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Summary. – Considering today struggles towards the 1-cm geoid, in an attempt to study the efficiency of some geoidal 

height estimators, Molodensky et al. (1962), Wong and Gore (1969), Vincent and Marsh (1974), Sjöberg's least-squares 

(1984) and Vanicek and Kleusberg (1987) modification models are numerically evaluated. These estimators combine a 

Global Geopotential Model (GGM) with the regional gravity data convolved with Stokes's kernel. The geoidal heights 

are computed in a test area using the above-mentioned geoidal height estimators. Next, geoidal heights are computed in 

the test area only using the geopotential coefficients. This geoid model is considered as "reference geoid model" in this 

study. The geoid heights computed with five estimators have then been compared with this reference model. It is shown 

that the different procedures to modify the original Stokes's formula result in different geoidal heights. The results of 

comparisons show that the least-squares and Vanicek and Kleusberg (1987) estimators are in better agreement with the 

"reference geoid model" than the other estimators in this study. They use the spheroidal-type kernel in the model and, 

therefore, the truncation error in these two models reduces significantly. 
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1. – INTRODUCTION   

 

The solution to the boundary value problem can be solved by Stokes's well-known formula 

for the anomalous potential and through Bruns's formula, the geoidal height can be obtained. The 

geoid has been held by many as a fundamental reference surface of geodesy, and its precise 

determination has been and still is the center of discussions for many geodesists.  

This paper deals with numerical comparisons of some models of gravimetric geoidal height 

estimators. These estimators modify the original Stokes formula in different ways. The idea of this 

study is to show that the different geoid estimators result in different geoidal heights. Finding suitable 

models for geoidal height determination are also investigated. Earlier GPS-leveling data were used 

to compare between different geoid estimators (Nahavandchi 1998; Nahavandchi and Sjöberg 2001). 

It was shown that the least-squares estimator (Sjöberg, 1984) agrees best with the GPS-leveling 

derived geoidal heights among the other modification procedures. In this study, a GGM is used as 

other source of information to compare between different geoid estimators. 

The original method to modify Stokes's formula was presented by Molodensky et al. (1962).  

The main idea in this method is to reduce the truncation error committed by limiting the area of 

integration under Stokes's integral to a spherical cap around the computation point. Another model, 

the modified Wong and Gore (1969), employs a residual field and a modified Stokes's kernel. This 

estimator corresponds to high degree reference gravity field and kernel modification. Vincent and 

Marsh (1974) model estimate geoidal heights in a slightly different way, which is the third model 

used in this study. The principle in this method is to use a high degree reference gravity field in 

Stokes's formula, implying a localized gravity field, but no kernel modification, and then adding the 

long-wavelength contributions from geopotential coefficients. Another estimator presented by 

Sjöberg (1984) reduces the impact of the errors stemming from truncation, erroneous terrestrial 

gravity data and potential harmonics in a least-squares sense. Similar to Molodensky et al. (1962), 
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who make a modification to the spherical Stokes kernel, Vanicek and Kleusberg (1987) make a 

modification to the spheroidal Stokes kernel. This is the fifth geoid estimator in this study. 

Many authors have investigated different procedures of the modification of Stokes kernel. A 

geoid model with the parameters chosen according to Molodensky et al. (1962) and Meissl (1971) 

has been studied in Jekeli (1980) and (1981), with the terrestrial anomaly error omitted. Despotakis 

(1987) used Sjöberg's least-squares estimator to compute the geoidal heights at laser tracking 

stations. It was shown that the least-squares model was the most accurate technique for geoid 

undulation computations, whenever the error anomaly degree variances, due to the terrestrial gravity 

anomalies and erroneous potential coefficients, were properly selected. Recently, Featherstone et al. 

(1998) studied the modification of Stokes's formula. A Meissl-modified Vanicek and Kleusberg 

kernel was proposed, which makes the truncation error converging to zero faster. Later, Vanicek and 

Featherstone (1998) showed that the use of a spheroidal and modified spheroidal kernels were 

preferable in real practice. 

