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Abstract

Consider the coupling of 2 evolution equations, each generating a global process. We prove
that the resulting system generates a new global process. This statement can be applied to
differential equations of various kinds. In particular, it also yields the well posedness of a
predator—prey model, where the coupling is in the differential terms, and of an epidemiological
model, which does not fit previous well posedness results.
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1 Introduction

A variety of models describing the evolution in time of real situations is obtained coupling simpler
models devoted to specific subsystems. In this paper we provide a framework where the well
posedness of the “big” model follows from that of its parts.

Predictive models consisting of couplings of evolution equations, possibly of different types,
are very common in the applications of mathematics. Here we only note that their use ranges, for
instance, from epidemiology [8, [9, [IT], to traffic modeling [14] 20], to several specific engineering
applications [I3] 27].

In this manuscript, the core result is set in a metric space, so that linearity plays no role
whatsoever. This also allows the range of applicability of the general theorem to encompass,
for instance, ordinary, partial and measure differential equations. In each of these cases, we
obtain stability estimates tuned to the metric structure typical of the specific evolution equation
considered, which can be, for example, the Euclidean norm in R”, the L' norm in spaces of BV
functions or some Wasserstein type distance between measures.

At the abstract level, the starting point is provided by the framework of evolution equations in
metric spaces, see [2| [B [l 10, 22| 23]. In this setting, an evolution equation is well posed as soon
as it generates a Global Process, i.e., a Lipschitz continuous solution operator, see Definition [2.2
In other words, global processes substitute, in the time dependent case, semigroups that, in the
autonomous case, have as trajectories the solutions to evolution equations.

Assume that two evolution equations are given, each depending on a parameter and each
generating a global process, also depending on that parameter. We now let the parameter in an
equation vary in time according to the other equation: a coupling between the two models is thus
obtained. Theorem [2.0] ensures the well posedness of this coupled model, in the sense that it
generates a new global process.

The assumptions required in this abstract construction are then verified in 5 sample situations:
ordinary differential equations, initial and boundary value problems for renewal equations, measure
valued balance laws and scalar conservation laws. Thus, we prove that any coupling of these
equations results in a well posed model. Indeed, in each of these cases, we provide a full set of
detailed stability estimates compatible with the abstract results. Note that assumptions ensuring
global in time existence results are also provided.

Finally, we consider specific cases. First, we briefly show that Theorem comprises the case
of the traffic model introduced in [20], where a scalar conservation law is coupled to an ordinary
differential equation.

Then, we detail the case of a predator—prey model inspired by [7], namely

Oup +div (p V (t2,p(0) ) = = (|lp() = 2[]) p(t,) a1

While we refer to §for a detailed explanation of the terms in , here we remark that in
the coupling is not only in the source term of the partial differential equations, but also in the
convective term, where no nonlocal term is involved (V is a function defined for ¢t € R, z € R™
and P(t) € R™).

Then, we apply the general construction to a recent epidemiological model presented in [11]
whose well posedness, to our knowledge, was not proved at the time of this writing. In this case,
the coupling involves a boundary value problem for a renewal equation, see §

For all basic results on evolution equations in metric spaces, we refer to the extended treatises [2]
3, 22], whose wide bibliographies also give a detailed view on the whole field. Below, we follow
the approach outlined in [4, [T0, 23]. The different frameworks differ in their approaches but offer
similar results. Related to Theoremis, for instance, [22] Theorem 26]. However, here we follow
a more quantitative approach to the various stability estimates.

We expect that also other equations fit in the framework introduced in Section 2] Natural
candidates are, for instance, measure differential equations [24] [25] and their coupling with ordinary



differential equations as considered in [I6]. A further class of couplings is that in [I3], consisting
of ordinary and partial differential equations similar to those comprised in § 33| Very likely to
comply with the present structure is also the general class of traffic models presented in [I§].

This work is organized as follows. Section[2] once the basic notation is introduced, presents the
general result. Each of the paragraphs in Section [3|is devoted to a particular evolution equation:
its well posedness is proved obtaining those estimates that allow the application of Theorem
Specific models are then dealt with in Section [d] Finally, proofs are in the final Section

2 Definitions and Abstract Results

Below we rely on the framework established in [4, 10} 23], see [2], 8, 22] for an alternative, essentially
equivalent, setting. Let (X, d) be a metric space and I be a real interval. First, a local flow on X
provides a sort of tangent vector field to X.

Definition 2.1 ([I0, Definition 2.1]). Given § > 0 and a closed set D C X, a local flow is a
continuous map F: [0,0] x I x D+ X, such that F (0,t,)u = u for any (to,u) € I x D and which
is Lipschitz in its first and third arguments uniformly in the second, i.e. there exists a Lip(F) > 0
such that for all T,7" € [0,9] and u,u’ € D

d (F(r,to)u, F(' to)u') < Lip(F) - (d(u,u’) + |- T’|) . (2.1)

Given an evolution equation, a global process is a candidate for the solution operator, i.e., for
the mapping assigning to initial datum u at time ¢, and to time ¢ the solution evaluated at time t.

Definition 2.2 ([I0, Definition 2.5]). Fiz a family of sets Dy, C D for all t, € I, and a set
A= {(t,to,u): t > to, to,t €1 and u € Dy, }. (2.2)

A global process on X is a map P: A — X such that, for all w € Dy, and t,,t1,t2 € I with
to 211 2 1o,

P(to,to)u=u (2.3)
P(t1,to)u € Dy, (2.4)
P(tg,tl) oP(tl,to)u = P(tg,to)u. (25)

In Theorem [2.4) below, a global process is constructed from a local flow by means of a suitable
extension of Fuler Polygonals to metric spaces.

Definition 2.3 ([10, Definition 2.3]). Let F be a local flow. Fiz u € D, t, € I, 7 € [0,0] with
to+ 7T € 1. For every e > 0, let k = |7/e|, where the symbol |-| denotes the integer part. An
Euler e-polygonal is

k=1

Fe(r,to)u = F(1 — ke, to + ke)o O F(e,t, + he)u (2.6)
h=0

whenever it is defined.

Above, we used the notation OZ:O fh=frofu_10...0f10fo.
For a local flow F, its corresponding Euler e-polygonal F¢, and any t, € I, introduce the
notation:

Fe(13,t0 + 71+ T2) 0 F%2 (72,0 + T1) 0 F=1 (71, 80)u
Dfo =< u€eD: isin D for all £1,e9,e5 €]0,] and all . (2.7)
T1,T2,T3 > 0 such that t, + 7 + 2+ €1

The next result provides the basis for our construction of solutions to coupled problems.



Theorem 2.4 ([I0, Theorem 2.6]). Let (X,d) be a complete metric space and D be a closed subset
of X. Assume that for the local flow F: [0,0] x I x D+~ X there exist

1. a non decreasing map w: [0, 8] — R, with fO(s w(TT) dr < 400 such that
d (F(k;T, to+ 7)o F(1,to)u, F ((k+ 1)7,t,) u) <kTw(r) (2.8)

whenever T € [0,6], k € N and the left hand side above is well defined;

2. a positive constant L such that
d (FE(T, to)ur, F° (7, to)uQ) < L d(uy,us) (2.9)

whenever € € 10,0], u,us € D, 7 > 0, to,t, +7 € I and the left hand side above is well
defined.

Then, there exists a family of sets Dy, fort, € I, and a unique global process (as in Deﬁm’tion
P: A — X with the following properties:

1. D?U C Dy, for any t, € I, with Dfo as defined in (2.7));
2. P is Lipschitz continuous with respect to (t,t,,u) € A;

3. P is tangent to F in the sense that for all (t, + 7,t0,u) € A, with T € ]0,0]:

% d(P(to+7,to)u, F(7,t,)u) < ljé) /OT w(;) d¢ . (2.10)

A general condition to ensure that 4 is non empty is [I0, Condition (D)]. Below, in the examples
we comnsider, it explicitly stems out that A # ().
We now head towards considering processes depending on parameters.

Definition 2.5. Let (U, dy) and (W, dyy) be metric spaces. A Lipschitz Process on U parametrized
by w € W is a family of maps P*: Ay — U, with

T = {(tto)elIxI:t>t,},
Ay = {(t,to,u):(t,to)eLueDZ},
DY C U,

such that for all w € W, P" is a Global Process in the sense of Definition [2.2 and there exist
positive constants C,, Cy, Cy, such that

dy (Pw(t,to)ul,Pw(t,to)uz) < 60“(t_t°) dz,[(U1,’LL2) s (211)
du (P (t1,to)u, P (ta, to)u) < Cylta —t1], (2.12)
dy (P (t,to)tg, P2 (t, t0)uo) < Cu (t = to) dyy(wr, wg) . (2.13)

We equip the product space U x W with the distance
d ((u/7 ’LU/), (u”a w/,)) = du(ulv UH) + dW(w/7 w”)'

Theorem 2.6. Let (U,dy) and W, dw) be complete. Let P¥: Ay — U be a Lipschitz Process
on U parametrized by w € W, and let P*: Ayy — W be a Lipschitz Process on W parametrized
byU. Let Cy,Cy, and Cy be constants that satisfy (2.11)—(2.12)—(2.13)) for both processes. Then,




1. Introducing Ap = {(7’7 to, (u,w)) :7 >0, to,to +7 €I, (u,w) € D% X DQ/DV}, the map

F o Ap — Uxw
(T, to, (U, w)) — (P“’(to + 7, to)u, P4(t, + 7, to)w) (2.14)
is a local flow on U X W.
2. F satisfies the assumptions of Theorem [2.]] with
L=eCHCIT  gnd  w(r)=CyCyur (2.15)

hence F' generates a unique global process P: A — U x W, for a suitable A C I X I xU X W,
satisfying properties 1., 2. and 3. in Theorem[2.4)

3. Forallt, € I and T > 0 with t, + 1 > t,, we have
F(r,t,) (DY x DY) C (DY . x DY, ) (2.16)
hence the process P is defined on A with

AD {(T,to,(u,w)) 720, toto+7 €I, (u,w) € DY x DtVOV} . (2.17)

The proof is deferred to § [5.1]

An analogous result can be proved defining the local flow F' by means of local flows F¥ and FV,
provided these local flows satisfy the assumptions of Theorem and have a Lipschitz continuous
dependence on the parameter.

Theorem 2.7. Consider two complete metric spaces (U, dy) and OV, dw). Let
FY: 0,0 x IxDY = U, and F":[0,8]x I xDW =W,

be local flows parametrized by w € W and u € U, respectively, so that there exists L such that for
all 7 €1[0,6] and t € I,

dy (F** (1, t)u, F** (1, t)u) < L dw(wr,ws) ue DY wy, we €W
dy (F* (1, t)w, F** (1, t)w) < L dy(uy,uz) ueDW ur, ug €U
Then, setting D = DY x DY, the coupling
F . [0,6]xIxD — UxWw

(1,t, (w,w)) = (FY(t, to)u, F(t, to)w)

is a local flow in the sense of Definition[2.1l If moreover F* and F* satisfy assumptions[1] and[2
n Theorem then F is tangent to the local flow F defined in (2.14]) by means of the processes
P" and P* defined through Theorem [2.]).

As a direct consequence of Theorem by means ofA[5, Theorem 2.9], we have that whenever
Theorem applies, if F' generates a global process P, then P coincides with the process P
constructed in Theorem 2.6l

3 General Cauchy Problems

In the paragraphs below we consider differential equations depending on parameters that generate
parametrized Lipschitz processes in the sense of Definition[2.5] Thus, any coupling of the processes
below meets the requirements of Theorem and generates a new Lipschitz process. Moreover,
we verify that this new process eventually yields solutions to the coupled problem.

Throughout, 1 is a real interval containing 0. If 2 € R", ||| denotes its Euclidean norm, while
|||, is the norm of = in the Banach space V. The open, respectively closed, ball centered at x
with radius r is B(z, ), respectively B(z,r).



3.1 Ordinary Differential Equations

This brief paragraph mainly serves as a paradigm for the subsequent ones. Indeed, we begin by
considering the classical Cauchy problem for an ordinary differential equation

= f(t, u,w) tel . L7 n n
{ w(ty) = uy with  f: I xR"xW —R", (3.1)

where t, € I , Uo € R™ and the parameter w is fixed in W.

Definition 3.1. A map u: I — R™ is a solution to (3.1) if t, € I C I, u(to) = o, for a.e. t €1,
u is differentiable at t and u(t) = f (¢, u(t),w).

The well posedness of (3.1]) is an elementary result which we state below to allow subsequent
couplings of (3.1)) with other equations within the framework of Theorem

Proposition 3.2. Let R > 0. Define D = B(0, R) in R™ and consider the Cauchy problem ([3.1)
under the assumptions

(ODE1) For allu € D and all w € W, the map t — f(t,u,w) is measurable.

(ODE2) There exist positive Fr,, Fo such that for allt € I, u1,us € D and wy, wy €W

Fr, (Jluy = uel| + dw(wr,ws)) ; (3.2)
F.

||f(t,u1,w1) - f(t,UQ, w2)||

Sup (176 w0) oo iy

IN N

Then, there exists T > 0, such that [0,T] C f, and a Lipschitz process on R™ pametrized by W in
the sense of Deﬁm'tion whose orbits solve (3.1)) according to Deﬁm'tion with

TSR/(QFoo)a C'u:F‘La Ct:FOO7 Cw:FLeFLT7

(3.4)
D;=DB (OaR —(T'—1t) SUPyew Hf(’ '7w>HLoo(fxﬁ;R")) :

Long time existence is also available.

Corollary 3.3. Assume supl = 400 and that, for every R > 0, |(ODE1)| and [(ODE2)| hold
with Foo = Foo(R) satisfying

lim su Foo(R)
o RIn(R)

Then, for all t, € I, the solution to [3.1)) ewists for every t > t,.

< Ho00.

