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Abstract

In recent decades, Visual Computing methodologies such as image processing and
computer vision have addressed problems in the field of Cultural Heritage (CH)
resulting in significant benefits. Specifically, accurate scanning methods have
proved invaluable for documenting cultural heritage assets. However, such scans
can also be used to track changes over time and to create holistic models of CH
artefacts, resulting from multiple scan modalities. This in turn necessitates solving
specific challenges in the task of registration, a classic problem in Visual Comput-
ing.

Informally, registration is the action of placing two geometric datasets with overlap
(e.g. point clouds) in a common reference frame so that the areas of overlap match
as closely as possible. This thesis focuses on two special cases of 3D registra-
tion: cross-time and multimodal. The first research area concerns the registration
of differential 3D data, where the object of interest may have changed over time.
The second research area concerns the registration of data from different modalit-
ies; specifically 3D point clouds and micro-CT volumes have been addressed. As
both problems are too complex to address with direct algorithms while training
instances exist or can be generated, it was chosen to apply deep learning method-
ologies to solve them and the results have been very encouraging.

Additionally, the cross-time registration solution has been extended into an auto-
mated framework for change monitoring and difference detection for CH objects,
while the multimodal method was combined with the cross-time method in order
to monitor changes on both the surface and inner structure of CH objects.
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Chapter 1

Introduction

This thesis addresses a classic problem in the field of Visual Computing, that of re-
gistration, which stems from disciplines such as robotics [54, 13], medical imaging
[81, 44, 75] and cultural heritage analysis [79, 70], among many others. Inform-
ally, registration (aka alignment) is the action of placing two geometric datasets
with overlap (e.g. point clouds) in a common reference frame so that the areas
of overlap match as closely as possible. Registration of both unimodal and mul-
timodal datasets is a first crucial step in many shape analysis tasks, such as 3D
model reconstruction [45, 5], model fitting [20], 3D object recognition [8, 46] and
retrieval [17] and semantic segmentation [87].

This research was part of the European Union’s Horizon 2020 research and in-
novation program with the acronym ’CHANGE’ [10] (Cultural Heritage Analysis
for New Generations). The main objective of the project is to develop methodolo-
gies for monitoring and assessing changes in Cultural Heritage (CH) objects. The
developed methodologies are intended to allow CH experts to track changes over
time and develop effective strategies for conserving and preserving the CH objects.
While this research’s motivation has arisen from the context of the CHANGE pro-
ject and the CH field, the presented techniques can potentially be applied to other
areas as well.

1.1 Motivation
Mankind’s Cultural Heritage (CH) has been inherited from the past and should be
maintained for the future. CH resources are under constant threat due to natural
or human-induced actions which gradually cause our heritage to vanish. Thus,
protection, preservation, and promotion of our heritage are of importance.

3



4 Introduction

Recent advances in imaging, computer vision and computational methods, have
greatly aided CH by offering researchers a ’sixth sense’ for understanding traces of
the past. For example, an accurate, high-resolution digital model can reveal details
and features of the object that might not be visible to the naked eye; accurate digital
acquisitions, performed at regular intervals, could detect very small deformations
and cracks before serious damage or decay. This knowledge can enable more
efficient analysis and opportune interventions to prevent further deterioration and
preserve the assets [48].

In this doctoral thesis, we addressed two open problems in registration: cross-time
registration, which can facilitate the monitoring process of CH assets, and mul-
timodal registration, which can merge independent scan modalities and generate
enhanced 3D models of CH objects. By leveraging the power of deep learning net-
works, we overcame challenges such as finding accurate correspondence between
modalities that do not share the same characteristics or between 3D models whose
geometry has changed over time.

1.2 Research Objectives
Our objectives are to investigate cross-time and multimodal registration and their
application to CH. We aim to achieve these objectives by trying to answser the
following Research Questions (RQ) in this thesis.

Part 1: Cross-time 3D registration

• RQ1: How to design an automatic registration framework to assess the mon-
itoring of CH objects?

• RQ2: How can an automatic cross-time registration method be applied to
real CH datasets to facilitate monitoring and detection of fabricated CH ob-
jects?

Part 2: Multimodal 3D registration

• RQ3: What are the state-of-the-art techniques for registering multimodal 3D
data and what are the open challenges regardless of the field of application?

• RQ4: How to design an automatic multimodal registration framework to
fuse 3D data from point cloud and CT-volume modalities?
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1.3 List of Contributing Papers
This section provides an overview of the publications included in this thesis and
their relationship to the main topics of cross-time and multimodal registration as
well as to the individual research questions. Five papers, labeled A-E, are included
as the core contributions. Three of them have been published in peer-reviewed
channels, while the other two are under review in a scientific journal and a con-
ference. Additionally, two supplementary papers labeled F and G were written as
part of the conducted research. However, they are not considered part of this thesis
since they did not make any significant contributions.

Figure 1.1: Overview of research papers and their relationship to research questions.

Figure 1.1 provides a visual representation of the research questions under the two
main topics and how the research papers relate to them. Since the research and
respectively the research questions are divided into two main directions, we de-
voted each paper in each different research question. Papers A and B focus on the
first axis of the research, the cross-time registration problem. Paper A addresses
the problem by proposing a deep learning framework for automated registration
of cross time data and Paper B applies the aforementioned methodology in order
to compare and detect differences between two similar museum’s objects. The
second axis, the 3D multimodal registration, is addressed with Paper C, which
gives a review of the latest state of the art techniques and Paper D, where a novel
framework for aligning 3D point clouds and 3D volumes is presented. Finally,
Paper E bridges the two axes by proposing a pipeline for monitoring the external
and internal structure of CH objects.

The list of the included papers and their main contributions is given below. The
papers can be found in full in part II.
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1.4 Dissertation Structure
This thesis consists of two parts and is structured as follows:

• Part I: Research Overview

This part provides a general overview of the work carried out. Chapter 1
covers the motivation of the research, the research objectives to be reached
and the research questions to be answered. Chapter 2 gives the required
background knowledge at a rather high level so that a reader can comfortably
skim through it. Chapter 3 summarizes the research contributions for each
of the core papers, while Chapter 4 outlines the main contributions of this
thesis. The thesis is concluded in Chapter 5 with remarks and directions for
future research.

• Part II: Publications

This part contains the collection of full-length research papers submitted as
an element of this thesis.
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Chapter 2

Background in 3D Registration

This chapter provides a brief overview of the relevant context in which this thesis
was conducted, focusing on 3D registration and its applications in Cultural Herit-
age. A detailed survey of 3D registration methods applicable to multimodal and
differential data can be found in paper C (which is a survey) and paper A respect-
ively. Rather than repeating these, the aim of this chapter is to provide the reader
with the contextual understanding.

Registration is a challenging task for various problems in computer vision and
computer graphics. The general aim is to bring together two or more geometric
datasets by finding the transformation that optimally aligns them in a common
reference frame. The datasets may, for example, represent the shape of the same
object, two or more partial but overlapping instances of the same object or two
similar 3D objects (as for example castings from the same mould). In this thesis
we shall use the alternative term alignment as a synonym for registration.

Although our research extends to multimodal registration, the registration problem
is classically defined across two 3D point clouds. After defining the 3D registra-
tion problem in Section 2.1 and a brief review of the main methods for 3D point
cloud registration in 2.2, Section 2.3 presents an overview of the application of
registration techniques in CH.

2.1 Problem Statement
Given two 3D point clouds, the source P = {pi ∈ R3| i = 1, 2, ..., N} and the tar-
get Q = {qj ∈ R3| j = 1, 2, ...,M}, the objective is to recover the unknown rigid
transformation T subject to minimizing a distance function between the source P
and the target Q point clouds.

9



10 Background in 3D Registration

A rigid transformation in 3D can be represented by a transformation matrix T
which consists of two components; a rotation submatrix R and a translation vector
t, where T is a homogeneous 4× 4 matrix:

T =

[
R | t
0 | 1

]
(2.1)

where T ∈ SE (3), R ∈ SO(3) and t ∈ R3. SE (3) is the special Euclidean group
of rigid transformations in 3D space (rotations and translations), while SO(3) is
the special orthogonal group of rotations in Euclidean Space R3.

Then the problem of rigid registration between two discrete point clouds can be
formulated as [43] :

argmin
R,t

N∑

i=1

d(Rpi + t,Q) (2.2)

where d(p,Q) is the distance of an arbitrary point p ∈ P to the point cloud Q. A
common definition of this distance is:

d(p,Q) = min
q∈Q

d ′(p,q) (2.3)

where d ′(p,q) is the distance between two points in space.

Equation (2.3) is referred to as the distance or error metric. Many methods [88,
42] use the squared Euclidean norm as the distance metric and optimize Equation
(2.2) using least squares:

argmin
R,t

N∑

i=1

∥Rpi + t− q̂i∥2 (2.4)

where q̂i is the closest point in Q to each point pi ∈ P based on the transformation
T(R, t).

2.2 3D Registration Methods
The 3D registration problem is a broad research topic and advances have been
made over the years, resulting in a plethora of different strategies and algorithms.
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Based on the level of precision in the alignment result, registration methods can be
roughly classified into two broad categories, coarse and fine. Coarse registration
techniques try to find a rough initial alignment between the two models without any
prior information about their relative pose, whereas fine registration methods try
to find a more precise alignment given a course initial alignment transformation.

The classic method for fine alignment is the Iterative Closest Point (ICP) [6].
Starting with an initialization of the alignment, ICP iteratively alternates between
solving two sub-problems: finding point-to-point correspondences and estimating
an accurate transformation based on current correspondences. ICP is a local regis-
tration method, meaning that correspondences are found using the nearest neighbor
search based on Euclidean distance.

Over the course of almost three decades, ICP has been considered the golden stand-
ard, has been extensively used in various applications and has been commonly em-
ployed as a standard benchmark for evaluating new alignment techniques. How-
ever, ICP has several limitations:

• ICP’s accuracy is highly dependent on the initial position of the models.
Being a local method, ICP is effective only when the initial pose of the input
geometries is close to the global optimum, otherwise it can converge to a
local minimum.

• ICP is computationally expensive. The iterative nature of the algorithm and
its point-to-point correspondence nature result in high computational com-
plexity.

• ICP is sensitive to outliers as it assumes that each point of the source model
corresponds to its closest point in the target model. Thus, if there are many
outliers or the models do not overlap sufficiently, ICP can lead to biased
transformations and erroneous alignments.

The simplicity of ICP combined with its drawbacks have inspired the develop-
ment of a plethora of alternative methods. A large number of variations of ICP
have appeared, which attempt to address one or more of the aforementioned lim-
itations [60]. Conceptually different approaches have also arisen, proposing other
strategies to improve robustness and complexity. Several of these methods attempt
to tackle challenges such as complexity, but the final result is lacking in accuracy,
requiring a refinement by a fine registration approach.

Feature-based methods identify feature-level similarities and correspondences,
rather than finding point-to-point correspondences. After identifying the proper
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features, these techniques use robust fitting or optimization techniques such as
RANSAC [16] and Fast Global Registration [94] to achieve registration. These
techniques are more efficient than point-level methods, but their accuracy is highly
dependent on the quality of the features selected. Feature-based techniques gen-
erally involve three steps: feature detection, feature description and correspond-
ence estimation. Features are a small group of interest points that can be detected
on both objects, due to their distinctiveness or geometric stability under different
transformations. Each feature can be delineated by a descriptor that characterizes
its geometric information. Two main categories of descriptors exist: global and
local. Global descriptors represent the geometric information of an entire 3D ob-
ject, whereas local descriptors [33, 36, 25] encode local information at each feature
point [24]. Specifically, for 3D registration local descriptors are more commonly
used, because they can identify similar localities between the two surfaces to be
aligned by exploiting the geometric properties around a certain point and its neigh-
borhood. Feature-based methods do not require a good initial pose to converge, but
they are generally less accurate since they rely on a few keypoints instead of dense
point correspondences.

Probabilistic methods transform the point clouds into probability distributions
and match their statistical properties. In particular, GMM-based methods such as
[80, 32, 15], represent point clouds as Gaussian Mixture Models (GMMs), thereby
reformulating the problem in a lower dimension. These methods have gained pop-
ularity due to their robustness to noise and outliers. Moreover, GMMs represent
an straightforward way to formulate distributions and by lowering their dimension,
these methods are computationally efficient [58].

Learning-based methods utilize machine learning techniques to achieve faster
and more robust results than classical methods. Neural networks can be integrated
into different stages of the registration pipeline. For instance, there are methods
that generate data-driven features by machine learning approaches, and then use
traditional approaches to calculate the final registration [2, 35]. The extracted fea-
tures can be more detailed and invariant than the hand-crafted ones. Additionally,
there are methods that use neural networks for the entire registration process, re-
placing both the feature extraction step and the registration estimation, by deep
networks [68, 35].

2.3 3D Registration in Cultural Heritage
A complete digital recording of CH is a multi-step process with many challenges.
CH objects require special care due to their value, articulation and fragility. Ac-
quisition protocols are often much stricter than the ones from other applications.
The surface of the CH asset cannot be touched or physically altered. Furthermore,
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the physical access to the CH assets can be limited by their size, shape or location.
Digital documentation of CH objects requires precise measurements at different
scales and resolutions to ensure that they are accurately recorded. For example,
large sites or statues require less accurate acquisitions than small delicate objects
with fine details. There has been significant growth in research on registration in
several applications, resulting in multiple methods and surveys [78, 37, 31, 65].
Specifically, 3D registration is an essential task in many CH applications ranging
from reconstruction [22] and reassembly [45] to digital documentation analysis
[48], preservation [21] and monitoring [62]. The applications of registration in
cultural heritage can be divided into three broad categories, based on the type of
the data that is aligned:

• Multiview registration aligns models of the same object captured by the
same sensor from different viewpoints during a single session in order to
form a complete 3D model of the object.

• Cross-time registration aligns temporally different models of the same ob-
ject, taken at different times. This is usually done for the purpose of monit-
oring the object and to reveal any changes.

• Multimodal registration aligns models of the same object captured by dif-
ferent types of sensors, resulting in data of different modalities. After regis-
tration, the information of the different modalities can be fused in order to
obtain a more complete and detailed description of the object.

Multiview registration is a main component of the 3D modeling workflow which
obtains the raw data from the acquisition system and creates the final digitized
3D model. Due to the visibility constraints of laser scanning acquisition and the
complexity of an object’s surface, it is usually not possible to obtain the complete
information of an object in one go. Therefore, it is necessary to scan a segment
of the object or site of interest at a time, resulting in multiple scans from different
points of view, each with its own distinct coordinate system. In order to reconstruct
the final complete object, the several partial scans need to be combined, which is
achieved by aligning the different partially overlapping scans into a single coordin-
ate system (Figure 2.1(a)).

In many applications related to CH documentation, a coarse registration is first
performed by using external reference points. But such external reference points
are not always available or are not sufficiently accurate. The automatic registration
of surface scans of 3D objects without the use of external reference points is an
active research area.
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(a) (b)

Figure 2.1: (a) Multiview 3D data registration as presented in [19]. Partial 3D views are
brought into a common coordinate system and merged to build a complete 3D model of
the object. (b) Multimodal 3D registration. Different modalities of the same object are
aligned and merged into a complete holistic 3D model.

Multiview registration procedure consists of two stages, an initial course alignment
followed by a refinement to achieve an accurate solution.

The coarse registration aims to align the scans without any prior information about
their relative pose. Correspondence-based methods are often used, where ini-
tial keypoints of the geometry are detected, then correspondences are assigned
between the input objects and, finally, a registration is achieved by computing the
transformation that best aligns the corresponding points with respect to minimiz-
ing a specific distance function. A large number of both traditional [4, 92] and
deep learning [83, 30] techniques have been proposed, each having both strengths
and limitations. In the fine registration step, the transformation result is obtained
through local search algorithms [60], with the most common one again being Iter-
ative Closest Point (ICP) [6, 11] and its variants.

Cross-time registration refers to the process of aligning 3D models of the same
object acquired at different points in time (see Figure 2.2). Digital models do not
degrade themselves and can thus be used as a reference for monitoring the struc-
tural health of CH assets in a reliable and nondestructive manner. Periodic scan-
ning and analysis can identify possible accidental or man-made alterations of the
objects (e.g. through conservation actions). Moreover, microgeometric changes
over time are measured and analyzed in order to support conservation strategies or
to identify patterns of degradation [51].
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Figure 2.2: Two geometry meshes of the Elefsis column acquired at different times 20
months apart (data from the PRESIOUS project [55]) and a close-up view of their dif-
ference. One can observe that erosion is taking place by the removal of small randomly
distributed parts (yellow).

Most methods for cross-time registration use general 3D registration algorithms,
which identify keypoints on both models and align them [38]. Case studies like
[40] and [73], have used physical targets as reference points, in order to provide
a reliable way to track changes over time. However, this may not be feasible or
practical for many invaluable and fragile CH objects. Moreover, if registration is
performed without any external reference points, these methods ignore any tem-
poral misalignment. However, due to deterioration effects, local details may have
been eroded away over time or, worse, objects may have fragmented or lost im-
portant parts of their shape. Methods such as ICP [6], try to bring the surfaces as
close as possible, overlooking the global (but known) effect of surface-recession.
For example, dense parts or large ’flat’ corresponding areas are often registered
directly on top of each other, which can result in an incorrect alignment if the
surface has globally receded between the different time points [47]. In order to
overcome such challenges and obtain a more stable result, a common practice is
to exclude from the registration process the areas where the maximal changes take
place [9], but this requires manual effort by the CH experts and specific knowledge
of each case study.

Ultimately, the alignment of differential 3D data does require manual effort by CH
experts in current practice, making it time-consuming and bringing subjectivity to
the final result. Alignment errors can lead to incorrect interpretations and conclu-
sions about the alterations and deteriorations that CH objects have undergone. To
ensure the accuracy of the alignment process, it is important to use a combination
of reliable automatic registration techniques followed by validatation of the results
using the knowledge of CH experts.
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Multimodal registration is the process of aligning and merging multiple data-
sets acquired from different modalities, such as 3D models, CT scans, or thermal
images to create a complete 3D representation of an object or scene (see Figure
2.1(b)). By combining different modalities, it is possible to create a detailed 3D
model of the original object which can provide a more complete representation
of the object’s geometry, texture and physical properties. Such a comprehensive
model can be used to study the object in detail, to guide restoration strategies be-
fore any physical intervention is carried out, or to identify areas of damage or
deterioration [49, 57].

Multimodal registration is commonly applied in many research areas such as medi-
cine [64] but it has great value in CH studies also. There are many projects that
integrate data from different 3D acquisition techniques in order to create a com-
plete way to document CH artifacts [29]. Pitzalis et al. [53] used a user-assisted
process to combine data from different sources and create an enhanced 3D model
of the Cylinder seal of Ibni-Sharrum. They combined photogrammetry with X-ray
CT, µ-topography, and high-resolution images. Neutron and X-ray imaging have
been combined in [39] and [72]. In [82], X-ray fluorescence (XRF) Imaging and
X-ray CT data were combined, and created a 3D model with elemental composi-
tion information which assisted the analysis of baroque sculptures.

The combination of information about the geometry and the inner structure can be
advantageous for understanding the object’s history, construction, and condition.
As mentioned in [67], most case studies convert the data from one modality to an-
other, and then use a unimodal registration method to align the data. For example,
[69] combined a photogrammetric 3D model with the micro-CT data by first re-
constructing the 3D surface model from the micro-CT data and then using ICP to
align the two 3D point clouds.



Chapter 3

Research Contributions

In this thesis, two special problems in 3D registration have been studied and two
deep learning methods have been proposed to tackle them. This chapter provides
an overview of the research papers that form the core of the thesis. The papers
have been grouped into two categories based on the addressed registration prob-
lem: cross-time registration and multimodal registration. Papers A and B address
the cross-time registration problem, while Papers C and D focus on 3D mul-
timodal registration. Paper E provides a unified pipeline of both cross-time and
multimodal registration.

A summary of each paper is presented, highlighting the objectives, main ideas, and
contributions. In addition to the papers, non-peer-reviewed contributions, such as
the source codes and datasets are publicly available to promote reproducibility and
facilitate future studies.

3.1 Paper A: Cross-Time registration of 3D point clouds
Saiti Evdokia, Antonios Danelakis, Theoharis Theoharis
In Computer & Graphics, Volume 99, Elsevier, 2021

Paper A addresses RQ1, outlines the cross-time registration problem as a special
case of 3D registration and proposes a deep learning registration framework to
address it [64].

CH objects change over time, due to the interaction between the object and en-
vironmental factors (i.e. atmospheric oxygen, humidity, various pollutants) or re-
pair processes (i.e. chemical or physical repair methods). Conservation science
is constantly seeking efficient methods to preserve the CH objects by monitoring,
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detecting and obviating any changes over time [52]. In monitoring, microgeo-
metric changes over time must be measured and analyzed in order to detect any
alterations that are occurring. In this matter, the geometric acquisition and meas-
urements of a CH object produce snapshots of 3D models and can be used to track
an object through time, in order to document different phases of its lifetime and
make preservation decisions.

In general, data of the same object captured at different acquisitions is likely to
contain geometrical differences. In order to facilitate the study of change, the data
of the different captures need to be registered. After correct registration the process
of monitoring can be automated in a non-invasive manner as even minute modific-
ations on the object’s surface or shape can be detected and measured. Motivated
by the fact that traditional registration techniques are inadequate to address this
case with the required high accuracy, this paper proposes CrossTimeReg, a deep
learning framework which focuses on the pairwise cross-time registration of CH
objects that have undergone erosion over time. The method overcomes limitations
such as computational complexity of the iterative methods, the necessity for point-
level correspondence and copes with large 3D models. It also exploits a known
fact about erosion i.e. that areas of high curvature erode more.

Figure 3.1: Overview of the presented CrossTimeReg registration framework.

CrossTimeReg consists of four components, as shown in Figure 3.1. The initial and
eroded point clouds (also referred to as source and target) are first downsampled
using the Curvature Downsampling (CDS) block, where the points that are less
likely to be significantly altered by erosion are retained. These points are expected
to be those with the minimum principal curvature [23]. The intuitive reason be-
hind this is that such points are less exposed to erosion/degradation processes or
conservation activities. Thus they are considered to be a more robust representa-
tion of the object across such processes or activities. Next, the Feature Extraction
block (RRI) computes features that remain fixed under different orientations. The
features along with the point clouds are then sent to a Siamese architecture of
point cloud segmentation networks (KP-FCNN) (Figure 3.2a). Each point cloud
is segmented into a specific number of components by estimating for each point
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the component that it belongs to. Finally, the optimization module of DeepGMR
[91], takes the segmented point clouds and calculates for each the Gaussian Mix-
ture Model including mixture weights, means and covariances. Finally, the 3D
rigid transformation parameters are computed by aligning the segment centroids
(weighted by the covariances) using a deep registration block, a weighted version
of the SVD solution (Figure 3.2b).

Figure 3.2: (a)The KP-FCNN segmentation network architecture. The encoder transforms
the features by consecutive KPConv blocks and the decoder upsamples the features to the
initial input resolution. Skip links are used to pass the features between intermediate
layers. An example placed at the top of each layer shows the downsampling process and
how the receptive field (red sphere) grows proportionally to the downsampling size. (b)
The deep registration module with its two differentiable computing blocks MΘ and MT .

In order to benchmark and train cross-time 3D registration algorithms, the paper
proposes ECHO; a dataset of eroded 3D models of CH objects along with the
ground truth needed for evaluating cross-time registration algorithms.

The main contributions of the paper are as follows:

• The problem of cross-time 3D registration is formally defined and a frame-
work for cross-time 3D registration is proposed.

• A down-sampling methodology that detects the most valuable points for
cross-time registration is proposed.

• A benchmark for evaluating both traditional and cross-time registration al-
gorithms, ECHO, is created and made publicly available [14].

• An extensive evaluation of both geometry-based and deep learning state-of-
the-art approaches on 3D cross-time registration is performed.
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3.2 Paper B: An automated approach for change and dif-
ference detection in cultural heritage applications
Saiti Evdokia, Sunita Saha, Eryk Bunsch, Robert Sitnik, Theoharis Theoharis
In Digital Applications in Archaeology and Cultural Heritage, submitted in
March 2023

Paper B proposes an application of CrossTimeReg from Paper A to monitor and
assess changes in CH objects (RQ2).

3D digital models can be durable and unalterable, and can thus be used as a
reference for monitoring changes and identifying differences in a reliable and
nondestructive way. An accurate, high-resolution digital model can reveal details
and features of an object that might not be visible to the naked eye. The analysis
of changes in an object’s geometry, allows CH experts to track changes over time,
develop effective conservation strategies, or even detect forgeries [18]. In this con-
text, the analysis of geometric changes is a topic of great importance in CH, with
three primary scopes of application:

• Health monitoring and tracking of aging processes of CH objects. Periodic
scanning and monitoring can identify possible accidental or man-made al-
terations of the objects. Moreover, microgeometric changes over time are
measured and analyzed in order to support conservation strategies or to
identify patterns of degradation or deterioration [51].

• Authenticity identification of a CH object. 3D models constitute a digital
archive that can be useful to identify replicas or forgeries. The automated
comparison and analysis of the digital model can empower the object’s au-
thentication process. For example, the information provided by a geometric
comparison can be used to verify a CH object’s authenticity after returning
from a loan.

• Comparison of multiple CH objects of similar shape in order to analyse their
history. Throughout history, it was common practice for a workshop to cre-
ate a series of artefacts, similar in shape and dimensions. By comparing the
3D models of multiple similar objects, the CH experts can verify a possible
origin from the same workshop production and assess the technique of their
manufacture.

The presented method can be applied in all of the three aforementioned applica-
tions but for Paper B, the selected case study was from the third type of application.
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In particular, we study two ceramic sculptures from the collection of the Museum
of King Jan III’s Palace at Wilanów in Poland. The ceramic sculptures named
’Zephyr and Flora’ were made at the Meissen workshop at different times, based
on a master ancient composition. Even though the sculptures are similar in geo-
metry, several changes can be detected and provide insights for establishing the
time, place and process of the objects’ production. The research was conducted
by a multidisciplinary research group with representatives from computer science
and cultural heritage.

This paper focuses on the automated data analysis for change and difference detec-
tion on CH objects. The novelty of the proposed method lies in the following; the
adaptation of two recently developed techniques for automatic registration [64] and
change segmentation [62], in a common framework to detect differences between
CH objects efficiently and robustly; the showcasing of the combined method on
two instances of real CH objects that originated from the same workshop: to the
best of our knowledge, this is the first time that such instances have been geomet-
rically compared and analyzed.

3.3 Paper C: An application independent review of mul-
timodal 3D registration methods
Saiti Evdokia, Theoharis Theoharis
In Computer & Graphics, Volume 91, Elsevier, 2020

This paper addresses RQ3 and presents a literature review to summarize the exist-
ing state-of-the-art 3D multimodal registration methods. The goal of this survey is
to unify and categorize 3D multimodal registration techniques across application
domains. The review was restricted to methods where one or both modalities are
three-dimensional.

The paper reviews the methods used for aligning multimodal 3D data. We use the
term multimodal to refer to two datasets with qualitative variability in shape or
appearance; thus having different dimensions (e.g. 3D/2D images, X-ray / MRI),
different data structures (e.g. 3D point cloud and an MRI volume) or different
physical and anatomical principles (e.g. MRI and CT volumes). The methods
arose in fields including medical, cultural heritage and urban mapping. We tried
to identify common trends, applications and evaluation metrics for multimodal
registration.

The paper explicitly defines the 3D multimodal registration problem and categor-
izes the methods based on their algorithmic strategies, rather than their registra-
tion attributes. It also overviews the publicly available multimodal datasets and
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finally evaluates and experimentally compares the registration methods using pub-
licly available source code.

The main contributions of this work are:

• A comprehensive categorization of 3D multimodal registration across ap-
plication domains.

• An overview of publicly available multimodal registration datasets.

• An extensive evaluation of comparable implementations of publicly avail-
able 3D multimodal registration methods is performed.

• Trends in strategies, applications and evaluation metrics for multimodal re-
gistration are identified.

3.4 Paper D: Multimodal registration across 3D point clouds
and CT-volumes
Saiti Evdokia, Theoharis Theoharis
In Computer & Graphics, Volume 106, Elsevier, 2022

Paper D addresses RQ4 and specifically the multimodal registration of 3D models
from 3D surface scanning and computed tomography (CT). These modalities were
chosen because they contribute to and supplement each other in order to create a
complete and accurate 3D virtual representation of a CH object.

Geometry acquired from 3D surface scanners is a core aspect of a digital model
but is limited since only data from the surface are acquired and the inner structure
of the object cannot be documented. The penetrative capabilities of tomographic
scanning allow the digitization of the interior of an object without having to per-
form physically invasive actions. By combining these two modalities, it is possible
to produce a holistic 3D representation of an object. This combination first requires
the registration of the two modalities in a common reference frame.

The main challenge in aligning these modalities is finding accurate correspondence
between them since these two modalities do not exhibit the same characteristics,
structure, or physical principles. The main idea of the method presented in this
paper is that since both modalities represent the same object, there will exist com-
mon features to guide a supervised deep registration network. In our methodology
and experiments, we take advantage of a ground truth in order to train a neural
network to properly align the two modalities.

The paper presents PCD2VOL [63], a deep learning framework capable of aligning
two different modalities, without transforming either of them before feeding them
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to the network. PCD2VOL aligns 3D surface data with 3D CT volume data and
was, to the best of our knowledge, the first time that a deep learning network was
trained to register such modalities.

The presented framework, as shown in Figure 3.3, consists of three main compon-
ents. First, the 3D point cloud and the 3D CT volume are fed into two modality-
specific feature extraction network blocks to identify regional and geometric fea-
tures of each modality independently. Then, the modality-based features are passed
to a siamese architecture of cross-modal attention blocks, in order to capture local
features and their global correspondence across the modalities. Finally, the deep
registration block processes the fused feature representations to extract the regis-
tration parameters.

Figure 3.3: Overview of the proposed Multimodal 3D registration framework. 1. Each
input modality (Point Cloud and 3D CT Volume) is fed into an independent feature ex-
tractor network that is suitable for that modality. 2. The captured features are fed to a
siamese architecture of cross-modal attention blocks. 3. The registration block fuses the
cross-modal features into the final registration parameters.

The main contributions of this paper are:

• The problem of multimodal 3D registration of CT volumes and 3D point
clouds is formally defined.

• A deep learning framework for 3D registration of CT volumes and 3D point
clouds is proposed, which employs a siamese architecture for a novel atten-
tion mechanism for effective multimodality fusion.

• A multimodal dataset for evaluating algorithms for aligning CT volumes and
3D point clouds is presented and made publicly available [1].
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3.5 Paper E: A pipeline for monitoring the external and
inner structure of cultural heritage objects
Saiti Evdokia, Theoharis Theoharis
In Archiving Conference 2023, submitted in March 2023

Paper E combines RQ2 and RQ4 and proposes a pipeline for monitoring both
the surface and the inner structure of CH objects. The approach has the potential
to facilitate the monitoring through time and change detection of CH objects in a
more holistic way.

The pipeline proposed takes as input two different sets of 3D models and 3D
volumes acquired at different times from 3D surface and CT scanning respectively,
and registers both modalities in a multitemporal way. The results show the pos-
sibilities of this methodology for accurate multitemporal documentation of both
surface and inner structure.

Figure 3.4 illustrates the presented pipeline, which consists of two parts, the cross-
time and multimodal registration. The workflow takes as an input two sets of the
3D model and 3D volume of a CH object acquired at different times. Between
these times, the surface and the interior may have altered due to environmental or
human actions. The first part adapts the CrossTimeReg framework of Paper A for
aligning 3D point clouds across time. The resulting aligned 3D models along with
their respective 3D volumes, are subsequently forwarded to the next step. This
step consists of two parallel multimodal registration frameworks as presented in
Paper D. This stage is responsible for aligning and fusing each pair of 3D model
and 3D volume.

Figure 3.4: The pipeline of Paper E, for digital monitoring of external and internal struc-
ture of CH objects.



Chapter 4

Discussion

In this chapter, we highlight the contributions to the two main research areas; cross-
time and multimodal registration.

4.1 Research Contribution

4.1.1 Cross-time Registration

Papers A, B and E address cross-time registration. Paper A proposes Cross-
TimeReg, a framework designed to accurately align 3D models that have under-
gone surface modifications. Papers B and E incorporate CrossTimeReg into two
different pipelines, which facilitate two distinct case studies. Paper B addresses
an intriguing topic of geometry analysis in the context of museums, where Cross-
TimeReg is applied to compare multiple CH objects of similar shapes in order to
analyse their origins. In Paper E, the two special cases of registration discussed in
this thesis, are combined into a unified pipeline, which monitors both the external
and internal structure of CH objects. Below, we discuss further the contributions
on cross-time registration, concentrating on the CrossTimeReg framework and the
ECHO dataset.