 

2. – THE “REFERENCE GEOID MODEL” COMPUTED FROM GEOPOTENTIAL MODEL 

ALONE 

 

In modern methods of determining the geoidal undulations, the long-to-medium wavelength 

components are frequently obtained from a global geopotential model in the modified Stokes 

formula. The short-wavelength information is then computed from Stokes's integral. The geoidal 

heights (N) can be determined from EGM96 geopotential coefficients (Lemoine et al., 1997) using 

spherical harmonic representation by the following expansion that is complete to degree M' (=360 

in this study) (Heiskanen and Moritz 1967, Chaps. 1 and 2) 
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where  

R= the mean geoid radius 

(φ, λ)= the spherical latitude and longitude of the computation point 

γ = the normal gravity at the ellipsoid to which the geoidal height N will refer 

a1= equipotential scale factor of EGM96 (6378.1363 km) 

a2= equipotential radius of GRS-80 (6378.137 km) 

GM1= gravity-mass constant of EGM96 (3.986004415× 1014 m3 /s2) 

GM2= gravity-mass constant of GRS-80 (3.986005000× 1014 m3 /s2) 

GM3= best estimate of gravity-mass constant for the Earth (3.986004418× 1014 m3 /s2) 

W0=adopted gravity potential on the geoid (62636856.88 m2 /s2) 

U0=defined normal gravity potential on the ellipsoid (62636860.85 m2 /s2) 

Cnm and Snm= fully normalized geopotential coefficients of degree n and order m of EGM96 in the 

non-tidal system (C00=1.0; S00=0.0; C1m=S1m=0.0; C20=non-tidal; S20=0.0)  

C'nm and S'nm= fully normalized normal potential coefficients of degree n and order m of GRS-80 in 

the non-tidal system (C'00=1.0; S'00=0.0; C'1m=S'1m=0.0; C'20=non-tidal; S'20=0.0). We have also made 

use of the fact that S'nm=0.0 for all n and m.  

Pnm= fully normalized Legendre functions. 
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This model will be considered as "reference geoid model" for comparison of the different 

geoid estimators. Also, as here, the evaluation point lies inside Earth's masses, the geoidal height 

computed from Eq. (1) is inaccurate (see e.g. Nahavandchi and Sjöberg, 1998; Rapp, 1997). 

Therefore, the effects of topographic masses must be considered. 

However, as this study aims at comparison of some geoid estimators, and not the precise 

geoidal height determination, the topographic corrections are not included in the reference model. 

The effect of topographic masses is also disregarded in the geoid estimators, and the study is kept to 

this level of accuracy. Other corrections are also excluded in both the reference model and the geoid 

estimators. 

In the gravimetric geoid estimators below, the degree of kernel modification is considered 

equal to the degree and order of the global geopotential model. This was examined in Nahavandchi 

(1998) and Nahavandchi and Sjöberg (2001), who combined a global geopotential model to 

maximum degree and order with regional gravity data using the spheroidal Stokes kernel. 

 

 

3. – GRAVIMETRIC GEOID ESTIMATORS 

 
3.1. – THE MOLODENSKY MODIFICATION 

 

The well-known Molodensky truncation theory (Molodensky et al., 1962) is the base of 

current notations of modifications by combining terrestrial gravity information with a set of 

geopotential coefficients. They aimed at minimizing the upper bound of the truncation error.  

Assuming a cap of integration σ0 with geocentric angle ψ0 around the computation point, an 

estimator N1 of the geoidal height N that combines the Stokes integral with a global geopotential 

model can be written as (Molodensky et al., 1962) 

 

𝑁1 =
𝑐

2𝜋
∬ 𝑆𝑀(𝜓)

𝜎0
Δ𝑔𝑑𝜎 + 𝑐 ∑ 𝑠𝑛Δ𝑔𝑛

𝑀
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where 

SM(ψ) = the spheroidal Stokes kernel = S(ψ)- 
=

+
M
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s0, s1, s2, …, sM= modification parameters, 

S(ψ) = the spherical Stokes kernel= )(cos
1
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2

k
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−
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Pk(cos ψ) = k-th Legendre's polynomial, 

ψ = spherical distance between computation and running points, 

Δg = the terrestrial gravity anomaly at the geoid level derived from the observed magnitude of gravity 

at the Earth's surface, 

Δgn = n-th Laplace harmonic of Δg determined from potential coefficients, 

c = R/2γ, 

M = degree of the global geopotential model and degree of kernel modification in the geoidal height 

estimators. 

