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ABSTRACT Docking is a safety-critical operation for autonomous surface vehicles and requires highly
accurate navigation signals. Since Global Navigation Satellite Systems (GNSS) can be unreliable and inac-
curate in urban environments, other sensors should be considered for increased redundancy and reliability.
To this end, we present a low-cost visual-inertial navigation system that we can use for automatic docking of
small vehicles. The proposed system produces state estimates of the vehicle, including position, velocity, and
attitude, based on raw image and inertial data. To simplify the navigation task, we use easily identifiable tags
as a reference on the dockside.When the vehicle approaches the dock, a visual fiducial system recognizes the
tags and estimates the relative pose between the camera onboard the vehicle and the tags at the dockside. The
camera-tag pose and inertial data are then fused using an error-state Kalman filter for robust state estimation
of the vehicle. For benchmarking, we use an unmanned surface vehicle equipped with a dual-antenna real-
time kinematic GNSS receiver for accurate positioning and heading. We show that the proposed method
performs well on regular and adverse weather data. Finally, we demonstrate that the proposed method
performs well in feedback control through field experiments and can supplement traditional navigation
systems for docking operations.

INDEX TERMS Autonomous docking, fiducial tags, unmanned surface vehicles, visual-inertial state
estimation.

I. INTRODUCTION
Lately, the maritime industry has embraced autonomy for
its cost-effectiveness and safety [1]. In the years to come,
autonomous vehicles are expected to advance and play
an important role in industries such as shipping, public
transportation, and remote surveillance that are currently
undergoing extensive digital transformations [2]. Neverthe-
less, several challenges remain before fully autonomous
vehicles are ready for the commercial market. In particu-
lar, autonomous vehicles must provide highly resilient nav-
igation systems to operate well at all times, including in
safety-critical operations. This is particularly important for
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widespread acceptance among authorities, classification soci-
eties, and the general public, thus advancing commercial
autonomy in the maritime sector [3].

The docking of a ship involves low-speed maneuvers in
constrained urban environments and requires high-precision
navigation signals to operate reliably. In this context, Det
Norske Veritas, an international ship classification company,
requires autonomous ships to obtain 0.1 m absolute position
accuracy with 95% probability for automatic docking oper-
ations [4]. Unfortunately, commercial GNSS outputs posi-
tioning errors in the orders of meters [5], and Differential
GNSS typically gives 1 m global accuracy [6]. Real-time
kinematic (RTK) GNSS can be used to calculate position
with centimeter-level accuracy. However, RTK GNSS is an
expensive solution. Moreover, RTK GNSS is limited by the
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radio range and is minimally tolerant to datalink dropouts [7].
This motivates the use of alternative sensors to supplement
the satellite-based navigation system.

Researchers are increasingly focusing on visual-based
localization systems because they are low-cost, more robust,
and more reliable than other sensor-based localization sys-
tems [5]. In this context, there are mainly two approaches
for estimating the camera pose: The first is based on natural
features [8], [9], [10], for example, key points and textures,
while the second is based on artificial landmarks [11], [12],
[13]. The first approach requires no intervention in the oper-
ating environment, thus proving to be a flexible choice when
exploring unknown environments. However, the performance
typically degrades in textureless environments or because of
motion blur. The second approach with artificial landmarks
does not suffer from these drawbacks and is therefore pre-
ferred if accuracy, robustness, and speed are essential. [14].
In robotic navigation, artificial tags such as the ARToolkit
[15], ARTags [16], ArUco [13], AprilTag [12], and AprilTag2
[17] are most frequently used to obtain accurate camera-tag
pose estimates. A key advantage of artificial tags is that the
estimated camera-tag pose coming from the visual fiducial
system does not drift. Landmark-based localization can there-
fore work as a full-fledged absolute positioning alternative to
GNSS if the target point is known in a global frame.

Unfortunately, the visual measurements can be inaccu-
rate or completely absent, for example, due to degraded
perception level or large camera-tag distance. Moreover,
visual-based localization systems require demanding image
processing, usually performed on an embedded device with
limited computational power. This typically leads to a lower
measurement frequency than required for USVs in closed-
loop control. We would therefore like to maintain an estimate
of the pose of the vehicle by integrating the acceleration, and
angular rate measurements, before the drift errors induced by
the inertial measurement unit (IMU) are corrected with new
visual measurements. High-rate IMUmeasurements and low-
rate camera measurements are usually fused using a Kalman
filter [18], similar to standard GNSS + inertial navigation
system (INS) solutions [19]. To capture the nonlinearities in
the process and measurement model, nonlinear formulations
of the Kalman filter, e.g., the Extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) [20], are often used.
While the UKF has advantages for highly nonlinear systems,
it is computationally expensive compared to the EKF [21].
Therefore, the EKF is considered to be the workhorse for
real-time state estimation applied to navigation systems. The
accuracy of the EKF is, however, highly dependent on how
well the nonlinearities of the models can be captured by lin-
earizations about operating points. For example, marine sur-
face vehicles may exhibit strong nonlinear behavior. As such,
local linearization of the states in the EKFwill not represent a
sufficiently accurate approximation, potentially causing filter
divergence. Therefore, the error-state Kalman filter (ESKF)
was developed to improve the linear approximation. By esti-
mating the error state instead of the true state, the ESKF

allows for better linearization, where higher-order products
become negligible since the error state tends to be linear [22].

For marine applications such as ship maneuvering, robust
estimation of the attitude is of high importance. For exam-
ple, a standard ESKF with attitude parametrized using Euler
angles is not preferred because of singular points. Instead,
the four-component quaternion, which has the lowest dimen-
sionality possible for a singularity-free attitude representa-
tion, is favored. However, it has one superfluous degree of
freedom. Thus we face the dilemma of using an attitude
representation that is either singular or redundant. To evade
this dilemma, we use the multiplicative extended Kalman
filter (MEKF) formulation: An error-state EKF where atti-
tude is parametrized using a four-dimensional unit quaternion
[23]. However, the unit quaternion error is parametrized using
a three-parameter attitude representation. This is beneficial
since the three-parameter representation avoids singularities
due to small attitude errors, and it represents the attitude with
a minimal number of degrees [24]. Additionally, MEKF can
handle biases in the sensors, which is important in attitude
estimation applications [25, p.471]. After estimating the error
state, it is injected into the nominal state, thus predicting the
true state using a four-dimensional unit quaternion. Finally,
a reset strategy is used in which the error-state vector is set
to zero to prevent the state estimates from growing to large
values for long-endurance applications [25, p.472].

To cope with the raised concerns, we extend the error-state
attitude filter, i.e., the MEKF, to a complete navigation solu-
tion, which also includes the translational motions (position,
linear velocity, specific force biases). As such, the proposed
filter is able to estimate the full state of the vehicle with
sufficient linearization properties and avoid gimbal lock situ-
ations due to a nonsingular attitude representation. By fus-
ing drift-free, visual measurements with high-quality iner-
tial data, we obtain robust and accurate state estimates in a
local area close to the dockside at a high frequency. Hence,
we contribute to the development of an independent, GNSS-
free navigation system to increase navigation accuracy and
redundancy in safety-critical maritime operations, which are
rarely demonstrated in practice. For experimental validation,
we use the Norwegian University of Science and Technology
(NTNU) Otter USV, shown in Fig. 1.

