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Abstract: One of the promising ways to increase fuel and modern gas turbine energy efficiency
is using cyclic air intercooling between the stages of high- and low-pressure compressors. For
intercooling, it is possible to use cooling in the surface heat exchanger and the contact method when
water is injected into the compressor air path. In the presented research on the cooling contact method,
it is proposed to use a thermopressor that implements the thermo-gas-dynamic compression process,
i.e., increasing the airflow pressure by evaporation of the injected liquid in the flow, which moves at
near-sonic speed. The thermopressor is a multifunctional contact heat exchanger when using this
air-cooling method. This provides efficient high-dispersion liquid spraying after isotherming in the
high-pressure compressor, increasing the pressure and decreasing the air temperature in front of the
high-pressure compressor, reducing the work on compression. Drops of water injected into the air
stream in the thermopressor can significantly affect its characteristics. An increase in the amount
of water increases the aerodynamic resistance of the droplets in the stream. Hence, the pressure
in the flow parts of the thermopressor can significantly decrease. Therefore, the study aims to
experimentally determine the optimal amount of water for water injection in the thermopressor while
ensuring a positive increase in the total pressure in the thermopressor under conditions of incomplete
evaporation. The experimental results of the low-consumption thermopressor (air consumption up to
0.52 kg/s) characteristics with incomplete liquid evaporation in the flowing part are presented. The
research found that the relative water amount to ensure incomplete evaporation in the thermopressor
flow part is from 4 to 10% (0.0175–0.0487 kg/s), without significant pressure loss due to the resistance
of the dispersed flow. The relative increase in airflow pressure is from 1.01 to 1.03 (5–10 kPa). Based
on experimental data, empirical equations were obtained for calculating the relative pressure increase
in the thermopressor with evaporation chamber diameters of up to 50 mm (relative flow path length
is from 3 to 10 and Mach number is from 0.3 to 0.8).

Keywords: thermopressor; gas turbine; thermos-gas-dynamic compression; water injection; cycling
air; energy efficiency

1. Introduction

Currently, the world’s leading industrial companies are developing new-generation
engines. Such engines should have low environmental penalties and high fuel efficiency.
A promising direction in achieving low environmental penalties is using new types of
fuels [1] and fuel emulsions [2].
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Greening of heat engines contradicts their energy efficiency because measures to re-
duce emissions require additional external energy costs. The peculiarities of the formation
of nitrogen oxides, NOx, require the need to reduce the maximum fuel combustion temper-
ature, but on the other hand, reducing this temperature reduces the fuel-energy efficiency
of the engine [3–5]. Therefore, it is urgent to develop environmentally friendly and energy-
efficient technologies that would ensure the reduction in emissions and, at the same time,
eliminate the negative impact on the fuel and energy efficiency of the engine [6,7].

The low fuel efficiency of power plants based on existing internal combustion engines
and gas turbines is due to the significant waste heat amounts, which exceed half the primary
fuel heat [8,9]. Waste heat utilization in most power plants is limited to using waste gas
heat for heat production in steam boilers, which is seasonal [10,11]. The high cost of
replacing existing power plants with modern steam and gas turbines is challenging [12,13].
In addition, the modern power plant’s efficiency depends on climatic conditions and
decreases significantly with increasing ambient temperature: every 10 ◦C increase in
air temperature at the engine’s inlet causes an increase in fuel consumption from 0.5 to
0.7% [14,15]. Therefore, the obvious way forward is using energy-saving technologies to
ensure low-potential waste heat utilization [16,17] and compensate for the rising ambient
air temperature’s negative impact on the power plant’s fuel efficiency [18,19].

One of the effective ways to improve modern gas turbine energy efficiency is to use
intercooling cycle air [20,21]. Such cooling is carried out between low- and high-pressure
compressors [22,23]. Intercooling can be carried out using two methods [24,25]: a surface
cooler (plate or tubular-plate heat exchanger) or contact cooling due to injected water
evaporation. The use of surface heat exchangers is accompanied by significant aerodynamic
losses [26,27]. It is simpler and more effective to use water injection into the high-pressure
compressor air part [28,29]. Special high-pressure nozzles are most commonly used for
water injection, but many problems exist, in particular the drops’ separation of injected
water on the blades and the compressor housing [30]. Therefore, modern injection methods
and preparation of the dispersed flow should provide an average droplet diameter of less
than 20 to 25 µm [31].

One of the promising directions is the use of a thermopressor for cooling cycle
air [29,32]. The thermopressor implements a thermo-gas-dynamic compression effect to
increase the pressure during cooling in the high-dispersed liquid evaporation process,
which is injected into the transonic gas flow [33].