Different choices of the modification parameters sn lead to different estimations of the geoidal 

heights. The modification parameters can be determined from the system of linear equation 
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∑ 𝑎𝑘𝑟𝑠𝑟 = ℎ𝑘
𝑀
𝑟=2           𝑘 = 2, 3, ⋯ , 𝑀       (3) 

 

were in accordance with Molodensky's method (Molodensky et al., 1962): 

 

𝑎𝑘𝑟 =
2𝑟+1

2

2𝑘+1

2
𝑒𝑘𝑟        (4) 

 

and 

 

ℎ𝑘 =
2𝑘+1

2
𝑄𝑘         (5) 

 

Here Paul's function (Paul, 1973) 

 

𝑒𝑘𝑛(𝜓0) = ∫ 𝑃𝑛(cos 𝜓)
𝜋

𝜓=𝜓0
𝑃𝑘(cos 𝜓) sin 𝜓 𝑑𝜓     (6) 

 

and 

 

                                         𝑄𝑘(𝜓0) = ∫ 𝑆(𝜓)
𝜋

𝜓=𝜓0
𝑃𝑘(cos 𝜓) sin 𝜓 𝑑𝜓                    (7)              

 

are the Molodensky truncation coefficients. 

 

 
3.2. – SJÖBERG'S BIASED LEAST-SQUARES MODIFICATION 

 

Sjöberg (1984) proposes least-squares modification of Stokes's formula, which reduces the 

truncation error, erroneous terrestrial gravity data and potential harmonic errors in a least-squares 

sense. Referring to the Eq. (3), the modification parameters in the least-squares model are computed 

as below (Sjöberg, 1984): 

 

𝑎𝑘𝑟 = (𝜎𝑟
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2
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2
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2 + 𝑐𝑛)𝑀
𝑛=2  (8) 
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where 

𝑐𝑛 =
1

4𝜋
∬ Δ𝑔𝑛

2
𝜎

𝑑𝜎                     (10) 

 

and 𝜎𝑛
2 is the n-th gravity anomaly error degree variance, dcn is the expected mean square error of 

Δgn and δkr is Kronecker's delta symbol. The gravity anomaly degree variance cn can be computed 

from EGM96 as 

 

𝑐𝑛 =
(𝐺𝑀1)2

𝑎1
4 (𝑛 − 1)2 ∑ (𝐶𝑛𝑚

2 + 𝑆𝑛𝑚
2 )𝑛
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 5 

The gravity anomaly error degree variance, due to erroneous potential coefficients is computed from 

 

𝑑𝑐𝑛 =
(𝐺𝑀1)2

𝑎1
4 (𝑛 − 1)2 ∑ (𝛿𝐶𝑛𝑚

2 + 𝛿𝑆𝑛𝑚

2 )𝑛
𝑚=0         (12) 

 

where δCnm and δSnm are the standard deviations of potential coefficients taken from EGM96. The 

error degree variances for the terrestrial gravity anomalies (𝜎𝑛
2) can be estimated from knowledge of 

an error degree covariance function. One covariance function is, for example, given by (Sjöberg, 

1986) 

 

𝐶(𝜓) = 𝑐1 [
1−Ω

√1−2Ω cos 𝜓+Ω2
− (1 − Ω) − (1 − Ω)Ω cos 𝜓]                (13) 

 

where 𝜎𝑛
2 are expressed from 

 

𝜎𝑛
2 = 𝑐1(1 − Ω)Ω𝑛       (14) 

 

The parameters 𝑐1 and Ω are determined from knowledge of the error variance C(0) and the 

correlation length ξ; the value of the argument for which C(ψ) has decreased to half of its value at 

ψ=0 (Moritz, 1980). The value of C(0)=10 mGal2 and a correlation length of 0.1º are used in this 

study. 

Both Molodensky and the least-squares models use the original Pizzetti reference field. This 

was also pointed in Jekeli (1981) and Sjöberg (1984). Below some other models that use higher than 

second-degree reference field will be investigated. 

 

 
3.3. – WONG AND GORE (1967) MODIFICATION 

 

The modified Wong and Gore (1967) method employs a high-degree residual field and 

spheroidal Stokes kernel. This model is  

 

𝑁2 =
𝑐

2𝜋
∬ 𝑆𝑀(𝜓)

𝜎0
Δ𝑔𝑀𝑑𝜎 + 𝑐 ∑ 𝑠𝑛Δ𝑔𝑛

𝑀
𝑛=2      (15) 

 

where ΔgM are the residual terrestrial gravity anomalies which have been reduced by the 

corresponding spherical harmonic of degree and order M of the global geopotential model as: 

 
Δ𝑔𝑀 = Δ𝑔 − ∑ Δ𝑔𝑛

𝑀
𝑛=2          (16) 

 

Wong and Gore (1969) model choice of modification parameters is 𝑠𝑛 = 2 𝑛 − 1⁄  in Eq.  (15). The 

term modified means that high-degree reference gravity field and kernel modification are combined 

in this model.  

