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A B S T R A C T

It is well-known that vibrating surfaces generate sound waves in adjacent fluids. According to
the classical radiation model, the nature of these waves depends on whether the vibration’s
phase speed 𝑐v is above (supersonic) or below (subsonic) the fluid sound speed 𝑐f . The transition
between these two domains is known as coincidence. In the supersonic domain, the sound wave
radiates into the fluid. In the subsonic domain, the classical model states that the wave becomes
evanescent and clings to the surface. In the last 30 years, however, several articles on leaky
guided waves have reported radiating waves in the subsonic domain, which is at odds with
the classical model. In this article, we investigate an enhanced model for sound radiation near
and below coincidence. Unlike the classical model, this model fully respects conservation of
energy by balancing the radiated power with power lost from the guided wave underlying the
vibration. The model takes into account that this power loss and the consequent attenuation of
the surface vibration result in an inhomogeneous radiated sound wave — an effect that cannot
be neglected near coincidence. We successfully validate the model against exact solutions for
leaky A0 Lamb waves around coincidence. The model can also be used as a perturbation method
to predict the attenuation of leaky A0 waves from the properties of free A0 waves, giving more
accurate estimates than existing perturbation methods. We further investigate subsonic leaky A0
waves using the enhanced model. Thereby we, for example, explain the peculiar reappearance
or persistence of the leaky A0 wave at lower frequencies, an effect brought to attention by
previous theoretical studies.

. Introduction

Vibrations on the surface of structures such as blocks, plates, pipes, beams, or membranes can cause sound waves to radiate
nto adjacent fluids or solids. This very well-known phenomenon is crucial in many diverse fields of science and engineering, for
xample, building acoustics, microelectromechanical system design, and acoustic logging of petroleum wells.

It is widely held in textbooks and other scientific literature [1–8] that surface vibrations can only radiate sound waves into the
luid when the vibrational wave is supersonic, i.e., when its speed 𝑐v exceeds the sound speed 𝑐f of the fluid. In contrast, when the
ibration is subsonic, i.e., slower than the sound speed, the sound wave is evanescent ; it clings to the vibrating surface and does not
adiate out into the fluid. In this article, we denote this as the classical model of sound radiation from vibrating surfaces. It can be
ound from a straightforward derivation which we will now briefly cover to facilitate discussing this model and its shortcomings.
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Fig. 1. Three pressure fields in the fluid above a surface at 𝑦 = 0 that vibrates according to Eq. (2) at three different phase speeds 𝑐v = 𝜔∕𝑘𝑥. Here, 𝜆f = 2𝜋∕𝑘
is the wavelength of a homogeneous sound wave, and 𝜆 = 2𝜋∕|𝐤r | the actual wavelength of the plotted sound wave. Hats signify unit vectors, and 𝐤r and 𝐤i are
the real and imaginary components of the wavevector 𝐤, respectively.

Consider an infinite vibrating surface in the 𝑥–𝑧 plane, coupled to a semi-infinite fluid with sound speed 𝑐f at 𝑦 ≥ 0. For a
harmonic vibration propagating in the 𝑥 direction, the normal velocity is

𝑣𝑦(𝑥, 𝑦 = 0, 𝑡) = 𝑣𝑦0 ei(𝑘𝑥𝑥−𝜔𝑡), (1)

where 𝜔 = 2𝜋𝑓 and 𝑓 are real-valued angular and ordinary frequencies, respectively, 𝑘𝑥 is the real-valued surface wavenumber,
and 𝑣𝑦0 is the velocity amplitude. (Here and onwards, we use subscripted zeroes to indicate various quantities’ values at 𝑥 = 𝑦 = 0
and 𝑡 = 0.) The vibration propagates with a phase speed 𝑐v = 𝜔∕𝑘𝑥, and we assume the vibration to be weak enough that we can
treat the problem linearly.

The vibration generates a sound wave in the fluid, whose pressure field we can express as a general harmonic plane wave in the
𝑥–𝑦 plane:

𝑝(𝑥, 𝑦, 𝑡) = 𝑝0 e
i(𝑘𝑥𝑥+𝑘𝑦𝑦−𝜔𝑡) = 𝑝0 ei(𝐤⋅𝐫−𝜔𝑡) . (2)

Here, 𝐤 = (𝑘𝑥, 𝑘𝑦) is the wavevector and 𝐫 = (𝑥, 𝑦) is the coordinate vector. To satisfy the boundary conditions imposed by the
vibrating surface, the pressure wave is related to the surface vibration through 𝜔 and 𝑘𝑥, and its amplitude 𝑝0 is proportional to
𝑣𝑦0. (We defer the exact relation between 𝑝0 and 𝑣𝑦0 to Section 3.1.)

The relation between the wavevector components 𝑘𝑥 and 𝑘𝑦 in the fluid can be found by inserting Eq. (2) into the wave equation
for lossless fluids:

1
𝑐2f

𝜕2𝑝
𝜕𝑡2

= ∇2𝑝 ⟹

(

𝜔
𝑐f

)2
= 𝑘2𝑥 + 𝑘2𝑦 = 𝐤 ⋅ 𝐤 = 𝑘2. (3)

In a lossless fluid with a real-valued frequency 𝜔 of the surface vibration, the sound wavenumber 𝑘 = |𝐤| = 𝜔∕𝑐f is also real-valued.
For a given 𝑘 and surface wavenumber 𝑘𝑥, this relation gives us

𝑘𝑦 = ±𝑘

√

1 −
(

𝑘𝑥
𝑘

)2
= ±𝑘

√

1 −
(

𝑐f
𝑐v

)2
. (4)

Hence, this classical model of sound radiation from vibrating surfaces implies two domains with very different behaviour, as
Fig. 1 shows:

Supersonic domain (𝑐f < 𝑐v, Fig. 1a): Here, 𝑘𝑦 is real-valued. Choosing the positive sign in Eq. (4) leads to an outgoing wave that
propagates out from the vibrating surface, carrying energy away from the surface vibration into the fluid. The negative sign
leads to an incoming wave that propagates into the vibrating surface, carrying energy into the surface vibration. In this work,
we study the former case of outward radiating waves.

Subsonic domain (𝑐v < 𝑐f , Fig. 1c): Here, 𝑘𝑦 = ±i𝑘
√

(𝑐f∕𝑐v)2 − 1 is a purely imaginary number, and Eq. (2) becomes 𝑝(𝑥, 𝑦, 𝑡) =

𝑝0 ei(𝑘𝑥𝑥−𝜔𝑡) e
∓𝑦𝑘

√

(𝑐f ∕𝑐v)2−1. The positive sign of 𝑘𝑦 describes an exponentially decaying evanescent wave, which propagates
along the surface and carries no energy away into the fluid. The negative sign of 𝑘𝑦 leads to a solution generally rejected by
the sources that consider it [2,5,8], because it describes a wave that grows exponentially towards infinity with the distance
to the surface.
2
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Fig. 2. Inhomogeneous plane waves (orange) in a lossless fluid (white) from three different origins, all of which can be modelled as attenuated surface vibrations.
hick solid lines represent wavefronts whose amplitudes are indicated by the line thickness. Semi-transparent arrows represent the characteristic lines along
hich the waves propagate. In any lossless fluid, the wavefront amplitude remains constant along these characteristic lines. (a) Leaky Rayleigh waves in a

emi-infinite solid (blue). (b) Leaky Lamb waves in a solid plate (blue). (c) Attenuated plane waves in a lossy fluid (blue), transmitted to a lossless fluid; waves
eflected from the fluid-fluid interface are not shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

etween these two domains is the boundary of coincidence where 𝑐f = 𝑐v, i.e., where the vibrational phase speed coincides with
the fluid speed of sound. Near coincidence, the sound wave propagates nearly parallel to the surface, as we can see from Fig. 1b.
(Exactly at coincidence, however, the pressure wave amplitude 𝑝0 has an infinite discontinuity according to the classical model; see
Section 3.1 for details.)

However, this classical radiation model is not without issues. Perhaps the most conspicuous issue is the lack of energy
conservation in the supersonic domain. Because the radiated wave carries power away from the surface vibration, the vibration
should lose power as it propagates. The classical model, however, assumes the amplitude of the vibration to remain constant instead
of decaying, thus neglecting any effects of this power loss on the vibration.

Furthermore, several articles over the last 30 years have reported results that are at odds with the classical model. Specifically,
theoretical studies of leaky A0 Lamb waves in solid plates immersed in fluids [9–14] and leaky Rayleigh waves on solid surfaces in
contact with fluids [15] have found radiating waves even in the subsonic domain. According to the classical model, this subsonic
radiation should not exist.

These articles are based on numerical solutions of exact equations for leaky Lamb and leaky Rayleigh waves. These equations
account for the full and exact boundary conditions relating the component waves at the interface(s) between the solid and the fluid.
This approach is well-established and well-founded in the physics of these types of waves, and is considered to be a standard and
correct approach. However, expressing the problem through equations that are not only difficult to reason about, but which must
also be solved numerically, makes this approach unsuited for gaining physical understanding of why subsonic radiation can occur.
As several of these articles have commented on the remarkable presence of subsonic radiation [13–15] and none of them refer to a
general explanation of the phenomenon, it is clear that the cause of subsonic radiation is not well understood.

Hence, the classical radiation model is evidently insufficient and should be superseded by a radiation model that can also describe
the phenomenon of subsonic radiation from vibrating surfaces. A few related investigations have already been reported. Sandham
et al. [16] showed subsonic radiation from a vibration with a time-varying amplitude that first increases exponentially before
decreasing exponentially. However, their treatment is motivated by aeroacoustic problems that are not very relevant for the case
of leaky surface vibrations. Furthermore, a general explanation of the subsonic radiation phenomenon is beyond the scope of their
study.

To our knowledge, the only general physical explanation available in the literature is a brief qualitative justification by Mozhaev
and Weihnacht [15] of why subsonic radiation is permissible. Their main insight is that because leaky vibrations are attenuated as
their energy gradually radiates into the fluid, all radiated waves are inhomogeneous [17]. This means that the amplitude changes
exponentially along each wavefront, as Fig. 2 shows.1 (This is explained in more detail in Section 2, where we briefly cover
the basic theory of inhomogeneous waves.) Because inhomogeneous waves propagate at a lower phase speed 𝑐 than the speed
𝑐f of homogeneous sound waves, inhomogeneous waves can propagate along the surface more slowly than homogeneous waves.
Therefore, they argue, radiating waves can exist in part of the classical subsonic domain (𝑐v < 𝑐f ), so long as the vibrational phase
speed 𝑐v still exceeds the inhomogeneous wave phase speed 𝑐.

