windows 10.
Five of the computers are in our possession and we therefore have access to their raw
content2. The Windows product version of each computer can be seen in Table 4.1.
We use real computers for the experiment to increase its fidelity. The drawback is

a lower degree of control of the collected data. In some cases we lack information on
whether a disk is an HDD or an SSD. However, we collect the data at the LPVA level
and therefore avoid any low level differences [53–57] (see also Section 2.1).
1Windows 8 was introduced at the end of 2012 [211] and therefore cannot exist in the RDC, neither can
Windows 10.

2The raw data images are exempted from sharing according to Findability, Accessibility, Interoperability,
and Reusability (FAIR) principles to protect the owners’ privacy.

57

4. Experimental Setup

Table 4.1.: The OS type and other information on the 26 disks used in the static area
experiment. Some computers are upgraded, some are office computers and
some contain two partitions that have been used.

File OS Comment

A Win 10 Home
B Win 10 Upgr Win 8
C Win 7 SP 1
D Win 10
E Win 7 Home Premium
F Win 8.1 Storage disk, no OS
G Win 10 Edu, Build 1709 Office computer
H Win 10 Probably Home
I Win 10 Edu
K Win 10 Upgr Win 7?
M Win 7
N Win 10 New office computer
O Win 10 Upgr Win 7?, 2 part
P Win 7 Pro, Build 7601
Q Win 8.1 2 part
R Win 10 Upgr Win 8, 2 part
S Win 7 Pro, Build 7601 2 part
T Win 7 Ultimate, Build 7601
U Win 10 Upgr Win 7 Home
V Win 7 Pro Sector (0x268C2AEE00) is damaged
W Win 7 Enterprise Office computer
X Win 7 SP1 Pro
Y Win 7
Z Win 8.1
AA Win 10 Home, Build 16299
AC Win 10 Pro

58

4.2. Static Areas

From our point of view the only difference between an HDD and an SSD disk is
their filling of unused areas, which can be either old data, 0x00 or 0xFF depending on
how the TRIM command is implemented in the SSDs [212–217]. Hence an HDD will
more often give us old data from currently unallocated clusters than an SSD. Since the
experiment focus on unique data any 0x00 and 0xFF filling is automatically filtered
out.
If a large amount of the unallocated sectors contain old and unique data our results

will be affected. This will be the case if a disk is erased using a random pattern and then
reformatted and reused. For this to happen the scenario shall be true for a significant
part of the partitions in our data set. We therefore check with the users if they have
done any large file system cleaning close to our data collection.
The sizes of the disks in our experiment range from 64 GB to 1 TB. The largest

NTFS formatted partition from each disk is extracted. In four cases there are an extra
storage partition present, which is extracted too (see Table 4.1).
To determine whether any of the partitions in our data set have been completely

filled with data we study the last 20 GB of each partition. If we find anything but 0x00
or 0xFF filling there we assume the partition has been full at least once during its life
time. The size of 20 GB is chosen to be a suitable tradeoff between a large enough
amount of data and the risk of including the OS area for the smaller partitions.
Each studied partition contain a number of 1 KiB3 MFT records. These records

contain for example time stamps, file names and allocation data making them highly
unique and therefore affecting our results. We therefore perform a survey on 27 Win
dows computers not included in our data set to estimate the mean number of MFT
records in an NTFS partition. Each file and folder in an NTFS partition is represented
by, at least, one MFT record4).

4.2.2. Data Analysis

To prepare the data for further analysis we combine the retreived hash values into a
single file, which is then sorted in ascending order of hash value. We then extract the
unique hashes from the file, thus any 0x00 and 0xFF filled sectors are automatically
filtered out. After the extraction of unique hashes we sort them in order of ascending
LPVA position and separated them in individual files based on partition identity. The
data for each partition are then divided into 128 equally sized areas. We then calculate
the proportion of unique hashes in each area for each partition.
3The size of an MFT record is defined in the boot sector of an NTFS partition. The de facto standard
size is 1 KiB [50], but recently also 4 KiB records have been introduced [48]. None of the disks in
our experiment uses 4 KiB records.

4If a file has many attributes, for example alternate streams or is heavily fragmented, the file system
creates a new MFT record to hold the extra information [48].

59

4. Experimental Setup

The mean, median and standard deviation of the probability for each area in each
partition are then calculated. The process enables us to combine the results of the cal
culations regardless of the differing partition sizes. The resulting values together form
a map of the probability to find unique data (user data) in a generic NTFS formatted
partition.

4.2.3. Map Evaluation

To evaluate our map we run an experiment simulating a hashbased carving scenario.
The idea is to compare the performance of sampling according to our map to a uniform
sampling distribution. As ground truth we use partitions not included in our data set.
The partitions are extracted from storage media of four old office computers that have
been used to handle large amounts of data. The partitions are divided into 128 equally
sized areas using themapping process. We use the distribution of unique data in the four
partitions to pick a random integer called target. We then use our map to pick a random
integer map and the uniform distribution to pick a random integer uni. All random
integers are selected within the same total range representing the LPVA postitions of a
fictive 16 MiB partition, although with bias for target andmap. Ifmap = target our
map gets one hit, if uni = target the uniform distribution gets one hit. The small size
is chosen to increase the probability of a hit. The experiment is executed using Python
2.7 and the random library in a Debian Stretch (v. 9) computer.
We iterate the random sampling process 109 times for each of the four partitions to

stabilize the result. The low number (30) of partitions used to create the map does how
ever affect the evaluation since it is a small population to build a model from. Likewise
our set of partitions forming the ground truth is small and the result is therefore affected
by any individual variations of the partition content. Another factor affecting the result
is the fact that the four partitions used as ground truth are taken from office computers
that have been scrapped and therefore have well used disks. They therefore contain a
lower amount of 0x00 and 0xFF filling.

4.3. Repeated File Operations

The repeated file operations experiment is based on an iterative process where we ran
domly create, delete, expand and shrink files in VMs running different Microsoft Win
dows product versions. The experiment is using 32 VMs in eight nodes in the CRATE
cyber range at the Swedish Defence Research Agency (FOI) [218]. The aim is to em
pirically study how the allocation frequency varies at different LPVA positions and
how the file allocation pattern develops over time.
We are given 16 days by FOI to execute the experiment. Most, but not all, of the

60

4.3. Repeated File Operations

VMs will then have completed 10,000 iterations. We are also given the opportunity
to run three VMs with larger (256 GiB) virtual disks on three extra nodes in the cyber
range.
Due to instability in the VBoxManage interface and unforeseen popup windows ap

pearing in the VMs several of them have to be manually restarted during the course of
the experiment. This might affect the result of the experiment, but since there are eight
VMs per Windows product version and four of each use the same writing pattern the
effects of the unplanned reboots are diminished.
We let 16 of the 32 VMs use exactly the same file operation pattern to test if there

is any deterministic behavior connected to the allocation. This is done by searching
for similarities in the allocation patterns of the VMs. Hypothetically the allocation
patterns should be equal, since the VMs of each Windows version are exact copies of
each other. Due to unforeseen behavior (machine hangs during boot, system messages
locking the shut down process, etcetera) of the VMs a total of five VMs are disqualified
from the similarity test, giving eleven that are possible to compare. However, these
VMs are also subject to small disturbances, hence the foundation for the deterministic
allocation behavior study is weakened.

4.3.1. Platform

The experiment uses 32 freshly installed VirtualBox v. 5.2.20 VMs running Windows
versions 7, 8, 8.1 and 10 with 64 GiB NTFS formatted partitions. The exact Windows
product versions can be seen in Table 4.2. Each node in CRATE is running Gentoo
Linux 10.1 with kernel 4.18.13. The nodes are equipped with Intel Xeon E31230 v2
3.3 GHz CPUs, 500 GB Samsung 860 EVO SSDs and 32 GiB of RAM. The cluster is
managed by FOI and we are not allowed to make any changes to the host nodes. We
therefore cannot install any specialized forensic software, such as the Sleuth Kit [204],
on the nodes. The VBoxManage interface is used for the communication between the
host and the VM.

Table 4.2.: The four types of Windows used in the repeated file operations experiment.

Product name Version/Build #

Windows 7 Professional SP 1 7601
Windows 8 Enterprise 9200
Windows 8.1 Enterprise 9600
Windows 10 Home 17763

61

4. Experimental Setup

We run four VMs in each node, one for each version of Windows in our test (see
Table 4.2). The VMs are copied using scp, not cloned, between the nodes and hence
identical. The success of each copy operation is checked using sha1sum.
To enable us to extract the $Bitmap file after each process iteration the VMs are

configured to use fixed size virtual disks. This type of disk is given its full size directly
when created. It is therefore unaffected by the virtualization layer of VirtualBox [219,
220]. Consequently the virtual disk files can be handled by standard Linux file carving
tools, such as dd5. We also switch off host caching to decrease the delay induced by
double caching when the changes to the virtual disk are written to the physical [219].
The virtual disks are emulating HDDs, which is the default behavior of Virtual

Box v. 5.2.20 [221, p. 157]. This also rids us of any TRIM commands from the VMs.
In that way only the weekly defragmentation, which is run automatically by Windows,
affects the virtual disks. Since the virtual disks are constantly used and the VMs re
booted within a few minutes there is no time for the automatic defragmentation to start.
Consequently the disks are more or less unaffected by the defragmentation. Further
more, we aim for a scenario as close as possible to the real world and use a black box
principle for the mapping concept. Consequently the defragmentation process will be
a natural part of the life of an NTFS file system and therefore does not interfere with
our aim.
The virtual disks are not automatically encrypted by the OS or manually by us, be

cause neither block device encryption, nor stacked file system encryption, affects the
logical layer, i. e. the allocation strategy. Both types of encryption act either above
or below the file system and data allocation layers (see Figure 1.1). This is valid for
NTFS, as well as other file systems [7, 86, 222–224]. Adding encryption to the vir
tual disks would therefore only put an execution overhead on the experiment, without
affecting the data allocation.
We use 64 GiB virtual disks, allowing us to have four VMs in each node and still

have space for 40 000 $Bitmap file copies of 2 MiB each on the host’s disk. A 64 GiB
disk is small compared to the current standard disks, but still large enough to be found
in cheaper or older computers equipped with SSD disks.
An extra experiment is executed to generalize the results. The experiment uses three

VMs with 256 GiB disks running Windows 7, 8.1 and 10. Windows 8 is excluded due
to its slow power cycle. Each VM is setup in the same way as the 64 GiB VMs and use
the same file operation pattern as in the similarity test. The slowest booting VM of the
three, Windows 10, only executes 8,331 iterations before we have to stop it. Therefore
the results of all VMs are limited to that amount of iterations.

5There is a VirtualBox specific header at the beginning of the .vdi file containing the virtual disk. This
header has to be skipped to reach the actual disk part. The header size is measured in blocks of 1 MiB.
Static virtual disks have two blocks large headers [220].

62

4.3. Repeated File Operations

Each VM has Python 2.7 installed together with four Python scripts that create,
delete, increase and decrease files. Each VM has a separate virtual disk shared with
the host holding the scripts, which therefore do not affect the allocation pattern of the
VM’s own virtual disk. This configuration is used to isolate the machines from each
other and avoid them accessing the same file at the same time. There is also an auto
started .bat script that writes a file to the shared disk. The file is created each time
the VM has finished booting and deleted before next iteration.

4.3.2. Implementation

Each iteration of the experimental process contains the following steps, which are con
trolled by a Python script on the host node:

1. Boot a VM.

2. Randomly (with bias) either create, delete, expand or shrink a file within the
VM’s NTFS file system.

3. Shut down the VM.

4. Extract the $Bitmap file from the virtual disk (using dd externally from the host
computer)

Since each iteration requires theVM to be rebooted it takes severalminutes to complete.
There are also extra waiting time inserted at critical moments to compensate for any
variations in execution time during an iteration.
The type of file operation executed in the VM is based on a configuration file con

taining a precomputed weighted (biased) random selection of operations. The bias of
each file operation can be seen in Table 4.3. The bias value of an operation is calcu
lated as biasop =

factorop∑
factors . The bias values {0, 0, 0, 0, 1, 1, 2, 3} will for example

give 50% create operations, 25% delete operations and 12.5% increase and decrease
operations respectively.
The size of the files operated on is also varied within a size range. The size factor in

Table 4.3 is multiplied with a random number in the range 1 to random range. If the
same size factor is given multiple times the probability of its use is increased. Based
on the random range 1 to 1,024 the size factors {8, 8, 128, 2,048} will generate twice
as many files in the size range 8 to 8,192 sectors, as in the ranges 128 to 131,072 and
2,048 to 2,097,152 sectors.
The size and file operation bias factors are used to simulate the behavior of different

types of users. Our assumption is that a user who use the computer for web surfing will
create mostly small files (cached data and logs), a file sharing user will create a high

63

4. Experimental Setup

Table 4.3.: The settings used to generate the file operations and other relevant settings
used in the experiment. The settings are given as sectors of 512 B where
applicable. The bias of the write/delete/increase/decrease operations are
calculated as biasop = factorop∑

factors

Setting Identic. behavior Uniq. behavior

Size factors [512 B] {8, 2,048} {8, 8, 128, 2,048}
Writes [x/40] 10 10
Deletes [x/40] 9 9
Increases [x/40] 11 14
Decreases [x/40] 10 7
Random range 1,024 1,024
Write {start, stop} {0.05, 0.3} {0.05, 0.3}
Delete {start, stop} {0.95, 0.7} {0.95, 0.7}
Total size [512 B] 112,000,000 112,000,000

amount of large files and a user storing a large amount of images will probably create
mostly small to medium sized files.
There are also limits governing the users behavior when the file system is empty or

becomes full. During that period the user will also create and modify different files
to a certain degree. The write start/stop and delete start/stop limits in Table 4.3 is
used when the virtual disk is being emptied or filled up. If the current amount of data
(controlled by the main script) in the VM falls outside of the start limit multiplied with
the total size it triggers write or delete operations until the stop limit multiplied with
the total size is reached.
All file operations configuration files are evaluated before use. This is done graphi

cally by plotting the utilization curve for the virtual disk, i. e. the sum of the currently
allocated data blocks after each file operation. By doing this we can see if the curve
corresponds to our idea of the typical user activity we want to emulate. We want the
partition to be almost full at least once during the experiment, but not too many times.
Likewise there shall be a steady increase in the utilization of the partition, but not too
steady or rapid. We favour sequences with a certain degree of high frequency ripple
along the utilization curve. This is meant to correspond to the user actively creating,
modifying and deleting files on a regular basis and in that way increasing the external
fragmentation of the file system. The degree of utilization for the similarity test can be
seen in Figure 4.1.

64

4.3. Repeated File Operations
A

m
o
u

n
t

o
f

d
a
ta

 [
%

]

0

20

40

60

80

100

Iteration
0 2000 4000 6000 8000 104

Figure 4.1.: The simulated user behavior, i. e. the total amount of data stored in the
NTFS partition after each iteration according to the file operations config
uration file used in the similarity test.

65

4. Experimental Setup

The script on the host checks if a VM is started before it sends a file operation com
mand. There is also a check of the exit status of the VM scripts. If the exit status of
a script indicates an error the iteration counter is decremented and the file operation
is repeated. This behavior might induce extra allocation changes due to the repeated
power cycling of the VM. We accept them because occasionally a real user might also
be forced to reboot a computer.
Every file operation is logged externaly to the VM. The log contains the sequence

number, the action performed, the name of the affected file, the size factors, the current
random size number and the current file size. The file size difference for the increase
and decrease operations can be calculated from the stored transactions if needed. The
log file is stored on the disk shared between the VM and the host and hence does not
interfere with allocation algorithm of the virtual disk.
Thewrite operation scripts (create, increase and decrease) are set towrite one 512 byte

sector at a time, i. e. we do not actively cache any write operations. Each file contains
the file operation sequence number and the current sector’s position within the file
(similar to the LCN). This enables us to see the raw write pattern in the virtual disk file
if needed. The iteration sequence number is used as the file name to further increase
the traceability.
All write operations are stream writing operations, i. e. the size of the file is not

known in advance. This corresponds to for example a file being downloaded from the
internet. The reason for writing each file one sector at a time is to try to deprive the
allocation process of any knowledge of the file’s final size. Therefore the allocation
process can only be optimized for each write (which might be delayed due to internal
caching). This can induce a more stochastic behavior of the allocation algorithm and
possibly hide any deterministic behavioral patterns from us. However, that would lead
to an underestimation of the experimental results, which on the other hand is better
than an overestimation.
The create and decrease file operation scripts both write new files (they use the wb

flag in the Python open command). A file size decrease might therefore lead to deal
location of the original clusters and allocation of a smaller amount of new clusters. It
might even lead to deallocation and allocation of the same clusters depending on the
type of allocation algorithm used. The increase script appends new data at the end of
an existing file, using the ab flag. Therefore files that have had their size increased
might contain two or more sequence numbers.
The allocation status of the file system is collected through the $Bitmap file of the

VMs. The file is extracted as the last step in each iteration. Thus the only difference
between two consecutive $Bitmap file copies are the allocation changes induced by the
latest file operation and any active system processes. Since their activity is part of the
standard system behavior we let them run as normal. The resolution of the $Bitmap
file is 4 KiB per bit, but we use 512 B blocks when writing. We therefore have set the

66

4.3. Repeated File Operations

size factors to multiples of eight in the experiments.
Each VM is installed with its specificWindows OS using standard parameters. Then

the Python 2.7 executable is added to the VM together with and an auto started .bat
script. The .bat script writes a small token file to the disk shared by the VM and
the host to signal the completion of the boot process. The script is small enough to fit
into an MFT record and hence does not require any new cluster allocation (outside the
MFT) in the VM. The goal is to keep the NTFS file system as pristine as possible to
allow us to study the allocation algorithm from the start of the life of the file system.
The path environmental parameter of the VM is modified to incorporate the Python
installation. Finally the security level of the OS in the VM is lowered to allow access
without a password.
We use the Linux dd tool to extract the $Bitmap file as raw data. Consequently the

position of the file must be known and static, which it is. To find the position of the
$Bitmap file we use the istat tool from The Sleuth Kit before the virtual disks are
copied to the host nodes. This procedure is required because we are not allowed to
install new software on the cluster nodes.
The fact that we can access the data of the virtual disks externally without having

to use dislocker [225] or similar tools proves that the disks are not (automatically)
BitLocker encrypted. Furthermore, VirtualBox implemented the TPM and Secure Boot
functions required by BitLocker in version 7.0.0, which was released 10102022 [99].
Our latest article was published in July 2020.

4.3.3. Map Creation

When the experiment is finished we do a differential analysis of each consecutive pair
of $Bitmap copies. This gives us the LPVA position of the allocation changes for
each file operation, including system files. The probability of a new file causing more
allocations than its system ditto is high, because otherwise the OS would be inefficient.
Hence the system file allocation changes are negligible compared to the file operation
changes.
We are interested in the allocation frequency at each LPVA position. Consequently

only allocations are relevant and the deallocations are thus neglected. The remaining
posts are then merge sorted in order of LPVA position.
The final step is to create a map in a similar way as described in Section 4.2. The

storage media is divided into equally sized areas and the mean allocation frequency of
each area is calculated. The areas together form the map, which easily can be plotted.
The resolution of the map is given by the number of areas.

67

4. Experimental Setup

4.4. Writing Type Behavior

The experiment specifically studies the writing allocation behavior, which includes
stream and block writing (see Section 2.5). We therefore study the allocation algo
rithm’s behavior in different situations regarding for example disk utilization, file sys
tem fragmentation and file size. To achieve this the $Bitmap files of two VMs are
manipulated to emulate different states of file system fragmentation. On a higher level
the experiment will test whether Microsoft Windows in combination with NTFS is
using the best fit allocation strategy, as indicated in the literature [50, 162].

4.4.1. Virtual Hardware

The experiment is executed using two VirtualBox v. 5.2.20 VMs running Windows 7
and Windows 10. The included Windows OSs are selected to cover both older and
newer Windows releases. The reason for excluding Windows 8 and 8.1 is their simi
larity in behavior to Windows 7. The similarity has been seen in previous experiments.
The Windows 7 machine has a fixed size 64 GiB disk and the Windows 10 machine a
1 TiB ditto, to cover both small and large disks. Each VM has a folder shared with the
host. The virtual disks are loop mounted with read/write access rights to enable us to
use standard digital forensic tools like the Sleuth Kit.
The disk of the Windows 7 machine has already been used in an earlier experiment

(see Section 4.3). This has given it a heavily fragmented file system corresponding
to an old and well used (home) computer. There is one large area of free clusters
remaining at the end of the partition. To even out the fragmentation pattern we split
the unallocated area into five smaller areas of approximately 262,000 clusters (1 GiB)
each. The Windows 10 machine is newly installed and the file system therefore only
contains files from the installation. It represents a new office computer.

4.4.2. Process Description

As in the repeated file operation experiment described in Section 4.3 each VM is power
cycled after each file operation. This is done to ensure that all file operations are re
flected in the virtual disk file on the host. The experiment starts by retrieving a copy
of the $Bitmap file from the still powered down VM. This $Bitmap copy shows the
status of the file system prior to the first file operation. Then the following steps are
repeated for each file write operation:

1. The VM is powered on.

2. A file signaling that the boot process has finished is written to the shared folder.

3. A file write operation is executed.

68

4.4. Writing Type Behavior

4. A file signaling that the file operation has finished is written to the shared folder.

5. The VM is powered down.

6. Use the vboxmanage showvminfo tool to check for a complete and successful
power down of the VM.

7. The allocation information related to the newly written file is extracted using the
istat [204] tool.

8. The $Bitmap file of the VM is copied to the host using icat [204] tool.

To allow the VM, as well as the host, to properly write all files to disk a ten second
long pause is introduced between the steps 1 to 3 of each iteration.

4.4.3. Implementation

To generate both stream and block writing situations a Python 2.7 script is used. Block
writing is implemented through writing a file to an array in RAM, which is then written
to disk in a single write operation. Stream writing is implemented by directly using
Python’s own file write operation, writing one 512 B sector of the file at a time. Each
512 byte block is uniquely identifiable by a consecutive number together with a file
identifier. The marking is used as a backup in case we have to read the raw data directly
from the virtual disks. The marking is also used to verify that the istat tool reports
the allocation pattern in the same order as the clusters are written.
We write files of different sizes to determine if the allocation algorithm behaves

differently depending on the size of the file. In the first round of the experiment we use
4, 128, 511, 512, 513 and 1,024 MiB files. The 511 and 513 MiB files originates from
the first version of the Python script, where the type of writing is dependent on the size
of the file. If the file size is ≤ 512 MiB the file is block written and if it is larger it is
stream written. The second round of the experiment also includes 12, 96, 384, 768 and
1,536 MiB files to give a more even distribution of the file sizes. The Python script is
also updated to allow different writing strategies regardless of file size.

4.4.4. Bitmap Manipulation

To cover for possibly different allocation behaviors depending on the available amount
of unallocated space in the file system we manipulate the $Bitmap file of the virtual
disks. The $Bitmap file of the Windows 7 machine is manipulated once and the Win
dows 10 $Bitmap file three times, because it has not been used to the same extent.
The Windows 7 VM’s main partition is heavily fragmented from the beginning, but

still contains a contiguous unallocated area of approximately 5.3 GiB. This area is

69

4. Experimental Setup

divided into five smaller areas (see Table C.1), all other unallocated areas are kept in
their original state. The modified layout is called BM 7:1 throughout the text. The
unmodified layout is never used.

Table 4.4.: The unallocated areas in the original 5.3 GiB space after the BM 7:1 ma
nipulation.

Start [cluster] Size [cluster]

15,372,418 262,000
15,634,546 262,143
15,896,818 262,144
16,159,090 262,145
16,421,363 262,160

The unused Windows 10 VMmain partition of 1 TiB contains two large unallocated
areas of approximately 497 GiB and 511 GiB respectively. This original, unmodified,
layout is called BM 10:0 throughout the text.
After the initial file writing operations to BM 10:0 we manipulate the $Bitmap file

to fragment the allocation layout. The 497 GiB area is divided into 501 equally sized
blocks of 120,000 clusters (468.75 MiB) each. The 51 GiB area is divided into 1,026
blocks of increasing size, from 120 clusters (480 KiB) to 123,120 clusters (approxi
mately 481 MiB) in steps of 120 clusters. The two areas together contain 123,342,120
(approximately 471 GiB) unallocated clusters after the modification. All other unal
located areas in the partition are unmodified. We refer to this manipulation setting as
BM 10:1.
In the BM 10:2 $Bitmap layout the available unallocated space is decreased even

more. This is done by first restoring the VM disk to its original state and then creating
the unallocated areas shown in Table C.2 from the two initially unallocated areas.
The BM 10:2 layout is meant to test the block writing allocation behavior by forcing

the allocation algorithm to choose between a few very large areas and many small.
The seemingly odd values used in Table C.2 are chosen to avoid creating unallocated
areas with sizes being multiples of 2. The total amount of unallocated space in the
manipulated area is 11,715,760 clusters (44.7 GiB) after the modification.
However, the BM 10:2 $Bitmap manipulation is not enough to generate any signif

icant fragmentation during the block writing process. We therefore manually decrease
any remaining free areas larger than 120,000 consecutive clusters with a factor 10. This
gives a total of 3,361,315 clusters (12.8 GiB) of unallocated space in the manipulated

70

4.5. HDD vs. SSD Allocation Differences

Table 4.5.: The modified areas of BM 10:2.
Spaces Function Tot. [cluster]

511 int(120, 000/x+ 27;x = [512 : −1 : 2]) 711,541
23 120, 000 2,760,000
512 7x+ 13;x = [0 : 511] 922,368
16 7, 999 127,984
1 17 17
29 int(1, 800, 000/x+ 17;x = [1 : 29]) 7,131,462

area. This $Bitmap manipulation is referred to as BM 10:3.

4.5. HDD vs. SSD Allocation Differences

An experiment is carried out to empirically check if there are any differences in the
file data allocation (at the logical layer) between an HDD and an SSD. The experiment
is executed using a computer running Microsoft Windows 10 Enterprise (build 1809),
a Seagate Barracuda 2 TB (ST2000LM015) HDD, a Toshiba OCZ TR150 480 GB
(TRN15025SAT3480G) SSD and aDebian 11 (Bullseye) computer. A total of 64GiB
data (512 files à 128 MiB) are written to two 128 GiB partitions, one in each storage
media. The writing is done using the Windows computer and a Python script.
The HDD also contains another partition placed in front of the partition used for the

experiment. The HDD and SSD partitions therefore start at different LBAs.
The experiment consists of the following steps:

1. Create two equally sized partitions in anHDDand SSD respectively using fdisk
in Linux.

2. Format the partitions as NTFS using the Microsoft Windows computer.

3. Write an equal number of equally sized files to the disks using the Microsoft
Windows computer.

4. Extract the file allocation data from both partitions using the istat tool from
the Sleuth Kit in Linux.

5. Filter out the allocated cluster addresses with the help of the head and tail
tools in Linux.

6. Check the allocation data for equality using sha1sum.

71

4. Experimental Setup

We also compare the MFT numbers of all files using the fls tool from the Sleuth
Kit.

4.6. BitLocker Allocation Changes

The BitLocker experiment is executed to check if BitLocker v. 2.0 affects the file data
allocation of already used storage media when being activated. The experiment uses
the same hardware as the HDD vs. SSD experiment (see Section 4.5), except for the
HDD.
The experiment includes the following steps:

1. Format the existing 128 GiB partition on the SSD as NTFS using the Windows
computer.

2. Write 512 equally sized (128 MiB) files named 0 to 511 to the partition using the
Windows computer.

3. Erase the odd numbered files using the Windows computer.

4. Create an image of the partition using dd in the Linux computer.

5. BitLocker encrypt the full partition using the Windows computer.

6. Use the dislocker tool in the Linux computer to mount the encrypted partition.

7. Create an image of the dislocker mounted partition using dd in the Linux
computer.

8. Deactivate BitLocker (decrypt the partition) using the Windows computer.

9. Create an image of the partition using dd in the Linux computer.

10. Use the istat tool in the Linux computer to extract all MFT records in the
partition.

11. Check and compare the istat data of all the previously written files from before,
under and after the BitLocker encryption using sha1sum in the Linux computer.

The deletion of every second file is meant to give BitLocker the possibility (and
reason) to change the file data allocation. Since all files have the same size they theo
retically can be moved and compacted into half the allocated space. Any change will
be manifested in either the MFT files or the created files, or both.

72

5. Result

The result of the three experiments presented in Sections 4.2 to 4.4 are summarized in
Chapter 6. The full text can be found in Articles A to D.
The results of the two new experiments presented in Sections 4.5 and 4.6 are de

scribed below. The first experiment is run to check for differences in the file allocation
pattern between an HDD and SSD. The second experiment is executed to check for
differences in the file allocation pattern of a partition when it is unencrypted versus
BitLocker encrypted.

5.1. HDD vs. SSD Allocation Differences

The allocation pattern of the HDD and SSD partitions are exactly the same. Each file
is allocated to the same LPVAs of the partitions. Also the MFT record numbers of the
files in each disk are the same. The main difference between the partitions are the time
stamps, which differ since the disks were not populated at the same time. Also the
Last User Journal Update Sequence Number of the MFT records differ. The journal
sequence numbers of the HDD are increasing relative to the sequence numbers of the
SSD. This is done in intervals, which can be seen in Table 5.1.

Table 5.1.: The Last User Journal Update Sequence Number of the HDD is incre
mented with a higher rate than in the SSD. The table shows the interval
lengths and values.

Interval length Diff. increase

420 0
13 80
18 72
1 136
55 72
1 136
4 72

73

5. Result

We use the binwalk tool to check for binary differences in the $Bitmap files of the
two partitions. There is one more allocated cluster in the HDD than in the SSD, at
cluster 761,923. Otherwise the $Bitmap files of the two disks are identical. The extra
cluster in the HDD belongs to the SYMEFA.DB file, which is part of the Symantec
Endpoint Protection antivirus product [226–228].

5.2. BitLocker Allocation Changes

The SHA1 sums of the istat data for all files are identical. This means that all
files have exactly the same cluster addresses allocated both before, under and after the
BitLocker encryption, i. e. the file data allocation is identical during the whole process.
We use the binwalk tool to check for any differences between the $Bitmap files

from before, under and after the BitLocker encryption. There are several differences,
three allocations are reset when the partition is decrypted and two allocations remain.
The differences can be seen in Table 5.2.

Table 5.2.: Differences in allocation shown in the $Bitmap file before, under and af
ter BitLocker encryption. Each bit in the $Bitmap represents one cluster,
4 KiB, in the file system. 0x01 = 1 allocation, 0x07 = 3 allocations, 0x10 =
1 allocation and 0xFF = 8 allocations.

Position [cluster] Before [0x] Under [0x] After [0x]

40,977 01 00 00 00 00 FF FF FF FF 07 01 00 00 00 00
303,121 01 00 00 FF FF 01 01 00 00
462,064 00 10 10
565,265 01 00 00 FF FF 01 01 00 00
761,896 00 07 01

The majority of the differences shown in Table 5.2 are unique to the BitLocker en
cryption. Three areas are only changed during the BitLocker encryption, one is retained
after the encryption has been deactivated and one differs in all three states. The largest
newly allocated area is 136 KiB at cluster 40,977. There are also two larger areas al
locating 64 KiB each. All allocation changes are done in an area between the start of
the partition and the $MFT file, which is situated at cluster 786,432.
The files and directories occupying the extra allocated areas during the BitLocker

encryption can be seen in Table 5.3. There are seven files and one directory, which is
divided into two fragments.

74

5.2. BitLocker Allocation Changes

Table 5.3.: Files created by BitLocker, i. e. new allocations during the encrypted stage.
There are seven files and one directory in the new allocations.

Pos. [clust] Len. [clust] Name

40,977 16 FVE2.e40ad34ddae94bc795bdb16218c10f72.1
40,993 2 FVE2.24e6f0ae6a004f73984b75ce9942852d
40,995 16 FVE2.da392a22cae04f0f9a30b8830385d046
303,121 16 FVE2.e40ad34ddae94bc795bdb16218c10f72.2
462,068 1 System Volume Information (2nd part)
565,265 16 FVE2.e40ad34ddae94bc795bdb16218c10f72.3
761,896 1 System Volume Information (1st part)
761,897 1 FVE2.aff97baca69b45daaba12cfbce434750.1
761,898 1 FVE2.aff97baca69b45daaba12cfbce434750.2

The System Volume Information directory does not exist before the BitLocker en
cryption, but remains after the partition is decrypted again. The directory contains the
seven new files. The files are all related to BitLocker [229]. Two files, FVE2.{aff…750}.1
and FVE2.{aff…750}.2, contain information other than zeros. The rest are zero filled.

75

6. Summary of Work

The results of the PhD project are presented in four articles:

Article A M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkolbotn.
“Creating a Map of User Data in NTFS to Improve File Carving.” In: Ad
vances in Digital Forensics XV. Cham: Springer International Publishing, 2019.
Chap. 8, pp. 133–158. ISBN: 9783030287528. DOI: 10.1007/9783
030287528_8

Article B M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Using NTFS Cluster Allo
cation Behavior to Find the Location of User Data.” In: Digital Investigation 29
(2019), S51–S60. ISSN: 17422876. DOI: 10.1016/j.diin.2019.04.018

Article C M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Disk Cluster Allocation
Behavior in Windows and NTFS.” in: Mobile Networks and Applications 25.1
(Feb. 2020), pp. 248–258. ISSN: 15728153. DOI: 10.1007/s11036019
014411

Article D M. Karresand, G. Dyrkolbotn, and S. Axelsson. “An Empirical Study of
the NTFS Cluster Allocation Behavior Over Time.” In: Forensic Science Inter
national: Digital Investigation 33 Supplement (July 2020), p. 301008. ISSN:
26662817. DOI: 10.1016/j.fsidi.2020.301008

The term LBA has been corrected to LPVA in the articles. This is also pointed out
in the text introducing each article.
The articles form a logical continuation of the previous research work done during

the licentiate studies [39, 110–114]. The new articles provide the foundation for the
mapping concept, which is central to the PhD project. It is built on a black box model
to make it OS, file system and hardware independent, as well as future proof. Article A
also contains an experimental evaluation of the mapping concept. The evaluation com
pares the performance of sampled hashbased carving with and without using a map.
The mapping concept and each article are presented in separate sections below. The

connections between the research questions and publications are shown in Figure 6.1.
The main contributions of the PhD project are given in Chapter 7.
As can be seen in Figure 6.1 themain research question is answered by a combination

of all four publications, which follow a logical path towards the complete answer to
the question. Article D answers both Research questions RQ:4 and RQ:5. This is done

77

https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1016/j.fsidi.2020.301008

6. Summary of Work

Figure 6.1.: The relationship between the main research question, Articles A to D and
the Research questions RQ:1 to RQ:5.

78

6.1. Article A: Creating a Map of User Data in NTFS to Improve File Carving

to utilize the synergies between the experiment and analysis due to their procedural
similarities. Articles B and D are based on the same experiment, but the analysis of the
experimental data differ.
All data collected during the experiments will be made available in accordance with

the FAIR principles as soon as possible. During the mean time the data are available
for download by contacting the author. Since it is more than 889 GB compressed data
the best transfer technique has to be agreed upon in each individual case.

6.1. Article A: Creating a Map of User Data in NTFS to
Improve File Carving

Article A compares the cryptographically hashed (SHA1) content of each 512 byte
sector of 30 unrelated reallife NTFS formatted disk partitions. Sectors at the same
LPVA having the same content are called static sectors, which are used to show that
there are generic, static, structures present in the partitions. The purpose is to find the
allocation activity at different LPVA in a partition, built on the assumption that user data
are the main source of file allocations. User data are also assumed to be highly unique,
since the probability of two users creating exactly the same file content is negligible.
However, different types of file sharing will cause the same data to be present in several
partitions.
The computers used in the experiment belong to family, friends and coworkers of the

authors. The contributors were chosen based on a convenience selection. The extrac
tion of the hash values are done in a privacy preserving way to protect the contributors.
The hashing of the sectors were executed on the source computer and the hashes were
written to a portable disk. Consequently no cleartext data ever left the contributor’s
computer. Only the resulting hashes and their corresponding LPVAs were stored and
used in the analysis.
The analysis was made by sorting and filtering the hash data in different ways. Un

used parts, i. e. filled with 0x00 or 0xFF were automatically filtered out, because of the
focus on unique data. However, some partitions had been used before and reformatted,
which left old file data in the unallocated space of the partitions. We therefore checked
the last 20 GiB of the partitions to see if they contained 0x00 or 0xFF filling or not.
We then knew that some of the unique data were currently not allocated, but had been
before. However, a static area at the end of a partition still means that sometime during
the lifetime of a collection of partitions the same data have been written to the same
LPVA, although some parts of the static area are currently not allocated.
The first static area was found close to the start of the main partition. The second

was found at the beginning of the MFT, in cluster number 786,435. The second area
contains the last part of four MFT records (MFT No. 12–15), counted from the start

79

6. Summary of Work

of the MFT. Since these MFT records fall within the initial part of the MFT also the
previous 12 MFT records are fixed in position. Consequently the MFT start position
was located exactly 3 GiB into each partition, in cluster number 786,432.
During the analysis of the hashed sectors we also found several semistatic1 areas.

Since we only have access to the hashed data we cannot see whether they contain the
same data, or are the result of hash collisions. The semistatic areas cover many con
secutive sectors with varying hashes, consequently the hash collision alternative can
be ruled out, although not theoretically.
To evaluate the mapping concept we conducted an experiment using hashbased

carving and sampling. The experiment checked whether the map or a uniform distri
bution better modeled four real life disks used as ground truth. The mean improvement
using the map was 2%, with a variation between 5% to 9%. However, the map was
created from a small number of mostly privately owned home computers. The four
ground truth disks had been used for storage of data in an office. We therefore expect
the results to improve when the map is based on a larger number of heterogeneous
disks.
Article A answers Research question RQ:1 by identifying two static areas covering

30 unrelatedNTFS partitions. The areas show that there are generic structures inNTFS.
Thus the first requirement for the creation of a map is fulfilled. Furthermore, the result
has been achieved in a real world setting, which increases its value.
The semistatic areas presented in Article A contributes to the field of hashbased

carving with focus on hash collisions and misattribution. They can however also be
used in other research and application fields, for example they give a better understand
ing of the NTFS allocation process. They can also be used within the data persistence
and data reduction fields, since they give information on data that rarely change.

6.2. Article B: Using NTFS Cluster Allocation Behavior to
Find the Location of User Data

The work presented in the article collects statistics on the file allocation activity at
different LPVAs by executing 10,000 file operations (create, delete, increase and de
crease) in a random pattern in 32 VMs. The allocation activity statistics can be used to
guide a forensic investigator to the most probable areas for finding user data (assuming
user data is the most frequent data to be written to disk).

1A semistatic area is having the same content (hash values), but not position, in several unrelated par
titions. It is simply content shared among computers. There is of course a theoretic possibility that
equality is fictive and instead the result of a hash collision. However, the probability of finding hash
collisions covering that amount of diverse sectors is infinitesimal.

80

6.2. Article B:UsingNTFSCluster Allocation Behavior to Find the Location of UserData

Each VM was equipped with a 64 GiB main partition2. Four different versions of
Microsoft Windows (7, 8, 8.1 and 10) were used in the experiment. It ran more than
8,000 iterations consisting of a series of steps. First the VM was started and a file
operation (creation, deletion, increase or decrease of the file’s size) from a randomly
and precreated list was executed. The list was meant to model the behavior of different
types of users, for example home, file sharing and multimedia handling. The virtual
computer was then stopped and the $Bitmap file was extracted. After the extraction
the virtual computer was started again and the procedure was repeated with the next
file operation in the list.
The extracted $Bitmap files were used to analyze the allocation frequency at each

LPVA. By comparing consecutive $Bitmap files the LPVA of the new allocations for
each file operation could be found. The number of allocations per LPVA were calcu
lated and converted into a map of the allocation activity of a generic NTFS formatted
partition. The map can be used by a forensic investigator to increase the efficiency of
his or her work by directing it to the most active area allocation wise.
The allocation activity was found to be low at the first 10 to 20 GiB of a partition,

which corresponds to the approximate size of a Microsoft Windows installation. Then
the activity increased rapidly to a maximum, followed by a slow decrease towards
the end of the partition. The decrease in allocation activity towards the end is almost
linear and at one point i goes below the allocation activity at the start of the partition. A
partition should therefore preferably be read in falling allocation activity order, possibly
switching to the start of the partition before reading the very end.
The general allocation behavior was similar between all Windows versions. How

ever, Microsoft Windows 10 lacked a large dip in the allocation activity in the middle
of the partition, something the other versions showed. The exact reason for the dip has
not been possible to find.
Article B [231] answers Research question RQ:2 and shows that the allocation activ

ity varies in an NTFS partition. The first part has a low allocation activity. The major
part of the activity is seen approximately 10 GiB into a partition. That area starts with a
steep increase in allocation activity, which then slowly decreases towards the end of the
partition. Consequently the second requirement for the creation of a map is fulfilled.
The main contribution of the article is focused on the location of the main allocation

activity in NTFS. The knowledge gained strengthens the mapping concept, because it
confirms the findings from Article A and also gives more detailed information on the
allocation activity at different positions within an NTFS formatted partition.

2Depending on the Microsoft Windows version one or more small extra partitions are created during the
installation phase. This has been the default behavior since Windows 7 [96] and allows the main par
tition to be automatically BitLocker encrypted. Consequently the main partition was slightly smaller
than 64 GiB.

81

6. Summary of Work

6.3. Article C: Disk Cluster Allocation Behavior in Windows
and NTFS

Article C presents research on the allocation behavior differences between stream writ
ten and block written files. During block writing the final size of the file is known to
the OS. It therefore can optimize the allocation pattern of the file. Text documents are
typical candidates for block writing.
During stream writing the data to be written is streamed to the OS, which therefore

does not know the final size of the file to be written. Consequently the OS has to
allocate free space based on an estimated size and the allocation pattern cannot be
optimized. An example of a stream written file is streamed multimedia downloaded
from the internet. Internal buffering can help mitigate the stream writing allocation
problem to a certain degree, but not completely. The effect of the different types of
writing becomes stronger with heavier external fragmentation of the file system.
We conducted an experiment writing files to twoVMs runningMicrosoftWindows 7

and 10. The Windows 7 VM was taken from an earlier experiment and consequently
its virtual disk was already fragmented to a certain degree. The Windows 10 VM was
freshly installed and consequently its virtual disk was unfragmented. To control the
fragmentation of the virtual disks wemanipulated the $Bitmap file in different patterns,
forcing the OS and file system to fragment the files when writing. We then used a
Python script to vary the writing type and size of the files.
The experiment shows that the fragment size decreases during block writing and

increases (from very small values) for streamwriting. The information can for example
be used in the file carving field by enabling a more detailed search for file fragments.
The information on how the sizes of fragments increase or decrease during allocation
of a file helps the detection of fragments from the same file, where the detection of
data type is extended by the probable size of the next fragment. The information will
therefore also contribute to the reassembly step of file carving by decreasing the amount
of sequences to test.
Our experiment also shows that the allocation algorithm in NTFS is not strictly best

fit This is described in the literature, although also contradicted in other literature. The
behavior is more complex, for example large unallocated areas are divided into a few
smaller areas that are allocated individually. This behavior has also been seen in data
from previous experiments.
The research results can also be used to determine the causal order of files in a par

tition. During block writing the areas to allocate are chosen based on the best fit algo
rithm, allocating the largest available unallocated areas first. The next block written
file therefore gets smaller fragments. Depending on the number of file operations and
writing types executed in between the two block writings the result will be more or

82

6.4. Article D: An Empirical Study of the NTFSCluster Allocation Behavior Over Time

less reliable. The relationship between the writing type, allocation pattern and causal
ordering of files is interesting and has been left as future work.
Article C [78] answers Research question RQ:3. It shows that there are easily de

tectable differences between block and stream writing. Consequently the third key
requirement for the creation of a map is fulfilled.
The main contribution of the article is the information gained on differences in al

location behavior in NTFS depending on the way a file is written. The information
increases the resolution of the map by offering a separation depending on how files are
written, i. e. the type of file on a high level.

6.4. Article D: An Empirical Study of the NTFS Cluster
Allocation Behavior Over Time

Article D continues the research presented in Article B on the allocation behavior of
NTFS. This time the focus lies on allocation behavior differences over time, as the
file system ages. The research also includes studies of allocation behavior differences
between Windows products, as well as between different sizes of storage media. The
new analysis found new areas with low allocation activity. Furthermore, the maximum
and median fragment sizes in Windows 7 showed linear properties over time, which
was not the case for Windows 10. No differences in allocation behavior were found
between small and large storage media partitions.
We also noticed that the majority of the allocation activity took place in an approxi

mately 20 GiB wide band of the partitions. When the file system grew older the band
widened and its center moved towards the end of the partitions. The same widening of
the allocation activity band was not seen at lower LPVA positions.
The allocation algorithm also prioritized to fill in gaps in the already allocated ar

eas, instead of using the large unallocated areas closer to the end of a partition. This
sometimes lead to external fragmentation, although there were unallocated areas large
enough to avoid fragmentation. Consequently the unallocated areas at the end of a
partition are used to a much lower extent, than the beginning and middle parts of a
partition.
By adopting the maps to different Windows versions, as well as the age of the file

system, the digital forensic investigation will become more efficient, because of more
detailed information in the map. Likewise an archivist can plan the work with old
or corrupt storage media in a better way, improving the chance of a successful data
recovery.
Article D [232] answers both Research question RQ:4 and Research question RQ:5.

The article shows that the allocation algorithm of NTFS is not strictly best fit. This
behavior is described earlier by Bahjat and Jones [84] and maaartinus et al. [85] and

83

6. Summary of Work

contradicts the book by Carrier [50]. The article also shows that the allocation behavior
differs between Microsoft Windows 10 and the older Windows versions used in the
experiment. Article D furthermore gives information on howNTFS ages. It also shows
differences in allocation behavior at larger changes in file system utilization. The main
contribution of the article is a more detailed information on the behavior of NTFS.
The information can for example be used to increase the resolution and precision of
the mapping concept.

6.5. Map Examples

The mapping concept is an integral part of the PhD project’s research goal. Like for
geographical maps our maps show the position of different attributes. In our case the
attributes are connected to the allocation process of a file system and OS.
Our current maps are only proofofconcept implementations of the mapping con

cept. They present examples of what different types of maps might look like, nothing
more. Typical examples are Figures B.2 to B.4 and D.1 in the articles. Real, usable,
maps have to be based on a much larger amount of data. Because of the complexity
of the map creation process (see Section 2.9) the maps should preferably be created in
cooperation with a cartographer.
A general problem with our mapping concept is the large address space. A 4 TB

NTFS partition covers 1,000,000,000 LPVA addresses (using 4 KiB sectors). A full
resolution map covering n file operations has to have a resolution of 1, 000, 000, 000×
n pixels. Consequently the map has to be scaled, but how this should be done is still
to be decided. We have tried to section the partition’s LPVA space into groups for
which we calculate a mean allocation frequency value. However, the calculations are
affected by any static features of the partitions, such as the start of the MFT at 3 GiB
into a partition. If the size of the groups vary (the total number of groups are constant
regardless of partition size) the result of the first group(s) will be affected. However,
the effect of the static MFT position is decreasing with larger partition sizes, because
of the larger groups used (assuming a fixed number of groups).
Another challenge to the mapping concept is the range of the size of storage media.

There might still be storage media below 100 GiB present in working laptops, while
at the same time a desktop computer can be equipped with storage media in the range
of tenths of TiB. And they are still partitioned into just a few partitions, often with
one covering most of the storage media. To be able to create a truly generic map from
all those storage media we need to find a way of combining them without affecting
the precision of the map. The division that we use of the partition space into groups
(see Articles A and B) will not work for such a large set of partition sizes. However,
two NTFS partitions with the same usage pattern and total amount of data will have

84

6.5. Map Examples

approximately the same space occupied, regardless of the size of the partition. This is
because of the the allocation behavior where filling in gaps in existing allocated areas
is prioritized over the use of unallocated areas further into the partition.
To help the reader this section gives alternatives to the maps presented in the articles.

Once again the presented maps are simplified proofofconcept models.

6.5.1. Static Areas

The positions of the static and semistatic areas within a generic partition are of impor
tance to many areas of application. A static area is static in both content and position.
The varying attribute is the number of partitions with the same static areas. A typical
example is shown in Figure 6.2. The bar charts shown can be used as rudimentary
maps of the partitions used in the experiments. The terms chart and map will therefore
be used interchangeably.
The bar chart in Figure 6.2 is scaled with a factor of 18,984,550 and divided into

100 groups (10 GB each). This is done to increase its readability. The yaxis of the
chart shows the mean sizes (in partitions) of the static areas in each group. There can
be several groups of static areas at each position. Therefore the chart is depicted as a
stacked bar chart.
There are also some structures at the start of the positional range in Figure 6.2. How

ever, the resolution of the chart is too low to give a clear view of the structures. We
therefore have created a chart of the first 5 GiB with higher resolution, which is shown
in Figure 6.3. This time the scaling factor is 189,845, dividing the full positional range
into 10,000 groups.
The structures at the start of the partitions are clearly visible in Figure 6.3. The two

static areas covering all partitions can be seen, but the scaling (the use of the mean
value) hides their full extent. To do that we would have to use a 1:1 scale of the chart,
making it unusable.
Semistatic areas are harder to map, because the do not share LPVA positions be

tween partitions. The varying sizes of the partitions is also a complicating factor. The
problem is comparable to creating a commonmap of Shanghai, Stockholm and Gjøvik.
They all share similar attributes (road, buildings, parks, etcetera), but the placement and
scale of the attributes differ.
It might be possible to combine partitions of different sizes into a singlemap by using

positions relative to the total sizes of the partitions. However, this concept assumes that
the semistatic areas are positioned at the same relative positions, which might not be
true. Due to its complex nature the creation of a map of semistatic areas therefore has
been left as future work.

85

6. Summary of Work

M
ea
n	
si
ze
	[p
ar
tit
io
ns
]

0

5

10

15

20

Position	[byte]
0 2×1011 4×1011 6×1011 8×1011 1012

Figure 6.2.: A stacked bar chart of the mean size (in partitions) of the static areas found
in NTFS formatted partitions in different areas. Each color represents a
static area. The height of a colored bar indicates its size in partitions. The
total height of a bar gives the sum of all static areas (in partitions) in an
area.

86

6.5. Map Examples

M
ea
n	
si
ze
	[p
ar
tit
io
ns
]

0

5

10

15

20

Position	[byte]
0 109 2×109 3×109 4×109 5×109

Figure 6.3.: A stacked bar chart of the mean size (in partitions) of the static areas found
in NTFS formatted partitions in different areas. The chart shows the first
5 GB of the partitions (the first bar in Figure 6.2). Each color represents a
static area. The height of a colored bar indicates its size in partitions. The
total height of a bar gives the sum of all static areas (in partitions) in an
area.

87

6. Summary of Work

6.5.2. Allocation Activity

Amap can also show the allocation activity at different LPVApositions. The problem is
to find a balance between an overview and detailed information. Likewise the activity
should be generalized, i. e. not focused on a specific partition.
An allocation activity map can be compared to a topological map with contour lines.

However, the allocation activity map only needs one dimension to give the position.
Hence it can be depicted as a line diagram (see Figure 6.4).
The line diagram format can also be used to show the general allocation behavior

over time. To make the map clearer and less crowded both the positional and temporal
dimensions have to be sampled and averaged. Such a map is shown in Figure 6.5.
Using an interactive map the scale of the line diagram can be adjusted dynamically

and allow zooming. However, the map is a generalization of a real world situation
and therefore have a limited resolution. The situation can be compared to a map of a
standard hill. It should have at least one peak from which it is sloping downwards in
all directions. A map of a specific hill on the other hand might show several peaks,
different angels of the slopes, boulders and pits scattered over the area, etcetera.

