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Abstract

Key finding is an integral part of the harmonic structure of western music. Accu-
rate and consistent key classification is an ongoing challenge in Music Information
Retrieval and is necessary to facilitate future work in the field. This thesis pro-
poses a new key finding approach that adapts existing methods and improves the
classification of minor keys.

By utilizing ideas from western music theory, the proposed model splits its key
profile into three minor key variations to facilitate music in natural, harmonic, and
melodic minor, respectively. Three experiments were conducted using different
parameters. These experiments were based on existing key finding models that
were adapted to process the expanded key profile format. The results include
accuracy measurements equal to the state-of-the-art methods and indicates a
superior ability to process minor keys.

There is still work left to do in order to increase the model’s overall accuracy
while retaining the powerful minor key processing. It is an exciting approach
that still has the potential to achieve great results. The results contribute to the
ongoing effort to accurately classify the key of a piece of music using computa-
tional methods and can be used to increase the understanding of key finding and
tonality in future work.
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Sammendrag

Tonearter er en viktig del av den harmoniske strukturen til vestlig musikk. Nøyaktig
og konsekvent toneartklassifisering er fortsatt en utfordring i Music Information
Retrieval og er en nødvendig del av videre arbeid innen feltet. Denne oppga-
ven foresl̊ar en ny tilnærming til automatisk toneartgjenkjenning som tilpasser
eksisterende metoder for å forbedre klassifisering av moll-tonearter.

Ved å bruke ideer fra vestlig musikkteori deler den nye modellen moll-tonearter
inn i tre varianter som forbedrer m̊aten toneartsprofilene tilpasses moll-variasjoner.
Tre eksperimenter ble gjennomført med forskjellige parametere. Disse eksperi-
mentene var basert p̊a eksisterende metoder, og tilpasset hver algoritme for å legge
til et nytt format for toneartprofiler. Resultatene inkluderer nøyaktighetsm̊alinger
som er like gode som state-of-the-art metodene testet i eksperimentene og som in-
dikerer en bedre prosessering av moll-tonearter enn andre toneartprofiler. Denne
oppgaven bidrar til den p̊ag̊aende innsatsen for å nøyaktig klassifisere tonearten
i et musikkstykke ved hjelp av algoritmer. Det kan brukes til å øke forst̊aelsen
av toneartsklassifisering og tonalitet i fremtidig arbeid.
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Chapter 1

Introduction

The rules of western music have been based on harmony for centuries, and the mu-
sical key is the harmonic backbone that defines the structure of a piece [Rameau,
1779]. Key finding has been researched extensively and is considered a primary
obstacle in Music Information Retrieval (MIR) [Albrecht and Shanahan, 2013]. A
reliable and highly accurate key finding algorithm would make new autonomous
analysis, labeling, and organizational techniques for music possible, multiplying
the possibilities within MIR research. Despite the extensive work done in key
finding, the accuracy of automatic key finding methods has yet to reach the level
of a human with knowledge of music theory, especially for detecting minor keys.

This thesis investigates the challenge of classifying minor keys using computa-
tional methods compared to the more straightforward classification of major keys.
An important topic in the thesis is incorporating music-theoretical approaches to
improve minor key finding accuracy. By applying insights from the various types
of minor keys to existing foundational and state-of-the-art key finding methods,
the aim is to enhance the classification of minor keys in classical music. Incor-
rect classification of keys can often be attributed to the close similarities between
keys or the need for more high-quality data to train key profile values or key
finding models. Adding music-theoretical nuances to current models and using
high-quality data makes it possible to improve the results of key finding methods,
as presented in Chapter 5. To thoroughly examine the topic of key finding, there
is a literature review and three experiments focused on adapting and improving
existing key finding methods to classify minor keys better.

1



2 CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

Because keys are such a fundamental part of musical structure, the ability to
automatically label the keys of a piece would make it possible for a computer to
perform a harmonic analysis of most western music. This knowledge of harmony
is necessary in order to be able to search vast amounts of music to find examples
of chord progressions, key changes, and other harmonic markers. Because of
the vital importance of keys in music, a reliable key finding tool would affect
most computational analysis and processing of music. Such a tool could, for
example, help music historians by using its harmonic analyses to find historically
significant musical events, such as the first use of a particular chord or a look into
the evolution of different harmonic techniques over time. In the world of popular
music and modern music tools, a key finding algorithm could label extensive music
collections so that remixing tools and playlist generators can quickly assemble
compatible pieces of music and identify covers of the same song [Temperley and
de Clercq, 2013]. The understanding of harmonic structure could also be of great
use to research computational creativity and automatic music performance by
informing the phrasing and the best way to accompany it based on the functional
structure of the music.

As an important marker of harmonic structure in western music, humans can
easily use contextual and musical clues to determine the key of a piece. Despite
the relative ease trained humans experience while determining the key in most
music, computers still cannot determine musical keys at nearly the same level of
accuracy. The tonal shifts, modulations, and complex harmonic transitions are
some of the aspects of music that make automatic key finding more complicated.

The work done by Krumhansl [1990] serves as a foundation for a lot of later re-
search into key finding. By developing profiles for each possible key, the proposed
algorithm correlates each set of total pitch durations with the profile for each key
and selects the key with the best match. Several articles have proposed changes
to the key profiles to improve this work based on different ideas of what defines
a key. Whereas Krumhansl [1990] used psychological experiments to determine
which pitches sound right in a given key, Temperley [1999] tweaked the values
based on theoretical reasoning and trial-and-error testing. Other researchers,
such as Albrecht and Shanahan [2013], used large data sets to determine the
relative frequencies of pitches in different keys, and Sapp [2011] presented key
profile values based solely on music theory and the theory of keys.

More recently, the methods of key finding have included hidden Markov
models (HMM), convolutional neural networks (CNN), matrix factorization, ex-
pectation maximization, and Bayesian structures in determining the local and
global keys of a musical piece [Nápoles López et al., 2019; Temperley, 2002a;
Korzeniowski and Widmer, 2018; Özgúr Izmirli, 2007]. These structures allow
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the computer to consider more music-related factors than pitches and durations.
The key finding approaches make decisions by introducing probabilities, previous
key findings in the music, metrical structure, and other musical features.

1.2 Goals and Research Questions

Goal Improve the accuracy of minor key classification by combining foundational
and state-of-the-art global key classification algorithms with a new key pro-
file and improved data sets.

As automatic key finding models continue to improve, minor keys still have lower
detection accuracy rates than major keys. Despite this persistent problem, ap-
proaches have yet to consider the variation within minor keys in a significant
way. This thesis attempts to improve foundational and state-of-the-art key find-
ing methods by applying the characteristics of natural, harmonic, and melodic
minor key variations. The improvements are made by enhancing the key profile
values and using high-quality data to make decisions. Four questions must be
answered to reach the goal; these are listed below.

Research question 1 How should key profiles be adapted to accommodate mi-
nor key variations?

Key profiles show how a key is defined in a particular model. The possible ways
to derive updated key profile values range from psychological experiments or
historical data to values based on music theory. A good set of key profiles should
yield high-accuracy results for a varied data set and be justifiable from a music
theory perspective.

Research question 2 What state-of-the-art method(s) are most likely to im-
prove with the minor mode modifications?

After identifying state-of-the-art methods through a literature review, one or
more methods should be chosen for the experiments. The results from Research
Question 1 can be used if the methods include key profiles.

Research question 3 What data works best for musical key finding, and should
it be changed to accommodate minor modes?

This research question explores how a large data set optimized for key finding
should be built. It also looks into the possibilities and the necessity of a new
category of labeled data for experimenting with minor key variations.

Research question 4 What is the best way to measure success?
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The goal of improving current key finding methods must be quantifiable. By
investigating the different methods used to measure success, the results from the
experiments should be comparable to existing models in meaningful ways.

1.3 Research Method

A combination of theoretical and experimental approaches was used to answer the
research questions and achieve the goal set in Section 1.2. Theoretical knowledge
was accumulated through the literary review described in Section 3.1, and a
combination of theories from relevant articles answered the research questions.
The experiments used the knowledge from the research questions to choose the
parameters and data input.

To start answering the first research question, the approach was to map out
the various key profiles already in use in related work and how they relate to the
definition of keys. The answer to Research Question 1 was derived and justified
by combining reasoning from articles found in the literature review and domain
knowledge from music theory.

The second research question is also closely related to the literature review.
The process started with an overview of the available key finding methods and
comparing their results based on quantity and quality of data, data types, local
vs. global key finding, and experimental results. Then, a three methods were
chosen for the experiments by looking at their results for minor keys and whether
they used key profiles.

By answering Research Question 3, the process of finding data for the exper-
iments started. The aim was to find a varied and large data set based on the
information from the related work. In addition to already existing data, the need
for a separate labeled data set with minor key variations was investigated by
evaluating what data was necessary to gain insight into the experimental results.

Research Question 4 was answered by looking at the measuring methods used
in related work, their strengths and weaknesses, and how they relate to each
other.

The overarching goal of the thesis was evaluated using a set of experiments
designed to compare the existing methods to the updated versions developed
from the answers to the research questions. The experimental results are a basis
for evaluating if the goal was achieved. This is discussed further in Section 7.1.

1.4 Contributions

1. A new method for handling key profiles that accommodates minor key vari-
ations.
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2. A comparison between several key finding profiles in different experimental
setups.

3. An experimental comparison between analyses done on whole pieces of music
and excerpts.

4. A thorough overview of computational key finding literature.

1.5 Thesis Structure

The remainder of the thesis is structured as follows:

• Chapter 2 presents the theory behind the musical concepts and computa-
tional methods used in the experiments and mentioned in the discussion.

• Chapter 3 includes an in-depth review of literature related to automatic
key finding and a description of how the literature review was constructed.
The chapter also includes an introduction to frequently used data sets and
methods used to measure success in key finding.

• Chapter 4 explains the architecture of models used in the experiments
conducted in connection to this thesis.

• Chapter 5 presents the plan, parameters, and results of all the experi-
ments.

• Chapter 6 discusses the results of the experiments, why they are signifi-
cant, and what they tell us about the proposed model.

• Chapter 7 revisits and evaluates the research questions and the overar-
ching goal of the thesis. Conclusions are presented, and future work is
proposed.
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Chapter 2

Background Theory

This chapter presents the theory behind musical keys, an introduction to the
computational methods used in the experiments in Chapter 5, and how compu-
tational algorithms apply music theory to classify keys. The chapter also contains
different methods for measuring success, information about data formats, and in-
formation about the software tools used in the thesis.

2.1 The Musical Theory of Keys

Music theory and the rules of harmony have defined western music since the
end of the middle ages. As the music has evolved, the basic structures of keys
and their harmonic progression have remained the same. Western classical mu-
sic theory is strongly influenced by mathematical structures first documented by
Pythagoras (ca. 570-497 B.C.) [Fauvel et al., 2003]. His research into musical ra-
tios, specifically octaves, fourths, and fifths, formed the basis for modern western
music theory. Work done by Rameau [1779] confirmed the relationship between
music theory and mathematics by defining a harmonic methodology based on
the ratios researched by Pythagoras. This harmonic system depends on musical
keys that determine the harmonic choices available to the composer at any time.
However, rules are made to be broken, and rules in music theory are no different.
This variability necessitates subjective analyses by music theorists and makes the
task of computational key finding non-trivial. The following subsections detail
the formal definition of a musical key, key changes within a piece, and the factors
contributing to the ambiguity of key finding.

7
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Figure 2.1: The 24 keys organized in the circle of fifths. Parallel keys share the
same pitch name; relative keys are placed across from each other, and keys a fifth
apart are next to each other.1

2.1.1 Technical Aspects of Musical Keys

A key is defined by its key-note (tonic) and its mode [Rameau, 1779]. The mode
can be any of the twelve modes, but Ionian or Aeolian are the most commonly
used, often referred to as major and minor. The mode defines the distances
between scale degrees in a key. For example, the distance is four semitones
between the first scale degree (tonic) and the third in major, and three semitones
in minor. These distances are the most critical relationships for establishing the
‘sound’ of the key.

Because there are 12 pitches available and two commonly used modes, most
pieces are in one of 24 keys at any time. The keys are arranged by their degree
of similarity in a structure called the circle of fifths. These relationships can be
seen in Figure 2.1. Keys close to each other on the circle have similar modes or
tonal centers and are easier to mistake for one another.

1[Bill, 2021] CC BY-SA 3.0. https://creativecommons.org/licenses/by/3.0
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Figure 2.2: Scales showing the relationship between parallel keys (a), relative
keys (b), and keys with a tonal center a fifth apart (c).

Closely Related Keys

Parallel keys are keys that share the same key-note but have different modes. In
Figure 2.1, this is represented by the key having the same pitch name but with
different capitalization. The different modes provide different pitches for the scale
degrees in each key. However, they still share a tonal center and some important
pitches, for example, the fifth (dominant) and the tonic. This relationship is
shown in Figure 2.2 (a).

Relative keys are opposite each other in the circle of fifths and share all the
same pitches. The tonal center is not at the same place for both keys, but since
they share all the same pitches, it can be hard to differentiate between them. An
example of the C major and a minor (natural) is shown in Figure 2.2 (b).

Dominant keys are defined by key-notes that are a fifth apart. They are
neighbors on the circle of fifths and can also be hard to differentiate. As shown
in Figure 2.2 (c), they share all but one pitch. Because the dominant (fifth) is
essential in the harmonic system, pieces frequently use the dominant chord and
often modulate between the two keys. Therefore there can be much ambiguity
and small nuances when trying to differentiate between them in analysis.