The CrossTimeReg framework
Paper B focuses on the challenging problem of 3D cross-time registration and
introduces CrossTimeReg, a deep learning method that can accurately align 3D
point clouds that have undergone differential changes over time.

CrossTimeReg achieves state-of-art accuracy and robustness to large initial trans-
formations while being computationally efficient. Several experiments have been
conducted to evaluate the performance of CrossTimeReg in comparison to existing
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state-of-the-art methods. These experiments included different levels of erosion,
ranging from no erosion to 60 years of erosion with acid rain, and evaluation on
the real data of the PRESIOUS project [77, 76].

Table 4.1: Registration results on the ECHO dataset when only random rotations, transla-
tions and 60 years of erosion are performed on the initial objects. The metrics evaluated
are rotation error, Error(R), translation error, Error(t), root mean square error, RMSE, root
mean square distance, RMSD and Recall with threshold 0.2. Bold and dark gray denote
best and second best performing methods for each measure respectively. For fairness reas-
ons, we have not included in bold, cases where CrossTimeReg performs best when trained
on the training partition of ECHO; instead such cases are in bold italics.

Method Registration Error(R) Error(t) RMSE RMSD Recalla (%) Mean Exec.
Local Global Time (sec)

G
eo

m
et

ry
-b

as
ed

ICP [6] ✓ 1.6992 42.5667 38.6065 42.583 0 34
FPFH-RANSAC [61, 16] ✓ 1.8314 29.2151 29.3316 29.2326 0 32
SI-FGR [33, 94] ✓ 1.8202 0.0629 1.1298 1.1344 21.91 32
SISI-RANSAC [12, 16] ✓ 0.9984 0.1044 0.6870 0.6877 96.88 67
LD-SIFT -RANSAC [12, 16] ✓ 0.3496 0.0793 0.2789 0.2878 98.79 68
RICI-FGR [7, 94] ✓ 1.1396 0.0495 1.1832 1.1396 20.77 38

D
ee

p
L

ea
rn

in
g PRNet [84] ✓ 1.7514 1.0184 1.4723 1.4858 43.12 14

PointNetLK [2] ✓ 1.7413 29.2389 29.2514 29.2561 0 11
PCRNet[68] ✓ 1.8095 49.3442 49.3603 49.3600 0 10
RPM-Net [89] ✓ 1.6993 29.2594 29.2784 29.2755 0 15
DCP [83] ✓ 1.6881 38.6109 38.6542 38.6133 0 15
DeepGMR [91] ✓ 1.0065 0.0673 0.9454 0.6746 99.31 4
CrossTimeReg [64] ✓ 0.9942 0.0448 0.6764 0.6812 99.55 6
CrossTimeReg (trained on ECHO) ✓ 0.1397 0.0714 0.2606 0.6928 99.98 6

Table 4.1 shows that CrossTimeReg generally outperforms the state-of-the-art in
most performance metrics evaluated. The performance of geometry-based global
registration methods like RANSAC [16] and FGR [94] is highly dependent on
feature matching or keypoint detection from hand-crafted descriptors. It is also
highlighted that the LDSIFT descriptor [12] performs considerably better that the
rest of the state-of-the-art, since it is a rotation- and scale-invariant descriptor. As,
in the simple erosion model used, erosion affects the surface of an object evenly,
the scale invariant features result in better recovery of the correct transformation.
However, LDSIFT suffers from large computation time and memory requirements,
which limit its use in real-time applications or large datasets. In contrast, Cross-
TimeReg is more computationally efficient, making it a practical solution for real-
time applications.

Furthermore, we conducted experiments on the ECHO dataset to evaluate the
performance of CrossTimeReg and other state-of-the-art methods under different
levels of erosion. The erosion model has been applied to the point clouds to simu-
late different levels of degradation, ranging from 1 year to 60 years. The results of
these experiments (Figure 4.1(a)) indicate that CrossTimeReg exhibits stable per-
formance across levels of erosion, with its performance even (curiously) increasing
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slightly at the highest levels. This suggests that CrossTimeReg is robust to differ-
ent levels of degradation and can effectively handle cross-time registration of point
clouds with significant differences. The stable performance of CrossTimeReg un-
der different levels of erosion further supports its potential as a reliable and robust
solution for 3D cross-time registration.

(a) (b)

Figure 4.1: (a) Comparison between different registration methods on examples from the
ECHO dataset for cross-time registration across different levels of erosion. (b) Ablation
study of downsampling methodologies on different levels of erosion based on the ECHO
dataset.

The contribution of the proposed downsampling method on the final performance
of CrossTimeReg was evaluated by comparing it against the case where uniform
sampling is used (Figure 4.1(b)). The results of this comparison showed that the
proposed downsampling method behaved stably across different levels of erosion,
demonstrating consistent and reliable performance. In contrast, uniform sampling
had better RMSE results on small erosion values but the performance degraded
as the level of erosion increased. This suggests that the proposed downsampling
method is more robust and effective in handling point clouds with different levels
of erosion, making it a more practical and reliable solution for cross-time registra-
tion.

The importance of these findings is that they demonstrate the practicality and use-
fulness of CrossTimeReg on real data, where point clouds may undergo differential
changes over time due to environmental factors.

The ECHO dataset
One of the main challenges was the lack of a publicly available dataset with ground
truth for cross-time 3D registration. In order to benchmark and train cross-time 3D
registration algorithms, paper A proposed the ECHO dataset. Starting from the
publicly available dataset of CH objects of [71], we first applied a random rigid
transformation (R, t) to the objects; then we used an artificial erosion process to
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erode the transformed objects [47]. Since erosion is performed in situ and the
(R, t) parameters are known, we automatically have the ground truth for training
and benchmarking cross-time registration algorithms. The process is outlined in
Figure 4.2 and an example is given in Figure 4.3.

Figure 4.2: The steps of the ECHO dataset creation for an example object. The object is
initially transformed rigidly and then the erosion simulator runs for 20 epochs of 3 years
each. In this example, the initial model is shown degraded due to the effect of acid rain
after 3, 15, 30 and 60 years. Below each eroded model, its point-wise MSD and RMSD
differences from the transformed model are given.

Figure 4.3: ECHO dataset: example from the simulated dataset for weathering. Original
CH object from SHREC2021 dataset (a), along with the transformed (reference) instance
(b). In (c) the reference object is depicted in gray color and superimposed are the same
object after 30 years of aging in blue and the after 60 years in red.

4.1.2 Multimodal Registration

3D Multimodal Registration: a review of the state-of-the-art
In Paper C the current state-of-the-art methods in 3D multimodal registration are
reviewed, leading to several useful results.

This was the first review paper on multimodal 3D registration. Initially, the ‘3D
multimodal registration’ problem was defined and the methods were categorized
based on their algorithmic strategies, rather than their registration attributes, and
independently of application domain. Moreover, we overviewed the publicly avail-
able multimodal datasets and finally, evaluated and experimentally compared the
registration methods with publicly available source code. During the review of
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the methods, we identified that the term multimodal registration has largely been
‘used’ or ‘abused’ in the literature, referring to such aspects as the same object
from different viewpoints, the same object at different moments in time or the
same object scanned by different sensors. A definition therefore seemed appropri-
ate in order to filter the methods that would be part of the survey.

A key question was what should be the characteristics of two modalities in order
to be considered different? To answer this question, we have tried to locate what
makes multimodal registration a more challenging task than unimodal registration.
It has been observed that registration methods that perform well in the unimodal
case, do not necessarily perform well in the multimodal. In unimodal registration,
data have similar or correlated statistical properties and it is rather straightfor-
ward to recognize correspondences or a similarity metric. The core difficulty in
multimodal registration is in identifying structure correspondences across modal-
ities or in defining a general rule for identifying similarity across two modalities
with different physical principles. Therefore, as mentioned before, we will use
the term multimodal to refer to two datasets with qualitative variability in shape
and appearance; thus having different data structure, different dimensionality or
different physical and anatomical principles.

Some key findings of the review follow. Over the years many multimodal regis-
tration techniques have been proposed mainly related to the medical field. This is
because, in the medical field, there are many body scanning modalities that need
to be registered in order to acquire an integrated view of the patient. Registration
of 3D models to 2D images is the most common case across applications from
different fields. So, why not use registration methods created for another field
also for our purposes in cultural heritage? There is a plethora of medically ori-
ented algorithms, which align modalities such as MRI, TRUS, and X-ray images.
But unfortunately, these were modalities that are not so popular in the CH field.
Moreover, the physiology and characteristics of medical data differentiate them
from cultural heritage data, as discussed below, and the need was therefore identi-
fied for a registration methodology mainly focused on the CH modalities at hand,
i.e. surface scans and CT.

The modeling of cultural heritage objects faces technical challenges due to causes
such as their shape, their articulation and size. For example, CH objects may be
large. Statues or temples are far larger than a human brain or a human body part or
many mechanical objects. In addition, CH objects are scanned in high resolution
in order to depict any detail on their surface, resulting in large data which are in
general hard to render and process.
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The PCD2VOL framework
Paper D addresses the challenging problem of aligning 3D point clouds to 3D
CT Volumes. PCD2VOL is a direct solution for registering different 3D modal-
ities, without any prior conversion of one modality to the other. Both modalities
are treated directly, so as to avoid information loss and time penalty. PCD2VOL
employs a siamese architecture of cross-modal attention blocks that captures and
fuses features of two structurally different modalities. An attention mechanism en-
ables a model to focus on important information for a task; thus it has been applied
widely to various computer vision problems, including image classification [90],
object detection [85], image generation [93] and image captioning [86]. Recently
this technique has also been used for multimodal registration. In [95], RGB images
and point clouds were fused by learning feature interactions between the modalit-
ies with a cross-modal attention scheme while in [74] a self-attention mechanism
was developed specifically for aligning 3D medical volumes of MRI and TRUS
modalities.

Our problem is generic in that it concerns the alignment of 3D modalities that
are complementary since they jointly describe the interior and the surface of a
3D object. The proposed network exploits cross attention for the challenging task
of aligning 3D modalities of different geometric data structures. PCD2VOL is a
combination of CNN for volume feature extraction [59], geometric deep learning
for point cloud feature extraction [56] and a siamese architecture of cross modal
attention network, trained to identify correspondences and fuse regular input data
formats (like 3D voxels) and irregular 3D geometric data (like 3D point clouds).
To the best of our knowledge, this is the first time that registration of such different
modalities, without projecting one modality onto the other, is explored.

The biggest challenge was the lack of a benchmark for evaluating our method.
An accurate and fair comparison between our method and previous approaches
was not straightforward because we could not identify any previous registration
methods that directly align point clouds and CT volumes. We thus opted to use ICP
as a baseline. Since ICP works on point clouds, we pre-processed the CT volumes
and converted them into point clouds. We then run the ICP algorithm between
these point clouds and the point clouds of the ‘3DPCD-CT’ dataset. In general,
ICP fails when it comes to large rigid transformation differences. To succeed, ICP
needs a good initial transformation estimation (which may not be the case in many
applications). Thus, in most cases, ICP did not converge. Moreover, ICP and other
state of the art registration techniques require inputs of the same modality (point
clouds in general), necessitating the conversion of one of the inputs in order to
address the modality gap. This conversion involves loss of information, which can
significantly affect the registration result. In addition, such a conversion can be
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expensive, especially when large 3D volumes are involved, as in CH applications.

Table 4.2: Performance comparison between multimodal registration methods.

Method Data Modalities Modalities Structure Data Runtime Initial TRE Percent
M1 M2 S1 S2 Conversion (sec) TRE Change

[28] MRI US 3D volume 3D volume No 20 6.76 2.12 68%
[74] MRI TRUS 3D volume 3D volume No 0.003 8.00 3.63 54%
[3] RGB Depth Map 2D Image 2D Image No n/a 35.46 6.93 80%
[27] MRI CT 3D volume 3D volume No 320.4 13.49 7.12 47%
[50] RGB Point Cloud 2D Image 3D model Yes 9000 n/a 30.19 n/a
PCD2VOL [67] CT Point Cloud 3D volume 3D model No 0.12 15.34 5.15 62%

We thus opted for a direct comparison of our method against other multimodal
registration methods, even though they may deal with different modalities, as this
was the nearest we could get to comparing against other methods. Table 4.2 shows
quantitative registration results of the latest state-of-the-art 3D multimodal regis-
tration methods. Most of these methods align data of different modalities but of
the same structure. However, the results are only indicative, since each method
registers different modalities and the datasets that experiments were conducted on
are different and oriented to the specific modalities and task. The table shows the
TRE metric as it is considered to be a more generic measure of registration accur-
acy [41]. In general, TRE is the distance between the corresponding points of the
inputs, but due to the fact that the modalities that each method fuses are different,
the exact calculation of TRE may differ.

The methods that align different representations of data are [50] and the proposed
one, PCD2VOL (Table 4.2). [50] aligns 2D images against a 3D model. However
this method converts one modality to the other as a first step (the 2D images to a 3D
model) and then executes a typical unimodal registration; the conversion involves
the penalties of cost [50] and information loss, as also attested by its high TRE.
The proposed method directly registers different data modalities and of different
structure, which is a more challenging task compared to registering multimodal
data of the same structure.

Interestingly the initial TRE, corresponding to the initial pose of the inputs of the
compared methods, varies significantly. The results displayed in Table 4.2 show
that the registration error is associated to the difference in initial pose of the inputs.
When input modalities start with a pose close to the ideal solution, the initial TRE
is lower and so is the registration (final TRE). However, many commonly used
registration methods could produce non sufficient results if the modalities are not
initialized properly [26].
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In an attempt to measure the improvement in alignment of the compared methods,
we also calculated the percentage change (PC) in TRE as [34]:

PC =
|TRE − InitTRE|

InitTRE
100% (4.1)

Higher values of PC denote a larger improvement on the initial pose. We chose a
high initial TRE for the evaluation of our method in order to mimic real, challen-
ging, situations. Taking into consideration the PC of the proposed method and the
fact that it operates on modalities of different data structure, the results obtained
can be considered as very competitive.

3D volume modalities (CT, MRI, TRUS) contain details about the inner structure
of the object, like cracks, porosity and voids while 3D surface models contain a
precise representation of the external surface of the object. A conversion from
one modality to the other might result in information loss that will significantly
affect the registration result. For example, a 3D model of the surface lacks inform-
ation on the inner details, so a conversion will not contain any valuable contextual
information of the interior and this is likely to affect the registration result. Con-
versely, a conversion of a 3D volume to a 3D model might add extra computational
time without a respective benefit on registration accuracy.

The modified Siamese registration network proposed in Paper D was, to the best of
our knowledge, the first registration mechanism that attempted to align two differ-
ent data modalities not only in terms of data type but data structure as well. In this
light, the achieved results can be considered as satisfactory as well as promising.

The 3DPCD-CT dataset
The lack of a specialized dataset for training and benchmarking 3D multimodal
registration methods also became evident in the case of PCD2VOL. As PCD2VOL
is a fully supervised deep learning method, it is highly dependent on the availabil-
ity of sufficient data for training and evaluation. Paper D highlights this need and
proposes a synthetically generated dataset based on real data from the PRESIOUS
project [76, 77]. The 3DPCD-CT dataset is a multimodal dataset, containing both
3D point clouds and 3D CT volumes along with the ground truth of the best align-
ment between each pair of modalities. The dataset contains 636 pairs of modalities,
divided into a training (80% of the dataset) and testing set (20% of the dataset).
Each pair of modalities contains the CT Volume, the respective point cloud and
their ground truth transformation for a perfect alignment. Figure 4.4 shows two
examples from the 3DPCD-CT dataset.
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Figure 4.4: Example point clouds in the 3DPCD-CT dataset. Two different object cases
are shown: a. the Nidaros GSmall 01 stone and b. the Nidaros BLarge 02 stone. The
left images depict the 3D geometry of the stone from different viewpoints while the right
images represent point clouds of the same slab generated from the respective CT-volume.
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Chapter 5

Conclusions and future work

5.1 Future Perspectives
This thesis has identified several areas for future research. Paper A proposes
CrossTimeReg, a deep learning method for aligning differential data from CH ob-
jects before and after possible alterations on their surface. The method focuses on
the case of weathering erosion, assuming that the objects have been uniformly ex-
posed to environmental effects, both spatially and temporally. The reason for this
was the capabilities of the erosion simulator that we had at hand. This work can
be extended to use a more realistic erosion model with non-uniform alterations on
the surface’s orientation, texture and shape.

Another limitation is that even though the CrossTimeReg method is deep learning
based, the feature extraction is still hand-crafted. This specific task adds extra
computational cost to the entire pipeline. In the future, it may be considered to
replace the feature extraction part with features learned specifically for cross-time
registration by the network.

While the CrossTimeReg framework was originally developed to register differen-
tial data that had been eroded by weathering, it was later integrated into a larger dif-
ference detection system as described in Paper B. The system efficiently compared
similar CH objects, expanding the potential for future applications. Specifically,
this framework could be applied to analyzing geometric changes and differences in
CH objects for forgery detection and authenticity identification of an object after
returning from a loan.

Paper D presents a registration method for 3D point clouds and 3D volumes that
treats modalities directly without any prior conversion. However, due to the struc-
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tural and physical differences between these modalities, finding an appropriate
evaluation metric to validate registration accuracy can be challenging. Further-
more, visualizing both modalities in a clear and informative way is not trivial, and
additional research is needed in order to improve the visualization. The framework
proposed in Paper D consists of an adjustable feature extraction module, which
allows generalization to different modalities. By using different feature extrac-
tion blocks that are specific to each modality, the method can be extended to fuse
different modalities, such as voxel data. The method’s adjustability enhances its
potential application outside the CH field, as for example in medical imaging.

5.2 Conclusion
This thesis focuses on two specific visual computing problems: cross-time and
multimodal registration. Two novel frameworks have been proposed, leveraging
deep learning methodologies, along with the respective datasets for training and
benchmarking them.

The frameworks proposed in this thesis overcome multiple challenges, such as
finding accurate correspondences between modalities that do not share the same
characteristics or between 3D models whose geometry has changed over time. The
CrossTimeReg method was extended into an automated framework for difference
detection and change monitoring for CH objects. Furthermore, both frameworks
could be combined and applied for monitoring changes on both the surface and the
inner structure of CH objects.

The presented frameworks offer CH experts a valuable tool for tracking changes
over time and thus developing effective strategies for conserving and preserving
CH objects, while being applicable elsewhere also.

The contributions of this thesis were made publicly available to the research com-
munity. They include efficient implementations of the cross-time [66] and mul-
timodal registration [63] frameworks and two datasets for training and benchmark-
ing each framework ([14, 1]). Additionally, all publications related to these con-
tributions were made available open access.
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a b s t r a c t 

Registration is a ubiquitous operation in visual computing and constitutes an important pre-processing 

step for operations such as 3D object reconstruction, retrieval and recognition. Particularly in cultural her- 

itage (CH) applications, registration techniques are essential for the digitization and restoration pipelines. 

Cross-time registration is a special case where the objects to be registered are instances of the same 

object after undergoing processes such as erosion or restoration. Traditional registration techniques are 

inadequate to address this problem with the required high accuracy for detecting minute changes; some 

are extremely slow. A deep learning registration framework for cross-time registration is proposed which 

uses the DeepGMR network in combination with a novel down-sampling scheme for cross-time registra- 

tion. A dataset especially designed for cross-time registration is presented (called ECHO) and an extensive 

evaluation of state-of-the-art methods is conducted for the challenging case of cross-time registration. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Geometric registration (or alignment) is a crucial tool in visual 

computing with applications in robotics, medical imaging and cul- 

tural heritage (CH) analysis, among many others. Registration of 

datasets and particularly point clouds, has become a key opera- 

tion in many shape analysis tasks, such as 3D object retrieval [1,2] , 

semantic segmentation and classification [3,4] , 3D mapping [5–7] , 

3D object scanning [8] and 3D model reconstruction [9–11] . 

Registration aims to find the transformation that optimally 

aligns two or more similar objects or two or more instances of the 

same object taken at different times (cross-time data), from dif- 

ferent viewpoints (multi-view data) or by different sensors (multi- 

sensor data), in order to bring the data into a common reference 

frame [12] . The surface alignment problem is a broad research 

topic and advances have been made over the years, resulting in a 

plethora of different strategies and algorithms. However, there are 

still open problems to be addressed, especially in the context of 

CH. Archaeological objects differ from mechanical or medical ob- 

jects in their shape and size (some CH objects can be quite large), 

articulation and fragility. Moreover, the number of objects digitized 

and available for experimentation is limited in CH. 

Computing has greatly aided the CH field over the last decades, 

including the restoration, preservation and monitoring processes 

[13] . In monitoring, microgeometric changes over time are mea- 
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sured and analyzed in order to support conservation strategies 

[14] . CH objects have been constantly undergoing changes or 

degradation over time. In this matter, geometric acquisition and 

measurements of a CH object produce snapshots of 3D models and 

can be used to track an object through time, in order to document 

different phases of the conservation pipeline and identify any de- 

structive intervention, or to understand any damages that these 

modifications may indicate. 3D surface registration can automate 

the process of monitoring CH artefacts in a non-invasive manner 

by aligning the objects in such a way that even minute modifi- 

cations on the object’s surface or shape can be automatically de- 

tected and measured. 

As CH digitization is becoming more widespread, CH object 

monitoring activities based on the digitized objects are increasingly 

relevant. Several methodologies have been proposed over the last 

years, but the contribution is limited due to the relatively small 

number of digitized CH objects than can be used in the experimen- 

tation with the monitoring process. The main reasons are that the 

conservation process is time consuming and needs to be planed 

properly so as not to harm the CH object and that the change de- 

tected from environmental erosion cannot be easily identified un- 

less several decades pass. The lack of an adequate digital bench- 

mark for deeper analysis and comparison is a major obstacle to- 

wards the development of automatic techniques for proper mon- 

itoring and documenting different phases of conservation. Such a 

benchmark is crucial for comparing methodologies and scenaria. 

This work is focused on the pairwise cross-time registration 

problem. We introduce a registration methodology that copes with 
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big data using a down-sampling scheme that is appropriate for 

objects that undergo erosion over time and overcomes limitations 

like the computational complexity of iterative methods, the neces- 

sity for point-level correspondence or a coarse pre-alignment step. 

Moreover, we address the absence of benchmarking data by con- 

tributing a dataset of artificially eroded CH objects, including their 

ground truth transformation. The initial models are taken from the 

SHREC 2021 dataset for retrieval of CH objects [15] and have been 

artificially eroded based on weathering conditions resulting from 

polluted environments and from naturally occurring climatic con- 

ditions [16] . 

The contributions of this paper are: 

• The problem of cross-time 3D registration is formally defined 

and a framework for cross-time 3D registration is proposed. 

Publicly available upon publication. 
• A down-sampling methodology that detects the most valuable 

points for cross-time registration is proposed. Publicly available 

upon publication. 
• A benchmark for evaluating both traditional and cross-time reg- 

istration algorithms is created. Publicly available upon publica- 

tion. 
• An extensive evaluation of both geometry-based and deep 

learning state-of-the-art approaches on 3D cross-time registra- 

tion is performed. 

The remainder of this paper is organized as follows: In 

Section 2 related works are discussed while in Section 3 the prob- 

lem of cross-time 3D registration is defined. In Section 4 the pro- 

posed methodology for cross-time 3D registration is introduced 

while Section 5 presents the proposed evaluation benchmark. 

Experimental results on cross-time registration are presented in 

Section 6 . The paper is concluded in Section 7 . 

2. Related work 

Since surface registration is fundamental to many visual com- 

puting domains, there is a very extensive literature on the subject. 

However, to the best of our knowledge, there exists no methodol- 

ogy specifically for cross-time registration. Instead, standard point 

cloud or surface registration techniques have been used, but the 

results are sub-optimal as we shall see later. In this section, we re- 

view the methods that are most related to cross-time registration. 

For a comprehensive review of general registration methods, the 

interested reader is referred to [17] and for a survey oriented to 

cultural heritage applications to [18] . 

Registration methods can be roughly classified into two broad 

categories, local and global. Global registration techniques align 

the source and target objects without any prior information about 

their relative pose, whereas in local registration, a prior coarse 

transformation is known and the algorithm tries to refine the so- 

lution. In general, local approaches are more accurate but less ro- 

bust to initial pose than global approaches. Examples of local ap- 

proaches are the well-known Iterative Closet Point (ICP) [19] and 

its variants [20] , while RANSAC [21] and Fast Global Registra- 

tion [22] are examples of global methods. Further, registration ap- 

proaches can rely on point-to-point correspondences between the 

data or be correspondence-free [23] . 

In addition to geometry-based registration techniques, there has 

been a recent wave of deep learning approaches, attempting to 

overcome the challenge of prolonged running time and aiming to 

boost accuracy further [12] . 

2.1. Geometry-based registration 

Correspondence-based methodologies are based on the obser- 

vation that computing the optimal alignment between two sur- 

faces is equivalent to finding corresponding points and then com- 

puting the transformation that best aligns them with respect to 

minimizing a specific distance function. The Iterative Closest Point 

(ICP) [19] is the best-known and most applied such algorithm for 

solving rigid registration problems. ICP iteratively alternates be- 

tween finding point-to-point correspondences and distance mini- 

mization to compute the optimal alignment. Given its popularity, a 

large number of variants have appeared [20,24] but there are some 

drawbacks. The method is local and, thus, is effective only when 

the initial pose of the input geometries is close to the global op- 

timum, otherwise it can converge to a local minimum. Moreover, 

the iterative nature of the algorithm and its point-to-point corre- 

spondence nature result in high computational complexity. In ad- 

dition, real-world data and particularly in the case of cross-time 

registration where erosion is involved, do not contain exact point 

level correspondences. 

To overcome the issues of point-to-point matching, many 

strategies try to identify feature-level similarities and correspon- 

dences. Approaches like RANSAC [21] and Fast Global Registration 

(FGR) [22] use feature descriptors and matching combined with 

robust fitting or optimization techniques to achieve registration. 

These techniques are much more efficient than point-level meth- 

ods but are highly dependent on the quality of features. Feature- 

based techniques generally involve three steps: feature detection, 

feature description and correspondence estimation. Features are a 

small group of interest points that can be detected on both objects, 

due to their distinctiveness or geometric stability under different 

transformations. Each feature can be delineated by a descriptor 

that characterizes its geometric information. Two main categories 

of descriptors exist: global and local. Global descriptors represent 

the geometric information of an entire 3D object, whereas local de- 

scriptors encode the local information at each feature point [25] . 

Specifically for 3D registration local descriptors are more com- 

monly used, because they can identify similar localities between 

the two surfaces to be aligned by exploiting the geometric proper- 

ties around a certain point and its neighborhood. 

A large number of descriptors have been proposed. Diez et al. 

presented an analytical review in [26] , however not every descrip- 

tor is suitable for cross-time registration. Some potentially applica- 

ble methodologies are next described. Fast Point Feature Histogram 

(FPFH) [27] consists of pose-invariant features and is generated as 

a simplified point feature histogram for each key point and its k- 

nearest neighbors. Johnson and Hebert introduced the Spin Image 

(SI) descriptor [28] , a rigid transformation-invariant 2D characteri- 

zation of the surface location around a support region of a specific 

point. This descriptor obtains competitive results in rigid registra- 

tion, but is vulnerable to symmetries, noise and clutter. The Ra- 

dial Intersection Count Image (RICI) descriptor [29] , a variation of 

the SI, has been proposed to overcome the limitations of cluttered 

scenes and is a 2D histogram of integers that represent the num- 

ber of intersections of circles centered over the point of interest 

with the 3D surface. Another variant of the SI is the Scale Invariant 

Spin Image mesh descriptor (SISI) [30] , where the SI descriptor is 

computed over an estimated local scale at each interest point. The 

same authors also proposed the Local Depth SIFT (LD-SIFT) [30] , a 

rotation and scale invariant descriptor based on the prior work of 

Lowe [31] . LD-SIFT represents the vicinity of the each interest point 

as a depth map by computing a local radial-angular histogram of 

the pixel value derivatives. 

Another approach to registration is based on the branch-and- 

bound framework [32,33] where the low dimensionality (6DoF) 

is taken as an advantage to exhaustively search the Special Eu- 

clidean Group SE(3) space for the optimal alignment. Although, 

these methods can achieve a good matching regardless of initial 

conditions, they often have low efficiency. A popular methodology 

is the use of statistical models for outlier rejection and geometric 
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alignment. Specific methods include the use of the Expectation- 

Maximization (EM) [34] principle for finding accurately and effi- 

ciently the alignment transformation [35] and the use of Gaussian 

Mixture Models (GMMs) to reformulate the point-to-point corre- 

spondence problem in a lower dimension resulting in a computa- 

tionally efficient solution, resistant to noise and outliers [36,37] . 

2.2. Learning-based registration 

Significant recent advances of deep learning methodologies on 

3D point clouds provide new opportunities for learning point cloud 

representations. Milestones like PointNet [38] and DGCNN [3] offer 

structured representations of 3D point clouds and even if originally 

designed for point cloud classification and segmentation, they have 

be transformed and applied to point cloud registration. Learning- 

based registration has recently shown robustness and efficiency 

gains over geometry-based techniques. 

PointNetLK [39] integrates the Lucas & Kanade (LK) algorithm 

[40] with the PointNet network for aligning the global features 

produced by the latter. PointNetLK performs well on shapes un- 

seen in training, but is not robust to noise. PCRNet [41] , like Point- 

NetLK, uses PointNet to encode the shape information of the in- 

put point clouds but replaces the Lucas-Kanade step by a deep 

network. DCP [42] is a non-iterative, one-shot algorithm that uses 

a Siamese DGCNN [3] network to extract the learned correspon- 

dences and a differentiable SVD method for registration. RPM-Net 

[43] tries to improve the robustness to partial visibility by inher- 

iting the idea of the RPM algorithm [44] and incorporating it in a 

deep network. DeepGMR [45] integrates Gaussian Mixture Model 

(GMM) registration [36] with neural networks by extracting pose- 

invariant correspondences between raw point clouds and GMM pa- 

rameters. Then, these correspondences are fed into the GMM opti- 

mization module to estimate the transformation matrix in a single 

step. The method is efficient and robust to arbitrary displacements 

and noise. Although, DeepGMR shows highly accurate results, it es- 

timates the correspondence between all points and all components 

in the latent GMM, which is not suitable for real-life applications 

and especially in the case of 3D objects that are changing over 

time. 

2.3. Partial registration 

A more challenging sub-problem of 3D registration is partial 

registration, where only subsets of the source and the target ob- 

ject match to one another. Having partially overlapping areas, the 

alignment is performed by registering the mutually shared patches. 

Several methods attempt to find correspondences in the area of 

overlap by identifying keypoints that are common in both source 

and target. Super4PCS [46] , is a variant of RANSAC which itera- 

tively aligns congruent sets of four points taken from the source 

and the target object. The number of iteration is adaptive, so that 

when the partial overlap is low, more iterations are performed to 

reach an acceptable registration result, regardless of initial pose 

and overlap percentage. Other methods are variants of ICP that 

deal with noisy data and partial overlap by using general optimiza- 

tion algorithms, like Simulating Annealing [24] and Particle Swarm 

Optimization [47] . More recently, partial registration has been ad- 

dressed by PRNet [48] , which follows an iterative refinement strat- 

egy. It uses deep networks to detect the points of interest followed 

by estimating the correspondences iteratively in a coarse-to-fine 

manner to perform the final registration. 

Cross-time registration and partial registration share a lot of 

characteristics. However, there is a crucial difference: in partial 

registration it is assumed that where overlaps exist, the shape has 

not changed, while in cross-time registration the objects may en- 

counter considerable shape differences throughout their surface. 

3. Problem statement 

3.1. 3D registration 

In 3D registration we are given two 3D point clouds, the source 

P = { p i ∈ R 
3 | i = 1 , 2 , . . . , N} and the target Q = { q j ∈ R 

3 | j = 

1 , 2 , . . . , M} and the objective is to recover the unknown rigid 

transformation T so as to match the source P into the target point 

cloud Q . 

A rigid transformation in 3D can be represented by a trans- 

formation matrix T which consists of two components; a rotation 

submatrix R and a translation vector t . The rigid transformation T 

can then be represented by the following homogeneous 4 × 4 ma- 

trix: 

T = 

[
R | t 
0 | 1 

]
(1) 

where T ∈ SE (3) , R ∈ SO (3) and t ∈ R 
3 . SE (3) is the special Eu- 

clidean group of rigid transformations in 3D space (rotations and 

translations), while SO (3) is the special orthogonal group of rota- 

tions in Euclidean Space R 
3 . 

