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A B S T R A C T

As the complexity of microfluidic experiments and the associated image data volumes scale, traditional feature
extraction approaches begin to struggle at both detection and analysis pipeline throughput. Deep-neural
networks trained to detect certain objects are rapidly emerging as data gathering tools that can either match
or outperform the analysis capabilities of the conventional methods used in microfluidic emulsion science. We
demonstrate that two types of neural-networks, You Only Look Once (YOLOv3, YOLOv5) and Faster R-CNN,
can be trained on a dataset which comprises of droplets generated across several microfluidic experiments
and systems. The latitude of droplets used for training and validation, produce model weights which are
easily transitive to emulsion systems at large, while completely circumventing any necessity of manual feature
extraction. In flow cell experiments which comprised of greater than either 10,000 mono- or polydisperse
droplets, the models show excellent or superior statistical symmetry to classical implementations of the Hough
transform or widely utilized ImageJ plugins. In more complex chip architectures which simulate porous media,
the produced image data typically requires heavy pre-processing to extrapolate valid data, where the models
were able to handle raw input and produce size distributions with accuracy of ± 2 μm for intermediate
magnifications. This data harvesting fidelity is extended to foreign datasets not included in the training such as
micrograph observation of various emulsified systems. Implementing these neural networks as the sole feature
extraction tools in these microfluidic systems not only makes the data pipelining more efficient but opens the
door for live detection and development of autonomous microfluidic experimental platforms due to inference
times of greater than 100 frames per second.
. Introduction

Emulsions are kinetically-stabilized systems of certain liquids dis-
ersed in others. Their stability and destabilization mechanisms are a
rucial factor in a number of everyday products and industrial pro-
esses, such as food products, cosmetics, production of pharmaceuticals
nd wastewater treatment (Hiemenz & Rajagopalan, 1997). Destabi-
ization most commonly occurs through coalescence and gravity sep-
ration, however other physicochemical processes such as Ostwald
ipening or flocculation between droplets can also contribute to phase
eparation. Based on these stability processes, the continued research
egarding measurement techniques which probe these phenomena is
ital for ensuring development of the aforementioned systems and
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products. The physical tools which contribute to these techniques in-
clude microscopy, turbidity measurements, light scattering, rheology,
droplet manipulators, and more recently, microfluidics.

Within emulsion science, microfluidics is a new, but unsurprising
addition to the experimental toolbox. Droplet-based microfluidics is a
perfectly suited technique for studying emulsified systems due to its
ability to precisely tailor and manipulate droplet parameters (Anna,
2016). As far back as 2012, Bremond and Bibette (Bremond & Bibette,
2012) were able to identify microfluidics as a powerful tool for ap-
proaching emulsion science research (based on the steadily increasing
number of reports produced yearly). Importantly, it enables work to be
performed within a similar size scale common for industrially-produced
emulsions, but simultaneously reduces throughput volumes, thus signif-
icantly reducing waste produced during measurements. Furthermore,
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the inherent transparency of the microfluidic devices used in these
studies facilitates visual observation of these phenomena, often via
high-speed imaging. Therefore, classical image analysis has become a
tandem subdiscipline that accounts for much of the harvestable data in
these emulsified systems (Shang et al., 2017).

The inherent size of the flow channels in these microfluidic chips or
devices (<1 mm), coupled to the velocity and number of droplets within
an active system poses a challenge in regards to the technical specifica-
tions for visualization. Compared to steady-state microscopy, capturing
the generation, flow and behavior of hundreds or thousands of droplets
per second often requires a high-speed camera operating in unison with
the optics of a microscope. The definition which constitutes the baseline
requirement for ‘‘high-speed imaging’’ is often vague and depends on
the application, however in most cases it starts at the higher limit
for standard microscopy imaging, usually 50–100 frames per second
(fps). Most commercial high-speed cameras excel at recording greater
than 1000 fps (Versluis, 2013), and indeed we see that many reports
within droplet microfluidics record within hundreds to thousands of fps
(Glawdel et al., 2012; Kemna et al., 2012; van Dijke et al., 2010; Wang
et al., 2020). Consequently, each experiment which could be comprised
of a few seconds worth of video, results in thousands of frames that
require processing and analyzing. Commonly, this analysis is performed
via traditional software, plugins and scripts run on platforms such as
ImageJ or Matlab, and less frequently other highly-specific, proprietary
analysis programs provided by microscope and camera manufacturers.
Regardless of analysis approach, the most commonly extracted features
from these datasets are the number of objects or droplets, size (area,
diameter), shape (aspect ratio, circularity) and position. The basic ex-
tractable parameters of these droplets enable even further calculation of
system dynamics such as velocity or localized concentration of droplets.

Droplet feature extraction is enabled by implementation of stan-
dardized image processing techniques such as the Circle Hough Trans-
form for example (Illingworth & Kittler, 1987; Rizon et al., 2005;
Yuen et al., 1990). The digital image data produced by observation of
microfluidic droplets is usually ideal, as the droplet interface presents in
high contrast against the chip background and continuous phase fluid.
The large degree of control over experimental conditions enables the
production of high-quality image data where focus and lighting are
tuned so feature extraction is usually successful in providing highly
representative system data (Vo et al., 2017; Zantow et al., 2013). As
experimentalists begin to develop more complex microfluidic systems,
the image-analysis portion of the experimental pipeline begins to bot-
tleneck the process, similar to other disciplines which rely on feature
extraction (Minervini et al., 2015). Complex chip architectures usually
include either connections to external electrical components or on-
chip features which induce specific droplet transport mechanisms. The
addition of these chip features directly impede feature extraction in
software suites such as ImageJ or Matlab. As experimental complexity
scales, the image analysis portion of the pipeline not only increases
computational and analysis time, but also requires the experimentalist
to dedicate significant effort to data filtration and thresholding to
enable accurate feature extraction. This manual pre-processing impacts
the statistical robustness of emulsion or droplet data in more exotic
microfluidic systems. The impact of this necessitates the development
of new, smarter analysis methodologies that preserve statistical ro-
bustness, while limiting involvement in curation and treatment of raw
data.

In order to facilitate a break-away from traditional, yet bulky image
analysis pipelines, deep-learning methods have the potential to exca-
vate the entrenched nature of these problems via the intrinsic handling
and representation of raw data used in the slow, orthodox analysis.
This untreated data can be fed to a model, which learns the necessary
representations to tractably approach the task of classification or de-
tection in a well-defined system of objects. The representations of the
data are systematically passed through a series of modules, which per-
form transformations into subsequently more abstract representations
2

(Goodfellow et al., 2016; LeCun et al., 2015). Within this network of
abstract representation, complex functions emerge from these simple,
yet non-linear modules which serve the purpose of enabling feature
discrimination and suppression of irrelevant relationships in the decor-
related latent space (Dalal & Triggs, 2005; LeCun et al., 2015; Lienhart
& Maydt, 2002). By feeding an image to this network, the latent
space can begin to construct representations for the presence of certain
pixels which ultimately contribute the formation of a feature structure.
Subsequent abstraction can then take these suspected features and
arrange ensemble combinations which correspond to the target objects,
that are reconstructed through the generative portion of the network
(Goodfellow et al., 2016; LeCun et al., 2015).

Since the emergence of deep neural networks (DNNs), there have
been a number of machine- and deep-learning based tools developed
for image analysis based on microscopy data, especially in the context
of biological science. A prize application has been using these DNNs
for time-intensive tasks such as cell detection and counting or even
segmentation, and various model development has specifically tackled
this (Berg et al., 2019; Van Valen et al., 2016; Waithe et al., 2020). Of
these reports that used these DNNs for live cell imaging and eventual
single-cell segmentation (Van Valen et al., 2016), the authors claim
that this approach is not only more time efficient, but it also broke
ground in regards to utilizing computer vision to analyze previously
untenable co-culture experiments. Outside of singular instances where
models were developed for specific tasks, entire analysis pipelines
have been developed to handle end-to-end detection and analysis of
objects common in microscopy such as cells (Belevich et al., 2016;
Berg et al., 2019; Held et al., 2010; Luengo et al., 2017; Marée et al.,
2016; McQuin et al., 2018; Paintdakhi et al., 2016; Suleymanova et al.,
2018). For example, of these workflow packages, Suleymanova et al.
(Suleymanova et al., 2018) developed an open-source software (Find-
MyCells) built on implementing DNNs to accurately detect astrocytes
in immunohistological images. Once again, the common claim from
the authors is that by benchmarking specific DNNs against traditional
methods, there is an attainable outperformance by the former, where it
almost achieves superhuman detection and classification capabilities.

In this work we leverage two implementations of anchor-based
object detection CNNs, which are considered current state of the art
models, that both approach the generative portion of the data pipeline
differently. The original demonstrations of these two CNNs are: Faster
R-CNN (Ren et al., 2015) and YOLO (Redmon et al., 2016). Below, we
briefly discuss the models and show the generalized visualizations of
the architectures in Fig. 1.