Minor Key Variations

Minor keys are also different based on the context in which they are played. Three
common variations are used: natural, melodic, and harmonic minor (shown in
Figure 2.3). Each variation has a distinct sound, but they all share the important
lowered third scale degree, making them sound minor. The natural variation is
the original minor mode. The harmonic has been changed to include a raised
seventh scale degree, also called a leading tone, that leads to the tonic. The
leading tone is a harmonic tool to make the piece sound more at home in its key.
Melodic minor is special because it includes different notes based on whether it is
ascending or descending. The ascending scale includes a raised sixth and seventh
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Figure 2.3: Three variations of the minor scale. Natural (a), Harmonic (b), and
Melodic (c).

scale degree, which are lowered again for the descending scale. The different
minor modes can skew pitch class value sets and can make minor modes more
challenging to predict.

2.1.2 Modulations, Tonicizations, and Ambiguity

As mentioned previously, composers only follow the rules of harmony when it
suits them. Even if they do, subjective analysis is often needed to pinpoint the
key at any given time. The following section discusses some of the features of
music that make key detection more complicated.

Modulation and Tonicization

It is common for composers to change keys throughout a piece, and there are
many different ways composers can transition from one key to another. In many
cases, the transitions are done using common chords found in both keys; in these
cases, the modulation or tonicization is often to a closely related key. However, a
key change can also be done by, for example, repeating a chord until the listener
is used to the new sounds, and the piece can continue in the new key. Because the
composer often wants the key change to be as smooth as possible, there is usually
a period where the music could be in either of the keys that are a part of the
transition. This ambiguous tonal space is where a human expert would perform
a functional harmonic analysis and determine what key is the most prominent at
any time, how the key change was made, and exactly where it changes if that is
possible.

In order to complicate matters further, an apparent key change might not
always be labeled as such by an expert. If an expert is satisfied that the piece
changes its key, they would call it a modulation and set the section’s key to the
new one. If the key change is short, however, it would be labeled as a tonicization,
and the key of the piece would remain the same as before the apparent key change.
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Music Beyond the 24 Keys

Most of western tradition’s music is tonal, meaning we can assign a key to the
piece. Some exceptions exist, specifically in older and more modern classical
music.

Music has traditionally been arranged in a system of twelve modes. Because
of this, the music is technically tonal but does not fit into the 24 keys commonly
used today. It is likely possible for a computational model to determine the
mode of a piece by adapting it to the twelve modes, but there is not as much
data available as with music written in the 24 keys. In the 20th century, some
music evolved into atonal and 12-tone styles that cannot be associated with a
key.

In addition to these periods of history, a lot of music is written in ambiguous
tonal spaces. This includes music inspired by folk music from certain regions,
non-western music, and music inspired by medieval modes.

2.1.3 Measuring Distance Between Keys

There are many ways to visualize and model the relationships between keys.
The Circle of Fifths (Figure 2.1) and Schoenberg grids (Table 2.1) show how
keys relate. Keys can also be modeled on a plane, increasing distance-measuring
possibilities. Even more measuring methods are presented in Section 3.2.4.

Correlation Coefficient

Correlation coefficients are statistical measurements that can evaluate the rela-
tionship between two sets of variables. Related to key finding, correlation coeffi-
cients can be used to evaluate the similarity between a musical section and a set
of key profiles.

The key- and pitch profiles are represented as vectors using correlation coeffi-
cients for key finding. The correlation coefficient calculated between the two can
range from -1 to 1, where -1 indicates a negative correlation, 1 indicates a positive
correlation, and 0 indicates no correlation. A correlation means that the values
have a relationship that is in some way linear. The higher the correlation, the
more related the values are. A high correlation coefficient in key finding usually
means that the specific key profile likely represents the piece’s key. Correlation
coefficients are easy to interpret and calculate and give a good measurement of
the similarity between a key- and a pitch profile.

Euclidean Distance

Euclidean distance is a way to measure the distance between two points in a
multi-dimensional space. In the case of key finding, the key- and pitch profiles



12 CHAPTER 2. BACKGROUND THEORY

Table 2.1: Visualization of a two-dimensional Schoenberg grid. Each column
follows the circle of fifths and each entry is surrounded by its relative and parallel
keys on either side.2

A♯ a♯ C♯ c♯ E e G g B♭
D♯ d♯ F♯ f♯ A a C c E♭
G♯ g♯ B b D d F f A♭
C♯ ♯ E e G g B♭ b♭ D♭
F♯ f♯ A a C c E♭ e♭ G♭
B b D d F f A♭ a♭ C♭
E e G g B♭ b♭ D♭ d♭ F♭
A a C c E♭ e♭ G♭ g♭ B♭♭
D d F f A♭ a♭ C♭ c♭ E♭♭

are treated as points in a 12-dimensional space where each pitch value represents
a coordinate. If the Euclidean distance between two points is close to 0, then
the two profiles are nearly identical, and there is a strong possibility that the key
profile represents the key of the piece. The Euclidean distance measurement can
be more sensitive to outliers than other distance measurements.

Schoenberg Grids

Schoenberg grids were developed by Arnold Schoenberg and are a way to visualize
the relationships between keys [Schoenberg and Stein, 1969; Purwins et al., 2007].
There are several variations of Schoenberg grids. The one used by Nápoles López
et al. [2019] uses a two-dimensional space where each key is spaced so that the
nearest neighbors are the dominant (in either direction), the relative, and the
parallel keys. As more layers get added, the keys are more distantly related to
the center key. Table 2.1 shows a version of this grid. In order to use the grid as
a measurement, the keys relate to each other by the degree of separation. This is
explained further in Section 4.4 and shown in Table 4.3 on Page 40. Schoenberg
grids are not very common in key finding algorithms but are a good way to
visualize the relationships between keys.

2Copied from Nápoles López et al. [2019] and used with permission from ACM Press, License
Number 1314330-1. The license grants permission to republish a chart/graph/table/figure in a
thesis/dissertation.
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Figure 2.4: The two first measures of Twinkle Twinkle Little Star.

Pitch Duration
C 2
C♯ 0
D 2
E♭ 0
E 4
F 0
F♯ 2
G 0
A♭ 0
A 4
B♭ 0
B 2

Table 2.2: Durations for the pitches in the two first bars of Twinkle Twinkle Little
Star.

2.2 Computational Key Finding

Many techniques have been explored to find an accurate method for key finding
in western music. The most famous early experiments were done by Krumhansl
[1990], and since then, the methods used have diversified to include artificial
intelligence methods and machine learning.

2.2.1 The Krumhansl-Schmuckler Key Finding Algorithm

The Krumhansl-Schmuckler (KS) key finding algorithm has become the basis
for a lot of later research into key finding. The algorithm requires no previous
knowledge of the piece and is very simple to use because of its low computational
complexity and memory use [Krumhansl, 1990].

The algorithm computes a segment’s global key by adding up each pitch’s
total duration. These durations are transformed into a 12-dimensional vector,
I = (d1, d2, ..., d12), and used as input for the remaining part of the algorithm.
The dj values are arranged in ascending order by semitone, starting at C. This
means that d1 represents the total duration of the pitch C or its enharmonic
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Key A Am E D Em F♯m C Bm G C♯m Dm B
Score 0.78 0.73 0.56 0.54 0.56 0.40 0.31 0.30 0.26 0.17 0.17 0.09

Key F A♭m F♯ Gm Cm E♭m B♭ Fm B♭m C♯ E♭ A♭
Score 0.23 -0.25 -0.29 -0.31 -0.34 -0.39 -0.41 -0.52 -0.52 -0.62 -0.63 -0.63

Table 2.3: Sorted table of key value scores for the first two bars of Twinkle
Twinkle Little Star based on the durations in Table 2.2.

equivalent B♯. I is correlated with twenty-four 12-dimensional vectors containing
the pitch values for each key i Ki = (P1i, P2i, ..., P12i). These values are based
on experiments done by Krumhansl [1990] and Kessler discussed below. The
correlation values are assembled in an output vector R = (r1, r2, ..., r24) where
ri represents the correlation between the input and the given key i. The key, i,
with the highest ri is the most likely candidate.

The algorithm’s results for the first two bars of Twinkle Twinkle Little Star
(Figure 2.4) are shown in Table 2.3 along with the duration of each pitch in the
sample in Table 2.2. The table follows the expected pattern. The correct key
(A major) has the highest value. The other high scorers are the parallel key (a
minor), the key a fifth apart (E major), the key a subdominant below (D major),
the parallel key to the dominant key (e minor), and the relative key to A major,
f♯ minor. The low scorers are also predictable, with A♭ major placing last, a key
with no shared pitches with A major.

The Krumhansl-Kessler Probe Tone Experiments

The Krumhansl-Kessler experiments sought to discover how humans perceive
musical keys and what notes fit the best into a key [Krumhansl, 1990]. The
experiments involved playing an eight note scale followed by tonic triads and
three different chord sequences to solidify the key. Then a probe note was played,
which the participants rated based on how well the pitch ‘fit in’ the context of
the key. One of the important discoveries Krumhansl and Kessler made was
that the probe tone values were similar for all major keys and all minor keys.
The two resulting sets of values were applied to the 12 pitches, resulting in 24
12-dimensional vectors containing pitch class values.

2.2.2 Hidden Markov Model

Hidden Markov models (HMMs) return the most probable sequence of hidden
events based on related observable events. Related to this thesis, this means
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Figure 2.5: A hidden Markov Model. The initial probability distribution in-
forms the model what states the initial hidden state can be and each of their
probabilities. The observed sequence informs the hidden states via the emission
probability distribution, and the transitional probability distribution informs the
transitions between hidden states.

determining the sequence of keys in a piece based on the observable sequence of
pitches. The model comprises five components, the initial probability distribu-
tion, observed sequence, possible hidden states, transition probability distribu-
tion, and emission probability distribution. These are described further below
and shown in Figure 2.5.

The initial probability distribution denotes the likelihood of starting in any
given state. The observed sequence of events is the base of the hidden sequence
predictions and reflects observable events related to the hidden states. The hidden
states are a collection of possible hidden states, and the transition probability
distribution represents the transfers between them. The emission probability
distribution shows the probability of an observable event emitting from a given
hidden state.

The Viterbi Algorithm

The Viterbi algorithm is designed to efficiently locate the most probable sequence
of hidden events [Forney, 1973]. It calculates the probability of the occurrence of
every state and discards the sequences that are guaranteed to be less likely than
others. By applying the Viterbi formula to each possible transition and state,
it returns the most probable sequence of states and the probability that it has
occurred.
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2.3 Measuring Success

Different methods of measuring success provide different insights into the strengths
and weaknesses of key finding methods and key profiles. The two most common
ways of determining the success of global key finding methods are the accuracy
and MIREX scores.

2.3.1 Accuracy

The accuracy percentage is the most basic measurement of success for key finding.
The accuracy score is a measure of the correct classifications over the total amount
of test cases:

Accuracy =
Number of correct predictions

Number of total predictions
∗ 100 (2.1)

Measuring Accuracy for Minor Keys

Because this thesis focuses on classifying minor keys, special attention is placed
on analyzing the results of the models as they pertain to minor keys. There are
two ways to treat the accuracy measure to measure the success of minor key
classification: the ground truth minor accuracy and the predicted label minor
accuracy.

Equation 2.1 can be rewritten to apply to a subset of the data. This subset
can be calculated in two ways: by using the ground truth labels or the predicted
labels. Both variations are computed using the following equation:

Subclass Accuracy =
Number of correct predictions within Subclass

Number of total predictions in Subclass
∗ 100 (2.2)

The ground truth variation subclass can be represented like this:

Subclass = Data entry whose ground truth mode is minor (2.3)

This measures the overall ability of the method to classify minor keys correctly.
The percentile returned is how likely the model is to predict the key correctly,
given that the key is minor.

The predicted label subclass can be represented like this:

Subclass = The predicted label mode is minor (2.4)

Which tells us that if the predicted label is a minor key, the percentage rep-
resents the probability that the prediction is correct.
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These minor accuracy variations are closely related but show different behav-
iors from the proposed model. The difference between them is further discussed
in Section 6.1.2.

2.3.2 MIREX

The Music Information Retrieval Evaluation eXchange (MIREX), introduced
further in Section 3.2, hosts annual key finding competitions and has developed
its own scoring system. Since many studies have similar accuracy results, many
researchers use alternative scoring systems to differentiate between the results.
Because most key finding models struggle with the same issues, classifying closely
related keys instead of the correct one, MIREX has devised a scoring model
to consider this.3 By looking at the results through the MIREX model, it is
possible to differentiate the models that make significant errors from the ones
that generally classify the correct key or a closely related one. The MIREX score
is calculated as follows:

The classification belongs to one of the following categories:
Correct: The classification is the same as the ground truth.
Dominant key: The classification is a fifth above or below the
ground truth.
Relative key: The classification is the relative key to the ground
truth.
Parallel key: The classification is the parallel key to the ground
truth.
Other: The classification is none of the above.

After calculating the ratios of each classification category, the following value
is computed:

w = rc + 0.5 ∗ rd + 0.3 ∗ rr + 0.2 ∗ rp (2.5)

Where rc is the ratio of correct classifications, rd is the ratio of dominant keys,
rr is the ratio of relative keys, and rp is the ratio of parallel keys. The weights
for each category were decided based on how close the relationships between the
key category and the ground truth were.

The MIREX result calculation is the most widely used because it rewards
models that classify keys closely related to the correct one while also demanding
a completely correct set of classifications to achieve 100% accuracy.

3https://www.music-ir.org/mirex/wiki/2020:Audio Key Detection#Evaluation Procedures
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2.4 Data Formats

Several data formats are available for musical data labeled with the global keys.
The different types of data convey different information. A suitable format may
be necessary for research involving more than the basic information of pitches,
pitch durations, and other essential musical markers. The formats are often inter-
changeable when considering the basic musical information and can be transferred
to other formats using tools like music21. The two categories of data are symbolic
and audio formats, each providing different challenges and problems.

2.4.1 Symbolic

Symbolic musical data encodes information in a notation format that does not
include sound. The stored information includes pitches, onset and duration of
notes, time signatures, and more. The different formats are specialized to handle
different tasks, for example, information retrieval, sheet music generating, or
playback, and can usually be converted to appropriate formats without much
extra work.

