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Summary

This thesis is a collection of research work in the area of reinforcement learn-
ing and robotic manipulation. A set of new results on reinforcement learning fo-
cusing on model-based approaches and variable impedance control for compliant
robotic manipulation are presented. One of the major challenges in robotic re-
search at present is to develop real-world manipulation skills with human-level
dexterity while being safe. Humans possess dexterous manipulation skills owing
to the compliance properties of human motor control. Inspired by human manip-
ulation, incorporating compliant control skills is understood as a promising way
to achieve this goal. Impedance control offers an ideal framework to incorporate
such compliant control skills in robotic manipulators. The variable impedance
control framework is an extension of the impedance control framework where
compliance can be adapted in real-time according to the task requirements. Even
though there exist many approaches for impedance adaptation, designing optimal
impedance adaptation laws for complex manipulation tasks is highly challenging
and demands further research. Machine learning with its flexibility and scalabil-
ity properties is a promising approach to designing impedance adaption law for a
variable impedance controller. Reinforcement learning in particular is interesting
as it enables robots to identify optimal stiffness profiles by interacting with their
environment. However, reinforcement learning despite its promises has not been
successful in real-world robotic applications. Low sample efficiency and a lack of
safety guarantees are the most critical factors hindering its success in real-world
robotic applications. Model-based reinforcement learning is a promising approach
to address these deficiencies in reinforcement learning. This underlines the need
for research on evaluating the applicability of model-based reinforcement learning
methods and also to address the limitation of current model-based reinforcement
learning approaches. This thesis is an attempt in this direction with a focus on
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Summary

robotic manipulation and compliant robotic control. The core research focus of
this thesis is enabling compliant control in robotic manipulation leveraging model-
based reinforcement learning approaches while also addressing the deficiencies in
model-based reinforcement learning. A part of the contribution of our work ad-
dresses the development of new model-based reinforcement learning methods. We
explored combining conventional control approaches with reinforcement learning
to develop novel model-based reinforcement learning methods. This thesis con-
tributed to advancing the research on compliant control for robotic manipulation
by developing and evaluating different model-based variable impedance learning
control approaches for real-world applications. Additionally, this thesis addresses
planning in robotic manipulation in the context of an uncertain environment and
guarantees safety and stability in learning-based approaches relevant to robot con-
trol. The results of this have provided promising directions and insights into the
area of reinforcement learning and robotic manipulation in general. This research
is expected to contribute towards facilitating the use of reinforcement learning and
compliant control skills in real-world robotic systems.
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Chapter 1

Introduction

This thesis presents a collection of research works which can be broadly classified
into RL and robotic manipulation. The thesis is organized into two parts, Part I
presents the research works on RL for robotic control focusing on Model-based
Reinforcement Learning (MBRL), and Part II presents the research works in the
area of robotic manipulation with a particular focus on compliant robotic manip-
ulation using Variable Impedance Learning Control (VILC) approaches. The Part
I is motivated on developing RL methods that can be applied to real-world sys-
tems and provide safety and stability guarantees. Part II is majorly focused on
incorporating human-like compliance properties into robotic manipulation while
additionally exploring the planning aspect of robotic manipulation.

This thesis addresses the research problem of exploring the prospects of Machine
Learning (ML), specifically RL for developing compliant control methods control
for robotic manipulation. This research goal is motivated by the possible bene-
fits of safe and reliable robotic solutions in the area of healthcare, rehabilitation,
elderly care, and in industrial applications. ML in general has enormous promise
in the area of robotics and control, but its progress in real-world robotic and con-
trol applications is comparatively slow due to uncertainties posed by real-world
physical systems. Nevertheless, the scientific community has been persistent in
exploring new directions to fulfill the promise of ML in robotics, this thesis is a
contribution to this cause. The works presented in the thesis may not align per-
fectly with each other, therefore both parts can be seen as disjoint but with the
common thread of developing learning-based approaches for robotic control. In
that sense, the second part can be seen as an application of the first part.

This chapter will provide a detailed introduction to the research works presented

1



1. Introduction

in this thesis. The rest of this chapter will briefly discuss the importance and
challenges of RL for robot control in Section 1.1 and on the promise of model-
based approaches to tackle some of these challenges to bring RL to real-world
robotic applications in Section 1.2. Section 1.3 will discuss the importance of
compliant robotic manipulation and how this thesis tries to advance the research in
this area.

1.1 Reinforcement Learning for Robot Control
RL provides a framework for learning from experiences, where robots can learn
skills by directly interacting with their environment [204]. In the past decade
RL has gained popularity across scientific disciplines by solving various complex
control and decision-making problems relying on Deep Neural Networks (DNN)
based function approximations [156]. Since the success of AlphaGo [197], owing
to the success of deep-RL, RL has grown drastically over a wide range of applica-
tions ranging from control, robotics, natural language processing, recommendation
systems, gaming, etc [15]. From a control theory perspective, RL is a framework
to find an optimal policy or control law given an objective/cost function. In that
sense RL is closely related to classical optimal control theory and dynamic pro-
gramming [25]. One major advantage of RL compared to optimal control methods
is that, while optimal control requires a model of the underlying system dynamics
RL could find the optimal policy directly from the measured data.

In recent years RL has been widely studied in the context of robot control as it
promises to enable robots to autonomously discover optimal control strategies by
interacting with the environment [114, 1]. This is motivated by the increasing de-
mand for human-level skills in robots such as robotic locomotion, manipulation,
human-robot interaction, and wearable robotics [127]. Encoding complex skills
in robots via conventional control approaches is very difficult in high-dimensional
and continuous-space real-world robotic applications, especially in unstructured
environments [70]. RL offers an alternative by allowing the robots to acquire such
skills autonomously by interacting with their environment. RL has become suit-
able for continuous control problems with the advent of policy-gradient methods
[168]. The combination of policy-gradient RL methods with DNN based function
approximators forms a powerful RL tool for continuous domain control problems.
An enormous amount of research has been carried out in the area of RL across vari-
ous robotics and control applications in recent years, summarised in [199, 104].

In spite of its promises RL poses major difficulties by itself, and these difficulties
are magnified in real-world systems as many assumptions, in theory, are rarely
satisfied in practice. Applying RL in robot control has multiple challenges such
as partial observability of system states, sample efficiency, reward specification,
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lack of safety and stability guarantees, the curse of dimensionality, explainability,
etc [57]. Especially in deep-RL, i.e RL with DNN based function approximators,
the black-box nature of the DNN based function approximators translates to the
RL solution. The first part of the thesis addresses some of these issues to facilitate
their use in real-world applications in the future. The specific issues addressed will
be summarized in the remainder of this section.

RL has high sample complexity, meaning it requires an enormous amount of in-
teractions to learn a policy, sometimes in the order of millions depending on the
complexity of the problem. This makes it difficult to apply in real-world robotic
applications directly as it can be very expensive to collect interaction data in real-
world robotic systems. Sim-to-real has been a prominent approach recently, where
a policy is pre-trained on a simulator is transferred to the real system with minimal
learning or fine-tuning on the real system [12]. This has been successfully applied
in research settings, but developing high-quality simulators for most robotic ap-
plications may not be a reliable solution [231]. In addition to this, RL approaches
for robotic applications have to deal with partial observability of system states and
uncertainty and delays inherent to the measurements on real-world physical sys-
tems, etc. Usually, the RL-based policies are specific to the task and scenarios
encountered during the learning phase. Although there are approaches available
to tackle this issue, e.g. distillation [162] and meta-learning [211], this remains a
major challenge.

Efficient exploration is a key aspect of RL algorithms, as RL relies on exploration
strategies to gather informative experience [148]. But exploration in real-world
robotic applications is more difficult owing to reasons such as satisfying mechan-
ical and safety constraints and stability conditions [57]. One major drawback of
RL compared to conventional control approaches in real-world applications is the
lack of guarantees on safety or constraint satisfaction, and closed-loop stability [7].
When applying RL to real-world systems, it is important to have such guarantees
during the exploration phase in addition to the final policy. This is one open area
of research in RL, there are recent researches in RL to fill this gap where a lot
of them combine RL with conventional control approaches to provide guarantees
[33].

Apart from these issues arising from the perspective of RL, in many real-world
robotic applications, the systems are equipped with highly reliable low-level con-
trollers ranging from Proportional–Integral–Derivative (PID) control to a Model
Predictive Control (MPC). In many practical applications re-engineering such con-
trollers is not possible and it would be ideal if RL could be used to improve the per-
formance by combining it with such control paradigms appropriately. Even though
the need for such combinations arises from constraints imposed by the application,
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it can be seen as an opportunity to develop reliable learning systems for real-world
robotic systems by borrowing the best of control theory and RL. From the con-
trol perspective, RL can be seen as a tool to further improve the performance and
adaptability of control approaches, thereby enabling the design of complex skills
for robots based on control theory. Interestingly from the RL perspective, this
can be seen as a way to develop RL methods for real-world applications with the
necessary properties of explainability, safety, constraint satisfaction, etc.

1.2 Model-based Reinforcement Learning for Robot Control
Most existing RL approaches are model-free, requiring a large number of inter-
actions in the order of millions in the case of complex systems to learn a policy
[78]. This is feasible in simulations, whereas in real-world robotic systems, it is
very expensive to collect large amounts of interaction data. Therefore, improving
sample efficiency is a key contributing factor to applying RL to real-world robot-
ics and control problems in general. MBRL mitigate this problem within the RL
framework by utilizing a system dynamics model to accelerate policy estimation
[53] and is found to be useful in real-world robotics applications [170]. MBRL of-
fers multiple benefits such as sample efficiency, better exploration schemes, easier
transfer learning, safety, stability, explainability, and even optimality [154].

MBRL can be seen broadly as a RL approach utilizing the model of the system
dynamics for finding the optimal policy. One immediate benefit of MBRL is the
improved sample efficiency as the model could reduce the amount of data required
to learn the policy [203, 17]. There is no unique way to utilize the model in
MBRL, the model can be utilized in different ways depending on the objective.
For example, while some methods optimize a policy by explicitly planning over a
learned model [53, 51, 94], other methods use a mix of model-based and model-
free updates [203, 157]. Even though MBRL could improve the sample efficiency
of RL, further improvement in sample efficiency is required for real-world applic-
ation, especially when using DNN models [154]. This partly addresses the issue
of further improving the sample efficiency in MBRL as detailed in Chapter 3.

The MBRL framework opens up the possibility to provide safety and stability guar-
antees to RL leveraging on the dynamics model along with the possibility of having
explainable policies. [23, 227, 16] are some examples exploring this possibility.
Tools from control theory such as Control Lyapunov Functions (CLF) and Control
Barrier Functions (CBF) can be used to verify the safety and stability of model-
based control approaches [223, 103]. For real-world safety-critical systems, it can
be paramount to ensure safety, either in terms of constraint satisfaction or in terms
of stability, or both. This thesis explores the aspect of ensuring safety and stability
in learning-based control methods using CBFs and CLFs. Safety and stability can
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be expressed as functions over the model dynamics using CLFs and CBFs, which
are particularly suited to learning settings. Chapter 5 provides a thorough review of
the existing methods using CLFs and CBFs in combination with learning methods
including MBRL and discusses possible future directions.

Transfer learning in RL refers to utilizing the learned information for one task to
speed up the learning on another task [234]. In robotic applications, even for a
specific type of task, the specification can change from time to time or depending
on the scenarios. In such cases, it can be expensive to learn policies for each task
specification; it is thus important to learn policies that are generalizable across
tasks or a set of task specifications. Even though there are approaches in model-
free RL to achieve this [209], MBRL could provide an additional advantage here
by leveraging on the model of the dynamics. This thesis explores this aspect of
MBRL to provide better generalizability of a learned control policy over a range
of task specifications in Chapter 3.

Although MBRL offers the flexibility of RL to design complex control policies
with better sample efficiency, it lacks asymptotic performance compared to model-
free RL [220]. The main constraint in achieving better performance with MBRL is
the quality of the model, as the policy is biased toward the imperfect model. In the
case of complex dynamics such as robotic systems, multistep forward predictions
of such models are prone to errors due to uncertainties in the system and limitations
of the model structure [2] even when using Neural Network (NN) models. Chapter
3, Chapter 4, and Appendix B of this thesis address this issue and improve the
asymptotic performance of MBRL.

The aspects of MBRL discussed above are mainly centered on using a DNN-based
function approximator for the policy. But deep RL in its current form has a lot
of limitations because of the black-box nature of DNNs, which is translated into
MBRL with DNN-based function approximators. With the motivation of building
explainable MBRL approaches, holistically integrating the state-of-the-art control
theory approaches in MBRL is an interesting direction. MPC is a well-established
model-based control strategy that uses a model of the real system dynamics to gen-
erate input sequences that minimize a cost function under given constraints [173].
The MPC problem is solved at every time instant, in a receding-horizon fashion,
delivering a control policy for the real system. For most real-world applications,
building an accurate model of the real system dynamics can be challenging, es-
pecially for stochastic systems. Such inaccuracies in the model can significantly
degrade the performance of the MPC scheme on controlling real-world systems.
This effect is more pronounced in economics problems (problems with an eco-
nomic cost/objective) rather than tracking problems where the MPC scheme tries
to bring the real system to a specific reference state.
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MPC is extremely suitable for tracking applications in robotics even with an in-
accurate model of the dynamics. Recently, RL has been used for adjusting the
MPC scheme from data to improve its closed-loop performance [67]. RL with
MPC forms a unique combination in the field of learning-based MPC in the sense
that learning is directly coupled to the closed-loop performance of the resulting
MPC policy independent of the accuracy of the model [67]. This is in contrast to
conventional learning-based MPC approaches that focus on learning an accurate
dynamics model, and expecting that will improve the closed-loop performance of
the resulting MPC scheme. In the context of this thesis, this approach is seen as an
MBRL approach with a parameterized MPC scheme as the policy. This is unique
in MBRL as it opens the door for using all useful properties of MPC such as safety,
closed-loop stability, and constraint satisfaction while leveraging on the ability of
RL to learn optimal policies directly from data. In the rest of this thesis, the com-
bination of RL with MPC is termed as Reinforcement Learning based Model Pre-
dictive Control (RLMPC). In this thesis, we make efforts to advance the area of
RLMPC to be suitable for real-world control applications.

An overview of the existing research and current challenges in RLMPC is provided
in Appendix A. Even though this approach is highly promising for MBRL, it is not
trivial to apply RL methods in RLMPC. One key criterion would be to device ef-
ficient RLMPC methods leveraging on the MPC properties for generating highly
structured policies. In this direction, Chapter 4 introduces an easy-to-use RLMPC
approach leveraging on a well-formulated MPC scheme. In a closer direction to-
wards RL, it would be beneficial to formulate RLMPC schemes directly from data,
which is very relevant in this era of big data. But using the existing RLMPC meth-
ods on such big data is challenging as it needs to solve an enormous amount of
computationally expensive MPC schemes and requires access to the system for on-
policy interactions. We address this issue in Appendix B, where a novel method to
formulating an RLMPC scheme directly from data is presented.

A detailed introduction to the MBRL and RLMPC background is provided in
Chapter 2.

1.3 Compliant Robotic Manipulation
A major focus of current robotic-manipulation research is on robots intelligently
interacting with their environment rather than performing carefully pre-planned
movements as in earlier days [27]. Robotic manipulation can be seen as a combin-
ation of trajectory planning and control problems. Complex manipulation skills
from grasping, Human-Robot Interaction (HRI), robotic assembly, robotic sur-
gery, etc., especially in unstructured environments, require both planning and con-
trol skills. Developing real-world robots with such manipulation skills remains
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Figure 1.1: Example laboratory set-up we use for a robotic ultrasound on a human dummy.

an open area of research. With the growing demand for robotic solutions across
areas from manufacturing, healthcare, elderly care, etc., it is vital to advance the
research in this area. To that end, this thesis is a part of a bigger research project on
Robotics for Moving Objects within manufacturing and healthcare, which aims to
develop robotic manipulation skills for dynamics and unstructured environments.
With the limitations of conventional control approaches for developing complex
robotic manipulation skills, learning approaches have been widely adopted as a
promising direction to address this challenge [158, 155]. While this thesis majorly
focuses on the aspect of control, we begin the Part II by addressing the aspect
of trajectory planning in uncertain environments which is integral to real-world
robotic manipulation. In Chapter 8, we address the issue of targeting and manipu-
lating a moving object by a robotic arm which is of great importance in numerous
industrial applications. Learning from Demonstration (LfD) has been widely de-
ployed in many robotic manipulation tasks, but similarly, it mainly involves static
targets. Among the various LfD methods that exist, the Dynamic Movement Prim-
itive (DMP) [89] is a widely used framework in robotic manipulation. In Chapter
8, we present a DMP framework for with real-time capabilities to manipulate a
moving object.

Manipulating objects is central to how humans interact with the real world, and
even with a limitation of low-frequency biological feedback loops, we possess dex-
terous manipulation skills. Although the exact motor control mechanisms respons-
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ible for such skills remain unknown, the impedance modulation of the arm has
been proposed as a key mechanism [29, 84, 100]. While in robotics the feedback
control loops can be operated at much higher frequencies, human-level dexterity
is seldom achieved in real-world applications. Most real-world applications using
robotic manipulators traditionally relied on trajectory planning and position con-
trol which is undesirable for dexterity, safety, energy efficiency, and constrained
interactions. Human muscle actuators possess impedance properties (stiffness and
damping) [80] which can be adapted by the neural control to achieve various ma-
nipulation behaviors.

Motivated by the compliance properties of human manipulation, Impedance Con-
trol (IC) for robot control was introduced by Hogan in [83]. IC aims to couple
the manipulator dynamics with its environment instead of treating it as an isol-
ated system while designing control strategies. Most robotic manipulator tasks
involve dynamic interactions with the environment. In [83], it is emphasized that
control of position and force alone is inadequate and one needs to additionally con-
sider the control of dynamic behavior of the robot-object interaction and that “It
is impossible to devise a controller which will cause a physical system to present
an apparent behavior to its environment which is distinguishable from that of a
purely physical system”. This postulate describes the complete controlled system
as an equivalent physical system. A robotic manipulator may exert a force on its
environment or impose a displacement/ velocity on it, along any degree of free-
dom. But not both force and displacement simultaneously [202] considering the
environment is rigid.

IC can be used to control the robotic manipulator end-effector while interacting
with its environment [5]. IC offers a framework to develop compliant, safe, energy-
efficient, and dexterous robotic manipulation skills. Unlike the more conventional
control approaches, IC attempts to implement a dynamic relation between the ro-
bot’s end-effector pose and wrench rather than just controlling these variables in-
dependently. The use of IC provides a feasible solution to overcome position un-
certainties in order to avoid large impact forces. This is a result of controlling
the robots to modulate their motion or compliance according to force feedback
[106]. As a result of such properties, IC has been widely researched in the area of
robotic manipulation, locomotion, HRI, and Human-Robot Collaboration (HRC)
[92, 180]. As adapting the robot compliance properties is necessary to achieve
human-like manipulation skills, IC is naturally extended to Variable Impedance
Control (VIC) where the impedance parameters are varied during the task [91, 39].
VIC has gained popularity in robotic research as it provides the necessary scalab-
ility to IC for complex robotic manipulation tasks.

Formulating a variable impedance law for robotic manipulation tasks, especially in
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contact-rich tasks, is very difficult and might need extensive tuning on the real sys-
tem. With the availability of torque-controlled robots and a wide range of learning
algorithms applicable, research interest has been sparked in learning such variable
impedance skills for robots. Variable Impedance Learning Control (VILC) is a
closed-loop VIC strategy where the variable impedance law is learned from the
data generated by the controller. Learning a variable impedance law avoids all the
difficulties associated with hand-designing variable impedance laws. VILC essen-
tially relies on an impedance adaptation strategy acquired via ML strategies for an
underlying VIC. A wide variety of learning-based approaches can be combined
with VIC to achieve a desired VILC [4]. Some examples are Imitation Learn-
ing (IL), Iterative learning control (ILC), and RL.

IL has been used in many recent VILC works [40, 105, 134, 185]. IL-based VILC
methods are generally some form of LfD methods as they often rely on demon-
strations to learn from [87]. It is very suitable in robotics, especially in the case
of robotic manipulation tasks, as the user can often provide demonstrations easily
using kinesthetic teaching. IL can be useful in developing highly sample efficient
VILC [4]. But such learning strategies can be biased to the demonstration which
are often suboptimal and potentially limit the performance and generalization of
the learned policies. IL is useful for tasks that are easy to demonstrate and which
do not have a clear optimal way of execution, whereas RL is well suited for highly-
dynamic tasks, where there is a clear measure of the success of the task [122].

Optimizing variable impedance gains/parameters can be done using ILC where the
robot improves its performance iteratively. ILC based methods have been used for
VILC in a range of works [44, 62, 3, 126]. An ILC improves the performance of
a task by repeatedly executing the task and learning a control law using the data
from the previous trials [13]. The key difference between ILC and RL is that, in
RL, the control law is derived by maximizing a reward function defined by the task
requirements. One advantage of ILC compared to RL is its sample efficiency. But
even when a model of the dynamics is not available, RL offers better performance
and can be applied to a broader range of problems [229].

With the advances made in RL for robotics [114], it has been widely adopted for
VILC in recent times [4]. One of the first work in this area was [109], where
the Natural Actor-Critic algorithm is used in an episodic way to learn the stiffness
matrix for a VIC. Policy Improvement with Path Integrals (PI2) algorithm was used
in [34], to find the optimal impedance parameters. A detailed review of existing RL
based VILC approaches are presented in Chapter 7. The issues with RL discussed
in Section 1.1 are also reflected in RL-based VILC approaches. We identified
data-efficiency and transferability across tasks as two key issues in utilizing the
potential of RL in VILC. In the second part of this thesis, we aim to advance the
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Part I

Chapter 2: Background on MBRL
Chapter 3: A new improved MBRL framework
Chapter 4: A new RLMPC algorithm
Chapter 5: A review on existing safe learning for control

Part II

Chapter 6: Background on VIC
Chapter 7: A review on existing RL-based VILC methods
Chapter 8: A new improved DMP framework
Chapter 9: Evaluation of compliant controllers within MBRL framework
Chapter 10: A new data-efficient VILC method
Chapter 11: A new scalable VILC framework

Table 1.1: Structure of the thesis mentioning the contribution in all the chapters in Part I
and Part II.

area VILC focusing on MBRL approaches for developing human-level compliance
in robots. The last three chapters (9 - 10) in Part II of this thesis present different
VILC approaches focusing on MBRL.

1.4 Contributions
This thesis is organized into two parts and twelve chapters. Part I consists of
Chapter 2 - Chapter 5 presents the research works on RL for robotic control fo-
cusing on MBRL. Part II consists of Chapter 6 - Chapter 11 presents the research
works in the area of robotic manipulation with a particular focus on compliant ro-
botic manipulation using VILC approaches. Table 1.1 depicts the structure of the
thesis.

Chapter 2 provides the necessary background on MBRL and RLMPC for Part
I. Chapter 6 provides the background on VIC for Part II. In the following, we
summarize the topic and contributions of each chapter in this thesis.

1.4.1 Part I: Reinforcement Learning for Control

Part I contains three main research works focusing on advancing RL for control
applications. Two related results in Appendix A and B also belong to this part.
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Chapter 3: Addressing Sample Efficiency and Model-Bias in Model-based RL

This chapter aims to address some of the major drawbacks of existing MBRL
methods and to develop an improved MBRL framework. MBRL promises to be
an effective way to bring RL to real-world robotic systems by offering a sample
efficient learning approach compared to model-free RL. However, at the present,
MBRL approaches struggle to match the performance of model-free ones. The
work presented in this chapter attempts to fill this gap by improving the perform-
ance of MBRL while further improving its sample efficiency. To improve the
sample efficiency, an exploration strategy is formulated which maximizes the in-
formation gain. The asymptotic performance is improved by compensating for
the model bias using a model-free critic. The proposed approach has been evalu-
ated empirically on four RL benchmarking tasks in the openAI gym framework.
The results of the empirical evaluation demonstrated improved data efficiency, per-
formance and generalizability of the proposed MBRL approach compared to the
state-of-the-art methods.

The MBRL framework proposed in this chapter represents the dynamic model us-
ing ensembles of NNs and uses a Cross Entropy Method (CEM)-based [31] MPC
as the policy. This work focuses on the aspects of sample efficiency, perform-
ance, and efficient transfer of policies between tasks within the standard MBRL
framework. The main contributions of this work are:

• Improving the sample efficiency and transfer of policies between tasks by
designing exploration policies targeted at maximizing the information gain
from the region of interest using the uncertainty estimate of the model.

• To compensate for the inaccuracies in the learned model, a critic-value func-
tion estimated from the real data is used as a terminal value during the policy
optimization, thereby improving the asymptotic performance of the MBRL
framework.

This chapter is based on the following publication (accepted):

Akhil S Anand, Jens Erik Kveen, Fares Abu-Dakka, Esten Ingar Grøtli, Jan Tommy
Gravdahl (2022, December). Addressing Sample Efficiency and Model-bias in
Model-based Reinforcement Learning. In 21st IEEE International Conference on
Machine Learning and Applications (IEEE ICMLA): IEEE ICMLA 2022.

Chapter 4: Deterministic Policy Gradient Method for Learning-based MPC

This chapter presents a control theory oriented MBRL approach using the RLMPC
framework. The combination of RL and MPC has gained a lot of interest in the
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recent literature as a way of computing the optimal policies from MPC schemes
based on inaccurate models. In that context, the Deterministic Policy Gradient
(DPG) methods are often observed to be the most reliable class of RL methods
to improve the MPC closed-loop performance. The DPG methods are fairly easy
to formulate when used with compatible function approximation as an advantage
function. However, this formulation requires an additional value function approx-
imation, often carried out using DNNs. In this chapter, we propose to estimate
the required value function approximation as a first-order expansion of the value
function estimate from the MPC scheme providing the policy. The proposed ap-
proach drastically simplifies the use of DPG methods for learning-based MPC as
no additional structure for approximating the value function needs to be construc-
ted. We illustrate the proposed approach with two numerical examples of varying
complexity.

This chapter introduces a novel actor-critic formulation using the DPG theorem
[198] with only an MPC scheme as an actor. The proposed method uses the MPC-
based actor to approximate the value function, and hence eliminates the need for
an additional approximation structure. To this end, we exploit the result proposed
by Gros and Zanon [67] which states that, under mild assumptions, the optimal
value function can be approximated by MPC and that the resulting policy and
value functions satisfy the Bellman equations. A key feature of this approach is
that the value function approximator is designed to be compatible with the policy
gradient. The main contributions of this work are:

• A novel DPG-based actor-critic method for MPC is formulated where the
value function in the critic is approximated using MPC actor itself.

• A simplified DPG algorithm for learning-based MPC is formulated by cir-
cumventing the need to construct an additional structure for approximating
the value function in the compatible critic function approximation in the
DPG formulation.

This chapter is based on the following paper:

Akhil S Anand, Dirk Reinhardt, Shambhuraj Sawant, Jan Tommy Gravdahl, Sbas-
tien Gros, A Painless Deterministic Policy Gradient Method for Learning-based
MPC, Submitted to 20th European Control Conference (ECC), 2023.

Chapter 5: A Survey on Safe Learning for Control

This chapter deals with the aspects of safety and stability guarantees in learning-
based control methods. Real-world autonomous systems are often controlled using

12



1.4. Contributions

conventional model-based control methods. But if accurate models of a system
are not available, these methods may be unsuitable. For many safety-critical sys-
tems, such as robotic systems, a model of the system and a control strategy may
be learned using data. When applying learning to safety-critical systems, guar-
anteeing safety during learning as well as testing/deployment is paramount. A
variety of different approaches for ensuring safety exists, but the published works
are cluttered and there are few reviews that compare the latest approaches. CBF
has been widely employed to guarantee safety for control methods [223]. CBF
gained popularity within the conventional control community during recent years
and has been utilized more as a safety filter for an existing nominal controller [6].
In a different but slightly more conservative approach, safety can be guaranteed
indirectly by stability guarantees of the closed-loop system based on Lyapunov
stability verification, utilizing CLF [103]. While CBFs provides an option to in-
corporate safety in terms of constraint satisfaction, CLF are used to define safety
in terms of stability. A combination of CBFs and CLFs can be used to guarantee
a safe and stabilizing controller [177], which is also utilized in learning to guaran-
tee stability [95]. These two promising approaches have been widely adopted to
guarantee safety for learning-based robust control of uncertain dynamical systems.

This chapter presents a rigorous review of learning methods that incorporate CBFs
and CLFs and their combination for safe learning-based control. The review sum-
marizes the existing learning-based methods for safe control of dynamical systems
with uncertainty, utilizing CBF and CLF. The relevant references are divided into
three main categories, grouped by the learning method that CBFs and CLFs are
combined with, namely RL, online and offline Supervised Learning (SL). The
similarities and differences between the methods used in the review references are
highlighted and their suitability in different scenarios is discussed. It is observed
that, despite steady progress, there still exists a large gap between the theory and
practical application of the methods. Because using CLFs and CBFs with learning
is a rather new approach, a major challenge is demonstrating their capabilities on
real-world safety-critical systems. This widens the scope for future research in the
area.

This chapter is based on the following publication [8]:

Anand, A., Seel, K., Gjærum, V., Håkansson, A., Robinson, H., and Saad, A.
(2021). Safe learning for control using control Lyapunov functions and control
barrier functions: A review. Procedia Computer Science, 192, 3987-3997.
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1.4.2 Part II: Learning-based Complaint Robotic Manipulation

Part II contains four main research works focusing on advancing RL for control ap-
plications. Chapter 7 provides a review of the existing RL-based VILC approaches
in robotic manipulation. Chapter 8 focuses on the trajectory planning aspect of
robotic manipulation whereas chapters 9 -10 focus on learning-based compliant
robotic manipulation.

Chapter 7: Survey on RL-based Variable Impedance Learning Control

This chapter presents a detailed survey on RL-based VILC approaches for ro-
botic manipulation. VILC combines VIC with learning-based control strategies
for learning a variable impedance law. The majority of the VILC approaches make
use of imitation learning, iterative learning, or reinforcement learning. Among dif-
ferent learning approaches RL offers the flexibility and scalability for VILC on a
wider range of robotic problems such as manipulation, locomotion, and HRI. This
survey discusses the advantages and disadvantages of different VILC approaches
and their suitability for various applications. The survey provides a tabular com-
parison of the approach on five different criteria: (i) data-efficiency, (ii) transfer-
ability, (iii) model-based or model-free, (iv) computational effort, and (v) force-/
position-based VIC. This chapter serves as a detailed review of existing works for
the chapters 9 -10.

This chapter is not part of any publication.

Chapter 8: Real-time Dynamic Movement Primitives for Moving Targets

This chapter deals with the problem of learning-based trajectory planning for ro-
botic manipulation in uncertain environments. This chapter is aimed at extending
the standard DMP framework to adapt to real-time changes in the task execution
time while preserving its style characteristics. We propose an alternative polyno-
mial canonical system and an adaptive law allowing a higher degree of control over
the execution time. The extended framework has a potential application in robotic
manipulation tasks that involve moving objects demanding real-time control over
the task execution time. The existing methods require a computationally expens-
ive forward simulation of DMP at every time step which makes it undesirable for
integration in real-time control systems. To address this deficiency, the behavior
of the canonical system has been adapted according to the changes in the desired
execution time of the task performed. An alternative polynomial canonical system
is proposed to provide increased real-time control on the temporal scaling of DMP
system compared to the standard exponential canonical system. The developed
method was evaluated on scenarios of tracking a moving target where the desired
tracking time is varied in real-time. The results presented show that the extended
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version of DMP provides better control over the temporal scaling during the exe-
cution of the task. We have evaluated our approach on a UR5 robotic manipulator
for tracking a moving object.

We define real-time control of the execution time as, how the DMP system is ad-
apting to real-time changes in its desired execution time during the task. In order
to achieve this, we only manipulate the temporal scaling of DMP system while
preserving its spatial properties. We formulate two methods to achieve efficient
real-time temporal scaling, (i) a control law to vary the temporal scaling term of
the standard exponential canonical system and (ii) an alternate polynomial-based
canonical system with a suitable control law for temporal scaling. This is useful
in a manipulation task with an underlying DMP planner, where the task execution
time needs to be changed during the execution phase. Additionally, in the case of
moving targets, velocity feedback of the target and a simple estimate of the goal
position based on the current target position and velocity are included in the DMP
system.

This chapter is based on the following publication [11]:

Anand, A. S., Østvik, A., Grøtli, E. I., Vagia, M., and Gravdahl, J. T. (2021, Decem-
ber). Real-time temporal adaptation of dynamic movement primitives for moving
targets. In 2021 20th International Conference on Advanced Robotics (ICAR) (pp.
261-268). IEEE.

Chapter 9: Evaluation of Compliant Controllers for Learning Force Tracking Skills

Chapter 9 presents an evaluation of two prominent force control methods, VIC
and Hybrid Force-Motion Controller (HFMC) in a robot learning framework for
contact-rich interaction tasks demanding force and motion tracking. The control-
lers are evaluated on a Franka Emika Panda robotic manipulator for a robotic
interaction task using a MBRL algorithm, Probabilistic Inference for Learning
Control (PILCO). The PILCO algorithm is chosen for evaluating the controller
considering its high sample efficiency which facilitates learning directly in the ex-
perimental set-up in a handful of trails. Utilizing the learning framework to find
the optimal controller parameters has significantly improved the performance of
the controllers.

It was shown that combining a learning-based approach with force controllers has
the ability to improve robotic interaction control. For HFMC, the framework was
used to learn direct strategies for its damping- and stiffness parameters. For VIC,
strategies were learned for the parameters of an adaptation law. Both controllers
showed significant improvement in force tracking ability by introducing model-
based learning. Introducing learning led to faster convergence to the desired force
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in VIC, and to a significant improvement in the force tracking error in HFMC.

This chapter is based on the following publication [10]:

Anand, A. S., Myrestrand, M. H., and Gravdahl, J. T. (2022, January). Evaluation
of Variable Impedance-and Hybrid Force/MotionControllers for Learning Force
Tracking Skills. In 2022 IEEE/SICE International Symposium on System Integra-
tion (SII) (pp. 83-89). IEEE.

Chapter 10: A Data-Efficient Variable Impedance Learning Control Framework

This chapter addresses the issue of data-efficiency in VILC to facilitate their easy
and reliable application to real-world robotic manipulation tasks. In this chapter,
we introduce a Reinforcement Learning (RL) based approach called Data-Efficient
Variable Impedance Learning Controller (DEVILC) to learn the variable imped-
ance controller through real-world interaction of the robot. More concretely, we
use a model-based RL approach where, after every interaction, the robot iteratively
learns a probabilistic model of its dynamics using the Gaussian process regression
model. The model is then used to optimize a neural-network policy that modulates
the impedance of the robot such that the long-term reward for the task is maxim-
ized.

Thanks to the model-based RL framework, Data-Efficient Variable Impedance
Learning Controller (DEVILC)allows a robot to learn the VIC policy with only
a few interactions, making it practical for real-world applications. We evaluate
Data-Efficient Variable Impedance Learning Controller (DEVILC) on a Franka
Emika Panda robotic manipulator for different manipulation tasks in the Cartesian
space in simulations and experiments. The results show that Data-Efficient Vari-
able Impedance Learning Controller (DEVILC) is a promising direction toward
autonomously learning compliant manipulation skills directly in the real world
through interactions. The results show that this approach is a promising direction
toward learning compliant manipulation skills.

This approach presented in this chapter focuses on improving the sample efficiency
of VILC approaches for real-world robotic applications demanding real-time im-
pedance adaptation. The main contributions of this chapter are:

• a Model-based VILC framework using Gaussian Processes (GP) models and
using the evolution strategy, Covariance Matrix Adaptation (CMA-ES) to
optimize a NN policy.

• demonstrates a highly data-efficient approach for learning impedance adapt-
ation strategy for robotic manipulation.
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1.4. Contributions

This chapter is based on the following paper under review:

Anand, A. S., Abu-Dakka, F. J., and Gravdahl, J. T. (2023). Data-Efficient Variable
Impedance Control, IEEE Access.

Chapter 11: Deep Model Predictive Variable Impedance Control

This chapter addresses crucial issues of data-efficiency, performance, and task
transferability in VILC in order to develop a scalable and highly reliable VILC
approach for real-world robotic applications. We propose a deep Model Predict-
ive Variable Impedance Controller for compliant robotic manipulation which com-
bines Variable Impedance Control (VIC) with Model Predictive Control (MPC). A
generalized Cartesian impedance model of a robot manipulator is learned using an
exploration strategy maximizing the information gain. This model is used within
an MPC framework to adapt the impedance parameters of a low-level variable
impedance controller to achieve the desired compliance behavior for different ma-
nipulation tasks without any retraining or fine-tuning. The deep Model Predictive
Variable Impedance Control approach is evaluated using a Franka Emika Panda ro-
botic manipulator operating on different manipulation tasks in simulations and real
experiments. The proposed approach was compared with model-free and model-
based reinforcement approaches in variable impedance control for transferability
between tasks and performance.

In this chapter, we propose a deep Model Predictive Variable Impedance Control
(MPVIC) framework, where a NN based Cartesian impedance model of the robotic
manipulator is used in a CEM-based MPC for online adaptation of the impedance
parameters of a VIC. This deep MPVIC framework is utilized to learn impedance
adaptation strategy for various robotic manipulation tasks by specifying a suitable
cost function. The main contributions of this work are:

• a novel VIC framework, we call it deep MPVIC, which combines a CEM-
based MPC with Probabilistic Ensemble NN (PENN) dynamical model for
compliant robotic manipulation.

• the deep MPVIC framework learns a generalized Cartesian impedance model
of the robot to facilitate the transferability between completely different ma-
nipulation tasks without any need of relearning the model.

• an uncertainty-based exploration scheme is integrated into the proposed frame-
work to facilitate learning a generalized model efficiently from fewer samples.

• an extensive evaluation in simulation and real setups, in addition to a com-
parison between our approach and the state-of-the-art model-free and model-
based RL approaches on transferability and performance.
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1. Introduction

This chapter is based on the following paper under review (publically available on
arxiv currently [9]):

Anand, A. S., Abu-Dakka, F. J., and Gravdahl, J. T. (2023). Deep Model Predictive
Variable Impedance Control, Journal of Robotics and Autonomous Systems.
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Model-based Reinforcement
Learning

19





Chapter 2

Preliminaries on Model-based
Reinforcement Learning

This chapter introduces the preliminary background for Model-based Reinforce-
ment Learning (MBRL) and Reinforcement Learning based Model Predictive Con-
trol (RLMPC) relevant to this part of the thesis.

2.1 Model-based Reinforcement Learning
Reinforcement learning methods can be categorized into two main categories;
model-based RL (MBRL) and model-free RL. Model-free methods don’t use
any model of the transition dynamics of the underlying Markov Decision Pro-
cess (MDP). They learn the optimal policy directly from the interaction data con-
sidering the underlying MDP as a black box responding to actions taken. Whereas,
model-based methods either use a known model describing the transition dynam-
ics and reward function of the underlying MDP, or they learn a model by sampling
transitions in the environment. Model-based methods rely on this model to learn
an optimal policy. Since the focus of this thesis is on model-based RL, this sec-
tion provides the necessary preliminaries on MBRL, assuming the reader has basic
knowledge is RL.

RL formulates an optimization problem as Markov Decision Process (MDP) [19],
defined by the tuple (S,A, T ,R, ρ, γ,H). MDP constitutes the system states,
st ∈ S, actions, at ∈ A, a transition function, T : S × A → S. T represents
the probability of transitioning to a new state st+1 from the current st by applying
action at; i.e:

st+1 ∼ T (·|st,at) (2.1)
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2. Preliminaries on Model-based Reinforcement Learning

and can be either deterministic or stochastic. R : S ×A → R represents the scalar
reward function, where a scalar reward value rt is received for every action applied
to the system such that: rt = R(st,at). The initial state distribution is denoted
by ρ(s), γ ∈ [0, 1] is the discount factor, and H is the horizon of the process.
π : S → A is an agent or policy that maps the state to actions.

MBRL utilize a parametrized model Tθ predicting the state transition as a proxy
for the actual transition function (2.1),

st+1 ∼ Tθ(·|st,at) . (2.2)

MBRL solves for an optimal policy π⋆ that maximizes the expected total reward
J(π) = Eat∼π

st∼Tθ

[∑H
t=0 γ

tR (st,at)
]
, given by

π∗ = argmax
π

E at∼π(st)
st+1∼Tθ(st,at)

[
H∑

t=0

γtR (st,at)

]
. (2.3)

The state-value function V π(s) associated with the policy π is defined as the ex-
pectation of the cumulative return given by following a policy π from state s:

V π(s) = Eπ,T

[
H∑

k=0

γkrt+k | st = s

]
. (2.4)

The action-value function Qπ(s,a) associated with the policy π is defined as the
expectation of the cumulative return given by following a policy π from state s
after taking action a:

Qπ(s,a) = Eπ,T

[
H∑

k=0

γkrt+k | st = s,at = a

]
. (2.5)

Discussing the solution of MDPs is often best done via the Bellman equations
defining implicitly the optimal value function V ⋆ : S → R and the optimal action-
value function Q⋆ : S ×A → R as

V ⋆ (s) = max
a

Q⋆ (s,a) (2.6a)

Q⋆ (s,a) = r (s,a) + γE [V ⋆ (s+) | s,a ] . (2.6b)

The optimal policy π⋆ can be written as:

π⋆ (s) = argmin
a

Q⋆ (s,a) . (2.7)
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2.1. Model-based Reinforcement Learning

MBRL aims to solve for the optimal policy π⋆ that maximizes our expected return
Qπ(s,a):

π⋆ = argmax
π

Qπ(s,a) = argmax
π

Eπ,T

[
H∑

k=0

γkrt+k | st = s,at = a

]
. (2.8)

There is at least one optimal policy, denoted by π⋆, which is better or equal than
all other policies [204]. In the planning and search literature, the above problem
is typically formulated as a cost minimization problem [182], instead of a reward
maximization problem. That formulation is interchangeable with our presentation
by negating the reward function.