This justification by Mozhaev and Weihnacht has generality beyond their article’s main topic of leaky Rayleigh waves. It implies
that subsonic radiation can occur in some situations for any type of wave that can be modelled as an attenuated surface vibration

1 An evanescent wave, as shown in Fig. 1c, is in our nomenclature an inhomogeneous wave propagating parallel to a surface, whose amplitude decays with
3

he distance to the surface.
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adjacent to a fluid. Fig. 2 shows three examples of such waves. However, while these authors’ explanation is very credible, they do
not flesh it out and test it thoroughly, and it has no predictive power on which situations allow subsonic radiation.

Hence, a better radiation model that can describe subsonic radiation is still required to fully understand the phenomenon. In turn,
his improved understanding could allow design of, e.g., better techniques for measuring materials adjacent to vibrating surfaces as
ell as better microelectromechanical systems. A better model might also be used as an improved perturbation method to predict

he attenuation of leaky surface vibrations. Multiple perturbation methods have already been derived for leaky Lamb waves using
ifferent approaches [18–20] but they all give the same numerical results [21,22], including an unphysical infinite discontinuity in
he attenuation at coincidence.

In this article, we show how to build an enhanced radiation model that combines the central insight of Mozhaev and
eihnacht [15], namely that a radiating surface vibration must be attenuated, with the central insight of Watkins et al. [20], namely

hat the radiated power is balanced by a loss of power in the guided wave underlying the vibration. (We previously summarised
reliminary results of this investigation in an extended abstract [23], and a related derivation has been done by Kiefer et al. [13].)

We build this radiation model under the assumption that the vibration is a forward wave, where the phase and the energy of
he guided wave both propagate in the +𝑥 direction. Plates also support a Lamb wave often called S2b, which is a backward wave

where phase and energy propagate in opposite directions of each other [24–27]. However, a full consideration of this phenomenon
is outside the scope of our article.

In the rest of this article, we build and analyse the radiation model step by step and test it. Section 2 covers the necessary
basics of inhomogeneous waves. In Section 3, we investigate the sound wave generated by a specified attenuated surface vibration,
showing that any attenuated forward-wave vibration generates an outgoing wave. From the results of the investigation, we
straightforwardly build the enhanced radiation model in Section 4, imposing conservation of energy by equating the power radiated
by the inhomogeneous sound wave with the power lost in the surface vibration. Our hypothesis is that this model can correctly
explain the mechanism underlying sound radiation from vibrating surfaces, including subsonic radiation. We test this hypothesis in
the specific case of leaky A0 Lamb waves in Section 5. Section 6 discusses what we have learned, and we conclude in Section 7.

2. Basic theory of inhomogeneous waves in lossless fluids

The rest of this article deals extensively with inhomogeneous plane waves in lossless fluids. This section summarises the basic
theory of this lesser-known [17] type of wave. Advanced treatments on inhomogeneous waves in more complex media, such as
viscoelastic solids, can be found in the literature [17,28,29].

We start with a straightforward generalisation of the plane sound wave in Eq. (2): we split the wavevector into a real and
imaginary part as 𝐤 = 𝐤r + i𝐤i, so that ei(𝐤⋅𝐫−𝜔𝑡) = ei(𝐤r ⋅𝐫−𝜔𝑡) e−𝐤i⋅𝐫 . The real part 𝐤r is a propagation vector, while the imaginary part 𝐤i
is a decay vector that specifies the direction 𝐤̂i and rate |𝐤i| = 𝑘i of the decay. (Here and onward, the subscripts r and i indicate the
real and imaginary part, respectively, and hats indicate unit vectors.) A wave where 𝑘i = 0 or 𝐤i ∥ 𝐤r is called homogeneous, and a
wave where 𝑘i ≠ 0 and 𝐤𝑖 ∦ 𝐤𝑟 is called inhomogeneous.

After this split, the lossless wave dispersion relation in Eq. (3) immediately tells us that

𝐤 ⋅ 𝐤 = 𝐤r ⋅ 𝐤r + 2i𝐤r ⋅ 𝐤i − 𝐤i ⋅ 𝐤i = 𝑘2 = (𝜔∕𝑐f )2, (5)

which can only be true if 𝐤r ⋅ 𝐤i = 0, which means that 𝐤r⊥𝐤i. In other words, the directions of propagation and decay are
perpendicular in a lossless medium. For simplicity, let us follow Poirée [29] and align a coordinate system 𝐑 = (𝑋, 𝑌 ) with the
wavefield, with the propagation vector 𝐤r in the 𝑋 direction and the decay vector 𝐤i in the ±𝑌 direction so that 𝐤 = 𝑘r𝐗̂± i𝑘i𝐘̂. The
plane wave in Eq. (2) then becomes

𝑝(𝑋, 𝑌 , 𝑡) = 𝑝0 ei(𝐤⋅𝐫−𝜔𝑡) = 𝑝0 ei(𝑘r𝑋−𝜔𝑡) e∓𝑘i𝑌 . (6)

This shows that the amplitude stays constant along the direction of propagation, but decays or increases exponentially along the
wavefronts. From Eqs. (5) and (6), we straightforwardly find that this wave has a phase speed

𝑐 = 𝜔
𝑘r

= 𝜔
√

𝑘2 + 𝑘2i

=
𝑐f

√

1 +
(

𝑘i𝑐f∕𝜔
)2

, (7)

which decreases from the speed of sound 𝑐f as the inhomogeneity 𝑘i increases.
The most basic example of an inhomogeneous wave is the evanescent wave in Fig. 1c. Fig. 2 sketches radiated inhomogeneous

waves, where the wavefront amplitudes are constant along the characteristic lines in the propagation direction and the amplitude
changes along the wavefronts. This amplitude change occurs because the amplitude of any point on a wavefront is proportional to
the amplitude of the vibration at the point at the surface from which it was emitted. Therefore, as we follow a wavefront upward,
we encounter wavefront segments of increasing amplitude because they were emitted increasingly far back on the surface, where
the vibrational amplitude was higher.

For a theoretical unbounded forward-wave vibration of infinite extent, such as the classical model’s vibration from Eq. (1), these
amplitudes will gradually increase to infinity. In a more realistic bounded treatment where the vibration is instead excited at a
specific location, the amplitude of the vibration and the radiated wavefronts will remain finite. Still, the radiated wavefield in the
wedge-shaped radiation region starting at the excitation location is based on the unbounded solution [27]. The literature on guided
wave propagation primarily considers theoretical unbounded waves, and dealing with bounded waves is beyond the scope of this
4

article as well.
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We can find the particle velocity 𝐯 of the inhomogeneous wave by inserting its pressure, Eq. (6), into the linear Euler equation,
hich is valid for lossless fluids:

𝜌 𝜕𝐯
𝜕𝑡

= −∇𝑝 ⟹ 𝐯(𝑋, 𝑌 , 𝑡) = 𝐤
𝜌𝜔

𝑝(𝑋, 𝑌 , 𝑡) =
𝑘r𝐗̂ ± i𝑘i𝐘̂

𝜌𝜔
𝑝0 ei(𝑘r𝑋−𝜔𝑡) e∓𝑘i𝑌 . (8)

ere, 𝜌 is the fluid density. We see that while the particle motion of a homogeneous wave (𝑘i = 0) is simply back and forth in the
𝑋 direction with time, the particle motion of an inhomogeneous wave traces an ellipse in the 𝑋–𝑌 plane.

. Sound radiation from attenuated surface vibrations

The introduction showed that the classical radiation model, which imposes an unattenuated surface vibration, is unable to capture
he phenomenon of subsonic radiation. However, we can generalise this surface vibration to represent attenuated surface vibrations

by letting the surface wavenumber be complex:

𝑘𝑥 = 𝑘𝑥r + i𝑘𝑥i ⟹ 𝑣𝑦(𝑥, 𝑦 = 0, 𝑡) = 𝑣𝑦0 ei(𝑘𝑥r𝑥−𝜔𝑡) e−𝑘𝑥i𝑥 . (9)

As in Section 2, the real part 𝑘𝑥r > 0 represents propagation with a phase speed 𝑐v = 𝜔∕𝑘𝑥r and the imaginary part 𝑘𝑥i ≥ 0 represents
forward-wave attenuation.2

Even with a complex 𝑘𝑥, the rest of the derivation proceeds like before. However, expanding 𝑘𝑥 into its real and imaginary parts
in Eq. (4) shows that the wavevector 𝑦-component

𝑘𝑦 = ±𝑘

√

√

√

√

[

1 −
(

𝑘𝑥r
𝑘

)2
+
(

𝑘𝑥i
𝑘

)2
]

− i
2𝑘𝑥r𝑘𝑥i

𝑘2
= 𝑘𝑦r + i𝑘𝑦i (10)

is always complex for a propagating wave (𝑘𝑥r > 0) whenever 𝑘𝑥i ≠ 0; it is no longer purely real or imaginary as in the classical
odel. We will take a closer look at the implications of this in Section 3.2.

.1. Sound wavefields

Imposing an attenuated surface vibration generates a sound wave that can be expressed generally as:

𝑝(𝑥, 𝑦, 𝑡) = 𝑝0 e
i(𝑘𝑥r𝑥+𝑘𝑦r𝑦−𝜔𝑡) e−𝑘𝑥i𝑥 e−𝑘𝑦i𝑦, 𝐯(𝑥, 𝑦, 𝑡) = 𝐯0 ei(𝑘𝑥r𝑥+𝑘𝑦r𝑦−𝜔𝑡) e−𝑘𝑥i𝑥 e−𝑘𝑦i𝑦 . (11a)

he surface vibration in Eq. (9) acts as a boundary condition at 𝑦 = 0 for the velocity 𝐯, fixing its 𝑦-component amplitude to the
ibrational amplitude 𝑣𝑦0. Furthermore, the pressure and velocity amplitudes 𝑝0 and 𝐯0 are related as in Eq. (8), giving 𝐯0 = (𝐤∕𝜌𝜔)𝑝0.
rom this, we can find explicit expressions for these amplitudes in terms of 𝑣𝑦0 and 𝐤:

𝐯0 =
𝐤𝑣𝑦0
𝑘𝑦

, 𝑝0 =
𝜌𝜔𝑣𝑦0
𝑘𝑦

. (11b)

Fig. 3 shows the pressure fields from two attenuated surface vibrations, one supersonic and one subsonic. Both fields were plotted
using the positive sign in Eq. (10) so that 𝑘𝑦r > 0, which corresponds to an outwards propagating wave (as opposed to the negative
sign giving an inwards propagating wave with 𝑘𝑦r < 0). They both show waves propagating away from the surface at 𝑦 = 0; while
the subsonic wave radiates more parallel to the surface, it is not perfectly grazing like the evanescent wave in Fig. 1c.