**kern

The **kern4 format is designed to represent all musical ideas from the common-
practice era in western music. The important features in the format are the
pitches and their durations. There is also functionality for the representation of
information like accidentals, stem directions, and barlines, but these only serve
as supporting information. The intended primary use for the **kern format is
Music Information Retrieval (MIR) and is not necessarily useful for making a
visual representation of the music.

MIDI

The Musical Instrument Digital Interface (MIDI)5 format carries information
about the sound of music using less memory space than audio files. The recorded
information is based on pitches and their durations. Specialized programs can
interpret the MIDI format and create an audio version of the music based on the
information in the file.

4https://www.humdrum.org/rep/kern/
5https://www.midi.org/specifications/midi1-specifications/general-midi-specifications
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MusicXML

Extensible Markup Language for music (MusicXML)6 is a markup language de-
signed to store and edit visual depictions of music, such as sheet music. The
language supports standard features from western classical Music. MusicXML
allows sheet music to be transferred between different software programs.

2.4.2 Audio

Audio data is essential for imitating real life for MIR. As mentioned in Section
1.1, several use cases involve the analysis of audio data. The data includes a
set of frequencies that can be processed and analyzed to extract the pitches and
durations used in the key analysis. While it is possible to transform symbolic
data into audio files, for example, by processing a MIDI file, it is much more
complicated to convert audio files to symbolic formats because of the non-trivial
task of determining pitches, onset times, and the duration of notes.

Chroma

The chroma structure is used as a symbolic representation of audio data. An
array of the durations of pitches is created by processing the frequencies in the
sound excerpt. The result is often similar to Table 2.2. However, because the
information has been found through processing frequencies, the accuracy of the
data may be less precise than the distribution derived from symbolic data.

2.5 Tools

Because the MIR field is growing, more software tools are becoming available
for processing music information. The following tools have built-in key finding
methods that were adapted in the experiments presented in Chapter 5 to make the
new key profile format fit with the analysis tool. The customization is explained
further in Section 5.2.

2.5.1 Music21

For all the experiments in Chapter 5, the data is processed by the tools in the
music21 library [Cuthbert and Ariza, 2010]. The toolkit is an open-source project
focusing on tools for music information retrieval and research in Python. The

6https://www.musicxml.com/
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toolkit contains functions for composing, analyzing, and transcribing music and
an extensive library of musical data that can be used for research.7

2.5.2 Justkeydding

Justkeydding is a tool developed by Nápoles López et al. to perform a key analysis
using hidden Markov models and ensemble training as explained in Key-Finding
Based on a Hidden Markov Model and Key Profiles [Nápoles López et al., 2019].
The tool accepts MusicXML, MIDI, and **kern files as input; its output is the
predicted key. The code is publicly available through GitHub.8

7Music21 is Copyright ©2006-2021, Michael Scott Cuthbert and cuthbertLab. Music21
code (excluding content encoded in the corpus) is free and open-source software, licensed under
the BSD License.

8https://github.com/napulen/justkeydding/tree/pythononly/justkeydding,
MIT License
Copyright (c) 2018 Nestor Napoles

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the ”Software”), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



Chapter 3

Related Work and
Literature Review

This chapter presents the work done by others in the field of automatic key esti-
mation and the approach taken to find and process relevant articles. There is an
introduction to the state-of-the-art methods, methods referenced in the research
presented in Chapter 4, and the foundational work still referenced frequently in
papers.

3.1 Structured Literature Review

The structured literature review is based on the guide written by Kofod-Petersen
[2018]. The guide outlines three important phases: (1) Planning the review,
(2) Conducting the literature review, and (3) Reporting. In order to facilitate
reproduction, each step of the literature review is documented in the protocol.
Important papers cited in articles included in the review were added to the list
of reading material found in the initial query.

3.1.1 Phase 1: Planning the Review

The first steps in the literature review consist of identifying the need for and
commissioning a review, formulating research questions, and the creation, con-
tinuous evaluation, and finalization of the review protocol. Identifying the need
and commissioning the review is an implicit of the master’s thesis writing pro-
cess. The research questions written as a part of Phase 1 are discussed in Section
1.2. These questions were developed as questions that need answers in order to
complete the overarching goal of the thesis.

21
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Table 3.1: Search terms used in the SLR.

Group 1 Group 2 Group 3
Term 1 Key Detection Music
Term 2 Recognition Tonal
Term 3 Classification Harmony
Term 4 Finding Harmonic
Term 5 Determination
Term 6 Extraction

3.1.2 Phase 2: Conducting the Literature Review

Five steps are completed in order to find the articles related to the research
questions. Each of these are described below.

Step 1: Identification of Research

The query used to search for relevant data is designed to find the existing ap-
proaches to automatic key finding. By grouping terms based on synonyms, the
query results include a wide range of articles that cover relevant topics. The
terms used in the search are presented in Table 3.1: Group 1 ensures that the
search result includes a mention of key, Group 2 includes synonyms for the de-
tection of said key, and Group 3 ensures that the result has to do with music
and harmony. The resulting query is based on the search terms and designed to
include all permutations of the search terms:

(Key) AND (Detection OR Recognition OR Classification OR Find-
ing OR Determination OR Extraction) AND (Music OR Tonal OR
Harmony OR Harmonic OR Minor)

The query was entered into the databases and search engines shown in Table
3.2. The different databases and search engines were chosen because of their
thematic connection to the topic or in order to facilitate a broad search across
many journals. The next step in the process narrows the field down considerably
by defining important criteria for the papers to be included.

Step 2: Selection of Primary Studies

In order to decrease the amount of qualifying data, two criteria were applied to
the results. The papers had to be published within the last 20 years and all
duplicates were removed. By restricting the results to the ones published after
2002, all modern work is included and important work done previously can be
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Table 3.2: Search engines and databases queried for the SLR, the number results
for each published after 2002, and the number of studies left after filtering by
year, duplicates, and performing a quality assessment.

Database/Search Engine
# Results
After 2002

# Results After
Quality Assessment

Google Scholar 1,670,000 5
IEEE Xplore 2,643 5
ISMIR 1,380 7
SemanticScholar 781 9
WebOfScience 20,828 6
ResearchGate 256 13

accessed via the citations in the chosen studies. The number of results published
after 2002 are presented in Table 3.2. The top 30 results from each site after
adjusting for publishing date and duplicates were included in the next processing
step.

Step 3: Study Quality Assessment

After reducing the number of results to 30 per search engine and database (180 in
total), a quality assessment was performed to reduce the primary studies further
and quantify the study’s quality and relevance to the research questions. The
quality assessment included four inclusion criteria (IC) and ten quality criteria
(QC). These criteria are listed in Appendix C and include, for example:

IC1: The main focus of the study is automatic key finding.

IC2: The study presents empirical results or other significant contribution to the
field.

IC3: The study is a primary study, concerns descriptions of technical aspects
of the key finding process (e.g., measuring the distance between keys), or
describes methods of measuring success in key finding.

IC4: The study uses symbolic data (MIDI, Chroma, Sheet Music, etc.)

QC1: Is there a clear statement of the aim of the research?

QC2: Is the study put into the context of other studies and research?

The assessment was done in stages, starting with the ICs. The first step was
reading each abstract and eliminating the articles that did not meet IC1 and
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IC2. Then each article whose full text did not meet IC3 and IC4 was discarded.
Finally, the articles were evaluated using the QCs presented in Kofod-Petersen
[2018]. Each article was given a score based on how well they did with the QC’s
and the quality threshold was set at 6.5 points. Three articles were removed after
scoring lower than the threshold.

The articles that remained after the quality assessment are listed in Table
A.1. This table does not include the articles discovered independently from the
SLR.

3.2 Related work

Computational key finding is considered an important step towards fully au-
tomated music analysis and is, therefore, a vital part of the field of music in-
formation retrieval (MIR). Cognitive Foundations of Musical Pitch by Carol L.
Krumhansl [1990] was an early landmark publication in the field and is still fre-
quently referenced in research. A vital driving force for new research is the annual
Music Information Retrieval Evaluation eXchange (MIREX)1 conference where
a competition is held for symbolic and/or audio key finding. This encourages
new research into the topic and rewards scientists who improve their models year
after year. Following the review of significant contributions to key finding and
state-of-the-art methods, there is a presentation of data types and challenges
related to data.

What defines a key and how we measure it are two questions central to various
key finding methods. This is because the theoretical and practical ways of deter-
mining the key of a piece differ. Music theory states that a key is defined solely
by the pitches that make up its scale, while humans usually use context clues,
meter, and musical form to help aid the classification. The key finding methods
described in this section all make choices about the definition of keys. Every
method defines whether keys are based on what people hear, the music theory,
the historical use, whether only pitches matter or if contextual clues should play
a part in how keys are classified.

3.2.1 Krumhansl-Schmuckler and its Variations

The Krumhansl-Schmuckler (KS) key finding algorithm discussed in Section 2.2.1
is the foundational work done in computational key finding. It is different from
other key finding methods because of its focus on the human psychology and
perception of musical key [Shmulevich and Yli-Harja, 2000]. The assumption
behind the algorithm is that pitches define the sound of a key.

1https://www.music-ir.org/mirex/wiki/MIREX HOME
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As the foundation for future research, the work done by Krumhansl [1990]
is helpful because of its low computational complexity and well-documented as-
sumptions. Its results for music with a sKStonality is 91.4% accuracy [Temperley,
1999]. Despite these merits, other scientists have highlighted some problems with
the algorithm and key profile that, when fixed, could lead to more accurate re-
sults. These shortcomings are part of why the algorithm, which can perform
well on pieces with a well-established tonality like the preludes of Bach’s Well-
Tempered Clavier, only classifies with 45.8% accuracy when faced with preludes
by Chopin that are more ambiguous in their tonality [Temperley, 1999].

The most commonly discussed areas in the KS algorithm are: the assumption
behind the key profile weights, how it is best to measure the distance between
pitches, chords, and keys, how the algorithm handles passages with more than
one key, and that the algorithm only considers pitches when making its decision.
Each of these topics is discussed in the sections below.

3.2.2 Key Profiles

After the publication of the KS algorithm, many have proposed new and improved
key profiles, for example, Temperley [1999], Aarden-Essen2, and Bellmann [2006].
The various types of key profiles are central to the definition of keys, and many
varieties have been proposed. All key profiles mentioned are listed in the Ap-
pendix B. The following three are the most important groupings.

Key Profiles based on Human Psychology

The key profile derived from the Krumhansl-Kessler experiments is based on the
idea that a musical key is defined by how humans perceive it. By calculating
how well a pitch ‘fit in’ a particular key through extensive experimenting, they
created key profiles that they later correlated with musical pieces to determine
the key. As new key profiles have been proposed, this approach to making key
profiles is not in frequent use anymore.

Theoretical Key Profiles

In his article, What’s Key for Key? The Krumhansl-Schmuckler Key Finding
Algorithm Reconsidered, Temperley [1999] proposed four changes to the KS algo-
rithm, one of which was changing the values associated with the key profiles. The
revised values aim to improve the predictions’ stability and fix the skew towards
predicting a minor key over a major key. He writes that the values were derived
from theoretical reasoning and trial and error testing while keeping the values
somewhat similar to the ones defined by Krumhansl and Kessler.

2http://kern.ccarh.org/browse?l=/essen
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The first issue he addressed was the enlargement of the differences between
diatonic pitches (the member pitches in the key) and chromatic pitches. The
pitches that have relative importance according to harmonic music theory have
higher values, especially the pitches in the basic tonic triad: the tonic, mediant (4
semitones above tonic), and dominant (7 semitones above tonic). By changing the
key profiles to ones informed more by music theory than psychology, Temperley
[1999] changed the original assumption made by Krumhansl [1990], that key is
defined by the sound of the music rather than the theoretical relationship between
the pitches. Studies like the one published by Catteau et al. [2006] use this as an
argument for using the Temperley key values over the Krumhansl-Kessler values.

The key profile designed by Sapp [2011] is also frequently used. It was designed
as a set of simple values that were supposed to act as a benchmark for the other
key profiles to be tested against. The idea was to give 2 points for the tonic and
dominant pitches, 1 for all other diatonic pitches, and 0 for those not in the key.
The key profile achieved fairly good accuracy [Sapp, 2011].

3.2.3 Data-driven Key Profiles

To further improve key profile values, some researchers use data to define their
values. Examples of data-driven key value sets are the ones generated by Bell-
mann [2006], Albrecht and Shanahan [2013], Aarden [2003], and Kostka et al.
[2018]. They have all proposed new sets of values by adding up all the pitches
used in music labeled with their keys. Because labeled data can be challenging
to create and hard to find (discussed further in Section 3.3), the new profiles are
based on relatively small data sets whose genres vary.

There are several benefits to using the data-driven approach, the main one
being that it reflects the music written in practice. A drawback is that since
there is still only a small amount of labeled data available, the key values only
reflect a small subset of music and can easily be skewed.

In discussing different key profiles, Sapp [2011] argues that data-driven exper-
iments to find profiles perform very well but should be specialized to the genre
that the model will be classifying later.

3.2.4 Measuring Distance Between Keys

Measuring the distance between pitches, chords, and keys is central to key finding
because it defines what keys are the closest relatives to the piece of music being
processed. The first measurements used were correlations by Krumhansl [1990]
and scalar products by Temperley [1999], achieving similar results. Krumhansl
later performed experiments with a multidimensional spacing of keys that, when
reduced to three dimensions, revealed the placements of notes in a key as a cone
[Krumhansl, 1990]. The cone has roughly four layers and starts with the root
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pitch at the vertex at the bottom of the cone. The next layer has the two other
pitches in the root triad, the third and fifth scale degree. The following layer
has the remaining diatonic pitches (in the scale), and the top layer has the non-
diatonic (chromatic) pitches. The spacing of the pitches on the cone has been
calculated to represent the results of the Krumhansl-Kessler experiments best and
to simplify calculations, for example, by averaging the perceived distance from the
scale degrees 0̂ to 4̂ and 4̂ to 0̂ to disregard temporal differences. Improvements to
the Krumhansl [1990] cone are proposed in work by Lerdahl [2001]. He extended
the cone by adding a layer of diatonic fifths between the triad chord tones and
the diatonic pitches. In addition, he flipped the cone upside down and repeated
the notes at all underlying levels. The distance between two chords in a key or
two separate keys can be calculated by the number of changed notes in the cone
as done in work by Catteau et al. [2006].