One way to perform MBRL is by learning the transition dynamics, Tθ from ob-
served data. MBRL iterates between model learning and policy optimization.
The policy optimization step uses the learned model differently depending on the
MBRL algorithm [220, 153, 170]. Additionally, the reward function R is learned
in many MBRL approaches from the data [153]. Data collected by interacting
with the environment is used to learn Tθ. The model and reward function provide
reversible access to the MDP.

2.1.1 Model Learning

All MBRL method utilizes some form of model about the environment dynam-
ics. Unlike in conventional model-based control approaches, in MBRL it is often
learned from interaction data iteratively while optimizing the policy. There are
several ways of representing the dynamic model, and the choice of representation
depends on the complexity of the dynamics. In this thesis, we focus on dynamic
models Tθ which attempt to learn the state transition dynamics of the system. Note
that the reward function Rϕ can also be learned separately or can be a part of the
learned transition model where it predicts the reward along with the next state. We
represent them separately for the sake of clarity. Given a batch st,at, rt, st+1 of
one-step transition data, we consider the dynamic model predicting the forward
dynamics of the system and the corresponding reward model as

st+1 ← Tθ(st,at), (2.9a)

rt ← Rϕ(st,at). (2.9b)

If the model is known or can be estimated easily then the representation can be
often intuitive. Such model representation can be for example in the form of a
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2. Preliminaries on Model-based Reinforcement Learning

Algorithm 1 MBRL
Initialize π, Tθ, and an empty dataset D
for i← 1 to N do

for t← 1 to T do
Apply at ← π(st) to the system : D = D ∪ {(st,at, st+1, rt)}

end
Update Tθ andRϕ using on D via maximum likelihood:
θ ← argmaxθ ED [log pθ (st+1 | s,a)]
ϕ← argmaxϕ ED [log pθ (rt | s,a)]
Optimize π under Tθ usingRϕ using (2.8)

end

linear parametric model, a differential equation describing the system dynamics, or
a set of rules defining a board game, etc. But such models are often not expressive
enough to represent complex non-linear and uncertain dynamics which is often
the case in robotics. Function approximations such as GP [28] and DNN [76]
offer an alternative way to model such dynamics directly from data. The approach
presented in this thesis relies on such models and their details are provided in the
corresponding chapters. A general form of MBRL algorithm using DNN based
models is provided in Algorithm 1

2.1.2 Model Utilization

Utilizing a model of the system dynamics is the key aspect of MBRL differenti-
ating it from model-free RL. It provides various advantages such as optimality,
data-efficiency, efficient exploration, easier transfer learning, safety guarantees,
and explainability [154]. How the model is used within MBRL to find an optimal
policy is the key differentiating factor between most MBRL algorithms. MBRL
algorithms can be broadly categorized into two categories based on how the model
is utilized to find the optimal policy [220] as follows:

• Dyna-style Algorithms: This class of algorithm iterates between model learn-
ing and policy optimization until the optimal policy is obtained. First, they
use the data collected under the current policy to learn a model using su-
pervised learning. Secondly, they use the model as a simulator to optimize
policy in a model-free setting. Essentially any of the model-free RL al-
gorithms can be coupled with learning a model iteratively as a Dyna-style
algorithm. Some examples of Dyna-style algorithms are [141, 129, 52, 94].

• Policy Search algorithms: This class of algorithms also iterate between
model learning and policy optimization until the optimal policy is obtained
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similar to Dyna-style algorithms. But they exploit the model properties more
effectively than Dyna-style algorithms. For example, these algorithms can
utilize the analytic gradient of the RL objective with respect to the policy,
and improve the policy. Some examples of policy search algorithms using
model derivates are [53, 178, 135, 77]. Some approaches utilize the learned
model in an MPC setting to optimize the policy [51, 157].

Policy search algorithms are more sample efficient compared to Dyna-style al-
gorithms owing to their efficient use of the model rather than using it to generate
simulated data. The MBRL approaches presented in this thesis fall into the cat-
egory of policy search algorithms.

2.2 Reinforcement Learning based Model Predictive Control
RLMPC is introduced in [67] as a novel learning-based MPC where model-free RL
approaches are used to improve the closed-loop performance of an MPC policy.
We categorize RLMPC as a class of MBRL approach where an MPC policy is
optimized using RL using a dynamics model which is either learned or known
beforehand.

Model Predictive Control

Note: we use slightly different notations in the case of MPC as typically used
in control theory. The reward, r in the MDP is replaced with a cost ℓ which is
generally represented in MPC as the stage cost. State and action/control input are
represented using x and u respectively. A more control-oriented form of the state
transition (2.1) is given by:

sk+1 = f(sk,ak,dk) , (2.10)

where dk is a stochastic disturbance. Setting the disturbance to zero yields the
deterministic case.

A solution to a finite horizon MDP can be delivered by MPC under some assump-
tions as discussed in [67]. MPC builds a sequence of actions that minimizes a cost
function over the MPC horizon. In a fully parameterized form, an MPC scheme
reads as

Vθ(sk) = min
u,x

Tθ(xN ) +

N−1∑

k=0

ℓθ(xk,uk), (2.11a)

s.t. x0 = sk, (2.11b)

xk+1 = fθ(xk,uk), (2.11c)

hθ(xk, uk) ≤ 0, (2.11d)
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where sk is the current state of the system, ℓθ, Tθ denote the respective stage cost
and terminal cost. The (deterministic) dynamic model is denoted by fθ and the
inequality constraints by hθ. Variables xk and uk label the predicted state and
control input, respectively. For a given system state sk, problem (2.11) produces a
complete profile of control inputs u⋆ = {u⋆

0, . . . ,u
⋆
N−1} and corresponding state

predictions x = {x⋆
0, . . . ,x

⋆
N}. Only the first element u⋆

0 of the input sequence u⋆

is applied to the system. At the next sampling step, a new state sk is received, and
problem (2.11) is solved again, producing a new u⋆ and a new u⋆

0. MPC hence
yields a policy:

πMPC (s) = u⋆
0, (2.12)

with u⋆
0 solution of (2.11) for s given. For γ ≈ 1, policy (2.12) can provide a

good approximation of the optimal policy π⋆ for an adequate choice of predic-
tion horizon N , terminal cost Tθ and if the MPC model f approximates the true
dynamics sufficiently well. In that context, the latter is arguably the major weak-
ness as many systems are challenging to model accurately. Furthermore, within a
modeling structure, selecting the model f that yields the best closed-loop perform-
ance J(πMPC) is very difficult. And there is in general no guarantee that the most
accurate model yields the best closed-loop performance.

In addition to delivering a policy, the MPC scheme can also deliver a model of the
optimal action-value function, using the modified form [67]

Qθ(sk, ak) = min
u,x

(2.11a) (2.13a)

s.t. (2.11b)− (2.11d) (2.13b)

u0 = a. (2.13c)

One can readily observe that (2.11)-(2.13) satisfy the Bellman identities, i.e.

πθ (s) = argmin
a

Qθ(s, a), (2.14a)

Vθ(s) = min
a

Qθ(s, a). (2.14b)

2.2.1 Combining RL and MPC

Here we present how the combination of RL and MPC can address the closed-loop
performance of an MPC policy. Firstly we introduce howMPC can be used as a
(possibly local) model of the action-value function Q⋆. Consider an MPC policy

πθ(s) = u⋆
0 (2.15)
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where u⋆
0 is part of the solution of:

x⋆,u⋆ = argmin
x,u

Tθ (xN ) +
N−1∑

k=0

ℓθ (xk,uk) , (2.16a)

s.t. xk+1 = fθ (xk,uk) , x0 = s, (2.16b)

hθ (xk,uk) ≤ 0, uk ∈ A. (2.16c)

This MPC scheme is a parameterized formulation of (2.11), where the paramet-
ers θ are included in the cost, dynamics and constraints. The motivation for not
parameterizing uk ∈ A is to derive an MPC-based model of Q⋆ as follows:

Qθ(s,a) = min
x,u

(2.16a), (2.17a)

s.t. (2.16b)− (2.16c), u0 = a , (2.17b)

where a constraint u0 = a included in (2.17b) is the only difference to (2.16).
MPC (2.17) is a valid model of Q⋆ in the sense that it satisfies the relationships
(2.6) and (2.7), i.e.:

πθ (s) = argmin
a
Qθ(s,a), Vθ(s) = min

a
Qθ(s,a) . (2.18)

Here Vθ(s) is the optimal cost resulting from solving MPC (2.16). One can verify
that, if Qθ = Q⋆, then MPC scheme (2.16) delivers the optimal policy π⋆ through
(2.15), i.e. πθ = π⋆. An important question is how effectively an MPC scheme
can approximate Q⋆ at least in a neighborhood of a = π⋆ (s). The main concern
here is arguably the MPC model fθ for the reasons already raised in Sec. 2.2. In
addition, Q⋆ is typically built from a discounted sum of the stage costs L, while
undiscounted MPC formulations are typically preferred.

The Theorem reported below addresses these concerns and provides the central
justification for considering the MPC parametrization (2.16) in RLMPC. It estab-
lishes that under some mild conditions, (2.17) is able to provide an exact model
of Q⋆ even if the predictive model (2.16b) is inaccurate. This in turn entails that
MPC (2.16) can achieve optimal closed-loop performance even if the MPC model
is inaccurate.

Theorem 1 [67] Suppose that the parameterized stage cost, terminal cost and
constraints in (2.16) are universal function approximators with adjustable para-
meters θ. Further suppose that x∗

k is an optimal state trajectory generated by the
MPC. Then there exist parameters θ⋆ s.t. the following identities hold ∀γ:

1. Vθ⋆(s) = V ⋆(s), ∀s ∈ S
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2. πθ⋆(s) = π⋆(s), ∀s ∈ S

3. Qθ⋆(s,a) = Q⋆(s,a), ∀s ∈ S, for the inputs a ∈ A such that |V ⋆(fθ⋆(s,a))| <
∞

if the set

Ω =:
{
s ∈ S

∣∣∣ |[V ⋆(x⋆
k)]| <∞, ∀ k ≤ N

}
(2.19)

is non-empty.

Proof: We select the parameters such that the following holds:

Tθ⋆(s) = V ⋆(s) (2.20a)

Lθ⋆(s,a) = (2.20b)
{
Q⋆(s,a)− V ⋆(fθ⋆(s,a)) If |V ⋆(fθ⋆(s,a))| <∞

∞ otherwise

The proof then follows from [67, 120].

Theorem 1 states that, for a given MDP, an MPC scheme with an inaccurate model
can deliver the optimal value functions and the optimal policy of the original MDP.
This can be achieved by selecting the appropriate stage cost, terminal cost, and
constraints. Theorem 1 extends to robust MPC, stochastic MPC, and Economic
MPC (EMPC), for discounted and undiscounted settings. The assumption in (2.19)
can be interpreted as a form of stability condition on fθ⋆ under the optimal traject-
ory x⋆. More specifically, this assumption requires the existence of a non-empty
set such that the optimal value function V ⋆ of the predicted optimal trajectories
x⋆ on the system model is finite for all initial states starting from this set. The
assumption is thus milder than requiring stability of the MPC scheme.
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Chapter 3

Addressing Sample Efficiency
and Model-Bias in Model-based
RL

This chapter is based on the following publication (accepted):

Akhil S Anand, Jens Erik Kveen, Fares Abu-Dakka, Esten Ingar Grøtli, Jan Tommy
Gravdahl (2022, December). Addressing Sample Efficiency and Model-bias in
Model-based Reinforcement Learning. In 21st IEEE International Conference on
Machine Learning and Applications (IEEE ICMLA): IEEE ICMLA 2022.

3.1 Introduction
Although Model-based Reinforcement Learning (MBRL) offers the flexibility of
Reinforcement Learning (RL) to design complex control policies with better sample
efficiency, it lacks asymptotic performance compared to model-free RL [220]. The
main constraint in achieving better performance with MBRL is the quality of the
model, as the policy is biased toward the model. In the case of complex dynamics
such as robotic systems, multi-step forward predictions of such models are prone to
errors due to uncertainties in the system and limitations of the model structure [2]
even when using Neural Network (NN) models. The policies learned using such
inaccurate models are prone to provide sub-optimal performance. The accuracy of
the model can be improved using ensembles [129], where ensembles of deep NNs
are utilized to capture the uncertainty of the model given the data collected from
the environment. The use of ensembles of NNs was further extended to Prob-
abilistic Ensemble NN (PENN) models to quantify both aleatoric and epistemic
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Figure 3.1: Four benchmarking tasks used for evaluation. In the order (from left to right)
, Cartpole, Half Cheetah, Reacher, and Walker2D.

uncertainties in the Probabilistic Ensembles with Trajectory Sampling (PETS) al-
gorithm [51].

Learning a model of the dynamics is the key to achieving sample efficiency. It
could be beneficial in providing safety guarantees and facilitating learning mul-
tiple tasks with minimal to no resampling of a system. In MBRL, it is ideal to
learn an accurate model over the entire task space of a system for which the policy
is optimized in order to achieve good performance on the real system. This can
be achieved using an explorative policy that explicitly tries to improve the quality
of the model. A widely used approach in this direction is to use an exploration
policy that maximizes the information gain based on the formulation of the expec-
ted information gain in [139]. This approach in principle could speed up the model
learning and thereby further improve the sample efficiency of MBRL. Model Pre-
dictive Control (MPC) approaches are widely used in robotic control where its
possible to acquire a model of the dynamics. The use of MPC based policy within
MBRL is rewarding in benchmarking tasks [51].

In this chapter, we propose an MBRL framework where the dynamic model is
represented using ensembles of NNs and a CEM-based [31] MPC as the policy.
For sake of clarity, the main contributions of this chapter are:

• Explore aspects of sample efficiency, performance, and efficient transfer of
policies between tasks within the standard MBRL framework.

• Improves the sample efficiency and transfer of policies between tasks by
designing exploration policies targeted at maximizing the information gain
from the region of interest using the uncertainty estimate of the model.

• To compensate for the inaccuracies in the learned model, a critic-value func-
tion estimated from the real data is used as a terminal value during the policy
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optimization, thereby improving the asymptotic performance of our MBRL
framework.

The rest of the chapter is organized as follows: Related works to this research
are discussed in Section 3.2. Section 3.3 briefly introduces the necessary back-
ground knowledge and Section 3.4 presents the details of the proposed MBRL
framework. Section 3.5 presents the evaluation of the MBRL framework on four
RL benchmarking tasks shown in Fig. 3.1. Section 3.6 discusses the results, and
the conclusion and future scope are discussed in Section 3.7.

3.2 Related Works
Many recent works focus on improving MBRL in line with the advancements in
deep-RL [157, 52, 129, 94, 51]. In [129], authors used model ensembles in a
dyna-style algorithm to improve asymptotic performance in MBRL. Authors in
[52] utilized the model more efficiently by using its differentiability property by
calculating the pathwise derivative of the learned model in future timesteps. In the
state-of-the-art of shooting-based algorithms [51, 157] uncertainty-aware deep net-
work dynamics models are combined with sampling-based uncertainty propaga-
tion. In [94], a theoretical analysis is formulated to guarantee a monotonic policy
improvement in MBRL and demonstrates that a simple procedure of using short
model-generated rollouts branched from real data could improve the performance
of MBRL. The asymptotic performance of MBRL is largely improved by using
ensembles of NNs for modeling the dynamics [51] essentially by improving the
model quality.

Efficient exploration-exploitation schemes are proposed based on model uncer-
tainty estimation over ensembles of NN dynamic models [195, 193, 166]. These
works addressed the efficient model learning in terms of sample efficiency, uncertainty-
based exploration with ensembles of NNs. In [165], termed as curiosity-driven
exploration, the model uncertainty is evaluated based on the variance of the model
predictions on the next state. In [193], a self-supervised exploration strategy is
proposed to learn a global model by leveraging the uncertainty of the model and
using it to solve the task sample efficiently. In [195], an active model-based active
exploration algorithm is proposed for pure exploration. Although our approach
utilizes the uncertainty estimates from ensembles of NNs it focuses on improving
the sample efficiency and task transferability of MBRL by targeting the exploration
of the system state space.

Incorporating H step rollouts from a learned dynamical model into the model-free
value estimate can improve sample efficiency of model-free RL [58]. The STEVE
algorithm [35] extends this model-based value expansion for the estimation of the
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critic-value with ensembles of models and Q functions. They used uncertainty es-
timates from the ensembles to provide weighting to high-confidence predictions,
thereby improving the value estimation. In [94], sample efficiency is improved
by querying the model for short rollouts very frequently. In [157], a deep NN
policy is initialized using a MPC and fine-tunes it in a model-free RL setting to
achieve better performance. The similar problem of model-bias in MPC is tackled
by learning an action-value function to improve performance [67]. Authors in [26]
tried to address model-bias in MPC by blending a model-free value estimate that
achieves performance close to MPC with real dynamics. The TD-MPC approach
proposed in [72] uses a learned latent dynamics model and terminal value function
to improve the performance of MPC in complex tasks. The progress in improving
the performance of MBRL is limited by unavoidable inaccuracies in the learned
model. Unlike the aforementioned approaches, we address this issue by reducing
model-bias in MBRL by estimating a model-free critic-value. Our approach estim-
ates a critic-value function similar to the approach in [58, 35], while these methods
combine it with model rollouts to estimate the target value for the critic, we use it
as a terminal value function in an CEM-based MPC policy.

Usually, the RL-based policies are specific to the tasks scenarios encountered dur-
ing the learning. Therefore, a different task on the same system usually requires
learning a different policy, even in the case of MBRL algorithms. Although there
are approaches available to tackle this issue, e.g. distillation [162] and meta-
learning [211], this remains a major challenge. In MBRL this process can be
made sample efficient by utilizing the learned dynamics model, as in [132], which
used to train a warm-up policy for the new task prior the interactions. To facilitate
easy transfer between tasks, we utilize a gradient-free MPC policy to reuse the
learned model for a different task without relearning the policy.

3.3 Background

3.3.1 Probabilistic Ensemble NN

PENN [51] is a NN based model approach capable of learning uncertainty-aware
NN dynamics models including both aleatoric and epistemic uncertainties. Aleat-
oric uncertainty refers to the inherent stochasticity of the system. Whereas epi-
stemic uncertainty is a systematic uncertainty arising from issues one could in
principle avoid but does not in practice, such as inaccurate measurement, lack of
data, modeling errors, etc. The output neurons of the probabilistic NN parameter-
ize a probability distribution function, which can capture the aleatoric uncertainty
of the model. Using multiple such networks in an ensemble can capture epistemic
uncertainty. contrary, an ensemble of deterministic NN can only quantify epi-
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Figure 3.2: Illustration of the MBRL framework with uncertainty-targeted exploration
and model-free Q function. Dynamics are modelled using PENN models and a CEM-
based MPC is used as the policy.

stemic uncertainty. In [51] a thorough comparison of PENN with an ensemble of
deterministic NN is provided, demonstrating the advantages of PENN for model-
ing dynamics. The predictive PENN model is trained with negative log prediction
probability as a loss function, lossP(θ) = −

∑N
t=1 log f̃θ (st+1 | st, at). Where st

is the state of the system at time step t, at is the applied action, and st+1 is the next
state. The PENN model is defined to output a Gaussian distribution with mean
µ and diagonal covariances Σ parameterized by θ s.t, f̃ = Pr (st+1 | st, at) =
N (µθ (st, at) ,Σθ (st, at)) [51]. The network output in this fashion parameterizes
a Gaussian distribution allowing for modeling the aleatoric uncertainty.

3.3.2 CEM-based MPC

The CEM [31] offers a gradient free optimization scheme, coupling it with an
MPC to optimize an action sequence under the current model and executes the
first action from the sequence on the environment. CEM samples multiple action
sequences from a time-evolving distribution, which is usually modeled as a Gaus-
sian distribution at:t+H ∼ N

(
µt:t+H ,diag

(
σ2t:t+H

))
. These action sequences are

evaluated on the learned dynamical model with respect to a cost function. The
means µt:t+H and variances σ2t:t+H of the sampling distribution are then updated
based on best N trajectories.

3.4 Model-based Reinforcement Learning framework
We address the performance and sample efficiency of MBRL using model uncertainty-
based exploration and model-free value function estimate. An MBRL framework
incorporating these two approaches is presented here and its algorithm is summar-
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ized in Algorithm 2.

3.4.1 Uncertainty-targeted Exploration for Model Learning

Modeling dynamics using the PENN captures the aleatoric and epistemic uncer-
tainty of the model [51]. We propose using the model uncertainty measurement
directly during planning to direct exploration towards parts of the state space where
the model is more uncertain. Uncertainty-based exploration used with ensemble
settings has been used in previous work [195, 193, 166] to efficiently explore to
learn the model. The uncertainty of the model is evaluated based on the variance
of the model in predicting the next state. In this chapter, we estimate the uncer-
tainty in the same fashion, but the exploration strategy is devised by quantifying
the model uncertainty using a dataset that defines the region of interest for explor-
ation.

For a PENN with B bootstrap models, where f̃b are the individual models and f̃
represents the mean of the ensemble. The uncertainty ρs, of the model prediction
at state s for an action a, is calculated based on the disagreement between the
individual models in the PENN as,

ρs(s, a) =
1

B − 1

B∑

b=1

(
f̃b(s, a)− f̃(s, a)

)2
. (3.1)

A weighted exploration-exploitation scheme is proposed by modifying the reward
function for the exploration agent to incentivize the exploration in the regions
where the model is most uncertain. The exploration component of the reward is
the model uncertainty ρ and the exploitation component is the task reward r. The
weighting between exploration and exploitation in the reward function is adjusted
using ε,

Ragent = ε ρ(s, a) + (1− ε) r(s, a) . (3.2)

Exploration is targeted to minimize the uncertainty of the model in a region defined
by an evaluation dataset. Given an ensemble model f̃ of B bootstrap models,
and a dataset Dρ, the epistemic uncertainty of the model ρm can be estimated by
taking the empirical variance between the predictions of each member model in
the ensemble and averaging over each data point {s, a} in Dρ:

ρm =
1

|D|
∑

s∈D

1

B − 1

B∑

b=1

(
f̃b(s, a)− f̃(s, a)

)2
. (3.3)
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An adaptive strategy is proposed to modulate the value of ε proportional to ρm as
ε = ρm/ρmax, where ρmax represents the maximum value of the uncertainty of
the model. This adaptive law helps to target the exploration of specific regions in
the state-space. One way to do this is by using a datasetDρ representing the region
of interest to calculate ε. For example, using a a random dataset sampled from the
system state space earns a generalized model with low uncertainty over the entire
state space. Whereas using a dataset sampled by the current policy π optimized for
task performance will guarantee a model with low uncertainty on the task space.
This provides a flexible framework to target the exploration across different areas
in the state space.

3.4.2 Compensating for Model-bias with Model-free Critic

In dyna-style MBRL algorithms, the policy is optimized solely on the model rol-
louts. This allows single-step errors in model predictions to propagate along the
longer-horizon rollouts and result in a large compound error in the Q value es-
timates. This results in sub-optimal policy performance and is a key reason for
the performance of MBRL policies to be lower than model-free RL policies. As
the performance of the optimized policy depends on the quality of the estimates
of the Q function, one way to improve the performance of MBRL is to reduce the
model-bias in theQ function. A similar approach exists in MPC, where model-bias
is compensated for by improving the cost function using model-free RL [26, 67].
Along with learning the model, a model-free estimate of the critic, Qϕ,

Q(s, a) = Eπ

[
H−1∑

t=0

γtR (st, at) + γHQϕ (sH , aH)

]
(3.4)

can be estimated from the dataset D. Here, the model rollout on a high confid-
ence horizon H is augmented with a terminal critic-value Qϕ estimated from the
exploration data. Qϕ is estimated using fitted Q-iteration,

ϕk+1 ← argmin
ϕ

E(s,a,s′)∼D ∥Qϕ(s, a)− y(s, a)∥22 , (3.5)

where, for the kth trial, y is the target value given by,

R(st, at) + γmax
at+1

Qϕ (st+1, at+1) . (3.6)

The model rollout horizon H is adapted based on the uncertainty of the learned
PENN dynamical model by setting a threshold for the uncertainty estimate ρ in
(3.1) to ρt.
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Algorithm 2 MBRL with uncertainty-targeted exploration and model-free critic

Initialize dynamics model f̃ , ε, πu Qϕ

Populate dataset D using random controller for n initial trials.
for k ← 1 to K Trials do

Train dynamics model f̃ on D
Populate uncertainty data Dρ using πu with some frequency
ρm ← Evaluate model uncertainty on Dρ

ε← Calculate new ε based on ρm
for t← 1 to TaskHorizon do

for Actions sampled at:t+H ∼CEM(·), 1 to NIters do
Evaluate and sort the actions based on (3.2)

end
Execute first action a∗t from optimal action sequence a∗t:t+H

Record outcome: D ← D ∪ (st, at, st+1) update the Qϕ function
end

end

3.5 Evaluation
We evaluate the uncertainty-targeted exploration approach and the model-free critic
implementation on Standard deep-RL benchmarking simulation tasks provided by
Open-AI Gym [32]. The approach is evaluated in four benchmarking tasks, (i)
Cartpole, (ii) Half Cheetah, (iii) Reacher, and (iv) Walker2D as shown in Fig. 3.1.
The performance is evaluated by comparing with the PETS algorithm [51] as a
baseline. The design and optimization’s hyper-parameters for the policy and the
model are kept constant for the methods compared on a specific benchmarking
task.

3.5.1 Uncertainty-targeted Exploration

In order to evaluate the uncertainty-targeted exploration approach three verification
criterion: (i) the quality of the learned model, (ii) the sample efficiency of the
policy, and (iii) the generalization of the model for different task scenarios. Two
different exploration strategies have been considered:

1. random exploration : Uncertainty estimate using a random dataset on the
state space of the system to adapt the value of ϵ. This targets the exploration
over the entire state-space of the model and helps to learn a generalized
model.

2. task exploration : Uncertainty estimated on a dataset sampled by the current
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Figure 3.3: Model uncertainty estimates during the training.

task policy is used to adapt ϵ. This guides the exploration to the task space
instead of the entire state space of the model.

The model uncertainty of the standard PETS is compared with the ones learned
with random and task exploration strategies. Model uncertainty is estimated for
all benchmarking tasks at regular intervals during training using a common dataset
collected using a random agent from the entire state space of a system. The results
in Fig. 3.3 show that the quality of the model is improved by the uncertainty-
based exploration and is noticeable for tasks with complex dynamics such as Half
Cheetah and Walker2D. The difference is more pronounced in the initial phase
with exploration that maximizes the information gained by using larger values of
ϵ. The uncertainty values will converge as the training progresses, the results on
Cartpole and Reacher with simpler dynamics indicate this.

The sample efficiency is evaluated by comparing the performance of the MPC
policies optimized with and without uncertainty-targeted exploration during dif-
ferent phases of the training. Figure 3.4 shows the performance of the policy cor-
related with the uncertainty of the model in Fig. 3.3. In very low data regimes
(early phases of training), the policy optimized using the task exploration-based
model provides better performance while in the later phases the policy optimized
using the random exploration based model outperforms the rest.
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Figure 3.4: Mean model performance estimate on different phases of the learning over
10 trials. For Cartpole, the performance is evaluated only once as there is no significant
difference in the model uncertainties.

Generalizability of the model learned by random exploration has been evaluated
by changing task scenarios (task transferability). Two different sets of experi-
ments have been conducted (i) Half Cheetah tracking a desired velocity, and (ii)
Walker2D running backward. Figure 3.5 shows that the model learned with the
random exploration strategy outperforms the standard PETS model in changing
the task scenarios.

3.5.2 Model-free Critic

The policy learned with random exploration and model-free critic is compared with
the model learned using the PETS and the random exploration agent. Figure 3.6
shows that the incorporation of the model-free critic improves the asymptotic per-
formance of MBRL in complex tasks. In half cheetah and walker2D a performance
increase of around 30% was observed compared to PETS. The advantage of the
approach is pronounced in the tasks with complex dynamics. The performance
of a low uncertainty model is limited by the model structure, whereas incorpor-
ating a model-free critic shows significant improvement in performance which is
consistent in the results on Half Cheetah, Reacher, and Walker2D tasks.
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3.6 Discussion
The results in Section 3.5 demonstrate improvements in sample efficiency and per-
formance using uncertainty-targeted exploration and model-free critic. Sample ef-
ficiency is improved by the targeted exploration of the state space and thereby
increasing the information gained from the exploration data. The sample effi-
ciency is an outcome of learning an accurate model while efficiently leveraging
the uncertainty-targeted exploration. When the model is trained for longer, the
performance ideally converges to the same value as PETS as the uncertainties
of the model converge. However, in low-data regimes with complex dynamics,
uncertainty-targeted exploration could be an advantage, as it could achieve bet-
ter performance by efficiently learning the model from fewer trials compared to
the standard MBRL approaches. Utilizing a model-free critic to compensate for
the model-bias in the optimized policy improves the asymptotic performance of
MBRL. This approach is promising for systems with complex dynamics where
learning an accurate model is difficult, which is true for most robotic systems. In
very low data regimes, the use of model-free critic has a slight adverse effect on
the performance, as the critic-values are highly noisy during this phase. The noisy
critic can be handled by blending it with the model-based critic to reduce variance.
The model learned with random exploration could reduce the uncertainty over its
entire state space with fewer samples, which could accelerate the learning of a
new task for the same dynamical system. In the case of a nMPC-based policy, this
property of generalization to new tasks can be verified by changing the definition
of the task without any need to relearn the policy. In RL, transferability of a policy
between tasks is a major challenge. Using a generalized model of the system in an
MBRL setting as proposed here could be fruitful in mitigating this issue. Transfer-
ring the policy between tasks with minimal learning effort could be very beneficial
in robotic systems in case the same robotic system performs different tasks.
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Figure 3.6: Learning curves for the algorithm on the benchmarking tasks. Each algorithm
was trained with four random seeds. The results were filtered using Gaussian smoothing,
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Our proposed approach has few limitations in different aspects and requires fur-
ther research to develop a generalized framework for robotic applications. For
instance, random exploration over the entire state space of the system is usually
difficult, especially in the case of safety-critical applications. The handling of
safety while learning to control without having an accurate model is not straight-
forward. An interesting approach in this direction could be to provide probabilistic
safety guarantees over the model. Learning a model-free critic is task-specific and
the transferability of this critic is limited, but one way to improve this could be to
initialize the model-free critic using a model-based critic if we have a generalized
model and can fine-tune it for the task. Even though using a model-free critic could
improve the performance, it cannot entirely compensate for the inaccuracies in the
model. One interesting future direction would be to learn a cost function that can
provide an optimal policy given an inaccurate model.

3.7 Conclusions
In this work, we address the improvement in sample efficiency and performance
of the MBRL framework using uncertainty-targeted exploration and incorporating
a critic-value estimate from the data. The proposed uncertainty-targeted explora-
tion could improve the quality of the model by maximizing the information gain
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during the exploration. Speeding up the model learning resulted in improving
the sample efficiency of the MBRL thereby achieving the asymptotic perform-
ance faster. However, this did not largely improve the asymptotic performance
as it is limited by the inaccuracies in the learned model. By introducing a critic-
value function estimated from the real system data, we could compensate for the
model inaccuracies to some extent. The MBRL algorithm that implements this
approach could optimize a policy with better asymptotic performance compared
to the baseline. We used a MPC based policy in our MBRL framework, but the
approach presented here is generalizable to NN based policies. We aim to extend
targeted exploration into more complex robotic manipulation tasks and address the
issue of optimizing a policy over an imperfect model in the MBRL framework in
detail in future work.
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Chapter 4

Deterministic Policy Gradient
Method for Learning-based MPC

This chapter is based on the following paper under review:

Akhil S Anand, Dirk Reinhardt, Shambhuraj Sawant, Jan Tommy Gravdahl, Sbas-
tien Gros, A Painless Deterministic Policy Gradient Method for Learning-based
MPC, Submitted to 20th European Control Conference (ECC), 2022.

4.1 Introduction
Within the Reinforcement Learning (RL) framework, policy gradient algorithms
are most commonly used for dynamical systems with continuous action spaces
[204]. Policy gradient methods optimize the policy parameters in the direction
suggested by the gradient of the policy performance [205]. Policy gradient meth-
ods are typically implemented in an actor-critic setting and are grouped as: a)
Stochastic Policy Gradient (SPG) methods for learning stochastic policies and,
b) Deterministic Policy Gradient (DPG) methods for deterministic policies [198].
The DPG formulation can be seen as a limiting case of SPG where the variance of
the policy tends to zero. The DPG algorithms are more sample-efficient compared
to the SPG algorithms, owing to the simple form of its gradient step, which is
formed with the expected gradient of the action-value function. Silver et al. [198]
demonstrated significant improvement in sample efficiency of using the DPG for-
mulation compared to SPG on a variety of tasks [117]. The DPG formulation has
been extended for Deep Neural Networks (DNN) based RL by Lillicrap et al. [138]
and is widely popular among various deep RL applications such as autonomous
driving with Convolutional Neural Network (CNN) policy [219]. Recently DPG
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has been used in various works to improve the close-loop performance of Model
Predictive Control (MPC) despite using inaccurate MPC models, e.g., to learn the
MPC parameters for a simplified freight mission of autonomous surface vehicles
in [38], for battery storage applications in [118, 119] and for peak power man-
agement within smart grids in [37]. The DPG methods are fairly easy to handle
when used with compatible advantage function approximations. However, this ap-
proach still requires an additional value function approximation, often carried out
using DNNs. Using DNNs in actor-critic methods can cause issues, such as over-
estimating the value estimates and resulting in sub-optimal policies [61]. Beyond
that, the need of designing an adequate structure for carrying the value function
approximation in the DPG formulation is a source of difficulties.

In this chapter, we propose a novel actor-critic formulation using the DPG theorem
with only an MPC scheme as an actor. The proposed method uses the MPC-
based actor to approximate the value function, and hence eliminates the need for
an additional approximation structure. To this end, we exploit the result proposed
by Gros and Zanon [67] which states that, under mild assumptions, the optimal
value function can be approximated by MPC and that the resulting policy and
value functions satisfy the Bellman equations. A key feature of this approach is
that the value function approximator is designed to be compatible with the policy
gradient. The main contributions of the present chapter are:

• A novel deterministic policy gradient based actor-critic method for MPC is
formulated where the value function in the critic is approximated using MPC
actor itself.

• A simplified DPG algorithm for Reinforcement Learning based Model Pre-
dictive Control (RLMPC) is formulated by circumventing the need to con-
struct an additional structure for approximating the value function in the
compatible critic function approximation in the DPG formulation.

The rest of the chapter is organized as follows. Section 4.2 briefly introduces
the necessary background knowledge about DPG, in Section 4.3 we presents the
details of the proposed actor-critic DPG method for MPC. Section 4.4 assesses
our approach in simulations and a brief discussion and conclusions are presented
in Section 4.5 and Section 4.6, respectively. For the sake of clarity, throughout
the chapter we use the term system to represents the true system dynamics and
model represents the approximated dynamics model used in MPC. a and u are
used interchangeably to represent an action or the control input for the system or
model.
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4.2 Deterministic Policy Gradients
DPG methods use a deterministic policy πθ parameterized by θ. The deterministic
policy gradient theorem [198, Theorem 1] establishes the existence of a determin-
istic policy gradient of the form

∇θJθ(πθ) = Es∼ρπθ

[
∇θπθ(s)∇aQ

π(s, a)|a=πθ(s)

]
. (4.1)

Here Qπ(s, a) represents the action-value function under the policy π. The DPG
gradient can be integrated into on-policy and off-policy actor-critic settings. Actor-
critic methods are Temporal Difference (TD) learning algorithms that approximate
the value function to evaluate the policy. In this context, the actor represents the
policy approximation and the critic represents a form of approximation for an ad-
vantage function.

Here we consider an on-policy actor-critic version of the DPG method, where the
critic is an estimate of the action value function for the policy. The action value
function Qπ(s, a) can be approximated using a differentiable function approx-
imation, Qw(s, a) with parameter vector w. The actor updates the deterministic
policy parameters θ, using the policy gradient estimated in (4.1). DNNs are often
utilized as universal function approximation for the action-value functionQw. The
on-policy version of the deterministic actor-critic update rule using the TD error
δk to update the critic and corresponding policy update is given by,

δk = ℓ(sk, ak) + γQw(sk+1, ak+1)−Qw(sk, ak), (4.2a)

wk+1 = wk − αw⃗δk∇wQ
w(sk, ak), (4.2b)

θk+1 = θk − αθδk∇θπθ(ak|sk)∇aQ
w(sk, ak)|ak=πθ(sk). (4.2c)

4.3 Deterministic Policy Gradient for MPC
DPG uses an approximation Qπ(s, a) ≈ Qw(s, a) under the condition that the
gradient ∇aQ

w(s, a) can replace the true gradient ∇aQ
π(s, a) in the policy

gradient update (4.1), i.e.,

∇θJ(πθ) = Es∼P[∇θπθ(s)∇aQ
w(s,a)|a=πθ(s)] . (4.3)

The class of function approximators that satisfy this condition is referred as com-
patible function approximators and a formal verification is given in [198, Theorem
3]. In this context, [198] shows that the function approximator

Qw(s,a) = (a− πθ(s))
⊤∇θπθ(s)

⊤w + V v(s) (4.4)

is compatible for any deterministic policy πθ(s). The first term in the approxim-
ation is the policy gradient and the second term is an approximation of the policy
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value function, i.e. V v(s) ≈ V πθ(s). For a more compact derivation, we use the
linear feature vector ϕ(s,a) = ∇θπθ(s)(a − πθ(s)) to rewrite the action-value
function (4.4) as

Qw(s,a) = ϕ(s,a)⊤w + V v(s) . (4.5)

The DPG method then seeks to compute parameters v and w from data such that
the least-squares problems:

min
v

E[(V πθ(s)− V v(s))2] (4.6)

and
min
w

E[(Qπθ(s, a)−Qw(s, a))2] (4.7)

are approximately solved for a in a neighborhood of πθ(s). These parameters
are then used in (4.3) to build a policy gradient estimation, and subsequently, a
gradient step in the MPC parameters θ that reduces the closed-loop cost J(πθ).

An important difficulty in the DPG method is then to design an effective structure
for V v to achieve V v ≈ V πθ . Indeed, value function V πθ can be fairly rich and
complex and is a priori unknown. Hence, one often needs to rely on universal
function approximators, such as DNNs, for V v to approximate V πθ effectively.
This typically requires a very large set of parameters v, which are then difficult
to estimate. In order to alleviate this issue, we propose to leverage on the value
function Vθ delivered by MPC scheme (2.11) to build V v. The basic intuition
behind this idea is that for a well-formulated MPC scheme (2.11), the resulting
value function Vθ is likely to already have a structure fairly close to the one needed
to approximate V πθ , hence removing the need of building a universal function
approximation where a large set of parameters v is required.

To further motivate the idea, consider the central result of [67, Theorem 1]. It
shows that MPC scheme (2.11) can deliver the optimal policy and value functions
even if based on an inaccurate model, provided that ℓθ, Tθ,hθ are richly paramet-
erized. In that ideal context, there is a θ such that πθ = π⋆ and

Vθ(s) = V ⋆(s) = V π⋆
(s) = V πθ(s) . (4.8)

In many control applications, it is reasonable to assume that the value function
provided by the MPC scheme (2.11) is reasonably close to the optimal one V ∗(s).
That is arguably the case if the MPC model fθ of the MPC is representing the
system dynamics (2.1) reasonably well, and if ℓθ = ℓ, and Tθ is an adequate
choice of terminal cost. In that context, it is reasonable to assume that V πθ(s) lies
in a neighborhood of Vθ(s). Then, assuming that Vθ admits a first-order Taylor
expansion in θ, one can consider the approximation:

V π(s) ≈ V v(s) = Vθ(s) +∇θVθ(s)
⊤v (4.9)
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of V πθ , where v is a set of parameters to be estimated according to (4.6). The
hope with (4.9) is that Vθ and ∇θVθ provide useful features for building V v, by
exploiting the prior knowledge embedded in MPC scheme (2.11).

In order to ensure that approximation (4.9) becomes increasingly effective as the
learning progresses, it is arguably useful to update the MPC parameters θ to satisfy
Vθ ≈ V ⋆ in addition to following the policy gradient (4.3). To that end, we modify
the DPG step by introducing the additional optimization objective of capturing the
Q⋆ along with π⋆:

min
θ
J(πθ) +

β

2
E[(Q⋆(sk, ak)−Qθ(sk, ak))

2] . (4.10)

for some weight β. This technique and its benefits were recently presented in
[192]. It essentially combines DPG with Q-learning in a single update step, to
ensure that both the policy and the value function of MPC scheme (2.11) are driven
to their optimal values.

The rest of this section derives the update rules for the parameters of the MPC
policy θ and for the weights w for the feature vector ϕ(s,a) in (4.5) in a batch
learning scheme. This can be coupled with any actor-critic DPG method for MPC
without needing an extra function approximator such as a DNN. Here we formu-
late an actor-critic setting for our DPG method with an MPC actor and a critic es-
timated using least-squares temporal-difference learning algorithm (LSTD) [130].
We chose LSTD based critic approximation due to its simplicity with the compat-
ible form for the critic. Our approach relaxes the constraint of using a linear value
function approximation in the LSTD approach. Making use of the richer struc-
ture provided by the MPC-based approximation allows the LSTD approach to be
applicable to problems with complex value functions.