The proof is deferred to § We now verify that Theorem applies to the coupling of (3.1
with other Lipschitz Processes.

Proposition 3.4. Set U = R". Assume that ([ODEL){(ODE2)| hold. Let P* be a Lipschitz
Process on W parametrized by u € U. Call P: A — R™ x W, with P = (P1, P), the Process
constructed in Theorem [2.6] coupling P*, generated by (B3.1)), and P". If ([to, T],to, to, wo) C A,
then

w: [to, T)— R™ = u 7 _
b Pu(t t) (g, wy) solves { u(ty) = g where f(t,u) = f (t,u,Pg(t,to)(uo,wo))
in the sense of Definition[3.1}

The proof is deferred to §
A particular case of Proposition [3.2] of interest is the following.



Corollary 3.5. Let R > 0. Define D = B(0,R) inU = R™. Choose W = LY(RN;RM) and fix
n € L>(I x RY;R). Consider the Cauchy problem (3.1)) with

Flt u,w) = g (t,u, /R nlt,2) w(z) da:) (3.5)

under the assumptions:
(NL1) For allu € D and W € RM | the map t — g(t,u, W) is measurable.
(NL2) There exist positive Ly and Go, such that for allt € f, Ui, Uy € D and Wi, Wy € RM

gt ur, W) — g(t,u, Wa)|| < G (lur — ual + [[Wh = Wal]) ;

~sup ||g(t,u, W)H G -
IXDxRM

IN

Then, given the interval I = [0,T] with T = % and, for every t € I, the domain

Dt = B (O,R - (T - t)‘lgHLm(fxﬁxRM;R")> ) (36)

problem (3.1)—(3.5)) generates a Lipschitz Process on R™ pametrized by w € W, with constants
in (2.11)—(2.12) —(2.13)) given by

Cu:GL(1+||77||Loc(f><RN;R))7 Cr =G (3 7)
Cu = GL 1+ [llgm vz 5P (G4 Ml 1 2)) T) - '
The proof is a direct consequence of Proposition |3.2]and is hence omitted. Note that also Proposi-

tion is immediately extended to the case of (3.5). The analog of Corollary in this setting is
given by the following result, whose proof is omitted, since it is identical to that of Corollary

Corollary 3.6. Assume [0,+00) C I and that, for every R > 0, |(NL1)| and [(NL2)| hold with
Goo = Goo(R) satisfying

lim sup Goo(R)
S B In(R)

Then the solution to (3.1)), with vector field (3.5)), exists for every t > t,.

< +o00.

3.2 The Initial Value Problem for a Renewal Equation

We examine the following initial value problem for a first order partial differential equation

{ O+ divy (v(t, z, w) u) = m(t, z, w)u + q(t, z, w) (t,z)el x R", (3.8)

U(to, ) = uo(x), reR”

for u, € LY(R™;R) and t, € I. Proofs are deferred until §

Definition 3.7. For a fized w € W, a function u € C° ([t,, T]; L*(R™;R)), where [t,, T] C I,is
a solution to (3.8]) if:

1. for any test function ¢ € CX(Jt,, T[ x R™;R),

T
[ (00000 0290000 ot

+ (m(t, z,w) u(t,z) + q(t, z, w)) (t, x)) dx dt = 0;



2. u(ty, ) = uo(x) for a.e. x € R™.

Proposition 3.8. Let R > 0 and set U = L*(R™;R). Define

D= {u € LR R): ma {Julls oy Nl oy TV} < R

Consider the Cauchy problem (3.8)) under the assumptions

(IP1) For allw € W, v(-,-,w) € Co(I x R™";R"), v(t,-,w) € C?(R™;R™) for allt € I and there
exist positive constants Vi, Vi, Voo such that for allt € I

o (t, "w)HLOO(R";]R") < Voo [Vt .’w)HLOO(R";R"X") < Vi
V'V -u(t, "w)HLl(R”;R") <W.
and, for all wy,ws €W and t € f,

||,U(t3 '3w1) - v(tv .’wQ)HLM(R";R") S VL dW(U}l,'LUQ),

Hv. (v(t, - wy) — v(t,~,w2))‘

<Vrd .
Ll(R";R) >~ VL W(w17w2)

(IP2) Forallw e W, m(-,-,w) € CO(I x R™;R) and there exist positive constants Ma, My such
that for all t € I and for all w,wy,wy € W

IN

||m(t,~, + TV (m(t,~,w)) My ;

w) ||L°° (R™;R)

||m(ta 'awl) - m(t7 5 W2

IN

)||L1(Rn;R) ML dW(w17w2)~

(IP3) For allw e W, q(-,-,w) € L (f, L°°(R";R)> and there exist positive constants Qo, Q1,
Qr such that for all t € I and for all w,wy,ws € W,

Hq(ta Bl w)HLW(R";R) +TV (q(ta B U))) < QOO ;
[at, "w)HLl(R”;R) < @
Hq(ta K w) - Q(tv *y w2)||L1(R";R) < QL d(wla wQ) .

Then, there exists T > 0, such that [0,T] C f, and a Lipschitz process on U pametrized by VW in
the sense of Deﬁnition whose orbits solve (3.8)) in the sense of Deﬁm’tion with

Cu=Msy, Cp=VeReMxF2ViIT 4 Q) eMeT 4 (Mo +Vy) ReMoetVi)T
Cw = [VE2R + Quo)(1 + (Vi + Muo)T) + (Qr + (My + VL)(R + Qoo T))] eMeetVeIT

Hu”Ll(]R";R) < () (3.9)
Dy=queD: |ullpogng) < aoolt) )
TV(U) S Ova(t)
where
ai(t) = Re M=) _ Q(T — )=t
aoo(t) = Re_(MOO+VL)(T_t) - QOOC(MOOJ’_VL)t(T - t) ) 3 10
aTV(t) _ Re—(lVfoo-‘rVL)(T—t) (1 _ (Moo 4 Vl)(T _ t)) ( . )

—Qoce M=tV (14 (Mo + Vi)t) (T — ).

Corollary 3.9. Assume [0, +00) C I and that|(IP1)}, [(IP2)} and|(IP3)|hold. Then the solution
to (3.8) exists for every t > t,.




Continuing now to the act of coupling this Lipschitz process with another.

Proposition 3.10. Set U = LY*(R™;R). Assume that |[(IP1)H(IP2)H(IP3)| hold. Let P“ be a
Lipschitz process on W, parametrised by uw € U. Call P: A — L*(R™;R) x W, with P = (Py, P»),
the process generated in Theorem[2.6] by the coupling of process P™, found in Proposition[3.8, with
P If ([to, T, to, o, we) € A, then the map

w: [to,T]— (L' NBV)(R™;R)
[ P1<t7to)(uo>w0)

solves

Opu + div, (0(t, ) u) = m(t,z)u + q(t, ) (t,x) € [to, T] x R™,
U(to, ) = uo(x), x € R"
in the sense of Definition (3.8|), where

mt,x) =m (62, Pat t) oy wo)) Gt x) = q (t, 3, Pa(t, t) (1o, w,))
o(t,z) =v (t, z, Po(t, to) (o, wo))

3.3 The Boundary Value Problem for a Linear Balance Law

Consider the model

O+ 0y (v(t,z)u) =m(t,z,w)u+ q(t, z, w) (t,x)el x R,
u(t,0) = b(t) tel (3.11)
u(to, ¥) = to(x) rER, .

where u, € LY (Ry;R), t, € I and w e W. Throughout, we choose left continuous representatives
of BV functions. Proofs are deferred to §[5.4]

Definition 3.11. For a fited w € W, a function u € C° ([t,, T]; L*(R4;R)), with [t,,T] C I,
such that u(t) € BV(R4;R) for a.e. t € [t,,T)] is a solution to (3.11)) if:

1. For all ¢ € C(Jt,, T[ X R;R)
T
| [ (st ote.a) + ott.0) )22t
to R4
+ (m(t, z, w) u(t,z) + q(t,z, w)) w(t,x)) dedt = 0.
2. For a.e. © € Ry, u(to, ) = uo(x).

3. For a.e. t € [to, T, lim, o4 u(t,x) = b(t).

Proposition 3.12. Let i = LY(R,;R) and fix b € BV(f; R). For R > 0, define

D= {u eU: max{||u|L1(R+;]R), [ullgoe ®, 7y TV(0) + b(sup I) — u(O))} < R} . (3.12)

Assume

(BP1) There exist positive constants 0,0, V1, Vao such that for all v € Covl(f xRy ; [0,0]) and for
all (t,z) € I x Ry

TV (v(.,x);f) +TV (u(t, )

TV (dzv(t,-)) + ||8xv(t,

IN

VOO?
Vi .

IN

) ||L°°(]R+;]R)

10



(BP2) Forallw e W, m(-,-,w) € CO(I xR;R) and there exist Mo, My, such that for allt € I,
w,wi,we €W,

TV (m(t,-,w)) + ||m(t,- My,

;W) HL°°(R+;]R)

A

Hm(t7'7w1) _m(t’.’w2>HL1(R+;R) >~ ML dW(’U)l,’U}Q).

(BP3) For allw € W, q(-,-,w) € C° (f;Ll(R+;R)) and there exist Q1, Qoo such that for all
t el and w,wi,ws €W, and

Hq(tv'vw)HLl(M;R) < @,
TV (q(tvvw)) + Hq<t’.’w)HL°°(]R+;R) < Qooa
HQ(tﬂ'awl) _q(t’-’wz)”Ll(R+;R) S QL dW(UJ1,1U2)~

(BP4) b€ (L1NL>N BV)(f; R), is left continuous, and there exist positive constants By and
B such that

Bla
By -

HbHLl(f;R)
TV() + 1Dl (im)

IN A

Then, there exists R, T > 0, such that [0,T] C f, and a Lipschitz process on U, parametrized by
W in the sense of Definition[2.5, whose orbits solve (3.11)) in the sense of Definition with

Cu=My, Ci=I[0(B1+2R+ R(Msy +V)T) + MR+ Q1]eM=T,
Cow=[BcMp+0Qr+20Qoc ML, T+ ML R+ Qr + 3 M Qoo T| eM=T |

3.13
D, - { et Mooz <on(d), Tuloe e < 0e(t), 1

TV(u) + [blt) — u(0)] < arv (1)

where
ar(t) = Re M= — (iB +Q1)(T — t)eM~"!
(679 (t) == RG_MC’O(T—t) _ QOO(T _ t)
arv(t) = R(1— (M + Vp)(T —t)) eMeetVi)(T=1)

—2Quo (1 + (Mo + Vi)t)(T — t)eMeetVe)t
—Boo (Moo 4+ Vo )(T — t)eMetVE)t TV (b; [t, T])eMetVeE

A result entirely analogous to Corollary can be proved also in the case of (3.11)).

Proposition 3.13. Set U = LY(R,;R). Assume |(BP1)H(BP2)H(BP3)H(BP4)| Let P“ be
a Lipschitz process on W, parametrised by uw € U. Set P: A — U x W, with P = (Py, P2),

to be the process generated in Theorem [2.6 by the coupling of the process P™, constructed in
Proposition with P*. If (t,to, (uo,w,)) € A, then

w: [to,T]— LY Ry ;R)

t s Pt to) (o, wo) (3.14)
is a solution to
du+ 9, (v(t,x)u) =m(t,z) u+ q(t, z) (t,x) €[to, T] x R4
u(t,0) = b(t) t € [to, T) (3.15)
u(to, ) = uo(z) reRy
in the sense of Definition[3.11], where
m(t,z) =m (t,x, Py(t,to) (o, wo)) , q(t,x)=gq (t,x,Pg(t,to) (uo,wo)) ) (3.16)
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3.4 Measure Valued Balance Laws

Following [6], consider the following measure valued balance law

Dot + 0y (bt pyw) p) + et pyw) = fo (0t pmw)) (y) dply) — tel (3.17)
,U/(to) = Ho '

for , € MT(R,), the set of bounded, positive Radon measures on R equipped with the following
distance, induced by the dual norm of W1:°°(R;R), see [6], § 2]:

dam(p1, po) = sup {/ o d(p1 — p2): ¢ € CHR4;R) and ||¢]|yyie < 1} . (3.18)
Ry

We refer to [15] for basic measure theoretic results. Below, if X is a Banach space, then BC(I; X)
is the space of bounded continuous functions with the supremum norm. BC*(I x M*(R,); X)
is the space of X valued functions which are bounded with respect to the |||y norm, Hélder
continuous with exponent o with respect to time and Lipschitz continuous in the measure variable
with respect to da in (3.18). These spaces are equipped with the norms

Hf”Bc(f;)Q = SUPHJC(t)H)@
tel

1/l oo (rxat @oyx) = tejﬂ:tﬁ)ﬂk)(||f(t,u)HX+Lip(f(tw))+H(f(-,u))),

Il Berwr )@ mt®y)) = Sup 1 @) py e,y + Lip(S),
+

where, with a slight abuse of notation,

Lip (/) = sup () = £t )l fda )
n1FH

H(f(ow) = sw ([Frm = fsam)y /Is=sal”) .

s1,82€1

Li(f) = s (due (f(@0), f(z2) [llez = a])) -

r1,T2€R L
z1Fwg

Definition 3.14. Given T € I with T > t, and w € W, a function p: [t,,T] — MT(Ry) is a
weak solution to (3.17) on the time interval [t,, T if p is narrowly continuous with respect to time
(i.e., for every bounded function ¢ € C° (R4;R), the map t — fR+ Y(x)dp(t, z) is continuous),

and for all p € (C* N W) ([t,,T] x Ry;R), the following equality holds:

T
[ (oot + 0t 0) () Drilt.2) = (etton)) (o) o(t.2)) dp (e

T
+-/ta /Ih </R+ w(tax) d[n(tvﬂ,w)(y)] (x)> dp, (t, y) dt

= / o(T, ) dy(T,x)*/ P(to, ) dpo (z).
Ry Ry

Proposition 3.15. Let R > 0. Set U = M (R) and let D = {p € MT(Ry): p(Ry) < R}.
Consider the Cauchy problem (3.17)) under the assumptions, for some positive constant ﬁ,

(MVBL1) For every w € W, b(-,-,w) € BC*'(I x D; Wb (R4;R)).  Further, for every
w,wi,ws €W, t €1, and w € D, b(t, u, w)(0) >0, and, for some B > 0,

o6t 1)l o,y S B

||b(~,,u,w1) - b('vﬂan)HBc W10 (R, :R < f’ dW(wlan) :
( ) ( +> ))

12



(MVBL2) For every w € W, ¢(-,-,w) € BC®'(I x D; WL (R, ;R)). Further, there exists a
positive constant C > 0 such that, for all w,wi,we € W, p €D andt € I,

Q

Hc(tﬂuﬁw)le.oo(R+;R) S

Hc('7lu7wl) - C('aﬂa wQ)HBC(IA;Wl’OO(]R_,_;R)) < ff dW(wla w2) .