Music theorists have developed complex models to represent the distance be-
tween keys that involve cones, toruses, and other mathematical structures [Ler-
dahl, 2001; Purwins et al., 2007]. Even though these models are more precise
than vector-based distance measurements from a theoretical perspective, they do
not appear in state-of-the-art articles. The measurement methods used for the
methods discussed extensively in this thesis are correlation, Euclidean distance,
and the Schoenberg grid. These methods are explained in Section 2.1.3.

3.2.5 Handling More Than One Key

The KS algorithm is designed to find the global key of any music section it
analyzes. This makes it impossible for the algorithm to detect a modulation
within the section, and the presence of more than one key weakens the confidence
of the final prediction. Several approaches have been presented to combat this,
for example, by deciding only to use the first and last eight bars of a piece that
are usually firmly in the global key of the piece [Albrecht and Shanahan, 2013;
Temperley, 2002b]. Some attempt to find local keys and decide what the global
key is at the end like Sapp [2011] and Lee and Slaney [2008]. Other methods
to find the global key are presented by Nápoles López et al. [2019] and Peeters
[2006], using hidden Markov models to predict the global key.
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Krumhansl [1990] recommended using a sliding window to improve the results
of the KS algorithm. By having small, overlapping segments, the algorithm’s re-
sults can be compared, and a key and moments of modulation can be determined.
Despite the KS algorithm’s simplicity, much information is contained in the cor-
relations’ results. For example, if one key profile scores much higher than all the
others, the confidence behind the prediction is high. The relationships can also
detect modulations if two key profiles score higher than others. Knowing where
the piece modulates can be helpful if a model knows what local keys are present
and can use this to infer the global key.

3.2.6 Incorporating More Information

Whether to incorporate more information than just the pitches is a choice all
researchers have to make. As mentioned previously, a key is, in theory, only
defined by what pitches are present in a music section. When humans study sheet
music to classify a key, more information than the pitches is usually incorporated
because they look at different contextual clues in the music. Below are a few ways
researchers have decided to include more than just pitches in their calculations.

Handling Uncertainty

Most problems with uncertainty linked to them can be solved using logic and
probabilities. The methods mentioned so far have been firmly planted in logic,
using key profiles and other rules to make their decisions. Another approach to
the problem is to incorporate probabilities into the problem solving as it is done
in Temperley [2002a], Temperley [2002b], Papadopoulos and Peeters [2012], and
Lee and Slaney [2008] among others. The methods that combine probability and
pitches to determine the most likely key structure are Temperley [2002b], who
uses a Bayesian approach, and Papadopoulos and Peeters [2012], Nápoles López
et al. [2019] and Lee and Slaney [2008], who use an HMM. The methods using
musical information other than pitches will be discussed later in the section.

Bayesian Logic

By applying Bayes’ rule it is possible to calculate the most likely key based
on the pitches, or in other words, calculate the most probable structure based
on the surface information [Temperley, 2002b]. In order to find the key with the
highest probability given the pitches, the algorithm needs to know the probability
of a pitch appearing in a given key, which is information from key profiles. In
Temperley [2002b], the key profiles used are the ones defined by the Kostka-Payne
corpus [Kostka et al., 2018].
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The model in Temperley [2002a], which is almost identical to the one described
in Temperley [2002b] except for a few values, placed first in the first and only
MIREX (Music Information Retrieval Evaluation eXchange) competition held
for key finding from symbolic data, scoring 91.4% based on the MIREX scoring
system described in Section 2.3.3

Using HMM to Model Key Structure

Just as Bayes’ rule attempts to determine the ‘hidden’ probability of a key given
the pitches present, the HMMs used in Nápoles López et al. [2019], Raphael
and Stoddard [2003], Peeters [2006], and Lee and Slaney [2008] find the optimal
sequence of hidden states to match the observed events. By doing this, the model
considers both the pitches and the music’s temporal dimension. Two methods
have trained one model for major and one for minor before transposing them
to the 12 pitches [Peeters, 2006; Lee and Slaney, 2008]. This helps divide the
available data to all the keys instead of lacking data on the less frequently used
keys, which could lead to overfitting. Nápoles López et al. [2019] use existing key
profiles as observational probabilities and a Schoenberg grid as the transitional
model. This lowers the amount of training needed to prepare the model.

Convolutional Neural Network as Pattern Recognition

Korzeniowski and Widmer [2018] use a convolutional neural network (CNN) to
detect global keys and find overarching structure in the music. In their paper,
they mention that local key estimation should be possible with a similar algorithm
and that it has been saved for future work.

Using Musical Structure as Supporting Information

An expert analyzing a musical piece would look at more information than just
the pitches to determine the key. Papadopoulos and Peeters [2012] argue that
metrical structure is important to find the best key results. Similar arguments
are made by Lee [2008] about genres in the music and Raphael and Stoddard
[2003] regarding the rhythm in the music.

3.3 Data

Limited access to labeled data is a central problem in music information retrieval
(MIR) research. In order to be confident in the accuracy of harmonic analysis,
both symbolic data and audio files need expert knowledge to be annotated. Each

3https://www.music-ir.org/mirex/wiki/2005:Symbolic Key Finding Results
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has different challenges regarding labeling keys, chords, and pitches. All studies
referenced in this thesis use either symbolic or audio files processed in some
way to extract pitches and other relevant information. Valuable data for testing
usually consists of music represented as audio or symbolically with the key labeled
globally for global key methods or in every section of the piece for local key
finding. The data used for calculating keys is usually aggregated data represented
by chroma diagrams or pitch profiles as described in Section 2.4. A pitch profile
is shown in table 2.2.

3.3.1 Existing Labeled Data

There are existing data sets that scientists have used to train and test their new
methods for key finding. Because music analysis requires an expert to annotate,
the already labeled data sets are few and far between. Because of the different
genres and types of music in the data sets, tests of the same algorithm on different
data sets can yield different results. The data sets listed below are the ones that
have appeared the most in the literature reviewed in this thesis.

CCARH

The CCARH data set used by Albrecht and Shanahan [2013] and Nápoles López
et al. [2019] is a selection of 982 pieces from the common-practice era of western
classical music. The labeled data was generated at the Center for Computer As-
sisted Research in the Humanities at Stanford, CA (CCARH).4 The distribution
of pieces is across several composers and subgenres, providing a good foundation
of music that mostly follows the harmonic rules of music theory.

Kostka-Payne

The Kostka-Payne (KP) key values are derived from harmony textbooks and
workbooks (as well as a teacher’s companion guide) [Kostka et al., 2018]. All
examples used in the books are analyzed with keys, and often chords and func-
tional labels. The music used as data has been extracted from the teacher’s
guide, complete with analyzed examples. The KP key values are extracted from
the pitch frequencies described in Section 3.3. The data is also helpful because it
shows how chord progression function during modulation and shows overlapping
key areas.

4http://www.ccarh.org/
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Essen Folksong Collection

The Aarden-Essen (A-E) key values are derived from a collection of folk music
from the whole world called the Essen Folksong Collection.5 The data includes
transcriptions of 6255 folk songs complete with pitch histograms, keyscapes, me-
ter, and other information relevant to the region.

3.3.2 Generating Data

Scientists have found several ways to create data sets to test their methods.
When testing algorithms that find the global key and are not overly concerned
with modulations, Albrecht and Shanahan [2013], for example, assembled a data
set based on the titles of classical pieces. Many composers of classical music have
included the key of the piece in the title of their music, for example, Johann
Sebastian Bach’s Menuet in G. By making some assumptions, including that the
first and last movements of a piece start and end in the global key, large data sets,
relative to the ones analyzed by experts, can be assembled with a fair amount of
accuracy. This data is helpful for testing algorithms for global keys but is not
very useful in the training and testing of algorithms designed to detect local keys
and modulations.

MIREX

The MIREX audio key finding competitions use data available on their website.6

In 2020, the data set contained 1252 audio clips from classical music. The data
set has been generated using the method described above, using the key in the
title of the piece and sampling the first 30 seconds.

3.3.3 Data Sets Created for MIR

Some scientists have seen the need for more available data for MIR research
and developed projects to assemble large quantities of data that include key
information. The data sets described below have information about the global
key of each data entry.

The Million Song Data Set

The Million Song Data Set assembled by Bertin-Mahieux et al. [2011] includes
a lot of information about a million pop songs. The information relevant to key
finding is the tempo, beat onset time, key of the piece, and the confidence of the

5http://kern.ccarh.org/browse?l=/essen
6https://www.music-ir.org/mirex/wiki/2005:Audio and Symbolic Key
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key classification. In order to do experiments on this data, it is possible to filter
the songs based on the confidence of the key label.

The KUSC Data Set

The KUSC data set is assembled using data from the public classical radio channel
in the US, KUSC [Chuan and Chew, 2014].7 The data set consists of 3000
entries of 15-second excerpts of classical compositions. The excerpts are taken
from each piece’s first and last 15 seconds and analyzed by experts to confirm the
key. The data set also includes information about instrumentation, spectrograms,
chromagrams, key value sets, and more.

7https://www.kusc.org/

https://www.kusc.org/


Chapter 4

Architecture

The following chapter describes the architecture used to test the improvement
of minor key classification in existing key finding techniques. Three experiments
were completed to test the efficacy of modifications made to standard and state-
of-the-art methods. After an introduction to the architecture, Section 4.1 presents
the data and processing techniques used for the experiments, and Section 4.2.2
presents the key profiles used.

4.1 Data and Feature Extraction

The data used for the experiments is a collection of western classical music from
the late baroque to the 20th century. The data set is the same as the one used
by Albrecht and Shanahan [2013] and Nápoles López et al. [2019] and was cho-
sen because both studies have state-of-the-art results. Because the data and the
train/test splits are the same, it is possible to compare the studies and experi-
mental results in this thesis with high accuracy. The data and the data processing
are described in the following subsections.

4.1.1 The CCARH Data Set

The data set used by Albrecht and Shanahan [2013] and Nápoles López et al.
[2019] is derived from labeled data developed at the Center for Computer Assisted
Research in the Humanities at Stanford, CA (CCARH).1 The data is a collection
of scores in the kern format that have global keys annotated by researchers at
the CCARH. Albrecht and Shanahan [2013] adapted the data for key finding
purposes by excluding any data that was not explicitly in major or minor and

1http://www.ccarh.org/
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Table 4.1: List of composers and compositions used in the data set.2

Composer Composition
Number of Entries
(Movements Counted
Separately)

Bach The Brandenburg Concertos 20
Chorales 323
Sinfonias 15
Inventions 15
Well-Tempered Clavier (Preludes and Fugues) 69

Beethoven First and last movements of all string quartets 31
First and last movements of all piano sonatas 61

Brahms Op. 51 3
Chopin Op. 28 24

Mazurkas 48
Corelli Trio Sonatas, Op. 1 41
Haydn First and last movements of each string quartet 108
Hummel Op. 67 Préludes 24
Kabalevsky “Happy” variations on a folksong 6
Miscallaneous Barbershop quartet arrangements 31
Mozart First and last movements of each string quartet 67
Telemann 3 klavier fantasies 3
Scarlatti, D. 58 piano sonatas 58
Vivaldi Op. 8 32

labeling the first and last movements of Haydn and Mozart string quartets as the
key in the title while discarding most of the middle movements. The data set
contains 974 entries as seen in Table 4.1, making it one of the largest collections
of labeled classical data in a symbolic format. 619 of the pieces are in a major
key and 355 pieces in a minor key.

The data set is also attractive due to the genres and eras in which the music
was written. The pieces are all part of the western classical tradition and within
the time known as the common practice era, where music mostly followed the
rules of harmony with fewer deviations than music written before and after.

4.1.2 Feature Extraction

A few changes were made to the data in order to prepare it for the experiments.
The number of steps that had to be taken were limited due to compatible file
formats and software tools.

2Copied and adapted to fit the revised data set from a table by Albrecht and Shanahan [2013]
and used with permission from University of California Press, License Number 1314333-1. The
license grants permission to republish a chart/graph/table/figure in a thesis/dissertation.
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Pitch Profiles

The experiments use the pitch profiles of each data entry as the primary feature.
In order to extract these, each data point was parsed into the music21 framework
preceded by a count of each pitch, returning a distribution like the one seen for
Twinkle Twinkle Little Star in Table 2.2. The length unit for the experiments is
quarter notes.

Musical Excerpts

In addition to the pitch distribution, a separate data set with only the first and
last 8 bars of each piece present was created. This was done in order to be able to
compare results from the experiments with the ones completed by several other
researchers. Articles using only the piece’s first and last eight bars are listed in
Table A.1.

4.2 Key Profiles

Key profiles are an essential part of these experiments. The proposed model’s
unique feature is its key profile that divides into three variations for its minor
key dimension. In order to test the proposed model’s accuracy, a set of existing
key profiles are included in the test for comparison.

4.2.1 Key Profiles for Comparison

The comparison key profiles were chosen due to their prominence in the key
finding literature or high accuracy scores.

Sapp’s Simple Key Profile

As mentioned in Section 3.2.2, the Sapp key profile is based on ideas from music
theory [Sapp, 2011]. The essential pitches get two points, the middle gets one
point, and the non-diatonic pitches get 0. The profile is easy to understand
and performs well in many scenarios. Its weakness is that it is very sensitive to
non-diatonic pitches since the profile has no slack to give them.