Suppose we have a dataset ofK samples,D = {(s1,a1, s2), . . . , (sK ,aK , sK+1)}.
To learn the parameter v that minimizes (4.6), we can approximate it by the fol-
lowing LSTD problem:

min
v

K∑

k=1

(ℓ(sk,ak) + γVθ(sk+1)− V v(sk))
2 . (4.11)

The minimizer v⋆ is then given by the unique solution

v⋆ =

(
K∑

k=1

∇θVθ(sk)∇θVθ(sk)
⊤

)−1

K∑

k=1

∇θVθ(sk) (ℓ(sk, ak) + γVθ(sk+1)− Vθ(sk)) .
(4.12)
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The optimal weights w⋆ for the feature vector ϕ(s,a) in (4.5) can be obtained by
minimizing

min
w

K∑

k=1

(Qπ(sk, ak)−Qw(sk))
2 , (4.13)

which has the closed-form solution

w⋆ =

(
K∑

k=1

ϕ(sk, ak)ϕ(sk, ak)
⊤

)−1

K∑

k=1

ϕ(sk, ak)
(
ℓ(sk, ak) + γVθ(sk+1)− Vθ(sk)−∇θVθ(sk)

⊤v
)
.

(4.14)

Based on the compatible critic function approximation (4.4), the gradient of the
critic has the form,

∇aQ
π(s,a) ≈ ∇aQ

w(s,a) = ∇θπθ(s)
⊤w . (4.15)

The parameter update given along the policy gradient can be obtained by combin-
ing (4.3) and (4.15) into

∆θJ = ∇θπθ(s)∇θπθ(s)
⊤w . (4.16)

The second term of combined the objective function (4.10) can be minimized via
temporal-difference learning,

δk = ℓ (sk, ak) + Vθ (sk+1)−Qθ (sk, ak)

∆θQ = δk∇θQθ (sk, ak) .
(4.17)

The update step combining the policy gradient and Q-learning is then given by

∆θ = ∆θJ + β∆θQ . (4.18)

The parameter update is given by the gradient step

θ ← θ − α∆θ . (4.19)

Note that the update step in (4.18) can be done using a mixed objective, ensuring
the policy gradient updates and Q-learning updates does not disturb each other.
The solution is to use Null space projections as described in [192].
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Algorithm 3 DPG for MPC
Initialize θ,w
for i← 1 to N do

for k ← 1 to K do
Solve MPC obtain to πθ(sk), Vθ(sk) and the sensitivities ∇θπθ(sk),
∇θVθ(sk) and store to Di.
Apply the policy to system with exploration, ak = πθ(sk) + ϵ, and store
the transition data (sk, ak, sk+1, ℓ(sk, ak)) to Di.

end
v← evaluate (4.12) with Di.
w← evaluate (4.14) with Di.
∆θ ← estimate ∆θJ (4.16) and ∆θQ (4.17).
θ ← θ − α∆θ (4.19).

end

An on-policy version of the proposed algorithm is provided in Algorithm 3. The
required sensitivities ∇θπθ, ∇θVθ, ∇θQθ are computed by building the Karush-
Kuhn-Tucker (KKT) conditions for (2.11) and (2.13) and using the Inverse Func-
tion Theorem (IFT) [36]. This approach is a standard practice for combinations of
RL and MPC and more details can be found in [67, 38].

4.4 Evaluation
In this section, we evaluate the proposed method for two non-linear MPC problems
in simulation. In the first experiment, we consider a first-order optimal investment
problem with non-quadratic cost to demonstrate the effectiveness of the MPC-
based local value function approximation. In the second experiment, we consider
the classical non-linear control problem of cartpole swing-up and balancing to
demonstrate the effectiveness of the proposed DPG algorithm for learning MPC
parameters.

4.4.1 MPC-based Value Function Approximation

In this example, we illustrate the proposed value function approximation for an op-
timal investment problem [183]. The dynamics of the optimal investment problem
is given by,

sk+1 = uk, ℓ(s, u) = − ln (Asα − u) . (4.20)
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Figure 4.1: Learning value function with an imperfect model: value function approxim-
ated using MPC during the learning iterations (iteration number is indexed at the right end
of the curves). Vθ is the initial value function of the MPC and V ⋆ is the value function of
the MPC with a perfect model (4.20).

Where s is the state, u is the control input, and A and 0 < α < 1 are constant
parameters. The state s denotes the investment in a company and the term Asα is
the return from this investment after one period. Then Asα − u is the amount of
money that can be used for consumption in the current time period. The objective
is to maximize the sum of the logarithmic utility function in (4.20) for which we
consider a finite-horizon discounted MPC with perturbed model sk+1 = µuk.
The prediction horizon and model parameter of the MPC are set to N = 10 and
µ = 0.8. The cost parameters A = 5, α = 0.34 and discount factor γ = 0.8 are
the same for baseline cost ℓ and MPC cost ℓθ.

The problem has an optimal value function V ⋆, to which we compare the value
function approximations Vθ for different amounts of learning iterations in Fig. 4.1.
This result demonstrates that the optimal value function can be learned efficiently
with the proposed MPC-based value function approximation (4.9).

4.4.2 Learning MPC Parameters

This example illustrates the successful learning of the MPC parameters using the
DPG-based approach.
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Cartpole System

The cartpole system, as depicted in Fig. 4.2, consists of a wheeled cart of mass
mc which can freely move on a rail with friction coefficient of µf . A pole with
mass mp and length l is hinged to the cart on a friction-less joint. The pole can
swing freely around the hinged joint. The control input, u to the system is the
force exerted on the cart along the rail. The goal of the control task is to swing the
pole to upright position as quickly as possible and balance it there. The parameter
values of the true system and the initial MPC are listed in Table 4.1.

The state and input of the cartpole system are given by

s =
[
x ẋ ϕ ϕ̇

]⊤
, u = F , (4.21)

where x is the position of the cart along the rail, ẋ is the velocity of the cart, ϕ is
the angle of the pole with respect to the vertical axis, and ϕ̇ is the angular velocity
of the pole.

The dynamic equations governing the accelerations of the cartpole system are
given by

ϕ̈ =
g sinϕ+ cosϕ

(
µf ẋ−u−mplϕ̇2 sinϕ

mc+mp

)

l
(
4
3 −

mp cos2 ϕ
mc+mp

)

ẍ =
u− µf ẋ+mpl

(
ϕ̇2 sinϕ− ϕ̈ cosϕ

)

mc +mp
.

(4.22)

The cost function for the cartpole swing-up task is given by

ℓ(s, u) = x2 + ϕ2 + 0.01ẋ2 + 0.01ϕ̇2 + 0.001u2 . (4.23)

To evaluate the performance after learning, we use the (undiscounted) cumulative
cost over the horizon N given by

L =
N−1∑

k=0

ℓ(sk, uk). (4.24)

Model Predictive Control Formulation

For the MPC formulation, we consider the following state and control input:

x =
[
x ẋ sinϕ cosϕ ϕ̇

]⊤
, u = F, (4.25)
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Table 4.1: Model parameters

system parameter value model parameter value

mc 1 kg m̂c (1.5− r)kg

mp 0.5 kg m̂p 0.5(1 + r)kg

l 0.5m l̂ (0.5− 0.2r)m

µf 1.0 kg s−1 µ̂f (1 + r) kg s−1

where we use sinϕ and cosϕ to represent the pole angle instead of ϕ to avoid
problems with repeating solutions at ϕ = π + k2π for k ∈ N. The accelerations
of the system are given by (4.22), with the nominal parameters as summarized
in Table 4.1. For learning the model parameters, we use the nominal values as
an initial guess and update them during the learning process. The corresponding
parameter vector is given by θm =

[
m̂c m̂p l̂ µ̂f

]⊤
.

We define the stage cost as

ℓθℓ
(x, u) = ∥x− xr∥2Q + ∥u∥2R, (4.26)

with the reference xr for the swing-up task where we want to control the pole to
an upright position and the cart to the origin given by xr = [0 0 0 1 0]⊤. The
weighting matrices are parametrized by the parameter vector θℓ = [(θQ)

⊤ θr]
⊤

as
Q = diag(θQ), R = θr. (4.27)

Box constraints ensure the cart stays on the rail and the force exerted on the cart is
within the actuator limits. The constraints are given by

−2.4 ≤ x ≤ 2.4

−10 ≤ u ≤ 10.
(4.28)

The cartpole system is discretized using the explicit Euler method with a sampling
time of 0.05 seconds. The horizon length N is set to 25 and the control input is
updated every 0.05 seconds.

Learning MPC Parameters:

Here we use our DPG approach to adapt the parameters of the MPC formulation
(2.11) for better closed-loop performance. We use an inaccurate model with an
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Figure 4.2: Cartpole system.

uncertain estimate of the true system parameters in (4.22) in the MPC formulation
(2.11). The uncertain parameters in the MPC model are chosen as

m̂c = mc + 0.5− r, µ̂f = µf + r

m̂p = mp + 0.5r, l̂ = l − 0.2r ,
(4.29)

where r denotes a random noise given by r ∼ U [0, 1]. The nominal values of the
system parameters and their corresponding uncertain/wrong model parameters are
shown in Table 4.1. We conducted two sets of experiments with 10 seeded random
trials where in each experiments a randomly chosen set of model parameters (4.29)
are used. The two sets of experiments are:

1. Learning only the stage cost parameters θℓ to improve the MPC perform-
ance.

2. Learning the stage cost parameters θℓ and model parameters θm to improve
the MPC performance.

For both the experiments, the θℓ and θm parameters are initialized with the nom-
inal MPC parameters provided in (4.23). The results for both experiments are
shown in Fig. 4.3, indicating that with only learning θℓ the MPC performance
improves but stagnates at lower performance range compared to the ideal MPC
performance given the perfect dynamics model. Whereas learning the model para-
meters θm in addition to θℓ further improved the performance close to the ideal
MPC performance with perfect model. The MPC policies learned in both scen-
arios were compared with the MPC with imperfect model and the ideal MPC with
correct model for successfully swinging up and balancing the pole with the task
time of 2.5 s. The comparison was done for 100 trials of the cartpole swing-up task
using a set of 100 initial states, randomly sampled from the system state space. The
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Table 4.2: Cartpole swing-up success rate

MPC with perturbed model 39%
Learning θℓ 56%
Learning θℓ and θm 100%
MPC with perfect model 100%

L

learning θℓ

learning θℓ and θm

MPC with perfect model

learning iteration

Figure 4.3: Learning MPC parameters for the perturbed model: the mean learning pro-
gress over 10 seeded random trials are presented for 50 learning iterations for two different
sets of experiments described in Section 4.4.2. Stage cost, L for each trial is smoothed by
calculating the moving average with a moving window size of 10 learning iterations.

task is considered as successfully completed if the pole is balanced in the upright
position with maximum deviation of±5◦ within 5 s. Results presented in Table 4.2
show that the MPC with learned θℓ parameters could improve the success rate of
the MPC with the perturbed model. But by additionally learning the θm paramet-
ers, MPC achieved 100% success rate equivalent to the ideal MPC with a perfect
model of the system dynamics.

4.5 Discussions
The actor-critic setting is at the core of all of the state-of-the-art policy gradient
methods in RL, which brought a lot of success and research interest in RL. But this
is at the expense of using additional complex function approximators for the critic
and makes the RL practitioner’s life difficult on different applications. Combining
RL with MPC framework opens up a wide range of possibilities to simplify the
RL algorithms which have been shown in the previous works combining RL and
MPC [67]. The presented work is in line with the similar idea of leveraging on the
MPC properties to derive better RL methods for MPC. The appeal of the proposed
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approach is that the MPC delivers the respective gradients for the value function
and the policy simultaneously. Therefore, a well-formulated MPC can provide a
reliable estimation of the optimal value function on the system. As a result, we
do not need to design and train a separate function approximator for the value
function, which would be the case if we were to use the DPG algorithm directly
with a DNN.

The simulation experiment with the proposed approach provided in Section 4.4
showed promising results. The result of the cartpole swing-up and balancing con-
trol problem is a practical example of the main contribution of our work, a DPG
method for MPC without any difficulties of designing and using a complex func-
tion approximation for the value function. We incorporated the proposed value
function approximation within compatible critic function approximation for DPG.
A key feature of our approach is that the proposed value function approximation
is compatible with the policy gradient. One limitation of our approach is the as-
sumption of an initial MPC policy which is close to the optimal policy on the
system. This approach could fail and result in suboptimal policies if we use a
random initial policy which is often the case in RL with DNN policies. But the
proposed approach is only applicable in the context of an MPC, where it is not a
major limitation as we often have well-formulated MPC problems with fairly good
models.

4.6 Conclusions
In this work, we presented an actor-critic DPG algorithm for RL with an MPC
policy. The proposed method eliminates the need for an additional value function
parameterization such as DNNs by approximating the value function using the
MPC policy itself. We expect this would relieve the pain of dealing with a complex
function approximation for the value function while applying DPG to RL based
MPC. In the future, we will extend our approach to full critic approximation using
MPC and thereby eliminating the need for a critic in DPG method for MPC.
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Chapter 5

A Survey on Safe Learning for
Control

This chapter is based on the following publication [8]:

Anand, A., Seel, K., Gjærum, V., Håkansson, A., Robinson, H., and Saad, A.
(2021). Safe learning for control using control Lyapunov functions and control
barrier functions: A review. Procedia Computer Science, 192, 3987-3997.

5.1 Introduction
The notion of safety in learning-based control for real-world systems, such as ro-
botic systems, has two aspects. The first aspect is ensuring safety during the learn-
ing process or the exploration phase, in cases when learning is done online. Online
learning is here used to describe the process of learning by simultaneously inter-
acting with and sampling from the system. The second aspect is guaranteeing the
safety of an already learned control policy. Specifically for most real-world ro-
botic systems, learning the model or the control policy for the system should be
done partially or entirely online using the physical system, depending on the avail-
ability and accuracy of a prior model of the system. Even if a model of the sys-
tem is available, learning a policy in the simulation will often require fine-tuning
on the physical system, to compensate for inaccuracies of the prior model. This
demands guaranteeing safety during the online learning process on the physical
system in order to avoid any kind of damage to the robotic system or its environ-
ment. At the same time, the resulting learned control policy should have provable
safety guarantees to facilitate its deployment on the real-world robotic system. For
most learning-based algorithms, incorporating these guarantees may be done either
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by transforming the optimization problem or by changing the exploration process
[63].

For safety-critical systems, the research community has mainly focused on safety
in terms on constraint satisfaction, and mainly on state constraints. However, few
of the learning algorithms used for designing learning-based controllers are cap-
able of naturally incorporating state and input constraints. One of the predomin-
ant approaches for ensuring safe learning-based control has been model predictive
control (MPC) frameworks, that naturally incorporate state and input constraint
satisfaction. MPC has been combined with SL methods in order to build or im-
prove the prediction model as in [142, 191]. There are also many examples of MPC
being combined with RL, for example as a value function approximator [227, 68],
where stability and constraint satisfaction is ensured by design.

Another approach for ensuring safe learning-based control, which is more agnostic
with respect to the control framework, is the use of safety filters. Safety filters func-
tion by verifying if a learned controller ensures safety in terms of the system states
remaining inside a predefined safe set for all future times. If the learned control-
ler does not pass the verification, it can be replaced by a known, safe controller.
Alternatively, the learned control input can be minimally modified using an op-
timization problem, such that it satisfies the safety constraints. For both types of
filters, a predefined safe set is necessary. One prominent method to calculate the
safe set is using reachability analysis [64]. However, this can be computationally
demanding or result in potentially conservative approximations.

A different method for defining the safe sets, is employing control barrier functions
(CBFs) [223]. CBFs gained popularity within the conventional control community
during recent years, but have been utilized more as a safety filter for an existing
nominal controller [6]. Many recent works in the learning-based control field use
CBFs [207, 145]. By utilizing probabilistic data-driven methods such as Gaus-
sian processes (GPs), complete prior system knowledge is no longer needed, and
probabilistic safety guarantees can be provided [45, 107, 218, 55].

In a different but slightly more conservative approach, safety can be guaranteed
using the stability guarantees of the closed-loop system. These approaches are typ-
ically based on Lyapunov stability verification, using control Lyapunov functions
(CLFs)[103]. Compared to the safe sets, found either by reachability analysis or
using CBFs, level sets of CLFs are both invariant and attractive. If the safe set can
be designed as a subset of the region of attraction (ROA) defined by a Lyapunov
function, then CLFs can be used to guarantee the safety of the closed-loop system,
and exploration in closed-loop is then typically limited to this region. A combin-
ation of CLF and CBF can be used to guarantee a safe and stabilizing controller
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[177], which is also utilized in learning to guarantee stability [95]. The combina-
tion of functions has been used in MPC frameworks [225], but are seldomly used
in model-based RL algorithms [48].

For safety-critical systems, it can be paramount to ensure safety, either in terms of
constraint satisfaction or in terms of stability, or both. Ensuring safety and stability
by using CBFs and CLFs is particularly suited for learning, as both properties can
be expressed using functions that can be learned. This chapter aims to review ap-
proaches using CLFs and CBFs for ensuring safety and stability in learning-based
methods considering their suitability in a learning framework and because they can
be applied to a broad wide range of control frameworks. Even though this review
is motivated by robotic applications, these approaches are generalizable to other
types of control applications e.g. process control. The rest of the chapter is or-
ganized as follows: Section 5.2 presents related work. The review of the learning
algorithms is organized as follows: Section 5.3, presents a technical background
of how CLFs and CBFs are used to provide safety guarantees. Section 5.4, treats
RL algorithms, section 5.5, presents a review of online SL algorithms, followed
by offline SL methods in Section 5.6. The mentioned categories and the corres-
ponding relevant references treated for each of them are listed in Table 5.1. To the
best of the authors’ knowledge, there is currently no published research work on
the combination of CLFs and CBFs for offline SL methods. Section 5.7 provides
a short summary of the algorithms treated in the former section and a discussion
of the suitability of the methods for different applications. Finally, in Section 5.8,
the concluding remarks are presented.

Table 5.1: Overview of the relevant literature.

CBF CLF CLF + CBF
RL Sec 5.4.1 : [45, 145] Sec 5.4.2 : [50, 49, 167, 24] Sec 5.4.3: [48]
Online SL Sec 5.5.1 : [107, 218, 207] Sec 5.5.2 : [41, 152, 214, 228, 22] Sec 5.5.3 : [95, 55]
Offline SL Sec 5.6.1 : [201, 230, 93, 186, 176] Sec 5.6.2 : [208] -

5.2 Related Work
There are a few review papers in the area of learning for control, discussing dif-
ferent methods for ensuring safety. A survey on model learning of autonomous
systems is presented in Nguyen-Tuong et al. [159], discussing safety challenges
in existing methods. In [206], a comprehensive review of safety criteria and met-
rics, controller design along with mechanical design and actuation for domestic
robotic systems is presented, where learning-based approaches were mentioned
briefly. A survey on safe RL [63], discusses cases where it is important to respect
safety constraints during learning and/or deployment. In this survey, the authors
categorize safe RL methods, based on whether the safety criterion is incorporated
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into the optimality criterion or by modifying the exploration process. In [133] and
[226], the authors present a comprehensive survey of methods for safe human-
robot interaction. A review work on learning-based MPC with emphasis on safe
learning is presented in [79], categorizing the methods based on learning the sys-
tem dynamics, learning the control policy, or using safety filters. In [112], a review
of safe learning and optimization methods is presented as a continuation of [63]
with an additional review of active learning and optimization methods. Kim et
al. [112] review learning and optimization algorithms that ensure safety, where
safety is guaranteed by adding constraints and/or ensuring that any unsafe states
are avoided. But none of these surveys specifically address the CLF- and CBF-
based approaches in learning-based control.

5.3 Safety Guarantees using CBFs and CLFs
Throughout this chapter, nonlinear dynamical systems in their general form (5.1)
and a control affine form (5.2) is considered, where f and g are locally Lipschitz,
x ∈ X ⊆ Rn denotes the state and, u ∈ U ⊆ Rm denotes the control input.

ẋ = f(x, u) , (5.1)

ẋ = f(x) + g(x)u . (5.2)

For the rest of this section, we will use the following notation. A continuous
function α : [0, a) → [0,∞) is called a class K function, if α(0) = 0 and it is
strictly increasing. A function is called a class K∞ function, if it belongs to class
K, a = ∞ and limr→∞ α(r) = ∞. Let LmQ(x) denote the Lie derivative of a
function Q(x) along another function m(x) i.e. LmQ(x) := ∂Q(x)

∂x m(x).

5.3.1 Notion of Safety

For a dynamical system controlled by a control policy in order to perform a task,
a general notion of safety is considered. For the system to be safe, it should be
guaranteed that the system will never enter any unsafe region under the current
policy. Safety can be enforced by ensuring the forward invariance of a safe set [6].
That is, all trajectories starting in the set of safe states will remain within the safe
set for all t ≥ 0.

Definition 1 (Safe control) Consider a general form of dynamical systems (5.1),
where the control policy u = u(x) is a mapping from state to the optimal control
action, u : X → U . Consider a given set of unsafe states Xu ⊆ X , a set of initial
condition X0 ⊆ X and a set of target/goal states Xg ⊆ X where Xu ∩X0 = ∅ and
Xu∩Xg = ∅. If for all the possible trajectories x(t) evolving from the set of initial
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conditions to the set of goal states, such that x(t) ̸∈ Xu, for all time, t ∈ T ⊆ R+,
the system is guaranteed to be safe under the control policy u(x).

5.3.2 Control Lyapunov Functions

The notion of control Lyapunov function [60] to design asymptotically stabilizing
controllers to a nonlinear system, was introduced by Artstein and generalized by
Sontag [14, 200]. Extending the Lyapunov function to a control Lyapunov function
(CLF) helps to find a control law that ensures the stability of a dynamical system
in (5.2).

Definition 2 A positive definite function V : Rn → R, is a CLF to the system
(5.2), if there exist a class K function, γ, and a control law,

uclf = u ∈ U, s.t LfV (x) + LgV (x)u+ γ(V (x)) ≤ 0 , (5.3)

which render the system asymptotically stable at the point x∗ = 0 where V (x∗) =
0. For a system (5.2), the existence of a CLF implies that for all x in the level
set V(c) = {x ∈ X |V (x) ≤ c} for c > 0, the control law uclf asymptotically
stabilizes the system. The largest level set is referred to as the region of attraction
(ROA), and is forward invariant and attractive.

5.3.3 Control Barrier Functions

A set C, defined as a super level set of a continuously differentiable function h :
X ⊂ Rn → R, is safe if,

C = {h(x) ≥ 0} , ∂C = {h(x) = 0} , Int(C) = {h(x) > 0} , (5.4)

where x ∈ X ⊂ Rn and ∂C represents the boundary of C. In order to address
safety while controlling dynamical systems, the control barrier function (CBF) is
introduced [223]. The general definition considered here is from [6].

Definition 3 h in (5.4) is a CBF for a dynamical system in (5.2), if there exists
a class K∞ function, α defined over the entire real line, R, and a control law
ucbf = u ∈ U , s.t

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0 , (5.5)

for all x ∈ X . Given the control barrier condition (CBC) in (5.5), the safe set C is
forward invariant for the system (5.2).
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5.4 CBFs and CLFs in Reinforcement Learning
Complex dynamical systems, such as robotic systems, are often difficult to model
accurately due to their highly nonlinear and uncertain dynamics. Model-based RL
can be used to estimate the unknown system dynamics online, while simultan-
eously learning an optimal policy to perform a particular task using samples from
the learned model. Whereas model-free RL algorithms can be used to learn the
policy directly. Both types of algorithms come at the cost of demanding online
safety certification during learning, in addition to safety certification of the learned
policy. Therefore safety certification of RL algorithms for systems with unknown
dynamics is two-fold, (1) safety certification during learning and (2) offline safety
certification of the learned policy i.e. after convergence. Depending on the selected
RL algorithm, both regards may be ensured simultaneously or separately.

5.4.1 Control Barrier Functions

There are a few different approaches to utilizing CBFs to guarantee safety in an
RL setting. In [45], a framework for combining model-free RL algorithms with
model-based CBFs is proposed. The approach ensures the safety and improves the
exploration efficiency of the RL algorithm. The model of the dynamical system
to be controlled is assumed unknown. As the RL algorithm explores the system’s
states, measurements are used to update a GP model used to learn the unknown
system dynamics. The GP model is in turn used to derive the CBC defined in
Section 5.3.3. Here, safety is determined by adding a compensating CBF-based
controller to the model-free RL policy. This is formulated using a quadratic pro-
gram (QP) with CBC constraints as a safety filter, which aims to modify the RL
policy as little as possible, while ensuring that the state remains within the safe set.
This approach resembles the general safety filter formulated in [217]. As policy
iteration is done considering the altered RL policy, i.e. with the CBF addition, the
learned policy is encouraged to operate in the safe part of state space. To avoid
solving a QP every time-step during deployment the method is extended by ap-
proximating the compensating CBF-based controller using a neural network (NN)
during the learning process.

Another approach is presented in [145], where an off-policy actor-critic method
is used to learn a policy without requiring knowledge of the system dynamics,
i.e a model-free RL algorithm. A safe, possibly conservative policy is used to
explore while the algorithm learns, and by adding a CBF to the value function,
the learned policy will stay inside the safe set determined by the CBF condition.
A coefficient is used to define a trade-off between optimality, defined in terms
of the original utility function, and safety, determined using the CBF. Using an
off-policy algorithm, where the resulting policy is approximated using a NN, the
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safety guarantees will only carry over given that the NN converges to the optimal
solution.

5.4.2 Control Lyapunov Functions

For RL algorithms, a distinction is typically made between policy-gradient meth-
ods as opposed to value-based methods. For value-based methods, the Lyapunov-
based approach has generated interest, because the value function can be used as
a Lyapunov function. This idea is exploited in [24], where safety constraints are
defined using the ROA, i.e all states inside the ROA are safe. The ROA can be
approximated for a fixed policy, by formulating a Lyapunov function and taking
the largest level set as the ROA, as defined in Section 5.3.2. In [24], the uncertain
dynamics are learned using GPs with measurements collected online by sampling
from the system. Confidence intervals, defined based on the learned system dy-
namics model, are used to check the Lyapunov decrease condition for the system.
An optimization problem constrained by the Lyapunov decrease condition is then
solved to find a policy that results in the largest possible level set (largest pos-
sible ROA). The exploration strategy is based on information maximization. By
choosing state-action pairs where the dynamics are most uncertain, the confidence
interval will shrink so the ROA can be expanded incrementally. This is the same
exploration strategy used in [22], which is treated in Section 5.5.2.

Lyapunov functions have also been used with RL algorithms to achieve a different
understanding of safety. In [49], an agent’s behavior policy is defined to be safe,
if the cumulative cost constraint of the constrained Markov decision problem is
satisfied. The Lyapunov function is designed to be a uniform upper bound on
the constraint cost, such that the corresponding algorithm guarantees feasibility
and optimality under certain conditions. This approach is also extended to policy-
gradient methods in [50], for which the policy function, that is a mapping from
state to action, is learned directly.

In a different approach, Lyapunov functions have been used to construct safe RL
agents that switch among a safe base of controllers. This was first done in [167],
where Lyapunov functions are used to provide stability guarantees for each con-
troller.

5.4.3 Control Lyapunov Functions and Control Barrier Functions

In [48], system uncertainty is estimated in the CLF and the CBFs using deep NNs.
An actor-critic RL algorithm is used to minimize the effect of model uncertainty
in the learned CLF and CBF using a reward function that penalizes the estimation
errors in the CLF and CBF. The learned CBF and CLF constraints, compensating
for model uncertainty, are exploited in a QP to find a safe and stable controller
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for the uncertain system, using input-output linearization. This work assumes that
CLFs and CBFs designed for the nominal model will also serve as CLFs and CBFs
for the true system. This assumption holds for systems where the nominal model
and the true system have the same relative degree [207].

5.5 CBFs and CLFs in Online Supervised Learning
Online SL methods are here understood as either continuous or episodic learning
of system components in a closed loop. In this setting, SL methods are used for
learning a model with data collected by sampling from the controlled system. Un-
like RL algorithms, online SL methods are usually not used to optimize a control
policy directly. However, for an uncertain system, CBFs or CLFs can be learned
in order to determine a safe controller. Often a safe controller is found by solving
an optimization problem, with constraints formulated using the learned models.

5.5.1 Control Barrier Functions

In [207], the authors present an approach to improve the safety of a dynamical
system by estimating the model uncertainty using CBFs. Instead of estimating the
uncertainty by learning the system dynamics from measurements, the uncertainty
is modeled directly in the CBF. This approach is less restrictive on the types of
system uncertainties, as it estimates both uncertainties due to parametric errors
and unmodelled dynamics. The uncertainty is learned episodically using NNs and
included as a constraint in an optimization problem modifying a nominal controller
to be safe. It is assumed that if there exists a valid CBF for the nominal model
of the system, then it is also a valid CBF for the uncertain model. For learning
the uncertainties, an episodic learning approach is used, which alternates between
collecting data using the current controller and synthesizing a new controller by
solving a QP. At every iteration of the episodic learning, a heuristically weighted
blend of the newly synthesized controller and the nominal controller is used to
explore new data.

A different approach for learning the safe region of an unknown dynamical system
is presented in [218]. This paper considers a dynamical system on the form (5.2)
with an additional unknown affine disturbance term, which is modeled using a GP.
A high probability confidence interval is defined over this GP model. It is assumed
that an initial safe region and the corresponding barrier certificates are given. With
online learning, the safe region is expanded until no more improvement is ob-
tained with further exploration. A QP is formulated to maximize the volume of
the barrier-certified safe region with CBC as the constraint. An adaptive sampling
method of the discretized state space, namely an information-maximization-based
exploration method, inspired by [22], is proposed. The system is driven to any se-
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lected state by employing a nominal controller augmented with a safety filter (the
QP with CBC as a constraint). The approach is successfully demonstrated on a
quadrotor to learn maximally aggressive movements in the vertical direction with
an uncertain model and limited thrust.

A more general approach in the direction of safe online learning of system dynam-
ics is presented in [107], for a nonlinear control affine dynamical system (5.2). The
unknown system dynamics are modeled as a GP and used to optimize the system
behavior and to guarantee safety with high probability. A chance constraint, i.e.
a constraint that needs to hold for the entire state or input trajectory with a given
probability, is specified using a predefined CBF defined by the estimated dynamics.
The chance-constrained version of an optimization problem for the control input is
solved by providing safety guarantees for a zero-order hold (ZOH) controller over
a control time step. The safe control input provided by solving the constrained QP
is then used to explore in order to train the GP. Similar probabilistic safety guar-
antees were extended to systems with arbitrary relative degree using exponential
CBFs [6].

5.5.2 Control Lyapunov Functions

Online SL methods can be used for finding safe controllers using Lyapunov ana-
lysis. In [41], GP regression is used to model the uncertainties in the system.
The resulting stochastic model is used to formulate a stochastic CLF, included as a
chance constraint in a second-order cone program (SOCP). A stabilizing controller
for the system with probabilistic guarantees is derived by solving the SOCP.

An accurate estimate of the ROA is useful for ensuring safety as addressed in
Section 5.4.2. Learning can be used to estimate the unknown parts of the dynamic
model of an uncertain system and thereby expand the ROA as exploited in [22]. In
[22], a GP is used to learn the uncertain parts of the dynamics and the ROA is taken
as the largest level-set of the resulting CLF. The next state to be explored is chosen
as the point with largest variance within the current estimate of the ROA. A fixed
locally safe controller is used to drive the system to the chosen next state. The
episodically updated GP model incrementally decreases its variance and thereby
increases the accuracy of the ROA estimation.

A similar approach is used in [228], where the goal is to find an accurate estimate
of the ROA. Here a GP is used for learning the Lyapunov function rather than dy-
namics as in [22]. Using the converse Lyapunov theorem, which states that for a
stable system, there exists a Lyapunov function, a GP is trained with closed-loop
data in order to infer the Lyapunov function, and in turn, estimate the ROA as de-
scribed above. Safe samples are collected using an algorithm that aims to balance
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the trade-off between exploration, in order to expand the resulting estimate of the
ROA, and exploitation, i.e. reducing the uncertainty of the GP-learned Lyapunov
function.

Learning a Lyapunov function can be useful for the stability analysis of MPC al-
gorithms. In [152], a NN is used for learning a Lyapunov function for the closed-
loop system, used as a terminal cost in the MPC scheme. For uncertain nonlinear
systems, this often needs to be conservatively approximated, with implications on
closed-loop performance. By learning the terminal cost from data, the learned
Lyapunov function is used to guarantee the stability of the closed-loop system,
in addition to ensuring robustness with respect to model errors in the prediction
model.

Stability properties formulated using Lyapunov functions may be used to add
knowledge about an existing closed-loop system, for which the system dynam-
ics are unknown. This is investigated in [214], where the stochastic dynamics of a
closed-loop system are learned based on training data and a constrained likelihood
maximization problem, exploiting the fact that the closed-loop system is exponen-
tially stable. The stability property is expressed in terms of a Lyapunov function,
included as a constraint to the maximization problem.

5.5.3 Control Lyapunov Functions and Control Barrier Functions

There are two notable approaches combining CBFs and CLFs in an online SL
framework to ensure safety and stability. In [55], the authors augment the ap-
proach presented in [107] by using both CLFs and CBFs. The system dynamics
are learned online while satisfying safety constraints. The computationally effi-
cient matrix variate Gaussian process regression method is used to learn the drift
and input gain terms of control affine dynamical system. In addition to a CBF-
based chance constraint in [107], a CLF-based chance constraint is included for
specifying stability constraints. This method is extended to systems with the arbit-
rary relative degree to synthesize a safe control policy by solving a deterministic
SOCP.

The second approach presented in [95], uses SL to learn a safe and optimal goal-
reaching policy using a barrier function and a Lyapunov-like function respectively,
for dynamical systems of the form (5.1) The condition for asymptotic stability
is translated to goal reaching utilizing a Lyapunov-like function, considering the
equilibrium point as the goal. The proposed Lyapunov-like function is less re-
strictive as it allows for specifying a set of goal states rather than just a fixed point.
In addition, the Lie derivative is not required to always be negative definite. The
policy, barrier function, and Lyapunov-like function are parameterized using deep
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NNs. The loss function for learning the barrier function is designed to penalize the
violation of any constraints. Similarly, another loss function is defined to penal-
ize the violation of the Lyapunov-like function constraint. The two loss functions
are then combined into a single optimization objective called the total certificate
risk, which is positive and semi-definite. Joint training of the barrier certificate,
Lyapunov-like function and the policy networks is achieved by minimizing this
objective. Additionally, a verification procedure is introduced to confirm the valid-
ity of the barrier and Lyapunov-like networks. One drawback of this approach is
that it does not guarantee safety during the learning process. Guarantees are only
provided for the final policy obtained from the learning process upon verification
of the networks.

5.6 CBFs and CLFs in Offline Supervised Learning
Similarly to online SL and RL, offline SL can be utilized to learn the unknown sys-
tem dynamics, CBFs, and/or CLFs from collected data. Unlike in RL or online SL,
offline SL is not an active learning method, for which an algorithm chooses the data
points from the sampling space of the system using an exploration strategy. How-
ever, provided with an adequate data set, offline supervised learning can achieve
the same final goals.

5.6.1 Control Barrier Functions

There are a few interesting approaches to learning CBFs for nonlinear systems
with unknown dynamics in an offline supervised learning set-up. Saveriano et al.
[186] focus on incremental learning of a set of linear parametric zeroing control
barrier functions (ZCBFs)[6]. ZCBF is a type of CBF, which approaches infinity in
the boundary of its safe set. ZCBFs are combined with a dynamical system-based
motion planner such as dynamic movement primitives to ensure the constraint sat-
isfaction for planned trajectories. The state constraint for the motion trajectory can
be learned from human demonstrations and formulated as ZCBFs. A QP can then
be used to find a stabilizing controller, where the states of the motion planner are
constrained by the ZCBF. This enables the motion planner to generate a feasible
motion trajectory satisfying the safety constraints. Another approach for estimat-
ing ZCBFs (both in offline and online settings) of control affine robotic systems
from sensor data is presented in [201]. A support vector machine (SVM) approach,
namely the kernel-SVM method, is used to classify the set of safe and unsafe states
in the data set. An online approach is defined for the scenario where the full set of
unsafe samples from the environment is not available for offline learning. Robey et
al. [176] present an approach to learn CBFs for nonlinear control affine dynamical
systems of the form (5.2) using expert demonstrations of safe trajectories. This
approach is agnostic to the parameterization used to represent CBFs. An optimiz-
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ation method is defined to synthesize valid local CBFs from the collected expert
demonstrations.

An approach to synthesize NN-based controllers for nonlinear dynamical systems
where safety guarantees are provided by NN-based barrier functions is proposed
in [230]. The controller and the barrier functions are simultaneously trained using
the same data set using a modified Stochastic Gradient Descent (SGD) optimiz-
ation technique. A formal verification to guarantee the safety of the synthesized
controller is provided.

In a different approach using GPs, presented in [93], the authors learn the unknown
control affine nonlinear dynamics as GPs. A parametric nonlinear CBF is gener-
ated based on a counterexample-guided inductive synthesis (CEGIS) method. A
control policy is synthesized with safety guarantees in three steps. In the first step
a GP is learned using a data set and a confidence interval is defined using the un-
certainty of the learned model. The second step involves computing a parametric
CBF using CEGIS. In the third step a controller can be synthesized by solving an
optimization problem with a CBC constraint.

5.6.2 Control Lyapunov Functions

For uncertain systems, offline supervised learning may be used to improve the
estimate of a Lyapunov function. This approach is explored in [208], where the
derivative of the Lyapunov function is learned offline. Using an episodic learning
approach, the time derivative of the Lyapunov function is iteratively improved.
This, in turn, is used to ensure that the nominal controller, augmented with a QP-
based optimal controller, satisfies the necessary conditions of the time derivative of
the Lyapunov function, and renders the closed-loop system stable. The formulation
of the QP is similar to the formulation in [207], except that a CLF rather than a
CBF, is used to formulate the constraints.

5.7 Discussion
This chapter presented a review of three different learning methods that use CLFs
and CBFs for ensuring safe learning-based control, namely RL, online, and off-
line SL. RL and typically online SL are both active learning methods but differ in
the way the control policy is derived. RL offers a flexible framework to learn any
complex control policies based on data, while SL methods are often used in com-
bination with optimization to find a control policy. Offline SL differs from these
two approaches in its data collection strategy as it uses pre-collected data sets.
Active learning methods may be more data-efficient for learning control policies
for systems with complex dynamics, compared to offline SL methods [43]. Es-
pecially for high-dimensional robotic systems, the data requirements scale expo-
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nentially with the state space dimension, demanding very large pre-collected data
sets. Active learning methods can explore state space efficiently, using for example
an information maximization exploration strategy. Low-quality data sets could ad-
versely affect the accuracy of the estimated model and thereby the resulting control
policy. On the other hand, offline SL methods are suitable for learning from expert
demonstrations.

Online SL and RL methods offer an option to incrementally update/optimize the
control policy and use the same policy to sample. An example is model-based
policy search algorithms, which are proven to be very sample efficient for policy
optimization [43]. For robotic systems, a nominal safe controller may be used for
collecting data or initial exploration of state space, but this may only be valid in
small local areas. For offline SL methods, this can therefore result in small and
local data sets, limiting the possible control policies that can be learned. Gradually
obtaining a less conservative control policy using incrementally updated estim-
ates of the system model, as in online SL and RL methods, can therefore be very
convenient.

Using NNs to model the optimal policy in RL algorithms enable approximation
of arbitrary complex policies. On the downside, providing safety guarantees for
the resulting policy is hard as it is only an approximation of the safe policy. SL
methods will often be used in combination with optimization to derive the con-
troller, for which it can be easier to provide stricter guarantees. Combining RL
with an optimization-based safety filter could provide stricter safety guarantees, in
addition to providing rich expressibility of the final policy. However, this comes
at the cost of solving an additional optimization problem in real-time as discussed
in Section 5.4.1. For optimization-based safety filters that alter the learned policy
in order to satisfy safety constraints, a relevant question is how this modification
affects the learning process. Depending on the applied RL algorithm, this can dis-
rupt the learning process such that the learned policy becomes suboptimal. This
issue is addressed for several RL algorithms in [69].

Offline SL methods can generate a model of the system dynamics, which can be
used to formulate an optimal control problem for the system. Offline SL methods
are predominantly used for learning CBFs rather than learning the dynamics model
or CLFs, as observed in Section 5.6. For some dynamical systems, controlling the
system may not be needed in order to derive the safety constraints. One example
is in the case of collision avoidance, where a camera system can be used to detect
possible collision objects and learn the corresponding safety constraints. In this
case, offline SL may be an ideal tool for providing safe control policies. Learning
CBFs using NNs could be suitable as it can represent a complex safe set accur-
ately and incorporate constraints in real-time that are otherwise hard to model.
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Robust and well-established machine learning approaches, such as clustering and
classification can be utilized in learning the safe sets and thereby CBFs or CLFs.
Consequently, CBFs and CLFs learned through offline SL could be used with RL
or online SL methods to derive less restrictive controllers than using conservative
CBFs or CLFs defined for the uncertain system.

Considering robotics applications, both RL and online SL methods are suited as
it may be hard to collect data offline. For applications demanding strict safety
guarantees either online SL or RL with a safety filter can be used. Wang et al.
[218] provide a very good example of the practical use of a safety filter where
a quadcopter’s dynamics are learned safely using CBFs in an online SL setting.
Offline SL methods can aid RL and online SL methods in learning the system
dynamics and controller less restrictively. For robotic systems the dynamics are
often control affine, an approximate prior model is usually available and a major
part of the uncertain dynamics are linked to the environment rather than the robot
itself. These properties make CBFs particularly suited for guaranteeing safety
for a wide variety of robotic systems. CBF-based approaches can be generalized
to most real-world robotic systems using exponential CBFs [6]. This includes
systems such as robotic manipulators, bipedal robots, unmanned ground and aerial
vehicles, autonomous underwater vehicles etc.