)

(MVBL3) For allw € W, 5(-,- w) € BC*! (f x D; (BC mW17°°)(R+;M+(R+))). Further,
there exists an E > 0 such that, for all w,wi,wy € W, t € f, and p € D,

|‘77(t7 s w) H (BCNWL:)(Ry s M+ (Ry)) < B

Hn('7/1'7w1)_h('ﬂ:u’7w?)HBc(j;BCmwl,oo)(R+;M+(R+)) < Ldw(wi,w).

Then, there exist T > 0, such that [0,T] C I, and a Lipschitz Process on M (R™), pametrized by
W in the sense of Definition [2.5 whose orbits solve (3.17) in the sense of Definition with

C,=3(B+C+E), C,=(B+C+ E)eB+C+ETR
Cyw=C*(T,B,C,E) R L 5B+C+E)T (3.19)

The proof is a direct consequence of [6, Theorem 2.10] and, hence, it is omitted. In particular, C*
in (3.19) is the constant defined in [6 Item (iv), Theorem 2.10].

Proposition 3.16. Set U = MT(R"). Fiz T > 0 and assume that (MVBL1)H{(MVBL2)|-
hold. Let P* be a Lipschitz process on W, parametrised by w € U. Call P: A —
R™ x W, with P = (Py,Ps), the Process constructed in Theorem coupling P", found in
Proposition and P". If ([to, T], to, uo, w,) C A, then the map

wo: [te,T] — MF(R™)
b o Pt ) (w) (3.20)
solves the measure valued balance law
Dopr + 0y (b(ts ) ) + et 1) = i, (7t 1)) (v) dply) — tel
,U/(to) = Ho
in the sense of Definition[3.1], where
B(ta I'L) =b (ta Hy PQ(ta to)(luoa wO)) ) é(ta /j/) =cC (t7 s PQ(t7 to)(ﬂ/07 ’LUO)) )
ﬁ(tv /~L) =0 (t7 22 Py (tv to)(ﬂm ’LUO))
The proof is deferred to §
3.5 Scalar NonLinear Conservation Laws
We now consider the following scalar nonlinear conservation law in one space dimension:
o+ 0uf(tu,w) =0 (t,x) € I xR, (3.21)
U(to, ) = uo(x) reR

for t, € I, up € LY(R;R), w € W, with f: I x R x W — R a given function.

13



Definition 3.17. Fiz w € W and [t,,T] C I. We say that a map u € C° ([tO,T};Ll(R; R)) s a
solution to problem (3.21)) if it is a KruZkov-Entropy solution, i.e.

/t /R [\u — k| 8o +sign(u — k) (f(t,u,w) — f(t, k,w)) ax@] da dt
> /R |u(T,z) — k| (T, ) da — /R |uo(z) — k| @(to, ) dz, (3.22)

for all non-negative test functions ¢ € C° (f x R;Ry), and for all k € R.

Proposition 3.18. Let R > 0 and t,,T be such that [t,, T] C I. Choose U = L*(R;R) and define
D={uelU: TV(u) < R}. Consider the Cauchy problem

{atu + azf(u, U)) =0 (t’ l’) € [to’ T} x R’ (323)

u(to, ) = uo(x) r€eR
under the assumptions
(CL1) For allw € W, the map u — f(u,w) is piecewise twice continuously differentiable.
(CL2) There exists a positive Fr, such that for all ui,us € R and all w,wy,wy € W

|flur,w) = flug,w)| < Fp ur — ugl
Lip (f(,w1) = f(w2)) < Frdw(wy, w)

Then, there exists a Lipschitz Process on L1(R;R), pametrized by W, whose orbits are solutions

to (3:21)) in the sense of Definition[3.17, with constants in (2.11)-(2.12) -([2.13)
Co=0, C,=F,R, Cy=F,R, D,=D.

The proof is classical and follows, for instance, from [I'7, Theorem 2.14 and Theorem 2.15].

Remark 3.19. The present treatment is limited to homogeneous, i.e., with a flux independent of
x, conservation laws. Note that general 2 x 2 systems of conservation laws can not be approached
by means of Theorem while, for instance, we do comprehend a non local coupling of the form

Oyu+ O, f (u,wadx> =0 Oyw + 09 (w,fRu dx) =0

w(0,2) = uo(x) w(0,2) = we(x) .

Proposition 3.20. Set U = LY(R;R). Assume that hold. Let P*“ be a Lipschitz
process on W, parametrised by u € U. Call P: A — R™ x W, with P = (P, Py), the Process
constructed in Theorem coupling P™, generated by (3.23), to P*. If ([to, T],to,ue, w,) C A,
then _
w: [te,T]— LYR;R) { Oyu + 9 f(t,u) =0
solves

t Pyt to)(uo, wo) u(to) = o,

in the sense of Deﬁnition where f(t,u) = f (u, Pa(t, o) (uo, wo)).
The proof is left until § 5.6
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4 Specific Coupled Problems

The abstract framework developed in Section 2] thanks to the proofs in the subsequent paragraphs,
allows to prove the Lipschitz well posedness of several models.

As a first example, consider the model introduced in [20], where a large and slow vehicle
positioned at y = y(¢t) affects the overall traffic density p = p(t,x). The resulting model [20]
Formula (2.1)] consists in the coupling of the Lighthill-Whitam [21] and Richards [26] macroscopic
model decribing the evolution of p coupled with an ordinary differential equation for y, that is

Owp + O f (xvy(t)’ p) =0
{ g =w(p(t,y)) 4.1

Clearly, this coupled problem fits in Theorem thanks to Proposition [3.20] and Proposition 3.4}
once the functions f and w meet reasonable requirements.

In the next paragraphs, we consider in particular the case of a predator—prey system (§
and that of an epidemiological model (§ . To our knowledge, this latter well posedness is first
proved here.

4.1 Predators and Prey

On the basis of the games introduced in [7] we consider the following predator—prey model:

o+ dive (pV (Lap(0) ) = =0 (o) =2} plt) o [p=0@po0) 4
p(0,z) = p(z) p(0)=p

We consider a specific example, letting p = p(t, z) be the density of some prey species moving in
RY and p = p(t) be the position in R of a predator hunting it. To escape the predator, prey
adopt a strategy defined by the speed

- bz —z?
Vitar) = - v (I = al’) (4.3)

-z
ﬁ stands for the escape direction of the prey. The positive term «
a—+|p—x
in the denominator smooths the normalization. The function ¢ describes the relevance of the
predator p to the prey at z as a function of the distance |[p — z||. The function n = n (|lp — z|)
describes the effect of the feeding of the predator at p on the prey at x. On the other hand, the
predator hunts moving towards the region of highest (mean) prey density, i.e., with speed

U(t,p,p) = (Ve *p) (p), (4.4)

where the term

where ¢ is an averaging kernel.
Here, we show that (4.2) fits in the general framework presented in Section Indeed, with

reference to § set

— 1 mN. — v(t,x,w) = V(t,x,w)7
S e (T I
’ ’ q(t7 x7 w) = 07
while with reference to § set
U - RN, U = P, —
W = LYRVR), w = p ft u,w) =U(t,u,w). (4.6)

Proposition 4.1. Fiz positive o, 7,,7p, 7, and mollifiers
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(V) Let V be as in [(@.3) with ¢ € C(RN;Ry), with spty C B(0,7,) and fB(o,rp) »dé = 1.
(U) Let U be defined in (4.4) with ¢ € CX(R;R), positive, with spte C [—rp, 7] in (4.4).
(n) n € CZ(RY;R), positive, with sptn C B(0,1,).

Then, conditions[(TP1)H{(IP2)H(IP3)| and[(ODE1)H(ODE2)| are all satisfied. Therefore, model (4.2)

defines a unique global process in the sense of Definition [2.3

Proof. Consider first [(IP1)l By (4.3), V is a smooth function and the exponential factor
ensures all the required boundedness conditions. We also have that HVPVHLOO(MXRNX]RN,RNW)

is bounded, proving the first Lipschitz requirement in |[(IP1)| Prove now the latter inequality:
/ ‘Vx ' (V(t,$,p1)—V(t,$,p2))‘d$
RN

- / ‘VxV(t7x7p1)_V$V(t7x7p2)|dx
RN

/ Vo Vit 2.p1) = Vs - Vit 2,p2)| da
B(PI»TP)UB(pr"'p)

< /B( sup |V,Va - V(t,z,p)||dz |lp2 — pi

p1,7p)UB(p2,mp) pERN

proving also the latter requirement in [(IP1)]

To prove [(IP2)} compute:

It s )| e o ey + TV (it w)) = il + |1 pa (g0, m
t7 E - tu ) n. < ! — d
[m(t, - wy) = m(t, - w2) | s o /B(wl,m,)UB(wg,n,) 3?3%) 7' [[|wz — wi || dz
< o@) Hn/HLoo(B(omn);]R) [[wz —wi]|.

Clearly, due to (4.5)), [(IP3)|is immediate.
The regularity required in [(ODE1L)|is immediate. Pass to the Lipschitz estimate:

HU(tvplvpl) - U(tap2ap2)H

< U p1,p1) = U(t,prs p2)|| + |U(E p1s p2) = UL, p2, p2)|

= H (Vo (p1 — p2)) (pl)H +[[(Vex pa) (p1) = (Vo * p2) (p2) ||

< Ve (01 =22 ) + [T 5 22, 21— 221

< IVl oy o1 = P2l vy + P20 5 02| Ipr =Pl

[eS) (RN ;RN X N)
Finally, the latter boundedness in [(ODEZ2)|is proved as follows:

sup HU(',',p)H < sup ||V80||Loo(]RN;]RN) Hp“Ll(RN;R)
p€ED, peD,
completing the proof by the definition of D,,.

By Proposition the balance law in defines a global process P;. Similarly, Proposi-
tion ensures that the ordinary differential equation in generates a global process P». Now,
Proposition [3.10] and Proposition [3.4] ensure that the global process P obtained from P; and P>
through Theorem yields a solution to the coupled problem . O
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4.2 Modeling Vaccination Strategies
Consider the model presented in [I1, § 2]:

S=—psIS—p(t)
OV 4+ 0,V = —py IV

P=(psS+ J py V) —01—pl (4.7)
R=91+V(tT.)
V(t,0) = p(?).

It describes a population consisting of susceptibles, S = S(t), of infected that are also infective,
I = I(t), and recovered individuals, R = R(t). The vaccination rate is p = p(t) and vaccinated
individuals need a time T, to get immunized. More precisely, V' = V(¢,7) is the number of
individuals at time ¢ vaccinated at time ¢ — 7, for 7 € [0,7,]. Thus, at time T, vaccinated
individual enter the R population.

The positive constants pg, ¥ and p quantify the infectivity rate, the recovery rate and the
mortality rate, respectively. The function py = py (1) describes the infectivity rate of individuals
vaccinated after time 7 from being dosed.

Note that model is triangular, in the sense that the evolution of the R population results
from that of the other ones, without affecting them.

Model , once the R population is omitted, fits in the abstract framework presented in
Section [2] Indeed, with reference to the notation used in § we pose

u:R27 W:Ll([O,T*],R), u[? ) w=V,
4.8
i - —ps u1 ug — p(t) (48)

U W)= (psul—l-fOT* pv(T)w(T)dT—ﬁ—u) us |’
while with reference to § we set
v(t,x)=1
u:Ll([O7T*]7]R) _ _ _ S m(tvx7w):_pv(x) W2

W=R? z=7, u=V, w= I\’ q(t,z,w)=0 (4.9)

b(t) =p(t).

The well posedness of (4.7)) now follows once we verify that Proposition and Propositionm
can be applied.

Proposition 4.2. Fiz positive v, T, ps and choose p € BV(R;R), py € BV([0,T.];R). Then,
problem (4.7)) defines a unique global process P, in the sense of Deﬁm’tion defined on all initial
data

SoiIos Ro € [0,7]  and  V, € LY([0, T.];Ry) with TV(V,) + [Vl () <7 (4.10)

P is Lipschitz continuous as a function of time and of the initial data, with respect to the Euclidean
norm in (S,, I, Ro) and to the L' norm in V.

Proof. Verifying is immediate. The Lipschitz continuity required in follows
from the boundedness u € Dy, which is a closed ball in & = R? and from the choice of py, see
§ B-1] Hence, Proposition [3.2] applies.

Conditions [(BP1)| and [(BP3)| are immediate. The first requirement in follows from
the choice of py and the boundedness of Dy;. The second is ensured by the linearity of m and
the boundedness of py. Since p has bounded variation, is satisfied on any bounded time
interval. Hence, also Proposition [3.12] can be applied.
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Then, Proposition [3.4] and Proposition through Theorem [2.6] ensure the well posedness

of the coupled system (4.8)—(4.9).
We now verify the well posedness of the R component. From (4.7)), using (5.29), we have

Volr +to = t) exp (= [ py () I(s)ds) i <741,

Vit,T)= ¢ .
(t7) p(t — ) exp <— Ji, pv(s) I(s)ds) ift>7+t,.