Krumhansl-Kessler Key Profile

The Krumhansl-Kessler (KK) key profile is included due to its status as the first
significant contribution to the field of key finding Krumhansl [1990]. It is also the
only key profile included in the experiments based on the human experience of
keys. The key profile performs well if the tonality is even and predictable but is
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easily swayed to other keys in the face of non-diatonic pitches due to its generous
values given to the chromatic pitches.

Kostka-Payne Key Profile

As presented in Section 3.3, the Kostka-Payne key values are based on the music
from the Kostka-Payne textbook for music theory [Kostka et al., 2018]. The
values usually perform well but rarely achieve the highest accuracy scores.

Aarden-Essen Key Profile

The Aarden-Essen key profile is based on the Essen collection of folksongs de-
scribed in Section 3.3 [Aarden, 2003]. The profile is one of the models that
achieves the highest accuracy scores. However, sometimes it can be hindered by
its limited scope due to the data it is trained on only consisting of folk music.
Since the diversity of its training data is lacking, it can be confused by more
complex or different music.

Albrecht-Shanahan Key Profile

The Abrecht-Shanahan Key Profile is based on a subset of the CCARH data set
presented in Section 4.1. The key profile performs on par with other state-of-the-
art methods and performs better with the predicted label minor accuracy. Each
experiment is completed once with the whole data set and once with the training
set. This approach allows the key profile to be tested without the training data
bias. This key profile might have an advantage despite the separate experiments
because it has been trained on very similar data to the test set.

Bellmann-Budge Key Profile

The Bellmann-Budge key profile was developed by Bellmann based on a Ph.D. in
chord frequencies in music from the 18th and 19th centuries by Budge. Bellmann
used the data from Budge’s work and developed the data-driven key profile for
major and minor keys. The key profile works best for harmonically stable pieces
and is a strong contender when analyzing common-practice classical music.

4.2.2 Key Profiles for Improved Minor Key Classification

The key profiles were developed in three steps, as shown in Figure 4.2. The values
by Sapp [2011] were chosen as the base to create a basis for the key profiles. They
are helpful because of their adaptability and basic structure rooted in music
theory. The simple key profile performs well compared to other key profiles
and does not require data sets labeled with minor variations or psychological
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experiments to tweak them. As presented in Section 3.2.2, Sapp designates the
value 2 to the tonic and dominant, the most defining pitches of a key, 1 to all
other diatonic scale degrees, and 0 for the remaining pitches. In order to adapt
these to account for the minor variations, the three key variations were given new
values for the sixth and seventh scale degrees. These key profiles are shown in
Table 4.2a, where the natural and harmonic minors follow the pattern defined by
Sapp, and the melodic minor has values of 0.5 where the pitches change in the
ascending and descending scales.

After developing a base for the new key profiles, a few adjustments were
made to counteract two of the simple key profile’s tendencies when detecting
keys. Because all non-diatonic pitches are given a score of 0, the simple key
profile has a very low tolerance for pitches not found in the key and can change
its classification based on a few non-chord tones. As shown in Nápoles López
et al. [2019], the simple key profile changes its key classification more times than
any of the other commonly used key profiles. In order to create more tolerance
for non-diatonic pitches, 0.1 was added to all non-diatonic values as shown in
Table 4.2b

The last modification made to the key profile was to make the values more
similar to the Aarden-Essen key profile by adding value to the third scale degree
[Aarden, 2003]. This change led to the final iteration of the new and modified
key profile shown in Table 4.2c.

4.3 Model for Key Profile Comparison Experi-
ments

Experiments 1 and 2 have the structure of the KS algorithm, presented in Section
2.2.1, with a minor difference in the way the comparison between the pitch profile
and key profile is calculated. The model for the experiments is shown in Figure
4.1.

The model compares the pitch profile to each variation of the key profile.
This results in 24 comparisons for each pitch profile, one for each of the rotations
of the key profiles. After storing each result, the results are sorted to find the
highest correlation or shortest Euclidean distance. After comparing the scores
for the top-scoring major and minor keys, a key is finally chosen and presented
as the chosen key for the piece.
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(a) Model for experiments 1 and 2.

(b) Major key comparison method. (c) Minor key comparison method.

Figure 4.1: The model for experiments 1 and 2. The minor key profile comparison
for pre-existing key profiles is equivalent to the major key comparison shown in
(b).
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Table 4.2: New key profile values for minor key variations.

(a) Initial values based on the Simple key profile by Sapp [2011].

Pitch 0 1 2 3 4 5 6 7 8 9 10 11
Natural 2 0 1 1 0 1 0 2 1 0 1 0
Harmonic 2 0 1 1 0 1 0 2 1 0 0 1
Melodic 2 0 1 1 0 1 0 2 0.5 0.5 0.5 0.5

(b) Second iteration, adding value to non-diatonic pitches.

Pitch 0 1 2 3 4 5 6 7 8 9 10 11
Natural 2 0.1 1 1 0.1 1 0.1 2 1 0.1 1 0.1
Harmonic 2 0.1 1 1 0.1 1 0.1 2 1 0.1 0.1 1
Melodic 2 0.1 1 1 0.1 1 0.1 2 0.5 0.5 0.5 0.5

(c) Final iteration, increasing the value of the third scale degree.

Pitch 0 1 2 3 4 5 6 7 8 9 10 11
Natural 2 0.1 1 1.5 0.1 1 0.1 2 1 0.1 1 0.1
Harmonic 2 0.1 1 1.5 0.1 1 0.1 2 1 0.1 0.1 1
Melodic 2 0.1 1 1.5 0.1 1 0.1 2 0.5 0.5 0.5 0.5

4.4 Model for HMM Key Finding

Experiment 3 is based on the model designed by Nápoles López et al. [2019]. It
uses hidden Markov models (HMMs) to predict both local and global keys by
observing the sequence of pitches in the data. The HMM components described
in Section 2.2.2 are treated as follows:

• Initial probability distribution: A uniform probability distribution across
all 24 keys.

• Observed sequence of events: The sequence of pitches in the data. Each
pitch is represented by a number in [0,11].

• The hidden states: Each of the possible 24 keys. Numbers in [0,11] represent
major keys and [12, 23] represent minor keys.

• The transition probability distribution: A distribution based on a 2D Schoen-
berg grid denoting how ’close’ two keys are. These values are computed
from a matrix of neighboring keys and shown in Table 4.3.

• The emission probability distribution: Key profiles are used as probability
distributions denoting how likely it is that a key emits a certain pitch.
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Figure 4.2: The model for experiment 3.

Table 4.3: The distance to keys from C major.3

Group 1 2 3 4 5 6 7 8 9
Keys C F d D E D♭ e♭ c♯ F♯

G e E♭ A♭ D♭ f♯ a♭
a f A b♭ B
c g B♭ b

In order to include the expanded proposed key profile, each of the minor
variations is tested and the highest score is chosen.

Figure 4.2 shows how the components interact with the HMM model for key
finding. The proposed model includes the expanded key profile. When making
its comparisons, the algorithm chooses the minor key variation that is the most
similar pitch profile.

3Copied from Nápoles López et al. [2019] and used with permission from ACM Press, License
Number 1314330-1. The license grants permission to republish a chart/graph/table/figure in a
thesis/dissertation.



Chapter 5

Experiments and Results

This chapter contains the plans, the setup, and information about the experi-
ments and their results. Section 5.1 explains what experiments were conducted,
Section 5.2 includes all the information about the setup and technology used for
each experiment, and Section 5.3 concludes the chapter with the results of each
of the experiments. These results are discussed further in Chapter 6 and used
in Section 7.1 to evaluate the goals and research questions established in Section
1.2.

5.1 Experimental Plan

The experiments aim to improve the classification of minor keys by differentiating
the key profiles for natural, harmonic, and melodic minor keys. Each experiment
group is based on foundational or state-of-the-art key finding algorithms.

5.1.1 Experiment 1: The Krumhansl-Schmuckler Algorithm

The first experiment is an adapted form of the Krumhansl-Schmuckler (KS) al-
gorithm. The experiment results were used to see how the standard key finding
method responded to the new minor key approach. They were also used as an
initial confirmation that dividing the minor key profiles into ones specific to the
common minor variation resulted in results similar to or better than other key
profiles.

The experiment is based on the model in Figure 4.1. The pitch- and key
profiles are compared by finding the correlation between the arrays. All the
parameters for the experiment are presented in Section 5.2. The experiment was
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completed four times (1a-d) with different parameters to ensure comparability
with results presented for similar experiments in literature.

5.1.2 Experiment 2: The Albrecht-Shanahan Model

The second experiment is closely related to the Albrecht-Shanahan (AS) model
proposed by Albrecht and Shanahan [2013]. The difference between the two is
that the comparisons between pitch- and key profiles are made by computing
the Euclidean distance. In the article describing the model, only the key profile
weights developed by Albrecht and Shanahan were included in the Euclidean
distance experiments. In this experiment, several key profiles, including the ones
proposed in this thesis are included in order to be able to compare the results to
the ones from the other experiments.

Experiment 2 is based on the model in Figure 4.1. The parameters for the
experiment are listed in Section 5.2. The experiment was completed four times
(2a-d) with different parameters to ensure comparability with results presented
for similar experiments in literature.

5.1.3 Experiment 3: Hidden Markov Model

Experiment 3 is an adapted version of the work done by Nápoles López et al.
[2019]. The model is based on the code available via the Justkeydding tool
presented in Section 2.5. In order to attempt to improve the classification of
minor keys, the extra step of choosing the most likely minor key variation profile
is added. The experiment is based on the model in Figure 4.2 and tested with
several key profiles.

5.2 Experimental Setup

The ten experiments are divided into three groups. Each group contains several
experiments with different parameters, shown in Table 5.3. All the experiments
share some parameters, like the key profiles they test and the types of results
they return. Table 5.1 shows the key profiles and result metrics used for all the
experiments. The number of entries in each data set is listed in Table 5.2 and all
the key profile values used in the experiments are listed in Appendix B.
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Table 5.1: Key profiles and result metrics used for all the experiments. The key
profiles are presented in Section 4.2.2 and the result metrics are presented in
Section 2.3.

(a) Key profiles tested in each experiment.

Key Profile
Proposed Model
Sapp’s Simple Key Profile
Krumhansl-Kessler
Kostka-Payne
Aarden-Essen
Albrecht-Shanahan
Bellmann-Budge

(b) Result metrics for each experiment.

Result Metric
Ground Truth Minor Accuracy
Predicted Label Minor Accuracy
MIREX Score
Accuracy
MIREX Distribution

Table 5.2: The number of entries in each of the data sets used for testing. The
test set is included in the whole data set and is the same as used by Nápoles López
et al. [2019] and Albrecht and Shanahan [2013].

Data Set Number of Entries
Whole Data Set 974
Test Set 492
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Table 5.3: An overview of the experimental setup.

Model Experiment Data Excerpt
Krumhansl-Schmuckler 1a Whole Set Whole Piece

1b Whole Set Excerpt
1c Test Set Whole Piece
1d Test Set Excerpt

Albercht-Shanahan 2a Whole Set Whole Piece
2b Whole Set Excerpt
2c Test Set Whole Piece
2d Test Set Excerpt

Hidden Markov Model 3a Whole Set Whole Piece
3b Test Set Whole Piece

5.3 Experimental Results

The following section summarizes the results of the experiments. Each experi-
ment group’s results are presented, mentioning interesting trends and values as
they appear. Because several experiments have similar results, not all are dis-
cussed in this section. The complete set of results is listed in Appendix D, and
the results are discussed further in Chapter 6.

5.3.1 Experiment 1

Experiment 1 consisted of running all the key profiles through the Krumhansl-
Schmuckler algorithm. Table 5.4 shows that the proposed model scores highest
in all categories except the predicted label minor accuracy category. The margins
are small, and the differences are not statistically significant. However, it shows
that the proposed model can perform as well as the existing key profiles and
even contend among the best across several experiments with different data and
feature-length parameters.

Almost all the key profiles have stable performances across the first group
of experiments. The exceptions are the ground truth minor accuracy metric
across all sub-experiments and the Krumhansl-Kessler (KK) profile’s overall per-
formance.

The KK profile shows a striking difference in how it performs when it ana-
lyzes a whole piece versus an excerpt. Tables 5.4 and 5.6 show this improvement
between the experiments. The behavior is a symptom of the KK profile’s ten-
dency to prioritize non-diatonic pitches mentioned in Section 4.2.2. This jagged
performance continues in various scales across all three experiment groups.

The ground truth minor accuracy metric shows a surprising variation across
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Table 5.4: Results from experiment 1a

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 94.71 90.22 94.71 93.22
Sapp 94.30 90.80 94.30 92.40
Krumhansl-Kessler 85.09 87.50 85.09 76.39
Kostka-Payne 93.37 91.98 93.37 91.07
Aarden-Essen 93.96 87.90 93.96 91.99
Albrecht-Shanahan 94.59 91.06 94.59 92.71
Bellmann-Budge 85.88 93.25 94.16 92.30

Table 5.5: MIREX distribution for experiment 1a.

Correctly Classified Dominant Relative Parallel
Proposed Model 908 15 16 11
Sapp 900 18 23 13
Krumhansl-Kessler 744 157 13 12
Kostka-Payne 887 16 40 12
Aarden-Essen 896 19 25 11
Albrecht-Shanahan 903 23 14 13
Bellmann-Budge 899 9 36 14

Table 5.6: Results for experiment 1b.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 90.96 90.96 94.93 93.53
Sapp 89.55 92.42 94.83 93.12
Krumhansl-Kessler 81.07 88.04 88.31 83.26
Kostka-Payne 84.75 92.31 93.89 92.09
Aarden-Essen 90.11 89.11 93.94 91.99
Albrecht-Shanahan 90.40 91.43 95.00 93.74
Bellmann-Budge 86.44 93.29 94.21 92.09

Table 5.7: MIREX distribution for experiment 1b.