The use of a higher-degree reference field in Stokes's integral in this estimator results to the 

subtraction of the long-wavelength contribution of gravity anomalies (computed from a global EGM) 

from the terrestrial gravity anomalies. This subtraction is a time consuming work, which must be 

done for each computation point (especially for large values of M).  
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3.4. – VINCENT AND MARSH (1974) MODIFICATION 

 

Vincent and Marsh (1974) choice of the modification parameters are also 𝑠𝑛 = 2 𝑛 − 1⁄ . 

However, this method corresponds to a high-degree reference gravity field with no kernel 

modification, resulting in:  

 

𝑁3 =
𝑐

2𝜋
∬ 𝑆(𝜓)

𝜎0
Δ𝑔𝑀𝑑𝜎 + 𝑐 ∑ 𝑠𝑛Δ𝑔𝑛

𝑀
𝑛=2      (17) 

 

This model uses the original spherical Stokes integration kernel. 

 

 
3.5. – VANICEK AND KLEUSBERG (1987) MODIFICATION 

 

Following Molodensky et al. (1962) who used a modification to the spherical Stokes kernel, 

Vanicek and Kleusberg (1987) made a modification to the spheroidal Stokes kernel resulting in 

 

𝑁4 =
𝑐

2𝜋
∬ 𝑆𝑀

𝑠 (𝜓)
𝜎0

Δ𝑔𝑀𝑑𝜎 + 𝑐 ∑ 𝑠𝑛Δ𝑔𝑛
𝑀
𝑛=2      (18) 

 

The modification parameters, sn, were determined from the system of linear equations 

 

∑
2𝑛+1

2
𝑒𝑘𝑛(𝜓0)𝑠𝑛(𝜓0) = 𝑄𝐾

𝑀(𝜓0)𝑀
𝑛=2           (19) 

 

and the Vanicek and Kleusberg (or spheroidal Molodensky) truncation coefficients are evaluated 

from 

 

𝑄𝐾
𝑀(𝜓0) = 𝑄𝑘(𝜓0) − ∑

2𝑗+1

𝑗−1
𝑒𝑘𝑗(𝜓0)𝑀
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The Molodensky-modified spheroidal Stokes function is 

 

𝑆𝑀
𝑠 (𝜓) = 𝑆𝑀+1(𝜓) − ∑

2𝑘+1

2
𝑠𝑘𝑃𝑘(cos 𝜓)𝑀
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where 

 

𝑆𝑀+1(𝜓) = ∑
2𝑘+1

𝑘−1
𝑃𝑘(cos 𝜓) = 𝑆(𝜓)∞

𝑘=𝑀+1 − ∑
2𝑘+1

𝑘−1
𝑃𝑘(cos 𝜓)𝑀

𝑘=2         (22) 

 

 

These five geoidal height estimators are investigated in this study. These geoid estimators 

combine, in different ways, the global geopotential model with Stokes's integral. Different types of 

modification parameters are used in this study. Different Stokes’s kernels including spherical, 

spheroidal and modified spheroidal kernels are chosen in the estimators. The use of both higher-

degree reference field and the original Pizzetti reference field is also obvious in different geoid 

estimators. 

In real practice, it is supposed that the terrestrial gravity anomalies be used in the integral-

part of the geoidal height estimators. In this study, however, the terrestrial gravity data were not 
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used. As the idea of this study is a comparison of the different geoidal height estimators with a 

"reference geoid model" [geoid derived from EGM96 with Eq. (1)], the gravity anomalies in the 

integral-part of geoid estimators are also computed from the EGM96 coefficients. The gravity 

anomalies are derived from the following formula (Heiskanen and Moritz, 1967) 

 

 Δ𝑔𝐹(𝑟, 𝜑, 𝜆) =
𝐺𝑀3

𝑟2
∑ (𝑛 − 1) (
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𝑅
)
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𝐺𝑀3
𝐶𝑛𝑚 −

𝐺𝑀2

𝐺𝑀3
(

𝑎2

𝑎1
)

𝑛
𝐶′𝑛𝑚) cos 𝑚𝜆 +𝑛

𝑚=0
𝑀′

𝑛=0

+
𝐺𝑀1

𝐺𝑀3
𝑆𝑛𝑚 sin 𝑚𝜆] 𝑃𝑛𝑚(sin 𝜑) +

2

𝑟
(𝑊0 − 𝑈0)      (23) 