It is necessary to use incomplete water evaporation in the thermopressor flowing part
for the preparation of highly dispersed and homogeneous spraying of water [34]. When
providing effective highly dispersed liquid sprays with less than 20–25 µm droplet size,
there is more efficient compression process isotherming in the high-pressure compressor.
Compensation for aerodynamic losses in the compressor air path and reducing the work
on compression in the compressor stages is provided by increasing the pressure in the ther-
mopressor while increasing the working fluid consumption and, consequently, increasing
efficiency with decreasing specific fuel consumption [35].

However, the efficient technology-based development of the thermopressor is con-
strained by sufficient data from experimental tests as a cooling system part.

2. Literature Review

The main goal of developing water injection technologies in the compressor is to
reduce air compression work [36,37]. In this case, the changing character and the influence
of climatic and hydrometeorological conditions should be considered [38,39]. One of
the first developments in this area is the Brown Boveri water injection system for gas
turbine plants (1968) [40]. An exciting direction is water injection after the gas turbine
compressor stage, effectively implemented in systems such as the Humidified Advanced
Turbine or Humidified Air Turbine (HAT) [28]. Further developments of technologies for
water injection were based on multi-stage air compression and gas expansion—Cascaded
Humidified Advanced Turbine (CHAT) [41].
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For an experimental two-shaft gas turbine plant AGTJ-100A, experimental studies of
the contact intercooling characteristics were carried out (Japan, 1984). The relative humidity
in the wind was 90% after evaporative cooling.

A promising two-stage compression technology with contact intercooling of cycling
air (SPRINT) was developed by General Electric (Boston, MA, USA). Developments in this
field began long ago. General Electric successfully uses the patented SPRINT technology,
which provides intercooling of the working fluid by injecting dispersed water between
compressors of the low- and high-pressure gas turbine LM6000 PC, one of the most popular
conversion gas turbines in the range from 40 to 50 MW [42]. SPRINT technology makes
it possible to increase the total gas turbine plant capacity by 8%. At the same time, the
effective efficiency was 32% at an inlet air temperature of 32 ◦C [43]. To improve the capacity
produced for hot summer days, Hitachi Ltd. (Ibaraki, Japan) developed a special water
injection system for the compressor flow part (“Water Atomization Cooling”). The WAC
system increases the gas turbine engine capacity by cooling the compressor air from 5 to
10%. Other advantages include reducing the exhaust gases’ nitrogen oxide concentrations
and cleaning the compressor blade’s surface. The water amount supplied does not exceed
1% of the working fluid mass flow rate through the compressor.

In real conditions, effective intercooling achievement is associated with the need
to solve a number of engineering problems due to the presence of the negative factors
associated with the water injection into the compressor air duct [44]:

(1) Providing highly dispersed and homogeneous injected water sprays [37,45].
(2) Injected water drop separation on the blades and the compressor casing and related

possible complications in its operation [46,47]. Due to insufficiently efficient spraying
of the injected water, already in the compressor’s first stages (according to the injection
area) there is an intensive drop separation on the working blades with the liquid layer
formation. Moving layers are torn from the edges of the blades, resulting in the
formation of so-called secondary drops, which are separated on the compressor
housing [48].

(3) Providing sufficient intensity of injected water evaporation and cooling the com-
pressed airflow [49]. Several times less moisture evaporates from the surface of the
droplets in the airflow (the evaporation share from the surface of the droplets is usu-
ally less than 20%) than from the liquid layer surface on the blades and compressor
housing [50].

(4) Mechanical losses due to the drop acceleration of the flow and rotating blades’ decel-
eration of the impellers drop by their repeated deposition and surface failure of the
blades and housing, as well as friction, liquid layer on the blades’ surface, and com-
pressor housing [22,51]. As a result, the stage’s internal efficiency and the compressor
are reduced [52].

(5) Blade surface protection from drop erosion when injected water collides with them [49,53].

An effective way to prevent the droplet’s separation on the blade’s surface is the
implementation of an injected liquid highly dispersed spray, in which the droplets can
move in the airflow to flow around the blades without colliding with them. During the
liquid droplets’ evaporation of dispersed flow, the heat transfer intensity increases with
a decrease in the average droplet diameter to 3 µm. This determines the compression
process efficiency. This requires the implemented injection technologies to provide a highly
dispersed spray of injected water in mist form [54,55].

Another effective spraying method for a highly dispersed flow is using a liquid that is
superheated relative to the saturation temperature. At the same time, the spray efficiency
is ensured by the instantaneous evaporation process and, as a result, the liquid droplet’s
effective crushing [51,56].