Correctly Classified Dominant Relative Parallel
Proposed Model 911 11 17 15
Sapp 907 14 24 12
Krumhansl-Kessler 811 82 15 18
Kostka-Payne 897 11 32 12
Aarden-Essen 896 20 22 12
Albrecht-Shanahan 913 11 16 10
Bellmann-Budge 897 19 31 9
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Table 5.8: Results for experiment 2a.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 94.63 64.18 84.13 79.06
Sapp 87.57 91.45 94.16 92.20
Krumhansl-Kessler 87.57 66.81 78.89 70.53
Kostka-Payne 76.55 92.81 91.76 88.81
Aarden-Essen 88.14 92.31 94.10 91.99
Albrecht-Shanahan 86.16 93.85 93.83 91.48
Bellmann-Budge 87.29 91.42 94.00 92.20

Table 5.9: MIREX distribution for experiment 2a.

Correctly Classified Dominant Relative Parallel
Proposed Model 770 14 126 23
Sapp 898 18 25 13
Krumhansl-Kessler 687 126 54 11
Kostka-Payne 865 16 61 12
Aarden-Essen 896 21 26 11
Albrecht-Shanahan 891 25 26 13
Bellmann-Budge 898 9 31 19

the sub-experiments, given that every other metric remains relatively stable for
almost all the key profiles. One example is how the results for the Kostka-
Payne profile change from experiment 1a to 1b (Tables 5.4 and 5.6). The minor
accuracy measurement dropped by nine percentage points when it transferred
from analyzing whole pieces to excerpts. This occurred while the overall accuracy
of the key profile increased. There is no indication of the reason for this in the
MIREX distributions (Table 5.5 and 5.7), so further testing would have to be
done to find the key profile’s weakness.

5.3.2 Experiment 2

The second experiment was similar to experiment 1 but resulted in very different
behavior from the proposed model. Table 5.8 and 5.10 show that all measure-
ments are much lower than previously and that it mimics the KK profile’s pat-
terns discussed in the previous section. The proposed model performs worse on
all metrics except the ground truth minor accuracy, where it scores six percentage
points higher than the second-best.

The drop in accuracy coincides with the significant increase in relative key
predictions. The MIREX distributions shown in Table 5.9, 5.11, 5.13, and 5.15
show the persistence of the skew toward relative keys and show that the correct
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Table 5.10: Results for experiment 2b.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 94.35 74.39 89.80 86.34
Sapp 88.14 93.41 94.72 92.92
Krumhansl-Kessler 86.16 78.61 87.04 82.24
Kostka-Payne 79.94 94.02 92.94 90.66
Aarden-Essen 88.98 88.24 93.23 91.17
Albrecht-Shanahan 82.77 94.52 93.73 91.89
Bellmann-Budge 86.44 93.29 94.18 92.09

Table 5.11: MIREX distribution for experiment 2b.

Correctly Classified Dominant Relative Parallel
Proposed Model 841 13 84 10
Sapp 905 15 25 13
Krumhansl-Kessler 801 74 26 10
Kostka-Payne 883 11 45 16
Aarden-Essen 888 21 22 15
Albrecht-Shanahan 895 12 27 19
Bellmann-Budge 897 19 30 9

classifications improve when they are for experiments with excerpts to analyze.

As predicted, the Albrecht-Shanahan profile performs as well as other state-
of-the-art methods. It is especially consistent and high-scoring in the predicted
label minor accuracy metric and the experiment contexts with excerpts and test
data that it was explicitly designed to be used for (Table 5.12 and 5.14).

Table 5.12: Results for experiment 2c.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 93.53 61.15 83.38 78.82
Sapp 86.47 90.18 94.30 92.67
Krumhansl-Kessler 87.65 63.40 77.74 69.45
Kostka-Payne 77.06 91.61 92.36 89.82
Aarden-Essen 87.06 92.50 94.44 92.46
Albrecht-Shanahan 84.71 92.90 94.22 92.46
Bellmann-Budge 87.06 89.16 93.87 92.26
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Table 5.13: MIREX distribution for experiment 2c.

Correctly Classified Dominant Relative Parallel
Proposed Model 387 2 64 11
Sapp 455 6 12 7
Krumhansl-Kessler 341 60 31 7
Kostka-Payne 441 5 28 8
Aarden-Essen 454 9 12 8
Albrecht-Shanahan 454 7 13 6
Bellmann-Budge 453 3 14 11

Table 5.14: Results for experiment 2d.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 93.53 74.65 90.24 86.97
Sapp 8765 93.13 94.79 93.08
Krumhansl-Kessler 85.29 80.11 87.72 83.10
Kostka-Payne 80.00 93.15 92.85 90.43
Aarden-Essen 87.06 87.57 92.83 90.63
Albrecht-Shanahan 83.53 94.04 94.03 92.46
Bellmann-Budge 86.47 92.45 94.42 92.46

Table 5.15: MIREX distribution for experiment 2d.

Correctly Classified Dominant Relative Parallel
Proposed Model 427 7 38 6
Sapp 457 8 10 7
Krumhansl-Kessler 408 37 10 6
Kostka-Payne 444 8 21 8
Aarden-Essen 445 12 10 9
Albrecht-Shanahan 454 6 11 7
Bellmann-Budge 454 9 13 6
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Table 5.16: Results for experiment 3a.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 86.44 90.53 92.74 90.04
Sapp 83.33 93.95 93.05 90.35
Krumhansl-Kessler 73.73 89.69 84.15 76.28
Kostka-Payne 85.88 92.97 92.90 90.04
Aarden-Essen 87.01 89.80 92.63 89.94
Albrecht-Shanahan 85.31 93.79 93.12 90.25
Bellmann-Budge 85.03 94.06 93.45 90.86

Table 5.17: Results for experiment 3b.

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 86.47 91.88 93.32 90.84
Sapp 81.76 93.92 93.22 90.43
Krumhansl-Kessler 74.71 88.81 84.18 76.17
Kostka-Payne 84.71 91.72 92.51 89.61
Aarden-Essen 87.06 89.70 93.22 90.63
Albrecht-Shanahan 86.47 93.63 93.91 91.45
Bellmann-Budge 85.29 92.95 93.71 91.24

5.3.3 Experiment 3

The two sub-experiments in experiment three had few surprising results. The
proposed model performed as well as the state-of-the-art methods, and the only
key profile that scored lower than the leading group was the KK profile. It is
also worth noting that every key profile scored similarly on the predicted label
minor accuracy metric for experiments 3a and 3b as shown in Table 5.16 and
5.17. This is the only metric that features a single group with no outliers across
all experiments.
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Chapter 6

Discussion

The results from the experiments shown in Chapter 5 show that the proposed
method performs as well as state-of-the-art methods in several scenarios. The
following chapter includes discussions about the results, what the results can tell
us about the architecture used in the experiments, and how the proposed model
compares to existing key finding algorithms.

6.1 Discussion of Results

To learn as much as possible from the results from Section 5.3, the data from
each experiment must be seen in relation to other key profiles and the other
experiments. Key takeaways are discussed below.

6.1.1 Result Comparisons

The proposed model returns results that are, in most cases, equal to the state-of-
the-art methods included in the experiments for comparison. Figure 6.1 shows the
accuracy metric across all the experiments. Except for the Krumhansl-Kessler
key profile, the other pre-existing key profiles follow the same trajectory with
only slight deviations. The proposed model also achieves state-of-the-art results
for experiments one and three. The drop in accuracy for experiment two and
how it relates to the KK accuracy is most likely rooted in how easily the key
profile algorithms change their prediction in the face of non-diatonic pitches.
This assumption is discussed further later in this and the following subsections.

The MIREX scores shown in Figure 6.2 are similar to the accuracy graph in
Figure 6.1. This similarity is not surprising, given that the most important factor
in the MIREX score calculation considers how many keys were correctly classified.
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Figure 6.1: The accuracy of each key profile across all the experiments

Some differences between the key profile MIREX scores change compared to
the accuracy metric in Figure 6.1. Since the MIREX score is a more holistic
measurement, if the score improved relative to the other key profiles in MIREX
vs. accuracy, the misclassified instances most likely belong to closely related keys.
These small changes do not significantly impact the relationships between the key
profile results.

The reason for these low scores can be found in the second minor graph in
Figure 6.3 and the MIREX distributions listed in Section 5.3. The MIREX dis-
tributions show a prominent skew toward relative keys in the second experiment.
The method in the second experiment utilizes Euclidean distance to measure key
and pitch profiles from the data, which is discussed more in Section 3.2.4. Still,
when talking about the results, we can assume that this is the primary reason
the accuracy rates drop for the proposed model in experiment 2. The MIREX
distribution shows that the skew toward relative keys grows significantly in the
second experiment, which sheds light on the minor accuracy graphs. The graph
in Figure 6.4 shows that when the ground truth mode is minor, the proposed
model has a high probability of classifying the correct key. The corresponding
decrease in the first minor measurement indicates that the minor key profiles get
a higher score than the corresponding major key profile and chooses to classify
the key as the relative minor of the pair. This is bad because it means that the
relative weighting of the major and minor key profiles is skewed, but the good
news is that the model prioritizes the correct set of pitches. The specifics of the
skew towards the relative keys are discussed below.
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Figure 6.2: The MIREX score for each key profile across all experiments.

Figure 6.3: The predicted label minor accuracy for each key profile across all
experiments.
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Figure 6.4: The accuracy for pieces with a minor ground truth mode for each key
profile across all experiments.

6.1.2 The Skew Towards Relative Keys

The high accuracy scores for pieces with a ground truth mode of minor displayed
in Figure 6.4 show us that the method works better than all other state-of-the-
art methods at classifying minor keys in experiment 2. This is partly because it
classifies many major keys as their relative minor and because other key profiles
tend to give higher scores to major keys. This tendency to promote major keys
exists because of a few factors. First, there are many more pieces in the data used
by researchers to develop data-driven key profiles. This leads to minor key profiles
that are less developed and less specific than their major counterparts. Second,
because there are many variations of minor keys, most key profiles tend to simplify
or combine variations to make the minor key profiles. The simplified version used
in most key profiles smooths out the differences between or disregards the minor
variations and therefore creates vague key profiles that are not preferred by the
algorithm when placed next to the major profiles.

6.1.3 Measuring Adaptability

To investigate the adaptability of the proposed model, the results from sub-
experiments with whole pieces versus excerpts are interesting. In the context of
these experiments, excerpts are easier to analyze because they are taken from the
start and end of pieces. The beginning and ends are often written in the global
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key without many non-diatonic pitches. In Figure 6.5, every key profile performs
about the same or better when analyzing excerpts. Because the proposed model
aims to predict the global key, the goal is to have results that are as stable and
accurate for the whole piece as when only excerpts are analyzed. The model
performs well in the first experiment shown in Figure 6.5a but exhibits much
greater variety in the second experiment shown in Figure 6.5b.

6.2 Discussion of Architecture

The experiments revealed strengths and weaknesses in the architecture of the
models tested. By discussing the aspects that worked well and the parts that
should be reconsidered and improved, researchers can build future work on the
knowledge gained from this thesis.

6.2.1 Key profiles

The main difference between the proposed model and the pre-existing key finding
methods is the division of minor keys into three separate profiles. The minor key
accuracy results from the second experiment show that in a context where the
margins between key profiles are small, the proposed model is more successful at
differentiating the minor keys than existing key profiles. As discussed in Section
6.1.2, there are two important reasons why the key profile performs better at
classifying minor keys than other profiles: It has a skew towards minor keys and
adds specificity to the key profile that traditional key profiles lack. It might be
possible to minimize the skew by rebalancing the weightings of the major/minor
key profiles in the proposed model to even them out. Once the number of relative
key classifications drops, it is possible to see the effect of the three-parted minor
key profile.

The idea behind dividing the minor key profile into three derives from the
music theory behind the minor key variations. While it is promising to see the
minor key accuracy scores from experiment 2 (Figure 6.1), the results mean
little if the model is not contributing to more accurate classifications overall. By
completing more experiments on the topic, it might be possible to retune the
values in the model to perform better with the same basic three-parted idea.

6.2.2 Distance Measurement

The difference between the results from experiments 1 and 2 shows how critical
the way distance is measured is. The architecture and key profiles remained the
same, but the success of the proposed model drastically declined. The theory
discussed in previous paragraphs is that the Euclidean distance measurement
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(a) MIREX scores from experiments 1a and 1b.

(b) MIREX scores from experiments 2a and 2b.

Figure 6.5: A comparison of MIREX scores from experiments with whole pieces
as its input (1a, 2a) and experiments analyzing excerpts (1b, 2b).
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placed the major and minor key profiles in the proposed model much closer to
each other than the correlation measurement and introduced a skew toward the
minor keys. The maximization of the minor key scores worsens the skew. Future
experiments might address this by rebalancing the weightings between major and
minor.

The distance measurement used in experiment three does not have enough
similar experiments to compare the distance measurement, but it works reason-
ably well with the proposed model. In the future, this distance measurement can
be tested by using it as a key profile in experiments similar to 1 and 2 and having
key profiles included as transition matrices in experiments equivalent to 3.

6.2.3 Analyzing Excerpts

An essential aspect of the experiments was the difference between the analysis
of whole pieces and excerpts taken from the beginning and end of pieces. The
results were as predicted, almost equal or better when analyzing excerpts. The
different parameters were good for gaining insight into the proposed model and
showing how models with diverse goals can use different inputs to achieve their
goals. For global key finding, it is possible to argue that only excerpts should be
used because they provide slightly better results. On the other hand, global key
finding, where the method can extract the most prominent key from the whole
piece, is more resistant to opening or closing passages in another key. The results
from the experiments are mostly very similar, whether they analyze whole pieces
or excerpts, so it might be better to use whole pieces when classifying global keys.