In both cases, the waves are visibly inhomogeneous. The pressure increases exponentially as we follow a wavefront away from
the surface, and the pressure goes to infinity with 𝑦. While this behaviour may seem troubling and has therefore led some to reject
this solution [2], this behaviour is actually both correct and necessary for the field radiated from an unbounded attenuated surface
vibration [13,15,30–32], as we explained in Section 2. Furthermore, for the attenuated forward-wave surface vibration in Eq. (9),
this solution and the aforementioned inward propagating solution are the only valid wavefields in a lossless fluid.

A closer consideration of the real and imaginary wavevectors shown in Fig. 3 reveals why evanescent waves are not possible
when the surface vibration is an attenuated forward wave (𝑘𝑥i > 0). Because the surface vibration and sound wavefield share 𝑘𝑥, the
decay vector 𝐤i contains a strictly positive 𝑥 component. We saw in Section 2 that 𝐤r and 𝐤i are always perpendicular in a lossless
fluid, and because 𝐤i is not purely oriented along the 𝑦-axis, 𝐤r cannot be purely oriented along the 𝑥-axis (i.e, along the surface)
as it would be for an evanescent wave. Instead, it will always point into the fluid.

We can also calculate the time-averaged intensity (i.e., power flow per area) from the pressure and velocity fields in Eq. (11) as

𝐈(𝑥, 𝑦) = Re
{

𝐯(𝑥, 𝑦, 𝑡)𝑝(𝑥, 𝑦, 𝑡)
2

}

= 𝐤r
𝜌𝜔|𝑣𝑦0|

2

2|𝑘𝑦|
2

e−2𝑘𝑥i𝑥 e−2𝑘𝑦i𝑦 . (12)

ere, the bar denotes complex conjugation, which can also be applied to the velocity instead of the pressure with the same result.
e see that power flows in the direction of 𝐤r . For all attenuated surface vibrations, we saw that 𝐤r will point into the fluid, and

herefore, some power will be radiated away into the fluid as well. For evanescent waves, where 𝑘𝑦r = 0, we find the well-known
esult [2] that they carry no power away from the surface.

2 For a backward wave, energy would propagate in the −𝑥 direction, opposite to the phase, so that attenuation due to radiation would entail 𝑘𝑥i < 0 [27].
5

However, our further analysis will be limited to forward waves.
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Fig. 3. Two pressure fields plotted as in Fig. 1, generated by attenuated vibrations (𝑘𝑥i∕𝑘 = 0.025) moving at two different phase speeds 𝑐v.

Fig. 4. Wavevector components 𝑘𝑥 and 𝑘𝑦 (via 𝑘2𝑦) in the complex plane according to Eqs. (10) and (13), for supersonic and subsonic vibrations (a) without
attenuation and (b) with attenuation. We use the positive root sign and for simplicity choose 𝑘 = 1.

3.2. Interpretation of the wavevector 𝑦 -component

Next, we investigate how the real and imaginary components of 𝑘𝑦 behave around coincidence. While Eq. (10) can be decomposed
into a series of explicit real and imaginary terms via Taylor expansion around 𝑘𝑥i∕𝑘 = 0, the resulting Taylor series diverges near
coincidence and is therefore of little use here. Instead, we can consider

𝑘2𝑦 = 𝑘2 − (𝑘𝑥r + i𝑘𝑥i)2 =
(

𝑘2 − 𝑘2𝑥r + 𝑘2𝑥i
)

− i2𝑘𝑥r𝑘𝑥i, (13)

which is already decomposed in a real and an imaginary part. Plotting 𝑘𝑥 and the resulting 𝑘2𝑦 on the complex plane, as in Fig. 4, lets
us conveniently reason about the behaviour of 𝑘𝑦 =

√

𝑘2𝑦. When doing so, we will only consider surface vibrations that propagate
as forward waves in the 𝑥 direction (𝑘𝑥r > 0). These may either have zero attenuation (𝑘𝑥i = 0, Fig. 4a) or nonzero attenuation in
the 𝑥 direction (𝑘𝑥i > 0, Fig. 4b). We discount solutions corresponding to incoming waves (𝑘𝑦r < 0).

First, let us consider the unattenuated surface vibrations in Fig. 4a. In the supersonic case (𝑘𝑥 < 𝑘), 𝑘2𝑦 is real and positive, leading
to a real and positive 𝑘𝑦, i.e., outward radiation. In the subsonic case (𝑘𝑥 > 𝑘), however, 𝑘2𝑦 is real and negative, leading to a positive
imaginary 𝑘𝑦 — an evanescent wave, as shown in Fig. 1c.3

Next, let us consider the attenuated surface vibrations in Fig. 4b. In both the supersonic and the subsonic cases, 𝑘2𝑦 can be found
in the 3rd or 4th quadrants of the complex plane, with a negative imaginary part. Therefore, 𝑘𝑦 can always be found in the 4th
quadrant, with 𝑘𝑦r > 0 and 𝑘𝑦i < 0.

In other words, every attenuated surface vibration propagating as a forward wave in the 𝑥 direction (𝑘𝑥r > 0, 𝑘𝑥i > 0) radiates a
wave away into the fluid (𝑘𝑦r > 0) whose pressure increases exponentially with the distance to the surface (𝑘𝑦i < 0). This corroborates
our discussion in Section 3.1.

3 We made a deliberate choice to use the ei(𝐤⋅𝐫−𝜔𝑡) = ei(𝐤r ⋅𝐫−𝜔𝑡) e−𝐤i ⋅𝐫 convention in this article instead of the ei(𝜔𝑡−𝐤⋅𝐫) = ei(𝜔𝑡−𝐤r ⋅𝐫) e𝐤i ⋅𝐫 convention. With the former
convention, the principal root 𝑘𝑦 =

√

𝑘2𝑦 is always the desired solution. With the latter convention, 𝐤i represents exponential increase instead of decay, and

therefore we would need to choose the other root in the case of evanescent waves where the principal root
√

𝑘2 is positive.
6
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Fig. 5. An infinitesimal wavefront segment d𝑠 and its surface projection d𝑥 for a plane wave with propagation wavevector 𝐤r and radiation angle 𝜃.

3.3. Properties of the radiated sound wave

With the sound wavevector components 𝑘𝑥 and 𝑘𝑦 known, we can calculate various properties of the sound wave over a range
of vibrational phase speeds 𝑐v, for example, radiated intensity, radiation angle, and the phase speed of the emitted wave.

We begin with considering the time-averaged intensity vector 𝐈 in Eq. (12). In two spatial dimensions, its magnitude represents
the power per unit length perpendicular to its orientation; in this case, along the wavefronts. However, to relate the radiated power
to power lost in the surface vibration, we need to know the power radiated into the fluid per unit length along the surface, which
we represent as 𝐼rad. From Fig. 5, we see that all of the power along the infinitesimal wavefront segment d𝑠 has been radiated from
its surface projection d𝑥. In other words, 𝐼radd𝑥 = 𝐼d𝑠, and hence

𝐼rad(𝑥) = 𝐼(𝑥, 0) d𝑠
d𝑥

= 𝐼(𝑥, 0) cos 𝜃 = 𝐼𝑦(𝑥, 0) =
𝑘𝑦r
|𝑘𝑦|

2

𝜌𝜔|𝑣𝑦0|
2

2
e−2𝑘𝑥i𝑥 =

𝑘𝑦r∕𝑘

|𝑘𝑦∕𝑘|
2

𝜌𝑐f |𝑣𝑦0|
2

2
e−2𝑘𝑥i𝑥 . (14a)

Note that the radiated intensity 𝐼rad equals the intensity 𝑦-component 𝐼𝑦 at the surface. Next, the radiated sound wave’s radiation
angle 𝜃 can be found from Fig. 5 to be

𝜃 = arctan
(

𝑘𝑥r
𝑘𝑦r

)

= arctan
(

𝑘𝑥r∕𝑘
𝑘𝑦r∕𝑘

)

. (14b)

Finally, its phase speed can be found from Eq. (11) to be

𝑐 = 𝜔
|𝐤r |

=
𝑘𝑐f

√

𝑘2𝑥r + 𝑘2𝑦r
=

𝑐f
√

(

𝑘𝑥r∕𝑘
)2 +

(

𝑘𝑦r∕𝑘
)2

. (14c)

The three properties of radiated intensity amplitude 𝐼rad,0, radiation angle 𝜃, and wave phase speed 𝑐 can all be expressed in
normalised form so that they only depend on the normalised surface wavenumber’s real part 𝑘𝑥r∕𝑘 and imaginary part 𝑘𝑥i∕𝑘 (in
some cases via 𝑘𝑦∕𝑘 — see Eq. (10)):

𝐼rad,0
𝜌𝑐𝑓 |𝑣𝑦0|

2∕2
=

𝑘𝑦r∕𝑘

|𝑘𝑦∕𝑘|
2
, 𝜃 = arctan

(

𝑘𝑥r∕𝑘
𝑘𝑦r∕𝑘

)

, 𝑐
𝑐𝑓

=
[

(

𝑘𝑥r∕𝑘
)2 +

(

𝑘𝑦r∕𝑘
)2
]−1∕2

. (15)

Fig. 6 plots each of these normalised properties against the normalised vibrational phase speed 𝑐v∕𝑐f = 𝑘∕𝑘𝑥r for different choices
of normalised attenuation 𝑘𝑥i∕𝑘.

First, we consider the behaviour of all three properties for an unattenuated surface vibration (𝑘𝑥i = 0). We look from the
supersonic domain, past coincidence, and into the subsonic domain, i.e., right-to-left in each subplot of Fig. 6. The radiated intensity
in Fig. 6a increases towards an infinite discontinuity at coincidence, with zero radiated intensity in the subsonic domain. The
radiation angle in Fig. 6b increases towards coincidence where it reaches a 90◦ grazing angle that persists in the subsonic domain,
as it becomes an evanescent wave as shown in Fig. 1c. The phase speed in Fig. 6c changes sharply from 𝑐f in the supersonic domain
to 𝑐v in the subsonic domain.

With attenuation, we see a smoothing effect around coincidence. As the attenuation increases, the sharp changes that occur
at coincidence for an unattenuated vibration become increasingly smooth. Far into the subsonic and the supersonic domain, the
properties go asymptotically towards the unattenuated properties. For the radiated intensity (Fig. 6a), the discontinuity disappears,
and there is a nonzero radiation of power in the entire subsonic domain. The radiation angle (Fig. 6b) never quite reaches a grazing
angle in the subsonic domain. As for the phase speed of the subsonically radiating waves (Fig. 6c), we can see that 𝑐 < 𝑐v, like
Mozhaev and Weihnacht concluded [15].