Several leading modern companies (Bete Fog Nozzle (Greenfield, MA, USA), Spraying
Systems Co. (Wheaton, IL, USA), and Amfog Nozzle Technology (Scottsdale, AZ, USA))
have proposed their developments to solve the problem of efficient liquid spraying. Still,
the most interesting development belongs to Mee Industries Inc. (Irwindale, CA, USA).
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The proposed technology uses impact-type nozzles with a high-pressure water supply and
provides a dispersion of less than 30 µm, which increases the gas turbine efficiency by
2% [57,58].

Another relevant concept is the use of technologies based on TOPHAT (Alpha Power
Systems, Tampa, FL, USA). Its essence is to inject water superheated relative to the satu-
ration temperature at the compressor inlet through centrifugal nozzles. When this water
outflows the nozzle duct, its pressure drops sharply, and explosive boiling occurs in the
volume of the formed drops, which are crushed into smaller drops [59]. The efficiency
analysis and gas turbine-specific power show that the TOPHAT cycle has significantly
higher efficiency (57.4%) and specific power (430 kW/kg) compared to simple cycles. In
2001, this technology was first used at a power plant in the Netherlands and is currently
being implemented in many gas turbine energy systems [60].

The most intensive droplet evaporation process occurs directly in the sprayed water
fluent [36]. In particular, it is known that in the first second, a drop having an initial
diameter of 14 µm has time to decrease to a size less than 5 µm. In addition, in experimental
studies, it was found that if the droplet diameter does not exceed 10 µm, the centrifugal
energy effect on the droplet is nearly negligible, and the droplets move in the direction of
the airflow. The installed nozzles of the “wet compression” system form droplets with a
diameter not more than 20 to 25 µm at the inlet to the compressor [54,56].

The considered analysis of the technologies of cyclic air intercooling of gas turbines
proves the practicality of these systems and can be used for the increase in operational
characteristics and the reliability of gas turbine engine work.

Other researchers previously conducted studies of thermopressor characteristics under
incomplete evaporation conditions in the flow part. Still, they did not aim to use the
thermopressor to organize and prepare a highly dispersed stream. Such research has
shown that there are optimal values of the injected water amount to ensure the maximum
increase of pressure during incomplete evaporation. The experimental research results of
the thermopressor characteristics are shown in [34] and are presented in Figure 1. Data
are grouped relative to the relative water injected amount, gw, at different Ma numbers
and different initial temperatures. It can be seen that at the cost of gw > 15%, a decrease in
the total pressure increase is observed, and the largest increase in pressure corresponds to
when gw is 15 to 25% and εtp is 1.00 to 1.01.

Accordingly, we have formulated the following hypotheses:

(1) Cyclic air intercooling the gas turbine by a thermopressor provides an increase in
power by increasing the working fluid mass flow rate, increasing efficiency and reduc-
ing fuel consumption by reducing the compressed air temperature, and, consequently,
reducing the compression power cost.

(2) Intercooling of the gas turbine cycle air by a thermopressor provides increased power
due to more efficient liquid spraying in the thermopressor itself by providing incom-
plete droplet evaporation and reducing droplet diameter (dispersion) to less than
30 µm, consequently decreasing relative fuel consumption by reducing power con-
sumption in the compressor since the compression process is approximately isother-
mal.

(3) A thermopressor is a multifunctional device that implements three main functions:
air (gas) compression–compressor; air (gas) cooling–heat exchanger; and providing
an effective liquid (water) spray nozzle. This versatility allows, on the one hand, to
increase the power plant efficiency, reduce fuel consumption, and increase power by
reducing the cost of compressing the working fluid, therefore increasing the working
fluid consumption in the cycle.

These hypotheses determine the following research direction—ensuring efficient en-
ergy transformation using a thermopressor for evaporative intercooling cyclic air to increase
efficiency and reduce fuel consumption for the gas turbine.
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Figure 1. The pressure relative increase ratio εtp = P2/P1 in the flowing part on the water injected
relative amount gw: (a) Ma = 0.45; (b) Ma = 0.70; N—T1 = 700 K; �—T2 = 800 K; #—T3 = 920 K.

Design factors that affect energy consumption to overcome frictional forces and local
resistances in the flow part of the thermopressor (receiving chamber, evaporation chamber,
confuser, and diffuser) have a significant influence on the work processes in the thermo-
pressor. The gas velocity in the vaporization chamber of the thermopressor should be in
the range of 0.5–0.9 Ma to ensure a positive increase in pressure. However, at such speeds,
the hydrodynamic resistance of the flow part of the thermopressor increases significantly.