A. RELATED WORK
One of the fundamental challenges for fully autonomous
vehicle systems is to develop robust navigation systems that
precisely localize the vehicle in its environment. Concerning
vision-based localization systems, a lot of work has focused
on feature-based methods using VO or simultaneous local-
ization and mapping systems. While working well for certain
indoor robotic applications, the performance of these tech-
niques is usually poor in outdoor environments due to tex-
tureless areas (e.g., the sea surface) and challenging lighting
conditions [26]. In contrast, artificial tags have shown advan-
tages over feature-based methods due to accurate, robust, and
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FIGURE 1. Overview of the NTNU Otter unmanned surface vehicle.

drift-free localization updates [14]. Moreover, the docking
station is assumed to be fixed for surface vehicles. Hence,
only a few tags are necessary to aid the vehicle for each
dockside, which makes the solution cheap and practical.
As such, the following literature review describes the work
on vision-based navigation systems aided by landmarks, with
a particular focus on docking operations in outdoor maritime
environments.

The use of artificial tags in underwater operations has been
investigated bymany researchers lately because they function
in GNSS-denied environments. In this context, Myint et al.
[27] and Hsu et al. [28] developed vision-based docking
and recharging systems for autonomous underwater vehicles
using stereo vision. Both used a 3-D model-based matching
method combined with custom 3-D markers to estimate the
pose of the vehicle. Furthermore, Chen et al. [29] used a
collection of Apriltags to estimate the camera-tag pose of a
remotely operated vehicle (ROV) underwater before employ-
ing an EKF based on the camera-tag pose. The experimental
results were promising, bothwith andwithout physical distur-
bances, but the dock was limited to a small indoor pool envi-
ronment for the aforementioned work. Trslic et al. [30] tested
a vision-based docking system for work-class ROVs in the
North Atlantic Ocean. They combined monocular vision with
a customized light marker (i.e., light beacons) to estimate
the relative pose between the ROV and the docking station
fixed to the mother ship. Through field experiments, they
demonstrated that the vehicle was able to dock up to 8 m from
the dynamic docking station. They employed a monocular

camera with a single-tag configuration using a Perspective-
n-Point (PnP) solver with four image-point correspondences.
Unfortunately, such a configuration is prone to rotational
ambiguity when in weak-perspective conditions [31].

Although vision-based docking in environments above the
surface shares many commonalities with underwater envi-
ronments, they also pose different challenges. In particu-
lar, visual sight above the surface is sensitive to adsverse
weather such as rain and sunlight. To address the chal-
lenge of robust detection and pose estimation in outdoor
environments, Volden et al. [32] suggested a complemen-
tary modular approach by combining a learning-based object
detection model with traditional computer vision techniques
based on monocular and stereo vision. They showed that
the proposed vision-based docking system for USVs aided
by ArUco markers performed well in the harbor environ-
ment in sunny and cloudy weather, despite being negatively
affected by non-uniform light andwater reflections. However,
system performance under other adverse conditions was not
validated, and the proposed method was not implemented in
closed-loop control.

Also, the unmanned aerial vehicle (UAV) industry has
shown increased attention to vision-based localization aided
by artificial markers, especially for precision landing. For
example, Malyuta et al. [33] designed a UAV system assisted
by AprilTags for precise landing and automatic charging
and demonstrated a 4-hour long mission outdoors without
human intervention. Similar to our work, they use PnP with
multiple tags to extract a single pose measurement rather
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than computing individual tag poses for each tag. However,
instead of fusing visual and inertial data, they use a recursive
least square filter to estimate the camera-tag pose based on
visual data only. Further, Kayhani et al. [34] use a tag-based
visual-inertial localization method that fuses inertial data
with AprilTag measurements using an on-manifold EKF. The
method was tested onboard a UAV with promising results but
limited to indoor environments. Conceptually, Song et al. [35]
propose a similar solution. However, they simplify the design
of the inner codification of the tags to speed up the detection
frequency. Unfortunately, these tags have very simple geo-
metric complexity and are, therefore, likely to occur in natural
scenes and provoke false positives.

B. MAIN CONTRIBUTIONS
In this paper, we demonstrate how visual-inertial sensor
fusion aided by visual fiducial tags can be used to accurately
estimate the complete state of the vehicle during the terminal
docking phase. The novel contribution is the extension of
the error-state attitude filter, i.e., the MEKF, to a complete
navigation solution, which includes the translational motions
(position, linear velocity, specific force biases). In addition,
the paper also implements the error-state Kalman filter as
a feedback algorithm by using reset functionality, which is
necessary for long-endurance USV missions. We argue that
our study is unique, as we provide a complete description
of how USVs can dock based on a tag-based visual-inertial
sensor fusion scheme. For experimental validation, we pro-
vide a synchronized dataset, including regular and adverse
weather data, with visual and inertial data and highly accurate
RTK GNSS for benchmarking. The robustness and perfor-
mance of the proposed method are tested and evaluated in
normal and adverse weather conditions, followed by recom-
mendations on system capabilities and limitations. Results
show that the proposed method performs well in normal
conditions and conditions with degraded visibility due to
sunlight, darkness, fog, and rain. Moreover, we show that our
application-specific implementation of an ESKF performs
well in feedback control through field experiments. We have
made source code, data set, and instructions to run the algo-
rithms in the Robot Operating System (ROS) [36] available
in a public Github repository [37]. The core implementation
is based on the MEKF algorithm described in the Marine
Systems Simulator toolbox [38] but further interfaced and
adapted to the USV sensor suite. In summary, the following
are considered the main contributions of this study:
• Wederive and implement a complete navigation solution
aided by visual fiducial tags for robust estimation of the
state of the vehicle.

• We carefully describe the design of the tag sys-
tem and show that a multi-tag configuration with
pre-specified pose offsets is beneficial to avoid flip
ambiguity and achieve more robust and accurate tag
measurements.

• We experimentally validate the proposed visual-inertial
system in normal and adverse weather conditions

and use dual-antenna RTK GNSS to benchmark the
accuracy.

• We demonstrate that landmark-based navigation can be
used for high-precision docking of USVs in feedback
control through field experiments in the harbor.

C. OUTLINE
The paper is structured as follows. Section II introduces
the proposed visual-inertial system, including the visual tag
system, coordinate transformations, and the Kalman filter
design. In Section III, the experimental setup is described,
followed by a description of how the experiments were con-
ducted. Then, in Section IV, we present and discuss the
experimental results. Finally, we present the conclusion and
discuss relevant issues for future work in Section V.

II. TAG-BASED VISUAL-INERTIAL SENSOR FUSION
A. SYSTEM OVERVIEW
The proposed method consists of two main components: A
visual fiducial system to estimate the relative camera-tag pose
and a sensor fusion scheme to estimate the full state of the
vehicle, including position, velocity, and attitude. The visual
fiducial system is used to recognize and uniquely identify the
tags based on their inner coding, detect the four corners of
each tag and compute the camera-relative position and orien-
tation of the tags. The sensor fusion scheme utilizes an ESKF
to fuse IMU data with relative camera-tag poses coming from
the visual fiducial system, as seen in Fig. 2. The ESKF is also
implemented to receive GNSSmeasurements when landmark
updates are out of range. All coordinate systems necessary for
the sensor fusion scheme, including the camera, the tag, the
body, and the North-East-Down (NED) frame, are illustrated
from the top view in Fig. 3.

B. VISUAL FIDUCIAL SYSTEM
Fiducial markers are artificial landmarks of known size and
shape that feature a specific pattern that is used to identify
them. They can be used to establish a visual reference, thus
assisting in applications such as camera calibration, localiza-
tion, and mapping. In our work, we employ a ROS wrapper
[39] of AprilTag [12]: A black-and-white square fiducial
marker system. The visual fiducial system consists of three
main components: A detector, a coding system, and a pose
estimation algorithm.