Finally, note that as long as the vibration is an attenuated forward wave (𝑘𝑥i > 0), then no matter how far we go into the subsonic
domain or how small the vibrational attenuation 𝑘𝑥i is, we still find a negative 𝑘𝑦i, corresponding to an exponential increase with
𝑦 of the sound wavefields. Only when the vibration is perfectly unattenuated (𝑘𝑥i = 0) can we find a positive 𝑘𝑦i, corresponding to
an exponential decrease with 𝑦. In fact, the conventionally rejected solution 𝑘𝑦 = −i𝑘

√

(𝑐f∕𝑐v) − 1 of the classical model, which we
briefly discussed in Section 1, may be viewed as the limit lim 𝑘 of the outgoing attenuated solution in the subsonic domain.
7
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Fig. 6. Properties of the inhomogeneous wave radiated from a surface vibration for several fixed values of the attenuation 𝑘𝑥i. All properties are normalised as
in Eq. (15). (a) Normalised radiated intensity amplitude. (b) Radiation angle. (c) Normalised phase speed, with black dashed lines indicating where 𝑐 = 𝑐v and
𝑐 = 𝑐f .

Fig. 7. Power balance for two types of guided waves. The loss in power flow 𝑃𝑥 in the interval [𝑥, 𝑥 + d𝑥] must equal the total power radiation into the fluid
inside the same interval. (a) Leaky Rayleigh wave, with power radiation on one side and a semi-infinite cross-section . (b) Leaky Lamb waves, with power
radiation on both sides and a finite cross-section . With the same fluid on both sides of the plate and vibrational similarity between the Rayleigh and Lamb
waves, then |𝐈+| = |𝐈−| = |𝐈| and 𝐼+

rad = 𝐼−
rad = 𝐼rad.

4. An energy-conserving radiation model

In Section 3, we simply imposed an arbitrary surface vibration and analysed the resulting sound wave in the fluid. However,
surface vibrations are typically caused by some kind of guided wave, such as a Lamb or Rayleigh wave (Figs. 2 and 7), which
carries a certain amount of power. For a physically valid treatment, we must take conservation of energy into account, balancing
the power that the sound wave radiates away into the fluid with a loss of power in the guided wave. However, finding this balance
is complicated by the fact that the loss of power in the guided wave determines the attenuation of the surface vibration, which in
turn strongly affects the radiated intensity close to and below coincidence, as we saw in Section 3.3 and Fig. 6a.

First, to be able to express the effect of this power loss, we must first quantify the power contained in the guided wave. It can be
expressed as the power flow [13,19,20,27], which is the integral of the time-averaged intensity inside the solid over its cross-section
 shown in Fig. 7:

𝑃𝑥(𝑥) = ∫
𝐈(𝑥, 𝑦) ⋅ d = ∫

𝐼𝑥(𝑥, 𝑦)d𝑦 = 𝑃𝑥0 e−2𝑘𝑥i𝑥 . (16)

𝐈 gets its 𝑥 dependence e−2𝑘𝑥i𝑥 from being the product of two wavefield components propagating as ei(𝑘𝑥r𝑥−𝜔𝑡) e−𝑘𝑥i𝑥, with one
component complex conjugated as in Eq. (12). We will come back to calculating 𝐼𝑥0 and 𝑃𝑥0 for the specific case of a Lamb wave
in Section 5.

4.1. The enhanced radiation model equation

If there are no other sources of power loss in the guided wave, the radiated power per unit length must equal the power loss
per unit length. For one-sided radiation, as illustrated in Fig. 7a, this power balance is expressed as

𝐼 (𝑥) = −
d𝑃𝑥 (𝑥) = 2𝑘 𝑃 (𝑥). (17)
8
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Fig. 8. Surface plots of 𝑔 from Eq. (20). Its roots, which represent propagating waves, are shown as dashed lines. The approximate attenuation from Eq. (19)
is shown as a solid line. (a) More strongly radiating wave (𝐶 = 0.1). (b) Less strongly radiating wave (𝐶 = 0.01).

(For two-sided radiation into the same fluid as in Fig. 7b, we simply replace 𝐼rad with 2𝐼rad here and later.) From Eqs. (10) and
(14a), we know that the intensity amplitude 𝐼rad,0 is a function of 𝑘𝑥r and 𝑘𝑥i via 𝑘𝑦. Similarly, the power flow amplitude 𝑃𝑥0 may
have an 𝑘𝑥r and 𝑘𝑥i dependence as well. Hence, we can express Eq. (17) as an implicit equation defining a radiation model

𝑓 (𝑘𝑥r , 𝑘𝑥i) = 𝑘𝑥i −
𝐼rad,0(𝑘𝑥r , 𝑘𝑥i)
2𝑃𝑥0(𝑘𝑥r , 𝑘𝑥i)

= 𝑘𝑥i −
𝑘𝑦r
|𝑘𝑦|

2

𝜌𝜔|𝑣𝑦0|
2

4𝑃𝑥0
= 0, (18)

where we have used Eq. (14a) for the last equality. Its roots 𝑓 (𝑘𝑥r , 𝑘𝑥i) = 0 represent combinations of 𝑘𝑥r and 𝑘𝑥i that respect
conservation of energy, so that the loss in power flow matches the radiated intensity. This implicit equation can also be seen as
defining an implicit function for 𝑘𝑥i, which for a given 𝑘𝑥r may be solved by an iterative root-finding algorithm.

Explicit versions of Eq. (18) have previously appeared in the literature, for example in [20] by Watkins et al. who pioneered
the above power balance approach but did not take the inhomogeneity of the radiated wave into account. We may similarly make
Eq. (18) explicit through approximation: specifically, we assume 𝑣𝑦0 and 𝑃𝑥0 to be constant and approximate the radiated waves
as being homogeneous by substituting 𝑘𝑦 with 𝑘hom𝑦 = 𝑘

√

1 − (𝑘𝑥r∕𝑘)2. Because 𝑘hom𝑦 = 𝑘hom𝑦r = |𝑘hom𝑦 | = 𝑘 cos(𝜃hom) in the supersonic
domain (with 𝜃hom = arctan(𝑘𝑥r∕𝑘hom𝑦r )) and 𝑘hom𝑦r = 0 in the subsonic domain, these substitutions let us directly solve Eq. (18) to find

𝑘𝑥i ≈ 𝑘hom𝑥i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝑐f |𝑣𝑦0|2

4𝑃𝑥0 cos(𝜃 hom) for 𝑘𝑥r∕𝑘 < 1 (supersonic domain),

undefined for 𝑘𝑥r∕𝑘 = 1 (coincidence),
0 for 𝑘𝑥r∕𝑘 > 1 (subsonic domain).

(19)

𝑘hom𝑥i is the approximate attenuation derived by Auld [12,19] through a more involved perturbation approach based on the complex
reciprocity relation. In other words, we can reproduce Auld’s result as an approximation of Eq. (18), which is not only more
straightforward to derive than Auld’s result, but also more general as it can take the inhomogeneity of the radiated sound wave into
account.

Furthermore, Kiefer et al. [13] also followed the same power balance approach to derive an equation 𝛼 = 𝐼𝑦0(ℎ)∕2𝑃𝑥0 which is
very similar to part of Eq. (18). Here, 𝛼 is the attenuation due to radiation and ℎ is the 𝑦 coordinate of the top surface. They calculate
𝐼𝑦0(ℎ) and 𝑃𝑥0 numerically from a provided exact leaky Lamb wavefield in a plate with a fluid on only one side. Using this provided
wavefield, their equation can be calculated explicitly and 𝐼𝑦0(ℎ) includes inhomogeneity thanks to the inherent attenuation 𝑘𝑥i of the
wavefield. While their 𝐼𝑦0(ℎ) derives from the wavefield inside the solid, our 𝐼rad,0 derives from the wavefield of the inhomogeneous
fluid wave. Although both wavefields’ intensities 𝐼𝑦0(ℎ) and 𝐼rad,0 are evaluated at the fluid–solid interface where their 𝑦-components
are equal, our choice allows using the simple analytical form of Eq. (14a), making Eq. (18) more amenable to further analysis.

While finding the roots of Eq. (18) analytically is not feasible, except in some limits that we will discuss in Section 4.2, these
roots are not difficult to find numerically. For generality, we will investigate the roots of a normalised version of the radiation model
equation:

𝑔
(

𝑘𝑥r∕𝑘, 𝑘𝑥i∕𝑘
)

=
𝑘𝑥i
𝑘

−
𝑘𝑦r∕𝑘

|𝑘𝑦∕𝑘|
2
𝐶 = 0, with 𝐶 =

𝜌𝑐f |𝑣𝑦0|
2

4𝑘𝑃𝑥0
. (20)

The dimensionless radiation factor 𝐶 expresses a ratio between the radiation efficiency of the sound wave and the power of the
guided wave. It can also be related to the approximate attenuation 𝑘hom𝑥i in the supersonic domain as 𝐶 = 𝑘hom𝑥i cos(𝜃hom)∕𝑘. In other
words, higher 𝐶 values imply higher attenuations.
9
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Fig. 8 shows surface plots of 𝑔(𝑘𝑥r∕𝑘, 𝑘𝑥i∕𝑘) for two different radiation factors 𝐶, with the roots indicated as dashed lines. In
oth cases, we find two branches of roots, representing two propagating waves. One is an unattenuated wave (𝑘𝑥i = 0) that exists
nly in the subsonic domain, which corresponds to the classical evanescent subsonic solution covered in Section 1 and shown in
ig. 1c. This wave trivially satisfies energy conservation as no power is radiated into the fluid or lost in the guided wave. However,
he other wave is radiating (𝑘𝑥i > 0) and exists in the entire supersonic domain and part of the subsonic domain. Hence, there is a
ubsonic subdomain where both waves are valid solutions of the radiation model in Eq. (18).

The classical approximate attenuation 𝑘hom𝑥i is also plotted in Fig. 8 for comparison. It reaches an infinite discontinuity at
oincidence and is zero in the subsonic domain. The attenuation curve of our radiating wave, on the other hand, qualitatively
atches exact solutions for subsonic leaky A0 Lamb waves in the literature [10,12–14,33]. Furthermore, comparing Figs. 8a and b,
e can see that the more strongly radiating vibration stretches further into the subsonic domain before it is cut off. This qualitatively
atches what Dabirikhah and Turner found for a leaky A0 Lamb wave as they artificially increased the density of the fluid

urrounding the solid plate [10].
These similarities lead us to a hypothesis that the enhanced radiation model is a correct description of the mechanism underlying

ound radiation from vibrating surfaces. From this hypothesis, we can make a testable prediction that if we find exact values for
he wavenumber 𝑘𝑥, the radiated intensity 𝐼rad,0, and the power flow 𝑃𝑥0 for a subsonic leaky guided wave, inputting these values
nto the radiation model in Eq. (18) will show that the exact guided wave solution is a root of this equation. While a sufficiently
quivalent test for the first equality of Eq. (18) has already been performed by Kiefer et al. [13] for the case of a brass plate in
ontact with water on one side, we test this prediction for other leaky Lamb wave cases exhibiting a wider variety of behaviours in
ection 5.