6.5.3. Advanced Map Attributes

If several OSs are shown in the same map they can be shown as multiple line diagrams.
This is the case shown in Article B. It is also possible to add a dimension and show
them as a three dimensional heat map. Such a map would resemble a topological map
with contour lines.
The heat map format is generally applicable and can also be used to give a detailed

view of the aging of a file system. This can be done using histograms of the allocated
LPVA position for each file operation. Hence the yaxis shows position, the xaxis
shows time and the zaxis shows the height of the histograms. The heat map format
can also be used to show the allocation behavior differences between various use cases.
A map can also show the fragmentation pattern in different situations, for example

in connection with longer sequences of deletions or additions of files. Such a map
should also contain information on the type of file operation (create, delete, increase or
decrease) for each allocation. The map can be used to explain specific patterns found
in (working) file systems. Typically the map should show a limited time frame, for
example a few allocations before and after the sequence. Longer time frames are also
possible, covering larger parts of the life of a partition.

88

6.5. Map Examples
Al
lo
ca
tio
n	
ac
tiv
ity
	[%
]

0

0.25

0.5

0.75

1

1.25

1.5

Position	[GiB]
0 10 20 30 40 50 60 70

Figure 6.4.: A map of the mean allocation activity at different positions in a generic
NTFS 64 GiB partition covering Microsoft Windows 7, 8, 8.1 and 10. The
map shows the mean frequency of 512 MiB blocks relative the total num
ber of allocations.

89

6. Summary of Work

Po
si
tio
n	
[G
iB
]

15

20

25

30

35

Time	[file	ops]
0 2000 4000 6000 8000

Figure 6.5.: A map of the mean allocation activity over time (in file operations) at dif
ferent positions. The mean is calculated for groups of 83 allocations, giv
ing 100 groups in total for the given time span. The high activity starts
approximately 17 GiB into the partition, at the end of the area used during
installation.

90

7. Contributions

The PhD project work contributes to different areas within and outside of the digital
forensics field. The main contribution is the mapping concept. The more significant
contributions fall within the file fragment and hashbased carving fields. We have used
NTFS to create proofofconcept maps, but the concept is adaptable to any file system.
We have also successfully evaluated the efficiency increase during sampled hashbased
carving when using a map compared to a uniform distribution.
Since the mapping concept is new there is no existing research field to build upon

and improve. Instead a selection of research and application fields are used to give
examples of contributions of the PhD project. The selection is based on the perceived
correlation between the PhD project and the chosen areas. There are still many areas
we have not yet thought of. We leave these to the reader to suggest.

7.1. File Fragment Carving

File fragment carving uses different means to identify and reassemble fragments of
data. The carving is done using only information taken from the data in the fragments
themselves. First the fragments of a specific file have to be identified. Then they have
to be reassembled into (parts of) the original file again. Files can consist of several
types of data, which complicates the process [123]. The behavior of the allocation
algorithm and the degree of fragmentation also affects the carving.
The PhD project contributes through themapping concept and the information on the

allocation behavior of NTFS. The information is data type agnostic and therefore can
be used for any file type. Searches for file fragments can be directed to themost relevant
areas of a partition with the help of the map. Article D contributes with information
on file system aging. By knowing how the relevant search areas move over time an
investigator can fine tune the searches.
When the relevant file fragments have been found the fragment classification phase

will benefit from the new knowledge on the allocation behavior during different writing
types presented in Article C. The information will for example help optimizing the
block size during scanning. In this way both the speed and detection rate of the process
can be improved.
The information from Article C will also indicate the correct order of the found

blocks. It can also be used to mark probable fragment sequences in a disk image. That

91

7. Contributions

will then allow the file fragments to be collected in the most probable order already
during the extraction phase.
The most probable starting fragment of a stream written file can be identified using

the information in Article C. First all fragments ≤ 20 KiB are located and marked
as possible starting fragments. Then the information on the increasing fragment sizes
during stream writing is used to reduce the number of fragments to work with. The
most probable order of the fragments will also be indicated. Consequently the PhD
project directly improve all steps in the file fragment carving process.

7.2. HashBased Carving

Hashbased carving searches for fragments of known files in a partition. The method
works without access to any metadata and compares cryptographic hashes of file frag
ments to known fragment hashes.
The biggest challenge to the field is the amount of comparisons to do. Sampling is

therefore used to increase the speed of the search. This is however a balance between
speed and detection rate. The lower the sampling frequency, the higher the speed.
However, that increases the risk of missing a relevant fragment.
The mapping concept enables the use of a dynamic sampling frequency in hash

based carving. The frequency then follows the allocation activity as presented in Ar
ticle B. Also the age of the file system can be taken into account using the research
presented in Article D. Furthermore, the hashbased carving will benefit by starting at
the most relevant region of a partition. This gives an immediate increase in the effi
ciency of the carving, sampling or not.
A simple test (see Article A) with live data shows a 2% increase in efficiency, with a

maximum of 9%, using dynamic sampling. The test was conducted using HDDs from
four office computers, with a map primarily based home computers. We expect to get
better results using a map based on a larger set of data. If the data used for the map
represent a similar use case as the evaluation media the results will be even better.
We have also theoretically evaluated the possible efficiency increase during sampled

hashbased carving (see Section 1.2). We then get a possible speed increase of more
than 25%, combined with an improvement of more than 25% of the detection rate. This
is calculated on a case where the number of samples (the speed of the scan) is fixed.
The actual speed and detection rate increases depending on the prerequisites in each
specific case.
The research on hash collisions and misattributions will benefit from the work pre

sented in Article A. The semistatic areas found during the PhD project can be further
explored to extend the hashbased carving field. The presence of the semistatic ar
eas show that there are large areas of equal content shared between unrelated NTFS

92

7.3. Digital Stratigraphy

formatted partitions. Therefore these areas can be avoided when collecting (sampling)
blocks to hash. This is done by detecting the content of a semistatic area and then
skipping to its end.

7.3. Digital Stratigraphy

The digital stratigraphy research can be used in a broad range of application areas.
Consequently any contribution to the research field will give a leveraging effect at the
application level.
The PhD project contributes with the mapping concept. It can be used to visualize

digital strata. The higher the allocation activity at an LPVA position, the higher the
number of strata.
Article D contributes through the knowledge on how the allocation behavior is af

fected by the aging of NTFS partitions. It also contributes through the differences found
in allocation behavior between Microsoft Windows versions. Furthermore, Article B
contributes through the knowledge on how larger file system events will be manifested
in the allocation pattern. All these features directly affect the stratigraphy of the file
system.

7.4. NTFS Fragmentation

The NTFS fragmentation research is focused on fragmentation differences between
file types. The results show that certain file types are often heavily fragmented, while
other types almost never fragment. The goal is a more efficient resource utilization by
predicting the difficulty of carving different file types. The research field would for
example benefit from a better understanding of the allocation algorithm of Microsoft
Windows and NTFS.
The PhD project contributes by providing new information on how, when and why

fragmentation occurs. This allows the research field to better understand the reasons
behind fragmentation. It will also show the connection between the allocation behavior,
the type of file writing strategy (as in Article C), and the actual file fragmentation. Our
contribution is therefore also relevant at a higher level within the NTFS fragmentation
field.

7.5. NTFS Data Allocation Process

The research within the NTFS data allocation process is focused on studies of the pos
sibility to reverse the allocation process, i. e. to backtrack an allocation sequence. The

93

7. Contributions

research is also trying to provide the ability to time stamp or causally order files and
data based on the allocation pattern. Some progress has been made, but the research
field would benefit from more information and knowledge.
The mapping concept contributes to the NTFS data allocation process field by sup

plying updated and detailed information on the allocation behavior of Microsoft Win
dows NTFS. For example the information on the change in behavior due to aging of
the file system will provide the allocation process researchers with the possibility to
measure the distribution of fragments (and accompanying statistical metrics). Based
on that they can then get high level information on the age of a file allocation operation.
Likewise the extended knowledge on the differences in allocation behavior based on

the file writing type will help the research on the causal ordering of files. Newer block
written files will (with high probability) have smaller fragments sizes than older files.
Stream written files will fill the smallest unallocated areas first, leaving larger areas
to newer files. Consequently also the span of available unallocated areas at a given
moment will be manifested in the allocation pattern and in that way give information
on the causal order of files.

7.6. Data Recovery

File carving and data recovery overlap, but data recovery is also used outside of the
digital forensics field. It is typically used by professions like archivists and librarians.
Within the data recovery field the requirement for forensically sound extractions is left
out in favor for recovering larger amounts of data.
The PhD project contributes through the added ability to directly focus any limited

read operations to where it is most likely to find valuable data. In this way the disk
access is kept to a minimum. This is important when the storage media is almost worn
out or has been physically damaged. In that case each read operation will degrade the
status of the storage media and effectively limit the available read operations.
The static areas presented in Article A can be used in data recovery situations. First

of all the presence of NTFS in a partition can be identified without access to any meta
data.The static areas can also be used to align a tool with the start of a NTFS partition.
The idea is similar to the testdisk [177] tool in Linux. Since the area is part of the
MFT it can also be used to find the start of a missing MFT, which should be placed
exactly 3 GiB into a partition.

7.7. Data Mapping

The data mapping research field is studying how to map a working file system. This
is done per case and helps the investigator to get an overview of the specific storage

94

7.7. Data Mapping

media. If there is no working file system the situation becomes more dire. There is an
Enscript module that is used to map single files using the EnCase digital forensic tool,
but it is unclear whether the module can handle also broken file systems or just files.
The mapping concept contributes to the data mapping research field by offering a

possibility to expand the field by adding maps of broken file systems and of a generic
storage media or partition. Both the new research field opened by the PhD project and
the data mapping field will benefit from an exchange of information.

95

8. Conclusion and Future Work

This chapter concludes the thesis and presents research left as future work. We can
conclude that all research questions have been answered and that we have created a
proofofconcept map of a generic NTFS partition. However, a deeper study of the
relevant parameters needed to improve the quality of the mapping concept has been
left as future work.

8.1. Conclusion

We have studied the inherent structures in the allocation pattern in NTFS. The research
has been conducted using storage media from both live and virtual computers. The aim
has been to improve the efficiency of the digital forensic process. This has been shown
both theoretically, as well as empirically. The goal was to create a map of the allocation
activity at different positions within a generic NTFS partition, which has been done.
The main conclusion to be drawn from the results of the PhD project is that there

are enough inherent structures within NTFS to create a map of the allocation activity at
different positions. A prototypemap has been used to show an increase in the efficiency
of a simple hashbased carving operation. The improvement is selfevident, because
it is more efficient to look for something lost at the place where it is most likely to be
found.
The writing type allocation differences can be used to show the type of a file on a

high level. Files written as a stream of data are allocated fragments of increasing size.
Files written as a block of data are allocated fragments of decreasing size. The starting
fragment of a set of file fragments can be found based on the same information. If the
set contains stream written data the smallest fragments are possible starting candidates.
If the set contains block written data the largest fragments are starting candidates.
The writing type result in combination with the best fit allocation strategy can also

be used to indicate the causal ordering of files. A file with larger fragments is probably
older than a file with smaller fragments.
The experiment on the differences between HDD and SSD disks showed that the

physical differences were hidden by the disk controller. The allocation pattern of the
files written to the two disk partitions during the experiment were identical. The only
difference was that an extra cluster was allocated in the HDD. It contained a fragment
of the SYMEFA.DB file from the Symantec Endpoint Protection product.

97

8. Conclusion and Future Work

The BitLocker experiment studied the changes to the file allocation pattern induced
by the BitLocker encryption process. A storage media partition was populated with
files, encrypted and decrypted again. Disk images were created after each step and their
contents compared. No changes to the allocation pattern of the written files were found,
but seven new files and a directory were created during the encryption process. All
these files were placed in the new directory andwere parts of the BitLockermechanism.
The files were removed when the partition was decrypted again. Only the directory
remained.
In Section 6.5 we have presented and discussed a number of maps covering different

parts of the PhD project. However, these are proofofconcept maps and should only
be used as examples. Furthermore, we discuss some of the challenges involved when
creating a map. To be usable in a reallife situation it must for example be based on a
large set of data. However, the use of a black box principle makes the mapping concept
versatile and able to handle both present and future storage media technologies, OSs
and file system combinations.

8.2. Future Work

The mapping concept is generic and applicable to any file system. Since the PhD
project has been focused on the allocation behavior of NTFS, an obvious future work
is to expand the research to other file systems and OSs. This also includes mobile
phones and other small digital devices.
The experiments should be enlarged to enable more detailed information to be re

trieved. Also the sequences of file operations used can be expanded to further strengthen
the results. Preferably the sequence of operations should be based on reallife data.
This would allow the experiments to better imitate the natural development of a file
system in use. However, this requires access to a computer cluster for an extended
period of time.
The efficiency gain within different application areas should be properly measured.

The simple efficiency experiment presented in Article A should only be regarded as
a proofofconcept and not be used for comparisons to other fields. The same is true
for the theoretical improvement estimation presented in Section 1.2. However, a more
thorough experimental evaluation should be done, which has to be properly adapted to
each specific field and designed to deliver comparable results.
The relationship between the writing type, allocation pattern and causal ordering

of files must be studied further. Similar ideas have been found in the literature [77,
162, 163, 165]. We have found indications showing that it might be possible to order
files causally, but this has been in an experimental setting. To extend and deepen the
research real world disks should be used.

98

8.2. Future Work

New application areas of the mapping concept have to be further explored. The
concept might also have to be adopted to each field of application. This is left as future
work, because we cannot anticipate all current and future application areas. New areas
will be added over time, which requires the mapping concept to evolve with them.
The complex nature of semistatic areas has forced us to leave the mapping of them

as future work. However, several different solutions have been proposed. One is to
use relative positions enabling differently sized partitions to be used in the same map.
However, this is complicated by the fact that the semistatic areas need not be found at
the same relative positions in different partitions. There are also other problems on the
road towards a map that can be used in real investigations. Due to the complexity of the
mapping process it is recommended to involve a cartographer to ensure the usability
of the maps.
The problem of properly scaling the map, as well as combine different partition sizes

into one generic map, also has to be studied further. This includes studies of usage pat
terns, where the number of files, the size of the files and the file system housekeeping
activity (for example deletion of files and defragmentation) will affect the allocation
frequency at different positions. The usage patterns might then allow differently sized
partitions to be combined, since they all have their data stored in approximately the
same LPVA areas. Consequently the study of relevant parameters to improve the sta
bility, applicability, precision and quality of the mapping concept is an important future
work.

99

Bibliography

[1] M. Scanlon. “Battling the digital forensic backlog through data deduplication.”
In: 2016 Sixth International Conference on Innovative Computing Technology
(INTECH). 2016, pp. 10–14. DOI: 10.1109/INTECH.2016.7845139.

[2] G. Conti, S. Bratus, A. Shubina, B. Sangster, R. Ragsdale, M. Supan, A. Licht
enberg, and R. PerezAlemany. “Automated mapping of large binary objects
using primitive fragment type classification.” In: Digital Investigation 7.Sup
plement (2010). The Proceedings of the Tenth Annual DFRWS Conference,
S3–S12. ISSN: 17422876. DOI: 10.1016/j.diin.2010.05.002.

[3] S. Tzu. Sun Tzu on the Art of War. Last accessed 18112017. Allandale On
line Publishing, 2000. URL: https://sites.ualberta.ca/~enoch/
Readings/The_Art_Of_War.pdf.

[4] “About the Content.” In: ed. by B. Rystedt and F. Ormeling. Stockholm, Swe
den: International Cartographic Association, 2014. Chap. Foreword.

[5] T. Owens and T. Padilla. “Digital sources and digital archives: historical evi
dence in the digital age.” In: International Journal of Digital Humanities 1.3
(July 2021), pp. 325–341. DOI: 10.1007/s42803020000287.

[6] E. Casey. “Digital Stratigraphy: Contextual Analysis of File System Traces in
Forensic Science.” In: Journal of Forensic Sciences 63.5 (2018), pp. 1383–
1391. DOI: 10.1111/15564029.13722.

[7] M. Broz, M. Patocka, and V. Matyas. “Practical Cryptographic Data Integrity
Protection with Full Disk Encryption Extended Version.” In: IFIP Interna
tional Information Security Conference. 2018. DOI: 10.1007/9783319
998282_6.

[8] T. Müller and F. Freiling. “A Systematic Assessment of the Security of Full
Disk Encryption.” In: IEEE Transactions on Dependable and Secure Com
puting 12.05 (Sept. 2015), pp. 491–503. ISSN: 19410018. DOI: 10.1109/
TDSC.2014.2369041.

[9] R. Montasari and R. Hill. “NextGeneration Digital Forensics: Challenges and
Future Paradigms.” In: 2019 IEEE 12th International Conference on Global
Security, Safety and Sustainability (ICGS3). 2019, pp. 205–212. DOI: 10 .
1109/ICGS3.2019.8688020.

101

https://doi.org/10.1109/INTECH.2016.7845139
https://doi.org/10.1016/j.diin.2010.05.002
https://sites.ualberta.ca/~enoch/Readings/The_Art_Of_War.pdf
https://sites.ualberta.ca/~enoch/Readings/The_Art_Of_War.pdf
https://doi.org/10.1007/s42803-020-00028-7
https://doi.org/10.1111/1556-4029.13722
https://doi.org/10.1007/978-3-319-99828-2_6
https://doi.org/10.1007/978-3-319-99828-2_6
https://doi.org/10.1109/TDSC.2014.2369041
https://doi.org/10.1109/TDSC.2014.2369041
https://doi.org/10.1109/ICGS3.2019.8688020
https://doi.org/10.1109/ICGS3.2019.8688020

Bibliography

[10] N. Hassan. Digital Forensics Basics: A Practical Guide Using Windows OS.
New York, New York, USA: APress, 2019. DOI: 10.1007/97814842
38387.

[11] P. Gladyshev and J. James. “Decisiontheoretic file carving.” In: Digital In
vestigation 22.Supplement C (2017), pp. 46–61. ISSN: 17422876. DOI: 10.
1016/j.diin.2017.08.001.

[12] European Police Office (Europol). Internet Organised Crime Threat Assess
ment (IOCTA) 2016. Tech. rep. European Cybercrime Centre (EC3), 2016.

[13] B. Schatz. “Wirespeed: Extending the AFF4 forensic container format for scal
able acquisition and live analysis.” In:Digital Investigation 14 (2015). The Pro
ceedings of the Fifteenth Annual DFRWS Conference, S45–S54. ISSN: 1742
2876. DOI: 10.1016/j.diin.2015.05.016.

[14] D. Quick and K. Choo. “Data reduction and data mining framework for digi
tal forensic evidence: Storage, intelligence, review and archive.” In: Trends &
Issues in Crime and Criminal Justice 480 (Sept. 2014), pp. 1–11. ISSN: 1836
2206.

[15] V. Roussev, C. Quates, and R. Martell. “Realtime digital forensics and triage.”
In:Digital Investigation 10.2 (2013). Triage in Digital Forensics, pp. 158–167.
ISSN: 17422876. DOI: 10.1016/j.diin.2013.02.001.

[16] F. Breitinger, G. Stivaktakis, and H. Baier. “FRASH: A framework to test algo
rithms of similarity hashing.” In: Digital Investigation 10.Supplement (2013).
The Proceedings of the ThirteenthAnnual DFRWSConference, S50–S58. ISSN:
17422876. DOI: 10.1016/j.diin.2013.06.006.

[17] V. Roussev. “Managing TerabyteScale Investigationswith SimilarityDigests.”
In: Advances in Digital Forensics VIII: 8th IFIP WG 11.9 International Con
ference on Digital Forensics, Pretoria, South Africa, January 35, 2012, Re
vised Selected Papers. Ed. by G. Peterson and S. Shenoi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 19–34. ISBN: 9783642339622. DOI:
10.1007/9783642339622_2.

[18] M. Cohen and B. Schatz. “Hash based disk imaging using AFF4.” In: Digital
Investigation 7 (2010). The Proceedings of the Tenth Annual DFRWS Confer
ence, S121–S128. ISSN: 17422876. DOI: 10.1016/j.diin.2010.05.
015.

[19] P. Turner. “Unification of Digital Evidence fromDisparate Sources (Digital Ev
idence Bags).” In: Digital Investigation 2.3 (Sept. 2005), pp. 223–228. ISSN:
17422876. DOI: 10.1016/j.diin.2005.07.001.

102

https://doi.org/10.1007/978-1-4842-3838-7
https://doi.org/10.1007/978-1-4842-3838-7
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2015.05.016
https://doi.org/10.1016/j.diin.2013.02.001
https://doi.org/10.1016/j.diin.2013.06.006
https://doi.org/10.1007/978-3-642-33962-2_2
https://doi.org/10.1016/j.diin.2010.05.015
https://doi.org/10.1016/j.diin.2010.05.015
https://doi.org/10.1016/j.diin.2005.07.001

[20] M. Geiger. “Evaluating Commercial CounterForensic Tools.” In: In Proceed
ings of the 5th Annual Digital Forensic Research Workshop. 2005, pp. 39–41.

[21] D. Lillis, B. Becker, T. O’Sullivan, and M. Scanlon. “Current Challenges and
Future Research Areas for Digital Forensic Investigation.” In: Annual ADFSL
Conference on Digital Forensics. Last accessed 22042022. May 2016, pp. 9–
20.

[22] E. Casey, M. Ferraro, and L. Nguyen. “Investigation Delayed Is Justice De
nied: Proposals for Expediting Forensic Examinations of Digital Evidence*.”
In: Journal of Forensic Sciences 54.6 (2009), pp. 1353–1364. ISSN: 1556
4029. DOI: 10.1111/j.15564029.2009.01150.x.

[23] Statista. Seagate’s average capacity of hard disk drives (HDDs) worldwide
from FY2015 to FY2021, by quarter. Last accessed 16102021. July 2021.
URL: https://www.statista.com/statistics/795748/worldwide
seagateaverageharddiskdrivecapacity/.

[24] SATAIO. 20th Anniversary. Last accessed 18102021. 2021. URL: https:
//sataio.org/20thanniversary.

[25] Anson. PCIe vs SATA vs USB – Storage Interfaces Explained. Last accessed
18102021. Mar. 2019. URL: https://www.unbxtech.com/2019/03/
pciesatausbinterfacesexplained.html.

[26] Western Digital Corporation. Difference between Sequential and Random Ac
cess operations. 2014. URL: https://kb.sandisk.com/app/answers/
detail/a_id/8150/~/differencebetweensequentialand
randomaccessoperations.

[27] Condusiv. I/Os Are Not Created Equal – Random I/O Versus Sequential I/O.
Last accessed 14042022. URL: https://condusiv.com/sequential
ioalwaysoutperformsrandomioonharddiskdrivesor
ssds/.

[28] I. Al Awadhi, J. Read, A. Marrington, and V. Franqueira. “Factors Influenc
ing Digital Forensic Investigations: Empirical Evaluation of 12 Years of Dubai
Police Cases.” In: Journal of Digital Forensics, Security and Law 10.4 (2015),
pp. 7–16. DOI: 10.15394/jdfsl.2015.1207.

[29] R. Hranický, F. Breitinger, O. Ryšavý, J. Sheppard, F. Schaedler, H. Morgen
stern, and S. Malik. “What do incident response practitioners need to know?
A skillmap for the years ahead.” In: Forensic Science International: Digital
Investigation 37 (2021), p. 301184. ISSN: 26662817. DOI: 10.1016/j.
fsidi.2021.301184.

103

https://doi.org/10.1111/j.1556-4029.2009.01150.x
https://www.statista.com/statistics/795748/worldwide-seagate-average-hard-disk-drive-capacity/
https://www.statista.com/statistics/795748/worldwide-seagate-average-hard-disk-drive-capacity/
https://sata-io.org/20th-anniversary
https://sata-io.org/20th-anniversary
https://www.unbxtech.com/2019/03/pcie-sata-usb-interfaces-explained.html
https://www.unbxtech.com/2019/03/pcie-sata-usb-interfaces-explained.html
https://kb.sandisk.com/app/answers/detail/a_id/8150/~/difference-between-sequential-and-random-access-operations
https://kb.sandisk.com/app/answers/detail/a_id/8150/~/difference-between-sequential-and-random-access-operations
https://kb.sandisk.com/app/answers/detail/a_id/8150/~/difference-between-sequential-and-random-access-operations
https://condusiv.com/sequential-io-always-outperforms-random-io-on-hard-disk-drives-or-ssds/
https://condusiv.com/sequential-io-always-outperforms-random-io-on-hard-disk-drives-or-ssds/
https://condusiv.com/sequential-io-always-outperforms-random-io-on-hard-disk-drives-or-ssds/
https://doi.org/10.15394/jdfsl.2015.1207
https://doi.org/10.1016/j.fsidi.2021.301184
https://doi.org/10.1016/j.fsidi.2021.301184

Bibliography

[30] N. Ramli, S. Hisham, and G. Badshah. “Analysis of File Carving Approaches:
A Literature Review.” In: Advances in Cyber Security. Ed. by N. Abdullah, S.
Manickam, and M. Anbar. Singapore: Springer Singapore, 2021, pp. 277–287.
ISBN: 9789811680595. DOI: 10.1007/9789811680595_16.

[31] D. Dietrich and F. Adelstein. “Archival science, digital forensics, and new me
dia art.” In: Digital Investigation 14 (2015). The Proceedings of the Fifteenth
Annual DFRWS Conference, S137–S145. ISSN: 17422876. DOI: 10.1016/
j.diin.2015.05.004.

[32] S. Garfinkel andM.McCarrin. “Hashbased carving: Searchingmedia for com
plete files and file fragments with sector hashing and hashdb.” In: Digital In
vestigation 14.Supplement 1 (2015). The Proceedings of the Fifteenth Annual
DFRWSConference, S95–S105. ISSN: 17422876. DOI: 10.1016/j.diin.
2015.05.001.

[33] F. Breitinger, C. Rathgeb, andH. Baier. “AnEfficient SimilarityDigests Database
Lookup A Logarithmic Divide & Conquer Approach.” In: Journal of Digi
tal Forensics, Security and Law 9.2 (2014), pp. 155–166. DOI: 10.15394/
jdfsl.2014.1178.

[34] F. Breitinger and K. Petrov. “Reducing the Time Required for Hashing Opera
tions.” In: Advances in Digital Forensics IX 9th IFIP WG 11.9 International
Conference on Digital Forensics, Orlando, FL, USA, January 2830, 2013,
Revised Selected Papers. Ed. by G. Peterson and S. Shenoi. Vol. 410. IFIP
Advances in Information and Communication Technology. Springer, 2013,
pp. 101–117. DOI: 10.1007/9783642411489_7.

[35] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks. “Distinct Sector Hashes
for Target File Detection.” In: Computer 45.12 (Dec. 2012), pp. 28–35. ISSN:
00189162. DOI: 10.1109/MC.2012.327.

[36] K. Foster. “Using distinct sectors in media sampling and full media analysis to
detect presence of documents from a corpus.”MA thesis. Monterey, California,
USA: Naval Postgraduate School, Sept. 2012.

[37] S. Garfinkel, A. Nelson, D. White, and V. Roussev. “Using purposebuilt func
tions and block hashes to enable small block and subfile forensics.” In: Dig
ital Investigation 7.Supplement (2010). The Proceedings of the Tenth Annual
DFRWS Conference, S13–S23. ISSN: 17422876. DOI: 10.1016/j.diin.
2010.05.003.

104

https://doi.org/10.1007/978-981-16-8059-5_16
https://doi.org/10.1016/j.diin.2015.05.004
https://doi.org/10.1016/j.diin.2015.05.004
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.15394/jdfsl.2014.1178
https://doi.org/10.15394/jdfsl.2014.1178
https://doi.org/10.1007/978-3-642-41148-9_7
https://doi.org/10.1109/MC.2012.327
https://doi.org/10.1016/j.diin.2010.05.003
https://doi.org/10.1016/j.diin.2010.05.003

[38] S. Collange, Y. S. Dandass, M. Daumas, and D. Defour. “Using Graphics Pro
cessors for Parallelizing HashBased Data Carving.” In: 2009 42nd Hawaii
International Conference on System Sciences. Jan. 2009, pp. 1–10. DOI: 10.
1109/HICSS.2009.494.

[39] M. Karresand. “Completing the Picture— Fragments and Back Again.” Licen
tiate thesis. Linköping Institute of Technology, Linköping University, Sweden,
May 2008.

[40] E. Casey, G. Fellows, M. Geiger, and G. Stellatos. “The growing impact of
full disk encryption on digital forensics.” In: Digital Investigation 8.2 (2011),
pp. 129–134. ISSN: 17422876. DOI: 10.1016/j.diin.2011.09.005.

[41] E. Casey and G. Stellatos. “The Impact of Full Disk Encryption on Digital
Forensics.” In: SIGOPS Oper. Syst. Rev. 42.3 (Apr. 2008), pp. 93–98. ISSN:
01635980. DOI: 10.1145/1368506.1368519.

[42] L. Luciano, I. Baggili, M. Topor, P. Casey, and F. Breitinger. “Digital Foren
sics in the Next Five Years.” In: Proceedings of International Conference on
Availability, Reliability and Security, Hamburg, Germany, August 27–30, 2018
(ARES 2018). 2018, Article 46. DOI: 10.1145/3230833.3232813.

[43] LLC SysDev Laboratories. The basics of file systems. Last accessed 1510
2021. Sept. 2021. URL: https://www.ufsexplorer.com/articles/
filesystemsbasics.php.

[44] OS Today.Which file system is the default for hard drives in Windows 10? Last
accessed 15102021. 2021. URL: https://ostoday.org/windows/
whichfilesystemisthedefaultforharddrivesin
windows10.html.

[45] Microsoft. Overview of FAT, HPFS, and NTFS File Systems. Last accessed
15102021. Sept. 2021. URL: https://docs.microsoft.com/en
us/troubleshoot/windowsclient/backupandstorage/fat
hpfsandntfsfilesystems.

[46] StatCounter. Desktop Operating System Market Share Worldwide January
2023. Last accessed 01022023. Jan. 2023. URL: https://gs.statcounter.
com/osmarketshare/desktop/worldwide.

[47] Microsoft. Definitions for system volume and boot volume. Oct. 2009. URL:
https://support.microsoft.com/enus/help/314470/definitions
forsystemvolumeandbootvolume.

[48] A. Allievi, A. Ionescu, M. Russinovich, and D. Solomon. Windows Internals
part 2. seventh ed. Pearson Education, Inc., 2021. ISBN: 9780135462331.

105

https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1016/j.diin.2011.09.005
https://doi.org/10.1145/1368506.1368519
https://doi.org/10.1145/3230833.3232813
https://www.ufsexplorer.com/articles/file-systems-basics.php
https://www.ufsexplorer.com/articles/file-systems-basics.php
https://ostoday.org/windows/which-file-system-is-the-default-for-hard-drives-in-windows-10.html
https://ostoday.org/windows/which-file-system-is-the-default-for-hard-drives-in-windows-10.html
https://ostoday.org/windows/which-file-system-is-the-default-for-hard-drives-in-windows-10.html
https://docs.microsoft.com/en-us/troubleshoot/windows-client/backup-and-storage/fat-hpfs-and-ntfs-file-systems
https://docs.microsoft.com/en-us/troubleshoot/windows-client/backup-and-storage/fat-hpfs-and-ntfs-file-systems
https://docs.microsoft.com/en-us/troubleshoot/windows-client/backup-and-storage/fat-hpfs-and-ntfs-file-systems
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://support.microsoft.com/en-us/help/314470/definitions-for-system-volume-and-boot-volume
https://support.microsoft.com/en-us/help/314470/definitions-for-system-volume-and-boot-volume

Bibliography

[49] Microsoft. New Capabilities and Features of the NTFS 3.1 File System. Last
accessed 15112021. 2007. URL: https://www.betaarchive.com/
wiki/index.php/Microsoft_KB_Archive/310749.

[50] B. Carrier. File System Forensic Analysis. AddisonWesley Professional, 2005.
ISBN: 0321268172.

[51] Microsoft. Windows and GPT FAQ. Last accessed 04052022. 2022. URL:
https : / / docs . microsoft . com / en us / windows hardware /
manufacture/desktop/windowsandgptfaq?view=windows11.

[52] M. Kumar. “Solid state drive forensics analysis – Challenges and recommenda
tions.” In: Concurrency and Computation: Practice and Experience 33 (2021).
DOI: 10.1002/cpe.6442.

[53] V. van der Meer, H. Jonker, and J. van den Bos. “A contemporary investigation
of NTFS file fragmentation.” In:Forensic Science International: Digital Inves
tigation 38 (2021), p. 301125. DOI: 10.1016/j.fsidi.2021.301125.

[54] C. Buckel. Understanding Flash: The Flash Translation Layer. Last accessed
08102018. Sept. 2014. URL: https://flashdba.com/2014/09/17/
understandingflashtheflashtranslationlayer/.

[55] R. Reiter, T. Swatosh, P. Hempstead, and M. Hicken. Accessing logicalto
physical address translation data for solid state disks. Last accessed 0810
2018. Nov. 2014. URL: http://www.freepatentsonline.com/8898371.
html.

[56] J. Barbara. Solid State Drives: Part 5. Last accessed 08102018. Apr. 2014.
URL: https://www.forensicmag.com/article/2014/04/solid
statedrivespart5.

[57] T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. “A
Survey of Flash Translation Layer.” In: J. Syst. Archit. 55.56 (May 2009),
pp. 332–343. DOI: 10.1016/j.sysarc.2009.03.005.

[58] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. 9th ed.
Wiley, Dec. 2012.

[59] IDEMA.Advanced FormatDefinitions, Abbreviations, andConventions. 2017.
URL: http://idema.org/?page_id=2153.

[60] Seagate. The Transition to Advanced Format 4K Sector Hard Drives. Tech. rep.
Last accessed 04052022. Seagate LLC, Apr. 2010. URL: https://web.
archive.org/web/20110902031330/http://seagate.com/docs/
pdf/whitepaper/tp613_transition_to_4k_sectors.pdf.

106

https://www.betaarchive.com/wiki/index.php/Microsoft_KB_Archive/310749
https://www.betaarchive.com/wiki/index.php/Microsoft_KB_Archive/310749
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-and-gpt-faq?view=windows-11
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-and-gpt-faq?view=windows-11
https://doi.org/10.1002/cpe.6442
https://doi.org/10.1016/j.fsidi.2021.301125
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
http://www.freepatentsonline.com/8898371.html
http://www.freepatentsonline.com/8898371.html
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://doi.org/10.1016/j.sysarc.2009.03.005
http://idema.org/?page_id=2153
https://web.archive.org/web/20110902031330/http://seagate.com/docs/pdf/whitepaper/tp613_transition_to_4k_sectors.pdf
https://web.archive.org/web/20110902031330/http://seagate.com/docs/pdf/whitepaper/tp613_transition_to_4k_sectors.pdf
https://web.archive.org/web/20110902031330/http://seagate.com/docs/pdf/whitepaper/tp613_transition_to_4k_sectors.pdf

[61] G. Rodrigues. Linux and 4K disk sectors. Last accessed 04052022.Mar. 2009.
URL: https://lwn.net/Articles/322777/.

[62] M. Karls. Hard Drive Error Correcting Code (ECC). Last accessed 1709
2022. Nov. 2018. URL: https://www.karlstechnology.com/blog/
harddriveerrorcorrectingcodeecc/.

[63] Data Clinic Ltd. Hard drive defects table – P & G Lists. Last accessed 1709
2022. 2020. URL: https://www.dataclinic.co.uk/harddrive
defectstable/.

[64] Datarecovery.com. What are PLists and GLists? Last accessed 30112021.
Jan. 2016. URL: https://datarecovery.com/rd/what are p
listsandglists/.

[65] R. Sheldon. overprovisioning (SSD overprovisioning). Last accessed 1709
2022. Apr. 2022. URL: https://www.techtarget.com/searchstorage/
definition/overprovisioningSSDoverprovisioning.

[66] A. Tanenbaum and H. Bos. Modern Operating Systems. 4th. Upper Saddle
River, New Jersey, USA: Pearson Education Inc., 2015.

[67] U. Inc. Unicode® Version 15.0 Character Counts. Last accessed 03052021.
2022. URL: https://www.unicode.org/versions/stats/.

[68] U. Inc. Unicode provides a unique number for every character, no matter what
the platform, program, or language is. Last accessed 03052022. 2021. URL:
https://home.unicode.org/basicinfo/overview/.

[69] Microsoft. How NTFS Works. Last accessed 30092018. 2018. URL: https:
//technet.microsoft.com/ptpt/library/cc781134(v=ws.10)
.aspx.

[70] D. Poirier. The Second Extended File System: Internal Layout. Last accessed
23032023. Dave Poirier, 2019. URL: https://www.nongnu.org/ext2
doc/ext2.pdf.

[71] P. Cobbaut. Linux Storage. Last accessed 23032023. Paul Cobbaut, 2015.
URL: https://linuxtraining.be/linuxsto.pdf.

[72] Micron Technology Inc. Should You Defrag an SSD? Last accessed 0605
2022. 2020. URL: https://www.crucial.com/articles/about
ssd/shouldyoudefraganssd.

[73] H. Sencar and N. Memon, eds. Digital Image Forensics — There is More to a
Picture than Meets the Eye. Springer, New York, NY, 2013.

107

https://lwn.net/Articles/322777/
https://www.karlstechnology.com/blog/hard-drive-error-correcting-code-ecc/
https://www.karlstechnology.com/blog/hard-drive-error-correcting-code-ecc/
https://www.dataclinic.co.uk/hard-drive-defects-table/
https://www.dataclinic.co.uk/hard-drive-defects-table/
https://datarecovery.com/rd/what-are-p-lists-and-g-lists/
https://datarecovery.com/rd/what-are-p-lists-and-g-lists/
https://www.techtarget.com/searchstorage/definition/overprovisioning-SSD-overprovisioning
https://www.techtarget.com/searchstorage/definition/overprovisioning-SSD-overprovisioning
https://www.unicode.org/versions/stats/
https://home.unicode.org/basic-info/overview/
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://www.nongnu.org/ext2-doc/ext2.pdf
https://www.nongnu.org/ext2-doc/ext2.pdf
https://linux-training.be/linuxsto.pdf
https://www.crucial.com/articles/about-ssd/should-you-defrag-an-ssd
https://www.crucial.com/articles/about-ssd/should-you-defrag-an-ssd

Bibliography

[74] A. Pal and N. Memon. “The evolution of file carving.” In: IEEE Signal Pro
cessing Magazine 26.2 (Mar. 2009), pp. 59–71. ISSN: 10535888. DOI: 10.
1109/MSP.2008.931081.

[75] A. Pal, H. T. Sencar, and N. Memon. “Detecting file fragmentation point using
sequential hypothesis testing.” In: Digital Investigation 5.Supplement (2008).
The Proceedings of the Eighth Annual DFRWS Conference, S2–S13. ISSN:
17422876. DOI: 10.1016/j.diin.2008.05.015.

[76] W. Stallings.Operating Systems— Internals andDesign Principles. 7th. Upper
Saddle River, New Jersey, USA: Pearson Education Inc., 2012.

[77] F. Darnowski andA. Chojnacki. “Writing andDeleting files on hard drives with
NTFS.” In: Computer Science and Mathematical Modelling 8 (2018), pp. 5–
15. DOI: 10.5604/01.3001.0013.1457.

[78] M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Disk Cluster Allocation Be
havior in Windows and NTFS.” In: Mobile Networks and Applications 25.1
(Feb. 2020), pp. 248–258. ISSN: 15728153. DOI: 10.1007/s11036019
014411.

[79] H. Liang and S. Xu. Locate and correct disk space problems on NTFS volumes.
Last accessed 14012023. Sept. 2021. URL: https://learn.microsoft.
com/enus/troubleshoot/windowsserver/backupandstorage/
diskspaceproblemsonntfsvolumes.

[80] J. Hughes. The Four Stages of NTFS File Growth. Last accessed 24102018.
Oct. 2009. URL: https://blogs.technet.microsoft.com/askcore/
2009/10/16/thefourstagesofntfsfilegrowth/.

[81] Jeff, phuclv, user3685427, GabrielB, and A. Lazzarotto. Maximum size of file
that can be stored entirely in NTFS Master File Table (MFT). Last accessed
28082022. May 2022. URL: https://superuser.com/questions/
1185461/maximumsizeoffilethatcanbestoredentirely
inntfsmasterfiletablemft.

[82] D. Sedory. An Introduction to NTFS. Last accessed 28082022. 2021. URL:
https://thestarman.pcministry.com/asm/mbr/IntNTFSfs.htm.

[83] jaclaz, Patrick4n6, keydet89, joakims, randomaccess, Chris_Ed, and pbobby.
$MFT Resident data. Last accessed 28082022. Mar. 2013. URL: https:
//www.forensicfocus.com/forums/general/mft resident
data/.

[84] A. A. Bahjat and J. Jones. “Deleted file fragment dating by analysis of allocated
neighbors.” In: Digital Investigation 28 (2019), S60–S67. ISSN: 17422876.
DOI: 10.1016/j.diin.2019.01.015.

108

https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1016/j.diin.2008.05.015
https://doi.org/10.5604/01.3001.0013.1457
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1
https://learn.microsoft.com/en-us/troubleshoot/windows-server/backup-and-storage/disk-space-problems-on-ntfs-volumes
https://learn.microsoft.com/en-us/troubleshoot/windows-server/backup-and-storage/disk-space-problems-on-ntfs-volumes
https://learn.microsoft.com/en-us/troubleshoot/windows-server/backup-and-storage/disk-space-problems-on-ntfs-volumes
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://superuser.com/questions/1185461/maximum-size-of-file-that-can-be-stored-entirely-in-ntfs-master-file-table-mft
https://superuser.com/questions/1185461/maximum-size-of-file-that-can-be-stored-entirely-in-ntfs-master-file-table-mft
https://superuser.com/questions/1185461/maximum-size-of-file-that-can-be-stored-entirely-in-ntfs-master-file-table-mft
https://thestarman.pcministry.com/asm/mbr/IntNTFSfs.htm
https://www.forensicfocus.com/forums/general/mft-resident-data/
https://www.forensicfocus.com/forums/general/mft-resident-data/
https://www.forensicfocus.com/forums/general/mft-resident-data/
https://doi.org/10.1016/j.diin.2019.01.015

[85] maaartinus, L. Osterman, and PC Guru.What block allocation algorithm does
NTFS use?Last accessed 24012019.Mar. 2017. URL: https://superuser.
com/questions/274855/what block allocation algorithm
doesntfsuse.

[86] R. Benadjila, L. Khati, and D. Vergnaud. “Secure storage – Confidentiality and
authentication.” In: Computer Science Review 44 (2022), p. 100465. ISSN:
15740137. DOI: 10.1016/j.cosrev.2022.100465.

[87] M. Halcrow. “eCryptfs: a Stacked Cryptographic Filesystem.” In: Linux Jour
nal (Apr. 2007). Last accessed 08032023. URL: https://www.linuxjournal.
com/article/9400.

[88] R. Bragg. The Encrypting File System. Last accessed 10032023. June 2009.
URL: https://learn.microsoft.com/enus/previousversions/
tnarchive/cc700811(v=technet.10)?redirectedfrom=MSDN.

[89] P. Matarazzo, A. Czechowski, L. Long, V. Raju, J. Mathew, W. Bjorn, S.
Mandalika, M. Athavale, D. Vangel, T. McNaboe, D. Coulter, D. Simpson,
T. Jiuding, N. Schonning, A. Gorzelany, L. Poggemeyer, M. Avedon, J. Hall,
E. Gallagher, A. Bichsel, and D. Mackenzie. Trusted Platform Module Tech
nology Overview. Last accessed 28022023. Feb. 2023. URL: https : / /
learn.microsoft.com/enus/windows/security/information
protection/tpm/trustedplatformmoduleoverview.

[90] L. Khati. “Full Disk Encryption and Beyond.” PhD thesis. Université PSL;
Ecole Normale Supérieure de Paris, Oct. 2019.

[91] D. Harnik, O. Naor, E. Ofer, and O. Ozery. “Rethinking block storage encryp
tionwith virtual disks.” In:Proceedings of the 14th ACMWorkshop onHot Top
ics in Storage and File Systems (2022). DOI: 10.1145/3538643.3539748.

[92] L. Khati, N. Mouha, and D. Vergnaud. “Full Disk Encryption: Bridging Theory
and Practice.” In: Topics in Cryptology CTRSA 2017 The Cryptographers’
Track at the RSA Conference 2017, San Francisco, CA, USA, February 14
17, 2017, Proceedings. Ed. by H. Handschuh. Vol. 10159. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2017, pp. 241–
257. ISBN: 9783319521534. DOI: 10.1007/978 3 319 52153
4_14.

[93] L. Khati, N. Mouha, and D. Vergnaud. “Full Disk Encryption: Bridging Theory
and Practice.” In: IACR Cryptol. ePrint Arch. (2016), p. 1114. URL: http:
//eprint.iacr.org/2016/1114.

109

https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://doi.org/10.1016/j.cosrev.2022.100465
https://www.linuxjournal.com/article/9400
https://www.linuxjournal.com/article/9400
https://learn.microsoft.com/en-us/previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://learn.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://learn.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://doi.org/10.1145/3538643.3539748
https://doi.org/10.1007/978-3-319-52153-4_14
https://doi.org/10.1007/978-3-319-52153-4_14
http://eprint.iacr.org/2016/1114
http://eprint.iacr.org/2016/1114

Bibliography

[94] F. Rojas, P. Matarazzo, L. Long, M. Ohlinger, S. Mandalika, J. Mathew, D.
Simpson, M. Athavale, B. Shilpa, D. Vangel, M. Mardahl, A. Czechowski, B.
Dharmanayagam, D. Coulter, M. Mussabekov, L. Keller, Onur, F. Reichmann,
A. Gorzelany, J. Hall, and L. Poggemeyer. Overview of BitLocker Device En
cryption in Windows. Last accessed 02032023. Feb. 2023. URL: https://
learn.microsoft.com/enus/windows/security/information
protection/bitlocker/bitlockerdeviceencryptionoverview
windows10.

[95] Microsoft. Featurespecific requirements for Windows 10. Last accessed 02
032023. 2023. URL: https://www.microsoft.com/engb/windows/
windows10specifications#primaryR5.

[96] JdeBP and T. Zych. Why does Windows7 create two partitions? Last accessed
20022023. July 2018. URL: https://superuser.com/questions/
330178/whydoeswindows7createtwopartitions.

[97] IBM. What is virtualization? Last accessed 15032023. URL: https : / /
www.ibm.com/topics/virtualization.

[98] IBM.What are hypervisors?Last accessed 02042023. URL: https://www.
ibm.com/topics/hypervisors.

[99] Oracle Corporation. VirtualBox – Changelog for VirtualBox 7.0. Last accessed
19022023. Jan. 2023. URL: https://www.virtualbox.org/wiki/
Changelog.

[100] Oracle Corporation. Oracle® VM VirtualBox® User Manual. Version 7.0.6.
Last accessed 28032023. 2023. URL: https://download.virtualbox.
org/virtualbox/7.0.6/UserManual.pdf.

[101] W. McMillen. Trim Command – General Benefits for Hard Disk Drives. White
paper. Last accessed 12032023. Western Digital Corporation, Dec. 2021.

[102] Oracle Corporation. 8.26. VBoxManage storageattach. Last accessed 1102
2023. URL: https://www.virtualbox.org/manual/ch08.html#
vboxmanagestorageattach.

[103] K. Szynter, glglgl, J. Rowe, D. SMogor, bobpaul, F. Labs, Omnifarious, J.
Larsen, davidbaumann, davidtgq, RobM, and xpusostomos. VirtualBox and
SSD’s TRIM command support. Last accessed 13032023. May 2021. URL:
https://superuser.com/questions/646559/virtualboxand
ssdstrimcommandsupport.

[104] E. Wramner. Shrink VirtualBox VDI files with TRIM. Last accessed 1303
2023. Oct. 2017. URL: https://erikwramner.wordpress.com/2017/
10/17/shrinkvirtualboxvdifileswithtrim/.

110

https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://www.microsoft.com/en-gb/windows/windows-10-specifications#primaryR5
https://www.microsoft.com/en-gb/windows/windows-10-specifications#primaryR5
https://superuser.com/questions/330178/why-does-windows7-create-two-partitions
https://superuser.com/questions/330178/why-does-windows7-create-two-partitions
https://www.ibm.com/topics/virtualization
https://www.ibm.com/topics/virtualization
https://www.ibm.com/topics/hypervisors
https://www.ibm.com/topics/hypervisors
https://www.virtualbox.org/wiki/Changelog
https://www.virtualbox.org/wiki/Changelog
https://download.virtualbox.org/virtualbox/7.0.6/UserManual.pdf
https://download.virtualbox.org/virtualbox/7.0.6/UserManual.pdf
https://www.virtualbox.org/manual/ch08.html#vboxmanage-storageattach
https://www.virtualbox.org/manual/ch08.html#vboxmanage-storageattach
https://superuser.com/questions/646559/virtualbox-and-ssds-trim-command-support
https://superuser.com/questions/646559/virtualbox-and-ssds-trim-command-support
https://erikwramner.wordpress.com/2017/10/17/shrink-virtualbox-vdi-files-with-trim/
https://erikwramner.wordpress.com/2017/10/17/shrink-virtualbox-vdi-files-with-trim/

[105] F. Ormeling. “Map Use and Map Reading.” In: Stockholm, Sweden: Interna
tional Cartographic Association, 2014. Chap. 2.

[106] B. Rystedt and F. Ormeling, eds. The World of Maps. Stockholm, Sweden: In
ternational Cartographic Association, 2014.

[107] B. Markoski. Basic Principles of Topography. Gewerbestrasse 11, 6330 Cham,
Switzerland: Springer Nature Switzerland AG, 2018.

[108] K. Kriz, W. Cartwright, and L. Hurni, eds. Mapping Different Geographies.
SpringerVerlag Berlin Heidelberg, 2010.

[109] A. Miall. Stratigraphy: A Modern Synthesis. 2nd. Gewerbestrasse 11, 6330
Cham, Switzerland: Springer Nature Switzerland AG, 2022.

[110] M. Karresand and N. Shahmehri. “Reassembly of fragmented JPEG images
containing restart markers.” In: Proceedings 4th Annual European Confer
ence on Computer Network Defense, EC2ND 2008. 2008, pp. 25–32. DOI:
10.1109/EC2ND.2008.10.

[111] M. Karresand and N. Shahmehri. “Oscar—Using Byte Pairs to Find File Type
and Camera Make of Data Fragments.” In: Proceedings of the 2nd European
Conference on Computer Network Defence, in conjunction with the First Work
shop on Digital Forensics and Incident Analysis (EC2ND 2006). Ed. by A.
Blyth and I. Sutherland. Springer Verlag, 2007, pp. 85–94. DOI: 10.1007/
9781846287503_9.

[112] M. Karresand and N. Shahmehri. “File Type Identification of Data Fragments
by Their Binary Structure.” In: Proceedings from the Seventh Annual IEEE
Systems, Man and Cybernetics (SMC) Information AssuranceWorkshop, 2006.
Piscataway, NJ, USA: IEEE, 2006, pp. 140–147. DOI: 10.1109/IAW.2006.
1652088.

[113] M. Karresand and N. Shahmehri. “Oscar — File Type and Camera Identifica
tion Using the Structure of Binary Data Fragments.” In: Proceedings of the 1st
Conference on Advances in Computer Security and Forensics, ACSF. Ed. by
J. Haggerty and M. Merabti. Liverpool, UK: The School of Computing and
Mathematical Sciences, John Moores University, July 2006, pp. 11–20.

[114] M. Karresand and N. Shahmehri. “Oscar — File Type Identification of Binary
Data in Disk Clusters and RAM Pages.” In: Security and Privacy in Dynamic
Environments, Proceedings of the IFIP TC11 21st International Information
Security Conference (SEC 2006), 2224May 2006, Karlstad, Sweden. Vol. 201.
Lecture Notes in Computer Science. Springer, 2006, pp. 413–424. DOI: 10.
1007/0387334068_35.

111

https://doi.org/10.1109/EC2ND.2008.10
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1007/0-387-33406-8_35

Bibliography

[115] R. Poisel, M. Rybnicek, and S. Tjoa. “Taxonomy of Data Fragment Classifica
tion Techniques.” In: Digital Forensics and Cyber Crime: Fifth International
Conference, ICDF2C 2013, Moscow, Russia, September 2627, 2013, Revised
Selected Papers. Ed. by P. Gladyshev, A. Marrington, and I. Baggili. Springer
International Publishing, 2014, pp. 67–85. DOI: 10.1007/978 3319
142890_6.