6.3 Discussion of Experiments

The experiments executed as a part of this thesis provide a good look into the
behaviors of the proposed model in different contexts. Even though the first
experiment was added as a test to see if the proposed model was viable, it was
the set of experiments that performed the best overall. The closely related second
experiment was beneficial in comparing the results and the methods, making it
possible to learn more about the proposed model. The third experiment, which
had the highest scores of any state-of-the-art method with the same general
parameters, performed surprisingly poorly with the proposed model. All three
experiments have in common that they can be optimized even further by tweaking
parameters, key profiles, and probability distributions.
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6.4 Data

The data used in the three experiments is optimized for western classical music
key finding. Because the music in the data is from the common-practice era, most
pieces follow the harmonic rules from music theory and should be relatively easy
to classify. Because the results from experiments 1 and 3 were reasonably good,
adding additional music to the data set might be beneficial to test the proposed
model further.

Several experiments only contained a subset of the data to directly compare
to the work by Albrecht and Shanahan [2013]. It was essential to have the correct
Albrecht-Shanahan (AS) values to compare to (not running the AS algorithm on
its training data), but it gave little insight beyond this comparison.



Chapter 7

Evaluation and Conclusion

The final chapter concludes the thesis, and the work is evaluated by revisiting
the goals and research questions presented in Section 1.2. The chapter ends with
suggestions for future work as extensions to this work and key finding in general.

7.1 Evaluation

This thesis was shaped around the goals and research questions presented in
Section 1.2. Each research question is reviewed and discussed to evaluate the
work, and finally, the primary goal is revisited.

Research question 1 How should key profiles be adapted to accommodate mi-
nor key variations?

This question was explored through music theory and discussed as an integral
part of the experimental architecture. The adapted key profile materialized when
answering this question and is at the center of the proposed model. The results
show that it differentiated the minor keys in specific contexts much better than
other established key profiles but still needs to be worked on to achieve higher
overall accuracy.

Research question 2 What state-of-the-art method(s) are most likely to im-
prove with the minor mode modifications?

In order to answer this question, a structured literature review was completed
as described in Section 3.1. The review focused on research topic, experiment
parameters, data, and results to find the most important methods and state-
of-the-art approaches. Several articles were discussed in Section 3.2, and three
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methods were chosen as the foundations for the three experiments. The three
selected papers all reported either abnormally good or bad results for minor
key classification. While none of the methods were significantly improved, they
provided a good canvas for learning more about the proposed algorithm.

Research question 3 What data works best for musical key finding, and should
it be changed to accommodate minor modes?

The data used in the experiments is a collection of classical pieces from the
common-practice era. The data was chosen for two reasons. The data is the same
as the set used by both Nápoles López et al. [2019] and Albrecht and Shanahan
[2013], and the research done while exploring research question 2 showed that
western classical music is the most precise data to use for key finding [Temperley
and de Clercq, 2013]. No changes were made to the data to accommodate minor
key finding. While it would be great to have a data set with labels for each minor
key variation present, generating such a data set is a time-consuming task and
has to be done by experts in the field of music theory. One adaptation that could
be done was to increase the percentage of minor key pieces in the set. This was
not done for these experiments so that it would be possible to directly compare
the proposed model to the state-of-the-art methods using the same data set.

Research question 4 What is the best way to measure success?

Different ways of measuring success in computational key finding were dis-
cussed in Section 2.3. The metrics ultimately chosen for the experiments were
accuracy, MIREX scoring, minor accuracy, and minortest. Accuracy and the
MIREX score were important markers of how well the model performs and as
comparison values to other results. These two metrics, combined with the results
for minor keys, gave a well-rounded picture of the proposed model’s nature.

Goal Improve the accuracy of minor key classification by combining foundational
and state-of-the-art global key classification algorithms with a new key pro-
file and improved data sets.

The results of experiment 2a also show that when the margins are small
enough, the model differentiates minor keys better than other key profiles. This
element has to be tested more to make a factual claim. Hopefully, the state-of-
the-art results in experiments 1 and 3, combined with the improved handling of
minor keys in experiment 2a, indicate that it might be possible to improve the
method to balance major and minor keys correctly and still keep its edge for
classifying minor keys.
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7.2 Conclusion

Computational key finding is still a significant obstacle in music information
retrieval. The focus on minor keys in this thesis’s research and experiments
emphasizes a challenging part of the key finding field. The main contributions
include a new model for handling minor keys that performs as well as state-of-
the-art methods, a comparison of the significant key profiles used in articles from
the past 20 years ans how they perform in different experimental contexts, and
a structured literature review of the field of computational key finding.

In conclusion, this thesis explored the challenge of computational key finding
by adapting existing key finding methods to improve their classification of minor
keys. The proposed model shows promising results, for example, a 93.3% accuracy
(Table 5.4) and a ground truth minor accuracy of 94.35% (Table 5.8). By splitting
the minor key profile into three distinct key profiles correlating to the significant
minor variations, the model brings more specificity to the individual minor pitch
profiles than existing key profiles. These promising results show that the model
still needs work to improve the overall accuracy while taking full advantage of
the improved handling of minor keys.

7.3 Future Work

There are many ways the ideas of this work and computational key finding, in
general, can be improved. As discussed in Section 6.2.1, the proposed model in
this thesis shows promising results but needs more work and tests to improve
its overall accuracy and quantify the improvements made to minor key detection
more rigorously. One way to do this is to reexamine the key profile values used in
the proposed model and rebalance them so they can perform better. This might
be done by applying musical theory and trial, and error testing as Temperley
[1999] or by training the key profile on data like Albrecht and Shanahan [2013].

Because the model performs reasonably well relative to the state-of-the-art
methods it was tested against, another dimension to consider is the type of data
it was tested on. The data used in this thesis was from the common-practice
era of western classical music. Adding data from other genres will challenge the
algorithm by introducing new harmonic structures and patterns that are more
relaxed about following the rules set in place by music theory. As mentioned in
Section 7.1, another option to improve the data is to use data labeled with each
minor key variation. A final data adaptation is to increase the percentage of
minor key pieces in the set to increase the amount of training data and provide
more information about minor key characteristics.

Future work in the more general area of computational key finding could take
many directions. As different research groups produce more labeled data, new
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possibilities open up. With larger data sets and more high-quality data, the
efficacy of many machine learning algorithms can increase drastically. With the
advent of labeled data that includes more features than the pitches and their
durations, researchers could focus on developing algorithms that review more
complex musical information, such as timing, meter, and the musical context
within the piece. With more information available and more data to train on,
the expansion into algorithms that can detect all twelve modes and other complex
musical structures can be developed.

Because global key finding algorithms have improved dramatically in the past
decade, localized key finding is a natural next area to research. As shown by Sapp
[2011], the fundamental global key finding algorithms can be adapted and fine-
tuned to classify local keys. This work will be more accessible once more data is
available that is labeled with local keys. Localized key finding is helpful for many
applications, such as music transcription, where it is important to accurately
identify the tonality of different sections of a piece to generate correct notation.
It could also be used in music analysis and musicological research to enable a
more detailed examination of the tonal structure of a piece of music. Additionally,
localized key finding algorithms could be used in music education to help students
learn about the structure of music and how tonality changes within a piece.
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Appendix A

Articles from the SLR

Table A.1: Articles from the Structured Literature Review. Articles found out-
side of the review are not included in this table.

Reference Name Style # Ex-
cerpts

Length Metric Max
Score

Scope

Albrecht
and
Shanahan
(2013)

The use of large
corpora to train
a new type of
key-finding al-
gorithm: an
improved treat-
ment of the minor
mode

Classical 982 Whole
Piece,
Ex-
cerpts

Accuracy 93.1 Global

Ariza and
Cuthbert
(2010)

music21: A
Toolkit for
Computer-Aided
Musicology and
Symbolic Music
Data

NA NA NA NA NA NA

Ariza and
Cuthbert
(2011)

Analytical and
Compositional
Applications of
a Network-Based
Scale Model in
music21

NA NA NA NA NA NA
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Baumann
(2021)

Deeper convo-
lutional neural
networks and
broad augmen-
tation policies
improve perfor-
mance in key
estimation

Popular 5400 Excerpts MIREX 74.5 Global

Bernardes,
Davies,
and
Guedes
(2017)

Automatic Musi-
cal key estima-
tion with adap-
tive mode bias

Beatles,
Popular

879 Excerpts Accuracy 67.9 Global

Catteau,
Martens,
and Le-
man
(2006)

A Probabilistic
Framework for
Audio-Based
Tonal Key and
Chord Recogni-
tion

Classical,
Popular

270 Whole
Piece

Accuracy 83 Local

Chen and
Su (2019)

Harmony trans-
former: incor-
porating chord
segmentation
into harmony
recognition

Popular 64 Whole
Piece

Accuracy 78.35 Global

Chuan
(2013)

A temporal
multi-view ap-
proach for audio
key finding using
adaboost

Classical 2785 Excerpts Accuracy 80 Global

Chuan
and Chew
(2014)

The KUSC classi-
cal music dataset
for audio key
finding

Classical 3000 Excerpts NA NA Global

Dixon,
Mauch,
and
Anglade
(2011)

Probabilistic and
logic-based mod-
elling of harmony

Beatles,
Jazz

424 Whole
Piece

Accuracy 81 Global

Finley
and Razi
(2019)

Musical key es-
timation with
unsupervised
pattern recogni-
tion

Popular 10000 Whole
Piece

Accuracy 85 Global
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Foscarin,
Aude-
bert, and
S’niehotta
(2021)

PKSPELL: data
driven pitch
spelling and
key signature
estimation

Classical 222 Whole
Piece

Accuracy 90.3 Global

Gebhardt
and Mar-
graf
(2017)

Applying Psy-
choacoustics to
Key Detection
and Root Note
Extraction in
EDM

EDM 68 Excerpts Accuracy 57.35 Global

Gebhardt,
Lykartsis,
and Stein
(2018)

A confidence
measure for key
labelling

Popular,
Rock,
Clas-
sical,
EDM

834 Whole
Piece

Accuracy 75.18 Local

George,
Mary, and
George
(2022)

Development
of an intelli-
gent model for
musical key es-
timation using
machine learning
techniques

Classical,
Folk
Music

3243 Whole
Piece

Accuracy 91.49 Global

Giorgi,
Zanoni,
Sarti, and
Tubaro
(2013)

Automatic chord
recognition based
on the probabilis-
tic modeling of
diatonic modal
harmony

Popular,
Rock

62 Whole
Piece

Accuracy 70.5 Global

Hu and
Saul
(2009)

A probabilistic
topic model for
unsupervised
learning of musi-
cal key-profiles.

Classical 235 Whole
Piece

Accuracy 79 Global

Izmirli
(2006)

Audio Key
Finding Using
Low-Dimensional
Spaces

Classical 152 Excerpts MIREX 88.9 Global

Izmirli
(2007)

Localized key
finding from
audio using
negative matric
factorization for
segmentation.

Classical 169 Excerpts Accuracy,
MIREX

88.3,
92.8

Local
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Kania
and Kania
(2019)

A key-finding
method based on
music signature

Classical 72 Excerpts Accuracy 91.67 Global

Kania,
Kania,
and
Lukaszewicz
(2021)

Trajectory of
fifths in music
data mining

Classical,
Popular

242 Excerpts NA NA Global

Kania,
Kania,
and
Lukaszewicz
(2021)

A Hardware-
oriented Al-
gorithm for
Real-time Music
Key Signature
Recognition

Classical 122 Excerpts Accuracy 96 Global

Korzeniowski
and Wid-
mer
(2018)

Genre-agnostic
key classification
with convolu-
tional neural
networks

EDM,
Pop-
ular,
Rock,
Classi-
cal

3732 Excerpts Accuracy,
MIREX

67.9,
74.6

Global

Lee and
Slaney
(2007)

A unified system
for chord tran-
scription and key
extraction using
hidden Markov
models

Beatles 28 Whole
Piece

Accuracy 84.62 Global

Lee and
Slaney
(2008)

Acoustic chord
transcription and
key extraction
from audio using
key dependent
Hmms trained on
synthesized audio

Classical,
Beatles

923 Whole
Piece

Accuracy 94.69 Local

Lerdahl
(1988)

Tonal Pitch
Space

NA NA NA NA NA NA

Lin and
Yeh
(2017)

Automatic Chord
Arrangement
with Key De-
tection for
Monophonic
Music

Hymns 195 Whole
Piece

Accuracy 60.38 Local
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Lindenbaum,
Yeredor,
and Co-
hen (2014)

Musical Key Ex-
traction using dif-
fusion maps

Beatles 179 Whole
Piece

Accuracy,
MIREX

66.5,
75.6

Global

Marquez
(2019)

A chord distance
metric based on
the Tonal Pitch
Space and a key-
finding method
for chord annota-
tion sequences

Popular 240 Whole
Piece

Accuracy ca 81 Global

Mauch
and Dixon
(2010)

Simultaneous
estimation of
chords and musi-
cal context from
audio

Beatles 176 Whole
Piece

MIREX 71 Local

McLeod
and
Rohrmeier
(2021)

A modular sys-
tem for the har-
monic analysis of
musical scores us-
ing a large vocab-
ulary.