The problem of rigid registration between two discrete point 

clouds can be formulated as [49] : 

arg min 
R , t 

N ∑ 

i =1 

d( Rp i + t , Q ) (2) 

where function d(p , Q ) measures the distance of an arbitrary point 

p ∈ P to the point cloud Q and can be defined as: 

d(p , Q ) = min 
q ∈ Q 

d(p, q ) (3) 

where d(p, q ) is the distance between two points in space. 

Eq. (3) is referred to as the distance or error metric. Many 

methods [24,32] use the squared Euclidean norm as the distance 

metric and optimize Eq. (2) using least squares: 

arg min 
R , t 

N ∑ 

i =1 

‖ Rp i + t − ̂ q i ‖ 
2 (4) 

where ̂ q i is the closest point in Q to each point p i ∈ P based on 

the transformation T (R , t ) . 

3.2. The cross-time 3D registration problem 

Methods that monitor the geometric variation of an object over 

time, must try to compare the 3D representations of the same ob- 

ject captured at different points in time. During these time in- 

tervals, several modifications like degradation from environmental 

erosion, cleaning and conservation actions, or even cracking may 

have occurred on the surface of the object. Therefore, it is not ex- 

pected that the acquisition process will start at the exact same po- 

sition at both times; thus the 3D point clouds will not have the 

same number of points and no perfect correspondences. 

Various decay phenomena and alteration processes may occur 

to the surface of a CH object. Alterations can be due to weathering 

conditions, physical or chemical aging or human intervention [50] . 

The material alteration processes can cause local loss of the surface 

(bursting, chipping, peeling), change in shape (deformation, blis- 

tering, delamination, exfoliation, crumbling), cracks (splitting, hair 

cracks, star cracks) or changes in texture (discoloration, bleaching, 

staining). Moreover, any conservation process can be considered as 

an alteration operation to the object, even though it does not im- 

ply a worsening of its characteristics and shape (e.g. application 

of reversible coating, varnish removal or mechanical and chemical 

cleaning). 

Let us define the initial CH object as a set of 3D points P = 

{ p i ∈ R 
3 | i = 1 , 2 , . . . , N} and the altered object as ̂  P = { ̂  p j ∈ R 

3 | j = 
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Fig. 1. Overview of the proposed CrossTimeReg cross-time 3D registration pipeline. 

1 , 2 , . . . , M} . Without loss of generality, one can assume the ex- 

istence of a change function f ch that describes the modifications 

that the initial object has undergone, so that ̂ P = f ch (P ) . f ch may 

encompass various types of alterations. 

In this framework, the 3D cross-time registration problem can 

be formulated as: given two 3D point clouds of the same object 

but captured at different time frames, the source P = { p i ∈ R 
3 | i = 

1 , 2 , . . . , N} and the target ̂ P = { ̂  p j ∈ R 
3 | j = 1 , 2 , . . . , M} with N � = 

M, the aim is to find the unknown rigid transformation T so as 

to align the source P onto the target ̂ P as well as possible for a 

specific distance metric d: 

arg min 
R , t 

N ∑ 

i =1 

d( Rp i + t , ̂  P ) (5) 

The problem of cross-time registration can be really challeng- 

ing if all the different aspects of alterations that a CH object may 

experience are taken into account. In this work, we focus on the 

simplified but still challenging case of weathering erosion, where 

we assume that the objects have been uniformly exposed to en- 

vironmental effects, both spatially and temporally. We are moti- 

vated from the observation of [51] that a typical registration algo- 

rithm like ICP [19] , will align the source and target point clouds P 

and ̂ P , so as to minimise the error (i.e. RMSD, Chamfer distance) 

between them. In doing this, the registration process will often 

bring the two point clouds close together in certain areas, most 

probably where the sampling density is higher. This is not ideal 

where objects have undergone uniform erosion across their surface 

as shown in the experiments of [52] . 

This problem has a number of interesting characteristics, espe- 

cially when considered in the Cultural Heritage domain where the 

cross-time nature of P and ̂  P arises after erosion over a long time 

period: 

• A classic registration algorithm will weigh more areas with 

dense sampling as more points are contributing to the error 

metric; however an erosion process is more likely to affect the 

surface of the object evenly and thus a resampling process is 

required. 
• As P and ̂ P can be assumed to be the same object, we know 

that there exists an ideal registration (R , t ) ideal . However, as ob- 

ject scans are likely to have been taken across several years, 

probably with different scanner technology and without exter- 

nal reference points, (R , t ) ideal is not known. In Section 5 we 

have created a synthetically eroded dataset where (R , t ) ideal is 

known by definition and can be used for training and bench- 

marking cross-time registration algorithms. 

4. Method overview 

In this Section, the CrossTimeReg framework is presented, see 

Fig. 1 for the pipeline. The initial and eroded point clouds (also 

referred to as source and target ) are denoted by P and ̂ P re- 

spectively. P and ̂ P are first down-sampled using the Curvature 

Down-Sampling (CDS) block and then rotation invariant features 

are computed by the Feature Extraction block (RRI). The features 

along with the point clouds are then sent to a Siamese architec- 

ture of KPConv networks. KPConv network is a segmentation net- 

work, which estimates for each point the component that it be- 

longs to; it thus determines a point-to-component correspondence. 

Finally, the registration is performed by aligning the component 

centroids (weighted by the covariances) using the DeepGMR mod- 

ule, a weighted version of the SVD solution proposed in [42] . 

Curvature down-sampling (CDS): Registration algorithms often 

use a down-sampling pre-processing step on the input point clouds 

to accelerate the registration process. Some methods [30] detect 

the most interesting points and compute a descriptor for each of 

them while others [45,48] keep the nearest or farthest S points to 

the centroid of the object. In traditional registration, these meth- 

ods may be sufficient as the local shape of the source and target 

object is not expected to vary. However in cross-time registration, 

the target object’s local shape is expected to be modified due to 

erosion and other effects and the aforementioned down-sampling 

approaches may fail. To address this, we propose a down-sampling 

approach for cross-time registration that takes into consideration 

the points that are less likely to be significantly altered by ero- 

sion. We expect these points to be those with the minimum princi- 

pal curvature [53,54] . The intuitive reason behind this is that such 

points are less exposed to erosion/degradation processes or con- 

servation activities. Thus they are considered to be a robust rep- 

resentation of the object across such processes or activities [55] . 

We thus compute the principal curvature of each point of P and 

down-sample by retaining the S points with the minimum princi- 

pal curvature values. We have selected S = 1024 (see Section 6 ). 

To compute the principal curvature λi of a point p i ∈ P , the 

neighborhood covariance matrix C i is first computed and then Eq. 

(6) is resolved with respect to scalar λi (eigenvalue of C i ) and ma- 

trix u (eigenvectors of C i ) [56] : 

C i u = λi u (6) 

The symmetric 3 × 3 covariance matrix C i of a point p i is cal- 

culated based on its local neighborhood of κ nearest points q j , j = 

1 , 2 , . . . , κ : 

C i = 

1 

κ

κ∑ 

j=1 

⎡ ⎢ ⎣ 

q x 
j 
q x 
j 

q x 
j 
q y 
j 

q x 
j 
q z 
j 

q y 
j 
q x 
j 

q y 
j 
q y 
j 

q y 
j 
q z 
j 

q z 
j 
q x 
j 

q z 
j 
q y 
j 

q z 
j 
q z 
j 

⎤ ⎥ ⎦ (7) 

where q x 
j 
, q 

y 
j 
, q z 

j 
correspond to the x,y and z coordinates of neigh- 

boring point q j respectively. 

Eigenvectors u represent the principal axes of the neighbor- 

hood: 

u = 

⎡ ⎣ 

A x A y A z 

B x B y B z 

C x C y C z 

⎤ ⎦ (8) 
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and their eigenvalues λ are: 

λ = 

[ 

λA 0 0 
0 λB 0 
0 0 λC 

] 

(9) 

Then the principal curvature λi of p i is: 

λi = 

min (λA , λB , λC ) 

λA + λB + λC 

(10) 

Feature extraction (RRI): We adopt the RRI (rigorous rotation 

invariant) descriptors for the point cloud [57] which creates fea- 

tures that remain fixed under different orientations. For each point 

p i ∈ P , the RRI module searches for its K-nearest neighbors and 

constructs a K − N N graph. Then a combination of distance, angle, 

sin and cos features are computed for p i based on the local neigh- 

borhood of the K − N N graph. 

Thus, the outcome of the RRI module is a feature matrix F = 

{ f i ∈ R 
D | i = 1 , 2 , . . . , S} of dimension S × D, where D = 4 ∗ K ( K 

neighbors with 4 features each). The features F are then com- 

bined with the points P = { p i ∈ R 
3 | i = 1 , 2 , . . . , S} that resulted 

from down-sampling and the concatenated matrix of dimension 

S × (3 + D ) is output to the next stage. 

Model segmentation (KPConv): We next estimate point-to- 

component correspondences, by segmenting each point cloud with 

the KPConv network [58] . We chose the deformable KPConv (KP- 

FCNN) presented in the same work, as our segmentation backbone 

for its good performance in learning local shifts effectively by de- 

forming the convolution kernels to make them fit into the point 

cloud. 

Given the down-sampled point cloud P = { p i ∈ R 
3 | i = 

1 , 2 , . . . , S} and its D corresponding features at each point 

F = { f i ∈ R 
D | i = 1 , 2 , . . . , S} , the convolution of a kernel g at 

a point x ∈ R 
3 is defined as: 

g(x , P , F ) = 

∑ 

x i ∈ N x 
g( x i − x ) f i (11) 

where N x = { x i ∈ P | ‖ x i − x ‖ � r ∈ R } , is the radius neighborhood 
of point x [59] . This neighborhood creates a sphere S 3 r around the 
point of interest x , and K kernels are spread in this sphere. Let 

{ ̃  x k | k = 1 , ., K} ⊂ S 3 r be the kernel points and { W k | k = 1 , ., K} be 
their associated weight matrices; then the kernel g can be defined 

in association with the linear correlation h between the kernel 

points ̃  x k and any point ( x i − x ) of sphere S 3 r , as: 

g( x i − x ) = 

K ∑ 

k =1 

h ( x i − x , ̃  x k ) W k (12) 

where 

h ( x i − x , ̃  x k ) = max 

(
0 , 1 − ‖ ( x i − x ) − ˜ x k ‖ 

σ

)
(13) 

and σ is the influence distance between the kernel point and the 

selected point of the sphere that is related on the input density. 

Combining equations Eqs. (12) and (11) we get the standard KP- 

Conv layer: 

g(x , P , F ) = 

∑ 

x i ∈ N x 

( 

K ∑ 

k =1 

h ( x i − x , ̃  x k ) W k 

) 

f i (14) 

Even though the standard KPConv produces sufficiently good 

results, we concluded that the deformable KPConv [58] suits the 

cross-time registration even better, because the network learns the 

kernel point positions. Instead of defining the kernel g on the ker- 

nel points ̃  x k , the network generates a set of K shifts �(x ) for ev- 

ery point x ∈ R 
3 . Then the deformable KPConv layer is defined as: 

g(x , P , F ) = 

∑ 

x i ∈ N x 

( 

K ∑ 

k =1 

h ( x i − x , ̃  x k + �(x )) W k 

) 

f i (15) 

The KPConv module estimates the point-to-component corre- 

spondences of both source and target point clouds, essentially per- 

forming a segmentation. The registration is done by the GMM- 

based DeepGMR module, which learns a consistent GMM repre- 

sentation of J components in order to recover the optimal trans- 

formation between the segmented point clouds. Given the desired 

number of segmentation components J, KPConv produces a respec- 

tive segmentation of the input points in the form of an S × J asso- 

ciation matrix � = { γi j } whose elements represent the probability 

of a point p i belonging to a component j ∈ J . These J components 

are used to express the point cloud as a Gaussian Mixture Model 

(GMM) of J Gaussian distributions. 

Final alignment (DeepGMR): The association matrix �, repre- 

senting the point-to-component correspondence, is used to esti- 

mate the transformation matrix T that aligns P and ̂ P . To this 

end, we employ the optimization module of the DeepGMR net- 

work [45] , where two differentiable blocks M � and M T are used 

to calculate the Gaussian mixture model (GMM) parameters from 

the association matrix � and transformation matrix T respectively. 

M � block converts the given point cloud P = { p i | i = 1 , ., S} and 
its association matrix � = { γi j | i = 1 , . . . , S & j = 1 , . . . , J} to 

GMM parameters � as: 

� j = (π j , μ j , 	 j ) (16) 

where: π j = 
1 
S 

S ∑ 

i =1 

γi j is a scalar mixture weight, μ j is the mean 

vector and � the covariance matrix of the j-th component, com- 

puted by solving the equations: 

Sπ j μ j = 

S ∑ 

i =1 

γi j p i (17) 

Sπ j 	 j = 

S ∑ 

i =1 

γi j (p i − μ j )(p i − μ j ) 
� (18) 

Finally, the transformation matrix T ∗ = (R , t ) is computed by 

block M T , which tries to minimize the KL-divergence between the 

transformed GMM parameters � of the source and the GMMs ̂ �

of the target: 

T ∗ = arg min 
T 

KL (T ( ̂  �) | �) = arg min 
T 

J ∑ 

j=1 

ˆ π j 

σ 2 
j 

‖ T ( ˆ μ j ) − μ j ‖ 
2 (19) 

where 	 j = diag([ σ 2 
j 
, σ 2 

j 
, σ 2 

j 
]) due to the fact that the covariances 

are chosen to be isotropic. This computes the alignment of the 

components’ centroids instead of the alignment of the point clouds 

themselves. 

The loss function of the DeepGMR module is back-propagated 

to the KPConv module in order to fine-tune its parameters with 

respect to the segmentation into the desired J components. 

Loss function: The training objective of the loss function is to 

minimize the registration error. Many previous methods try to 

minimize the actual distance between the corresponding points in 

source and target point clouds [41,60] , but in the case of cross-time 

registration this may not be ideal. We employ the directed Haus- 

dorff distance, which has been proposed before [51] as a suitable 

metric for erosion. Given the ground truth transformation T ideal = 

(R , t ) ideal that aligns the source P = { p i ∈ R 
3 | i = 1 , 2 , . . . , N} to the 

target ̂  P = { ̂  p j ∈ R 
3 | j = 1 , 2 , . . . , M} and the predicted transforma- 

tion T = (R , t ) that CrossTimeReg estimates, the loss function that 

we aim to minimize is: 

L = 

√ 

D H + D MH (20) 

where D H is the standard Hausdorff distance calculated as the 

maximum of the directed Hausdorff distances D h ,where D h = 
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Fig. 2. The steps of the ECHO dataset creation for one object. The object is initially transformed and then the erosion simulator runs for 20 epochs of 3 years each. In this 

example, the initial model is shown degraded due to the effect of acid rain after 3, 15, 30 and 60 years. Below each step the point-wise MSD ( Eq. (26) ) and RMSD from the 

transformed model are given. 

max i ( min j ‖ p i − ̂ p j ‖ ) : 
D H = max (D h (P , ̂  P ) D h ( ̂

 P , P )) (21) 

and D MH is the average directed Hausdorff distance: 

D MH = 

1 

N 

N ∑ 

i =1 

min 
j 

(‖ p i − ̂ p j ‖ ) (22) 

The average directed Hausdorff distance denotes the mean 

value of the minimum Euclidean distances ‖ p i − ̂ p j ‖ between the 

initial source point cloud and the eroded target point cloud. 

5. ECHO: a dataset of Eroded Cultural Heritage Objects 

To the best of our knowledge, there is no publicly available 

dataset with ground truth for cross-time 3D registration. In or- 

der to benchmark and train cross-time 3D registration algorithms, 

we propose the ECHO dataset. Starting from a publicly available 

dataset of CH objects (see Section 5.1 ) we first applied a random 

rotation and translation (R , t ) to the objects; then we used an ar- 

tificial erosion process to erode the transformed objects. Since ero- 

sion is done in situ and the (R , t ) parameters are known, we have 

the ground truth for benchmarking cross-time registration algo- 

rithms. The process is outlined in Fig. 2 . 

The ECHO dataset consists of three main parts, the original 

dataset, the transformed objects and the transformed-eroded ob- 

jects. All three parts of the dataset along with the steps performed 

are explained thoroughly in the following subsections. 

ECHO will be made publicly available with this paper. 

5.1. Initial CH dataset 

As a cornerstone, we selected the freely available SHREC 2021: 

Retrieval of Cultural Heritage Objects dataset [15] hereafter called 

SHREC2021. SHREC2021 dataset consists of 1575 3D scans of 

CH objects from pre-Columbian cultures captured in the Josefina 

Ramos de Cox museum in Lima, Peru. The SHREC2021 dataset 

is separated into two sub-datasets, considering two aspects, the 

shape and the culture. Each of the datasets is also divided into 

a collection set (70% of the dataset) and a query set (30% of the 

dataset) that can be used for training and testing respectively. The 

dataset regarding shape (referred as datasetShape ) consists of 938 

objects, 661 objects for training and 277 for testing. The other 

dataset is related to the retrieval-by-culture challenge of the SHREC 

competition, thus we will refer to it as datasetCulture . This dataset 

consists of 637 objects, 448 objects for training and 189 for test- 

ing. The objects of both sub-datasets are 3D meshes in.OBJ format, 

each consists of nearly 40,0 0 0 triangles, and they have been pre- 

processed so as to be centered in the origin of 3D space and with 

the up direction along the Y-axis. Figs. 3 and 4 show examples 

from SHREC2021. 

Fig. 3. Original CH objects from SHREC2021 datasetShape. 

Fig. 4. Original CH objects from SHREC2021 datasetCulture. 

5.2. Building the ECHO dataset 

Random transformation As a first step, we generated a variation 

of the initial dataset by applying a randomly calculated rigid 3D 

transformation; each object of the SHREC2021 dataset has been 

randomly rotated and translated. The rotation parameters were un- 

restricted while the translation vector was restricted to a maxi- 

mum limit of 30 cm. The latter was decided based on the size of 

the objects. Fig. 5 shows examples of the initial objects along with 

their transformed instances. This dataset can of course be used as 

is for evaluating regular 3D registration algorithms. However, we 

extended it as per the next Section, in order to assess cross-time 

registration algorithms specifically. 

Introduction of erosion Erosion due to atmospheric factors can 

affect the physiology of the object, resulting in alteration of its 

small-scale features that can challenge the registration process. 

We extended the aforementioned dataset by providing an eroded 
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Fig. 5. Original CH objects from SHREC2021 datasetShape (left), along with their 

transformed instances (middle). On the (right), a combination of the original and 

the transformed object is shown in order to demonstrate the translation value. 

dataset of the transformed objects. The eroded set represents the 

erosion/degradation phenomenon that an object faces when ex- 

posed to the outdoor environment. Without loss of generality, we 

focus on chemical weathering of carbonate stone, i.e. the process 

that carbonate stone objects undergo when exposed to weather 

and especially to common atmospheric chemicals, such as carbon 

dioxide ( CO 2 ) and nitrogen dioxide ( NO 2 ). 

The exact physico-chemical composition of the original objects 

of our source CH dataset is not known. Since our aim is the train- 

ing and benchmarking of cross-time registration algorithms, rather 

than the simulation of realistic erosion for the objects’ specific ma- 

terial, we have assumed that they consist of carbonate stone (a 

common material for CH objects, e.g. around the Mediterranean 

region) and applied weathering models that were available to us 

for this material (see below). Note that weathering models for 

other materials are not commonly available and, to the best of our 

knowledge, no other large publicly available dataset of eroding CH 

objects exists, for any type of material, that is suitable for training 

and testing deep networks (i.e. contains ground truth). 

To this end, we adapted the simulation algorithm for the ero- 

sion of carbonate stone and marble presented in [51] . The simula- 

tor estimates the degradation of homogeneous marble or carbonate 

stone objects after their uniform exposure (spatially and tempo- 

rally) to environmental conditions of polluted areas. We used the 

cases of chemical weathering in polluted atmosphere regions and 

the interaction of sulfur dioxide ( SO 2 ), nitrogen dioxide ( NO 2 ) and 

carbon dioxide ( CO 2 ) with the material of the object. Specifically, 

we considered the effects of dry deposition of crust due to pol- 

lution and the recession by acid rain, which can result in gain or 

loss of material on the surface of an object. Dry deposition indi- 

cates the reaction of the material with SO 2 and NO 2 and manifests 

itself by the creation of crust upon the object’s surface due to the 

Fig. 6. Point-wise MSD between the initial and eroded carbonate stone objects over 

a period of 0–100 years, for different weathering cases. 

transfer of chemical compounds from polluted industrial environ- 

ments [61] . Recession by acid rain is the effect of surface loss of 

the object mainly due to its reaction with water and SO 2 , NO 2 and 

CO 2 [62] . 

These weathering processes describe the change of the surface 

geometry and can be formulated as follows. Assuming that the 

initial object is modelled as a set of 3D points P = { p i ∈ R 
3 | i = 

1 , 2 , . . . , N} and n = { n i ∈ R 
3 | i = 1 , 2 , . . . , N} are the normals per 

3D point, the deposition/recession process relies on a computa- 

tional and chemical model. The model can be formulated as a uni- 

form offsetting procedure based on the diffusion equation: 

∂P 

∂t 
= μ∇ 

2 P = δ n (23) 

so the target eroded surface ̂ P = { ̂  p j ∈ R 
3 | j = 1 , 2 , . . . , N} is then 

calculated as ̂ P = P + δ n dt (24) 

which becomes: ̂ p j = p i + δi n i dt (25) 

where n i is the normal vector of point p i , δi is the surface alter- 
ation at this point as predicted by the erosion model and dt is the 

time interval that the change is occurred. The above computation 

can be repeated for a number of epochs. Each epoch consists of 

time intervals of dt, where the environmental conditions are sim- 

ulated. At the end of each epoch a new eroded surface is produced. 

The final surface produced after the total number of epochs reflects 

the changes that the initial surface faced when exposed to weath- 

ering conditions. If δi > 0 , the process simulates the surface reces- 

sion due to dry deposition and when δi < 0 it simulates the reces- 

sion due to acid rain at a specific point i . The surface alteration 

offset δ derives from modeling the chemical processes according 

to the weathering models, described in [51,61–64] . 

In order to quantify the degradation that the CH objects expe- 

rience under the above chemical models, we computed the Mean 

Square Distance (MSD) between each initial object and its eroded 

counterpart over a period of 0–100 years. Let P 0 = { p 0 i ∈ R 
3 | i = 

1 , 2 , . . . , N} be the original transformed point cloud and ̂  P e = { ̂  p e j ∈ 

R 
3 | j = 1 , 2 , . . . , M} be the eroded point cloud after e years of ero- 

sion ( ̂  P e has level of erosion = e); then the MSD at level e is cal- 

culated as: 

MSD = 

1 

N 

N ∑ 

i =1 

‖ p 0 i − ̂ p e j ‖ 
2 (26) 

where ̂ p e j is the nearest neighbor of p 0 i . 

Fig. 6 shows how considerably high is the degradation due to 

acid rain, compared to the respective degradation due to crust. 
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Fig. 7. Original CH objects from SHREC2021 datasetShape (left), along with their 

transformed instances (middle). The transformed object after application of acid 

rain erosion simulation is shown on the (right). 

The erosion simulation is performed on each transformed ob- 

ject, for the time interval of 60 years, divided into 20 epochs (of 3 

years each). During the simulation, the object’s rigid parameters do 

not change, so we can argue that the ground truth random trans- 

formation matrix still holds. 

Fig. 7 shows examples of the three main steps of the creation 

of ECHO dataset, the original object, the transformed one and the 

eroded instance. 

6. Experiments 

Our experiments are divided into five parts. First, we evaluate 

the proposed registration algorithm against the relevant state-of- 

the-art methods using the proposed ECHO dataset for the challeng- 

ing problem of cross-time registration. Second, we compare the 

methods across multiple levels of erosion on ECHO. Third, we eval- 

uate them on the task of traditional registration on two datasets; 

the ECHO dataset (containing only random rigid transformations, 

no erosion) and the SHREC2016 dataset [65] . Fourth, we evalu- 

ate CrossTimeReg on real erosion data, by performing cross-time 

registration on data from the PRESIOUS project [16] ; these data 

are derived from erosion accelerators that simulate acid rain, salt 

and freeze-thaw effects on marble and soapstone slabs. Fifth, we 

attempt to measure the contribution of the proposed curvature 

downsampling on the cross-time registration task. 

We compare against both geometry-based and deep-learning, 

local and global, as well as correspondence-based and non- 

correspondence-based algorithms. Regarding geometry-based 

methods, we compare against ICP [19] , RANSAC [21] and Fast 

Global Registration (FGR) [22] . For RANSAC and FGR, we evalu- 

ated several variants with different feature extraction methods: 

FPFH [27] , Spin Images (SI) [28] , SISI, LD-SIFT [30] , and RICI 

[29] . We tested each feature descriptor, as a pre-process step 

for both RANSAC and FGR algorithms. However, we kept and 

present the combinations that gave the best result in the Recall α
metric. Regarding deep-learning methods, we evaluated PRNet 

[48] , PointNetLK [39] , PCRNet [41] , RPM-Net [43] , DCP [42] and 

DeepGMR [45] . For ICP, RANSAC, FGR and FPFH we used the 

python implementations from the Open3D library [66] , while for 

SISI, LD-SIFT and RICI we adapted the code bases released by the 

authors, which were implemented in MATLAB and C++. For the 

deep-learning methods, we used the pre-trained models provided 

by the open-source library Learning3D [67] . To ensure a fair 

comparison, all deep learning methods (including the proposed 

one) have been trained on the ModelNet dataset [68] . We have 

trained the complete CrossTimeReg pipeline using the ModelNet 

dataset with the annotated data provided in [45] . The first 20 

classes of ModelNet have been used, as only those have been 

annotated by the authors (the rest were used for testing). Random 

translations and rotations are generated on the fly during the 

training/validation process for each annotated input point cloud of 

the ModelNet dataset. Based on the ablation study [45] regarding 

the ideal number J of Gaussian distributions, we use J = 16 for all 

experiments. 

All tests were run on a PC with an i7-7700K CPU at 4.20 GHz, 

NVIDIA GeForce GTX 1080 Ti GPU and 32 GB of RAM. 

6.1. Evaluation metrics 

The rotation and translation errors are the absolute errors in 

Euler angles and translation vectors with respect to the ground 

truth. Ideally, both should be zero: 

If T GT = (R GT , t GT ) and T pred = (R pred , t pred ) are the ground truth 

and predicted transformations respectively, the rotation and trans- 

lation errors are measured as: 

Er ror (R ) = ‖ I − R 
−1 
GT R pred ‖ (27) 

Er ror (t) = ‖ t GT − t pred ‖ (28) 

where I is the identity matrix. 

We next measure the root mean square error (RMSE) in Eu- 

clidean space against the ground truth solution. For the case of 

cross time registration, it is not sufficient to consider the registra- 

tion error between the transformed source and the target, since 

there may not exist exact correspondence between them. Further, 

the commonly eroded surfaces of the objects may erroneously be 

measured as registration error, even though they represent the ac- 

tual degradation of material. We thus measure the effect of the 

predicted transformation T pred against the ground truth transfor- 

mation T GT on the source object based on [69] : 

RMSE = 

√ 

1 

N 

N ∑ 

i =1 

‖ (T pred p i − T GT p i ) ‖ 
2 (29) 

where N is the total points of the source object. 

Moreover, following [12,70] , we use the root mean square dis- 

tance (RMSD) metric as a distance function employing Euclidean 

distance. It measures the similarity across the post-registration 

point cloud and the target point cloud (ground truth). This met- 

ric often appears in the literature as RMSE, but we decided to dif- 

ferentiate it from the aforementioned RMSE of Eq. (29) in order to 

highlight the difference of measuring the distance between the tar- 

get and transformed point clouds from the error based only on the 

ground truth transformation. This results from the observation that 

the source and the target are not the same or parts of the same 

point cloud. The target object is eroded, which means that even if 

we perform the ground truth transformation on the source object, 

the result will not coincide with the target object. Thus, the RMSD 

which measures the distance between the point clouds, will not 

present the real registration success or error. We estimate RMSD 

as: 

RMSD = 

√ 

1 

N 

N ∑ 

i =1 

‖ (T pred p i − ̂ p i ) ‖ 
2 (30) 
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Table 1 

Registration results on the ECHO dataset when only random rotations, translations and 60 years of erosion are performed on the initial objects. 

The metrics evaluated are rotation error, Error(R), translation error, Error(t), root mean square error, RMSE, root mean square distance, RMSD and 

Recall with threshold 0.2. Bold and dark gray denote best and second best performing methods for each measure respectively. For fairness reasons, 

we have not included in bold, cases where CrossTimeReg performs best when trained on the training partition of ECHO; instead such cases are in 

bold italics. 

Method Registration Error(R) Error(t) RMSE RMSD Recall a (%) Mean Exec. 

Local Global Time (sec) 

Geometry-based ICP [19] � 1.6992 42.5667 38.6065 42.583 0 34 

FPFH-RANSAC [21,27] � 1.8314 29.2151 29.3316 29.2326 0 32 

SI-FGR [22,28] � 1.8202 0.0629 1.1298 1.1344 21.91 32 

SISI-RANSAC [21,30] � 0.9984 0.1044 0.6870 0.6877 96.88 67 

LD-SIFT -RANSAC [21,30] � 0.3496 0.0793 0.2789 0.2878 98.79 68 

RICI-FGR [22,29] � 1.1396 0.0495 1.1832 1.1396 20.77 38 

Deep Learning PRNet [48] � 1.7514 1.0184 1.4723 1.4858 43.12 14 

PointNetLK [39] � 1.7413 29.2389 29.2514 29.2561 0 11 

PCRNet [41] � 1.8095 49.3442 49.3603 49.3600 0 10 

RPM-Net [43] � 1.6993 29.2594 29.2784 29.2755 0 15 

DCP [42] � 1.6881 38.6109 38.6542 38.6133 0 15 

DeepGMR [45] � 1.0065 0.0673 0.9454 0.6746 99.31 4 

CrossTimeReg � 0.9942 0.0448 0.6764 0.6812 99.55 6 

CrossTimeReg (trained on ECHO) � 0.1397 0.0714 0.2606 0.6928 99.98 6 

Since exact point correspondences do not exist in cross-time 

registration, we approximate the computation using the nearest 

neighbor ̂ p i of the respective point. 

Finally, we compute the success rate across the dataset recall α, 

i.e. the percentage of tests for which the RMSE is below a certain 

threshold α: 

recall α = 

| S α| 
| S| × 100% (31) 

where | S| is the total number of tests performed and | S α| is the 
number of tests that achieve RMSE less that the threshold α. 

In previous literature, more metrics have been proposed and 

used to evaluate registration techniques, such as Chamfer distance 

or Earth Mover’s Distance [71] . However, these metrics are less ro- 

bust and have the same problem as RMSD in the case of erosion, 

i.e. they do not take into consideration the common erosion that 

may have occurred on all points of the surface. They have thus not 

been considered further. 

6.2. Experimental results and analysis 

Synthetic data - ECHO dataset In Table 1 we summarize the 

quantitative registration results on the challenging ECHO dataset 

for cross-time 3D registration; Fig. 8 illustrates some qualitative re- 

sults. CrossTimeReg generally outperforms the state-of-the-art un- 

der most performance metrics. 

Since cross-time registration involves point clouds with non ex- 

act point-level correspondences, methods like FPFH and DCP fail 

to converge in every run of this experiment. In addition, the ini- 

tial poses of corresponding objects are generally far apart, both in 

terms of translation and rotation, and thus local methods like ICP, 

PointNetLK and PRNet fail to converge for many objects. 

The performance of geometry-based global registration meth- 

ods RANSAC and FGR rely on feature matching or keypoint de- 

tection from hand-crafted descriptors. Such descriptors face un- 

usual challenges in the case of eroded objects. When SI is used 

as the local descriptor, its instability in the presence of noise and 

non-uniform sampling of the object’s surface, result in many failed 

registrations. SISI and RICI, being derivatives of the SI, face simi- 

lar challenges. RICI fails to properly identify the keypoints across 

the source and the target because it counts the intersections of 

homocentric circles with the surface. A target object which is 

evenly eroded produces different intersections to the correspond- 

ing source object. LD-SIFT, being both rotation and scale invariant, 

performs considerably better than the rest of the state-of-the-art; 

since erosion may affect the surface of the object evenly, the scale 

invariant features result in better recovery of the correct transfor- 

mation. However, in terms of translation, the errors are larger and 

this is reflected in the Recall α metric which is not as good as that 

of CrossTimeReg. A significant disadvantage of LD-SIFT is the large 

computation time and memory requirements which precludes its 

use in real time applications and on large scale datasets. 

Interestingly, most deep learning methods perform significantly 

worse on the cross-time registration problem than geometry-based 

methods. This can be due to the fact that the networks have been 

trained on a different dataset and task than the related test ones. 