One of the ways to increase the efficiency of the thermopressor (relative pressure
increase) is to inject more liquid into the flow part than is necessary for evaporation. This
method ensures the availability of a dispersed flow regime along the entire length of the
thermopressor. At the same time, this will reduce pressure losses in the flow part due to
the presence of two-phase flow and related processes of aerodynamic resistance and heat
and mass transfer. However, the aerodynamic resistance of the liquid drops injected into
the airflow will also increase when the liquid is injected over the necessary amount.

Thus, it is necessary to specify the methodology for determining total aerodynamic
resistance to determine losses from aerodynamic resistance in thermopressors of low flow
rates (up to 1 kg/s). The definition of such dependencies will allow for determining
the optimal design characteristics of the thermopressor when the maximum value of the
pressure increase is reached.

At the same time, determining the relative and total pressure increase in the flow part
of the thermopressor, considering water injection by experiment, will make it possible to
specify the design methodology of the thermopressor as a part of power plants based on
gas turbines.
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3. Materials and Methods

The study of the thermopressor characteristics was carried out on a specially designed
experimental setup (Figure 2). The experimental unit was designed to model the thermo-
pressor for intercooling air of the gas turbine (the thermopressor module part consists of
the thermopressors set with a common water injection system).
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The developed experimental setup works as follows: the air was purified in a filter
(Caterpillar-4N-0015 CAT) and then compressed in an Atlas Copco HA 85-3 screw compres-
sor (0.6 MPa, 6 m3/h) and pumped to the thermopressor. Fog-type nozzles (Figure 3a) was
used to spray the liquid. The design of the thermopressor (Figure 3b) includes the following
parts: receiving (inlet) chamber (Figure 3c); liquid injection system (Figure 3d); confuser
(Figure 3e); evaporation chamber (Figure 3f); and diffuser (Figure 3g). All thermopressor
elements are variable, which made it possible to conduct investigations of thermopressors
with variable geometric characteristics.

The principle of operation of the experimental setup was as follows: after cleaning
the air filter, air followed the screw compressor (maximum discharge pressure is 0.6 MPa,
capacity is 6 m3/h), where it was compressed and pumped to the air receiver. After deep
cleaning in a three-section moisture–oil separator, the air was heated in a channel gas air
heater to a temperature of t1 = 50–180 ◦C. After preparation (approaching the parameters
of cyclic air: the initial pressure at the input to the receiving chamber of the thermopressor
P1 up to 0.32 MPa; the flow velocity in the evaporation chamber wair = 0.4–0.9 Ma), the air
followed to the experimental thermopressor. Water for injection was pumped up from a
distilled water supply tank and was supplied by a low-consumption high-pressure pump.

The error of the experimental results is determined by the error of measuring devices
and methodical and systematic errors. The measurement of a physical quantity is based on
the measurement method used, the measuring instrument, and the method of recording
the result.

The Student’s distribution was used to assess the accuracy of the measurement results,
which is recommended for a small number of observations, n ≤ 20, provided that the
error distribution of individual measurements follows the normal distribution. In the case
of applying the two-sample criterion for independent samples, the condition of variance
equality was also observed.

The methodological error was determined with consideration of thermal inertia. Math-
Lab and SigmaPlot software were used to estimate errors and obtain empirical dependences
of thermopressor characteristics. Measuring the temperature took into account heat dissi-
pation along the heat removal and thermal inertia.
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Air is heated to the set temperature by a heat exchanger (Figure 4). The heat source
is a gas burner set. Heat supply was carried out externally using a special thermal shield
to reduce environmental losses. To increase efficiency, the heat exchanger has an internal
fin located inside the device’s main part of the spiral. Finning is made of steel rods with a
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diameter of 8 mm. The heat exchanger capacity is Ga = 0.35–0.55 kg/s, while providing the
temperature at the inlet Ta1 = 10–40 ◦C and at the outlet Ta2 = 50–190 ◦C.
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internal ribbing.

The data collection of the experimental unit parameters was carried out with a mea-
surement interval τ = 1 s, and each parameter was covered by no less than 15 measurements.

The air temperature was measured by resistance temperature sensors, which were set
to measure the air temperature along the airflow:

(1) At the entrance in front of the air filter;
(2) After compressing the air in the compressor and cleaning from oil and moisture;
(3) After heating the air in the duct air heater at the entrance of the thermopressor;
(4) In the thermopressor evaporation chamber;
(5) At the thermopressor diffuser outlet (the discharge pipe).

To measure the injected water temperature into the thermopressor, submerged resis-
tance temperature sensors were installed in the distilled water supply tank.

The airflow pressure measurement was performed by pressure sensors of the model
A-10 (WIKA).

Pressure sensors were installed in front of the thermopressor inlet chamber to measure
the discharge pressure after the compressor, along the airflow of the apparatus flowing
parts, and at the thermopressor diffuser outlet.