[116] A. Tridgell. SpamsumREADME. Last accessed 27042018. 2002. URL: https:
//www.samba.org/ftp/unpacked/junkcode/spamsum/README.

[117] J. Kornblum. “Identifying almost identical files using context triggered piece
wise hashing.” In:Digital Investigation 3.Supplement (2006). The Proceedings
of the 6th Annual Digital Forensic Research Workshop (DFRWS ’06), pp. 91–
97. ISSN: 17422876. DOI: 10.1016/j.diin.2006.06.015.

[118] Y. Dandass, N. Necaise, and S. Thomas. “An Empirical Analysis of Disk Sector
Hashes for Data Carving.” In: J. Digit. Forensic Pract. 2.2 (Apr. 2008), pp. 95–
104. ISSN: 15567281. DOI: 10.1080/15567280802050436.

[119] N. Canceill. “Random Sampling applied to Rapid Disk Analysis.” MA thesis.
University of Amsterdam, The Netherlands, July 2013.

[120] J. Taguchi. “Optimal Sector Sampling for Drive Triage.” MA thesis. Monterey,
CA 93943, USA: Naval Postgraduate School, June 2013.

[121] M. Hirano, H. Takase, and K. Yoshida. “Evaluation of a SectorHash Based
Rapid File DetectionMethod forMonitoring InfrastructureasaService Cloud
Platforms.” In: 2015 10th International Conference on Availability, Reliability
and Security. 2015, pp. 584–591. DOI: 10.1109/ARES.2015.15.

[122] F. GutierrezVillarreal. “Improving sector hash carving with rulebased and
entropybased nonprobative block filters.” MA thesis. Monterey, California,
USA: Naval Postgraduate School, Mar. 2015.

[123] V. Roussev and S. Garfinkel. “File Fragment ClassificationThe Case for Spe
cialized Approaches.” In: 2009 Fourth International IEEE Workshop on Sys
tematic Approaches to Digital Forensic Engineering. May 2009, pp. 3–14.
DOI: 10.1109/SADFE.2009.21.

[124] J. Garcia. “Duplications and Misattributions of File Fragment Hashes in Image
and Compressed Files.” In: 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS). 2018, pp. 1–5. DOI: 10.1109/
NTMS.2018.8328690.

112

https://doi.org/10.1007/978-3-319-14289-0_6
https://doi.org/10.1007/978-3-319-14289-0_6
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1080/15567280802050436
https://doi.org/10.1109/ARES.2015.15
https://doi.org/10.1109/SADFE.2009.21
https://doi.org/10.1109/NTMS.2018.8328690
https://doi.org/10.1109/NTMS.2018.8328690

[125] C. Veenman. “Statistical Disk Cluster Classification for File Carving.” In: Pro
ceedings of the Third International Symposium on Information Assurance and
Security, 2007 (IAS 2007). Ed. byN. Zhang, A.Abraham,Q. Shi, and J. Thomas.
IEEE Computer Society, 2007, pp. 393–398. DOI: 10.1109/ISIAS.2007.
4299805.

[126] W. Calhoun and D. Coles. “Predicting the types of file fragments.” In: Digi
tal Investigation 5.Supplement 1 (Sept. 2008), S14–S20. DOI: 10.1016/j.
diin.2008.05.005.

[127] I. Ahmed, K.s. Lhee, H. Shin, and M. Hong. “On Improving the Accuracy
and Performance of ContentBased File Type Identification.” In: Proc. ACISP
2009. Ed. by C. Boyd and G. Nieto. Vol. 5594/2009. LNCS. SpringerVerlag
Berlin Heidelberg, 2009, pp. 44–59. DOI: 10.1007/978364202620
1_4.

[128] Q. Li, A. Ong, P. Suganthan, and V. Thing. “A Novel Support Vector Machine
Approach to High Entropy Data Fragment Classification.” In: South African
Information Security MultiConference, SAISMC 2010, Port Elizabeth, South
Africa, May 1718, 2010. Proceedings. Ed. by N. Clarke, S. Furnell, and R.
Solms. University of Plymouth, 2010, pp. 236–247.

[129] S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn. “Using NLP techniques
for file fragment classification.” In: Digital Investigation 9 (2012). The Pro
ceedings of the Twelfth Annual DFRWS Conference, S44–S49. ISSN: 1742
2876. DOI: 10.1016/j.diin.2012.05.008.

[130] M. Bhatt, A. Mishra, M. Kabir, S. BlakeGatto, R. Rajendra, M. Hoque, and I.
Ahmed. “HierarchyBased File Fragment Classification.” In: Machine Learn
ing and Knowledge Extraction 2.3 (2020), pp. 216–232. ISSN: 25044990.
DOI: 10.3390/make2030012. URL: https://www.mdpi.com/2504
4990/2/3/12.

[131] A. Bhat, A. Likhite, S. Chavan, and L. Ragha. “File Fragment Classification
using Content Based Analysis.” In: ITM Web Conf. 40 (2021), p. 03025. DOI:
10.1051/itmconf/20214003025.

[132] R. Ali and K. Mohamad. “RX_myKarve carving framework for reassembling
complex fragmentations of JPEG images.” In: Journal of King Saud University
— Computer and Information Sciences 33.1 (2021), pp. 21–32. ISSN: 1319
1578. DOI: 10.1016/j.jksuci.2018.12.007. URL: https://www.
sciencedirect.com/science/article/pii/S131915781831070X.

113

https://doi.org/10.1109/ISIAS.2007.4299805
https://doi.org/10.1109/ISIAS.2007.4299805
https://doi.org/10.1016/j.diin.2008.05.005
https://doi.org/10.1016/j.diin.2008.05.005
https://doi.org/10.1007/978-3-642-02620-1_4
https://doi.org/10.1007/978-3-642-02620-1_4
https://doi.org/10.1016/j.diin.2012.05.008
https://doi.org/10.3390/make2030012
https://www.mdpi.com/2504-4990/2/3/12
https://www.mdpi.com/2504-4990/2/3/12
https://doi.org/10.1051/itmconf/20214003025
https://doi.org/10.1016/j.jksuci.2018.12.007
https://www.sciencedirect.com/science/article/pii/S131915781831070X
https://www.sciencedirect.com/science/article/pii/S131915781831070X

Bibliography

[133] DFRWS. DFRWS 2006 Forensics Challenge Results. Last accessed 2108
2022. 2016. URL: http://old.dfrws.org/2006/challenge/results.
shtml.

[134] Microsoft. Default cluster size for NTFS, FAT, and exFAT. Aug. 2015. URL:
https://support.microsoft.com/enus/help/140365/default
clustersizeforntfsfatandexfat.

[135] E. Casey. “Arson, Archaeology, and Computer Crime Investigation.” In: Com
puter Fraud & Security 2003.7 (2003), pp. 12–15. ISSN: 13613723. DOI:
10.1016/S13613723(03)070118.

[136] P. Gladyshev and A. Patel. “Finite state machine approach to digital event re
construction.” In: Digital Investigation 1.2 (2004), pp. 130–149. ISSN: 1742
2876. DOI: 10.1016/j.diin.2004.03.001.

[137] L. Jun and Z. Guo. “Time Bounding Event Reasoning in Computer Forensic.”
In: 2007 International Conference on Computational Intelligence and Security
Workshops (CISW 2007). 2007, pp. 946–952. DOI: 10.1109/CISW.2007.
4425652.

[138] E. Casey. Digital Evidence and Computer Crime. 3rd ed. Elsevier Inc. (Aca
demic Press), 2011.

[139] E. Casey. “Reconstructing Digital Evidence.” In: Crime Reconstruction. Ed.
by W. J. Chisum and B. E. Turvey. 2nd ed. San Diego: Academic Press, 2011.
Chap. 17, pp. 531–548. ISBN: 9780123864604. DOI: 10.1016/B978
0123864604.000175.

[140] F. Darnowski and A. Chojnacki. “Selected Methods of File Carving and Anal
ysis of Digital Storage Media in Computer Forensics.” In: Teleinformatics Re
view 1–2 (2015), pp. 25–40.

[141] C. Harfield and J. Schofield. “(Im)material culture: towards an archaeology
of cybercrime.” In: World Archaeology 52.4 (2020), pp. 607–618. DOI: 10.
1080/00438243.2021.1882333.

[142] S. Ross and A. Gow. Digital Archaeology: Rescuing Neglected and Damaged
Data Resources. Tech. rep. Last accessed 15052022. Humanities Advanced
Technology and Information Institute (HATII), University of Glasgow, UK,
Feb. 1999. URL: https://purehost.bath.ac.uk/ws/portalfiles/
portal/11350174/p2.pdf.

[143] D. Farmer andW. Venema. Forensic Discovery. Pearson Education, Inc., 2005.
[144] M. Graves. Digital Archaeology — The Art and Science of Digital Forensics.

Pearson Education, Inc., 2013.

114

http://old.dfrws.org/2006/challenge/results.shtml
http://old.dfrws.org/2006/challenge/results.shtml
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://doi.org/10.1016/S1361-3723(03)07011-8
https://doi.org/10.1016/j.diin.2004.03.001
https://doi.org/10.1109/CISW.2007.4425652
https://doi.org/10.1109/CISW.2007.4425652
https://doi.org/10.1016/B978-0-12-386460-4.00017-5
https://doi.org/10.1016/B978-0-12-386460-4.00017-5
https://doi.org/10.1080/00438243.2021.1882333
https://doi.org/10.1080/00438243.2021.1882333
https://purehost.bath.ac.uk/ws/portalfiles/portal/11350174/p2.pdf
https://purehost.bath.ac.uk/ws/portalfiles/portal/11350174/p2.pdf

[145] M. Pollitt. “History, Historiography and the Hermeneutics of the Hard Drive.”
In: Advances in Digital Forensics IX. Ed. by G. Peterson and S. Shenoi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 3–17. ISBN: 9783642
411489. DOI: 10.1007/9783642411489_1.

[146] K. Smith and M. Seltzer. “File System Aging—Increasing the Relevance of
File System Benchmarks.” In: SIGMETRICS Perform. Eval. Rev. 25.1 (June
1997), pp. 203–213. ISSN: 01635999. DOI: 10.1145/258623.258689.

[147] J. Douceur and W. Bolosky. “A LargeScale Study of FileSystem Contents.”
In: SIGMETRICS Perform. Eval. Rev. 27.1 (May 1999), pp. 59–70. ISSN:
01635999. DOI: 10.1145/301464.301480.

[148] S. Garfinkel. “Carving contiguous and fragmented files with fast object vali
dation.” In: Digital Investigation 4.Supplement (2007), S2–S12. ISSN: 1742
2876. DOI: 10.1016/j.diin.2007.06.017.

[149] S. L. Garfinkel. “Forensic feature extraction and crossdrive analysis.” In:Digi
tal Investigation 3.Supplement (2006). The Proceedings of the 6th Annual Dig
ital Forensic Research Workshop (DFRWS ’06), pp. 71–81. ISSN: 17422876.
DOI: 10.1016/j.diin.2006.06.007.

[150] M.Cohen. “Advanced carving techniques.” In:Digital Investigation 4.3 (2007),
pp. 119–128. ISSN: 17422876. DOI: 10.1016/j.diin.2007.10.001.

[151] PassMark Software. File Fragmentation Tool. Last accessed 05012022. Nov.
2009. URL: https://www.passmark.com/products/fragger/.

[152] D. Meyer and W. Bolosky. “A Study of Practical Deduplication.” In: ACM
Trans. Storage 7.4 (Feb. 2012). ISSN: 15533077. DOI: 10.1145/2078861.
2078864.

[153] R. Pahade, B. Singh, andU. Singh. “A Survey onMultimedia File Carving.” In:
International Journal of Computer Science and Engineering Survey (IJCSES)
6.6 (Dec. 2015), pp. 27–46. DOI: 10.5121/ijcses.2015.6603.

[154] V. van der Meer, H. Jonker, G. Dols, H. van Beek, J. van den Bos, and M.
van Eekelen. “File Fragmentation in the Wild: a PrivacyFriendly Approach.”
In: 2019 IEEE International Workshop on Information Forensics and Security
(WIFS). 2019, pp. 1–6. DOI: 10.1109/WIFS47025.2019.9034981.

[155] G.S. Cho. “An Arbitrary Disk Cluster Manipulating Method for Allocating
Disk Fragmentation of Filesystem.” In: Journal of Korea Society of Digital In
dustry and InformationManagement 16.2 (June 2020). The article is in Korean,
pp. 11–25. DOI: 10.17662/ksdim.2020.16.2.011.

115

https://doi.org/10.1007/978-3-642-41148-9_1
https://doi.org/10.1145/258623.258689
https://doi.org/10.1145/301464.301480
https://doi.org/10.1016/j.diin.2007.06.017
https://doi.org/10.1016/j.diin.2006.06.007
https://doi.org/10.1016/j.diin.2007.10.001
https://www.passmark.com/products/fragger/
https://doi.org/10.1145/2078861.2078864
https://doi.org/10.1145/2078861.2078864
https://doi.org/10.5121/ijcses.2015.6603
https://doi.org/10.1109/WIFS47025.2019.9034981
https://doi.org/10.17662/ksdim.2020.16.2.011

Bibliography

[156] S. Willassen. “Finding Evidence of Antedating in Digital Investigations.” In:
2008 Third International Conference on Availability, Reliability and Security.
Mar. 2008, pp. 26–32. DOI: 10.1109/ARES.2008.149.

[157] F. Crispino. “Le principe de Locard estil scientifique? Ou analyse de la scien
tificité des principes fondamentaux de la criminalistique.” PhD thesis. Institut
de Police Scientifique, Ecole des Sciences Criminelles, Faculte de Droit, Uni
versité de Lausanne, May 2006.

[158] S. Dobrowski. Forensic Fact of the Day Quotations Edmond Locard. Jan.
2013. URL: https://castleviewuk.com/blog/index.php?forensic
factofthedayquotationsedmondlocard.

[159] S. Wilding. Locard’s Exchange Principle. Last accessed 04042023. 2012.
URL: http://www.forensichandbook.com/locardsexchange
principle/.

[160] M. Andrew. “Defining a Process Model for Forensic Analysis of Digital De
vices and Storage Media.” In: Second International Workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE’07). 2007, pp. 16–30.
DOI: 10.1109/SADFE.2007.8.

[161] K. Zatyko and J. Bay. “The Digital Forensics Cyber Exchange Principle.” In:
Forensic Magazine 8.6 (2011).

[162] S. Willassen. “Methods for Enhancement of Timestamp Evidence in Digital
Investigations.” PhD thesis. Norwegian University of Science, Technology,
Faculty of Information Technology, Mathematics, and Electrical Engineering,
Department of Telematics, Jan. 2008.

[163] A. Chojnacki and F. Darnowski. “A model of the process of writing and delet
ing file information on a disk with NTFS.” In: Computer Science and Math
ematical Modelling 9 (2019), pp. 19–25. DOI: 10.5604/01.3001.0013.
6602.

[164] J. Bouma. “Interpreting NTFS Timestamps.” MA thesis. Open University of
the Netherlands, Aug. 2019.

[165] V. Ghotge and P. Nema. Description of the Cluster Preallocation Algorithm in
the NTFS File System. Tech. rep. KB 841551. No first hand version available.
Microsoft, 2004.

[166] S. Bader. What is data recovery and how does it work? Last accessed 0908
2022. May 2022. URL: https://rewind.com/blog/whatisdata
recovery/.

116

https://doi.org/10.1109/ARES.2008.149
https://castleviewuk.com/blog/index.php?forensic-fact-of-the-day---quotations---edmond-locard
https://castleviewuk.com/blog/index.php?forensic-fact-of-the-day---quotations---edmond-locard
http://www.forensichandbook.com/locards-exchange-principle/
http://www.forensichandbook.com/locards-exchange-principle/
https://doi.org/10.1109/SADFE.2007.8
https://doi.org/10.5604/01.3001.0013.6602
https://doi.org/10.5604/01.3001.0013.6602
https://rewind.com/blog/what-is-data-recovery/
https://rewind.com/blog/what-is-data-recovery/

[167] SysDev Laboratories LLC.What is data recovery? Last accessed 09082022.
Sept. 2021. URL: https://www.ufsexplorer.com/articles/what
isdatarecovery.php.

[168] R.McKemmish. “When is Digital Evidence Forensically Sound?” In:Advances
in Digital Forensics IV. Ed. by I. Ray and S. Shenoi. Boston, MA: Springer US,
2008, pp. 3–15. ISBN: 9780387849270. DOI: 10.1007/9780387
849270_1.

[169] ninad. Top 20 Best Linux Data Recovery Tools to Recover Deleted/Corrupted
Files. Last accessed 06082022. Aug. 2022. URL: https://www.digitalocean.
com/community/tutorials/topbestlinuxdatarecovery
tools.

[170] T. Fisher. 21 Best Free Data Recovery Software Tools. Last accessed 0608
2022. Aug. 2022. URL: https://www.lifewire.com/free data
recoverysoftwaretools2622893.

[171] I. Haynes. Top 5 Best OpenSource Data Recovery Software in 2022 (For Your
Business or Personal Purposes!) Last accessed 06082022. Feb. 2022. URL:
https://www.handyrecovery.com/best open source data
recoverysoftware/.

[172] B. Cornec. Mondo Rescue Home Page. Last accessed 06082022. Jan. 2020.
URL: http://www.mondorescue.org/.

[173] antonio. Ddrescue Data recovery tool. Last accessed 06082022. Jan. 2022.
URL: https://www.gnu.org/software/ddrescue/.

[174] Foremost. Last accessed 06082022. URL: http://foremost.sourceforge.
net/.

[175] C. Corax. safecopy. Last accessed 06082022. Mar. 2012. URL: http://
safecopy.sourceforge.net/.

[176] N. Case. About extundelete. Last accessed 06082022. 2013. URL: http:
//extundelete.sourceforge.net/.

[177] C. Grenier. TestDisk Documentation— Release 7.1. Last accessed 14052022.
Mar. 2022. URL: https://www.cgsecurity.org/testdisk.pdf.

[178] C. Grenier. TestDisk, Data Recovery. Last accessed 06082022. Oct. 2019.
URL: https://www.cgsecurity.org/wiki/TestDisk.

[179] C. Grenier. PhotoRec, Digital Picture and File Recovery. Last accessed 06
082022. July 2019. URL: https : / / www . cgsecurity . org / wiki /
PhotoRec.

117

https://www.ufsexplorer.com/articles/what-is-data-recovery.php
https://www.ufsexplorer.com/articles/what-is-data-recovery.php
https://doi.org/10.1007/978-0-387-84927-0_1
https://doi.org/10.1007/978-0-387-84927-0_1
https://www.digitalocean.com/community/tutorials/top-best-linux-data-recovery-tools
https://www.digitalocean.com/community/tutorials/top-best-linux-data-recovery-tools
https://www.digitalocean.com/community/tutorials/top-best-linux-data-recovery-tools
https://www.lifewire.com/free-data-recovery-software-tools-2622893
https://www.lifewire.com/free-data-recovery-software-tools-2622893
https://www.handyrecovery.com/best-open-source-data-recovery-software/
https://www.handyrecovery.com/best-open-source-data-recovery-software/
http://www.mondorescue.org/
https://www.gnu.org/software/ddrescue/
http://foremost.sourceforge.net/
http://foremost.sourceforge.net/
http://safecopy.sourceforge.net/
http://safecopy.sourceforge.net/
http://extundelete.sourceforge.net/
http://extundelete.sourceforge.net/
https://www.cgsecurity.org/testdisk.pdf
https://www.cgsecurity.org/wiki/TestDisk
https://www.cgsecurity.org/wiki/PhotoRec
https://www.cgsecurity.org/wiki/PhotoRec

Bibliography

[180] G. Richard III and L. Marziale. sleuthkit/scalpel. Last accessed 06082022.
Mar. 2021. URL: https://github.com/sleuthkit/scalpel.

[181] G. Richard III andV. Roussev. “Scalpel: a frugal, high performance file carver.”
In: Proceedings of the Fifth Annual DFRWS Conference. Last accessed 2911
2017. Aug. 2005, pp. 1–10. URL: https://www.dfrws.org/sites/
default/files/sessionfiles/paperscalpel__a_frugal_
high_performance_file_carver.pdf.

[182] EaseUS.EaseUSData RecoveryWizard. Last accessed 06082022. 2022. URL:
https://www.easeus.com/datarecoverywizard/free data
recoverysoftware.htm.

[183] 508 Software LLC. Disk Drill Data Recovery Software. Last accessed 0608
2022. 2022. URL: https://www.cleverfiles.com/datarecovery
software.html.

[184] PiriformSoftware Ltd.Recuva. Last accessed 06082022. 2022. URL: https:
//www.ccleaner.com/recuva.

[185] Atea Ataroa Limited. DistroWatch.com — Put the fun back in computing. Last
accessed 07082022. 2022. URL: https://distrowatch.com/.

[186] OffSec Services Limited. The most advanced Penetration Testing Distribution.
Last accessed 07082022. 2022. URL: https://www.kali.org/.

[187] A. Linux. Rescue. Last accessed 07082022. Dec. 2021. URL: https://en.
altlinux.org/Rescue.

[188] R. Finnie. Finnix. Last accessed 07082022. Mar. 2022. URL: https://
www.finnix.org/.

[189] The Grml Team. Grml Live Linux. Last accessed 07082022. 2022. URL:
https://grml.org/.

[190] K. Chevreuil and T. Bequet. Welcome to Kaisen Linux — The distribution for
professional IT.Last accessed 07082022. 2022. URL: https://kaisenlinux.
org/.

[191] F. Dupoux, G. Egidy, and M. Mello. System Rescue Homepage. Last accessed
07082022. May 2022. URL: https://www.systemrescue.org/.

[192] Clonezilla.Clonezilla — The Free and Open Source Software for Disk Imaging
andCloning. Last accessed 07082022. 2022. URL: https://clonezilla.
org/.

[193] GNOME Partition Editor. Live CD/USB/PXE/HD. Last accessed 07082022.
July 2022. URL: https://gparted.org/livecd.php.

118

https://github.com/sleuthkit/scalpel
https://www.dfrws.org/sites/default/files/session-files/paper-scalpel_-_a_frugal_high_performance_file_carver.pdf
https://www.dfrws.org/sites/default/files/session-files/paper-scalpel_-_a_frugal_high_performance_file_carver.pdf
https://www.dfrws.org/sites/default/files/session-files/paper-scalpel_-_a_frugal_high_performance_file_carver.pdf
https://www.easeus.com/datarecoverywizard/free-data-recovery-software.htm
https://www.easeus.com/datarecoverywizard/free-data-recovery-software.htm
https://www.cleverfiles.com/data-recovery-software.html
https://www.cleverfiles.com/data-recovery-software.html
https://www.ccleaner.com/recuva
https://www.ccleaner.com/recuva
https://distrowatch.com/
https://www.kali.org/
https://en.altlinux.org/Rescue
https://en.altlinux.org/Rescue
https://www.finnix.org/
https://www.finnix.org/
https://grml.org/
https://kaisenlinux.org/
https://kaisenlinux.org/
https://www.system-rescue.org/
https://clonezilla.org/
https://clonezilla.org/
https://gparted.org/livecd.php

[194] Parted Magic LLC. Powerful Tools for Home or Office! — Parted Magic is
a complete hard disk management solution. Last accessed 07082022. 2022.
URL: https://partedmagic.com/.

[195] E. Hanlhofer. Latest news. Last accessed 07082022. July 2022. URL: https:
//www.plop.at/en/home.html.

[196] S. Key. File Block Hash Map Analysis. Last accessed 28042018. 2012. URL:
https://www.guidancesoftware.com/app/FileBlockHash
MapAnalysis.

[197] Open Text Corporation.OpenText EnCase Forensic. Last accessed 06022022.
2021. URL: https://security.opentext.com/encaseforensic.

[198] K. Woods and C. Lee. “Acquisition and processing of disk images to further
archival goals.” In: Proceedings of Archiving 2012. Society for Imaging Sci
ence and Technology, 2012, pp. 147–152.

[199] H. van Beek, E. van Eijk, R. van Baar, M. Ugen, J. Bodde, and A. Siemelink.
“Digital forensics as a service: Game on.” In: Digital Investigation 15 (2015).
Special Issue: Big Data and Intelligent Data Analysis, pp. 20–38. ISSN: 1742
2876. DOI: 10.1016/j.diin.2015.07.004.

[200] R. van Baar, H. van Beek, and E. van Eijk. “Digital Forensics as a Service:
A game changer.” In: Digital Investigation 11 (2014). Proceedings of the First
Annual DFRWS Europe, S54–S62. ISSN: 17422876. DOI: 10.1016/j.
diin.2014.03.007.

[201] B. Schatz. System and Method for Simultaneous Forensic, Acquisition, Exam
ination and Analysis of a Computer Readable Medium at Wirespeed. United
States Patent No. 10,354,062 B2. July 2019.

[202] M. Russinovich. DiskView v2.41. Last accessed 27022023. Oct. 2020. URL:
https://learn.microsoft.com/enus/sysinternals/downloads/
diskview.

[203] markruss, A. Mihaiuc, J. Stephens, A. Buck, P. Yosifovich, L. Kim, analyzev,
M. Russinovich, M. Polla, and chadmando. Sysinternals. Last accessed 05
032023. Dec. 2022. URL: https://learn.microsoft.com/enus/
sysinternals/.

[204] B. Carrier. TSK Tool Overview. 2014. URL: http://wiki.sleuthkit.
org/index.php?title=TSK_Tool_Overview.

[205] D. Kandakatla and J. Danyow.Windows 10 release information. Last accessed
18032023. Mar. 2023. URL: https://learn.microsoft.com/en
us/windows/releasehealth/releaseinformation.

119

https://partedmagic.com/
https://www.plop.at/en/home.html
https://www.plop.at/en/home.html
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://security.opentext.com/encase-forensic
https://doi.org/10.1016/j.diin.2015.07.004
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2014.03.007
https://learn.microsoft.com/en-us/sysinternals/downloads/diskview
https://learn.microsoft.com/en-us/sysinternals/downloads/diskview
https://learn.microsoft.com/en-us/sysinternals/
https://learn.microsoft.com/en-us/sysinternals/
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
https://learn.microsoft.com/en-us/windows/release-health/release-information
https://learn.microsoft.com/en-us/windows/release-health/release-information

Bibliography

[206] S. White, junyo, B. Schofield, J. Walker, D. Coulter, drew batchelor, M. Ja
cobs, and M. Satran. Operating System Version. Last accessed 18032023.
Nov. 2021. URL: https://learn.microsoft.com/enus/windows/
win32/sysinfo/operatingsystemversion.

[207] V. Vozenilek. “MAP DESIGN.” In: Stockholm, Sweden: International Carto
graphic Association, 2014. Chap. 4.

[208] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. “The
first collision for full SHA1.” In: Advances in Cryptology — CRYPTO 2017.
Vol. 10401. Lecture Notes in Computer Science. 2017, pp. 570–596. DOI: 10.
1007/9783319636887_19.

[209] Cryptology Group at Centrum Wiskunde & Informatica (CWI) and Google
Research Security, Privacy andAntiabuse Group. Shattered—We have broken
SHA1 in practice. Last accessed 28042018. URL: https://shattered.
io/.

[210] Real Data Corpus. Real Data Corpus. Last accessed 29092018. July 2018.
URL: https : / / digitalcorpora . org / corpora / disk images /
realdatacorpus.

[211] S. Gibbs. From Windows 1 to Windows 10: 29 years of Windows evolution.
Last accessed 29092018. Oct. 2014. URL: https://www.theguardian.
com/technology/2014/oct/02/fromwindows1towindows
1029yearsofwindowsevolution.

[212] C. Buckel. Understanding Flash: Blocks, Pages and Program Erases. Last
accessed 03102018. 2014. URL: https://flashdba.com/2014/06/
20/understandingflashblockspagesandprogramerases/.

[213] Y. Gubanov and O. Afonin. SSD and eMMC Forensics 2016, part 1. Last ac
cessed 07102018. Apr. 2016. URL: https://articles.forensicfocus.
com/2016/04/20/ssdandemmcforensics2016/.

[214] Y. Gubanov and O. Afonin. SSD and eMMC Forensics 2016, part 2. Last ac
cessed 07102018.May 2016. URL: https://articles.forensicfocus.
com/2016/05/04/ssdandemmcforensics2016part2/.

[215] Y. Gubanov and O. Afonin. SSD and eMMC Forensics 2016, part 3. Last ac
cessed 07102018. June 2016. URL: https://articles.forensicfocus.
com/2016/06/07/ssdandemmcforensics2016part3/.

120

https://learn.microsoft.com/en-us/windows/win32/sysinfo/operating-system-version
https://learn.microsoft.com/en-us/windows/win32/sysinfo/operating-system-version
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://shattered.io/
https://shattered.io/
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://articles.forensicfocus.com/2016/04/20/ssd-and-emmc-forensics-2016/
https://articles.forensicfocus.com/2016/04/20/ssd-and-emmc-forensics-2016/
https://articles.forensicfocus.com/2016/05/04/ssd-and-emmc-forensics-2016-part-2/
https://articles.forensicfocus.com/2016/05/04/ssd-and-emmc-forensics-2016-part-2/
https://articles.forensicfocus.com/2016/06/07/ssd-and-emmc-forensics-2016-part-3/
https://articles.forensicfocus.com/2016/06/07/ssd-and-emmc-forensics-2016-part-3/

[216] Y. Gubanov and O. Afonin. Recovering Evidence from SSD Drives in 2014:
Understanding TRIM, Garbage Collection and Exclusions. Last accessed 07
102018. 2014. URL: https://articles.forensicfocus.com/2014/
09 / 23 / recovering evidence from ssd drives in 2014
understandingtrimgarbagecollectionandexclusions/.

[217] Y. Gubanov and O. Afonin. Why SSD Drives Destroy Court Evidence, and
What Can Be Done About It. Last accessed 08102018. 2012. URL: https:
//belkasoft.com/download/info/SSD%20Forensics%202012.
pdf.

[218] Swedish Defence Research Agency. CRATE – Sweden’s national cyber train
ing facility. Last accessed 26032023. Sept. 2022. URL: https://www.
foi.se/en/foi/research/information security/crate
swedensnationalcybertrainingfacility.html.

[219] Oracle Corporation. Chapter 5. Virtual Storage. Last accessed 18032023.
2022. URL: https://www.virtualbox.org/manual/ch05.html.

[220] TerryE andmpack.All about VDIs. Last accessed 30122018. Feb. 2018. URL:
https://forums.virtualbox.org/viewtopic.php?t=8046.

[221] Oracle Corporation. Oracle® VM VirtualBox® User Manual. Version 5.2.20.
Last accessed 26032023. 2018. URL: https://download.virtualbox.
org/virtualbox/5.2.20/UserManual.pdf.

[222] Arch Linux. Disk encryption. Last accessed 30122018. Nov. 2018. URL:
https://wiki.archlinux.org/index.php/disk_encryption.

[223] M. Gattol.Blocklayer Encryption. Last accessed 24012019. Jan. 2015. URL:
https://web.archive.org/web/20150917051251/http://www.
markusgattol.name/ws/dmcrypt_luks.html.

[224] K. Scarfone, M. Souppaya, and M. Sexton. Guide to Storage Encryption Tech
nologies for End User Devices. Tech. rep. 800111. National Institute of Stan
dards and Technology, Nov. 2007.

[225] Aorimn. dislocker. Sept. 2021. URL: https://github.com/Aorimn/
dislocker.

[226] Der_Meister, That Brazilian Guy, and31415, Techie007, and Pacerier. Is it safe
to delete the System Volume Information folder? Last accessed 29032023.
May 2015. URL: https://superuser.com/questions/763165/is
itsafetodeletethesystemvolumeinformationfolder.

[227] Guest and Pondus. Avast detected file SYMEFA.DB as a virus on my computer.
Last accessed 29032023. Jan. 2015. URL: https://forum.avast.com/
index.php?topic=164221.0.

121

https://articles.forensicfocus.com/2014/09/23/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions/
https://articles.forensicfocus.com/2014/09/23/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions/
https://articles.forensicfocus.com/2014/09/23/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions/
https://belkasoft.com/download/info/SSD%20Forensics%202012.pdf
https://belkasoft.com/download/info/SSD%20Forensics%202012.pdf
https://belkasoft.com/download/info/SSD%20Forensics%202012.pdf
https://www.foi.se/en/foi/research/information-security/crate---swedens-national-cyber-training-facility.html
https://www.foi.se/en/foi/research/information-security/crate---swedens-national-cyber-training-facility.html
https://www.foi.se/en/foi/research/information-security/crate---swedens-national-cyber-training-facility.html
https://www.virtualbox.org/manual/ch05.html
https://forums.virtualbox.org/viewtopic.php?t=8046
https://download.virtualbox.org/virtualbox/5.2.20/UserManual.pdf
https://download.virtualbox.org/virtualbox/5.2.20/UserManual.pdf
https://wiki.archlinux.org/index.php/disk_encryption
https://web.archive.org/web/20150917051251/http://www.markus-gattol.name/ws/dm-crypt_luks.html
https://web.archive.org/web/20150917051251/http://www.markus-gattol.name/ws/dm-crypt_luks.html
https://github.com/Aorimn/dislocker
https://github.com/Aorimn/dislocker
https://superuser.com/questions/763165/is-it-safe-to-delete-the-system-volume-information-folder
https://superuser.com/questions/763165/is-it-safe-to-delete-the-system-volume-information-folder
https://forum.avast.com/index.php?topic=164221.0
https://forum.avast.com/index.php?topic=164221.0

Bibliography

[228] Anonymous users and Brian. Prevent EfaData/SYMEFA.DB from being cre
ated? Last accessed 29032023. Apr. 2013. URL: https://community.
broadcom.com/symantecenterprise/communities/community
home/digestviewer/viewthread?MessageKey=9d963f340db3
41e9b5bddd6c066e59ae&CommunityKey=1ecf5f55954544d6
b0f44e4a7f5f5e68&tab=digestviewer.

[229] J. Metz. BitLocker Drive Encryption (BDE) format specification. Last accessed
29032023. Feb. 2022. URL: https://github.com/libyal/libbde/
blob/main/documentation/BitLocker%20Drive%20Encryption%
20(BDE)%20format.asciidoc.

[230] M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkolbotn.
“Creating aMap of User Data in NTFS to Improve File Carving.” In: Advances
inDigital Forensics XV. Cham: Springer International Publishing, 2019. Chap. 8,
pp. 133–158. ISBN: 9783030287528. DOI: 10 . 1007/978 3 030
287528_8.

[231] M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Using NTFS Cluster Alloca
tion Behavior to Find the Location of User Data.” In: Digital Investigation 29
(2019), S51–S60. ISSN: 17422876. DOI: 10.1016/j.diin.2019.04.
018.

[232] M. Karresand, G. Dyrkolbotn, and S. Axelsson. “An Empirical Study of the
NTFS Cluster Allocation Behavior Over Time.” In: Forensic Science Inter
national: Digital Investigation 33 Supplement (July 2020), p. 301008. ISSN:
26662817. DOI: 10.1016/j.fsidi.2020.301008.

122

https://community.broadcom.com/symantecenterprise/communities/community-home/digestviewer/viewthread?MessageKey=9d963f34-0db3-41e9-b5bd-dd6c066e59ae&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=digestviewer
https://community.broadcom.com/symantecenterprise/communities/community-home/digestviewer/viewthread?MessageKey=9d963f34-0db3-41e9-b5bd-dd6c066e59ae&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=digestviewer
https://community.broadcom.com/symantecenterprise/communities/community-home/digestviewer/viewthread?MessageKey=9d963f34-0db3-41e9-b5bd-dd6c066e59ae&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=digestviewer
https://community.broadcom.com/symantecenterprise/communities/community-home/digestviewer/viewthread?MessageKey=9d963f34-0db3-41e9-b5bd-dd6c066e59ae&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=digestviewer
https://community.broadcom.com/symantecenterprise/communities/community-home/digestviewer/viewthread?MessageKey=9d963f34-0db3-41e9-b5bd-dd6c066e59ae&CommunityKey=1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=digestviewer
https://github.com/libyal/libbde/blob/main/documentation/BitLocker%20Drive%20Encryption%20(BDE)%20format.asciidoc
https://github.com/libyal/libbde/blob/main/documentation/BitLocker%20Drive%20Encryption%20(BDE)%20format.asciidoc
https://github.com/libyal/libbde/blob/main/documentation/BitLocker%20Drive%20Encryption%20(BDE)%20format.asciidoc
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.fsidi.2020.301008

Part II.

Included Publications

123

A. Creating a Map of User Data in NTFS to
Improve File Carving

The layout of the article has been lightly edited to fit the overall layout of the thesis. This text and a
full citation of the article has been added below the title. Since the work is focused on disk partitions
(Windows volumes) the term LBA in the article has been corrected to LPVA where applicable and one
erroneous LBA erased from the second paragraph in Appendix A.3. The content is otherwise unchanged
and corresponds to the original, published, version.

M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkol
botn. “Creating a Map of User Data in NTFS to Improve File Carving.”
In: Advances in Digital Forensics XV. Cham: Springer International Pub
lishing, 2019. Chap. 8, pp. 133–158. ISBN: 9783030287528. DOI:
10.1007/9783030287528_8

Abstract

Digital forensics, and especially file carving, is burdened by the large and increasing
amount of data that needs to be processed. Attempts to solve the problem are being
made by introducing for examplemore efficient carving algorithms, parallel processing
in the cloud, and the reduction of data by filtering out uninteresting files.
We propose to use the principle of searching where it is more probable to find what

you are looking for. This is done by creating a map of the probability of finding unique
data at different Logical Partition Volume Address (LPVA) positions of a collection of
storage media. We use Secure Hash Algorithm 1 (SHA1) hashes of 512 B sectors to
represent the data. Our results show that the mean probability of finding unique hash
values at different LPVA positions vary between 12% to 41% over a New Technology
File System (NTFS) partition.
The map can be used by a forensic investigator to prioritize relevant areas in storage

media, without the need for a working file system. It can also be used to increase the
efficiency of hashbased carving by dynamically changing the random sampling fre
quency, which we show. Our method also contributes to the digital forensics processes
in general, which can now be focused on the interesting regions on storage devices, in
creasing the probability of getting relevant results faster.

125

https://doi.org/10.1007/978-3-030-28752-8_8

A. Creating a Map of User Data in NTFS to Improve File Carving

Our work is based on a collection of 30 NTFS partitions from computers running
Microsoft Windows 7 and newer.

A.1. Introduction

The everincreasing amount of data to be handled in digital forensics is a major chal
lenge to digital forensics case work [1] and has been discussed for many years [2–6].
The field of file carving is especially affected by the increasing amount of data. File
carving is used in situations where there is no file system available, instead only the
the properties of the stored data itself [7, 8] are used. That principle connects this ar
ticle to our previous work on determining the data type (file type) of fragmented data
by using histograms of the frequency of bytes, byte pairs and the difference between
consecutive byte values [9–14]. We have also used the compressibility of data for type
identification [15–17]. As before we now use small blocks of data (512 B sectors in
this article) and their statistical properties to improve file carving, but now we apply
the principle of finding patterns in unknown data to full hard disk partitions. However,
this time we determine the most probable position of user data, not the exact type of it.
Being able to carve files without the help of a working file system is difficult, but

highly valuable to the digital forensic investigator. The research community is there
fore focused on solving the problem of the increasing amount of data by different
means. In a survey from 2014 Quick and Choo [1] lists the following concepts; data
mining, data reduction and subsets, triage, intelligence analysis and digital intelligence,
distributed and parallel processing, visualization, digital forensics as a service (DFaaS)
and different artificial intelligence techniques.
In the file carving subfield of hashbased carving, hashes of blocks of unknown

data from the storage media is compared to known equally sized blocks of suspicious
material. The large amount of comparisons of hashes made by a hashbased carving
algorithm puts extra burden on the forensic process. Therefore different strategies,
techniques and algorithms for hashbased carving have been developed [18–24].
What has not yet been tested is to utilize the principle of searching for something

where it is more probable to find it. Since the allocation algorithm of the operating
system (OS) will place new data in the file system according to a set of rules, not
randomly, the principle can be used in the digital forensic field too. The allocation
process is however too complex to fully understand and thus commonly regarded as
random. Therefore the current principle is to linearly search the storage media from
beginning to end, regardless of the most probable position of the soughtafter data.
Most of the data of interest in an investigation is related to user activity, i. e. system

logs and files created by the user. Such data is often unique to the specific computer
and cannot be found elsewhere, because the probability of two users independently

126

A.1. Introduction

creating exactly the same data is negligible. Of course also shared data downloaded
(from the internet or elsewhere) by the user are of interest, for example child abuse
material. Such data will be stored intertwined with the unique user data according
to the allocation algorithm’s rules. Hence it makes sense to use the Logical Partition
Volume Address (LPVA) position of unique user data to also find where the user’s
activity has stored shared data.
We have therefore performed an experiment using SecureHashAlgorithm 1 (SHA1)

hashes of the content of nonrelated computers runningWindows 7 and later, to find the
probability of unique hashes (unique user data) at different positions in the 30 largest
New Technology File System (NTFS) formatted partitions of 26 hard disks. The data
was chosen to be as realistic as possible to increase the applicability of our results, and
we therefore used real world computers in the data collection. The unique data are
unique in our data set, there is no guarantee that they are unique world wide.
The rest of this paper is organized as follows: The remaining parts of Section A.1

presents related work and our contributions. In Section A.2 we describe our data set
and how it was collected, together with a description of how the experiments were
implemented. Section A.3 presents the results of the study. In Section A.4 we discuss
the effects and implications of our results to the research field of hashbased carving
and also to other areas within and related to digital forensics. Section A.5 concludes
the work and presents ideas of future work to be done.

A.1.1. Related work

Althoughwe have not found anywork that directly relates to our work, there are several
research subfields that have bearing on our work; The main field being file carving,
and especially its subfield of hashbased carving.

File fragment carving

Apart from our work within the file fragment carving area there are also work done by
others using different means to identify the type of data fragments. Veenman [25] use
the entropy, histogram and Kolmogorov complexity of 4 KiB file fragments to deter
mine their type. The result show that histograms have the highest detection rate versus
false positives of the chosen algorithms. Calhoun and Coles [26] experiment with dif
ferent statistical measures, for example frequency of ASCII codes, entropy, modes,
mean, standard deviation and correlation between adjacent bytes. They also look at
using the longest common substrings and subsequences between file fragments for
data classification. Ahmed et al. [27] use the byte frequency distribution with a new
method of measuring the distance between the statistical properties of a data fragment
and a model. Instead of using the Mahalanobis distance measure they use cosine sim

127

A. Creating a Map of User Data in NTFS to Improve File Carving

ilarity with improved results. Li et al. [28] also use the byte frequency distribution
(histogram) of different data fragments, but in conjunction with a support vector ma
chine as a discriminant between different data types. They explain that the best results
are achieved using the byte frequency distribution alone. Fitzgerald et al. [29] combine
several statistical measures of data fragments (among them histograms of one and two
byte sequences, entropy and Kolmogorov complexity) to get feature vectors that are
fed into a support vector machine for classification. They notice that their method out
perform many method presented in previous work. However, they do not evaluate the
contribution of each of the chosen feature vectors, but instead leave it as future work.
There is also a taxonomy of data fragment classification techniques by Poisel et al. [30]
describing the research area.

Hashbased carving

The digital forensics research field of hashbased carving compares hashes of known
file blocks to hashes of equally sized blocks from a suspects hard drive. In that way
even files that are partially overwritten or damaged can be identified.
The roots of the research field can be traced back to thespamsum tool by Tridgell [31].

According to Garfinkel one of the first times hashes are used for file carving is dur
ing the Digital Forensic Research Workshop (DFRWS) 2006 Carving Challenge [18].
Later the spamsum tool is used as a basis for an article by Kornblum [32] on piecewise
hashing and what is now known as approximate matching. The concept of using hashes
for file carving is further studied by Dandass [33] in 2008 in an article presenting an
empirical analysis of disk sector hashes. The term hashbased carving is first intro
duced by Collange et al. [24] exploring the possibility of using a Graphics Processing
Unit (GPU) for comparing hashes of 512 byte sections of known files with hashes of
512 byte sectors from disk images.
When Garfinkel use hashes for file carving in the DFRWS 2006 Carving Chal

lenge [18] parts of files found on the internet are hashed and used to find equal hashes
in the challenge image. These experiences lead to the development of the frag_find
tool [23]. In connection to the frag_find article the authors discuss the optimal size
of the data blocks to hash. They conclude that the size shall be equal to the sector size,
without stating if they mean 512 B or 4 KiB sectors. Garfinkel et al. [18] elaborate
further on the size of hashed blocks and state that starting with Windows NT 4.0 the
default minimum allocation unit in NTFS is 4 KiB [34].
Foster [22] discusses the problem of data shared across files, stating that “the block

of NULs is the most common block in our corpus” [22, p. 15], relating them to the
NULL padding of files. The problem of the large amount of data to handle is also
discussed. Young et al. [21] continues the work further developing the Foster’s ideas.
The authors discuss the optimal block size, how to handle a large amount of data,

128

A.1. Introduction

efficient hash algorithms, good data sets to use and common blocks of files.
Random sampling is used to improve the speed of hashbased carving in several

articles [18, 22, 23]. To find a suitable sampling frequency the problem is regarded as
sampling without replacement. Using a higher sampling frequency may increase the
detection rate, but has a negative impact on the execution speed. The problem is to
find a suitable balance between the two alternatives.

Data persistence

The concept of data persistence is interesting to our work because the persistence at
different areas of storage media indicates that they are not reused. This information is
valuable when creating a map of a generic storage media.
Jones and Khan [35] have created a framework to enable studies of (deleted) file per

sistence in storage media. They use differential forensic analysis to compare snapshots
of file systems in use and follow the decay of deleted files over time.
Fairbanks and Garfinkel [36] present 12 factors affecting data persistence in storage

media. Fairbanks [37, 38] also describes the lowlevel functions of ext4 and their effect
on digital forensics.

Data reduction

Quick and Choo propose different methods to reduce the amount of data needed to be
analyzed in digital forensic investigations. Their approach [4, 39] builds on extracting
specific files using a list of key files and then work on the subset of files. This requires a
working file system, limiting the methods applicability. Also the list of key files needs
to be constantly updated.
Rowe [40] has a similar approach as Quick and Choo, although more technical. He

compares ninemethods for identifying uninteresting files, defined as “those files whose
contents do not provide forensically useful information about users of a drive.” [40,
p. 86]. However, the methods studied by Rowe all require a working file system, which
is not consistent with the foundation of file carving.

Data mapping

Key [41] has developed an EnScript module to the EnCase software which creates a
map of the recoverable sectors of a file found in a file system. It can handle situations
where other tools does not work, for example partially damaged files, although it is
very processor intensive and therefore can only create maps of a few files at a time.
Gladyshev and James [2] study the problem of file carving from a decisiontheoretic

point of view. They suggest a model where storage media is sampled with a frequency

129

A. Creating a Map of User Data in NTFS to Improve File Carving

based on different properties of the hard disk and the file type that is to be found.
In some specific situations their carving model outperforms standard linear carving
algorithms, but their solution is not yet generally applicable. Gladyshev and James
mention using the distribution of data on disk, but do not seem to relate that to the
probability of finding user data at different LPVA positions in storage media.
In two articles by van Baar et al. [42] and van Beek et al. [43] outlining the DFaaS

systemHansken [43] and its predecessor Xiraf [42] the concept of nonlinear extraction
of data from images is discussed. Both van Baar and van Beek suggests that the Master
File Table (MFT) records (the file systemmeta data) of an NTFS partition are extracted
first. The MFT records are then used to find other interesting areas in the file system.
van Baar and van Beek also suggest that the analysis process is used to influence the
imaging process by having specified parts being prioritized.

A.1.2. Contribution

As can be seen from the review of related work, there is a need to improve the efficiency
of the tools and algorithms used in digital forensics, and especially in file carving.
There are many different proposed solutions to the problem, but no one has yet utilized
the inherent structures of the allocation algorithms to address the problem. We therefore
present the novel idea of using the probability of finding user data at different locations
in storagemedia to govern the digital forensic process and hence enabling an immediate
increase of the efficiency of existing file carving algorithms and tools. In hashbased
carving the concept can be used to increase the efficiency when doing random sampling
by varying the sampling rate in accordance with the probability of finding user data
at different LPVA positions. The principle can also be used during triage and other
situations where speed and detection rate has to be balanced.
Unlike many of the methods presented in related work our method works without a

file system. The map we create can be used directly to further improve the speed of any
of the file carving algorithms presented as related work by showing the most probable
position of unique data in a general NTFS formatted storagemedia. It can either be used
for starting the forensic process at the positionwith the highest probability of containing
data of interest (for example user data) or varying the sampling rate in accordance with
the probability of finding user data. In the latter case the sampling frequency will be
higher where it matters most and lower in other areas, increasing the probability of
getting a hit while maintaining the same amount of samples as with equally distributed
sampling.
Our work also benefits the digital forensic investigator, because our map introduces

the possibility to plan the forensic process in a similar way to how a map is used when
planning operations in the physical world. Currently storage media are treated as black
boxes, forcing the forensic investigators to spend valuable time scanning them from

130

A.1. Introduction

start to end before the analysis. This is especially useful in general file carving situa
tions when there is no file system to govern the search. With our method the forensic
investigators can focus on relevant areas of the storage media and postpone, or even
skip, less relevant areas.

The map can also be used in storage media imaging situations. By starting the imag
ing process at the most probable position of user data, continuing in decreasing order
of relevance, the analysis process can be run almost in parallel to the imaging since the
most relevant data for analysis will be immediately available. In that way the analysis
process can be started earlier, even before the imaging is finalized, saving valuable
time and effort for the forensic investigators. Of course the reliability of the analysis
will increase as more data are analyzed, but a preliminary result to guide the progress
ing work will be available at an earlier stage. This concept is also supported by the
Hansken project [42, 43]. By implementing our concept in Hansken its ability to also
handle media with broken file systems will be higher, possibly close to the performance
of the standard process.

To enable handling of any storage media, regardless of its file system cluster size,
our method use 512 byte sectors when hashing the data. Since our map is created once
and can be reused there is no performance penalty in using it, just like a physical map.
Since we have divided the map into a small number of equally sized areas (currently
128) any random seek penalty will only occur between these areas, not within, and thus
can be ignored. Also the only situation where the use of 512 byte hashes are required is
when the map is created. There is no need to use 512 byte hashes when performing case
work on a suspect’s hard drive. Likewise any hashing algorithm can be used for case
work because the hashes of the map are only used to calculate the probability of user
data at different positions and never meant to be compared to hashes from a specific
case. If a hash algorithm is broken it can simply be exchanged for a new and better
algorithm, our map will still work.

During our work we found a total of nine sectors having the same hash value at the
same LPVA position in all 30 partitions. These sectors can for example be used to
identify an NTFS file system, find the start of a NTFS partition and locate the $MFT
file for further processing. This can be done regardless of the state of the file system.

To the best of our knowledge this specific research field has not yet been explored, a
field with the possibility to bring improvements to a number of related research fields
in digital forensics. This new approach therefore has a high impact factor and relevance
to most, if not all, digital forensic cases.