As mentioned before, to ensure a fair comparison, all deep learning 

methods have been trained on the ModelNet dataset for the tradi- 

tional 3D registration problem. Thus, methods like PointNetLK that 

are trained on feature detection for specific object categories, fail 

to recognize useful features in different objects categories, like the 

pots and figurines of cultural heritage datasets. The generalization 

to unseen data, unrestricted rotation and significant translation re- 

sults in poor performance for many deep learning methods. How- 

ever, PRNet, DeepGMR and CrossTimeReg seem to overcome this 

obstacle and produce accurate registration results. The fact that 

PRNet was designed to perform partial-to-partial registration, can 

explain why the method converges on the cross-time registration 

problem. Cross-time registration shares a lot of common with the 

partial-to-partial registration, since the source and the target may 

have different surfaces but share common parts of their geometry. 

Still, PRNet is a local method and does not converge under large 

transformations. 

Both DeepGMR and CrossTimeReg learn latent correspondences 

between the point clouds and GMM components, which are pose- 

invariant. Thus, the registration result is invariant to the magnitude 

of transformation or the density of the input geometries. How- 

ever, DeepGMR estimates the correspondence between all points 

and all components in the latent GMM, meaning that its perfor- 

mance degrades when the point clouds partially overlap or if the 

points of the source and the target point clouds have been shuf- 

fled and randomly sampled. CrossTimeReg overcomes this draw- 

back with the addition of the curvature based sub-sampling step. 

Moreover, with the addition of the KPConv network, CrossTimeReg 

learns local shifts effectively, im plying that it learns the ero- 

sion part of the cross-time registration. The CrossTimeReg model 

has been trained in the same dataset as the rest of the deep 
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Fig. 8. Comparison between different registration methods on examples from the ECHO dataset for cross-time registration. Methods with the highest recall rates (Recall α > 

40% ) are included. 

networks (ModelNet), so that it is fairly comparable against the 

state-of-the-art. In order to investigate the effect of using eroded 

models in training, we have also fine-tuned the CrossTimeReg 

model on the training partition of the ECHO dataset. As can be 

seen from the last line of Table 1 , the performance increases 

spectacularly. 

ECHO Dataset - Multiple levels of erosion: In order to detect how 

the registration methods perform on different levels of degrada- 

tion, in this section we evaluate the registration methods on the 

ECHO dataset against different levels of erosion. We have per- 

formed experiments for 20 different levels of erosion; from 1 year 

up to 60 years. Fig. 9 shows the RMSE metric for the most accurate 

methods. For clarity of illustration, we have excluded the methods 

which had average RMSE greater than 20, for every erosion level. 

It can be deduced that most methods tend to perform worse as 

the level of erosion increases. This is because when there is no or 

small amount of degradation, the geometry of the objects remains 

basically the same, so the identified keypoints and subsequent reg- 

istration are accurate enough. However, as degradation increases, 

the target shape differentiates more and more from the source 

shape and most traditional registration methods tend to lose ac- 

curacy. Across all levels of erosion, CrossTimeReg appears to have 

stable performance, which even increases slightly at the highest 

levels. 

In Table 2 we summarize the quantitative registration results on 

the ECHO dataset when only random rotations and translations are 

performed (no erosion). 

Fig. 9. Comparison between different registration methods on examples from the 

ECHO dataset for cross-time registration on different levels of erosion. 

By comparing Tables 1 and 2 we can see that, relative to other 

methods, CrossTimeReg performs better when erosion is involved. 

SHREC2016 dataset - traditional registration: In this section 

we evaluate the methods on traditional registration using the 

SHREC2016 dataset [65] . We chose this dataset, consisting of 383 

models, as it is related to the cultural heritage domain. The 3D ob- 

jects are pottery models originating from the Virtual Hampson Mu- 

seum collection [72] . Again, we performed random rotations and 
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Table 2 

Registration results on the ECHO dataset when only random rotations and translations are per- 

formed on the initial objects (no erosion). Bold and dark gray denote best and second best per- 

forming methods for each measure respectively. 

Method Error(R) Error(t) RMSE Recall a (%) 

Geometry-based ICP [19] 1.6453 40.3423 30.0234 0 

FPFH-RANSAC [21,27] 1.8315 29.2325 29.4201 0.07 

SI-FGR [22,28] 1.7274 0.0247 1.0814 92.52 

SISI-RANSAC [21,30] 1.2945 0.2363 0.8774 85.89 

LD-SIFT -RANSAC [21,30] 0.7021 0.1661 0.5102 99.01 

RICI-FGR [22,29] 1.7392 0.0272 1.0814 93.73 

Deep Learning PRNet [48] 1.7368 0.9868 1.4728 49.35 

PointNetLK [39] 1.7346 29.2016 29.2192 0 

PCRNet [41] 1.8054 49.4641 49.4701 0 

RPM-Net [43] 1.6779 29.1860 29.2018 0 

DCP [42] 1.7219 39.7070 39.7200 0 

DeepGMR [45] 0.9578 1.9203 0.5192 98.34 

CrossTimeReg 0.9456 1.0821 0.6751 99.43 

Table 3 

Registration results on SHREC2016 dataset when only random rotations and translations are per- 

formed (no erosion). Bold and dark gray denote best and second best performing methods for each 

measure respectively. 

Method Error(R) Error(t) RMSE Recall a (%) 

Geometry-based ICP [19] 1.2593 20.8497 91.60 9.14 

FPFH-RANSAC [21,27] 1.2295 18.2610 89.56 9.39 

SI-FGR [22,28] 0.0062 0.0014 0.002 99.67 

SISI-RANSAC [21,30] 0.0118 1.6920 3.40 99.47 

LD-SIFT -RANSAC [21,30] 0.0021 0.0418 0.002 99.74 

RICI-FGR [22,29] 0.0088 1.6819 2.66 98.47 

Deep Learning PRNet [48] 1.4985 71.6138 119.12 1.30 

PointNetLK [39] 1.4044 22.0351 100.32 7.57 

PCRNet [41] 1.3341 35.9334 98.40 2.61 

RPM-Net [43] 1.3670 98.0969 143.25 0.26 

DCP [42] 1.5797 123.5982 160.85 0 

DeepGMR [45] 0.7650 0.2756 5.47 98.56 

CrossTimeReg 0.0341 0.2328 2.64 98.13 

Fig. 10. Some of the stone slabs used in PRESIOUS accelerated erosion experi- 

ments [16] . The stones named Elefsis consist of pentelic marble, while stones names 

Nidaros consist of grytdal soapstone, representing the material of two monuments 

that were considered in the PRESIOUS project, the Demeter Sanctuary in Elefsis 

(Greece) and the Nidaros Cathedral in Trondheim (Norway) respectively. 

translations to the objects (no erosion is present) and the results 

are shown in Table 3 . The behaviour of the methods is similar to 

that on the ECHO dataset, a positive indication for the quality of 

ECHO; CrossTimeReg demonstrates high accuracy without achiev- 

ing the top results. Interestingly, in both Tables 2 and 3 where 

no erosion is involved, CrossTimeReg is one of the top 2 deep 

learning methods, while non-learning methods perform extremely 

well. 

PRESIOUS dataset - real erosion data from accelerated erosion ex- 

periments: To demonstrate how CrossTimeReg performs in the case 

of real erosion data, we employed data from the PRESIOUS EU 

project [16] . These data consist of three accelerated erosion exper- 

iments on two different types of stone slabs; pentelic marble and 

grytdal soapstone, see Fig. 10 . 

The erosion effects that were studied in the accelerated erosion 

experiments were acid rain weathering, salt and freeze-and-thaw 

effects. Table 4 gives details on the 3D scanned slabs across the 

erosion experiments. We tested CrossTimeReg and LD-SIFT with 

RANSAC, see Table 5 . For each stone slab, we register the initial 

scan with the scan after the first period of erosion (Round 1 - 

Round 2), the scan after the first period with the final scan (Round 

2 - Round 3) and the initial scan with the final scan after 2 pe- 

riods of experiments (Round 1 - Round 3). Both methods have 

been run on the same hardware. CrossTimeReg’s execution time 

increased with the number of object points, but this was only due 

to the curvature downsampling component; the execution of the 

rest of the modules of CrossTimeReg remained constant, irrespec- 

tive of the number of object points. LD-SIFT had to be interrupted 

after 4 hours on the same data. To overcome this, we uniformly 

down-sampled the 3D models, so that the down-sampled meshes 

would contain 50K points. For this reason, we omitted the execu- 

tion time of LD-SIFT in the above Table. Since, the dataset had no 

ground truth of the transformations performed on the objects, we 

measured the RMSD based on eq. (30) , which measures also the 

distance due to the degradation of the objects. Table 5 and Fig. 11 

show that CrossTimeReg behaves favourably compared to LD-SIFT 

on real data. 

Evaluating curvature downsampling (CDS) for cross-time registra- 

tion: In order to get a better intuition of the contribution of the 

proposed downsampling method on final performance, we carried 

out an ablation study on the ECHO dataset. The erosion level was 

varied from no erosion (only random rotations and translations) 

up to 60 years of erosion due to deposition of crust and acid rain. 

We compare against the case where uniform sampling, based on 
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Table 4 

Details of the slabs used in the PRESIOUS dataset. Round 1 contains the initial 

scanned object, Round 2 after the first period of erosion and Round 3 after the 

second period of erosion. 

Experiment Material Stone Slab Label Round # points 

Freeze and 

Thaw 

1 998621 

Pentelic Marble Elefsis Large 01 2 790553 

3 847791 

1 1904088 

Grytdal Soapstone Nidaros Bad Large 

01 

2 2671989 

3 2778924 

Salt 1 1236236 

Pentelic Marble Elefsis Large 02 2 1050038 

3 1336365 

1 2023069 

Grytdal Soapstone Nidaros Bad Large 

02 

2 3978584 

3 4250544 

Acid Rain 1 983698 

Pentelic Marble Elefsis Large 03 2 976587 

3 612447 

1 3009981 

Grytdal Soapstone Nidaros Good 

Large 03 

2 2858613 

3 3130228 

Table 5 

Registration results on the PRESIOUS dataset of real erosion data from accelerated 

experiments. The best performance between LD-SIFT and CrossTimeReg is in bold. 

CrossTimeReg was run on the original datasets; LD-SIFT had not completed execu- 

tion after 4h on the original datasets and was run on subsampled versions. 

Exp. Stone Slab Label Rounds LD-SIFT Cross Time Reg 

RANSAC 

[21,30] Exec.Time 

RMSD RMSD (sec) 

Freeze and 

Thaw 

1 - 2 0.03854 0.03817 250 

Elefsis Large 01 2 - 3 0.05358 0.03858 196 

1 - 3 0.05916 0.03867 264 

1 - 2 0.05087 0.03617 450 

Nidaros Bad Large 

01 

2 - 3 0.03605 0.03132 511 

1 - 3 0.03840 0.03838 461 

Salt 1 - 2 0.04682 0.03888 252 

Elefsis Large 02 2 - 3 0.03667 0.03719 250 

1 - 3 0.04079 0.03676 239 

1 - 2 0.03831 0.03564 663 

Nidaros Bad Large 

02 

2 - 3 0.04702 0.03793 900 

1 - 3 0.03537 0.03033 699 

Acid Rain 1 - 2 0.03552 0.03799 174 

Elefsis Large 03 2 - 3 0.04253 0.03544 118 

1 - 3 0.05479 0.03667 150 

1 - 2 0.03896 0.03931 331 

Nidaros Good 

Large 03 

2 - 3 0.03460 0.03819 343 

1 - 3 0.03794 0.03253 406 

voxel size, is used; in our experiments we considered voxel size = 

0.05 (5 cm in metric scale) which gives the best results. We cal- 

culated the RMSE based on Eq. (29) . As can be seen from Fig. 12 , 

the proposed downsampling scheme behaves stably across levels of 

erosion. On the contrary, uniform downsampling has better RMSE 

results on small erosion values but increases with the level of 

erosion. 

Fig. 11. Qualitative comparison between CrossTimeReg and LD-SIFT on examples 

from the PRESIOUS dataset of real eroded data. 

Fig. 12. Ablation study of downsampling methodologies on different levels of ero- 

sion on the ECHO dataset. 

7. Conclusions and future work 

The challenging problem of cross-time 3D registration has been 

defined and CrossTimeReg, a deep learning method for cross- 

time 3D registration, has been proposed. CrossTimeReg achieves 

state-of-art accuracy and robustness to large initial transformations 

while being computationally efficient. Indeed computational effi- 

ciency is a main advantage of the proposed method against previ- 

ous very accurate geometry based methods. The proposed method 

is also very stable as the level of erosion increases. Its compu- 

tational efficiency can be further optimized, especially the sub- 

sampling step. A new dataset, ECHO, has been created to facili- 

tate the evaluation of techniques on cross-time registration with 

high quality models and ground truth. We anticipate that the 

public availability of ECHO will facilitate future experiments for 

cross-time related tasks (registration, retrieval, recognition). In ad- 
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dition, an implementation-based comparison of both deep learning 

and geometry-based object registration algorithms has been made, 

with some interesting observations. 

As a future step, we consider to replace the hand-crafted fea- 

tures with features learned specifically for cross-time registration 

by the network. We plan to integrate our network into larger sys- 

tems, for tasks such as monitoring and segmentation of changes 

that CH objects undergo and extend the framework to register and 

fuse multiple modalities, in addition to 3D point clouds. Moreover, 

we intend to study partiality in conjunction with degradation on 

CH objects. 

If extreme erosion values are applied on surface meshes, then 

mesh folding can occur. This can also arise on boundary and fragile 

edges (e.g. Fig. 2 ). Mesh folding is a challenging but worthwhile 

problem to address (see for example [73,74] ). 

Another potential avenue of future work is to apply a non- 

uniform, more realistic erosion model in the simulation pro- 

cess, which could take into consideration the surface’s orientation, 

shape and texture. 
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Registration is a ubiquitous operation in Visual Computing, with applications in 3D object retrieval among 

others. Registration is the process of overlaying two or more datasets taken from different viewpoints, 

at different times or by different sensors into a common reference frame. Multimodal registration is 

a special case where the data to be matched do not belong to the same modality and is challenging 

due to the diverse nature of the modalities involved which makes the creation of a distance function 

harder. Due to the large number of possible modality combinations and application fields, a considerable 

number of multimodal registration techniques have been proposed in diverse fields, including medicine 

and archaeology. This survey aims to unify 3D multimodal registration techniques (i.e. where at least 

one of the modalities is in 3D) across application domains, with the hope of providing an application- 

independent view and the potential for cross-fertilization. The problem of 3D multimodal registration is 

explicitly defined and the various methods are systematically categorized and described in terms of a 

number of important properties. Methods with publicly available source code have been compared on 

common datasets. A discussion on trends, observations and challenges for further research concludes the 

review. 
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1. Introduction 

The technological progress of the last decades has led to an 

explosion in volume, variety and complexity of data. There is 

a massive amount of highly heterogeneous 2D and 3D datasets 

consisting of multimodal samples acquired by a variety of different 

sensors. 3D data can exist in different domains, in different types 

of format, characteristics and possess different sources of error. 

For such data to be exploited, the proper alignment in a common 

coordinate system is often essential. 

This alignment, or registration , has become a fundamental task 

in computer vision and computer graphics and a host of applica- 

tions use alignment techniques before visualizing, comparing or 

processing data. Registration techniques are utilized in multiple 

operations, such as 3D object retrieval [1] , 3D mapping [2–4] , 3D 

object scanning [5] , 3D model reconstruction [6,7] , which are ba- 
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sic components of applications such as cultural heritage [8–10] and 

medical imaging [11,12] . 

Registration is the process of aligning two or more similar ob- 

jects or two or more instances of the same object taken at different 

times (multi-temporal data), from different viewpoints (multi-view 

data) or by different sensors (multi-sensor data) into a common 

reference system. Given a target and source/reference dataset, a 

registration technique can be described by three components: the 

transformation which relates the two datasets, the similarity met- 

ric that evaluates the similarity of the datasets and an optimization 

method which determines the optimal transformation parameters 

as a function of the similarity metric. Thus, a registration method 

geometrically aligns two datasets by finding an optimal transfor- 

mation that minimizes the error of a similarity metric. 

Multimodal registration is a special category of registration, 

where the data to be aligned are of the same object but of dif- 

ferent modality ( Fig. 1 ). Multimodal data may have different data 

structure, dimension, density, noise and types of error in their ge- 

ometry. Multi-modality is also referred in the literature as inter- 

modality or cross-modality. Compared to unimodal registration, 

the multimodal case is more challenging because it is not straight- 

forward to define a general registration framework for relating the 

different modalities. 

https://doi.org/10.1016/j.cag.2020.07.012 
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Fig. 1. Multimodal data registration as presented in [13] . 

There has been significant growth in research on registration of 

3D data both unimodally and multimodally. Several surveys have 

been published covering aspects of image registration [14,15] and 

3D unimodal registration [16–19] . Registration of images has been 

extensively researched in the medical imaging domain, resulting in 

multiple reviews, focused on medical applications [11] or modal- 

ities [20] . Refer to [21–23] for surveys covering the main issues 

and methods related to medical image registration techniques. Re- 

cently a lot of attention has been directed into utilizing deep learn- 

ing for registration of medical images, also leading to some surveys 

[24–27] . 

Due to the breadth of the registration research field and the 

volume of research performed and published each year, we focus 

this review on methods for multimodal 3D registration as defined 

below, a topic that has not been covered by a survey before to the 

best of our knowledge. At the same time, we strive to be open to 

all application areas where such techniques have been developed 

with the aim of showing commonalities as well as potential for 

cross-fertilization. We restrict ourselves to techniques where one 

or both modalities are three dimensional as this is arguably the 

most common and useful dimensionality; such techniques are ei- 

ther concerned with different 3D modalities or work across 2D and 

3D. We take as starting point the work of Kotsas et al. [28] for reg- 

istration techniques of different dimensionality (2D/3D) as well as 

the review of Andrade et al. [21] , both specifically for medical im- 

age registration. 

The remainder of this paper is organized as follows: In Sec- 

tion 2 the 3D multimodal registration problem is defined and ana- 

lyzed. Section 3 presents applications of 3D multimodal registra- 

tion while Section 4 presents multimodal registration attributes. 

In Section 5, public datasets and performance evaluation measures 

are presented. Section 6 overviews the multimodal registration 

methods; optimization-based registration techniques in subsection 

6.1 and learning-based approaches in subsection 6.2. Section 7 

compares methods with publicly available source code on common 

datasets while, finally, in Section 8 we reflect on the past and an- 

ticipate on future perspectives for multimodal 3D registration. 

2. Multimodal 3D data registration 

The term multimodal registration has largely been ’abused’ in 

the literature, referring to such aspects as the same object from 

different viewpoints, the same object at different moments in time 

or the same object scanned by different sensors. Thus the data 

may share the same geometric characteristics and even the same 

data structure (e.g. registering dense 3D point clouds produced 

by terrestrial laser scanners at different times and from different 

views [29] or registering CT and cone-beam CT (CBCT) spine im- 

ages which have different fields of view [30] ). Although, different 

sensors can produce variations in terms of density, scale, noise and 

deformation, the data are often geometrically similar and within 

the same family of data structure (e.g. a low resolution 3D point 

cloud and a high resolution 3D mesh generated from 3D scanning 

[5] ). 

What should then be the characteristics of two modalities in 

order to be considered different? To answer this question, we 

have tried to locate what makes multimodal registration a more 

challenging task than unimodal registration. It has been observed 

that registration methods that perform well in the unimodal case 

[31,32] , do not necessarily perform well when they are applied to 

multimodal datasets [33] . In unimodal registration, data have sim- 

ilar or correlated statistical properties and it is rather straightfor- 

ward to recognize correspondences or a similarity metric. The core 

difficulty in multimodal registration is in identifying structure cor- 

respondences across modalities or defining a general rule to iden- 

tify similarity between two modalities with different physical prin- 

ciples. 

Therefore, we will herein use the term multimodal to refer to 

two datasets with qualitative variability in shape and appearance; 

thus having different dimension (e.g. 3D/2D images, X-ray / MRI), 

different data structure (e.g. 3D point cloud and an MRI volume) or 

different physical and anatomical principles (e.g. MRI and CT vol- 

umes). We shall thus not include methods that register the same 

modalities generated by different acquisition devices (e.g. [34] ), 

same modalities with different resolutions (e.g. alignment of a low 

resolution point cloud/mesh with high resolution point cloud/mesh 

[35] ) or the same modalities with different imaging parameters 

(e.g. registration of T1 and T2 weighted MRI volumes [36] ). More- 

over, challenges like missing data, varying scaling factors and den- 

sities, variation due to different viewpoints, noise and outliers are 

considered difficulties confronting both unimodal and multimodal 

registration, and thus will not be included. 

The spectrum of modalities that need to be aligned is large. In 

general purpose registration, the most popular modality in two di- 

mensions is the 2D image and in three dimensions the 3D point 

cloud and 3D mesh. The 2.5D RGB-D image (i.e. 2D color image 

plus depth) is also a common modality; such images are often 

referred as being 2.5D since they are essentially an image with 

depth information per point. A variety of modalities are derived 

from medical imaging applications. Anatomical images such as ul- 

trasound (US), X-ray, magnetic resonance (MR) and computed to- 

mography (CT) expose the structure of entire areas. Functional im- 

ages like single-photon emission computed tomography (SPECT) 

and positron emission tomography (PET) show the physiological 

activity of certain body areas. Some of the most common data rep- 

resentations for 3D and 2D data (the most common dimensionali- 

ties) are: 

• 3D Data 
• 3D point clouds 
• 3D meshes 
• 2.5D RGB-D images 
• Computed Tomography (CT) scans 
• Magnetic Resonance Imaging (MRI) scans 
• Single Photon Emission Tomography (SPECT) volumes 
• Positron Emission Tomography (PET) volumes 

• 2D Data 
• Images 
• Points 
• X-rays 
• Ultrasounds (US) 
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Fig. 2. The Stanford Bunny in Different Modalities as presented in [37–40] . 

Fig. 3. Different Modality Representations of Brain Anatomy [44] . 

• 2D slices of a 3D volume (i.e. slice of CT) 
• Painting 
• 2D Projections of 3D models 

Figs. 2 and 3 present examples of different modalities for the 

Stanford bunny and brain anatomy respectively. 

Multimodal 2D/3D Registration 

The most common case of multimodal registration across dif- 

ferent dimensions is 3D to 2D, e.g. 3D mesh to 2D image. Thus, 

the problem can also be found with the terms model-to-image or 

volume-to-slice registration [41] . This is a challenging task with a 

variety of applications. Its complexity arises from both the differ- 

ent dimensionality and different visual sensors that the data are 

obtained from, but also from differences in structure, format, and 

noise characteristics of the data. 

The aim of registering a 3D model against a 2D image is to 

localize the acquired image in the 3D scene and/or to compare the 

two. Another aspect of the 2D/3D registration problem is the cam- 

era localization problem: estimating the pose of a calibrated cam- 

era that produces the 2D image, from 3D-to-2D point correspon- 

dences between a 3D model and the 2D image. 2D/3D registration 

can be solved by aligning the visual correspondences extracted 

from the 3D model and the 2D image. A set of correspondences is 

usually obtained from features which are extracted from both data 

models and matched. When the set of correspondences is known, 

the problem is the well studied perspective-n-point (PnP) problem 

[42] . However, more challenging is when the correspondences are 

not known, and the registration method needs to find simultane- 

ously the correspondences and the pose of the data. This review is 

focused on algorithms for solving the more challenging problem of 

the correspondence-free registration; for more details on the PnP 

problem, we refer the reader to a recent survey on the topic [43] . 

3. Applications of multimodal 3D registration 

Multimodal 3D registration has proved vital to many applica- 

tions as well as generalized operations within multiple application 

areas. 

By far the largest application area is medical imaging where CT, 

MRI, 3D Rotational X-ray and other modalities are used [45–47] . 

Clinical practice can benefit from the integrated visualization and 

analysis of different modalities of the same anatomy in order 

Fig. 4. Medical fusion of MRI and PET modalities. (A) MRI and (B) PET images are 

registered and fused (C) [50] . 

to make the diagnostic and treatment process more efficient. 

Multimodal registration is an essential tool in image-guided 

minimally invasive therapy, image-guided radiation therapy and 

image-guided surgery [41] , to name a few. The different modalities 

involved, such as CT and MRI are based on different physical prin- 

ciples and capture complementary but non-overlapping informa- 

tion. By fusing the different modalities, all related information can 

be presented in a consistent way, in order to ease the functional 

analysis and diagnosis and obtain complete information about 

the patient [4 8,4 9] ( Fig. 4 ). Furthermore, multimodal registration 

is an important step in the majority of computer-aided surgery 

(CAS) systems, where the main goal is to align pre-operative and 

intra-operative data sets so that they can be used in the operating 

room for image-guided navigation and robot positioning. 

Another important application domain is cultural heritage . Here 

multimodal 3D registration is used in visualization, where 2D and 

3D sensing modalities are combined (e.g. multispectral images 

and 3D models) [8,10] . Also in the reconstruction of 3D models 

from range and color images which must be aligned with the 3D 

mesh/point cloud derived from 3D scanning; this is applied to dig- 

ital preservation [51] , restoration [52] , or to create Virtual Reality 

(VR) environments (e.g. a museum for multimedia exhibitions or a 

historical building) [53,54] . 

Other application areas include remote sensing where aerial or 

satellite data are registered onto maps and urban mapping where 

accurate registration between panoramic images, laser scanning 

data (LiDAR) or radio detection and ranging (Radar) is crucial for 

autonomous navigation [55–57] , 3D building and terrain modelling 

[58] , 3D city change detection [59] , etc. 
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Fig. 5. Attributes of Registration Methods. 

Generalized operations that exploit multimodal 3D registration 

include 3D object retrieval with the query being of different modal- 

ity to the 3D object gallery [1,60,61] , the visualization of big multi- 

modal datasets [13,62] , object recognition [9,63,64] , motion segmen- 

tation [65] and camera localization [66] and tracking [67–69] . 

4. Registration attributes 

In the vast literature of registration methods, some attributes 

can be identified that characterize such methods. Earlier schemes 

used subsets of these attributes to classify registration algorithms 

[11,70,71] ; we diverge by proposing a classification mainly based 

on their algorithmic strategy, see Fig. 5 . 

Dimensionality 

Based on the dimensionality of the data involved, registration 

techniques can be distinguished into 2D/2D, 2D/3D and 3D/3D. An 

exhaustive amount of research has been conducted on 2D/2D reg- 

istration of two images or slices taken from 3D volumes (e.g. slices 

from tomographic datasets). 3D/3D registration techniques most 

commonly involve the registration of 3D point clouds or meshes. 

3D/3D registration has many applications in medical imaging 

where most of the modalities used for alignment are 3D vol- 

umes. A special case of registration is 2D/3D registration or, as it is 

known in the medical imaging community, ’slice-to-volume’ align- 

ment. 4D image registration is the process of aligning sequences 

of 3D images, i.e. 3D meshes or point clouds across time (3D+t). 

4D image registration is utilized in medical health treatments 

[72] . 

Nature of Transformation 

Registration techniques usually fall into two categories: rigid 

or non-rigid, depending on the underlying transformation model. 

Rigid approaches assume a rigid environment such that the trans- 

formation can be modeled using only 6 Degrees of Freedom 

(6DOF), i.e. translations and rotations only. If the objects can be of 

different shape or deformable, then non-rigid transformations are 

used. Non-rigid methods can cope with articulated objects or soft 

bodies that change shape over time. 

Domain of Transformation 

Two types of registration algorithms can be recognized based 

on the proportion of data that is used during the registration pro- 

cess. An algorithm is global if it applies to the entire data set (im- 

age, voxels, etc.) and local if registration is applied to only a part 

of the data set. 

Type of Correspondence 

Recognizing the correspondence between the datasets is crucial 

for any registration technique. As correspondence we refer to the 

explicit relation between parts of the data (elements), structure 

or context. According to the type of correspondence, registration 

methods may be feature-based or intensity-based. Feature-based 

methodologies extract feature correspondences based on local 

appearance and utilize them to determine the misalignment 

between datasets. Intensity-based methodologies try to identify 

context similarity between the datasets by utilizing a similarity 

metric that is a function of the transformation parameters and 

then search the extrema of this function. 

1. Feature-based Registration methods aim to find the transfor- 

mation that minimizes the distance between the features ex- 

tracted from the datasets to be aligned. The features are ge- 

ometrical entities, with the most commonly used ones being 

points, lines or contours. Due to the significant differences be- 

tween multimodal datasets, it is non trivial to detect features 

that are common across different modalities. 

2. Intensity-based Registration utilizes statistical intensity pat- 

terns within the datasets to compute similarity. These meth- 

ods are based on the assumption that the datasets will be most 

similar at the optimal alignment. The main goal is to define a 

measure of intensity similarity between the datasets and adjust 

the transformation until the value of the measure is maximized. 

Commonly used similarity metrics that perform well in uni- 

modal registration (e.g. Mean Squared Difference (MSD), Nor- 

malized Correlation (NC)), do not give the same results in the 

multimodal case. For multimodal registration, statistical simi- 

larity measures based on minimizing the distance between in- 

tensity probability distributions give better results. Mutual in- 

formation (MI) and Normalized Mutual Information (NMI) are 

the most popular metrics due to their robustness, accuracy and 

universality. Mutual information (MI) [73,74] is considered as 

the gold standard similarity measure for multimodal alignment. 

It is a statistical measure of similarity between two sets of data, 

which measures the mutual dependence of the underlying im- 

age intensity distributions by catching the non-linear correla- 

tions between them. MI assumes that the co-occurrence of the 

most probable values in the two datasets is maximized when 

they are aligned. Normalized Mutual Information (NMI) im- 

proves the robustness of MI by avoiding some mis-registrations 

by being independent of overlapping areas of the two datasets. 

An interesting use of NMI was proposed by Zhao et al. [75] who 

used similarity measurements between a chosen set of 2D/3D 

attribute-pairs which could be dominant in a specific scene. The 

method has a preliminary training phase where the attribute- 

pairs are chosen and then combined into NMI. Other varia- 

tions of MI have been applied for multimodal registration of 

urban scenes, like Weighted Normalized Mutual Information 

(WNMI) [76] and Normalised Combined Mutual Information 

(NCMI) [77] . 

The Mutual Correspondence (MC) approach, proposed by [78] , 

combines sparse correspondences and Mutual Information (MI) 
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measures. Mutual Correspondence is simply defined as the 

weighted sum of the average distance in pixels between the 2D 

image point and the corresponding 3D point projected in 2D, 

and the MI. The method combines the correspondence based 

method with Mutual Information maximization in order to ben- 

efit from both, be robust and flexible but also automatic and 

fast. 

5. Public datasets and performance evaluation 

5.1. Public datasets 

Techniques tested on the same datasets can be compared more 

reliably. However, the lack of a ’golden standard’ large-scale pub- 

licly available multimodal dataset makes the comparison of the 

state-of-the-art approaches non-trivial. In recent years, there has 

been some progress towards the creation of benchmark multi- 

modal datasets, as outlined below. 

KITTI Vision Benchmark [79] : This dataset contains scan se- 

quences of different objects and was presented in 2013 [75,80] . 

Five different object categories are defined and 3D range scans, as 

well as 2D images, are provided for each frame of a sequence. The 

2D images are stored in PNG [81] format while the 3D range scans 

as binary float matrices (BFM). 

Data61/2D3D Dataset [82] : Data61 / 2D3D dataset was intro- 

duced in 2015 [83] and consists of a series of 2D panoramic images 

(in TIFF format) with corresponding 3D LIDAR point clouds (in LAR 

[84] format). There are ten outdoor scenes, each of which includes 

a block of 3D point clouds together with several panoramic images. 

The number of 3D points in the scenes varies from 1 to 2 million, 

and each scene is accompanied by 11 to 21 panoramic images. 

RGB-D 7-Scenes Dataset [85] : This dataset was introduced in 

2013 [86] . It involves 7 different indoor scenes given as RGB-D im- 

ages. The extracted images are in PNG format. Each scene was cap- 

tured using an RGB-D Kinect camera with 640x480 resolution. The 

scenes were recorded in several sequences each one containing 

from 500 to 10 0 0 frames. The dataset provides a dense 3D model 

per scene in TSDF format [87] and the ’ground truth’ was obtained 

by an implementation of the KinectFusion system [88,89] . 

Cambridge Landmarks Dataset [90] : This dataset was created 

in 2017 and contains the 3D models of 6 Cambridge University 

landmarks [91] . The data for each landmark includes its 3D model 

and a number of corresponding images from different points of 

view. The images are in PNG format while 3D reconstructions are 

stored in NVM [92] format. 