The temperature and pressure measurement data were recorded by an 8-channel I8-TC
(for temperature sensors) and an I8-AT (for pressure sensors) by the company RegMik.
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Measuring instruments are designed to receive and convert sensor signals and display
them on the built-in digital indicator. Since the maximum temperature of the measuring
medium for sensors of this type was 80 ◦C, a radiator (cooler) was used to ensure correct
readings, which was installed together with a pressure sensor.

The rotameter for measuring the volumetric flow of homogeneous flows with a mea-
surement range of up to 25 m3/h and the permissible measurement error of ±4% were
used to measure airflow.

The measuring system automatically monitors the condition of the sensors and deter-
mines the measured temperature and pressure of the set measuring range. The measure-
ment data were also recorded in the measurement protocols and in readings graphs. This
created an appropriate database for data entry and processing.

The measuring system automatically monitors the condition of the sensors and deter-
mines the measured temperature and pressure in the set measurement range. The principle
of operation is as follows: the signal from the sensor with a current output makes a voltage
on a precision resistance dependent on the measured value of the object, which is fed to
a specialized controller through an instrumental amplifier. The source code is processed
by a specialized controller, which, in particular, calculates the temperature or pressure of
the object based on the entered transformation characteristic and then displays its values
on indicators.

The PY485/USB, RS485 communication interface converter is used, which converts
USB interface signals (compatible with USB 1.1 and USB 2.0) into RS-485/RS-422/V.11 inter-
face signals (EIA-485 and EIA-422A) to collect and transform information. Figure 5 shows
the connection diagram of the PI485/USB communication interface with a computer and
two eight-channel meters I8-TS (for resistance thermoconverters) and I8-AT (for measuring
pressure converters).
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scheme of the PI485/USB communication interface with a PC and eight-channel meters; (b) infor-
mation and measurement system: 1—PY485/USB communication interface; 2—PC with installed
software; 3—eight-channel temperature meter; 4—temperature sensors; 5—pressure sensors; 6—
eight-channel pressure meter; 7—thermal imager.

The received information from the measuring system was transmitted directly to
the PC and processed using the software SSD 3.5 of the company Regmik. The obtained
measurement data were also recorded in special measurement tables and data graphs. An
appropriate database was created for processing data results.

4. Results and Discussion

The use of incomplete evaporation to reduce pressure losses along the length of the
thermopressor’s working part can result in an opposite effect than the one intended, with
an increase in the diameter and drop number. An increase in the injected liquid amount
keeps increasing hydraulic resistance from liquid droplets and, as a result, decreases the
positive effect of the thermo-gas-dynamic compression effect. To investigate this process in
more detail, the effect of the relative water injected amount under different evaporation
chamber operating conditions (relative velocity Ma and mass flow rate Gw) was studied.

In the first stage, the influence of the relative increase in pressure εtp of the thermo-
pressor as a function of the velocity airflow Ma and mass water flow consumption Gw was
studied. The following input parameters were adopted for the study: the air temperature
was Ta1 = 155 ◦C; water consumption Gw = 0.0175, 0.0407, and 0.0487 kg/s; the water pres-
sure Pw was 7.5 to 8.0 MPa; and air consumption Ga was 0.32 to 0.52 kg/s. The evaporated
liquid amount was 15 to 70% of the total amount.

Experimental determinations of pressure losses in the flow part of the thermopres-
sor were carried out for several values of the mass flow of water (Figure 6). Pressure
losses for a thermopressor without liquid injection at inlet pressure P1 = 150–300 kPa
can reach ∆Ptp.r = 20–70 kPa (δtp.r = 10–27%). When injecting liquid Gw = 0.0175 kg/s
(2%), pressure losses decrease—∆Ptp.r = 20–55 kPa (δtp.r = 6–22%). However, with an
increase in the amount of injected liquid, pressure losses increase: at Gw = 0.0407 kg/s
(8%)—∆Ptp.r = 20–60 kPa (δtp.r = 7–24%) and at Gw = 0.0487 kg/s (12%)—∆Ptp.r = 20–65 kPa
(δtp.r = 9–26%). This confirms that with a gradual increase in the flow of liquid, the pressure
loss of the flow increases.

Further injection of water into the flow already leads to the opposite effect—hydraulic
losses due to the resistance of the drops dominated the positive effect of reducing pressure
losses in the dispersed flow, and as a result, pressure losses increase more than for a “dry”
thermopressor. Thus, it can be concluded that the optimal relative amount of water that
can be injected to ensure incomplete evaporation in the flow part of the thermopressor
with the maximum effect of reducing hydraulic pressure losses is gw < 10%. Therefore, it is
important to experimentally define the optimal range of relative water flow for injection in
the thermopressor.