131

A. Creating a Map of User Data in NTFS to Improve File Carving

A.2. Experimental Setup

To determine the distribution of unique data in the major NTFS formatted partition of a
common Microsoft Windows computer we first collect live data from real computers.
Then we calculate the probability of finding unique hash values at different LPVA
positions. Finally we create a map by calculating the mean probability of a number
of (128 in our case) equally sized partition areas based on LPVA position. The mean
probability calculation is done to generalize and scale the map into a usable format.
To lower the size of data to be stored for the experiment and also to protect the

privacy of the user we use the SHA1 algorithm to hash each 512 byte sector of all 30
NTFS formatted main partitions included in the experiment. We use SHA1 because
it currently offers the best balance between speed, collision risk and hash size among
the hash algorithms we choose from (MessageDigest algorithm 5 (MD5) and the SHA
family). The choice is based on a practical evaluation using available hardware. The
hashing of data is done locally at each source computer and thus only the resulting
hashes leave the computers.
SHA1 maps 512 bytes of data onto a 20 byte long hash and thus there is a theoret

ical risk of collisions. If we apply the Birthday Paradox to our situation, the risk of a
collision is approximately 1.1 · 10−28 and hence negligible1. We therefore assume a
unique SHA1 hash to represent a unique piece of data.
Even though the SHA1 algorithm is broken [44, 45] from a cryptographic point

of view the risk of an intentional collision is also negligible, because the amount of
computing power required to create a collision is out of reach for the common user [44,
45]. Also such an attack would require an attacker to create a large amount of collisions
for a majority of the storage media in the map source data. It would be much simpler
to fill the disks with shared and unique data in an intentional pattern. This is however
1The theoretical risk of collisions come from the fact that 512 bytes of data are compressed into a 20 byte
long hash and therefore the results might contain false positives. The problem can be viewed as a
Birthday Paradox, whereN is the number of possible hashes, n is the number of hashes, i. e. the total
amount of sectors we have hashed (as a worst case scenario), and P (Collision) the probability of a
collision, which can be calculated as

P (Collision) = 1− N !

Nn · (N − n)!

and withN = 2160 and n = 18 210 308 798 the probability of at least one collision is approximately

P (Collision) ≈ 1− e−n2/2N ≈ n2/2N ≈ 1.1 · 10−28.

Our approximation is based on Stirling’s approximation of factorials, which gives acceptable results
when dealing with very large numbers. Since the SHAttered [44, 45] attack is 100 000 times faster
than a brute force attack using the birthday paradox the risk of an intentional collision is higher, but
the attack is unfeasible in our situation.

132

A.2. Experimental Setup

mitigated by collecting the source data from nonrelated sources. Finally the mapping
process is not limited to the use of SHA1, any hashing algorithm will do, as long as
all mapping data is hashed using the same algorithm.

A.2.1. Data Collection

To get hold of data representing real life situations we chose to use a convenience
sample collecting data from computers owned by people in our acquaintanceship. We
did not use the Real Data Corpus (RDC) because the time stamps on the RDC web
site [46] indicate that the last update of the data set was made in 2011. Therefore our
data set is more up to date containing also versions 8 and 10 of Windows2.
We have collected data from 30 partitions of 26 computers (23 consumer grade and

3 office grade). The data was collected by hashing every 512 byte sector of the entire
hard disks using the dcfldd disk imaging tool set to use the SHA1 cryptographic hash
algorithm. The OS installations represent three different language packs and range
from Microsoft Windows 7 to Windows 10, both Enterprise, Professional, Ultimate,
Home and Educational versions. Some of the computers have been upgraded form an
earlier Windows version to Windows 10. Five of the computers are in our possession
and we therefore have access to their raw content.
The reason for using real computers and not a simulation in a laboratory environment

is to avoid any bias from the simulation of user behavior. By using real computers
our results will be as close to the forensic investigators case work as possible. The
drawback is a lower degree of control of the material. For example we lack information
on whether a hard disk is mechanical or solidstate drive (SSD) in some cases. This
lack of information does not affect our results since we collect the data at the LPVA
level from the hard drive controller. The lower levels of physical storage formats are
therefore hidden from us [48–51].
From our point of view the only difference between a mechanical hard disk and an

SSD hard disk is their filling of unused areas, which can be either old data, 0x00 or
0xFF depending on how the TRIM command is implemented in the SSDs [52–57].
Hence a mechanical drive will more often give us old data from currently unallocated
clusters than an SSD. Since we only use the LPVA positions of unique data any 0x00
and 0xFF filling is automatically filtered out. In the case of old data from unallocated
clusters a very unbalanced erase/write cycle is required to leave a large amount of old
data, i. e. first a large amount of data should be erased, followed by a small amount of
(or no) writing of new data. This will be the case if a hard disk is erased using a random
pattern and then reformatted and reused. If a large amount of the unallocated sectors
contain old data, which are unique, they will have an effect on our results. To affect the
2Windows 8 was introduced at the end of 2012 [47] and therefore cannot exist in the RDC, nor can
Windows 10.

133

A. Creating a Map of User Data in NTFS to Improve File Carving

map creation process to any greater extent the scenario shall be true for a significant
part of the partitions in our data set. Before we collect the data we therefore check with
the users if they have done any large file system cleaning close to our data collection.
The hard disks in our data set differ in size, ranging from 64 GB to 1 TB. We extract

the largest NTFS formatted partition (in four cases there were an extra storage partition
present which was extracted too) from each hard disk, based on the assumption that it
contains the OS and user files. As can be seen in Table A.1 the total size of the partitions
in the experiment is 8 638.4 GiB, corresponding to 18 210 308 798 hashes. Of those
3 809 786 792 hashes are unique. The percentage of unique hashes for each partition
is also shown in Table A.1. A low number of unique hashes is an indication of the
partition not being used, or at least not for storing user data. A low amount of unique
hashes and a high amount of 0x00 or 0xFF filling can be seen in Table A.1 for the
bigger partitions (those ending in “b”) of the hard drives where we used more than one
partition to collect data.
The life time and hence amount of data stored on the hard disks vary. Most of the

hard disks are filled with 0x00 to some extent. That can be remnants of the production
process, but of the smaller hard disks (≤ 256GiB) some are SSD, which are filled with
0xFF from the factory [52]. To determine whether any of the partitions in our data set
has been completely filled with data at any time during its life time we studied the
last 20 GB of each partition. The size of 20 GB was chosen to be a suitable tradeoff
between a large enough amount of data and the risk of including the OS area for the
smaller partitions. In Table A.1 the partitions sizes and the amount of 0x00 and 0xFF
filling are shown. A low amount of both 0x00 and 0xFF filling is an indication of the
partition being (almost) completely filled with data during some stage of its life time.
This could either be user data or a random data from a disk wiping tool.
We are only using partitions formatted as NTFS, because that is currently the most

common file system among desktop systems having an approximate market share of
90% [58]. The partition names in Table A.1 are given based on the order of hashing,
i. e. partition “A” was hashed before “B” and so on. Four computers contain two
partitions each that are included based on size (the computers were installed with an
extra partition for user data). These partitions are indicated by a second lowercase
letter in the name in Table A.1. Although lacking an OS these partitions still contain
an NTFS file system and therefore can be included in our data set.
The unique hash values we have found also include an amount of 1 KiB3 MFT

records. These records will result in up to two unique hash values each when hash
ing due to their highly varying content (time stamps, file names, file content etc). We
therefore performed a survey on 27 computers not included in our data set estimating

3The size of an MFT record is defined in the boot sector of an NTFS partition. The de facto standard
size is 1 KiB [59].

134

A.2. Experimental Setup

Table A.1.: The sizes in GiB of the partitions in the experiment, their amount of unique
hashes and 0x00 and 0xFF filling in the last 20 GB of the partitions. A low
amount of filling is an indicator of the partition being completely filled or
wiped with at random pattern at some stage during its life time.

Name Size [GiB] Unique hashes [%] 0x00 fill [%] 0xFF fill [%]

F 59.5 0.08 100.00 0
E 59.5 22.36 2.01 0.12
AC 111.3 7.63 100.00 0
I 111.6 61.83 20.12 1.67
A 118.4 23.17 75.24 0.00
W 118.6 59.80 26.18 0
K 146.4 5.82 100.00 0
Qa 150 43.33 45.78 0.07
N 177.6 38.32 48.48 0.00
Ra 185.9 31.89 56.89 0.14
Sa 200 86.85 0.02 0.02
Oa 209 13.68 100.00 0
Y 217.1 14.77 100.00 0
P 232.7 53.97 0.83 0.07
H 237.3 16.68 100.00 0
AA 237.3 12.60 100.00 0
D 237.9 20.59 0 100.00
G 238.1 7.03 25.56 0.16
M 238.1 23.06 79.47 0.01
Rb 258.4 1.68 100.00 0
Sb 265.6 36.22 100.00 0
T 297.9 9.35 48.12 0.28
C 421.7 34.98 0.86 1.17
Z 423.9 4.05 100.00 0
X 443.8 6.48 100.00 0
U 448 10.60 100.00 0
V 465.6 48.43 100.00 0
Ob 699 0.15 98.72 0.00
Qb 766.5 1.47 100.00 0
B 905.2 29.74 100.00 0

Sum 8683.4 20.92 67.61 3.35

135

A. Creating a Map of User Data in NTFS to Improve File Carving

the mean number of MFT records by counting the total number of files and folders in
the computers (since each file and folder in a computer is represented by, at least, one
MFT record4). The result of the survey showed that the average total amount of files
and folders in these computers were 363 630. Due to the uncertainty involved in the
counting (we counted via the file explorer) the value includes an extra 25% added to
cover for hidden files, files requiring more than one MFT record and any MFT records
that are internal to the file system. The extra 25% also cover for any network storage
of user data of the office grade computers in our file counting data set. In consumer
grade computers all user files would probably have been stored locally and therefore
included in our counting.

A.2.2. Implementation

To prepare the data for the experiment we extract and merge the hash data from the
largest partitions into a single file, which is then sorted in ascending order of hash
value. We then extract the unique hashes from the file, thus any 0x00 and 0xFF filled
sectors are automatically filtered out. After the extraction of unique hashes we sort
them in order of ascending LPVA position and separated them in individual files based
on partition identity. The data for each partition are then divided into 128 equally sized
areas, each being 1

128 of the size of the partition. Then we calculate the probability
of finding unique hashes in each area through counting the number of unique hashes
divided by the size of the areas in sectors for each partition.
After the probability calculation step we calculate the mean, median and standard

deviation of the probability of unique hashes for each area of the partitions regardless
of the differing partition sizes. The mean values are used as a map of a general storage
media, showing where it is more probable to find user data (unique data) in a generic
NTFS formatted partition.

A.2.3. Evaluation

To evaluate our map we run an experiment simulating a hashbased carving scenario
comparing the performance of sampling according to our map to a uniform sampling
distribution. As ground truth we use four real partitions not included in our data set. We
use the distribution of unique data in the four partitions to pick a random integer target.
Then we use our map to pick a random integer map and the uniform distribution to
pick a random integer uni. All random integers are selected within the same total
range representing the LPVA postitions of a fictive partition, although with bias for
target andmap. Ifmap = target our map gets one hit, if uni = target the uniform
4If a file has many attributes, for example alternate streams or is heavily fragmented, the file system
creates a new MFT record to hold the extra information.

136

A.3. Result

distribution gets one hit. The predefined range is set to 16 MiB and divided into 128
equally sized areas using the mapping process. The small partition size was chosen to
increase the number of hits.
We iterate the random sampling process 109 times for each of the four partitions to

stabilize the result. The low number of partitions used to create the map does however
affect the evaluation since it is a small population to build a model from. Likewise our
set of partitions forming the ground truth is small and the result is therefore affected by
any individual variations of the partition content. Another factor affecting the result is
the fact that the four partitions used as ground truth were taken from computers that
should be scrapped and therefore had well used hard drives. They therefore contained
a lower amount of 0x00 and 0xFF at the end.
The experiment was executed using Python 2.7 and the random library in a Debian

Stretch (v. 9) computer.

A.3. Result

As can be seen in Figure A.1 showing a map of our results the probabilities of unique
hashes at different positions are varying between approximately 12% to 41%. The
low median values in the second half of the partitions are due to the presence of 0x00
and 0xFF filling in a significant number of the partitions. If more than 50% of the
partitions have no or a very low amount of unique data in that area the median value
will be (close to) zero, which it is. The plot is based on splitting each partition into 128
blocks corresponding to 1

128 of the partitions size.
When formatting a hard disk with NTFS 12.5% of the volume space is reserved for

the MFT [60] as default. In all 30 partitions in our data set the MFT area starts exactly
3 GiB into the partition. Hence the start of the area where nonresident file data are
allocated can be found at position P = 3 ∗ 230 + 0.125 · partition size in bytes, if not
the user changes the MFT reserved space at the time of formatting. If the partition is
very small the nonresident data allocation point is probably changed. Based on our
data set the nonresident data allocation start is valid for partitions ≥ 60 GiB.
At the nonresident data allocation point the bulk of the OS, first user files and dif

ferent software from the initial installation reside. The minimum space requirement for
a Windows 7, 8, 8.1 and 10 installation is 20 GiB for 64bit systems according to Mi
crosoft [61–63]. The most probable start of storage of the daytoday usage of a parti
tion containingWindows is consequently at (3+20)·230+0.125·partition size in bytes
bytes into a partition. Transferring this to a percentage of the partition length gives in
our case (see Figure A.1) a value approximately between 14 and 43%. The highest
amount of OS files is found in the beginning of the area and it decreases towards the
end. This can explain the overall sharp negative trend of the plot between 20% and

137

A. Creating a Map of User Data in NTFS to Improve File Carving

Mean

Std dev

Median

P
r
o
b
a
b
il
it
y
 [
%
]

0

10

20

30

40

Position [% of size]

0 20 40 60 80 100

Figure A.1.: A plot of the mean, median and standard deviation of the probability of
unique hashes (in percent) at different positions of the 30 partitions in our
data set. The position is given as percent of the partition size. Each of
the partitions is split into 128 equally sized areas based on the specific
partition’s total size. The behavior of the median plot in the second half
is due to the low number of unique hashes in these parts of most of the
partitions.

138

A.3. Result

40%, together with the peaks around 30%. Looking at the behaviour of the mean plot
from 40% and upwards the values are slowly decreasing and the standard deviation is
increasing. This is the effect of the differing usage patterns of the partitions. Some
have been storing more data, been more utilized, than other partitions in the data set.
We found 3 809 786 792 unique hashes in our data set, which correspond to data

created locally by the user or the OS, such as logs. There are however unique parts of
MFT records too in the data. Each file and directory is represented by at least oneMFT
record in NTFS5. The MFT records might affect the result by increasing the number of
unique nonuser data hashes. To estimate the effect from the MFT records we studied
the number of files and folders in 27 typical computers (both office and home). We
found the mean value to be 363 630 files, which corresponds to approximately 0.7%
of the unique hashes in our 30 computers.
The pagefile.sys and hiberfil.sys might also generate a large amount of

unique hashes depending on to what extent they are used. These files will certainly
affect the map and our results, but since they are of high value to a digital forensic
investigation they should be included in our data.
During the work with the mapping process we found four sectors containing the

same hash value at the same LPVA position in all partitions included in our data set.
The sectors are found in file system cluster 786 435. They all contain the second half
of MFT records which has only been used once according to their signature values [59,
p. 352]. The first part of these MFT records contain similar, but not equal information.
The istat tool [64] shows that the sectors belong to the $MFT file, i. e. the file system
itself. The $DATA attribute of the $MFT files in the five computers we have raw access
to all allocate the same eight clusters at the beginning of the run length (see Table A.2).
Combining this with the static content of the four sectors in cluster 786 435 the NTFS
formatting seems to place the start of the MFT at the same position exactly 3 GiB into
the partition. If this is true the first and last sectors of an NTFS partition should contain
the hexadecimal string 00 00 0C 00 00 00 00 00 starting at position 0x30 [65]
(little endian). We have verified this for the five computers we have raw access to.
According to Carrier the “$DATA attribute of the $MFTMirr file allocates clusters

in the middle of the file system” [59, p. 303]. This implies that the middle sector, based
on the size of the volume (the partition), is actually where the mirror should be kept.
However, this is not always true. In four of the five computers we have full access to
the $MFTMirr file allocates file system cluster 2 and in the last partition file system
cluster 8 912 895 is allocated. However, the latter partition is 59 919 808 clusters
in size, hence none of the $MFTMirr files are located near the middle of any of the

5Depending on the number of attributes connected to a file more than one MFT record might be needed
to store them. A typical example is a file with a lot of alternate data streams, or a highly fragmented
file.

139

A. Creating a Map of User Data in NTFS to Improve File Carving

Type: $DATA (12812) Name: N/A NonResident [...]
786432 786433 786434 786435 786436 786437 786438 786439
[...]
Type: $DATA (1281) Name: N/A NonResident [...]
786432 786433 786434 786435 786436 786437 786438 786439
[...]
Type: $DATA (1286) Name: N/A NonResident [...]
786432 786433 786434 786435 786436 786437 786438 786439
[...]
Type: $DATA (1281) Name: N/A NonResident [...]
786432 786433 786434 786435 786436 786437 786438 786439
[...]
Type: $DATA (1286) Name: N/A NonResident [...]
786432 786433 786434 786435 786436 786437 786438 786439
[...]

Figure A.2.: Part of the $DATA attribute of the $MFT file for five computers in our
data set. The eight numbers on every third row indicate the file system
clusters allocated to the file. File system cluster 786 435 contains the four
static sectors (at positions 6 291 481, 6 291 483, 6 291 485 and 6 291 487)
we have found in all 30 partitions.

partitions. Consequently the allocation strategy of NTFS seem to have changed since
Carrier wrote his book.

To evaluate the efficiency of our map in random sampling situations we tested it
against 4 NTFS partitions not included in the 30 used to create the map. Due to the
low number of partitions used in the evaluation, the distribution of unique data in the
individual partitions have a high impact on the result. We therefore regard the result
as a first indicator of the performance of future maps, not the final answer. We are
awaiting access to more data to be able to run a new evaluation. The result of the
evaluation can be seen in Table A.2.

The best result (when the map most resembles one of the evaluation partitions) is
almost 10% better than using a uniformly distributed sampling rate. Varying the num
ber of equally sized areas do not change the results in any significant way, neither do
varying the fictive (16 MiB) partition size.

140

A.4. Discussion

Table A.2.: The result of the evaluation of the map against four unrelated NTFS parti
tions, which are not included in the 30 partitions in the mapping data set.
The table shows the number of hits using the map relative to using a uni
formly distributed sampling rate. We used 16 MiB partitions divided into
128 equally sized areas sampled 109 times for the evaluation.

Map Uniform Map/uniform [%]

28635 30279 94.6
29881 30363 98.4
32556 30836 105.6
33257 30461 109.2

124329 121939 102.0

A.4. Discussion

Although the validity of the idea of looking for data where the probability of finding
it is higher than randomly searching for data in a uniform pattern is based on common
sense we have also performed an empirical evaluation to test our specific implemen
tation. The result shows an improvement of 2% when using our map compared to a
uniformly distributed sampling rate. This might not create a paradigm shift, but it still
is a positive indicator of the relevance of our idea. The reason for the seemingly poor
result is the low number of partitions used to create the map. To reveal the underlying
deterministic allocation pattern the amount of data needs to be much larger. Using a
more solid statistical foundation will then improve the strength of the result. Having a
big enough data set also allows us to divide it into several use cases, each one render
ing its own map. The idea is to be able to diversify between for example web surfers,
office administrators, file sharers. This however requires a much larger data collection
effort, while maintaining a high level of control of the collected material to filter out
unique data not created by the user or system, such as data written during disk wiping.
When the mapping foundation is stable there are several ways it can be used to

improve the efficiency of the current digital forensic methods and tools, especially in
file carving situations where there is no file system to be used. One example of usage is
when using hash based carving to find parts of files in a hard disk. Then three different
scenarios are possible:

Speed is prioritized. The total amount of samples is lowered compared to the uni
formly distributed sampling case without any significant loss in detection abil
ity. This scenario can for example be used in triage situations or when there is a
need to get a preliminary answer quickly.

141

A. Creating a Map of User Data in NTFS to Improve File Carving

Speed is maintained. The same amount of samples are maintained compared to the
uniformly distributed sampling case, which gives a higher detection ability at
the same execution speed. This is the standard case, which can be used without
changing the digital forensic process.

Detection rate is prioritized. A larger amount of samples are used compared to the
uniformly distributed sampling case, giving a much higher detection rate at a
lower cost in execution speed. For example used in situations where the sus
pects hard disk has an unusual usage pattern. In this way the standard amount of
hashes can be maintained in low priority areas and at the same time use a higher
sampling rate for better detection ability in high priority areas of the hard drive.

When the area reserved for the MFT is used up a new area equalling 12.5% of the
volume size is added. If possible that area is to be contiguous, but need not be. Hence
as the file system grows newMFT records are added and allocated where suitable [59].
Thus an old and well used NTFS partition might very well have MFT records spread
all over the storage space. This would possibly affect the creation of the map, adding
noise to the unique data. According to our empirical study of the number of files and
directories (usually represented by a single MFT record each) in an NTFS partition
the amount of MFT records corresponds to approximately 0.7% of the total amount of
unique hashes in each partition. The actual amount of unique hashes belonging to an
MFT record is probably less than 0.7% because the second part of anMFT record often
contain 510 zero bytes followed by a two byte long signature value6 at the end of the
sector. The worst case scenario is a partition filled with files less than approximately
700 bytes7 in size, which would result in a partition filled with MFT records storing the
data internally. If all files contained the same data only theMFTmeta data (time stamps
etcetera) would differ, thus the partition would still seem to be filled with random data.
The maximum number of files in an NTFS partition is 232−1 [60], hence the partition
would be approximately 4 TiB in size.
To estimate the amount of unique MFT record hashes in our data set in another

way we generate SHA1 hash values for all possible combinations of 510 zeros and
a two byte signature value, which correspond to the second half of a standard MFT
6Signature values [59] are used by NTFS to verify the integrity of data structures (but not sectors con
taining file content) spanning two or more sectors. The last two bytes of every sector in such a data
structure are called a fixup value and are moved to an array in the beginning of the structure during the
process of writing to disk. These last two bytes are then replaced by the signature value. When the
data structure is read the signature values are used to check that all sectors that are read have the same
signature value, and thus belong to the same data structure. Every time a data structure is updated on
disk the signature value is incremented by one [59].

7Themaximum size of an internal $DATA attribute varies depending on the size of other attributes stored
in the MFT record. Most sources give a maximum internal $DATA attribute size of 600 to 700 bytes.
Microsoft reports a 900 byte limit [60].

142

A.4. Discussion

record. The first such hash being unique in our data set represent a signature value
of 3613 (0x1D0E, little endian). Many of the lower signature values generate several
thousands of hits. There is however no guarantee that all the generated hashes belong
to MFT records, but at least four do and consequently the amount of possibly unique
MFT hash values polluting our data set is most probably less than 0.7%. Hence the
unique hashes of the MFT records do not affect the precision of the map to any larger
extent.

We have chosen to limit our experiment to computers running Microsoft Windows
7 and later and having NTFS formatted main partitions. To protect the privacy of the
computer owners we use the cryptographic SHA1 hash to obscure the real data. This
limits our ability to trace the original data of each hash, but since we are only interested
in the LPVA position of unique hashes we do not need to know what data the hashes
represent to be able to create a map.

Our work can also be used to find shared data. Of special interest is what we call
static data, shared data that are found at the same LPVA position in several unrelated
storage media. Knowledge of the LPVA position of static data will be of great use
for a wide range of digital forensics applications. Together with for example forensic
imaging and analysis prioritizing such knowledge can also provide an investigator with
the means to break the encryption of a hard drive through a plain text attack [66],
depending on the encryption algorithm used.

The LPVA position of static data can be used to handle corrupt storage media. In
many cases large parts of the corrupt media are readable, but there are no indications of
the forensic value of the lost parts. Having access to a map of static content in storage
media will help the digital forensic investigator to improve the evaluative reporting
during case work by indicating the forensic value of any lost areas. This will in the end
lead to a higher confidence in the collected evidence.

Furthermore, a map can be used to create signatures to identify the correct file system
in partially recovered partitions. Since the meta data layout and allocation process
during installation are differing between OSs such signatures are feasible.

Finally areas that should have a high probability of static content, but do not, will
work as an indicator of the presence of malware or any other suspicious activity in a file
system, since deviations are unlikely in such areas. Instead of having to hash every file
in a file system in search of deviations, the search can start at the most probable place
in the file system. The partition is then scanned in descending order of probability of
static content.

143

A. Creating a Map of User Data in NTFS to Improve File Carving

A.5. Conclusion and Future Work

Our work is based on the principle that it is better to search for something where the
probability of finding it is higher. We therefore have developed a method to create a
map of the probability of finding unique data at different LPVA positions of storage
media. The term unique data is defined as data that are created locally on a computer
and not (yet) shared. This includes both data created by the system, such as log files
and data created locally by the user (not downloaded from the internet). Such uniquely
created data are often more valuable to a forensic investigation than shared data, even
though shared data of course can be valuable too.
The map provides the digital forensic investigator with a precalculated view of a

generic storage media, which can be used to concentrate the forensic process on the
relevant parts of the disputed material, instead of spending valuable time on first scan
ning the complete storage media from end to end. The concept of unique data is only
used when creating the map, which is done once (apart from regular updates). When
the map is finished it can be used repetitively for any data, method, tool or investigation
process and without the need to recreate it for each new case.
The concept of creating a map of the probability of unique (or static) data at different

positions of storage media opens up a new world of applications. It can for example
be used in triage situations, when planning the order of analysis of large amounts of
seized storage media, estimate the value of partially analyzed data due to corruption
and for breaking encryption of storage media. We therefore plan to extend our data set
to stabilize the map creation and make the map more reliable. We will also explore
other methods to be used for creating maps, as well as the possibility to create maps
for different use cases.
The four sectors with equal hash values that we found at approximately 3 GiB into all

30 partitions in our data set show that there might be specific areas of NTFS partitions
that are static. We aim to search for and study the origin of any such areas as future
work. We also plan to extend our approach to other file systems, especially ext4 and
Apple File System (APFS), with the goal of creating a general mapping process for
any storage media, regardless of type and file system.
We are releasing our current hash data set to the public, but due to its size the optimal

transfer option will need to be agreed upon in each specific case. Please contact the
first author to arrange for a transfer.

144

A.6. Bibliography

A.6. Bibliography

[1] D. Quick and K. Choo. “Impacts of increasing volume of digital forensic data:
A survey and future research challenges.” In:Digital Investigation 11.4 (2014),
pp. 273–294. ISSN: 17422876. DOI: 10.1016/j.diin.2014.09.002.

[2] P. Gladyshev and J. James. “Decisiontheoretic file carving.” In: Digital In
vestigation 22.Supplement C (2017), pp. 46–61. ISSN: 17422876. DOI: 10.
1016/j.diin.2017.08.001.

[3] European Police Office (Europol). Internet Organised Crime Threat Assess
ment (IOCTA) 2016. Tech. rep. European Cybercrime Centre (EC3), 2016.

[4] D. Quick and K. Choo. “Data reduction and data mining framework for digi
tal forensic evidence: Storage, intelligence, review and archive.” In: Trends &
Issues in Crime and Criminal Justice 480 (Sept. 2014), pp. 1–11. ISSN: 1836
2206.

[5] F. Breitinger, G. Stivaktakis, and H. Baier. “FRASH: A framework to test algo
rithms of similarity hashing.” In: Digital Investigation 10.Supplement (2013).
The Proceedings of the ThirteenthAnnual DFRWSConference, S50–S58. ISSN:
17422876. DOI: 10.1016/j.diin.2013.06.006.

[6] V. Roussev. “Managing TerabyteScale Investigationswith SimilarityDigests.”
In: Advances in Digital Forensics VIII: 8th IFIP WG 11.9 International Con
ference on Digital Forensics, Pretoria, South Africa, January 35, 2012, Re
vised Selected Papers. Ed. by G. Peterson and S. Shenoi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 19–34. ISBN: 9783642339622. DOI:
10.1007/9783642339622_2.

[7] R. Poisel and S. Tjoa. “A Comprehensive Literature Review of File Carving.”
In: 2013 International Conference on Availability, Reliability and Security.
Sept. 2013, pp. 475–484. DOI: 10.1109/ARES.2013.62.

[8] A. Pal and N. Memon. “The evolution of file carving.” In: IEEE Signal Pro
cessing Magazine 26.2 (Mar. 2009), pp. 59–71. ISSN: 10535888. DOI: 10.
1109/MSP.2008.931081.

[9] M. Karresand. “Completing the Picture— Fragments and Back Again.” Licen
tiate thesis. Linköping Institute of Technology, Linköping University, Sweden,
May 2008.

[10] M. Karresand and N. Shahmehri. “Reassembly of fragmented JPEG images
containing restart markers.” In: Proceedings 4th Annual European Confer
ence on Computer Network Defense, EC2ND 2008. 2008, pp. 25–32. DOI:
10.1109/EC2ND.2008.10.

145

https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2013.06.006
https://doi.org/10.1007/978-3-642-33962-2_2
https://doi.org/10.1109/ARES.2013.62
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/EC2ND.2008.10

A. Creating a Map of User Data in NTFS to Improve File Carving

[11] M. Karresand and N. Shahmehri. “File Type Identification of Data Fragments
by Their Binary Structure.” In: Proceedings from the Seventh Annual IEEE
Systems, Man and Cybernetics (SMC) Information AssuranceWorkshop, 2006.
Piscataway, NJ, USA: IEEE, 2006, pp. 140–147. DOI: 10.1109/IAW.2006.
1652088.

[12] M. Karresand and N. Shahmehri. “Oscar—Using Byte Pairs to Find File Type
and Camera Make of Data Fragments.” In: Proceedings of the 2nd European
Conference on Computer Network Defence, in conjunction with the First Work
shop on Digital Forensics and Incident Analysis (EC2ND 2006). Ed. by A.
Blyth and I. Sutherland. Springer Verlag, 2007, pp. 85–94. DOI: 10.1007/
9781846287503_9.

[13] M. Karresand and N. Shahmehri. “Oscar — File Type and Camera Identifica
tion Using the Structure of Binary Data Fragments.” In: Proceedings of the 1st
Conference on Advances in Computer Security and Forensics, ACSF. Ed. by
J. Haggerty and M. Merabti. Liverpool, UK: The School of Computing and
Mathematical Sciences, John Moores University, July 2006, pp. 11–20.

[14] M. Karresand and N. Shahmehri. “Oscar — File Type Identification of Binary
Data in Disk Clusters and RAM Pages.” In: Security and Privacy in Dynamic
Environments, Proceedings of the IFIP TC11 21st International Information
Security Conference (SEC 2006), 2224May 2006, Karlstad, Sweden. Vol. 201.
Lecture Notes in Computer Science. Springer, 2006, pp. 413–424. DOI: 10.
1007/0387334068_35.

[15] S. Axelsson. “Using Normalized Compression Distance for Classifying File
Fragments.” In: 2010 International Conference on Availability, Reliability and
Security. Feb. 2010, pp. 641–646. DOI: 10.1109/ARES.2010.100.

[16] S. Axelsson. “The Normalised Compression Distance as a file fragment clas
sifier.” In: Digital Investigation 7.Supplement (2010). The Proceedings of the
Tenth Annual DFRWS Conference, S24–S31. ISSN: 17422876. DOI: 10.
1016/j.diin.2010.05.004.

[17] S. Axelsson, K. Bajwa, and M. Srikanth. “File Fragment Analysis Using Nor
malized Compression Distance.” In: Advances in Digital Forensics IX: 9th
IFIP WG 11.9 International Conference on Digital Forensics, Orlando, FL,
USA, January 2830, 2013, Revised Selected Papers. Ed. by G. Peterson and
S. Shenoi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 171–182.
ISBN: 9783642411489. DOI: 10.1007/9783642411489_12.

146

https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1109/ARES.2010.100
https://doi.org/10.1016/j.diin.2010.05.004
https://doi.org/10.1016/j.diin.2010.05.004
https://doi.org/10.1007/978-3-642-41148-9_12

A.6. Bibliography

[18] S. Garfinkel andM.McCarrin. “Hashbased carving: Searchingmedia for com
plete files and file fragments with sector hashing and hashdb.” In: Digital In
vestigation 14.Supplement 1 (2015). The Proceedings of the Fifteenth Annual
DFRWSConference, S95–S105. ISSN: 17422876. DOI: 10.1016/j.diin.
2015.05.001.

[19] F. Breitinger, C. Rathgeb, andH. Baier. “AnEfficient SimilarityDigests Database
Lookup A Logarithmic Divide & Conquer Approach.” In: Journal of Digi
tal Forensics, Security and Law 9.2 (2014), pp. 155–166. DOI: 10.15394/
jdfsl.2014.1178.

[20] F. Breitinger and K. Petrov. “Reducing the Time Required for Hashing Opera
tions.” In: Advances in Digital Forensics IX 9th IFIP WG 11.9 International
Conference on Digital Forensics, Orlando, FL, USA, January 2830, 2013,
Revised Selected Papers. Ed. by G. Peterson and S. Shenoi. Vol. 410. IFIP
Advances in Information and Communication Technology. Springer, 2013,
pp. 101–117. DOI: 10.1007/9783642411489_7.

[21] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks. “Distinct Sector Hashes
for Target File Detection.” In: Computer 45.12 (Dec. 2012), pp. 28–35. ISSN:
00189162. DOI: 10.1109/MC.2012.327.

[22] K. Foster. “Using distinct sectors in media sampling and full media analysis to
detect presence of documents from a corpus.”MA thesis. Monterey, California,
USA: Naval Postgraduate School, Sept. 2012.

[23] S. Garfinkel, A. Nelson, D. White, and V. Roussev. “Using purposebuilt func
tions and block hashes to enable small block and subfile forensics.” In: Dig
ital Investigation 7.Supplement (2010). The Proceedings of the Tenth Annual
DFRWS Conference, S13–S23. ISSN: 17422876. DOI: 10.1016/j.diin.
2010.05.003.

[24] S. Collange, Y. S. Dandass, M. Daumas, and D. Defour. “Using Graphics Pro
cessors for Parallelizing HashBased Data Carving.” In: 2009 42nd Hawaii
International Conference on System Sciences. Jan. 2009, pp. 1–10. DOI: 10.
1109/HICSS.2009.494.

[25] C. Veenman. “Statistical Disk Cluster Classification for File Carving.” In: Pro
ceedings of the Third International Symposium on Information Assurance and
Security, 2007 (IAS 2007). Ed. byN. Zhang, A.Abraham,Q. Shi, and J. Thomas.
IEEE Computer Society, 2007, pp. 393–398. DOI: 10.1109/ISIAS.2007.
4299805.

147

https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.15394/jdfsl.2014.1178
https://doi.org/10.15394/jdfsl.2014.1178
https://doi.org/10.1007/978-3-642-41148-9_7
https://doi.org/10.1109/MC.2012.327
https://doi.org/10.1016/j.diin.2010.05.003
https://doi.org/10.1016/j.diin.2010.05.003
https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1109/ISIAS.2007.4299805
https://doi.org/10.1109/ISIAS.2007.4299805

A. Creating a Map of User Data in NTFS to Improve File Carving

[26] W. Calhoun and D. Coles. “Predicting the types of file fragments.” In: Digi
tal Investigation 5.Supplement 1 (Sept. 2008), S14–S20. DOI: 10.1016/j.
diin.2008.05.005.

[27] I. Ahmed, K.s. Lhee, H. Shin, and M. Hong. “On Improving the Accuracy
and Performance of ContentBased File Type Identification.” In: Proc. ACISP
2009. Ed. by C. Boyd and G. Nieto. Vol. 5594/2009. LNCS. SpringerVerlag
Berlin Heidelberg, 2009, pp. 44–59. DOI: 10.1007/978364202620
1_4.

[28] Q. Li, A. Ong, P. Suganthan, and V. Thing. “A Novel Support Vector Machine
Approach to High Entropy Data Fragment Classification.” In: South African
Information Security MultiConference, SAISMC 2010, Port Elizabeth, South
Africa, May 1718, 2010. Proceedings. Ed. by N. Clarke, S. Furnell, and R.
Solms. University of Plymouth, 2010, pp. 236–247.

[29] S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn. “Using NLP techniques
for file fragment classification.” In: Digital Investigation 9 (2012). The Pro
ceedings of the Twelfth Annual DFRWS Conference, S44–S49. ISSN: 1742
2876. DOI: 10.1016/j.diin.2012.05.008.

[30] R. Poisel, M. Rybnicek, and S. Tjoa. “Taxonomy of Data Fragment Classifica
tion Techniques.” In: Digital Forensics and Cyber Crime: Fifth International
Conference, ICDF2C 2013, Moscow, Russia, September 2627, 2013, Revised
Selected Papers. Ed. by P. Gladyshev, A. Marrington, and I. Baggili. Springer
International Publishing, 2014, pp. 67–85. DOI: 10.1007/978 3319
142890_6.

[31] A. Tridgell. SpamsumREADME. Last accessed 27042018. 2002. URL: https:
//www.samba.org/ftp/unpacked/junkcode/spamsum/README.

[32] J. Kornblum. “Identifying almost identical files using context triggered piece
wise hashing.” In:Digital Investigation 3.Supplement (2006). The Proceedings
of the 6th Annual Digital Forensic Research Workshop (DFRWS ’06), pp. 91–
97. ISSN: 17422876. DOI: 10.1016/j.diin.2006.06.015.

[33] Y. Dandass, N. Necaise, and S. Thomas. “An Empirical Analysis of Disk Sector
Hashes for Data Carving.” In: J. Digit. Forensic Pract. 2.2 (Apr. 2008), pp. 95–
104. ISSN: 15567281. DOI: 10.1080/15567280802050436.

[34] Microsoft. Default cluster size for NTFS, FAT, and exFAT. Aug. 2015. URL:
https://support.microsoft.com/enus/help/140365/default
clustersizeforntfsfatandexfat.

148

https://doi.org/10.1016/j.diin.2008.05.005
https://doi.org/10.1016/j.diin.2008.05.005
https://doi.org/10.1007/978-3-642-02620-1_4
https://doi.org/10.1007/978-3-642-02620-1_4
https://doi.org/10.1016/j.diin.2012.05.008
https://doi.org/10.1007/978-3-319-14289-0_6
https://doi.org/10.1007/978-3-319-14289-0_6
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://doi.org/10.1016/j.diin.2006.06.015
https://doi.org/10.1080/15567280802050436
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat

A.6. Bibliography

[35] J. Jones, T. Khan, K. Laskey, A. Nelson, M. Laamanen, and D. White. “In
ferring Previously Uninstalled Applications from Residual Partial Artifacts.”
In: Annual ADFSL Conference on Digital Forensics, Security and Law. 2016,
pp. 113–130.

[36] K. Fairbanks and S. Garfinkel. “Column: Factors Affecting Data Decay.” In:
Journal of Digital Forensics, Security and Law 7 (2012). DOI: 10.15394/
jdfsl.2012.1116.

[37] K. Fairbanks. “A Technique for Measuring Data Persistence Using the Ext4
File System Journal.” In: 2015 IEEE 39th Annual Computer Software and Ap
plications Conference. Vol. 3. July 2015, pp. 18–23. DOI: 10.1109/COMPSAC.
2015.164.

[38] K. Fairbanks. “An analysis of Ext4 for digital forensics.” In: Digital Investi
gation 9.Supplement (2012). The Proceedings of the Twelfth Annual DFRWS
Conference, S118–S130. ISSN: 17422876. DOI: 10.1016/j.diin.2012.
05.010.

[39] D. Quick and K.K. R. Choo. “Big forensic data reduction: digital forensic
images and electronic evidence.” In: Cluster Computing 19.2 (June 2016),
pp. 723–740. ISSN: 15737543. DOI: 10.1007/s1058601605531.

[40] N. C. Rowe. “Identifying Forensically Uninteresting Files Using a Large Cor
pus.” In: Digital Forensics and Cyber Crime: Fifth International Conference,
ICDF2C 2013, Moscow, Russia, September 2627, 2013, Revised Selected Pa
pers. Ed. by P. Gladyshev, A. Marrington, and I. Baggili. Cham: Springer
International Publishing, 2014, pp. 86–101. ISBN: 9783319142890. DOI:
10.1007/9783319142890_7.

[41] S. Key. File Block Hash Map Analysis. Last accessed 28042018. 2012. URL:
https://www.guidancesoftware.com/app/FileBlockHash
MapAnalysis.

[42] R. van Baar, H. van Beek, and E. van Eijk. “Digital Forensics as a Service:
A game changer.” In: Digital Investigation 11 (2014). Proceedings of the First
Annual DFRWS Europe, S54–S62. ISSN: 17422876. DOI: 10.1016/j.
diin.2014.03.007.

[43] H. van Beek, E. van Eijk, R. van Baar, M. Ugen, J. Bodde, and A. Siemelink.
“Digital forensics as a service: Game on.” In: Digital Investigation 15 (2015).
Special Issue: Big Data and Intelligent Data Analysis, pp. 20–38. ISSN: 1742
2876. DOI: 10.1016/j.diin.2015.07.004.

149

https://doi.org/10.15394/jdfsl.2012.1116
https://doi.org/10.15394/jdfsl.2012.1116
https://doi.org/10.1109/COMPSAC.2015.164
https://doi.org/10.1109/COMPSAC.2015.164
https://doi.org/10.1016/j.diin.2012.05.010
https://doi.org/10.1016/j.diin.2012.05.010
https://doi.org/10.1007/s10586-016-0553-1
https://doi.org/10.1007/978-3-319-14289-0_7
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2015.07.004

A. Creating a Map of User Data in NTFS to Improve File Carving

[44] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. “The
first collision for full SHA1.” In: Advances in Cryptology — CRYPTO 2017.
Vol. 10401. Lecture Notes in Computer Science. 2017, pp. 570–596. DOI: 10.
1007/9783319636887_19.

[45] Cryptology Group at Centrum Wiskunde & Informatica (CWI) and Google
Research Security, Privacy andAntiabuse Group. Shattered—We have broken
SHA1 in practice. Last accessed 28042018. URL: https://shattered.
io/.

[46] Real Data Corpus. Real Data Corpus. Last accessed 29092018. July 2018.
URL: https : / / digitalcorpora . org / corpora / disk images /
realdatacorpus.

[47] S. Gibbs. From Windows 1 to Windows 10: 29 years of Windows evolution.
Last accessed 29092018. Oct. 2014. URL: https://www.theguardian.
com/technology/2014/oct/02/fromwindows1towindows
1029yearsofwindowsevolution.

[48] C. Buckel. Understanding Flash: The Flash Translation Layer. Last accessed
08102018. Sept. 2014. URL: https://flashdba.com/2014/09/17/
understandingflashtheflashtranslationlayer/.

[49] R. Reiter, T. Swatosh, P. Hempstead, and M. Hicken. Accessing logicalto
physical address translation data for solid state disks. Last accessed 0810
2018. Nov. 2014. URL: http://www.freepatentsonline.com/8898371.
html.

[50] J. Barbara. Solid State Drives: Part 5. Last accessed 08102018. Apr. 2014.
URL: https://www.forensicmag.com/article/2014/04/solid
statedrivespart5.

[51] T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. “A
Survey of Flash Translation Layer.” In: J. Syst. Archit. 55.56 (May 2009),
pp. 332–343. DOI: 10.1016/j.sysarc.2009.03.005.

[52] C. Buckel. Understanding Flash: Blocks, Pages and Program Erases. Last
accessed 03102018. 2014. URL: https://flashdba.com/2014/06/
20/understandingflashblockspagesandprogramerases/.

[53] Y. Gubanov and O. Afonin. SSD and eMMC Forensics 2016, part 1. Last ac
cessed 07102018. Apr. 2016. URL: https://articles.forensicfocus.
com/2016/04/20/ssdandemmcforensics2016/.

[54] Y. Gubanov and O. Afonin. SSD and eMMC Forensics 2016, part 2. Last ac
cessed 07102018.May 2016. URL: https://articles.forensicfocus.
com/2016/05/04/ssdandemmcforensics2016part2/.

150

https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://shattered.io/
https://shattered.io/
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://www.theguardian.com/technology/2014/oct/02/from-windows-1-to-windows-10-29-years-of-windows-evolution
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
http://www.freepatentsonline.com/8898371.html
http://www.freepatentsonline.com/8898371.html
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://doi.org/10.1016/j.sysarc.2009.03.005
https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://flashdba.com/2014/06/20/understanding-flash-blocks-pages-and-program-erases/
https://articles.forensicfocus.com/2016/04/20/ssd-and-emmc-forensics-2016/
https://articles.forensicfocus.com/2016/04/20/ssd-and-emmc-forensics-2016/
https://articles.forensicfocus.com/2016/05/04/ssd-and-emmc-forensics-2016-part-2/
https://articles.forensicfocus.com/2016/05/04/ssd-and-emmc-forensics-2016-part-2/

A.6. Bibliography

[55] Y. Gubanov and O. Afonin. SSD and eMMC Forensics 2016, part 3. Last ac
cessed 07102018. June 2016. URL: https://articles.forensicfocus.
com/2016/06/07/ssdandemmcforensics2016part3/.

[56] Y. Gubanov and O. Afonin. Recovering Evidence from SSD Drives in 2014:
Understanding TRIM, Garbage Collection and Exclusions. Last accessed 07
102018. 2014. URL: https://articles.forensicfocus.com/2014/
09 / 23 / recovering evidence from ssd drives in 2014
understandingtrimgarbagecollectionandexclusions/.

[57] Y. Gubanov and O. Afonin. Why SSD Drives Destroy Court Evidence, and
What Can Be Done About It. Last accessed 08102018. 2012. URL: https:
//belkasoft.com/download/info/SSD%20Forensics%202012.
pdf.

[58] Net Applications.com. Desktop Operating System Market Share. Sept. 2017.
URL: https://www.netmarketshare.com/operating system
marketshare.aspx?qprid=10&qpcustomd=0.

[59] B. Carrier. File System Forensic Analysis. AddisonWesley Professional, 2005.
ISBN: 0321268172.

[60] Microsoft. How NTFS Works. Last accessed 30092018. 2018. URL: https:
//technet.microsoft.com/ptpt/library/cc781134(v=ws.10)
.aspx.

[61] Microsoft. Windows 7 system requirements. Last accessed 30042018. Apr.
2017. URL: https://support.microsoft.com/enus/help/10737/
windows7systemrequirements.

[62] Microsoft. System requirements. Last accessed 30042018. Apr. 2017. URL:
https://support.microsoft.com/engb/help/12660/windows
8systemrequirements.

[63] Microsoft. Windows 10 system requirements. Last accessed 30042018. Nov.
2017. URL: https : / / support . microsoft . com / en us / help /
4028142/windowswindows10systemrequirements.

[64] B. Carrier. TSK Tool Overview. 2014. URL: http://wiki.sleuthkit.
org/index.php?title=TSK_Tool_Overview.

[65] NTFS.com.NTFSPartition Boot Sector. Last accessed 08102018. 2018. URL:
http://www.ntfs.com/ntfspartitionbootsector.htm.

[66] B. Schneier. Applied Cryptography— Protocols, Algorithms, and Source Code
in C. 2nd ed. John Wiley & Sons, Inc., 1996.

151

https://articles.forensicfocus.com/2016/06/07/ssd-and-emmc-forensics-2016-part-3/
https://articles.forensicfocus.com/2016/06/07/ssd-and-emmc-forensics-2016-part-3/
https://articles.forensicfocus.com/2014/09/23/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions/
https://articles.forensicfocus.com/2014/09/23/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions/
https://articles.forensicfocus.com/2014/09/23/recovering-evidence-from-ssd-drives-in-2014-understanding-trim-garbage-collection-and-exclusions/
https://belkasoft.com/download/info/SSD%20Forensics%202012.pdf
https://belkasoft.com/download/info/SSD%20Forensics%202012.pdf
https://belkasoft.com/download/info/SSD%20Forensics%202012.pdf
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://www.ntfs.com/ntfs-partition-boot-sector.htm

B. Using NTFS Cluster Allocation Behavior to
Find the Location of User Data

The layout of the article has been lightly edited to fit the overall layout of the thesis. This text and a
full citation of the article has been added below the title. Since the work is focused on disk partitions
(Windows volumes) the term Logical Block Addressing (LBA) in the article has been corrected to LPVA
where applicable. Therefore the Xaxis of Figure B.5 has been changed to “Cluster #” and LBA removed
from the caption. The content is otherwise unchanged and corresponds to the original, published, version.

M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Using NTFS Cluster
Allocation Behavior to Find the Location of User Data.” In: Digital In
vestigation 29 (2019), S51–S60. ISSN: 17422876. DOI: 10.1016/j.
diin.2019.04.018

Abstract

Digital forensics is heavily affected by the large and increasing amount of data to be
processed. To solve the problem there is ongoing research to findmore efficient carving
algorithms, use parallel processing in the cloud, and reduce the amount of data by
filtering uninteresting files.
Our approach builds on the principle of searching where it is more probable to find

what you are looking for. We therefore have empirically studied the behavior of the
cluster allocation algorithm(s) in theNewTechnology File System (NTFS) to seewhere
new data is actually placed on disk. The experiment consisted of randomly writing,
increasing, reducing and deleting files in 32 newly installed Windows 7, 8, 8.1 and 10
virtual computers using VirtualBox. The result show that data are (as expected) more
frequently allocated closer to the middle of the disk. Hence that area should be getting
higher attention during a digital forensic investigation of a NTFS formatted hard disk.
Knowledge of the probable position of user data can be used by a forensic investi

gator to prioritize relevant areas in storage media, without the need for a working file
system. It can also be used to increase the efficiency of hashbased carving by dynam
ically changing the sampling frequency. Our findings also contributes to the digital
forensics processes in general, which can now be focused on the interesting regions on
storage devices, increasing the probability of getting relevant results faster.

153

https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

B.1. Introduction

The amount of data to be handled during digital forensic case work is rapidly increasing
and is a major challenge. The problem has been of concern to the digital forensic field
for many years [1–5], but the problem has not yet been solved. We therefore propose
to use the principle of searching where it is more probable to find what you are looking
for, instead of regarding every new storage media as a black box filled with randomly
distributed data.
The principle is especially valid for the digital forensic subfields of file carving

and hashbased carving, which are performed when there is no file system available.
Instead the processes are based on using only the properties of the stored data itself [6,
7]. That principle connects this article to our previous work on determining the data
type (file type) of fragmented data by using histograms of the frequency of bytes, byte
pairs and the difference between consecutive byte values [8–13]. However, this time
we determine the most probable position of user data, not the exact type of it.
When performing hashbased carving, hashes of blocks of a suspects hard drive are

compared to hashes of blocks of known suspicious material. Since it is unfeasible to
compare all hashes of a hard drive with all suspicious material hashes different strate
gies, techniques and algorithms have been developed [14–18].
Different forms of file carving is highly valuable to the digital forensic investigator,

but is CPU and I/O intense, hence much effort is put into mitigating the increasing
amounts of data by different means. In a survey by Quick and Choo [19] the following
concepts are listed; data mining, data reduction and subsets, triage, intelligence anal
ysis and digital intelligence, distributed and parallel processing, visualization, digital
forensics as a service (DFaaS) and different artificial intelligence techniques.
The main focus of a digital forensic investigation are user activity and commonly the

who, what, when, where, why and how (5WH) questions are meant to be answered.
The activity comprises anything that has bearing on the user and his or her usage of the
computer, i. e. system logs and files created by the user. Often such data are unique,
because the probability of two users or processes independently creating exactly the
same data is very low. Also shared data (not unique to a specific user) are of course of
interest to the digital forensic investigator. The Windows operating system (OS) clus
ter allocation algorithms together with New Technology File System (NTFS) cannot
differentiate between unique data and shared data, hence the data types will be stored
together.
We define user data as any data that is created from the user’s (daily) activity, regard

less of its uniqueness. Data that is created during the installation and usage preparation
(configuration) phases, before the user starts using the computer, we call static data.
By differentiating between user data and static data and combine that with the cluster

allocation pattern in a collection of NTFS partitions we create what can be called a

154

B.1. Introduction

precomputed map of user data, showing the probability of finding user data at different
Logical Partition Volume Address (LPVA) position in generic NTFS formatted storage
media. The map can then be used in the same way as a geographical map is used for
planning, executing and following up activities in the physical world. The precomputed
map is therefore meant to be reusable between investigations.
The mapping process is the same regardless of the type of storage media (solidstate

drive (SSD) or mechanical drive), because we collect the data at the logical (LPVA)
level of the hard drive controller. In an SSDs the flash based physical storage is hidden
by the Flash Translation Layer (FTL) [20–24], which also hides any wear leveling or
other low level functions of the controller. If an SSD is accessed using Factory Access
Mode (FAM) [20] during an investigation the FTL is bypassed. However, the map can
still be used, but in conjunction with a translation table to restore the logical layout of
the disk. The translation table is stored on disk and accessible through the FAM.
To be able to empirically study the behavior of the cluster allocation algorithm used

byWindows in NTFS we use virtual machines freshly installed with four different ver
sions of Microsoft Windows (7, 8, 8.1 and 10). Each machine is powered on, a file
operation (write, expand, shrink and delete files with a weighted random distribution)
is performed on its internal (virtual) hard drive, which is then powered down and finally
a copy of the $Bitmap file from the Master File Table (MFT) is extracted externally
(via the host). This process is iterated 100001 times using 32 virtual machines in 8
nodes in a computer cluster. The $Bitmap file copies were then used to find the differ
ence in cluster allocation status between each iteration by making a bitwise comparison
between the files. Finally the usage frequency of each NTFS file system cluster is cal
culated and used to create a generic map of the allocation activity at different LPVA
positions in the partitions.
The work presented in this article complements a previous article [25] where we

studied the possibility to use realworld drives to create a map of the location of user
data. The map was created using unique Secure Hash Algorithm 1 (SHA1) hashes of
512 B sectors. The unique hashes were assumed to represent data created by the user
because of the low probability of several users creating data having exactly the same
hash values, unless they shared the data.
The rest of this paper is organized as follows: The remaining parts of Section In

troduction presents related work and our contributions. In Section Experiment we
describe the experimental platform and how the experiment was implemented. Sec
tion Result presents the results of the experiment and in Section Discussion we discuss
the effects and implications of our result to the research field of hashbased carving
and also to other areas within and related to digital forensics. Section Conclusion and

1We had to break the experiment prematurely after 16 days for a number of machines due to time con
straints. These machines had then performed at least 9035 iterations.