When learning a controller for an uncertain system, desired safety and stability
properties will dictate which approach is suited for ensuring safe control. The
combination of CLFs and CBFs can be used to obtain control policies that ensure
stability and safety for a wide range of safety-critical systems. If only interested
in constraint satisfaction, then CLF-based methods will limit the set of possible
control policies. This is because a policy derived from this approach will render
the system asymptotically stable in addition to guaranteeing constraint satisfaction.
Therefore CBFs are particularly suited for scenarios where safety is the primary
goal, as it offers a less restrictive way to ensure constraint satisfaction compared
to using CLFs. In cases where stability is of major importance, CLFs can provide
constraint satisfaction in addition to stability guarantees at the expense of more
restrictive conditions. In case of value function-based RL algorithms, CLFs can
be incorporated naturally by using the value function itself as a Lyapunov function
[24].

5.8 Conclusions
This chapter presents a literature review of learning methods that incorporate CBFs
and CLFs and their combination. The review summarizes the existing learning-
based methods for safe control of dynamical systems with uncertainty, utilizing
CBFs and CLFs. The relevant references are divided into three main categories,
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decided by the learning method that CBFs and CLFs are combined with, namely
RL, online, and offline SL as shown in Table 5.1. The similarities and differ-
ences between the methods used in the review references are highlighted and their
suitability in different scenarios is discussed. It is observed that, despite steady
progress, there still exists a large gap between the theory and practical application
of the methods. Because using CLFs and CBFs with learning is a rather new ap-
proach, a major challenge ahead is demonstrating their capabilities on real-world
safety-critical systems. This widens the scope for future research in the area.
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Chapter 6

Robotic Manipulation and
Variable Impedance Control

This chapter introduces the fundamentals of compliant robotic manipulation fo-
cusing on variable impedance control. The concepts introduced in this chapter
will serve as preliminary to the rest of this part.

6.1 Compliance Control for Robotic Manipulation
When a robot is physically interacting with its environment during a manipulation
task, it is crucial to control this interaction. Incorporating compliance into robot
behavior is the key to achieving dexterous, safe, and human-level manipulation
skills, especially in interaction tasks [83]. Robotic controls for following desired
trajectories while ensuring a compliant behavior with respect to external forces for
providing safe and stable control can be developed by combining elements of mo-
tion control and force control. The research on incorporating compliance in robot
control for manipulation is well-studied in the area of robotic interaction control
[216]. Such compliant control approaches enable robots to perform complex ma-
nipulation tasks using interaction force feedback to provide adequate compliance.

Compliance properties can be incorporated into robots using either using passive
mechanisms or active control approaches. In the passive approach, the compliant
behavior is inbuilt into the robot’s hardware by structural compliance on the joints,
links, and end-effector or by incorporating compliance into the position servo.
Soft robots inherently possess such passive compliance mechanisms [181]. Active
compliance control approaches are more sophisticated as they easily enable com-
pliance properties into mechanically stiff robots with the possibility to adapt them
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freely [190]. From a control perspective, passive compliance mechanisms provide
a cheaper way to achieve compliance properties in robots. But they lack flexib-
ility as different robotic tasks might demand task-specific end-effectors or even
robots be designed. Similarly, the compliance properties of such passive mechan-
isms are not easily adaptable during a task. Whereas in active compliance control,
the compliance of the robot is modulated using a controller providing flexibility
and adaptability. A reliable measurement of the interaction force is very critical in
active approaches [216].

A major part of the research presented in this part falls into the category of active
compliance control which can be divided into two categories, Impedance Control
(IC) and Force/Motion Control (F/M Control) (also referred to as Force/Position
Control in some literature) [190]. IC can be seen as indirect force control as they
achieve compliance by adjusting the reference position based on force-feedback.
On the contrary F/M Control rely on a combination of direct force control to regu-
late the contact force and motion control for trajectory tracking. This classification
of the compliance control scheme is shown in as shown in Fig. 6.1. Therefore, hy-
brid and parallel F/M Control try to track the target force and/or position, while
impedance and admittance control tries to establish a desired relationship with
the force and position. The Hybrid Force-Motion Controller (HFMC) approach
is suitable for systems with multiple Degree of Freedom (DoF) [174] where as
parallel F/M Control can be applied to systems with a single DoF systems [47].
HFMC aims to achieve both motion and force control by dividing the task into two
separate, decoupled sub-problems. By specifying which sub-spaces should be con-
trolled by a motion- and force controller respectively, the hybrid control intends to
solve the two separate control tasks simultaneously.

IC for robot control, introduced by Hogan in [83], aims to couple the manipu-
lator dynamics with its environment instead of treating it as an isolated system
while designing control strategies. IC attempts to implement a dynamic relation
between manipulator variables such as end-point positions and forces rather than
control these variables independently. The use of IC provides a feasible solu-
tion to overcome position uncertainties in order to avoid large impact forces since
robots are controlled to modulate their motion or compliance according to force
feedback [106]. IC being indirect force-control methods does not use any dir-
ect force-feedback control, they achieve force control indirectly through motion
control [216], for e.g., by changing the reference position to comply with the in-
teraction force.

There are two different types of IC (i) force-based IC and (ii) Admittance Con-
trol (AdC). Although both of these were referred to as impedance control in the
original formulation by [83], these are two different ways of implementing im-
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Figure 6.1: Classification of the compliance control approaches in robotic manipulation.

pedance control. A system is considered to be impedance if it receives flow as
input and produces an effort as output. On the contrary, if it receives the effort
as input and produces flow as output, it is an admittance. This concept helps to
distinguish between the two types of IC [131]. In force-based IC, the controller is
an impedance and the manipulator is admittance, whereas in AdC, the controller is
an admittance and the manipulator is an impedance. Therefore in practice, a force-
based IC, provides the control force/torque to a force-controlled robot manipulator
and an AdC provides a target position to the position-controller robot manipulator
[161]. This thesis emphasizes on force-based IC, and is interchangeably referred
to as IC in rest of the this thesis. The mathematical formulation of IC is provided
in the next section.

6.2 Impedance Control
This section provides the mathematical formulation for the force-based IC and de-
scribes its relationship to Variable Impedance Control (VIC). All the mathematical
formulations are provided in Cartesian space which is equivalent to the task space
of the robot manipulator.

6.2.1 Task-space Formulation of Robot Manipulator Dynamics

For the task at hand, it is most convenient to consider the task space formulation of
the dynamical system. For a rigid n-DOF robotic arm, the task space formulation
of the robot dynamics is given by

Λ(q)ẍ+ Γ(q, q̇)ẋ+ η(q) = fc − fext , (6.1)
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where ẋ, ẍ are velocity and acceleration of the robot end-effector in task space,
fc is the task space control force, fext is the external force, Γ(q, q̇) ∈ R6×6 is a
matrix representing the centrifugal and Coriolis effects, and η(q) = J−Tg(q) ∈
R6×1 is the gravitational force, where g(q) is the joint space forces and torques.
The cartesian inertia matrix, Λ(q) ∈ R6×6, is calculated as

Λ(q) = (JH(q)−1JT )−1, (6.2)

where H(q) ∈ Rn×n is the symmetric and positive-definite joint space inertia mat-
rix. This inertia matrix is representing the mass distribution of the manipulator and
is highly state-dependent. By additionally knowing the joint space formulation of
the centrifugal and Coriolis effects, C(q, q̇), the corresponding wrench, Γ(q, q̇),
is

Γ(q, q̇) = J−TC(q, q̇)J−1 −Λ(q)J̇J−1. (6.3)

6.2.2 Task-space Formulation of Impedance Control

In the presence of a force and torque sensor measuring fext, IC can be implemented
by enabling inertia shaping [216]. Casting the control law

fc = Λ(q)α+ Γ(q, q̇)ẋ+ η(q) + fext , (6.4)

into the dynamic model in (6.1) results in ẍ = α, α being the control input denot-
ing acceleration with respect to the base frame.

IC in the standard form models a virtual spring–damper system between the en-
vironment and the robot end-effector [83], where the desired impedance behavior
modeled as a mass-spring-damper system is as follows,

Mδẍ+Dδẋ+Kδx = fext . (6.5)

In task-space IC, the objective is to maintain this dynamics relationship (6.5)
between the external force, fext, and the error in position δx = xr − x, velo-
city δẋ = ẋr − ẋ and acceleration δẍ = ẍr − ẍ. Where M, D and K are
Symmetric Positive Definite (SPD) matrices, impedance parameters, representing
inertia, damping and stiffness terms, respectively. This desired dynamic behaviour
(6.5) can be achieved using the following control law,

α = ẍr +M−1(Dδẋ+Kδx− fext) . (6.6)
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Figure 6.2: Block diagram of IC.

A schematic of the IC is shown in Fig. 6.2 for the case where ẍr = ẋr = 0. IC
is extended to VIC where the impedance parameters M, D and K are adjustable
parameters to regulate the impedance model (6.5). Essentially, VIC is designed to
achieve force regulation by adjusting the system impedance [86], via the adaptation
of the inertia, damping, and stiffness components.
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Chapter 7

Survey on RL-based Variable
Impedance Learning Control

This chapter provides a survey of all the existing Variable Impedance Learning
Control (VILC) methods that uses Reinforcement Learning (RL).

7.1 Introduction
In order to develop compliant robotic manipulation skills, Impedance Control (IC)
is naturally extended to Variable Impedance Control (VIC) as formulated in (6.6)
with variable impedance gains. VILC extends this further to facilitate the use of
Machine Learning (ML) approaches to identify the optimal variable impedance
laws from data. As described in Chapter 1, among all ML approaches, RL prom-
ise to be an ideal tool to learn complex robotic manipulation skills and has been
widely explored in recent times in various applications. RL has the potential to
identify optimal controllers from data for complex control problems without ne-
cessarily having a model. This is ideal for VILC its difficulty to design optimal im-
pedance profiles, especially for high dimensional robotic systems, for example, a
seven-DoF robotic manipulator. VIC is a conventional compliant control approach
providing indirect torque control with safety and stability guarantees. The com-
bination of RL and VIC can be seen as using RL as a high-level decision maker for
the robust low-level VIC. Using RL as a tool to build scalable robust control ap-
proaches can be achieved by efficiently combining conventional approaches with
RL. From that perspective RL can be used to learn reliable compliant controllers
with RL deciding the right impedance parameters in real-time and applying it the
low level VIC. In this chapter, we explore the existing research on RL-based VILC
and discuss their advantages and disadvantages. We additionally discuss the chal-
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lenges RL-based VILC approaches and suggests some future directions to address
them.

The rest of this chapter is organized as follows. Section 7.2 presents the survey of
all existing RL-based VILC methods. Section 7.3 provides a brief summary of all
the research works presented in this survey. A detailed discussion and conclusion
are provided in Section 7.4 and Section 7.5 respectively.

7.2 Reinforcement Learning-based VILC
A VIC can be parametrized as a learnable policy of the form,

πθ = Kθ (x̂θ − xt) +Dθ

(
˙̂xθ − ẋ

)
+ f ext (7.1)

where πθ is the VILC policy parameterised by θ defining impedance parameters
(stiffness matrix K and damping matrix D) and the desired trajectory parameters
(desired pose x̂ and desired velocity ˙̂x). πθ can be learned using any type of RL
algorithms based on the type of VIC task and the availability of data.

Model-free RL approaches are most widely used in RL applications as they can
learn a policy directly from data without needing a model of the dynamics. Ref-
erences [109], [34], [175], [56] approach VILC with model-free RL for relatively
simpler policy with fewer parameters.

Reference [109] demonstrated a relatively simpler VILC using an episodic ver-
sion of the Natural Actor-Critic algorithm [169]. Here the authors proposed an
algorithm for a 2-link planar manipulator with a SPD stiffness matrix which is
fully represented by the magnitude, the shape, and the orientation. As the SPD
stiffness matrix here only has 3 scalar values, it facilitates a faster convergence to
the optimal stiffness values. But other than this simpler case, this method is not
evaluated more complex real-world scenarios such a 7-DoF robotic manipulator.

In a later work proposed in Ref. [34], the impedance parameters are learned using
the highly sample efficient PI2 algorithm proposed in [210]. The PI2 algorithm
relies on a policy representation that is linear with respect to the learnable para-
meters. The widely used DMP framework [89] for representing robot motion tra-
jectories offers such a policy parametrization. Authors utilized this property of
DMP to represent the desired position and velocity, and a diagonal stiffness matrix
K where the time-derivative of each diagonal term Ki is given by,

K̇i = αK

(
gi,T
t,K

(
θi
K + ϵiK,t

)
−Ki

)
(7.2)
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where i indicate ith DoF and ϵiK,t is a time-dependent exploration noise and gi
t,K

is the sum of all the basis functions given by,

[gt,K ]j =
wj∑p
k=1wk

(7.3)

The (7.2) models the time course of the position gains, coupled with a DMP based
trajectory generator. Ki is parametrized using basis functions making it linear with
respect to the learnable parameters θ.

This idea was extended further in Ref. [175] using Stable Estimator of Dynamical
Systems (SEDS) based policy. The SEDS policy encodes a first-order dynamics
into a Gaussian Mixture Model (GMM), providing a non-linear, time-invariant
dynamical system as the policy, unlike the time-dependant policy in [34].

ξ̇t =

G∑

g=1

hg (ξt)A
P
g

(
ξ̂ − ξt

)
(7.4)

where ξt is a generic state variable and ξ̂ is the goal state, 0 < hg (xt) ≤ 1 is the
state-dependent mixing coeeficients and the matrices AP

g depends on the learned
covariance. The GMM system (7.4) asymptotically converges to its goal ξ̂ if all
AP

g are positive definite as given by the Lyapunov stability theory. The authors
modified the PI2 such that the stability condition is not violated during exploration.
The state vector ξ is augmented to include position and stiffness and to encode a
variable stiffness profile using (7.4). The corresponding diagonal stiffness matrix
and reference trajectory of the VIC is derived from the learned dynamical system
at each time-step.

Reference [56] utilized the Fuzzy Q-learning scheme[98] to learn the variable
damping gains for an admittance control scheme with a constant inertia matrix and
null stiffness. The objective of the Fuzzy Q-learning scheme here is to minimize
the jerk in robot motion during human-robot co-manipulation tasks. In an experi-
ment conducted with seven different human subjects performing a co-manipulation
task with a robot, the proposed algorithm converged to a sub-optimal policy in just
30 episodes. This is highly sample-efficient compared to other model-free ap-
proaches.

All four approaches described above rely on a diagonal form for the stiffness
matrix K to reduce the parameter space facilitating sample-efficient policy learn-
ing. But the stiffness matrix is not necessarily diagonal in real-world applications.
Therefore assuming a diagonal form for the stiffness matrix neglects the inter-
dependencies between the different DoFs. This problem is discussed in [121],
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where the authors proposed to learn an acceleration command as a mixture of G
proportional-derivative systems,

ut =
G∑

g=1

hg,t
[
KP

g (x̂g − xt)−Dẋt

]
(7.5)

where xg are the local target and hg,t are the time-varying mixing coefficients, D
is a constant damping, and KP

g denotes the full stiffness matrix instead of a di-
agonal form. The authors refer to the full stiffness matrix as coordination matrix
as it encodes the dependencies among different motion directions. Then proposed
approach is demonstrated on a highly-dynamic manipulation task of flipping pan-
cakes.

All five approaches mentioned above rely on highly structured and simpler policies
to encode variable impedance profiles for manipulation tasks. This limits their us-
ability in complex manipulation tasks, and it can be difficult to design the right
policy structure even if these methods are generalizable to complex tasks. Deep-
RL has gained popularity by solving complex control and decision-making prob-
lems by incorporating DNN to learn a policy [156]. The deep-RL approach is not
sample-efficient but it is easily generalizable to most complex manipulation tasks.
References [144, 20, 21, 30, 215] are some examples of using deep RL for VILC
applied to different robotic manipulation tasks.

Ref. [144] presented a comparison between well-known robot motion controllers
when a deep-RL policy is used to learn the controller parameters. The authors
compared five popular controllers, (i) joint position, (ii) velocity, (iii) torque, (iv)
Cartesian pose, and (v) Cartesian variable impedance controller. The comparison
was conducted over three tasks of path following, door opening, and surface wip-
ing. The controllers were evaluated for five different criteria, (i) sample efficiency
and task completion, (ii) energy efficiency, (iii) physical effort (wrenches applied
by the robot), (iv) transferability to different robots, and (v) sim-to-real transfer.
Proximal Policy Optimization (PPO) algorithm is used to learn a DNN policy for
all the five robot controllers. Their findings show that the Cartesian variable im-
pedance control performs well for all the evaluation criteria. One of the most
interesting findings of this work is that a VIC policy is easier to transfer between
different robots and facilitates an almost seamless transfer of policy learned in
simulation to a real robot (sim-to-real transfer). This is highly valuable in many
robotic manipulation tasks and helps to tackle the issue of sample-efficiency of
RL-based VILC as the simulator offers a cheaper way to generate data.

A similar study in reference [30] explored the effect of different action spaces for

84



7.2. Reinforcement Learning-based VILC

deep RL-based robotic manipulation for contact-sensitive tasks. The authors com-
pared a variable impedance control policy with position control and torque control
policies, all in joint space, under different contact uncertainties. For learning the
DNN control policies the authors used the popular off-policy RL algorithm, Deep
Deterministic Policy Gradient (DDPG). The off-policy RL algorithm was chosen
to reduce the issue of local minima which could arise in learning to control in joint
space with discontinuities in the dynamics arising from contact interaction, and
additionally the complex and multi-part reward functions. An additional reward
term is designed to regularize these variable impedance control policies. This ad-
ditional reward term helps to force the policy to generate desired positions that can
be effectively tracked, which helps to learn interpretable policies and allows easier
transfer to real systems from simulations. The controllers were evaluated in both
simulations and real-world experiments with floating and fixed-base systems in
tasks involving contact uncertainties. The evaluation demonstrated VIC provided
better task performance and reliability compared to joint position and joint torque
controllers.

Further, a similar line of work in [215] evaluates how the choice of action space
for dynamic manipulation tasks affects the sample complexity as well as the qual-
ity of learned policies. The authors compared four controllers, (i) torque, (ii) joint
space PD, (iii) inverse dynamics, and (iv) task-space impedance control The au-
thors compared the learning efficiency for these controllers on three tasks (i) peg
insertion, (ii) hammering, and (iii) pushing). Two different deep-RL algorithms
(i) PPO and (ii) Soft Actor Critic (SAC)) were used to learn DNN-based con-
trol policies. The results of the evaluation supported the original hypothesis of
a learning-based task-space impedance controller could significantly reduce the
number of samples required to achieve good performance across all tasks and al-
gorithms evaluated. The policies for torque control and PD control were learned
significantly slower than impedance control or inverse dynamics control in all the
experiments.

In all these three references [144, 30, 215], compared the different learning-based
robot motion controllers in the context of deep-RL. The results of all this re-
search support the superiority of VILC for robotic manipulation and contact-rich
tasks. RL methods have great potential and are effective in discovering sophistic-
ated control policies. One major drawback of model-free RL approaches is their
low sample efficiency which can hinder their application in real-world scenarios.
One possibility to alleviate this issue is to use a “good” initial policy and locally
refine it done in [109]. [110] combines human demonstrations with RL, provid-
ing improved sample efficiency for learning stiffness control policies. But it is not
suitable for VILC, as, unlike stiffness values, the impedance parameters can not be
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estimated directly from kinesthetic demonstrations used in [110].

But alternatively, MBRL offers a framework to use the knowledge of the sys-
tem dynamics to improve sample efficiency of RL [170, 220]. While model-
based policy search is computationally more expensive than model-free meth-
ods, it requires less data to solve a task. A major challenge for MBRL in case
contact-rich manipulation is learning/obtaining an accurate model of contact dy-
namics. Few MBRL approaches have been applied for VILC. The references
[137, 136, 179, 10, 9] used different MBRL for VILC.

In the context of VILC for position-controlled industrial robots, references [137,
136] used GP to learn the contact dynamics. The long-term predictions from the
learned model are used with the PILCO algorithm [53] to optimize the policy using
gradient-based optimization. The effectiveness and sample efficiency of the system
were evaluated both in simulations and experiments using the six-DoF Reinovo in-
dustrial robot. The results showed the proposed method could outperform model-
free VILC methods by at least one order of magnitude.

In Ref. [10], the authors followed a similar MBRL approach to compare the HFMC
and VIC for contact-rich manipulation task with GP based dynamic model and
PILCO [53] based policy optimization. Evaluating both controllers on a contact
force-tracking task in simulation and real-world experiments showed significant
improvement in force-tracking ability using MBRL. While introducing learning
led to faster convergence to the desired contact force in VIC, it led to a significant
improvement in the force tracking error in HFMC. The results showed that having
highly accurate contact dynamics models are key to having accurate force tracking.

GP based are extremely sample-efficient and provide smooth function approxim-
ations. However, they do not scale with large datasets and tend to smooth out
discontinuities that are typical in interaction tasks. Additionally, the PILCO based
optimization approach used in [137, 136, 10] restricts the use of complex policies
and reward functions. Alternatively in [179], authors used the MBRL algorithm
PETS [51] for learning a position-based VIC strategy for HRC tasks. This ap-
proach uses an ensemble of Probabilistic Neural Networks (PNN) termed as PENN
to learn human–robot interaction dynamics and a CEM based optimizer for vary-
ing impedance gains online. The PENN dynamics model is updated offline after
every learning episode captures both the epistemic and aleatoric uncertainties in
the dynamics. The CEM based optimizer uses the multi-step predictions from the
learned PENN model to optimize the variable impedance gains in an MPC fash-
ion. This approach is proved to be highly sample efficient while able to optimize
variable impedance gains for complex manipulation tasks.
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Reference [9] extended the PETS framework [51] for VILC for general force-
based robotic manipulation tasks more comprehensively by learning a generalized
PENN model of the robot dynamics. The authors termed the VILC framework
as Deep-MPVIC as it combines a force-based VIC with DNN based MPC. But
this can be seen as an MBRL framework with an MPC based policy. The pro-
posed framework was evaluated for performance and easiness of the policy to
transfer between different tasks. The authors introduced uncertainty targeted ex-
ploration to learn a generalized Cartesian impedance model of the robot. Learning
a high-quality generalized Cartesian impedance model helped to achieve high per-
formance and facilitated easy transfer between tasks without having to relearn the
model. The approach was evaluated on both simulations and real-world experi-
ments on a variety of tasks demanding impedance adaptation such as pushing an
object, catching a falling object, door opening, etc. The approach demonstrated
high sample efficiency and better performance compared to model-free RL ap-
proaches.

HFMC offers an alternative to VIC in contact-sensitive tasks, especially in cases
where force and motion tracking direction are decoupled. Similar RL approaches
are applied to learn the variable impedance gains for the HFMC in references
[141, 21, 20]. Ref. [141] used RL to learn a task-space HFMC for perform-
ing high-precision assembly tasks. Ref. [20] used the off-policy, model-free RL
method SAC for learning a position-based VIC for peg-in-hole assembly tasks.
The major focus of this work is to solve the peg-in-hole tasks with hole-position
uncertainty. The VILC policy is represented using time convolutional neural net-
works (TCNs), providing robustness properties. The control policy consists of
three networks, (i) first, proprioception information is processed through a 2-layer
NN, (ii) second, force/torque information is processed with a temporal convolu-
tional network, (iii) third, extracted features from the first two networks are con-
catenated and processed on a 2-layer NN to predict actions. The compliance con-
troller utilized in this work is parallel position-force control instead of standard
VIC. Domain randomization technique is used to close the mismatch between the
physics simulator and real-world dynamics. One key limitation of this approach
is on having a predefined narrow range of parameter values. Although the nar-
row range of parameter values helps to make it easier and faster to learn a task, it
makes it difficult to generalize well across different environments. This approach
was adapted for position-controlled robots in Ref. [21] with parallel position/force
control, and an admittance control scheme.

87



7. Survey on RL-based Variable Impedance Learning Control

7.3 Summary
References [144, 20, 21, 30, 215] are some examples of the use of deep RL for
VILC applied to different robotic manipulation tasks. [144] compares different ac-
tion spaces in deep-RL for robotic manipulation. Compared to the action spaces,
joint position, joint torque, joint velocity, and variable impedance control in joint
space, the variable impedance control in end-effector space demonstrated super-
ior sample efficiency, energy efficiency, safety, and sim-to-real transferability in
learning for multiple robotic manipulation tasks. In [20] an RL framework for
learning contact-rich manipulation tasks is proposed where an off-policy model-
free RL algorithm (SAC) is used to learn the stiffness and position parameters of
a parallel position-force controller. This approach could learn policies achieving
high success rates in insertion tasks even under uncertainties. Ref. [21] extended
it to real-world robotic manipulators for safely learning contact-rich manipulation
tasks. A parallel position/force control and admittance control were evaluated in
this framework on position-controlled robots. Similar to other approaches, in [30]
the right choice of action space for learning contact-rich tasks in presence of un-
certainties was investigated. A model-free RL approach is used to learn policies
for direct torque control, fixed gain PD control and variable gain PD control. On
comparing the three controllers, the variable gain PD controlled demonstrated su-
perior performance and reliability. Similarly in [215], on comparing direct torque
control, joint PD, inverse dynamics, and task-space impedance control, the imped-
ance control showed superior performance compared to the other three. But all
of these approaches have the drawback of model-free RL in terms of low sample
efficiency and lack of task transferability.

All these approaches could learn complex VIC policies for specific tasks, however,
at the expense of sample efficiency. Ref. [34] demonstrated model-free RL-based
VILC using DMP policy and PI2, which is sample efficient but it fails to scale to
complex policies. In [99], PI2 approach was used to learn torque control profiles
for robot manipulators for compliant manipulation using desired position traject-
ories from kinesthetic demonstrations. But it is not suitable for force-based VIC,
as unlike stiffness values the impedance parameters can not be estimated directly
from kinesthetic demonstrations used in [110]. [110] demonstrated that augment-
ing position demonstrations with stiffness estimates and using it to learn a stiff-
ness controller could provide superior manipulation performance compared to a
position controller. Alternatively, MBRL approaches offer a sample efficient and
scalable framework leveraging on a learned dynamical model. In [137] MBRL is
used to learn position-based VIC on industrial robots using GP models. Ref. [10]
used a similar approach for force-based VIC and hybrid force-motion control for
contact-sensitive tasks. In [179], PETS approach is used to learn a position-based
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VIC strategy for HRC tasks. Although this MBRL methods are sample efficient
compared to model-free RL, it still demands a lot of interactions, making it diffi-
cult to apply to robotic manipulation.

7.4 Discussion
The presented survey underlines the increasing interest and the suitability of RL for
VILC. This is still an early stage for this area of research and has many open ques-
tions to be addressed. The results from the existing research show that RL-based
VILC methods can be very effective in learning complex compliant manipulation
skills with minimal modeling effort. These results show that RL with VIC can be a
tool to achieve human-like compliant manipulation skills in robotic manipulators,
but this demands further research. Even though VIC provides a robust low-level
control for a RL agent to identify the optimal parameters based on state-feedback,
many challenges in RL are carried into RL-based VILC. Generally, RL learns
task specific VILC skills and is difficult to transfer to another task or even to a
different specification of the same task. This can be very important in real-world
robotic tasks, especially in unstructured environments. It is important for robots to
efficiently use the existing knowledge in new scenarios and be able to improve or
generalize the skills to new scenarios rather than having to relearn for every new
scenario. More research in transfer learning and generalization is key to further
advancing RL-based VILC methods. Chapter 11 presents some new results in this
direction. Most of the existing RL-based VILC approaches especially the model-
free approaches are not sample efficient to use in a real system whereas the model-
based approaches are not scalable because of the limitation of the model structure.
GP are popularly used to model the dynamics in [137, 136, 10] in order to achieve
sample efficient VILC. But GP has limited ability in modeling complex dynamics
and is not well suited for highly noisy data. Additionally, GP models are not good
at representing non-smooth dynamics such as contact dynamics or human-robot-
interaction dynamics and pose challenges in computational effort when the dataset
is large. While MBRL approaches could improve sample efficiency and can be
useful in providing safety and stability guarantees, there is a need for further re-
search in this direction facilitating complex model structure such as DNN to build
scalable and sample efficient VILC approaches with theoretical guarantees.

If the RL agent could identify the optimal impedance parameters, we could achieve
complex compliant manipulation skills with safety and stability guarantees. But
this is not obvious, especially with model-free RL, and remains an open question
with the area of RL. Guaranteeing safety, stability, and robustness for controllers
in a complex robotic manipulator operating in uncertain environments is challen-
ging. In the case of VIC, often passivity theory is used to provide theoretical
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guarantees under relatively general working assumptions. However, this approach
is model-based and not suitable in the case of model-free RL and the passivity
property is lost if arbitrary variations of the impedance parameters are allowed.
Passivity-based approaches are often concerned with the analysis of variable im-
pedance profiles that already exist prior to task execution [128, 150, 149]. This is
not suitable for guaranteeing the stability of state-dependent real-time impedance
variations. In another recent approach, a modified impedance control strategy al-
lows the reproduction of a variable stiffness while preserving the passivity, and
therefore a stable behavior both in free motion and in interaction with partially
known environments [59]. In Ref. [59], the goal is to modify the impedance
control in order to allow stiffness variations while preserving passivity and, con-
sequently, stable interactive behavior and asymptotic tracking in free motion. This
tank-based strategy has been shown very well suited for VIC, in spite of some dif-
ficulties to tune its parameters. Nevertheless, it is dependent on the states of the
system, measured during task execution and so can only be applied online. [97]
propose an approach using a designed Lyapunov candidate function to stabilize
the learned impedance system with an optimal input law in analytical form. But
this requires solving an additional convex optimization problem which could be
computationally very expensive so not feasible practically. Ref. [18] proposed an
approach based on the combination of passivity conditions with an adaptation law
on the impedance profile. This method allows for verifying whether a given profile
is passive and if it is not, it provides a method to modify it in a way to guarantee
passivity.

The safe RL approaches described in Chapter 5 are interesting to explore for RL-
based VILC. A feasible approach in this direction could be to provide probabilistic
safety guarantees using safety filters such as CBF and solving constrained optim-
ization problems over the GP model [108]. Guaranteeing stability properties to the
resulting VILC is challenging as guarantees have to be provided in real-time in an
online fashion as the stiffness values predicted by the policy are state-dependent.
The approach proposed in [97] by designing a quadratic Lyapunov candidate func-
tion could be coupled with GP models to provide probabilistic stability guarantees
similar to safety guarantees in [108].

7.5 Conclusions
This chapter presented a survey of existing VILC methods that utilize RL. This
survey serves as a background for the rest of the chapters in this part of the thesis.
This chapter also presented a discussion on the major challenges in using RL for
VILC and some future directions to address them. Some of these challenges are
addressed in Chapter 10 and Chapter 11 in this thesis.
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Chapter 8

Real-time Dynamic Movement
Primitives for Moving Targets

This chapter is based on the following publication [11]:

Anand, A. S., Østvik, A., Grøtli, E. I., Vagia, M., and Gravdahl, J. T. (2021, Decem-
ber). Real-time temporal adaptation of dynamic movement primitives for moving
targets. In 2021 20th International Conference on Advanced Robotics (ICAR) (pp.
261-268). IEEE.

8.1 Introduction
The problem of targeting and manipulating a moving object with a robotic arm is
of great importance in numerous industrial applications. Up until now, research-
ers mainly focused on the problem of static manipulation. However, in order to
achieve higher levels of dexterity in robotic manipulators, moving target scenarios
need to be addressed. For example, grasping moving objects is challenging as op-
posed to picking up a stationary object, such as the adaption of the motion plan, ef-
ficient trajectory tracking, modeling and estimating the motion of the object, and so
on. Learning from demonstration (LfD) has been widely deployed in many robotic
manipulation tasks, but similarly, it mainly involves static targets. Among the vari-
ous LfD methods that exist, the Dynamic Movement Primitive (DMP) framework
[188, 90, 189, 88, 89] is predominantly used for motion planning in manipulation
tasks in order to learn from human demonstrations [125, 194].

The DMP framework offers a simple way to learn a complex motion trajectory
from a single human demonstration without the need for any complex modeling.
DMP framework encodes an arbitrary motion pattern using a second-order non-
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linear system consisting of a linear point attractor modulated by a learned non-
linear forcing function. Additionally, the DMP system is capable of generalizing
to different goal positions and task execution speeds using spatial and temporal
scaling properties respectively. The DMP framework can be used for both point-
to-point as well as rhythmic movements. The robustness to perturbations and col-
lision avoidance capabilities can be incorporated into DMP [163, 172, 46], mak-
ing it a highly useful framework for learning robotic manipulations skills. The
DMP framework is further improved with the possibility of learning from mul-
tiple demonstrations [146, 147, 65]. To facilitate a singularity-free representation
of orientation in Cartesian coordinates, DMP is represented using unit quaternions
[213, 123].

There has been limited work conducted regarding DMP systems naturally adapt-
ing to a moving target. A bio-inspired formulation was developed for human-robot
interaction by including a velocity feedback term into the DMP system in [171].
In [233], an interactive movement primitive is formulated to reach a moving target
in a leader-follower configuration. Other approaches involve reaching a moving
object by predicting the target trajectory in advance, as presented in [164, 115],
based on a dynamic model of the moving target. However, in many robotic tasks,
including human-robot interaction, it is difficult to model the movement of the tar-
get object and thereby generate an accurate predefined DMP. Such tasks, demand
real-time adaptation of the DMP to continuously change the target/goal position
and desired execution time. Consider the example of a human-to-robot object han-
dover task, where the object’s velocity depends on the human individual’s move-
ment. In such a scenario, the DMP system needs to slow down or speed up based
on human behavior, while adapting to a moving target. Another example is a ro-
botic grasping task where the target object is moving continuously, but the motion
pattern of the object is unknown. In [111], an approach to achieve real-time control
over the execution time by forward simulating the entire DMP execution at each
time step was proposed. This approach is computationally expensive and thus less
desirable for higher control frequencies.

In this chapter, we propose an extension of the standard DMP framework for ad-
aptation to real-time changes in task execution time. We define real-time control
of the execution time as, how the DMP system is adapting to real-time changes in
its desired execution time during the task. In order to achieve this, we only manip-
ulate the temporal scaling of DMP system while preserving its spatial properties.
We formulate two methods to achieve efficient real-time temporal scaling, (i) a
control law to vary the temporal scaling term of the standard exponential canon-
ical system and (ii) an alternate polynomial-based canonical system with a suitable
control law for temporal scaling. This is useful in a manipulation task with an un-
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derlying DMP planner, where the task execution time needs to be changed during
the execution phase. Additionally, in the case of moving targets, velocity feedback
of the target and a simple estimate of the goal position based on the current target
position and velocity are included in the DMP system. The proposed approach is
tested on simulation and experimental setups with a moving object, with the use
of a UR5 robotic manipulator.

The rest of the chapter is organized as follows. Section 8.2 describes the necessary
background on DMP. Section 8.3 describes the proposed extention to the standard
DMP framework briefly. Section 8.4 presents the evaluation of our approach on
simulation and experimental setups using the UR5 robotic manipulator. Conclu-
sions are presented in Section 8.5.

8.2 Dynamic Movement Primitives
DMP framework provides an elegant way to encode any arbitrary spatial trajectory
as a stable second-order nonlinear system, which is well suited and widely utilized
controlling for robotic systems [184]. The standard DMP system consists of a point
attractor formulated as a second-order ordinary differential equation (ODE) with
a nonlinear forcing term. In the DMP framework this is called the transformation
system, each degree of freedom (DOF) in the operation space will be denoted by
a separate transformation system,

τ ẋ = v ,
τ v̇ = K(xg − x)−Dv + (xg − x0) f(s) . (8.1)

Here, x, v ∈ R are the position and velocity of the system at time t respect-
ively. The initial position and the goal/target are given by x0, xg ∈ R respectively.
K,D ∈ R+ represents the stiffness and damping coefficient terms of the second-
order system. f denotes the nonlinear forcing term, which is a function of a phase
variable s. If f = 0, these equations represent a globally stable second-order linear
system with (x, v) = (xg, 0) being a point attractor. The forcing term is modelled
to match the system output with any arbitrary trajectory demonstrated, which is
then generalised to different goals and initial conditions. τ ∈ R+ is a temporal
scaling term, which is normally set equal to the task execution time or the motion
duration while modelling/learning the forcing term. The temporal evolution of the
DMP system can be modulated by varying τ . For generalization in time, the ex-
plicit time dependency of f is avoided by parameterising time by a phase variable
s guided by a first-order linear dynamical system, termed as the canonical system,
thus making the system temporally scalable by varying τ ,

τ ṡ = −αs . (8.2)
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The initial state of the canonical system is s0 = 1 and α ∈ R+ is the decay
constant, where s decays exponentially from 1 to 0. The forcing term can be
expressed as a function of the phase variable s using Gaussian kernel functions ψi

with corresponding weights ωi,

f(s) =

∑N
i=1 ψi(s)ωi∑N
i=1 ψi(s)

s , (8.3)

where,
ψi(s) = exp

(
−hi (s− ci)2

)
. (8.4)

N denotes the number of Gaussian kernels used, which is a hyper-parameter de-
cided based on the geometric complexity of the demonstration trajectory. The
centres and widths of Gaussian kernels are given by ci and hi respectively for a
demonstration trajectory of time duration, T ,

ci = exp

(
−αi T

N

)
, i = 1, 2, . . . , N , (8.5)

hi =
1

(ci+1−ci)
2 , i = 1, 2, . . . , N − 1 ,

hN = hN−1 .
(8.6)

The DMP system is easily translated to the multidimensional problem as a separ-
ate transformation system is learned along each dimension while having a single
canonical system. The conventional transformation system representation in (8.1)
has few drawbacks, such as the case when the goal position coincides or is too
close to the initial position, i.e (xg = x0) or when (xg − x0) flips sign from the
demonstrated trajectory. These problems are addressed in [163, 171, 164, 82] to
formulate an improved version,

τ ẋ = v ,
τ v̇ = K(xg − x)−Dv −K (xg − x0) s+Kf(s) .

(8.7)

The canonical system remains the same as (8.2). Unlike (8.1), generalization
to different goal positions is possible in (8.7) as f is independent of the spatial
scaling. This generalization is obtained by utilizing the invariance property of
the transformation system in (8.7) and using the roto-dilation based transforma-
tion to find the transformation matrix [65]. Given a transformation matrix S ∈
Rn×n, where n is number of DMPs or the dimension of trajectory, X ∈ Rn, V ∈
Rn, X0 ∈ Rn, Xg ∈ Rn, F ∈ Rn respectively are the vector representation of
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x, v, x0, xg, f , and K ∈ Rn×n,D ∈ Rn×n are the matrix representation of K,D.
The transformed states and variables are:

X ′ = SX, V ′ = SV, X ′
0 = SX0, X ′

g = SXg,

F ′ = SF, K ′ = SKS−1, D′ = SDS−1 (8.8)

The DMP formulation has some drawbacks for real-time control during execution.
This becomes very pronounced if the target is non-stationary. In the standard DMP
formulation, we can vary the execution time in real-time by modulating τ accord-
ing to an adaptive law based on a complete forward simulation of the entire DMP,
given by,

τ ′ = λτ ,

λti+1 = λti + kp

(
T̂ ti − T

)
− kd

(
T̂ ti − T̂ ti−1

)
.

(8.9)

where ti is the time at the ith control step, λti+1 , is the temporal scaling factor at
time ti, t0 = 0; λt0 = 1; kp and kd are the specified proportional and derivative
gains. T̂ ti is the total execution time (from start) as computed at time ti. T̂ ti is
estimated by doing an entire forward simulation of the DMP at time ti which is
computationally inefficient for a real-time task. Also, sudden changes in τ could
create unexpected behaviors in the DMP system and make it less robust in a mov-
ing target scenario.

8.3 Extension of the DMP Model

8.3.1 Real-time Control of the DMP Execution Time

We propose an extension of the standard DMP framework to provide real-time
control over the execution time T , while preserving the shape properties of the
DMP system for tasks involving moving targets. Although we consider the mov-
ing target scenarios here, our approach is equally applicable to a stationary target
scenario. In the standard DMP formulation, the execution time can be varied in
real-time by varying τ according to a suitable adaptive law. However, such an
adaptive law can not guarantee an exact final execution time. This error in the
final execution could be higher when T is varied during the later stages of DMP
execution. An adaptive law is formulated for τ based on the value of the phase
variable, s from the canonical system (8.2) and the fraction of DMP executed at s
in each DOF in comparison to the demonstration trajectory. The dynamics of the
temporal scaling term τ of the canonical system is represented using a first-order
linear system modulated by the input u,

τ̇ = −kτ (τ − u) . (8.10)

Here kτ is a positive constant. An adaptive law is defined for control input u, such
that the decay rate of the canonical system in (8.2) is slowed down if the desired
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execution time is increased or sped up if the desired execution time is reduced.
The value of u is derived at each time step in order to have continuous control
over the execution time. As the nonlinear forcing term f is a function of the phase
variable s, the shape of the trajectory can be preserved while the execution time of
the task is changed in real-time. The rate of change of s is always negative as it is
a monotonically decreasing function. The control law for u is given by

u =

{
ŝt
st

∥x∥
∥xd∥ τ̂t if st > δ

τ̂t otherwise .
(8.11)

δ is chosen to be a very small value close to 0, to guarantee finite value for u∀ t.
∥xd∥ denotes the norm of the fraction of DMP executed in the demonstration tra-
jectory for a specific value of phase variable at time t denoted by st. Similarly
∥x∥ denotes the norm of the fraction of the current DMP corresponding to st. ŝt
and τ̂t are the desired value of s and τ at time t, which is described later. The
mathematical expressions are given by,

xd(s) =
gd − xd(s)
gd − x0d

, x(s) =
x̂g − x(s)
x̂g − x0

. (8.12)

xd, x ∈ [0, 1], where xd is derived from the transformed demonstration trajectory
used for learning the DMP, whereas x(s) is calculated in real-time based on the
value of st. In (8.12), it is assumed that the initial pose of the robot is different from
the goal trajectory and needs to reach the goal point only once during a trajectory
execution to avoid the division-by-zero condition. This is valid for general robotic
manipulation tasks where the initial pose of the robot is different from the object’s
trajectory in the workspace and the robot needs to approach the object. In scenarios
where the starting and goal positions coincide, rhythmic DMPs should be used
instead of discrete DMP, which is not considered in this chapter.