1) DETECTOR, CODING SYSTEM AND POSE ESTIMATION
The detection process begins by searching for four-sided
regions, known as a quad. By intersecting the line segments
forming the quad, the detector obtains the four corners of the
tag. Subsequently, a digital coding system assigns a unique ID
to each tag based on its inner codification, also referred to as
the codeword. The available codewords are carefully selected
to be robust and error-correcting, allowing them to be used
for longer ranges and in conditions with degraded visibility.
We use 6 × 6 tag size for a balanced tradeoff between speed
and accuracy. Once the tag is detected and uniquely classified,
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FIGURE 2. Overview of the proposed tag-based visual-inertial navigation system and its interaction with the traditional guidance,
navigation, and control (GNC) system.

FIGURE 3. Overview of the coordinate systems onboard the vehicle and at the dockside.

the image is undistorted using radial and tangential distor-
tion coefficients before image-to-point correspondences are
extracted from the associated tag corners. These correspon-
dences, combined with the camera calibration matrix and the
physical size of the tag, are used by the PnP solver to estimate

the camera-tag pose. Note that the physical size of the tag
resolves the scale ambiguity and enables the reconstruction
of the absolute pose from single-view geometry. We refer to
Olson [12] for a more detailed description of the AprilTag
system.
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C. COORDINATE TRANSFORMATIONS
For strapdown INS, it is common to express the measure-
ments from the aiding sensors in the NED frame, with IMU
measurements in the body frame. As such, we transform the
measurements coming from the visual fiducial system and
GNSS to the NED frame. We also transform the INS esti-
mates from the NED frame to the global longitude-latitude
representation when they are used by other components in
the feedback loop. Since the IMU is located at the center
of the vehicle with orientation aligned with the body frame,
no lever-arm compensation is necessary to transform from the
IMU frame to the body frame.

1) CAMERA: TAG TO NED
Let T tag

cam be the transformation matrix containing the rotation
and translation of the camera in the tag frame, computed by
AprilTag. Furthermore, let T cam

b be the transformation matrix
that includes the fixed translation from the camera to the
center of the vehicle in the camera frame. Finally, let Tntag be
the transformation matrix that includes the rotation matrix to
rotate from the tag frame to the NED frame. For convenience,
the NED and the tag frame have identical origins located in
the middle of the reference tag, as seen in Fig. 3. By chain-
ing the transformations, we get

Tnb = TntagT
tag
camT cam

b

=

[
Rz′,−ψoffRx,π/2 03×1

0 1

] [
Rtag
cam t tagcam
0 1

] [
I3 tcamb
0 1

]
, (1)

where Rx,π/2 ∈ SO(3) rotates the x-axis of the tag frame
by π/2, and Rz′,−ψoff ∈ SO(3) rotates the z-axis of the
subsequent frame by−ψoff. The last rotation, Rz′,−ψoff , final-
izes the transformation to the NED frame and is shown in
Fig. 4. As such, both Tntag and T

cam
b are assumed to be known.

Further, T tag
cam can be reconstructed since AprilTag computes

the translation t tagcam directly, and the unit quaternion qtagcam can
be mapped to the rotation matrix Rtag

cam ∈ SO(3). Finally, the
attitude of the vehicle in the NED frame can be reconstructed
by extractingRnb ∈ SO(3) from (1) before transforming it into
the unit quaternion qnb. Also, the center position of the vehicle
in the NED frame is computed as

pnnb = Rnbp
b
nb, (2)

where pbnb is the relative position between the center of the
vehicle and the NED origin expressed in the body frame.

2) GNSS: WGS-84 TO NED
Since strapdown INS uses flat-Earth coordinates, we trans-
form the GNSS position of the vehicle from the World
Geodetic System 1984 (WGS-84) ellipsoid [40] to NED
coordinates. For convenience, the origin of the NED frame,
expressed in longitude-latitude coordinates (l0, µ0), corre-
sponds to themidpoint of the reference tag, as shown in Fig. 3.
Because of the static-world assumption, (l0, µ0) is assumed
to be known. Given (l0,µ0) and the radius of curvature in

FIGURE 4. The heading of the vehicle in the NED frame depends on the
angle of the vehicle relative to the axis pointing out of the tag (ψa) and
the fixed yaw offset between true north and the x-axis of the tag
frame (ψoff).

the meridian RM [41], the North-East position (xn, yn) can
be computed from (l,µ) by

xn =
1µ

atan2(1,RM )
(3)

yn =
1l

atan2(1, cos(µ0))
, (4)

where (1l,1µ) := (l − l0, µ − µ0). We neglect the height
since the vehicle operates in 2-D, i.e., on the surface of the
geoid.

3) INS: NED TO WGS-84
Since the guidance and control system uses the longitude-
latitude representation, we also need to transform the position
of the vehicle from flat-Earth coordinates to WGS-84. Given
the NED position (xn, yn) and the radius of curvature in the
meridian RM , the longitude-latitude error (1l,1µ) can be
described as

1l = ynatan2(l,RMcos(µ0)) (5)

1µ = xnatan2(l,RM ), (6)

where atan2(y,x) is the four-quadrant inverse tangent enclos-
ing the result to (−π, π]. Longitude and latitude can then be
computed as

l = ssa(l0 +1l) (7)

µ = ssa(l0 +1µ), (8)

where ssa(·) is the smallest signed angle confining the argu-
ment to the interval [−π, π).

D. THE ERROR-STATE KALMAN FILTER
The ESKF is an indirect filter technique in which the Kalman
filter is formulated as an error-state filter. The error state
δx includes position, velocity, attitude, and IMU bias errors.
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Since the IMU is strapped to the vehicle, the INS state xins is
based on the integration of strapdown navigation equations
describing the motion of the vehicle. These equations are
driven by IMU specific force and attitude rate sensor (ARS)
measurements. The IMU measurements are integrated to
obtain position and attitude, which results in drift due to
sensor biases, misalignments, and temperature variations
[25, p.476]. To compensate for the sensor biases, the filter is
implemented as a feedback filter where the error estimates
are used to update the INS estimates directly, as seen in
Fig. 5. In particular, a reset strategy is employed by setting
the error state to zero after each incoming aiding measure-
ment, i.e., from the camera or GNSS. As such, we ensure
thatOxins → x when the error-state estimate is fed back to
the strapdown navigation equations, thus preventing the INS
errors from accumulating.

1) ERROR-STATE DYNAMICS
The main idea of the MEKF is that the unit quaternion error

δqnb =
[
δη

δϵ

]
(9)

can be parametrized using a three-parameter attitude repre-
sentation where δη and δϵ are the real and imaginary compo-
nents of the unit quaternion error δqnb. We will use the Gibbs
vector ag = [g1, g2, g3]T scaled by a factor of two for the
mapping between the three-parameter attitude representation
and the unit quaternion error:

δag =
δϵ

δη
, δa := 2δag, δqnb =

1
√
4+ δaT δa

[
2
δa

]
.

(10)

By scaling the Gibbs vector by a factor of two, the Kalman
filter covariance estimates are given in radians squared,
equivalent to angular errors using a first-order approximation
[25, p.481]. With the three-parameter attitude error intro-
duced using the Gibbs vector representation, we define the
error state as

δx = [(δpnnb)
T , (δvnnb)

T , (δbbacc)
T , δaT , (δbbars)

T ]T , (11)

where δbbacc and δbbars denote the accelerometer and ARS
bias error, respectively. Note that the δa vector replaces
the unit quaternion error δqnb, thus reducing the number
of states. Further, the differential equations describing the
error-state dynamics must be linearized such that they fit
into the discrete-time system matrices. Hence, the result-
ing error-state dynamics are approximated by the following

first-order linear differential equations:

δṗnnb = δv
n
nb (12)

δv̇nnb ≈ −R(q̂ins)S(f
b
nb − b̂

b
acc)δa− R(q̂ins)(δb

b
acc + w

b
acc)

(13)

δḃ
b
acc = −

1
Tacc

δbbacc + w
b
b,acc (14)

δȧ ≈ −S(ωbnb − b̂
b
ars)δa− δb

b
ars − w

b
ars (15)

δḃ
b
ars = −

1
Tars

δbbars + w
b
b,ars, (16)

where f bnb is the specific force vector, and ω
b
nb is the angular

velocity vector, both expressed in the body frame. Further,
Tars and Tacc are time constants that ensure that the bias
errors go exponentially to zero during dead reckoning, and
the additive zero-mean Gaussian white noise terms wbacc,
wbars, w

b
b,acc, and w

b
b,ars, are used to model the measurement

and bias noise, respectively. Also note that q̂ins ≡ q̂nb. For
further details on the error-state dynamics, we refer to Fossen
[25, p.481-483].