The approximate attenuation 𝑘hom𝑥i assumes the radiated wave to be homogeneous, while the radiating waves shown in Fig. 8 do
ot. The differences between the two underline the importance of taking the inhomogeneity of radiated waves into account close to
oincidence. Because the inhomogeneity is a direct result of the attenuation of the surface vibration, we also see that 𝑘hom𝑥i is a worse

approximation for the more attenuated wave in Fig. 8a than for the less attenuated wave in Fig. 8b, even far into the supersonic
domain.

4.2. Characteristics of the radiating wave

The normalised radiation model in Eq. (20) can be seen as an implicit function 𝑘𝑥i
𝑘 ( 𝑐v𝑐f

, 𝐶) for the normalised attenuation. While
deriving an explicit function for this attenuation may not be possible, we can still determine some characteristics of the radiating
wave’s attenuation curve. This section summarises the results from the full discussion in the Appendix.

As Fig. 8 indicates, more strongly radiating waves extend further into the subsonic domain before they are cut off. The normalised
vibrational phase speed 𝑐v,cutoff∕𝑐f at which this cutoff occurs is given by

[

(𝑐f∕𝑐v,cutoff )2 − 1
]3∕2

𝑐f∕𝑐v,cutoff
= 𝐶,

𝑐v,cutoff
𝑐f

≈ 1
1 + 𝐶2∕3∕2

. (21)

Here, the first equation is an exact implicit function and the second is an approximate explicit function. Fig. 9a compares these two
cutoff speeds. The explicit approximation is remarkably accurate despite being based on a lowest-order series expansion of the exact
implicit function, with a maximum absolute error of 0.015. The figure also demonstrates a subsonic radiation cutoff behaviour that
we could only guess at from Fig. 8: in the limit of weak radiation (𝐶 → 0), the cutoff speed goes asymptotically to the classical
oincidence result 𝑐v,cutoff = 𝑐f , while in the limit of strong radiation (𝐶 → ∞), the cutoff speed goes asymptotically to 0.

While earlier perturbation methods to find the attenuation of the radiating wave [18–20] predict an infinite discontinuity in the
ttenuation at coincidence (𝑐v = 𝑐f ), Fig. 8 shows that the enhanced radiation model instead predicts a finite attenuation. In the
imits of low and high 𝐶, this attenuation at coincidence is

𝑘𝑥i
𝑘

(𝑐v = 𝑐f ) ≈

{

(𝐶∕2)2∕3 for 𝐶 ≪ 1,
√

𝐶 for 𝐶 ≫ 1.
(22)

Fig. 9b compares these approximations of coincidence attenuation with values determined numerically from Eq. (20).
Fig. 8 shows that the attenuation curve peaks close to coincidence, with a value 𝑘𝑥i,peak∕𝑘 at the relative phase speed 𝑐v,peak∕𝑐f .

For larger 𝐶, Fig. 8 indicates that these peaks are taller and further away from coincidence. The peaks also become less prominent;
in fact, numerical investigation shows that these attenuation peaks no longer occur above 𝐶 ≈ 0.866. Above this value of 𝐶, the
attenuation simply increases monotonically with 𝑐v. For lower values of 𝐶, however, the peaks can be approximately characterised
by

𝑘𝑥i,peak
𝑘

≈ 1
𝑎 + 𝑏𝐶−2∕3

,
𝑐v,peak
𝑐f

≈ 1 + 1
𝑐 + 𝑑𝐶−2∕3

, (23a)

where

𝑎 = −0.19195482, 𝑏 = 1.4547858, 𝑐 = −2.0919058, 𝑑 = 2.5193662. (23b)

ig. 9c compares these approximations with values determined numerically from Eq. (20). The 𝑘𝑥i,peak∕𝑘 fit is very good over the
ntire range of validity, while the 𝑐v,peak∕𝑐f fit is only good up to 𝐶 ≈ 0.2 as the peak starts moving very rapidly into the supersonic

domain as 𝐶 approaches 0.866.
10
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Fig. 9. Various characteristics of the radiating wave, as indicated on the central figure corresponding to Fig. 8b, against the radiation factor 𝐶. Lines represent
analytical expressions, while dots represent values sampled numerically from the normalised model equation Eq. (20).

Fig. 8 also indicates that the attenuation goes asymptotically towards a particular value in the supersonic domain. This value
can be derived to be

lim
(𝑐v∕𝑐f )→∞

𝑘𝑥i
𝑘

=

√

√

1 + 4𝐶2 − 1
2

≈

{

𝐶 for 𝐶 ≪ 1,
√

𝐶 for 𝐶 ≫ 1,
(24)

and is plotted against its low- and high-𝐶 approximations in Fig. 9d.
The above approximations let us more easily reason about how the attenuation curve evolves with 𝐶. For low values of 𝐶, the

peak attenuation increases with 𝐶2∕3 while the asymptotic supersonic attenuation is approximately 𝐶. Hence, at some point the
asymptotic supersonic attenuation catches up with the peak attenuation, so that the peak disappears, as mentioned above. For high
values of 𝐶, the attenuation at coincidence and in the supersonic limit both go to

√

𝐶, so that the attenuation curve reaches its
asymptotic supersonic value already at coincidence.

5. Testing against leaky A0 Lamb waves

We now test the energy-conserving radiation model in Eq. (18) against numerical solutions of the exact equations for leaky A0
Lamb waves in a plate immersed in a fluid. A0 is the lowest-order antisymmetric Lamb mode. (Fig. 10 shows the phase speeds of
various Lamb modes in free – meaning vacuum-immersed – plates. These free-plate phase speeds are largely very similar to those
of plates immersed in light fluids [13,18,33].) At low frequencies, A0 waves are approximately flexural waves with a phase speed
𝑐v ∝

√

𝑓𝑑, 𝑑 being the plate thickness. At very high frequencies, the A0 (as well as S0) waves are akin to Rayleigh waves propagating
on each side of the plate at a phase speed 𝑐v that goes asymptotically with 𝑓𝑑 to the Rayleigh wave speed 𝑐R, which is only slightly
lower than the plate material’s S-wave speed 𝑐S [19]. Therefore, with reference to Fig. 10, as long as the fluid’s speed of sound is
smaller than the Rayleigh wave speed (𝑐f < 𝑐R), the A0 wave will always experience a subsonic-to-supersonic transition at a certain
coincidence frequency 𝑓c. Because the A0 wave’s phase speed 𝑐v increases monotonically with 𝑓 , 𝑓 < 𝑓c corresponds to the subsonic
domain and 𝑓𝑐 < 𝑓 corresponds to the supersonic domain.

We perform two tests of the enhanced radiation model against the behaviour around this transition:
11
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Fig. 10. Phase speeds of Lamb modes in free plates of thickness 𝑑 = 1 cm made of (a) steel and (b) brass, with material parameters as in Table 1. Antisymmetric
nd symmetric modes of order 𝑛 are indicated as A𝑛 and S𝑛, respectively. These curves were found via the mode tracing method of [22].

1. We investigate whether this model can be used as a perturbation method for estimating the attenuation of leaky A0 waves
from the dispersion and wavefields of free A0 Lamb waves in a plate in a vacuum. This approach assumes that the fluid
immersion can be treated as a small perturbation to the free-plate situation, similarly to existing perturbation methods in the
literature [18–20]. Despite differing approaches, these previous methods all give numerically identical results [21,22]. These
results correspond to 𝑘hom𝑥i in Eq. (19), which assumes homogeneous sound radiation corresponding to the classical model,
leading to weaknesses around coincidence shown in Fig. 8 and discussed in Section 4.1.

2. We validate the correctness of the radiation model equation by quantitatively checking it against solutions of the exact leaky
Lamb wave equations.

When applying Eq. (18) to leaky A0 Lamb waves, we must take into account that the plate radiates a wave from its surfaces on both
sides, with a total radiated intensity twice the single-sided radiated intensity of Eq. (14a) as explained in Section 4.1.

5.1. Dispersion and wavefields of A0 Lamb waves

Characterising the surface vibration in the radiation model in Eq. (18) requires some properties of the A0 Lamb wave. For each
angular frequency 𝜔 of interest, we need the real part of the surface wavenumber 𝑘𝑥r , the velocity magnitude |𝑣𝑦0| at the plate
surface, and the power flow amplitude 𝑃𝑥0.

For free antisymmetric Lamb modes, the real-valued wavenumber 𝑘𝑥 can be obtained at a given frequency by solving a
transcendental dispersion relation for antisymmetric Lamb modes [1,22,34,35],

tan(𝛾Pℎ)
tan(𝛾Sℎ)

+
4𝑘2𝑥𝛾S𝛾P
(𝑘2𝑥 − 𝛾2S )

2
= 0. (25)

Here, ℎ = 𝑑∕2 is half of the plate thickness 𝑑; with the plate centred on the 𝑥–𝑧 plane, its boundaries lie at 𝑦 = ±ℎ. Solids support
both longitudinal P-waves with a speed 𝑐P and transversal S-waves with a speed 𝑐S, and the variables 𝛾P and 𝛾S represent the
𝑦-components of the P- and S-wavevectors inside the plate, respectively:

𝛾2P = 𝜔2

𝑐2P
− 𝑘2𝑥. 𝛾2S = 𝜔2

𝑐2S
− 𝑘2𝑥. (26)

Solving Eq. (25) for the A0 dispersion curve is not immediately straightforward because of its implicit nature, and solutions must
e found numerically. Furthermore, additional anti-symmetric modes (A1, A2, etc.) are introduced at their corresponding cut-off
requencies. Here we take the solutions for granted, but methods for obtaining and tracing the dispersion curves are discussed
horoughly in, e.g., [22,34,36].