Furthermore, ŝt is the desired value of the phase variable from the canonical sys-
tem given the value τ , scaled linearly in the desired execution time T̂t at time t,

τ̂t ˙̂st = −αŝt , (8.13)

where,

τ̂t = τ0
T̂t
T0
. (8.14)

Here τ0 and T0 are the initial value of τ and the initial value of the task execution
time respectively.

A similar approach of defining first-order dynamics on τ is provided in recent
work [124]. Here, τ is adapted solely to maintain the demonstrated velocity levels
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in case of DMP execution for a task involving a moving goal. However, our work
considers the aspect of real-time control of task execution time, which is more
applicable in practical scenarios with strict timing requirements.

8.3.2 Polynomial Canonical System

The standard canonical system (8.2) in the DMP formulation can not guarantee
complete control over the execution time with an adaptive law (8.10) because of
its exponentially decaying nature. As the canonical system decays exponentially
in time, the value of s approaches zero rapidly, with only very small changes in s in
the later phases. This behavior of the canonical system makes it impossible to have
control over the time scaling by varying τ . For larger values of s during the early
phase of DMP execution, a better level of real-time control over the task execution
time is feasible. In order to improve this drawback of the DMP framework, we
propose to use an alternative canonical system that could provide a higher degree
of control over the execution time in later phases of the DMP. A polynomial
function that decays slowly at the beginning and then rapidly converges to 0 at
t = T , or any similar functions could offer such property. Considering this benefit,
we choose a polynomial function that can be represented using an inverse gradient
formulation of the standard canonical system in (8.2),

τ ṡ =

{
−α−1s−1 if s > δ
−α′s otherwise .

(8.15)

To have s monotonically decreasing in the interval [1, 0] and asymptotically con-
verging to 0, the final stage of DMP where s ≤ δ is represented using the standard
canonical system (8.2). δ is a small positive constant close to 0. The value of τ for
s > δ at any time instant t can be derived from the solution of the system in (8.15)
based on the condition, t = T̂ =⇒ s = 0 assuming the polynomial function for s,

τ =
2α(T̂ − t)

s2t
. (8.16)

Here the value of τ needs to be updated only when there is a change in T̂ . From
(8.15) and (8.16), τ > 0 ∀ t as t < T̂ when s > δ. Additionally, the polynomial
canonical system in (8.15) is continuous, which can be made smooth by choosing
α′ = 1/(δ2α). An analytical solution for the polynomial canonical system when
s > δ is derived from (8.15), (8.16) as,

s =

(
T − t
T

) 1
2α2

. (8.17)
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The value of α decides the nature of this polynomial canonical system, where α =
1 defines a parabola. α is chosen as α ≥ 1, to make better use of the higher-order
polynomial behavior motivating this approach. For s ≤ δ the value of τ could be
found using (8.10). The difference between systems (8.2) and (8.15) is shown in
figure 8.1.a. The larger variation in s during the later phases of execution provides
the option to have better control over the execution time. The intersection time
tint of the polynomial canonical system in (8.17) and the exponential canonical
system from (8.2) (assuming τ/α′ = T/4 for (8.2) for the sake of comparison)
can be found to be,

tint = T +
TW

(
−8e−8α2

α2
)

8α2
, (8.18)

where tint is the time at which both the systems in figure 8.1.a intersects and W
is the Lambert W -function [113]. As α ≥ 1 =⇒ tint −→ T̂ it follows that the
polynomial canonical system maintains a higher value of s until s is close to 0.
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1.0
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x
2

(a) (b)

Figure 8.1: (a) Evolution of the canonical systems, the exponential canonical system is
shown in the blue and polynomial canonical system in red. (b) The behavior of learned
DMP systems corresponding to both canonical systems, overlap as the same demonstration
trajectory is used to learn both systems.

8.3.3 Stability Guarantee

For the adaptive law discussed in section 8.3.1, from (8.10) and (8.11) it can be
observed that τ > 0 ∀ t, which guarantees the asymptotic convergence of the
exponential canonical system (8.2) to 0. From (8.17), the polynomial canonical
system monotonically decreases to 0 as t→ T̂ with t = T̂ =⇒ s = 0. Therefore,
∃∆ > 0, such that, (T̂ − t) → ∆ =⇒ s → δ > 0. The existence of δ guarantees
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the switching of the polynomial canonical system to the exponential canonical
system (8.15), which in turn guarantees asymptotic convergence of s to 0. The
existence of δ > 0 also guarantees a finite value of τ at switching (8.16) and τ is
bounded ∀ t.
In order to analyze the stability of the transformation system, the contraction ana-
lysis method is used [140, 222]. The stability analysis presented here is very sim-
ilar to the one presented in [124]. Consider the transformation system (8.7) with
e = x− xg,

[
ė
v̇

]
=

[
1
τ v

1
τ (−Ke−Dv −K(xg − x0)s+Kf(s))

]
. (8.19)

As s asymptotically converges to 0, for the fixed point of s = 0 with a finite value
of τ = τs and f(s) = 0, (8.19) can be written as,

[
ė
v̇

]
=

1

τs

[
0 1
−K −D

] [
e
v

]
. (8.20)

This is a linear time-varying system with a bounded time-dependent parameter, τs.

Theorem 4.6 from [143]: Consider a linear time varying system of the form
ẋ = A(t)x where x ∈ Rn and A(t) ∈ Rn×n. The equilibrium state x = 0
is exponentially stable if and only if for any given symmetric, positive definite,
continuous, and bounded matrix Q(t), there exists a symmetric, positive def-
inite, continuously differentiable and bounded matrix P (t) such that −Q(t) =
P (t)A(t) +AT (t)P (t) + Ṗ (t).

A similar approach is provided in Example 4.21 of [102] using Theorem 4.10
[102]. Choosing the matrix,

P =
1

2

[
K
D + 1

D + D
K

1
K

1
K

1
D + 1

KD

]
,

which is constant, bounded and positive definite, gives Q(t) = 1
τs
I . Since τs is

bounded, Q is also bounded ∀ t. Based on Theorem 1 in [222], the entire DMP
system is globally contracting. Therefore the DMP system with the proposed ad-
aptive laws and polynomial canonical system asymptotically converges to a unique
equilibrium point with s = 0, e = 0, v = 0.
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8.3.4 Moving Target DMP with Velocity Feedback

In order to better preserve the shape properties of DMP while following a mov-
ing target, a velocity feedback of the moving target is incorporated into the DMP
formulation similar to [171].

τ ẋ = v ,
τ v̇ = K(x̂g − x)−D(v − ẋg)−K (x̂g − x0) s+ f(s) .

(8.21)

Here x̂g is an estimate of the final goal position. A fair assumption is that the goal
is moving slowly enough such that v ≥ ẋg the convergence properties holds for the
system in (8.21). The estimate of the final goal position at time t is updated with
a simple weighted average of the current goal position and the position estimated
using the goal velocity at time t,

x̂g(t) = xg(t) +
ẋg(t)(T̂t − t)t

T̂t
. (8.22)

At any time instant t, xg(t) is the measured current goal position, ẋg(t) is the
velocity of the goal trajectory, and T̂t is the desired time for the entire execution of
the DMP.

8.4 Evaluation

8.4.1 Simulations

Two separate sets of simulations were conducted to evaluate the performance of
our approach. In the first simulation setup, a 2 DoF DMP system was set up with
a moving target. The control law for τ , for both the approaches, is evaluated based
on how accurately we can control the execution time of the DMP system. For both
approaches, a single demonstration trajectory of a rotated sinusoidal pattern with
x0 = (0, 0) and xg = (1, 1) is used. The execution time of the demonstrated
trajectory is set as 2s. The sampling time for all the simulations is dt = 0.01s,
the position tolerance for DMP convergence to the goal/target point is µ = 0.01,
i.e ∥xg − x∥ < µ ∥xg − x0∥. The other system parameters are K = 1000, α =
4, N = 100, kτ = 1, D = 2

√
K and δ = 0.01. For the purpose of analysis, the

initial pose is always kept constant at the origin (0,0).

The system is analyzed for the following four scenarios in simulation, regarding its
adaptation to real-time changes in the desired execution time T̂ as shown in figure
8.2 and summarised in the following,
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Figure 8.2: The change in desired execution time T̂t for (S-1 to S-4).
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Figure 8.3: (a) - (d) represent the behavior of the canonical systems for S-1 to S-4 respect-
ively. The dashed lines represent the ideal DMP profile when the final desired execution
time T is known at t = 0. The solid lines represent the real-time behavior of the canon-
ical system based on the control law u given only the current T̂ . The red and blue lines
correspond to the standard exponential and the proposed polynomial canonical systems
respectively.

• S-1: T̂t gradually increases from 2s to 3.6s.
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Figure 8.4: (a) - (d) represent the trajectory generated by their corresponding transforma-
tion systems for S-1 to S-4 respectively. The dashed lines represent the ideal DMP profile
when the final desired execution time T and the exact end position of goal xg(T ) are
known at t = 0. The solid lines represent the real-time behavior of DMP based on the
adapted canonical system and the green dotted lines represent the trajectory of the moving
target with a star shape denoting its final position. The red and blue lines correspond to
the standard exponential and the proposed polynomial canonical systems respectively.

• S-2: T̂t gradually decreases from 2s to 1.5s.

• S-3: at t = 1s T̂t switches from 2s to 3s.

• S-4: at t = 1s T̂t switches from 2s to 1.5s.
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Figure 8.5: Performance comparison of DMP system with the two canonical systems, the
standard exponential system (in red) and the proposed polynomial canonical system (in
blue). The lines denote the final execution time T for the DMP system when perturbed
with a step change T̂ from 2s to 1s and from 2s to 3s evaluated every 0.05 seconds for
t ∈ [0, 1)s and t ∈ [1, 2)s respectively.

All four scenarios are simulated with a moving target with a random positive velo-
city ẋg ∈ [0, 0.5] at every time instant along both the DOFs. The goal position is
updated in real-time based on a simple estimate from equation (8.22). The DMP
system is simulated with velocity feedback from the moving goal based on the
transformation system in (8.21). For all the scenarios, the real-time behavior of
DMP systems with both exponential and polynomial canonical systems described
by (8.2) and (8.15) respectively are shown in figure 8.4. The behavior of their
corresponding adapted canonical systems is shown in figure 8.3.

In all four scenarios, the DMP trajectories converge smoothly to a moving goal as
shown in figure 8.4. The trajectories generated by both DMP systems with standard
exponential and the proposed polynomial canonical systems in figure 8.4 are very
similar in their shape characteristic. The adaptation to real-time changes in T̂ can
be seen in figure 8.3 from the evolution of canonical systems. For gradual changes
in T̂ as shown in figures 8.3.a and 8.3.b, both the exponential and polynomial
canonical systems adapt smoothly with the desired values of τ and converge to the
moving goal exactly at the final desired execution time T = 3.6s and T = 1.5s
for S-1 and S-2 respectively. In response to a negative step change in T̂ in S-3 as
shown in figure 8.3.c , the exponential canonical system converges to the moving
goal t = 2.98s with an error of 0.02s, whereas the proposed polynomial based
canonical system converges exactly at the final desired execution time T = 3s.
But in S-4 in response to a negative step change in T̂ as shown in figure 8.3.d, both
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canonical systems adapts with the desired values of τ and converges to the moving
goal exactly at final desired execution time, T = 1.5s.

However, these simulations do not reflect the effect of larger changes in the exe-
cution time during the later phases of execution. As the difference is expected to
become more pronounced when changes are made on T̂ towards the later stages
of trajectory execution, a second set of simulations is conducted to evaluate the
real-time performance of the approach during the DMP execution. Two scenarios
of step changes in T̂ are considered in the simulation with a stationary target,
xg = (1, 1), all other system parameters remain unchanged.

Negative step change in T from 2s to 1s: This step change in T is simulated with a
time step of 0.05s for t ∈ [0, 1). The resulting performance and the corresponding
error are shown in figure 8.5 for t ∈ [0, 1]. The proposed polynomial canonical
system outperforms the standard exponential canonical system, as seen by the in-
creased difference towards the later phases of DMP execution as shown in figure
8.5. Take t = 0.75s, on changing T from 2s to 1s the adaptive version of the stand-
ard exponential canonical system takes 1.38s to finish execution which is a 0.38s
delay over the desired time. But with the proposed polynomial canonical system
the DMP system converges to the goal at exactly 1s.

Positive step change in T from 3s to 2s: This step change in T is simulated at every
0.05s for t ∈ [1, 2): The resulting performance and the corresponding error are
shown in figure 8.5 for t ∈ [1, 2]. Here the proposed polynomial canonical system
outperforms the standard exponential canonical system. Again, this difference
increases towards the later phases of DMP execution as shown in 8.5. Take t =
1.45s, on changing T from 2s to 3s the adaptive version of the standard exponential
canonical system takes 2.95s to finish execution which is 0.05s earlier that the
desired time. But with the proposed polynomial canonical system the DMP system
converges to the goal at 2.99s. At t = 1.75s, this is 2.8s and 2.95s respectively.

8.4.2 Experiments

To validate the performance of the proposed canonical system, experiments were
conducted on a UR5 robot manipulator for the task of approaching a moving ob-
ject. The 3D-cartesian position of the object is tracked in real-time using a Polaris
Vicra optical tracking system. A PID trajectory tracking controller is utilized to
track the trajectories generated by the DMP. In the experiments, the proposed
polynomial canonical system is evaluated for its performance on reaching a mov-
ing object within a specified time which is varied during the DMP execution sim-
ilar to the simulations conducted. The experiment consists of an object moved
around by a human operator and the UR5 robot manipulator reaching it from a
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fixed starting pose. The object is moved around slowly in order to keep the robot’s
velocity within safe limits. An open-source robot control framework developed for
UR robots is used for controlling and communicating with the UR5 robot [160]. A
demonstrated robot trajectory is collected using the optical tracking system with a
static goal as shown in figure 8.7. The time duration of the demonstration traject-
ory is Td = 10s. The sampling time for all the experiments is 60Hz, the position
tolerance for DMP convergence in Cartesian space is defined to be µ = 0.01, other
system parameters are K = 800, α = 1/2Td, N = 100, kτ = 1, D = 2

√
K and

δ = 0.01. Four sets of experiments (E-1 to E-4) were conducted similar to the
simulations (figure 8.8),

• E-1: T̂t gradually increases from 35s to 50s.

• E-2: T̂t gradually decreases from 50s to 35s.

• E-3: at t = 15s, T̂t switches from 25s to 40s.

• E-4: at t = 20s, T̂t switches from 50s to 40s.

Figure 8.6: The experimental setup with UR5 robot and an object fitted with motion
capture markers, which is moved around manually by hand.

The moving object scenario is created by moving the target by hand approximately
within a Cartesian space of 1.0m, 0.3m, and 0.3m along x, y, and z directions
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Figure 8.7: Demonstration trajectory used for learning the DMP. In (a) time evolution of
the Cartesian position (x, y, z) is shown, and in (b) the corresponding 3D trajectory in the
Cartesian space is shown.
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Figure 8.8: The change in desired execution time T̂t for E-1 to E-4

respectively. The movement of the object is tracked at approximately 60 Hz using
the optical tracking system. The corresponding velocity and estimate of the goal
position are fed back to the DMP system. Figure 8.9 and 8.10 show the generated
DMP trajectories and the behavior of the polynomial canonical system respectively
for E-1 to E-4. We found the experimental results to be very consistent with the
simulation results. The experimental results validate the usefulness of the proposed
polynomial canonical system in adapting the DMP to the changes in desired task
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Figure 8.9: (a) - (d) represents the 3D Cartesian trajectory generated by the DMP in
red and trajectory followed by the UR5 robot in blue for E-1 to E-4 (the blue and red
trajectories approximately overlap). The trajectory of the target object is shown in green
with a star shape denoting its final position. The target trajectory is noisy as the target
object is moved around by hand.

execution time. In all four trials, the difference between the desired execution time
and final execution time was within ±0.1s which is acceptable compared to the
total execution time of the task.
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Figure 8.10: Behaviour of the polynomial canonical system for E-1 to E-4.

8.5 Conclusions
In this study, we extended the DMP framework with real-time control over the
execution time while preserving the shape characteristics. We used a DMP for-
mulation focused on a moving target scenario, incorporating the target’s velocity
feedback and a simple estimation of the target’s final position based on its cur-
rent position and velocity. We formulated an adaptive law for the standard expo-
nential canonical system and an alternative polynomial canonical system to have
better real-time control of the task execution time even during the later phases of
DMP execution. We compared the proposed polynomial canonical system with the
standard exponential canonical system for their relative performance. On compar-
ing both canonical systems, the proposed polynomial canonical system was found
to perform better in all the simulations conducted. The proposed polynomial ca-
nonical system was evaluated in an experiment using a UR5 robotic manipulator
with a moving target. The extended DMP framework is useful in various robotic
tasks with strict task execution time requirements when the desired task execution
time is unknown prior to performing the task itself. This requirement is very relev-
ant to robotic tasks involving moving targets such as industrial handling of moving
parts, and human-robot collaborative tasks.
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Chapter 9

Evaluation of Compliant
Controllers for Learning Force
Tracking Skills

This chapter is based on the following publication [10]:

Anand, A. S., Myrestrand, M. H., and Gravdahl, J. T. (2022, January). Evaluation
of Variable Impedance-and Hybrid Force/MotionControllers for Learning Force
Tracking Skills. In 2022 IEEE/SICE International Symposium on System Integra-
tion (SII) (pp. 83-89). IEEE.

9.1 Introduction
Compliant behavior for robots can be achieved by means of passive mechanical
compliance built into the manipulator, or by active compliance control implemen-
ted in the servo control loop, for example, admittance control [190]. Compliant
behavior can also be achieved using direct force control, where Variable Imped-
ance Control (VIC) [91] and Hybrid Force-Motion Controller (HFMC) [174] are
two prominent approaches. While VIC and HFMC are robust interaction control
strategies, their performance depends heavily on setting the right parameters ac-
cording to the environment’s compliance properties [216]. While MBRL offers
an ideal framework to learn the parameters of these compliant control, it is neces-
sary to evaluate and compare them in a state-of-the-art MBRL framework. Among
the MBRL approaches, the Probabilistic Inference for Learning Control (PILCO)
algorithm is considered to be state-of-the-art for sample efficiency [53]. Even
though PILCO is not directly scalable to high dimensional problems and complex
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dynamical models, it offers a framework to develop and evaluate learning-based
controllers with minimal robot-environment interactions. PILCO style approach is
adapted to cases where a simplified prior model is available [187].

The majority of the learning-based methods in robotic interaction control have fo-
cused on using VIC to solve specific tasks, with a major focus on robotic assembly
and human-robot interaction tasks. This chapter focuses on the implementation
and evaluation of two prominent force control approaches (VIC and HFMC) in
a model-based learning framework for an interaction task demanding force and
motion tracking. The PILCO algorithm is chosen for evaluating the controller
considering its high sample efficiency which facilitates learning directly in the ex-
perimental set-up in a handful of trails. The force controllers are implemented as
Open-AI gym environments to seamlessly integrate with various learning frame-
works.

The rest of this chapter is organized as: Section 9.2 and 9.3 present the necessary
background on force tracking VIC and HFMC respectively. Section 9.4 presents
force control as a learning problem. Section 9.5 presents the evaluation of the
controllers in the learning framework. Section 9.6 presents a discussion of the
findings and Section 9.7 concludes the work.

9.2 Force Tracking Variable Impedance Control
Consider a VIC with position and force errors defined by E1 = x− xd and Ef =
fext− fd respectively, where fext is the sensed external force and fd is the desired
force. The M, K and D are adjusted using the adaptive law proposed in [86],

β̇ = −(ET
f PK−1

v ξΓ−1)T = −Γ−1ξTK−1
v PEf . (9.1)

Where Kv ∈ Rn×n is the gain matrix,

ξ = ξ(E1, Ė1, Ë1) , (9.2)

is a n× 3n matrix and
β = β(∆M,∆D,∆K) (9.3)

is a 3n× 1 vector. The corresponding updates are,

M→M+∆M ,
D→ D+∆D ,
K→ K+∆K .

(9.4)

If the desired contact force fd is large and the position error E1 is small, the ad-
aptive law will adjust M, D and K until f∗ −→ fd, potentially causing instability
issues. Hence, upper bounds should be set for M, D and K, avoiding instability
at the expense of force tracking ability [86].
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9.3 Hybrid Force-Motion Control
First proposed in [174], HFMC aims to achieve both motion and force control by
dividing the task into two separate, decoupled sub-problems [216]. By specifying
which sub-spaces should be controlled by a motion- and force controller respect-
ively, the hybrid control intends to simultaneously solve the two separate control
tasks. The selection matrices Sv and Sf is used to specify these subspaces. In
the case of performing force control along the z-axis, and motion control in the
remaining five dimensions, given by,

Sv = diag
(
1 1 0 1 1 1

)
,

Sf =
(
0 0 1 0 0 0

)T
.

(9.5)

When dealing with a compliant environment, the end-effector twist caused by en-
vironmental deformation in the presence of a wrench is given by [216],

ve = Svv + (I−Pv)CSf λ̇ , (9.6)

where C = K−1 ∈ R6×6 represents the compliance matrix between the end-
effector and the environment and λ is the force multiplier. Pv is a projection
matrix that filters out all the end-effector twists that are not in the range space of
Sv. I − Pv has the opposite effect of filtering out the twists that are in the range
space of Sv. Pv is calculated as Pv = SvS

†
v, where S†

v is a suitable weighted
pseudoinverse of Sv,

S†
v = (ST

v WSv)
−1ST

v W . (9.7)

Setting W equal to the inertia matrix H ∈ R6×6 corresponds to defining a norm
in the space of twists based on the kinetic energy [216]. Assuming, Sv and com-
pliance,

C′ = (I−Pv)C (9.8)

to be a constant, (9.6) leads to the following decomposition of acceleration

v̇e = Svv̇ +C′Sf λ̈ . (9.9)

Casting the control law (6.4) into the dynamic model (6.1) results in, v̇e = α, α
is the control input denoting the acceleration with respect to Σ. By choosing,

α = Svαv +C′Sf fλ , (9.10)

allows decoupling of the respective controllers, αv relating to motion control and
fλ to force control. By choosing

αv = r̈d(t) +Dr[ṙd(t)− v(t)] +Kr[rd − r(t)] , (9.11)
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guarantees asymptotic tracking of desired velocity vd and acceleration v̇d with
exponential convergence [216]. Choosing,

fλ = λ̈d(t) +Dλ[λ̇d − λ̇(t)] +Kλ[λd(t)− λ(t)] , (9.12)

guarantees asymptotic tracking of a desired force trajectory (λ̈d(t), λ̇d(t),λd(t)),
with exponential convergence [216]. Dλ and Kλ are positive-definite matrices. λ̇
(9.12) can be computed from the force measurements fext as,

λ̇ = S†
f

˙fext . (9.13)

where S†
f is the pseudoinverse of Sf , computed using, W = C in (9.7). Due to

the noisy force measurements, the estimate

λ̇ = S†
fK

′J(q)q̇ , (9.14)

is often preferred, where K′ = PfK and Pf = SfS
†
f .

9.4 Learning Force Tracking

9.4.1 PILCO

PILCO [53] is a data-efficient model-based Policy Search method considered as
state-of-the-art in terms of sample efficiency in model-based RL. It is formulated
to reduce model bias, one of the key problems of model-based reinforcement learn-
ing. This is achieved by learning a probabilistic dynamics model and explicitly
incorporating model uncertainty into long-term planning. This way PILCO can
cope with a small amount of data, facilitating learning in a handful of trials. Policy
evaluation is performed using approximate inference, and policy improvement by
computing policy gradients analytically. PILCO considers a dynamic system on
the form, xt+1 = f(xt,ut) with unknown transition dynamics f , and continuous-
valued states x ∈ RD and control-input u ∈ RF , where D and F are the dimen-
sions of the state and input space respectively. The objective is to find a policy π
that minimizes the expected return

Jπ(θ) =

T∑

t=0

Ext [c (xt)] , x0 ∼ N (µ0,Σ0) , (9.15)

over the next T time steps, where c(xt) is the cost associated with the state x at
time t.
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9.4.2 Learning Framework

A robot learning framework that can be easily integrated with different RL al-
gorithms is developed in Python. The framework has three components, (i) a set
of force controllers, (ii) RL algorithms and (iii) robot simulator with the three com-
ponents interacting with each other. The force controllers (VIC and HFMC) are
implemented as OpenAI Gym environments [32] for easy integration with various
RL algorithms. A Gazebo-based [116] simulator is set up with a Franka Emika
Panda robotic manipulator using the franka simulator framework [196]. For per-
forming the learning trials in simulations and experiments, the framework is in-
tegrated with the robotic manipulator using the Franka ROS Interface framework
[196]. In both simulation and experimental setups, a python interface is used to
fetch the system states and command the control actions.

Figure 9.1: The setup for testing the force controllers. The experimental set-up is shown
on the left and the Gazebo simulator set-up on the right

9.4.3 Force Controller Implementation

Accurate modeling of contact interaction behavior is important in achieving pre-
cise force tracking using model-based learning approaches. For modelling the
contact transition dynamics, the state vector x was chosen as

(
F pz vz

)
, where

F is the contact force, pz is the z-position and vz is the z-velocity all defined in
Σ. For rest of this chapter we use Fd for the desired contact force. The action
spaces for learning are decided based on the controller, but both the controllers
have one action each related to stiffness and damping, in the force tracking dir-
ection. Consider an action space, u ∈ R2, the training inputs of the model are
(xt,ut) ∈ R5 and the output targets are given by, ∆t = xt+1 − x + ϵ ∈ R3.
Where, ε ∼ N (0,Σε) ,Σε = diag ([σε1 , . . . , σεD ]). Radial basis functions (RBF)
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are used to approximate the policy in the simulations and a linear policy is used
in the experiments. An exponential cost function is specified based on the desired
behavior of the system with a constant, σc deciding the shape of the cost function.

ct = 1− exp
(
−∥Ft − Fd∥2 /σ2c

)
∈ [0, 1] . (9.16)

The learning algorithm according to [53] is presented in Algorithm 4. An addi-
tional option for using two different GP contact models is implemented to sep-
arately model the transition dynamics for the contact establishment and motion
phase.

Algorithm 4 PILCO
init: Sample control parameters θ ∼ N (0, I), π(θ) and dataset D.
Apply random control signals and record data into D .
repeat

Learn probabilistic (GP) dynamics model, using D .
Model-based policy search
repeat

Approximate inference for policy evaluation,
obtain Jπ(θ) .
Gradient-based policy improvement, obtain
dJπ(θ)/dθ .
Update parameters θ .

until convergence; return θ∗;
Set π∗ ← π(θ∗) .
Apply π∗ to system and record data into D .

until task learned;

VIC Implementation

The VIC controller is implemented by adapting the impedance control law in (6.4)
with a modified version of the adaptive impedance law in (9.1). For force control in
z direction, the adaptive laws in (9.1) only applies to the z-dimensional properties
of (M,D,K) ∈ R6×6. However, since an adaptive gain matrix, M easily can
lead to instability, M is chosen to be static. This results in a system with adaptive
damping and stiffness in z. Kv and P are chosen to be I ∈ R6×6 in the adaptive
law (9.1), the law is reduced to,

β̇( ˙∆D, ˙∆K) =(
0... ... γ−1

D ĖzEfz 0... γ−1
P EzEfz 0...

)T
,

(9.17)
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where Ez is the error in z-position, Efz is the error in z-force, and γ−1
D and γ−1

P

are the rates of adaptability for damping and stiffness in z direction respectively.
The change in damping and stiffness matrices due to the adaptive law is thus given
by,

˙∆D = diag
(
0 0 γ−1

D ĖzEfz 0 0 0
)
,

˙∆K = diag
(
0 0 γ−1

P EzEfz 0 0 0
)
.

(9.18)

The parameter space for learning are chosen as γP and γD.

HFMC Implementation

In-order to perform force control in z direction and motion control in the remaining
five dimensions the selection matrices, Sf and Sv are chosen as, Sv = diag(1
1 0 1 1 1) and Sf = [0 0 1 0 0 0]T . All parameters of the control law (6.4)
are purely state-dependent except the compliance matrix C = K−1, the gains
of the motion controller (Dr,Kr ∈ R5×5), and the gains of the force controller
(KDλ,KPλ ∈ R). The motion controller gains, Dr,Kr are kept unchanged as
we are interested in improving the force tracking behavior. Considering the task
with a constant desired tracking force, the compliance matrix, C is chosen to be
constant. Therefore, Dλ and Kλ are chosen for tuning. All matrices are chosen to
be diagonal, with values derived from testing in simulation and in experiments.

9.5 Evaluation
The VIC and HFMC were tested and evaluated in both simulation and experi-
mental set-ups. The controllers were compared based on their performance with
and without using the learning framework in Section 9.4. A common force-motion
tracking task is set up in simulations and experiments. The task is a sweeping task
over a flat surface demanding force tracking in the vertical (z) direction and motion
tracking in the remaining 5 DOFs (x, y direction and orientations along x, y and
z). The controllers are implemented such that only the force-tracking parameters
are learned by the PILCO algorithm and the motion-tracking parameters are kept
unchanged. The desired tracking force is 3N while performing a sweeping move-
ment of 5cm over the surface in x direction. The task can be divided into two
phases, where in phase 1 the robot establishes stable contact with the object by
achieving the desired contact force. Phase 2 is the motion phase, where the robot
performs a sweeping motion across the surface, tracking desired force and motion
trajectories.

The controller is considered to be at a steady state when the actual contact force
has reached a steady state value range around the desired contact force. The force
tracking performance is compared by calculating the Mean Squared Error (MSE)
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between the target and actual contact forces, denoted by ∆F . The motion track-
ing behavior is not considered for evaluation since they are very similar in all the
tests as the motion tracking parameters remained unchanged. The simulation and
experimental set-ups are illustrated in Fig. 9.1. In all figures, Fd, denotes the de-
sired force, and F, FPILCO, denotes the actual contact force when not-, and when
using PILCO to learn the parameters respectively. x, y and xd, yd, represents the
actual and desired positions in x and y directions respectively. ∆qx,∆qy,∆qz rep-
resents the differences in orientations along x, y, z directions in quaternions. KPz ,
KDz andKPz

PILCO,KDz
PILCO represents the stiffness and damping in the force

tracking direction z, identified without and with learning framework respectively.

9.5.1 Simulations

The simulations are performed for force and motion tracking on a flat compliant
surface modeled in the Gazebo simulator with a stiffness coefficient of k = 5, and
a damping coefficient of d = 3. In order to test the robustness of the controllers in
simulation, a Gaussian noiseN

(
µ = 0, σ2ε = 0.015he

)
, is added to force estimate

based on comparing with the real system used in experiments. Fig. 9.2 and Fig.
9.3 represent both the contact establishment phase and sweeping movement over
the surface as shown in the motion trajectories in Fig. 9.2.c and 9.3.c.

VIC

Fig. 9.2 illustrates the force, motion tracking and the varying damping and stiffness
in z. The force tracking error, ∆F in Fig. 9.2.a is decreased from 0.26 to 0.18
by introducing learning. Steady-state is achieved in 0.35s for the learning-based
controller compared to 1.5s for the adaptive controller. The mean value of both
F and FPILCO is 2.94N and the variances are 0.009 and 0.007 respectively. Fig.
9.2.b shows how the stiffness and damping in z direction are adapted for achieving
the desired force tracking behavior. The motion tracking behavior is shown in Fig.
9.2.c and 9.2.d.

HFMC

The performance of the HFMC in the simulation is shown in Fig. 9.3, illustrating
the force and motion tracking results. Introducing learning has reduced ∆F from
0.28 to 0.14, but the force tracking behavior of the learned controller is not smooth
as desired. Steady-state is achieved in 0.32s for a learning-based controller with
a mean value of FPILCO is 3.03N and variance of 0.01 compared to 2.77N and
0.03 for F . The motion-tracking behavior is hand-tuned and is comparable with
VIC.
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D

D

Figure 9.2: Simulation results for VIC using PILCO for the set-up in Fig. 9.1. (a) Force
tracking behavior, (b) stiffness and damping behavior in z direction, (c) and (d) motion
tracking behavior.

9.5.2 Experiments

The simulation task is replicated in the experimental setup to perform force-motion
tracking on a flat surface. In order to have a compliant contact between the robot
and the rigid surface, the manipulator’s end-effector is equipped with a soft ball as
shown in Fig. 9.1. The robot should perform a contact establishment to reach a
desired force of 3N and then perform a sweeping motion over the surface for 5cm
tracking a desired force. The results of the experiment for both VIC and HFMC
in the learning framework is shown in Fig. 9.4. The introduction of learning in
VIC has reduced ∆F from 0.13 to 0.04 as shown in Fig. 9.4.a. During the contact
establishment phase, the leaning-based VIC converged to a steady state with an
overshoot of 0.51N in 1.2s whereas VIC with fixed adaptive law (9.1) converged
to steady state in 3.5s. The learning-based VIC has a steady state variance of 0.002
compared to 0.028 for the VIC with fixed adaptive law. While experimenting with
learning-based HFMC with a single GP model for contact establishment and mo-
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D
D

Figure 9.3: Simulation results for HFMC using PILCO for the set-up in Fig. 9.1. (a)
Force tracking behavior, (b) stiffness and damping behavior in z direction, (c) and (d)
motion tracking behavior.

tion phase, the ∆F was increased to 1.20 compared to 1.17 for the manually tuned
HFMC. But this drawback was eliminated by introducing separate contact models
for the two phases and thereby significantly reducing the ∆F to 0.29. By intro-
ducing dual contact models for the learning-based HFMC, the ∆F of the motion
phase (phase 2) was decreased from 1.8 to 0.35.

Fig. 9.5.a represents how the variance of the learned force GP model changed over
the learning iterations in two different experimental trials using learning-based
VIC. In Each trial, the experimental task was executed for 14 learning iterations.
The trial 1 failed in force tracking with reaching unsafe forces above 5N. Whereas,
the successful trial 2 corresponds to the results in Fig. 9.4.a. Fig. 9.5.b represents
the corresponding change in the cost for the successful trial (trial 2). The decrease
in variance after the initial step is minimal during all the successful learning trials
conducted with the noisy force data.
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Figure 9.4: Experimental results for VIC and HFMC using PILCO for the set-up in Fig.
9.1. (a) Force tracking behavior of VIC, (b) force tracking behavior of HFMC, where
F1

PILCO, F2
PILCO represents the contact establishment and motion phase while using

separate contact models for both the phases. While FPILCO represents the force behavior
when using a single model for both the phases as in the case of VIC.
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Figure 9.5: (a) Variance of the force GP model for two different training trials, (b) cost
for the successful trial (trial 2) across the learning iterations.

9.6 Discussion
The simulation and experimental evaluation demonstrated the advantage of in-
troducing model-based learning to achieve better force tracking in both VIC and
HFMC for the robotic interaction task demanding both force and motion tracking.
The simulated and experimental results for VIC, are shown in Fig. 9.2 and 9.4.a
suggests significant improvement in force tracking by introducing model-based
learning to adapt the stiffness and damping parameters. The robust adaptive law
(9.1) ensures better force tracking capabilities in VIC even without introducing
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learning in simulations. Faster convergence to the steady state is a major impact
of learning-based VIC which is consistent in both simulation and experiment. The
fast convergence to the desired contact force and less noisy force tracking beha-
vior is a result of a better impedance strategy optimized by PILCO. Furthermore,
the flexibility of the controller allowed it to start off with high compliance in z
direction, avoiding a high initial force overshoot.

The effect of learning in the stiffness and damping parameters are well demon-
strated in Fig. 9.2.b. Similar to VIC, introducing learning has significantly im-
proved the force-tracking behavior of HFMC. The learned stiffness in Fig. 9.3.b
has a noticeable decrease in-order to reduce high impact forces during the con-
tact establishment phase. Introducing learning produced significant improvement
in the force tracking capabilities as shown in Fig. 9.3.a except for a higher over-
shoot in the initial phase. The learned impedance strategy could exploit the force-
tracking capabilities of HFMC to produce better steady-state behavior both in sim-
ulations and experiments. Introducing learning in HFMC had significant improve-
ment in the force tracking error and slightly faster convergence to the desired con-
tact force. The learning-based VIC executed a smooth force-tracking behavior
while performing the sweeping motion. Even though the motion tracking ability is
not evaluated thoroughly, it was difficult to hand-tune the VIC to achieve accurate
motion tracking.

In simulations, a single GP model was used to model both the contact establish-
ment phase and motion phase. However, this could not be translated into the exper-
iments because of the frictional effects. The HFMC has no integral action on the
force and relies on accurate models to avoid steady-state errors. The introduction
of separate models for the two phases was found to yield better force tracking in the
experiments. As in all model-based RL algorithms, the performance of the PILCO
algorithm is highly dependent on the accuracy of the dynamics model. The GP
model has a limited ability in modeling complex dynamics and is not well suited
for highly noisy data. Fig. 9.5.a represents the variance for different GP models
across different trials, where difficulty in learning the model is translated into the
performance as shown using the variances and the cost. The unsuccessful trials
failed at reducing the model variances, thereby learning largely uncertain models.
This could be improved using more complex models such as ensembles of Neural
Networks or Bayesian Neural Networks. There are few promising model-based RL
frameworks using such approaches [220], but these methods have a lower sample
efficiency compared to PILCO. However, further improvements in model-based
RL and the scope of sim2real transfer of task space controllers [144] could realize
learning-based force controllers for robotic interaction tasks.

Despite the high data-efficiency offered by the PILCO framework, it imposes con-
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straints on the reward functions and policy structure. This prevents the use of any
arbitrary reward function and policy, therefore it is not a flexible RL framework.
Additionally, analytical approaches like PILCO can not be efficiently parallelized
in a multi-core computer. These limits the application of such an approach to VILC
for complex manipulation tasks.

9.7 Conclusions
This chapter presented the implementation and evaluation of two fundamental ap-
proaches in robotic force control, HFMC and a Force-based VIC in the PILCO
framework. It was shown that combining a learning-based approach with force
controllers has the ability to improve robotic interaction control. For the HFMC,
the framework was used to learn direct strategies for its damping- and stiffness
parameters. In the VIC, strategies were learned for the parameters of an adaptation
law. Both controllers showed significant improvement in force tracking ability by
introducing model-based learning. While introducing learning led to faster conver-
gence to the desired force in VIC, it led to a significant improvement in the force
tracking error in HFMC. The results showed that having highly accurate contact
dynamics models are key to having accurate force tracking. GP model does not
offer the flexibility required to model the complex robot-object contact dynamics.
Hence, in Chapter 11, we address this issue by modeling the interaction dynamics
using an Ensemble of probabilistic neural networks.
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Chapter 10

A Data-Efficient Variable
Impedance Learning Control
Framework

This chapter is based on the following paper under review: Anand, A. S., Abu-
Dakka, F. J., and Gravdahl, J. T. (2023). Data-Efficient Variable Impedance Con-
trol, IEEE Access.

10.1 Introduction
Based on the survey presented in Chapter 7, it is crucial to improve the sample effi-
ciency of Variable Impedance Learning Control (VILC) approaches to make them
useful for real-world robotic manipulation tasks. Although the existing Model-
based Reinforcement Learning (MBRL) methods are sample efficient compared
to model-free methods, it still demands a lot of interactions, making it difficult
to apply to robotic manipulation. In this work, we tackle this issue by using a
micro-data-based policy optimization method combining Gaussian Processes (GP)
models and Covariance Matrix Adaptation (CMA-ES) based policy optimization
[42].

Probabilistic Inference for Learning Control (PILCO) [53] is a highly data-efficient
MBRL approach, has been used for VILC in Chapter 9 [10]. But it imposes con-
straints on the reward functions and policies structure that prevent the use of any
arbitrary reward unlike in a general Reinforcement Learning (RL) setting. Addi-
tionally, analytical approaches like PILCO can not be efficiently parallelized in a
multi-core computer. These limits the application of such an approach to VILC
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for complex manipulation tasks. These deficiencies are addressed in the alternate
MBRL approach using GP based dynamical models and CMA-ES based policy
optimization in [42]. This approach does not impose any constraints on reward
functions or policies and can be easily parallelized. A combination of GP based
dynamics modeling and CMA-ES based policy optimization provides a highly
data-efficient MBRL framework which takes into the uncertainty of the model and
performs a global policy search. In this chapter, we extend this approach to de-
velop a data-efficient VILC framework for robotic manipulation. All the relevant
RL-based VILC approaches are presented in Chapter 7 Section 7.3.

This chapter introduces Data-Efficient Variable Impedance Learning Controller
(DEVILC), a MBRL framework for VILC focusing on finding an optimal imped-
ance adaptation strategy for a VIC from a few data samples in the context of robotic
manipulation. In summary, the main contributions of this chapter are;

– a Model-based VILC framework using GP models and using the evolution
strategy, CMA-ES to optimize a NN policy.

– demonstrates a highly data-efficient approach for learning impedance adapt-
ation strategy for robotic manipulation.

The rest of this chapter is organized as follows. In Section 10.2 presents the details
of the DEVILC framework proposed. Section 10.3 presents the evaluation of the
proposed VILC framework on simulation and experimental setups using Franka
Panda robotic manipulator. Detailed discussion on the results and conclusion are
presented in Section 10.4 and Section 10.5 respectively.