2) KALMAN FILTER MEASUREMENTS
For positioning, GNSS is usually the primary sensor for
aiding of surface vehicles. We will, however, use the rela-
tive position between the tag and the camera, estimated by
AprilTag, if the landmark updates are accurate. By using the
chain of homogeneous transformations in (1), we express
the position of the vehicle in the NED frame. Furthermore,
the AprilTag framework does not provide velocity directly.
Hence, the error-measurement equations will include position
but not velocity measurements:

δyp = (pnnb + ϵp)− p̂
n
nb = δp

n
nb + ϵp, (17)

where ϵp is assumed to be Gaussian white measurement
noise.

In order to successfully estimate the unit quaternion for
attitude determination, a heading reference is needed to guar-
antee observability. Commercial ships usually combine the
gravity vector with a high-quality gyrocompass for this pur-
pose [25, p.484]. We will, however, replace the gyrocom-
pass with a camera, which computes the relative orientation
between the tag and the camera. We express the attitude of
the vehicle coming from AprilTag as the rotation between
body and NED using the homogeneous transformations in
(1). Regarding the gravity vector, we start by defining the
normalized specific force vector vb1 as

vb1 := −
f b

g(µ)
, (18)

where the WGS-84 ellipsoidal gravity formula [40] is used
to compute g(µ) based on latitude µ and f b is the unbiased
specific force vector expressed in the body frame. Then, the
estimated vector is v̂b1 = R

T (q̂nb)v
n
01, where v

n
01 = [0, 0, 1]T is

chosen as the gravity reference vector, pointing downwards

45694 VOLUME 11, 2023



Ø. Volden et al.: Development and Experimental Validation of Visual-Inertial Navigation

FIGURE 5. An overview of the error-state filter aided by drift-free camera and GNSS measurements. The filter receives
either GNSS or camera measurements, depending on the camera-tag range.

with respect to the NED frame, and RT (qnb) ∈ SO(3) repre-
sents the unit quaternion rotation matrix from the NED frame
to the body frame. The following error-measurement equa-
tion, describing the error gravity reference vector, is approx-
imated as

δv1 = (vb1 + ϵ1)− R
T (q̂nb)v

n
01 ≈ S(RT (q̂ins)v

n
01)δa+ ϵ1,

(19)

where ϵ1 is assumed to be Gaussian white measurement
noise. As described by Fossen [25, p.484], we can use the
scaled Gibbs vector a to express a nonsingular solution for
the heading measurement

ψ = h(a) = tan−1
(

2(a1a2 + 2a3)

4+ a21 − a
2
2 − a

2
3

)
, (20)

where a = [a1, a2, a3]T . By linearization about a= â, we get

δyψ = ψ − h(â) ≈
∂h(a)
∂a

T

a=â
δâ, (21)

where the gradient can be computed using the chain rule.
Note that the gradient used in the Kalman filter measurement
matrix can also be computed from the unit quaternion:

cψ (q̂ins) :=
δh(a)
δa

∣∣
δa=δâ. (22)

The error-measurement equations are summarized by (17),
(19) and (21). Following this order, the measurement vector
can be defined as

δy = [(δyp)
T , (δv1)T , δyψ ]T , (23)

where δyp denotes the measured position error, δv1 denotes
the error gravity reference vector, and δyψ is the measured
heading error. We refer to Fossen [25, p.483-486] for further
details regarding the error-measurement equations.

3) MATHEMATICAL MODELLING OF THE ERROR-STATE
FILTER
Given the differential equations describing the error state
as well as the error-measurement equations, we proceed
by presenting the mathematical models used for INS state
propagation. The INS estimates are obtained by integrat-
ing the strapdown navigation equations with high-rate IMU
measurements, i.e., specific force f bnb and angular velocity
ωbnb. We emphasize that the strapdown navigation equations
use the unit quaternion for attitude representation. It is only
the MEKF that employs the Gibbs vector. The INS state
also includes the estimated sensor biases b̂

b
ins,acc and b̂

b
ins,ars

for online bias compensation since accelerometer and ARS
biases will grow over time. Hence, it is necessary to estimate
them during operation, especially for long-endurance appli-
cations. This results in the following system of differential
equations describing the INS estimates

˙̂pnins = v̂nins (24)
˙̂vnins = R(q̂ins)f

b
ins + g

n (25)
˙̂bbins,acc = 0 (26)
˙̂qins = T (q̂ins)ω

b
ins (27)

˙̂bbins,ars = 0, (28)

where f bins := f bnb − b̂
b
ins,acc and ω

b
ins := ω

b
nb − b̂

b
ins,ars are the

bias-compensated IMU measurements. Further, T (q̂ins) is a
4× 4 quaternion transformation matrix from the body frame
to the NED frame since q̂ins ≡ q̂nb, and g

n
= [0, 0, g(µ)]T is

the WGS-84 ellipsoidal gravity vector.
A key point is that the INS estimates are corrected by

setting the estimated error-state vector to zero for each new
measurement coming from the aiding sensor. This is mathe-
matically equivalent to x̂ins← x̂ins+δx̂. Hence, the estimated
error state δx̂ is computed by the filter before it is injected
into the INS state x̂ins. Note that the unit quaternion q̂ins is
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rotated by the estimated unit quaternion error δq̂nb using the
Hamiltonian product, as shown in Algorithm 1. The error-
state dynamics (12)-(16) can be represented by a 15-states
model

δẋ = Aδx+ Ew := f (δx,u,w) (29)

δy = Cδx+ ϵ := h(δx,u)+ ϵ, (30)

where w = [(wbacc)
T , (wbb,acc)

T , (wbars)
T , (wbb,ars)

T ]T and u =
[(f bnb)

T , (ωbnb)
T , (gn)T ]T . After initialization, the nonlinear

error-state model (29) and (30) is linearized about δx[k] = 0
and δw[k] = 0 for each time step k using Euler’s inte-
gration method. Hence, we obtain the discretized error-state
model

δx[k+1] = Ad [k]δx[k]+ Ed [k]w[k] (31)

δy[k] = Cd [k]δx[k]+ ϵ[k] (32)

with discrete-time system matrices as in (33)–(35), shown at
the bottom of the page, where h is the IMU sampling time.
Finally, we discretize the INS estimates for the next time step
k + 1. We refer to Algorithm 1 for further details regarding
the implementation of the filter.

4) FILTER TUNING AND VALIDATION
The process and measurement noise covariance matrices,
Q and R, respectively, are the main tuning components for
the Kalman filter. The diagonal entries of Q, describing
the uncertainty of the IMU’s accelerometer and gyro and
their associated biases, can be determined from the random
walk and in-run stability in the IMU datasheet. Then, Q is
discretized using IMU sampling time h. The measurement
noise matrix R, incorporating the uncertainty of the mea-
surement variables, is usually tuned after Q is determined.

