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Abstract

The main result of this thesis is to show that there are only finitely many integers
n such that both n and d(n) are highly composite numbers at the same time, where
d(n) is the divisor function. Bertrand’s postulate [4] is used many times throughout
the thesis and allows us to write a proof that is as simple (and as short) as possible.
This thesis is meant to solve the open problem from the “On-Line Encyclopedia of
Integer Sequences” (OEIS): A189394 [3].

The main idea for solving the problem comes from the comment in A189394; n will
contain many primes with exponent 1 when n is a large highly composite number.
This implies that d(n) contains a lot of factors of 2. We then estimate the factor 2β1

in d(n) in terms of the largest prime in d(n) from above and from below to give us a
contradiction when n is large enough. We end by finding a list of all highly composite
n such that d(n) is also highly composite.

Abstrakt

Hovedresultatet for denne oppgaven er å vise at det kun finnes endelig mange tall n
slik at b̊ade n og d(n) er “antiprimtall”, hvor d(n) er divisorfunksjonen. Gjennom
hele oppgaven blir Bertrands postulat [4] brukt mange ganger. Dette har gjort at
bevisene kan skrives s̊a enkelt som mulig. Oppgaven skal løse det åpne problemet fra
“On-Line Encyclopedia of Integer Sequences” (OEIS): A189394 [3].

Hovedidéen for hvordan vi løser problemet kommer fra kommentaren i A189394; N̊ar
n er et stort antiprimtall, vil n inneholde mange primtall med eksponent 1. Det vil
si at d(n) inneholder mange faktorer av 2. Vi estimerer faktoren 2β1 i d(n) nedenfra
og ovenfra i forhold til den største primtallsfaktoren i d(n) for å f̊a en motsigelse n̊ar
n er stor nok. Vi avslutter med å finne alle antiprimtall n slik at d(n) ogs̊a er et
antiprimtall.

Chebyshev said it
and I’ll say it again,

There’s always a prime
between n and 2n.

- Bertrand’s postulate
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1 Preliminaries

Definition 1.1. The divisor function d : N → N is defined to be the number of
positive divisors of a given positive integer n. It is usually represented as the sum
over the divisors of n

d(n) =
∑
d|n

1.

In most cases this definition does not say much on how large d(n) is in terms of the
prime factorization of n = pα1

1 pα2
2 . . . pαr

r . Counting the number of divisors of each of
the prime powers we can see that pαk

k has 1, p1k, p
2
k, . . . p

αk

k as its divisors: a total of
αk + 1 of them. Since d(n) is multiplicative we may then write

d(n) =

r∏
j=1

(αj + 1).

That is, the number of divisors of a given number does not depend on its prime
factors, only on the exponents in the prime powers.

Definition 1.2. A positive number n is said to be highly composite if the number of
divisors of n is greater than the number of divisors of every number smaller than n:

n is highly composite if for every m < n we have d(m) < d(n).

Building on this definition, we can see that the sequence of highly composite numbers
is the sequence of numbers n where d(n) obtains a new maximum. It is easy to see that
if n = pα1

1 pα2
2 . . . pαr

r is a highly composite number then n consists of the smallest r
primes with certain exponents αk. Using larger primes with the same exponents yields
a larger number with the same number of divisors. Furthermore, the exponents must
be in decreasing order α1 ≥ α2 ≥ · · · ≥ αr. If not, then rearranging the exponents
in a decreasing order also yields a smaller number with the same number of divisors.
We also have that αr = 1 for all highly composite n, except for the small cases when
n = 1, 4, 36, which we will see as a consequence of the first lemma.

2 Lemmas

In this section we estimate the factor 2β1 in d(n) from above using lemma 2.2, and
from below using the other lemmas. The first lemma is almost identical to Erdös’
lemma 2 in [1], but here it is written and proven to hold for all n > 50400.

Lemma 2.1. Let n = pα1
1 pα2

2 . . . pαr
r be a highly composite number greater than 50400.

Then

αj = 1 for all pj ∈
[
pr + 1

2
, pr + 1

]
. (1)

Proof. Take any pj ∈ [pr+1
2 , pr + 1] and assume αj ≥ 2. Then αj−2 ≥ αj−1 ≥ αj ≥ 2

as mentioned in the introduction. Consider the number

n′ = n · pr+1pr+2

pjpj−1pj−2
.

1



Clearly, pr+1pr+2 contributes to a factor of 4 in d(n′), and d( n
pjpj−1pj−2

) is at least

d(n) ·
(
2
3

)3
. So

d(n′) ≥ d(n) · 4 ·
(
2

3

)3

> d(n).