 

where r is the geocentric distance to point of interest. To have a better consistency with the real 

situation, the geopotential coefficients used for the computation of the gravity anomalies (in the 

integral-part of the geoid estimators) are infected with a white noise, of mean zero and standard error 

of σ0. This standard error equals to the maximum standard error of the original EGM96 geopotential 

coefficients. Note that in the "reference geoid model" the potential coefficients are noise-free and 

are not infected with the above-mentioned random errors. It should be, however, noted that the noise 

on coefficients is giving strong correlations in the spatial gravity anomalies errors computed from 

those coefficients. In reality the noise characteristics of gravity anomalies will be different. However, 

as this is used for all gravimetric geoid estimators, and this study aims in comparison not the geoidal 

height computations, this level of accuracy might be sufficient.  

It is obvious that the "reference geoid model" only includes long-wavelength information and 

the short-wavelength constituents, which are derived from local contributions, are missing in the 

reference model. It is the reason that the terrestrial gravity anomalies (which include the short-

wavelength information) are not used in the geoidal height estimators too. This means that for 

comparison sake, only long-wavelength constituents are used. Also, all corrections (the most 

important one, the topographic corrections) are not included in this study, as the idea of this work is 

only a comparison between different geoid estimators not the geoidal height computations. 

With the use of EGM96-derived gravity anomalies infected with the white-noise, the error 

anomaly degree variances in the least-squares estimator must then be computed by  

 

 𝑑𝑐𝑛 =
(𝐺𝑀1)2

𝑎1
4 (𝑛 − 1)2𝜎0

2(2𝑛 + 1)        (24) 

 

instead of Eq. (12). 

Also, as the terrestrial gravity anomalies are replaced with EGM96-derived gravity 

anomalies, the error anomaly degree variances for the terrestrial gravity anomalies have to be 

obtained from  

 
          𝜎𝑛

2 = 𝑑𝑐𝑛              (25) 
instead of Eq. (14). 

These error degree variances are not very realistic, but they may be sufficient for this 

comparison. The selection of the σn and dcn models is critical for the least-squares estimator, whereas 

the cn model does not play an important role (see also Despotakis, 1987). But, whenever these models 

are properly selected, the optimal solution is achieved (see also Despotakis, 1987). 
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4. – NUMERICAL INVESTIGATIONS 

 

Five geoid estimators, Molodensky et al. (1962), Wong and Gore (1969), Vincent and Marsh 

(1974), Sjöberg's least-squares (1984) and Vanicek and Kleusberg (1987) are numerically 

investigated. A test area of 5º × 5º is chosen. It is delimited by latitudes 50º N and 55º N, and longitudes 

30º E and 35ºE, located in Iran. All computation points in this study are the center of the cells with 

the size of 30' × 30'.  EGM96 model is the global geopotential model used in this study. The mean 

geoid radius R is selected to 6371000 m. 

First, the geoidal heights are computed from EGM96 using Eq. (1). The degree and order of 

expansion are complete to 360. These geoidal heights are considered as the "reference geoid model". 

This model is used for comparison of the geoid estimators. 

Next, geoidal heights are computed with five geoid estimators. Instead of the terrestrial 

gravity anomalies, the gravity anomalies determined from EGM96 are used in the integral-part of 

the estimators. Eq. (23) is used to compute these gravity anomalies. In the geoid estimators, the 

geopotential coefficients to degree and order of 360 are used for the determination of Δg in the 

integral-part. The long-wavelength part of the geoid estimators is computed by the coefficients to 

only degree and order 60. To be more consistent with the real situation, random numbers are added 

to the geopotential coefficients, derived from a white-noise process. Thereafter, the geoidal heights 

are computed in the test area with the five estimators. The integration area in geoid estimators is 

limited to 6º from computation points (see Nahavandchi, 1998; Nahavandchi and Sjöberg, 2001). 

The Molodensky truncation coefficient, Qn and the eki coefficients are estimated according to 

Hagawara (1976) and Paul (1973), respectively.  

Table 1 shows the statistics of differences between the geoidal heights estimated from five 

geoid estimators and the "reference geoid model". The smallest mean value and standard deviation 

of differences are obtained with the least-squares model, computed to -8 cm and ±29 cm, 

respectively. The next smallest standard deviation of differences is computed with Vanicek and 

Kleusberg (1987) model, equal to ±32 cm. Table 1 reveals the fact that different results with different 

geoid estimators are expected in real practice. Table 1 also shows that both Pizzetti reference field 

and the higher than second-degree reference field provide good results compared to the "reference 

geoid model". The least-squares model uses the spheroidal Stokes kernel, while the modified 

spheroidal Stokes kernel is used in Vanicek and Kleusberg (1987) model. 