Fortunately, we have a synchronized experimental dataset
with dual-antenna RTK GNSS available. Hence, we can use
the RTK GNSS measurements as the true state for compar-
ison with the state estimates and evaluate the performance
using root mean square error (RMSE). By evaluating dif-
ferent values of the discretized measurement noise matrix
Rd , we can obtain a low RMSE value. Finally, we test Qd
and Rd on different experimental datasets to verify filter
consistency. For convenience, the INS state estimate x̂ins is
initialized using RTK GNSS position, velocity, and attitude
measurements. Finally, we initialize the initial covariance
matrix P̂

−
[0] with relatively low values on its diagonal

entries because the estimated state is initialized with accurate
measurements.

III. EXPERIMENTAL SETUP
The experimental setup consists of the NTNU Otter USV,
a land station, and visual fiducial tags. The land station
includes an RTK base station that transmits correction data to
the navigation system and a remote computer for the operator
to upload missions or control the USV directly. The land sta-
tion communicates with the NTNUOtter using point-to-point
radio communication. The visual fiducial tags are located
at the dock to aid the vehicle under the docking operation.
Fig. 6 shows an overview of the experimental scene, including
the land station, the tags, and the NTNU Otter in the harbor
environment.

A. THE NTNU OTTER
The NTNU Otter is an underactuated vehicle produced by
Maritime Robotics AS with two thrusters mounted at the
stern. The software and hardware design were developed

Ad [k] ≈ I15 + h
∂f (δx[k],u[k],w[k])

∂δx[k]

∣∣
δx[k]=0,δw[k]=0 ≈ I15

+ h


03×3 I3 03×3 03×3 03×3

03×3 03×3 −R(q̂ins[k]) −R(q̂ins[k])S(f
b
ins[k]) 03×3

03×3 03×3 −
1
Tacc

I3 03×3 03×3

03×3 03×3 03×3 S(ωbins[k]) −I3
03×3 03×3 03×3 03×3 −

1
Tars

I3

 (33)

Cd [k] ≈
∂h(δx[k],u[k])

∂δx[k]

∣∣
δx[k]=0

≈

 I3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 S(RT (q̂ins[k])v
n
01) 03×3

01×3 01×3 01×3 cTψ (q̂ins[k]) 01×3

 (34)

Ed [k] ≈ h
∂f (δx[k],u[k])

∂δw[k]

∣∣
δx[k]=0,δw[k]=0

≈ h


03×3 03×3 03×3 03×3

−R(q̂ins[k]) 03×3 03×3 03×3
03×3 I3 03×3 03×3
03×3 03×3 −I3 03×3
03×3 03×3 03×3 I3

 , (35)
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Algorithm 1 Error-State Kalman Filter With Attitude Estimation
Qd , Rd : Covariance matrices for the process and measurement noises
P̂
−
, P̂: A priori and posterior covariance matrices

K : Kalman gain
h: IMU sampling time
gn: WGS-84 ellipsoidal gravity vector as a function of latitude µ

δx̂[k] = [δp̂nnb[k]
T , δv̂nnb[k]

T , δb̂
b
acc[k]

T , δâ[k]T , δb̂
b
ars[k]

T ]T (Error state)

x̂ins[k] = [p̂nins[k]
T , v̂nins[k]

T , b̂
b
acc,ins[k]

T , q̂ins[k]
T , b̂

b
ars,ins[k]

T ]T (INS state)

Input: (h,µ,f bnb,ω
b
nb,y)

Output: x̂ins

1: x̂ins[0] = x0, P̂
−
[0] = P0, Qd ← hQ, Rd ← hR, gn← [0, 0, g(µ)]T (Initialization)

2:

3: for each new IMU message do
4: f bins[k]← f bnb[k]− b̂

b
acc,ins[k], ω

b
ins[k]← ωbnb[k]− b̂

b
ars,ins[k] (Bias compensation)

5: Ad ← I15 + hA+ 1
2 (hA)

2, Cd ← C, Ed ← hE (Discrete-time system matrices)
6: if new measurement then
7: K[k]← P̂

−
[k]CT

d [k](Cd [k]P̂
−
[k]CT

d [k]+ Rd [k])
−1 (Kalman gain)

8: δx̂[k]← K[k](y[k]− Cd [k]x̂ins[k]) (Estimation error)

9: δq̂nb[k]←
1√

4+δâ[k]T δâ[k]

[
2

δâ[k]

]
(2 × Gibbs vector)

10: P̂[k]← (I15 − K[k]Cd [k])P̂
−
[k](I15 − K[k]Cd [k])T + K[k]Rd [k]KT [k] (Corrector)

11:

12: // INS reset
13: p̂nins[k]← p̂nins[k]+ δp̂

n
nb[k]

14: v̂nins[k]← v̂nins[k]+ δv̂
n
nb[k]

15: b̂
b
acc,ins[k]← b̂

b
acc,ins[k]+ δb̂

b
acc[k]

16: b̂
b
ars,ins[k]← b̂

b
ars,ins[k]+ δb̂

b
ars[k]

17: q̂ins[k]← q̂ins[k]⊗ δq̂
n
nb[k] (Schur product)

18: q̂ins[k]← q̂ins[k]/||q̂ins[k]|| (Normalization)
19: else
20: P̂[k]← P̂

−
[k] (No aiding)

21: end if
22: P̂

−
[k + 1]← Ad [k]P̂[k]ATd [k]+ Ed [k]Qd [k]E

T
d [k] (Predictor)

23:

24: // INS propagation
25: p̂nins[k + 1]← p̂nins[k]+ hv̂

n
ins[k]

26: v̂nins[k + 1]← v̂nins[k]+ h(R
n
b(q̂ins[k])f

b
ins[k]+ g

n)
27: q̂ins[k + 1]← q̂ins[k]+ e

T nb (h(ω
b
ins[k]))q̂ins[k] (Exact discretization)

28: q̂ins[k + 1]← q̂ins[k + 1]/||q̂ins[k + 1]|| (Normalization)
29: end for

at the Department of Engineering Cybernetics, NTNU. The
upper part of Fig. 15 in the appendix shows a hardware
schematic of the NTNUOtter. Regarding in-vehicle software,
we use the Underwater Systems and Technology Labora-
tory (LSTS) toolchain [42] for guidance and control and ROS
for navigation. These middlewares run on individual com-
puters and communicate over Ethernet. The LSTS toolchain
consists of DUNE, the InterModule Communication (IMC)
protocol, and the Neptus Graphical User Interface (GUI).

We use DUNE for guidance and control and to interface
with the hardware devices, while we use the IMC protocol to
exchange data between individual DUNE tasks. The Neptus
GUI is used to interact with the vehicle by setting waypoints
or controlling it remotely. We use ROS to interface and fuse
sensor data, i.e., from GNSS, IMU, and camera, and output
the estimated state of the vehicle. Finally, we bridge the
estimated state from ROS to IMC such that DUNE can use
it in feedback control.
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FIGURE 6. Overview of the experimental scene showing the land station, the NTNU Otter unmanned surface vehicle (USV), and the visual
fiducial tags.