This shows that the map t — V (¢, T.) is sufficiently regular for the equation for R, namely
R =491I(t)+ V(t,T.), to be explicitly solved: R(t) = R, + fot (I(s)+ V(s,T.)) ds. Thus, the full
model ([4.7)) is well posed. O

5 Technical Details

5.1 Proofs for Section [2]

Proof of Theorem We begin by showing F' is a local flow in the sense of Definition [2.1] F'

is continuous as it is a pairing of two continuous functions. Further
F(0,t,)(u,w) = (Pw(to,to)u,P“(to,to)w) = (u,w).
We prove the Lipschitz continuity in time and with respect to initial conditions of F:

d (F(71,t0) (u1, w1), F(72, to) (uz, w2))
dy (P (to + 71, to)ur, P (to + 1, to)u2) + dy (P (to + 1, to)uz, P2 (to + 71, t0)u2)
Hdy (P (to + 1yt Juz, P2 (to + o, 1o )us)
+dyy (P (to + 71, to)wr, P“ (to + 71, to)wa) + dyy (P (to + 1, to)wa, P (to + 71, to)wo)
+dyy (P2 (to + 71, to)wa, P2 (to + 7o, to)ws)
< DT dy(ug, ug) + Cy 11 dyy (wr, w2) + Oy |71 — 72|
+e%4T dyy (wy, wo) + Cy 71 dyg(ur, uz) + Cy |71 — 2|
< (€77 + Cud) d ((ur,wi), (uz, w2)) +2Cy |71 = 7ol

IN

Thus F is indeed a local flow in the sense of Definition [2.1} with Lip(F) = ¢“«® + C,, § + 2C;.
We now show that F satisfies the assumptions of Theorem Consider (2.8):

d(F(kT,to+7) 0 F(7,t0)(u,w), F((k + 1)7, t,)(u, w))
= dy (PP“(to”vto)w(to + (k+ )7, to + T) P (T, to)u, PY (to + (k + 1)7, t,) u) (5.1)
+ dyy (PPw(to”»to)“(to + (B 1)7, by + T) P (to + 7, to)w, P* (to + (k-+1)7,1,) w) . (5.2)
We consider only the term , since the latter is entirely similar. By , we have
P (to+ (k+ 1)1, to) u=P"(to+ (k+ 1)1, to + 7) P (to + 7, t0)u,
hence, via and ,
dye (Ppu(t"“'T’tO)w(to F (k4 Dt ty + 7) P (to + 7 to)u, P (o + (k + 1)7,2,) u)
= dy (Ppi"(to”’to)w(to + (k+ )7, to + T) P (to + T, to)u,

Pty + (k+ 1)7,to + )P (1o + 7 to)u )
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Cw kT dy (P“(to + 7, to)w, w)

<
< k1 CCyT. (5.3)

Combining (5.3)) with the analogous estimate bounding (5.2)), we end up with
d (F(k:T, to+ 7)o F(1,t0)(u, w), F ((k+ 1)7,t,) (u, w)) <kTw(rT)

where w is as in (2.15)). Thus (2.8)) is satisfied.
We consider the second condition in Theorem namely (2.9). Note that Euler polygonals

for the local flow F', see Definition [2.3] can be written recursively, as
FE(7,t0)(u,w) = F(T — ke, to + ke) o F°(ke, to) (u, w) .
For any 7 € [0,0] and for any (u,w), (@,®) in U X W, we have

d (F(7,t0)(u, w), F(7,t0) (@, @) = dy(P"(to+ 7, to)u, P*(to + 7,t,))
+dyy (P“(to + 7, to)w, P"(ty + 7,t,)W) .

For the first of these summands, by the triangle inequality, we have

dy (P"(to + 7, to)u, PP (to + 7, 10)1)
dy (Pw(to +, to)ua Pw(to + 7, to)a) + du (Pw (to + 7, to)ﬁv Pm(to +, to)ﬂ)

<
< T dy(u, @) + Cyp 7 dyy(w, ).

The second term is estimated analogously, leading to
4 (F(r,t0) (0 0), P, 1) 5,)) < (97 + €y 7) d (). (@,9)) (5.4
Estimate (5.4) is of use in the following:
d (F* (7, to) (u, w), F*(7,t0) (@, W)

= d(F(r — ke, to + ke)F* (ke, to)(u,w), F(1 — ke, to + ke) F® (ke, to)(U, w))

< (eCu“—kf) Oy (T — ke)) d (F=(ke, t,)(u, w), F= (ke, t,) (@i, @) .
It remains to estimate the distance in the latter right hand side. We have for any k& € N\ {0},

Fe(ke,to)(u,w) = Fle, t,) F* ((k - 1)e, to) (u,w),

and thus using iteratively (5.4)),
4 (F (ke, 1) (u, w), F*(ke, t,) (1, @))
(ec“E + Cly 6) d(F((k—1)e, to)(u,w), F*((k — 1)e, t,)(u, w))

IN

INA
I

k
(% + Cue) d((uw). () -
Therefore,

d (FE(Ta to)(uaw)’FE(T7 to)(ﬂ,ﬁ)))

< (eCu(T—kE) +Cy(r— k&)) (ecua +C, g)k d ((u,w), (ﬁ,ﬁ})) .

Hence, (2.9) is satisfied provided there exists a positive L such that for all ¢ > 0 and ¢ € [0, 7

(eC”(T*’“) +Cy (1 — ka)) (GC“E +Cy s)k <L,
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where k = | Z]. Indeed, since e* + b < e*™ for all a,b € Ry, we have

(eC’“(‘r—ks) + Oy — ks)) (eCu,s Lo, g)k < (CutCu) (7o) (e(CU+Cw)5>k _ (CutCu)r

so that L = e(CutCu)d,

Finally, note that (2.16|) directly follows from the definition of F', together with the
properties P¥(t, + 7,t,)DY¥ C DY |, which holds for all w € W, and P*“(t, + 7,t,)D};Y C D}V, _,
which holds for all u € U. Therefore, with reference to (2.7), we have D} 2 (DY x D}V) and
Condition 1. in Theorem completes the proof of . O

Proof of Theorem @ The continuity of F is immediate. The Lipschitz continuity follows

from the triangle inequality and a Lipschitz constant is Lip(F) = £ + max{Lip(F'"'), Lip(F™)}.
Hence, F' is a local flow according to Definition
Concerning the tangency condition, compute

%d (F(T, to)(u, w), F (7, to)(u, w)) = %du (F“’(T, to)u, P (t, + T, to)u)
—|—% dW (}7“‘(7'7 to)w, Pu(to + T, to)U))

and the first order tangency condition (2.10) allows to complete the proof. O

5.2 Proofs for Section [3.1]

Proof of Corollary For k € N, define Rj, = 2% and D* = B(0, Ry). Fix u, € R™. There
exists k € N\ {0} such that ||u,|| < Rz_;. We proceed recursively.

For k = k: consider the process P, given by Proposition according to the choice Ry, = 2F. By
Propositionwe know that P (¢, 0)u, is defined for every ¢ € [t,, Tk], where T, =

Define uy, = PP (Tk, to)uo € DF.

Ry
2Fo (Ry) "

For k > k: assume u,_1 € D*~! and consider the process P’ given by Proposition according
to the choice Rj = 2*. By Proposition we know that P (t,t,)ur—1 is defined for every
t € [to, Ty], where Ty = ﬁ@m Define uy, = PP (T, to)ux—1 € D*.
Define the function
PY(t,to)u, if ¢ € [t,, T
u(t) = w k-1 . k—1 k
Pk (t — h=Fk Th,O)Uk;_l lf Zh:l} Th < t S Zh:E T1h7

which clearly is a solution to (3.1). Computing

+oo +oo 2k—1 400 2k—1 +oo 1
T, = — > 0(1 - =0(1 Z =
2. Ti=2 . 7wy 2 OW D griggmry = OW X = +oo
k=k k=k k=k k=k
shows that the solution u is defined for every ¢ > t,. O

Proof of Proposition Let F be the first component of the local flow F' defined in (2.14)).
Let ¢t € [0,T] be a Lebesgue point of the map ¢ — f (t,P(t,to)(uo,wo)). Choose h small so
that t +h € [0,T] and set (u,w) = P(¢,t,)(uo, w,). Then,

Pi(t+ hyto) (o, wo) — Pr(t, 1) (o, w,)
h

Pi(t + h,ti)L(uaw) —u f(hwWH

— f(t, P(t, o) (uo, wo))H
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Py(t+ h,t)(u,w) — Fy(h,t)(u, w) H n H Fi(h,t)(u,w) —u

) et )|

§ ‘

= Ri(h) + Ra(h).

Considering first the term Rj, we use estimate (2.10]), giving
H Pi(t+ h,t)P(t,to) (Uo, wo) — Fi(hy t)P(t,t0)(Uo, Wo)

Ry (h) h

h
2L [P@8) 4 0 ash— 0

with L and w as in (2.15]). For Ry, we have

h
Ra(h) = %/0 Ft+ 7, Fi(r,t) (u,w),w)dr — f(t,u,w)
h
= %/0 [f(t+ 7, Fi(r,t)(u,w),w) — f(t,u,w)] dr
1 [k
= E/o [f(t‘FTvFl(Tat)(U:w)vw)—f(t+T,P1(t—|—T,t)(u,w),w)} dr
1 [h
+ E/o [f(t+7, Pt +7,t)(u,w),w) — f(t+ 7, Pt + 7, 0) (u,w), Po(t + 7,)(u,w))] dr
1 [k
+ E/ [f(t+T,P1(t—l—T,t)(u,w),Pg(t—|—7‘,t)(u,w))—f(t,u,w)] dr
0

We have, as f is Lipschitz continuous, and using (2.10)—(2.15)), that

h
Roi(h) < %/0 HFl(T,t)(u,w)—Pl(t+7,t)(u7w)HdT

2L Ly (" [T w(é)
< = =) A/
S e /o 7'/0 ¢ d¢ dr
— 0ash— 0+;
Ly ["
Rya(h) < T (| Pa(t + 7, t) (u, w) = Pa(t,t)(u, w)]|| dr
0

Ly- h
< / LP/ T dr
h 0

— 0Oash— 0+;

Ros(h) < /Oh %“f (t+ 7, P(t+ 7 t0) (o, wo)) — F(t, P(t, ) (o, wo))H dr

— 0as h— 0+,

the latter convergence following from the choice of ¢ as a Lebesgue point. O

5.3 Proofs for §
With reference to (3.8) and (3.11)), introduce for #,¢ € I and &,z € R, the characteristics

=v(t,z,w)

(1) =z,

t'=1/v(t,z,w)

- T _
t— X(t;t, ) solves { - and ¢t — T (z;Z,1) solves { HF) = £, (5.5)
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and in the sequel we omit the dependence on w. As is well known, see for instance [I2] Lemma 5]
and the references therein, the unique solution to (3.8)) is

u(t,x) = u, (X(to;t,x)) Ew(to,t,x) —|—/t q (S,X(s;t,x),w) Ew(s,t,x)ds (5.6)

o

where the characteristics X' are defined by (5.5) and
¢

Ew(T, tyx) = exp/ (m (S,X(s;t,ac),w) —divw (s,X(s;t,x))) ds .

T

Below, we often use the substitution y <> x, where

to
y = X(t;to,x) with Jacobian J(t,y) = exp (/ V-v (s, X(s;, y)) ds) , (5.7)
¢

for more details see for instance [12] Proof of Proposition 3].

Lemma 5.1. Assume holds and use the notation (5.5). Let u € (LY NBV)(R";R). Then,
forallt,, t el

This Lemma is an extension of [5, Lemma 2.3] to R™.

Proof of Lemma Along the same lines of [I, Lemma 3.24], thanks to [I, Theorem 3.9], we
assume that u € (C* N BV)(R"™;R). Then, using the change of coordinates (5.7),

J.
/.

u (X (t;to,2)) — u(z)‘ dz < % (6VL|t7t°‘ - 1) TV (u). (5.8)

u (X (t;to, ) — u(x)‘ dz

dx

/t Vu (X(T;to,x)) v (T,X(T;to,x)) dr

t
< // ’Vu(X(T;to,x))H HU(T,X(T;tO,x))H dx dr
t, JRn
t t
< //RHVu(y)H ||v(7',y)|| exp / V'U(T,X(S;T,y))ds dydr
to n T
t
S et

o

Voo
— Yoo (eVL|t—to‘ — 1) ||Vu||L1(Rn;Rn)’

Vi
which yields (5.8]). O
Define the parameterized mapping P“ by

pv . A = U L
(£, 1, 1) > u(t) where  wu(t) is given by (5.6); (5.9)

Below, by [(IP1)| and [(IP2)| for all ¢,7 € I, 2 € R™ and w € W, we use the uniform estimate

0 < Eu(rt,) < cMoctVi)lt=7] (5.10)
Lemma 5.2. For allw € W, P" in is a global process according to Definition ,
Proof of Lemma That P* satisfies an immediate consequence of its definition .

The uniqueness of the solution ensures that ([2.5)) is satisfied.
Fix t,,t € I, with t, <t, and r, € D;,. It remains to show (2.4)), that is, u(t) = P (¢, t,)u, €
D; for each w € W.

22



1. We begin by showmg that, if ||uo||L1 rrr) < @1(to), then [|u(t ||Ll RrR) S ay (t). Making use

of [IP2)IP3)}-(3.10)(5.6)-(5.7) , see also [12, Proposition 3, (H3)],

Hu(t) HLl(]R";R)

t
< (”u!J”Ll(]R";R) + ||Q('7 -’w)HLl([to,t]xR";]R)) exXp (l Hm(Tv -7w)||Loo(]Rn;R) dT) (511)
< (onlto) + Qult —t,)) eMe=(t=te)
< (Re M=) QuT — )Mt 4 Qu(t — t,)) €M (1)
< Re— Moo (T—1) _ QI(T _ t)eMoot

(65} (t) s

as required.