Faster R-CNN is one of the current, penultimate innovations on a
series of CNNs (R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick,
2015)) which all approach the object detection problem via region
proposal. Generally with this approach, regions of interest (RoI) are
generated after a coarse scan of the input space followed by the com-
putation of feature maps which are eventually passed to the softmax
portion which proposes a classification for these RoIs. The Fast R-CNN
architecture builds on the previous model by not only proposing RoIs,
but generating a bounding box regressor in addition to the softmax class
probability. However, region proposal in these CNNs is an expensive
task which bottlenecks efficiency. Ren et al. (2015) then developed
Faster R-CNN, one of the models used in this work, which grafts an
additional region proposal network (RPN) to the backbone of the CNN
which shares the convolutional feature maps with the detection portion
of the model. This parallel RPN simultaneously communicates with the
traditional CNN backbone while sliding over the transformed convo-
lutional feature map which produces a low dimensional vector. This
is passed to the fully connected layers which handle the two-pronged
output of the box classification cls and the eventual transformation of
the box regression layer reg to bounding box coordinates. As the RPN
slides across the input space, each window has several proposals for
regions of interest which eventually become the bounding boxes for
the detected object, where the number of maximum proposals is k. The
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Fig. 1. Brief visual representations of the models used in this work. (A) Readapted graphical interpretation of the Faster R-CNN model. The first part of the model passes image
input through a series of convolutional feature mapping layers. The backbone has a parallel region proposal network (RPN) grafted onto it which employs a sliding window that
proposes regions of interest that are sent back into the pooling layer. The classification and bounding box regression loss proposals from the RPN are compounded to produce
refined object classification and bounding box position tensors. (B) Similarly reduced graphical interpretation of the YOLO architecture. Images are also passed to a series of
convolutional feature mapping layers before being passed to the fully connected (F.C.) layers. The unified inference output is a result of simultaneous performing of detection and
classification. For a more comprehensive exploration of the model architectures, we encourage referencing the original literature which first proposed these models.
resulting outputs are via the aforementioned reg and cls layers, where
the former has 4k outputs generating the coordinates of k bounding
boxes, and the latter handles 2k estimates of probability of object (obj)
or no object (noobj). The proposals are relative to the reference boxes,
called anchors, which are centered at each window, yielding 9 total
anchors at each window.

In contrast to interest region-based detection and classification, an
alternative architectural ‘‘reapproach’’ to the object detection prob-
lem is framing it as a purely regression task. Various prototypical
approaches (Erhan et al., 2014; Najibi et al., 2016; Pinheiro et al.,
2015; Szegedy et al., 2014, 2013; Yoo et al., 2015), which tried to
use this concept, attempted to address bottlenecks or speed issues with
competing frameworks such as Faster R-CNN, but ultimately were hin-
dered by limitations introduced in reducing the overall complexity of
the architecture. Redmon et al. developed a model which eliminates the
general repurposing of classifiers as detectors and handles the bounding
box regression and class probability in a single backbone where you
only look once (YOLO) at full image inputs (Redmon et al., 2016). The
single throughput architecture is composed of 24 convolutional layers
followed by 2 fully connected layers culminating in a 7 × 7 × 30 tensor
output of bounding box predictions. The reduction of complexity in
YOLO enables the direct prediction of bounding boxes and associated
class probabilities which in turn can take and train on full images
and perform the task in a unified manner. Task unification is achieved
by discretizing full images into parceled S × S grids which are then
subsequently responsible for identification of potential object centroids
within the corresponding grid cell. The bounding box predictions have
an associated confidence which is defined as a product of probability
Pr(Object) and IoU between the predicted box and the ground truth.

Biology and emulsion science naturally have overlap due to how
both fields have been exploiting the advantages of the ‘‘lab-on-chip’’
aspect of microfluidics. There has been some research involving the
integration of machine- and deep-learning methods into microflu-
idics which also investigate primarily cell imaging in flowing systems
(Gavoille et al., 2019). As opposed to pipelining steady state mi-
croscopy for cell imaging via a DNN, (Heo et al., 2017) used a model
which was able to classify flowing cells in real-time, opening the door
for other integrations of DNNs in other lab-on-chip applications, such
as flow properties. Hadikhani et al. (2019) were able to extend the ap-
plication of a DNN to beyond biological applications, to measure fluid
properties of droplets flowing in a microfluidic channel. They trained
the network to accurately identify flow rate and mixture concentrations
(water/isopropanol) of a dispersed phase based on the flow pattern
of droplets. This enables extending these concepts to further exploit
the efficiency of these DNN pipeline to generalized droplet detection
and many more applications. Lastly, Zhang et al. have recently utilized
3

Mask R-CNN architecture for detection of droplets in microchannels
(Zhang et al., 2022). They compared the obtained size distributions
with traditional methods and improved the overall analysis speed from
ca. one hour to 3 s per image. Their study, however, was limited to
only a single, relatively simple, channel structure. Based on these few,
but very recent reports, we posit that in the coming years machine-
and deep-learning will become a major area of focus for microfluidic
researchers due to the immense potential for developing smart analysis
and control pipelines that outperform traditional methods.

In this paper, we aim to demonstrate the viability of using various
DNNs as tools for analyzing droplet based microfluidic data in the con-
text of emulsion science. The detection of circular objects is a decades
old computer vision task, inherently tied to microscopic observation,
which has previously been universally approached by various imple-
mentations of the Hough transform or other computational solutions.
As microfluidic architectures become more complex, the detection task
also scales challenging traditional analysis methodologies by increasing
the amount of resources necessary to shepherd data from beginning to
end of pipeline. We show that the neural networks trained on custom
microfluidic droplet data are robust and capable of universally handling
the droplet detection task across various experimental systems and
produce data which either rivals or outperforms traditional approaches,
while significantly reducing user time involvement.

2. Methods

2.1. Microfluidic experiments

The data in this paper was obtained from analyzing a mix of mi-
crofluidic image data from previously published papers as well as newly
produced data to benchmark the models against traditional methods.
Therefore, the experimental methodologies used will only be discussed
briefly and the reader is kindly referred to our prior published work for
greater detail. The datasets for each specific type of analyzed phenom-
ena were from the following sources: flow cells (Dudek, Bertheussen
et al., 2018; Dudek, Chicault et al., 2020) and coalescence events
(Dudek, Fernandes et al., 2020). The analysis performed for droplet
generation, polydisperse flow cells, micrographs and porous media is
unpublished. It should be noted that the same data from experiments
(recordings) were analyzed by different methods. Therefore, all the
labels in tables and figures refer to specific image analysis method used
in the section, rather than different experiments.

For all microfluidic experiments with flow, the liquid flow rate
was controlled with low- and mid-pressure pumps (Cetoni GmbH).

The pumps were connected to a glass microfluidic chip, placed in a
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Table 1
Selected experimental details for various type of microfluidic measurements presented in this work.

Experiment Continuous phase Dispersed phase Frame rate [1/s] Magnific./px-μm
ratio

Fluid Flow rate [μl/min] Fluid Flow rate [μl/min]

Drop generation MQ water 50–250 Xylene with 0.1% wt. Span85 4 4000 10X/0.50
Flow cells (water) 3.5% wt. NaCl 160 Dodecane and crude oils 6–10 8500 10X/0.50
Flow cells (oil) Crude oil 80 3.5% wt. NaCl 5 4000 10X/0.50

Flow cells (polydisperse) 1% wt. NaCl +
450 ppm Tween20

15 1-Br-dodecane – 2000 15X/1.43

Porous media 1% wt. NaCl +
450 ppm Tween20

4 1-Br-dodecane – Single snapshots 10X/0.95

Coalescence events 3.5% wt. NaCl 160 Xylene with 0.1/1.0% wt. Span85 6 13 600 6X/0.30
c
p
e

P
t
u
o

microfluidic chip holder (all fabricated by Micronit Microtechnologies)
via PEEK or PFA tubing and FFKM ferrules.

All experiments were recorded with a high-speed camera (AX100
or WX100, Photron), connected to an inverted microscope (Ti/Ti2-U,
Nikon). The microscope is equiped with a motorized stage (OptiScan III,
Prior Scientific, UK) that is coupled to the camera via LabVIEW code.
Experiments involving micromodels (porous media) and micrographs
were imaged by obtaining a sequential continuous grid of images
using the motorized microscope stage. Some basic parameters of all
experiments are displayed in Table 1.

Emulsions for the micromodel experiments were generated using
a droplet generation chip comprising of a T-junction. A disperser was
also utilized for producing the emulsion for the polydisperse flow cell
experiment.

Two types of emulsions were used in the micrograph experiments:
two monodisperse emulsions generated on the chip and two
polydisperse emulsions prepared by means of the disperser. The
monodisperse emulsions had droplet size of 45 μm and 23 μm mag-
nification imaged at 10X (px-μm ratio = 0.95) and 15X (px-μm ratio
= 1.43) magnification respectively. The polydisperse emulsions were
referred to as coarse emulsion with mode droplet size of around 10 μm
(10X magnification, px-μm ratio = 0.95) and fine emulsion with mode
roplet size of around 2 μm (30X magnification, px-μm ratio = 2.85).
he used dispersed and continuous phases are the same as for the
xperiments with porous media.