Our goal is to show that n′ < n giving us a contradiction to n being highly composite.
Bertrand’s postulate [4] gives us that pk+1 < 2pk. So

pr+1pr+2 < 8p2r, and
1

pjpj−1pj−2
<

8

p3j

Since pj ∈ [pr+1
2 , pr + 1] we also have pj ≥ pr+1

2 , and so

1

p3j
≤ 1

(pr+1
2 )3

=
8

(pr + 1)3
<

8

p3r
.

Thus

n′ = n
pr+1pr+2

pjpj−1pj−2
< n

512

pr
,

which is less than n whenever pr > 512. This means we have a contradiction whenever
the largest prime pr in n is larger than 512. We check pr ≤ 512 in appendix A.1 to
get that every n > 50400 satisfies the lemma.

Remark. For n > 54000 we get that the last two exponents αr−1 and αr must be 1
by π(pr +1)− π(pr+1

2 ) ≥ 2 for pr ≥ 11 = R2, where Rk are the so called Ramanujan
primes [4]. Checking a list of highly composite numbers [2] when n ≤ 50400 gives us
that αr = 1 always, except for small cases when n = 1, 4 or 36.
Also, if we write d(n) = 2β1qβ2

2 . . . qβs
s for n highly composite, we have that

β1 ≥ π(pr + 1)− π

(
pr + 1

2

)
(2)

where π(x) =
∑

p≤x 1 is the prime counting function. This is because each prime

pj ∈ [pr+1
2 , pr + 1] of n contributes to a factor of 2 in d(n).

The next lemma gives us the necessary upper bound for 2β1 in d(n).

Lemma 2.2. Suppose that d(n) ≥ 12 is a highly composite number and write d(n) =

2β1qβ2

2 . . . qβs
s . Then

2β1 < 8q2s .

Remark. Note that we don’t assume n to be highly composite.

Proof. We begin by choosing the smallest 1 ≤ h ≤ β1 such that

2qs2
β1−h < 2β1 .

In other words h is the smallest integer such that 2h > 2qs holds.
If we cannot find h ≤ β1, we set h = β1 so h− 1 > β1−1

2 for β1 ≥ 2. Then 2h−1 ≤ 2qs
and we skip the next step.

2



If h ≤ β1, consider
m = d(n)qs+12

−h.

Then m < d(n)2qs2
−h by Bertrand’s postulate [4], which again is less than d(n) by

construction of h.
Then certainly we must have d(m) < d(d(n)) since d(n) is highly composite. This
yields

2(β1 − h+ 1) < β1 + 1 or h >
β1 + 1

2

That is, whenever 2h > 2qs we have h > β1+1
2 . Since h was chosen to be the smallest

number with the property that 2h > 2qs we then have 2qs ≥ 2h−1 so

2qs ≥ 2h−1 > 2
β1+1

2 −1

4q2s > 2β1−1

8q2s > 2β1

The next lemma tells us that the largest prime in d(n) is bounded above by the
largest prime in n.

Lemma 2.3. Write n and d(n) as earlier and suppose that both n and d(n) are highly
composite. Then if pr ≥ 13 we have

qs < pr. (3)

Our proof is quite simple and is a just consequence of lemma 2.2.

Proof. We need only to prove that pr > α1 + 1 for the multiplication formula for
d(n) gives us that α1 + 1 ≥ qs. We also have that the exponents in n are decreasing
α1 ≥ · · · ≥ αr if α1 + 1 is not prime. We now apply lemma 2.2, but this time on n
highly composite, giving us

8p2r > 2α1 , so

pr > 2
α1−3

2 ≥ α1 + 1, if α1 ≥ 12

Meaning for pr ≥ 13 we have pr > α1+1 ≥ qs and we are done. The result also holds
for some smaller pr, but it is not needed here.

The next lemma gives us a bound for π(pr + 1)− π
(
pr+1

2

)
from Ramanujan’s proof

of Bertrand’s postulate. The proof can be found in [4].

Lemma 2.4.

π(x)− π(
1

2
x) >

1

log x
(
1

6
x− 3

√
x), for x > 300. (4)

From these lemmas we move on to the main result.

3



3 Main result

Theorem. There are only finitely many integers n such that both n and d(n) are
highly composite.

Proof. Suppose that both n and d(n) are highly composite, and write them as earlier.
Since d(n) is highly composite we have the upper bound from lemma 2.2 for 2β1

2β1 < 8q2s .

Now, assuming pr ≥ 2164, the following calculation gives us a lower bound on 2β1 :

2β1 ≥ 2π(pr+1)−π( pr+1
2 ) (lemma 2.1)

> 2
1

log(pr+1)
( 1
6 (pr+1)−3

√
pr+1) (lemma 2.4)

> 8p2r

> 8q2s (lemma 2.3)

(5)

Where we have used the fact that line 3 holds whenever pr ≥ 2164. This gives us the
contradiction.
In appendix A.2 we use a search on all primes pr ≤ 2164 to find that

2π(pr+1)−π( pr+1
2 ) ≥ 8p2r

also holds for all primes 181 ≤ pr < 2164. This means there are no highly composite
numbers n with largest prime pr ≥ 181 such that d(n) is also highly composite.