10.2 Data-Efficient Variable Impedance Learning Framework
The DEVILC framework utilizes GP models to learn the Cartesian impedance
model of the system. The learned GP model is then used to optimize a NN-based
impedance adaption policy using CMA-ES. The cartesian impedance model rep-
resents the environment-robot dynamic relationship in (6.5). We learn the follow-
ing Cartesian impedance model of the robot manipulator [224] using GP:

st+1 = st + f(st,ut) + ω . (10.1)

Where st is the state of the robot end-effector at time step t, ut is the applied
action, st+1 is the next state, and ω is the i.i.d Gaussian noise. The GP model
with these inputs predicts the mean µ(st+1) and variance σ2(st+1) based on the
current state and the action. We define the state st as [xt, ẋt], and action ut as
[f text, Kt]. Kt is sampled from a parameterized impedance adaptation policy
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VIC

Robot Inverse
Dynamics

M−1

Robot &
Environment

Forward
Kinematics

GP ModelCMA-ES

K

D

fext

x

ẋ
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Figure 10.1: DEVILC framework with GP dynamics model, NN based impedance adapt-
ation policy and CMA-ES optimizer.

with π s.t Kt = π
(
st, f

t
ext | θ

)
which can be a NN. f text is the sensed external

force acting on the robot at time instant t, this is an uncertain external factor the
VILC needs to compensate for. The damping parameters are chosen according to
the critical damping condition, D = 2

√
K. For an N DoF Cartesian impedance

dynamics considered, f contains N independent GP model with each GP model
approximating the dynamics along one DoF.

We aim to optimize the compliant behavior of the robot end-effector can be op-
timized by designing a suitable variable impedance control strategy. Within the
proposed DEVILC framework, given a manipulation task objective, this imped-
ance adaptation strategy for the underlying VIC is optimized using CMA-ES and
the GP-based Cartesian impedance model (10.1). We learn a NN based imped-
ance adaptation policy π in an episodic MBRL setting, where after each episode
of interaction with the real system, the GP model is updated and a policy is optim-
ized using CMA-ES for the entire task horizon. The objective of compliant robot
manipulation is defined to achieve manipulation task requirements/goals while ex-
ecuting a high level of compliance. In this work, we consider the scenario where
the manipulation task requirement can be represented as tracking a desired robot
state, but it is generalizable to any objective that can be measured. The compli-
ance objective is to minimize the stiffness of the underlying VIC controller. A cost
function describing the task objective and the compliance objective is designed for
the real system,

C (st,Kt) = δsTt Qtδst + λ(Kt)
TRtλ(Kt) , (10.2)
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where srt denotes the reference or goal states. λ(Kt) is the Eigenvalues of the
stiffness matrix represented in a vector form, δst = srt − st and Qt and Rt are
diagonal gain matrices for task and compliance components respectively. These
gain matrices can be either constant or can be a function of the robot’s states. For
example, in the case of a reference tracking task Qt can be chosen as a linear
function of ∥δst∥ in order to have higher penalties for larger deviations from the
target. While this cost is defined over the real system, it can be used as a target to
train the reward function r = −C, i.e by taking the negative of this cost at every
time instant.

Given the GP model f (10.1) and the cost function (10.2), the goal is to find the
optimal policy parameters θ that maximizes the reward over the entire task horizon
given by:

J(θ) = E

[
T∑

t=1

r (st,Kt) | θ
]
. (10.3)

This is achieved by predicting the state evolution over the GP dynamics model.
State-to-next-state propagation is carried out as in Monte Carlo estimation by
sampling according to the GP model. But additionally, each of these rollouts is
considered as a measurement of a function G(θ) that is the actual function J(θ)
perturbed by a noise N(θ): [42]

G(θ) = J(θ) +N(θ)

=

T∑

t=1

r (f (st−1,ut−1)) .
(10.4)

Where Kt−1 = π
(
st−1, f

t
ext | θ

)
and f text is chosen from a random episode of

interaction data. We would like to maximize its expectation:

E[G(θ)] = E[J(θ) +N(θ)]

= E[J(θ)] + E[N(θ)]

= J(θ) + E[N(θ)] .

(10.5)

With the assumption that E[N(θ)] = 0 thereby maximizing E[G(θ)] is equivalent
to maximizing J(θ). In order to search for the optimal policy π⋆ with parameters
θ⋆, we utilize the evolutionary optimization strategy, CMA-ES.

The CMA-ES is an evolutionary strategy designed to solve non-convex and non-
linear black-box optimization problems in continuous domain [75]. It is one of
the state-of-the-art methods in evolutionary computation, specifically for continu-
ous optimization. CMA-ES uses a multivariate Gaussian distributionN

(
µd,Σd

)
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where µd ∈ Rd,Σd ∈ Rd×d is a positive definite symmetric matrix and d is the
dimension of a solution vector. CMA-ES solves the maximization of an object-
ive function J(θ) as the optimization of the noisy function G(θ) = J(θ) +N(θ)
whereN(θ) is the noise [75, 42]. This facilitates maximizing the objective without
computing or estimating it explicitly. CMA-ES performs four steps at each gener-
ation i:

1. sample β new candidates according to a multivariate Gaussian distribution
of mean µd

i and covariance Σd
i.

2. rank the β sampled candidates based on their noisy performance over the
objective G(θi).

3. compute µd
i+1 by averaging n best candidates: µd

i+1 =
1
n

∑n
i=1 θi.

4. updates the covariance matrix to match the distribution of the µd best can-
didates identified.

One key advantage of this ranking-based approach is it reduces the impact of noise
on the performance function. This is because the solution is looking for the β
best candidates and errors can only happen at the boundaries between the low-
performing and high-performing solutions. Even if a candidate is misclassified
because of the noise, this error is smoothed out by taking the average in step 3 to
calculate µd

i+1 [96].

By combining the GP-based model learning, policy evaluation based on the noisy
function (10.4) (10.5), and CMA-ES based policy search forms a MBRL based
VILC framework DEVILC as shown in Fig. 10.1. The DEVILC method altern-
ates episodically between the robot interacting with the real system and learning
the impedance adaptation policy (which also includes updating the Cartesian im-
pedance model). The DEVILC Algorithm is shown in Algorithm 5.

10.3 Evaluation
We evaluated the proposed DEVILC framework using a couple of simulation setups
in addition to a real experiment. The focus of our evaluation is on demonstrating
the effectiveness of the proposed approach to learning suitable VIC policy for ro-
botic manipulation tasks. For evaluation, depending on the task, we consider the
adaptation of the stiffness along the specific DoF of the robot manipulator while
keeping the stiffness values along the other DoFs constant. GP models are used to
learn the system dynamics, while a NN is used as the policy. The input state space
for the GP model contains the Cartesian position and velocity. The input action
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Algorithm 5 DEVILC
Given a cost function C, initialise an NN policy π .
Populate dataset D using a VIC with random K values for Ni initial trials .
while task ̸= solved do

Learn the GP dynamics model f on D .
θ∗ = argmaxθ E[G(θ)] (Section 10.2) .
for i← 1 to TaskHorizon do

Ki = π
(
si, f

i
ext | θ⋆

)
.

si+1, f
i+1

ext = execute VIC with Ki ((6.6)) .
D = D ∪

{
si+1, f

i+1
ext,Ki

}

end
end

space for the GP models contains the external forces acting on the end-effector
(fext) and the stiffness values (K). Given these inputs GP model predicts the next
Cartesian pose (x) and velocity (ẋ) of the robot end-effector. The input state space
of the NN policy contains the x, ẋ, and fext. The output of this NN policy is the
predicted stiffness values. Dimensions of all these state and action spaces for the
GP model and NN policy are dependent on the number of DoFs considered for the
task. We use a GP structure with an exponential kernel with automatic relevance
determination [224]. The NN policy in all the experiments contained one hidden
layer with 32 neurons. For the CMA-ES optimizer we utilize BIPOP-CMA-ES
with restarts [73] in combination with UH-CMA-ES for noisy functions [74] as
proposed in [42].

The values for the damping component are chosen as D = 2
√
K. he mass matrix

M is kept constant to avoid stability issues during the experiment. The sampling
frequency which is equivalent to the VIC frequency is set as 10Hz for all the
tasks. For all the experiments 10 learning trials/episodes were conducted altern-
ating between model learning and policy optimization. For the real-world experi-
ments, the interaction data was downsampled to 20 data points per episode due to
the low computational speed of the GP inference. For all chosen tasks, the require-
ments can be defined as achieving a desired goal pose for the robot end-effector.
However, the robot is also required to be highly compliant whenever it is possible
or be stiff only when it is necessary. This is achieved by using a weighted reward
in (10.2) for the task requirement (first term) and maximizing compliance (second
term). In the considered tasks, we are, essentially, trying for a trade-off between
position control and compliance. The cost function for each task has different val-
ues of the gain matrices Qt and Rt in (10.2), defining the desired trade-off between
position accuracy and compliant behavior. The values of these gain matrices are
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(a) (b) (c) (d)

Figure 10.2: Simulation tasks, (a) Reacting to falling object: The robot manipulator with
cup end-effector should hold a Cartesian position while smoothly catching a ball of weight
0.5 g falling into the cup. (b) Pushing task: A robot manipulator with a gripper end-
effector should push an object over a rigid surface with friction to a target position. The
experimental tasks, (c) water filling: robot end-effector is fitted with an empty cup to
which water is filled by a person, (d) water pouring: robot end-effector is fitted with a cup
filled with water and the robot transfers this water to another cup.

hand-tuned for each task and kept constant during the learning process. In all the
results force is represented in Newtons and distance in cm.

10.3.1 Simulations

Two simulation experiments were conducted to evaluate the effectiveness of the
proposed approach on learning VILC. We chose two manipulation tasks with dif-
ferent dynamics, (i) catching falling objects and (ii) pushing an object along a
surface. In the first task, the robot has to adapt its impedance to optimally react to
the impact of the falling object and also to carry the additional weight added by
the object. Whereas in the pushing task the robot has to adapt the impedance ne-
cessary to overcome the inertia of the object and the frictional forces and be more
compliant towards the end of the task.

Reacting to falling object: In the task (Fig. 10.2 (a)), the robot manipulator
is fitted with a tray as the end-effector and an object is dropped to the tray first
and then removed from the tray after one second. The robot is initialized to be
highly compliant at-rest position and is expected to hold the pose when the object
is dropped to and removed from the tray. The robot is additionally expected to be
as compliant as possible and be stiff only when necessary as in (10.2). Multiple
trials were performed with the object being dropped from different heights to the
cup, resulting in robot behavior as shown in Fig. 10.3. The policy is optimized
such that the deviation of the robot from its initial position is minimal while being
as compliant as possible in reacting to the falling object. We only consider stiffness
adaptation along the z direction for this task and the stiffness values along all other
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Figure 10.3: Reacting to falling object: the robot is expected to have minimal deviation
∆pos from the initial pose in z direction. The results shown here are the mean values over
10 trials where the objects are dropped from randomly chosen heights between (0.5−1.0)
m.

DoFs are kept unchanged during the learning. The result shows that the robot is at
rest with low stiffness and the stiffnessKz is increased instantaneously in response
to the impact force fext and further increases in response to deviation from the
initial position. Upon removing the object, the stiffness is decreased enough to
drive the robot back to the initial position.

Pushing task: In this task (Fig. 10.2 (b)), the robot should push an object placed
on a table with friction to a target position. The policy is learned to adapt the
stiffness in the pushing directions (x and y) to push the object to the target while
stiff only when necessary and being compliant otherwise. The stiffness along other
DoFs are kept constant. The robot is initialized with low stiffness values along the
pushing directions. The results in Fig. 10.4 show that the stiffness is initially
increased to larger values as expected along the pushing directions to overcome
the inertia of the object. The stiffness is decreased when the object is close to the
target position, executing high compliance. The robot learned to adapt the stiffness
profiles in a suitable way to push the object to the target with high accuracy while
being stiff only when necessary.

10.3.2 Real-world Experiments

Two experiments were conducted to evaluate the effectiveness of the proposed ap-
proach in real-world robotic tasks demanding impedance adaptation. We chose
the water pouring and filling task with the Franka-Emika Panda Robot manipu-
lator. This is inspired by human manipulation behavior, we adapt our arm stiffness
continuously in both pouring and fillings tasks to be efficient. For both filling and
poring tasks, the cost function is described as reaching a target pose while being as
compliant as in(10.2). For both tasks, we consider only stiffness adaptation along
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Figure 10.4: Pushing task: the robot is tasked to push an object on the table to 10 cm in
x and y directions at t = 0.5 s. The results shown here are over 10 trials with objects of
random weights between (0.5− 1.0).

the z axis while maintaining a constant stiffness along all other DoFs.

Water Filling: The experimental setup is shown in Fig. 10.2 (c) where the robot
end-effector is fitted with an empty cup and water is poured into the cup. The
robot is initialized with a low stiffness value to be highly compliant at the initial
position and is expected to react optimally while the water is poured into the cup.
The optimization objective of the form (10.2) is defined to hold the initial pose
by continuously increasing the stiffness enough to hold the extra weights of the
water being added to the cup. Results in Fig. 10.5 show that the learned VILC
continuously increases the robot stiffness increases while water is added to the cup
allowing only a small deviation of only 3mm from the desired pose. The stiffness
profile generated by the VILC during the tasks appears to be very well correlated
with the sensed external force on the end-effector imparted by the water.

Water Pouring: The experimental setup for the task is shown in Fig. 10.2 (d)
where the robot end-effector is fitted with a cup filled with water. The VIC is
initialized with the right amount of compliance such that the robot hold the cup
filled with water at the initial pose. The pouring task is defined as the robot pouring
the water into a second cup placed on the table. The robot movement for the
pouring task is defined as reaching a target end-effector pose such that the water
is entirely transferred to the second cup. The optimization objective is to reach
the target pose while being as compliant as possible. The robot is expected to
learn to be less stiff as the water is transferred to the second cup. Results in Fig.
10.6 show that the learned VILC increases the robot stiffness in relation to the
increased sensed forces during the first phase of the task where the cup is tilted
to start transferring the water to the second cup. In the second phase of the task,
(i.e once the water starts to flow into the second cup), the stiffness is decreased in
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Figure 10.5: Water filing: water is filled into a cup fitted to the robot end-effector and
the robot is expected to have a minimal deviation from the initial pose while executing
compliance. The stiffness is varied only z direction and is kept constant in along all other
DoF, all the values shown here are along z direction.

relation to the decreased weight of the water robot has to hold. Overall the learned
VILC policy is able to reach the target pose while being compliant.

10.4 Discussion
The VILC approach presented in the work is evaluated on different tasks in Sec-
tion 10.3 to learn impedance adaptation strategies. The optimization objective in
all experiments has been to maintain a high level of compliance in general while
being stiff only when demanded by the task. In all the tasks, the task requirement is
defined by achieving a desired goal pose for the robot end-effector. The perform-
ance of the impedance adaptation strategy is evaluated based on how well it is able
to achieve this requirement while being maximally compliant. In the case of tasks
demanding positional accuracy, this means a suitable trade-off between accuracy
and compliance. But IC under stable behavior allows the robot to asymptotically
converge to the target pose. This property allows the learning methods to suitably
vary the impedance to be maximally compliant without necessarily sacrificing the
positional accuracy, especially in tasks that don’t demand strict real-time traject-
ory tracking. Whereas optimizing impedance profiles to be maximally compliant
allows robots to be more dexterous, safe, and energy efficient. The NN policy
obtained using CMA-ES based optimization could adapt the stiffness profile in re-
sponse to external forces and deviations from the target pose while maintaining a
high level of compliance whenever possible.

Compared to the existing approach, the main advantage of our VILC approach is
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Figure 10.6: Water pouring: the robot is tasked to pour the water into a cup placed on the
table. The pouring task is defined by commanding the robot to move to a pre-defined goal
pose. The stiffness is varied only z direction and is kept constant in along all other DoF,
all the values shown here are along z direction.

data efficiency as the stiffness adaptation policy is learned from a handful of tri-
als without any constraint on the optimization objective and policy structure. The
existing VILC methods with comparable data-efficiency are only PILCO based
approaches and PI2 [34]. While the PILCO-based approaches in [10, 137] of-
fer a highly data-efficient approach is limited by the type of cost functions and
a differentiable policy and higher computational effort on optimizing the policy.
Whereas, the proposed approach is generalizable to any policy and cost structure.
Whereas PI2 approach in [34] is not directly applicable to the force-based VIC
considered in this work. CMA-ES based policy optimization is shown to achieve
similar performance to PILCO and PI2 in robotic manipulation tasks while be-
ing more data-efficient [42]. Because of these reasons, we have not provided any
comparison with these approaches in this work. Even though there are other RL
approaches using complex dynamical models such as NN as discussed in Chapter
7, they pose challenges to real-world applications due to low data efficiency. The
learning progress of the proposed DEVILC approach in Fig. 10.7 shows that the
learning saturates within 10 iterations providing a local optimal solution of the
impedance adaptations strategy.

We have not discussed the aspects of safety/stability in this work. We assumed
a stiffness parameter range learned is with the stable region for the underlying
VIC. Guaranteeing stability properties to the resulting VILC is challenging as
guarantees have to be provided in real-time in an online fashion as the stiffness
values predicted by the policy are state-dependent. The approach proposed in [97]
by designing a quadratic Lyapunov candidate function could be coupled with GP
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Figure 10.7: Mean cumulative cost after each learning iteration for all tasks (a) - (d) in
Fig. 10.2. The values are normalized between [0,1] for each task.

models to provide probabilistic stability guarantees similar to safety guarantees in
[108]. GP models allow for providing such guarantees on safety and stability by
using additional optimization constraints [8]. But this needs further research in
the case of VILC for providing closed-loop safety and stability guarantees during
learning and for the final policy. The safe learning approaches described in [8]
are interesting to explore for model-based VILC. One feasible approach in this
direction could be to provide probabilistic safety guarantees using CLF for stability
and CBF as a safety filter to solve constrained optimization problems over the GP
model [108].

The strength of the proposed approach relies on a trade-off between high data
efficiency and scalability to complex problems demanding richer model represent-
ations. GP models have high data efficiency [53], providing a reliable estimate
of model uncertainties which is very suitable for model-based policy optimization
[53] and MBRL in general. GP have limited ability in modeling complex dynam-
ics and is not well suited for highly noisy data. Additionally, GP models are not
good at representing non-smooth dynamics such as contact dynamics or human-
robot-interaction dynamics. This effect was observed in task (b) where the robot
is pushing an object to a goal position. Here the robot end effector is prone to lose
contact with the object during the task and making it difficult for the GP model to
learn the dynamics. This results in slightly noisy impedance profiles in Fig. 10.4.
GP models also poses challenges in computational effort when the dataset is large.
Similarly, CMA-ES limits the size of the policy parameter size for computational
speed, which is a common drawback of most evolutionary algorithms. More scal-
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able model-based VILC approaches can be developed using DNN models and RL.
Still, they have much higher sample complexity and low scope of providing safety
guarantees.

10.5 Conclusions
In this chapter, we presented DEVILC, a data-efficient model-based VILC ap-
proach to learning compliant robotic manipulations skills. The Cartesian imped-
ance dynamics of the robot controlled using a VIC is learned using GP models.
The learned dynamics model was coupled with CMA-ES optimization strategy to
find a suitable impedance adaptation policy for a task. The optimization objective
was designed such that the robot should be compliant unless it is necessary to be
stiff, which is fundamental to how humans manipulate objects. We evaluated our
approach to simplified robotic manipulation tasks in simulations and experiments.
The impedance adaptation policy optimized exhibited the desired compliance be-
havior by being highly compliant unless acted upon by an external force or the
robot pose deviated from the desired pose. In future work, we aim to extend this
approach to incorporate safety and stability constraints.
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Chapter 11

Deep Model Predictive Variable
Impedance Control

This chapter is based on the following paper under review (publicly available on
arxiv currently [9]):

Anand, A. S., Abu-Dakka, F. J., and Gravdahl, J. T. (2023). Deep Model Predictive
Variable Impedance Control, Journal of Robotics and Autonomous Systems.

11.1 Introduction
In general, the control policies obtained using Reinforcement Learning (RL) are
optimal for particular a task or a task scenario. This depends on the state-action
pairs it explored during the learning phase. Such task-specific control policies are
not necessarily transferable to different tasks or task scenarios. Learning control
policies that can be easily transferred to different tasks could be very useful in ro-
botics as it could enable robots to perform multiple tasks without having to learn
policies specific to each task. Although there are approaches available to tackle
this issue of transferability in RL such as in a hierarchical RL setup, this remains
a major drawback in applying RL in robots. This is a major drawback for all
the existing RL-based Variable Impedance Learning Control (VILC) approaches
provided in Chapter 7 and the VILC approaches presented in the previous two
chapters. Another important insight from the previous two chapters is on the lim-
itations of Gaussian Processes (GP) to learn the Cartesian impedance model of the
robot as they do not scale well with high-dimensional data and complex dynamics.
Alternatively, such complex dynamics can be estimated from data using a Neural
Network (NN), but they suffer from over-fitting and do not quantify uncertainties
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Table 11.1: Comparison among state-of-the-art of VILC approaches

Data-
efficiency

Task
transferability

Model-based/
Model-free

Computation
time

force-/position-
based VIC

[144, 20, 30,
215] low - model-free low force
[21, 110] low - model-free low position
[34] high - model-free low force
[137, 179] high - model-based high position
[10] high - model-based high force
Our MPVIC high ✓ model-based high force

unlike GP-based models. Probabilistic Ensemble NN (PENN) models introduced
in [51] overcome these limitations of NNs, offering a way to quantify both aleat-
oric and epistemic uncertainties.

In this chapter, we propose a deep Model Predictive Variable Impedance Control
(MPVIC) framework, where a NN based Cartesian impedance model of the robotic
manipulator is used in a Cross Entropy Method (CEM) based MPC for online
adaptation of the impedance parameters of a VIC. This deep MPVIC framework
is utilized to learn impedance adaptation strategy for various robotic manipulation
tasks by specifying a suitable cost function. The main contributions of this chapter
are:

• a novel VIC framework, we call it deep MPVIC. It combines a CEM-based
MPC with PENN dynamical model for compliant robotic manipulation of-
fering the following properties.

– transferability: the key property of the deep MPVIC framework is that
it facilitates the transferability of the impedance adaptation strategy
between different manipulation tasks without any need for relearning
or fine-tuning.

– data efficiency and scalability: the proposed framework can learn VIC
from fewer data samples while it is scalable to complex manipulation
tasks.

• an uncertainty-based exploration scheme is integrated into the proposed frame-
work to facilitate learning a generalized Cartesian impedance model of the
robot in a data-efficient manner.

• an extensive evaluation in simulation and real setups, in addition to a com-
parison between our approach and the state-of-the-art model-free and model-
based RL approaches on transferability and performance.
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A comparison between existing RL-based VILC approaches is summarised in
Table 11.1.

The rest of the chapter is organized as follows. Section 11.2 describes the ex-
isting references relevant to our work. Section 11.3 presents the details of the
deep MPVIC framework proposed. Section 11.4 presents the evaluation of our
approach on simulation and experimental setups using Franka Panda robotic ma-
nipulator. Detailed discussion on the results and the limitations of our approach is
presented in Section 11.5 and conclusion in Section 11.6.

11.2 Related Work
All the relevant RL-based VILC approaches are presented in Section 7.3. In this
section, we discuss three relevant works using MPC to optimize the robot im-
pedance for manipulation tasks. In literature, MPC is used in robotic interaction
control for manipulations tasks [151, 66], where MPC optimizes the robot control
input but not the stiffness itself, while in our approach the MPC adapt the stiff-
ness values directly. It is possible to couple our deep MPVIC with the approach in
[151] where it can be used as a low-level optimizer to solve additional constraints.
Haninger et al. [71] used an MPC scheme with GP models for human-robot inter-
action tasks. The MPC scheme used could optimize the impedance parameters for
an admittance controller, but it is task-specific as the human force model is estim-
ated from demonstrations as a function of robot states. Using GP models limits the
complexity and generalizability of the model as pointed out by the authors in [71].
Unlike [71], we optimize the impedance parameters for a force-based VIC in our
deep MPVIC framework using PENN to model the Cartesian impedance behavior
of the robot manipulator.

11.3 Deep MPVIC Framework
The deep MPVIC framework is formulated to optimize a VIC utilizing a learned
PENN based Cartesian impedance model of the robot manipulator within a CEM
based MPC.

11.3.1 Learning Cartesian Impedance Model

A Cartesian impedance model of the robot manipulator system controlled using a
VIC is learned as a PENN model in an MBRL setting alternating between model
learning and CEM based exploration strategy. The Cartesian impedance model
represents the environment-robot dynamic relationship in (6.5). We define the state
st as [xt, ẋt], and action ut as [f text, Kt]. Kt is given by the CEM-based MPC
scheme. f text is the sensed external force acting on the robot at time instant t,
this is an uncertain external factor the VIC needs to compensate for. The damping
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Figure 11.1: Block diagram of the deep MPVIC with PENN Cartesian impedance model
and the proposed CEM-based MPC scheme for impedance adaptation. This impedance
adaptation scheme along with the VIC forms the deep MPVIC framework. The task ob-
jective is represented by (11.2).

parameters are chosen according to the critical damping condition, D = 2
√
K.

To learn a generalized model, an exploration strategy is designed to minimize the
epistemic uncertainty of the model across the entire state space. The exploration
strategy chooses the actions which maximize the epistemic uncertainty estimate
from PENN. Given a PENN model f̃ of B bootstrap models f̃b, the uncertainty of
the model prediction at the current state can be estimated by calculating the model
variance [193], ρ = σ2, given by

ρ(s, u) =
1

B − 1

B∑

b=1

(
f̃b(s, u)− f̃(s, u)

)2
. (11.1)

The designed exploration scheme will excite the system in areas in its state space
where the model is more uncertain, thereby maximizing the information gained
during exploration. The exploration scheme relies on a control strategy that chooses
the actions that provide the highest uncertainty estimate from any given state ac-
cording to (11.1). We employ a CEM-based MPC strategy to optimize for the
actions that will excite the system to the most uncertain areas. In order to achieve
this we define the MPC cost to maximize the variance of the outputs from all
the individual NN models in the PENN, Cρ = ρ(st, ut). At any given state st,
CEM-based MPC scheme works by (i) sampling a set of actions from the defined
time-evolving distribution, (ii) sorting the actions according to the uncertainty es-
timate in (11.1), (iii) apply the action u∗t with the highest value of ρ, and (iv) update
the Gaussian distribution. This exploration strategy enables learning a generalized

140



11.3. Deep MPVIC Framework

Algorithm 6 Learning a generalized Cartesian impedance model

Initialize dynamics model f̃ .
Populate dataset D using random controller for n initial trials .
for k ← 1 to K Trials do

Train dynamics model f̃ on D .
for t← 1 to TaskHorizon do

for Actions ut:t+T ∼CEM(·), 1 to CEM Iterations do
Evaluate and sort the actions by based on the uncertainty estimate in
(11.1) .

end
Execute first action u∗t from optimal action sequence u∗t:t+T .
Record outcome: D ← D ∪ (st, ut, st+1) .

end
end

model in a sample-efficient way. The model learning approach is summarized in
Algorithm 6. Learning a model with low uncertainty over the entire state-space
facilitates reusing the model for different tasks.

A free-space unconstrained manipulation task where the robot has to interact with
its external environment can be described by a scenario where a robot in its cur-
rent state st under the influence of an external force or sensed force ft provided
with a goal state srt and a control input ut transitions to the next state st+1. The
dynamics model shown in Fig. 11.1 represents a generalized Cartesian behavior
of an unconstrained end-effector of a robot manipulator controlled by a VIC.

11.3.2 Impedance Adaptation

The compliant behavior of the robot end-effector can be optimized by designing
a suitable impedance adaptation strategy. The Cartesian impedance model of the
robotic system f̃ can be utilized in a MPC framework to adapt the impedance para-
meters of the VIC by designing a suitable optimization objective as shown in Fig.
11.1. The MPC scheme uses the prediction of the PENN model f̃ to plan action
trajectories yielding the highest reward. At every time-step, an MPC with a horizon
length of n, samples the current state and optimizes a control trajectory ut:t+n for
n future time-steps and applies the first control input, ut, to the system. The action
optimal action sequence is chosen by: argminut:t+n

∑t+n
i=t Ef̃ [C (si, ui)], where

C is the cost function. A gradient-free optimization method, CEM is used in an
MPC setting to optimize the controller over the PENN model. CEM samples ac-
tions from a distribution closer to previous action samples achieved the minimum
cost.
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Algorithm 7 deep MPVIC

Given a cost function C and a PENN dynamics model f̃ .
MPC based optimization
for t← 1 to TaskHorizon do

CEM-based optimization
for i← 1 to CEM Iterations do

Generate N samples .
Sample N stiffness profiles Kt:t+T ∼ CEM(·) .
Evaluate samples .
Calculate C (11.2) for all Kt:t+T on f̃ with actions [Kt:t+T , ft, s

r
t ] using

trajectory sampling (Section 11.3.2) .
Sort stiffness profiles K based on C.
Update CEM(·) distribution .
Choose optimal K∗ where C is minimum .

end
Adapt the impedance parameters of VIC .
Execute first action K∗

t from optimal action sequence K∗
t:t+T .

end

In order to calculate the cumulative cost of the action trajectories, we use particle-
based propagation as they are specifically suited for PENN dynamics models, [51].
P particles are created from the current state, spt=0 = s0∀p in order to predict
the state trajectories using particle-based propagation. Each of these particles are
propagated along the PENN model as, spt+1 ∼ f̃b(p,t) (spt , ut) based on a bootstrap
b(p, t) in {1, . . . , B}. We keep the particle bootstrap index constant during a trial
as it allows us to separate between aleatoric and epistemic uncertainties [54]. The
aleatoric uncertainty can be quantified using the average variance of particles of the
same bootstrap whereas epistemic uncertainty can be quantified using the variance
of the average of particles of the same bootstrap indexes.

The proposed deep MPVIC approach utilizing PENN models is described in Al-
gorithm 7. The objective of the impedance adaptation strategy is to achieve the ma-
nipulation task requirement while executing a desired level of compliance. A cost
function describing the task objective and the compliance objective is designed for
the CEM-based MPC as,

C (st, ut) = δsTt Qtδst + λ(Kt)
TRtλ(Kt) , (11.2)

where λ(Kt) are the eigenvalues of the stiffness matrix represented in a vector
form, δst = srt − st and Qt and Rt are diagonal gain matrices for task and com-
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Figure 11.2: Three simulation tasks, (a) Cartesian compliance task: the robot manipulator
end-effector should hold its pose in the Cartesian space compliantly while reacting to
the external forces acting on it. (b) Reacting to falling object: The robot manipulator
with cup end-effector should hold a Cartesian position while smoothly catching a ball of
weight 0.5g falling into the cup. (c) Pushing task: A robot manipulator with a gripper
end-effector should push an object over a rigid surface with friction to a target position.
Two experimental tasks, (d) Reacting to falling objects: robot end-effector is fitted with a
tray, where objects of different weights are dropped into the tray at regular intervals. (e)
Drawer opening task: Robot manipulator opening a table drawer.

pliance components respectively. These gain matrices can be either constant or
can be a function of the robot’s states. The MPC output behavior will be tightly
coupled with the gain matrices. In case of reference tracking tasks, we chose Qt

to be a linear function of ∥δst∥ so that MPC will penalize larger deviations from
target more than small deviations.

11.4 Evaluation
For evaluation, we consider only the stiffness adaptation along the x, y, z direc-
tions of the robot manipulator while keeping the stiffness values along orientations
constant. However, before evaluation, we first need to learn the Cartesian imped-
ance model of the robot manipulator. To do so, a free-space goal-reaching task
with random external force is used to train the PENN model with ensembles of 5
NN with 3 hidden layers, each with 256 neurons. The network structure is chosen
based on one-step prediction accuracy empirically over a pre-collected dataset. Its
state space is chosen as s = [x, y, z, ẋ, ẏ, ż], while the sensed external forces are
denoted as f = [fxext, f

y
ext, f

z
ext]. s

r = [xr, yr, zr] represents the target positions
in x, y and z directions, K denotes the Cartesian stiffness matrix. The damping
matrix is chosen as D = 2

√
K. The mass matrix M is kept constant to avoid

stability issues during the experiment. CEM is used to optimize the exploration
strategy based on uncertainty maximization. The control frequency for low-level
VIC is set at 100Hz.

For learning the model, the robot manipulator is excited at every time-step with
fext ∼ U(−20, 20) N and srt , where xrt , y

r
t , z

r
t ∼ U(−10, 10) cm. The gain
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matrices Q and R are kept constants for a specific task. However, while transfer-
ring to a new task, they can be scaled using scalar values αQ and αR as Qnew =
Q∗αQ and Rnew = R∗αR respectively to trade-off between compliance and ac-
curacy depending on the task requirement. The model was trained for 100 000
time-steps with a control frequency of 10Hz which is equivalent to 2.77 h of
real-world training. For experiments, a prior model trained in simulations over
50 000 time-steps is fine-tuned in the experimental scenario instead of training
from scratch. The model was fine-tuned for 10 000 time-steps which is equivalent
to 33.33 min of real-world training. Similar to in simulations random external
forces were manually applied to the robot end-effector using ropes attached to the
gripper.

After learning the Cartesian impedance model of the manipulator, to evaluate the
effectiveness of the proposed deep MPVIC, three different simulation tasks and
two experimental tasks using a Franka Emika Panda manipulator are designed.
Tasks requiring real-time stiffness adaptation are suitable for evaluating the stiff-
ness profile generated by the deep MPVIC controller. For all chosen tasks, the
requirements can be defined as achieving a desired goal pose for the robot end-
effector. However, the robot is also required to be highly compliant whenever it is
possible or be stiff only when it is necessary. This is achieved by using a weighted
reward in (11.2) for the task requirement (first term) and maximizing compliance
(second term). In the considered tasks, we are, essentially, trying for a trade-off
between position control and compliance.

The three different simulation tasks are modeled in the MuJoCo physics simula-
tion framework [212], see Fig. 11.2 (a), (b), and (c). The two real experimental
scenarios are shown in Fig. 11.2 (d) and (e). The aleatoric uncertainties in these
robotic tasks is majorly due to measurement noise, whereas the epistemic uncer-
tainty we target during exploration arises from not having enough data to model
the Cartesian impedance dynamics in the system state-space we are interested in.
In simulations, the population size for CEM is chosen as 200 and elite size of 40
and learning rate of 0.1 and number of CEM iterations as 10. The MPC planning
horizon is set to 5. While for the real experiments, the control frequency is set as
5Hz. The CEM is chosen as 64 and elite size of 32 and learning rate of 0.5, number
of CEM iterations as 5 and MPC planning horizon is set as 5. In all the simulations
and experiments the model described here is used without any further fine-tuning.
Here we consider only fixed goal states, therefore srt is a constant value, sr for all
timesteps.
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Figure 11.3: Simulations: (a) and (b), (Cartesian compliance behavior), results from 20
trials where a sinusoidal force profile with amplitude of 10 N with random noise of (±5)
N is applied to the robot end-effector. (a) High compliant behavior optimized using a cost
function with larger compliance factor αR = 0.1, (b) Low compliant behavior optimized
using a cost function with αR = 0.01. (c), (Reacting to falling objects) The robot is
initialized at a rest position being very compliant withK → 0. Objects of different weights
are dropped at regular intervals of 2s, from random heights between (0.5−1.0) m. Results
shown are here are over 10 such random trials with αR = 0.1. (d), (Pushing task) Robot
with a gripper end-effector is at rest with K → 0. At t = 1 s, it is commanded to push
an object to a target position given by ∆pos of 10 cm in x and y directions (shown in solid
black line) on a surface. The results shown here are over 10 trials with objects of random
weights between (0.5− 3.0) kg and αR = 0.1.

11.4.1 Simulations

Cartesian compliant behavior: In this task (Fig. 11.2 (a)), the robot is expected
to behave highly compliant to hold its pose allowing only small deviations. Upon
applying an external force to the robot’s end-effector, it is expected to counter the
force by adapting its stiffness such that it achieves a new rest position close to
the initial position. This task is ideal to test the impedance adaptation strategy as
it needs to increase the stiffness in case of large external forces and larger devi-
ation from its initial position. Two scenarios with different compliance behavior
are evaluated here by changing the compliance maximization component in the
cost function. The results in Fig. 11.3 (a) and (b) show that the robot which is
highly compliant at rest adapts the stiffness in response to the external forces and
deviation from the rest position. Having a higher value of compliance factor αR

allows for larger deviations from the initial position when applied with an external
force while having a lower αR limits this deviation. It is also noted that higher αR

results in noisy stiffness adaption behavior as larger ∆pos (the deviation from the
desired pose) creates larger gradients in the cost function.

Reacting to falling object: In this task (Fig. 11.2 (b)), a robot with a cup end-
effector that is highly compliant at rest position is expected to react optimally to
objects falling into the cup end-effector. Four different objects are dropped from
different heights to the cup in different trials resulting in large variations in the
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impact force. The desired behavior of the robot is not to deviate largely from the
rest position while reacting to falling objects. The robot is additionally expected
to be as compliant as possible and be stiff only when necessary as in (11.2). The
resulting robot behavior is shown in Fig. 11.3 (c), which shows a sudden increase
inKz upon a spike in fext in z direction induced by the impact of the falling object.
The robot increases its stiffness every time a new object is falling into the cup and
maintains a higher level of stiffness during the later phases to hold the robot back
to a new rest position.

Pushing task: In this task (Fig. 11.2 (c)), the robot is expected to push a cube-
shaped object to a target position on a surface with friction. Here, Kz is set con-
stant as 1000 as the robot is not expected to move in z direction. Stiffness in x and
y directions are optimized to push the object to the target while being compliant
and stiff only when necessary. The results in Fig. 11.3 (d) show that the stiffness
is increased to its upper limit in the pushing directions initially to overcome the
static friction. Upon reaching close to the target position the stiffness is decreased
to be more compliant.

11.4.2 Comparison with Model-free/based RL:

The deep MPVIC is compared with RL based VILC approaches for their transfer-
ability between tasks which is the main contribution of this work while also com-
paring their performance. Specifically, in these comparisons, we utilize the PENN
model trained with curiosity driven exploration with our deep MPVIC for different
tasks without retraining or fine-tuning the model. This enables the deep MPVIC
to generalize over multiple tasks where the RL approaches are task-specific.

Model-free RL approaches have been successfully used in VILC for robotic ma-
nipulation tasks in multiple previous works [144, 30, 215]. Out of which we have
chosen the off-policy RL algorithm SAC because of its high sample efficiency. All
the three simulation tasks shown in Fig. 11.2 are trained using SAC implementa-
tion from stable-baselines [81] for 500 000 time-steps.

In addition, we compare our approach with the MBRL approach PETS [51]. In
the case of PETS, the simulation tasks are trained for 100 000 time-steps. The
PETS policies were trained with the same CEM parameters and cost functions
used for the corresponding tasks in our deep MPVIC. The performance and the
transferability of the learned policies in both of these approaches were compared
with our MPVIC approach in Fig. 11.6.

Performance: The resulting robot behavior on applying the learned model-free
RL and PETS policies on the three simulation tasks are shown in Fig. 11.4 and Fig.
11.5 respectively. We compare the performance in terms of the reward obtained
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Figure 11.4: Corresponding results from Model-free RL policy for the simulation tasks
shown in Fig. 11.3
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Figure 11.5: Corresponding results from PETS policy for the simulation tasks shown in
Fig. 11.3

by the final policies from each of the approaches on the three simulation tasks. We
don’t compare the reward during the learning process as the MPC scheme does
not have any policy learning process. The rewards obtained while applying the
learned policies are shown in Fig. 11.6. Deep MPVIC performed better on task
a, the performance was similar on task b and model-free RL and PETS policies
performed better on the task c by minimizing the stiffness more effectively. The
performance of MPVIC is lower in task c as the model is learned on task a which
has different dynamics. The key difference between the dynamics of task a and
task c is the robot movement is unconstrained in task a, whereas in task c it is
constrained by the object. That means the model can not accurately predict the
dynamics as in other unconstrained tasks.

Task transferability: In order to evaluate how efficiently the policy learned on
a task can be transferred to another task, the model-free RL and PETS policies
learned on the simulation task a was tested on task b and task c without retraining
the policy/model. The performance of the transferred model-free RL and PETS
policies on task b and c were compared with the corresponding performance of
deep MPVIC using the PENN model trained on task a. Figure 11.6-right illustrates
the transferability of our deep MPVIC in comparison with RL-based approaches,
where deep MPVIC demonstrates the major advantage (green bars). Further, the
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Figure 11.6: (left) Comparing the normalized value of the reward (mean value over 20
trials) obtained using Model-free RL, PETS, and our MPVIC framework on all the three
simulation tasks. (right) Comparing the transferability of the Model-free RL and PETS
based policy with our MPVIC framework based on the normalized value of the mean
reward over 20 trials.

model-free RL and PETS policies have been retrained to achieve similar perform-
ance as our deep MPVIC. A comparison of the additional data samples/time steps
required for retraining the models/policies for the tasks are shown in Table 11.2.
For example, the model-free RL policy trained on task a needed additional training
on task b with 38.6 × 105 data samples to learn the task b. Whereas MPVIC did
not need any training at all (shown as 0 training samples in the table). The number
of additional training samples required is correlated with the computational time.
While RL approaches demand additional computational/training time to perform
a new task, the proposed deep MPVIC can be deployed without any additional
computational effort.

Table 11.2: Comparison on transferability between tasks

Training samples (×105)
Transferability to

Task a Task b Task c
Model-free RL 50 38.6 27.95

PETS 10 3.2 3.9

Our MPVIC 10 0 0

11.4.3 Real-world Experiments

Reacting to falling objects: The experimental setup is shown in Fig. 11.2 (d)
where the robot end-effector is fitted with a tray and four objects of different
weights are added to the tray at regular intervals. The optimization objective here
is similar to the simulation task (c), the robot is expected to hold a pose while
being highly compliant and becoming stiffer with extra weights being introduced
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Figure 11.7: Experiments: (left) task (e), Robot manipulator opening a table drawer.
(right) task (d) The robot manipulator with a tray holding its pose while objects are dropped
to the tray.

to the tray. In Fig. 11.7 (right-column) the robot with a very low initial stiffness
increases the stiffness every instant a new object is introduced to the tray in order
to maintain it at the desired pose.