In order to obtain further insight into the comparison between the two reference fields, the 

Molodensky et al. (1962) and Sjöberg's least-squares (1984) models are evaluated using a residual 

gravity field ΔgM [see Eq. (16)] instead of Δg [see Eq. (2)]. Thereafter, the geoidal heights have been 

compared with the "reference geoid model". Table 2 shows the statistics of differences with the 

reference model. Results of Table 2 show no significant differences between the two estimators and 

"reference model", whether the Pizzetti or higher than second-degree reference fields are used 

(compare the results of Tables 1 and 2). Actually, the standard deviations of differences are smaller 

when second-degree reference field is used. It is computed to ±33 cm and ±44 cm in least-squares 

and Molodensky models, respectively, when the higher degree reference field is used.  
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Table 1. The statistics of differences on geoid between different geoidal height estimators and the "reference 

geoid model". Units in metres 

 Molodensky et 

al. 

Wong and 

Gore 

Vincent and 

Marsh 

L-S Vanicek  

and Kleusberg 

Min -0.81 -0.79 -0.86 -0.65 -0.78 

Max 1.16 1.14 1.17 1.02 1.07 

Mean -0.14 -0.13 -0.15 -0.08 -0.11 

SD 0.43 0.40 0.45 0.29 0.32 

 
Table 2. The statistics of differences on geoid  

between Molodensky et al. and the least-squares  

estimators with the "reference geoid model", using  

the higher than second-degree reference field.  

Units in metres 

 Molodensky et 

al. 

L-S 

Min -0.87 -0.89 

Max 1.17 1.15 

Mean -0.19 0.16 

SD 0.44 0.33 

 

In the next experiment, the Wong and Gore model [Eq. (15)] is computed using the second-

degree reference field. It means that ΔgM in this model are replaced with the Δg. Thereafter, the 

"reference geoid model" is used for the comparison. Table 3 shows the statistics of differences. 

Surprisingly, the same results are mostly obtained in the Wong and Gore model with the second 

degree and higher than second-degree reference fields. This means that the computation labor is 

saved if one uses the Pizzetti field in the Wong and Gore model, and same accuracy can be expected. 

However, this should be tested in other areas. In the next test, Vanicek and Kleusberg (1987) model 

[Eq. (18)] is computed using the Pizzetti reference field. Table 4 shows the differences between this 

model and the "reference model". The results of Table 4 show large differences between this geoid 

estimator and the "reference model", when the second-degree reference field is used. The use of the 

modified spheroidal Stokes kernel is the reason. When integration of gravity anomalies Δg with the 

modified Stokes kernel is used, the long wavelength frequency components must be subtracted from 

Δg as the modified spheroidal kernel is no longer blind to the low frequencies. It means that in this 

type of kernel, the residual gravity field must be used. This is not the case for the original spheroidal 

kernel.  

 
Table 3. The statistics of differences on geoid 

between Wong and Gore model and the 

"reference geoid model", using the Pizzetti 

reference field. Units in metres 

 Wong and 

Gore 

Min -0.85 

Max 1.22 

Mean -0.15 

SD 0.43 

 

Further, Vincent and Marsh model is computed with the original gravity field Δg instead of 

ΔgM in Eq. (17). Table 5 shows the statistics of differences between this model and the "reference 

geoid model". The standard deviation of differences is computed to ±78 cm using the Pizzetti field 
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versus ±45 cm using the residual gravity field. Also, mean of differences are computed to -325 cm 

versus -15 cm using higher degree reference field. The reason for these differences is the use of the 

original spherical Stokes function in this geoid estimator. It means that the long wavelength 

frequency components must always be subtracted from Δg in this model. 