.2. Reference image analysis

rop generation and flow cells. After importing to ImageJ, stacks of
mages were thresholded and converted to binary. In some cases, con-
rast and brightness had do be adjusted manually prior to thresholding.
ater, the drop sizes and positions were extracted with the ‘‘Analyze
articles’’ feature with a filter (size >10 μm and circularity >0.8). For
low cells, this data was then exported to Matlab, where a custom script
roduced size distributions and coalescence frequencies. This procedure
s described in greater detail elsewhere (Dudek, Bertheussen et al.,
018; Dudek, Muijlwijk et al., 2018).

oalescence events. Image sequences underwent a similar procedure
s described above, however with a lower circularity filter (>0.4). In
ddition to areas, shape descriptors (aspect ratio, circularity, round-
ess) were additionally extracted. These were used to calculate the
hape parameter, which allowed discrimination of standard, circular
roplets from the coalescing objects. The procedure is described in
reater detail in prior work (Dudek, Fernandes et al., 2020).

icrographs. First, the micrographs were denoised using ImageJ’s
on-local means denoising plugin (smoothing factor = 2, sigma = 15)
Buades et al., 2011). Afterwards, the images underwent a three-step
rocessing: (1) binarization by thresholding (dark background), (2)
pplication of the ‘‘Fill Holes’’ feature in ImageJ to fill background
ixels that are completely surrounded by foreground (droplet interface)

ixels and (3) separation of touching droplets using the ‘‘Watershed’’

4

feature in ImageJ. The ‘‘Analyze Particles’’ function was used to obtain
droplet number and sizes. The obtained data was processed and filtered
in Matlab. The following filters were applied: (1) roundness <0.85, (2)
ircularity <0.8, (3) aspect ratio >1.2, and (4) diameter <5 pixels for
olydispersed emulsions, and diameter <10 pixels for monodispersed
mulsion.

orous media. First, the images of the micromodel were binarized by
hresholding (white background). Afterwards, ‘‘Analyze particles’’ was
tilized to identify objects on the images, both droplets and pillars. The
btained data was filtered using a Matlab script: 38 <diameter <50

pixels for monodispersed; 15 <diameter <90 pixels for polydispersed.
This filtering step allowed removal of data points representing pillars
and satellite droplets from the dataset.

In cases when the Circular Hough Transform was used to detect
droplets (flow cells [inlet], micrographs, porous media) the Matlab-
native ‘‘imfindcircles’’ function was applied to the images using ‘‘Sen-
sitivity’’ = 0.7-0.75 and ‘‘EdgeThreshold’’ = 0.1. For the experiments
using micromodels the obtained data was filtered using Matlab script:
12 <diameter <50 pixels for monodispersed and 10 <diameter <85 pix-
els for polydispersed emulsions. Here, ‘‘EdgeThreshold’’ is a parameter
that sets the gradient magnitude for determining edge pixels. The lower
‘‘EdgeThreshold’’, the more circular objects with weak edges will be
detected. While ‘‘Sensitivity’’ is the main parameter which allows the
function to identify weakly and partially obscured circular objects as
circles. The higher the ‘‘Sensitivity’’, the more circular objects can be
detected, however, higher ‘‘Sensitivity’’ can potentially lead to a greater
number of false detections. The ‘‘EdgeThreshold’’ and ‘‘Sensitivity’’
values were identified empirically. The identified values are considered
to be optimal for the used lighting conditions.

In one section (Micrographs), NIS-Elements BR software was used
to extract droplet counts. Native functions (thresholding and object
count), as well as filtering through limiting size and circularity, were
used to extract the number of droplets in all images.

2.3. Neural network implementation

The CNNs described above are publicly available and three imple-
mentations were utilized in this work.

The Facebook AI Research group has maintained the repository
which has been restructured under the Detectron2 umbrella which
includes a model zoo for various CNNs including the Faster R-CNN
version used in this work along with subsequent instance segmen-
tation models such as Mask R-CNN (Wu et al., 2019). The entire
Github repository is available at https://github.com/facebookresearch/
detectron2. The specific version of Faster R-CNN implemented here
is the ‘‘Faster R-CNN X-101-32x8d-FPN-3x’’ and for initializing the
model, the pre-trained checkpoints for this same version were used to
train our custom weights. The additional training parameters for this
model were: ‘image\_batch\_size = 4’, ‘base\_learning\_rate of 0.001’,
‘warmup\_iterations = 1000’, ‘max\_iterations = 4000’, ‘solver\_steps =
(1000, 1500)’, ‘gamma = 0.05’. The header parameters were:

‘batch\_size\_per\_image = 64’ and ‘num\_classes = 2’.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
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Two latter versions of YOLO were used in this work compared to
the original Darknet implementation by Redmon et al. (2016) available
here: https://github.com/pjreddie/darknet/wiki/YOLO:-Real-Time-Obj
ect-Detection. For the later versions of YOLO used in this work, we
used YOLOv3 and YOLOv5 with more emphasis placed on the latter.
YOLOv3 was mainly trained and deployed to compare against YOLOv5
which claims some of the weaknesses described earlier regarding iden-
tification of small and grouped objects were significantly improved
upon. The YOLOv3 implementation was PyTorch based with training,
validation and test data structured for the Keras API on the Darknet
backbone (cloned and modified from: https://github.com/ultralytics/
yolov3). To produce a fine-tuned set of weights for our custom mi-
crofluidic droplet data set, similar to Faster R-CNN, we initialized the
model from pre-trained COCO weights available in the YOLOv3 repos-
itory. The following parameters were used to train YOLOv3: ‘epochs
= 500’, ‘batch\_size = 16’, ‘img\_size = [640, 640]’, ‘learning\_rate
= 0.001’, momentum = 0.95’, ‘decay = 0.001’ and ‘num\_classes =
2’. Number of classes across all datasets was 2, albeit the classes are
different across datasets.

Our approach to training YOLOv5 on the custom droplet dataset was
similar to YOLOv3, but the entire implementation, including dataset
structuring, was PyTorch based. Our model was cloned and modified
from the following repository: https://github.com/ultralytics/yolov5
(Glenn, 2020). The training was initialized with pre-trained COCO
weights available through the YOLOv5 repository and the configuration
file specified to be trained was specifically the YOLOv5s version of
the model. The training parameters used for YOLOv5 were as fol-
lows: ‘epochs = 1000’, ‘batch\_size = 16’, ‘image\_size = [416,416]’,
‘learning\_rate = 0.001’, momentum = 0.95’, ‘decay = 0.001’ and
‘num\_classes = 2’. The main difference with our training approach to
this newer version of YOLO is extending training to 1000 epochs due
to how quickly the model trains as well as reducing image input size
to 416 × 416 pixels. YOLOv5 is a significant achievement in terms of
detection and overall inference speeds, as reports of >100 fps inference
are common. We report equivalently quick per-frame inference (close
to 150 fps) below in the results of our experimental investigation. With
these types of inference rates, one can directly feed commensurate high-
speed camera capture to the model which then produces on-the-fly data
ready for analysis as the experiment is being performed.

2.4. Dataset construction

The final iteration of the generalized microfluidic droplet dataset
used as the training and validation set at the time of writing was
designed to represent a wide variety of droplets that could appear in
a given two-phase microfluidic system. While being generally broad in
terms of providing robust ground truth representations of droplets, we
specifically excluded certain experiments which were then probed in
our analysis where the droplet characteristics widely varied from the
training set to investigate the inference breadth of the models. In other
applied scenarios such as biological cell detection, the lighting condi-
tions often heavily impact the detection metrics of a model (Van Valen
et al., 2016; Waithe et al., 2020) and thus in terms of exposure we
tried to maintain lighting consistency across our training set. Fig. 2
shows examples of images which were annotated and compiled into
the training/validation/test set.

Shows an example of each type of image capture which was anno-
tated and used in the general training/validation set. (A) Inlet Throat,
(B) Porous Media, (C) Narrow Flow Cell (D) Monodisperse Flow Cell,
(E) Polydisperse Flow Cell. (F) Also shown is a frequency distribution
of droplets and a secondary ‘‘out\_of\_focus’’ droplet class in each of
the image types in the generalized dataset.

A visual representation of how we annotated droplets from each mi-
crofluidic data subset is shown in Fig. 2. Unlike other computer vision
applications whose datasets may include greater than 50 classes (Lin

et al., 2014) for applications such as self-driving vehicles, our general

5

dataset is strictly limited to droplets and the occasional appearance of
an out-of-focus droplet in chips with larger channel depths. We perform
the microfluidic experiments with tight control of the fluids being
injected into the chips and thus we are mainly interested in droplets
and thus the logic was to train the models to detect various varieties
of this object. Out of focus droplets are not accurate representations of
the valid droplets in our experiments, but usually present in visually
similar ways and thus it was easy to include this as a separate class
in our dataset to minimize the chance of the models falsely detecting
inaccurate samples.

In the general dataset shown in Fig. 2, the biggest focus was to
robustly represent the flow cell as it is the most common microfluidic
tool to study various emulsified systems. In addition, we chose to
represent a more complex detection task in the form of a porous media
micromodel and the inlet throat. The chip architecture is well defined
and presents a network of etch features that mimic the pixel ensembles
which make up a droplet interface. The number of images included
from each experiment is as follows: ‘Inlet Throat = 485’, ‘Porous Media
= 530’, ‘Narrow Flow Cell = 148’, ‘Monodisperse Flow Cell = 485’ and
‘Polydisperse Flow Cell = 255’. The base amount of total images in the
generalized dataset is 1903 without augmentation. Out of 19,483 total
annotated objects, out-of-focus droplets are very underrepresented in
the generalized dataset at only 644 instances or 3.3%. By including
this class in the dataset, our intention was to identify poorly captured
droplets and easily remove them from the harvested droplet data.