Thermopressor parameter measurements at various relative velocities Ma of the
airflow showed that with increasing relative speed Ma from 0.28 to 0.95, the relative
increase in pressure increases. Thus, at Gw = 0.0175 kg/s, εtp increases from 0.97 to 1.04,
and pressure losses, ∆Ptp, are −10 to −8 kPa (a minus sign means that there is an increased
total pressure); at Gw = 0.0407 kg/s, the increase in εtp is from 0.88 to 1.01, and the pressure
loss, ∆Ptp, goes from 0 to 16 kPa. At Gw = 0.0487 kg/s, the increase in εtp is from 0.82
to 0.97, and the pressure loss ∆Ptp is from 16 to 28 kPa (Figure 7). The largest value of
εtp matches the nozzle with a flow rate of 0.0175 kg/s, and εtp is from 1.02 to 1.03. The
decreased relative increase value of the pressure with increasing water flow Gw is due to an
increase in the droplet number in the flow and, consequently, an increase in drag resistance
at the initial evaporation sector of the flowing part.



Energies 2023, 16, 20 11 of 19

Energies 2022, 15, x FOR PEER REVIEW 12 of 21 
 

 

in more detail, the effect of the relative water injected amount under different evaporation 
chamber operating conditions (relative velocity Ma and mass flow rate Gw) was studied. 

In the first stage, the influence of the relative increase in pressure εtp of the thermo-
pressor as a function of the velocity airflow Ma and mass water flow consumption Gw was 
studied. The following input parameters were adopted for the study: the air temperature 
was Ta1 = 155 °C; water consumption Gw = 0.0175, 0.0407, and 0.0487 kg/s; the water pres-
sure Pw was 7.5 to 8.0 MPa; and air consumption Ga was 0.32 to 0.52 kg/s. The evaporated 
liquid amount was 15 to 70% of the total amount. 

Experimental determinations of pressure losses in the flow part of the thermopressor 
were carried out for several values of the mass flow of water (Figure 6). Pressure losses 
for a thermopressor without liquid injection at inlet pressure P1 = 150–300 kPa can reach 
ΔPtp.r = 20–70 kPa (δtp.r = 10–27%). When injecting liquid Gw = 0.0175 kg/s (2%), pressure 
losses decrease—ΔPtp.r = 20–55 kPa (δtp.r = 6–22%). However, with an increase in the 
amount of injected liquid, pressure losses increase: at Gw = 0.0407 kg/s (8%)—ΔPtp.r = 20–
60 kPa (δtp.r = 7–24%) and at Gw = 0.0487 kg/s (12%)—ΔPtp.r = 20–65 kPa (δtp.r = 9–26%). This 
confirms that with a gradual increase in the flow of liquid, the pressure loss of the flow 
increases. 

  

(a) 

  
(b) 

Figure 6. Measurement experimental data of pressure losses (a) and relative pressure losses (b) in 
the flow part of the thermopressor depend on the relative velocity M in the evaporation chamber. 

Further injection of water into the flow already leads to the opposite effect—hydrau-
lic losses due to the resistance of the drops dominated the positive effect of reducing 

0

20

40

60

80

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Pr
es

su
re

 lo
ss

ΔP
tp

.r 
, (

kP
a)

Water consumption Gw:
Δ; . . . . . . . .− 0.0175 kg/s;
○; _ _ _ _ _ − 0.0407 kg/s;
●; __ __ __ − 0.0487 kg/s

Mach number Mа

5

10

15

20

25

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Re
la

tiv
e p

re
ss

ur
e l

os
sδ

tp
.r 

, (
%

)

Mach number Mа

Water consumption Gw:
Δ; . . . . . . . .− 0.0175 kg/s;
○; _ _ _ _ _ − 0.0407 kg/s;
●; __ __ __ − 0.0487 kg/s
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flow part of the thermopressor depend on the relative velocity M in the evaporation chamber.
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Figure 7. Experimental dependencies of the relative pressure increase εtp = P2/P1 in the thermopres-
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The liquid droplet’s initial velocity at the nozzle exit impacts the initial droplet resis-
tance in the flow and depends on the airflow velocity ratio. The closer the value (vw/va) is
to 1.0, the lower the initial resistance. In this study, the value equals the value (vw/va) > 0.3.