2. Absummg now that ||t pegnr) < oo(to), We show that Hu ’LOO RR
use , see also [12], Proposition 3, (H4)], together with[(TP1)] [(TP2)] |( IP3i|and (|5 10|)

Then
t
Hu(t)HLOO(]Rn;R) < <||u0||Loc(Rn;]R) +/t ”q(s7.7w)’|Lw(Rn;R) ds)
t
e exp (/t (Hm(s, "w)HLw(Rn;R) + ||V ) ”(S)HL(,O(RH;R)) ds)
< <||u0||LOC(]Rn;R) + Qoo(t — to)) e(MOOJFVL)(t*to)
< (tno(to) + Quolt — t)) eMtViI(Et)
< (Re_(Moo—O—VL)(T_tO) —Q(T - to)e(MerVL)tn) o (Moo +V1)(t—t,)

+Q(t — to)eMeotVi)(t—t0)
Re~ Moo+ VL )(T—t) _ QT — t)e(Moo+VL)t

aoo(t),

as required.

3. Finally, we show that, if u, € D;,, then TV (u(t)) < ary(t). We use [(IP1)H(IP2)H(IP3)}-

(3-10)—(5.6)—(5.7)—(5.10)), see also [12, Formula (31)]:

TV (u,) + /t TV (q(s,-,w)) ds (5.12)

o

t
+ <|UO|L°°(R";R) "'/t Hq(8"7w)HLw(Rn;R) ds)

t
x / (TV (s, 0)) + [[VV - 0(5) [ g ) ds] (Moo VL)t
: ;

TV (u(t)) <

o

Since u, € Dy, by (3.9), TV(u,) < arv(t,) and we have that (5.12)) becomes
TV (u(t))

< OZTV(to) + Qoo(t - to)
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+ (Re—<M°°+VL)<T—t°> — Quoe MotV (T ) 4+ Qoo (t — to)> (Moo 4+ Vi)(t — to)l

w0 (Moo VL) (t—t5)

R(1— (Mo + Vi) (T —t)) e MeetVENT=D 9 (14 (Moo + Vi)t) (T — t,) e MotV
FQoo(t — to) (1 + (Moo + Vi) (t — t,)) eMeeFVENE=t0)

< R(1— (Mo + V) (T —t)) e MoetVE)T=D) _ 9 (14 (Moo + Vi)t) (T — t) Mo+ V0)!

= arv(t),
completing the proof of (2.4]). O

Proof of Proposition We define the mapping P* by (5.9). That this defines a process is
a consequence of Lemma
It remains to show the three Lipschitz continuity estimates (2.11f), (2.12]), and (2.13]).

IN

1. Lipschitz continuity w.r.t initial data By the linear structure of (3.8)), from (5.11) we
immediately have

HPw(t,to)(uo < eMoo(t—to) ||u0

- aO)HLl(R“;R) - ﬂ0||L1(1R”;R)

which is compatible with the choice of C,, in (3.9).

2. Lipschitz continuity in time By direct computations based on (5.6)), for ¢ > t,:

HPw(t, to)Uso

<)
Rn
t

)
nJt

o

- uo”Ll(R+;R)

Uo (X(to;t,x)) — uo(x)) Ew(to, t,x) dx

q (T,X(T;t,x),w)‘&u(ﬂ t,z)drdz —|—/R |u0(a:)| |€w(t0,t,x) — 1| dx

and we consider the latter three terms separately. First, use (5.10) and Lemma for t > t,,

/.

Uo (X(to;t, x)) — uo(x)‘é’w(tmt,x) de < /n

< Yo (eele=tel 1) TV (1) MotV et
< ¥

Vo TV (up) eMeet2Vi)t=to) (4 _ ¢y,

tto (X (L3 ,2)) = tg(w) | da M HVENI-t)

A

To deal with the second term, use the change of coordinates (5.7)) and [(IP2)H(IP3)

N}
/ /tt la(7,y,w)| exp (/Ttm(s,X(s;T,y),w) ds) dr dy

q (T, X(r;t,x), w) ’ Ew(T,t,x)drdx

o

Q1 Moo (t=t0) (t _ to) .

IN

Finally, the third term is treated as follows, by (5.10):

IN

/ [uo(@)] [Ew(tor t,2) = 1] da / [uo ()| M= VRN (Mg 1+ VL) (t — 1) dr
Rn n

IN

(Moo + Vi) lttolps (g gy M= TVE 1) (£ — 2,) .

24



Adding up, we have

||Pw(t7to)uo - < Vo TV (up) eMoet2Vi)(t=to) (¢ _

ol e, my < to)
+Q eM=l7te) (¢t —¢,)
+(Moo + VL) ||u0||L1(]R";]R) e(MOQ+VL)(t7t°)(t — to)

which agrees with the choice of C; in (3.9).

3. Lipschitz continuity w.r.t parameters From [12, (H5)], using[(TP1)] [(TP2)] and [(TP3)]
||Pw(ta to)uo - Pﬂ)(tv to)uo||L1(Rn:]R)

t
< /tHU(T,-”UH)_U(T’-7w2)HLm(Rn;Rn)dT

x [||u0||L®(R";R") + TV (uo)

W=w1,w2 W=w1,w2

t
+/ < max Hq(Tv'vw)HLw(R";R)—’_ max TV(C](’T,,W))) dT]
to

w=wy,w2

t
o </t (W—Hilvzi’?(wz (7 @)l e gy + 2 [V, ""J)”Lw(R";RM")) dT)

t

x |1+ . wf&ﬂf(wz (va : U(Tv *y w)HLoo(Rn;Rn) + wgu??(wz TV(m(T7 ',W))> dT‘|
+ , Hq(7'7'7'LU)—q(7'7',71))HL1(Rn;R) dr

t
+/t (Hm(q-,.7w) =T, D)y gy [V (07 w) — v(T,.vw))HLl(Rn;R)) dr

o

t
X <||u0||L°°(]R”;R) +/t wnzlgj’(m ||Q(Ta 'aw)HLoo(Rn;R) dT)]

t
X exp (/ _max_ [|m(r, -,LU)HLoo(Rn;R) d7'>
t, =W

< [VL(QR + Qo) (14 (Vi + Muo)(t —t0)) + (Qr + (ML + Vi) (R+ Quo(t — to)))]
xeMotVE)E=to) (4 ¢ Yy (wy, wo)
< [VL@R+Qu)(1+ (Vi + Mo)T) + (Qu + (My, + VE)(R + QuT))]

e Moot VIIT (1 — 4 Yy (w1, ws)

in agreement with the choice of Cy, in (3.9)).

Choice of 7. The time T has to be chosen so that a;3(0) > 0, ax(0) > 0 and ary(0) > 0.
Clearly, by (3.10)), for T sufficiently small, these requirements are all met. O

Proof of Corollary Note that the constants defined in [(TP1)] [(TP2)] and [(TP3)] do not
depend on R. Moreover T has to be chosen such that «1(0) > 0, ax(0) > 0 and aryv(0) > 0,
which are equivalent to

Re=M=T — Q1T >0
Re~ Mot V)T _ () T > ()
Re~MeetV)T (1 — (Moo + V1) T) — QuoT > 0.
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The proof ends setting 7" = min { 30 1+V1), Mln(f)VL }, provided R is sufficiently big. O

Proof of Proposition [3.10} The Lipschitz continuity of P ensured by Theorem shows that
Py is L-Lipschitz continuous, and hence in CO([t,, T]; L*(R™;R)) as required.

We focus our attention now on the first item in Definition [3.7] the second being immediate.
To ease reading, for any test function ¢ € C(]t,, T[ x R™;R) we introduce the notation

We want to prove that, for any ¢ € C2°(Jt,, T[ x R™; R),

/n /:Iw (P(t,to) (o, w,)) dt dz = 0.

We begin by discretising the time domain. For a given k € N\ {0} and i = 0,...,k, introduce
ti =to+i(T —t,)/k and (@, w;) = P(ti—1,to)(uo, w,). Splitting the integral then gives

T
/t / Z, (P(t,to) (o, wo)) da di
- Zk:/tt / (Zo (Pt ti1) (@ 00)) = T (F(t = timy,tio) (i, 00)) ) da dt

k t;
+ E /; / IAP (F(t — ti—17ti—1)(ﬂ/’i7 ’Lbz)) dz dt . (514)
i=1 Y ti-1 JR”

We compute the terms on the last two lines separately, our goal is to show that they both converge
to zero as k — oo.
For the first,

Ty, (P(t,ti1) (i, W) — Ly (F(t — ti—1, ti—1) (W, ;)
= O (Pi(t, tim1) (i, ;) — Fr(t — i1, tim1)(@, W;)) (5.15)

+ (P1 (t, tifl)(fbi, U~)Z')’U(t, x, Pz(t, ﬁifl)(’fl,i, ’lIJZ))

=Py (t =t tio) (g, W) (t, o, Fo(t — tio1,ti-1) (1, UN&))) “Vap (5.16)
+ (m (t, x, Pg(t, ti—l)(aia ’LZJZ)) Py (t, ti—l)(aia 7111) (517)
—m (t, @, Fo(t — ti—1, ti—1) (s, @;)) Fi(t — tizq, ti1) (W, 1171‘))@ (5.18)
+ <q (t,l’, Pg(t,tifl)(ﬁi,ﬁ)i)) —q (t, (E,FQ(t - tifl,tifl)(ﬂi,’i}i))) ®. (519)
Recall that the tangency condition (2.10)) ensures
- - 2L ["Th T w(E)
P (| Py (t, tim1) (i, ) — Fi(t — tiflatiflxuivwi)HIJl(Rn;R) < () /0 ra d¢
1 L L 2L [Thrw
P dyy (Pa(t, ti—1) (i, w;), Fo(t — ti—q, tio1) (@, w;)) < () A f) d¢

with L and w defined as in (2.15)), so that, considering (|5.15|),

/t.i /n (O ) (Pl(t,ti—l)(ﬂi,ﬁh’) — Fi(t— ti—l,ti—l)(ﬂi,ﬁ}i)) de dt

t;
< 0ee oo (0,115 R) /t (| Py (t, tim1) (i, 105) — Fi(t — tiflati*l)(aiami)HLan;R) di

i—1
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L O A (3)
< e) 10spll Lo f0,7) x5y (B — Tim1) /0 ¢ dg . (5.20)

Considering the next term (5.16]),

ti
| [ [Pt doteo, Patts i) @5,
ti—1 n
— Fyi(t —ti—q, tim1) (@, W) v(t, @, Fo(t — tiq, tiz1) (4, ﬁ)z)):| -Vaepdtdr
t;
= / / {Pl(ttifl)(ﬂi; W;) — Fi(t —tio1, tioa) (@, 1171)} (5.21)
ti—1 n
><v(t, x, Pg(t, tifl)(’ﬁi, ’UNJZ)) . Vx(pdtdl'
ti
+/ Fi(t —ti—q,tiz1) (0, 0;)
ti—1 JR™
{’U(t, x, Pg(t, tifl)(’l]i, ’lj}z)) — ’U(t, Z, Fg(t — tifh tifl)(ﬂi, ’LT]Z))} . Vzw dtdx. (5.22)

For (5.21)), using [[TP1)] and the same approach as for (5.20]), we get

ti
/ / [Pl(t7ti—l)(ﬂi,wi)—Fl(t_ti—lati—l)(aia@i)}v(tvx7p2(tvti—1)(aia w;)) - Vapdtda
tioa n

=) V! -t [ e o)
_ln(2) oo 2Pl Lee (0,77 xRm;Rn) \Li i1 ; : ) '

For the second term ([5.22)), using [(TP1)| again, we have,

ti
/ / Fi(t—ti 1, ti—1) (s, 0;)
ti—1 "

X |:’U(t,f£, Pg(t,tifl)(ﬂi,ﬁ)i)) - v(t,x,Fg(t — tifl,tifl)(’lli,’lj}i))} . vch dt dx’

2]
S/ [ F2(¢ = timr, i) (i, B1) | 1 o gy IV Ol o s
ti—1

XVLdW (PQ(t, ti—l)(ﬂiawi)a Fg(t — ti—lati—l)(ﬁhﬁ)i)) dt dx
w(6) 4

)’ ) ti—ti—1 w
< mR”VI@HLw([O)T]XRn;Rn)VL(ti - ti—l) /0 é.
Pass to (5.17)—(5.18) and using again ([5.15):

ti—1 JR™

—m (t, z,Fg(t — ti_l,ti_l)(’ai,ﬁ)i)) Fl(t — t’i—17ti—1)(ﬂ/’i7 1211))(,0’ dzdt

€. (5.24)

(m (t, 2, Py(t, ti1) (s, ;) Py(t, ti—y) (i, ;)

t;
< by Po(t,tio1) (i, wi)) —m (&, - Fa(t —tim1, ti—1) (Ui, W; ‘
< [ Pt @) - m e Bt =t @)
X le(tyti—l)(aiawi)HLoo(Rn;R)||¢||L°°(]R";R) dt
t;
+ Hm taaF t—1;— 7ti7 ’INL“’LD,L H
/t (8 Falt =t ) @ D) |
X||Py(t, tioy) (i, w;) — Fy(t — ti—l;ti—l)(ﬂiawi)||L1(Rn;R)HSDHLOO(]R";]R) de
<

tq
Mg R ||l rnsr) / dw (Pa(t,ti1) (@, w;), Fa(t — ti1,ti1)(@,10;)) dt

tzfl
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t;
+Moo||(P||Loo(]Rn;R)/t ||P1(tati71)(aia wz) - Fl(t_tifljti*l)(ﬂivd}i)HLl(Rn;R) dt
1