155

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

future work concludes the work and presents ideas of future work to be done.

B.1.1. Background

Silberschatz et al. [26] describe in detail how file systems are constructed. A file system
is used to keep track of data stored on secondary storage. It can be organized in different
ways, but all share some common properties; the addressing of the physical storage is
abstracted by the file system into logical addresses and the position of the stored data is
determined by an allocation algorithm. All modern file systems use index allocation,
where the addresses of the file data blocks are held in an index separated from a file’s
data. This allocation strategy does not suffer from external fragmentation, but can
waste disk space, especially for small files requiring a full index meta data block to
hold just a few index posts.
There are also a number of algorithms used for handling the free space that is to be

populated by new files. Silberschatz et al. [26] list three of them, they are:

First fit where the first available free space large enough to hold the new file is used.
The search for free space can either be from the current position or the start of
the partition.

Best fit where the free space best fitting the new file is used, i. e. giving the smallest
remaining free space. This requires all the free spaces available to be compared
before the best can be chosen.

Worst fit where the free space having the worst fit to the new file is chosen. This is
the opposite to best fit. The idea is to give the largest possible remaining free
spaces, which then can be used to hold future files.

The first fit, best fit and worst fit free space allocation algorithms are not specific to
storage of data on disk, they are also used in for example memory allocation in Random
Access Memory (RAM) [26].
Based on the information given byMicrosoft [27] andHughes [28]Windows in com

bination with NTFS is using a index allocation strategy. The problem of space being
wasted when using index allocation is in NTFS solved by storing the data of smaller
files (up to approximately 700 B2) in the meta data records themselves. Microsoft [27]
states that the meta data in NTFS is held in the MFT, which in turn hold the MFT
records associated with the files in the file system. According to Carrier [29] the best
fit algorithm is used by Windows XP on NTFS formatted hard disks. Since the book
2Themaximum size of an internal $DATA attribute varies depending on the size of other attributes stored
in the MFT record. Most sources give a maximum internal $DATA attribute size of 600 to 700 bytes.
Microsoft reports a 900 byte limit [27].

156

B.1. Introduction

was written in 2005 it does not cover the allocation algorithms used by Windows 7
and newer. There are indications of the actual behavior of the allocation algorithm in
a Superuser Q&A, where groups of free clusters are said to be allocated in descending
order of size and ascending order of Logical Block Addressing (LBA) [30].
When formatting an NTFS partition 12.5% of the space is reserved for the MFT as

default [27]. The MFT records are 1 KiB in size and usually the size of the smallest
allocatable unit (called cluster) in NTFS is 4 KiB. The allocation status of every cluster
in the file system is stored in the $Bitmap file, which is record number 6 in the MFT.
Each bit in the $Bitmap file represents one cluster in ascending LPVA order. If a cluster
is allocated the corresponding bit in the $Bitmap file is set to 1, hence 0 represents an
unallocated cluster.

B.1.2. Related work

Wehave not found any relatedwork directly dealingwith the idea of precomputedmaps
of user data location. Instead we list related work from a number of digital forensic
subfields that have bearing on our work.

Hashbased carving

The digital forensics research field of hashbased carving compares hashes of known
file blocks to hashes of equally sized blocks from a suspects hard drive. In that way
even files that are partially overwritten or damaged can be identified. The roots of
the research field can be traced back to the spamsum tool by Tridgell [31]. Accord
ing to Garfinkel one of the first times hashes are used for file carving is during the
Digital Forensic Research Workshop (DFRWS) 2006 Carving Challenge [14]. Later
the spamsum tool is used as a basis for an article by Kornblum [32] on piecewise hash
ing and what is now known as approximate matching. The concept of using hashes
for file carving is further studied by Dandass et al. [33] in 2008 in an article presenting
an empirical analysis of disk sector hashes. The term hashbased carving is first intro
duced by Collange et al. [18] exploring the possibility of using a Graphics Processing
Unit (GPU) for comparing hashes of 512 byte sections of known files with hashes of
equally sized sectors from disk images.
When Garfinkel andMcCarrin use hashes for file carving in the DFRWS 2006 Carv

ing Challenge [14] they use hashes of parts of files found on the internet to find traces
of the same files in the challenge image. These experiences lead to the development of
the frag_find tool [17]. In connection with the frag_find article the authors dis
cuss the optimal size of the data blocks to hash. They conclude that the size should be
equal to the sector size, without stating if they mean 512 B or 4 KiB sectors. Garfinkel

157

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

and McCarrin [14] elaborate further on the size of hashed blocks and state that starting
with Windows NT 4.0 the default minimum allocation unit in NTFS is 4 KiB [34].
Foster [16] discusses the problem of data shared across files, stating that “the block

of NULs is the most common block in our corpus” [16, p. 15], relating them to the
NULL padding of files. The problem of the large amount of data to handle is also
discussed. Young et al. [15] continues the work further developing Foster’s ideas. The
authors discuss the optimal block size, how to handle a large amount of data, efficient
hash algorithms, good data sets to use and common blocks of files.
Random sampling is used to improve the speed of hashbased carving in several

articles [14, 16, 17]. To find a suitable sampling frequency the problem is regarded as
sampling without replacement. Using a higher sampling frequency may increase the
detection rate, but has a negative impact on the execution speed. The problem is to
find a suitable balance between the two alternatives.

Data persistence

The concept of data persistence is relevant to our work because the persistence at dif
ferent areas of storage media indicates that they are not reused. This information is
valuable when creating a precomputed map of a generic storage media.
Jones et al. [35] have created a framework to enable studies of (deleted) file persis

tence in storage media. They use differential forensic analysis to compare snapshots
of file systems in use and follow the decay of deleted files over time.
Fairbanks and Garfinkel [36] present 12 factors affecting data persistence in storage

media. Fairbanks [37] and Fairbanks [38] also describes the lowlevel functions of
ext4 and their effect on digital forensics.

Data reduction

Quick and Choo [3, 39] propose methods to reduce the amount of data needed to be
analyzed in digital forensic investigations. Their approach builds on extracting specific
files using a list of key files and then working on the subset of files. This requires a
working file system, limiting the methods applicability. Also the list of key files needs
to be constantly updated.
Rowe [40] has a similar approach as Quick and Choo, although more technical. He

compares ninemethods for identifying uninteresting files, defined as “those files whose
contents do not provide forensically useful information about users of a drive.” [40,
p. 86]. The methods studied by Rowe all require a working file system, which is not
consistent with the foundation of file carving.

158

B.2. Experiment

Data mapping

Key [41] presents an EnScript module to the EnCase software which creates a map of
the recoverable sectors of a file found in a file system. Themodule can handle situations
where other tools does not work, for example when recovering partially damaged files.
It is very processor intensive and therefore can only create maps of a few files at a time.
Gladyshev and James [1] study the problem of file carving from a decisiontheoretic

point of view. They suggest a model where storage media is sampled with a frequency
based on different properties of the hard disk and the file type that is to be found.
In some specific situations their carving model outperforms standard linear carving
algorithms, but their solution is not yet generally applicable. Gladyshev and James
[1] mention using the distribution of data on disk, but do not seem to relate that to the
probability of finding user data at different LPVA positions in storage media.
In two articles by Baar et al. [42] and Beek et al. [43] outlining the DFaaS system

Hansken [43] and its predecessor Xiraf [42] the concept of nonlinear extraction of data
from images is discussed. Both van Baar and van Beek suggest that the MFT records
(the file system meta data) of an NTFS partition are extracted first. The MFT records
are then used to find other interesting areas of the file system. van Baar and van Beek
also suggest that the analysis process is used to influence the imaging process by having
specified parts being prioritized.

B.2. Experiment

Our experiment is based on iterating over the same process a predefined number of
times. The process contains the following steps:

1. Boot a virtual machine.

2. Randomly (with bias) either create, delete, expand or shrink a file within the
virtual machine’s NTFS file system.

3. Shut down the machine.

4. Extract the $Bitmap file from the virtual hard disk (using dd from the host)

The experiment uses freshly installed virtual machines (VirtualBox) running Win
dows versions 7, 8, 8.1 and 10. The experiment empirically studies theWindows cluster
allocation algorithm and its allocation frequency at different LPVA positions.
Each virtual machine is installed with its specific Windows version using standard

parameters. Then Python 2.7 is added together with the file operation scripts and an
auto started .bat script, which is small enough to fit into an MFT record and hence
does not require any new cluster allocation outside the MFT. The path environmental

159

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

parameter is then modified to reflect the Python installation. Finally the security level
is lowered to allow login without password. The goal is to keep the NTFS file system
as pristine as possible to allow us to study the allocation algorithm from the start of
the life of the file system. There are however a number of system processes, which is
beyond our control, that also modifies the file system in each iteration.
Even though we do not have full control of the cluster allocation and deallocation

during an iteration in the experiment we let 16 virtual machines use exactly the same
file operation pattern to test if there is any deterministic behavior connected to the
allocation, i. e. any similarity of the allocation patterns can be found. Hypothetically
it should be, since the virtual machines within each Windows version are exact copies
of each other. We do not use the clone function of VirtualBox when distributing the
virtual machines to the computer cluster nodes, we use scp to copy them to keep them
identical. We also verify the copies using SHA1 hash summing, to verify that they are
identical.
Unfortunately one virtual machine had to be rebooted when the experiment was

started and therefore was disqualified from the similarity test. Due to unforeseen be
havior of the virtual machines (machine hung during boot, system messages locking
the shut down process etcetera) a total of 5 virtual machines were disqualified from the
similarity test at the end of the experiment, giving 11 that were possible to compare.
To be able to generalize the results we also performed a small experiment where we

used virtual machines with larger hard drives (256GiB).Windows 8was excluded from
that experiment due to its slow power cycle. Each machine was setup in the same way
as the small hard disk machines and the same file operation pattern as in the similarity
test with 16 machines was used.

B.2.1. Platform

The experiment is run on eight nodes in a large computer cluster. Each node is run
ning Gentoo Linux 10.1 with kernel 4.18.13 and VirtualBox 5.2.20. The nodes are
equipped with Intel Xeon E31230 v2 3.3 GHz CPUs, 500 GB Samsung 860 EVO
SSDs and 32 GiB of RAM. The cluster is managed by another organization and we are
not allowed to make any changes to the host and its OS. We therefore cannot install
any specialized software, such as the Sleuth Kit by Carrier [44] on the nodes.
We run four virtual machines in each node, one for each version of Windows in our

test (see Table D.1). The virtual machines are copied between the nodes and hence
identical. The $Bitmap file from the MFT is used to check which clusters are affected
by each file operation. Since we shut down the virtual machine as the second last
step in every iteration any allocation changes are flushed (written) to the $Bitmap file.
Thus the only difference between two consecutive $Bitmap file copies are the allo
cation changes induced by the latest file operation and any active system processes.

160

B.2. Experiment

The changes can contain both deallocation and allocation at the same time when a
file is expanded and therefore moved to a new location. Likewise any changes to the
$MFT files, for example expansion of theMFT itself, will bemanifested in the $Bitmap
copies.
To enable us to extract the $Bitmap file after each process iteration the virtual ma

chines are configured to use fixed size virtual disks. This type of disks are given their
full size directly when created, which makes them behave as real hard disks, i. e. they
are not affected by the virtualization layer of VirtualBox [45]. The virtual disk files
therefore can be handled by standard Linux file carving tools, such as dd3.
We have limited the size of the fixed virtual disks to 64 GiB to be able to have four

virtual machines in each node and still have space for the $Bitmap file copies, since
each $Bitmap copy is 2 MiB large. The size is small compared to the current standard
hard disks, but still large enough to be found in cheaper or older computers equipped
with SSD hard disks.

Table B.1.: The four versions of Windows used in our experiment.
Name Version

Windows 7 Professional SP 1 7601
Windows 8 Enterprise 9200
Windows 8.1 Enterprise 9600
Windows 10 Consumer 1803

Each virtual machine has Python 2.7 installed together with four Python scripts, one
for each file operation. There is also an auto started .bat script used to send a signal
when the virtual machine is completely started. The Python scripts are placed in a
directory shared with the host and does not affect the allocation pattern of the virtual
disk. For the communication between the host script and the virtual machine scripts we
use the VBoxManage interface. Each virtual machine has its own virtual disk shared
with the host and hence its own copies of the scripts. This configuration is used to
isolate the machines from each other to minimize the risk of unspecified behavior due
to several machines reading the same file. The file operations are executed as the local
user of the virtual machine to simulate the activity of a real user.

3There is a VirtualBox specific header at the beginning of the .vdi file containing the virtual hard disk.
This header has to be skipped to reach the actual hard disk part. The header size is measured in one
MiB blocks, usually it is two blocks large [45].

161

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

B.2.2. Implementation

The virtual machines are each controlled by a Python script on the host node. The
script is governed by a file containing randomly selected operations (see Table B.2).
The selection of file operations is biased (weighted) and the size of the files varied

Table B.2.: The four file operations and their numerical representation used in the
Python scripts.

Number File operation

0 create
1 delete
2 increase
3 decrease

within a size range. This is done by using a Python list (vector) containing different
amounts of the numbers 0 to 3 based on the chosen bias. Each number in Table B.2
represents a file operation and the amount of a specific number relative to the total
amount of operations gives its bias. The bias value of an operation is calculated as
biasop =

factorop∑
factors . The selection of a file operation is done by randomly choosing a

value from the file operation vector. The vector [0, 0, 0, 0, 1, 1, 2, 3] will for example
give 50% create operations, 25% delete operations and 12.5% increase and decrease
operations respectively. The bias of each file operation in the experiment can be seen
in Table B.3.
There are also limits on the usage of the storage area to simulate a user that fills a

hard disk with files over time and then erases a certain amount when the hard disk is
believed to be full. The limits are based on our estimation of the behavior of a typical
user. The write start/stop and delete start/stop limits in Table B.3 is used to protect
the virtual disk from being emptied or completely filled. If the current amount of data
(controlled by the main script) in the virtual machine falls outside of the start limit
multiplied with the total size (see Table B.3) it triggers write or delete operations until
the stop limit multiplied with the total size is reached. The degree of utilization of the
partition for the simulated user behavior of the 16 machine similarity test can be seen
in Figure B.1.
We have included the possibility to simulate the behavior of a user with regard to

the size of the files operated on. Our assumption is that a user who use the computer
for web surfing will create mostly small files (cached data and logs), a file sharing user
will create a high amount of large files and a user storing a large amount of images

162

B.2. Experiment

Table B.3.: The settings used to generate the lists governing the behavior of the file
operations on the virtual machines and other relevant settings used in the
experiment. The settings are given as sectors of 512 B where applicable.
The bias of the write/delete/increase/decrease operations are calculated as
biasop =

factorop∑
factors

Setting Ident. behavior Uniq. behavior

Size factors 8/2048 8/8/128/2048
Writes 10 10
Deletes 9 9
Increases 11 14
Decreases 10 7
Random range 1024 1024
Write start/stop 0.05/0.3 0.05/0.3
Delete start/stop 0.95/0.7 0.95/0.7
Total size 112000000 112000000

will probably create mostly small to medium sized files. We therefore use size factors
which define a file size class, which is measured in 512 B sectors. This function is
implemented using a Python list in the same way as the file operation bias. The list is
shown as the size factors in Table B.3. The chosen factor is multiplied with a random
number from the random range giving the number of sector to be affected (written,
increased or decreased).
The script on the host checks if a virtual machine is started before it sends the file

operation commands. There is also a check of the exit status of the virtual machine
scripts that only logs successful executions. If the exit status indicates an error the
iteration counter is decremented and the file operation is repeated. This behavior might
induce extra allocations changes due to the extra power cycling of the virtual machine,
but we accept them because occasionally a real user might also be forced to reboot a
computer.
Every file operation is logged in a file external to the virtual disk. The log contains

the sequence number, the action performed, the name of the affected file, the size fac
tors, the current random size number and the current file size. The log file is stored in
a VirtualBox share and hence does not interfere with allocation algorithm of the stud
ied file system. We have chosen not to specifically store the file size difference for
the increase and decrease operations, because they can be calculated from the stored

163

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

A
m

o
u

n
t

o
f

d
a
ta

 [
%

]

0

20

40

60

80

100

Iteration
0 2000 4000 6000 8000 104

Figure B.1.: The simulated user behavior, i. e. the total amount of data stored in the
NTFS partition after each iteration, of the 16 virtual machines that were
used for the similarity test. The plot shows 10000 iterations. TheWindows
8 machines were run at least 9035 iterations before being shut down, the
rest of the virtual machines executed all 10000 iterations.

164

B.2. Experiment

transactions if needed.
The three Python scripts that execute write operations on the virtual machines are

set to write the iteration sequence number into every 512 byte sector of the file. This
enables us to see the rawwrite pattern in the virtual disk file if needed. The three scripts
are also given the iteration sequence number as the file name for each file to further
increase the traceability. The create and decrease file scripts both write new files (use
the wb flag in the Python open command). This behavior might in the case of a file
size decrease lead to the deallocation of the original clusters and the allocation of a
smaller amount of new clusters, or even deallocation and allocation of the same clusters
depending on the type of allocation algorithm used. The increase script appends new
data at the end to an existing file, using the ab flag. Therefore the data written to disk
of increased files can contain two or more sequence numbers.
Since the write operations are looped the size factor number of times the OS does not

know the final size of the file and therefore can only optimize the allocation strategy for
each write. This might induce a more stochastic behavior of the allocation algorithm
and possibly hide any deterministic behavioral pattern from us, but that would lead to
an underestimation of the experimental results, which is better than an overestimation.
To be able to detect the changes to the allocation status of the NTFS clusters of the

virtual hard drive we have chosen to use the NTFS $Bitmap file. The file is extracted
after each file operation as the last step in each iteration. Since the $Bitmap give the
allocation status of 4 KiB NTFS clusters as the smallest unit we do not see any changes
made at the logical 512 B sector level. Instead of using the $Bitmap file we can extract
and compare the full virtual hard disk for each file operation to be able to detect any
differences at the 512 B level. That would however require us to extract, compare and
store 215 times more data (64 GiB instead of 2 MiB) for each iteration. We therefore
use 4 KiB blocks as the smallest units for the file operations.
The $Bitmap file copies from each iteration are extracted using the Linux dd tool.

Using of the dd tool requires the position of the $Bitmap file to be known and static.
The size of the $Bitmap file should not change since we keep the disk and partition
sizes constant and hence it should not have to be extended or moved by NTFS and
its position is consequently static. To find the position of the $Bitmap file before the
experiment is started we use the istat tool from The Sleuth Kit by Carrier [44] on
the virtual disk images, before they are copied to the hosts. The istat tool is run on
an external computer (not a cluster node) because we are not allowed to install new
software in the cluster nodes and hence cannot for example use the icat tool from
the Sleuth Kit [44] or the idifference tool [46] during the experiment. Using the
idifference tool would also force us to perform postprocessing since the tool only
reports differences at the file level, i. e. we would have to use the istat [44] to find
what clusters each file allocates and then do a difference calculation. Consequently the
idifference tool is of no use to us.

165

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

The virtual hard disks in our experiment are not encrypted because neither block
device encryption (for example BitLocker) nor stacked file system encryption (for ex
ample EFS! (EFS!)) affect the allocation strategy of the OS or file system, since they
act either above or below the file system [47, 48]. Adding encryption to the virtual hard
disks would therefore put an execution overhead on the experiment without affecting
the data allocation.
To be able to estimate the position of the bulk of the OS files in the partitions we

extract all existing files containing the string “Windows” somewhere in their paths. We
then filter out the files containing “ Users/” to avoid contaminating the result with user
data. The extraction is done after the experiment is finished to also include any system
files written during the file operations. To further strengthen the result we also includ
three reallife disks in the OS file extraction. These three disks are taken from home
user computers and all have been used for at least a year.

B.2.3. Map creation

When the chosen number of iterations is reached we do a differential analysis of each
consecutive pair of $Bitmap copies extracted as the last step in each iteration. This
gives us the LPVA position for each change in allocation status for each file operation.
Since we cannot control the behavior of the OS any allocation changes induced by
the OS are also included. The probability of a new file being larger than the system
changes induced by its creation is high, because otherwise the file system would be
very inefficient. Hence the allocation changes introduced by the OS at each iteration
are negligible compared to the changes occurring because of the file operation.
We then plot the $Bitmap changes from the previous step. All deallocation posts

are removed, because we only want to know the allocation frequency of each LPVA
position and each allocation must be preceded by a deallocation. The remaining posts
are then merge sorted in order of LPVA position.
To reduce any noise in the plot we group equally sized areas of the storage media

together based on the position in the partition. The number of groups is chosen based
on the desired precision of the map. Finally the mean of the allocation frequencies of
the posts in each group are calculated. These groups then make up the map, which
resolution depends on the number of groups.

B.3. Result

The $Bitmap files extracted during the experiment contain not only traces of the file
operations executed by our scripts, but also any operations executed by the OS during
each iteration. Especially the start and stop phases of an iteration will induce changes

166

B.3. Result

to the MFT of the file system. Hence the data will include clusters allocated by the OS
too, but that is a minor problem because the OS activities often affects already allocated
clusters. An MFT record is 1 KiB in size and the smallest allocatable unit in a 64 GiB
NTFS partition is 4 KiB, hence every fourth file creation will give rise to a new cluster
being allocated due to new MFT records being created. Of course there are also for
example log files written by the OS, but when such a file grows and requires a new
cluster to be allocated the cluster position will most probably be found in the user data
allocation area. Consequently it will strengthen the result of the experiment.
In Figure B.2 a plot of the allocation frequency at different LPVA positions is shown.

The plot is divided into 64 equally sized groups based on LPVA position. We have
separated the plots for each of the OSs in the experiment to enable a comparison of their
behavior. As can be seen the behavior of the OSs differ in the first part of the partitions,
as well as in the very last part. When formatting a hard disk as NTFS a contiguous area
of 12.5% of the partition space is reserved for the MFT [27] as default. We have not
found any specification of the exact LPVA position of this area, but we have noticed
that the MFT allocation starts at cluster 786432 in every nonrelated NTFS formatted
partition we have checked in more than 35 computers running Windows 7 and above.
Cluster 786432 corresponds to a position exactly 3 GiB into the partition, hence close
to the beginning of the partition. The size of the reserved area can be changed by the
user when formatting the partition or by the OS if the MFT requires more space. As
can be seen in Figure B.2 Windows 7, 8.1 and 10 have a somewhat lower amount of
allocation changes at the start of the partition than Windows 8. We can also see that
the behavior of the older Windows 7 differ from the other three Windows versions in
the very first part of the partitions.
After the area reserved for the MFT the OS, different software from the initial in

stallation and the user data reside. The minimum requirement for free hard disk space
for a Windows 7, 8, 8.1 and 10 installation is 20 GiB for 64bit systems according to
Microsoft [49–51]. Hence the 12.5% together with the OS files correspond to approx
imately 45% of the space in our 64 GiB disks. The distribution and positions of the
system files (OS and installed software) is uncertain, we have not been able to check
the position of every system file in the partitions due to the large amount of work in
volved. What we know empirically is that theMFT starts its allocation at exactly 3 GiB
into the partitions, which correspond to group 3 on the xaxis in Figure B.2.
Close to the middle of the partitions (see Figure B.2) there are large disturbances in

the plots for all versions but Windows 10. According to [29] the 4 KiB $MFTMirr file,
containing a backup of the first four files in the MFT, is located at the middle of an
NTFS partition. This might be true in Windows XP4, but not for the newer versions
of Windows in our experiment. In these machines we have found the $MFTMirr file

4We have checked a number of partitions downloaded from the [52]) indicating this.

167

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

Win 7
Win 8
Win 8.1
Win 10

M
e
a
n

 f
re

q
u

e
n

cy

0

100

200

300

400

Group
0 10 20 30 40 50 60 70

Figure B.2.: A map of the mean allocation frequency for all 32 virtual machines having
NTFS formatted partitions in 64 GiB disks runningWindows 7, 8, 8.1 and
10. The resolution is set to 64 groups.

168

B.3. Result

to be located at different LPVA positions, none of them at the middle of the partition.
Still Microsoft might have reserved the middle of the partition for other special files or
functions and therefore the dip in allocation frequency at that position in Figure B.2.
The allocation frequency of the 16 virtual machines that were using the same file

operation pattern can be seen in Figure B.3. Since two Windows 8.1 machines and
tree Windows 10 machines broke down during the test we have normalized the result
by multiplying the numbers for Windows 8.1 with 2 and with 4 for Windows 10. As
can be seen the allocation behavior of the different versions of Windows are not simi
lar, although they all performed exactly the same file operations. The deviation might
originate from effects in the broken down machines. Still the differences are larger
than what can be expected from losing the allocation of a few files. The allocation
behaviour is not much different from the result of the full test using all 32 virtual ma
chines. One apparent difference is the dip at the middle of the partition, which is deeper
for Windows 10 in the subexperiment than for the full experiment shown in in Fig
ure B.2. Another difference is the relative higher allocation frequency of Windows 8
in groups 15 to 35 compared to the other Windows versions in the subexperiment (see
Figure B.3) than in the full experiment. Hence we can conclude that although similar,
the behavior of the allocation algorithm in different versions ofWindows are deviating.
The result of the experiment with larger hard disks running the same file operations

as 16 of the small hard disk machines is shown in Figure B.4. The experiment only
included three different versions of Windows (7, 8.1 and 10) because of time and space
constraints. Yet it is possible to see similarities with the results of the other experiments.
The plots in Figure B.2 and Figure B.4 all have a common shape with only small

variations between them, which indicates that the allocation algorithm is behaving the
same way at least in the size span of 64 GiB to 256 GiB. The disturbance at the middle
of the partitions is less visible in 256 GiB hard disks than in the 64 GiB versions due
to their larger size in combination with the resolution being kept at 64 groups. These
similarities between hard disks of different sizes indicates that the result can be gen
eralized to partitions with different sizes, at least up to 256 GiB. The algorithm might
still behave differently in partitions larger than 256 GiB, but this is left as future work
due to the current limitations in the hardware available to us.
We also inspected the allocation pattern using istat from the Sleuth Kit [44] for

some of the largest files present at the end of the experiment in two randomly chosen
virtual machines running Windows 7 and 10. The result showed that the files were
heavily fragmented and that the allocation algorithm had allocated free areas in order of
increasing size. There were noise in the form of some small areas allocated in between
the larger, but the trend was clearly visible. We therefore also tested to create eight new
files in one of the virtual machines using a modified create script that wrote consecutive
numbers into every 512 byte sector. This showed that the allocation pattern from the
istat tool was given in consecutive order and that the size of the allocated areas

169

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

Win 7
Win 8
Win 8.1
Win 10

M
e
a
n

 f
re

q
u

e
n

cy

0

50

100

150

200

250

300

Group
0 10 20 30 40 50 60 70

Figure B.3.: A map of the mean allocation frequency using the same file operation
pattern of the 16 NTFS formatted partitions in 64 GiB disks running Win
dows 7, 8, 8.1 and 10. The resolution is set to 64 groups.

170

B.3. Result

Win 7
Win 8.1
Win 10

M
e
a
n

 f
re

q
u

e
n

cy

0

10

20

30

40

50

60

Group
0 10 20 30 40 50 60 70

Figure B.4.: A map of the mean allocation frequency in NTFS formatted partitions in
256 GiB hard disks running Windows 7, 8.1 and 10 and using the same
file operation pattern. The resolution is set to 64 groups.

171

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

increased towards the end of the partition also for new files.
The result of the experiment where we extract all files having “Windows” in their

path indicates that the OS files written during installation are placed at the beginning
of a partition, which can be seen in Figure B.5. The result is based on the position of
these files in four virtual disks and three reallife disks. The reallife disks are larger
than the virtual disks and we have no control of the type of user behavior for these hard
disks. Still all hard disks show similar behavior in the first part of the partitions.

V=virtual
R=real

R,W8.1

R,W7

R,W7SP1

V,W10

V,W8.1
V,W8

V,W7O
S	
re
la
te
d	
al
lo
ca
tio

ns
	/	
pa

rt
iti
on

Cluster	#
0 2.5×106 5×106 7.5×106 107 1.25×107 1.5×107 1.75×107

Figure B.5.: The density of OS related files at different positions in four virtual and
three reallife hard disks. A steeper slope of a curvemeans a higher density
of OS files and a lower slope represents a lower density. As can be seen the
starting areas, up to approximately cluster 2.5 · 106, have a steeper slope
than the rest of the curves. The curves represent, from bottom to top, four
virtual 64 GiB hard disks containing Windows 7, 8, 8.1 and 10 and three
reallife hard disks, 500 GiB, 256 GiB and 500 GiB in size, containing
Windows 7 SP1, 7 and 8.1.

The three reallife hard disks in Figure B.5 have their almost vertical bend, which
probably represents the end of the OS installation file area, at a higher LPVA posi
tion than the smaller virtual disks (cluster number 6000000 instead of 2500000). The
Windows 7 SP1 partition even has two vertical bends, the second bend probably orig
inates from the Service Pack installation. The reason for the larger installation area is
the need for a larger amount of drivers due to the more diverse hardware base in the

172

B.4. Discussion

reallife computers. There is also extra software installed in close connection to the OS
installation in the reallife computers, which is not the case for the virtual machines,
which were kept as simpel as possible. The more irregular shape of the reallife hard
disk curves comes from a more frequent usage and longer life span than for the virtual
machines. The two Windows 8.1 machines have not utilized as much of the partitions
space for OS files as the rest of the Windows versions, which is manifested by flat and
sparse lines in the plot.

B.4. Discussion

Although the result of the experiment might seem limited in its simplicity and already
be covered by common knowledge, it still is (as far as we know) the first attempt to
empirically prove the common knowledge and make it a scientific fact. An alternative
would have been to read the source code of the file system and OS allocation algorithm
for each Windows version, but that would not have taken the installation process and
any static data into account. By using the empirical approach we have managed to
show the impact of the installation, the reserved MFT area and other attributes that
might not have been found through a source code inspection.
Our approach of using the $Bitmap file to find the LPVA positions allocated to new

or modified files is not optimal, but we hade to use it because we were not allowed to
install any new software on the computer cluster nodes we had access to and they only
contained a basic collection of Linux tools. We would have preferred to use tools (for
example istat) from the Sleuth Kit toolkit to extract the exact allocation information
for each file, which was also suggested by one of the reviewers of the article. Using
the istat tool would also have automatically filtered out the allocations of system files
from our results. However, we still got results that are similar to our previous work on
reallife data presented in an earlier article [25].
The experiment showing the placement of OS files is based on only seven hard disks,

including four that are virtual and specifically prepared for the experiment. The validity
of the results might therefore be questionable. The behavior at the very beginning of
the disks, where the files from the installation process should be placed according to
our hypothesis, is valid for all seven disks. However, the result should be seen more
as an indicator of approximately where on disk system files reside, not as the truth.
The selection of the files to be included is based solely on the existence of the word
“Windows” in the path of the files. There certainly are system files that do not fulfill
that requirement and likewise there are a large amount of nonsystem files that have
“Windows” in their path, for example user installed software. Wewill therefore expand
the collection of reallife hard disks as much as possible and also create better search
terms and filters to increase the amount of system files and exclude nonsystem files.

173

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

The test used to find any deterministic behavior between different versions of Win
dows did not prove the hypothesis of the allocation pattern being deterministic. There
seem to be slight alterations to the allocation algorithms in different versions. However,
the test was partly flawed due to a number of virtual machines crashing repeatedly and
therefore behaving differently. There might still be deviations even in the machines
we used for the plot in Figure B.3, which we have not been able to detect. The test do
prove that the probability of two different Windows machines having exactly the same
allocation pattern is very low.
Our discovery that the allocation algorithm is allocating free areas in order of increas

ing size is interesting because that contradicts a strict best fit behavior. The behavior
gives a high fragmentation of files, but preserves any large unused areas. Hence it seem
to adhere to the idea of a worst fit algorithm that is meant to preserve as large areas as
possible for future use.
In hashbased carving a collection of hashes of known data is compared to hashes

of an unknown source leading to a huge amount of hash comparisons. Different tech
niques are proposed to mitigate the problem, one being random sampling with a fre
quency chosen to balance speed and detection rate. The frequency is uniformly dis
tributed and we therefore propose an upgrade by varying the sampling frequency in
accordance with the precomputed map of the probability of finding user data at dif
ferent positions in an NTFS formatted partition. The concept can be compared to the
common sense principle of looking for a lost item where the probability of finding it is
higher.
Our mapping concept can be of benefit to other areas than hashbased carving too.

On a general level it can be used to improve the efficiency of the current digital forensic
methods and tools, especially in file carving situations where there is no file system to
be used. One example of usage is when searching for hashes of files or parts of files in
a hard disk. Then three different scenarios are possible:

Prioritizing speed Instead of using a uniformly distributed sampling our map can
be used to lower the total amount of samples without any significant loss in
detection ability. This method can for example be used in triage situations when
there is a need to get a preliminary answer quickly.

Maintaining speed Using the same total amount of samples as in a uniformly dis
tributed sampling case, a higher detection ability can be achieved at the same
execution speed. This method can be used without changing the digital forensic
process.

Prioritizing detection rate. By increasing the total amount of samples compared to a
uniformly distributed sampling case, the detection rate will increase more than
the induced penalty in execution speed. This will be achieved by using the same

174

B.5. Conclusion and future work

sampling frequency in areas of low interest as in the uniformly distributed sam
pling case and increasing the sampling rate for better detection ability in high
priority areas of the hard drive.

Our mapping concept is also beneficial to the daily work of the digital forensic in
vestigator by introducing the possibility to plan the forensic process in a better way.
Currently hard drives and other storage media are treated as black boxes and scanned
from start to end before the analysis. Using our map the forensic investigators can
focus on relevant areas of the storage media and postpone, or even skip, less relevant
areas.
The map is also applicable when imaging storage media. By starting the imaging

process at the most probable area of user data and continue in decreasing order of
relevance some of the analysis work can be started immediately rendering results faster.
In that way valuable time and effort is saved, although the reliability of the analysis will
of course increase as more data are analyzed. This concept is supported by the Hansken
project [42, 43] and using our mapping concept the speed of the analysis process in
Hansken will be even higher, especially when dealing with partly damaged media.
Alsowhen dealingwith corrupt or damaged storagemedia ourmap can be beneficial.

The forensic value of any unreadable areas of a storage media can quickly be found
using the map. The information can then be used to establish the forensic value of the
lost areas and consequently increase the value of the evidence in court.
Since we have based our map on diving a generic storage media into a reasonable

amount of subareas (currently 64) there will not be any real performance penalty due
to random seek. Within the areas any seek pattern can be used, it is only when switch
ing between the areas (in order of priority) a random seek situation may occur. The
performance penalty of doing a maximum of 64 random seeks can safely be ignored.

B.5. Conclusion and future work

We have empirically studied the behavior of the cluster allocation algorithms in Win
dows 7, 8, 8.1 and 10 to see whether it is possible to create a precomputed map of
the probability of finding new data at different LPVA positions in NTFS formatted
partitions. The result show that the OSs in question share a structure at a high level
regarding which areas (clusters) that are being allocated more frequently. The highest
probability can be found approximately 10% into a (64 GiB) partition. The probabil
ity is then slowly decreasing down to half the maximum value and then drops rapidly
towards zero closer to the end of the partitions in our experiment.
The concept of creating a precomputed map of a generic storage media is usable

to a wide range of applications within digital forensics. The field of file carving is the
most obvious benefactor, but the concept can also be used in for example disk imaging,

175

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

planning the investigation process and data rescue situations when dealing with failing
hardware.
As future work we will first of all modify our experimental framework to use the

proper tools needed to exclude everything but the exact LPVA positions allocated by
the executed file operations. We will also include other combinations of OSs and file
systems in our experiments to create precomputed maps for the most popular consumer
computer systems. Since the framework we have developed for the experiments can
handle any system (OS and file system) that can be installed in a VirtualBox machine
we will cover as much as we can of the current OS and file system market.
Finally we will continue to search for the reason behind the disruption in the middle

of the plots, as well as any other matter needed to reverse engineer the behavior of the
allocation algorithms in Windows versions not included in Carrier’s book [29].

B.6. Acknowledgment

We would like to thank the anonymous reviewers for their insightful comments and
suggestions. We are also thankful to the Swedish Defence Research Agency (FOI),
which let us use a subset of their Cyber Range And Training Environment (CRATE)
computer cluster for the experiments.
The research leading to these results has received funding from the Research Council

of Norway programme IKTPLUSS, under the research and development project Ars
Forensica grant agreement 248094/O70.

B.7. Bibliography

[1] P. Gladyshev and J. James. “Decisiontheoretic file carving.” In: Digital In
vestigation 22.Supplement C (2017), pp. 46–61. ISSN: 17422876. DOI: 10.
1016/j.diin.2017.08.001.

[2] European Police Office (Europol). Internet Organised Crime Threat Assess
ment (IOCTA) 2016. Tech. rep. European Cybercrime Centre (EC3), 2016.

[3] D. Quick and K. Choo. “Data reduction and data mining framework for digi
tal forensic evidence: Storage, intelligence, review and archive.” In: Trends &
Issues in Crime and Criminal Justice 480 (Sept. 2014), pp. 1–11. ISSN: 1836
2206.

[4] F. Breitinger, G. Stivaktakis, and H. Baier. “FRASH: A framework to test algo
rithms of similarity hashing.” In: Digital Investigation 10.Supplement (2013).
The Proceedings of the ThirteenthAnnual DFRWSConference, S50–S58. ISSN:
17422876. DOI: 10.1016/j.diin.2013.06.006.

176

https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2013.06.006

B.7. Bibliography

[5] V. Roussev. “Managing TerabyteScale Investigationswith SimilarityDigests.”
In: Advances in Digital Forensics VIII: 8th IFIP WG 11.9 International Con
ference on Digital Forensics, Pretoria, South Africa, January 35, 2012, Re
vised Selected Papers. Ed. by G. Peterson and S. Shenoi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 19–34. ISBN: 9783642339622. DOI:
10.1007/9783642339622_2.

[6] R. Poisel and S. Tjoa. “A Comprehensive Literature Review of File Carving.”
In: 2013 International Conference on Availability, Reliability and Security.
Sept. 2013, pp. 475–484. DOI: 10.1109/ARES.2013.62.

[7] A. Pal and N. Memon. “The evolution of file carving.” In: IEEE Signal Pro
cessing Magazine 26.2 (Mar. 2009), pp. 59–71. ISSN: 10535888. DOI: 10.
1109/MSP.2008.931081.

[8] M. Karresand. “Completing the Picture— Fragments and Back Again.” Licen
tiate thesis. Linköping Institute of Technology, Linköping University, Sweden,
May 2008.

[9] M. Karresand and N. Shahmehri. “Reassembly of fragmented JPEG images
containing restart markers.” In: Proceedings 4th Annual European Confer
ence on Computer Network Defense, EC2ND 2008. 2008, pp. 25–32. DOI:
10.1109/EC2ND.2008.10.

[10] M. Karresand and N. Shahmehri. “Oscar—Using Byte Pairs to Find File Type
and Camera Make of Data Fragments.” In: Proceedings of the 2nd European
Conference on Computer Network Defence, in conjunction with the First Work
shop on Digital Forensics and Incident Analysis (EC2ND 2006). Ed. by A.
Blyth and I. Sutherland. Springer Verlag, 2007, pp. 85–94. DOI: 10.1007/
9781846287503_9.

[11] M. Karresand and N. Shahmehri. “File Type Identification of Data Fragments
by Their Binary Structure.” In: Proceedings from the Seventh Annual IEEE
Systems, Man and Cybernetics (SMC) Information AssuranceWorkshop, 2006.
Piscataway, NJ, USA: IEEE, 2006, pp. 140–147. DOI: 10.1109/IAW.2006.
1652088.

[12] M. Karresand and N. Shahmehri. “Oscar — File Type and Camera Identifica
tion Using the Structure of Binary Data Fragments.” In: Proceedings of the 1st
Conference on Advances in Computer Security and Forensics, ACSF. Ed. by
J. Haggerty and M. Merabti. Liverpool, UK: The School of Computing and
Mathematical Sciences, John Moores University, July 2006, pp. 11–20.

177

https://doi.org/10.1007/978-3-642-33962-2_2
https://doi.org/10.1109/ARES.2013.62
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/EC2ND.2008.10
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1109/IAW.2006.1652088

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

[13] M. Karresand and N. Shahmehri. “Oscar — File Type Identification of Binary
Data in Disk Clusters and RAM Pages.” In: Security and Privacy in Dynamic
Environments, Proceedings of the IFIP TC11 21st International Information
Security Conference (SEC 2006), 2224May 2006, Karlstad, Sweden. Vol. 201.
Lecture Notes in Computer Science. Springer, 2006, pp. 413–424. DOI: 10.
1007/0387334068_35.

[14] S. Garfinkel andM.McCarrin. “Hashbased carving: Searchingmedia for com
plete files and file fragments with sector hashing and hashdb.” In: Digital In
vestigation 14.Supplement 1 (2015). The Proceedings of the Fifteenth Annual
DFRWSConference, S95–S105. ISSN: 17422876. DOI: 10.1016/j.diin.
2015.05.001.

[15] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks. “Distinct Sector Hashes
for Target File Detection.” In: Computer 45.12 (Dec. 2012), pp. 28–35. ISSN:
00189162. DOI: 10.1109/MC.2012.327.

[16] K. Foster. “Using distinct sectors in media sampling and full media analysis to
detect presence of documents from a corpus.”MA thesis. Monterey, California,
USA: Naval Postgraduate School, Sept. 2012.

[17] S. Garfinkel, A. Nelson, D. White, and V. Roussev. “Using purposebuilt func
tions and block hashes to enable small block and subfile forensics.” In: Dig
ital Investigation 7.Supplement (2010). The Proceedings of the Tenth Annual
DFRWS Conference, S13–S23. ISSN: 17422876. DOI: 10.1016/j.diin.
2010.05.003.

[18] S. Collange, Y. S. Dandass, M. Daumas, and D. Defour. “Using Graphics Pro
cessors for Parallelizing HashBased Data Carving.” In: 2009 42nd Hawaii
International Conference on System Sciences. Jan. 2009, pp. 1–10. DOI: 10.
1109/HICSS.2009.494.

[19] D. Quick and K. Choo. “Impacts of increasing volume of digital forensic data:
A survey and future research challenges.” In:Digital Investigation 11.4 (2014),
pp. 273–294. ISSN: 17422876. DOI: 10.1016/j.diin.2014.09.002.

[20] O.Afonin. Life after Trim:Using Factory AccessMode for Imaging SSDDrives.
Last accessed 15032019. Jan. 2019. URL: https://blog.elcomsoft.
com/2019/01/lifeaftertrimusingfactoryaccessmode
forimagingssddrives/.

[21] C. Buckel. Understanding Flash: The Flash Translation Layer. Last accessed
08102018. Sept. 2014. URL: https://flashdba.com/2014/09/17/
understandingflashtheflashtranslationlayer/.

178

https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.1109/MC.2012.327
https://doi.org/10.1016/j.diin.2010.05.003
https://doi.org/10.1016/j.diin.2010.05.003
https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1016/j.diin.2014.09.002
https://blog.elcomsoft.com/2019/01/life-after-trim-using-factory-access-mode-for-imaging-ssd-drives/
https://blog.elcomsoft.com/2019/01/life-after-trim-using-factory-access-mode-for-imaging-ssd-drives/
https://blog.elcomsoft.com/2019/01/life-after-trim-using-factory-access-mode-for-imaging-ssd-drives/
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/
https://flashdba.com/2014/09/17/understanding-flash-the-flash-translation-layer/

B.7. Bibliography

[22] R. Reiter, T. Swatosh, P. Hempstead, and M. Hicken. Accessing logicalto
physical address translation data for solid state disks. Last accessed 0810
2018. Nov. 2014. URL: http://www.freepatentsonline.com/8898371.
html.

[23] J. Barbara. Solid State Drives: Part 5. Last accessed 08102018. Apr. 2014.
URL: https://www.forensicmag.com/article/2014/04/solid
statedrivespart5.

[24] T.S. Chung, D.J. Park, S. Park, D.H. Lee, S.W. Lee, and H.J. Song. “A
Survey of Flash Translation Layer.” In: J. Syst. Archit. 55.56 (May 2009),
pp. 332–343. DOI: 10.1016/j.sysarc.2009.03.005.

[25] M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkolbotn.
“Creating aMap of User Data in NTFS to Improve File Carving.” In: Advances
inDigital Forensics XV. Cham: Springer International Publishing, 2019. Chap. 8,
pp. 133–158. ISBN: 9783030287528. DOI: 10.1007/978 3 030
287528_8.

[26] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. 9th ed.
Wiley, Dec. 2012.

[27] Microsoft. How NTFS Works. Last accessed 30092018. 2018. URL: https:
//technet.microsoft.com/ptpt/library/cc781134(v=ws.10)
.aspx.

[28] J. Hughes. The Four Stages of NTFS File Growth. Last accessed 24102018.
Oct. 2009. URL: https://blogs.technet.microsoft.com/askcore/
2009/10/16/thefourstagesofntfsfilegrowth/.

[29] B. Carrier. File System Forensic Analysis. AddisonWesley Professional, 2005.
ISBN: 0321268172.

[30] maaartinus, L. Osterman, and PC Guru.What block allocation algorithm does
NTFS use?Last accessed 24012019.Mar. 2017. URL: https://superuser.
com/questions/274855/what block allocation algorithm
doesntfsuse.

[31] A. Tridgell. SpamsumREADME. Last accessed 27042018. 2002. URL: https:
//www.samba.org/ftp/unpacked/junkcode/spamsum/README.

[32] J. Kornblum. “Identifying almost identical files using context triggered piece
wise hashing.” In:Digital Investigation 3.Supplement (2006). The Proceedings
of the 6th Annual Digital Forensic Research Workshop (DFRWS ’06), pp. 91–
97. ISSN: 17422876. DOI: 10.1016/j.diin.2006.06.015.

179

http://www.freepatentsonline.com/8898371.html
http://www.freepatentsonline.com/8898371.html
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://www.forensicmag.com/article/2014/04/solid-state-drives-part-5
https://doi.org/10.1016/j.sysarc.2009.03.005
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1007/978-3-030-28752-8_8
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://doi.org/10.1016/j.diin.2006.06.015

B. Using NTFS Cluster Allocation Behavior to Find the Location of User Data

[33] Y. Dandass, N. Necaise, and S. Thomas. “An Empirical Analysis of Disk Sector
Hashes for Data Carving.” In: J. Digit. Forensic Pract. 2.2 (Apr. 2008), pp. 95–
104. ISSN: 15567281. DOI: 10.1080/15567280802050436.

[34] Microsoft. Default cluster size for NTFS, FAT, and exFAT. Aug. 2015. URL:
https://support.microsoft.com/enus/help/140365/default
clustersizeforntfsfatandexfat.

[35] J. Jones, T. Khan, K. Laskey, A. Nelson, M. Laamanen, and D. White. “In
ferring Previously Uninstalled Applications from Residual Partial Artifacts.”
In: Annual ADFSL Conference on Digital Forensics, Security and Law. 2016,
pp. 113–130.

[36] K. Fairbanks and S. Garfinkel. “Column: Factors Affecting Data Decay.” In:
Journal of Digital Forensics, Security and Law 7 (2012). DOI: 10.15394/
jdfsl.2012.1116.

[37] K. Fairbanks. “A Technique for Measuring Data Persistence Using the Ext4
File System Journal.” In: 2015 IEEE 39th Annual Computer Software and Ap
plications Conference. Vol. 3. July 2015, pp. 18–23. DOI: 10.1109/COMPSAC.
2015.164.

[38] K. Fairbanks. “An analysis of Ext4 for digital forensics.” In: Digital Investi
gation 9.Supplement (2012). The Proceedings of the Twelfth Annual DFRWS
Conference, S118–S130. ISSN: 17422876. DOI: 10.1016/j.diin.2012.
05.010.

[39] D. Quick and K.K. R. Choo. “Big forensic data reduction: digital forensic
images and electronic evidence.” In: Cluster Computing 19.2 (June 2016),
pp. 723–740. ISSN: 15737543. DOI: 10.1007/s1058601605531.

[40] N. C. Rowe. “Identifying Forensically Uninteresting Files Using a Large Cor
pus.” In: Digital Forensics and Cyber Crime: Fifth International Conference,
ICDF2C 2013, Moscow, Russia, September 2627, 2013, Revised Selected Pa
pers. Ed. by P. Gladyshev, A. Marrington, and I. Baggili. Cham: Springer
International Publishing, 2014, pp. 86–101. ISBN: 9783319142890. DOI:
10.1007/9783319142890_7.

[41] S. Key. File Block Hash Map Analysis. Last accessed 28042018. 2012. URL:
https://www.guidancesoftware.com/app/FileBlockHash
MapAnalysis.

[42] R. van Baar, H. van Beek, and E. van Eijk. “Digital Forensics as a Service:
A game changer.” In: Digital Investigation 11 (2014). Proceedings of the First
Annual DFRWS Europe, S54–S62. ISSN: 17422876. DOI: 10.1016/j.
diin.2014.03.007.

180

https://doi.org/10.1080/15567280802050436
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://support.microsoft.com/en-us/help/140365/default-cluster-size-for-ntfs--fat--and-exfat
https://doi.org/10.15394/jdfsl.2012.1116
https://doi.org/10.15394/jdfsl.2012.1116
https://doi.org/10.1109/COMPSAC.2015.164
https://doi.org/10.1109/COMPSAC.2015.164
https://doi.org/10.1016/j.diin.2012.05.010
https://doi.org/10.1016/j.diin.2012.05.010
https://doi.org/10.1007/s10586-016-0553-1
https://doi.org/10.1007/978-3-319-14289-0_7
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2014.03.007

B.7. Bibliography

[43] H. van Beek, E. van Eijk, R. van Baar, M. Ugen, J. Bodde, and A. Siemelink.
“Digital forensics as a service: Game on.” In: Digital Investigation 15 (2015).
Special Issue: Big Data and Intelligent Data Analysis, pp. 20–38. ISSN: 1742
2876. DOI: 10.1016/j.diin.2015.07.004.

[44] B. Carrier. TSK Tool Overview. 2014. URL: http://wiki.sleuthkit.
org/index.php?title=TSK_Tool_Overview.

[45] TerryE andmpack.All about VDIs. Last accessed 30122018. Feb. 2018. URL:
https://forums.virtualbox.org/viewtopic.php?t=8046.

[46] S. Garfinkel and K. Fairbanks. sleuthkit/tools/fiwalk/. Last accessed 3012
2018. Apr. 2012. URL: https://github.com/kfairbanks/sleuthkit/
tree/master/tools/fiwalk.