The models were each trained on this dataset based on the param-
eters described in the previous section. The outcome of the training in
regards to loss as a function of training iteration, for example, and other
metrics such as mean average precision (mAP), recall are available in
the supplementary information (Figures S1–S3). Confidence thresholds
used during inference per experiment are also available in Table S1.
After inference is performed, images are de-normalized by the native
image resolution which allows extraction of bounding box coordinates
and dimensions and transformation into micrometer values.

The workstation used for training and data analysis uses Windows
10, with 32 GB of DDR4 (3200 MHz) RAM (Corsair), Intel Core i9-
10850K CPU running at 3.6 GHz and an Nvidia Geforce RTX 11 GB
2080Ti GPU.

3. Results and discussion

3.1. Droplet generation

Outside of the broader systemic applications of microfluidics, the
intrinsic physical mechanisms, such as droplet generation, can be ex-
ploited via various chip architectures, where T-junctions and flow
focusing geometries are the most common. The size and number of
generated droplets depends on the flow characteristics of both phases,
but also the properties of the fluid (Garstecki et al., 2006). Finding a
system with appropriate drop size and number often requires several
screening measurements, where various parameters are systematically
tested (Fu et al., 2012; Husny & Cooper-White, 2006; Tice et al., 2003).
This could entail, for example, a correct drop volume in droplet reactor
systems or obtaining correct droplet size for emulsion generation. Many
reports in the literature rely on specific drop size or monodispersity
(Frenz et al., 2008; van Dijke et al., 2009), where the presented
method would also be applicable. Here we show the results of a simple
experiment: droplets were generated and recorded during a step-wise
increase in the flow rate of the continuous phase through a T-junction
(Fig. 3).

Droplet diameters obtained from ImageJ (solid line) and YOLOv5
(scattered points) for droplet generation experiment. The color of the
points corresponds to their relative occurrence frequency in a given
time unit. The line plot below shows the programmed changes in the
flow rate of the continuous phase during the experiment.
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Fig. 2. Shows an example of each type of image capture which was annotated and used in the general training/validation set. (A) Inlet Throat, (B) Porous Media, (C) Narrow
low Cell (D) Monodisperse Flow Cell, (E) Polydisperse Flow Cell. (F) Also shown is a frequency distribution of droplets and a secondary ‘‘out_of_focus’’ droplet class in each of
he image types in the generalized dataset.
Fig. 3. Droplet diameters obtained from ImageJ (solid line) and YOLOv5 (scattered points) for droplet generation experiment. The color of the points corresponds to their relative
ccurrence frequency in a given time unit. The lineplot below shows the programmed changes in the flow rate of the continuous phase during the experiment.. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
u
At time zero of the experiment, a constant continuous phase flow
ate of 50 μl/min was introduced and maintained. After approximately
s, the continuous phase flow rate was ramped up by 20 μl/min per 1 s
6

ntil reaching 250 μl/min, at which point the flow was dropped back
to the initial level, without ramping. The scattered points on Fig. 3 are
the values obtained via per-frame inference with YOLOv5. The color
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scheme is a heat-mapping which represents the relative occurrence of
specific sizes in each time segment, i.e. dark and light blue-colored
points signify diameters that did not appear often in the dataset, while
orange- and red-colored points occurred very frequently. The black line
shows the data obtained from complementary analysis in ImageJ. For
the sake of image clarity, we used a moving average to smooth out this
data.

The outcome of this droplet generation stress test raises several
points. In the first two seconds of the measurement, the detected sizes
ranged from 80 to 95 μm. However, the mode in this segment oscillates
around the ‘‘ground-truth’’, reference values obtained from ImageJ
measurements. Inspection of the annotated images showed that the
bounding boxes were quite often not-precisely fit to the droplets. One
possible reason for that was the proximity of droplets to the walls of
the channel. In these flow conditions (shown in the first image inset
of Fig. 3), the drops only had a few pixels worth of clearance in the
horizontal direction. As flow rate is increased, expectedly the drop
size decreases which also induced less fluctuation in the bounding box
rendering. The precision deviation between droplet sizes corresponds
to the proximity between the droplet interface and the edge features
of the flow channel. The localized lighting conditions at the sub-
5 μm scale could affect the model’s ability to precisely discriminate
between individual pixel ensembles belonging to the droplet or channel
wall. A small lag in response between the change in the flow and
the corresponding shift in drop size was observed, which could be
attributed to the dead volumes in the tubing leading into the chip
holder. At approximately 12 s of recording, the flow rate was brought
back to the initial value of 50 μl/min. Consequently, the drop size
started to increase, reaching approximately 80 μm by the end of the
recording. Interestingly, the diameter distribution was observed to be
the narrowest in the last segment of the measurement.

Despite the oscillatory nature of YOLOv5’s detection precision, both
the average detected diameter and the mode in each time segment
shared symmetry to detection performed in ImageJ. The fast ramping
of the flow rate, combined with dead volumes in the system resulted
in a delayed response in the drop sizes, meaning that the drop size
at each flow rate is probably not the ‘‘steady state’’ diameter that
should be expected in these conditions. Nevertheless, these measure-
ments show that one can obtain reliable, reasonably distributed size
data via YOLOv5 inference. Lastly, one important limitation of ImageJ
should be noted here. The entire recording comprised almost 70,000
individual frames. Loading and analysis of these amounts of images
on standard PCs or laptops in ImageJ is essentially intractable. Even
on our analysis PC (specifications described in Methods section), just
loading all of the frames from memory into ImageJ consumes most
of the RAM capabilities for more than 1 hr. In contrast, YOLOv5 took
slightly longer than 10 min to entirely process and write detections for
all 70,000 frames. Additionally, this lays the groundwork for various
future applications where droplet-based systems in microfluidics are
investigated in the context of using a CNN like YOLOv5, specifically
capable of >100 fps inference (as in the experiment above). The model
inference can be directly fed into a control algorithm which acts on the
pumps to control flow for autonomous droplet or flow tailoring.

3.2. Flow cells

Subsequent to droplet generation in microfluidics, the various types
of downstream droplet interaction are numerous and often the end
goal of a microfluidic experiment, depending on the application. In
most of our previous reports (Dudek, Bertheussen et al., 2018; Dudek,
Ullaland et al., 2020), we focused on their coalescence or generally the
interactions with other droplets. Here, we will showcase the analysis
capabilities and symmetry to prior techniques using various CNNs
on systems of freely flowing droplets, where the average diameter
is smaller than the relatively large width (approximately 500 μm) of

non-constrained flow cells. Our flow cell experiments can be divided

7

Table 2
The number of detected monodispersed droplets using various image analysis
methods.

Experiment Matlab ImageJ Faster
R-CNN

YOLOv3 YOLOv5

OiW Model oil (weak contrast) 1627 1559 1605 1591 1595
OiW Crude oil (medium contrast) 2983 2911 2957 2636 2931
OiW Crude oil (strong contrast) 2805 2749 2797 2678 2788
WiO Crude oil (weak contrast) 1548 1223 1503 1475 1446

into three subsets: (1) monodisperse droplets entering a wide chan-
nel shortly after generation (inlet of the coalescence chamber); (2)
coalesced monodisperse droplets (outlet of the coalescence chamber);
and (3) polydisperse droplets generated ex-situ and reinjected into a
wide flow cell. Lastly, we will also present the detection of coalescence
events during flow in microchannels. The droplets studied in each of
these flow cell systems are shown in Fig. 4.

The first two (Fig. 4A and B) were typically part of one experiment,
where the inlet and outlet of the coalescence channel was recorded
in order to count the droplets coming in, and then count/measure
the size of the droplets flowing out of the channel. One important
aspect of these experiments was that the projected area of the droplets
was increasing proportionally to the number of coalescence events
that they underwent. This made it feasible to segregate droplets into
size classes and calculate how many coalescence events occurred per
time recorded. The data was then used to calculate the coalescence
frequency, which is a common parameter to compare the stability of
different emulsions (Dudek, Chicault et al., 2020; Krebs et al., 2012a,
2012b). In the contrasting case of polydisperse systems, the actual size
distribution was of interest, as emulsions were prepared outside of the
microfluidic chip and re-injected into the flow cell to record and later
measure the droplet size.

Inference performed by YOLOv5 on (A) Monodispersed inlet, (B)
Coalesced monodisperse (contrast), (C) Polydisperse flow cell, (D) Al-
ternately trained YOLOv5 detections of teardrop and ellipsoidal coa-
lescence events. Insets are simply magnified contents of the inference
bounding boxes.