1) NAVIGATION SYSTEM
We use two types of navigation systems. The first navigation
system is a traditional satellite-based navigation system based
onGNSS and IMU. The second navigation system uses visual
and inertial data to estimate the state of the vehicle, given that
visual tags are visible to the camera view.

a: SATELLITE-BASED SENSOR CONFIGURATION
The NTNU Otter uses two independent satellite-based nav-
igation systems. The first navigation system includes two
U-blox F9P GNSS receivers [43] and an ADIS 16490 IMU
[44] with synchronized data acquisition through a SentiBoard
[45]. The first GNSS receiver configured as a ‘‘moving base’’
receives raw GNSS data from an antenna at the stern of
the USV and correction data from the RTK base. The sec-
ond GNSS receiver configured as a ‘‘rover’’ receives raw
GNSS data from an antenna at the bow of the USV and
correction data from the moving base. By using this dual-
antenna configuration, the rover obtains the heading of the
USV. The second navigation system, an SBG Ellipse 2D INS
[46], is aided by raw GNSS data from stern and bow antennas
and correction data from the RTK base. For our experiments,
we mainly used the SBG Ellipse 2D INS. However, we did
use the navigation data from the U-blox receivers as ground
truth in the last experiment for validation. Since both navi-
gation systems receive corrections from the same base with
centimeter accuracy, the navigation data produced are almost
identical. Both navigation systems express the heading of the
vehicle in the NED frame and the position of the vehicle in
global latitude-longitude coordinates.

b: VISUAL-INERTIAL SENSOR CONFIGURATION
The visual-inertial sensor suite consists of a ZED 2i stereo
camera [47] and an ADIS 16490 IMU. We use the stereo
camera with 2208 × 1242 pixel resolution (per camera) and
stream the image data in monochrome pixel format at a
frequency of 15 Hz. The monochrome pixel format is chosen
to reduce bandwidth and processing while maintaining high
image resolution, thus increasing the pose accuracy. The cam-
era also includes built-in polarizing filters to reduce glare and
reflections for increased image quality outdoors. We empha-
size that only the left camera is used in the experiments
since we employ monocular pose estimation. The remaining
details of the camera are shown in uppermost part of Table 1.
The IMU is rigidly mounted to the center of the vehicle
and provides tri-axis angular rate measurements and tri-axis
accelerometer-based specific force measurements at a sample
rate of 250 Hz. However, the sample rate was downsampled
to 50 Hz for the experiments. The lowermost part of Table 1
shows the IMU specifications necessary to tune the process
noise covariance matrix Q.

2) GUIDANCE AND CONTROL SYSTEM
The guidance system consists of a path planner and an integral
line-of-sight (ILOS) guidance law [48]. The path planner
computes the desired path based on a set of waypoints (WPs)
and desired speeds from the operator. Then, the ILOS guid-
ance law computes the desired yaw based on the desired
path and the estimated state coming from the navigation
system. The control system includes a proportional head-
ing controller and a proportional-integral speed controller.
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TABLE 1. Sensor specifications.

It produces desired thrust based on the estimated state and
the desired speed and yaw from the guidance system to act
accordingly. The control system also allows manual control
signals to be transmitted from a PlayStation 4 (PS4) controller
connected to the remote control computer.

3) CLOCK SYNCHRONIZATION
To perform accurate sensor fusion, we use the Precision Time
Protocol (PTP) to synchronize the sensor readings across
the network of devices onboard the NTNU Otter. The hard-
ware clocks are synchronized with sub-microsecond preci-
sion using a primary-secondary setup with PTP. We config-
ure the Beaglebone Black computer [49] to be the primary
clock and the Nvidia Jetson Xavier computer [50] to be the
secondary clock. Then, the primary clock derives the time
from a GNSS receiver using the National Marine Electron-
ics Association ZDA message, as shown in Fig. 15 in the
appendix.

B. LAND STATION
The land station includes an RTK base station that sends
correction data to the navigation system and a remote control
laptop running a GUI to interact with the vehicle. We used
the remote control computer to upload predefined missions
to the guidance system or to control the USV directly using
a PS4 controller. The RTK base station includes a GNSS
antenna, a U-blox F9P GNSS receiver, and a BeagleBone
Black computer, as shown in the lower part of Fig. 15 in
the appendix. The RTK survey procedure lasted for 18 hours
before we conducted the experiments, resulting in an absolute
precision of 5.5 cm.

C. TAG CONFIGURATION
When more accurate and precise pose estimates are required,
a tag configuration consisting of multiple tags, commonly
referred to as a tag bundle, is useful. A tag bundle is used to
extract a single pose from multiple tags rather than the poses

of the individual tags. Hence, the pose estimation algorithm
uses 4×n tag corners, where n is the number of detected tags.
Our specific tag configuration uses three coplanar AprilTags
with fixed translations to each other, where the leftmost tag
in Fig. 7 is the primary tag. The origin of the tag coordi-
nate system is centered in the middle of the reference tag
with axes defined according to the tag coordinate system
in Fig. 3. We also specify the tag IDs of interest. As such,
the visual fiducial system only searches for the specified
tag IDs and reduces the number of false positives. The tags
also have a matt surface to reduce the amount of reflection.
Consequently, the visual fiducial system is more resistant to
challenging illumination. Table 2 summarizes the remaining
details of the tag bundle.

D. EXPERIMENTAL DESCRIPTION
We perform three experiments to demonstrate how
visual-inertial state estimation can be used for automatic
docking of USVs. In Experiment 1, we assess the pose
accuracy of the proposed method under a regular weather
scenario, as shown in Fig. 7. First, we compare the pose
accuracy of AprilTag with different marker configurations,
i.e., single-tag andmulti-tag, against ground truth RTKGNSS
heading and position. We then proceed with the multi-tag
configuration and use the subsequent camera-tag pose with
inertial data as input to the proposed filter, as shown in
the upper part of Fig. 2. Finally, the heading and position
produced by the filter are compared to ground truth RTK
GNSS measurements for benchmarking.

In Experiment 2, we evaluate the robustness and perfor-
mance of the proposed method in adverse weather. More
specifically, we distinguish between partly degraded visi-
bility and significantly degraded visibility and assess the
following type of adverse weather: Sunlight, darkness, fog,
and rain. Due to a notable reduction in performance under
significantly degraded weather conditions, we only assess
the proposed filter for partly degraded visibility scenarios,
as seen in Fig. 9. In Experiments 1 and 2, the proposed
filter is initialized with RTKGNSSmeasurements.We switch
to visual measurements when the absolute error in heading
and position between RTK GNSS and AprilTag is below
1 degree and 0.5 m, respectively. As such, we avoid sudden
jumps in sensor measurements and reduce the chance for
filter divergence.

In Experiment 3, we demonstrate how the proposed
method performs in feedback control through field experi-
ments in the harbor environment. Again, we use RTK GNSS
measurements as input to the filter and switch to visual mea-
surements when the error in heading and position between
RTK GNSS and AprilTag is lower than a certain threshold
over time. Moreover, we ensure that the estimated state used
directly by the vehicle does not deviate too much from the
RTK GNSS measurements. Because it is practically hard to
measure the tag location with centimeter accuracy in a global
frame and find the exact angle offset between the x-axis
of the tag and true north, we increase the margins. Hence,
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TABLE 2. Description of the tag configuration.

we allow the estimated state to deviate more from the true
heading and position of the vehicle. The experiment was
conducted using the desired path with desired speed set to
0.5 m/s between the initial vehicle position and the target
waypoint in front of the dock. We emphasize that Experi-
ments 1 and 2 are performed offline on a high-performance
laptop using experimental datasets, while Experiment 3 is
conducted online on embedded devices onboard theUSV. The
field trial was conducted in weather conditions comparable to
Experiment 1.

FIGURE 7. The vehicles’ camera view under the docking operation in
Experiment 1.

IV. EXPERIMENTAL RESULTS
We present the experimental results by plotting the USV posi-
tion and heading, estimated by AprilTag, RTK GNSS+ IMU
(SBG INS), and the ESKF for different docking scenarios.
The first two experiments express the vehicle position in a
local NED frame, centered around the reference tag, while
the last experiment expresses the vehicle position in geodetic
coordinates. The heading of the USV is expressed relative to
true north for all the experiments.