[47] Arch Linux. Disk encryption. Last accessed 30122018. Nov. 2018. URL:
https://wiki.archlinux.org/index.php/disk_encryption.

[48] M. Gattol.Blocklayer Encryption. Last accessed 24012019. Jan. 2015. URL:
https://web.archive.org/web/20150917051251/http://www.
markusgattol.name/ws/dmcrypt_luks.html.

[49] Microsoft. Windows 10 system requirements. Last accessed 30042018. Nov.
2017. URL: https : / / support . microsoft . com / en us / help /
4028142/windowswindows10systemrequirements.

[50] Microsoft. System requirements. Last accessed 30042018. Apr. 2017. URL:
https://support.microsoft.com/engb/help/12660/windows
8systemrequirements.

[51] Microsoft. Windows 7 system requirements. Last accessed 30042018. Apr.
2017. URL: https://support.microsoft.com/enus/help/10737/
windows7systemrequirements.

[52] Real Data Corpus. Real Data Corpus. Last accessed 29092018. July 2018.
URL: https : / / digitalcorpora . org / corpora / disk images /
realdatacorpus.

181

https://doi.org/10.1016/j.diin.2015.07.004
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
https://forums.virtualbox.org/viewtopic.php?t=8046
https://github.com/kfairbanks/sleuthkit/tree/master/tools/fiwalk
https://github.com/kfairbanks/sleuthkit/tree/master/tools/fiwalk
https://wiki.archlinux.org/index.php/disk_encryption
https://web.archive.org/web/20150917051251/http://www.markus-gattol.name/ws/dm-crypt_luks.html
https://web.archive.org/web/20150917051251/http://www.markus-gattol.name/ws/dm-crypt_luks.html
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://digitalcorpora.org/corpora/disk-images/real-data-corpus
https://digitalcorpora.org/corpora/disk-images/real-data-corpus

C. Disk Cluster Allocation Behavior in Windows
and NTFS

The layout of the article has been lightly edited to fit the overall layout of the thesis. This text and a
full citation of the article has been added below the title. Since the work is focused on disk partitions
(Windows volumes) the term LBA in the article has been corrected to LPVA where applicable. The
content is otherwise unchanged and corresponds to the original, published, version.

The article was originally accepted to CARDS 2019 11th EAI International Conference on Cyber
Attacks Response and Defense (formerly ICDF2C). For reasons beyond our control the conference was
canceled. The organizing committee therefore offered us a publication of the article in the journal Mobile
Networks and Applications. We accepted the offer, even though the journal had a different scope and aim
than the CARDS conference.

M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Disk Cluster Alloca
tion Behavior in Windows and NTFS.” in: Mobile Networks and Applica
tions 25.1 (Feb. 2020), pp. 248–258. ISSN: 15728153. DOI: 10.1007/
s11036019014411

Abstract

The allocation algorithm of a file system has a huge impact on almost all aspects of
digital forensics, because it determines where data is placed on storage media. Yet
there is only basic information available on the allocation algorithm of the currently
most widely spread file system; New Technology File System (NTFS). We have there
fore studied the NTFS allocation algorithm and its behavior empirically. To do that we
used two virtual machines running Windows 7 and 10 on NTFS formatted fixed size
virtual hard disks, the first being 64 GiB and the latter 1 TiB in size. Files of differ
ent sizes were written to disk using two writing strategies and the $Bitmap files were
manipulated to emulate file system fragmentation.
Our results show that files written as one large block are allocated areas of decreasing

size when the files are fragmented. The decrease in size is seen not only within files, but
also between them. Hence a file having smaller fragments than another file is written
after the file having larger fragments. We also found that a file written as a stream gets
the opposite allocation behavior, i. e. its fragments are increasing in size as the file is

183

https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1

C. Disk Cluster Allocation Behavior in Windows and NTFS

written. The first allocated unit of a stream written file is always very small and hence
easy to identify.
The results of the experiment are of importance to the digital forensics field and will

help improve the efficiency of for example file carving and timestamp verification.

C.1. Introduction

File carving [1, 2] and timestamps are two key concepts in digital forensics. Unfor
tunately both concepts are laden with complex operations and a large amount of un
certainty regarding the correctness of the results. In file carving the digital forensic
investigator has to find and categorize a large amount of (fragmented) data and then
put the fragments back into the original file again without the help of a file system.
The same applies to timestamps, where a timeline must be constructed, often only with
data from different log files and the file system meta data at hand, two sources that are
easy to manipulate. In both cases a digital forensic investigator would be helped by the
extra information hidden in the storage structure of data, its allocation layout.
The file carving process and the extraction of timestamps are both dependent on the

behavior of the combination of file system and operating system (OS), which govern
the placement of data on hard disks through an allocation algorithm. Knowledge of
the layout pattern of data on disk is crucial to the forensic investigator when doing file
carving. However, the actual behavior of the allocation algorithm is not known. For
example the general assumption used as a basis for different forensic file carving tools
is that the data to be carved is stored contiguously and is only mildly fragmented.
To improve the timestamp information used in investigations several propositions

have been made to also use the behavior of the allocation algorithm as a source [3, 4].
However, we have not found any previous work that study the exact behavior of the
allocation algorithm of for example New Technology File System (NTFS). There is a
small number of main allocation algorithm concepts used in all modern OSs, but the
exact behavior of the different implementations of the algorithms are not known, at least
not for the closed source OS variants. Windows using NTFS is for example said to use a
best fit allocation strategy, but that information is getting dated and is also based on the
Linux implementation of the NTFS driver [5]. We therefore have studied the allocation
behavior of two modern versions of Windows (7 and 10) in combination with NTFS to
empirically reverse engineer the allocation algorithm(s) used. The data source is based
on writing files of different sizes to disk using different writing strategies (writing the
file as one large block at once or as a continuous stream of data). The experiment was
done using two virtual machines having fixed size virtual hard disks of different sizes,
one 64 GiB and one 1 TiB.
The experiment is part of the future work presented in two earlier articles [6, 7]

184

C.1. Introduction

where we develop a framework to create maps of user data placement on hard disks.
The maps give the probability of finding unique user data at different Logical Partition
Volume Address (LPVA) positions in Windows NTFS partitions and can for example
be used for triage, planning of hard disk investigations and to enable different areas
to be prioritized in file carving processes. Knowledge of the actual behavior of the
allocation algorithm of different file systems will enhance the precision of the maps.
Our work is based on an empirical evaluation of the behavior of the allocation al

gorithm of Windows NTFS, using the hypothesis that a best fit allocation strategy is
used. Hence we do not reverse engineer any code or expose any secret information.
Likewise the reported results are not detailed enough to enable someone to recreate the
Microsoft Windows NTFS allocation algorithm or driver. However, the presented re
sults are of great value to the digital forensics community and we therefore make them
public as a help in the global fight against digital crime.
The rest of this paper is organized as follows: The remaining parts of Section D.1

presents background on file allocation algorithms and related work. In Section C.2 we
describe how the experiment was implemented. Section D.3 presents the results of the
experiment and in Section D.4 we discuss the effects and implications of our result to
the research field of file carving and other relevant areas within and related to digital
forensics. Section D.5 concludes the work and presents ideas of future work to be done.

C.1.1. Background

The theory of file system construction is for example described by Silberschatz et. al [8],
Stallings [9] and Tanenbaum and Bos [10]. A file system keeps track of data stored on
secondary storage and is organized in different ways. However, all implementations
share some common properties: the addressing of the physical storage is abstracted by
the file system into logical addresses and the logical storage position of written data is
determined by an allocation algorithm.
During the history of computer systems different methods of allocating disk space

have been in use. The main methods are contiguous, linked and indexed allocation [8–
10]. The indexed allocation strategy, where the addresses of the data blocks are held
in an index separated from a file’s data, is currently the most popular. The indexed
allocation strategy does not suffer from external fragmentation (unallocated holes being
to small to be filled with new data), but heavily used storage media can still lead to
fragmentation of files and require regular defragmentation. There is also a risk of disk
space being wasted when using indexed allocation, especially for small files requiring
a full index meta data block to hold just a few index posts.
There are also a number of algorithms used for handling the free space that is to be

populated by new files. Silberschatz et. al [8] presents three algorithms; first fit, best fit
and worst fit, Stallings [9] mentions nearest fit and Tanenbaum and Bos [10] add next

185

C. Disk Cluster Allocation Behavior in Windows and NTFS

fit and quick fit. Together they give the following free space allocation algorithms:

First fit starts the search for free space at the beginning of the file system and has the
requirement of the space being large enough to hold the entire file. If there is
no space large enough to hold the entire file, a fragment is written at the found
position and the search continues.

Next fit (Stallings [9, p. 544] calls this nearest fit) uses the same principle as first fit
of allocating the next free space being large enough to hold the entire file, but
the search is done from the current position in the file system. If there is no
single free space to hold the entire file the file is fragmented and the available
free spaces are used to hold the file.

Best fit uses the free space best fitting the new file, i. e. giving the smallest remaining
free space. This requires all the available free spaces to be scanned before the
best fit can be chosen.

Worst fit uses the free space having the worst fit to the new file. This is the opposite to
best fit, i. e. giving the largest remaining free space. As for the best fit algorithm
the available free spaces of the entire file system have to be scanned before the
worst fit can be chosen.

Quick fit uses several lists of different sizes of free block areas. In this way a fitting
area can be found very quickly, but the algorithm suffers from a complex process
during deallocation when freed up areas might have to be merged. If this is not
done the storage will soon fragment into a large amount of free areas too small
to be usable.

These free space allocation algorithms are not specific to storage of data on disk, they
are also used in for example memory allocation in Random Access Memory (RAM)
[8].
Based on the information given by [11] and [12] Microsoft Windows’ NTFS is using

an index allocation strategy. The problem of space being wasted when using index
allocation is solved in NTFS by storing the data of smaller files (up to approximately
700 bytes1) in the MFT meta data records themselves [12].
According to Carrier [5] the best fit free space algorithm is used by Windows XP on

NTFS formatted hard disks. Since the book was written in 2005 it does not cover the
allocation algorithms used by Windows 7 and newer. Our previous experiments [6, 7]
indicate that the actual behavior of the allocation algorithm in NTFS is not strictly best
1Themaximum size of an internal $DATA attribute varies depending on the size of other attributes stored
in the Master File Table (MFT) record. Most sources give a maximum internal $DATA attribute size
of 600 to 700 bytes. Microsoft reports a 900 byte limit [12].

186

C.1. Introduction

fit. The results from experiments indicate that groups of free clusters are allocated in
descending order of size, which is best fit, but not always. The deviating behavior is
mentioned in a Superuser Q&A [13].
When formatting an NTFS partition 12.5% of the space is by default reserved for

the MFT [12]. The MFT records are 1 KiB in size and usually the size of the smallest
allocatable unit (called cluster) in NTFS is 4 KiB [12]. The allocation status of every
cluster in the file system is stored in the $Bitmap file, which is record number 6 in
the MFT. Each bit in the $Bitmap file represents one file system cluster in ascending
LPVA order. If a cluster is allocated the corresponding bit in the $Bitmap file is set to
1, hence 0 represents an unallocated cluster.
Files can be written to disk in two ways; either as a stream, or the entire file as a

block. In the first case the OS does not know the final size of the file and therefore
cannot optimize the allocation accordingly. This often leads to file fragmentation, but
the behavior is partly mitigated by the internal buffering of the OS. When the entire file
is written in one piece the OS knows its size in advance and can utilize the standard
allocation algorithm, which optimizes the storage. This behavior is probably more
common when dealing with smaller files that easily can be held in RAM, than for
large files. The specific write behavior is software dependent and might incorporate
temporary writing of files to protect the data in case of a power loss or hardware failure.

C.1.2. Related work

We have not found any related work directly addressing the detailed behavior of the
allocation algorithm in Microsoft Windows 7 and 10 running in NTFS formatted par
titions. There are however some work done on the connection between timestamps,
cluster allocation and file creation order.
Willassen studies the formal foundation of timestamps in his PhD dissertation [4].

There he also formulates the criteria needed to use the allocation strategy of a file
system for checking timestamps. He also briefly discusses the allocation strategy of
NTFS and states that it is best fit in Windows XP and that a first fit allocation strategy
is used within the MFT. The PhD dissertation is partially based on an earlier article by
Willassen [3] describing a method to use a first fit allocation strategy to detect antedat
ing of files.
Tse [14] intends to use the allocation pattern of files to estimate the causal ordering

of events, but concludes that using the actual allocation patter is complex. Tse instead
defines two metrics approximating the allocation pattern causality and then tests the
metrics against standard timestamps.
Minnaard [15] studies the inner workings of the Linux implementation of the File

Allocation Table (FAT) file system in an article from 2014 by looking at the source
code and then uses the result to find the causal order of files from a TomTom Go. The

187

C. Disk Cluster Allocation Behavior in Windows and NTFS

article mentions that the Windows 7 implementation of FAT is more complex than the
Linux variant.

C.2. Experimental setup

The experiment is designed to test whether Windows in combination with NTFS is
using the best fit allocation strategy as indicated in the literature [4, 5]. To enable
this the behavior of the allocation algorithm has to be studied in different situations
regarding disk utilization, file system fragmentation, file size and partition size. We
therefore manipulated the $Bitmap file of the file systems of the virtual machines used
to emulate different states of file system fragmentation.

C.2.1. Virtual hardware

The experiments were performed on two virtual machines using VirtualBox running
Windows 7 and Windows 10. The Windows 7 machine had a fixed size 64 GiB hard
disk and theWindows 10machine a 1 TiB ditto to cover both older and newerWindows
OSs, as well as small and large hard disks. Each virtual machine was given a folder
shared with the host. To enable us to use standard digital forensic tools (the Sleuth
Kit [16]) on the virtual hard disks and their partitions they were loop mounted with
read/write access rights.
The disk of the Windows 7 machine was already used since it was taken from one of

our earlier experiments [6], where 10000 file operations were performed in a pseudo
random pattern with bias towards file writing. This had given a heavily fragmented
file system corresponding to an old and well used (home) computer. The fragmenta
tion status of the file system was checked before the start of the experiment and one
remaining large area of free clusters was found at the end of the partition. To even
out the fragmentation pattern we decided to split that area into five smaller areas of
approximately 262000 clusters each, corresponding to approximately 1 GiB per area.
The Windows 10 machine was freshly installed and the file system therefore only

contained files from the installation, without any significant fragmentation. It repre
sented an office computer using mainly network based storage, without synchroniza
tion between local and network storage.

C.2.2. Process description

During the experiment each virtual machine was repeatedly power cycled to ensure
that all file operations were flushed to hard disk (both the virtual and the real on the
host). The experiment started by copying the $Bitmap file of the powered down virtual

188

C.2. Experimental setup

machine to the host. Then the following steps were iterated over for each file write
operation:

1. The virtual machine was powered on

2. A file signaling the power on sequence had finished was written to the shared
folder

3. The file write operation was executed

4. A file signaling the file operation had finished was written to the shared folder

5. The virtual machine was powered down

6. The power down status was checked using vboxmanage

7. The allocation information of the newly written file was extracted using the
istat [16] tool

8. The $Bitmap file of the virtual machine was copied to the host using icat [16]
tool

To allow the virtual machine, as well as the host, to properly write all files to disk up to
10 second long delays were introduced between the steps 1 to 3 of each iteration. We
also used files written to a shared folder to signal when a step was finished.
To cover for both writing a file as one block and writing it as a stream a Python 2.7

script was used to either write a file to an array in RAM and then to disk (block writing)
or using Python’s own file write operation directly writing one 512 B sector at a time
(stream writing). Both types of write operations were buffered by the OS, but in the
block writing case the OS got information on the file size before the file was written to
disk, which it did not when the file was written as a stream. Each 512 byte block of the
files were uniquely marked with a consecutive number together with a file identifier.
The marking was used as a backup procedure in case we had to read the raw data from
the virtual hard disks due to errors in the process. The marking was also used to verify
that the istat tool reported the allocation pattern in the same order as the clusters
were written to, which it did.
We used files of different sizes to determine if the allocation algorithm behaved dif

ferently depending on the size of the written file. In the first round of the experiment we
used 4, 128, 511, 512, 513 and 1024 MiB files. The 511 and 513 MiB files originated
from the first version of the Python script, where the type of writing was depending on
the size of the file. If the file size was≤ 512MiB the file was written as one block and
if it was larger it was written as a stream. The range of file sizes were later expanded to
also include 12, 96, 384, 768 and 1536 MiB files to get a more even coverage of small

189

C. Disk Cluster Allocation Behavior in Windows and NTFS

and large files and the Python script was updated to enable different writing strategies
regardless of file size.

C.2.3. Bitmap manipulation

To cover for possibly different allocation behavior depending on the available amount
of storage of the file system we manipulated the $Bitmap file of the Windows NTFS
virtual hard disks. The $Bitmap file of the Windows 7 machine was manipulated once
and the Windows 10 $Bitmap file three times.
The Windows 7 virtual machine’s main partition was heavily fragmented from the

beginning, but still contained a contiguous area of approximately 5.3 GiB. This area
was divided into five smaller areas, which can be seen in Table C.1, all other free areas
where kept in their original state. The modified layout is called BM 7:1 throughout the
text. The unmodified layout was never used due to its already heavily fragmented file
system.

Table C.1.: The unallocated areas in the original 5.3 GiB space after the BM 7:1 ma
nipulation.

Start position Size [cluster]

15372418 262000
15634546 262143
15896818 262144
16159090 262145
16421363 262160

Directly after installation of theWindows 10 virtual machine its 1 TiBmain partition
contained two large unallocated areas of approximately 497 and 511GiB respectively at
the end of the partition. This original, unmodified, layout is called BM 10:0 throughout
the text.
After theBM10:0 file writing operationswere executedwemanipulated the $Bitmap

file to fragment the allocation layout. The smaller of the two large free areas was di
vided into 501 equally sized unallocated areas of 120000 clusters (468.75 MiB) each
and the larger unallocated area was divided into 1026 unallocated areas of increas
ing size, from 120 clusters (480 KiB) to 123120 clusters (approximately 481 MiB) in
steps of 120. The two areas together contained 123342120 (approximately 471 GiB)
free clusters after the modification. All other unallocated areas on the partition were
unmodified. We refer to this manipulation setting as BM 10:1

190

C.3. Result

After testing the BM 10:1 allocation manipulation we created a new bitmap (referred
to as BM 10:2) file for the Windows 10 virtual hard disk where we decreased the avail
able space even more by first restoring the virtual machine to its original state and
then creating the free areas shown in Table C.2 from the two large unallocated spaces.
The BM 10:2 manipulation was meant to test the block writing allocation behavior by

Table C.2.: The modified areas of BM 10:2.
Spaces Function Tot. [cluster]

511 int(120000/x+ 27;x = [512 : −1 : 2]) 711541
23 120000 2760000
512 7x+ 13;x = [0 : 511] 922368
16 7999 127984
1 17 17
29 int(1800000/x+ 17;x = [1 : 29]) 7131462

forcing the algorithm to chose between a few very large areas and many small. The
seemingly odd values used in Table C.2 were chosen to avoid creating free areas of ex
act multiples of 2. The total amount of free space in themanipulated area was 11715760
clusters (44.7 GiB) after the modification.
However, the BM 10:2 $Bitmap manipulation was not strict enough to generate any

significant fragmentation during the block writing. We therefore manually decreased
any remaining free areas larger than 120000 consecutive clusters with a factor 10. This
left a total of 3361315 clusters (12.8 GiB) of free space in the manipulated area. This
last manipulation is referred to as BM 10:3.

C.3. Result

The overall result of the experiment shows that Windows 7 and 10 using NTFS format
ted partitions are both using a best fit allocation algorithm. This is however not always
true, as will be shown in the following sections. In the text we will refer to lower rest
of free clusters as a term for allocation patterns where the pattern gives a lower number
of remaining free clusters compared to a strict best fit pattern. Please observe that the
term is only defining a local minimum, i. e. we have only looked at one alternative
pattern.

191

C. Disk Cluster Allocation Behavior in Windows and NTFS

C.3.1. Block writing

The result of the block writing operations are found to be following the best fit allo
cation strategy in most of the cases in Windows 10, but not for Windows 7. We also
present an interesting pattern common to both versions of Windows regarding the sizes
of fragments.

Windows 7

The result of the block writing file operations on the 64 GiB hard disk of the Windows
7 virtual machine using BM 7:1 can be seen in Figure C.1. The file system was already
partially fragmented due to 10000 random file operations executed in an earlier exper
iment and we fragmented the remaining large free area into five smaller ones to put an
even higher burden on the allocation algorithm.

F
ra

g
m

e
n

t
si

ze
 [

cl
u

st
e
r]

0

2×104

4×104

6×104

8×104

Fragment #
0 10 20 30 40 50 60 70

Figure C.1.: The decrease in fragment size for theWindows 7 block writing experiment
using the BM 7:1 layout.

192

C.3. Result

All but three block writing file operations result in between 2 and 9 fragments, which
are all allocated in descending order of size within each file operation (apart for file op
erations 5 to 7 (fragments 14 to 16 in Figure C.1), which are small and unfragmented).
None of the fragmented file operations are best fit allocations and neither are they op
timized from the point of lower rest of free clusters. The last fragment in every file
operation is smaller than the previous fragments in the operation, which is represented
by the dips in the curve in Figure C.1. What also can be noticed is the decreasing
size of the fragments even between file operations, where the size of the second last
fragment in the previous file operation is larger than the starting fragment size in the
following file operation. Also the free areas chosen by the algorithm are often slightly
larger (< 10 clusters) than the fragment and therefore free space might be wasted.
The continuously decreasing fragment sizes seen in Figure C.1 might seem to indi

cate a typical best fit behavior, but there were larger free areas that would have been
better to use from a best fit point of view. Instead the algorithm seems to balance the
sizes of the fragments to be as similar as possible, apart from the last fragment. We did
not see any pattern regarding the position of the chosen fragments.

Windows 10

The original installation (BM 10:0) ofWindows 10 on a 1 TiB virtual hard disk contains
two large areas of free clusters at the end separated by a 512 MiB large area holding a
number of files related to the System Volume Information directory. The two areas are
the largest free areas on disk and over 500 times larger than the third largest area. The
11 largest free areas on the partition can be seen in Table C.3.
All file operations using BM 10:0 allocated files of one block each, which can be

seen in Table C.4. The first and second write operations are best fit allocations, as
can be seen when comparing their sizes and positions to the available free areas in
Table C.3. The rest of the file write operations all allocate consecutive areas in the
second largest free area, which is not a strict best fit behavior. Even the three 4 MiB
file write operations (operation 3 to 5 in Table C.4) are allocated in the same area and
not in any of the better fitting available areas. Although there are system related and
stream writing file operations executed between operations 3 to 5 there are several free
areas that would fit the file sizes of these operations better than the actual allocation
do.
After the file write operations in BM 10:0 19 block write operations are performed

using the BM 10:1 allocation layout. The larger write operations are split into n ≥ 2
fragments, where the n−1 first fragments all have approximately the same size within
each operation. The largest available free area is 123120 clusters in size and as can be
seen in Table C.5 that area is the first to be allocated in this part of the experiment.
All positions in Table C.5 ending in “4544” are free areas created by us. The larger

193

C. Disk Cluster Allocation Behavior in Windows and NTFS

Table C.3.: The 11 largest free areas in the original installation of Windows 10 on a
1 TiB hard disk (BM 10:0).

Position [cluster] Free size [cluster]
150728 869
135305 1259
2009009 1679
2005999 3009
2010944 3742
2570502 4774
56466 14272
809984 27680
2775255 239688
3021071 131132401

134284544 134022399

Table C.4.: The 8 block write operations performed using the original allocation layout
BM 10:0. The operations are presented in order of execution.

File op. Position [cluster] Size [cluster]
1 2775255 131072
2 3148190 131072
3 3280413 1024
4 3283997 1024
5 3282700 1024
6 3291406 262144
7 3815408 32768
8 3882725 32768

194

C.3. Result

areas belonging to the “4544” series are also allocated in descending order, hence they
are allocated in best fit order. Also the smaller, remaining parts, of the file write oper
ations belonging to the “4544” series are allocated in best fit order, although some of
them do not fully occupy the original free area. The unfragmented file operation 6 is
also a best fit allocation due to a number of previous system file deallocations that left
a free area of suitable size.
The part of the experiment using theBM10:2 allocation layout results in single block

allocations and all of them are made in order of best fit. Thus even eight 768 MiB files
all result in single block allocations. Worth noticing is the fact that all but one allocation
are made within the modified area, i. e. not in any of the original free areas. The best
fit allocation approach is proven by the fact that an area outside of the modified area
is used in a sequence of equally sized files. That area has been available since the
installation of the OS and has a size that fits in between the sizes of the modified free
areas.
The execution of the file operations using the BM 10:3 allocation layout gives files

fragmented into 3, 4 and 5 fragments, as can be seen in Table C.7. The allocation
strategy is no longer strictly best fit. Fragment 2 in file operation 1 is not best fit,
because the free area at position 264466712 would have been better to use, as can be
seen in Table C.6 showing the 21 largest free areas available to file allocation 1. The
second file allocation in Table C.7 is strictly best fit, fragments 0 to 2 belong to the
largest available free areas in that round and fragment 3 to the free area best fitting the
remainder. The last file allocation, number 3 in Table C.7 is not best fit at a first glance.
There is a fragment of 56801 clusters that would have been better to use. However, that
free area would then have been combined with an area leaving 1589 free clusters. The
current allocation only leaves 205 clusters unallocated and therefore has a lower rest of
free clusters than a potential strict best fit allocation. If this is the actual behavior of the
allocation algorithm is however not possible to deduce from only one file operation.

General observations

We have not been able to see any patterns in the allocation algorithm’s behavior re
garding how the allocated positions are chosen. Likewise we have not been able to
find an algorithm for how the fragment sizes are chosen. In most cases the fragments
are somewhat smaller (a few clusters) than the free area, leaving small free areas before
and/or after the fragment. Hence the the positioning and size of the fragments within
the free areas are probably governed by some rules, but we have to few data to fully
deduce them.
All fragmented block writing operations have one feature in common, which is the

globally decreasing fragment size. The second last fragment in a file operation is al
ways larger than the first fragment in the following file operation. The decreasing size

195

C. Disk Cluster Allocation Behavior in Windows and NTFS

Table C.5.: The 19 block write operations performed using the BM 10:1 allocation lay
out. The operations are presented in order of execution.

Op. Frag. Pos. [cluster] Size [cluster]
1 0 267534544 123120
1 1 142864544 7952
2 0 267404544 123000
2 1 142994544 8072
3 0 267274544 122880
3 1 267144544 122760
3 2 152094544 16504
4 0 267014544 122640
4 1 266884544 122520
4 2 152614544 16984
5 0 137534544 3072
6 0 3553550 3072
7 0 160804544 24576
8 0 137664544 3072
9 0 160934544 24576
10 0 161064544 24576
11 0 161194544 24576
12 0 240754544 98304
13 0 240884544 98304
14 0 241014544 98304
15 0 241144544 98304
16 0 266754544 122400
16 1 266624544 122280
16 2 266494544 122160
16 3 162754544 26376
17 0 266364544 122040
17 1 266234544 121920
17 2 266104544 121800
17 3 163924544 27456
18 0 265974544 121680
18 1 265844544 121560
18 2 265714544 121440
18 3 165094544 28536
19 0 265584544 121320
19 1 265454544 121200
19 2 265324544 121080
19 3 166264544 29616

196

C.3. Result

Table C.6.: The 21 largest free areas in the (BM 10:3) allocation layout. These are also
all free areas equal to or bigger than 18017 clusters in the partition.

Position [cluster] Free size [cluster]
265866802 18017
124324183 24027
265638022 28409
124564183 30027
124804183 40027
263669912 40407
264466712 56801
265380686 60550
267499096 62144
267646484 69247
267574290 72017
267338630 81835
267252722 85731
262618164 85961
267162528 90017
267067598 94753
266967404 100017
265080492 103409
266861328 105899
125536472 107711
266748634 112517

Table C.7.: The 3 block write operations performed using the BM 10:3 allocation lay
out. The operations are presented in order of execution.

Op. Frag. Pos. [cluster] Size [cluster]
1 0 266748636 112512
1 1 125536472 107708
1 2 265380688 41924
2 0 267252724 85728
2 1 267338632 81832
2 2 267574292 72012
2 3 124324184 22572
3 0 267646484 69244
3 1 267499096 62140
3 2 267438388 60531
3 3 263669912 40407
3 4 124564184 29822

197

C. Disk Cluster Allocation Behavior in Windows and NTFS

feature is also valid within each file operation. The feature can be seen in Figure C.1
for the Windows 7 virtual machine and in Tables C.4, C.5 and C.7 for the Windows 10
virtual machine. This pattern is valid even if there are system file or stream writing
operations interleaved with the block writing operations.

C.3.2. Stream writing

The result of the stream writing file operations consists of 15 operations done in Win
dows 7 and 23 operations inWindows 10. Since the files are written as a stream the OS
cannot implement a proper best fit allocation strategy and we therefore do not check
for it.

Windows 7

There is a weak correlation between file size, the file writing order and number of
fragments in the results, which can be seen in Table C.8. The correlation is however
very weak and seems to be increasing for small files and decreasing for larger files.
The allocation patterns of the different file operations always begin with very small

fragment sizes, often there is a single cluster allocated first. The size of the fragments
increases as more data is written to disk. In some cases the fragment size is doubled in
each of the first 5 consecutive allocations. This pattern diminishes as even more data
is written, but the size of the fragments is constantly increasing, occasionally with a
large deviation either up or down. The deviations are sometimes as frequent as every
second allocation. In some cases the fragment size is suddenly increased with one or
two orders of magnitude, a few times even more.

Windows 10

As for the Windows 7 case we show the number of fragments per file and their sizes in
clusters (see Table C.9). Windows 10 does not show any correlation between file size,
writing order and number of fragments.
The stream writing file allocation for Windows 10 is smoother than for Windows 7,

with fewer and lower deviations. The general increase of the fragment’s size seen in
Windows 7, as well as the small fragments at the beginning of the file operations, are
present also in the Windows 10 results. The first few file fragments often reach sizes
of approximately 40 clusters in two or three steps, which is faster than in Windows 7.
The first stream writing file operations using the BM 10:0 allocation layout ends with
one very large allocation, especially when the files are bigger. In Table C.9 this is
manifested in the low number of fragments connected to some of the files containing
131072 and 262144 clusters.

198

C.3. Result

Table C.8.: The number of fragments per file and their sizes in clusters for theWindows
7 stream writing experiment using BM 7:1. There is a weak correlation
between the number of fragments, the writing order and the file size, which
is most clearly seen for the largest files. The result is presented in order of
size and time of writing.

No. of frag. File size [cluster]
26 1024
35 1024
40 1024
70 32768
44 32768

1131 131328
468 131328
195 131328
242 131328
339 262144
226 262144
1657 393216
340 393216
328 393216
206 393216

199

C. Disk Cluster Allocation Behavior in Windows and NTFS

Table C.9.: The number of fragments per file and their sizes in clusters for theWindows
10 stream writing experiment using BM 10:0. No real correlation between
the number of fragments, the writing order and the file size can be seen.
The result is presented in order of size and time of writing.

No. of frag. File size [cluster]
7 1024
17 1024
27 1024
13 1024
48 1536
70 12288
18 32768
20 32768
174 49152
21 131072
39 131072
64 131072
43 131072
326 196608
165 196608
417 262144
1024 262144
103 262144
47 262144
23 262144
53 262144
48 262144
152 393216

200

C.4. Discussion

General observations

Both Windows 7 and 10 show a general increase, although not without deviations,
regarding the size of the allocated fragments. The allocation always starts with a small
fragment, the maximum size of the first fragment for both versions of Windows is 5.
The distribution of starting fragment sizes can be seen in Table C.10.

Table C.10.: The accumulated amount of first fragment sizes in bothWindows 7 and 10
using stream writing. All Windows 7 starting fragments are single clus
ters.

Frag. size [cluster] Amount [%]
1 71
2 16
3 8
4 0
5 5

All (100%) of the Windows 7 starting fragments are of size 1 and for Windows 10
the amount of size 1 starting fragments is 52%.

C.4. Discussion

The main contribution of the experiment on the behavior of the NTFS allocation algo
rithm in Windows 7 and 10 is the result showing a globally decreasing fragment size
of block writing file operations. However, there are a few constraints that first must
be fulfilled. First of all the file system must be fragmented, without any large areas of
free, unallocated clusters and the files to be written have to be larger than the largest
available free area to force the allocation algorithm to fragment them. Consequently
there should not be any deallocations of areas larger than the next file to be written. If a
new larger free area becomes available the decreasing trend will probably be restarted
from there. Apparently stream writing interleaved with block writing is not affecting
the decreasing size allocation pattern, but such files are not included in the decreasing
pattern. Unfragmented files will also be excluded from the pattern.
The decreasing fragment size behavior can for example be used in digital forensic

investigations to get a relative timestamp or the sequence of writing of a collection
of block written files. By comparing the sizes of the first and second last allocated
fragments of files their timestamps can be verified, or their internal age relative each

201

C. Disk Cluster Allocation Behavior in Windows and NTFS

other be decided.
It is also possible to separate a block written file from a stream ditto. If that knowl

edge is combined with knowledge on what type of writing strategy different software
packages in aWindows computer use the probable source of a file can be decided. This
is for example useful in triage situations where it will be enough to scan the NTFSmeta
data (the MFT records) to determine the main source of a file.
Also the stream writing behavior of the allocation algorithm can be of use for a

digital forensic examiner. Our result shows that the size of the first fragment of a
streamwritten file is 1 cluster in 71% of the cases (100% in the 64 GiB virtual hard disk
running Windows 7) and none of the stream written files started with a fragment larger
than 5 clusters. That corresponds to files between 4 and 20 KiB in size. We have earlier
found the average amount of files in a standard office computer to be approximately
350000 by counting the files in 25 (office) computers running mostly Windows 7 [6,
7]. If we combine that with the official disk space requirement of 20 GiB for a standard
Windows 7 to 10 installation [17–19] we get an average file size of 60 KiB. This is a
theoretical lower bound, because we did not take the size of the user files included in
the computer average of 350000 files into account. Hence any allocated area smaller
than 60KiB belongs to the first part of a streamwritten file with a high probability. This
knowledge can for example be used in file carving processes to quickly find the data
type of files directly from the data, without the need to trust the file name, by searching
for small areas with similar data content and then extracting any magical bytes from
them.
Since we have reverse engineered the allocation algorithm without access to any

documentation we have no written proofs of the reasons behind the behavior we have
found. We therefore can only hypothesize, but a valid reason for the block writing be
havior of creating similarly sized fragments is to create an even distribution of the data
over several cylinders or flash memory capsules for faster access and wear levelling.
The reason behind the stream writing behavior of starting small and increasing the

fragment sizes might be twofold. By starting from very small fragment sizes any free
clusters left over when doing best fit allocation can be taken care of. The other reason is
the fact that without knowledge on the actual size of the file to be written the algorithm
has to estimate the final size of the file. By increasing the size of the fragments as more
data is written we get a acceptable compromise between speed (less fragmentation) and
a good utilization factor (small areas are not wasted). Hence the average fragment size
will increase as the file size increases.
The file system allocation algorithm of Windows 7 and 10 when using NTFS should

be best fit [5], but our experiment shows that it is not completely true. The block
writing allocation is deviating from a strict best fit behavior in a few cases. Possible
reasons for any differences in behavior are typically OS version, partition size, degree
of file system utilization, file size and type of file writing behavior.

202

C.4. Discussion

Regarding the influence of the OS we have not noticed any differences in allocation
behavior. The result might have been influence by the fact that we only used two
versions of Windows, but by using both the first and the latest versions of the latest
generation of Windows we cover for any differences introduced in Windows 8 and 8.1.

Any differences in allocation strategy depending on the partition size is covered
by the use of both a 64 GiB and a 1 TiB virtual hard disk. During the experiments
we noticed small differences in behavior between the small and the large hard disks,
especially in the stream writing case where the deviations from the increasing fragment
size were smaller for the 1 TiB hard disk than for the 64 GiB hard disk. The most
probable reason for this behavior is the larger amount of varied sizes of free areas to
choose from in the larger disk.

We found that the allocation algorithm does not use a best fit strategy when allocat
ing block written files in Windows 10 when using the unmodified BM 10:0 allocation
layout. Instead it allocates chunks of the large area of free clusters at the end of the
file system, which seems reasonable from a wear levelling point of view. We did not
observe the same behavior in the Windows 7 case, but there we had gotten rid of all
large unallocated areas before the experiment started.

The allocation behavior during the 4 MiB file operations in Windows 10 (using the
BM 10:0 layout) where the algorithm allocates parts of one of the large free areas at
the end of the partition cannot be explained by the fact that the block writing opera
tions and the stream operations where interleaved during the experiment. Nor can it
be explained by any system files being written to the free areas that would have been
appropriate to use. After file operation 5 in Table C.4 there still are several free areas
of a few thousand clusters left that could have been used instead. The same applies to
the file write operation 5 shown in Table C.5. This behavior more resembles a worst
fit allocation strategy than a best fit ditto.

The knowledge on the allocation behavior of Windows and NTFS gained through
the experiments presented in this paper will benefit our previous work within the file
carving area [20–25]. There we experimented with different algorithms to detect the
file type of data fragments using only the information held in the fragments themselves.
Using for example the fact that the allocation algorithm has different behavior for block
writing and stream writing can help identify and separate data types that are written in
different ways. Also the fact that the free areas often are not fully utilized can help im
prove data type separation in heavily fragmented cases by explaining very small areas
with different properties intertwined between larger areas of data with equal properties.
Especially since it is well known that many file types contain areas of different types
of data [20, 26].

203

C. Disk Cluster Allocation Behavior in Windows and NTFS

C.5. Conclusion and future work

By writing files ranging in size between 4 MiB to 1,5 GiB to a Windows 7 virtual
machine having a 64 GiB hard drive, as well as a Windows 10 virtual machine having
a 1 TiB hard drive, we have found that the Windows NTFS allocation algorithm is
more complex than the best fit strategy described in the literature [5]. In most of the
file operations executed during our experiment the algorithm behaved as a strict best
fit type, but when having access to a very large area of free clusters it started to allocate
parts of that area instead of using options corresponding to a best fit allocation strategy.
Looking at data from previous experiments [6, 7] we have found that having a few very
large areas of free clusters at the end of a NTFS partition is the standard situation, thus
the allocation strategy used by Windows together with NTFS is only best fit in special
circumstances. Likewise the allocation strategy is not strictly best fit when dealing
with stream written files, where the allocation algorithm is creating increasingly larger
fragments as more data is written (the fragment size and the currently written size
correlates). However, the fragments are allocated to the best fitting free areas, so there
is a foundation of best fit behavior in the algorithm.
We have not found any literature empirically studying the inner workings of the al

location strategy used in Windows 7 and 10 partitions formatted as NTFS. Therefore
already the existence of this work contributes to the digital forensics field. The result
can furthermore be used to verify timestamps, rebuild files in file carving and deter
mine the type of file on a high level by looking at how the sizes of the allocated areas
increases or decreases. Block written files are allocated in decreasing order of frag
ment size and stream written files are allocated in increasing order of fragment size.
We also found that very small allocated areas (1 to 5 clusters) belong to the start of
stream written files with high probability.
As future work we will expand the experiment to be able to isolate the different

parameters affecting the behavior of the allocation algorithm. We also need more data
to further strengthen our results and conclusions. It would also be of great interest to
include other OSs and file systems than Windows and NTFS in the experiment.

C.6. Bibliography

[1] A. Pal and N. Memon. “The evolution of file carving.” In: IEEE Signal Pro
cessing Magazine 26.2 (Mar. 2009), pp. 59–71. ISSN: 10535888. DOI: 10.
1109/MSP.2008.931081.

[2] R. Poisel and S. Tjoa. “A Comprehensive Literature Review of File Carving.”
In: 2013 International Conference on Availability, Reliability and Security.
Sept. 2013, pp. 475–484. DOI: 10.1109/ARES.2013.62.

204

https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/ARES.2013.62

C.6. Bibliography

[3] S. Willassen. “Finding Evidence of Antedating in Digital Investigations.” In:
2008 Third International Conference on Availability, Reliability and Security.
Mar. 2008, pp. 26–32. DOI: 10.1109/ARES.2008.149.

[4] S. Willassen. “Methods for Enhancement of Timestamp Evidence in Digital
Investigations.” PhD thesis. Norwegian University of Science, Technology,
Faculty of Information Technology, Mathematics, and Electrical Engineering,
Department of Telematics, Jan. 2008.

[5] B. Carrier. File System Forensic Analysis. AddisonWesley Professional, 2005.
ISBN: 0321268172.

[6] M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Using NTFS Cluster Alloca
tion Behavior to Find the Location of User Data.” In: Digital Investigation 29
(2019), S51–S60. ISSN: 17422876. DOI: 10.1016/j.diin.2019.04.
018.

[7] M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkolbotn.
“Creating aMap of User Data in NTFS to Improve File Carving.” In: Advances
inDigital Forensics XV. Cham: Springer International Publishing, 2019. Chap. 8,
pp. 133–158. ISBN: 9783030287528. DOI: 10.1007/978 3 030
287528_8.

[8] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. 9th ed.
Wiley, Dec. 2012.

[9] W. Stallings.Operating Systems— Internals andDesign Principles. 7th. Upper
Saddle River, New Jersey, USA: Pearson Education Inc., 2012.

[10] A. Tanenbaum and H. Bos. Modern Operating Systems. 4th. Upper Saddle
River, New Jersey, USA: Pearson Education Inc., 2015.

[11] J. Hughes. The Four Stages of NTFS File Growth. Last accessed 24102018.
Oct. 2009. URL: https://blogs.technet.microsoft.com/askcore/
2009/10/16/thefourstagesofntfsfilegrowth/.

[12] Microsoft. How NTFS Works. Last accessed 30092018. 2018. URL: https:
//technet.microsoft.com/ptpt/library/cc781134(v=ws.10)
.aspx.

[13] maaartinus, L. Osterman, and PC Guru.What block allocation algorithm does
NTFS use?Last accessed 24012019.Mar. 2017. URL: https://superuser.
com/questions/274855/what block allocation algorithm
doesntfsuse.

[14] W. Tse. “Forensic analysis using FAT32 file cluster allocation patterns.” MA
thesis. University of Hong Kong, 2011.

205

https://doi.org/10.1109/ARES.2008.149
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1007/978-3-030-28752-8_8
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use
https://superuser.com/questions/274855/what-block-allocation-algorithm-does-ntfs-use

C. Disk Cluster Allocation Behavior in Windows and NTFS

[15] W. Minnaard. “The Linux FAT32 allocator and file creation order reconstruc
tion.” In: Digital Investigation 11.3 (2014). Special Issue: Embedded Foren
sics, pp. 224–233. ISSN: 17422876. DOI: 10.1016/j.diin.2014.06.
008.

[16] B. Carrier. TSK Tool Overview. 2014. URL: http://wiki.sleuthkit.
org/index.php?title=TSK_Tool_Overview.

[17] Microsoft. System requirements. Last accessed 30042018. Apr. 2017. URL:
https://support.microsoft.com/engb/help/12660/windows
8systemrequirements.

[18] Microsoft. Windows 10 system requirements. Last accessed 30042018. Nov.
2017. URL: https : / / support . microsoft . com / en us / help /
4028142/windowswindows10systemrequirements.

[19] Microsoft. Windows 7 system requirements. Last accessed 30042018. Apr.
2017. URL: https://support.microsoft.com/enus/help/10737/
windows7systemrequirements.

[20] M. Karresand. “Completing the Picture— Fragments and Back Again.” Licen
tiate thesis. Linköping Institute of Technology, Linköping University, Sweden,
May 2008.

[21] M. Karresand and N. Shahmehri. “File Type Identification of Data Fragments
by Their Binary Structure.” In: Proceedings from the Seventh Annual IEEE
Systems, Man and Cybernetics (SMC) Information AssuranceWorkshop, 2006.
Piscataway, NJ, USA: IEEE, 2006, pp. 140–147. DOI: 10.1109/IAW.2006.
1652088.

[22] M. Karresand and N. Shahmehri. “Oscar — File Type and Camera Identifica
tion Using the Structure of Binary Data Fragments.” In: Proceedings of the 1st
Conference on Advances in Computer Security and Forensics, ACSF. Ed. by
J. Haggerty and M. Merabti. Liverpool, UK: The School of Computing and
Mathematical Sciences, John Moores University, July 2006, pp. 11–20.

[23] M. Karresand and N. Shahmehri. “Oscar — File Type Identification of Binary
Data in Disk Clusters and RAM Pages.” In: Security and Privacy in Dynamic
Environments, Proceedings of the IFIP TC11 21st International Information
Security Conference (SEC 2006), 2224May 2006, Karlstad, Sweden. Vol. 201.
Lecture Notes in Computer Science. Springer, 2006, pp. 413–424. DOI: 10.
1007/0387334068_35.

206

https://doi.org/10.1016/j.diin.2014.06.008
https://doi.org/10.1016/j.diin.2014.06.008
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1109/IAW.2006.1652088
https://doi.org/10.1007/0-387-33406-8_35
https://doi.org/10.1007/0-387-33406-8_35

C.6. Bibliography

[24] M. Karresand and N. Shahmehri. “Oscar—Using Byte Pairs to Find File Type
and Camera Make of Data Fragments.” In: Proceedings of the 2nd European
Conference on Computer Network Defence, in conjunction with the First Work
shop on Digital Forensics and Incident Analysis (EC2ND 2006). Ed. by A.
Blyth and I. Sutherland. Springer Verlag, 2007, pp. 85–94. DOI: 10.1007/
9781846287503_9.

[25] M. Karresand and N. Shahmehri. “Reassembly of fragmented JPEG images
containing restart markers.” In: Proceedings 4th Annual European Confer
ence on Computer Network Defense, EC2ND 2008. 2008, pp. 25–32. DOI:
10.1109/EC2ND.2008.10.

[26] V. Roussev and S. Garfinkel. “File Fragment ClassificationThe Case for Spe
cialized Approaches.” In: 2009 Fourth International IEEE Workshop on Sys
tematic Approaches to Digital Forensic Engineering. May 2009, pp. 3–14.
DOI: 10.1109/SADFE.2009.21.

207

https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1007/978-1-84628-750-3_9
https://doi.org/10.1109/EC2ND.2008.10
https://doi.org/10.1109/SADFE.2009.21

D. An Empirical Study of the NTFS Cluster
Allocation Behavior Over Time

The layout of the article has been lightly edited to fit the overall layout of the thesis. This text and a
full citation of the article has been added below the title. Since the work is focused on disk partitions
(Windows volumes) the term Logical Block Addressing (LBA) in the article has been corrected to LPVA
where applicable. The content is otherwise unchanged and corresponds to the original, published, version.

M. Karresand, G. Dyrkolbotn, and S. Axelsson. “An Empirical Study of
the NTFS Cluster Allocation Behavior Over Time.” In: Forensic Science
International: Digital Investigation 33 Supplement (July 2020), p. 301008.
ISSN: 26662817. DOI: 10.1016/j.fsidi.2020.301008

Abstract

The amount of data to be handled in digital forensic investigations is continuously
increasing, while the tools and processes used are not developed accordingly. This
especially affects the digital forensic subfield of file carving. The use of the structuring
of stored data induced by the allocation algorithm to increase the efficiency of the
forensic process has been independently suggested by Casey and us. Building on that
idea we have set up an experiment to study the allocation algorithm of New Technology
File System (NTFS) and its behavior over time from different points of view. This
includes if the allocation algorithm behaves the same regardless ofWindows version or
size of the hard drive, its adherence to the best fit allocation strategy and the distribution
of the allocation activity over the available (logical) storage space. Our results show
that space is not a factor, but there are differences in the allocation behavior between
Windows 7 and Windows 10. The results also show that the allocation strategy favors
filling in holes in the alreadywritten area instead of claiming the unused space at the end
of a partition and that the area with the highest allocation activity is slowly progressing
from approximately 10 GiB into a partition towards the end as the disk is filling up.

209

https://doi.org/10.1016/j.fsidi.2020.301008

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

D.1. Introduction

The amount of data to be handled during digital forensic case work is rapidly increasing
and is a major challenge to the digital forensic community [1]. The problem has been
of concern to the digital forensic field for many years [2–6], but the problem has not
yet been solved.
Casey [7] and also Karresand et al. [8–10] have independently suggested to use the

inherent structures in the stored data to improve the digital forensic process. The prin
ciple builds on taking advantage of the pattern introduced by the allocation algorithm
and in that way improve for example the efficiency when rebuilding files, extracting
temporal information (time stamps) from raw data and direct searches to the areas most
likely to contain important (user related) data.
The principle is especially valid for the digital forensic subfield of file carving,

which is used in digital forensic investigations when there is no file system available in
the investigated media. The file carving process is based on using only the properties
of the stored data itself [11, 12]. File carving is highly valuable to the digital forensic
investigator, but computationally intensive to perform, hence much effort is put into
mitigating the increasing amounts of data by different means. In a survey by Quick and
Choo [1] the following concepts to decrease the amount of work needed to be done are
listed; data mining, data reduction and subsets, triage, intelligence analysis and digital
intelligence, distributed and parallel processing, visualization, digital forensics as a
service (DFaaS) and different artificial intelligence techniques.
The foundation of digital forensics is to use the inherent structures of data, but the

idea to use the inherent structures introduced by the storage process in stored data is
rather new and not yet fully investigated. Therefore the actual behavior of the allo
cation algorithm has to be found for any relevant file system. The behavior of file
systems from the open source field can be found by studying their code base, but for
closed source operating systems (OSs) the behavior is best found by empirical studies
of the allocation behavior in experiments and the real world. The currently most pop
ular OS is Windows, which has almost 86% of the market share [13]. Windows uses
New Technology File System (NTFS) as the default file system and we have therefore
chosen to study the allocation behavior of NTFS in recent versions of Windows.
The aim of the project is to gain knowledge on the allocation behavior of NTFS in

different modern versions of Windows (versions 7 to 10) and especially if and how the
behavior changes over time. This includes the adherence to the best fit [14] allocation
strategy and if the allocation activity is evenly spread over the (logical) addresses of
the storage area. We will also test whether the allocation algorithm of Windows and
NTFS is version and/or size dependent.
To be able to answer the research questions we have executed an experiment where

we used a weighted random distribution to write, expand, shrink and delete files in

210

D.1. Introduction

four different versions of Microsoft Windows (7, 8, 8.1 and 10). To be able to find
similarities and differences between the Windows versions we ran eight instances of
the same virtual machine for each Windows version. Four of the machines for each
Windows version used the same file operation pattern, also referred to as the standard
pattern, and the other four machines ran unique patterns. The virtual machines used
64 GiB disk, but we also set up three extra virtual machines with 256 GiB disks to
detect any differences in allocation behavior due to larger disk sizes. These virtual
machines used a modified version of the the standard pattern, where each file operation
was increased by a factor of 4.6 to compensate for the larger disk size. Every operation
was followed by the extraction of the current cluster allocation status taken from the
$Bitmap file in the Master File Table (MFT). The allocation status was then used to
find the difference in cluster allocation between each operation. The experiment was
set to run 10000 iterations in each virtual machine.
The rest of this paper is organized as follows: The remaining parts of Section In

troduction presents related work and our contributions. In Section Experiment we
describe the experimental platform and how the experiment was implemented. Sec
tion Result presents the result of the study. In Section Discussion we discuss the effects
and implications of our result to the research field of digital forensics and especially file
carving. Section Conclusion and future work concludes the work and presents ideas of
future work to be done.