Once the dispersion relation for the A0 mode is known, the remaining properties can be obtained from the Lamb wavefields
ssociated with antisymmetric modes, which can be found by combining the wavefields of the component P- and S-waves that the
amb waves comprise. The resulting velocity and stress components can be expressed as [22,37,38]:

𝑣A𝑥 (𝑥, 𝑦, 𝑡) = i𝜔𝐾
[

𝑘𝑥 sin(𝛾P𝑦) − 𝛾S𝑅
A sin(𝛾S𝑦)

]

ei(𝑘𝑥𝑥−𝜔𝑡), (27a)

𝑣A𝑦 (𝑥, 𝑦, 𝑡) = 𝜔𝐾
[

𝛾P cos(𝛾P𝑦) + 𝑘𝑥𝑅
A cos(𝛾S𝑦)

]

ei(𝑘𝑥𝑥−𝜔𝑡), (27b)

𝜎A𝑥𝑥(𝑥, 𝑦, 𝑡) = i𝐾𝐺
[

(2𝛾2P − 𝑘2𝑥 − 𝛾2S ) sin(𝛾P𝑦) + 2𝑘𝑥𝛾S𝑅A sin(𝛾S𝑦)
]

ei(𝑘𝑥𝑥−𝜔𝑡), (27c)

𝜎A𝑥𝑦(𝑥, 𝑦, 𝑡) = −𝐾𝐺
[

2𝑘𝑥𝛾P cos(𝛾P𝑦) + (𝑘2𝑥 − 𝛾2S )𝑅
A cos(𝛾S𝑦)

]

ei(𝑘𝑥𝑥−𝜔𝑡), (27d)

𝜎A (𝑥, 𝑦, 𝑡) = i𝐾𝐺
[

(𝑘2 − 𝛾2) sin(𝛾 𝑦) − 2𝑘 𝛾 𝑅A sin(𝛾 𝑦)
]

ei(𝑘𝑥𝑥−𝜔𝑡), (27e)
12
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Table 1
Material parameters.

Material 𝜌 (kg∕m3) 𝑐P (m∕s) 𝑐S (m∕s)

Air 1.21 340 –
Water 1000 1480 –
Steel 7850 5900 3200
Brass 8440 4480 2200

where

𝑅A =
(𝑘2𝑥 − 𝛾2S ) sin(𝛾Pℎ)
2𝑘𝑥𝛾S sin(𝛾Sℎ)

(27f)

is the amplitude ratio between the component S- and P-waves [22] for a free antisymmetric Lamb wave, 𝐺 is the shear modulus,
and 𝐾 is an arbitrary scaling amplitude. The velocity magnitude |𝑣𝑦0| at the plate surface can be found by evaluating Eq. (27b)
t 𝑦 = ±ℎ. The power flow amplitude 𝑃𝑥0 can be found by numerically integrating the time-averaged intensity through the plate
ross-section:

𝑃𝑥0 = ∫

ℎ

−ℎ
𝐼𝑥(𝑦)d𝑦 = −1

2 ∫

ℎ

−ℎ
Re

{

𝑣𝑥(𝑦)𝜎𝑥𝑥(𝑦) + 𝑣𝑦(𝑦)𝜎𝑥𝑦(𝑦)
}

d𝑦. (28)

For a leaky antisymmetric Lamb wave in a plate of density 𝜌p immersed in a fluid of density 𝜌f , a tractable and exact extension
to the characteristic equation in Eq. (25) can be found in the literature [1,18,35,39,40]:

tan(𝛾Pℎ)
tan(𝛾Sℎ)

+
4𝑘2𝑥𝛾S𝛾P
(𝑘2𝑥 − 𝛾2S )

2
= −𝑖

𝜌f𝜔4𝛾P
𝜌p𝑐4S𝑘𝑦(𝑘

2
𝑥 − 𝛾2S )

2
⋅

1
tan(𝛾Sℎ)

. (29)

This leaky-wave characteristic equation is more difficult to solve than the free-wave characteristic equation, Eq. (25). While the
characteristic equation for free waves only needs to be solved for a real-valued 𝑘𝑥 for each frequency 𝜔, the characteristic equation
for leaky waves must be solved simultaneously for the real and imaginary components 𝑘𝑥r and 𝑘𝑥i.

5.2. Method

We focus on four combinations of materials, specifically plates of steel and brass immersed in air and water, with material
parameters specified in Table 1. For a given plate thickness 𝑑 = 1 cm, we begin by calculating the wavenumbers that satisfy the A0
dispersion relation near coincidence. From Eq. (25) we obtain the real-valued free-wave wavenumber 𝑘f ree𝑥 , whereas Eq. (29) yields
the complex leaky-wave wavenumber 𝑘leaky𝑥 .

To evaluate the radiation model in Eq. (18) as a perturbation method, we will compare the exact attenuation 𝑘leaky𝑥i with the
attenuation 𝑘𝑥i found by three perturbation approaches:

1. Neglecting the effect of vibrational attenuation and hence getting homogeneous radiated waves, we calculate the classical
perturbation solution 𝑘hom𝑥i [18–20] via 𝑘f ree𝑥 following Eq. (19).

2. Including the effect of vibrational attenuation that causes the radiated waves to become inhomogeneous, we calculate the
attenuation 𝑘𝑥i via 𝑘f ree𝑥 by solving the radiation model in Eq. (18).

3. Again including vibrational attenuation, we calculate the attenuation 𝑘𝑥i using Eq. (18), but via 𝑘leaky𝑥r , the dispersion of the
exact solution.

In all three cases, we determine the radiated intensity and power flow via the wavefield expressions in Eq. (27), keeping in mind
that the total radiated intensity is twice that of Eq. (14a) because Lamb waves radiate power on both sides of the plate.

These three approaches are chosen to highlight the effect of including additional information in the perturbation method. First,
by including the effect of vibrational attenuation and the resulting inhomogeneity, and second, by including the exact dispersion.
However, we point out that the third approach would not have much practical value as it estimates the attenuation using the real
part of the exact wavenumber 𝑘leaky𝑥 , whose imaginary part already contains the exact attenuation.

To summarise, our perturbation method approach for each material combination is as follows. At each frequency 𝑓 , we first
calculate the free-plate wavenumber 𝑘f ree𝑥 and the exact leaky wavenumber 𝑘leaky𝑥 from Eqs. (25) and (29), respectively. Using the
real parts of these wavenumbers and an assumed value of 𝑘𝑥i, we can calculate the velocity and stress wavefields from Eq. (27), and
subsequently the power flow amplitude 𝑃𝑥0 from Eq. (28). These let us calculate the approximate attenuation 𝑘𝑥i, either explicitly
from Eq. (19) (assuming 𝑘𝑥i ≈ 0 in Eq. (27)) or iteratively from Eq. (18), which takes wave inhomogeneity and energy conservation
into account, but which also requires recalculating |𝑣𝑦0| and 𝑃𝑥0 in each iteration using that iteration’s value of 𝑘𝑥i.

To validate the radiation model in Eq. (18) against the exact Lamb wave solution, we can use 𝑘leaky𝑥 to directly calculate the
exact values of |𝑣𝑦0| and 𝑃𝑥0 and insert these into Eq. (18) to check that these values correspond to a root. To obtain exact leaky

A

13

wavefields from Eq. (27), we must also tune the free-plate amplitude ratio 𝑅 to correspond to an immersed plate. This can be
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Fig. 11. Various leaky A0 Lamb wave properties (rows) for different material combinations (columns) of a 1 cm thick plate immersed in a fluid. Where 𝑘leaky𝑥i
eaches 0 at low frequencies, the exact leaky A0 wave is cut off as it splits into a loop of two different lossless waves [9–12,33], not shown here. For brass in
ater, this loop closes at very low frequencies to become a leaky A0 wave again [9,11,12,14,33].

traightforwardly achieved by optimising 𝑅A against a cost function corresponding to the wavefields’ deviations from the general
oundary conditions

𝜎𝑥𝑦(𝑦 = ±ℎ) = 0, 𝜎𝑦𝑦(𝑦 = ±ℎ) = −𝑝(𝑦 = ±ℎ) = −𝜌𝜔𝑣𝑦(𝑦 = ±ℎ)∕(±𝑘𝑦), (30)

giving the amplitude ratio 𝑅A,leaky for an immersed plate. The last equality in Eq. (30) follows from Eq. (11b).

.3. Results

Fig. 11 shows various leaky Lamb wave properties for each of the chosen combinations of materials close to the classical
oincidence frequency 𝑓 f ree

c . The top row compares the exact attenuation 𝑘leaky𝑥i with the attenuations found by the three perturbation
pproaches explained in Section 5.2. Let us consider how these attenuations evolve from high to low frequencies. At high frequencies,
ell into the classical supersonic domain, the different attenuation estimates converge with the exact attenuation 𝑘leaky𝑥i . As we
pproach the coincidence frequency 𝑓 f ree

c , however, differences emerge. As we saw previously in Fig. 8, the attenuation 𝑘hom𝑥i of
he classic perturbation method, which assumes homogeneous waves, rises and reaches an infinite discontinuity at the coincidence
requency 𝑓 f ree

c , while predicting no radiation in the subsonic domain. The attenuation 𝑘𝑥i predicted by the inhomogeneous-wave
erturbation method based on 𝑘f ree𝑥r follows the exact attenuation more closely towards coincidence and predicts subsonic radiation
ualitatively but not quantitatively correctly; it peaks and cuts off at higher frequencies than the exact attenuation.

The main reason for this peak and cutoff mismatch can be seen in the phase speed results on the middle row of Fig. 11. At high
requencies, the speeds of the free and leaky Lamb waves converge, but these speeds diverge as we approach coincidence, as others
ave also remarked [10,12,33]. The leaky Lamb waves’ higher phase speed near coincidence leads to a lower coincidence frequency
leaky
c < 𝑓 f ree

c . This explains most of the discrepancy between the exact attenuation and the inhomogeneous attenuation calculated
ia 𝑘f ree: we see from the top row that the inhomogeneous attenuation 𝑘 calculated via 𝑘leaky gives an excellent match with the
14
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exact attenuation for solid plates in air, and a good match for brass in water except at very low frequencies where the A0 wave
reappears, an effect that has been seen throughout the literature [9,12,14,33].