3.2.1. Monodisperse systems (inlet)
After generation, the droplets or bubbles are often transferred to

wider channels, where they can interact with each other (Baret et al.,
2009; Fu et al., 2015; Schröder et al., 2018; Wang et al., 2020). The
initial part of these coalescence channels allows to measure their size
and count (or estimate) the number of generated droplets. Table 2
summarizes the data obtained for monodisperse droplets at the inlet
of our coalescence channel. Here we compare the three CNNs with
two commonly used approaches for droplet analysis in microfluidics:
feature extraction via Matlab and ImageJ. All methods were tested
against four sets of fluid systems. Three of them were water-continuous
with varying contrast of the dispersed oil phase, while the last one was
oil continuous, meaning that the background (continuous phase) was
considerably darker. It should also be noted that here all analyses were
performed on every 150th image in the frame sequences recorded for
the flow cells. Our previously reported drop counting method relies
on calculating the drop velocity and later the average amount of
appearances of a single drop while passing through an RoI box (Dudek,
Muijlwijk et al., 2018). Since the recording speed of the videos is on
the order of thousands of fps (depending on the total flow rate), the
same droplet is spotted several times as it passes through the detection
window, and for this reason the drop velocity was used to estimate
the actual number of drops. However here, by re-analyzing sets of the
filtered-out images (rather than whole sets), we could directly compare
the detection efficiency of the CNNs and the overall analysis pipeline
in contrast to the traditional methods.

Here we see that overall, both Faster R-CNN and YOLOv5 gener-
ally produce symmetrical analysis outcomes compared to ImageJ and
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Fig. 4. Inference performed by YOLOv5 on (A) Monodisperse inlet, (B) Coalesced monodisperse (contrast), (C) Polydisperse flow cell, (D) Alternately trained YOLOv5 detections
of teardrop and ellipsoidal coalescence events. Insets are simply magnified contents of the inference bounding boxes. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Matlab. Based on visual inspection of the annotated images, detection
with Matlab’s implementation of the Hough transform seemed to be
the most precise, and indeed this method always yielded the highest
counts of drops. The values obtained from both Faster R-CNN and
YOLOv5 closely followed those of the classic Hough transform, where
in most cases the deviation was not higher than 1%. A similar system
of a wider channel following drop generation junction, was also tested
by Zhang et al. (2022), with even better drop detections, mostly due
to some overlapping drops in the microchannels. We noted however,
that YOLOv3 detected significantly less drops in 3 out of 4 tested
sets. The inlet recordings typically contain trains of droplets in contact
with one another, typically in one to three parallel rows, depending
on the system and flow rates used (see Fig. 4A). When inspecting the
inferenced images, visual verification showed that YOLOv3 failed to
detect some droplets that were contained on the inner side of those
droplet trains (as shown in Figure S4), consequently resulting in lower
detection numbers. Interestingly, the oil-continuous system also yielded
low droplet detections via ImageJ, compared to the complementary
CNN analyses. Since the contrast between the oil and water phase is
not as high as for the water-continuous systems, the thresholding of
images in ImageJ was more demanding, and with small drop diameters,
approximately 20% of objects were not detected. Additionally, the fit
of the bounding boxes relative to the detected drops was significantly
better when the channel was much wider than the drop diameter.

3.2.2. Monodisperse systems after coalescence (outlet)
After passing through the coalescence chamber, many of the initially

monodisperse droplets can merge together and re-emerge as larger
droplets later in the flow cell. Since the area of the droplets increase
proportionally to the number of coalescence events, it is common to use
size classes instead of actual droplet sizes (Dudek, Bertheussen et al.,
2018; Krebs et al., 2012a, 2012b). The size classes are determined as
8

follows: size class 1 is the initial droplet size, size class 2 is the droplet
formed after coalescence of two size class 1 droplets, size class 3 is
created by coalescence between size class 1 and 2 droplets, and so
on. Fig. 5 shows the droplet size class distribution from one of the
experiments, where image analysis was performed with all three CNNs
and ImageJ as a reference. Subsequent systems with similar analysis
are available in Figure S5.

Size distribution of initially monodisperse droplets at the outlet of
the coalescence chamber obtained with all three CNNs and ImageJ for
reference. Data for OiW Model oil (weak contrast).

As in the previous RoI velocity calculations, ImageJ was asked to
perform analysis on full sets of experiment frames, while the three
CNNs were fed every 150th frame. This gave some discrepancy between
the absolute drop counts, since the image filtering factor was only
an approximation based on the velocity of the droplets. Therefore, all
size distributions were normalized for more transparent comparison.
The actual final processing of the data into discretized size classes
was performed in Matlab based on the inference from each model and
ImageJ. All analysis methods provide similar results, with some small
deviations for YOLOv3 at droplet size classes 4 and larger. Even though
the boundaries for all size classes were equivalent, various singular
instances of droplets were assigned to different size classes, across the
CNNs. This was most likely the result of bounding boxes providing a
non-precise fit 5 μm to the detected objects, which in turn affected their
size, and consequently the calculated areas of the droplets.

While informative, drop size class distributions are not very effec-
tive to compare the extent of merging in various systems. In most of
our reporting on this type of droplet system, we tend to use coalescence
frequency as a single-value parameter for comparison. Briefly, coales-
cence frequency is calculated by dividing the ratio of the number of
droplets at the inlet and outlet by the residence time. It describes how
often, on average, a single droplet undergoes coalescence event per
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Fig. 5. Size distribution of initially monodisperse droplets at the outlet of the coalescence chamber obtained with all three CNNs and ImageJ for reference. Data for OiW Model
oil (weak contrast).
Table 3
Coalescence frequencies calculated from the droplet size distributions using various
methods.

Experiment ImageJ Faster R-CNN YOLOv3 YOLOv5

OiW Model oil (weak contrast) 2.112 2.067 2.021 2.067
OiW Crude oil (medium contrast) 0.760 0.752 0.735 0.755
OiW Crude oil (strong contrast) 0.436 0.414 0.410 0.379
WiO Crude oil (weak contrast) 0.552 0.704 0.694 0.705

unit time. Hence, the higher the value of the coalescence frequency,
the less stable emulsion is expected (i.e., more coalescence). Here,
the analysis was also performed on selected systems with different
merging characteristics (i.e., size distributions) and contrast between
the continuous and dispersed phases (Table 3).

For this instance, we report three decimal points precision to probe
if any significant deviation between analysis methods exists. In reality,
the coalescence frequency values have to differ by ca. 20% minimum
to observe significant differences between the systems, since the typical
standard deviation between repeated measurements is typically not
higher than 10%. Consequently, all three CNNs and ImageJ provided
nearly equivalent coalescence frequency values for the first two cases
(weak and medium contrast), where YOLOv3 was weaker as it pro-
vided slightly lower values. The other two cases are more interesting
and therefore worth discussing. In the water-continuous system with
strong contrast, image analysis via the CNNs yielded significantly lower
results. The system in question is shown in Fig. 4B, with dark oil
droplets presenting in a highly overexposed flow channel. Here, anal-
ysis with ImageJ was to some extent problematic, as it was difficult to
properly threshold the images due to dark color of the oil and inner
(water) droplets. This led to lack of detection of some initial-sized
drops, which slightly increased the calculated coalescence frequency
parameter. While Faster R-CNN and YOLOv3 seemed to detect all
the droplets in the images for this system and gave a similar coales-
cence frequency, a number of the larger droplets were not detected
by YOLOv5 (potentially as a result of high confidence thresholding).
This caused the frequency parameter to be lowered by an additional
10% compared to the other two models. One possible reason for the
lack of detection could be the inner features of the droplets, as for
all of the other systems YOLOv5 was working equally, if not better
than the other models. Both Faster R-CNN and YOLOv3 (especially
the former) detected many more satellite droplets or image aberrations
resulting from the flowing fluids or the microfluidic channel, leading to
9

false detections. These detections can be forced by YOLOv5 if inference
is again performed with lower confidence thresholding. However, for
the sake of the analysis, satellites and false detections were filtered
out of the analysis set. In the oil-continuous system, all the models
provided very similar values, but higher than the result obtained from
ImageJ. As in the previous flow cells, ImageJ struggles in certain
systems where there is poor contrast provided between the droplets
and the background. Therefore, we expect that the data harvested by
the CNNs is in fact more accurate and reliable for sensitive phenomena
in monodisperse flow cell systems.

3.2.3. Polydisperse systems
Monodispersed systems are highly controlled model experiments

which offer insight into many fundamental droplet interactions but
rarely approach addressing emulsified systems with a realistic size dis-
tributions. Imaging of less rigidly controlled emulsions in a microfluidic
flow cell poses image processing challenges that are not characteristic
in monodispersed droplets. We included an annotated set of polydis-
perse droplets in the overall training set, seen in Fig. 2, where various
droplet morphologies and out-of-focus objects were prevalent. The
inherent complexity of these polydisperse droplets increases especially
in droplets with sizes greater than 100 pixels due to the high likelihood
of droplets appearing within droplets—double emulsions. These very
large droplets present at diameters sometimes 10 times greater than the
smaller droplets. The goal of including this data was to teach the models
that in polydisperse systems a droplet can exist at such varying levels
of heterogeneous diameter, something that is unavailable in model
monodisperse systems. At insufficient levels of training, precision as a
function of training iterations has not converged enough with regards
to being able to discern the interior droplets from the bulk droplet.
However, as training iterations increase, with precise annotation, the
models exhibit sufficient precision towards discerning double emulsions
simply as whole droplets.