D.1.1. Background

[15] describes the theory of file system construction. A file system keeps track of
data stored on secondary storage and is organized in different ways. However, all
implementations share some common properties; the addressing of the physical storage
is abstracted by the file system into logical addresses and the position of the stored data
is determined by an allocation algorithm.
Most modern file systems use an index allocation strategy to keep track of the data on

disk. The index allocation strategy separates the metadata and the file data and hence
the index itself does not suffer from external fragmentation (free holes being to small
to be filled with new data), but the data part can if heavily used give rise to fragmented
files, requiring regular defragmentation of the file system. There is also a risk of disk
space being wasted when using index allocation, especially for small files requiring a
full index meta data block to hold just a few index posts.
There are also a number of algorithms used for handling the free space in the data

part that is to be populated by new files. The best fit algorithm is meant to reduce the
risk of file data fragmentation by always utilizing the free space best fitting the file to
be written. The idea is to reduce the free space remaining in a block of free clusters
due to large differences in what is needed and what is available. However, this strategy

211

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

requires all the free spaces available to be compared at each file operation before the
best fit can be chosen.
NTFS (Microsoft Windows) is using a index allocation strategy [16, 17], the index is

called the MFT [16] and the individual posts are called MFT records. The problem of
space being wasted when using index allocation is solved by storing the data of smaller
files (up to approximately 700 B1) in the MFT records themselves. To allocate space
for file data NTFS uses a best fit allocation strategy [14].
When formatting an NTFS partition 12.5% of the space is reserved for the MFT as

default [16]. The MFT records are 1 KiB in size and usually the size of the smallest
allocatable unit (called cluster) in NTFS is 4 KiB. The allocation status of every clus
ter in the file system is stored in the $Bitmap file, which is record number 6 in the
MFT. Each bit in the $Bitmap file represents one cluster in ascending Logical Parti
tion Volume Address (LPVA) order. If a cluster is allocated the corresponding bit in
the $Bitmap file is set to 1, hence 0 represents a free cluster.
A file can either be written as a stream or as one large block at once [8]. In the

first case the OS does not know the final size of the file and therefore cannot optimize
the allocation accordingly. This often leads to file fragmentation, but the behavior is
partly mitigated by the internal buffering of the OS. Writing a file in one piece gives
the OS information on its size and it can therefore optimize the storage by using its
standard allocation algorithm. This behavior is probably more common when dealing
with smaller files that easily can be held in Random Access Memory (RAM), than for
large files. The specific write behavior is software dependent and might incorporate
temporary writing of files to protect the data in case of a power loss or hardware failure.

D.1.2. Related work

Since the research area is new there is not much related work to be found. We have
therefore also includedwork from the file carving area containing somematerial related
to the allocation algorithm of file systems, as well as work related to the placement of
data on disk.
We have have presented the novel idea of creating a map of the probability of finding

user data at different LPVA positions of hard disk partitions in three earlier articles [8–
10]. In the first article [10] we tried to find any static areas of NTFS partitions. We
defined static areas as areas containing the same data at the same logical position in
different partitions. During that work we also found that the $MFT started exactly
3GiB into the NTFS formatted partitions of the over 30 unrelated real world hard drives
we looked at. The hard drives had different sizes and contained different versions of
1Themaximum size of an internal $DATA attribute varies depending on the size of other attributes stored
in the MFT record. Most sources give a maximum internal $DATA attribute size of 600 to 700 bytes.
Microsoft reports a 900 byte limit [16].

212

D.1. Introduction

Windows [10]. We also used the $Bitmap file to study which part of an NTFS partition
had the highest allocation activity [9]. The highest activity was found approximately
10 GiB into a partition. The activity then slowly decreased towards the end of the
partition, which was expected. In the third article [8] we presented new information on
the detailed behavior of the allocation algorithm in Windows using NTFS in different
file writing situations (writing a file like one block or writing it as a stream of data).
The results showed that the size of the allocated blocks (i.e. file fragments) decreased
during block writing and increased during stream writing. The study was however
based on a low number of writing operations, Windows versions and partition sizes.
We will therefore validate our results in a larger experiment.
Casey [7] introduces a new digital forensic research field called digital stratigra

phy that draws inspiration from archaeology, which share many common features with
(digital) forensics. The idea is to look upon file system activities as layers (strata) that
are structured. This structure can be used to complement, improve and expand the in
formation currently retrieved from hard drives and disk images. In the article [7] shows
how the next fit allocation strategy used in File Allocation Table (FAT) file system (for
example FAT16 and FAT32 in Windows) clearly indicates the order of storage of file
data. He also touches upon the best fit allocation algorithm used in NTFS and how
it behaves, but the bulk of the NTFS part is focused on specific behavior regarding
valid data length (VDL) slack that is currently not properly covered by available digi
tal forensic tools. He also covers the effect file tunneling has on the reliability of file
system meta data.
Key [18] has developed an EnScript module to the EnCase software which creates a

map of the recoverable sectors of a file found in a file system. It can handle situations
where other tools do not work, for example partially damaged files. It is very processor
intensive and therefore can only create maps of a few files at a time. Key does not
mention to what extent any knowledge on the allocation pattern of the OS and file
system is used in the article.
Gladyshev and James [2] have studied the problem of file carving from a decision

theoretic point of view. They suggest a model where storage media is sampled with
a frequency based on different properties of the hard disk and the file type that is to
be found. In some specific situations their carving model outperform standard linear
carving algorithms, but their solution was not generally applicable at the time of writ
ing. Gladyshev and James [2] mention using the distribution of data on disk, but do not
explain if they take advantage of any structures introduced by the allocation algorithm.
In two articles by Baar et al. [19] and Beek et al. [20] outlining the DFaaS system

Hansken [20] and its predecessor Xiraf [19] the concept of nonlinear extraction of
data from images is discussed. Both van Baar and van Beek suggest that the MFT
records of an NTFS partition are extracted first. The MFT records are then used to
find other interesting areas of the file system. van Baar and van Beek also suggest that

213

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

the analysis process is used to influence the imaging process by having specified parts
being prioritized. As we understand they do not base the priority on the allocation
pattern of the analyzed system, but on file name and other higher level meta data found
in the MFT records.
Jones et al. [21] have created a framework to enable studies of (deleted) file persis

tence in storage media. They use differential forensic analysis to compare snapshots of
file systems in use and follow the decay of deleted files over time. This work connects
to our experiments, because free areas are meant to be reused by the file system, but
depending on the size of the free area the best fit allocation algorithm might not be
able to use it for a certain amount of time. The concept of data persistence is of interest
to us because the persistence at different areas of storage media indicates that these
positions are not reused. This information might correlate with the allocation pattern
and its development over time, which is what we are studying.
Fairbanks and Garfinkel [22] present 12 factors affecting data persistence in storage

media. Fairbanks [23] and Fairbanks [24] also has described the lowlevel functions
of fourth extended filesystem (EXT4) and their effect on digital forensics. Although
the articles do not describe the inner workings of NTFS the principle is still of interest
to us, especially in future extensions of our experiment.
Our main contribution to the digital forensic research field is the result showing

that there are differences in the allocation behavior of Windows 10 and older versions
of Windows and that the best fit allocation strategy is not fully used. The maximum
and median fragment sizes of Windows 7 show interesting linear properties, which are
not found in Windows 10. There are also areas within the file system that are rarely
used, forming bands of low allocation activity through the file systems. We also show
how the allocation of new data is concentrated to an area close to (just before) the
middle of a partition, but also how that area is slowly moving towards the middle of
the partition, regardless of the size of the partition. The result can be used to determine
the sequential order of files, estimate the proper size of file fragments to be carved and
where in the create and erase cycle a file system is through the leeward effect found in
all Windows versions. The results can also be used to improve the efficiency of the file
carving process by helping the digital forensic investigator to prioritize where to start
searching for user related data.

D.2. Experiment

The experiment was based on iteratively creating, deleting, expanding and shrinking
files in unused NTFS formatted partitions in 32 virtual machines running Windows
versions 7, 8, 8.1 and 10. The aim was to empirically study how the cluster allocation
pattern develops over time and how the allocation frequency varied at different LPVA

214

D.2. Experiment

positions. Each file operation iteration contained the following elements:

1. Boot the virtual machine.

2. Based on a precomputed list either create, delete, expand or shrink a file within
the virtual machine’s NTFS file system.

3. Shut down the machine.

4. Extract the $Bitmap file from the virtual hard disk (using dd from the host)

Since each file operation iteration required the virtual machine to be rebooted a full
iteration took several minutes to complete. There were also extra time slots inserted at
critical moments to compensate for any variations in execution time during an iteration.
We allowed the experiment to run for 16 days before shutting it down due to time

constraints. Most, but not all, of the virtual machines then had completed 10,000 itera
tions. All virtual machines were run in parallel in a computer cluster to save time, if we
had had to run them onebyone the experiment would have taken up to 35 ∗ 16 = 560
days to execute, excluding setup time.
The foundation of the experiment was built on having four virtual machines installed

with one Windows version each using standard parameters. Then a Python 2.7 execu
tion environment was installed together with the file operation scripts. An autostarted
.bat script was placed in the virtual machine to check when the boot sequence was
finished. The script was small enough to fit into an MFT record and hence did not re
quire any new cluster allocation outside the MFT. The path setting was modified and
the security level of Windows was lowered to allow logging in without a password.
The goal was to keep the NTFS file system as pristine as possible to allow us to study
the allocation algorithm from the start of the life of the file system. There were how
ever a number of system processes that also modified the file system in each iteration,
which were beyond our control.
We let 16 virtual machines (four machines for each version of Windows, half of

the total amount of machines) use exactly the same file operation pattern (the standard
pattern) to test if there was any deterministic behavior connected to the allocation (if
any similarities of the allocation patterns could be found). Hypothetically it should
be, since the virtual machines within each Windows version were exact copies of each
other.
To be able to see any deterministic allocation behavior we used scp when distribut

ing the virtual machines to the computer cluster nodes. We did not use the VirtualBox
clone function because it make small changes to the virtual machine’s settings, which
in turn might affect the OS and hence trigger an unintended write operation. Using scp
to copy the virtual machines guaranteed them to be identical, which was verified us
ing Secure Hash Algorithm 1 (SHA1) hash summing. However, we did not have full

215

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

control of the cluster allocation and deallocation during an iteration of the experiment
because of internal OS processes, thus we still had uncontrolled variables affecting the
outcome of the standard pattern sub experiment.
Due to instability in the VBoxManage interface and unforeseen popup windows ap

pearing in the virtual machines several of them had to be restarted during the course
of the experiment. This might have affected the result of the experiment, but since
we used at least four virtual machines for each combination of Windows version and
partition size in the experiment the effects of the unplanned reboots were diminished.
The experiment was run on eleven nodes in a large computer cluster. The cluster

is managed by Swedish Defence Research Agency (FOI) and we therefore were not
allowed tomake any changes to the cluster nodes’ OS or configuration, which forced us
to use alternative tools to extract the data. This did however not affect the experimental
results.
Each cluster node ran four virtual machines, one for each version of Windows in

our test (see Table D.1). The $Bitmap file from the MFT of NTFS was used to check
which clusters were affected by each file operation. To enable us to extract the $Bitmap
file after each operation the virtual machines were configured to use fixed size disks,
which can be directly handled by common Linux tools. We limited the size of the fixed
virtual disks to 64 GiB to be able to use four virtual machines in each node and still
have space for the $Bitmap file copies. Each copy was 2 MiB large and there would
be 40,000 $Bitmap copies (over 78 GiB) in each cluster node when the experiment
was finished. If we had used larger virtual disks we would have had to decrease the
number of virtual machines, which in turn would have affected the reliability of the
results. The hard drive size of 64 GiB was therefore found to be a reasonable tradeoff
between reliability and a realistic hard drive size.

Table D.1.: The four versions of Windows used in our experiment.
Name Version

Windows 7 Professional SP 1 7601
Windows 8 Enterprise 9200
Windows 8.1 Enterprise 9600
Windows 10 Enterprise 1703

The virtual machines used four internal Python scripts for the experiment, one for
each type of file operation. The scripts and the resulting $Bitmap files were placed in a
external folder shared with the host, one for each machine, to isolate the machines from
each other. This also meant that we avoided cluttering the virtual disk with data and

216

D.2. Experiment

therefore minimized the risk of unspecified behavior due to several machines accessing
the same file at the same time. The file operations were executed as the local user of
the virtual machines to simulate the activity of a real user.
The execution of the experiment was controlled by a Python script on the host node.

The script selected one of four actions; create, delete, increase and decrease based on a
configuration file containing a precomputed weighted random selection. The selection
was biased towards file creation and extension, where 1

4 of the operations were set to
create, 9

40 to erase,
11
40 to increase and

1
4 to decrease. The process was set to create files

until the disk was 30% full and then switch back to either erase or createonly mode if
the usage of the disk reached above 95%or below 5%. The communication between the
host script and the virtual machine scripts was done using the VBoxManage interface.
The experiment emulated a file sharing or multimedia consuming user that alternated

his or her file operations between small and large files. The size of the small files varied
between 4 KiB and 4 MiB and the size of the large files between 1 MiB and 1 GiB.
The size of the large files might not seem very large, but since the virtual disks were
only 64 GiB in size a 1 GiB file corresponds to a 32 GiB file on a 2 TiB disk.
All write operations were stream writing operations, i. e. the OS of the virtual ma

chine did not know the size of the file to be written in advance, which was meant to
represent for example a file being downloaded from the internet. However, stream
writing operations might give a more fragmented allocation result than block writing
operations [8].
The script responsible for managing the write operations in the virtual machines on

a host node checked if the currently active virtual machine was started before it sent the
file operation command. Therewas also a check of the completion of a file operation, as
well as a check of the exit status of the virtual machine when it was being shut down.
The exit status of each file operation was also checked and if it indicated an error
the transaction counter was decremented and the same operation was retried. Every
transaction was logged in a file indicating the sequence number, the action performed,
the name of the affected file and its current size.
The three Python scripts that executed write operations on the virtual machines were

set to write the iteration sequence number and a individual sequence number into every
512 byte sector of the file to be written. This enabled us to see the raw write pattern in
the virtual disk file if ever needed. The iteration sequence number was also given as
file name to further increase the traceability. The create and decrease file scripts both
wrote new files (using the wb flag in the Python open command). The increase script
appended new data at the end to an existing file, using the ab flag. Therefore increased
files could contain multiple number sequences.
To avoid unnecessarily burdening the virtual machines the four file operation scripts

run by the virtual machines were kept as simple as possible and most of the control
functions (for example the status check of the virtual machine and file operation) were

217

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

executed by the main script on the host node. The randomization of the file operations
was done beforehand and held in a configuration file used to control the script on the
host. In that way the same file operations could be executed on several machines in
parallel. This also avoided the problem of having to individually seed several random
functions, now the seeding was centralized.
Since we were not allowed to install any software on the host nodes in the computer

cluster we chose to use the dd tool to extract the $Bitmap file in each iteration. That
required us to know the exact location of the $Bitmap file in advance, which we solved
by using fixed size virtual disks. The size and location of the $Bitmap file would not
change since the size of the disk was static. A better solution might be to use the icat
tool from the Sleuth Kit by Carrier [25]. That will be fixed in the next version of our
experimental platform.
When the experiment was finished we extracted the LPVA position of the affected

clusters in each file operation from the $Bitmap copies. The extraction process gave us
information on all clusters that had been allocated or freed during each file operation.
Since we could not control the behavior of the OS any allocation changes induced by
the OS were also included.
To test if there were any differences in allocation behavior connected to the size of

the hard drive we extended the experiment with three virtual machines having 256 GiB
hard drives. The machines were installed with Windows 7, 8.1 and 10 in the same way
as the 64 GiB machines. The standard pattern was used to enable comparison to the
64 GiB machines using the same pattern. Due to the 256 GiB machines being started
later than the 64 GiBmachines theWindows 10machine only executed 8,331 iterations
before being stopped. We therefore have limited the result to the first 8,331 iterations
in all machines.

D.3. Result

To increase the readability of the paper we have chosen to only show graphs for Win
dows 7 and 10. The differences between the graphs for Windows 7, 8 and 8.1 are often
small and we therefore letWindows 7 represent all threeWindows versions belowWin
dows 10. We can of course use data from all three versions in the same graph, but that
will decrease the visibility of the specific features we want to show, because the data
are not equal, only similar.
Please observe that the figures are showing the statistical properties of the allocation

patterns, not the actual allocations for each file operation. Showing the actual allo
cations would require us to plot up to hundreds of thousands of data points for each
file operation, which obviously is not feasible in this publication format. We also use
different scales (log and linear) on the Yaxis of the plots to increase the visibility. The

218

D.3. Result

maximum allocatable position of a 64 GiB partition is almost 17,000,000 clusters and
approximately 67,000,000 clusters for 256 GiB partitions. Since some of the figures
use different units the maximum value of their Yaxes might differ.
In many graphs there seems to be a disturbance visible as an area of low activity

centered around file operation 5350. This effect comes from the rapid decrease in file
system utilization that can be seen in for example Figures D.1 and D.2, where the thick
black curve at the top of each graph shows the degree of utilization. Please observe that
the utilization curve has been moved upwards with approximately 2,500,000 clusters
to increase visibility.
As can be seen in Figure D.1 the mean position of the newly allocated clusters for

each file operation in the 64 GiB virtual main partitions correlates with the amount of
allocated clusters in the file system, i. e. the degree of utilization of the file system.
The mean allocation position patterns are similar for all fourWindows versions, but not
equal. Each partition in the experiment adds a few unique outliers to the graph. The file
system utilization plot, derived from the standard pattern file operations configuration
file, added on top of the mean position graph has been raised by 2,526,780 clusters
(approximately 9.6 GiB) to increase its visibility. The value represents the difference
between the maximum value of the standard pattern file operations configuration file
and the maximum allocated cluster position of one of the Windows 7 machines using
that file.
The correlation between the mean position and the utilization of the file system

shown in Figure D.1 also appear in the main partition of the 256 GiB virtual disks,
regardless of the installed OS. This is shown in Figure D.2. The included plot of the
file system utilization is multiplied with 4 to compensate for the larger hard disk size
and also to increase the visibility. As can be seen the bulk of the mean allocation posi
tions in the 256 GiB disks, as well as the highest mean allocation values, correlate well
with the mean allocation positions in the 64 GiB disks.
Themaximum allocation position is an indication of how the OS utilizes the free area

at the end of the file system. This is shown in Figure D.3. As can be seen the highest
allocated position for each file operation also increases as the number of operations
increases. The increase is divided into steps, which are correlated to increases in the
utilization of the file system. There are however no corresponding rapid decreases
in the maximum positions when the utilization decreases. Instead the current level is
only slowly decreasing until the utilization gets a new maximum value. In the plots the
effect looks like the formation of clouds on the leeward of a mountain range. Although
the effect is strictly visual and has nothing to do with how physical clouds are formed,
we will be referring to the effect as the “leeward effect” in the rest of the article.
In Figure D.4 the maximum allocation position for Windows 10 is shown. The lee

ward effect is less distinct here, instead the maximum allocation positions remain at the
same level until the next increase in the file system utilization, making the plot look

219

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

C
lu
st
er
	#

0

2.5×106

5×106

7.5×106

107

1.25×107

1.5×107

1.75×107

File	operation	#
0 2000 4000 6000 8000

Figure D.1.: The mean allocation position for all includedWindows versions in 64 GiB
hard drives using the standard file operation pattern. We have also in
cluded a plot of the file system utilization, which corresponds to the black
line at the top of the graph. The file system utilization plot is raised by
2,526,780 clusters to increase the visibility.

220

D.3. Result
C
lu
st
er
	#

0

107

2×107

3×107

4×107

5×107

6×107

7×107

File	operation	#
0 2000 4000 6000 8000

Figure D.2.: The mean allocation position of the Windows 7, 8.1 and 10 having 256
GiB hard drives. We have also included a plot of the file system utiliza
tion (multiplied by 4 to fit the larger disk size) to enable comparison with
the corresponding 64 GiB hard drives. Please observe that the maximum
allocatable position in a 256 GiB partition is approximately 67,000,000
clusters and that the scale of the Yaxis therefore differs from the corre
sponding plots of the 64 GiB partitions.

221

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

C
lu
st
er
	#

2.5×106

5×106

7.5×106

107

1.25×107

1.5×107

1.75×107

File	operation	#
0 2000 4000 6000 8000

Figure D.3.: The maximum allocation position for Windows 7 in 64 GiB hard drives
using the standard file operation pattern. We have added the file system
utilization curve (the black line at the top) to the graph to increase the
visibility of the leeward effect of the allocations.

222

D.3. Result

more like heavy fog than leeward clouds. The larger amount of allocations at high clus
ter addresses is also manifested by the lower amount of allocations at positions below
the file system utilization curve.

C
lu
st
er
	#

2.5×106

5×106

7.5×106

107

1.25×107

1.5×107

1.75×107

File	operation	#
0 2000 4000 6000 8000

Figure D.4.: The maximum allocation position for Windows 10 in 64 GiB hard drives
using the standard file operation pattern. We have added the file system
utilization curve (the black line at the top) to the graph to increase the
visibility of the leeward effect of the allocations.

The median allocation position graph ofWindows 10 lacks a feature that the graph of
the older Windows versions show (see Figure D.5). Windows 7, 8 and 8.1 all have an
approximately 100,000 clusters wide unused area in the middle of their partitions cen
tered around cluster 8,600,000 for Windows 7 and 8,400,000 for Windows 8 and 8.1.
The area is more or less visible for all three Windows versions, but in Windows 7 it is
visible from the start of the file operations (see Figures D.3 and D.5) from a significant
lower bound of the unused area, which is not the case for Windows 8 and 8.1.
The graph (see Figure D.6) of the statistical mode, here defined as the middle posi

tion of the largest consecutive group of clusters allocated in a file operation, of Win
dows 7 also shows an unused area in the middle of the partition, which can also be
seen in Figure D.5. The allocated positions in the mode graph are however almost
evenly distributed in the allocated area and also show a sharp border to the sparsely al

223

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

C
lu

st
er

	#

0

2,5×106

5×106

7,5×106

107

1,25×107

1,5×107

1,75×107

File	operation	#
0 2000 4000 6000 8000

Figure D.5.: Themedian allocation position forWindows 7 in 64 GiB hard drives using
the standard file operation pattern. Please observe the horizontal sparse
part in the middle, which is missing in Windows 10.

224

D.3. Result

located area between cluster position 125,000 and 2,550,000. This border is less sharp
in Figure D.5, but that might be an effect of the median being a calculated value in
difference to the mode being a factual value. Hence the mode value is closer to the
actual behavior of the file allocation algorithm. As for the median allocation position
graph in Figure D.5 the unused area in the middle of the Windows 8.1 partitions start
to vanish around file operation 9,000 and is not present in Windows 10.

C
lu

st
er

	#

0

2,5×106

5×106

7,5×106

107

1,25×107

1,5×107

1,75×107

File	operation	#
0 2000 4000 6000 8000

Figure D.6.: The mode allocation position for Windows 7 in 64 GiB hard drives us
ing the standard file operation pattern. Please observe the thin horizontal
sparse area in the middle of the plot, the same sparse area can be seen in
Figure D.5

The Windows 10 mode graph in Figure D.7 is similar, but not equal, to the Win
dows 7 graph in Figure D.6. Both graphs show data from the virtual machines using
the standard file operation pattern. The unused area close to the middle of the partition
is lacking in Figure D.7 and there is more allocation activity at the first part of the parti
tion. The Windows 10 graph also shows how the highest allocated positions are reused
after their initial allocation to a higher degree than inWindows 7 (see Figure D.6). This
is manifested by the higher amount of leeward effect in Figure D.7 (the peaks are not
as visible in the Windows 10 plot as in the Windows 7 plot). Since the figures show
the statistical mode of the allocation for a file operation each data point corresponds to

225

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

the middle of the largest consecutively allocated area of that file operation, thus they
show real allocations.

C
lu

st
er

	#

0

2,5×106

5×106

7,5×106

107

1,25×107

1,5×107

1,75×107

File	operation	#
0 2000 4000 6000 8000

Figure D.7.: The mode allocation position for Windows 10 in 64 GiB hard drives using
the standard file operation pattern.

The sparsely allocated area below cluster 2,550,000 (see Figure D.6) has a denser
allocation pattern for Windows 8 and 8.1, than for Windows 7. The order of usage
from sparse to dense for that area is Windows 7, 10, 8 and 8.1. The size of the sparse
area is the same in the 256 GiB hard disks, hence it does not represent the 12.5% of the
volume size set aside for the MFT. However, all areas contain the MFT, which starts
exactly 3 GiB into the main partition in all hard disks, regardless of size and version
of Windows [10]. When checking the allocation of every 50,000 cluster in the sparse
area we found that almost all of the files are OS related files and no more than 5% of
the files are created by the scripts.
The standard deviation value of the allocated positions after each file operation is

high, between 2,000,000 and 3,000,000 clusters, and is rapidly increasing at the begin
ning (up to approximately 500 file operations), where it levels out. This can be seen
in Figure D.8. The rapid increase at the beginning of the graph is due to the large con
tiguous area of free space when the disk is newly formatted (when the best fitting area
available for allocation is much larger than the required space). Please observe that

226

D.3. Result

standard deviation is measured in clusters, not cluster number (position) and there
fore the Yaxes of the standard deviation graphs do not show the full size of a 64 GiB
partition.

C
lu

st
er

	#

0

106

2×106

3×106

4×106

5×106

6×106

7×106

File	operation	#
0 2000 4000 6000 8000

Figure D.8.: The standard deviation of the allocation position for Windows 7. The four
64 GiB partitions from the experiment using the standard file operation
pattern are included. Since the standard deviation is measured in clusters,
not cluster number (position), the Yaxis does not show the full size of a
64 GiB partition.

Worth noticing is that the Windows 10 standard deviation, which can be seen in
Figure D.9, is more dense and less varied than for Windows 7. On the other hand it
does not level out to the same degree as for Windows 7. Neither the standard deviation
graph in Figure D.8 nor the graph in Figure D.9 change much if we include allocation
data from all file operation patterns.
We also collected statistics on the file fragments (groups of allocated clusters) during

the experiment. Three metrics are worth noticing; the number of fragments, as well as
the maximum and median size of the fragments. Please observe the log scale of the
Yaxis in the file fragment graphs (Figures D.10 to D.15).
The number of fragments is an indicator of the allocation algorithm’s priority regard

ing filling holes versus keeping file data contiguous. Figure D.10 shows that in Win

227

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

Figure D.9.: The standard deviation of the allocation position for Windows 10. The
four 64 GiB partitions from the experiment using the standard file oper
ation pattern are included. Since the standard deviation is measured in
clusters, not cluster number (position), the Yaxis does not show the full
size of a 64 GiB partition.

228

D.3. Result

dows 7 most of the file operations (using the standard file operation pattern) generate
approximately 20 fragments. As can be seen the number of fragments never reaches
above 500 for Windows 7. The number of fragments also slowly increases over time,
but with a solid foundation around 20 fragments per file operation.

Figure D.10.: The number of fragments allocated in each file operation for Windows 7
in 64 GiB hard drives using the standard file operation pattern. Please
observe the log scale of the graph.

The number of fragments per file operation forWindows 10, as shown in FigureD.11,
is approximately three times larger than for Windows 7, giving a general size of 60
fragments per file operation. However, all but one file operation give well below 500
fragments, with an outlier of 2043 fragments at file operation 5765. As in Figure D.10
the trend is a slow increase of the number of fragments as the number of file operations
increases.
The median size of the fragments for Windows 7 using the standard file operation

pattern is shown in Figure D.12. Large fragment size values indicate that the allocation
algorithm tries to keep the fragmentation down and as can be seen there are a number
of median fragment sizes above 7000 clusters in the Windows 7 virtual hard drives.
As can also be seen the median fragment size has a line that increases linearly from 0
to approximately 2,000 clusters (the logarithmic scale transforms the line to a curve).

229

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

Figure D.11.: The number of fragments allocated in each file operation forWindows 10
in 64 GiB hard drives using the standard file operation pattern. Please
observe the log scale of the graph and the truncated maximum value of
the Yaxis, which hides an outlier of 2043 fragments at file operation
5765.

230

D.3. Result

There are sharp horizontal lines at approximately the same distances in the graph, which
means that due to the logarithmic scale of the Yaxis they are placed at exponentially
increasing distances. There is much activity in a band centered around fragments of
64 clusters. The amount of very large median fragment sizes slowly increases towards
the end of the graph.

Figure D.12.: Themedian size of the allocated fragments forWindows 7 in 64GiB hard
drives. There is a linearly increasing trend from 0 to approximately 2,000
clusters and also a number of horizontal lines at exponentially increasing
distances. Please observe the log scale of the graph.

The graph showing the median fragment size for Windows 10 in Figure D.13 lacks
the linearly increasing trend found in Figure D.12. However, the horizontal lines in the
Windows 7 graph are present in Windows 10 too, although starting at a lower level.
The standard fragment size inWindows 10 is 16 clusters according to our results. Win
dows 10 has smaller median fragment sizes than Windows 7 in general, but still has
the same slowly increasing amount of large median fragment sizes as Windows 7.
Figure D.14 shows how the size of the largest file fragment for each file operation is

decreasing as the number of file operations is increasing. There is also a large amount
of fragments of approximately 500 clusters created at the beginning of the experiment.
After approximately 1,500 file operations the size of the biggest fragments level out at

231

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

Figure D.13.: The median size of the allocated fragments for Windows 10 in 64 GiB
hard drives. There are clearly visible lines at approximately 100, 250,
500, 750 and 1,000 clusters. Please observe the log scale of the graph.

232

D.3. Result

approximately 20,000 contiguous clusters and the band at 500 cluster is thinner. There
is also a significant amount of outliers, many of them as large as 200,000 clusters, a few
times even higher. The data in Figure D.14 includes both the standard file operation
pattern and unique patterns, still there is a clearly visible linearly increasing trend (re
member the log scale of the Yaxis) starting at fragments of approximately 500 clusters
and reaching to 2000 clusters at the end. The same line can be seen in Figure D.12. Fi
nally there is a thin horizontal line of fragments of approximately 1500 clusters in size,
which gets weaker at approximately 7000 file operations, when the linearly increasing
trend reaches it.

Figure D.14.: The size of the largest sequence of allocation positions (file fragments)
for Windows 7 in 64 GiB hard drives. Please observe the log scale of the
Yaxis.

The graph showing the largest fragment for each file operation in Windows 10 (see
Figure D.15) lacks the linearly increasing trend (please do not forget the log scale)
found in Windows 7. Instead there is a band of maximum fragment sizes centered
around 1500 clusters. Apart from that the graph shows the same decreasing maximum
fragment sizes at the beginning and the same leveling out at approximately 20,000
clusters large fragments as for Windows 7 (see Figure D.14).
As mentioned in the beginning of Section Result we omitted showing graphs of

233

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

Figure D.15.: The size of the largest sequence of allocation positions (file fragments)
for Windows 10 in 64 GiB hard drives. Please observe the log scale of
the Yaxis.

234

D.4. Discussion

the results for Windows 8 and 8.1 for readability reasons. Most of the these results
were close to the Windows 7 results, but with a few exceptions. Most notably the
fragment statistics of Windows 8 and 8.1 were closer to the Windows 10 results, than
the Windows 7. However, the differences were small in all cases.

D.4. Discussion

The $Bitmap files extracted during the experiment contain not only traces of the file
operations executed by our scripts, but also any operations executed by the OS during
each iteration. Especially the start and stop phases of an iteration will induce changes
to the MFT and its records. Since we only want to see where (which LPVAs) the
OS allocates clusters when writing data the deallocation operations are irrelevant. We
therefore have filtered out operations where allocated clusters have been freed. The
remaining data will include clusters allocated by the system too, but that is a minor
problem because the system activities often affects already allocated clusters (append
ing information to existing log files for example). An MFT record is 1 KiB in size and
the smallest allocatable unit in a 64 GiB NTFS partition is 4 KiB, hence every fourth
file creation will possibly give rise to a new cluster being allocated in the MFT (not
until the preallocated MFT space is used up). When for example log and system files
grow and require a new cluster to be allocated the cluster position will most proba
bly be allocated to the same areas as ordinary user files. The inclusion of system file
operations will therefore have a low impact on the statistical metrics used.
The main conclusion to draw from the result is that the allocation behavior differs

in Windows 10 compared to the older versions of Windows, an important fact to re
member during digital forensics case work involving, for example, suspicion of ma
nipulation of file system time stamps. Another important conclusion to draw is that
the allocation activity is highest in the lower middle cluster positions and only slowly
moving towards the end of the partition as the file system ages. Hence any file carving
searches for user data should preferably start there and not at the beginning of a hard
drive.
We can also conclude that similar file operations executed in differently sized hard

drives still generate similar, but not equal, results (compare Figure D.1 and D.2). The
similarity might actually be even higher in reality, because the instability of the ex
perimental platform caused unique system states for the individual virtual machines,
causing system files to be written at different occasions in each machine. Those activi
ties therefore might have allocated free areas that were allocated to files written by the
scripts in other machines.
The file system utilization plots included in Figures D.1, D.2 and D.3 have been

raised by 2,526,780 clusters. That corresponds to the area in the file system where the

235

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

OS files are written during installation. The same area is clearly visible in Figure D.6
showing the statistical mode of the allocation pattern. We found that Windows 7 and
10 are less likely to allocate files in that area than Windows 8 and 8.1 and that the
sparse area has the same size regardless of size of the hard drive. Of course the size of
the area will differ depending on the size of the installed OS, but the required size of a
Windows installation is the same for at least Windows 7 to 10 [26–28].
Since we do not differentiate between allocations originating from the file operation

scripts and system file allocations we cannot be sure what type of file has been allocated
to the sparse area containing the OS files (we can only see what is currently allocated
there). Furthermore, the statistical metrics only show parts of the reality, hence the al
location activity in the sparse area might be high, but only for small files. Nevertheless
the results show that the allocation activity differs between areas in the partitions and
between the versions of Windows included in the experiment, which is important to
know in for example file carving investigations.
We have not yet found any theoretically or scientifically sound explanation of the

unused area found in the middle of the Windows 7 partitions (see the median and mode
graphs in Figures D.5 and D.6). There are no system files allocated there in the virtual
machines from the experiment, neither the \$MFTMirr file as suggested by [14], nor
the pagefile.sys as suggested by colleagues. This is also true for the six unrelated
home and office computers running different versions of Windows (from 7 and up) we
checked to see if the hypothesis holds for real world computers. Hence the system file
hypothesis is falsified.
When checking the unused area in the middle of the Windows 7 partitions the area is

allocated to files written during the experiment, although we can only see file system
information for the last few hundred file operations due to (possibly) earlier deletions.
The files found in the unused area have all been written after file operation 8,331,
which is the upper bound used for the graphs due to a few virtual machines having to
be stopped prematurely. When checking the data for the virtual machines that executed
all 10,000 file operations the unused area is present for all operations for Windows 7,
but for Windows 8.1 it is vanishing in the last 1,000 file operations. The $Bitmap
files of the Windows 8 virtual machines all got out of sync for different reasons during
the last 1,000 operations and hence we did not get any reliable data from them after
file operation 9,000. The most probable reason is a breakdown of the VBoxManage
service, which caused the script to download the $Bitmap file at the wrong occasion.
The Windows 8 machines had become slower and slower over time and finally the
restart timeout of 10 minutes was exceeded. The failure had a severe impact on the
results after file operation 9,000. However, up to file operation 9,000 the results are
reliable and the unused area is clearly visible when we plot the Windows 8 data. We
can also conclude that the area is not present in Windows 10, thus Microsoft seems to
have updated the allocation algorithm in Windows 10.

236

D.4. Discussion

The unused area in the middle of the partitions might also be an artifact of the ex
perimental setup. Since we tried to keep the virtual machines identical an error during
the installation of the OS might have had a large impact on the results for the machines
using the standard pattern. However, the fact that half of the included virtual machines
ran unique sequences of file operations and still retained the same unused area contra
dicts the installation error hypothesis.
The mode allocation position graphs (Figures D.6 and D.7) for both Windows 7

and 10 are more or less evenly distributed over the used area of the storage media.
This might simply be an effect of the random deletion of files during the experiment.
However, if it is not the effect is that the area where there might be interesting material
in a partition is increasing as the file system is utilized, hence an old hard disk requires
a larger area to be searched. This is however contradicted by the slowly increasing
mean and median allocation position seen in Figures D.1 and D.5.
The phenomenon of the maximum allocation position, described as the leeward ef

fect on clouds of a mountain range, is interesting. There is a clear difference between
Windows 7 and 10, where the latter is biased towards continuing using any high allo
cation addresses reached. This means that Windows 10 is using the storage area more
evenly than Windows 7. All virtual machines used the default settings in the storage
section of VirtualBox, which therefore emulated a mechanical hard disk. Hence all
virtual machines should behave the same based on the hardware setup. Consequently
there is a difference in the behavior of the allocation algorithms between Windows 7
and Windows 10, which needs to be studied further.
The decrease of the maximum file fragment size as the file system grows, which

can be seen in Figure D.14 is natural, since when the free areas fill up and files are
deleted the groups of contiguous free cluster areas will be smaller. The spikes in the
graph at higher file operation numbers originate from the still unused areas at the end
of the partition. If we had been able to run the experiment for an even longer period
the maximum fragment size would probably have decreased even more.
The large standard deviation of the allocated positions for each file operation clearly

indicates significant file fragmentation and consequently the allocation algorithm’s fo
cus on filling holes in the already used area of a partition before allocating files to the
yet unused part at the end of a partition. We do not know the exact reason for this be
havior, but we think it might be introduced by the fact that all file write operations use
stream writing. When the OS does not know the size of the file in advance the strategy
is to assume it is small and hence use it to fill in any holes in the already used area of a
partition. If the file then turns out to be larger, the size of the allocated areas will auto
matically grow, since all small holes are occupied. On the other hand, if there is a large
free area available, it is better to use that first to at least postpone file fragmentation to
a situation when the partition is more heavily used. Hence the chosen strategy depends
on the focus of the allocation algorithm; filling in holes or avoiding file fragmentation.

237

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

The best fit allocation strategy that NTFS uses is meant to decrease the amount of
file fragmentation by optimizing the used area with regard to lost space at the ends of
the free area that is being allocated. The behavior we can see from the result is however
not fully adhering to that strategy, but that might be questioned from a philosophical
point of view. If the focus lies on minimizing the lost (remaining) free area after each
allocation the behavior of not using the free space at the end of the partition first and
then start using the free areas left from file deletions can be understood. Fitting an
allocation into an hole left by a file deletion actually leaves less remaining space around
the allocated area, than if the large unused area at the end of the partition was used. If
we take the large number of file fragments created by that strategy into consideration
this type of behavior becomes less understandable, especially since the OSs saw the
disks as mechanical hard drives, which are negatively affected by fragmentation.

D.5. Conclusion and future work

We can conclude that there actually are differences in the allocation behavior of differ
ent Windows version using NTFS, that the size of the storage media is not affecting the
allocation behavior and that the behavior changes over time as the file system grows.
Likewise the adherence to the best fit allocation strategy can be questioned. The allo
cation activity is not evenly spread over the storage area, instead it is concentrated to
the already used areas. A strictly best fit allocation strategy would not fragment files
if there where free space available to fit the file in one block. All Windows versions
used in the experiment differentiate between mechanical hard drives and solidstate
drives (SSDs), but since all virtual drives were set to emulate mechanical hard drives
such differentiation cannot be the reason behind the behavior.
The results from the experiment are directly applicable to the digital forensic case

work by showing that it is more probable to find older data closer to the beginning of
the partition and newer data closer to the end of the used area. In the same way we
have shown that the priority of the allocation algorithm is to get rid of holes left by
file deletions, not to use the whole disk to decrease the risk of file fragmentation. The
knowledge gained from the experiment is especially important in file carving where
the goal is to reconnect fragments of files into the original files again. By decreasing
the area to be search for file fragments the process will be more efficient and hence
faster.
The results can also be used to improve the creation of time lines (work as another

source of time stamp information) by the fact that the size of file fragments decreases as
the file system grows. A file having large (and few) fragments has a higher probability
of being older than a file with many small fragments, although the effect is small.
As future work we will stabilize the experimental platform and expand the scope

238

D.6. Acknowledgements

of the experiment to also include other file systems, hard drive sizes and OSs, as well
as both stream writing and block writing file operations. We will also isolate our file
operations from the OS related operations and use tools from the Sleuth Kit to increase
the resolution and reliability of the results. Together these improvements will enable
us to determine if it is possible to use the allocation pattern as a means to improve the
reliability of time stamps and possibly even work as a sequential time stamp, showing
the writing order of files. The results will also be used to find out more about the
standard fragment size, number of fragments, their probable placement on disk (logical
position) etcetera, whichwill be of great help in file carving situations. The information
on differences between stream and blockwriting operations can also be used to improve
file carving processes by giving a first indication of the type of file of a fragment and
also when finding the correct ordering of the found fragments.

D.6. Acknowledgements

The research leading to these results has received funding from the Research Council
of Norway programme IKTPLUSS, under the R&D project Ars Forensica grant agree
ment 248094/O70. We would also like to thank FOI for their support by letting us use
their Cyber Range And Training Environment (CRATE) computer cluster.

D.7. Bibliography

[1] D. Quick and K. Choo. “Impacts of increasing volume of digital forensic data:
A survey and future research challenges.” In:Digital Investigation 11.4 (2014),
pp. 273–294. ISSN: 17422876. DOI: 10.1016/j.diin.2014.09.002.

[2] P. Gladyshev and J. James. “Decisiontheoretic file carving.” In: Digital In
vestigation 22.Supplement C (2017), pp. 46–61. ISSN: 17422876. DOI: 10.
1016/j.diin.2017.08.001.

[3] European Police Office (Europol). Internet Organised Crime Threat Assess
ment (IOCTA) 2016. Tech. rep. European Cybercrime Centre (EC3), 2016.

[4] D. Quick and K. Choo. “Data reduction and data mining framework for digi
tal forensic evidence: Storage, intelligence, review and archive.” In: Trends &
Issues in Crime and Criminal Justice 480 (Sept. 2014), pp. 1–11. ISSN: 1836
2206.

[5] F. Breitinger, G. Stivaktakis, and H. Baier. “FRASH: A framework to test algo
rithms of similarity hashing.” In: Digital Investigation 10.Supplement (2013).
The Proceedings of the ThirteenthAnnual DFRWSConference, S50–S58. ISSN:
17422876. DOI: 10.1016/j.diin.2013.06.006.

239

https://doi.org/10.1016/j.diin.2014.09.002
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2013.06.006

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

[6] V. Roussev. “Managing TerabyteScale Investigationswith SimilarityDigests.”
In: Advances in Digital Forensics VIII: 8th IFIP WG 11.9 International Con
ference on Digital Forensics, Pretoria, South Africa, January 35, 2012, Re
vised Selected Papers. Ed. by G. Peterson and S. Shenoi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 19–34. ISBN: 9783642339622. DOI:
10.1007/9783642339622_2.

[7] E. Casey. “Digital Stratigraphy: Contextual Analysis of File System Traces in
Forensic Science.” In: Journal of Forensic Sciences 63.5 (2018), pp. 1383–
1391. DOI: 10.1111/15564029.13722.

[8] M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Disk Cluster Allocation Be
havior in Windows and NTFS.” In: Mobile Networks and Applications 25.1
(Feb. 2020), pp. 248–258. ISSN: 15728153. DOI: 10.1007/s11036019
014411.

[9] M. Karresand, S. Axelsson, and G. Dyrkolbotn. “Using NTFS Cluster Alloca
tion Behavior to Find the Location of User Data.” In: Digital Investigation 29
(2019), S51–S60. ISSN: 17422876. DOI: 10.1016/j.diin.2019.04.
018.

[10] M. Karresand, Å. Warnqvist, D. Lindahl, S. Axelsson, and G. Dyrkolbotn.
“Creating aMap of User Data in NTFS to Improve File Carving.” In: Advances
inDigital Forensics XV. Cham: Springer International Publishing, 2019. Chap. 8,
pp. 133–158. ISBN: 9783030287528. DOI: 10 . 1007/978 3 030
287528_8.

[11] R. Poisel and S. Tjoa. “A Comprehensive Literature Review of File Carving.”
In: 2013 International Conference on Availability, Reliability and Security.
Sept. 2013, pp. 475–484. DOI: 10.1109/ARES.2013.62.

[12] A. Pal and N. Memon. “The evolution of file carving.” In: IEEE Signal Pro
cessing Magazine 26.2 (Mar. 2009), pp. 59–71. ISSN: 10535888. DOI: 10.
1109/MSP.2008.931081.

[13] Net Applications.com. Desktop Operating System Market Share. Sept. 2017.
URL: https://www.netmarketshare.com/operating system
marketshare.aspx?qprid=10&qpcustomd=0.

[14] B. Carrier. File System Forensic Analysis. AddisonWesley Professional, 2005.
ISBN: 0321268172.

[15] A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts. 9th ed.
Wiley, Dec. 2012.

240

https://doi.org/10.1007/978-3-642-33962-2_2
https://doi.org/10.1111/1556-4029.13722
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1007/s11036-019-01441-1
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1016/j.diin.2019.04.018
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1007/978-3-030-28752-8_8
https://doi.org/10.1109/ARES.2013.62
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/MSP.2008.931081
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0

D.7. Bibliography

[16] Microsoft. How NTFS Works. Last accessed 30092018. 2018. URL: https:
//technet.microsoft.com/ptpt/library/cc781134(v=ws.10)
.aspx.

[17] J. Hughes. The Four Stages of NTFS File Growth. Last accessed 24102018.
Oct. 2009. URL: https://blogs.technet.microsoft.com/askcore/
2009/10/16/thefourstagesofntfsfilegrowth/.

[18] S. Key. File Block Hash Map Analysis. Last accessed 28042018. 2012. URL:
https://www.guidancesoftware.com/app/FileBlockHash
MapAnalysis.

[19] R. van Baar, H. van Beek, and E. van Eijk. “Digital Forensics as a Service:
A game changer.” In: Digital Investigation 11 (2014). Proceedings of the First
Annual DFRWS Europe, S54–S62. ISSN: 17422876. DOI: 10.1016/j.
diin.2014.03.007.

[20] H. van Beek, E. van Eijk, R. van Baar, M. Ugen, J. Bodde, and A. Siemelink.
“Digital forensics as a service: Game on.” In: Digital Investigation 15 (2015).
Special Issue: Big Data and Intelligent Data Analysis, pp. 20–38. ISSN: 1742
2876. DOI: 10.1016/j.diin.2015.07.004.

[21] J. Jones, T. Khan, K. Laskey, A. Nelson, M. Laamanen, and D. White. “In
ferring Previously Uninstalled Applications from Residual Partial Artifacts.”
In: Annual ADFSL Conference on Digital Forensics, Security and Law. 2016,
pp. 113–130.

[22] K. Fairbanks and S. Garfinkel. “Column: Factors Affecting Data Decay.” In:
Journal of Digital Forensics, Security and Law 7 (2012). DOI: 10.15394/
jdfsl.2012.1116.

[23] K. Fairbanks. “A Technique for Measuring Data Persistence Using the Ext4
File System Journal.” In: 2015 IEEE 39th Annual Computer Software and Ap
plications Conference. Vol. 3. July 2015, pp. 18–23. DOI: 10.1109/COMPSAC.
2015.164.

[24] K. Fairbanks. “An analysis of Ext4 for digital forensics.” In: Digital Investi
gation 9.Supplement (2012). The Proceedings of the Twelfth Annual DFRWS
Conference, S118–S130. ISSN: 17422876. DOI: 10.1016/j.diin.2012.
05.010.

[25] B. Carrier. TSK Tool Overview. 2014. URL: http://wiki.sleuthkit.
org/index.php?title=TSK_Tool_Overview.

[26] Microsoft. System requirements. Last accessed 30042018. Apr. 2017. URL:
https://support.microsoft.com/engb/help/12660/windows
8systemrequirements.

241

https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://blogs.technet.microsoft.com/askcore/2009/10/16/the-four-stages-of-ntfs-file-growth/
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://www.guidancesoftware.com/app/File-Block-Hash-Map-Analysis
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2014.03.007
https://doi.org/10.1016/j.diin.2015.07.004
https://doi.org/10.15394/jdfsl.2012.1116
https://doi.org/10.15394/jdfsl.2012.1116
https://doi.org/10.1109/COMPSAC.2015.164
https://doi.org/10.1109/COMPSAC.2015.164
https://doi.org/10.1016/j.diin.2012.05.010
https://doi.org/10.1016/j.diin.2012.05.010
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
http://wiki.sleuthkit.org/index.php?title=TSK_Tool_Overview
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements
https://support.microsoft.com/en-gb/help/12660/windows-8-system-requirements

D. An Empirical Study of the NTFS Cluster Allocation Behavior Over Time

[27] Microsoft. Windows 10 system requirements. Last accessed 30042018. Nov.
2017. URL: https : / / support . microsoft . com / en us / help /
4028142/windowswindows10systemrequirements.

[28] Microsoft. Windows 7 system requirements. Last accessed 30042018. Apr.
2017. URL: https://support.microsoft.com/enus/help/10737/
windows7systemrequirements.

242

https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements
https://support.microsoft.com/en-us/help/10737/windows-7-system-requirements

Part III.

Appendices

243

E. Extended Introduction

Although the research described in the thesis is applicable to any situation where digital
data are handled, the focus of the thesis is applications within the digital forensics field
and especially file carving. This chapter therefore gives a brief background on the
matter to readers not familiar with the digital forensics field or file carving.

E.1. Forensics

The term forensic goes back to classical Latin, where it meant

of or belonging to the Forum, of or connected with the law courts. [1,
Etymology:]

Consequently the term is strongly connected to properties such as law, traceability,
logic and argumentation. The current meaning is similar, stated as

[o]f, relating to, or associated with proceedings in a court of law; suit
able for or appropriate to pleading in court. Now chiefly in legal use. [1,
A. adj. 1. a.].

Edmond Locard [2] started the first forensic laboratory in 1910 in Lyon, France.
In 1934 he formulated what is now known as his exchange principle1. The principle
points to the fact that any contact between two (physical) entities leaves a trace on both
of them, however not always visible by the naked eye. The work of Locard lead to the
start of the forensic sciences [2], sometimes also called criminalistics.
The term forensic sciences is defined as

the application of the methods of the natural and physical sciences to
matters of criminal and civil law. […]Almost any science can be a forensic
science because almost any science can contribute to solving a crime or
evaluating a civil harm. [6].

1Edmond Locard wrote “Le principe est celuici. Toute action de l’homme, et a fortiori, l’action violente
qu’est un crime, ne peut pas se dérouler sans laisser quelque marque” on page 8 of his book La Police
et Les Méthodes Scientifiques from 1934, printed by Editions Rieder, Paris [3, p. 23]. The sentence
translates to “The principle is this. Any action of an individual, and obviously, the violent action
constituting a crime, cannot occur without leaving a trace” [4, 5].

245

E. Extended Introduction

Kirk studied Locard’s exchange principle closely and saw its limitations. He there
fore pointed out the importance of individualization, that it is not enough to prove the
contact between any two entities, there must also be a proven connection to an individ
ual perpetrator to enable its use in a court of law. A typical example is fingerprints on
a murder weapon. Kirk wrote that

[t]he real aim of all forensic science is to establish individuality, or to
approach it as closely as the present state of the science allows. Criminal
istics is the science of individualization. [7, p. 236]

Hence without being able to correctly connect a crime to a perpetrator we cannot
solve crimes and the legal system will not work. Especially since the legal system in
democratic countries use benefit of doubt to avoid sending innocent persons to jail.

E.2. Digital Traces

Since also the digital domain is physical at the lowest level Locard’s exchange principle
is valid there too[8, 9], but even at higher levels exchanges of information is carried
out [10] and consequently leaving traces. Regarding individualization there is however
a problem.

In a physical environment the exchange ties an individual to a specific
location and action (Individualization), and in the virtual environment the
exchange can achieve the same goal for a user account. Unlike a physi
cal crime scene, it will never be possible to use the Exchange Principle to
physically identify the person operating a system at a given time, strictly
because an exchange took place. No physical exchange takes place be
tween the physical user and the virtual environment. […] It is left to other
means to determine identification of the physical person who was using
the account on the system at the time the data were created. [8, p. 22]

Although it is stated in the citation that there is no physical exchange between the
user and the virtual (digital) environment, there still is an indirect exchange. As long as
a user is interacting with a digital device there is a connection between the two domains.
There are for example individual differences in how we handle the keyboard [11, 12].
Furthermore, stronger authentication methods, as well as biometric based authentica
tion techniques, makes the individualization easier in the digital domain.
The digital traces can either be actively left by the user through intentional actions,

such as saving a photo or document, or they can be left passively through for example
logs and browser history [13]. When the term user data is used in this thesis it should

246

E.3. Digital Forensics

be interpreted as referring to both types, although the primary meaning is data created
by direct actions of a user.
User activities are usually of higher value to a digital forensic investigator than pas

sively created data. However, the value of logs and browser history should not be
neglected and can sometimes even be more valuable than actively created user data.
The two types of user data are also tightly connected. Often a log post is added when a
file is saved, or any other significant action involving a file or data is taken by the user.
The data (traces) left by the user can furthermore be divided into content and meta

data. Content is for example the words and sentences of documents, the sounds and
images of multimedia and the conversations of instant messaging applications. The
metadata on the other hand are data about the content, for example time stamps, lo
cation data of images and formatting information of documents. Depending on the
situation one or several of the combinations of actively or passively deposited content
or metadata can be of interest to the digital forensic investigator [13]. The possible
combinations can be seen in Table E.1.