A. EXPERIMENT 1: SINGLE-TAG VS. MULTI-TAG
CONFIGURATION
The results from Experiment 1 are shown in Fig. 8.
Figs. 8a and 8b show the position and heading of the vehicle

under a dock-then-undock sequence, respectively, estimated
by AprilTag with single-tag and multi-tag configurations and
compared to ground truth RTK GNSS. As seen, the single-
tag configuration was particularly vulnerable to ambigui-
ties (i.e., mirrored solutions) when the Euclidean camera-tag
distance was more than 10 m. In contrast, the tag bundle
configuration showed more accurate pose results, except for
camera-tag distances above 30m. In particular, the tag bundle
configuration was more accurate and less noisy the closer
the vehicle got to the landmarks. Figs. 8c and 8d revisit the
same dock-then-undock scenario but estimate the position
and heading using the ESKF and compare it to AprilTag
with multiple tags and ground truth RTK GNSS. When the
absolute error in heading and position between RTK GNSS
and AprilTag is below 1 degree and 0.5 m, respectively, the
ESKF start to output position and heading estimates. This
happens at position (-12,-9.8) in the North-East frame, as seen
in Fig. 8c. The ESKF continues to estimate until the dock-
then-undock sequence is over, regardless of the absolute error
in heading and position. The estimates tend to stay close to
the true heading and position for the remaining part of the
docking sequence.

B. EXPERIMENT 2: ADVERSE WEATHER CONDITIONS
1) 2.1: SUNLIGHT
The results fromExperiment 2.1 is shown in Fig. 10. Figs. 10a
and 10b show the position and heading of the USV, esti-
mated by AprilTag and the ESKF, and compared to RTK
GNSS in partly degraded conditions influenced by sun-
light. As observed in Fig. 10a, the filter initially follows
the outliers produced by the AprilTag system, thus deviat-
ing from the true path by several meters. Then, the filter
converges to the true heading and position when the vehicle
gets closer to the dock. Figs. 10c and 10d show the posi-
tion and heading of the USV, estimated by AprilTag and
compared to RTK GNSS in a new scenario influenced by
significantly degraded conditions due to sunlight.We observe
that the AprilTag measurements deviate heavily from ground
truth position and heading and are even absent for a short
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FIGURE 8. The results from Experiment 1. (a)-(b) Estimated position and heading of the vehicle using AprilTag with single-tag and tag bundle
configurations. (c)-(d) Estimated position and heading of the vehicle using the error-state Kalman filter (ESKF).

period. Since the camera was not pointing towards the tags
in the last part of the docking sequence, we neglected the
associated ground truth measurements thereafter. A visual
representation of the scenes is shown in Figs. 9a and 9b,
respectively.

2) 2.2: DARKNESS
The results from Experiment 2.2 is shown in Figs. 11.
Figs. 11a and 11b show the position and heading of the USV,
estimated by AprilTag and the ESKF, and compared to RTK
GNSS in partly degraded conditions influenced by darkness.
We observe that the filter is performing well once below the
specified thresholds but produces increasingly noisy behavior
as the vehicle start to reverse. Figs. 11c and 11d show the
position and heading of the USV, estimated by AprilTag and

compared to RTK GNSS in a new scenario influenced by
significantly degraded conditions due to darkness. Notably,
the AprilTag system performs decently when close to the
dockside. Still, a non-negligible amount of the measure-
ments are outliers, potentially degrading the navigation per-
formance. A visual representation of the scene is shown in
Figs. 9c and 9d.

3) 2.3: FOG
The results fromExperiment 2.3 is shown in Fig. 12. Figs. 12a
and 12b show the position and heading of the USV, estimated
by AprilTag and the ESKF, and compared to RTK GNSS
in partly degraded conditions influenced by fog. Note that
we used a smoke machine to simulate foggy conditions.
Hence, the produced fog is more concentrated and not as
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FIGURE 9. Adverse weather dataset.

uniform as natural fog. As such, the camera was able to
penetrate the fog to some extent, which again caused the

visual fiducial system to recognize the markers and produce
accurate pose estimates. Consequently, the filter produced
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FIGURE 10. The results from Experiment 2.1. (a)-(b) Estimated position and heading of the vehicle using AprilTag and the error-state Kalman
filter (ESKF) under partly degraded conditions (sunlight). (c)-(d) Estimated position and heading of the vehicle using AprilTag under significantly
degraded conditions (sunlight).

accurate estimates throughout the entire dock-then-undock
sequence. Figs. 12c and 12d show the position and heading
of the USV, estimated by AprilTag and compared to RTK
GNSS in a new scenario influenced by significantly degraded
conditions due to fog. This time, it was less wind, resulting
in a more concentrated amount of fog around the harbor,
as seen in Fig. 9f. As a result, the visual fiducial system
was less resilient in recognizing the tags covered by thick
fog, resulting in downgraded performance by the AprilTag
system.

4) 2.4: RAIN
The results from Experiment 2.4 are shown in Fig. 13.
Figs. 13a and 13b show the position and heading of the USV,

estimated by AprilTag and the ESKF, and compared to RTK
GNSS in partly degraded conditions influenced by raindrops
that cover the camera lens. This resulted in a blurry and
slightly distorted camera view, as seen in Fig. 9g. The April-
Tag system, however, produced very accurate measurements.
Consequently, the filter also performed very well. Figs. 13c
and 13d show the position and heading of the USV, estimated
by AprilTag and compared to RTK GNSS in a new scenario
influenced by significantly degraded conditions due to heavy
raindrops occluding the camera view. This resulted in a heav-
ily distorted and blurry camera view, making the tags non-
recognizable, as seen in Fig. 9h. Remarkably, the AprilTag
system did not produce any measurements except for a few
measurements at the start and the end of the scenario.
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FIGURE 11. The results from Experiment 2.2. (a)-(b) Estimated position and heading of the vehicle using AprilTag and the error-state Kalman
filter (ESKF) under partly degraded conditions (darkness). (c)-(d) Estimated position and heading of the vehicle using AprilTag under significantly
degraded conditions (darkness).

C. EXPERIMENT 3: FIELD VERIFICATION
The results from Experiment 3 are shown in Fig. 14. Figs. 14a
and 14b show the estimated position and heading of the USV,
which is compared to RTK GNSS. The vehicle is heading
from its initial position (WP1) to the target position (WP2),
close to the reference tag. Initially, the filter use RTK GNSS
signals from the SBG INS for safe initialization. The filter
accepts the visual measurements if the estimated state and
AprilTag do not deviate more than 2 degrees and 1.5 m in
heading and position, respectively, compared to RTK GNSS.
Moreover, five consecutive measurements have to fulfill this
criterion before the vehicle switches navigation source. As a
result, the USV is aided by visual measurements when it is
less than 23 m from the reference tag. As seen in Fig. 14a, the

estimated position starts to oscillate immediately. Addition-
ally, the initial jump in position and heading put the vehicle
slightly off course relative to the desired path. However,
as the vehicle approaches the dock, the estimated position
gets closer to the GNSS position and is less oscillating. The
mission is succeeded when the vehicle is less than 2.5 m
from WP2.