Stanford 3D Scanning Repository [37] : It contains nine differ- 

ent objects as 3D models captured either by various 3D scanners 

or by the XYZ-RGB [93] auto-synchronized camera. The data are 

stored in the form of PLY [94] files. There are a variable number of 

scans for each model. The dataset also contains 2D photographs of 

selected models along with CT scans of the famous Stanford bunny. 

It was initially constructed in 1996 [87,95,96] but was further en- 

hanced in 2003 [97] . 

BrainWeb [98] : The BrainWeb dataset consists of 3D brain vol- 

umes (MRI scans) of 270 simulated subjects and was introduced 

back in 1997 [99] . There are three different MRI image sequences 

(T1-w, T2-w, and PD-w) for healthy as well as subjects with Mul- 

tiple Sclerosis. The technical characteristics of the produced se- 

quences (slice thickness, noise) are determined by the user. The 

data are given in MINC [100] format. 

NLM-NIH-VHP [101] : The National Library of Medicine (NLM) 

Visible Human Project (VHP) is a dataset containing complete, 

anatomically detailed, 3D Volumes (CT and MRI) and 2D anatomi- 

cal images of high resolution obtained from one male and one fe- 

male cadaver [102] . The dataset was introduced back in 1994 for 

the male and was extended in 1995 for the female. For the male, 

there are more than 1800 anatomical slices, while for the female 

there are more than 50 0 0. PNG format is used. 

RIRE Dataset [103] : The Retrospective Image Registration Eval- 

uation (RIRE) project delivered a dataset specifically designed to 

compare 3D volume (CT-MR and PET-MR) registration techniques. 

The data were acquired from seven different patients and have 

been available since 2007. It was previously called ”Retrospective 

Registration Evaluation Project (RREP)” [104] . The data format is 

DICOM [105] . 

IXI Dataset [106] : The Information eXtraction from Images (IXI) 

dataset was presented in 2018 [107] . It utilizes 3D volumes of MRI, 

MRA and Diffusion-Weighted (DW) images in 15 directions. For the 

data gathering, 600 healthy subjects were recruited. The data is in 

NIFTI [108] format. 

VIPS Dataset: The Virtual Implant Planning System (VIPS) 

dataset was also introduced in 2018 [109] . It contains a CAD 

[110] model of a volar plate implant, accompanied by seven X-ray 

images (in PNG format). Thus, the dataset can be used for apply- 

ing 2D/3D registration to match the 3D virtual implant with the 

real one. 

SmartTarget Dataset [111] : The SmartTarget [112] is a recent 

dataset (introduced in 2019) which contains 3D volumes of MRI 

and US images. The data were recorded from 129 male patients. 

The initial purpose of this dataset was to compare the two imag- 

ing methods for analyzing prostate cancer, but it turned out to be 

useful for assessing registration methods as well. The data is en- 

coded in the DICOM format. 

RESECT Dataset [113] : The RESECT dataset also includes MRI 

and US scans in the form of 3D volumes. The data were acquired 

from 23 patients. In addition, anatomical landmarks were identi- 

fied across US images and between MRI and US. These landmarks 

can be used to validate image registration algorithms. The dataset 

was introduced in 2017 [114] and the data is stored in NIFTI for- 

mat. 

Table 1 provides an overview of the aforementioned publicly 

available datasets. 

5.2. Evaluation measures 

To evaluate registration methods, one needs to define how ac- 

curately two objects coincide after a registration technique has 

been applied. This can be done by determining the difference be- 

tween the predicted values of the transformation that the regis- 

tration method finds and the actual values that are provided by 

the dataset ground truth. This difference can be computed using a 

distance measure for the registration error. Several such measures 

exist in the literature; in general, the lower the registration error 

is, the better the accuracy of the registration method. Commonly 

used registration error measures are listed below: 

• Target registration error (TRE) : measures alignment deviation 

[115] as the distance of a certain point P under the ground- 

truth (GT) registration transformation T ground and the estimated 

registration T reg [116] . Real units (e.g. mm) are often used. 

Based on the modalities to be registered, methods choose dif- 

ferent distance equations, with the Euclidean, Maximum Sym- 

metric (MSD) and Average Symmetric (ASD) being the most 

common. 

TRE = ‖ T reg (P ) − T ground (P ) ‖ (1) 

• Mean Target registration error (mTRE) : is the average dis- 

tance between the points in the ground truth and the esti- 

mated registration. mTRE is calculated by averaging the values 

of Eq. 1 over all the N points P i of the dataset. 

mTRE = 

1 

N 

N ∑ 

i =1 

‖ T reg (P i ) − T ground (P i ) ‖ (2) 
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Table 1 

Publicly available datasets for multimodal 3D registration. 

Dataset Name Modality Data Format # Subjects Year 

The KITTI Vision Benchmark 2D Images / 3D Range Scans PNG / BFM 5 2013 

Data61/2D3D 2D Images / 3D Point Clouds TIFF / LAR 10 2015 

RGB-D 7-Scenes RGB-D Images / 3D Models PNG / TSDF 7 2013 

Cambridge Landmark 2D Images / 3D Models PNG / NVM 6 2017 

Stanford Scanning Repository 3D Models/ CT scan / 2D images PLY 9 1996 2003 

BrainWeb 3D Volume MRI/2D slices MINC 270 1997 

NLM-NH-VHP 3D Volume MRI, CT / 2D Images PNG 2 1994 - 1995 

RIRE 3D Volume CT-MR and PET-MR DICOM 7 2007 

IXI 3D Volume MRI, MRA and DW NIFTI 600 2018 

VIPS 2D Images / 3D Models PNG / CAD 1 2018 

SmartTarget 3D Volume MRI and US DICOM 129 2019 

RESECT 3D Volume MRI and US NIFTI 23 2017 

• Mean Target Registration Error in the projection direction 

(mTREproj) : is used when registration is between 2D and 3D 

modalities; it is the mean distance between re-projected 3D 

points P i into 2D [46] . mTREproj is computed as the average 

across all points of the angle between the displacement vector 

and the normal to the projection plane ˆ n . 

mTREproj = 

1 

N 

N ∑ 

i =1 

‖ (T reg P i − T ground P i ) · ˆ n ‖ (3) 

• Root Mean Square Distance (RMSD) : is a measure of the aver- 

age distance between two or more structures. It measures the 

similarity between the after-registration transformation param- 

eters and the transformation that is provided from the ground 

truth data. 

RMSD = 

√ 

1 

N 

N ∑ 

i =1 

‖ (T reg P i − T ground P i ) ‖ 
2 (4) 

• Dice similarity coefficient (DSC) : is a spatial overlap index and 

is a useful evaluation measure between volumes where the 

ground truth data is unknown. DSC ranges from 0, indicating 

no spatial overlap between the two datasets, to 1, indicating 

complete overlap and thus a successful registration. Given two 

datasets X, Y to be registered, the DSC is defined as in Eq. 3 , 

where | X | and | Y | refere to the cardinalities of the respective 

datasets [117] . 

DSC = 

2 | X ⋂ 

Y | 
| X | + | Y | (5) 

• Success Rate (SR) : is defined as the overall percentage of suc- 

cessful registrations. As successful is considered a registration 

which has a registration error below a certain threshold. The 

success rate can be determined using various registration error 

measures, with mTRE being the most popular. According to the 

application and the modalities involved, each method defines 

an explicit criterion for measuring the success rate. 
• Failure Rate (FR) : is defined as the percentage of aligned 

cases having registration error greater that a certain value. In 

[118] the FR is calculated as the proportion of cases with TRE 

greater than 10mm. 
• Convergence Rate (CR) : is defined as the range of starting po- 

sitions from which an algorithm finds a sufficiently accurate 

registration transformation [46] . It is defined as the number of 

initial guesses that converge to a success relative to the total 

number of initial guesses. A method with high CR is generally 

more efficient, as it converges quickly to correct transforma- 

tions. 

Fig. 6. Modality Gap Strategies. 

6. Multimodal 3D registration techniques 

Dealing with data from different modalities is a challenging 

task due to the lack of a general rule for measuring similarity 

across different modalities. There have been two main approaches 

to bridge the multimodality gap [11] : (a) use of information theo- 

retic measures, and (b) reduction to a unimodal registration prob- 

lem by reconstructing one modality to the other or by mapping 

both modalities to another common representation ( Fig. 6 ). 

Information theoretic approaches try to use statistical measures, 

like MI or NMI in order to identify similarity across modalities 

and maximize their statistical dependency to achieve registration 

[74] . Alternatively, there are methods that instead of finding cor- 

respondences between the different modalities, try to simplify the 

multimodal registration into unimodal, and then solve it with the 

respective state-of-the-art unimodal techniques [119] . In order to 

achieve this, two strategies have been followed. The first one con- 

verts one modality to the other. The most straightforward such op- 

eration is in 2D/3D registration, where the 3D modality is mapped 

into 2D by projection, or the 2D points are back-projected into 3D 

space. The other tactic is to map both modalities into a common 

representation, in an initial step before the registration technique 

is performed [120] . 

To solve the multimodal registration problem without prior 

knowledge of the correspondences, two major algorithmic strate- 

gies can be identified: optimization-based and learning-based. In 

the former case, the value of a function that quantifies the align- 

ment quality between the two datasets is maximized while in the 

latter case, a neural network is typically utilized to find the best 

alignment. At the top level, we shall base our categorization on 

this distinction which is presented in Fig. 7 . 

6.1. Optimization-based registration 

Optimization-based methods iteratively optimize the align- 

ment transformation parameters over a scalar-valued metric func- 

tion representing the quality of the registration. Particularly for 

2D/3D registration, the problem can be subdivided into two sub- 

problems: finding correspondences and estimating the pose (align- 
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Fig. 7. A classification of presented multimodal registration strategies. 

ment transformation) given the correspondences. These two sub- 

problems are intertwined, and the solution of one depends on the 

other. A mathematical function based on the transformation pa- 

rameters is optimized using an optimization technique. Optimiza- 

tion plays a fundamental role in registration because it determines 

the accuracy, robustness and convergence. We therefore further 

classify optimization-based registration methods in the subsections 

below based on the optimization technique that they use. Table 2 

provides an overview of optimization-based multimodal 3D regis- 

tration methods. 

6.1.1. Expectation-Maximization (EM)-based registration 

EM-based Registration is the most popular methodology for 

multimodal registration and is a local deterministic method which 

attempts to find the best alignment with an iterative optimization 

strategy. It starts from an initial solution (a guess/computation of 

pose/point correspondence) and iteratively tries to find a solution 

that optimizes an objective function locally. Although such meth- 

ods are generally accurate, they depend on initialization in order to 

converge to the best solution and finding the global minimum can- 

not be guaranteed. One more limitation of these methods is their 

heavy computation cost. 

An early solution to the 2D/3D registration problem is proposed 

by Beveridge [163] , where a random-start local search procedure 

is used to arrive at a local optimum. The method uses a hybrid 

pose estimation algorithm with both full-perspective and weak- 

perspective camera models. The weak-perspective pose algorithm 

ranks neighbor points in the search space and the full-perspective 

pose algorithm updates the object’s pose after moving to a new set 

of correspondences. The authors investigated how easy this prob- 

lem is by evaluating expected run-time as a function of the num- 

ber of lines and the amount of clutter. A more restrictive approach 

was proposed by Christmas et al. [168] , where the detected lines 

are viewed as edges on a graph, leading to a graph matching prob- 

lem. However, using a graph structure cannot guarantee an optimal 

registration for 2D/3D registration. 

The most effective algorithm to solve the correspondence-free 

registration problem is the SoftPosit algorithm [142] , which is one 

of the best approaches to correspondence-free registration using 

points. It locally searches the transformation space while simulta- 

neously determining the correspondences between the 2D and 3D 

points. At each iteration, it first uses the SoftAssign technique to 

determine the point correspondences [169] ; multiple weighted cor- 

respondences are hypothesized based on the pose. Then, the Posit 

[170] algorithm is used to iteratively estimate the pose. The Soft- 

Posit algorithm stands out due to its accuracy, but it cannot guar- 

antee a global minimum and tends to fail in the presence of large 

amounts of clutter, occlusions or repetitive patterns. Moreover, it is 

quite slow because it needs to randomly try hundreds of different 

initial poses. 

An extension of the SoftPosit algorithm with line features was 

proposed by David et al. [164] . The method is iterative and, in each 

step the given 2D to 3D line correspondence problem is mapped 

to a new 2D to 3D point correspondence problem and the Soft- 

POSIT algorithm is utilized to find the registration parameters. In 

[143] the same authors assumed that all lines are orthogonal in 

order to speed up the algorithm in high-clutter environments. 

More recently, Dong et al. presented an iterative algorithm in- 

spired by SoftPosit, named SoftOI [152] . Like SoftPosit, the SoftAs- 

sign algorithm [169] is used for determining the correspondences, 

but for computing the pose another pose estimation algorithm, 

named OI (Orthogonal Iteration) [171] , is employed. The SoftOI al- 

gorithm first introduces an assignment matrix that describes the 

correspondences for the OI algorithm. The pose and correspon- 

dences are then evolved iteratively from an initial pose to an op- 

timum value by minimizing the objective function based on the 

weighted object space collinearity error and by applying a deter- 

ministic annealing technique. The method exhibits efficiency and 

accuracy even in cases with occlusions. 

Moreno-Noguer et al. proposed another Expectation- 

Maximization algorithm, the BlindPnP [119] , where local optimality 

is alleviated in each iteration. The method models an initial set of 

poses as a Gaussian mixture model from which a Kalman filter is 

initialized and progressively refined by hypothesizing correspon- 

dences. Each new candidate is incorporated in a Kalman filter, 

which reduces the number of potential 2D matches for each 3D 

point and makes it possible to search the pose space sufficiently 

fast. Eventually, the method determines a solution with high con- 
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Table 2 

Overview of Optimization-based Registration Methods, grouped by evaluation measure and dataset used. 

Optimization-based Registration Methods 

Method Modality A Modality B Nature Domain Type Of Modality Gap Optimization-based Dataset Initial Evaluation Value of Execution 

of Transform. of 

Transform. 

Correspondence Strategy Strategy Application Measure Eval.Measure time (sec) 

Parmehr et al [77] . 3D model 2D image rigid local intensity: NCMI mapping one

modality

intensity-based private urban TRE 0.12m -

0.0051 °
n/a

(LIDAR point

cloud)

(aerial

photograph)

to another distance

optimization

navigation

Sottile et al [78] . 3D model 2D image rigid local intensity: MC mapping one

modality

intensity-based private general TRE 4.8pixels 2sec

to another distance

optimization

Wachowiak et al [121] . 3D volume MRI 2D US rigid global intensity: NMI mapping one

modality

Stochastic/

HPSO

BrainWeb

[98 , 122] ,

medical TRE 2.36mm 350sec

to another NLM-NIH

VHP [101]

Wachowiak et al [121] . 3D volume MRI 2D CT rigid global intensity: NMI mapping one

modality

Stochastic / HPSO BrainWeb

[98 , 122] ,

medical TRE 2.14 230sec-

500sec

to another NLM-NIH

VHP [101]

Schwab et al [116] . 3D volume MRI 3D volume CT rigid global intensity: NMI learning multimodal Stochastic / PSO RIRE [104] medical TRE 9.57mm n/a

similarity measure SR 78%

Chen et al [123,124] . 3D volume MRI 3D volume CT rigid, global learning multimodal Stochastic /HPSO RIRE [104] medical TRE 2.36mm n/a

non rigid similarity measure 

Lin et al [125] . 3D volume MRI 3D volume CT rigid, global learning multimodal Stochastic /HPSO RIRE [104] medical TRE 2.36mm 1893.637sec

non rigid similarity measure 

Liu et al [126] . 3D model 2D image rigid global features: points mapping one 

modality 

BnB [52] general TRE 14.18mm -

1.55 °
40sec-200sec

to another SR 81%

Corsini et al [120] . 3D model 2D image rigid local reconstruction Multiview with 

SFM

[127] cultural TRE 10.92cm -

0.27 °
21600sec

modality strategy heritage

Pintus and Gobbetti 3D model 2D image rigid global features: points reconstruction Multiview with

SFM

[128,129] cultural TRE 3.19cm - 0.26 ° 1140sec-

24960sec

[130] modality strategy heritage

Klima et al [131] . 3D volume CT 2D x-rays non rigid local intensity:NMI mapping one

modality

NL / LM method private medical mTRE 1.23mm 3.19sec-

15.77sec

to another

DePose [132] 3D model 2D image rigid global mapping one

modality

Stochastic / GA private general mTRE 0.6cm - 1.0 ° 1.25sec-

1.99sec

to another SR 75%

EvoPose [133] 3D model 2D image rigid global mapping one

modality

Stochastic / GA private general mTRE 1.28 cm - 2.2 ° 0.68sec-

4.11sec

to another SR 25%

Crombez et al [134] . 3D model 2D image rigid global intensity: MI mapping one

modality

Stochastic / PSO private general mTRE 6.5cm-0.61 ° n/a

to another

Toth et al [135] . 3D volume MRI 2D x-rays rigid global reconstruction BnB private medical mTRE 3.87 ±1.22mm 95.24sec

modality strategy

Wang et al [136] . 3D volume 2D x-rays rigid global mapping one

modality

intensity-based [52,137] medical mTRE 0.17mm

to another distance

optimization

SR 94.68% n/a

( continued on next page ) 
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Table 2 ( continued ) 

Optimization-based Registration Methods 

Method Modality A Modality B Nature Domain Type Of Modality Gap Optimization-based Dataset Initial Evaluation Value of Execution 

of Transform. of 

Transform. 

Correspondence Strategy Strategy Application Measure Eval.Measure time (sec) 

Schaffert et al [138] . 3D volume 2D x-rays rigid global mapping one 

modality 

Multiview with 

SFM 

[139] medical mTRE 0.22mm 

[140,141] to another SR 98.4% 7.0sec- 

35.0sec 

SoftPosit [142] 3D model 2D image rigid local feature: mapping one 

modality 

EM-based private general SR 75% 36sec 

points, lines to another 

David et al [143] . 3D model 2D image rigid local feature: lines mapping one 

modality 

EM-based private general SR 70% 72sec-100sec 

to another 

Mastin et al. 3D model 2D image rigid local intensity: joint 

entropy 

mapping one 

modality 

NL / Downhill 

Simplex 

private urban SR 98.5% 6.50sec- 

15.0sec 

(LIDAR point 

cloud) 

(aerial 

photograph) 

to another navigation 

Parmehr et al [76] . 3D model 2D image rigid local intensity: WNMI mapping one 

modality 

intensity-based private urban SR 92% n/a 

(LIDAR point 

cloud) 

(aerial 

photograph) 

to another distance 

optimization 

navigation 

Enqvist et al [144] . 3D model 2D image rigid global features: points mapping one 

modality 

BnB [145] general SR 96% 2sec-4sec 

to another 

Brown et al. 3D model 2D image rigid global features: mapping one 

modality 

BnB [146,147] general SR 25% 500sec- 

1000sec 

[148,149] points, lines to another 

GOPAC [150] 3D model 2D image rigid global mapping one 

modality 

BnB DATA61/2D3D general TRE 2.30m - 2.08 ° 477sec 

to another [83] SR 82% 

BlindPnP [119] 3D model 2D image rigid local feature: points mapping one 

modality 

EM-based private general CR 65% 20sec-100sec 

to another 

Sanchez et al [151] . 3D model 2D image non rigid local feature: points mapping one 

modality 

EM-based private general CR 90% 600sec- 

1500sec 

to another 

SoftOI [152] 3D model 2D image rigid local feature: points mapping one 

modality 

EM-based private general CR 75% 10sec-60sec 

to another 

Corsini et al [153] . 3D model 2D image rigid local intensity:MI mapping to a NL / Powell’s 

method 

private cultural CR 80% 4sec 

common space heritage 

Palma et al [154] . 3D model 2D image rigid local intensity:MI mapping to a NL / Powell’s 

method 

private cultural CR 70% n/a 

common space heritage 

Yang et al [155] . 3D model 2D image rigid global mapping one 

modality 

Stochastic / GA private general CR 97% 20sec-39sec 

to another 

Marques et al. 3D model 2D image rigid feature: points mapping one 

modality 

NL / Linear 

Regression 

private general FS 25% n/a 

to another 

Enqvist et al [156] . 3D model 2D image rigid global features: points mapping one 

modality 

BnB [157] general FS 20% 5sec-15sec 

to another 

( continued on next page ) 
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Table 2 ( continued ) 

Optimization-based Registration Methods 

Method Modality A Modality B Nature Domain Type Of Modality Gap Optimization-based Dataset Initial Evaluation Value of Execution 

of Transform. of 

Transform. 

Correspondence Strategy Strategy Application Measure Eval.Measure time (sec) 

Kisaki et al [158] . 3D volume CT 3D volume MRI rigid local intensity:NMI mapping one 

modality 

NL / LM method private medical MI 0.294 n/a 

to another 

Talbi et al [159] . 3D volume MRI 3D volume CT rigid global learning multimodal Stochastic / HPSO private medical MI 0.6349 n/a 

similarity measure 

Talbi et al [159] . 3D volume MRI 3D volume 

SPECT 

rigid global learning multimodal Stochastic / HPSO private medical MI 0.6789 n/a 

similarity measure 

Talbi et al [159] . 3D volume MRI 3D volume PET rigid global learning multimodal Stochastic / HPSO private medical MI 0.6431 n/a 

similarity measure 

Khoo and Kapoor [160] 3D model 2D image rigid global mapping one 

modality 

NL / Convex [37] , private medical RMSD 6.9mm n/a 

to another medical 

datasets 

Ayatollahi et al [161] . 3D volume MRI 3D volume CT rigid global intensity: MNMI learning multimodal Stochastic/ 

HPSO 

[162] medical RMSD 44% n/a 

similarity measure 

Zhao et al [75] . 3D range 2D image rigid local intensity: CMI mapping one 

modality 

intensity-based KITTI [80] urban projection 14% n/a 

scans (aerial 

photograph) 

to another distance 

optimization 

navigation error 

RANSAC [67] 3D model 2D image rigid local feature: points mapping one 

modality 

Stochastic private general n/a n/a 3600sec- 

36000sec 

to another 

Beveridge et al [163] . 3D model 2D image rigid local feature: lines mapping one 

modality 

EM-based private urban n/a n/a n/a 

to another navigation 

David et al [164] . 3D model 2D image rigid local feature: lines mapping one 

modality 

EM-based private general n/a n/a 100sec 

to another 

SoftSI [165] 3D model 2D image rigid local feature: points mapping one 

modality 

EM-based private general n/a n/a 0.6sec- 

10.01sec 

to another 

Pan et al [166] . 3D 

Volume(CT/MRI) 

2D x-rays rigid global mapping one 

modality 

BnB private medical n/a n/a 4.12sec- 

12.09sec 

to another 

Zhao et al [167] . 4D video 3D point cloud local features: points reconstruction Multiview with 

SFM 

private general n/a n/a n/a 

modality strategy 



E. Saiti and T. Theoharis / Computers & Graphics 91 (2020) 153–178 163 

fidence. The authors also introduced priors on the camera pose, 

for example the camera is always above the ground and pointing 

towards the object. The BlindPnP algorithm outperforms SoftPosit 

when large amounts of clutter, occlusions and repetitive patterns 

exist. However, it is susceptible to local optima, requires a pose 

prior and cannot guarantee global optimality. 

Sánchez-Riera et al. proposed a solution [151] inspired by 

Moreno-Noguer’s method for rigid object pose estimation and ex- 

tended it to non-rigid objects. The method uses weak priors on 

pose and shape, that have been learned from training data, and 

models them as Gaussian Mixture Models. These priors can define 

a region in the image where the algorithm searches for the poten- 

tial 2D candidates that may be assigned to each 3D point. Using a 

Kalman filter strategy (as also done by BlindPnP) this search region 

is progressively shrunk while the estimation of the pose and shape 

are refined. 

The SoftSI algorithm [165] is based on minimizing a global ob- 

jective function, like SoftPosit, but is based on the combination of 

two singular value decomposition (SVD)-based shape description 

theorems, and the PnP algorithm proposed in their paper (SI). Due 

to the use of the SI algorithm, the method avoids pose ambigu- 

ity and quickly eliminates bad initial values, according to the stan- 

dard deviation of the translation vector at the first iterations. The 

method is fast and robust to noise, but assumes no occlusion or 

clutter. 

6.1.2. Non-Linear (NL) optimization 

Several non-linear optimizers have been applied to the registra- 

tion problem, such as Powell’s method, downhill simplex and the 

LevenbergMarquardt algorithm. 

Corsini et al [153] took inspiration from medical imaging and 

extended the use of MI to a generic image registration case, in par- 

ticular to align a 3D model to a given image for Cultural Heritage 

applications. The main idea is to use different renderings of the 3D 

model and then align them with a grey-scale version of the input 

image. The similarity measure that the method uses is mutual in- 

formation (MI), where the camera parameters are iteratively opti- 

mized using Powell’s method [172] by maximizing the correlation 

between a real image and different attributes of illumination of the 

3D model (i.e. ambient occlusion, specularity, normal field). The 

approach is robust and fast, but the global minimum of the reg- 

istration may be different from the best solution. An improvement 

on [153] was proposed by Palma et al. in [154] for aligning 2D real 

images with a rendering of a 3D model. The method computes the 

gradient map of the 3D rendering and the gradient map of the im- 

age and, within an iterative optimization algorithm, it tries to max- 

imize their MI until registration is achieved. The method increases 

the performance and the quality of the original technique. 

Mastin et al. [173] introduced the use of MI for registering ur- 

ban scenes of LiDAR 3D point clouds and aerial imagery. In each 

iteration, the algorithm renders 3D points that are projected onto 

the image plane and then uses the downhill simplex optimiza- 

tion scheme [174] for maximizing a mutual information metric. 

The authors proposed three metrics for measuring mutual infor- 

mation between LiDAR and optical imagery in urban scenes, with 

the most promising being the one that measures the joint entropy 

among optical image luminance, LiDAR depth information and Li- 

DAR probability of detection values. 

In the field of medical model reconstruction, [131] proposed a 

new automatic image registration method between 3D CT and 2D 

X-rays. The registration is formulated as a non-linear least squares 

problem, and is then solved with the Levenberg-Marquardt (LM) 

optimization algorithm . Kisaki et al. [158] performed registration 

in 3D CT and MRI volumes by applying a global matching method 

based on Levenberg-Marquardt. The method consists of two steps, 

a coarse registration based on the proposed similarity criterion 

named ratio image uniformity (RIU); RIU measures the deviation 

and a fine registration based on the maximization of normalized 

mutual information (NMI). 

The above methods have modelled the similarity measure as a 

convex function and then utilize optimization algorithms to find 

the optimum. Khoo and Kapoor [160] proposed a methodology 

to convert a non-convex function into a convex one in order to 

obtain global optimality when the correspondences are unknown. 

Their framework formulates the 2D/3D registration problem as a 

mixed-integer nonlinear programming problem and relaxes it to 

a convex semi-definite problem that can be solved efficiently by 

the interior-point method. The algorithm solved simultaneously 

the pose and correspondence problems. However, only the rotation 

is recovered and the method achieved superior results only when 

there is no noise, which is an unrealistic assumption for most ap- 

plications. Marques et al [175] viewed the problem as an instance 

of correspondence permutation, which they solved by a convex re- 

laxation procedure. Their method considers the noiseless observa- 

tion model and shows that if the permutation matrix maps a suffi- 

ciently large number of positions to themselves, then the solution 

matrix can be recovered. However, the algorithm assumes that no 

outliers are present, which is unreasonable in most scenarios. 

6.1.3. Stochastic registration 

Another approach similar to hypothesize-and-test considers all 

possible correspondences, and then searches the parameter space 

to find the best solution. Different to the EM-based logic, in each 

iteration a hypothesis correspondence set is generated and tested; 

the heuristic algorithms generate most likely correspondences and 

then try to find the optimal solution within the search space. As 

exhaustive search is infeasible [176] , most strategies search the pa- 

rameter space more efficiently; genetic algorithms [155] , differen- 

tial evolution algorithms [132] and pose clustering are examples. 

When prior pose information is provided, they are more robust 

to occlusions, clutter [177] and repetitive patterns [119] . Stochastic 

optimization methods produce solutions closer to the global opti- 

mum and can be applied efficiently in cases with noise. 

A traditional approach to 2D/3D registration is the hypothesis- 

and-test RANSAC algorithm [67] . RANSAC is a re-sampling tech- 

nique that randomly selects a small set of 2D/3D correspondences, 

estimates the transformation parameters and verifies the trans- 

formation against the rest of the features. If the original and the 

transformed image features are sufficiently similar, the pose is ac- 

cepted, otherwise a new correspondence set is hypothesized and 

the process is repeated. As pointed out by Fischler and Bolles [67] , 

RANSAC uses the smallest data set possible and proceeds to en- 

large this set with consistent data points. RANSAC inspired a wide 

variety of registration methods, mainly in deep-learning field for 

multimodal registration. 

Genetic (or Evolutionary) Algorithms (GA) [178] are a class 

of widely used parallel search methods that solve complicated 

global optimization problems, so they are also deployed to 

correspondence-free 2D-3D registration. GAs simulate the natural 

evolution process in which the stronger individuals are most likely 

to survive in a competitive environment. They maintain a popu- 

lation of possible solutions (called individuals) and in each itera- 

tion an evolutionary procedure is performed until some criteria are 

satisfied. In the iterative evolutionary procedure, each individual is 

assigned a measure of quality and those with the best scores are 

selected for reproduction in order to generate a new population. 

Generation after generation, the solutions approach the optimum. 

Genetic Algorithms are simple, effective and do not need a good 

initial alignment in order to guarantee a result of good quality, but 

searching over the pose space is generally expensive. 

Rossi et al. proposed an evolutionary based procedure called 

EvoPose [133] . The authors formulated the pose estimation prob- 
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lem as an optimization problem and solved it with a Genetic Algo- 

rithm, enhanced with heuristic rules in order to improve conver- 

gence. EvoPose constructs an objective function of reprojection er- 

rors according to the perspective projection model, and in each it- 

eration the population with the minimum mean distance between 

the model and the image is selected to be evolved. The algorithm 

converges to a good pose solution after some generations. EvoPose 

has low computational cost and its performance is comparable to 

the SoftPosit method [142] . 

Inspired by EvoPose [133] , Xia et al. proposed a Differential 

Evolution based solution for the model-to-image registration prob- 

lem without any correspondence information. The method is called 

DePose [132] and enhances the evolutionary algorithms with a 

new efficient scheme called ”DE/bests/I”. The candidate solution is 

evolved only when the offspring outperforms its parent, so the sur- 

vival probability of good pose offspring is increased. DePose was 

compared to EvoPose and outperformed it in accuracy and robust- 

ness. Although, both methods improve the convergence rate, they 

tend to be slow and converge to false solutions due to local min- 

ima, especially when missing or false image points exist. 

Yang et al. used the Genetic Algorithm methodology for deter- 

mining the initial pose of 3D objects from 2D images [155] . The 

authors state that a good initial guess is necessary in order for 

the global optimum to be reached and for the objective function 

not to fall into local optima. This is because when the initial guess 

is selected randomly, the relationships between each guess are 

neglected, so an appropriate initial correspondence may not be 

selected in a long time if there are many local optima. Also, a 

correspondence may be randomly selected even if a similar one 

has already been selected and discarded, which leads to extra 

iterations. In this method, the initial pose is calculated based on 

GA and then an iterative method is used to solve the registration 

by minimizing a global objective function. The algorithm first 

generates a set of random initial guesses and then, for each of 

these candidate solutions, it computes the assignment matrix and 

the perspective projection error. The solution with the best result 

is selected for evolution until convergence. Compared with the 

traditional random start initialization methods, this technique has 

higher convergence rate and lower number of iterations. 

Particle Swarm Optimization (PSO) is a relatively recent 

population-based evolutionary computation technique for solving 

optimization problems, which is inspired by the swarming or col- 

laborative behavior of biological populations [179] . PSO algorithms 

share many similarities with GAs; they are both population-based 

search methods and search for the optimal solution by updating 

generations. However, GAs exploit the competitive characteristics 

of biological evolution in terms of survival of the fittest, while PSO 

techniques do not use evolution operators such as crossover and 

mutation. The PSO strategy emulates the swarm behavior of in- 

sects when they search for food in a collaborative manner. Each 

member in the swarm is referred to as a particle and represents 

a potential solution. Each particle flies through the search space 

in an adaptable way (velocity) that is dynamically altered by its 

own experience and other members’ flying experience. So, starting 

from a diffuse randomly generated population, each particle tends 

to improve itself by imitating traits of its successful peers. PSO it 

is an iterative technique, where in each iteration a particle moves 

by the addition of a velocity vector, which is a function of the best 

position (position with the lowest objective function value) found 

by this particle and the best position found so far among all parti- 

cles. Compared to GAs, PSO techniques seem to perform better and 

converge to an optimal solution within fewer iterations. However, 

the PSO computational time increases more rapidly than GAs due 

to the communication between the particles after each generation. 