Opening a drawer: The pulling task is similar but in the opposite direction of
the pushing task. The experimental setup is shown in Fig. 11.2 (e) where the ro-
bot is opening a table drawer to a desired position (15 cm in x direction) in the
Cartesian space. The results shown in Fig. 11.7 (left-column), show the imped-
ance adaptation behavior similar to the pushing task in the simulation where the
robot increases its stiffness initially to overcome the inertia of the drawer and then
decreased once the drawer starts to move closer to the desired position.

11.5 Discussion

11.5.1 Variable Impedance Learning Control

The deep MPVIC-based approach presented in the work is evaluated over different
tasks in Section 11.4 for optimizing impedance adaptation strategies. The object-
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ive in all experiments has been consistent in having high stiffness values for the
VIC only when the task objective demands that. This objective is motivated by
human manipulation behavior and can increase the dexterity of the robot while
encouraging energy-efficient and safe behaviors. We considered three simulations
and two experimental tasks for evaluating the proposed method. In all the tasks,
the task requirement is defined by achieving a desired goal pose for the robot end-
effector. The performance of the impedance adaptation strategy is evaluated based
on how well it is able to achieve this requirement while being maximally com-
pliant. In all the evaluation scenarios, both in simulation and experiments, the
stiffness adaptation guarantees a high level of compliance unless there is a large
deviation from the target position or an external force is applied to it. The deep
MPVIC scheme is able to adapt the impedance profiles to counteract the external
forces and also to trade-off effectively between position accuracy and compliance
during the task.

The modeling approach using PENN combined with uncertainty-targeted explor-
ation has been found to be very useful in learning a generalized unconstrained
Cartesian impedance model of the robot. In addition, combining it with MPC
based optimization has enabled to solve different manipulation tasks demanding
stiffness adaptation. The proposed deep MPVIC approach succeeds in general-
izing a single model to solve multiple manipulation tasks. The versatility of the
impedance adaptation strategy is evident in the scenarios of impact force from
falling objects, overcoming the inertia of the objects in the pushing and drawer
opening tasks respectively. While a majority of robot manipulation tasks rely on
trajectory planning and tracking, our approach is not straightforward in solving
complex manipulation problems. Nevertheless, it can be combined with a high-
level planning approach where the low-level VIC will modify the given trajectory
to ensure compliant behavior. Incorporating such compliant behaviors could im-
prove manipulation skills, especially in tasks involving contacts.

The deep MPVIC framework was compared with model-free and model-based RL
approaches utilized successfully in various previous works [144, 30, 215, 179] to
solve complex manipulation tasks. The results show that the deep MPVIC frame-
work is able to achieve similar performance to model-free and model-based RL
approaches while being highly sample efficient and able to seamlessly transfer
the controller between different tasks without any further training of the model.
Whereas in model-free and model-based RL, transferring policy between different
tasks demand relearning the policy on the new task or extensive fine-tuning of the
existing policy. PETS shows better task transferability compared to model-free
RL, this can be justified by the use of a model in PETS for impedance optimiza-
tion even though it is not a generalized model as in deep MPVIC. It is important
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to note that the transferability of deep MPVIC is dependent on the quality of the
model. This is evident in its lower performance in the task c where the model can
not accurately predict the dynamics of a constrained task. RL has the potential
to solve very complex tasks at the expense of high sample complexity. It would
be ideal to combine this aspect of RL with sample efficiency and easy transfer-
ability of the learned controller between tasks as in our deep MPVIC framework.
Further extending the model-based RL approaches for VILC could be a promising
approach in this direction.

11.5.2 Stability Analysis

MBRL approaches could improve sample efficiency and can be useful in provid-
ing stability and safety guarantees, but there is a need for further research in this
direction facilitating complex model structures such as DNN to build scalable and
sample efficient VILC approaches with theoretical guarantees. In general, the sta-
bility of a dynamic system is not necessarily guaranteed when it is coupled to a
stable dynamic environment. However, [85] showed stability of the manipulator
is preserved when it is coupled to a large class of stable environments if the ma-
nipulator has the behavior of a simple impedance. An impedance controller with
constant gains makes the closed-loop robot-environment system passive and hence
stable in interaction with passive environments [85]. However, this passivity prop-
erty is lost if the impedance parameters are varied. If the learning-based controller
could identify the optimal impedance parameters, one could achieve complex com-
pliant manipulation skills with safety and stability guarantees. But this is not obvi-
ous while using RL or CEM-based MPC. One alternative in the case of RL is to use
structured policies as done by [101] where the authors use Integrated MOtion Gen-
erator and Impedance Controller (iMOGIC) framework to guarantee stable VILC
with model-free RL. Even though safety can be achieved using constrained-CEM
method [221] in the proposed MPVIC framework, stability guarantees are difficult
due to the PENN dynamical models.

Guaranteeing stability and robustness for controllers in a complex robotic manip-
ulator operating in uncertain environments is challenging. In the case of VIC,
often passivity theory is used to provide theoretical guarantees under relatively
general working assumptions. However, this approach is model-based and the
passivity property is lost if arbitrary variations of the impedance parameters are
allowed. Passivity-based approaches are often concerned with the analysis of vari-
able impedance profiles that already exist prior to task execution [128]. This is
not suitable for guaranteeing the stability of state-dependent real-time impedance
variations. In another recent approach, a modified impedance control strategy al-
lows the reproduction of a variable stiffness while preserving the passivity, and
therefore a stable behavior both in free motion and in interaction with partially
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known environments, of the robot [59]. In [59], the goal is to modify the imped-
ance control in order to allow stiffness variations while preserving passivity and,
consequently, stable interactive behavior and asymptotic tracking in free motion.
This tank-based strategy has been shown very well suited for VIC, in spite of some
difficulties to tune its parameters. Nevertheless, it is dependent on the states of the
system, measured during task execution and so can only be applied online. An
approach based on the combination of passivity conditions with an adaptation law
on the impedance profile was proposed in [18]. This method allows for verifying
whether a given profile is passive and if it is not, it provides a method to modify it
in a way to guarantee passivity. But none of these approaches are directly extend-
able to the proposed MPVIC framework to guarantee stability. Ref. [97] proposed
an approach using a designed Lyapunov candidate function to stabilize the learned
impedance system with an optimal input law in analytical form. But in the case
of our MPVIC, this requires solving an additional convex optimization problem
at every MPC solution, which could be computationally very expensive and not
feasible practically.

The safe learning approaches described in [8] are interesting to explore for model-
based VILC. A feasible approach in this direction could be to provide probabilistic
safety and stability guarantees using CBF and CLF and solving constrained optim-
ization problems over the GP model [107]. Guaranteeing stability properties to the
resulting VILC is challenging as guarantees have to be provided in real-time in an
online fashion as the stiffness values predicted by the policy are state-dependent.
The approach proposed in [97] by designing a quadratic Lyapunov candidate func-
tion could be coupled with GP models to provide probabilistic stability guarantees
similar to safety guarantees in [107]. But in the proposed MPVIC framework with
PENN dynamics model, such methods are not straightforward to apply. This prob-
lem in CEM-based MPC is partly addressed in [232] using available prior models
and an auxiliary controller based on CLF and CBF to provide guarantees.

11.5.3 Limitations

While guaranteeing stability is one major challenge, there are other identified lim-
itations to the proposed approach. Applying our approach to tasks with non-
continuous contacts is not possible as the model is not aware of the contact dy-
namics, which could lead to unstable behavior. Detecting contact discontinuities
and switching to a different contact re-establish policy could be a solution to this
issue. Whereas a more general approach could be to learn a model aware of con-
tact constraints, incorporating such constraints into the model state-space is chal-
lenging. In future work, we will explore ways to sufficiently incorporate contact
constraints to the model to aid faster fine-tuning of the VILC for different manip-
ulation tasks. In addition, there are limitations inherited from applying CEM to
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a real robotic system because of the high computation time, where the trade-off
is between optimization performance and the control frequency. Eventhough VIC
can be operated generally at lower control frequencies, in tasks with complex con-
tact dynamics this might not be sufficient. The level of impedance adaptation or
the compliance behavior can be adjusted by tuning the Q and R parameters in the
cost function (11.2). However, it is not obvious how to find optimal values for
these parameters.

11.6 Conclusions
In this chapter, we presented a deep MPVIC approach for compliant manipula-
tion skills for a robotic manipulator by optimizing the impedance parameters. By
utilizing PENN, a Cartesian impedance model of the robot is learned using an ex-
ploration strategy maximizing the information gain. The PENN dynamic model is
coupled with a CEM-based MPC to optimize impedance parameters of a low-level
VIC. We identified an impedance optimization objective-based human manipu-
lation skill and replicated it on a robot manipulator for simplified scenarios in
simulations and experiments. The deep MPVIC was compared with model-free
and model-based RL approaches in VILC. The approach proved experimentally to
be beneficial for solving multiple tasks without any need to relearn the model or
policy as opposed to other VILC approaches. In the future work, we aim to extend
this approach to scenarios with constraints, such as in-contact interaction tasks.

153



11. Deep Model Predictive Variable Impedance Control

154



Chapter 12

Conclusions and Future Work

12.1 Conclusions
This thesis is a presented collection of new research works in the area of RL and
robotic manipulation. This core research topic addressed in this thesis is explor-
ing the prospects of machine learning, specifically RL for developing compliant-
control methods control for robotic manipulation. This research is motivated by
the possible positive benefits of safe and reliable robotic solutions in the area of
healthcare, rehabilitation, elderly care, and in industrial applications. The results
of this research over the last three and half years were presented in two parts in this
thesis. Part I presented the research works on RL for robotic control with a special
focus on MBRL. The main contribution of Part I was on developing RL methods
that can be applied to real-world systems and discussing the safety and stability
guarantees of learning-based methods. Part II presented the research works on ro-
botic manipulation with a special focus on compliant robotic manipulation using
VILC approaches. The contribution of the second part is on developing and eval-
uating VILC methods for robotic manipulation while additionally exploring the
planning component of robotic manipulation.

The first part of the thesis focused on developing MBRL method to advance the
research on RL for real-world applications. Chapter 3 presented an approach to
improve the sample efficiency and performance of the MBRL using uncertainty-
targeted exploration and incorporating a critic-value estimate from the data. We
showed that an MBRL algorithm that implements this approach could optimize
a policy with better asymptotic performance compared to existing methods. A
sampling-based MPC was adopted as the policy in the proposed MBRL frame-
work. Further, combining a conventional combining MPC with RL was identified
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as a fruitful MBRL approach. In order to facilitate the easy application of RLMPC
methods a novel actor-critic DPG algorithm for RLMPC is presented in Chapter
4. This algorithm facilitates easier use of DPG in RLMPC by eliminating the need
for an additional value function parameterization such as DNNs by approximating
the value function using the MPC policy itself.

The second part of the thesis emphasizes on VILC for enabling compliant control
in robotic manipulation. RL has been explored for its suitability to develop VILC
for complex manipulation tasks. The importance of RL in VIC is well evident from
the increasing research interest in the area of RL-based VILC. A thorough review
of the existing RL-based VILC approaches are presented in Chapter 7. Focusing
on real-world manipulation tasks the compliant-control methods presented in this
thesis relies on MBRL. Chapter 9 presented the implementation and evaluation
of two fundamental compliant-control approaches for robotics, (i) HFMC and (ii)
force-based VIC in a MBRL framework using GP dynamic models. It was shown
that combining a learning-based approach with these compliant controllers has the
ability to improve robotic interaction control. Chapter 10 presented a highly data-
efficient MBRL approach for VILC using GP dynamic models and CMA-ES based
policy optimization. This approach was evaluated on different simple real-world
tasks demanding real-time stiffness adaptation. Even though GP provides an ef-
ficient way to approximate system dynamics, they pose limitations on scalability
and computational effort. Adopting complex models and policy are key in devel-
oping model-based VILC for complex manipulation tasks. Chapter 11 presented
an approach in this direction termed as deep MPVIC. The deep-MPVIC frame-
work used the PENN for learning the system dynamics and a CEM-based MPC to
optimize impedance parameters of a low-level VIC. We identified an impedance
optimization objective-based human manipulation skill and replicated it on a ro-
bot manipulator for simplified scenarios in simulations and experiments. One key
contribution of this approach is its transferability over multiple tasks without any
need to relearn the model or policy as opposed to other VILC approaches.

Additionally, this thesis explored the aspect of safety guarantees in learning-based
control methods and the aspect of planning in robotic manipulation. Safety guar-
antees are critical to learning-based control methods for real-world applications. A
detailed review of existing learning-based methods for safe control of dynamical
systems with uncertainty, using tools from control theory such as CBF and CLF
are presented in Chapter 5. This review could serve as a useful document to choose
a suitable method for specific applications. A combination of trajectory planning
and control is central to achieving dexterous robotic manipulation. Even though
this thesis was majorly focused on the control aspect, a learning-based trajectory
planning approach for robotic manipulation for uncertain environments is presen-
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ted in Chapter 8. This work extended the DMP framework with real-time control
over the execution time while preserving the shape characteristics.

12.2 Future Works
The future directions of this research are multifaceted along RL and compliant
robotic control. There is a wider scope of future research in both parts of this
thesis, but one obvious future direction is on applying the research presented in
Part I to VILC approaches discussed in Part II. The MBRL framework presented
in Chapter 3 can be extended to targeted exploration into VILC for more com-
plex manipulation tasks including contact-rich tasks. RL for real-world robotic
demands a greater extent of future research. We have identified a few interest-
ing directions in MBRL which was a key component of this thesis. One main
drawback for MBRL we addressed in Chapter 3 is the model-bias, as the learned
policy is biased to an incorrect model. As it is highly challenging to model com-
plex dynamics accurately one interesting direction would be to develop methods
that can find an optimal policy using an imperfect model. We aim to incorporate
the RLMPC approaches to MBRL with DNN based policies by shaping the model
and reward functions such that it can provide optimality even with imperfect mod-
els. RLMPC as an MBRL framework has great scope of real-world problems that
can be tackled using MPC. The RLMPC algorithm proposed in Chapter 4 can
be extended to a full critic approximation using MPC and thereby eliminating the
need for a critic in DPG method for MPC completely. VILC is relatively a new
area of research and our contributions to it in this thesis are rather basic. Future
work on Part II of this thesis is to develop a model-based VILC framework for a
wider range of manipulation tasks including contact-rich tasks with safety guaran-
tees. Task-specific CBF functions can be integrated into such a VILC framework
to guarantee safety, but this demands further research in holistically combining
them to meet the real-time task requirements. Similarly, RLMPC approaches can
be applied to robot control ideally to non-contact tasks where MPC can be very
effective.

12.3 Summary
In summary, this thesis is a part of the research developments in the area of RL
and robotic manipulation. We explored MBRL approaches to facilitate the use of
RL approaches for real-world robotic control tasks. This includes combining con-
ventional control approaches with reinforcement learning to develop novel model-
based reinforcement learning methods. This thesis contributed to advancing the re-
search on compliant control for robotic manipulation by developing and evaluating
different model-based VILC approaches for real-world applications. Additionally,
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this thesis address planning in robotic manipulation in the context of an uncertain
environment and guarantees safety and stability in learning-based approaches rel-
evant to robot control. The results of this have provided promising directions and
insights into the area of RL and robotic manipulation in general while specifying
clear future directions. With the help of further research efforts, this research is ex-
pected to contribute towards developing reliable RL methods for robotic systems
and incorporating compliant control skills in those robotic systems.
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1. INTRODUCTION

Model Predictive Control (MPC) is a successful control
strategy that employs a (possibly inaccurate) model of
the real system dynamics to generate input sequences
that minimize a certain cost, possibly under some con-
straints (Rawlings et al., 2017). The MPC problem is
solved at every time instant, in a receding-horizon fashion,
delivering a policy for the real system. For many appli-
cations, building a model that accurately captures the
real system dynamics can be challenging, especially for
stochastic systems. In such applications, the performance
of the MPC scheme can degrade significantly due to model
inaccuracies. This effect is arguably more pronounced if
the objective of the MPC scheme is not to bring the
real system to a specific reference state (a.k.a. tracking
objective) but rather to minimize a generic cost (a.k.a.
economic objective).

Recent research focuses on alleviating this issue by inte-
grating Machine Learning (ML) techniques in MPC. The
classic approach is to use ML to improve the accuracy
of the MPC models in a data-driven fashion (Wu et al.,
2019). While this paradigm has a clear value, it does
not eliminate the issues related to model inaccuracies.
Indeed, the performance of a policy delivered by an MPC
scheme integrating an ML-based model is still only as
good as the ML-based model is, and therefore limited by
the structure and choices made in the ML tools. Similar
problems occur in model-based Reinforcement Learning,
where the performance of the algorithms is limited by the
accuracy of the model predictions. For many applications,
a higher model accuracy can only be achieved through a
higher model complexity. Because complex (e.g., nonlinear
and stochastic) MPC models tend to yield complex MPC
schemes, the ML-based MPC paradigm tends to bind the
MPC performance to its complexity.

A core issue with model learning in MPC is that the
model accuracy is not easily related to the MPC closed-
loop performance when based on that model. In fact, an
ML-based model is typically constructed to deliver the
best possible prediction accuracy in the hope that this will
yield a good MPC performance. But the construction of
the ML-based model is not directly tied to the resulting
closed-loop performance of the MPC.

The idea of optimizing the closed-loop performance of
an MPC-based policy by tuning the entire MPC scheme
(model, cost, and constraints) has been introduced for-
mally in Gros and Zanon (2019a). Reinforcement Learning
(RL) is then proposed to optimize the closed-loop perfor-
mance of the MPC scheme using data from the real system.
This approach is arguably unique in the field of learning-
based MPC, as it does not focus purely on improving the
MPC model accuracy but rather on improving the MPC
closed-loop performance. Moreover, it ties the learning
directly to the closed-loop performance of the resulting
MPC policy.

From an RL perspective, this approach can be seen as
a doorway to developing safe, stable, and explainable
RL methods, which is not possible in classical Deep RL,
where Deep Neural Networks (DNNs) are employed to
generate the policies. In the RL context, using MPC as an
approximation of the optimal policy can be construed as
a way of introducing a strong structure in RL, as opposed
to the more classical way of approximating the optimal
policy via DNNs. A different perspective is to see RL as a
rich toolbox for adjusting the MPC scheme from data to
improve its closed-loop performance.

Note that RL is not the only way to directly optimize the
MPC closed-loop performance. For instance, in Sorourifar
et al. (2021), the authors have proposed the use of Bayesian
optimization for black-box systems in order to achieve
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the best closed-loop performance. However, Bayesian opti-
mization approaches are difficult to use on large parameter
spaces. Moreover, black-box approaches are adopted at the
cost of abandoning the explainability provided by MPC
and the possibility of embedding prior knowledge in the
MPC scheme.

While the combination of RL and MPC has been in-
vestigated both in theory and in practice in dozens of
papers, the concepts underlying this combination are not
trivial and are prone to raise fundamental and practical
questions. This paper aims to provide a coherent and
deeper discussion on this combination than has been pro-
vided so far in the literature. The paper is structured
as follows. Section 2 provides the necessary background.
Section 3 presents the fundamental theoretical results on
RL and MPC and insights into their consequences. Section
4 provides a discussion on RL methods for MPC, and the
associated challenges. Section 5 and 6 discuss the use of
RL for MPC with stability and safety requirements.

2. BACKGROUND

In this section, we provide a background on Markov
Decision Processes (MDP), Reinforcement Learning (RL),
and Model Predictive Control (MPC).

2.1 Markov Decision Processes

Markov Decision Processes (MDP) provide a fairly generic
framework for the class of problems at the center of MPC.
An MDP operates over given state and action (a.k.a.
input) spaces S, A, respectively (Puterman, 2014). These
spaces can be discrete (i.e. integer sets), continuous, or
mixed. An MDP is defined by the tuple (S, A, L, γ, ρ),
where L is a stage cost, γ ∈ (0, 1] a discount factor, and ρ
a conditional probability (measure) defining the dynamics
of the system considered, i.e. for a given state-action
pair s, a ∈ S × A, the successive state s+ is distributed
according to

s+ ∼ ρ(·|s,a) . (1)

Note that (1) is a generalization of the deterministic
or stochastic dynamics model often considered in MPC,
usually cast as

s+ = F (s,a,w) , w ∼W , (2)

where w is a random disturbance from distribution W .
In the special case w = 0, (2) simply yields deterministic
dynamics. An MDP is then the problem of finding the
optimal policy π⋆ : S → A as the solution of

π⋆ = argmin
π

J(π) , where (3a)

J(π) = E

[ ∞∑

k=0

γkL (sk,ak)

∣∣∣∣∣ ak = π (sk)

]
, (3b)

and the expected value operator E[·] is taken over the
closed-loop trajectories of the system resulting from ρ and
π. Discussing the solution of MDPs is often best done
via the Bellman equations defining implicitly the optimal
value function V ⋆ : S → R and the optimal action-value
function Q⋆ : S ×A → R as

V ⋆ (s) = min
a

Q⋆ (s,a) , (4a)

Q⋆ (s,a) = L (s,a) + γE [V ⋆ (s+) | s,a ] . (4b)

The optimal policy then reads as

π⋆ (s) = argmin
a

Q⋆ (s,a) . (5)

RL offers a set of methods that attempt to compute π⋆

directly based on data on the real system. We provide next
a very succinct introduction to RL.

2.2 Reinforcement Learning

The fundamental goal of RL is to use data to deliver
an approximation of the optimal policy π⋆ without the
need to model the transition dynamics (1) (Sutton and
Barto, 2018). The field can be coarsely divided into two
large classes of approaches. The first class, generically
labeled Q-learning, approximates the optimal action-value
function Q⋆ via a parametrized function approximator Qθ.
An approximation of the optimal policy π⋆ can then be
obtained using

π̂⋆ (s) = argmin
a

Qθ (s,a) . (6)

The second class approximates π⋆ directly via a parame-
terized policy πθ and adjusts the parameters θ to minimize
J(πθ). This can either be done via estimating policy gra-
dients∇θJ(πθ), or by building surrogate models of J(πθ).

2.3 Model Predictive Control

MPC produces control policies by solving an optimal
control problem at each discrete time instant based on the
current system state s, on a finite, receding horizon. The
problem is often cast as

min
x,u

T (xN ) +

N−1∑

k=0

L (xk,uk) , (7a)

s.t. xk+1 = f (xk,uk) , x0 = s , (7b)

h (xk,uk) ≤ 0, uk ∈ A , (7c)

where N is the prediction horizon, L is the stage cost, T is
the terminal cost, f is the dynamics and h is the inequality
constraint. Problem (7) produces a complete profile of
control inputs u⋆ = {u⋆

0, . . . ,u
⋆
N−1} and corresponding

state predictions x⋆ = {x⋆
0, . . . ,x

⋆
N}. However, only the

first element u⋆
0 of the input sequence u⋆ is applied to

the system (Rawlings et al., 2017). At the next physical
sampling time, a new state s is received, and problem (7)
is solved again, producing a new u⋆ and a new u⋆

0. MPC
(7) hence yields a policy

πMPC (s) = u⋆
0 , (8)

with u⋆
0 solution of (7) for s given. For γ ≈ 1, policy

(8) can provide a good approximation of the optimal
policy π⋆ for an adequate choice of prediction horizon N ,
terminal cost T and if the MPC model f approximates the
true dynamics (1) sufficiently well. In that context, the
latter is arguably the major weakness as many systems
are challenging to model accurately. Furthermore, within
a modeling structure, selecting the model f that yields the
best closed-loop performance J(πMPC) is very difficult.
And there is in general no guarantee that the most
accurate model yields the best closed-loop performance.

3. FUNDAMENTALS OF RL AND MPC

The combination of RL and MPC focuses on the MPC
closed-loop performance directly, unlike more classical

Appendix A

161



ML-based MPC approaches focusing on fitting the MPC
model to the data. Furthermore, it has been recently es-
tablished formally in the literature that–when focusing on
closed-loop performance–the MPC scheme can be adjusted
in a holistic fashion, allowing one to produce optimal
policies without relying on a highly accurate model of the
real system. In this section, we provide the central result
supporting that statement. To that end, it is useful to
construe MPC as a (possibly local) model of the action-
value function Q⋆. Indeed, consider an MPC-based policy

πθ(s) = u⋆
0 , (9)

where u⋆
0 is part of the solution of:

x⋆,u⋆ = argmin
x,u

Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) , (10a)

s.t. xk+1 = fθ (xk,uk) , x0 = s , (10b)

hθ (xk,uk) ≤ 0, uk ∈ A . (10c)

This MPC formulation is identical to (7), but the cost,
constraints, and dynamics underlying the MPC scheme
are now all parameterized in θ, to the exception of the
input constraint uk ∈ A. Besides the MPC-based policy
(9), we can define a parameterized action-value function
Qθ based on the MPC scheme (10), as a model of the
optimal action-value function Q⋆ as follows:

Qθ(s,a) = min
x,u

(10a), (11a)

s.t. (10b)− (10c), u0 = a , (11b)

where a constraint u0 = a included in (11b) is the only
difference to (10). MPC (11) is a valid model of Q⋆ in the
sense that it satisfies the relationships (4) and (5), i.e.:

πθ (s) = argmin
a
Qθ(s,a), Vθ(s) = min

a
Qθ(s,a) , (12)

where Vθ(s) is the optimal cost resulting from solving MPC
(10). One can verify that if the MPC parameters θ are
such that Qθ = Q⋆, then MPC scheme (10) delivers the
optimal policy π⋆ through (9), i.e. πθ = π⋆. An important
question, then, is how effectively an MPC scheme can
approximate Q⋆ at least in a neighborhood of a = π⋆ (s).
The main concern here is arguably the MPC model fθ for
the reasons already raised in Sec. 2.3. In addition, Q⋆ is
typically built from a discounted sum of the stage costs
L, while undiscounted MPC formulations are typically
preferred.

The Theorem reported below addresses these concerns
and provides the central justification for consider-
ing the MPC parametrization (10) for learning-based
MPC. It establishes that under some mild conditions,
(11) is able to provide an exact model of Q⋆ even if
the predictive model (10b) is inaccurate. This in turn
entails that MPC (10) can achieve optimal closed-loop
performance even if the MPC model is inaccurate.

Theorem 1. Suppose that the parameterized stage cost,
terminal cost, and constraints in (10) are universal func-
tion approximations (i.e., can approximate a given func-
tion accurately) with adjustable parameters θ. Then there
exist parameters θ⋆ s.t. the following identities hold ∀γ:
(1) Vθ⋆(s) = V ⋆(s), ∀s ∈ Ω
(2) πθ⋆(s) = π⋆(s), ∀s ∈ Ω
(3) Qθ⋆(s,a) = Q⋆(s,a), ∀s ∈ Ω, for the inputs a ∈ A

such that |V ⋆(fθ⋆(s,a))| <∞

if the set

Ω =:
{
s ∈ S

∣∣∣ |V ⋆(x⋆
k)| <∞, ∀ k ≤ N

}
, (13)

is non-empty, where x⋆
k is the optimal state solution of

(10).

Proof. We select the parameters such that the following
holds:

Tθ⋆(s) = V ⋆(s) , (14a)

Lθ⋆(s,a) = (14b){
Q⋆(s,a)− V ⋆(fθ⋆(s,a)) if |V ⋆(fθ⋆(s,a))| <∞

∞ otherwise

The proof then follows from Gros and Zanon (2019a);
Kordabad et al. (2022b). Note that infinite values in the
stage cost Lθ⋆ are, in practice, best treated through the
constraints (10c), i.e. θ⋆ can be selected such that

hθ⋆(s,a) > 0 if |V ⋆(fθ⋆(s,a))| =∞ , (15)

such that stage cost Lθ⋆ does not need to carry infinite
penalties. ■

Theorem 1 states that, for a given MDP, an MPC scheme
with an inaccurate model can deliver the optimal value
functions and the optimal policy of the original MDP. This
can be achieved by selecting the appropriate stage cost,
terminal cost, and constraints. Theorem 1 is very broad
and extends, e.g., to robust MPC, stochastic MPC, mixed-
integer MPC, and Economic MPC (EMPC), and is valid
both for the discounted and undiscounted settings (see
e.g., Zanon and Gros (2020); Kordabad et al. (2022a); Gros
and Zanon (2020)). Assumption (13) can be interpreted
as a form of stability condition on fθ⋆ under the optimal
trajectory x⋆. More specifically, this assumption requires
the existence of a non-empty set such that the optimal
value function V ⋆ of the predicted optimal trajectories x⋆

on the system model is finite for all initial states starting
from this set. The assumption is thus milder than requiring
stability of the MPC scheme.

3.1 Role of RL in Learning-based MPC

Many recent learning-based MPC methods focus on learn-
ing a predictive model for the MPC scheme from data,
using Machine Learning (ML) or other data-driven tech-
niques. In these methods, only (10b) is parameterized in
the MPC scheme (10), and adjusted in view of providing
predictions that are as accurate as possible. It is then
important to clarify why an approach centered purely
on adjusting the model is not necessarily sufficient for
achieving the best possible performance. While adjusting
the MPC model alone from data has a high practical value,
two issues stand in the way of obtaining optimal policies
from doing that alone.

First, if the objective of the MPC scheme is optimality in
the sense of J(πθ), then adjusting the MPC model fθ for
delivering better predictions is only a proxy for minimizing
J(πθ). Indeed, if the true system dynamics (1) do not
belong to the set of dynamics that fθ can represent, then
there is no guarantee that adjusting the MPC model fθ
to better fit (1) will reduce J(πθ). It is straightforward
to propose trivial counter-examples where model fitting
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degrades the closed-loop performance, see e.g. Gros and
Zanon (2019a).

Second, Theorem 1 shows that a modification of not only
the model parameters but also of the cost and constraints
in the MPC formulation enables obtaining the optimal
policy π⋆ from the MPC scheme, even if the MPC model
cannot predict the real system dynamics accurately. In
that context, learning techniques focusing on fitting the
MPC model to the real system provide no indication as to
how one ought to adjust the MPC cost and constraints for
performance.

In light of these observations, while fitting the MPC model
to the real system trajectories has obvious practical value,
it may not be sufficient to achieve optimal closed-loop
performance.

Performance-oriented learning-based MPC ought to
consider a full parametrization of the MPC scheme
as per (10), and integrate learning tools that aim at
minimizing J(πθ), or at achieving Qθ ≈ Q⋆ from the
data. The role of RL in that context is to provide
these learning tools. There are alternatives to RL for
adjusting the MPC parameters, such as e.g. Bayesian
optimization. However, RL is often regarded as the
most effective technique, especially if the number of
parameters to adjust is not very small.

3.2 Role of the Model in RL for MPC

Theorem 1 suggests that if using the complete parametriza-
tion (10a), modifying the MPC model is less important
than previously thought. Indeed, it suggests that under
some mild assumptions, cost and constraints modifications
can compensate for the model error and produce the op-
timal policy and value functions. This has the potential
benefit that simpler models can be used.

However, this observation ought to trigger the natural
question about the role of the MPC model if it does
not need to be accurate. This central question has not
been discussed enough in the literature so far. Here, we
introduce four fundamental insights in that context.

The first and most obvious insight lies in (13), the core
assumption of Theorem 1. While it is an arguably mild
assumption, it forbids the use of any model in the MPC
scheme. The requirement it imposes resembles the stability
of the model under the optimal policy but in a less
demanding way. We show in Sec. 5 how RL for MPC can
be designed to satisfy this assumption by construction.

The second less obvious insight stems from the observation
that the cost and constraints modifications (14) required
by Theorem 1 can be difficult to approximate in practice
and difficult to use in an MPC scheme. Indeed, these
modifications can require fairly complex and possibly very
non-convex functions. They may require very rich function
approximations (e.g., large DNNs), and their complexity
and non-convexity can make their use in an MPC scheme
impractical. In that context, one can readily observe from
(14b) that being able to adjust the MPC model introduces
extra degrees of freedom in how the cost and constraints

modifications can be shaped, allowing one, in turn, to
impose certain restrictions on these modifications. These
restrictions can be related to the simplicity of the function
approximations used, and/or in imposing convexity in the
resulting cost and constraints. This approach is used in
Seel et al. (2022), and further elaborated in Sec. 5.2.
Hence the purpose of the MPC model is to facilitate the
construction of modified stage cost and constraints that
are suitable for MPC in practice.

A third insight is in the use of Robust MPC to build safe
policies in RL, see Sec. 6. In that context, the role of the
model is to predict the worst-case scenario with respect to
safety-critical constraints that the real system ought not
to violate. Then the model must fit the real system in
the sense of predicting these worst cases, where this fitting
is performed via set-membership identification (Gros and
Zanon, 2022b).

The last insight lies in the explainability of the policy
delivered by MPC. Because MPC proposes a full predic-
tion of the actions it plans to take on the system and the
expected system response, it can be considered a more
explainable policy than generic function approximations,
such as DNN. In that context, if the MPC model is a very
poor match for the real system, that explainability is lost.
Hence, one arguably wants the MPC model fθ to be as
representative as possible of the real system dynamics in
order to maintain the explainability of the MPC policy.
This requirement has been investigated in A.B. Martinsen
(2020).

These insights can be used as guidelines for design choices
regarding the model when formulating an RL for MPC.
The right choice will depend on the control problem
the engineer is trying to solve. For example, in a non-
safety-critical economic problem, there is more flexibility
in changing the model. In contrast, the possible model
modifications can be highly limited to a safety-critical
task.

4. RL METHODS FOR MPC

RL offers two main classes of methods, (i) policy gradient
methods which target a direct minimization of J(πθ) over
the parameters θ, or (ii) Q-learning methods which search
for a fitting of the action-value function model Qθ to the
optimal one Q⋆. This section gives insights into how these
two families operate in the context of RL for MPC.

4.1 Q-learning

Basic Q-learning aims to find optimal parameters of a
parameterized action-value function Qθ that closely ap-
proximates Q⋆ via solving a fitting problem, typically in
the form

min
θ

E
[
(Q⋆ (s,a)−Qθ(s,a))

2
]
, (16)

where the expected value E[·] is taken over the system
trajectories and actions. Because Q⋆ is unknown, (16) can
be replaced with an approximation, e.g., based on iterating
the temporal difference problem

min
θ+

E
[(
L (s,a) + γmin

a′
Qθ(s+,a

′)−Qθ+(s,a)
)2]

(17)
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until convergence, i.e., θ+ ≈ θ. In the context of RL for
MPC, Qθ is delivered by (11) and mina′ Qθ(s,a

′) = Vθ(s)
is delivered by (12), i.e. by the optimal cost of MPC (10)
solved at state s. The computed action a used in (11) then
ought to (at least regularly) differ from the MPC policy
πθ to introduce exploration. We will discuss exploration
satisfying the MPC constraints by construction in Sec. 6.1.
We want to emphasize the following:

In an RL setting (online and offline), Q-learning needs
to solve two MPC schemes for each state transition, i.e.,
at each time instant. These solutions can be computed
in parallel.

4.2 Policy Gradient Methods & Direct Policy Search

An alternative to Q-learning is to adjust the parameters
θ of the MPC as a policy (9) to minimize cumulative cost
J(πθ) directly. This is the standard approach for systems
with continuous action spaces for which we can distinguish
between two methods. Policy gradient methods estimate
the policy gradient ∇θJ(πθ) from data to update the
parameters θ in a gradient descent fashion. Alternatively,
direct policy search methods build a surrogate model of
J(πθ) from data and use it to propose new policy param-
eters θ. However, direct policy search tends to scale poorly
with the size of the policy parameters.

One example of policy gradient methods is the determinis-
tic policy gradient by Silver et al. (2014) with the following
expression for the gradient of the cumulative cost:

∇θJ(πθ) = E [∇θπθ (s)∇aQπθ
(s,πθ(s))] . (18)

Here πθ is delivered by MPC (10). The critic Qπθ
is

typically built separately using a generic function approx-
imator and policy evaluation techniques.

The policy gradient approach in RL employs the actor-
critic scheme where an approximation structure must
be selected for the critic Qπθ

, e.g., as a DNN. This
is an inconvenience in using policy gradient methods
for MPC compared to Q-learning, as designing the
critic approximator is not obvious. Fortunately, MPC
as a function approximator allows for alleviating this
problem. We discuss the details in Anand et al. (2022).

4.3 NLP Sensitivities & Smoothness

Many RL methods, including Q-learning and policy gra-
dient methods, require the sensitivities of the function
approximators πθ, Qθ, and Vθ. When approximated by
an MPC scheme, these are typically continuous but only
piecewise smooth. However, when the MPC achieves Lin-
ear Independence Constraint Qualification (LICQ) and
Second Order Sufficient Condition (SOSC), non-smooth
points correspond to weakly active constraints in the
MPC. These points form a set of zero measures for a well-
formulated MPC scheme. Because RL methods always
use the sensitivities inside expected value operators, their
contribution to the learning disappears as long as the state
transition density ρ is bounded.

The non-smoothness of MPC schemes may superficially
appear as an issue for RL, but fortunately, in all
practical cases, it is not. This issue can be ignored when
the MPC response is continuous.

The arguments above do not necessarily hold anymore if
the MPC does not satisfy SOSC and, as a result, produces
discontinuous policies, e.g., a bang-bang response. For
example, designing the MPC as a Linear Program might
lead to such a situation. We can then still use Q-learning
since Qθ and Vθ typically remain continuous and piecewise
smooth. However, the discontinuities in the policy lead to
problems in policy gradient methods. We discussed this
problem and an early approach to solve it in Kordabad
et al. (2021a), but more work is necessary.

4.4 Feasible exploration

Exploration is a core requirement for all RL methods, i.e.,
regularly applying actions a ̸= πθ(s) to the real system
to gather the information necessary to improve the policy.
Given the constraints in (10c), a natural question is how
to generate exploration that does not jeopardize the MPC
feasibility.

In the context of MPC-based policies, feasible explo-
ration can be trivially achieved without adding com-
plexity to the RL methods or the MPC scheme.

A straightforward way to address this is by manipulating
the MPC cost such that the resulting action differs from
the original policy provided by (10). One possible modifi-
cation is to add a gradient over the initial action u0, which
yields the MPC scheme

ϕθ (s,d) = min
x,u

d⊤u0 + Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) (19a)

s.t. (10b), (10c) , (19b)

where d ∈ Rm is a vector of the size of the action, possibly
selected randomly. Because only the MPC cost is modified,
the solution of (19) is feasible for (10). One can then
use MPC (19) to produce feasible exploration for policy
gradient methods and to generate action-value functions
for Q-learning, see Sec. 4.1. In that context, (19) produces
a feasible action with exploration a = u⋆

0 where u⋆
0 is the

solution of (19) and depends on d. The optimal cost ϕθ of
(19) delivers the action-value function

Qθ (s,a) = ϕθ (s,d)− d⊤u⋆
0 . (20)

This principle has been further detailed in Gros and
Zanon (2019b). However, the feasibility of (19) does not
guarantee that applying the resulting policy to the real
system will not violate the constraints (10c). For example,
consider the effect of stochastic dynamics or model errors.
This issue is discussed in the context of safe exploration
in Sec. 6.1.

4.5 Current Challenges

We identified that applying RL methods on MPC is
challenging in the context of learning from existing big
data. Learning from existing data is performed by taking

Appendix

164



numerous sweeps (a.k.a. experience replay) through the
dataset using the methods detailed above. This requires
an enormous number of evaluations of πθ, Qθ, Vθ and
of their sensitivities. Classical RL function approximators
such as DNNs have dedicated computational tools such
as GPUs for fast evaluation and differentiation. Hence,
we can learn efficiently from big data sets when DNNs
are used. Function approximations from MPC schemes
are inexpensive to differentiate, but often expensive to
evaluate because they require solving the MPC problem.
Excellent tools exist to solve MPC schemes in real-time
such that performing RL online, i.e. while the system is
running, is not an issue. However, performing RL for MPC
on existing big data can be impractical due to the amount
of computational time required. This issue is partly solved
in Sawant et al. (2023), but more work is required to
address it fully.

5. LEARNING STABLE POLICIES VIA MPC

One benefit of MPC as a function approximator in RL is
that properties such as safety and stability can be estab-
lished theoretically. The nominal stability of a closed-loop
system under a policy is considered central in the control
community. The stability of MPC schemes for determinis-
tic systems is relatively straightforward to establish if the
MPC stage cost is lower-bounded by a class-K∞ function,
see Rawlings et al. (2017). If a generic (a.k.a. economic)
stage cost is considered, asymptotic stability requires the
extra dissipativity condition

L̃ (s,a) := L (s,a)− λ (s) + λ (f (s,a)) ≥ α (∥s− s̄∥)
(21)

to hold for some bounded storage function λ and some
α ∈ K∞, where s̄ is the optimal steady-state. Condition
(21) is difficult to interpret and to verify. However, it
simply entails the existence of an MPC scheme

min
x,u

− λ (s) + T̃ (xN ) +

N−1∑

k=0

L̃ (xk,uk) (22a)

s.t. (7b), (7c) , (22b)

where L̃ is lower-bounded by a class-K∞ function. By
defining T̃ (·) := T (·) + λ(·), MPC (22) delivers the same
policy and value function as (7), which allows to enforce
(nominal) stability by design in RL for MPC. We detail
that next.

5.1 Stability by verification vs. stability in learning

The literature typically considers dissipativity a property
to verify rather than enforce. Unfortunately, this verifica-
tion is relatively complex, as shown by Angeli et al. (2011).
One has to incur that complexity when MPC scheme (10)
is adjusted only via modifying the MPC model (10b).

However, when combining RL and MPC in its fully
parametrized form (10), the stability question can be
addressed as a reasonably simple design requirement
rather than a complex posterior verification.