D. DISCUSSION OF RESULTS
In Experiment 1, we found that a tag configuration con-
sisting of three coplanar AprilTags outperforms a single-
tag configuration. This was particularly revealing when the
vehicle was far from the dock, in which the tag is small
and low-resolution. In such situations, the projection of the
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FIGURE 12. The results from Experiment 2.3. (a)-(b) Estimated position and heading of the vehicle using AprilTag and the error-state Kalman
filter (ESKF) under partly degraded conditions (fog). (c)-(d) Estimated position and heading of the vehicle using AprilTag under significantly
degraded conditions (fog).

object is close to affine, thus leading to a flip ambiguity if
only one tag is used [31]. As a result, the PnP solver will
return the wrong solution approximately 50% of the time,
as seen in Figs. 8a and 8b. To overcome the flip ambiguity,
we use a set of three tags that all lie on the same plane.
Since we know the relative position and orientation offsets,
we can obtain more image-point correspondences directly to
extract a unique and robust solution from the PnP solver.
However, the set of tags must span a sufficiently large region
to prevent them from being flipped, thus producing two valid
solutions. Therefore, the tags are 0.412 m × 0.412 m large
and have a position offset of approximately 1 m to each
other. We emphasize that the tag bundle configuration may
suffer fromflip ambiguity whenmultiple tags are not detected
simultaneously in a single frame. This typically happens at

large camera-tag distances or in weak-perspective conditions.
Although the proposed tag configuration shows promising
results, there are several possibilities for improvements. For
example, non-coplanar markers can resolve the ambiguity
directly since the PnP problem no longer involves a planar
model. Furthermore, we can place the tags along multiple
axes, e.g., in a triangle in the x-y tag coordinate system,
to exploit other tag bundle geometries. Finally, it is possible to
design a recursive tag system, i.e., a small tag inside a larger
tag, to cover longer distances, as shown by Romero-Ramire
et al. [51].

In Experiment 2, we experienced that each type of adverse
weather poses different challenges. For example, the Electro-
Optical (EO) camera was sensitive to sunlight, although
supported by a circular polarizing filter to resist glare and
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FIGURE 13. The results from Experiment 2.4. (a)-(b) Estimated position and heading of the vehicle using AprilTag and the error-state Kalman
filter (ESKF) under partly degraded conditions (rain). (c)-(d) Estimated position and heading of the vehicle using AprilTag under significantly
degraded conditions (rain).

reflections. As a result, the visual scene was changed rapidly
and caused poor performance for short periods, as seen in
Figs. 10a and 10b. Contrary to sunlight, darkness does not
change the visual scene rapidly, and the performance is more
predictable for a given docking sequence. Nevertheless, both
types of visual degradation are challenging to deal with using
EO cameras because of limiting contrast ratios. High dynamic
range cameras are often applied to cope with such problems,
thus capturing more details in both low-light and bright con-
ditions. In complete darkness, infrared (IR) cameras can be
used to recognize the tags. If the tags emit uniform ther-
mal energy different from the temperature around, the tags
can be detected by heat signatures in the IR spectrum of
wavelengths. Moreover, thermal cameras in the mid-wave
or longwave infrared band can penetrate fog. IR cameras

are, however, expensive compared to proximity EO cameras.
Furthermore, they typically have lower resolution, e.g., 640×
512 resolution, which leads to low detection performance at
longer distances. Regarding the rainy situations, we noted
that the performance of the AprilTag system was drastically
reduced when heavy raindrops covered the camera lens.
We emphasize that these scenarios were provoked by phys-
ically touching the camera lens with wet fingertips, and rainy
weather during other experimental testing did not cause sim-
ilar degradation of the camera view. In addition, equipment
such as wipers and air blowers can remove the raindrops com-
pletely. As such, we consider low-light and bright conditions
more significant problems to face. In addition, fog could also
be a significant problem in geographical areas exposed to
that.
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FIGURE 14. The results from Experiment 3. (a)-(b) The estimated position and heading of the vehicle under the terminal docking phase,
i.e., from the initial position (WP1) to the target position (WP2). The visual-inertial navigation system is activated when the vehicle is
approximately 23 m from the reference marker. The true Global Navigation Satellite Systems (GNSS) position and heading from the
redundant navigation system are also plotted for comparison.

In Experiment 3, we demonstrated through field verifi-
cation that the proposed filter, based on visual tags and
inertial data, can be employed for automatic docking of a
USV in feedback control. We experienced that measuring the
tag location with centimeter accuracy in a global frame and
finding the exact angle offset between the x-axis of the tag
and true north was practically hard. As a result, we increased
the margins to allow the estimated state to deviate more from
the true heading and position of the vehicle. Not surprisingly,
this resulted in a jump, followed by oscillating estimates
of position and heading when switching from GNSS to the
camera, as seen in Fig. 14. Nevertheless, the Kalman filter
almost converged to the true state when it approached the

dock. That being said, we believe the switching strategy can
be improved, especially since we assume perfect GNSS mea-
surements using RTK, to which the camera measurements are
compared. Hence, if RTK is not available, giving less accurate
measurements, the switching criterion will no longer work.
To cope with situations where ground truth measurements
are not available, we can instead identify outliers among the
estimates by checking that the innovations of the filter are
consistent. Bymonitoring the innovations of the filter, i.e., the
difference between the measurement and its prediction, the
consistency check assesses whether themeasured innovations
follow their expected statistical properties, such as zero mean
and autocorrelation.
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FIGURE 15. Hardware schematic of the NTNU Otter unmanned surface vehicle and the land station.

V. CONCLUSION
Researchers and classification societies have raised concerns
regarding the need for an independent, GNSS-free navigation
system to improve accuracy and redundancy in the terminal
docking phase for maritime vehicles. To this end, we demon-
strate how a visual-inertial navigation system aided by fidu-
cial tags can be used for high-precision docking of USVs in

this paper. Concerning the tag system design, we found the
multi-tag configuration to outperform the single-tag configu-
ration in terms of positioning and heading accuracy. However,
the multi-tag configuration may still suffer from flip ambigu-
ity if the camera-tag distance is high or if the visual environ-
ment is degraded due to adverse weather or motion blur. As a
result, we only recommend using the tag measurements from
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the multi-tag configuration if two or more tags are detected
simultaneously in a single frame. In adverse weather leading
to partly degraded visibility, we found the visual fiducial
system to perform satisfactorily in terms of positioning and
heading accuracy. However, the AprilTag system performed
muchworse when the visual sight was significantly degraded.
Hence, if EO cameras are used, we only suggest employing
the proposed system for automatic docking under normal
weather conditions or in partly degraded conditions compa-
rable to the scenarios in Experiment 2. Through field verifi-
cation, we also experienced that the conversion between local
NED coordinates and global WGS-84 coordinates, either to
express the tag measurements in global latitude-longitude
coordinates or to express GNSS measurements in NED coor-
dinates, can be problematic. For example, the AprilTag mea-
surements were subject to an offset when transformed to
global coordinates for feedback control purposes. Similarly,
the GNSS measurements were slightly inaccurate compared
to the AprilTag measurements when transformed to NED
coordinates, thus affecting the switching strategy negatively.
As such, we recommend measuring the reference tag and
the associated angle offset accurately to minimize the errors
induced by the coordinate transformations.

In this work, we have described how the proposed
visual-inertial navigation system can be used for automatic
docking, given that a predetermined path exists with the
camera pointing towards the landmarks. However, the camera
will no longer obtain navigation information if the landmarks
are outside the camera’s field of view (FOV). In future work,
we plan to overcome this limitation by implementing path
planning algorithms and guidance control laws that allow the
vehicle to preserve landmarks inside the FOV while at the
same time converging to the desired path, similar to Sans-
Muntandas et al. [52]. We also plan to adaptively incorporate
uncertainties from the landmark observations in the measure-
ment model rather than assuming the same amount of additive
gaussian noise for all aiding measurements, i.e., from GNSS
and the camera. Finally, we plan to exploit new tag bundle
geometries to improve the performance of the tag system and
complement the sensor suite with other sensing technologies
to enhance perception in adverse weather.

APPENDIX
See hardware schematic in Fig. 15.
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