Additionally, when pivoting from narrow size distributions of
droplets to emulsions with wide size distributions the focal plane
becomes a factor which affects microscopic observation due to some
of the droplets appearing out-of-focus (OOF). These droplets disappear
fully or partially during the microscope observation of the flow and
thus are omitted or inaccurately detected during image processing
which contributes to statistical misrepresentation. Although, despite
the models having the ability to identify out-of-focus droplets, the
raw inference only visually distinguishes proposed bounds for the OOF
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droplet and thus a true size still cannot be ascertained. However,
using DNNs for enhancement of images to super-resolutions is a highly
researched area and could be a viable pathway for enhancing resolution
for OOF droplets and investigating the frequency of their occurrence
visually and the potential effect on the droplet statistics (Lim et al.,
2017).

We performed a flow cell experiment where a polydisperse emulsion
was generated off-chip and then re-injected in order to generate a high
fps dataset to be fed to the traditional analysis tools as well as the mod-
els. In contrast to the monodisperse droplets where we fabricate size
classes for relatively narrow distributions, the measured heterogeneous
sizes can be represented as true size distributions. In this dataset we
used pixel values to highlight the limits of each technique, regardless
of the actual droplet size. The per-method inference visualization as
well as the corresponding size distributions are shown in Fig. 6.

Droplet size distributions for a polydisperse emulsion observed in a
flow cell. Each histogram shows the results of the detection and analysis
for each method, (A) ImageJ, (B) Faster R-CNN, (C) YOLOv5, (D)
YOLOv3. The inset of the upper secondary axis of each plot shows the
results of the inference on the same frame from the experiment. (E) De-
tection frequency for each binned droplet size for ImageJ, Faster R-CNN
and YOLOv5. YOLOv3 is not included due to insufficient detections of
larger droplets.

The outcome of the analysis here shows excellent statistical symme-
try, specifically, between processing performed in ImageJ and having
YOLOv5 and Faster R-CNN infer the bounding boxes on the polydis-
perse droplets. ImageJ struggles with the smallest droplets that appear
in this flow experiment while YOLOv5 and Faster R-CNN are able to
identify an order of magnitude higher. These small detections make
up the bulk of the sample sizes depicted in Fig. 6. YOLOv5 excels at
detecting all small droplets <10 pixels and is still able to discriminate
nd classify non-usable OOF droplets. Faster R-CNN struggles with this
hich is why there are generally more droplets towards the small end
f the total detections as it includes them into the results. YOLOv3
n the other hand is not a viable method, as it has up to this point
truggled with very small object clusters and now also completely fails
t detecting very large droplets and double emulsions. For this reason,
he frequencies for YOLOv3 are not included in Fig. 6. The detections
f this model are still acceptable for droplets within 35–200 pixels but
utside of this range, YOLOv5 and Faster R-CNN outperform the older
ounterpart of the former.

Based on general histograms binned every 10 pixels, we wanted
o examine the precision of the models at a more granular level of
nspection between these sizes (mid-to-large droplets), without the
kew from the small droplet sizes at the tail of the distributions. Fig. 6E
hows the precision variation in terms of detection frequency as a
unction of droplet size for ImageJ, Faster R-CNN and YOLOv5. YOLOv3
s specifically omitted because of the poor detections of large droplets.
aster R-CNN is generally the model which reports more droplets from
00 pixels to approximately 400 pixels. All three methods converge
ell towards the extremely large sizes. The variation in frequencies
etween bins is best described by the spillover caused by imprecise
ounding boxes. The same droplet which is detected on a per-frame
asis in some cases could oscillate between the size bins as it travels
n the flow channel based on the bounding box being rendered with
mprecision between the box and the droplet interface. This precision
scillation when sequential frames are analyzed by the models is similar
o what we observed in the droplet generation experiments in Fig. 3,
hich also relied on a very large dataset.

.2.4. Coalescence events
In addition to just droplet detection, we show that the models can

e trained to discriminate inter-droplet interaction morphologies, such
s various coalescence events instead of the actual droplets themselves.
easurement of coalescence time is an important topic in the literature

oncerning emulsions, and several microfluidic techniques have been
10
Table 4
The number of detected coalescence events in different systems using ImageJ and
YOLOv5.

Method 0.1% wt. Span85
@21 ◦C

1.0% wt. Span85
@21 ◦C

1.0% wt. Span85
@40 ◦C

ImageJ 886 725 878
YOLOv5 1068 904 1047
Same frame detections 798 600 382

reported previously (Krebs et al., 2012a, 2012b; Wang et al., 2016,
2019; Zhou et al., 2016). In our previous work (Dudek, Fernandes et al.,
2020), we have also reported a microfluidic method for measuring
coalescence time. We define coalescence time as the time needed for
the thin film, formed between two droplets in contact, to break. The
coalescence time measurement was based on the detection of droplets
in the process of coalescing, i.e. right after the moment of thin film
breaking between the two drop interfaces, when the merged droplet
returns to a typical, circular shape (see Fig. 4D). The detection of these
droplet deformations was the starting point for our calculation of the
coalescence time. With the help of several shape descriptors available
through ImageJ particle analysis feature, it was possible to calculate
a shape parameter for all the objects in the recording. As a result,
out of approximately 50 000 frames and typically more than a million
detected objects, one could filter out between 600 and 1000 coalescing
droplets which were further analyzed. The image analysis performed in
ImageJ is time consuming, due to the number of frames and size of the
datasets, as previously highlighted.

Consequently, a new training set for YOLOv5 was prepared to
enable a more precise and robust detection of coalescing droplets. We
trained YOLOv5 on annotations which consisted of two morphologies of
coalescence events: teardrop and ellipsoidal merging events. The a pri-
ori intention of developing weights for this detection task was to probe
the ability of the models to discriminate between droplet sub-classes
and not the actual droplets themselves. The training/validation/test
(70/20/10% split) dataset for these coalescence events consisted of 786
images. The contributions from the each coalescence class consisted of
566 annotations for ellipsoidal events and 228 from teardrop shaped
events. The model was trained with the same YOLOv5 parameters
as the general droplet dataset described previously. An example of
inference performed by YOLOv5 is shown in Fig. 4D, where an ellip-
soidal and teardrop coalescence event occur on one frame. The number
of detected coalescence events analyzed with YOLOv5 and ImageJ is
presented in Table 4. Here, we show data for three different water-
continuous systems, all with xylene droplets containing a nonionic
surfactant (Span85) and at different temperatures (room or elevated
temperature).

Depending on the parameters of the experiment, different numbers
of coalescence events were detected. When increasing the surfactant
concentration, the droplets were more stable and consequently less
merging events were observed. Upon increasing the temperature, co-
alescence improved, which is to be expected as thermal treatment
of emulsions is one of the common methods of inducing oil–water
separation. In regards to the number of the detected coalescence events
between the different methods, in all systems there was an approximate
20%–25% increase in events observed by YOLOv5. It should be noted
that both datasets were processed in the same way as described in our
previous work (Dudek, Fernandes et al., 2020), i.e. only events from
frame 2 000 and above were included and the events from consecutive
frames were removed. This data filtration had a larger effect on the
results from YOLOv5, where often one coalescence event was detected
over several frames due to deformation between droplets.

Table 4 also lists the number of same frame detections for both
methods. Here, we compared the frame numbers associated with a
detected coalescence event reported by both ImageJ and YOLOv5,
and noted where the detections from both methods coincided. In the
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Fig. 6. Droplet size distributions for a polydisperse emulsion observed in a flow cell. Each histogram shows the results of the detection and analysis for each method, (A) ImageJ,
(B) Faster R-CNN, (C) YOLOv5, (D) YOLOv3. The inset of the upper secondary axis of each plot shows the results of the inference on the same frame from the experiment. E)
Detection frequency for each binned droplet size for ImageJ, Faster R-CNN, and YOLOv5. YOLOv3 is not included due to insufficient detections of larger droplets.
measurements at room temperature, these values are very comparable
to the instances reported by ImageJ (ca. 100 lower for both systems),
which means that YOLOv5 detected most of the same droplet merging
events as ImageJ. The values for the higher temperature experiment
are less symmetrical, however. One possible reason for that was that
YOLOv5 was trained on two types of coalescence events (Fig. 4D),
namely teardrop, where the droplets are caught in the moment of the
film breakage; and ellipsoidal, where two drops are already in the
process of merging and returning back to circular shape. Image analysis
via ImageJ in most cases did not allow for detecting teardrop events,
as after thresholding the boundary of the two coalescing droplets was
11
discontinuous, and therefore omitted in the detection process. At higher
temperature tests there seemed to be significantly more teardrop events
detected with YOLOv5 (ca. 60% of total amount, compared to ca. 30%
for the other two experiments at room temperature). Consequently,
the same coalescence events could have been detected by ImageJ 2–
3 frames after the detection with YOLOv5. And while the difference
is quite small (few hundreds μs), this could also potentially lead to
more accurate coalescence time measurements and eventually on-line
measurements due to high inference speeds of YOLOv5.
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Table 5
The number of detected monodispersed droplets using various methods.