Moreover, the PSO algorithms tend to get trapped into local optima 

in case of multimodality due to the significant nonlinear intensity 

differences between multimodal images. 

Crombez [134] proposed a robust multimodal 2D/3D registra- 

tion method that takes advantage of both geometrical and dense 

visual features instead of trying to develop a new similarity mea- 

sure. The method uses a PSO approach, where a swarm of virtual 

cameras moves inside the 3D model and tries to reach a desired 

pose represented by the 2D image. At each iteration, the virtual 

cameras move in the direction of the camera with the highest sim- 

ilarity score (based on dense visual features) but their movement 

is also influenced by the best particle in their nearest neighbor- 

hood. The particle velocities updated in this way are expected to 

iteratively move the swarm towards the best solution. 

Wachowiak et al. [121] used the PSO strategy to register single 

slices of 3D volumes to whole 3D volumes of medical images. They 

proposed a hybrid particle swarm technique with the addition of 

GA concepts such as crossover and mutation. The method outper- 

formed the evolutionary strategies that was compared to, both in 

terms of accuracy and efficiency. However, user guidance is needed 

in order to position the images in approximately the right vicinity. 

Chen and Lin [124] stated that the conventional PSO is effi- 

cient for 2D/2D multimodal registration but when transferred to 

three dimensions cannot find he global optimum efficiently; they 

thus proposed a hybrid method by integrating two methods from 

the GAs into the standard PSO algorithm [123,125,180] . The hy- 

brid particle swarm optimization (HPSO) method incorporates sub- 

population and crossover from GAs into the conventional PSO. The 

particles are not standalone, but are divided into a number of sub- 

populations. Each sub-population has its own best optimum and 

the PSO process is performed for each sub-population. The optima 

of each sub-population are sorted and the sub-populations with 

the top two optima are selected as parents for crossover. The HPSO 

was used for registering MRI and CT volumes showing better re- 

sults that classical GA and PSO algorithms. 

A similar method was proposed by Ayatollahi et al. at [161] but 

they introduced two new similarity metrics, Modified Normalized 

Mutual Information (MNMI) and Logarithmic Normalized Mutual 

Information (LNMI). Experiments showed that MNMI had better 

results for multimodal registration than LNMI or MI. Moreover, hy- 

brid registration can be automatic, more accurate, and faster than 

either of its registration components used separately. However, the 

results were inaccurate in the presence of large shear distortion 

between images. 

Schwab et al. [116] presented four variants of the PSO algo- 

rithm for registering 3D CT and MRI volumes. The first version was 

the initial standard PSO algorithm [181] , the second version was a 

modification of PSO where the inertia weight monotonically de- 

creases during the iterations, the third and fourth versions utilize 

external intervention in order to improve the initial orientation. 

The test results showed that the classical PSO reach their limits for 

the multimodal 3D registration, but when influence of the initial 

orientation was introduced the results improved. 

Another hybrid scheme of PSO algorithms was introduced by 

Talbi and Batouche [159] . Different from the above methods that 

mixed PSO algorithms with GA, this technique integrates PSO with 

Differential Evolution (DE) operator for registering MRI images 

with a variety of medical modalities (CT, PET, SPECT). The proposed 

algorithm follows the classical PSO iterative scheme but the DE op- 

erator is applied only to the best particle obtained in each iteration 

for alternate generations. 

6.1.4. Branch-and-Bound (BnB)-based registration 

Several optimization-based registration methods use the 

Branch-and-Bound (BnB) framework due to its theoretical optimal- 

ity guarantees. Assuming that the correct alignment belongs to a 
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known volume of the search space, first all correspondences and 

the transformation space are generated. The search space is recur- 

sively subdivided into smaller subsets and is reduced according 

to lower bounds of the registration error in order to be used for 

pruning. In the end, the only remaining branch will include the 

aligned solution. The method depends on how tight the bounds 

are and how quickly they can be computed. The BnB algorithm 

forms the transformation space as a decision tree where each 

node is a possible correspondence and then searches it recursively, 

bounding the objective function at each stage and discarding parts 

of the transformation in which the solution does not exist. At the 

end, the remaining transformation space is tightly bounded and 

includes the globally optimal solution. 

An early algorithm, similar to BnB, was proposed by Jurie 

[182] for 2D/3D alignment with a linear approximation of perspec- 

tive projection. First, an initial volume of pose space is guessed 

and all of the correspondences compatible with this volume are 

considered. Then the method recursively reduces the pose volume 

until only a single pose remains. The Gaussian error model is used 

to calculate the score of each sub-volume (named as box) and in 

each iteration the sub-volumes (boxes) of pose space are pruned. 

Thus, boxes of pose space are not pruned by counting the number 

of correspondences, but based on the probability of having an ob- 

ject model in the image within the range of poses defined by the 

box. Due to the use of the Gaussian error model, the approach is 

not robust to outliers. 

Enqvist et al. [144,156] formulated the registration problem as 

a graph vertex cover problem and provided an optimal solution. 

The algorithm makes use of the observation that any two point 

correspondences generate a 3D surface of the possible camera po- 

sitions. The main approach is to compute pairwise constraints be- 

tween pairs of potential correspondences and employ BnB search 

over the possible camera positions. The method creates a graph of 

all possible pairs of correspondences and the optimal solution is 

found by determining the largest set of pairwise consistent corre- 

spondences. Finally, the transformation is computed for the found 

correspondences. 

A method that guarantees the global optimality of the regis- 

tration in case of both points and lines within indoor scenes has 

been proposed by Brown et al. [148,149] . The method applies a BnB 

framework in order perform 2D/3D registration without any corre- 

spondence knowledge. In order to increase the efficiency, a nested 

BnB structure was utilized. An outer BnB searches over the rotation 

space and, for each rotation branch another BnB algorithm is used 

for searching the camera position. While the approach is not sus- 

ceptible to local minima, it requires the inlier fraction to be speci- 

fied in order to trim outliers, which is rarely known in advance. 

Similar to Brown’s approach [148] , a BnB framework was pro- 

posed by Campbell et al. in [150] , but they introduced new bounds 

which are proven to be tighter than those used in Brown’s formu- 

lation. The authors proposed a globally-optimal inlier maximiza- 

tion framework which maximizes the cardinality of the set of fea- 

tures that are within a set inlier threshold from a projected 3D 

feature. The authors pointed out that the global optimum of a 

trimmed objective function may not occur at the true pose, partic- 

ularly when an incorrect objective function is used. So, the main 

advantage of the method is that no trimming is necessary, so 

the estimation of the proportion of inliers is not necessary. Both 

[149] and [150] formulate the 2D/3D registration problem as a 

camera pose estimation problem, in which the 3D points are fixed 

and the optimal camera orientation and position are sought so that 

the image of the 3D points captured by the camera matches the 2D 

point set. This formulation, however, has as drawback that in order 

to cover the whole relative angle space between the 3D points and 

the camera, the camera position needs to move all around the 3D 

points, and thus the range of transformation parameters that needs 

to be searched gets very large. 

The idea of the nested BnB structure in order to accelerate 

the optimization was also utilized for medical registration of MRI 

and X-rays in [135] . The method generates a 3D model from MRI 

images and another one by reconstruction from the X-ray images. 

The two meshes are then registered by using a globally optimal 

iterative closest points (Go-ICP) method [183] . The method en- 

capsulates two BnB algorithms and the standard ICP in a globally 

optimized registration technique. The outer BnB algorithm oper- 

ates on the rotation space and the inner one on the translation 

space. The ICP algorithm is called when the upper bound is below 

the current best estimate. 

Liu et al. [126] introduced a 2D/3D registration method based 

on a globally optimal rotation search algorithm utilizing the 

Branch-and-Bound (BnB) optimization scheme with four new pro- 

posed upper bounds in order to make the search of BnB more ef- 

fective. The problem is formulated in a similar way to a camera 

pose estimation problem [149,150] , but instead of searching for the 

optimal camera orientation and position with fixed 3D points, the 

2D points and the camera’s coordinate system are fixed instead. 

The pose of the 3D points is then searched for as the rigid trans- 

formation that best aligns their projections with the 2D points. The 

method uses as objective function the cardinality of the inlier set 

of the 2D projection plane and tries to maximize it with a BnB 

strategy. Moreover, a synchronized searching schema in translation 

space is proposed; the translation space is divided into a series of 

blocks, smaller than the covering region of the search algorithm 

and a rotation search is run at the center of each block in a syn- 

chronized way. A search is terminated and the corresponding block 

is omitted when its upper bound is smaller than the universal best 

value of the objective function. 

Recently, Pan et al. [166] extended the method of [126] into a 

multi-view setting to make the registration more feasible in real 

world applications [52,137,139,184] . The method makes full use of 

different views to accelerate the searching process and reduces the 

required iterations. The search space is divided into subspaces and 

each view shares the same branches, but the upper and lower 

bounds are different. Each view follows the classic BnB pipeline to 

update its current best upper bound. When one of the views faces 

the case that the upper bound is lower than the current best, the 

corresponding branch is pruned. With the introduction of multiple 

views instead of only one, the accuracy is improved, and the itera- 

tions are reduced. However, no experiments have been conducted 

on real world applications. 

6.1.5. Multiview registration using SfM 

Multiview geometry can be applied for registering multiple 2D 

images with a 3D model. The approach is generally divided into 

three steps, Structure from motion (SfM), rough registration and 

fine registration. In the first stage, SfM is utilized in order to re- 

construct a 3D point cloud from the 2D images. The problem is 

then simplified to 3D/3D registration, in which the 3D point cloud 

produced from the first stage and the initial model have differ- 

ent scales, reference frames, and resolutions. Due to the sparse- 

ness and noise of the point clouds produced via SfM, the resulting 

alignment of the second step may be rather approximate, so a fi- 

nal stage is needed to refine the solution. SfM approaches show 

high registration accuracy and robustness, but are computationally 

expensive and demand a large collection of images for the SfM re- 

construction. 

In 2013, Corsini et al. [120] proposed an automatic 2D/3D regis- 

tration pipeline, which can handle scale changes between datasets. 

Instead of aligning each single image with the 3D geometry, the 

method starts with a group of images as an input, taking advan- 

tage also of the relations between the images. At the first stage, the 



166 E. Saiti and T. Theoharis / Computers & Graphics 91 (2020) 153–178 

images are used to compute a sparse point cloud by using Struc- 

ture from Motion (SfM). Afterwards, this point cloud is aligned to 

the 3D object with a modified version of the 4 Point Congruent 

Set (4PCS) algorithm [185] . The 4PCS extension accounts for mod- 

els with different scales and unknown amount of overlapping re- 

gions. The transformation that aligns the sparse point cloud (that 

resulted from the 2D images) to the dense 3D object is applied 

to the extrinsic parameters of the cameras. In the final stage, a 

global refinement method is applied based on Mutual Information 

(MI), which improves the accuracy of the final 2D/3D alignment. 

The main advantage of this framework is that there is no need for 

user intervention, no prior knowledge is necessary and there are 

no requirements regarding the geometry and the visual features in- 

volved. However, the initial step of reconstructing the sparse point 

cloud can be time-consuming in some cases. 

The method of Pintus and Gobbetti [130] is another fully au- 

tomatic framework for image-to-geometry alignment that uses a 

GPU-based global affine 3D point set stochastic registration ap- 

proach. The method consists of three steps. In the first step, an 

SfM algorithm is applied to the collection of images to construct a 

sparse 3D model; this is achieved by matching features across the 

images, merging all camera poses in a common reference frame 

and estimating the intrinsic parameters of the cameras. The sec- 

ond step aligns the sparse 3D model generated from the SfM by 

utilizing a stochastic global registration method for point clouds 

[186] . An extra local refinement step is then performed in order to 

compute correspondences in the newly aligned point clouds. The 

method utilizes the approximate GPU-accelerated method of [187] . 

In the final step, a Specialized Sparse Bundle Adjustment (SBA) 

calculates the final registration in a non-rigid deformable manner, 

constraining the features detected in the images to lie on the 3D 

model. Compared to Corsini et al. [120] , this strategy does not re- 

quire heavy pre-processing for altering the sparse 3D point cloud 

into a dense model. This is due to the global registration method 

used that recovers the globally optimal scale, rotation and transla- 

tion alignment parameters. 

A similar approach was proposed by Zhao et al. [167] for align- 

ing a video sequence with a 3D point cloud obtained from a 3D 

sensor (i.e. LiDAR). First, the camera pose is estimated and sec- 

ondly, 3D structure is reconstructed from the video sequence via 

a SfM/stereo algorithm. Then, the ICP algorithm is applied to regis- 

ter the input point cloud with the reconstructed one. This method 

has some limitations, like the computationally expensive process 

of generating 3D point clouds from video. Also, due to the use of 

ICP, the initial poses of the point clouds should be close in order to 

find a good solution while the alignment may fail in scenes with 

discontinuities. 

A depth-aware 2D/3D registration technique is proposed in 

[136] that utilizes a Point-to-Plane (PPC) model introduced in 

[188] . The method measures the local misalignment between the 

projection of a 3D volume and a 2D image (X-ray), followed by the 

computation of the 3D rigid transformation using the PPC model 

required to align them. In the initialization step, the method com- 

putes a set of 3D feature points from the 3D volume, which are 

then used to identify the salient structures to be further regis- 

tered. Then, in each iteration, first a set of contour generator points 

are selected, as a subset of the initially computed points, and pro- 

jected onto the image plane, with their depths and 3D gradient 

preserved (depth aware gradient projections (DGP)). Afterwards, 

the local misalignment is measured between the DGP and the X- 

ray image. The goal is to minimize the visual misalignment be- 

tween the DGP and the actual contour points from the 2D X-ray 

image. This iterative scheme is accurate in single-view scenarios 

and robust against outliers but only when they are a minority. 

In [141] and [138] the authors extended the [136] method to 

multi-view registration. In [141] , the method performs single-view 

registration for all views, selects the most promising results and 

refines the out-of-plane parameters using the other view(s). Alter- 

natively, in [138] , a variant of [141] has been proposed, which first 

computes the transformation sequentially for each view and then 

each iteration alternates between the different views. The result is 

then selected as the iteration which leads to the best alignment. 

6.2. Learning-based registration 

Recently, machine learning approaches have been increasingly 

applied to multimodal registration, instead of the conventional 

optimization-based techniques, in order to overcome the chal- 

lenges of prolonged running time and the risk of falling into local 

minima. 

Two common strategies exist, the first one is to estimate a 

similarity metric via deep learning techniques and the other is to 

predict the transformation parameters directly with deep learning. 

The former approach utilizes deep learning methods so as to learn 

a similarity metric from training data and then feed it in a tra- 

ditional registration framework. The latter uses deep learning net- 

works to predict without iteration the transformation parameters, 

so a deep neural network acts like a regressor to find the trans- 

formation that aligns the datasets. This can be further classified, 

according to the training process, into reinforcement learning, su- 

pervised and unsupervised. 

Table 3 provides an overview of multimodal 3D registration 

methods according to the above categorization. 

6.2.1. Learning of similarity metric 

As a first attempt to use deep learning (DL) in registration, 

researchers used neural networks to learn similarity metrics be- 

tween the data to be registered from a large set of paired labeled 

ground-truths. The estimated similarity measure between modali- 

ties is then used within a typical iterative optimization registration 

method. The strategy followed is to seek a similarity metric that 

best suits the multimodal datasets, thus taking into consideration 

the differences in intensity per case study. The similarity metric is 

then provided to an iterative optimization registration framework 

in order to determine the transformation parameters [212,213] in 

a conventional way, without the use of neural networks. Combin- 

ing deep learning with conventional registration, these methods 

achieved better performance and accuracy than conventional, itera- 

tive, intensity-based registration techniques, especially in the mul- 

timodal case, where it is difficult to find a general similarity metric 

that can be successfully deployed in different modalities. 

Lee et al. [197] presented a supervised technique to learn a 

similarity function based on features extracted from the neighbor- 

hoods around the voxels of interest. The problem of learning a sim- 

ilarity metric was formulated as binary classification, where the 

goal is to discriminate between aligned and misaligned patches. 

Support vector machine (SVM) regression was employed to learn 

the similarity metric and then used within a standard rigid reg- 

istration algorithm. Experiments have been performed on CT-MRI 

and PET-MRI image volumes showing accuracy and robustness. 

Chou et al. [200] presented a 2D/3D deformable registration 

method that rapidly detects an objects 3D rigid motion or defor- 

mation from a 2D projection image or a small set of them. The 

method computes the residual between the DRR and X-ray images 

as a feature and trains linear regressors to estimate the transfor- 

mation parameters to reduce the residual. The method consists of 

two stages: registration pre-processing by shape space and regis- 

tration via regression. The method is based on producing limited- 

dimension parameterization of geometric transformations based on 

the regions 3D images. A Riemannian metric is learned for each 

deformation parameter and is used in the kernel regression for 
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Table 3 

Overview of Learning-based Registration Methods, grouped by evaluation measure and dataset used. 

Learning-based Registration Methods 

Method Modality A Modality B Nature Domain ML Method Dataset Initial Evaluation Value of Training Execution 

of Transform. of Transform. Strategy Application Measure Eval. Measure time time (sec) 

Haskins et al. [189] 3D MRI 3D TRUS rigid global DL of Similarity Metric Supervised private medical TRE 3.82mm ± 1.63 n/a n/a 

Zheng et al. [190] 3DCT 2D X-rays rigid global PTR-Reinforcement learning private medical TRE 5.65mm n/a n/a 

FR 11.20% 

Ma Kai et al. [191] 3D CT 2.5D image rigid global PTR-Reinforcement learning private medical TRE 4days 0.06sec-1.60sec 

Miao et al. [192] 3D volume 2D X-rays rigid global PTR-Reinforcement learning private medical TRE 1.76mm 17hours 0.6sec- 2.5sec 

Hu et al [193] . 3D MRI 3D TRUS non rigid global PTR-Supervised GAN private medical TRE 6.3 mm n/a 0.25sec 

Dice 0.82 

Yan et al. [194] 3D MRI 3D TRUS rigid global PTR-Supervised GAN private medical TRE 3.48mm 8hours n/a 

Salehi et al. [195] 3D MRI 2D slice of MRI non rigid global PTR-Supervised CNN private medical TRE 12.32mm n/a 0.30sec 

Sedghi et al. [196] 3D MRI 3D US rigid global DL of Similarity Metric IXI [106] medical TRE 1.43mm ± 0.64 n/a n/a 

Lee et al. [197] 3D CT 3D MRI rigid local DL of Similarity Metric Supervised RIRE [104] medical TRE 1.40mm n/a n/a 

Lee et al. [197] 3D PET 3D MRI rigid local DL of Similarity Metric Supervised RIRE [104] medical TRE 2.52mm n/a n/a 

Hu et al. [198] 3D MRI 3D TRUS non rigid global PTR-Supervised CNN SmartTarget medical TRE 4.2 mm n/a 0.25sec 

[112] Dice 0.88 

Hu et al [199] . 3D MRI 3D TRUS non rigid global PTR-Supervised CNN SmartTarget medical TRE 4.8 mm n/a 0.25se 

[112] Dice 0.82 

Chou et al [200] . 3D CBCT 2D image rigid global DL of Similarity Metric Supervised private medical mTRE 0.34mm Ø 0.24 linear 2.61sec 

Wright et al. [201] 3D MRI 3D US rigid global DL of Similarity Metric private medical mTRE 1.8 mm,7.9 ° n/a n/a 

Cao et al. [202] 3D MRI 3D CT non rigid global PTR-Reinforcement learning CNN private medical mTRE 1.23mm ± 0.43 40hours 15sec 

Dice 0.905 

Pei et al. [203] 3D CBCT 2D X-rays non rigid global PTR-Supervised CNN private medical mTRE 0.41mm ± 0.12 n/a 

POINT 2 [118] 3D CT/CBCT 2D X-rays rigid global PTR-Supervised private medical mTRE 5.67mm n/a 2.50sec 

FR 2.7% 

Fan et al. [204] 3D MRI 3D CT rigid global PTR-UnSupervised GAN private medical mTRE 1.57mm ± 0.44 

Dice 0.86 n/a 

DSAC [205] 3D scene 2D image rigid global PTR-Reinforcement learning CNN 7-Scenes [86] general mTRE 4.1cm, 1.1 ° n/a 0.1sec 

SR 58.5% 

PoseNet [206] 3D scene 2D image rigid global PTR-Supervised 7-Scenes [86] general mTRE 2.31m, 2.69 ° 1hour 0.005sec 

Melekhov et al. [207] 3D scene 2D image rigid global PTR-Supervised CNN 7-Scenes [86] general mTRE 0.24mm, 10.24 n/a n/a 

Kendall et al. [91] 3D scene 2D image rigid global PTR-Supervised 7-Scenes [86] , general mTRE 1.49m 4hours- 

1day 

0.2sec 

Cambridge 

Landmarks 

[90] 

Sun et al. [208] 3D MRI 3D US non rigid global PTR-UnSupervised CNN RESECT [114] medical mTRE 3.91mm 2.66sec 1.21sec 

Shotton et al. [86] 3D scene 2.5D image rigid global PTR-Supervised 7-Scenes [86] general SR 92.6% 10min 0.5sec 

Miao et al. [209] 3D model 2D X-rays rigid global PTR-Supervised CNN VIPS [109] medical mTREproj 0.282mm n/a 0.08sec 

Miao et al. [47] 3D CT 2D X-rays rigid global PTR-Supervised CNN VIPS [109] mTREproj 0.106 mm non trivial 0.1sec 

Yu et al. [210] 3D CT 3D PET non rigid global PTR-UnSupervised CNN private medical NCC 0.567 ±0.038 

MI 2.340 ±0.349 n/a 2.60sec 

DenseRegNet [211] 3D CT 3D PET non rigid global PTR-UnSupervised DenseNet private medical NCC 0.633 ±0.068 n/a n/a 
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registering. The method operates via iterative, multi-scale regres- 

sion, where the regression matrices are learned in a way specific to 

the 3D image(s) for the specific patient. The method only applies 

to affine deformations and low-rank approximations of non-linear 

deformations. 

Sedghi et al. [196] utilized special data augmentation tech- 

niques called dithering and symmetrizing to train a CNN to learn 

a similarity metric from roughly aligned data. The framework was 

used for registering unimodal 3D MRI images but also experiments 

were performed for aligning MRI with US volumes. 

Haskins et al. [189] proposed to use CNN to learn a similar- 

ity metric for multimodal rigid registration of MRI and transrec- 

tal (TRUS) volumes. The determination of the similarity is formu- 

lated as a deep CNN-based problem, so the designed CNN with a 

skip connection outputs an estimate of the target registration error 

(TRE), which is used to assess the quality of the registration. Then, 

the alignment is performed with a traditional optimization frame- 

work, that uses an evolutionary algorithm to explore the solution 

space. A multi-pass approach is used in order to address the issue 

that the learnt metric could be non-convex and non-smooth. 

Different from the above strategies, Wright et al. [201] proposed 

a Long Short-Term Memory (LSTM) spatial co-transformer network 

to iteratively align MRI and US volumes group-wise to a com- 

mon space. The recurrent spatial co-transformer consists of three 

components, initially an image wraper, then the parameter predic- 

tion network and finally the parameter composer, which updates 

the transformation estimates. The method is robust and successful, 

even on initially randomly aligned objects. 

6.2.2. Predictive transformation registration (PTR) 

This registration framework uses deep neural networks as a re- 

gressor so as to directly predict the transformation parameters ac- 

cording to a loss function. The methods can be either iterative, 

such as Reinforcement Learning techniques that train the agent it- 

eratively with award or penalty, or one-off, such as Supervised and 

Unsupervised neural network frameworks. 

Reinforcement Learning-based registration 

Reinforcement learning methods utilize a trained agent to per- 

form the registration in a manner similar to an expert. This type of 

machine learning technique enables the agent to learn from its ac- 

tions and experiences and is focused on predicting the best actions 

to be followed in an environment for each state. A typical fram- 

ing of reinforcement learning includes an agent with some internal 

states, transition probabilities, and a reward/penalty rate [214] . The 

agent learns iteratively to interact with the environment so as to 

produce the final transformation, which maximizes the similarity 

of the two datasets. At each iteration, the agent chooses the best 

action, which is the one with the highest probability to get reward 

from its application in the environment. In terms of registration, 

the deep reinforcement learning agent can be applied to rigid/non- 

rigid transformations, where the states are finite and the agent can 

converge to an optimal solution where the similarity measure is 

maximized. In contrast to the deep learning of similarity metric 

techniques, where deep learning is used to identify the measure to 

be provided in the conventional registration method, this approach 

uses a given similarity metric (i.e. MI or CC) to directly predict the 

transformation parameters. 

Liao et al. [30] were the first to use reinforcement learning- 

based registration to perform alignment of 3D CT volumes. Ma 

et al. [191] , extended their work via a Q-learning framework that 

automatically learns to extract optimal feature representation in 

order to reduce the appearance discrepancy between different 

modalities. The data modalities that are used are the 2.5D depth 

images and 3D CT/MRI volume data. Initially, for speed up reasons, 

the method reformulates the 3D volume to a 2D image through a 

projection process and thus the registration problem is simplified 

to 2D image registration. The method is derived from Q-learning 

[215] that automatically extracts compact features, but uses the 

dueling network architecture of [216] with some modifications 

so as to minimize the effect of intensity distribution discrepancy 

across different modalities. This approach outperforms registration 

methods based on ICP, landmarks, deep Q-networks and dueling 

network, but a huge amount of state-action histories have to be 

saved during training. 

DSAC [205] algorithm is a combination of the RANSCAC al- 

gorithm [67] with the reinforcement learning approach. DSAC 

learns both the scoring function and the transformation predic- 

tions within the RANSAC framework. The method replaces the 

deterministic RANSAC hypothesis with a smooth, differential ob- 

jective function. The system is broadly applicable, ranging from 

small objects to entire scenes. However, this method is designed 

to mimic RANSAC rather than outperform it. 

Instead of training a single agent, [192] proposed a multi-agent 

system with the auto attention mechanism to register a 3D vol- 

ume and 2D X-ray images. The 2D/3D registration is formulated as 

a Markov Decision Process (MDP) [30,217] and multiple agents are 

used to solve it. Each individual agent is trained with dilated fully 

convolutional network (FCN) to observe a local region of the image. 

Finally, the registration is driven based on the proposals from mul- 

tiple agents. While the method achieves a high robustness and out- 

performs approaches that use the state-of-the-art similarity metric 

of [218] , registration accuracy remains challenging. 

Zheng et al. trained a CNN model under a pairwise domain 

adaptation (PDA) technique [190] to improve the performance gen- 

eralization of the CNN model, to limit the training data needed and 

to cope with the discrepancy between synthetic training data and 

real testing data. The adaptation module can be trained using a few 

pairs of real and synthetic data and learn effective representations 

for multimodal registration. The method showed flexibility and can 

be adopted in a variety of applications (though clinical oriented) 

especially when only little training data is available. 

Cao et al. [202] developed a deep learning method for mul- 

timodal 3D image registration by transforming the problem into 

unimodal registration tasks. Instead of using ground truth samples, 

the method uses unimodal image similarity to supervise the multi- 

modal deformable registration of CT and MRI volumes. Specifically, 

prior to network training, the multimodal registration is simplified 

to unimodal by using a pre-aligned CT and MRI dataset, in which 

each pair of CT and MRI is registered as paired data. Thus, an MRI 

has a pre-aligned CT and a CT has a pre-aligned MRI. Moreover, the 

method utilizes dual supervision, where the similarity guidance is 

delivered from not only the MRI modality, but also the CT modal- 

ity, so they can both train the network effectively. Although the 

framework outperforms traditional registration methods in partic- 

ular applications, it is limited to bi-modal images. 

Supervised transformation prediction 

Both strategies mentioned in the previous subsections (learn- 

ing the similarity metric and reinforcement learning) are iterative 

making them computationally expensive. In contrast, supervised 

registration methods train deep neural networks (DNNs) to predict 

the transformation parameters in one-shot. In supervised learn- 

ing, ground-truth data with known transformation parameters is 

required for the training process. The larger the amount of such 

data and the more representative it is, the better the accuracy and 

precision of the registration result. 

Shotton et al. [86] made a first attempt to use machine learning 

techniques in 2D/3D registration without known correspondences. 

They introduced the concept of scene coordinates for camera lo- 

calization and a random forest regressor to predict initial 2D/3D 

correspondences from image appearance. The method uses depth 
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images to create scene coordinate labels which map each pixel 

from the camera coordinates to the global scene coordinates. This 

is then used to train a regression forest in order to regress these 

labels and finally localize the camera. The limitation on using only 

RGB-D images makes it unsuitable for outdoor scenes. 

PoseNet of Kendall et al. [206] trains a CNN to directly regress 

the 6D pose of a scene from an RGB image. The scene is a scene 

obtained by Structure-from-Motion (SfM). To train their model, 

they automatically generated training labels from a video regis- 

tered to the scene using SfM and combined with transfer learn- 

ing from recognition to registration for increased efficiency and ac- 

curacy. Although PoseNet overcomes many limitations of the tra- 

ditional approaches, its performance still lacks behind traditional 

feature-based approaches where local features perform well. 

Later the authors extended PoseNet [206] by learning the 

weight between the camera translation and rotation loss and incor- 

porating the reprojection loss [91] . Thus, PoseNet became scene- 

geometry aware by minimizing the reprojection error of 3D points 

in multiple images. 

Another improvement of PoseNet has been proposed by 

Melekhov et al. [207] with the training of an hourglass network 

of ResNet34 architecture. Their method used skip connections be- 

tween the encoder and decoder, to directly regress the camera 

pose. 

Pei et al. [203] presented a CNN regression based method for 

the non rigid registration between 2D X-rays and 3D volumes, 

by integrating a mixed residual CNN and an iterative refinement 

scheme. The regression is performed directly on image slices, with- 

out feature extraction. Instead, of the one-shot registration esti- 

mation, an iterative feedback scheme is used, where the deforma- 

tion parameters are iteratively fine tuned. The proposed method 

achieves reliable and efficient online non rigid registration. 

A CNN regression approach, named Pose Estimation via Hier- 

archical Learning (PEHL), was proposed by Miao et al. [47,209] to 

directly predict the registration transformation parameters, reach- 

ing a large capture range and high accuracy in real time. Different 

from optimization-based methods, which iteratively optimize the 

transformation parameters, Miao et al. were the first to use deep 

learning to predict the rigid transformation matrix that aligns a 3D 

model to 2D X-rays. Initially, an automatic feature extraction step 

calculates a Digitally Reconstructed Radiograph (DRR) from the 3D 

CT image. The CNN regressors are then trained to predict the trans- 

formation of 2D/3D X-ray attenuation maps and 2D X-ray images. 

The ground truth data used were synthesized by transforming al- 

ready aligned data. Hierarchical regression was proposed in which 

the six transformation parameters (2 translational, 1 scaling and 3 

rotation angles) are partitioned into three groups. In this way, the 

complex regression task is divided into multiple simpler sub-tasks 

that can be learned independently. This method has significantly 

higher regression success rates than the traditional optimization- 

based methods, like MI, CC and gradient correlation. 

Salehi et al. [195] proposed a deep residual regression network 

and a bi-invariant geodesic distance based loss function to per- 

form 2D/3D rigid registration. A CNN is used to predict both rota- 

tion and translation using extracted image features. The regression 

method learns the relation between slice pose and 3D image ac- 

cording to the appearance of the 2D slice. The method uses both 

mean squared error (MSE) and the geodesic distance as loss func- 

tion. The addition of geodesic distance improved the performance 

of the registration method. 

Yan et al. [194] proposed an adversarial image registration of 

MRI and TRUS, inspired by the GAN framework. The method trains 

two deep networks simultaneously, one for transformation param- 

eter estimation and the other for the discriminator component, 

which evaluates the quality of the alignment. The paired training 

data is manually registered by experts and are used as ground- 

truth. The trained discriminator provides an adversarial loss for 

regulation and a discriminator score for alignment evaluation, thus 

the discriminator serves as a certainty evaluator during testing. 

Hu et al. [198,199] labeled corresponding structures for train- 

ing the network for registering MRI and TRUS volumes. The frame- 

work requires the anatomical labels and full image voxel intensi- 

ties as training data so that the end-to-end registration network 

only requires a pair of MRI and TRUS images without any labels. 

Later, in [193] they directly regressed the multimodal deformable 

registration via a weakly supervised anatomical label driven GAN. 

An adversarial approach is used to constrain CNN training for 3D 

image registration. During training the registration network simul- 

taneously maximizes the similarity between anatomical labels, and 

minimizes an adversarial generator loss that measures divergence 

between the predicted and simulated deformation. However, the 

registration performance of framework [193] was inferior to [198] . 