We end the main part of this thesis with table 1; A list of all the highly composite
numbers n such that d(n) is also highly composite. This table is generated by checking
if d(n) is highly composite for every highly composite number n with largest prime
pr ≤ 181. To guarantee that pr ≤ 181, we use the bound obtained by Erdös in his

proof of “lemma 1” [1]. He obtains that n < p
π(pr)
r , meaning n < 18141 ≤ 10556 for

pr ≤ 181. We do this in appendix A.3.

n d(n) n d(n)
1 1 55440 120
2 2 277200 180
6 4 720720 240
12 6 3603600 360
60 12 61261200 720
360 24 2205403200 1680
1260 36 293318625600 5040
2520 48 6746328388800 10080
5040 60 195643523275200 20160

Table 1: The cases where both n and d(n) are highly composite
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A Appendix

A.1 Small cases in lemma 2.1

Here pr is the largest prime in n, pj is the smallest prime greater than or equal to
pr+1

2 . The last column is the factor we multiply n by in the proof. These are the
only cases when this factor is ≥ 1 for pr ≤ 512.

pr pj
pr+1pr+2

pjpj−1pj−2

7 5 4.76667
11 7 2.10476
13 7 3.07619
17 11 1.13506
19 11 1.73247

We manually check the cases pr ∈ [11, 19] to satisfy (1). A simple check against a list
[2] of highly composite numbers yields 12 numbers with pr = 7 as its largest prime
factor. Of these, only n = 50400 = 25 · 32 · 52 · 7 and n = 25200 = 24 · 32 · 52 · 7
do not satisfy (1) and proving our lemma. For the smaller primes pr = 2, 3, 5 only a
handful of highly composite numbers satisfies (1), namely n = 2, 6, 60, 120 and 240,
but is not needed here.
Below is the Python program used for this search.

1 p = list of primes < 600

2 table = [["p_r","p_j","p_r+1 p_r+2/ p_j p_j -1 p_j -2"]]

3

4 for r in range(2,len(p) -2):

5 j=0

6 while p[j] < int((p[r]+1) /2):

7 j+=1

8 K = p[r+1]*p[r+2]/(p[j]*p[j-1]*p[j-2])

9 if (K >= 1):

10 table.append ([p[r],p[j],K])

11 print(table)

A.2 Lowering the largest prime in eq. (5)

Here we skip the lower bound by Ramanujan [4] of π(x)−π(x2 ) to check directly when

2π(pr+1)−π( pr+1
2 ) ≥ 8p2r, (6)

for all primes pr up to 2200. The Python program for this search is written below
and gives us that (6) holds whenever pr ≥ 181.

1 primes = list of primes < 2200

2 table = [["p_r", "8p_r^2", "2^(pi(p_r+1)-pi((p_r +1)/2))"]]

3 def pi(x):

4 return "number of primes less than x"

5 def pi2(x):

6 return 2^(pi(x)-pi(x/2))

7 def f(x):

8 return 8x^2

5



9 for p in primes:

10 if f(p) < pi2(p+1):

11 table.append(p, [f(p), pi2(p+1)])

12 print(table)

A.3 Generating all highly composite n and d(n)

We need only to check all highly composite n ≤ 10556 as explained earlier. The
12500-th highly composite number is greater than 10560 by direct evaluation from
Flammenkamp’s list (“HCN.gz”, [2]). We also find that d(n) ≤ 10100 by direct
calculation of the 12500-th highly composite number n. The list hcn in the program
below is the list of all highly composite numbers less than 10100 and we check if d(n)
is in this list to generate our table. This gives us table 1, which is same numbers as
in A189394 [3]!

1 hcn = list of h.c.n. < 10^100

2 dhcn = []

3 def genlist(lst):

4 x = [i for i in lst]

5 for l in x:

6 if "^" in l:

7 k = l.split("^")

8 i = [int(k[0])]*int(k[1])

9 lst.remove(l)

10 [lst.append(o) for o in i]

11 lst = [int(i) for i in lst]

12 return lst

13 f = open("HCN.gz")

14 lines = f.readlines ()

15 for line in lines:

16 line = line.replace("\n", "").split(" ")

17 line = line [3:]

18 line = genlist(line)

19 dn = math.prod([i+1 for i in line])

20 if dn in hcn: dhcn.append ([dn ,line])

21 print(dhcn)

6
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