Method Matlab ImageJ NIS-Elements
BR

Faster
R-CNN

YOLOv3 YOLOv5

23 μm droplets 2638 2422 2375 700 1804 2100
45 μm droplets 1397 1223 1170 700 1360 1431

3.3. Micrographs

Thus far, the entirety of the droplet detection task has been framed
in a microfluidics context. The models have been trained on purely
microfluidic droplet data and then redeployed as analysis vehicles in
other microfluidic systems. However, the dynamics regarding emulsion
characteristics are often investigated via simpler avenues such as visual
inspection after drop casting onto standard microscope slides (Colucci
et al., 2020; Hu et al., 2017). Extracting data from these micrographs
becomes a highly time-intensive process due to the image prepro-
cessing and pipelining to commercial software or traditional analysis
techniques, such as those discussed above. Hundreds of slices can be
harvested from one drop-casted slide which can then yield greater
than 50 000 detectable droplets, depending on the characteristics of
the emulsion. Both approaches have drawbacks regarding pipeline
efficiency and thus we posit that the acquisition speed of an automated
stage coupled to the droplet detection models will not only allow
for a significant increase in data acquisition rate but enable real-time
acquisition. This is similar to a biological-focused implementation of
Faster R-CNN and YOLO which used an automated stage that passed the
microscope feed to the models which were trained to render detections
of specific cells (Waithe et al., 2020). To implement this approach for
emulsions on micrographs, single images can be simply passed to a
persistent detection script or via batch processing. Once detection is
invoked, of the three models used, Faster R-CNN has been shown to
be the slowest while YOLOv3 and v5 inference speeds are less than
20 ms per frame. For YOLOv5, tuned with our weights, we reiterate
that inference is typically 10 ms or less per frame on a GPU, and
thus any potential bottlenecks will be related to the stage movement
and subsequent image acquisition. With segmentation, however, the
process can be significantly slower, as shown by Zhang et al. with their
implementation of Mask R-CNN for droplet detection (Zhang et al.,
2022).

Nonetheless, in terms of the actual droplet detection, we found
that inference on micrographs was actually a more complex task than
detection in the other microfluidic systems investigated. Conditions
outside of a microfluidic system are highly variable and the residence
of droplets within the liquid film on the microscope slide can con-
tribute to varying levels of focus in the acquired image. Additionally,
outside of a microfluidic chip there is a high tendency for micro-scale
contaminants to enter the system at large. These factors contribute to
natural image augmentation which is not present in a raw microflu-
idic training set. These augmentations coupled with the absence of
annotated droplets coming from micrographs in the training set make
detection more challenging for the models. Specifically, as in other CNN
implementations for detection of microscopic objects, harsh lighting
gradients often impact the inference capability of most models when
fed raw images without prior image processing. This is evident as we
benchmarked the CNNs against the traditional or commercial software
on two monodisperse emulsions captured on micrographs with heavy
vignetting. Table 5 shows the results of the total amount of droplets
detected for each method and model. The vignetted micrographs for
the 23 and 45 μm emulsions are available in supplementary Figure S6,

hich also shows the inferred droplet bounding boxes for each CNN.
The variability seen across these methods indicates that lighting

onditions significantly affect droplet counting especially in the vi-
nette fringes. Specifically, in the Matlab implementation of the circu-

ar Hough transform, despite the monodispersity of the emulsions, the
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shaded fringe droplets are detected but assigned an incorrect diameter
which contributes to skewing of the known size distribution. In the
45 μm emulsion satellite droplets exist, which are also identified by
the Hough transform and require filtering. YOLOv5 is the only of
the models which also detects satellite droplets in addition to the
intended droplets while YOLOv3 completely fails to identify the <10
pixel objects. Faster R-CNN is the weakest of the models as it only
detects droplets in which it is only near 100% confidence without any
thresholding applied during inference. Although, YOLOv5 had the most
success in droplet identification and construction of a homogeneous
size distribution, we also tested these natural micrograph augmen-
tations in more heterogeneous droplet distributions, fine and coarse.
We considered the first fine because the mode droplet diameter was
approximately 2 μm. The second of the heterogeneous emulsions had
mode diameter of approximately 10 μm which contributed to its coarse-
ness. Fig. 7 shows the droplet size distributions for these emulsions
characterized by heavily pre-processed images in ImageJ, as well as
raw data inference performed by Faster R-CNN, YOLOv3 and YOLOv5.

Droplet size distributions shown by a probability density function
for (A) fine emulsion with (B) YOLOv5 inference and (C) a coarse
emulsion with (D) YOLOv5 inference. Inference results from ImageJ,
YOLOv3 and Faster R-CNN are available in Figure S7.

Immediately, similarly to the microfluidic systems, there is statis-
tical symmetry between the distributions produced by our traditional
control method and mainly YOLOv5 in both emulsions. Despite the
fine emulsion tending to be slightly more homogeneously dispersed,
the dispersity is broad enough where there is variance between the
software and the models when dealing with smaller droplets. In both
emulsions, the distributions converge well at droplet diameters around
10 μm. However, the task is more challenging for the predecessor
YOLOv3 and the region-based Faster R-CNN. Frequency counts suffer
and the smallest droplets are completely omitted even at very low
confidence thresholds (<50%) set during inference. In the case of
finer droplets outside of microfluidic systems YOLOv5 is the superior
choice for smaller, less familiar objects. As the droplet sizes grow along
with a higher degree of polydispersity, the detection becomes similarly
tractable for all three models where detection overlap is very high
between ImageJ, YOLOv5 and Faster R-CNN. YOLOv3 still struggles
due to the inherent architectural weaknesses which directly affects
its inference capability for ultra-small objects (sub 10 pixels). The
treatment of feature maps in YOLOv5 has been improved compared
to older versions which still uses low resolution feature maps that
contribute to YOLOv3’s inability to detect ultra-small objects (Jocher,
2020).

The original intention with constructing a generalized droplet de-
tection dataset was that it could broadly tune several CNN architec-
tures for ubiquitous droplet detection across many systems. Clearly, as
the detection task evolves to droplet systems outside the microfluidic
realm, the natural augmentation and intrusion of disruptions to image
quality suggest that the training task for both YOLOv5 and Faster R-
CNN requires modification of the training data. Droplets are currently
similar enough that the existing training set can tune the model to
harvest droplet information with a competitive or better efficiency with
significantly higher data acquisition rates (hours to seconds). Although
we posit that higher degrees of precision can be achieved via inclusion
of annotated micrographs in the model training or by assembling a
training and validation set specifically for micrographs. Ultimately, the
models struggle with droplets between 1 and 5 pixels, especially so in
agglomerated groups, and thus it follows that model architecture must
be addressed. Specifically, if there was some methodological unification
between the discretized grid used by YOLOv5 and the sliding window of
Faster R-CNN, higher resolution images can be fed to this hybrid archi-
tecture which moves across bigger images proposing detections within
discretized grids. A non-architectural overhaul would simply involve
experimental modification where higher microscope magnification is
used with more sensitive stage movements, specifically for micrographs
or porous media where precision loss is more prevalent in polydisperse
systems, discussed below.
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Fig. 7. Droplet size distributions for a polydisperse emulsion observed in a flow cell. Each histogram shows the results of the detection and analysis for each method, (A) ImageJ,
(B) Faster R-CNN, (C) YOLOv5, (D) YOLOv3. The inset of the upper secondary axis of each plot shows the results of the inference on the same frame from the experiment. (E)
Detection frequency for each binned droplet size for ImageJ, Faster R-CNN and YOLOv5. YOLOv3 is not included due to insufficient detections of larger droplets.
3.4. Porous media

Certain emulsion science phenomena often extend to understanding
system dynamics outside of various flow regimes, such as in model sys-
tems with implications for extraction or retention characteristics (Auset
& Keller, 2006; Liu et al., 2019). Microfluidics can be an alternative
approach to conventional flooding techniques for studies concerned
with the transport of emulsions in porous media (Azizov et al., 2022).
Conducting these studies microfluidically allows pore-scale observa-
tions of droplet transport, whose outcomes could build a fundamental
knowledge about droplet retention. However, such microfluidic ex-
periments pose a challenge when it comes to image analysis as the
microfluidic chips representing porous media have a complex geome-
try. The applicability of deep learning techniques in microfluidic porous
structures has been previously shown in a recent report, where it was
used to assess wettability changes in sandstone- and carbonate-type
micromodels during flooding experiments (Yun et al., 2020). Here, we
employ porous media studies in tandem with the integration of the
CNNs into our image analysis pipeline for studying droplet flow in
microfluidic porous media.

In order to simulate porous structures, the microfluidic chip archi-
tecture is modified into a topographical network of etched features
intended to impede droplet transport, shown in Fig. 2B. The addition
of the rock-like feature matrix raises the degree of complexity for
traditional image analysis techniques. The complexity arises from the
pixel intensities present at the edges of the etch features which are
also highly similar to pixel ensembles present at droplets interfaces.
13
The circular Hough transform can still be applied for droplet detection
with a fair level of robustness, despite the presence of the porous
matrix, albeit with stringent limitations. Firstly, as in the prior Hough
transform implementations in our various microfluidic systems, the
method struggles with detection of objects <5 pixels. Additionally, the
etched features of the chip exhibited enough circularity to become
challenging for the Hough transform to distinguish between them and
droplets, and required sacrificing data integrity to filter them from the
droplet statistics. The data processing is time and resource intensive,
as typically processing time was 2.5–3 s per image, for a dataset
of 25 000 images from various porous media experiments. ImageJ’s
‘‘Analyze Particles’’ suite suffered from the same limitations as the
Hough transform in these experiments and produced less quality data
than the latter.