Recently, Liao et al. [118] proposed to address multi-view 2D/3D 

rigid registration via a Point-of-Interest (POI) Network for Tracking 

and Triangulation (POINT2). POINT2 directly aligns the 3D CT data 

with the 2D X-ray by using DNNs to establish a point to point cor- 

respondence between multiple views of them, and then performs 

a shape alignment between the matched points to estimate the 3D 

CT pose. For 3D correspondence, a triangulation layer projects the 

tracked POIs in the X-ray images of multiple views back into 3D. 

While this method achieves an improved performance, it requires 

a large training set and is only applicable to multi-view registra- 

tion. 

Unsupervised transformation prediction 

The lack of large datasets with known transformations to be 

used as a training data, motivated the development of unsu- 

pervised registration methods [219] . In unsupervised registration, 

DNNs are trained without ground-truth data to construct regres- 

sion models in order to predict the transformation parameters. 

The methods use data augmentation techniques to overcome the 

absence of large ground-truths. Moreover, conventional similarity 

metrics are used as the loss function of the network. However, 

defining the proper loss function for a network without ground- 

truth transformations is not trivial, especially in the case of mul- 

timodal registration where defining a similarity metric suitable for 

different modalities is challenging. Thus, methods using unsuper- 

vised learning are still limited. 

Sun and Zang [208] proposed an unsupervised method for 3D 

MRI/US registration with a 3D CNN. The framework is composed of 

three components, a feature extractor, a deformation field genera- 

tor and a spatial sampler. Initially, for feature extraction, two fully 

convolutional neural networks are used to extract higher level rep- 

resentative features from MRI and US images respectively. Then, 

the features are fed into the deformation field generator, where 

a deformation field is generated and finally, a spatial sampler is 

used to apply the deformation field to a regular spatial grid. The 

network is trained using a similarity metric that incorporates both 

image intensity and gradient, thus it allows accurate and fast reg- 

istration. 

Yu et al. [210] proposed an unsupervised deep learning method 

for automatic image registration between 3D PET and CT images. 

The framework consists of two modules, a low-resolution displace- 

ment vector field (LR-DVF) estimator and a 3D spatial transformer 

and resampler. The LR-DVF estimator uses a 3D deep convolutional 

network (ConvNet) to directly estimate the voxel-wise displace- 

ment (3D vector field) between PET and CT images, and the spa- 

tial transformer and resampler warps the PET images to match the 

anatomical structures in the CT images by using the estimated 3D 

vector field. The method improves the deep learning network DIR- 

Net of de Vos et al. [220] , but the use of Normalized Cross Correla- 
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Fig. 8. 7-Scenes dataset sample images from left to right: Chess, Fire, Heads, Office, Pumpkin, Red Kitchen and Stairs. 

tion (NCC) as a similarity metric results in over-deforming the PET 

images. 

Kang et al. [211] improved the work of [210] in terms of net- 

work structure, loss function and evaluation measures. The method 

utilizes a ’DenseNet’-based architecture as the displacement vector 

field (DVF) regressor, for predicting 3D displacement fields. Then, 

a spatial transformer for warping 3D images is used to obtain the 

registration result. Moreover, a two-level similarity measure is pro- 

posed to optimize the training process, Normalized Cross Corre- 

lation (NCC) is used to measure the similarity of voxels at the 

global level and Maximum Mean Discrepancy (MMD) measures the 

similarity of data distributions at the higher dimensional level. As 

for evaluation measures, two anatomical measures are used along 

with NCC to evaluate the registration results. 

Fan et al. [204] proposed an adversarial similarity network to 

automatically predict the deformation in one-pass, without us- 

ing any arbitrary similarity metric. The network, which is inspired 

by generative adversarial networks (GAN), is trained in an adver- 

sarial and unsupervised way and does not need ground-truth. A 

registration network and a discrimination network are connected 

with a deformable transformation layer. The registration network 

takes two input 3D images and outputs similarly sized predicted 

deformations. The registration network is trained with the feed- 

back from the discrimination network, which is designed to judge 

whether a pair of images are sufficiently aligned. The discrimina- 

tion network is trained from the registration network’s output. The 

framework is applicable to both unimodal and multimodal registra- 

tion. Specifically, for multimodal registration, positive image align- 

ments are pre-defined by using paired CT and MRI images. The 

method effectively registers multimodal images and the use of ad- 

versarial loss increases performance. 

7. Experimental evaluation of 2D/3D registration methods 

Although many authors provide evaluation of their methods, 

only few of these experiments and results allow a direct compari- 

son against the state-of-the-art. The main reasons are that most of 

the algorithms are only evaluated on private datasets, they are as- 

sessed using different measures and their source code is not pub- 

licly available. 

In order to provide a useful comparison, we have tested meth- 

ods with publicly available source code on the same dataset. 

The only methods with publicly available source code are 

[67,86,91,126,142,195,199,205,206] [199] . and [195] are medically 

oriented methods that register 3D MRI volumes with 3D TRUS 

and 2D slices of MRI respectively. These methods could not be 

compared with the rest of the methods to align 3D models or 

scenes with 2D images or points, so experiments have been per- 

formed only on the seven remaining methods. Even these methods 

were not exactly aligning the same modalities. More specifically, 

[91,205,206] register 3D scenes and 2D images, [86] registers 3D 

scenes and 2.5D images, while [67,126,142] register 3D point clouds 

and 2D points. Thus, the main challenge was to identify a pub- 

licly available dataset that could be used for our tests. The dataset 

that fitted best was the 7-Scenes dataset [85,86] , sample frames of 

which are shown in Fig. 8 . 

Table 4 

Information about the scenes and the data of the 7- 

Scenes dataset. 

Scene Spatial # Frames 

Extent (m) Train Test 

Chess 3 × 2 × 1m 4000 2000 

Fire 2.5 × 1 × 1m 2000 2000 

Heads 2 × 0.5 × 1m 1000 1000 

Office 2.5 × 2 × 1.5m 6000 4000 

Pumpkin 2.5 × 2 × 1m 4000 2000 

Red Kitchen 4 × 3 × 1.5m 7000 5000 

Stairs 2.5 × 2 × 1.5m 2000 1000 

Shotton et al. in [86] also propose a method for aligning a 

3D scene with a 2.5D image, with experiments on the 7-Scenes 

dataset that they also provide. Apart from this, DSAC, [205] , 

PoseNet [206] and [91] also register 3D scenes but with 2D images 

(not 2.5D), thus the 7-Scenes dataset can also be used by ignoring 

the depth information. The authors of these three methods have 

also used the 7-Scenes dataset themselves for evaluating their re- 

sults. However, SoftPOSIT [142] , RANSAC [67] and [126] are regis- 

tration methods between a 3D point cloud and 2D points. In order 

to test those methods on 7-Scenes, we had to alter the modalities 

of the dataset from 3D scene and 2D image into 3D point cloud 

and 2D points. We converted the 3D models from the so called 

TSDF volume [87] into 3D point clouds with the technique pre- 

sented in [221] while the 2D points were detected from the PNG 

images using the Harris Detector [222] . 

The 7-Scenes dataset consists of RGB-D images (RGB images in 

PNG format and depth files) of 7 indoor environments and a 3D 

model (TSDF volume) of each scene. Each scene contains multi- 

ple sequences of RGB-D images that represent independent cam- 

era paths. Each image frame is annotated with its 6D camera pose, 

that defines the ground truth for our experiments. The data of each 

scene are partitioned into testing or training subsets, with RGB- 

D image numbers varying from 1k to 7k ( Table 4 ). However, the 

dataset does not include an explicit image set for validation. Test- 

ing took place on a random selection of 10% of the images of one 

sequence per scene. 

The results of the 2D/3D registration experiments are summa- 

rized in Tables 5 and 6 . The results were evaluated by compar- 

ing the final registration errors, expressed as translation and ro- 

tation error ( Table 5 ) and mean target registration error mTRE 

( Table 6 ), see Eq. 2 . The registration results of RANSAC [67] , Soft- 

POSIT [142] and [126] should be seen with caution as these meth- 

ods were developed for slightly different data. In order for future 

multimodal registration methods to be more fairly compared, the 

creation of a publicly available dataset with more modalities and 

specified ground truth is necessary. 

As an additional measure, Shotton et al. proposed the Success 

Rate (SR), defined as the percentage of test frames for which the 

registration is considered ’correct’ [86] . In particular, for the 7- 

Scenes dataset, a registered pose is considered ’correct’ if it has 

no more than 5cm translational error and 5 °angular error. Not all 
methods reach the bound as defined by Shotton, so we consider 

it unfair to provide a comparison on this measure. Table 7 , gives 
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Table 5 

Summary of the experimental results of the 2D/3D registration methods. Mean registration error of translation and rotation are given in meters and 

degrees respectively. 

Scene Registration Error of Methods 

RANSAC [67] Shotton et al [86] . PoseNet [206] Kendal et al [91] . DSAC [205] SoftPOSIT [142] Liu et al [126] . 

Chess 0.042m, 1.4 ° 0.022m, 1.0 ° 0.32m, 4.06 ° 0.13m, 4.48 ° 0.042m, 1.1 ° 9.43m, 1.10 ° 0.95m, 0.02 °
Fire 0.371m, 2.1 ° 0.051m, 2.4 ° 0.47m, 7.33 ° 0.27m, 11.3 ° 0.067m, 3.1 ° 2.46m, 1.57 ° 0.72m, 1.09 °
Heads 0.098m, 3.1 ° 0.125m, 5.1 ° 0.29m, 6.00 ° 0.17m, 13.0 ° 0.125m, 4.1 ° 5.85m, 1.72 ° 0.90m, 4.71 °
Office 0.089m, 1.6 ° 0.046m, 1.4 ° 0.48m, 3.84 ° 0.19m, 5.55 ° 0.098m, 2.7 ° 4.26m, 1.26 ° 1.17m, 1.47 °
Pumpkin 0.045m, 1.7 ° 0.065m, 3.7 ° 0.47m, 4.21 ° 0.26m, 4.75 ° 0.040m, 1.5 ° 9.94m, 1.35 ° 1.14m, 1.29 °
Red Kitchen 0.087m, 2.4 ° 0.072m, 2.1 ° 0.59m, 4.32 ° 0.23m, 5.35 ° 0.078m, 2.6 ° 20.7m, 1.29 ° 0.64m, 1.18 °
Stairs 0.65m, 3.2 ° 0.149m, 2.6 ° 0.47m, 6.93 ° 0.35m, 12.4 ° 0.493m, 3.1 ° 9.02m, 1.53 ° 1.00m, 1.48 °

Table 6 

Summary of experimental results of 2D/3D registration methods, using mTRE (in meters). 

Scene mTRE of Methods 

RANSAC [67] Shotton et al [86] . PoseNet [206] Kendal et al [91] . DSAC [205] SoftPOSIT [142] Liu et al [126] . 

Chess 0.03m 0.032m 0.45m 0.24m 0.04m 6.68m 2.94m 

Fire 0.4m 0.045m 0.34m 0.45m 0.07m 4.26m 1.07m 

Heads 0.12m 0.210m 0.52m 0.29m 0.14m 4.60m 1.09m 

Office 0.07m 0.121m 0.67m 0.17m 0.19m 3.99m 3.56m 

Pumpkin 0.03m 0.256m 0.49m 0.36m 0.03m 9.80 3.29m 

Red Kitchen 0.09m 0.06m 0.61m 0.25m 0.06m 20.96m 5.55m 

Stairs 0.75m 0.161m 0.58m 0.46m 0.04m 10.58m 3.17m 

Table 7 

Summary of experimental results of 2D/3D registration methods, using 

the SR measure. 

Scene SR of Methods 

RANSAC [67] Shotton et al [86] . DSAC [205] 

Chess 96.8% 92.6% 97.4% 

Fire 71.8% 82.9% 71.6% 

Heads 66.7% 49.4% 67.0% 

Office 57.6% 74.9% 59.4% 

Pumpkin 59.0% 73.7% 58.3% 

Red Kitchen 40.1% 71.8% 42.7% 

Stairs 12.8% 27.8% 13.4% 

the SR measures as they have been stated in the related papers 

[86,205] . 

Although the execution time is very important, the experiments 

were performed in a non-optimized environment, thus execution 

time results are not reported. 

8. Discussion 

3D registration has been an active research field since the 

1980s; multimodal 3D registration gained popularity in the past 

decade, while in the last few years it has been really active. 

Some useful conclusions can be extracted from Tables 2 and 

3 . To begin with, 63% of the presented methods belong to the 

optimization-based category which leaves the learning-based reg- 

istration category with 37% of the methods (see Fig. 9 ). Even 

though optimization-based techniques are well studied, several 

problems remain unresolved. First, the iterative nature of such al- 

gorithms leads to high computational complexity and thus these 

algorithms cannot be used in real-time applications like medical 

imaging. Second, most optimization-based techniques are depen- 

dent on the initial pose of the data to be aligned. If the initial 

position of the data to be registered is not proper, the resulted 

registration is not accurate. Research is focused on trying to gain 

better registration results by adjusting traditional optimization al- 

gorithms for the multimodal case [149,166] or by proposing new 

similarity metrics [136] that show better results on the chosen 

modalities. The trend in the number of methods published each 

year shows a consistent interest in conventional techniques; thus 

this area appears to still have prospects. Further investigation in 

this area should focus on improving the robustness of the meth- 

ods and decrease computational cost. 

Learning-based methods are more recent, with a strong trend in 

the last 5 years in this category. This trend is supported by the fact 

that learning-based techniques achieve, in general, better results in 

terms of registration errors and computational time. We believe 

that learning-based methods have become particularly attractive 

in multimodal registration, because it is quite challenging to write 

code that defines correspondences across different modalities. An- 

other factor that may have hastened the introduction of learning- 

based methods in multimodal registration, is recent breakthroughs 

that allowed deep learning networks to consume 3D meshes or 3D 

point clouds, such as Geometric Deep Learning [223] . 

In Fig. 10 more statistics of registration methods using deep- 

learning are illustrated. The supervised methodology is most com- 

monly used. The main reason for this could be that supervised 

methods perform registration non-iteratively and are thus faster. 

Supervised registration methods are practically real time, thus it 

is easier to utilize them in applications such as computer-aided 

surgery and image-guided therapy. Methods that employ the deep- 

learning of a similarity measure are also increasing in number 

since the first DL techniques appeared in 2013. This kind of strat- 

egy uses deep learning to identify the similarity measure that 

is then passed to a traditional optimization-based method. They 

are thus easier to be understood and implemented. Particularly in 

multimodal registration, these techniques can be trained to iden- 

tify structural differences between modalities and result in bet- 

ter registration accuracy. However, they also inherit the compu- 

tational burden of iterative approaches. Both the aforementioned 

approaches, are dependent on large datasets of annotated ground 

truth for their training phase. This is the reason why reinforcement 

learning and the unsupervised category are gaining popularity in 

the last 3 years. Unsupervised methods avoid the large amount 

of annotated data needed for the training process and the asso- 

ciated computational cost for training. Although the unsupervised 

methodology appears to become a new trend in multimodal regis- 

tration, it also has its challenges. Unsupervised methods use sim- 

ilarity measure(s) as loss function to guide the learning process. 
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Fig. 9. Overview of the number of publications in multimodal 3D registration based on their algorithmic strategy . 

Fig. 10. Overview of the number of proposed learning-based methods for multimodal 3D registration . 

However, the multimodal case is more complicated and the tradi- 

tional similarity measures are not applicable and inefficient; novel 

similarity measures are expected to be introduced in the future. 

Regarding the datasets upon which experiments were con- 

ducted by the presented techniques, it should be highlighted that 

53% are private while 47% are publicly available (see Fig. 11 ). The 

lack of large-scale open datasets is the most frequent challenge of 

3D registration. From Fig. 11 , it is obvious that there is no sin- 

gle dataset that is most commonly used for testing and bench- 

marking analysis. The majority of state-of-the-art methodologies 

use their own small-size proprietary datasets for experiments. The 

use of different datasets, makes comparison between the different 

approaches hard. Also, the use of small datasets for evaluation, re- 

sults in less significant and unreliable findings. Moreover, due to 

the lack of a unified dataset consisting of multiple modalities, it 

is not possible to test if the state-of-the-art techniques can be ex- 

tended to work efficiently with other modalities. Multimodal regis- 

tration encompasses a variety of modalities, with the same or dif- 

ferent dimensions. Most of the techniques focus on aligning two 

modalities and their evaluation datasets contain only these modal- 

ities. From Table 1 , it can be seen that there are a few datasets 

with 3D models and 2D images that are used for testing 2D/3D 

registration techniques. The rest of the datasets are medically ori- 

ented, consisting also of two modalities in most cases. Having al- 

gorithms tested on the same benchmark dataset(s) provides di- 

rect and reliable comparisons. Furthermore, having a benchmark 

with multiple modalities would ease the testing of the registration 

techniques across different modalities. Thus, a public benchmark 

with gold standard annotations would allow new approaches to be 

fairly tested against the state-of-the-art. So, it appears that there 

is a strong need for the creation of better benchmark multimodal 

datasets. 

Various evaluation measures have been used for measuring the 

accuracy of registration results ( Fig. 12 ) with the TRE, mTRE and SR 

being the top three in terms of popularity. The variety in evalua- 

tion measures challenges fair comparisons even further, especially 

when combined with the above mentioned variety in evaluation 

datasets. Since there are significant differences between modalities 

(e.g. appearance, scale, dimension), it is difficult to define a sin- 

gle measure that could apply to different modality combinations. 

Future techniques are expected to adopt the aforementioned mea- 

sures (TRE, mTRE and SR) along with well-defined ground truth 

registration databases in order to be easily comparable against the 

state-of-the-art. 

The efficiency of registration is also an important attribute for 

comparing the techniques, in addition to registration accuracy. Un- 

fortunately, most researchers focus on accuracy results and do not 

report the computational cost and complexity of their approaches 

in detail. Moreover, computational time can only provide a rough 

estimate of performance because there is high dependency on the 

hardware used, which is quite different among researchers, as well 

as on the server load at the time of the experiments. In addition, 
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Fig. 11. Overview of the datasets used to implement/test the presented techniques. 

Fig. 12. Overview of evaluation measures used in the presented multimodal 3D registration methods. 

the comparison of computational time is not fair because the ex- 

periments have been executed on different datasets with differ- 

ent modalities, scale and complexity. This leads once again to the 

conclusion that the creation of a large scale benchmark database, 

along with the corresponding ground truth, would be a very posi- 

tive addition to this thriving field. 

In terms of implementation hardware, most of the latest meth- 

ods utilize GPUs in order to speed up the registration process. 

GPUs are highly parallel computing engines, which can execute 

multiple threads in parallel. Although, GPUs offer a good acceler- 

ation vehicle, not all algorithmic parts of multimodal registration 

can be implemented on the GPU. Hybrid CPU-GPU implementa- 

tions appear to achieve the best performance, so a common im- 

plementation strategy of recent years is to use the CPU for execu- 

tion of optimization algorithms and the GPU to calculate similarity 

measures in parallel. 

The majority of the methods are implemented in C++ or Python 

and a small portion in Matlab. Matlab is suitable for API proto- 

typing and proof-of-concept, but it is rather slow, which makes it 

inappropriate for integration with third party software tools. C ++ 

and Python are widely applicable and suitable for real-time ap- 

plications. Most deep-learning methods chose Python because it 

provides many open frameworks, especially for DL. TensorFlow, Py- 

torch and Caffe are the most popular packages because they pro- 

vide efficient implementations for deep-learning techniques; it is 

expected that they will continue to be used for registration in fu- 

ture research. 

Finally, with respect to the originating applications, the medi- 

cal one seems by far the biggest group with 50% of the methods, 

followed by the general category with 30% (see Fig. 13 ). Naturally, 

in the medical field, there are many body scanning modalities that 

need to be registered in order to acquire an integrated view of the 

body. As shown in the right hand chart of Fig. 13 , registration of 

3D models to 2D images is the most common case across appli- 

cations. This is due to the general nature of these modalities, that 

can be applied in many fields. Moreover, the vast variety of sensors 

(i.e. digital cameras, 3D laser scanners, Kinect-like RGB-D sensors) 

produce 3D models (point clouds, meshes). Other than that, there 

is no single modality that is most commonly used for registra- 

tion across applications; however, many methods have focused on 

modalities like MRI, CT and X-rays. These modalities are medically 

oriented, so most of the methods focus on registration of a specific 

body organ and do not easily generalize. Taking into consideration 

the modalities of the publicly available datasets and the number of 
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Fig. 13. Pie Charts of applications and modalities registered per application. 

subjects that each one contains ( Table 1 ) it can be said that most 

of such public datasets contain only a small number of subjects in 

one or two different modalities. The medical field could offer the 

opportunity of building a dataset with multiple modalities and ob- 

jects, but there may be challenges related to privacy. The most re- 

cent multimodal datasets, IXI [106] and SmartTarget [111] , consist 

of a large number of subjects (600 and 129 respectively). However, 

even such an amount of data is not sufficient for training and test- 

ing of deep-learning registration methods. Also, datasets with Cul- 

tural Heritage objects are not large enough, because this kind of 

object faces many challenges, e.g. too fragile or too large for scan- 

ning. The limited availability of large-scale datasets is expected to 

lead to more methods focusing on transfer learning for registering 

multimodal data in the near future. 

Given the importance of the medical area and available funding, 

we expect it to remain strong in multimodal registration research. 

Another significant source of multimodal registration methods has 

been Cultural Heritage and, given the fact that there are many Eu- 

ropean projects and open calls in this field [224,225] , we expect it 

to remain strong. 

9. Conclusions 

Multimodal registration has significantly grown within the last 

decade. It is a core procedure in multiple applications, like medi- 

cal imaging, cultural heritage and autonomous navigation. As each 

modality has its own unique characteristics and each application 

its own requirements, it is challenging to develop a general regis- 

tration framework that applies to all modalities and uses. 

In this paper, the problem of 3D multimodal registration has 

been explicitly defined, and the most representative, classical and 

up-to-date algorithms have been surveyed. The methods were clas- 

sified according to their nature and strategy followed. The two 

main categories presented are optimization-based and learning- 

based, each of which is further sub-categorized. The approaches in 

each category mostly share the same algorithmic philosophy, prin- 

ciples, advantages and drawbacks. Using such a classification, sev- 

eral aspects of multimodal registration were examined and useful 

insights regarding future trends were extracted. 
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a b s t r a c t

Multimodal registration is a challenging problem in visual computing, commonly faced during medical
image-guided interventions, data fusion and 3D object retrieval. The main challenge of multimodal
registration is finding accurate correspondence between modalities, since different modalities do not
exhibit the same characteristics. This paper explores how the coherence of different modalities can
be utilized for the challenging task of 3D multimodal registration. A novel deep learning multimodal
registration framework is proposed by introducing a siamese deep learning architecture, especially
designed for aligning and fusing modalities of different structural and physical principles. The cross-
modal attention blocks lead the network to establish correspondences between features of different
modalities. The proposed framework focuses on the alignment of 3D point clouds and the micro-
CT 3D volumes of the same object. A multimodal dataset consisting of real micro-CT scans and
their synthetically generated 3D models (point clouds) is presented and utilized for evaluating our
methodology.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The exploitation of multimodal data has benefited many visual
computing applications by increasing the performance of oper-
ations such as 3D object recognition [1], classification [2], 3D
shape retrieval [3,4] and data fusion [5,6]. Applications include
medical imaging [7], cultural heritage [8–10] and autonomous
driving [11,12].

Registration is the process of aligning different sets of spatial
data by determining the proper geometrical transformation [13]
between them. Multimodal registration is a special case, where
the data to be aligned are of different modalities (e.g. capture
techniques or sensors) but represent the same object. These data
can be 2D images, 2.5D data (image + depth), 3D images ac-
quired by tomographic modalities like CT, MR or PET, 3D point
clouds or 3D meshes. Most multimodal registration research has
arisen in the medical imaging field, but cultural heritage (CH) and
other areas can equally benefit from the visual combination of
multiple modalities in order to produce an accurate and useful
representation of, e.g., CH assets [9].

Cultural heritage documentation aims at a multimodal record
of CH objects that enables a range of operations, such as inspec-
tion, virtual reconstruction of fragmented artefacts and fabrica-
tion processes [14–18]. An accurate model of an object’s surface

∗ Corresponding author.
E-mail addresses: evdokia.saiti@ntnu.no (E. Saiti), theotheo@ntnu.no

(T. Theoharis).

and inner structure can also contribute to preservation and mon-
itoring, by detecting any structural damages and deformations in
structure or cracks, blistering or erosion. The detailed represen-
tation of both the interior and external surface can be used as a
foundation for future change monitoring of the object. Alterations
can be accurately recorded, quantified and tracked through the
years [18]. While our specific motivation and data have arisen
from the CH field, the applications of the proposed method are
not limited to CH.

Geometry acquired from 3D surface scanners is a core aspect
of a digital model, but is limited due to the fact that only data
from the surface are acquired and the inner structure of the
object cannot be documented. The penetrative capabilities of
CT scanning allow the digitization of the interior of an object
without having to perform physically invasive actions [18]. By
combining 3D surface models and CT imaging techniques, it is
possible to produce more precise 3D representations of an object,
consisting of an accurate geometric model of the surface along
with a detailed representation of its internal structure [19–21].

Multimodal registration is a long standing research area with
many challenges. Finding an accurate, robust and fast multimodal
alignment1 is still very challenging, since different modalities
come from different acquisition systems, having different rep-
resentations and properties. In particular, the core difficulty of
aligning CT volumes and point clouds comes from the significant
difference in physical characteristics and representation which

1 We shall use the terms alignment and registration as synonyms.

https://doi.org/10.1016/j.cag.2022.06.012
0097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Registration results of the proposed method on the ‘3DPCD-CT’ dataset when
random rotations and translations are performed on the initial sub pieces. The
metrics evaluated are target registration error (TRE), and Recall with threshold
6.00. The initial TRE of the transformations was 15.34.
Method TRE Recalla(%) Mean Exec.

time (s)

Proposed 5.15 62 0.12
Excluded module
3D PointCloud FE 12.42 12 0.12
3D Volume FE 11.37 14 0.05
Cross-modal attention 13.32 11 0.03

manifest themselves, for example, in the lack of a general rule for
the comparison and evaluation of the final alignment. The most
common practice for aligning such modalities is the conversion
of one modality into the other, or of both modalities into a third
common one, and their alignment using unimodal techniques.
Conversion however results in extra computational cost and loss
of structural information. This is the gap that we attempt to
address in the current paper.

We propose a deep network architecture capable of registering
two different modalities, without transforming either of them
before feeding them to the network which performs the registra-
tion process. The proposed PCD2VOL method aligns 3D surface
data with 3D CT volume data. To the best of our knowledge,
this is the first time that a deep learning network is trained to
register such modalities. The main contributions of this paper can
be summarized as follows:

• The problem of multimodal 3D registration of CT volumes
and 3D point clouds is formally defined and a framework
for such registration is proposed. Publicly available upon
publication.

• To the best of our knowledge, it is the first deep learning
network that combines regular CNNs suited for data with a
standard grid structure and geometric deep learning suited
for unstructured data.

• The proposed network employs a siamese architecture for
a novel attention mechanism for effective multimodality
fusion.

• A multimodal dataset for evaluating algorithms for aligning
CT volumes and 3D point clouds. Publicly available upon
publication.

The remainder of this paper is organized as follows: In Sec-
tion 2 related works are discussed while in Section 3 the problem
of 3D multimodal registration of CT volumes and Point clouds
is defined. In Section 4 the proposed methodology for 3D multi-
modal registration is introduced. The proposed evaluation bench-
mark and experimental results on multimodal alignment are
presented in Section 5. The paper is concluded in Section 6.

2. Related work

Multimodal datasets are increasingly being created and ex-
ploited. There has also been growing research on the registration
of 3D data obtained from different acquisition sensors or data of
different structure. Approaches have been proposed for integrat-
ing different data modalities so as to produce complete models.
However, according to the specific application, the modalities
and the approach vary considerably. Medical imaging [22], re-
mote sensing [23] and cultural heritage documentation [6] have
emerged as the most fruitful application areas for 3D multimodal
registration. A comprehensive review of 3D multimodal regis-
tration methodologies across application domains can be found
in [24].

3D multimodal registration has been extensively researched
in the medical domain, due to the variety of medical modalities
that need to be fused. Medically oriented registration methods
focus on specific modality pairs, clinical task or body organs.
Detailed surveys on medical multimodal registration can be found
in [25–27].

Registration methodologies can be broadly classified based on
the type of correspondence between the data (parts, structure or
context of each dataset). They may be feature-based or intensity-
based. In feature-based registration, features (such as interest
points, contours or lines) are first extracted from each dataset and
are subsequently used to determine the proper correspondence
and alignment. Intensity-based methodologies attempt to identify
context similarity between the datasets based on the correlation
between pixel/voxel intensities [28]. Both techniques have been
successfully employed for aligning data from different modalities
by identifying salient structures [29] or statistical dependency
of the intensities [30–32] across the different modalities. Al-
ternatively, methods exist that try to simplify the multimodal
registration problem to unimodal by reconstructing or mapping
one modality onto the other [33,34].

Over the last few years, there is a clear predominance in
the use of deep learning techniques for registration [35–38].
However, most of these methods involve the same modality, the
specific combination of 2D images/3D model, or are somehow re-
stricted in application to the medical field due to the assumptions
made. There is virtually no research in 3D multimodal registration
outside the medical field where the modalities are differentiated
in both structure and physical principles.

Our work is motivated by the idea of using attention mecha-
nisms for multimodal registration. An attention mechanism en-
ables a model to focus on important information for a task; thus
it has been applied widely to various computer vision problems,
including image classification [39], object detection [40], image
generation [41] and image captioning [42]. Recently this tech-
nique has also been used for multimodal registration. [43] fused
RGB images and point clouds by learning feature interactions
between the modalities with a cross-modal attention scheme
while [44] developed a self-attention mechanism specifically for
aligning 3D medical volumes of MRI and TRUS modalities.

Our problem is generic in that it concerns the alignment of
3D modalities that are complementary since they jointly describe
the interior and the surface of a 3D object. The proposed network
exploits cross attention for the challenging task of aligning 3D
modalities of different geometric data structures. The proposed
framework is a combination of CNN, geometric deep learning
for feature extraction and a siamese architecture of cross modal
attention network, trained to identify correspondences and fuse
regular input data formats (like 3D voxels) and irregular 3D geo-
metric data (like 3D point clouds). To the best of our knowledge,
this is the first time that registration of such different modalities,
without projecting one modality onto the other, is explored.

3. Problem statement

Given a set of 3D points P = {pi ∈ R3
| i = 1, 2, . . . ,N} and a

3D CT Volume V = {vlwh ∈ Z | l = 1, . . . , L, w = 1, . . . ,W , h =

1, . . . ,H}, the aim is to find the unknown rigid transformation T,
so as to align the two input modalities as well as possible.

The registration result is a rigid transformation matrix T(R, t),
where T ∈ SE(3). It consists of two components; a rotation
submatrix R ∈ SO(3) and a translation vector t ∈ R3. The
rigid transformation T can then be represented by the following
homogeneous 4 × 4 matrix:

T =

[
R | t
0 | 1

]
(1)
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Table 2
Performance comparison between multimodal registration methods.
Method Data modalities Modalities structure Data Runtime Initial TRE Percent

M1 M2 S1 S2 conversion (s) TRE change

[45] MRI US 3D volume 3D volume No 20 6.76 2.12 68%
[44] MRI TRUS 3D volume 3D volume No 0.003 8.00 3.63 54%
[46] RGB Depth Map 2D image 2D image No n/a 35.46 6.93 80%
[22] MRI CT 3D volume 3D volume No 320.4 13.49 7.12 47%
[29] RGB Point cloud 2D image 3D model Yes 9000 n/a 30.19 n/a
Proposed CT Point cloud 3D volume 3D model No 0.12 15.34 5.15 62%

Fig. 1. Overview of the proposed cross-modal 3D registration framework. The 3D cross-modal registration network consists of three stages. 1. Each input modality
(Point Cloud and 3D CT Volume) is fed into an independent feature extractor network that is suitable for that modality. 2. The captured features are fed to a siamese
architecture of cross-modal attention blocks. 3. The registration block fuses the cross-modal features into the final registration parameters.

3D Point Clouds and 3D CT Volumes have different geometrical
and physical characteristics. Hence, identifying a distance mea-
sure for alignment is challenging. Parameters like the centroid or
the bounding box (orientation and location) could approximately
measure if two instances of these modalities are aligned. It is
inherently difficult to come up with a traditional algorithm which
could find correspondences across these modalities. Both modal-
ities represent the same object, therefore common features exist
to guide the registration. In our methodology and experiments
we take advantage of a ground truth in order to train a neural
network and evaluate our results.