L ) ti—ti1
In(2) (M R+ Moo)[|@llp e rnimy (ti — t¢—1)2/0 w(;) d¢ . (5.25)

Concerning ([5.19)), the tangency condition (2.10]) implies

q(t,z, Po(t,ti—1)(a,w)) — q(t, o, Fo(t —t;_1,t;1)(%,W))]e(t) drdt

t7_1 n
ti
< QL||<P\|Loo([tO,T]XRn)/ dyy (Pa(t, ti-1)(@,@;), Fa(t — tio1, tio1) (@, ;) dt
ti—1
L B w(E)
v o oy (ti = tio1)? == de . 5.26
< i @ Wl et =t )? = ae (5.26)

Computing the sum over all time intervals, we get:

i/ttll /71 (ILP (P(f,ti—l)(aiﬂbi)) _Icp (F(t — tifl,tifl)(ﬂh’lf)i))) dz dt

k
> [B29)] + [(B-23)] + [(E:29)] + [(E23)] + [(B-26)]

<
=1
L (T—to)/k w(€) k
< 1m(z)c/0 : dg;t—tzl
B L (T=to)/ (f) (T—to)2
- 1n<2>c/o c g
— 0,
k—+o0

where C depends on the test function ¢ and the constants from [(TP1)(TP2)}{(TP3)]
Pass now to estimate (5.14). Temporarily, for ¢ = 0,...,k, define (u;(t),w;(t)) = F(t —
tio1,ti1) (@i, w;). Then u;(t) = PP (t, t;_1)i;, and thus it satlsﬁes

t;
ti—1 "

Then, each summand in (5.14) can be estimated as follows:

ti
/ / I¢ (F(t—ti_l,ti_l)(ﬂi,ﬁ)i)) dz dt
ti—1 "
ti
= / / I(p (U,l (t), 1111) dz dt

+ / - /n m(t,z, ;) — m(t, @, w;(t)) ui (t) + (q(t, z, ;) — q(t, z, wi(t))) ]@(t,x) dx dt
+ / 1 /n u;(t) (v(t, z, wi(t)) — v(t,,@;)) - Vypdodt

ti—

IN

t; ti
/t / (u;(t), w;) da dt + ol oo (1t 77 xR R,L)/ (M, R+ Qr) dw (w0, w;(t)) dt
i—1 "

ti—1

ti
+ ||Vx<PHLoo([tO,T]XRn;Rn)/ VLR dyy (Wi, w;(t)) dt
1

i—
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ti
< [T (05 At el e 5 (V1 R+ Q) 6= tim)?
i—1
+ ||Vx<PHLoo([tmT]an;Rn) 3 VL RC (t; —ti1)?, (5.28)
where C is the Lipschitz constant of ¢ — w(t) and we used the equality w(t;—1) = w;. The latter
two summands in (5.28)) are treated as the terms above.

Concerning the first summand, consider x. € C°(]t;—1,t:[; [0, 1]) satisfying x.(¢) = 1, for
t €ti—1 +e¢,t; — [, and define . = ¢ - x.. Then,

ti ti ti
/ / ILP (ul (t), ’J)l) dx dt = / / Iﬁp*tpa (ui(t), ’Lbl) dz dt + / / I@E (ul (t), ’lj)l) dx dt .
ti—1JR™ ti—1JR™ ti—1JR™

The second term here vanishes, by (5.27). We then have

t;
/ / Icp—LpE (Ul (t), ’U~}1) dx dt
ti—1 n
t;
/til /"

ui (P = pe) + ui vt x, i) - Vo (o(t, ) — e (t, 7))

+ (m(t, z, ;) u; + q(t, x,10;)) (@(t, ) — pe(t,z)) | dzdt .

Via a use of the Dominated Convergence Theorem, the last two terms here tend to zero as e — 0,

since x. — 1 a.e. on [t;_1,t;]. For the first term, by the construction of y. and the L1 continuity
in time of w;,

tq
/ / u; Op(p — pe) da dt —> (ui(ti7x) oty o) —ui(ti—1, x) (ti-1, m)) dxdt .
ti—1 n R™

Passing to the sum (5.14), and remembering that u;(t;—1, ) = @; = P1(ti—1, to) (Uo, Wo),

k t;
i=17ti-1 "

k—1
= Z/ |:F1(ti —tic1,tim1) Ptiz1, o) (Uos o) — Pi(tisto) (o, wo) [¢(ti, ) dz dt
i=1"R

k—1

2L ti—ti 1 W(g)
< Z(titi_l)ln(g)/o & 9 [P gy
i=1
- (Tt w(e)
< M ||90||L°°([tO,T];Rn;R) (T —t,) /0 ng
*} 07
k—4o00
as required. .
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5.4 Proofs for §

Similar to the previous sections, for each w € W the unique solution to (3.11]) in the sense of
Definition B.11] is

Uo (X(to;t, @) Eulto,t, )
+ q(TXTtx w) Ey(1,t,2)dr x> X(t;t,,0)
u(t,z) = b (T(O;t,x))t%w ( ) (5.29)

t
+/ q(T,X(T;t,a:),w) Ew(T,t,x)dr x < X(t;t0,0)
T (05¢,x)

(05, x),

where now .
Ew(T t,x) = exp/ (m (5, X(s;t, @), w) — Dy (s, X(s3t, :U))) ds . (5.30)

Working under the assumptions of Proposition we define the parametrised mapping PY,
which we propose is a process, by

e (t tAu ):ub(i) where  u(t) is given by (5.29); (5.31)

where A is generated by the sets D; as given by (3.13).
Lemma 5.3. The mapping P as defined in (5.31) is a process in the sense of Definition .

Proof of Lemma Fix w € W. Conditions and are an immediate consequence
of . It remains to show . As the choice of w € W has no impact on this result, we omit
references to w.

Define o(t) = X (t;t,,0), and for a fixed t € I, J; = [0,0(t)[, and Jo = [o(t), +00].

1. We first show that, if [|uoll s (g, &) < @1(to), then [|ut HLl(R+;R) < aq (t).
To begin, we have

o(t)
O gy < [ BT O:1,2) ET0:.2). )
o(t t
[ e e dr s
0 T(05t,x)
+o0
—|—/ |uo (X (to;t, x))E (o, t, x)| do
o(t)
/ |q (1, X(73t,2))E(T; ¢, 2)| dr dz
o(t) Jto
t
=/ [v(n,0)] [b(n))| exp/ m(s, X (s;0,7)) dsdn

/tO/U(T () eXp/mSXsto))dsdng

+/ ‘uo exp/ m(s, X (s;t,,&))dsdE
//*“ 8 CXp/mSXsré))dsdng

< (uollua ey ) + (0Boo + Qu)(t 1)) €M (t10), (5.32)
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Inserting the fact that [|uolla gk, &) < c1(t,) into (5.32), we have

)l g,y < (ol ) + (Boo + Qu)(E = ) ) M=)
< (Re™ M=) — (0B + Qu)(T = to)e™=" + (0Boc + Qu)(t — 1)) M=)
< Re™Me(T=) _ (3B + Q1) (T — t)eMe<t
= ay(t)

2. We show that if [[uo[f,ec (r, ) < Qoo(to) and Beo < aoo(to), then | u(
We have, directly from (5.29)),

t)||L°0(R+;R) < Qo)

Hu(t)HL""(RJr;lR) = (max{|u0|L°°(R+;]R)v Boo} + Qoo(t — to)> eMoo(t=to)
< (oo (to) + Quo(t — t,)) eMoelite)
< (R M=) — Q(T — 1) + Quot — 1) ) €M1

< Re™Me(T=1) _ 0 (T —1t)
= Qoo (t).

3. Finally, we demonstrate that if TV (uo)+|uo(0) — b(to)| < arv (t,), then TV (u)+|u(t,0) — b(t)| <
Ova(t).
The left continuity of b implies the right continuity of u(¢,-) at 0, and hence

TV (u(t)) = TV (u(t);]0,+00l)
< TV (u(t); 10, 0(0)]) (5.33)
+|u(t, o (t)—=) — ult,o(t)+)| (5.34)
+ TV (u(t);]o(t), +o0l) . (5.35)

We calculate the three terms (5.33)), (5.34) and (5.35)) separately.
Beginning with (5.33)), we have

TV (u(t);]0,0(t)[) < TV (b(T(0;t,2))E(T(0;t,z),t,);]0,0(t)])

+TV (/t q(r, X (7;t,2)E(T, t, x) dT;]O,a(t)[)

T (05t,x)
< TV tor D) + bl e a1y (Moo + VE) (£ = 1) ) e V(000
FQoo(t — to) (1 + (Moo + Vi) (t — t,))eMeetVe)(t=to)
For the second term ([5.34)),
‘u (t,o(t)+) —u (t,o(t)-) ’

o (X (to;t,o(t)+)) £ (tort,0(t)+) — b (T (0:1, a(t)—)> £ (T (0:t,0(t)-) .1, U(t)—) ’

IN

) /tt . (T, X (13t,0(t)+) ,w) E(r,t,o(t)+)dr

_ /t q (7'7 X (T; t, o(t)—) ,w) & (T,t,a(t)—) dr

T(Oit,0(t)-)
|u(to, 04) = b(to+)| € (to, t,0(t)—)
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< (!u to:0) = b(to)| + [b(te—) — b(to +)y> (Moo HVE)(t=t0)

Note that TV (b; ]to, t[) + [b(to—) — b(to+)| = TV (b; [te, t[) from the left continuity of b.
For the final term ([5.35]), we find

TV ((t);]o(t), +o0l) < (TV (o310, +00]) + ltoll e sy (Moc + Vi) — o)
Qoo (14 (Moo + VL)t — 1) )(t — t,) ) eM V1000
Finally, notice that, as u(t, 0) = b(t), we have
TV (u(t,-);]0, +00[) + |u(t,0) — b(t)| = TV (u(t,)),

and thus we need only to show TV (u(t,-)) < ary(t). Using these three estimates, we obtain

TV (u(t)) < (TV (t63]0, +00[) + |u(t,0) — b(to)|

+ l[ttoll oo (g, ) (Moo + Vi) (t = 1)

+ TV (b; [to, t]) + Boo(Ms + VL)(t — t,)

+2Quo (14 (Mo + Vi)t = 1))t — 1) )M V000
< (a7v(to) + ol gy (Moo + Vi) (¢ = o)

+ TV (b; [to, t]) + Boo (Moo + VL) (t — t,)

+ 2Quo (1 + (Moo + VL) (E = 1)) (t — ) J el M=V (0t0)
< (RO = 2(Mao + V)(T = 1)) M=+ V)Tt

= 2Quo (1 + (Mog + VL)to)(T — t)el MoV

— Boo(Moo + Vi)(T — t,) Mot Vi)t

= TV (b3 [to, T])e Mot V0o

+ (Re—<Mw+VL)<T—t°) — Quo(T — t)e<M°o+VL>t> (Moo + Vi) (t — t,)

+ TV (B [tor H]) + Boo(Mae + VL) ( — 1,)

2Qu (1 + (Mo + VL) (t = t))(t - to>)e<M°°+VL><t—fo>
< R = (Moo + Vi)(T = 1))l M0

—2Quo (1 + (Mao + Vi)E)(T — t)eMeet V)t

_ Boo( -+ VL)( ) (Moo+VL)t

— TV (b; [t, T])eMoetVe)t

arv(t),

as required. O

Proof of Proposition The mapping P", as given by (5.31)), is a process for any w € W
by Lemma [5.3] It remains to show that P" is a Lipschitz process on U parametrised by w € W,

i.e., it satisfies (2.11), (2.12), and (2.13)), with C,,, Cy and C,, given by (3.13).

1. Lipschitz Continuity w.r.t. Initial Data. Consider two initial data uy,us € D, t,,t € 1
with t, < t, and w € W.
To begin, assume that x € [0,0(¢)[. Then, it is easy to see from (5.29) that

|PY(t,to)ur — PY(t,to)us|(x) =0,
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as b, ¢ and m are independent of the choice of initial data u,. Similarly, for « € [o(¢), +-00],
|PY(t,to)ur — P (t, to)uz|(x) = |ur(X (to; t,2)) — ua(X(toit, @))| Eulto, t, @) .

Thus, using the substitution y = X (t,; ¢, x),

+oo
dZ/{ (Pw(tato)ulapw(tato)UQ) = / |U1(X(to;t,l')) 7uQ(X(tO;tax)”gw(tht»z) dz
o(t)

- ! 3 w)ds
= / ‘ul (y) - U2(y)|efto m(Sy.X(S,to,y), )d dy
0

Moo (t—10)

IN

e u1(0) — ug

(O) || L1(Ry;R) ©

2. Lipschitz Continuity w.r.t. Time. Consider u, € D, t,,t € I, and w € W.
We have
dZ/{(P (tyto)umuo) < HP (tyto>uo - u0’|L1([0,o(t)[;R+) (536)

+pr(t, to)uo - u0||L1([g(t),+oo[;R+) :

Focusing on the first term of (5.36)), using (5.29), [BP1)| [(BP2)| [[BP3)] [[BP4)]| and that

u, € D,

HP“’(t, to)Uo — uo”m([o,o(t)[;m)

IN

o(t)
/ IB(T(0: £, 2)) 8 (T(0: 1, 2), £, ) — ()| da
0
o(t) ot
—|—/ / lg(7, X(1;t,2), w)Ey (T, t,x)| dT dz
0 T (05t,x)
t

- / oy, 0)[bly)els AL gy (10, y))ely O (X 00 gy

to
+QueM=(=t) (¢t —¢,)
0(B1 + [[toll oo m sy + Q1)eM=l"t) (t —¢,)

IN

t
b [ o 010, )l om0 T e X g
to

IA

O(By + R+ Qp)eM=T(t —t,)
t
+@||u0||L°°(]R+;]R) / (Moo + Vi) (t — y)eMeot Vi) E=1) gy
to
< B(Bi4+ R+ Q1)eM=T(t —t,) + 0R(My + Vi) (t — t,)2eMeetVE)E—to)

For the second term of (5.36]), once again from ([5.29)),

pr(t’to)uo - UOHLl([a(t),+oo[;R+)
+o0 +oo pt
< / o (X (to; t,2))Ew (Lo, T, ) —uo(ac)‘dx—l—/ lg(7, X (73 t, 2), w)|Ey (T, t, 2) dT dar
o(t) a(t) Jto
+o0 +oo
< / uo(X (F3 £, 7)) — ()| Ew(bor 1, 7) dx+/ hto ()] [Eu (for £, ) — 1] da
o(t) a(t)

t  ptoo )
+/ / lq(7, &, w)|els msX (smOw)ds ge g
to Jo(t)

<[0TV RY) + Maclltollpa gy + Q1] M=)t~ 1,)
< [0R+ MuR+ Qq] eM=Ct)(t —t,),
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where we have made use of (A.4]).
Concluding, we thus have

du (P (t,to)to, uo) < [0(B1 + 2R+ R(Maso + VL)T) + Moo R+ Q1] =T (t —t,).