Despite the elevated level of background complexity present in
these microfluidic systems, we posit the CNNs from the prior detection
experiments can also be implemented as a competitive or superior
method for droplet detection and data harvesting. Initially, in our pro-
totype training and validation set, the models were not exposed to data
from these porous media experiments. The best inference results had
a broad mix of accurate detections of droplets and false detections of
chip features. Similarly to the implementation of the Hough transform,
where prominently convex chip features must be specifically filtered
out, the detection of these edges must be accounted for by training out
this type of false inference. The weights produced by our final training
and validation dataset, shown in Fig. 2, droplets from various annotated
porous media experiments were the most representative type of droplet
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Fig. 8. (A) Shows kernel density estimation plot for all detection methods, including the traditional approaches, for a monodisperse emulsion injected into a porous media matrix.
nference results performed by (B) YOLOv3, (C) YOLOv5, (D) Faster R-CNN, (E) Hough Transform.
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able 6
he number of detected droplets in mono and polydisperse in porous media using
arious methods.
Emulsion homogeneity Matlab ImageJ Faster R-CNN YOLOv3 YOLOv5

Monodisperse 2989 2765 2658 2857 2844
Polydisperse 15 762 14 349 16 783 15 233 16 358

in the entire dataset. The nature of these experiments includes inhibi-
tion of droplet transport and thus the concentration of droplets at the
face of the network is usually high compared to flow cell microfluidics,
thus increasing the detection task complexity even further. Inference
was performed on monodisperse droplets in porous media with all three
CNNs, and the results are shown in Fig. 8. Absolute droplet counts can
be seen in Table 6 for monodisperse and polydisperse droplets retained
in the porous media chip, obtained for each detection method.

The glaring statistical difference between the reported monodis-
perse distributions is the appearance of two major diameter peaks.
YOLOv3 and ImageJ both report that the majority of detected droplets
have diameter centered at approximately 42.5 μm. The Hough trans-
orm shares slight overlap between these with the most Gaussian-like
istribution which shared overlap between both mean peaks. Contrast-
ngly, both Faster R-CNN and YOLOv5 mainly reported a bulk of the
iameters approximately between 47 and 50 μm. The peak shift is
xplained by the placement of the detection or bounding box around or
ithin the droplet. The Hough transform, ImageJ and YOLOv3 detect
roplets by bounding within the droplet interface. The former two cate-
orically eliminate the interface and thus shave several microns from a
rue estimation of the entire droplet. Faster R-CNN and YOLOv5 bound
he droplet directly at the interface thus preserving the true diameter
easurement without any further assumptive post-processing. Among

hese methods, despite the bounding precision of Faster R-CNN, it fails
o detect significantly more droplets than all the other methods. We
onsider the Hough transform the reference method for droplet count or
omething very near ‘‘ground-truth’’ as we manually checked this entire
ataset for missed detections. For this monodisperse set of droplets
etained in the porous matrix, the Hough transform detected 2989
roplets. In terms of raw counts, YOLOv3 and YOLOv5 both outperform
he entire ImageJ pipeline, which includes the ‘‘Analyze Particles’’ func-
ion and data post-processing. Generally, the Hough transform exists in
he domain of accurate number of raw detections but algorithmically it
erforms detection of droplets within the interface, thereby shifting the
rue size distribution by approximately 8 μm, which is a drawback in
mageJ and YOLOv3 as well. Training YOLOv3 further will most likely
esult in some degree of overfitting for future predictions as precision
nd recall already converge well with loss over time, with the model
eporting near 100% confidence for detected droplets. The overfitting
isk exists within Faster R-CNN as well due to confidence levels of 100%
 a

14
espite a significant amount of missed detections. A solution could
e to create a dataset specifically for porous media systems or other
ore complex microfluidic architectures that naturally augment the
etection task with confusing edge morphologies that present droplet-
ike interfaces. However, YOLOv3 exhibits divergent behavior in the
econdary porous media experiment, this time using a polydisperse
mulsion. The results of this polydisperse retention experiment are
hown in Fig. 9.

The polydispersity of the tested systems leads to a wide range of
roplet diameters, and we thus use pixel values instead to emphasize
he limitations of each detection method. Similarly to the monodisperse
orous media results, we can use the Hough transform as a template for
omething near true droplet count in the system. Trend-wise even as
he droplet size distribution broadens, there is distribution symmetry
etween YOLOv3 and ImageJ. The same methodological issue exists
here for the Hough transform, ImageJ and YOLOv3 the droplets
re mainly detected within their interfaces which again contributes
o an underestimation of the true diameter on the order of 8 μm,
pproximately. It follows, that Faster R-CNN and YOLOv5 still generally
nfer the bounding box around the droplet interface. The level of
olydispersity in this emulsion is clear due to multiple mean peaks
hich develop alongside bigger droplets beyond 50 μm diameter, which
re mainly detected by Faster R-CNN and YOLOv5. YOLOv3 has the
east ‘‘tail-like’’ behavior because it has the least consistent internal
uleset regarding bounding boxes as a function of droplet size. While
t detects within the interface for larger droplets, as the diameter falls
elow 30 μm, YOLOv3 begins to overestimate the size of the droplet and
ails at detecting small objects, as in the other experiments. Contrast-
ngly, Faster R-CNN significantly overfits detections for smaller objects
nd often falsely detects either contaminants or small chip features
ith localized lighting artifacts as droplets contributing to a highly
verestimated true droplet count. Most of this is observable in the tail
nder 10 μm. YOLOv5 also occasionally falsely reports artifacts or con-
aminants as small objects albeit with very low confidence compared to
rue small droplets with high confidence; therefore making it entirely
easible to filter false detections quickly. Even though we consider the
ough transform a relative baseline, it struggles with very small objects

n this size range and we estimate that in more polydisperse droplet
ets YOLOv5 is actually 5% more accurate at reporting true droplet
ounts due to the surprising detection aptitude across the entire size
pectrum. ImageJ also struggles with small droplets for several reasons.
irstly, because the chip features for this microfluidic system must not
e detected, ImageJ requires thresholding to do this and in the same
re-processing step, the smaller droplets are immediately removed from
onsideration. Additionally, the inherent convexity of the void space
etween circular droplets at agglomerated clusters is always detected

nd is also filtered.
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Fig. 9. Size distributions for data gathered from a porous media experiment which was injected with a polydisperse emulsion.
All methods falter when droplets appear in a microfluidic chip with
eatures that are highly visually representative of droplet interfaces.
espite this, all methods generally report distribution symmetry, and
eing able to perform detection either inside or at the droplet interface
s the main factor which affects the variance between the detections.
ltimately, both YOLOv3 and v5 can perform per-frame inference in

ess than 0.02 s which unlocks access to the same statistics as classical
ethods in fractions of the time required by the latter. A thorough

ssessment of finite time investment into post-experimental data treat-
ent and processing with the classical methodologies is difficult to
erform based on the variability, in terms of time required, by each
ndividual to actually perform the task. More scrutiny can be placed on
pplying the correct filters to allow for a subjectively acceptable level
f accurate object detection in ImageJ, while in the models, raw data
s simply passed in without preprocessing and automatically utilized in
xperimental analysis.

. Conclusions

Leveraging the computational advantage of various deep-learning
pproaches and CNN architectures in analysis pipelines is clearly evolv-
ng to be an intensely focused area of research. Throughout this work,
e have shown that the three CNN’s, Faster R-CNN, YOLOv3 and
OLOv5, can be trained on comprehensive microfluidic droplet datasets
nd then deployed as droplet detectors in a gamut of microfluidic
ystems and experiments. The models all show viability throughout
he systems we tested, in comparison to data acquired via traditional
ethods and software packages i.e., Hough Transform implemented in
atlab and the Particle Analyzer suite in ImageJ). Overall, YOLOv5

ppears more robust compared to the other two models, as it almost
lways provided precise bounding boxes in comparison to the tradi-
ional methods and outperformed these approaches as the detection
ask became more complex, as in the porous media systems. Faster R-
NN rivaled YOLOv5 in many of the experiments but sometimes overfit
nd falsely detected or completely missed obvious detections while
lso underperformed compared to YOLOv5’s blazingly quick 10 ms per
rame inference time. The former is still valuable as segmentation can
e integrated via Mask R-CNN, and could potentially open the door
or more complex levels of analysis in 3D droplet systems where the
-axis contributes to droplet agglomeration and occlusion. YOLOv5’s
onsistent outperformance maintains statistical fidelity throughout the
nalysis pipeline at a fraction of the time investment and thus this
ethod has become our primary droplet detection tool for many fu-

ure microfluidic experiments. While the smallest version of YOLOv5
ffers inference capable of live object detection at moderate framerates
n high speed cameras, the model can be further condensed due to
he fundamental nature of this well-established computer vision task.
ecreasing the number of parameters will reduce the computational
15
cost of pushing data through the model, thus decreasing its GPU mem-
ory footprint while still maintaining detection robustness in recording
regimes greater than 200 fps.
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