 
Table 4. The statistics of differences on geoid 

between Vanicek and Kleusberg model and the 

"reference geoid model", using the Pizzetti 

reference field. Units in metres 

 Vanicek and 

Kleusberg 

Min -1.18 

Max 1.92 

Mean 0.62 

SD 0.58 

 
Table 5. The statistics of differences on geoid 

between Vincent and Marsh model and the  

"reference geoid model", using the Pizzetti 

reference field. Units in metres 

 Vincent and 

Marsh 

Min -3.25 

Max 2.19 

Mean -3.08 

SD 0.78 

 

The overall results show that the least-squares and Vanicek and Kleusberg geoid estimators 

present the best agreement with the "reference geoid model" in this study. To see how good these 

two geoid estimators are in agreement with each other, both models are computed in the test area 

and compared. Table 6 shows the results of this comparison. A mean difference of -6 cm and a 

standard deviation of ±5 cm are resulted. 

 
Table 6. The statistics of differences on geoid 

between the least-squares and Vanicek and Kleusberg 

models. Units in metres 

Min -0.13 

Max 0.11 

Mean -0.06 

SD 0.05 

 

All computations above are implemented in other test area in Iran with a size of 2º × 2º. The 

same results are mostly obtained. However, these computations must be tested in other areas.  

 

 
4.1. – TRUNCATION ERROR IN GEOID ESTIMATORS 

 

The Stokes integration, in practice, is performed over a truncated spherical cap. As the Stokes 

kernels is non-zero in the region outside the integration cap, the effects of the gravity anomalies in 

these zones cause the truncation error. In this section, the truncation errors in Vincent and Marsh 

(1974), Sjöberg's least-squares (1984) and Vanicek and Kleusberg (1987) geoid estimators are 
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evaluated. These three estimators use the spherical, spheroidal and modified spheroidal Stokes's 

kernels. They also use both the second degree and higher degree reference fields. 

It can be shown that the truncation error in spectral form in Vincent and Marsh (1974) model 

is 
𝛿𝑁VM(𝑟, 𝜑, 𝜆) = 𝑐 ∑ 𝑄𝑛(𝜓0)∞

𝑛=𝑀+1 Δ𝑔𝑛              (26) 

 

The truncation error is a function of the truncation coefficients. 

Sjöberg's least-squares (1984) estimator holds the following truncation error as: 

 
𝛿𝑁LS(𝑟, 𝜑, 𝜆) = 𝑐 ∑ 𝑄𝑀𝑛(𝜓0)∞

𝑛=𝑀+1 Δ𝑔𝑛             (27) 

 

where  

𝑄𝑀𝑛(𝜓0) = 𝑄𝑘(𝜓0) − ∑
2𝑘+1

2
𝑠𝑘𝑒𝑛𝑘(𝜓0)𝑀

𝐾=2           (28) 

 

It is obvious that the least-squares estimator is biased for all harmonics from degree two and 

up. It can be shown that the spheroidal kernel tapers off to zero for smaller truncation radii ψ0. 

Moreover, )()(  SSM   for ψ<ψ0, where •  indicates the ”norm” operator. Therefore, it can be 

considered that the impact of the truncation error is reduced more in the least-squares estimator than 

in Vincent and Marsh (1974) model. 

The modified spheroidal Stokes kernel is used in Vanicek and Kleusberg (1987) geoid 

estimator. The corresponding truncation error is       

 
𝛿𝑁VK(𝑟, 𝜑, 𝜆) = 𝑐 ∑ 𝑄𝑛

𝑀(𝜓0)∞
𝑛=𝑀+1 Δ𝑔𝑛                 (29) 

 

It can be shown that MMs
M gSgS  )()(   for ψ<ψ0. Therefore, the modification to the 

spheroidal Stokes kernel reduces the truncation error compared to Vincent and Marsh (1974) geoidal 

height estimator. 

To evaluate these errors numerically, the truncation errors are computed in the test area 

according to Eqs. (26)-(29). The maximum degree of expansion 360 is used in this investigation. 

The maximum value of truncation error in Vincent and Marsh (1974) model is computed to 15.2 cm. 

It is computed to 7.11 cm and 6.18 cm in Vanicek and Kleusberg (1987) and Sjöberg's least-squares 

(1984) models, respectively. It is again shown that the least-squares estimator, which uses a 

spheroidal kernel, is a good model as far as the truncation errors are concerned. The Vanicek and 

Kleusberg (1987) model, which uses a modified spheroidal kernel, mostly gives the same results. 

 

 
4.2. – TERRESTRIAL GRAVITY DATA 

 

Similar steps are done in the test area but with the terrestrial gravity anomalies used in the 

geoid estimators. Thereafter, the geoidal heights are compared with the "reference geoid model". 

The terrestrial gravity data are in 110'' × 160'' cells. The center of the cells is the computation points 

for the geoidal heights. 