Classical 742 Whole
Piece

Accuracy 70.2,
69.4

Local

Lopez,
Arthur,
and Fi-
jinaga
(2019)

Key-finding
based on a hid-
den Markov
model and key
profiles

Classical 982 Whole
Piece

Accuracy 94.4 Local
and
Global

Noland
and San-
dler
(2006)

Key Estimation
Using a Hidden
Markov Model

Beatles 110 Whole
Piece

Accuracy 91 Global

Papadopolous
and
Peeters
(2012)

Local key esti-
mation from an
audio signal rely-
ing on harmonic
and metrical
structures

Classical,
Popular

444 Whole
Piece

Accuracy,
MIREX

80.2,
93.6

Local

Pauws
(2004)

Musical Key
Extraction From
Audio

Classical 237 Whole
Piece

Accuracy 75.1 Global
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Quinn
and White
(2017)

Corpus-derived
Key Profiles
Are Not Trans-
positionally
Equivalent

Classical 1591 Excerpts NA NA Global

Schuller
and Gol-
lan (2012)

Music Theoretic
and Perception-
based Features
for Audio Key
Determination

Popular,
Jazz,
Clas-
sical,
Rock,
Hip
Hop,
EDM,
Blues

520 Whole
Piece

Accuracy 77.3 Global

Sun, Li,
and Lei
(2009)

Key detection
through pitch
class distribution
model and ANN

Classical,
Popu-
lar,
Rock,
Jazz,
New
Age,
Folk

228 Whole
Piece

Accuracy 66.1 Local
and
Global

Temperley
(2002)

A Bayesian Ap-
proach to Key-
Finding

Classical 896 Excerpts Accuracy 83.6 Global

Temperley
and de
Clercq
(2013)

Statistical analy-
sis of harmony
and melody in
rock music

Rock 200 Whole
Piece

Accuracy 97 Global
(disre-
gards
maj/min)

Weiss,
Cano,
and Luka-
shevich
(2014)

A mid-level ap-
proach to local
tonality analysis:
extracting key
signatures from
audio

Popular 30 Whole
Piece

Accuracy,
MIREX

86.8,
90.8

Local

Weiß
(2013)

Global Key Ex-
traction from
Classical music
Audio Record-
ings Based on the
Final Chord

Classical 478 Whole
Piece

Accuracy 97 Global
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White
(2018)

Feedback and
Feedforward
Models of musi-
cal key

Classical 41 Excerpts Accuracy 87.8 Global

Zenz and
Rauber
(2007)

Automatic Chord
Detection In-
corporating
Beat and Key
Detection

Popular,
Classi-
cal

35 Whole
Piece

Accuracy 65 Local
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Appendix B

Key Profiles

Table B.1: Proposed key profile values for major and three variations of minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 2 0 1 0 1 1 0 2 0 1 0 1
Value natural minor 2 0.1 1 1.5 0.1 1 0.1 2 1 0.1 1 0.1
Value harmonic minor 2 0.1 1 1.5 0.1 1 0.1 2 1 0.1 0.1 1
Value melodic minor 2 0.1 1 1.5 0.1 1 0.1 2 0.5 0.5 0.5 0.5

Table B.2: Sapp’s Simple key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 2 0 1 0 1 1 0 2 0 1 0 1
Value minor 2 0 1 1 0 1 0 2 1 0 0.5 0.5

Table B.3: Krumhansl-Kessler key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88
Value minor 6.33 2.68 3.52 5.38 2.60 3.53 2.54 4.75 3.98 2.69 3.34 3.27
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Table B.4: Temperley key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 5.0 2.0 3.5 2.0 4.5 4.0 2.0 4.5 2.0 3.5 1.5 4.0
Value minor 5.0 2.0 3.5 4.5 2.0 4.0 2.0 4.5 3.5 2.0 1.5 4.0

Table B.5: Bellman-Budge key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 16.80 0.86 12.95 1.41 13.49 11.93 1.25 20.28 1.80 8.04 0.62 10.57
Value minor 18.16 0.69 12.99 13.34 1.07 11.15 1.38 21.07 7.49 1.53 0.92 10.21

Table B.6: Kostka-Payne key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 0.748 0.060 0.488 0.082 0.670 0.460 0.096 0.715 0.104 0.366 0.057 0.400
Value minor 0.712 0.084 0.474 0.618 0.049 0.460 0.105 0.747 0.404 0.067 0.133 0.330

Table B.7: Aarden-Essen key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 17.77 0.15 14.93 0.16 19.80 11.36 0.29 22.06 0.15 8.15 0.23 4.95
Value minor 18.26 0.74 14.05 16.86 0.70 14.44 0.70 18.62 4.57 1.93 7.38 1.76

Table B.8: Albrecht-Shanahan key profile values for major and minor.

Scale Degree 1 2 3 4 5 6 7 8 9 10 11 12
Value Major 0.24 0.01 0.11 0.01 0.14 0.09 0.02 0.21 0.01 0.08 0.01 0.08
Value minor 0.22 0.01 0.10 0.12 0.02 0.10 0.01 0.21 0.06 0.02 0.06 0.05



Appendix C

SLR Inclusion and Quality
Criteria

IC1: The main focus of the study is automatic key finding.

IC2: The study presents empirical results or other significant contribution to the
field.

IC3: The study is a primary study, concerns descriptions of technical aspects
of the key finding process (e.g. measuring the distance between keys), or
describes methods of measuring success in key finding.

IC4: The study uses symbolic data (MIDI, Chroma, Sheet Music etc.)

Quality criteria from the SLR guide Kofod-Petersen [2018]:

QC1: Is there is a clear statement of the aim of the research?

QC2: Is the study is put into context of other studies and research?

QC3: Are system or algorithmic design decisions justified?

QC4: Is the test data set reproducible?

QC5: Is the study algorithm reproducible?

QC6: Is the experimental procedure thoroughly explained and reproducible?

QC7: Is it clearly stated in the study which other algorithms the study’s algo-
rithm(s) have been compared with?
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QC8: Are the performance metrics used in the study explained and justified?

QC9: Are the test results thoroughly analyzed?

QC10: Does the test evidence support the findings presented?



Appendix D

Complete Set of
Experimental Results

Table D.1: Complete set of experimental results: 1a

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 94.71 90.22 94.71 93.22
Sapp 94.30 90.80 94.30 92.40
Krumhansl-Kessler 85.09 87.50 85.09 76.39
Kostka-Payne 93.37 91.98 93.37 91.07
Aarden-Essen 93.96 87.90 93.96 91.99
Albrecht-Shanahan 94.59 91.06 94.59 92.71
Bellmann-Budge 85.88 93.25 94.16 92.30

Table D.2: Complete set of experimental results: MIREX distribution 1a.

Correctly Classified Dominant Relative Parallel
Proposed Model 908 15 16 11
Sapp 900 18 23 13
Krumhansl-Kessler 744 157 13 12
Kostka-Payne 887 16 40 12
Aarden-Essen 896 19 25 11
Albrecht-Shanahan 903 23 14 13
Bellmann-Budge 899 9 36 14
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Table D.3: Complete set of experimental results: 1b

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 90.96 90.96 94.93 93.53
Sapp 89.55 92.42 94.83 93.12
Krumhansl-Kessler 81.07 88.04 88.31 83.26
Kostka-Payne 84.75 92.31 93.89 92.09
Aarden-Essen 90.11 89.11 93.94 91.99
Albrecht-Shanahan 90.40 91.43 95.00 93.74
Bellmann-Budge 86.44 93.29 94.21 92.09

Table D.4: Complete set of experimental results: MIREX distribution 1b.

Correctly Classified Dominant Relative Parallel
Proposed Model 911 11 17 15
Sapp 907 14 24 12
Krumhansl-Kessler 811 82 15 18
Kostka-Payne 897 11 32 12
Aarden-Essen 896 20 22 12
Albrecht-Shanahan 913 11 16 10
Bellmann-Budge 897 19 31 9

Table D.5: Complete set of experimental results: 1c

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 89.41 88.89 94.60 93.48
Sapp 88.24 88.76 94.24 92.67
Krumhansl-Kessler 82.94 89.81 85.68 76.99
Kostka-Payne 84.71 90.57 93.73 91.85
Aarden-Essen 92.35 86.74 94.07 92.06
Albrecht-Shanahan 91.76 89.14 94.79 93.48
Bellmann-Budge 85.29 90.63 93.97 92.26
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Table D.6: Complete set of experimental results: MIREX distribution 1c.

Correctly Classified Dominant Relative Parallel
Proposed Model 459 5 6 6
Sapp 455 6 11 7
Krumhansl-Kessler 378 80 5 6
Kostka-Payne 451 5 17 8
Aarden-Essen 452 8 15 7
Albrecht-Shanahan 459 6 6 8
Bellmann-Budge 453 3 17 9

Table D.7: Complete set of experimental results: 1d

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 88,82 90,96 94,54 93,08
Sapp 88,24 92,02 94,79 93,08
Krumhansl-Kessler 81,18 90,20 89,08 84,52
Kostka-Payne 84,12 91,67 93,75 91,85
Aarden-Essen 88,24 88,24 93,52 91,45
Albrecht-Shanahan 90,00 91,07 94,97 93,69
Bellmann-Budge 85,88 92,41 94,28 92,26

Table D.8: Complete set of experimental results: MIREX distribution 1d.

Correctly Classified Dominant Relative Parallel
Proposed Model 457 7 7 8
Sapp 457 8 10 7
Krumhansl-Kessler 415 38 6 8
Kostka-Payne 451 8 13 7
Aarden-Essen 449 11 11 7
Albrecht-Shanahan 460 6 7 6
Bellmann-Budge 453 9 14 6
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Table D.9: Complete set of experimental results: 2a

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 94.63 64.18 84.13 79.06
Sapp 87.57 91.45 94.16 92.20
Krumhansl-Kessler 87.57 66.81 78.89 70.53
Kostka-Payne 76.55 92.81 91.76 88.81
Aarden-Essen 88.14 92.31 94.10 91.99
Albrecht-Shanahan 86.16 93.85 93.83 91.48
Bellmann-Budge 87.29 91.42 94.00 92.20

Table D.10: Complete set of experimental results: MIREX distribution 2a.

Correctly Classified Dominant Relative Parallel
Proposed Model 770 14 126 23
Sapp 898 18 25 13
Krumhansl-Kessler 687 126 54 11
Kostka-Payne 865 16 61 12
Aarden-Essen 896 21 26 11
Albrecht-Shanahan 891 25 26 13
Bellmann-Budge 898 9 31 19

Table D.11: Complete set of experimental results: 2b

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 94.35 74.39 89.80 86.34
Sapp 88.14 93.41 94.72 92.92
Krumhansl-Kessler 86.16 78.61 87.04 82.24
Kostka-Payne 79.94 94.02 92.94 90.66
Aarden-Essen 88.98 88.24 93.23 91.17
Albrecht-Shanahan 82.77 94.52 93.73 91.89
Bellmann-Budge 86.44 93.29 94.18 92.09
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Table D.12: Complete set of experimental results: MIREX distribution 2b.

Correctly Classified Dominant Relative Parallel
Proposed Model 841 13 84 10
Sapp 905 15 25 13
Krumhansl-Kessler 801 74 26 10
Kostka-Payne 883 11 45 16
Aarden-Essen 888 21 22 15
Albrecht-Shanahan 895 12 27 19
Bellmann-Budge 897 19 30 9

Table D.13: Complete set of experimental results: 2c

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 93.53 61.15 83.38 78.82
Sapp 86.47 90.18 94.30 92.67
Krumhansl-Kessler 87.65 63.40 77.74 69.45
Kostka-Payne 77.06 91.61 92.36 89.82
Aarden-Essen 87.06 92.50 94.44 92.46
Albrecht-Shanahan 84.71 92.90 94.22 92.46
Bellmann-Budge 87.06 89.16 93.87 92.26

Table D.14: Complete set of experimental results: MIREX distribution 2c.

Correctly Classified Dominant Relative Parallel
Proposed Model 387 2 64 11
Sapp 455 6 12 7
Krumhansl-Kessler 341 60 31 7
Kostka-Payne 441 5 28 8
Aarden-Essen 454 9 12 8
Albrecht-Shanahan 454 7 13 6
Bellmann-Budge 453 3 14 11
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Table D.15: Complete set of experimental results: 2d

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 9353 7465 9024 8697
Sapp 8765 93,13 94,79 93,08
Krumhansl-Kessler 85,29 80,11 87,72 83,10
Kostka-Payne 80,00 93,15 92,85 90,43
Aarden-Essen 87,06 87,57 92,83 90,63
Albrecht-Shanahan 83,53 94,04 94,03 92,46
Bellmann-Budge 86,47 92,45 94,42 92,46

Table D.16: Complete set of experimental results: MIREX distribution 2d.

Correctly Classified Dominant Relative Parallel
Proposed Model 427 7 38 6
Sapp 457 8 10 7
Krumhansl-Kessler 408 37 10 6
Kostka-Payne 444 8 21 8
Aarden-Essen 445 12 10 9
Albrecht-Shanahan 454 6 11 7
Bellmann-Budge 454 9 13 6

Table D.17: Complete set of experimental results: 3a

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 86.44 90.53 92.74 90.04
Sapp 83.33 93.95 93.05 90.35
Krumhansl-Kessler 73.73 89.69 84.15 76.28
Kostka-Payne 85.88 92.97 92.90 90.04
Aarden-Essen 87.01 89.80 92.63 89.94
Albrecht-Shanahan 85.31 93.79 93.12 90.25
Bellmann-Budge 85.03 94.06 93.45 90.86
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Table D.18: Complete set of experimental results: MIREX distribution 3a.

Correctly Classified Dominant Relative Parallel
Proposed Model 877 28 33 12
Sapp 880 25 40 9
Krumhansl-Kessler 743 127 33 16
Kostka-Payne 877 30 36 10
Aarden-Essen 876 29 33 9
Albrecht-Shanahan 879 31 35 10
Bellmann-Budge 885 25 35 11

Table D.19: Complete set of experimental results: 3b

Key Profile
Ground Truth

Minor Accuracy
Predicted Label
Minor Accuracy MIREX Accuracy

Proposed Model 86.47 91.88 93.32 90.84
Sapp 81.76 93.92 93.22 90.43
Krumhansl-Kessler 74.71 88.81 84.18 76.17
Kostka-Payne 84.71 91.72 92.51 89.61
Aarden-Essen 87.06 89.70 93.22 90.63
Albrecht-Shanahan 86.47 93.63 93.91 91.45
Bellmann-Budge 85.29 92.95 93.71 91.24

Table D.20: Complete set of experimental results: MIREX distribution 3b.

Correctly Classified Dominant Relative Parallel
Proposed Model 446 14 14 5
Sapp 444 14 21 2
Krumhansl-Kessler 374 67 14 8
Kostka-Payne 440 16 18 4
Aarden-Essen 445 14 17 3
Albrecht-Shanahan 449 13 16 4
Bellmann-Budge 448 11 18 6
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