4. Method overview

The proposed framework, as illustrated in Fig. 1 consists of
three main components. Initially, the 3D point cloud and the 3D
CT volume are fed into two modality-specific feature extraction
network blocks to identify regional and geometric features of
each modality independently. Then, the modality-based features
are passed to a siamese architecture of cross-modal attention
blocks, in order to capture local features and their global cor-
respondence across the modalities. Finally, the deep registra-
tion block processes the fused feature representation to extract
the registration parameters. The details of each component are
discussed in the following subsections.

4.1. Feature extraction

Each input modality is initially passed to the respective feature
extraction network. The feature extraction of the 3D point cloud
modality, adopts a variant of PointNet [47]. PointNet has been
chosen for this task due to its efficiency in capturing critical
geometric features of point clouds. The architecture is shown in
Fig. 2.

The 3D CT Volume is passed through CTVolNet, a CNN-based
architecture to efficiently represent the CT volume. Based on [48],
two sets of convolutional and max-pooling layers are used to
capture regional features, shown in Fig. 3.

Fig. 2. The adopted PointNet [47] architecture used to extract point cloud
features. For each point P = {pi | i = 1, . . . ,N} of the point cloud, the network
computes C features.

Fig. 3. The CNN architecture used to extract 3D volume features. Given the
input volume V = {vlwh ∈ Z | l = 1, . . . , L, w = 1, . . . ,W , h = 1, . . . ,H}, the
network computes the FV ∈ RLWHxC feature map.

4.2. Cross-modal attention siamese architecture

The proposed cross-modal attention block identifies local fea-
tures and jointly determines the spatial correspondence between
the input modalities. The cross-modal module utilizes the modal
correlations and adaptively adjusts the modality features for an
accurate fusion result. After the representations for each modality
have been extracted, the cross-modal attention block captures the
distinct parts of one modality given the context features of the
other modality as proposed in [49,50]. Rather than considering
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features of each modality equally, the proposed cross modal
attention block estimates a bidirectional relationship between the
input modalities. The cross-modal attention block highlights the
important information for one modality related to the other and
achieves a inter-modality relationship.

The two input modality feature maps are denoted as FP =

{fpi | i = 1, . . . ,N} and FV = {f vlwh | l = 1, . . . , L, w =

1, . . . ,W , h = 1, . . . ,H}; FP and FV are the point cloud feature
map and the CT volume feature map respectively. The modality
feature maps are sent to a siamese architecture of cross-modal at-
tention blocks; each modality feature map will be sent as primary
modality to one cross-modal attention block and as cross-modal
modality to the second block (see Fig. 1).

Without loss of generality, we will present the cross-modal
attention block independently of the input modality context. The
block receives a primary input M1 ∈ RCxN and a cross-modal
input M2 ∈ RCxLWH . C denotes the number of features that have
been identified in the previous steps (we use C = 32 in our
experiments), N and LWH indicate the size of each 3D feature
map. The cross-modal attention block computes a new feature
map MCor that shows the modality correlation, as the sum of the
initial primary feature map M1 and the cross-modal feature map
CM:

MCor = CM+M1 (2)

The cross-modal feature map CM shows the corresponding
relationship between a position i of the primary input M1 and
all positions j of the cross-modal input M2 and is computed
following [44,51] as an extended non-local operation:

CMi =
1
F

∑
j∈M2

f (M2,M1)g(M1) (3)

Function f (M2,M1) computes the relationship between the
feature in the ith position of the first modality and all features
j of the second modality. Function g computes a representation
of the first modality at position j:

f (M2,M1) = eφT (M2i)θ (M1i) (4)

g(M1i) = WgM1i (5)

θ , φ are also linear embeddings:

θ (M1i) = WθM1i and φ(M2j) = WφM2j (6)

where Wg,Wθ and Wφ are the weight matrices to be learned
during training. F is a normalization factor of the final result and
can be calculated as:

F =

∑
j∈M2

f (M2,M1). (7)

Therefore, CMi is calculated as:

CMi =
eφT (M2i)θ (M1i)∑

j∈M2
eφT (M2j)θ (M1i)

(8)

which can be estimated by a softmax computation for i along j:

CMi = softmaxi
(
φT (M2)θ (M1)

)
g(M1) (9)

This cross-modal attention module plays a vital role when the
features to be fused are from different modalities. It preserves
the information from each individual modality and makes them
complementary to each other so as to eliminate the modality
gap. The module’s output MCor summarizes the features on all
locations of the first modality weighted by their correlations
with the cross-modal features on the specific location. By using
a Siamese network of cross-modal attention blocks, the network

Fig. 4. The detailed architecture of the proposed cross-modal attention module.

Fig. 5. The detailed architecture of the deep registration module.

investigates the relationships of each modality as both a pri-
mary and a cross-modality input and identifies their respective
correlations. Fig. 4 shows details of the cross-modal attention
block.

4.3. Deep registration block

After computing the spatial correspondences between the in-
put point cloud and volume, the registration block fuses the two
sets of feature maps and computes the registration parameters.
The deep registration block’s architecture is shown in Fig. 5.

The network is supervised by calculating the RMSE (Registra-
tion Mean Square Error) between the predicted and the ground
truth transformation as the loss function. The loss function of
the Deep Registration Module is then back-propagated through
all three components and allows the adjustment of the network
parameters and the minimization of the error.

5. Evaluation

5.1. Dataset

The proposed fully supervised deep learning method is depen-
dent on sufficient training data with ground truth. The biggest
challenge was the lack of a publicly available dataset with ground
truth for aligning 3D models from the source modalities of 3D
point clouds and 3D micro-CT volumes. The dataset of the PRE-
SIOUS project [52–54], is publicly available and contains 3D mod-
els of the modalities of interest. It consists of 17 stone slabs,
captured in several modalities across accelerated erosion cycles;
the modalities involved are 3D geometry scans (point clouds and
3D meshes), micro-CT volumes, 3D microscopy and petrography.
A total of 38 pairs of 3D geometry scans and micro-CT volumes
of stone slabs exist.

The use of the PRESIOUS dataset presented a number of chal-
lenges. First, the amount of data are limited and insufficient for
training our deep network. Moreover, the 3D geometry scans and
micro-CT captures were performed independently, without the
use of any external reference points; thus the data from the two
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Fig. 6. The process of creating the 3DPCD-CT dataset.

modalities do not possess the necessary ground truth for training
our supervised network.

We thus followed a different path in order to expand and aug-
ment the cultural heritage dataset of PRESIOUS stones for bench-
marking and training multimodal 3D registration algorithms. The
process for the creation of the ‘3DPCD-CT’ dataset is outlined in
Fig. 6. Starting with the micro-CT data of the PRESIOUS stone
slabs, we sliced each slab resulting in a larger dataset of sub-
volumes and then synthetically generated the 3D surface geom-
etry of each piece. Since, the generated 3D point clouds exactly
correspond to the respective 3D CT volumes, we consider this as
ground truth for training and evaluation purposes.

Every micro-CT volume was divided into a smaller volumes of
50 slices each, providing an average of 35 new smaller volumes.
From these smaller volumes, we excluded those with high noise
content and no beneficial stone information, resulting in 636
smaller CT volumes, which were then resized to 90 × 90 × 50
voxels each. The corresponding 3D point clouds were then syn-
thetically generated using the marching cubes method of [55].
The outcome consisted of very dense surfaces, so we simplified
each model to 13.455 points using the algorithms from [56,57].
The dataset is split into a training set (80% of the dataset) and
a test set (20% of the dataset). The training set contains 508
objects and the test set has 128 objects. Each object contains
the CT volume, the respective point cloud and the ground truth
transformation (see Fig. 7).

5.2. Experimental results

We evaluated our 3D multimodal registration framework on
the ‘3DPCD-CT’ dataset. Since there is no established performance
measure for the registration error between a volume and a
geometry surface, we employed the target registration error
(TRE) [58]. TRE measures the effect of the predicted transfor-
mation Tpred against the ground truth transformation TGT on the
initial point cloud P = {pi | i = 1, . . . ,N} based on [59]:

TRE =

√ 1
N

N∑
i=1

∥(Tpredpi − TGTpi)∥2 (10)

All tests were run on a PC with an i7-7700K CPU at 4.20 GHz,
NVIDIA GeForce GTX 1080 Ti GPU and 32 GB of RAM. In Table 1
we summarize the quantitative registration results on the chal-
lenging ‘3DPCD-CT’ dataset for multimodal 3D alignment; Fig. 8
illustrates some qualitative results.

An accurate and fair comparison between our method and
different literature approaches is not straightforward because we
could not identify any previous registration method that directly
aligns point clouds and CT volumes. We thus used the classic

ICP [60] as a baseline, but in order to do so, we pre-processed
the CT volumes and converted them into point clouds. We then
run the ICP algorithm between these point clouds and the point
clouds of the ‘3DPCD-CT’ dataset. In general, ICP fails when it
comes to large rigid transformation differences. To succeed, ICP
needs a good initial transformation estimation (not the case in
realistic applications). Thus, in most cases, ICP did not converge.
Moreover, ICP and other state of the art registration techniques,
requires inputs of the same modality (point clouds in general) ne-
cessitating the conversion of one of the inputs in order to address
the modality gap. This conversion involves loss of information,
which can significantly affect the registration result. In addition,
such a conversion can be expensive, especially when large 3D
volumes are involved, as in CH applications. For example, in our
experiments the conversion of a CT volume into a point cloud
representation took approximately 1 h. Conversely, after training,
our method requires 0.12 s per registration.

We thus opted for a direct comparison of our method against
other multimodal registration methods, even though they may
represent different modalities, as this was the nearest we could
get to comparing against other methods. Table 2 presents quan-
titative registration results of the latest state-of-the-art 3D mul-
timodal registration methods. Most of these methods align data
of different modalities but of the same structure. Of course, the
results are only indicative, since each method registers different
modalities and the datasets that experiments were conducted on
are different and oriented to the specific modalities and task.
The table shows the TRE metric as it is considered to be a more
generic measure of registration accuracy [58]. In general, TRE is
the distance between the corresponding points of the inputs, but
due to the fact that the modalities that each method fuses are
different, the exact calculation of TRE may differ.

The methods that align different representations of data are
[29] and the proposed one (Table 2). [29] aligns 2D images against
a 3d model. However this method converts one modality to the
other as a first step (the 2D images to a 3D model) and then
executes a typical unimodal registration; the conversion involves
the penalties of cost [29] and information loss, as also attested
by its high TRE. The proposed method directly registers different
data modalities and of different structure, which is a more chal-
lenging task compared to registering multimodal data of the same
structure.

Interestingly the initial TRE, corresponding to the initial pose
of the inputs of the compared methods, varies significantly. The
results displayed in Table 2 show that the registration error is
associated to the difference in initial pose of the inputs.2 When
input modalities start with a pose close to the ideal solution, the
initial TRE is lower and so is the registration (final TRE). However,
many commonly used registration methods could produce non
sufficient results if the modalities are not initialized properly [61].

In an attempt to measure the improvement in alignment of
the compared methods, we also calculated the percentage change
(PC) in TRE as [62]:

PC =
|TRE − InitTRE|

InitTRE
100% (11)

Higher values of PC denote a larger improvement on the
initial pose. We chose a high initial TRE for the evaluation of our
method in order to mimic real, challenging, situations. Taking into
consideration the PC of the proposed method and the fact that
it operates on modalities of different data structure, the results
obtained can be considered as very competitive.

However, there are some cases where our method fails to
accurately register the inputs. Such an example is depicted in

2 Depending on the application and input modalities, an initial pose might
be considered as poor if it is within the range of 8 mm and 16 mm [61].
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Fig. 7. Example point clouds in the 3DPCD-CT dataset. Two different object cases are shown: a. the Nidaros GSmall 01 stone and b. the Nidaros BLarge 02 stone.
For each case it is shown: on the left the whole 3D geometry of the stone and on the right: point clouds of different stone pieces generated from the respective
piece of CT-volume.

Fig. 8. Example multimodal registration outcomes for the proposed method.

the last row of Fig. 8, where the initial pose of the inputs was
considerable, both in terms of rotation and translation; although
the method determined the proper rotation it failed to detect the
correct translation.

The modified registration Siamese network proposed here is
the first registration mechanism that attempts to align two dif-
ferent data modalities not only in terms of data type but data
structure as well. In this light, the achieved results can be consid-
ered as satisfactory as well as promising. For example, the work
of [44] which also uses a cross-modal attention block to register
MRI and TRUS data, achieves comparable registration results and
has competitive computational cost. [44] achieves target registra-
tion error between the surfaces of 3.63 and a PC of 54%. However,
MRI and TRUS have the same structure (sequences of images), so
the network uses the same feature extractor for representing both
input volumes. Moreover, method [44] seems to be more efficient
in terms of run-time; since this involved absolute execution time
based on specific experiments and datasets, we do not think

that it represents a conclusive comparison against the proposed.
Our method deals with high resolution input data of different
structures, thus the search for spatial correspondences through
the cross-modal block increases the computational cost.

3D volume modalities (i.e. CT, MRI, TRUS) contain details about
the inner structure of the object, like cracks, porosity and voids.
Methods like [22,44,45] can detect and use contextual informa-
tion based on the respective intensities in order to fuse different
modalities of 3D volumes. On the other hand, 3D models contain
a precise representation of the external surface of the object. A
conversion from one modality to the other might result in infor-
mation loss that will significantly affect the registration result.
For example, a 3D model of the surface lacks information of
the inner details, so a conversion will not contain any valuable
contextual information of the interior and this is likely to affect
the registration result. Conversely, a conversion of a 3D volume
to a 3D model might add extra computational time without the
respective benefit on registration accuracy.

5.3. Ablation study

To demonstrate the contribution of the proposed framework
and to validate the effectiveness of each component we executed
three different trials of our network by excluding a different
module each time.

The results are shown in the lower part of Table 1. It can be
seen that removing any of the components has strongly diminu-
tive effects in the registration accuracy; removing the cross-
modal attention module results in the worst loss.

6. Conclusions and future work

In this work, we present a direct solution for the challenging
task of 3D multimodal registration between 3D volumes and 3D
point clouds. A novel deep network that consumes and fuses
different 3D modalities (CT-volumes and point clouds) is pro-
posed. These modalities are treated directly (no conversion of
one onto the other) to avoid information loss and time penalty.
Our network introduces a novel siamese architecture of cross-
modal attention blocks that captures and fuses features of two
structurally different modalities.

We believe that this approach is an important step forward as
it addresses the non-trivial task of aligning modalities of different
structural and physical principles, for which it is also extremely
challenging to write traditional (non deep learning) code. The
method presented can potentially be extended to other com-
puter vision tasks, such as multimodal retrieval and recognition.
Moreover, it can be generalized to different modalities due to
its adjustable framework. Using alternative feature extraction
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methods suitable per modality, the method can be extended to
fuse modalities such as 3D meshes, voxel data or medical imaging
modalities such as MRI, 3D TRUS etc.
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Abstract. The paper describes the ongoing research on an interdis-
ciplinary approach regarding the technological developments adapted
for monitoring CH objects. It covers aspects from data capturing, to
data processing and cross-time registration methodologies. The work
of three individual projects, that are carried out in the framework of
ITN-CHANGE (Horizon 2020, GA 813789) project, are presented. These
projects are based on the different backgrounds and expertise of the co
authors which, when combined, can cover a wide spectrum of information
indispensable for the accurate monitoring of CH objects. The potential-
ity of 3D Digital Image Correlation (3D DIC) for monitoring in and out
of plane displacements as well as advances in Reflectance Transformation
Imaging (RTI) for data processing for monitoring specular surfaces, are
examined. Computational cross-time and multi-modal registration algo-
rithms are developed for correlating 3D non-registered data over-time.
Feasibility studies on mock-ups and simulated data are presented for the
validation of the adapted methodologies.

Keywords: Monitoring · Cross-time registration · Reflectance
transformation imaging · 3D Digital Image Correlation

1 Introduction

The interaction of Cultural Heritage (CH) objects with the environment can
result in changes of their physical properties and their appearance attributes.
Extensive research has been carried out on imaging methods for understanding,
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documenting and monitoring these type of changes. Imaging techniques provide
powerful tools for capturing and tracking CH object alterations [1]; however,
monitoring is possible only with appropriate data processing through compu-
tational methods and data interpretation by experts [2,3]. CHANGE” [4] is a
research and innovation program under the auspices of the European Union’s
Horizon 2020 programme. The project aims at developing imaging techniques
and systems for the acquisition, documentation and monitoring of CH objects.
The final goal is to combine and correlate expertise of different fields under a
common framework. To this sense, this paper draws upon knowledge from the
fields of optical metrology, computer engineering and conservation science in an
interdisciplinary approach for the development of change detection methodolo-
gies. The scientific activities are grouped into three pillars which cover different
technological aspects. The first pillar refers to the strategies and systems for cap-
turing and tracking changes on CH objects, whereas the second applies computa-
tional methods for studying cross-time changes and the last presents feasibility
studies for the validation of protocols developed within the other two pillars.
Currently, each pillar advances independently, with the aim to merge with the
perspective to merge them as the project evolves. The remainder of the paper
is organized as follows: In Sect. 2, change capture and tracking strategies are
discussed while in Sect. 3 the problem of data registration is analyzed. Section 4
covers data interpretation and the paper concludes in Sect. 5 with discussion and
future aspects.

2 Change Capture and Tracking Strategies

The first pillar describes technological tools and methodologies adapted for data
acquisition at different time intervals using 3D DIC and RTI.

2.1 Digital Image Correlation (DIC)

DIC is a versatile, full-field, optical metrology technique with applications mainly
in mechanical and civil engineering. Typically, 3D DIC is used to study hetero-
geneous materials under different loading conditions and to accurately calculate
the maps of in and out of plane displacements and strains [5]. In plane displace-
ments correspond to deformation in the X and Y axes, and out of plane to Z,
providing thus the arbitrary 3D vector of displacements. While 3D DIC a is
portable, non-invasive and low-cost technique, with an adjustable field of view,
its application to CH objects can be challenging. In particular, to achieve opti-
mum results and sub-pixel accuracy, this technique requires the surface under
investigation to have a random texture that meets specific criteria (e.g. randomly
positioned speckles with adequate contrast, firmly adherent pattern, etc.) [5].

A common 3D DIC set-up consists of two cameras simultaneously capturing
pairs of images of the object under a certain geometrical configuration. Appropri-
ate calibration protocols are applied to enable the triangulation and correlation
of the captured data set (Fig. 1). The correlation algorithm works by detecting
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Fig. 1. Representation of (a) 3D DIC configuration and (b) working principle

intensity differences among adjacent groups of pixels (called subsets). Each sub-
set is then localized through the subsequent images that correspond to different
deformation stages, with a specific searching step. Both the subset and step val-
ues are user-defined parameters that need to be adjusted according to the object
under investigation and the experimental configuration (i.e. the optical magnifi-
cation, density and size of the speckle pattern). For the correlation to be feasi-
ble, each subset of the image should contain a unique pattern, thus enabling the
calculation of the displacement and strains. The accuracy of the calculations and
data processing time depends on the selection of subset and step size. For many
CH objects, monitoring of the deformations and strains is considered necessary
to understand surface alterations. Here, the 3D DIC technique can be a solution,
as it can be used in situ, in full field-of-view (FoV) and at selected time intervals.
Nevertheless, introducing an artificial speckle pattern on a CH object is not per-
mitted. Thus, a compromise to the calculation accuracy is necessary or alternative
approaches might be considered [6]. Some examples of 3D DIC applications to CH
objects include displacementsmeasurement onmodel canvas with random pattern
[7–9], and historical parchment [10] provoked by controlled changes in the relative
humidity, as well as, mechanical displacements induced on canvas paintings [6,7].

2.2 Reflectance Transformation Imaging (RTI)

RTI is a multi-light technique following a fixed configuration with a camera
positioned perpendicular to an object for acquiring a set of images at different
light angles (Fig. 2). This multi-angle illumination can provide photometric and
geometric documentation of surfaces [11]. It has found application in CH as an
easy-to-use, non-invasive, portable technique [12]. There are numerous references
on the application of RTI in CH, varying in methodologies and material applica-
tions; however, most address enhancing legibility and surface details related to
topography, such as examining artists’ brush-strokes, or deciphering epigraphs
[13,14]. In this section the feasibility of monitoring of objects is investigated.
A dome with a fully calibrated light source and motorized camera functions
is used to ensure the reproducibility and cross-time registration of the acquired
data [15,16]. One of the system’s novelties is the ability to extract raw RTI data,
providing the possibility to further data processing that goes beyond the simple
visualization or image enhancement [16]. In particular, geometric and statistical
calculations of the stack of images produced can provide information related to
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the surface topography or the per-pixel reflectance response of the surface at
different light angles, respectively. This results in visualization through maps
depicting the surface features (features maps) that can either enhance or isolate
surface information.

Fig. 2. Simplified representation of RTI from left to right: The dome system (left).
Acquisition of a stack of images at “n” light positions (middle). Relightable images at
selected light direction (right).

In this paper monitoring the condition of specular surfaces was selected. A
global examination was followed, consisting of data acquisitions of artificially
aged mock-ups at different time intervals. The methodology consists of data
acquisitions in different RTI-modalities and correlation of the results based on
visual inspection and comparison to imaging techniques routinely used in the
field of CH. To ensure repeatability, the systems used and the acquisition parame-
ters remain stable throughout the experimental process. Interpretation of results
relies on CH expertise.

3 Computational Methods for Cross-Time Registration

Following the 3D model acquisition of the CH objects, the data need to be ana-
lyzed in order to accurately understand and monitor any change [17]. In general,
data captured from different acquisitions can be geometrically and chronologi-
cally incoherent. In order to facilitate their study and detect changes, the data
need to be registered. Registration aims to find the transformation (rotation
and translation) that optimally aligns two or more instances of the same objects
at different times (cross-time data), from different viewpoints (multi-view data)
or by different modalities (multi-modal data) in order to bring the data in a
common reference frame [18].

3.1 Cross-time Registration

Methods that monitor the geometric change of an object over time, try to com-
pare the 3D representation of the same object captured at different time inter-
vals. Considering that modifications may have occurred on the surface of the
object (i.e. surface alteration due to weathering or conservation-restoration treat-
ments), shape differences may have encountered between acquisitions, resulting
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to a non-trivial correspondence of the object’s surface. Moreover, acquisition pro-
cesses cannot always ensure that cross-time captures will be at the exact same
position. Thus, accurate 3D spatial relations between data from different acqui-
sitions may not be directly obtained, which makes the cross-time registration
process a challenging task.

Given two 3D point clouds of the same object, but captured at different time
frames, the aim of the 3D cross-time registration is to find the unknown rigid
transformation so as to align the two point clouds as accurately as possible.
Currently, our research is focused on the surface alterations due to weathering,
where the examined object is assumed to have been uniformly exposed to weather
conditions, both spatially and temporally. A framework for cross-time 3D reg-
istration is proposed in [19] that copes with big data using a down-sampling
scheme that is appropriate for objects exhibiting uniform change over time. The
proposed method generally outperforms the state-of-the-art in both accuracy
and efficiency (Fig. 7).

4 Data Interpretation on Selected Case-Studies

The final part is the application of the above described methodologies to CH
objects.

4.1 3D DIC Data Interpretation

Examples of 3D DIC application to CH objects with inherent surface texture
and patterns, adequate to perform the analysis, are presented. The first case
study is an oil painting on canvas that was subjected to deformation by applying
mechanical pressure (loading, simply by pushing outwards) on its back surface.
The pressure was applied with the intent to create a random and complex defor-
mation distribution, in order to examine the effectiveness of the 3D DIC and its
effectiveness on detecting changes using the surface features of the painting and
without applying artificial texture patterns. The painting and the results of the
3D DIC study of the loading are presented in Fig. 3.

Fig. 3. 3D DIC analysis of a painting without an artificial pattern. The 3D shape maps
before (b) and after loading (c), along with the 2D map out of plane displacement map
(d) are presented.
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Fig. 4. 3D DIC analysis on a parchment without an applied artificial texture. The
in- (U and V in a, and b respectively) and out-of-plane (W in c) displacement maps
corresponding to 50% of RH are shown. In 4d the spatio-temporal analysis of W for
the line corresponding to 60h duration is presented.

The second case study is the calculation of displacements in a historical parch-
ment subjected to an environment with fluctuating Relative Humidity (RH)
(Fig. 4). The in and out of plane displacements, that correspond to 50% RH,
are presented along with a selected line which is analysed through time. The
spatio-temporal map of the out of plane displacement (W), that corresponds
to the selected line, is shown in (Fig. 4 d). During the observation time RH is
gradually decreased over a duration of 60 h.

These objects represent two important groups of CH artifacts that are sensitive
to environmental fluctuations andmechanical damage. For both examples, 3DDIC
has provided valuable information for characterizing the surface displacements
caused by different factors, detailed information can be found in [6,10]. These case
studies represent short-time measurement sessions (with stable object-sensor con-
figuration), which eliminates the need for cross-time data alignment. They, sup-
port the potential of condition monitoring of CH objects, as well as, the capability
of monitoring conservation-restoration treatments with 3D DIC.

4.2 RTI Application and Interpretation

RTI was investigated for its feasibility to monitor the formation fingerprints
during the tarnishing of silver objects [20]. Data were acquired for extracting
information on surface appearance attributes, with the goal to isolate infor-
mation related to the topography and identify characteristics related to the
reflectance response. A fingerprint was placed on pure silver coupons, with an
isotropic texture, and were subsequently artificially tarnished at different levels,
corresponding to change over time. The surfaces were examined both with tech-
niques routinely used for CH object documentation as well as the proposed RTI
methodology [20].

The routine imaging techniques consist of calibrated photography using a
light-box and correcting data through a color-checker, documentation of the sur-
face under high magnification using optical microscopy and color measurements
with a spectrophotometer.

The RTI experimental set-up involved a dome and acquisitions were pre-
formed using a monochromatic camera; whereas, multi-light illumination was
achieved using a single light source (high-power collimated white LED light).



44 A. Siatou et al.

For each acquisition set, 150 light positions were acquired covering an azimuth
angle from 0◦ to 360◦ and an elevation angle of 5◦–60◦. All acquisitions were
homogeneous, i.e., the lighting positions were spread uniformly around the dome
covering an entire hemisphere and thus providing overall angular illumination
of the surface. To ensure repeatability, exposure time, acquisition parameters
and selected ROI (region of interest) were kept constant for the different tarnish
levels. Data processing consisted of calculating the per-pixel mean reflectance
response of the stack of images and visualising the results through gray-scale
colormaps.

Figure 5 presents an example of the comparison between different imaging
techniques for registering information related to monitoring the cross-time sur-
face change of fingerprints on silver. Despite the different scales presented for
each technique, the possibility of enhancing or isolating specific information
related to the change of the reflectance response of the surface, in the area
of the fingerprint, is evident in the mean reflectance response of the RTI data,
in a form of gray-scale colormap, even at light levels of tarnish.

Global examination of feature maps, at different levels of silver tarnishing in
the presence of fingerprints, has shown promising results in the ability to detect
and enhance visualization in comparison to routinely used imaging techniques
or usual RTI visualization and surface enhancement. Furthermore, from the CH
perspective, the detection of fingerprints at low levels of tarnish, which is dif-
ficult to document through regular inspection, provides a tool for non-invasive
examination of CH surfaces. However, for quantification of results, further data
processing is necessary to better evaluate surface change over time and to apply
actual cross-time registration on the examined surfaces.

Fig. 5. Monitoring silver tarnishing by RTI features maps and comparison to the rou-
tinely used imaging techniques of photography and optical microscopy.
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4.3 Cross-time Registration Data Interpretation

The main challenge in cross-time registration is the lack of a publicly available
dataset with altered objects with the respective ground truth. In order to over-
come this, a dataset of weathered CH objects was synthetically created. Starting
from the publicly available dataset [21], first a random rotation and translation
were applied to the objects; then two weathering effects were simulated and
applied on the transformed objects to create the relative surface alteration. The
effects simulated are the dry deposition of crust due to pollution and the reces-
sion by acid rain. These effects can result in gain or loss of material on the
surface of an object.

Fig. 6. Up: The steps of the dataset creation for one object. The object is initially
transformed and then the erosion simulator runs for 20 epochs of 3 years each. In
this example, the initial model is shown degraded due to the effect of acid rain after
3, 30 and 60 years. Down:Simulated dataset for weathering. Original CH object from
SHREC2021 dataset (a), along with the transformed instance (b). On (c), different
weathered data are depicted. The reference object is depicted in gray color, the object
after 30 years of ageing in red and the after 60 years in green.

Since weathering is performed in situ and the transformation parameters are
known, the ground truth for benchmarking cross-time registration algorithms
can be acquired. The process is outlined in Fig. 6. The training part of the
dataset is then used to train our deep network to register weathered objects.
The proposed method (Fig. 7) first down-samples the reference and weathered
point clouds using their principal curvatures. Then, the down-sampled point
clouds are segmented and finally, the registration is performed by aligning the
component centroids of each segment.

5 Discussion and Future Aspects

In summary, different imaging techniques and methodologies are being examined
and adjusted by the authors to meet the requirements for monitoring CH objects
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Fig. 7. Examples of the simulated weathered dataset along with the results of the
proposed methodology for cross-time registration.

in terms of set-ups, proper registration and data processing. For the accurate
interpretation of the results with the developed methodologies, a key factor is
proper data assessment in collaboration with CH specialists. As a future step,
we consider the combination of the presented methodologies in an end-to-end
application, in order to facilitate the process of monitoring CH objects.

Through the interdisciplinary approach of the ITN-CHANGE project differ-
ent perspectives in terms of technologies and expertise are contributing in the
adaptation of new methodologies for monitoring CH objects. The aim of this
approach is to connect the information collected from the aforementioned pillars
with conservation-restoration strategies related to the long-term preservation
of tangible CH with particular focus on monitoring, by capturing and tracking
changes. Currently, each pillar is developed independently with the intent to
later combine the processes and information under a common framework. To
achieve the interdisciplinary goals of the CHANGE project, researchers are in
constant dialogue, collaboration and training to familiarize themselves with the
different scientific fields so that the needs and requirements of each specialty can
be met and understood. The cooperation and teamwork of scientists with differ-
ent backgrounds is considered a necessary link for the adaptation of technologies
from different fields to CH.
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Congress of the International Commission for Optics: Light for the Development
of the World, vol. 8011, pp. 2599–2606. SPIE (2011). https://doi.org/10.1117/12.
915566

8. Malesa, M., et al.: Application of digital image correlation for tracking deformations
of paintings on canvas. In: Pezzati, L., Salimbeni, R. (eds.) O3A: Optics for Arts,
Architecture, and Archaeology III, vol. 8084, pp. 157–164. International Society
for Optics and Photonics, SPIE (2011). https://doi.org/10.1117/12.889452

9. Malowany, K., et al.: Application of 3d digital image correlation to track displace-
ments and strains of canvas paintings exposed to relative humidity changes. Appl.
Opt. 53(9), 1739–1749 (2014). https://doi.org/10.1364/AO.53.001739

10. Papanikolaou, A., Dzik-kruszelnicka, D., Saha, S., Kujawinska, M.: 3D digital
image correlation system for monitoring of changes induced by RH fluctuations
on parchment. In: Proceedings of the IS&T International Symposium on Elec-
tronic Imaging: 3D Imaging and Applications, pp 65-1–65-7 (2021). https://doi.
org/10.2352/ISSN.2470-1173.2021.18.3DIA-065

11. Castro, Y., et al.: A new method for calibration of the spatial distribution of
light positions in free-form RTI acquisitions. In: SPIE Optical Metrology, 2019,
Munich, Germany, vol. 11058, p. 38. SPIE, Munich, Germany, June 2019. https://
doi.org/10.1117/12.2527504, https://hal-univ-bourgogne.archives-ouvertes.fr/hal-
02353517

12. CHI 2021: Cultural heritage imaging. http://culturalheritageimaging.org/
Technologies/RTI/ Accessed Jun 2021

13. Mudge, M., et al.: Image-based empirical information acquisition, scientific reli-
ability, and long-term digital preservation for the natural sciences and cultural
heritage. Eurographics (Tutorials) 2(4) (2008)

14. Earl, G., et al.: Reflectance transformation imaging systems for ancient documen-
tary artefacts. Electron. Vis. Arts (EVA 2011) 147–154 (2011)

15. Pitard, G., et al.: Discrete modal decomposition: a new approach for the reflectance
modeling and rendering of real surfaces. Mach. Vis. Appl. 28 (2017). https://doi.
org/10.1007/s00138-017-0856-0

16. Nurit, M., et al.: HD-RTI: An adaptive multi-light imaging approach for the quality
assessment of manufactured surfaces. Comput. Ind. 132 (2021). https://doi.org/
10.1016/j.compind.2021.103500
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