3. Lipschitz Continuity w.r.t. Parameters. Consider u, € D, t,,t € I and wy,ws € W.
We have

du (P (, to)uo, P (£, to)uo) < [P (tto)uo — P (t to)Uo|| 11 (0 0 1y

(5.37)
+ [P (E to)uo — P2 (H, to)uOHLl([a(t),Jroo[;R+)
For the first term of ,
[P (8 to)uo = P2 (1 to)uo|| L (0 0 1y s
< /Oa(t) |b(T (03, 2))| |Ewy (T(058,2),t,2) — Euy (T(05t, ), ¢, 2)| dz (5.38)

a(t) ot
+/ / |q(7‘,X(7‘;t,a:),w1) - q(TaX(T;t7$)aw2)|gw1 (T7t7$) dz (539)
0 T(0st,x)
o(t) ot
—I—/ / |q(7’, X(T;t,l‘),’LUg)‘ |5w2 (1yt,2) — Euy (T,t,m)| dz . (5.40)
0 T (05t,x)
Focussing first on , we use and get

a(t)
/ ’b (T(O; t, x))‘ |€w1 (T(0;t, ), t,x) — Ew, (T (05, ), 1, :v)| dz
0

/t 0(y, 0) [b(y)||Ew, (s t, X (£:0,1)) — Ew, (y, 1, X (0, 9)) | dy

IN

t t
BooeMoo(tito)/ / ’U(y,O)|m(S,X(S;y,O)7U}1) 7m(S?X(5;y70)7w2)|d5dy
to Jy

t po(s)

= B [ [ (s gw) = (s, € d€ s
to 40O

< BOOMLeMm(t_tO)(t — to>dw(u}17 'LU2) .

For (5.39), using [(BP3)|
a(t) ot
/ / |q(T,X(T;t,3§),w1) - q(T,X(T;t,l'),wg)’5w1(7'7t,$(}) drdz
0 T (05t,x)

t o(T) . )

B // |0(y, )] |a(7, 5, w1) = g(7, 9, ws)| el Xm0 4y 47
to J0

< QpoeM=U7t) gy (wy, wy) .

Finally, for (5.40)), we have

o(t) ot
/ / |q(T,X(T;t,x)7w2)| |Sw2(7,t,x) —5w1(7,t,x)|d7dx
0 T (05t,x)

t po(T)
_ / / lq(r, €, w2)] ‘efﬁm(&?\-’(smé)wz)ds _ oJims X (s Own)ds| g g
to JO

IN

t po(r) pt
QooeMmufto)// / (s, X(s:7,€),w1) — m(s, X (57, €), wo)| ds dé dr
to, 4O T
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t X(éTO)
< QooeM“(t_t")/ / / m(s,y,wy) — (S,y,w2)|dsdyd7
to X (s;5t0,0)
1
< QOOMLeM“’(t_t“)§(t—to) dyy (w1, ws) .

Thus,

1P (1 toto — P (b, 1)t 2 1

1
< [BOOML +0QL + 5 Qo My (t — to)} eMeo(t=to) (¢ — t )y (w1, w3) .

Focusing now on the second term of (5.37]), we have

| P (t, to)uo — P2 (t, to)u
“+o0
<
a(t)

—l—/ |q T, X(T5t, @), wy) — q(7, X(T5t, @), w2)|Ewy (T, t, ) dT da
o(t) Jto

° ||L1([U(t)7+<><>[;]R)

Yo (X(to;t,x))“&ul (tos 1, %) — Euy (to b, )| daz

/ / lg(m, X (73 t, ), w2)||Ewy (T, t, ) — Eny (T, t, )| dT da .
Looking at term ([5.42)),
+oo
/ |uO(X(to;t, a:))‘ ’ci'wl(to,t, x) — Eu,y (to,t,x)‘ dx
o(t)
Moo e
< ol oy | / (5, (53 o), w1) — (5, (5510, ), 03)] ds

||U<)||I_‘c>o(]RJﬁ M (t to / / 3 yawl) (Sayaw2)|dyd8
< M ReMe(t=to )(t—to)dw(wl,wg).

Next, for the term (5.43]),
“+oo t
/ / ‘q(T, X(r;t,x),wr) — q(r, X (7;t,2), wg)’é'wl(T,t, x)drdx
o(t) to
t —+oo
< eMOO(t_tO) / / |Q(T’yaw1) - q(T7yaw2)} dydT
to Jo(r)

< QLeM“(tfto)(t — to)dw (w1, wz).

Finally, for term ([5.44)),

“+o00 t
/ lg(7, X (73 t, 2), w2)||Ew,y (T, 8, ) — Eny (T, 8, )| dT d
o(t) Jto

t “+o0 t
< QuelMeltt) / / / (s, X (7€), w1) — m(s, X (s; 7, €), wa)| ds dé dr
o(t)
= QueM=(t >/// m(s,y,w1) — m(s, y, wz)| dy ds dr
o(s)
< *MLQooe (t=to) (t — )2 dyy (wr, wo) .

35

(5.41)

(5.42)

(5.43)

(5.44)



Thus, combining these estimates together we have

[P (t to)uo — P2 (t’tO)u°||L1(J1;R+) (5.45)
< [MLR+Qp+ $MLQuo(t — to)] €M="t dyy (wy, wy) . '

Due to the assumption u, € D, we have [[to|y1 (g, &) < R. Hence, substituting (5.41) and (5-45)
into (5.37), and as (t —t,) < T, we get

Ay (P (t,to) o, P2 (L, to)uo) < Coy(t — to)dwy (wy, wa) (5.46)
where C, is as in (3.13)), as required. O

Proof of Proposition For fixed t, € I, u, € U, and w € W, define by Il  y, w,) :
{(s,80) € [to, T]? : s > so} Xx U — U to be the process with s — Iz, 4 w,)(5,50)po being the
solution of

op + 0y (v(t, ) p) = m(t,z) p+ qt, x) (t,z) €lso, T] x Ry
p(t,0) = bo(t) t €[50, T] (5.47)
(S0, ) = po() reR4

with m and ¢ the given by . For notational simplicity, we write I , w,) = II when the
(to, U0, w,) when no confusion arises.

The mapping II is Lipschitz continuous with respect to time and initial data, for some constant
L >0, as m and ¢ satisfy correspondingly [(BP2)| and [(BP3)| which do not explicitly depend on
w.

By this construction, ¢ — Il 4, w,)(t, to)uo is the solution of .

From [5, Theorem 2.9], we have

H = Ity u,) (8 o) Uo L (R4;R)

< Eft lim inf;, o4 hH (1 +h) =T,y ) (T + R, T)u(r )‘Ll(R+,R)
= L f) minfuoor [P TP o) (o w6) = Ty (7 + By T)u(7)|
Li(RR)
Thus it suffices to show, for any 0 <t, < 7 € [0,T], that
tpinf || (7 o, 7) P, 1) 0, 100) = T ) (7 B ()| -
}gm (T + b, T)P(7, o) (U, wo) (to,u0,wy) (T 4 By T)u(T) L)

The tangency condition (2.10]) ensures that

! Pa(rt0) (o 00) /hw(ﬁ)
— — 2\T5to 0,Wo < S/
=[P+ bryu(r) - P (rmpu <0 oo

as h — 0.
Further, it can be shown, using formula (5.29)), that

<O(1)h?,

PPg(‘r,to)(uo,wo) h —1I h ’
H (T+ ,T)U(T) (t07u07wu)(7-+ ’T)U(T) L1(R ;R) —

with the constant O(1) depending on the constants laid out in [(BP1){(BP4)| R and T. Thus
this also converges to zero as h — 0, completing our proof. O

36



5.5 Proofs for §

Lemma 5.4. Let f € BC(R4;R). For any n € N\ {0} there exists a function f, € (C* N
W) (R ;R) such that

!

Lo (R;R)

2 | f e e
o f, — f pointwise, as n — 0,
2
o I allwe g < (1+2) 1l ooy
Proof of Lemma Consider f,(z) = %fon flz +y) dy. O
Lemma 5.5. The mapping p defined by (3.20]) in Proposition 18 narrowly continuous.

Proof of Lemma Choose f € BC(R,) and fix t € RT. Let ¢ > 0 and for n > 0
define f, € (C* N WL>)(R;;R) as in Lemma Then, setting M, = ||/, so that

Lip ({7’7”) <1, we have

HWLOQ(R;R)’

f(x)d( Pt to)po — Pi(s,to) o) ()

Ry
< /‘um—nwnaawmm—a@@mow
Ry
+M7R“?«mema@m%m>
< [ 1@ = n@Ia(Prt o~ Plsitolnl) @)
+M"7 dM(Pl (t7 tO)IuO’ P1(57 tO).“o)
< [ 5@ = f@a(Pu s = Pulsitola]) @

+

. 2
+LmUﬂ<1+n>Hfmemﬁ—ﬂ

By the Dominated Convergence Theorem, the first term can be bounded by €/2 for 1 small. Then,
choose s so that also the latter summand above is bounded by €/2. g

Proof of Proposition [3.16
The Narrow Continuity: This is a consequence of Lemma [5.5

Distributional Solution: To simplify calculations we define, for a test function ¢ € (C! N
Wy ([t,, T] x R;R)),

Itp(ﬂa w) - [R (aﬂp('ax) + b('?.u“’w)(z)axQO('v 'T) - c(~,,u,w)(x)ga(-,x)) d:u‘('v :L‘)

’54+<4+”””ﬂmvmwxwxw>dmuw.

By a density argument, it suffices to check the integral equality in Definition for ¢ €
Cl([to,T) x R4;R)). We discretise the time domain. For a spacing k € N, and i = 0,...,k, we
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introduce the grid points t; =, + @, and the associated (fi;, w;) = P(ti—1,%0)(to, w,). We

then split the integral,

T
/ 7, (P(ta to)(,uo’wo)) de

to

koot
_ Z/t (7, (Pt 1) ity @0)) = T (FUE— tia, i) (s @) | At (5.48)

Ay i(t)

k ti
+ Z/ I(p (F(t —ti_1, tifl)(ﬂi, 1211)) de . (549)
i=1"7ti-1
Agﬂ;(t)

Our first goal is to demonstrate that (5.48)) vanishes in the limit £ — oco. Focusing on A ;, we
split the integral to get

Ay ()

= e 6tg0(t,a:) d(Pl(t,tl‘,l)(ﬂi/lI}i) — Fl(t — tifl,tifl)(ﬂi,ﬁ)i)) (1‘) (550)

+ b (t, P(ttiy) (i, wi)) (2)wip(t, ) APy (t, b 1) (i, i) ()

+

b(t, F(t — tifl, tifl)([]/i, u?l))(x)amgo(t, LC) dF1 (t - ti*h tifl)(ﬂi, ’LZ)Z) (CE) (551)

+

+ [ et F(t —tim1, tio1) (i, i) (2)p(t, 2) dFL(E = ti1, tio1) (i, 05) (2)

ct, P(t, ti1) (i, w:)) (@) p(t, @) APy (¢, ti—1) (11, wi) (@) (5.52)

%\?\%\%\J

+

+/R+ (/ﬂ¥+ o(t,x) dn(t, P(t,ti—1) (i, ;) (y)] (m)) APy (¢, ti-1) (s, i) (y)

_/R (/R p(t, ) dln(t, F(t = tioy, tio1) (fii, i) (y)] (w)> (5.53)

dFy(t —ti1, tioa) (i, ws) (y) -
We now deal with each of these terms separately. To simplify the notation we will set

Pi(t) (pip(t),wip(t) = P(tyti—1)(f,w:),
Fi(t) (Hi,F(t),wLF(t)) = F(t—ti_1,ti_1)(fis, W) . (5.54)

We will make extensive use of the relation (2.10]), which gives

2L iz
Ar0.F0) < oty [ M (5.55)
for L as in . For ,

i Aup(t,x) d (pi,p(t) — pir(t)) ()

IN

10l g syt (0.0 (8), 15, (8))

IN

2L et w(g)
||8t<P||w1ww(R+;R)m(t_tifl)/o ——d¢.