It is important to note that the corrections required in gravimetric geoidal height computations 

(the most important one, the topographical corrections) are not considered in the geoid estimators, 

as the study is limited to the comparison of different geoid estimators not the geoidal height 

computations. On the other hand, the geoid estimation in this section using the terrestrial gravity 
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anomaly data in the integral part of the estimators includes short-wavelength information, while it is 

disregarded in the "reference geoid model". Again, as this study only aims on comparison of different 

geoid estimators, this level of accuracy seems suitable. The situation is considered the same for all 

estimators and this will not ruin the nature of the comparison.  

The statistics of the differences between the geoidal heights computed from  

Molodensky et al. (1962), Wong and Gore (1969), Vincent and Marsh (1974), Sjöberg's least-squares 

(1984) and Vanicek and Kleusberg (1987) models (with the terrestrial gravity data in the integral-

part of the estimators) and the "reference geoid model"  are shown in the Table 7. As it was expected 

the differences enlarge as the terrestrial gravity data are used in the geoid estimators. These represent 

the local contributions, which are not included in the "reference geoid model". However, as it is 

mentioned, this is only a measure to see how different geoid estimators work in different situations 

compared to a global gravity model. This may help, for example, to see the differences between 

geoid estimators and to finally suggest an optimal estimator. One may expect that the situation is the 

same in the real practice. Again, the least-squares estimator provides the smallest standard error of 

differences with the "reference model". Standard deviation of differences is computed to ±38 cm. 

The second smallest standard deviation is computed with the Vanicek and Kleusberg (1987) model, 

as it was expected.   

 
Table 7. The statistics of differences on geoid between different geoidal height 

estimators and the "reference geoid model", using the terrestrial gravity data. Units in metres 

 Molodensky et 

al. 

Wong and 

Gore 

Vincent and 

Marsh 

L-S Vanicek  

and Kleusberg 

Min -1.08 -0.99 -1.16 -0.86 -0.98 

Max 1.41 1.33 1.43 1.21 1.27 

Mean -0.16 -0.15 -0.18 -0.10 -0.13 

SD 0.54 0.51 0.57 0.38 0.43 

 

 

5. – DISCUSSION AND CONCLUSIONS 

 

To study the efficiency of some different geoid estimators, Molodensky et al. (1962), Wong 

and Gore (1969), Vincent and Marsh (1974), Sjöberg's least-squares (1984) and Vanicek and 

Kleusberg (1987) models are numerically studied. The above geoid estimators are compared with a 

"reference geoid model" determined from EGM96 geopotential coefficients.  

Note that the short-wavelength information is missing in the "reference model", as a global 

geopotential model is used to derive the reference geoid. For the comparison sake, the geopotential 

coefficients are used to determine the gravity anomalies in the integral-part of the different geoid 

estimators too. The "reference geoid model" might not be precise and realistic, but it is sufficient for 

the comparison of the different geoidal height estimators in this study. 

Different modification parameters, different Stokes kernels (spherical, spheroidal, modified 

spheroidal) and different reference fields (Pizzetti versus the higher than second -degree) are used. 

These different parameters are all included in the five geoid estimators mentioned above. 

The Sjöberg's least-squares (1984) and Vanicek and Kleusberg (1987) estimators were in 

best agreement with the "reference geoid model". The former model uses the Pizzetti type reference 

field and the spheroidal Stokes kernel, where the latter uses the higher than second-degree reference 

field and modified spheroidal Stokes kernel. 
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It is shown that the use of Pizzetti reference field and spheroidal Stokes kernel mostly provide 

the same results as with the use of a higher than second degree field and modified spheroidal Stokes 

kernel. This means that the former procedure results to the same accuracy as the latter with less 

computational labor in this study. These results must however be tested in other areas. 

One can also conclude that the modification of original Stokes's formula is still an open 

investigation when 1-cm geoid is desired. However, the results of this study show that the least-

squares and Vanicek and Kleusberg models can be considered as two suitable estimators for geoidal 

height determination. The former reduces the truncation error, erroneous terrestrial gravity data and 

potential harmonic errors in a least-squares sense. 

The truncation errors are numerically evaluated in the geoid estimators. It is numerically 

shown that these errors reduce significantly in the spheroidal kernel than in the spherical one. 

The same results with the terrestrial gravity data are obtained in an attempt to compare the 

five geoidal height estimators with the "reference geoid model". The corrections to the gravimetric 

geoid estimators (e.g. topographical corrections) are of no interest in this study.   
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