Table E.1.: The 2x2 matrix showing the connection between the two ways to deposit
data and the two types of data.

Active/Content Passive/Content

Active/metadata Passive/metadata

There are also system data held in the file system in the form of system files. These
are files that are part of the OS andmost of them are created at the time of installation of
the system. From an allocation point of view there is no difference between user files
and system files. The latter are created from strict system activities like installation
and updating the system or software in the background.

E.3. Digital Forensics

The forensic science used when solving crimes in the digital domain is called digital
forensics, computer forensics or cyber forensics. There is not yet any strict definition
of the term digital forensics and it is better described by general wording, than through
strict definitions, according to Subramaniam [14]. Yet there are a number of definitions
given in the literature.
In 2001 a group of digital forensic researchers at the first Digital Forensic Research

Workshop (DFRWS) USA agrees on defining digital forensics as
[t]he use of scientifically derived and provenmethods toward the preser

vation, collection, validation, identification, analysis, interpretation, docu

247

E. Extended Introduction

mentation and presentation of digital evidence derived from digital sources
for the purpose of facilitating or furthering the reconstruction of events
found to be criminal, or helping to anticipate unauthorized actions shown
to be disruptive to planned operations. [15, p. 16]

TheDFRWSdefinition is rather long and complex due to its specific listing of actions
to be executed. A shorter alternative is presented by USCERT in 2008. They define
computer forensics as

[…] the discipline that combines elements of law and computer science
to collect and analyze data from computer systems, networks, wireless
communications, and storage devices in a way that is admissible as evi
dence in a court of law. [16, p. 1]

The US National Institute of Standards and Technology (NIST) also presents three
definitions of digital forensics [17] and gives computer forensics as a synonym. The
definitions are taken from different sources. The first definition is part of a longer
definition from the US Department of Defense (DoD) and states that digital forensics
is

[i]n its strictest connotation, the application of computer science and
investigative procedures involving the examination of digital evidence
following proper search authority, chain of custody, validation with math
ematics, use of validated tools, repeatability, reporting, and possibly ex
pert testimony. [18, p. 14]

The second definition is taken from a publication by NIST, which states that

The application of science to the identification, collection, examination,
and analysis, of data while preserving the integrity of the information and
maintaining a strict chain of custody for the data. [19, p. C1]

The third definition of digital forensics originates from a NIST publication on cloud
forensics. The definition of the term is there given as

[t]he process used to acquire, preserve, analyze, and report on evidence
using scientific methods that are demonstrably reliable, accurate, and re
peatable such that it may be used in judicial proceedings. [20, p. 24]

An alternative to the NIST definitions is given in a book from 2018. This definition
is less scientific in formulation. The definition states that

248

E.3. Digital Forensics

[d]igital forensics is a branch of forensic science that uses scientific
knowledge for collecting, analyzing, documenting, and presenting digital
evidence related to computer crime for using it in a court of law. The
ultimate goal is knowing what was done, when it was done, and who did
it. [21, p. 2]

To separate digital forensics from other forms of forensics that happen to involve
computers and forensic computing, for example automatic fingerprint matching, the
following definition has been proposed:

One possible characterization of digital forensics is that it examines
events (or traces of events) that happened in the digital realm; the purpose
of digital forensics then is to determine the root cause of, or to reconstruct
events that happened in the digital realm. [22, p. 56]

Three more definitions of digital forensics are given in [14]. From the large amount
of definitions, also in recent years, we can draw the conclusion that the (research) field
is maturing, but still is driven by operational needs and not yet by scientific theory.
There are suggestions for a formalization of the research field, allowing the forensic

process to be scientifically defined. However, there are only two possible scientific
claims to be made within digital forensics [22].

1. That the digital data examined is an example of a specific class of
artifact; and/or
2. That the digital data examined proves or disproves a claim that the

data was [sic!] the result of specific data transformed by a specific com
putational process. [22, p. 53].

What the definition is saying is that digital data are not randomly appearing, they al
ways belong to a directly or indirectly human controlled action and/or that they only
showwhether they are the result of a specific action, or are not the result of that specific
action. In other words, we cannot draw too extensive conclusions from the existence
of some specific data, only that a (known) process created them.
Currently there are many subcategories to digital forensics, new categories are con

tinuously added and existing categories are merged. The following list contains 11
subcategories. However, the list only represents a snapshot of the situation in 2018,
when the list was created [23].

• file system forensics

• memory forensics

• operating system forensics

249

E. Extended Introduction

• multimedia forensics

• network forensics

• database forensics

• malware forensics

• mobile device forensics

• email forensics

• firewall forensics

• financial forensics

Since new digital technologies and services are constantly emerging the content of the
list will change. It is included to show the width of the applicability of digital forensics.
Two new fields not in the list are car forensics and IoT forensics.

E.4. Forensically Sound

In the digital forensic domain the term forensically sound is used to denote evidence
that is trustworthy and faithful to the original. The reason for the need to have a certain
term for high fidelity evidence is the volatility of digital data. The acquisition process
often requires a digital tool to be loaded onto the suspect’s device to enable extraction
of any data, especially when working with volatile storage like RAM. The loading
process and also the execution of the tool will affect the content of the RAM.
The modification of the source data might however be acceptable as long as the

original meaning of the evidence is preserved. The tool’s effects on the evidence should
also be fully known and documented [24]. The situation is described with the wording
“generally considered forensically sound” [24, p. 50], i. e. it is not strict. The full
statement reads:

Provided the acquisition process preserves a complete and accurate rep
resentation of the original data, and its [sic!] authenticity and integrity can
be validated, it is generally considered forensically sound. [24, p. 50]

The term forensically sound is often taken for granted and implicitly defined in terms
of usability in a court of law. This view is manifested in a book [21] from 2019, one
of a few that actually tries to define the term.

250

E.4. Forensically Sound

“Forensically sound” is a term used in the digital forensics community
to describe the process of acquiring digital evidence while preserving its
integrity to be admissible in a court of law. [21, p. 3]

A thorough definition of the term, together with a discussion on previous definition
attempts, and accompanied by four criteria to be used to evaluate a candidate for a
forensically sound process, is stated as

[t]he application of a transparent digital forensic process that preserves
the original meaning of the data for production in a court of law. [25, p. 10]

The four criteria that has to be met to fulfill the definition of a forensically sound pro
cess [25] are:

Meaning Has the meaning and, therefore, the interpretation of the electronic evidence
been unaffected by the digital forensic process? [25, p. 11] Here we see the col
lision between unaltered (which often means not possible to extract) and pre
served (meaning that even though the bits might be different, the intention of
them is preserved). An example is a time stamp shown in another format than
the original, but with the same temporal information.

Errors Have all errors been reasonably identified and satisfactorily explained so as
to remove any doubt over the reliability of the evidence? [25, p. 12] All errors
should be detectable and their implications for the process and evidence fully
understandable. A known error is not good, but possible to handle. An unknown
error breaks the chain of evidence.

Transparency Is the digital forensic process capable of being independently exam
ined and verified in its entirety? [25, p. 12] Transparency is similar to the sci
entific requirement of repeatability. Any process should be described with such
detail that it can be repeated independently by someone else achieving the same
result.

Experience Has the digital forensic analysis been undertaken by an individual with
sufficient and relevant experience? [25, p. 13] The requirement of possessing
enough relevant experience to conduct an examination can be seen as an extra
level of security. If the three previous requirements have been fulfilled the pro
cess should (logically) be forensically sound. However, an experienced person
will lessen the risk of creating general errors in the process and has the capability
to detect any errors, uphold the transparency and decide whether the meaning of
the found evidence is preserved.

251

E. Extended Introduction

Even though the requirements of a forensically sound process often are implicit,
the prevailing lack of a common understanding of the term lessens the value of the
evidence. By adhering to some standard or definition of the term mistakes weakening
the chain of evidence value can be avoided [24, 25].

E.5. Digital Forensic Models

There are probably as many models of the digital forensic process as there are defini
tions. However, most of the models are built around a core of four basic steps [26].
These steps were first mentioned in 1995 and have been included ever since [27].
Four steps similar to those in [26] are given by the US National Institute of Jus

tice (NIJ) in 2001 and the same four steps are later accompanied by three more in the
DFRWS version [15]. The DFRWS model has been further enhanced to include nine
steps that incorporate the full digital forensic process, from detection of an incident, to
the evidence being handled after the case has been closed [28].
The steps presented in [28] are2:

Identification of an incident and its type.

Preparation of the needed administrative and operational steps later in the process.

⋆ Approach strategy includes planning the detailed steps to be taken to be able to
collect as much original evidence as possible without unnecessary harm to the
victim.

Preservation of the evidence to protect it from manipulation and destruction before
collection.

⋆ Collection of the data (information) from the seized information carrier(s) in a foren
sically sound way.

⋆ Examination of the collected data in a systematic and thorough way to identify and
locate evidence therein.

⋆ Analysis of the evidence identified during the examination step. The examination
and analysis steps might be repeated if necessary, until a satisfactory amount of
evidence is collected.

Presentation prepare and document conclusions drawn from the evidence found in
the analysis step.

2The original four steps [26] are italicized and the star (⋆) marks the steps in the model where the results
of the PhD project can be applied.

252

E.6. Digital Forensic Challenges

Returning evidence to the original owner and remove unimportant evidence from
the case.

The digital forensic models have developed further since the model presented above.
They have been extended to better fit the actual work of the law enforcement person
nel, been parallelized or distributed, divided into phases to accommodate even more
detailed steps and modified in other ways depending on the focus of the research done
by the model creators. More and updated information on the different models can be
found in for example [27, 29, 30].
The examination step in the digital forensic models can be further divided into three

distinct levels [31], namely

A survey or triage forensics inspection, which is similar to the medical triage pro
cess and is used to get a fast review of the content of the available information
carriers at a crime scene.

A preliminary forensic examination, which is used to give investigators enough in
formation of the contents of the seized information carriers to be able to proceed
with their evidence collection and forming a first idea of possible leads to follow.

An indepth forensic examination, which is more thorough than the previous two
and is meant to give the investigators an extensive view of the information in the
material at hand. This will then help them to fully understand the offense and
address the important questions.

All three levels are addressed in the PhD thesis. The connections to the model steps
described in this section are further discussed in Chapter 6.

E.6. Digital Forensic Challenges

Apart from the challenge of the increasing amount of data to handle there are a number
of other challenges affecting the digital forensic process. In 2010 the major need for
future research was the creation of abstraction levels to cope with the diversity and
rapid development within the digital device area [32]. One of the needed abstractions
(research fields) was given as

File system metadata e.g. such as timestamps, file ownership, and the
physical location of files in a disk image. [32, p. S69]

A number of digital forensic professionals were asked what they saw as the greatest
challenges to the field in 2021. Data recovery was given as the second most impor
tant challenge by 68% of the participants. Only network forensics was given a higher

253

E. Extended Introduction

score by 77% of the participants. The three most pressing needs within data recovery
were recovery of encrypted content (48%), memory forensics (32%) and disk and stor
age (13%) according to the participants. The remaining nonzero needs were carving,
recovery of multimedia files and data hiding at 3% each [33].
The opinions on the challenges for the digital forensics community until 2023 have

been collected from 24 digital forensic experts. There are a large number of challenges
listed, but those relevant to this thesis are [34]

• structured mapping of all devices

• data reduction within legal boundaries

• tools for spotting unusual patterns within data

The above challenges are not explained, only listed, hence structured mapping of all
devices might be interpreted in two ways. Either is is related to a need for the first
responder not to miss any digital devices due to an unstructured collection behavior, or
it should be interpreted as a need for a structured view of the content of all devices. The
first alternative is trivial and can be solved by the first responder following standard
procedures. Hence it would probably not be mentioned as a problem at all, which
leaves us with the conclusion that the problem concerns the lack of a structured view
of the contents of all devices.
All challenges listed above can be related to the lack of information on the inherent

structures caused by the allocation algorithm in the file system. And based on the
publication dates of the references it does not yet seem to have been solved.

E.7. File Carving

The digital forensics data processed in the models are most of the time consisting of
files taken from a working file system, or any other working structuring of data, for
example a database. However, sometimes the structuring has been broken for some
reason, due to a hardware failure or intentional deletion by the user. In those cases the
investigator must use file carving techniques to extract the data.

File carving is a forensics technique that recovers files based merely
on file structure and content and without any matching file system meta
data. [35, p. 62]

The research field of file carving is an important part of digital forensics and is used
in situation where the file system of the partition either cannot or shall not be used.
Instead the stored data are handled directly and often regarded as an unsorted set of
blocks of different types of data (files) [36]. The blocks of data forming a file need

254

E.7. File Carving

not be consecutive (due to fragmentation), neither need the data fragments be stored
in any specific order (because the unallocated areas best fitting a file might be found
anywhere in the partition).
A formalization of the file carving research field has been suggested. By formalizing

the field investigators and other professionals working with digital forensics get a better
understanding of the process and a common vocabulary to help them discuss, compare
and evaluate their results and tools [37].
The formalization of the file carving research field includes the use of a new taxon

omy of file recovery. It also incorporates the use of different standardization frame
works to improve the quality and reliability of the software tools used for file recov
ery. The tools should be accompanied by a documented verification of their quality,
including comprehensive testing to lower the risk of bugs and errors. This will in the
end increase the confidence in the digital forensics discipline and improve the rule of
law [37].
There are two major ways of carving a file or fragment to be used for comparison

with existing material. The first method directly reads the data, which are categorized
on different properties of the fragments of the file content (file fragment carving). In
this way any file, previously know or unknown, can be found and reassembled [38–
40].
The second method of carving files is using blocks of data (one or more fragments)

that first are hashed and then compared to hashes of equally sized blocks of known
data from the original file (hashbased carving). The large amount of hash compar
isons made by a hashbased carving algorithm puts an extra burden on the forensic
process. Therefore different strategies, techniques and algorithms to improve the exe
cution speed of the hashbased carving algorithms have been developed [41–47]
A more detailed division of the file carving field than file fragment and hashbased

carving is to divide the field into five different approaches [48]. These are general
and covers both the fragment classification, as well as the reassembly of the found
fragments:

General carving focuses on detecting the file type of fragments by using magic num
bers in the file header and footer. Also the use of file (name) extensions is in
cluded, although it is not strictly file carving since it uses information from the
file system. General carving cannot properly handle file fragmentation, because
it assumes the files are written contiguously in the partition [48].

Specific file type carving focuses on carving a specific file type, for example JPEG.
Since the structure of the specific file type is used for carving these algorithms
cannot handle other types of files or data, but are good at what they do [48].

File system carving focuses on utilizing structures and features of the file system

255

E. Extended Introduction

allocation behavior to carve files. Each file system has its own features to use
and each carving algorithm is only applicable for its specific file system [48].

Carving based on structure focuses on the specific features of individual files, but
the foundation of the carving is a general applicability given by the use of ma
chine learning and AI algorithms [48]. However, that implies access to a large
amount of training data (files having features similar to the file to be carved).

Carving based on fragmentation focuses on the type and amount of fragmentation
of a file. The algorithms can also carve files with missing headers, footers or
fragments, hence it can carve incomplete files [48].

Carving based on fragmentation is further divided in two parts. Both are mentioned
by the authors as promising techniques with future potential. The two parts are:

Content based carving utilize for example byte frequency distribution and entropy
metrics of the content of the file fragments to be carved, hence they are file
fragment carving based methods [48].

Smart carving is a hashbased3 file carving method where (cryptographic) hash al
gorithms are used to match blocks of unknown data with blocks of known data
in a database [48].

There is currently no general file carving algorithm that handles all types of files and
situations. However, by combining algorithms from several approaches and utilizing
machine learning, automation, contentbased carving and smart carving, a generic file
carving ability can be reached [48].
Another way of dividing the file carving field is presented by Poisel et al. [49],

who describe the research field through a taxonomy of data fragment classification
techniques. The authors have divided the research field into five classes:

Signaturebased approaches build on the concept of magic numbers, i. e. specific
byte sequences in the header and footer of files. For example a JPEG file starts
with 0xFFD8 and ends with 0xFFD9. The category also include methods from
the hashbased carving field.

Statistical approaches utilize different statistical metrics for classification, for ex
ample entropy or the Byte Frequency Distribution (BFD).

3A (cryptographic) hash of a block of data can be seen as a much shorter fingerprint of the data in
the block. However, due to the fact that a large amount of data is mapped to a smaller amount (the
fingerprint) there might be collisions, where data blocks with different content get identical hash
values. However, such collisions are highly unlikely, the longer the hash value, the lower the collision
probability.

256

E.7. File Carving

Computational intelligence based approaches use machine learning and artificial
intelligence for classification. Typically algorithms such as kNearest Neighbor
and Support Vector Machine (SVM) are used.

Approaches considering the context use information from surrounding fragments
for classification. The method is based on the assumption that the external frag
mentation is low in most file systems.

Other approaches contain for example methods to visually separate data types and
methods based on combinations of the other approaches.

The signaturebased methods using hash algorithms are related to the techniques used
for hashbased file carving, where hashes of fragments of known files are compared to
hashes of unknown file fragments.
When the fragments of a file have been found they should be reassembled into the

original file again, if possible [35, 36, 50, 51]. The reassembly process can be divided
into three parts based on the technique used [36]. The parts are:

Filesignature based approaches use file headers and footers, as well as othermeta
data present in the detected fragments.

Mapping based approaches use a discriminator that reads a file sequentially and
continuously verifies its integrity. This is combined with an ability to accept
jumps in the position of the fragments found in the partition. When the position
reaches the end of the media it wraps around and allows for a continuation of
the sequence of fragments at positions closer to the start of the partition. This
requires the fragments to be placed sequentially further and further away from
the start of the partition (except when the position wraps around the end of the
media).

Graph based approaches use a graphing algorithm that builds a graph of all frag
ments and then traverses it based on different features (often using a greedy algo
rithm) finding the optimal path through the graph. In this way the top candidates
of the reassembled file can be evaluated and the correct alternative be found. The
approach builds on the existence of a function that can evaluate the probability
of a correct joint between two fragments.
The graph based Parallel Unique Path (PUP) algorithm is currently popular and
is used in many file carvers. It was introduced into the file carving field in 2006
and is a variant of the Dijkstra shortest path algorithm [52]. There are also other
algorithms for calculating the correct combination of fragments as a path through
the graph [53].

257

E. Extended Introduction

When file carving is used outside of the forensic domain it is often done by archivists,
librarians and other professions dealing with information in old storage media, which
might bemore prone to breaking than newer media [54–57]. Often the carvingmethods
are used to explore the contents of a partition with the goal of sorting, ordering and
reassembling as many of the files as possible, based only on properties of the data set
itself. It is therefore important to be able to correctly categorize the data type of the
fragments found, as well as being able to rapidly reassemble the fragments into (parts
of) the original file again [54, 56].
Different challenges are affecting the file carving field. Two of them are relevant

to the PhD project. They are processing time, and (massive and complex) fragmenta
tion [48]. Both areas can benefit from the results of the PhD project. The processing
time can be lowered with the help of the information on the probable file (fragment)
position within a partition. The problem of complex fragmentation will benefit from
the study of different allocation patterns depending on the type of file to be written.

E.8. Bibliography

[1] OED Online. forensic, adj. and n. Last accessed 17042022. Mar. 2022. URL:
https://www.oed.com/view/Entry/73107?result=1&rskey=
Nvwb7M&.

[2] J.P. Brodeur, G. Kelling, T. Whetstone, W. Walsh, and M. Banton. Crime
scene investigation and forensic sciences. Last accessed 17042022. Dec. 2021.
URL: https : / / www . britannica . com / topic / police / Crime
sceneinvestigationandforensicsciences.

[3] F. Crispino. “Le principe de Locard estil scientifique? Ou analyse de la scien
tificité des principes fondamentaux de la criminalistique.” PhD thesis. Institut
de Police Scientifique, Ecole des Sciences Criminelles, Faculte de Droit, Uni
versité de Lausanne, May 2006.

[4] S. Dobrowski. Forensic Fact of the Day Quotations Edmond Locard. Jan.
2013. URL: https://castleviewuk.com/blog/index.php?forensic
factofthedayquotationsedmondlocard.

[5] S. Wilding. Locard’s Exchange Principle. Last accessed 04042023. 2012.
URL: http://www.forensichandbook.com/locardsexchange
principle/.

[6] J. Siegel. forensic science. Last accessed 17042022. June 2020. URL: https:
//www.britannica.com/science/forensicscience.

258

https://www.oed.com/view/Entry/73107?result=1&rskey=Nvwb7M&
https://www.oed.com/view/Entry/73107?result=1&rskey=Nvwb7M&
https://www.britannica.com/topic/police/Crime-scene-investigation-and-forensic-sciences
https://www.britannica.com/topic/police/Crime-scene-investigation-and-forensic-sciences
https://castleviewuk.com/blog/index.php?forensic-fact-of-the-day---quotations---edmond-locard
https://castleviewuk.com/blog/index.php?forensic-fact-of-the-day---quotations---edmond-locard
http://www.forensichandbook.com/locards-exchange-principle/
http://www.forensichandbook.com/locards-exchange-principle/
https://www.britannica.com/science/forensic-science
https://www.britannica.com/science/forensic-science

E.8. Bibliography

[7] P. Kirk. “The Ontogeny of Criminalistics.” In: Journal of Criminal Law, and
Criminology, and Police Science 54.2 (June 1963), pp. 235–238. URL: http:
//www.jstor.org/stable/1141173.

[8] M. Andrew. “Defining a Process Model for Forensic Analysis of Digital De
vices and Storage Media.” In: Second International Workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE’07). 2007, pp. 16–30.
DOI: 10.1109/SADFE.2007.8.

[9] K. Zatyko and J. Bay. “The Digital Forensics Cyber Exchange Principle.” In:
Forensic Magazine 8.6 (2011).

[10] A. AntwiBoasiako and H. Venter. “A Model for Digital Evidence Admissibil
ity Assessment.” In:Advances in Digital Forensics XIII. Ed. byG. Peterson and
S. Shenoi. Cham: Springer International Publishing, 2017, pp. 23–38. ISBN:
9783319672083. DOI: 10.1007/9783319672083_2.

[11] I. Tsimperidis, C. Yucel, and V. Katos. “Age and Gender as Cyber Attribu
tion Features in Keystroke DynamicBased User Classification Processes.” In:
Electronics 10 (2021), pp. 1–14. DOI: 10.3390/electronics10070835.

[12] S. Shute, R. Ko, and S. Chaisiri. “Attribution Using Keyboard Row Based
Behavioural Biometrics for Handedness Recognition.” In: 2017 IEEE Trust
com/BigDataSE/ICESS. 2017, pp. 1131–1138. DOI: 10.1109/Trustcom/
BigDataSE/ICESS.2017.363.

[13] U. N. O. on Drugs and C. (UNODC). Digital evidence. Last accessed 2104
2022.Mar. 2019. URL: https://www.unodc.org/e4j/en/cybercrime/
module4/keyissues/digitalevidence.html.

[14] K. Subramaniam. “Digital Forensics – As we know it today…” In: IEEE India
Info. 13.4 (2018), pp. 89–92.

[15] D. F. R. W. Attendees. A Road Map for Digital Forensic Research. DFRWS
Technical Report DTRT00101Final. Last accessed 21122021. Digital Foren
sic Research Workshop (DFRWS), Nov. 2001. URL: https://dfrws.org/
wp content/uploads/2019/06/2001_USA_a_road_map_for_
digital_forensic_research.pdf.

[16] USCERT.Computer Forensics. Last accessed 18042022. 2008. URL: https:
//www.cisa.gov/uscert/sites/default/files/publications/
forensics.pdf.

[17] National Institute of Standards and Technology (NIST). digital forensics. Last
accessed 18042022. URL: https://csrc.nist.gov/glossary/term/
digital_forensics.

259

http://www.jstor.org/stable/1141173
http://www.jstor.org/stable/1141173
https://doi.org/10.1109/SADFE.2007.8
https://doi.org/10.1007/978-3-319-67208-3_2
https://doi.org/10.3390/electronics10070835
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.363
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.363
https://www.unodc.org/e4j/en/cybercrime/module-4/key-issues/digital-evidence.html
https://www.unodc.org/e4j/en/cybercrime/module-4/key-issues/digital-evidence.html
https://dfrws.org/wp-content/uploads/2019/06/2001_USA_a_road_map_for_digital_forensic_research.pdf
https://dfrws.org/wp-content/uploads/2019/06/2001_USA_a_road_map_for_digital_forensic_research.pdf
https://dfrws.org/wp-content/uploads/2019/06/2001_USA_a_road_map_for_digital_forensic_research.pdf
https://www.cisa.gov/uscert/sites/default/files/publications/forensics.pdf
https://www.cisa.gov/uscert/sites/default/files/publications/forensics.pdf
https://www.cisa.gov/uscert/sites/default/files/publications/forensics.pdf
https://csrc.nist.gov/glossary/term/digital_forensics
https://csrc.nist.gov/glossary/term/digital_forensics

E. Extended Introduction

[18] DoD CIO. Department of Defense DIRECTIVE — DoD Executive Agent (EA)
for the DoD Cyber Crime Center (DC3). Tech. rep. 5505.13E. Last accessed
18042022. Department of Defense (DoD), July 2017.

[19] K. Kent, S. Chevalier, T. Grance, and H. Dang. Guide to Integrating Forensic
Techniques into Incident Response. NIST Special Publication 80086. Last ac
cessed 18042022. Computer Security Division, Information Technology Lab
oratory, National Institute of Standards and Technology (NIST), Aug. 2006.

[20] M. Herman, M. Iorga, A. Salim, R. Jackson, M. Hurst, R. Leo, R. Lee, N.
Landreville, A. Mishra, Y. Wang, and R. Sardinas. NIST Cloud Computing
Forensic Science Challenges. National Institute of Standards and Technology
Interagency or Internal Report 8006. Last accessed 18042022. National In
stitute of Standards and Technology (NIST), Aug. 2020.

[21] N. Hassan. Digital Forensics Basics: A Practical Guide Using Windows OS.
New York, New York, USA: APress, 2019. DOI: 10.1007/97814842
38387.

[22] M. Olivier. “On a scientific theory of digital forensics.” In: Advances in Digital
Forensics XII. Ed. byG. Peterson and S. Shenoi. Springer, 2016, pp. 3–24. DOI:
10.1007/9783319462790_1.

[23] X. Lin. “File Carving.” In: Introductory Computer Forensics: AHandson Prac
tical Approach. Cham: Springer International Publishing, 2018. Chap. 9, pp. 211–
233. ISBN: 9783030005818. DOI: 10.1007/9783030005818_9.

[24] E. Casey. “What does ”forensically sound” really mean?” In: Digital Investi
gation 4.2 (2007), pp. 49–50. DOI: 10.1016/j.diin.2007.05.001.

[25] R.McKemmish. “When is Digital Evidence Forensically Sound?” In:Advances
in Digital Forensics IV. Ed. by I. Ray and S. Shenoi. Boston, MA: Springer US,
2008, pp. 3–15. ISBN: 9780387849270. DOI: 10.1007/9780387
849270_1.

[26] M. Pollitt. “Computer Forensics: an Approach to Evidence in Cyberspace.” In:
Proceedings of the 18th National Information Systems Security Conference.
1995, pp. 487–491.

[27] A. A. Thakar, K. Kumar, and B. Patel. “Next Generation Digital Forensic In
vestigationModel (NGDFIM) Enhanced, TimeReducing andComprehensive
Framework.” In: Journal of Physics: Conference Series 1767.1 (Feb. 2021),
p. 012054. DOI: 10.1088/17426596/1767/1/012054.

[28] M. Reith, C. Carr, and G. Gunsch. “An Examination of Digital Forensic Mod
els.” In: International Journal of Digital Evidence 1.3 (2002).

260

https://doi.org/10.1007/978-1-4842-3838-7
https://doi.org/10.1007/978-1-4842-3838-7
https://doi.org/10.1007/978-3-319-46279-0_1
https://doi.org/10.1007/978-3-030-00581-8_9
https://doi.org/10.1016/j.diin.2007.05.001
https://doi.org/10.1007/978-0-387-84927-0_1
https://doi.org/10.1007/978-0-387-84927-0_1
https://doi.org/10.1088/1742-6596/1767/1/012054

E.8. Bibliography

[29] R.Montasari. “TheComprehensiveDigital Forensic Investigation ProcessModel
(CDFIPM) for Digital Forensic Practice.” PhD thesis. University of Derby,
June 2016. URL: https://repository.derby.ac.uk/item/9458q/
thecomprehensivedigitalforensicinvestigationprocess
modelcdfipmfordigitalforensicpractice.

[30] S. Raghavan. “Digital forensic research: current state of the art.” In:CSI Trans
actions on ICT 1.1 (Mar. 2013), pp. 91–114. DOI: 10.1007/s40012012
00087.

[31] E. Casey, M. Ferraro, and L. Nguyen. “Investigation Delayed Is Justice De
nied: Proposals for Expediting Forensic Examinations of Digital Evidence*.”
In: Journal of Forensic Sciences 54.6 (2009), pp. 1353–1364. ISSN: 1556
4029. DOI: 10.1111/j.15564029.2009.01150.x.

[32] S. Garfinkel. “Digital forensics research: The next 10 years.” In:Digital Inves
tigation 7 (2010). The Proceedings of the Tenth Annual DFRWS Conference,
S64–S73. ISSN: 17422876. DOI: 10.1016/j.diin.2010.05.009.

[33] R. Hranický, F. Breitinger, O. Ryšavý, J. Sheppard, F. Schaedler, H. Morgen
stern, and S. Malik. “What do incident response practitioners need to know?
A skillmap for the years ahead.” In: Forensic Science International: Digital
Investigation 37 (2021), p. 301184. ISSN: 26662817. DOI: 10.1016/j.
fsidi.2021.301184.

[34] L. Luciano, I. Baggili, M. Topor, P. Casey, and F. Breitinger. “Digital Foren
sics in the Next Five Years.” In: Proceedings of International Conference on
Availability, Reliability and Security, Hamburg, Germany, August 27–30, 2018
(ARES 2018). 2018, Article 46. DOI: 10.1145/3230833.3232813.

[35] A. Pal and N. Memon. “The evolution of file carving.” In: IEEE Signal Pro
cessing Magazine 26.2 (Mar. 2009), pp. 59–71. ISSN: 10535888. DOI: 10.
1109/MSP.2008.931081.

[36] R. Poisel and S. Tjoa. “A Comprehensive Literature Review of File Carving.”
In: 2013 International Conference on Availability, Reliability and Security.
Sept. 2013, pp. 475–484. DOI: 10.1109/ARES.2013.62.

[37] E. Casey, A. Nelson, and J. Hyde. “Standardization of file recovery classifica
tion and authentication.” In: Digital Investigation 31 (2019), p. 100873. ISSN:
17422876. DOI: 10.1016/j.diin.2019.06.004.

[38] A. Bhat, A. Likhite, S. Chavan, and L. Ragha. “File Fragment Classification
using Content Based Analysis.” In: ITM Web Conf. 40 (2021), p. 03025. DOI:
10.1051/itmconf/20214003025.

261

https://repository.derby.ac.uk/item/9458q/the-comprehensive-digital-forensic-investigation-process-model-cdfipm-for-digital-forensic-practice
https://repository.derby.ac.uk/item/9458q/the-comprehensive-digital-forensic-investigation-process-model-cdfipm-for-digital-forensic-practice
https://repository.derby.ac.uk/item/9458q/the-comprehensive-digital-forensic-investigation-process-model-cdfipm-for-digital-forensic-practice
https://doi.org/10.1007/s40012-012-0008-7
https://doi.org/10.1007/s40012-012-0008-7
https://doi.org/10.1111/j.1556-4029.2009.01150.x
https://doi.org/10.1016/j.diin.2010.05.009
https://doi.org/10.1016/j.fsidi.2021.301184
https://doi.org/10.1016/j.fsidi.2021.301184
https://doi.org/10.1145/3230833.3232813
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/MSP.2008.931081
https://doi.org/10.1109/ARES.2013.62
https://doi.org/10.1016/j.diin.2019.06.004
https://doi.org/10.1051/itmconf/20214003025

E. Extended Introduction

[39] S. Axelsson, K. Bajwa, and M. Srikanth. “File Fragment Analysis Using Nor
malized Compression Distance.” In: Advances in Digital Forensics IX: 9th
IFIP WG 11.9 International Conference on Digital Forensics, Orlando, FL,
USA, January 2830, 2013, Revised Selected Papers. Ed. by G. Peterson and
S. Shenoi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 171–182.
ISBN: 9783642411489. DOI: 10.1007/9783642411489_12.

[40] M. Karresand. “Completing the Picture— Fragments and Back Again.” Licen
tiate thesis. Linköping Institute of Technology, Linköping University, Sweden,
May 2008.

[41] S. Garfinkel andM.McCarrin. “Hashbased carving: Searchingmedia for com
plete files and file fragments with sector hashing and hashdb.” In: Digital In
vestigation 14.Supplement 1 (2015). The Proceedings of the Fifteenth Annual
DFRWSConference, S95–S105. ISSN: 17422876. DOI: 10.1016/j.diin.
2015.05.001.

[42] F. Breitinger, C. Rathgeb, andH. Baier. “AnEfficient SimilarityDigests Database
Lookup A Logarithmic Divide & Conquer Approach.” In: Journal of Digi
tal Forensics, Security and Law 9.2 (2014), pp. 155–166. DOI: 10.15394/
jdfsl.2014.1178.

[43] F. Breitinger and K. Petrov. “Reducing the Time Required for Hashing Opera
tions.” In: Advances in Digital Forensics IX 9th IFIP WG 11.9 International
Conference on Digital Forensics, Orlando, FL, USA, January 2830, 2013,
Revised Selected Papers. Ed. by G. Peterson and S. Shenoi. Vol. 410. IFIP
Advances in Information and Communication Technology. Springer, 2013,
pp. 101–117. DOI: 10.1007/9783642411489_7.

[44] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks. “Distinct Sector Hashes
for Target File Detection.” In: Computer 45.12 (Dec. 2012), pp. 28–35. ISSN:
00189162. DOI: 10.1109/MC.2012.327.

[45] K. Foster. “Using distinct sectors in media sampling and full media analysis to
detect presence of documents from a corpus.”MA thesis. Monterey, California,
USA: Naval Postgraduate School, Sept. 2012.

[46] S. Garfinkel, A. Nelson, D. White, and V. Roussev. “Using purposebuilt func
tions and block hashes to enable small block and subfile forensics.” In: Dig
ital Investigation 7.Supplement (2010). The Proceedings of the Tenth Annual
DFRWS Conference, S13–S23. ISSN: 17422876. DOI: 10.1016/j.diin.
2010.05.003.

262

https://doi.org/10.1007/978-3-642-41148-9_12
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.1016/j.diin.2015.05.001
https://doi.org/10.15394/jdfsl.2014.1178
https://doi.org/10.15394/jdfsl.2014.1178
https://doi.org/10.1007/978-3-642-41148-9_7
https://doi.org/10.1109/MC.2012.327
https://doi.org/10.1016/j.diin.2010.05.003
https://doi.org/10.1016/j.diin.2010.05.003

E.8. Bibliography

[47] S. Collange, Y. S. Dandass, M. Daumas, and D. Defour. “Using Graphics Pro
cessors for Parallelizing HashBased Data Carving.” In: 2009 42nd Hawaii
International Conference on System Sciences. Jan. 2009, pp. 1–10. DOI: 10.
1109/HICSS.2009.494.

[48] N. Ramli, S. Hisham, and G. Badshah. “Analysis of File Carving Approaches:
A Literature Review.” In: Advances in Cyber Security. Ed. by N. Abdullah, S.
Manickam, and M. Anbar. Singapore: Springer Singapore, 2021, pp. 277–287.
ISBN: 9789811680595. DOI: 10.1007/9789811680595_16.

[49] R. Poisel, M. Rybnicek, and S. Tjoa. “Taxonomy of Data Fragment Classifica
tion Techniques.” In: Digital Forensics and Cyber Crime: Fifth International
Conference, ICDF2C 2013, Moscow, Russia, September 2627, 2013, Revised
Selected Papers. Ed. by P. Gladyshev, A. Marrington, and I. Baggili. Springer
International Publishing, 2014, pp. 67–85. DOI: 10.1007/978 3319
142890_6.

[50] Y. Tang, J. Fang, K. Chow, S. Yiu, J. Xu, B. Feng, Q. Li, and Q. Han. “Recovery
of heavily fragmented JPEG files.” In: Digital Investigation 18.Supplement
(2016), S108–S117. ISSN: 17422876. DOI: 10.1016/j.diin.2016.04.
016.

[51] A. Pal, H. T. Sencar, and N. Memon. “Detecting file fragmentation point using
sequential hypothesis testing.” In: Digital Investigation 5.Supplement (2008).
The Proceedings of the Eighth Annual DFRWS Conference, S2–S13. ISSN:
17422876. DOI: 10.1016/j.diin.2008.05.015.

[52] N.Memon andA. Pal. “Automated reassembly of file fragmented images using
greedy algorithms.” In: IEEE Transactions on Image Processing 15.2 (2006),
pp. 385–393. DOI: 10.1109/TIP.2005.863054.

[53] S. Sari and K. Mohamad. “A Review of Graph Theoretic and Weightage Tech
niques in File Carving.” In: The 2nd Joint International Conference on Emerg
ing Computing Technology and Sports (JICETS) 2019. Vol. 1529. 5. May 2020,
p. 052011. DOI: 10.1088/17426596/1529/5/052011.

[54] T. Owens and T. Padilla. “Digital sources and digital archives: historical evi
dence in the digital age.” In: International Journal of Digital Humanities 1.3
(July 2021), pp. 325–341. DOI: 10.1007/s42803020000287.

[55] J. Durno. “Digital Archaeology and/or Forensics: Working with Floppy Disks
from the 1980s.” In: The Code4Lib Journal 34 (2016). ISSN: 19405758.

263

https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1109/HICSS.2009.494
https://doi.org/10.1007/978-981-16-8059-5_16
https://doi.org/10.1007/978-3-319-14289-0_6
https://doi.org/10.1007/978-3-319-14289-0_6
https://doi.org/10.1016/j.diin.2016.04.016
https://doi.org/10.1016/j.diin.2016.04.016
https://doi.org/10.1016/j.diin.2008.05.015
https://doi.org/10.1109/TIP.2005.863054
https://doi.org/10.1088/1742-6596/1529/5/052011
https://doi.org/10.1007/s42803-020-00028-7

E. Extended Introduction

[56] D. Dietrich and F. Adelstein. “Archival science, digital forensics, and new me
dia art.” In: Digital Investigation 14 (2015). The Proceedings of the Fifteenth
Annual DFRWS Conference, S137–S145. ISSN: 17422876. DOI: 10.1016/
j.diin.2015.05.004.

[57] C. Lee, M. Kirschenbaum, A. Chassanoff, P. Olsen, and K. Woods. “BitCura
tor: Tools and Techniques for Digital Forensics in Collecting Institutions.” In:
D‐Lib Magazine 18.5/6 (2012). DOI: 10.1045/may2012lee.

264

https://doi.org/10.1016/j.diin.2015.05.004
https://doi.org/10.1016/j.diin.2015.05.004
https://doi.org/10.1045/may2012-lee

F. A Layman’s Introduction

This chapter introduces the thesis and the mapping concept to anyone unfamiliar with
the digital world. To explain the subject of the thesis the digital forensics area will
conceptually be compared to the activities involved in running a public library. The
work of a digital forensic investigator is represented by the information retrieval of
the librarians when they help someone to find the answer to a question. The librar
ians need to be unbiased and select relevant and trustworthy sources, like the digital
forensic investigator that needs to look for evidence regardless of whether it supports
or contradicts his or her hypothesis. The digital forensics field of file carving is repre
sented by the process of rescuing and preserving information from old, incomplete or
otherwise damaged books and documents in the library.
Due to the influx of new books and documents the size of new library buildings

(storage media) constantly increases. This also increases the time taken to handle all
the books and documents in the new library. The time taken to retrieve a book or add a
new is lowered by themanufacturers of library equipment and systems through slimmer
shelves, better layout of the library storage and flooring with lower friction, but their
work do not fully compensate for the everincreasing amount of books.
To fill the shelves in the library the librarians follow different process descriptions

(allocation algorithms) aiming at for example efficient retrieval of stored books, high
speed identification of free space when adding a new book, or minimization of the
waste of storage space, both in the shelves and also in the library as a whole. Many
libraries use the same standard (OS and file system) to allocate space in their shelves.
Currently the dominant standard (Microsoft Windows OS and NTFS) is used in almost
all libraries in the world.
Sometimes the index of all the books of the library is lost for some reason (file sys

tem corruption). The order of the books then has to be restored in some way (file
carving). Of special interest is to find the most valuable books (evidence) first, for
example unique copies of rare books or the newest procurements (user files). The cur
rent methodology is to scan all the books linearly from the entrance of the library to
the farthest shelf at the back to try to restore the original order and index used by the
librarians. Hence the inherent structure of the library (the file allocation pattern) is
ignored.
The proposal of a map of user data locations presented in this thesis is comparable

to creating a map showing the book shelves with the highest lending frequency in a
generic library (partition). The map is based on the predominant standard (NTFS) for

265

F. A Layman’s Introduction

shelf allocation and its inherent structures introduced when adding books to the shelves
of the library. The map is then used to direct the searches to the library shelves where
the probability of finding the sought after book (file) is higher. The concept of using a
map of a generic partition is also applicable to other areas, for example when archiving
and rescuing digital information.

266

G. Extended Publications

Since the first publication by the author, a technical report written at FOI in 2001, a
number of both peerreviewed articles, theses and technical reports have been pub
lished. The publications of relevance to the PhD project are presented at the beginning
of the thesis. The below lists contain a selection of publications unrelated to the PhD
project.
The following MSc thesis has been defended by the author.

• M. Karresand. “A Proposed Taxonomy of Software Weapons.” MSc thesis.
Department of Electrical Engineering, Institute of Technology, Linköping Uni
versity, Sweden, Dec. 2002

In addition to the previously presented publications the following peerreviewed ar
ticles have also been written by the author.

• M. Karresand. “A proposed taxonomy for IT weapons.” In: Proceedings of the
7th Nordic Workshop on Secure IT Systems (Nordsec 2002). Ed. by S. Fischer
Hübner and E. Jonsson. Nordsec 2002 Karlstad University. Nov. 2002, pp. 244–
260

• M. Karresand. “Separating Trojan horses, viruses, and worms A proposed tax
onomy of software weapons.” In: IEEE Systems, Man and Cybernetics Soci
ety Information Assurance Workshop. 2003, pp. 127–134. DOI: 10.1109/
SMCSIA.2003.1232411

• C. Duma, M. Karresand, N. Shahmehri, and G. Caronni. “A trustaware, P2P
based overlay for intrusion detection.” In: Proceedings InternationalWorkshop
on Database and Expert Systems Applications, DEXA. 2006, pp. 692–697. DOI:
10.1109/DEXA.2006.21

• H. Holm, M. Karresand, A. Vidström, and E. Westring. “A survey of indus
trial control system testbeds.” In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor
matics) 9417 (2015), pp. 11–26. DOI: 10.1007/9783319265025_2

The author has also written a number of technical reports, which have been peer
reviewed at FOI.

267

https://doi.org/10.1109/SMCSIA.2003.1232411
https://doi.org/10.1109/SMCSIA.2003.1232411
https://doi.org/10.1109/DEXA.2006.21
https://doi.org/10.1007/978-3-319-26502-5_2

G. Extended Publications

• M. Karresand. TEBIT — Tekniskt Beskrivningsmodell för ITvapen. Tech. rep.
FOIR–0305–SE. Eng. title: TEBIT — Technical Description Model for IT
Weapons. Totalförsvarets forskningsinstitut: Ledningssystemteknik, Aug. 2001

• M. Karresand. Intrusion analysis in military networks — an introduction. Tech.
rep. FOIR–1463–SE. Ledningssystemteknik, 2004

• M.Karresand. Parametrar för intrångsanalys. Tech. rep. FOIR–1831–SE. Eng.
title: Parameters for Intrusion Analysis. Command and Control Systems, 2005

• M. Karresand. Pålitliga ITplattformar — Kopplingar mellan Försvarsmaktens
behov och litteraturen. Tech. rep. FOIR–3903–SE. Eng. title: Trustworthy IT
Platforms — Connections between needs of the Swedish Defence Forces and
the literature. Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance (C4ISR), 2014

The following list presents a selection of coauthored technical reports, which have
been peerreviewed at FOI.

• M. Karresand, M. Persson, and D. Lindahl. Scenarion och trender i framtida
informationskrigföring ur ett tekniskt perspektiv. Tech. rep. FOIR–1283–SE.
Eng. title: Scenarios and trends for future information warfare from a technical
viewpoint. Command and Control Systems, 2004

• M. Karresand and D. Nordqvist. Utvärdering av Autoclass C. tech. rep. FOI
R–1484–SE. Eng. title: Evaluation of Autoclass C. Command and Control Sys
tems, 2005

• I. Rodhe and M. Karresand. Overview of formal methods in software engineer
ing. Tech. rep. FOIR–4156–SE. Information and Aeronautical Systems, 2015

• D. Eidenskog, M. Karresand, U. Sterner, and Å. Waern. Litteraturstudie om
trafikskydd. Tech. rep. FOIR–4255–SE. Eng. title: Transmission Security —
a Litterature Survey. Command, Control, Communications, Computers, Intelli
gence, Surveillance and Reconnaissance (C4ISR), 2016

• I. Rodhe and M. Karresand. Verktyg för att åstadkomma pålitlig programvara.
Tech. rep. FOIR–4290–SE. Eng. title: Tools to accomplish trustworthy soft
ware. Command, Control, Communications, Computers, Intelligence, Surveil
lance and Reconnaissance (C4ISR), 2016

• H. Karlzén, M. Karresand, and Å. Waern. Informationsinfrastruktur för anpass
ningsbara system. Tech. rep. FOIR–4353–SE. Eng. title: Information infras
tructures for situationally adapted systems. Command, Control, Communica
tions, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR), 2017

268

• A. Gudmundson Hunstad and M. Karresand. Monitorerings och övervakn
ingssystem — En kategorisering och översikt inom IIS. tech. rep. FOIR–4420–
SE. Eng. title: Monitoring and policing systems — A categorization and sur
vey within ICS. Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance (C4ISR), 2017

• D. Eidenskog and M. Karresand. Risker med virtualisering av ITsystem. Tech.
rep. FOIR–4448–SE. Eng. title: Risks When Using Virtualization of IT Sys
tems. Command, Control, Communications, Computers, Intelligence, Surveil
lance and Reconnaissance (C4ISR), 2017

• A. Gudmundson Hunstad and M. Karresand. Molntjänster inom industriella
informations och styrsystem. Tech. rep. FOIR–4597–SE. Eng. title: Cloud ser
vices for ICS. Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance (C4ISR), 2018

• C. Valassi and M. Karresand. NCS3 — Komponenter på avstånd. Säkerhets
beaktanden för direkt adresserbara trådlöst nätverksanslutna komponenter i in
dustriella informations och styrsystem. Tech. rep. FOIR–4757–SE. Eng. ti
tle: Security Implications for Wireless Components in ICS. Command, Con
trol, Communications, Computers, Intelligence, Surveillance and Reconnais
sance (C4ISR), 2019

• C. Valassi and M. Karresand. ITangrepp mot industriella informations och
styrsystem. Tech. rep. FOIR–4929–SE. Eng. title: IT Attacks Against Indus
trial Control Systems — Early signs of an attack. Command, Control, Commu
nications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR),
2020

• C. Valassi and M. Karresand. Cyberfysiska sårbarheter i tunga fordon. Tech.
rep. FOIR–5067–SE. Eng. title: Cyberphysical Vulnerabilities in Heavy Ve
hicles. Command, Control, Communications, Computers, Intelligence, Surveil
lance and Reconnaissance (C4ISR), 2020

Further publications written or coauthored by the author can be found by using the
search function at https://www.foi.se/en/foi/reports.html, Google or any
other web search engine.

269

https://www.foi.se/en/foi/reports.html

ISBN 978-82-326-7046-8 (printed ver.)
ISBN 978-82-326-7045-1 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:171

Martin Karresand

Digital Forensic Usage of the
Inherent Structures in NTFS

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2023:171
M

artin Karresand

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

	Abstract
	Preface
	Relevant Publications
	List of Figures
	List of Tables
	Acronyms
	Overview
	Introduction
	Problem Description
	Theoretical Assessment of the Map Effect
	Aim and Goal
	Scope and Delimitations
	Research Questions
	Prerequisites
	Research Questions
	Significance of Research Questions

	Outline of Thesis

	Background
	Storage Media and Structuring
	File System
	Fragmentation
	Data Allocation
	File Writing Concepts
	NTFS
	Encryption
	Virtualization
	Maps and Their Sciences

	Related Work
	File Fragment Carving
	The Licentiate Thesis Work
	Other Fragment Carving Research

	Hash-Based Carving
	Digital Stratigraphy
	Digital Archaeology
	Digital Geology

	NTFS Fragmentation
	NTFS Data Allocation Process
	Data Recovery
	Data Mapping

	Experimental Setup
	Motivation
	Static Areas
	Data Collection
	Data Analysis
	Map Evaluation

	Repeated File Operations
	Platform
	Implementation
	Map Creation

	Writing Type Behavior
	Virtual Hardware
	Process Description
	Implementation
	Bitmap Manipulation

	HDD vs. SSD Allocation Differences
	BitLocker Allocation Changes

	Result
	HDD vs. SSD Allocation Differences
	BitLocker Allocation Changes

	Summary of Work
	Article A: Creating a Map of User Data in NTFS to Improve File Carving
	Article B: Using NTFS Cluster Allocation Behavior to Find the Location of User Data
	Article C: Disk Cluster Allocation Behavior in Windows and NTFS
	Article D: An Empirical Study of the NTFS Cluster Allocation Behavior Over Time
	Map Examples
	Static Areas
	Allocation Activity
	Advanced Map Attributes

	Contributions
	File Fragment Carving
	Hash-Based Carving
	Digital Stratigraphy
	NTFS Fragmentation
	NTFS Data Allocation Process
	Data Recovery
	Data Mapping

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

	Included Publications
	Creating a Map of User Data in NTFS to Improve File Carving
	Introduction
	Related work
	Contribution

	Experimental Setup
	Data Collection
	Implementation
	Evaluation

	Result
	Discussion
	Conclusion and Future Work
	Bibliography

	Using NTFS Cluster Allocation Behavior to Find the Location of User Data
	Introduction
	Background
	Related work

	Experiment
	Platform
	Implementation
	Map creation

	Result
	Discussion
	Conclusion and future work
	Acknowledgment
	Bibliography

	Disk Cluster Allocation Behavior in Windows and NTFS
	Introduction
	Background
	Related work

	Experimental setup
	Virtual hardware
	Process description
	Bitmap manipulation

	Result
	Block writing
	Stream writing

	Discussion
	Conclusion and future work
	Bibliography

	An Empirical Study of the NTFS Cluster Allocation Behavior Over Time
	Introduction
	Background
	Related work

	Experiment
	Result
	Discussion
	Conclusion and future work
	Acknowledgements
	Bibliography

	Appendices
	Extended Introduction
	Forensics
	Digital Traces
	Digital Forensics
	Forensically Sound
	Digital Forensic Models
	Digital Forensic Challenges
	File Carving
	Bibliography

	A Layman's Introduction
	Extended Publications

	Blank Page