Analysis and comparison of the obtained experimental data show that at some Ma
numbers (the lower permissible limit of the thermo-gas-dynamic effect occurrence), the rel-
ative increase in the flow pressure in the thermopressor is completely levelled by hydraulic
losses of the flow path. This phenomenon is observed at Gw = 0.0175 kg/s (Ma = 0.28);
Gw = 0.0407 kg/s (Ma = 0.32); and Gw = 0.0487 kg/s (Ma = 0.38).

It was also found that the relative temperature (T1/T2) is from 1.36 to 1.41 (Figure 8),
and the cooling air temperature at the thermopressor outlet is from 301 to 307 K (i.e., 28 to
34 ◦C). The cooling process is determined by the temperature of the wet bulb thermometer,
and the relative humidity j is 100%.
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(b) on the relative velocity of the evaporation chamber Ma at Gw is 0.0175 kg/s.

Data analysis of Figure 7 by the approximation method makes it possible to propose
several empirical relations. It describes the dependence of the thermopressor relative
pressure increase εtp on two parameters: the relative velocity in the working chamber Ma
and the water injected total flow rate Gw (Table 1). Table 1 shows that the largest regression
coefficient corresponds to the paraboloid equation—R = 0.9832 (R2 = 0.9667). Thus, the
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empirical equation for determining the relative pressure increase εtp can be represented
as follows:

εtp = 0.7985 + 0.3159Ma + 9.7491Gw − 0.1479Ma2 − 209.01Gw
2 (1)

Table 1. Approximation functions and their coefficients for Figure 7.

Equation Coefficient
R R2

y0 x0 a b c d

Plane:
z = x0 + ax + by 1.0101 – 0.1745 −3.8608 – – 0.9255 0.8566

Paraboloid:
z = y0 + ax + by + cx2 + dy2 0.7985 – 0.3159 9.7491 −0.1479 −209.01 0.9832 0.9667

Gaussian:
z = ae−0.5[( x−x0

b )
2
+(

y−y0
c )

2
] 0.0237 1.0174 1.0859 1.7044 0.0465 – 0.9820 0.9533

Lorentzian:
z = a[

1+
(

x−x0
b

)2
]
×
[

1+
(

y−y0
c

)2
] 0.0240 0.9934 1.0880 2.2880 0.0611 – 0.9820 0.9641

The second stage in this study is outlined as follows: the relative flow rate in the ther-
mopressor evaporation chamber Ma was fixed, and the variation in the relative pressure in-
crease εtp from the relative amount of injected water gw was determined (Figures 9 and 10).
It can be seen that at Ma = 0.37 in the area of gw being 4 to 8%, the relative increase in
pressure decreases slightly, and εtp is 1.00 to 1.03. At values gw > 8%, the pressure loss
∆Ptp decreases sharply (up to 16 kPa). The same can be seen for Ma = 0.53, wherein in
the area gw = 5–9%, the relative increase in pressure decreases slightly and εtp = 0.97–1.03.
However, at values gw > 9%, the pressure losses decrease sharply (∆Ptp = 5–26 kPa), and
for Ma = 0.82 in the area gw = 6–10%, the relative increase in pressure decreases slightly
and is εtp = 0.92–0.96. Values gw > 10% decrease Ptp = 14–27 kPa sharply. From this, we
can conclude that the water injection’s positive effect for the required amount of excess for
evaporation will be only in the area gw = 4–10%, and a further increase in gw will result
in a decrease in εtp. Moreover, increasing the relative velocity in the evaporation chamber
changes the limit value of gw to a smaller value and can reach gw = 6–8%.

The total thermopressor outlet pressure increase will be small for εtp = 1.01–1.03
(1–3%). However, this makes it possible to ensure effective liquid high-dispersion sprays in
the airflow with simultaneous cooling.

The Student’s distribution method was used to determine relative pressure measure-
ment errors. In this case, the error deviations δtp ranged from ±1.81% to ±4.00%. The ob-
tained measurement accuracy determines the reliability of the obtained experimental data.

Due to the increased pressure etp when excess water is injected in the working chamber,
gw can be presented as a two-variable function (Figure 11). Analysis of these data points by
the approximation method makes it possible to obtain empirical equations for determining
etp (Table 2). The regression coefficients for the selected functions are approximately the
same. The paraboloid function is chosen for simplicity and corresponds to the changes
observed in the experimental curves in Figure 11. It is worth noting that the regression
coefficients for the selected functions are approximately the same. The paraboloid function
is chosen for simplicity and corresponds to the changes observed in the experimental curves
in Figure 11.
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Figure 9. Experimental dependencies of the increase pressure εtp = P2/P1 (a) and the pressure loss in
the thermopressor Ptp = P1 − P2 on the water injected relative amount into the thermopressor flow
part gw (b): N—Ma = 0.37; •—Ma = 0.43; #—Ma = 0.53; ∆—Ma = 0.74.
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the water injected relative amount gw.
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Figure 11. Design of an approximation surface for determining εtp = P2/P1 as function of the relative
velocity of the evaporation chamber Ma (Mach number) and water injected relative amount gw.