For the plates in water, in particular the steel plate, we still see a clear discrepancy even when using 𝑘leaky𝑥r as a basis for calculating
he inhomogeneous attenuation via the radiation model in Eq. (18). The remaining known source of error is the usage of the free-plate
alue of 𝑅A from Eq. (27f), which means that the wavefields calculated from Eq. (27) do not perfectly respect the exact boundary
onditions in Eq. (30). By substituting the immersed-plate value 𝑅A,leaky, found as described in Section 5.2, we can calculate accurate

wavefields for a leaky Lamb wave from Eq. (27), from which we can determine |𝑣𝑦0| and 𝑃𝑥0.
The resulting attenuation curves found from the radiation model have a perfect visual match with the 𝑘leaky𝑥i curves and were

herefore not plotted separately in Fig. 11. Instead, we can investigate the match quantitatively to validate the correctness of
adiation model equation Eq. (18) for these four cases. As 𝑓 (𝑘𝑥r , 𝑘𝑥i) represents the model’s signed error in 𝑘𝑥i, inputting exact
eaky-wave values for 𝑘𝑥r , 𝑘𝑥i, 𝑣𝑦0 and 𝑃𝑥0 will give 𝑓 = 0 if the model is correct. Moreover, we can calculate the relative error as

|

|

|

|

|

|

𝑓 (𝑘leaky𝑥r , 𝑘leaky𝑥i )

𝑘leaky𝑥i

|

|

|

|

|

|

=
|

|

|

|

|

|

|

1 −
𝑘leaky𝑦r

|

|

|

𝑘leaky𝑦
|

|

|

2

𝜌𝜔|𝑣𝑦0|
2

2𝑃𝑥0𝑘
leaky
𝑥i

|

|

|

|

|

|

|

, (31)

where 𝑘leaky𝑦 is calculated using 𝑘leaky𝑥 in Eq. (10). Across the various combinations of materials and frequencies shown in Fig. 11,
the maximum relative error is 8.6 × 10−9. We can safely attribute this minuscule deviation to the accumulation of tiny numerical
errors when calculating the exact leaky Lamb wave quantities. (Indeed, the relative error is sensitive to the tolerances chosen when
calculating 𝑘leaky𝑥 and 𝑅A,leaky and the spatial sampling density chosen for the plate cross-section when calculating 𝑃𝑥0.) Thus, the
radiation model in Eq. (18) is found to match an exact (to a very good numerical precision) leaky Lamb wave solution, which along
with the results of [13] supports the hypothesis of Section 4.1, namely that the radiation model is a correct description of sound
radiation.4

Finally, we consider the bottom row of Fig. 11. These plots show how the radiation factors of Eq. (20) evolve with frequency close
to coincidence. (While we kept 𝐶 constant for simplicity in Section 4, 𝐶 will vary in a Lamb wave because 𝑘, |𝑣𝑦0|, and 𝑃𝑥0 change
with the frequency.) We calculated 𝐶 f ree via 𝑘f ree𝑥 and 𝑅A, and 𝐶 leaky via 𝑘leaky𝑥 and 𝑅A,leaky. For the plates in air, the variations in 𝐶
are quite small in the plotted range, and 𝐶 itself is so small that subsonic radiation is only possible in a very small interval below
coincidence, as per the radiating wave cutoff results of Eq. (21) and Fig. 9a. For the plates in water, however, the 𝐶 values near
coincidence are higher, which lets the subsonic radiation extend further down into the low frequencies. Then, as we go down in
frequency, 𝐶 starts increasing rapidly, which as per Fig. 9a pushes the wave’s cutoff lower and lower in frequency. In other words,
the cutoff becomes a ‘‘moving target’’ that the subsonic radiation for brass in water reaches, but which the subsonic radiation for
steel in water does not reach (and never will, according to [11]).

This effect becomes more apparent if we compare the evolution of 𝐶 with the value of 𝐶 that would correspond to a subsonic
wave cutoff for the current relative phase speed 𝑐v∕𝑐f . Replacing 𝐶 with 2𝐶 in Eq. (21) to take into account the radiation from both
sides of the plate, we find this cutoff value to be exactly

𝐶cutoff =
1
2
[(𝑐f∕𝑐v)2 − 1]3∕2

𝑐f∕𝑐v
. (32)

Cutoff curves 𝐶 leaky
cutoff and 𝐶 f ree

cutoff , calculated respectively from 𝑐leakyv and 𝑐f reev , are plotted in the bottom row of Fig. 11. As expected,
the crossing frequencies of 𝐶 and 𝐶cutoff correspond to the cutoff frequencies of the subsonic radiating wave. For the case of brass
n water, 𝐶 leaky

cutoff catches up to 𝐶 leaky soon after coincidence, while for the case of steel in water, 𝐶 leaky increases quickly enough at
ow frequencies that 𝐶 leaky

cutoff does not catch up. For that reason, the subsonic radiation of steel in water manages to extend into very
ow frequencies without cutting off.

. Discussion

First, let us analyse the radiation model from Section 4 to identify why it permits subsonic radiation. Essentially, the radiation
model is a simple statement of energy conservation that equates the radiated intensity with the power loss in the guided wave
underlying the surface vibration. The key quantity is the attenuation 𝑘𝑥i: according to Eq. (16), 2𝑘𝑥i is the relative power loss in
Np∕m, and according to Eq. (14a) and Fig. 6a, the radiated intensity amplitude 𝐼rad,0 is a nonlinear function of 𝑘𝑥i via 𝑘𝑦. The
intensity vector magnitude |𝐈0| = 𝜌𝜔|𝐤r ||𝑣𝑦0|2∕2|𝑘𝑦|2 from Eq. (12) is largely only weakly affected by 𝑘𝑥i through |𝑘𝑦|

2, except very
near coincidence where Eq. (A.5) shows that |𝑘𝑦|2 ≈ 2𝑘𝑥i𝑘. Hence, the main effect of 𝑘𝑥i on the intensity is moving the direction of
the intensity vector 𝐈0 up from a grazing angle and into the fluid, as seen in Fig. 6b, thus increasing the radiated intensity 𝐼rad,0 = 𝐼𝑦0.

According to the radiation model in Eq. (18), a wave solution exists when the relative power loss 2𝑘𝑥i equals the relative radiated
intensity 𝐼rad,0∕𝑃𝑥0. In the subsonic domain, this is trivially satisfied for 𝑘𝑥i = 0, describing an evanescent wave with no power loss
and no radiation. However, for a value of 𝑐v∕𝑐f where subsonic radiation is possible, the sign of the surface plots in Fig. 8 shows
that the relative intensity 𝐼rad,0∕𝑃𝑥0 first grows more quickly than the power loss 2𝑘𝑥i as 𝑘𝑥i increases from 0, and then more slowly.

4 While this validation covers the various subsonic A0 wave behaviours observed for the most typical case of 𝑐f < 𝑐R (𝑐R being the Rayleigh wave speed),
ifferent but related subsonic behaviours of multiple leaky Lamb waves emerge when 𝑐R < 𝑐f [11,27,41]. However, the generality of the derivation of the
15

adiation model means that there is no specific reason to doubt its validity for those other subsonic cases.
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Fig. 12. Radiation factors for leaky A0 Lamb waves on immersed plates in water.

he wave solution exists at the point where power loss catches up to the relative intensity, such that energy is conserved. For a
alue of 𝑐v∕𝑐f where subsonic radiation is not possible, however, Fig. 8 shows that the relative intensity always grows more slowly

than the power loss. In other words, while increasing 𝑘𝑥i increases the radiated intensity by changing the direction of the intensity
vector, the power loss is increased even more quickly, and there exists no positive value of 𝑘𝑥i for which energy is conserved.

Many earlier sources have incorrectly implied that subsonic radiation from surface vibrations is impossible, for various reasons.
Some sources have not taken into account the attenuation of the surface vibration, a choice that disregards conservation of energy
and does not lead to inhomogeneous radiated waves. Others end up incorrectly rejecting the correct solution because it describes
a pressure amplitude that goes to infinity with the distance to the surface. As we and others [13,15,27,32] have explained, this is
actually a necessary property of all unbounded leaky forward waves.

Testing the radiation model against Lamb waves in Section 5 led to several interesting results. First, our findings support the
correctness of the radiation model, as we found the exact leaky Lamb wave solution to be a root of the radiation model in Eq. (18).
In other words, we have found that subsonic radiation is possible because of the inhomogeneity of the radiated wave, which is
caused by the attenuation of the surface vibration due to the loss of the power radiated into the fluid.

As for using the radiation model as a basis for a perturbation method based on the free Lamb wave solution, the results are mixed,
because the neglected effects of fluid loading on the dispersion and wavefields of the Lamb wave turn out to be quite important
close to coincidence. While the model’s attenuation prediction is certainly better than that of existing perturbation methods close
to coincidence – it avoids the infinite discontinuity at coincidence, predicts subsonic radiation, and approximates the maximum
attenuation well – it is unable to fully predict the subsonic shape of the radiating wave. For plates in air, getting a good match
requires using the exact dispersion 𝑘leaky𝑥r to take into account the additional dispersion near coincidence caused by the fluid loading.
For plates in water, changes of the wavefields in the plate also need to be considered, because the mismatch between the free-plate
boundary conditions and the true boundary conditions becomes too strong otherwise.

Furthermore, the resulting perturbation method involves solving Eq. (18) iteratively, which negates some of the benefit of using a
perturbation method based on the free-plate solution instead of directly finding the exact solution. Thus, while using a perturbation
method based on the enhanced radiation model may give some benefit close to coincidence, using existing perturbation methods is
more expedient well into the supersonic domain, which for light fluid loading typically encompasses every Lamb mode except for
A0 at low frequencies, as we can see from Fig. 10.

When applied to the exact solution for a fluid-loaded plate, though, the radiation model may help provide a physical explanation
of some of the more peculiar subsonic behaviours that have been observed in the literature, such as the persistence of subsonic
radiating waves [10,11,13], which we saw for the steel-in-water wave in Fig. 11, and the reappearance of a leaky A0 wave at very
low frequencies below its initial cutoff [9–12,14], which we saw for the brass-in-water wave in Fig. 11. Fig. 12 plots the radiation
factors 𝐶 for these two cases against 𝑐v∕𝑐f . From this, we can see more clearly than from Fig. 11 how the leaky steel-in-water wave
just barely avoids being cut off from 𝑐v∕𝑐f ≈ 0.8 and down, explaining its persistence. Fig. 12 also shows how the brass-in-water
wave, with its slightly lower value of 𝐶 leaky, does get cut off at 𝑐v∕𝑐f ≈ 0.89, at which point the radiation model in Eq. (18) shows
that an energy-conserving radiating subsonic A0 wave is no longer possible. This triggers the A0 wave to be split into a loop of two
non-radiating waves. (Such loops have been shown in many references [9–13,33,41]; in particular, Shuvalov et al. [11] carried out
a detailed mathematical analysis of the loops.) At 𝑐v∕𝑐f ≈ 0.52, the loop closes again as an energy-conserving radiating A0 wave
again becomes possible.

The brass-in-water results of Fig. 12 also help provide a physical explanation for the results of Dabirikhah and Turner [10],
who calculated the attenuation of a leaky A0 Lamb wave in an aluminium plate immersed in air, while gradually increasing the air
density. At normal air densities, they found that the subsonically radiating A0 wave only exists slightly below coincidence. At higher
densities, they found that not only does the attenuation increase, the wave also reappears at low frequencies like we saw for brass
in water. At the highest investigated density, they found the radiating wave to persist into low frequencies like the steel-in-water
16
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wave in Fig. 11. From Eq. (20), we find that because 𝐶 is proportional to density, reducing the fluid density would shift 𝐶 down in
Fig. 12b, so that the subsonic radiation would cut off just below coincidence. Increasing the fluid density would shift 𝐶 up, which
would lead to the subsonic radiation persisting without cutoff, similarly to the steel-in-water wave in Fig. 11.