3
Next, for (5.51), calling Ly = sup;cjo,71,wew LiP(b(t, -, w)),

; b(t, Pi(t))(2)0up(t, ) dpip(t)(x) — A b(t, Fi(t))(2)0up(t, ) dpip(t)(x)
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/R [b(t, P;(t))(x) = b(t, F(t,tim1)(fus, ©:)) (2)] Dwip(t, x) dpsi,p(t) ()

+ / b(t, F3(8)) (2)up(t,2) d (i p(t) — i p (1)) (2)

< el e, ) (RLy + BL + B) d(Pi(0), Fi(t)
2L e w(g)
< Oelwseqa, i (RL+ RE+ B =ty [ “fae

Repeat the same calculations for (5.52)) and set L. = SUPte[0,7],wew Lip (c(t, : w)),

| et B @pelt0) dur®@ - [ et PO a)olt,) dusr(t)(o)
Ry R

+

. 2L T (€)
< ||80||w1,<>c(]R+;]R)(RLC+RL+C)m(t_ti_l)/o ?df

Finally, for the term (5.53), we find

/R </R p(t, ) d[n(t,Pi(t))(y)](ﬂf)> dysi, () ()

- / ( / o(t,2) d[n(t,Fi(t))(y)](x)> dw; (1) (4)
Ry \JR,

/R ( / o(t,2) d[n(t,mt))(y)—n(t,m»(y)](x)) dpsi.p (D) (W)

Jr/R+ </R+ p(t,z) d[n(t,Fi(t))(y)}(@) d (i, p(t) — wi,r (1)) (y)

. ; 2L (g
< lellwroe @, mB (:EPT] Lip(n(t,-,w)) + L + E) o (&~ ti-1) /0 a dg.
wew

Combining these four estimates together, we have for a constant C, independent of k,

k ti

> /t Ay i(t)dt

i=1Jti-

+/]R (b(t, i, 7 (t), wi,r (1) () = b(t, pi, (1), W0:)(2)) 0z p(t, @) dpi,r(t)(x)
+/R (c(t, pi,r(t), i) () — c(t, pi,r (t), wi,r (t))(2))p(t, x) dui r(t)(x)

+ / ( / () dln(t, i, p (), s (1)) (1) — n(t,m,F(t),@i)(y)}(w)> dyis () (2)
Ry \ /Ry

and hence

Ao i(t) < Ty (s, (t), ;)

39



. 2L it ()
+ LR (200l ) + 10e0llws e,y ) g (= tim1) / Te e (5:56)

The second term will thus converge to zero in the summation. Hence we concentrate on the
summation of the first term.
In the next calculation, we will use the fact

/}R (T, 2) (i (T) — P (T 1) (110, w05)) ()

= /R Lp(T, m) d(Fl (T — tkfh tkfl)P(t}c,h t0>(uo, wo) — P1 (T7 tkfl)P(tk,h to)(uo, wo)) (w)

to

2L T —t, w(€)
< HQD ’|Wloo(R+R)1n2 A /0 Td£—>0, as k — oo.

Focusing on the summation of the first term in (5.56)

Z/ (i, (t),0;) dt = Zk: (/R+ o(ti, ) dpi r(ti)() —/

i=1 R

o(ti—1, ) dﬂz‘(@)

- / o(T,2) dpr,p(T)(z) - / (o, 1) dito(z)
JR+

Ry

+ Z </ (ti, ) d(ps,r(ti) — ﬂz‘+1)(95)>

7 PR AP o)) = [ lt0rw) (),

where we use that

k *to

S [ ot dre) - @) < lobwamonig? [ “Eag, 0.

Z\Je, T ’ Whe®RsR 2™ J, 3 k—+o00
completing the proof. O

5.6 Proofs for §

Proof of Proposition We assume for simplicity that both processes P“ and P* share the
same constants C,,, C,,,C; in (2.11)—(2.12)—(2.13
The properties of P ensured by Theorem [2.6/show that P € CO([t,,T]; L*(R";R)) as required

by Definition [3:17}
Introduce the following notation. For any k € R and ¢ € CZ°(I x R; R ), denote

Toip(u,w) = / [|u — k| Orp + qi.(u, w) amcp] dz
R

Qk(ua UJ) = Sign(u - k) (f(uv ’LU) - f(kv ’LU)) .
Fix N € N\ {0} and, for every i € {0,..., N}, define t; = ¢, + iTﬁ" and, for t € [t;—1,T],

_ (ﬂzaﬁ)z) = P(ti—hto)(uoawo)v
_Ifi(t, (E) = (Ui’P(t, SU), wi’p(t)) = P(tj tifl)(ﬂi, QI)Z)(CL') ’ (557)
Fi(t,x) = (uwip(t,z),wip(t)) = (P (t,tio1)ai(x), P" (t,t;1) ;) .
We now prove in 2 steps that
T
/ Ty (P (£ ) (o, o)) d > / Py (T, 1) (o, wo) — k| (T, 7) da
to R (5.58)

—/ |uo(z) — k| (0,2) dz
R
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Step 1: We prove the inequality

T
/ Ty k(P (t,to) (U0, wo)) dt > hmsupZ/ Lo i(usp(t), w;)de . (5.59)
t

N—+o0 i—1

o

To this aim, write

T T
/t%,k(P(t,to)(uo,wo))dt = /tA|P1(t,to)(uo,wo)(z)—k|at¢(t,x)dxdt (5.60)

o

+ /to /qu (P (t,to) (uo,wo)(x)) Opp(t,z)dr At (5.61)

We proceed towards the estimate of (5.60). For every ¢ € {1,..., N} and k € R, using (2.10) with
L and w given by (2.15)), we have

tq
/ / ([, (0. 2) — K|Dyp(t. ) — [ (1, 2) — Kot )] dr
i—1 JR

t;
< / / |lui,p(t,x) — ui p(t,x)|Owp(t, v) dz dt
1 JR

ti_

2L . o
< ln(2)H5’t80||L°°([ta,T]xR;R) /ti_1 (t—ti_l)/o wiﬁ)df dqt
L (T—t,)> T—t,
S 11’1(2) ( N2 ) HatSOHLOO([t T]XRR)/O wé&)df

Therefore, the term (5.60) is estimated as:

/ /R | Py (L, to) (o, wo) () — k| Bpp(t, ) da dt

t

N
:Z/ / |“i7P(tv T) — k| Opo(t, ) da dt
i=17ti-1 /R
N £
Z[/ /|U1Ft$ k|8t<,0txdxdt]
i=1 [Yti—1

T—t,
L (-t ()
- 5 T el / o e

and the last term converges to 0 as N — +o00. Thus, the term (5.60)) is estimated as follows:

Y

[(5.60)] > lim sup / / |ui p(t, @) — k| Opp(t, ) da dt . (5.62)
1

N—>+ooi 1/t

We pass now to the term (5.61). For every ¢ € {1,...,N} and k € R, since ¢ is Lipschitz
continuous [19, Lemma 3] and using (2.10), L, from L and w from ([2.15]),

/ /Qk 5 (t, ) mw(t x)dx dt—/ /qk i p(t, ), ;) Opp(t, x) dz dt
/tv’1 /R [qk (Pi(t, @) — qi (ULF(t,-’I?),wZ',p(t))} Dpp(t, ) da dt

+/tt /R {Qk (Ui,F(t,$)7’lUi,P(t)) - Qk(Ui’F(t,{E)ﬂI}i)} Dwo(t, ) da dt
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IN

t;
TN . / / s p (1, 2) — s p (1, 2)| d
i—1
t;
+/ / ‘f (wip(t,x), w; p(t)) — flusr(t, ), ;)
ti—1 JR

= (1 (o) = 700 [ow(t.0) o

IN

o = w(g)
Lf @ HawL)OHLOO([tmT])dR;R)/ 1(t — ti71>\/0\ Tdf dt

ti—

ti
+Lf/ / i, (£, ) — K| - dy(ws.p (1), @) - |Daip(t, )| da dt
ti1 JR

2L (ti —ti1)? [H70 w(E)
LfmHaE(pHLOO([tO,T]x]R;R)f/0 Tdf

IN

ti
Ly CRA Dl iy [ (= tin)

i—

T—t,

Ly 2L N
< 5 10eplliee ity ywrimy | Ly CrlBR A+ K) + In(2) /0

w(©)
¢ ¢

Therefore, (5.61)) is estimated as
T
[ [ (Pt (o)) Dt ) o
to JR

N t;
> Z/ / (i (8, ), W;) Opp(t, ) da dt
i=17ti-1 /R

(T —t,)°

Lf 2L N
= 0Pl iy | s ClR+ R + o |
and the last term converges to 0 as N — +o0o. Thus,

N t;
[(5-61)] ZlimsupZ/ /qk(ui,F(t,x),wi)aM(t,z) dz dt .
i—1 JR

N —+o00 i1 ti
Combining (5.62)) and (5.63)), the proof of Step 1, namely (5.59)), is completed.

Step 2: Now we prove that
N

ti
lim inf Z/ Lok (ui p(t),w;)dt

N —+o00 =1 Jtia

2/R|P1(T,to)(uo,wo)(x)—k|g0(T,x)dx—/R‘uo(x)—k|ap(t0,x)dx

(5.63)

(5.64)

Fix i € {1,...,N}. For € > 0 sufficiently small, consider x. € C2° (]t;—1,¢[;[0,1]) such that
Xe(t) =1 for t € [t;—1 + &,t; — €] and define . = ¢ - x.. Then, by Definition and the choice

of xe, we have that for every ¢ > 0 sufficiently small,

t;
/ st,k(ui7p(t,$),lf)i) dtZO
ti—1
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This implies that

t;
/ Ty i (uip(t), w;) dt
ti—1

t; ti
/ To o (e (8),10,) dt + / T (s (1), 7) dt
ti—1

ti—1

123
> [ T sl 0
ti—1
123
= / / lui,r(t, @) — k|0 (¢ — ¢c) (t,2) da dt (5.65)
tii, JR
t;
[ ] a0, 50 000 - 0 (k0 d de (5.66)
ti—1 JR

for every € > 0 sufficiently small. Moreover the continuity in time of u; r implies that

Jim (E59) = [ Juir(tia) ~ Koltin) do = [ fuse(tios,n) K| pltig,o) do.
R R
while, by the Dominated Convergence Theorem, we deduce that
t;
lim [(5.66)] = lim / gk (wi p(t, ), ;) Oz (p — @) (t, ) dz dt = 0.
R

e—0t e—=0t Jy,

Therefore, we get

t;
/ I%k(uivp(t),ﬁ}i) dt

ti—1

Z / |ui7p(ti,x) - k‘| (p(ti,l‘) dx —/ ’ui7p(ti_1,a:) — k‘| @(ti_l,l‘) dz .
R R

Summing over i, we obtain that

N t;
Z/ Ly i (uip(t),w;) dt
i=1 i

ti—1

N N
> Z/R|Ui,F(ti,$)_k|(p(tz‘,$)df£—Z/R|ui,p(ti_17x)—k|(p(ti_1’m)dx
- /|UN’F(T’x)_k|‘P(T’x)dx—/\“o(x)—k’so(to,w)dx (5.67)
R R
N-1
+ ;/R(Iui,p(ti,x)—ky — |uisr.p(tis) = K|} olti, @) da . (5.68)

We now estimate the first term in (5.67):
/ |un, (T, z) — k| (T, ) dz — / |PL(T, to) (uo, wo) () — k| (T, ) da
R R
_ / (IF(T ~ tx sty )i, v 1) (@) = K] = | PUT, ) (10, w0) (1) = k) (T, )
R

and, using L and w as in (2.15]), we get

/R (IE3 (T~ 3ty o) (v, Bu) (@) — K] [PuT ) (0 w0) (@) — k] ) o(T, 2) da
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< / |F1(T —tN—1,tN—1)P(tN=1,10)(Uo, Wo)(T)
R
—P (T, tn-1)P(tn—1,t0) (o, wo)(m)| (T, z)dx

oL T—t, [%° w(e)

In(2) N 0 3
— 0 as N — +o0.

We now estimate using and ( -
Z / ’|ui7p(ti,£c) - k} - |U7;+11F(t1',$) - k|’gp(ti,x) dz
i=1 YR

<

dg

N-1
< Z / i, (ti, ©) = wirr,p(ti, )| o(t;, ) da
i=1 /R
N-1 ~
_ Z/‘Pwi(ti,ti_l)ﬂi(x)—Pl(ti,ti_l)di(a:)‘w(ti,x)dx
i=1 /R
N—
< ellpoe e, yxmy ; H (o tin) T = Pt tio)] o
N— ti—ti_
2L THL w(T)
< ln2||<PHLoo(to,T]xR R) ;(ti - tz’—l)/o TdT
2L (T=to)/N w(T)
< gl o sy (T t“)/o _—
— 0 as N — +0.
The obtained estimates for (5.67) and (5.68), as N — +o0, proved Step 2, namely (5.64). O

A Appendix: BV Estimates

We gather here a few estimates on BV functions used in the proofs.

Lemma A.1. Recall the following elementary estimates on BV functions, see also [8, § 4.2]

or [1)):
52332%1:%3} = TV(ww) < TV(u)|wllpe @, z)tlvllpe e,z TVw) (A1)
i 2 govigfﬂf%} = TV(pou) < Lip(p) TV(u) (A.2)
Z(f)lélg{}(‘[lg(fﬁ)lg))} = TV (/to u(r,-) dT) < /to TV (u(r)) dr (A.3)

ueBV(R+;R)} . /
6L (R;Ry) R,
and in ([A.3) we have to,t € I with t, <t.

Proof of Lemma [A.1] Inequahty A.1)) follows from [I, Formula (3.10)]. The one dimensional
proof follows. For any partition (x;);L, of R., we have

u(z+0(x)) - u(x)j de < TV(W) [0lpem, ) (Ad)

N

Z |u(xz)w(:vl) — u(xi—l)w(xi—1)|

i=1
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N N

< Z lu(@i) — u(@i—)| |w(@:)| + Z lw(@;) — w(wi—1)] |u(zi—1)|

i=1 N i=1 N
< Nwllpe @, ) Z |u(i) = w(zi-1)| + |[ullp g, r) Z |w(@:) = w(zi-1)]
<

TV(u) lwllpee @,y + 1ullLe @,z TV(W),

and taking the supremum over all such sequence, we get our required result.
The definition of total variation directly implies (A.2)) and (A.3)). For a proof of (A.4)) see for
instance [5, Lemma 2.3]. O
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