Indeed, using a parameterized form for (22):

min
x,u

− λθ (s) + Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) (23a)

s.t. (10b), (10c) . (23b)

and requiring the modified stage cost Lθ to fulfil

Lθ (s,a) ≥ α (∥s− s̄θ∥) , ∀ s, a = πθ(s) , (24)

for some steady-state s̄θ, ensures that the parametrized
MPC scheme (23) is (nominally) dissipative for an ade-
quate choice of Tθ. The added storage function in (23)
allows the MPC scheme (10) to correctly approximate the
value functions in addition to the optimal policy. Then the
RL methods detailed in Sec. 4 can be applied to the MPC
(23), with the additional restriction that the proposed
parameter updates have to satisfy the condition (24).
We showed in Kordabad and Gros (2022), that using
the parameterized MPC scheme in (23) in the Q-learning
method and enforcing (24) throughout the learning, results
in a valid storage function that satisfies the dissipativity
condition (21).

5.2 What cost function parametrization?

It is important to clarify two points for this section. First,
when using a fully parametrized MPC scheme (10), a
natural approach to initialize the MPC parametrization
is to select Lθ = L before letting RL possibly revise
that choice. However, if L does not satisfy condition (24),
then in the stability context discussed here, it cannot
be used as an initial guess for Lθ, i.e., the initial MPC
parameters θ need to yield an initial Lθ that is possibly
very different from L. Selecting a meaningful initial MPC
stage cost Lθ for the learning is not obvious in this case.
Fortunately, it is possible to use a simple approximate
approach. Consider learning a fully parametrized MPC
(10) with inaccuracies in the MPC model (10b). In that
situation, it is not productive to compute a modified cost
Lθ and storage function λθ that leaves the MPC policy and
value functions unchanged. Instead, one can, for example,
provide a quadratic stage cost as an initial guess for Lθ,
which produces the same policy and value function as the
original MPC scheme in the neighborhood of the closed-
loop steady state, see Zanon et al. (2016). RL can then
improve on that guess without jeopardizing stability.

The second point to clarify here is that requirement (24) is
not necessarily easy to satisfy in practice because it yields
a semi-infinite constraint on the parameters θ.

A more straightforward approach is to adopt a
parametrization of the cost Lθ that satisfies (24)
by construction, e.g., using a strictly convex cost
parametrization as proposed in Seel et al. (2022). Such
a choice also makes the MPC scheme significantly eas-
ier to solve than if using a non-convex stage cost.

Unfortunately, choosing a convex parametrization of the
cost Lθ is more restrictive than the original requirement
(24), which can then prevent the MPC (23) from reaching
the optimal policy and value functions. The ability to
adjust the MPC model (10b) is then essential to alleviate
this potential issue. A currently open question is how rich
the model parametrization ought to be for MPC (23) to
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reach the optimal policy and value functions with a convex
cost parametrization.

5.3 Current Challenges

So far, we limited the discussion to the nominal stability
of the MPC scheme, i.e., to the stability of the MPC if
applied in closed-loop to its model. While nominal stability
is highly desirable, it does not discuss closed-loop stability
in the presence of model inaccuracies or stochastic effects
in the dynamics (1). It is possible to address this issue
through Robust MPC techniques; see Sec. 6. However,
Robust MPC is based on conservative approaches, which
can degrade the closed-loop performance. A potential
alternative is the functional dissipativity theory presented
in Gros and Zanon (2022a), which extends dissipativity to
MDPs and to stochastic problems. However, it remains to
explore this concept in the context of learning.

6. LEARNING SAFE POLICIES VIA MPC

The research community is increasingly considering the
application of RL to safety-critical systems. A straightfor-
ward way to define safety is through a set of critical con-
straints which should not be violated, typically expressed
as functions of the system state. A classic approach to safe
RL is to learn the policy in silico and employ a pessimistic
model of the real system, meaning that it overestimates
the probability of violating critical constraints. During
learning, one can then use high penalties for violations
of the critical constraints, e.g. through the use of barrier
functions, see (Cheng et al., 2019). RL will then naturally
adjust the policy to avoid these penalties.

In MPC, using a pessimistic model of the system is com-
mon within the Robust MPC (RMPC) methods. Starting
from a pessimistic model, RMPC builds a safe policy by
ensuring that even the worst-case predictions satisfy the
critical constraints at all future times. To that end, the
deterministic model (10b) is replaced by a model that
describes the evolution of sets enclosing all possible future
trajectories, leading to an expression of the form

Xk+1 = fθ(Xk,πc(Xk,xk,uk))⊕Wθ . (25)

One then designs the policy πc to manage the growth of
the sets Xk, usually by operating on their deviation from
a reference trajectory xk. The set Wθ represents process
noise to capture the prediction uncertainties. It is possible
to learn (25) from data through set-membership identifi-
cation. We can then build the following MPC scheme to
enforce satisfaction of constraints (10c) explicitly:

min
x,u,X

Tθ (xN ) +
N−1∑

k=0

Lθ (xk,uk) (26a)

s.t. xk+1 = fθ (xk,uk) , (25) (26b)

hθ (Xk,πc(Xk,xk,uk)) ≤ 0, (26c)

πc(Xk,xk,uk) ∈ A (26d)

XN ∈ Tθ, x0 = s, X0 = s . (26e)

MPC (26) generates a safe policy πθ = u⋆
0 by construction

for Tθ adequately chosen and if (25) accounts for the worst
case situations observed in the data, see Rawlings et al.
(2017). Application of RL to adjust RMPC schemes has
been proposed in Zanon and Gros (2020). In the context

of RL for RMPC-based policies, it is useful to stress that
there is a hard separation between learning for safety
and learning for closed-loop performance. Indeed, safety is
learned via set-membership identification on (25) and then
enforced in the RMPC scheme by construction. Closed-
loop performance is optimized using RL in parallel (Zanon
and Gros, 2020). We can now refine the remarks from
Sec. 3.2:

In safe RL based on RMPC, the role of the model
becomes clear and plain again: it ensures the safety of
the MPC policies, and one can consider “fitting” to the
real system as a form of set-membership identification.

For the sake of clarity, we ought to underline that the
adjustment of the constraints (26c) in the RMPC scheme
and of set Wθ ought to be done with care in order
to preserve safety. In particular, the adjustment of set
Wθ must ensure that model (25) accounts for all past
data points in the set-membership sense. Arguably, safety-
critical constraints in (26c) ought not to be modified.

6.1 Safe Exploration

Safe exploration is difficult to produce without a model of
the system in the form (25), which can predict the worst-
case evolution of the system, and assess the impact of the
exploration on the system safety. However, even with a
model (25) of the system, it can be expensive to verify the
safety of an input differing from the safe policy, and even
more expensive to build the set of safe inputs.

Fortunately, using RMPC as a tool to generate a safe
policy offers a very accessible way to generate safe
exploration, which does not require more computations
than solving the RMPC itself.

It is straightforward to apply the feasible exploration
approach of Sec. 4.4 to the RMPC formulation (26). Given
that we only modify the RMPC cost, the resulting solution
is feasible for (26), therefore enabling safe exploration if
(26) yields a safe policy. This principle has been further
detailed in Zanon and Gros (2020).

6.2 Safe Policies and Safe Learning

There are two ways to implement safe learning online. One
is in a batch fashion, meaning that parameter updates re-
quire collecting a minimum amount of transition data. The
alternative is to perform parameter updates at every time
step. In safety-critical applications, safety must always be
preserved in either case.

However, while taking actions from a unique, safe, and
stable policy ensures the stability and safety of the system,
taking actions from a sequence of safe and stable policies
may not. That is because a sequence of policies does not
necessarily inherit the properties of the individual policies.

If stability and safety are critical requirements of the
policy, and if the parameter updates are performed
while the system is running, then the parameter up-
dates need to satisfy a specified set of conditions in
order for the learning process to be safe and stable.
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We discuss these conditions in detail in Gros and Zanon
(2022b).

6.3 Current challenges

RMPC is a solid methodology to formulate safe policies.
It is relatively straightforward to use in practice if its
model fθ is linear in the states and inputs, and if set
W is simple (e.g. polytopic or ellipsoidal). However, if a
nonlinear MPC model is necessary, then RMPC remains
challenging to implement, possibly making it prohibitive
to generate safe policies. Possible ways to employ RMPC
for generic problems include scenario-based approaches as
in (Kordabad et al., 2021b), or set integrators, see (Houska
and Villanueva, 2019). However, while effective in prac-
tice, the former approach does not provide formal safety
guarantees, and the latter approach can be fairly complex
to use. Even in the case of RMPC using a linear model,
adjusting (25) for closed-loop performance while ensuring
that it captures the worst-case situations observed in the
data is difficult on big data sets. This difficulty is further
discussed in Zanon and Gros (2020).

7. CONCLUSION

This paper provided a general and coherent review of the
foundations, theories, and essential results that have been
recently developed in the context of RL based on MPC.
We also provided inputs on the challenges ahead. We
reviewed how a parameterized MPC scheme can deliver
the optimal policies and the value functions of a given
MDP, even if the model used in the MPC scheme cannot
capture the real system dynamics, and provided insights
on the role of the MPC model in that context. We showed
how RL algorithms and concepts such as exploration and
sensitivity can be formulated in the context of MPC. Some
advantages of the method, such as the nominal stability of
the closed-loop system and safety, were summarized.
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Learning-based MPC from Big Data Using Reinforcement Learning

Shambhuraj Sawant, Akhil S Anand, Dirk Reinhardt, Sebastien Gros

Abstract— This paper presents an approach for learning
Model Predictive Control (MPC) schemes directly from data us-
ing Reinforcement Learning (RL). The state-of-the-art learning-
based MPC methods use RL to improve the performance
of parameterized MPC schemes. However, these learning
algorithms are often gradient-based methods that require
frequent evaluations of computationally expensive MPC schemes,
thereby restricting their use on big datasets. We propose to
tackle this issue by using tools from RL to learn a parameterized
MPC scheme directly from data in an offline fashion. Our
approach derives an MPC scheme without having to solve it
over the collected dataset, thereby eliminating the computational
complexity of existing techniques for big data. We evaluate the
proposed method on three simulated experiments of varying
complexity.

I. INTRODUCTION

Model Predictive Control (MPC) is a pervasive control
methodology in modern industrial, power, and robotics
applications. It is based on a well-established theory to
handle multi-variate dynamics by generating sequences of
optimal control inputs that minimize a cost function, possibly
subject to constraints [1]. The common practice for designing
MPC schemes includes identifying a model of the system
dynamics using the collected data and specifying the shape
of a cost function that encapsulates the control objective.
Finding a model that accurately fits the true dynamics often
requires much work, particularly for systems with complex
dynamics. In many cases, it might be necessary to reduce
model complexity such that an embedded computing platform
can meet the computational demands and memory footprint
of the resulting MPC scheme. Furthermore, even after finding
a suitable model, tuning the cost function can be cumbersome
for tracking problems and even harder for economic tasks.

With the increasing availability of big data in industries,
researchers and practitioners have increasing access to large
datasets for formulating or improving MPC schemes. There-
fore, it would be beneficial to use such datasets to optimize
the closed-loop performance of an MPC scheme. However, it
can be a challenging task to formulate or improve an existing
MPC scheme from such large datasets. In this regard, various
learning-based MPC approaches have been proposed in the
literature that leverages big data to optimize the performance
of MPC controllers. There are two prominent approaches in
this direction of learning-based MPC. The first data-driven
approach for improving the performance of MPC schemes
is the classical approach of adjusting the model to better

Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU) Trondheim, Norway (e-mail: shamb-
huraj.sawant@ntnu.no, akhil.s.anand@ntnu.no, dirk.p.reinhardt@ntnu.no,
sebastien.gros@ntnu.no).

fit the system dynamics using machine learning techniques
[2], [3]. The underlying idea is that the predictive qualities
of the model are critical to achieving optimal performance.
However adjusting the model alone may not necessarily lead
to better closed-loop performance, as this adjustment is not
directly linked to performance improvement [4]. Rather than
restricting the learning to the model, additionally adjusting
the associated cost and constraints can further improve the
closed-loop performance of the MPC.

The second approach [5] formally demonstrated this
idea in the context of Reinforcement Learning (RL) for
MPC by introducing MPC as a function approximator for
the RL. In this approach, RL chooses MPC parameters
directly using to improve the performance rather than to
improve the prediction accuracy of the model. In a fully
parameterized MPC formulation, RL can be used to learn
the cost, model, and constraint functions, thereby providing
high flexibility in function approximation. This approach can
also be considered tuning MPC parameters using RL tools
for improved performance. In recent times, various works
were presented investigating the MPC-based RL approach
and their use in multiple applications [6], [7], [8].

The first classical approach is limited in improving the
closed-loop performance of MPC. Whereas the second RL-
based approach is suitable for iteratively improving the MPC
parameters in an online fashion, by using the system behaviour
under the current MPC policy. This approach involves
evaluating an MPC scheme and the associated sensitivities
to compute the gradient step required for the parameter
update. These required MPC and sensitivity evaluations can
be computationally demanding. This problem gets further
exasperated when carrying out batch parameter updates.
Additionally, the existing methods require access to the system
for on-policy interactions. Consequently, using the existing
MPC-based RL methods over large datasets gets challenging.
We provide further discussion on the involved challenges in
Section II-D.

Learning an MPC scheme based on an available dataset at a
low computational expense before interacting with the system
should appeal to any MPC practitioner. But the drawbacks of
the existing learning-based approaches limit the formulation
of performance-oriented MPC schemes from big data. We
aim to take a step toward enabling this in the current work
avoiding the complexities of the existing approaches. The
task of learning a policy from previously collected data is
also referred to as offline RL in the RL literature [9] and
several such methods have been proposed to effectively learn
from offline datasets [10], [11], [12], [13].

In this paper, we introduce a novel approach for learning
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a performance-oriented MPC formulation in an offline RL
setting using previously collected data. Our approach builds
on the work of [5], leveraging their theorem that establishes
a connection between the optimal MPC parameters and the
optimal value function of the underlying system. Our proposed
approach utilizes this connection to learn a high-performing
MPC scheme from data while avoiding the need for expensive
MPC evaluations. The key contribution of this paper is:
introducing an approach to learning a performance-oriented
MPC scheme from data without having to evaluate any MPC
schemes. We achieve this by essentially reducing the task
of learning a high-performing MPC scheme from data to a
supervised learning problem, resulting in a low computational
expense compared to existing MPC-based RL methods.

The rest of the paper is organized as follows: Section
II briefly introduces the necessary background knowledge
and the challenges present in using the existing MPC-based
RL methods on big data, while Section III details our
proposed method for learning an MPC scheme from data.
Section IV contains the evaluation of our approach on three
different simulation experiments of varying complexity. A
brief discussion of the evaluation results of our method and
further challenges is presented in Section V and conclusions
are discussed in Section VI.

II. BACKGROUND

A. Markov Decision Process

Markov Decision Processes (MDPs) provide a generic
framework for the class of problems at the core of MPC.
An MDP operates over given state and action (aka input)
spaces S, A, respectively. These spaces can be discrete (i.e.
integer sets), continuous, or mixed. An MDP is defined by
the tuple (S, A, L, γ, ρ), where L is a stage cost, γ ∈ [0, 1)
a discount factor, and ρ denotes the conditional probability
(measure) defining the dynamics of the underlying system,
i.e. for a given state-action pair s, a ∈ S ×A, the successive
state s+ is distributed according to

s+ ∼ ρ(·|s,a) . (1)

Note that (1) is a generalization of the deterministic or
stochastic dynamics model often considered in MPC, usually
cast as:

s+ = F (s,a,w) , w ∼W (2)

where w is a random disturbance from distribution W . In the
special case w = 0, (2) simply yields deterministic dynamics.
A solution to an MDP then involves finding an optimal policy
π⋆ : S → A, given as:

π⋆ = argmin
π

J(π) (3)

where J(π) is a measure of the closed-loop performance
which is defined as the cumulative cost, i.e.:

J(π) = E

[ ∞∑

k=0

γkL (sk,ak)

∣∣∣∣∣ ak = π (sk)

]
, (4)

where γ ∈ (0, 1] is the discount factor. The expected value
operator E[.] is taken over the (possibly) stochastic closed
loop trajectories of the system. Discussing the solution of an
MDP is often best done via the Bellman equations defining
implicitly the optimal value function V ⋆ : S → R and the
optimal action-value function Q⋆ : S ×A → R [14] as:

V ⋆ (s) = min
a

Q⋆ (s,a) (5a)

Q⋆ (s,a) = L (s,a) + γE [V ⋆ (s+) | s,a ] (5b)

The optimal policy then reads as:

π⋆ (s) = argmin
a

Q⋆ (s,a) (6)

B. Model Predictive Control

For a given system state s, an MPC produces control
policies based on repeatedly solving an optimal control
problem on a finite, receding horizon. Suppose fθ denotes a
model of the true dynamics (1), Lθ is the stage cost function,
and hθ denotes the constraints, each parameterized by a
parameter vector θ. The problem to be solved is then typically
cast as:

min
x,u

γNTθ (xN ) +
N−1∑

k=0

γkLθ (xk,uk) (7a)

s.t. xk+1 = fθ (xk,uk) , x0 = s (7b)
hθ (xk,uk) ≤ 0, uk ∈ A (7c)

For an initial condition x0 = s, problem (7) produces
a sequence of control inputs u⋆ = {u⋆

0, . . . ,u
⋆
N−1} and

corresponding state predictions x⋆ = {x⋆
0, . . . ,x

⋆
N}. Only

the first element u⋆
0 of the input sequence u⋆ is applied to the

system. At the next sampling step, a new state s is received,
and problem (7) is solved again, producing a new u⋆ and a
new u⋆

0. MPC hence yields a policy:

πθ (s) = u⋆
0 , (8)

with u⋆
0 solution of (7) for a given initial state s. MPC policy

(8) can provide a good approximation of the optimal policy
π⋆ for an adequate choice of prediction horizon N , terminal
cost Tθ and if the MPC model fθ approximates the true
dynamics (1) sufficiently well.

In the context of approximating π⋆(s) using (8), the
model is arguably the major bottleneck as many systems are
challenging to model accurately. Machine learning approaches
for MPC that modify the model based on mismatch to the
observations, e.g. using Gaussian Process regression, are
precisely tackling this problem. However, within a modeling
structure, selecting the model fθ that yields the best closed-
loop performance J(πθ) is very difficult. Additionally, there
is in general no guarantee that the most accurate model yields
the best closed-loop performance.

C. Reinforcement Learning for MPC

It is essential to understand how the optimal value functions
and policy can be approximated by an MPC scheme. Using
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(7), we consider an approximation of the value function as

Vθ(s) = min
x,u

(7a), (9a)

s.t. (7b)− (7c) (9b)

and the action-value function as

Qθ(s,a) = min
x,u

(7a), (10a)

s.t. (7b)− (7c), u0 = a (10b)

with added constraint u0 = a on the initial input. The
MPC scheme in (10) is a valid approximation of Q⋆ in the
sense that it satisfies the relationships (5) and (6), i.e.:

πθ (s) = argmin
a
Qθ(s,a), Vθ(s) = min

a
Qθ(s,a) .

(11)

For learning the approximations in (9) and (10), let us
briefly state the central result by [5]. It establishes the
equivalence between the optimal policy and value functions
and the approximations provided by the MPC:

Theorem 1. [5, Theorem 1] Consider the parameterized
stage cost, terminal cost and constraints in (7) as function
approximators with adjustable parameters θ. Further suppose
that x⋆ is an optimal state trajectory generated by the MPC
in (7) and there exist parameters θ⋆ such that

Tθ⋆(s) = V ⋆(s) (12a)

Lθ⋆(s,a) =

{
Q⋆(s,a)− γV +(s,a) If |V +(s,a)| <∞

∞ otherwise
(12b)

where, V +(s,a) = V ⋆(fθ⋆(s,a)). Then the following
identities hold:

1) Vθ⋆(s) = V ⋆(s), ∀s ∈ S
2) πθ⋆(s) = π⋆(s), ∀s ∈ S
3) Qθ⋆(s,a) = Q⋆(s,a), ∀s ∈ S, for the inputs a ∈ A

such that |V ⋆(fθ⋆(s,a))| <∞
if the set

Ω =:
{
s ∈ S

∣∣∣ |V ⋆(x⋆
k)| <∞, ∀ k ≤ N

}
(13)

is non-empty.

The proof follows from [5], [15].
Essentially, Theorem 1 states that it is possible to compute

the optimal policy π⋆(s) using inaccurate model dynamics.
However, Lθ⋆(s,a) in (12b) is difficult to compute and
requires a model of the system dynamics. To bypass dif-
ficult Lθ⋆(s,a) evaluation, [5] suggest to learn the optimal
parameter θ⋆ using RL tools such as Q learning or policy
gradient methods.

D. Challenges with learning MPC with RL on big data

Most RL methods involve iteratively optimizing the policy
using the experience acquired by interacting with the sys-
tem. Their success hinges on repeatedly combing through
collected data to build better approximations of MDP value
functions and policy, in particular when using Deep Neural

Networks (DNNs) as function approximators. The MPC-based
RL methods, similarly, iteratively optimize the closed-loop
performance for learning θ∗ from observed state transitions.
However, these iterative updates require computing multiple
MPC solutions for each optimization step. Additionally,
finding an optimal θ⋆ by scrubbing through the collected
data is computationally demanding.

The classical RL methods fundamentally operate in online
learning paradigm. Though many RL methods work with
off-policy data, these methods often cannot learn effectively
from entirely offline datasets, without additional on-policy
interactions [9]. In recent times, the offline RL paradigm has
garnered growing interest and many approaches have been
proposed to effectively learn from offline data [10], [11],
[12], [13]. However, many challenges persist in using RL
with offline data as discussed in [9], [16].

III. LEARNING MPC FROM BIG DATA

Problem statement

We address the challenge of formulating an optimal
MPC scheme π⋆ parameterized by θ from a previously
collected dataset D containing transition data (s,a, s+).
Given the dataset D and a stage cost function L(s,a),
the aim is to find the optimal parameters θ⋆ for the MPC
scheme such that it is optimal for closed-loop performance.
Existing learning-based approaches have shown promise in
improving MPC controllers using large datasets, but they
have limitations as described in Section I. We propose to
learn a performance-oriented MPC formulation in an offline
RL setting using previously collected data, which avoids the
need for expensive MPC evaluations and makes it possible
to learn high-performing MPC schemes from data at a
low computational expense. Fig. 1 provides a comparison
between the conventional model learning-based approach and
the proposed approach. This section describes the proposed
approach to learning an MPC scheme from big data.

Learning MPC parameterizations

As stated in Theorem 1, under some conditions, an MPC
scheme using a model fθ(s,a) and the stage cost in (12b)
yields the optimal policy π⋆(s) for the underlying MDP,
together with the associated optimal value functions (5). The
optimal parameters for an MPC scheme parameterized in θ
relates to a well-defined optimal value function V ⋆(s), as in
given in Theorem 1, as:

Lθ∗(s,a) = Q⋆(s,a)− γV ⋆(fθ∗(s,a)) . (14)

Using Bellman equations, we get,

Lθ∗(s,a) = L(s,a) + γV ⋆(s+)− γV ⋆(fθ∗(s,a)) , (15)

where L(s,a) is the stage cost of the underlying MDP. Here,
variable θ includes all the parameterizations introduced in
the MPC scheme in (7).

Estimating the optimal value function V ⋆(s) requires
knowledge of the system dynamics (1) and the stage cost
L(s,a). However, V ⋆(s) can also be approximated from a
dataset with a rich enough data distribution over the state and
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Fig. 1: Comparison between the (a) classical MPC formulation approach and (b) our proposed approach. In the classical
MPC formulation, an accurate model of system dynamics is learned from a given data set, and an MPC scheme is formulated
using this model. Unlike the classical model learning approach, we don’t focus on learning the system dynamics or cost
function but rather estimate the value function from the given dataset using a value learning approach. The resulting value
function is then used to learn a parametric MPC scheme πθ . This approach helps us directly target the performance-oriented
MPC scheme.

action space S,A. We propose to use Deep Neural Networks
(DNNs) to approximate a value function Vϕ(s) ≈ V ∗(s)
from data. Vϕ(s) can be estimated using update equation
given as:

ϕ∗ = argmin
ϕ

Eτ∼D
[
(L(s,a) + γVϕ(s+)− Vϕ(s))2

]
,

(16)

where τ : {s,a, s+, L(s,a)} is the transition sampled from
the given dataset D. With a dataset D generated following a
greedy in the limit of infinite exploration (GLIE) policy, the
learned value function Vϕ(s) will closely match the optimal
value function V ⋆(s) i.e. Vϕ(s) ∼ V ⋆(s). The estimated
Vϕ(s) can then be integrated into (15) as:

Lθ∗(s,a) ≈ L(s,a) + γVϕ(s+)− γVϕ(fθ(s,a)) . (17)

It is often useful to impose additional constraints on the
parameterization adopted in an MPC scheme, e.g. the stage
cost should preferably be convex and smooth, such that Lθ

may preferably be restricted to a specific class of functions.
Considering possible constraints on the stage cost, we fit a
structured cost L̂θ(s,a) to the cost function Lθ∗(s,a) in
(17). Thus, the optimal parameters θ∗ for the parameterized
MPC scheme can be derived as:

θ∗ = argmin
θ

E[(L(s,a) + γVϕ(s+)

− γVϕ(fθ(s,a))− L̂θ(s,a))
2] (18)

This forms the central result of our work, which essentially
reduces the problem of learning MPC parameters from data
to a supervised learning problem.

An important observation regarding θ∗ from (12) and (18)
is that the resulting model dynamics fθ∗(s,a) may not match
the true system dynamics. The model dynamics fθ∗(s,a)
is unlikely to be the best fit model for state predictions as
it is solely adjusted for closed-loop performance. However,
if it is important to have a model with a high prediction
accuracy, the parameters associated with the model dynamics
fθ(s,a) can be excluded from θ i.e. minimizing (18) over

only cost parameterizations. Indeed, according to Theorem
1, if one can accommodate a rich structure to the stage
cost, then the MPC formulated by learning only the stage
cost using (18) can compensate for any model inaccuracies.
We will discuss further the issue of the limitations on the
structure of the cost function L̂θ and some possible solutions
in Section V. Additionally, Theorem 1 holds for optimal
value function V ⋆(s) which can be built given a dataset
generated with a greedy in the limit of exploration (GLIE)
policy [14]. However, that is a fair concern for all data-driven
learning methods. In our approach, with a rich dataset, a
good approximation of the value function can still be built
and used for learning a high-performing MPC scheme.

To summarize, we propose a solution to formulate a high-
performing MPC scheme from big data using RL tools. We
reduce the problem of learning the MPC parameters to a
supervised learning task by building a value function estimate
from a given dataset and incorporating it into Theorem 1.
To that extent, we utilize the strength of machine learning
methods to extract knowledge from big data effectively and
utilize it for learning the MPC scheme, thereby eliminating
the enormous computational complexities faced by existing
approaches for learning-based MPC. As we outsource the
problem of extracting a value function estimate and learning
MPC parameters to machine learning tools, the learned MPC
scheme is obtained at low computational expense without any
MPC evaluations. Additionally, it is assured to have a high
closed-loop performance if a good approximation of V ⋆(s)
can be built from the data and the learned MPC parameters
satisfy (18). In the next section, we will evaluate the proposed
approach in three different simulation experiments.

IV. EXPERIMENTS

In this section, we present three simulated examples of
varying complexity to evaluate our approach to learning MPC
from big data.
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A. Experimental Setup

1) MPC parameterization:: For all the three simulated
examples, we parameterized the modified stage cost L̂θ(s,a)
in (18) as a quadratic cost given by

L̂θ(s,a) = (s− sref )
TW θ(s− sref ) + aTRθa+ θ3

(19)

W θ =



θW,11 θW,12 . . .
θW,21 θW,22 . . .

...
...

. . .


 , (20)

Rθ =



θR,11 θR,12 . . .
θR,21 θR,22 . . .

...
...

. . .


 ,

where W θ,Rθ are the state and input weight matrices, and
sref is the desired goal state of the tracking control problem.
The terminal cost is set to be 2 norm of tracking error,
T (s) = ∥s − sref∥. The parameter vector θ collects all
the parameters in the MPC scheme together. In order to
formulate a well-defined MPC scheme, we further include
a semi-definite constraint over W θ and Rθ . Additionally, a
l2 regularization penalty is imposed around the given initial
parameter estimates. The l2 regularization is used to restrict
the RL updates on the parameters to be closer to their initial
values, thereby facilitating stable updates. We choose to fix
the constraint equations for all the experiments i.e. constraints
are not parameterized. The three different tracking control
problems chosen to test our method are

1) Linear tracking MPC task,
2) Pendulum swing-up task,
3) Cartpole swing-up and balancing task.
In all the experiments, the variable θ is initialized to a

nominal MPC scheme formulated using an inaccurate model
and a nominal stage cost. Essentially we apply our approach
to improve the performance of this nominal MPC formulation
directly from a dataset. The nominal MPC parameters can
be seen as an initial guess for our approach to improve upon.
This nominal MPC is denoted by MPC 1 throughout this
section.

In all three experiments, we learn two different MPC
parameterizations,

1) Only learning the stage cost parameters with a fixed
model: denoted as MPC 2 where the θ in (18) only
constitute the stage cost parameters in (19).

2) Learning both stage cost and model parameters: denoted
by MPC 3 where the θ constitutes both the stage cost
parameters in (19) and model parameters.

The richer parameterization in the second case allows
higher flexibility for capturing Lθ(s,a) in (15). However,
learning cost parameterization with fixed model dynamics
should still capture (15) to a degree and learn a better
performing MPC scheme than the nominal one. In order to
evaluate our approach we compare the performance achieved
by both of these learning-based MPC schemes to MPC 1 in

the case of pendulum swing-up and cartpole swing-up tasks.
For the linear tracking MPC task, the performance for these
MPC schemes is reported relative to closed-loop optimal
performance.

2) Data Generation:: A rich dataset was obtained using
a popular RL method, Deep-Deterministic Policy Gradient
(DDPG) [17]. For each example, a dataset of 500 episodes
(each with 100 transitions) is collected using DDPG agent.
The DDPG agent’s learning progress ensures rich data
distribution in the collected dataset.

3) Value Learning:: For all three experiments, we learn
the approximations for value functions Vϕ(s) using DNNs
with 2 hidden layers (each with 256 neurons). With current
machine learning tools, building a good approximation of
V ⋆(s) from big data takes a fraction of computational effort
compared to that of learning based MPC methods.

B. Linear Tracking MPC

We first consider a simple linear MPC to illustrate the
effectiveness of our approach to learning an MPC scheme
from data. The linear MPC task consists of a four-dimensional
state space, s = [x, y, ẋ, ẏ] and input space, a = [Fx, Fy].
The true system dynamics is of deterministic nature, defined
as:

s+ = As+Ba (21)

A =




1 0 0.1 0
0 1 0 0.1
0 0 0.9 0
0 0 0 0.9




+ α




0.68 −1.15 −2.29 −2.42
1.57 2.06 0.53 1.15
0.22 2.17 1.58 −2.49
1.79 −2.33 1.15 −1.62


× 10−2

B =




0 0
0 0
0.1 0
0 0.1


+ α




1.82 0.21
−1.00 −0.39
−2.36 −1.88
0.85 0.74


× 10−2

where α scales the unmodeled part of system dynamics. Note
that, by varying the value of α we can generate different
system dynamics. The stage cost for the true system is given
as

L(s,a) = 9(x2 + y2) + 1(ẋ2 + ẏ2) + 0.1(F 2
x + F 2

y ) .

The task is discretized with sampling time of 0.1, the discount
factor γ is 0.9, and the task length is 100. The MPC scheme
is defined for discretized control task with a horizon equal
to the task length i.e. N = 100. MPC 1 is formed using
L(s,a) as the stage cost and nominal model dynamics with
α = 0 in (21). For MPC 2, the stage cost is parameterized
by L̂θ(s,a) in (19) and a nominal model dynamics with
α = 0 in (21). For MPC 3, the MPC scheme is formed using
L̂θ(s,a) in (19) as a stage cost and a model dynamics with
(Aθ,Bθ), where (Aθ,Bθ) are fully parameterized matrices
of corresponding sizes.
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Figure 2 shows the relative performance of MPC schemes
with respect to closed-loop optimal performance for the
system dynamics corresponding with different values of α. As
seen from fig. 2, performance of MPC 1 starts to degrade with
added perturbations, as the plant-model mismatch increases.
Learning cost parameterization in MPC 2 manages to find
a high-performing MPC scheme for the inaccurate model
dynamics, i.e. the learnt cost parameters compensate for the
model inaccuracies for lower value of α. However, as α
increases, MPC 2 with a quadratic cost parameterization in
(19) fails to capture Lθ∗(s,a) in (15), resulting in loss of
performance. Whereas, MPC 3 with learned cost and model
parameterizations finds a high performing MPC scheme for
all value of α i.e. with our approach, an MPC scheme
with a close-to-optimal performance can be learned from
the collected data.

Fig. 2: Performance of the three MPC schemes relative to the
closed-loop optimal performance for a linear tracking MPC
task.

C. Pendulum Swing-Up

We consider a pendulum swing-up task to illustrate our
method on non-linear dynamics with a complex value function.
In this example, the goal of the control task is to swing up
the pendulum with an under-actuated motor and maintain it
at an upright angle. The system dynamics are given by

ϕ̈ =
3g

2l
sinϕ+

3

ml2
u (22)

where ϕ is the angular deviation of the pole w.r.t the vertical
position, gravity g = 9.8, u is the applied torque, u ∈ [−2, 2],
and m = 1, l = 1 are the mass and length of the pole
respectively. The system state s is defined to be s = [ϕ, ϕ̇]
with ϕ normalized between (−π, π]. The corresponding cost
function is given as

L(s, u) = ϕ2 + 0.1ϕ̇2 + 0.1u2 .

The task is discretized with a sampling time of 0.05, the
discount factor γ is 0.9, and the task length is 100.

The MPC scheme for the discretized control task is defined
over a transformed state-space y = [cosϕ, sinϕ, ϕ̇] solely for
the ease of implementation. The horizon for the MPC scheme

is chosen as N = 50 and the tracking goal corresponding to
the vertical pole orientation is yref = [1, 0, 0]. The nominal
stage cost for the MPC scheme over observation y is

LMPC (y, u) = (cosϕ− 1)2 + sinϕ2 + 0.1ϕ̇2 + 0.1u2 .

We use an inaccurate model with an uncertain estimate of
true system properties for forming the nominal MPC scheme
MPC 1. The uncertain estimates of mass and length used in
the MPC model are m̂ and l̂ respectively, with

m̂ = m+ α U [−0.5, 0.5], l̂ = l + α U [−0.5, 0.5]
where α scales the uncertainty in estimates of the mass and
length of the pole.

Figure 3 shows the average of relative performance for
different MPC formulations. Similar to the first example,
MPC 1 starts to degrade quickly with high uncertainties in
the model dynamics. Whereas, the learned MPC schemes in
MPC 2 and MPC 3 manage to perform better and are able to
compensate for the plant-model mismatch with α ≤ 1. Even
for complex value functions learned with machine learning
tools, our approach can learn the stage cost parameters in
MPC 2 to compensate for inaccuracies in the given model.
However, for larger model errors such as α ≥ 1, the quadratic
cost in (19) cannot accurately capture Lθ(|s, a) in (15).
Whereas additionally learning the model parameters in MPC 3

helps to further improve the MPC performance. However, we
observe that since the value function approximation is built
using finite data, MPC 3 still can not find a high-performing
MPC scheme when initialized with highly inaccurate model
dynamics.

Fig. 3: Average performance of the MPC schemes relative to
MPC with the ground truth model (MPC 1 with α = 0) over
10 learning trails with different seeds for pendulum swing-up
task.

D. Cartpole Swing-Up and Balancing

The cartpole system consists of a wheeled cart of mass
(mc = 0.2) which can freely move on a rail with a friction
coefficient of (µf = 0.5), and a pole of mass (mp = 0.2) and
length (l = 0.5) is hinged to cart on a friction-less joint. The
pole can swing freely around the hinged joint. The control
input, u to the system is the force exerted on the cart along
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the rail with u ∈ [−2, 2]. The goal of the control task is to
swing the pole to an upright position as quickly as possible
and balance it in the upright position.

The dynamics equations for a cartpole system are given as

ϕ̈ =
g sinϕ+ cosϕ

(
µf ẋ−u−mplϕ̇

2 sinϕ
mc+mp

)

l
(

4
3 −

mp cos2 ϕ
mc+mp

)

ẍ =
u− µf ẋ+mpl

(
ϕ̇2 sinϕ− ϕ̈ cosϕ

)

mc +mp
.

(23)

where ϕ is the angular deviation of the pole w.r.t the vertical
position, and x is the horizontal displacement of the cart.
The system state-space s is given as s = [x, ẋ, ϕ, ϕ̇] with ϕ
normalized to be in (−π, π]. The corresponding cost function
is

L(s, u) = 2x2 + ϕ2 + 0.1ẋ2 + 0.1ϕ̇2 + 0.1u2 .

The task is similarly discretized with a sampling time of 0.05,
the discount factor γ is set to 0.9, and the task length is 100.

The MPC scheme is formulated over the discretized task
with observation y = [x, ẋ, cosϕ, sinϕ, ϕ̇] with the tracking
goal yref = [0, 0, 1, 0, 0] and MPC horizon of N = 50. The
stage cost of MPC scheme over observation y is

LMPC (y,u) =3x2 + 3(cosϕ− 1)2 + sinϕ2

+ 0.01ẋ2 + 0.01ϕ̇2 + 0.001u2 .

Similar to the pendulum swing-up task, the uncertain estimate
of the system parameters used in the nominal MPC model
are as follows,

m̂c = mc + α U [−0.1, 0.1], µ̂f = µf + α U [−0.25, 0.25]
m̂p = mp + α U [−0.1, 0.1], l̂ = l + α U [−0.25, 0.25] .
Figure 4 shows the average relative performance of different

MPC schemes for different inaccurate model dynamics.
Learned MPC formulations in MPC 2 and MPC 3 similarly
compensate for the model inaccuracies for alpha < 1 and
finds a high performing MPC parameterizations. The learned
MPC schemes’ performance still degrades when initialized
with highly inaccurate model dynamics. However, MPC 3

still out performs MPC 1, essentially, our approach still finds
MPC parameters to improve performance over the baseline.

V. DISCUSSION

The experimental results demonstrate the strength of our
approach to learning an MPC scheme from data. The proposed
approach outsources the task of building a good value function
approximation to DNN-based RL tools, thereby bypassing the
computationally expensive MPC solutions over the dataset.
We essentially reduce the task of learning an MPC scheme
to a simple supervised learning problem. The essence of our
approach can be summarized as deriving a high-performance
MPC scheme directly from data without having to endure
the complexities of current RL-based MPC methods.

Our approach learns a high-performing MPC formulation
from the collected data in all three experiments, addition-
ally compensating for inaccurate initial model dynamics

Fig. 4: Average performance of the MPC schemes relative to
MPC with the ground truth model (MPC 1 with α = 0) over
10 learning trails with different seeds for cartpole swing-up
and balancing task.

effectively, irrespective of the value function complexity.
Additionally from the results, we infer that the value function
approximation built from a finite dataset is sufficient to extract
a close-to-optimal MPC scheme using (18). We observe that,
by only learning the stage cost parameters, the resulting
MPC scheme could correct for inaccurate model dynamics.
However, cost learning can not adequately capture Lθ(s,a) in
(15) for highly inaccurate model dynamics. Whereas, learning
both stage cost and model parameters in an MPC scheme
provides high flexibility to minimise the supervised loss in
(18), thereby obtaining a learned MPC scheme with close-
to-optimal performance even while initialised with highly
inaccurate models.

An important point to note here is that we directly
coupled the model parameter to close-loop MPC performance
through (18). This is a fundamentally different approach to
learning the model parameters as compared to the classical
approach of model learning where the parameters are adjusted
for prediction accuracy. In the context of learning model
parameters, it has to be noted that the central result in (18)
holds when optimal policy π∗(s) can stabilize the model
dynamics fθ(s,a). However, further investigations need to
be carried out to understand the performance of our approach
when this condition fails.

In the experiments, we approximated Lθ(s,a) in (15)
with a quadratic cost parameterization. But such simple cost
functions fail to fully capture Lθ(s,a) for complex value
functions and highly inaccurate model dynamics. This is
evident from the results presented in Section IV. Limitations
on cost function structure are a typical bottleneck in MPC
and pose a similar challenge to our approach. However, it can
be addressed by using rich function approximations as the
stage cost in MPC schemes, such as convex neural networks
in [18].

Additionally, we fixed the terminal cost as 2 norm of
tracking error in the simulated examples and had a long
MPC horizon to downplay its effect on MPC solutions.
According to theorem 1, the optimal parameters θ∗ are
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such that terminal cost is the optimal value function V ∗(s).
However, a simplified value function approximation can be
learned from Vϕ(ϕ) and further considered as a terminal
cost for the learned MPC scheme. Finally, even though a
rich data set is required for building a good value function
approximation, a local value function estimate can be built
from a sparse data distribution. Such a local value function
could be used to nudge the MPC parameters toward better
performance iteratively, which needs further scrutiny along
the lines of the policy iteration class of methods.

VI. CONCLUSION

We present an approach to formulate performance-oriented
MPC schemes directly from data using RL methods. We es-
sentially reduced the problem of deriving a high-performance
MPC scheme to a supervised learning problem using a value
function approximated from data. The proposed approach
derives an MPC scheme in an offline way from big data,
bypassing the complexities of solving MPC schemes or having
to interact with the real system. Evaluations of our approach to
the simulated experiments show promising results by learning
a near-optimal MPC scheme from the collected dataset. In
further work, we aim to apply our approach to datasets from
real-world applications.
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