Finally, we point out a puzzling consequence of our result from Section 3 that all attenuated surface vibrations will lead to a
radiating wave. Because lossless materials exist only in theory, any real material will have some amount of loss that would lead to
a small attenuation of any kind of surface vibration on the material. This implies that classical evanescent waves like that shown in
Fig. 1c cannot in fact exist in the real world, because we showed in Section 3 that evanescent waves can only arise from unattenuated
surface vibrations. However, a closer investigation of this topic is beyond the scope of this article.

7. Conclusion

In this work, we have shown how a comprehensible model for how surface vibrations radiate pressure waves into an adjacent
fluid can be straightforwardly derived. This model is general, not tied to a specific type of leaky guided wave such as leaky Lamb
waves or leaky Rayleigh waves (although our analysis of the model was limited to forward waves). Unlike the classical model, this
model takes into account the attenuation of the surface vibration and the resulting inhomogeneity of the pressure wave, which
permits power radiation into the fluid even in the subsonic domain. It also respects conservation of energy by equating the power
radiated by the pressure wave in the fluid with the power lost in the surface vibration. Subsonic radiation can occur in a subsonic
subdomain close to coincidence where this power balance is possible.

In Section 4, we posed the hypothesis that this model correctly describes the mechanism underlying subsonic radiation. The
leaky A0 Lamb wave results of Section 5 support this hypothesis, as the exact leaky Lamb wave solves Eq. (18), the equation at the
heart of the radiation model.

When applying the radiation model as a perturbation method to predict the attenuation of leaky A0 Lamb waves from the
properties of free A0 waves, we found that it performed somewhat better than existing perturbation methods by predicting a
finite attenuation at coincidence, predicting the existence of subsonic radiation, and approximating the maximum attenuation well.
However, it does not correctly predict the shape of the attenuation curve close to coincidence, because doing so requires taking into
account the full effects of fluid loading on the Lamb wave. Even so, the model was able to shed light on the surprising differences in
the leaky A0 wave cutoff across different combinations of materials. These differences are mainly due to the sound radiation instead
of internal behaviour of the Lamb wave; when energy-conserving subsonic radiation is no longer possible, the radiating A0 wave
cuts off. In some cases, such as brass in water, the A0 wave may even return at low frequencies when it again becomes possible.

One particularly important piece of future work is to extend this radiation model to the case of surface vibrations radiating
into solids. In fact, we have already published a preliminary investigation into this topic [42]. As solids carry both P- and S-waves,
which have different speeds of sound 𝑐P and 𝑐S, we go from two radiation domains for fluids (namely, 𝑐f < 𝑐v and 𝑐v < 𝑐f ) to three
radiation domains (namely, 𝑐S < 𝑐P < 𝑐v, 𝑐S < 𝑐v < 𝑐P, and 𝑐v < 𝑐S < 𝑐P). Because the transition between these domains is essential
to measurement techniques in, e.g., ultrasonic pitch-catch well logging [43,44], a better physical understanding of what happens
around these transitions should facilitate improvements to such techniques.
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Appendix. Calculating characteristics of the radiating wave

From the normalised radiation model in Eq. (20), we can determine various characteristics of the radiating forward wave. As
he calculations become somewhat involved, we start by simplifying the notation of Eq. (20) as

𝑘𝑥r∕𝑘 = 𝑥 ∈ R≥0, 𝑘𝑥i∕𝑘 = 𝑦 ∈ R≥0, 𝑘𝑦∕𝑘 = 𝑧(𝑥, 𝑦) =
√

1 − (𝑥 + i𝑦)2 ∈ C, (A.1)

𝑔(𝑥, 𝑦, 𝐶) = 𝑦 −
𝑧r
|𝑧|2

𝐶 = 0, (A.2)

where 𝐶 ∈ R≥0, and 𝑧r ∈ R≥0 is the real part of 𝑧. We can view 𝑦 as an implicit function 𝑦(𝑥, 𝐶), defined by the implicit equation
Eq. (A.2).

A.1. Cutoff of the subsonic radiating wave

Fig. 8 shows that for higher 𝐶 values, the radiating waves extend further into the subsonic domain before they are cut off. This
cutoff point 𝑥cutoff can be specified exactly from the limit lim𝑦→0+ 𝑔(𝑥cutoff , 𝑦, 𝐶) = 0 in the subsonic domain (𝑥 > 1). We can derive
an expression for it via Taylor expanding 𝑔(𝑥, 𝑦, 𝐶) = 0 around 𝑦 = 0 using a computer algebra system. The (1) term in the Taylor
series is always zero in the subsonic domain — it corresponds to the root at 𝑦 = 0 representing an evanescent wave. Thus, the
lowest-order nonzero term is the (𝑦) term, and higher-order terms can be neglected in the 𝑦 → 0+ limit. Taking this limit in the
(𝑦) term, simplifying it, and solving for 𝑥 leads to an exact implicit equation for the subsonic cutoff point:

[𝑥2cutoff − 1]3∕2

𝑥cutoff
= 𝐶. (A.3)

Solutions of this implicit equation can be found numerically using a root-finding algorithm, which gives the same results as the
contour-finding algorithm used to draw the roots in Fig. 8.

We can also find an explicit approximation of this solution by taking the first term of a Puiseux series of the left-hand side of
Eq. (A.3) around 𝑥cutoff = 1:

23∕2
(

𝑥cutoff − 1
)3∕2 ≈ 𝐶 ⇒ 𝑥cutoff ≈ 1 + 𝐶2∕3

2
. (A.4)

A.2. Attenuation at coincidence

At coincidence (𝑥 = 1), we get a significantly simpler expression for 𝑧 = 𝑘𝑦∕𝑘, which can be approximated in the limits of low
and high 𝑦:

𝑧(𝑥 = 1, 𝑦) =
√

𝑦2 − 2i𝑦 ≈

{
√

𝑦(1 − i) ⇒ 𝑧r ≈
√

𝑦, |𝑧|2 ≈ 2𝑦 for 𝑦 ≪ 1,

𝑦 ⇒ 𝑧r ≈ 𝑦, |𝑧|2 ≈ 𝑦2 for 𝑦 ≫ 1.
(A.5)

nserting these results into Eq. (A.2), we find 𝑦 = 𝑘𝑥i∕𝑘 at coincidence to be approximately:

𝑦(𝑥 = 1, 𝐶) ≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
√

𝑦(𝑥 = 1, 𝐶)
𝐶 ≈

(𝐶
2

)2∕3
for 𝑦 ≪ 1,

1
𝑦(𝑥 = 1, 𝐶)

𝐶 ≈
√

𝐶 for 𝑦 ≫ 1.
(A.6)

These results show that these two limits can equivalently be expressed as 𝐶 ≪ 1 and 𝐶 ≫ 1, respectively.

A.3. Peak coordinates

From Fig. 8, we see that the attenuation of the radiating wave peaks close to coincidence in the supersonic domain. For larger 𝐶,
he peak is taller and further away from coincidence. At 𝐶 ≈ 0.866, the nature of the radiating wave’s attenuation curve changes, so
hat there is no longer a local maximum in 𝑦(𝑥, 𝐶); it becomes monotonic in 𝑥. For that reason, we only perform this investigation

for lower values of 𝐶.
While this peak can be defined by d𝑦(𝑥, 𝐶)∕d𝑥 = 0, we were unable to find even an approximate analytical expression by means

of implicit differentiation, Lagrange multipliers, or series expansion around 𝑥 = 1, 𝑦 = 0. However, finding the peaks numerically is
straightforward. We can find the radiating wave’s attenuation 𝑦(𝑥, 𝐶) in the supersonic domain as the root of 𝑔(𝑥, 𝑦, 𝐶) = 0. By varying
, we can identify the peak in 𝑦(𝑥, 𝐶) and determine the peak coordinate (𝑥peak (𝐶), 𝑦peak (𝐶)) to the desired numerical precision. We
an then find approximate functions in 𝐶 for these coordinates by means of curve fitting. As we want to find the peak’s normalised
ibrational phase speed 𝑐f ,peak∕𝑐f = 1∕𝑥peak in the end, which goes to 1+ as 𝐶 → 0+, we will look for a fit to 1∕𝑥peak − 1.

Starting with very small values 𝐶 ∈ [10−6, 10−5] to approximately find the lowest term of a series expansion in 𝐶, we find that

lim
[

1 − 1
]

= 𝐶2∕3
, lim 𝑦peak (𝐶) = 𝐶2∕3

. (A.7)
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Iterative analysis of the remainder for higher values of 𝐶 reveals higher-order terms in 𝐶4∕3, 𝐶6∕3, and so forth. However, in order
to achieve a good fit with fewer constants, we fit functions on the form

1
𝑥peak (𝐶)

− 1 ≈ 1
𝑎𝑥 + 𝑏𝑥𝐶−2∕3

, 𝑦peak (𝐶) ≈ 1
𝑎𝑦 + 𝑏𝑦𝐶−2∕3

, (A.8)

whose lowest-order terms in a series expansion in 𝐶 equal Eq. (A.7). The higher-order terms in this series expansion are in the same
powers of 𝐶 as we found in our remainder analysis.

To ensure that the curve fitted function is good both for very small values of 𝐶 and for higher values of 𝐶, we perform least-
squares curve fitting in two steps. First, we determine 𝑏𝑥 and 𝑏𝑦 by fitting functions on the form Eq. (A.7) to peaks found for
𝐶 ∈ [10−6, 10−5]. Second, we hold these values of 𝑏𝑥 and 𝑏𝑦 constant and determine 𝑎𝑥 and 𝑎𝑦 by curve fitting functions on the form
Eq. (A.8) to peaks found for 𝐶 ∈ [10−3, 10−1]. The resulting values are

𝑎𝑥 = −2.0919058, 𝑏𝑥 = 2.5193662, 𝑎𝑦 = −0.19195482, 𝑏𝑦 = 1.4547858. (A.9)

A.4. Asymptotic supersonic attenuation

We can find the asymptotic value of the attenuation in the supersonic domain by letting 𝑥 = 𝑐f∕𝑐v → 0, where

𝑧(𝑥 = 0, 𝑦) =
√

1 + 𝑦2, and 𝑔(𝑥 = 0, 𝑦, 𝐶) = 𝑦 − 𝐶
√

1 + 𝑦2
= 0. (A.10)

The latter equation has four roots of 𝑦, one of which is real-valued and positive:

𝑦(𝑥 = 0, 𝐶) =

√

√

1 + 4𝐶2 − 1
2

≈

{

𝐶 for 𝐶 ≪ 1,
√

𝐶 for 𝐶 ≫ 1.
(A.11)

For low values of 𝐶, 𝑦(𝑥 = 0, 𝐶) ≈ 𝐶.
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