Table 2. Approximation functions and their coefficients for Figure 11.

Equation Coefficient
R R2

y0 x0 a b c d

Plane:
z = x0 + ax + by 1.0808 – 0.0048 −1.1982 – – 0.9299 0.8647

Paraboloid:
z = y0 + ax + by + cx2 + dy2 1.0664 – 0.0961 −1.3433 −0.0869 0.6821 0.9307 0.8663

Gaussian:
z = ae−0.5[( x−x0

b )
2
+(

y−y0
c )

2
] −3.0078 0.5553 6.7176 2.1882 1.5781 – 0.9312 0.8672

Lorentzian:
z = a[

1+
(

x−x0
b

)2
]
×
[

1+
(

y−y0
c

)2
] −0.6391 0.5568 1.8002 3.0152 0.7955 – 0.9313 0.8673

Accordingly, the obtained coefficients of the empirical equation function to determine
the relative pressure increase εtp:

εtp = 1.0664 + 0.0961Ma − 1.3433gw − 0.0869Ma2 + 0.6821gw
2 (2)

It should be noted that using empirical Equations (1) and (2) to determine the pressure
relative increase εtp makes it possible to clarify the calculation method of thermopressor
characteristics with incomplete evaporation of water in the working chamber. The initial
operating thermopressor conditions correspond to the contact intercooling systems for
cyclic air of heat engines. Empirical relations are applicable for a low-consumption thermo-
pressor with an air consumption Ga from 0.32 to 0.52 kg/s, a working chamber diameter
Dch from 25 to 50 mm, and a relative flow path length ltp from 3 to 10. At the same time,
the operating air temperature at the inlet Ta is at least 100 ◦C.
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5. Conclusions

1. The use of incomplete evaporation in a thermopressor to provide contact cooling
of the cycled air of gas turbines makes it possible to obtain a highly dispersed flow
before going into the high-pressure compressor.

2. It was determined that the increase in pressure due to the effect of thermo-gas-
dynamic compression depends on the influence of the aerodynamic resistance of the
dispersed flow droplets in the thermopressor evaporation chamber. Water injection
has a positive effect over the necessary amount for evaporation, but only in the area
gw = 4–10% (0.0175–0.0487 kg/s), and a further increase in gw will result in a decrease
in relative increase pressure εtp. Moreover, the increased relative velocity in the
evaporation chamber (up to Ma = 0.74) shifts the limit value of gw to a narrower range
of gw = 6–8%.

3. It has been experimentally shown that excessive liquid injection into the thermopressor
for air cooling makes it possible to increase the relative pressure in the thermopressor
to εtp = 1–3% (5–10 kPa). However, this makes it possible to ensure effective liquid
high-dispersion spraying in the airflow with simultaneous air cooling up to 301–307 K.

4. The highly dispersed flow thus acquired with the use of the thermopressor can be pre-
evaporated in the high-pressure compressor stage. This will allow the compression
process to operate closer to an isothermal process.

5. The maximum error value of the increased pressure in the thermopressor during mea-
surements, corresponding to the Student’s dispersion, does not exceed δtp = ±4.00%.

6. Based on experimental data, empirical equations are obtained for calculating the
relative pressure increase in the thermopressor for intercooling systems of power
plant engines’ cyclic air. The equation can calculate the thermopressor characteristics
under incomplete water evaporation (up to gw = 10%) in the flowing part.

7. The obtained data on the optimal amount of water for injection and empirical equa-
tions for determining the pressure increase in the thermopressor correspond to low-
consumption thermopressors with an airflow rate of up to 0.52 kg/s, evaporation
chamber diameters of up to 50 mm (relative flow path length ltp is from 3 to 10), and
a Mach number from 0.3 to 0.8.
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Nomenclature

CHAT Cascaded Humidified Advanced Turbine
GE General Electric
HAT Humidified Advanced Turbine or Humidified Air Turbine
WAC Water Atomization Cooling
Symbols and units
δw droplet diameter µm
Ga air mass flow kg/s
gw relative water amount %
Gw water injected mass flow kg/s
ltp relative flow path length
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Ma Mach number
P flow pressure Pa
Pw water pressure at the inlet to the nozzle MPa
Ta air temperature ◦C; K
∆Ptp flow pressure increases in the thermopressor Pa; %
T1/T2 relative temperature
εtp thermopressor degree of pressure increase
Subscripts
1 before
2 after
a air
tp thermopressor
w water
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